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Preface

Robotic systems are effective tools for the automation necessary for industrial
modernization, improvedinternational competitiveness, andeconomic integration.
Increases in productivity and flexibility and the continuous assurance of high
quality are closely related to the level of intelligence and autonomy required of
robots and robotic systems.

At the present time, industry is already planning the application of intelli-
gent systems to various production processes. However, these systems are semi-
autonomous and need some human supervision. New intelligent, flexible, and
robust autonomous systems are key components of the factory of the future, as
well as in the service industries, medicine, biology, and mechanical engineering.

A robotic system that recognizes the environment and executes the tasks it is
commanded to perform can achieve more dexterous tasks in more complicated
environments. Integration of sensory data and the building up of an internal model
of the environment, action planning based on this model and learning-based control
of action are topics of current interest in this context. System integration is one
of the most difficult tasks whereby sensors, vision systems, controllers, machine
elements, and software for planning, supervision, and learning are tied together
to give a functional entity. Moreover, robot intelligence needs to interact with
a dynamic world. Cognition, perception, action, and learning are all essential
components of such systems, and their integration into real systems of different
levels of complexity should help to clarify the nature of robotic intelligence.

In a complex robotic agent system, knowledge about the surrounding environ-
ment determines the structure and methodologies used to control and coordinate
the system, which leads to an increase in the intelligence of the individual system
components.

Full orpartial knowledge of an agent’s environment, as in industry, leads to an
intelligent robotic workcell. Because of the rather high level of this knowledge,
all the planning activities can be performed off-line, and only task execution needs
to be done on-line.

A different approach is needed when little or no information about the environ-
ment is available. In this situation, a robotic multiagent system that shows no clear
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vi Preface

grouping of components is better suited to develop plans and to react to changes in
a dynamic environment. All the calculations have to be done on-line. This requires
more processing power and faster algorithms than the organized structure, where
only the operations in the execution phase have to be computed in real time.

This book only treats the intelligent robotic cell and its components; the fully
autonomous robotic multiagent system is not covered here. However, the on-line
components, methods, and algorithms of the intelligent robotic cell can be used in
multiagent systems as well.

The book deals with the basic research issues associated with each subsystem
of an intelligent robotic cell and discusses how tools and methods from different
discrete system theory, artificial intelligence, fuzzy set theory, and neural network
analysis can address these issues. Each unit of design and synthesis for workcell
control needs different mathematical and system engineering tools such as graph
searching, optimization, neural computing, fuzzy decision making, simulation of
discrete dynamic systems, and event-based system methods.

The material in the book is divided into two parts. The first part gives detailed
formal descriptions and solutions of problems in technological process planning
and robot motion planning. The methods presented here can be used in the off-
line phase of design and synthesis of the intelligent robotic system. The chapters
present the methods and algorithms which are used to obtain the executable plan of
robot motions and manipulations and device operations based only on the general
description of the technological task.

The second part treats real-time events based on multilevel coordination and
control of robotic cells using neural network computing. The components of such
control systems use discrete-event, neural-network, and fuzzy logic-based coor-
dinators and controllers. Different on-line planning, coordination, and control
methods are described depending on the knowledge about the surrounding envi-
ronment of robotic agent. These methods call on different degrees of autonomy
of the robotic agent. Possible solutions to obtain the required intelligent behavior
of robotic system are presented.

In writing this book, a formal approach has been adopted. The usage of
mathematics is limited to the level required to maintain the clarity of the presen-
tation. The book should contribute to the better understanding, advancement, and
development of new applications of intelligent robotic systems.
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CHAPTER 1

Introduction

In a complex system using robotic agents, knowledge about the surrounding envi-
ronment determines the structure and methodologies used to control and coordinate
the system, which leads to an increase in the intelligence of the individual system
components.

Full or partial knowledge of the agents’ environment, as is found in industry,
leads to an intelligent robotic workcell. Because of the rather high level of this
knowledge, all the planning activities can be performed off-line, and only task-
execution needs to be done on-line.

A different approach is needed when little or no information about the environ-
ment is available. In this situation, a robotic multiagent system that shows no clear
grouping ofcomponents is better suited to develop plans and to react to changes in
a dynamic environment. All the calculations have to be done on-line. This requires
more processing power and faster algorithms than the organized structure, where
only the operations in the execution phase have to be computed in real time.

The distinction between these two paradigms is shown in Figure 1.1. This
book will treat only the intelligent robotic cell and its components (shown on the
left side of Figure 1.1). Fully autonomous robotic multiagent systems are not
covered here. However, the on-line components and algorithms for an intelligent
robotic cell can be used in multiagent systems as well.

The knowledge it will have about the environment determines the requirements
of robotic agent intelligence. Depending on the uncertainty in the work space of
a robotic agent in a workcell (existence of dynamic objects), the agent can be
classified as belonging to one of the following three classes:

Nonautonomous agents require a central processing module to perform
off-line and on-line calculations for them.

Partially autonomous agents (reactive agents) can react independently to
dynamic changes in the environment by calculating new path and
trajectory segments on line.

Autonomous agents require the least amount of supervision by a
coordinator and that can change or adopt a given plan of action based on
experience learned during their whole life cycle.

1



2 Chapter 1

Figure 1.1. Degree of autonomy of a robotic system as a function of the amount of knowledge it has
about its environment.

1.1. The Modern Industrial World: The Intelligent Robotic
Workcell

Modern manufacturing is characterized by low-volume, high-variety produc-
tion and close-tolerance, high-quality products. In response to the ever-increasing
competition in the global market, major efforts have been devoted to the research
and development of various technologies to improve productivity and quality.
The economic pressure for increases in quality, productivity, and efficiency of
manufacturing processes has motivated the development of more complex and
intelligent flexible manufacturing systems (FMS) (Buzacott, 1985; Kusiak, 1990;
Lenz, 1989; Meystel, 1988).

The flexible and economic production of goods requires a new level of automa-
tion. Intelligent robotic workcells, integrating manufacturing stations (worksta-
tions) and robots, form the basis of a flexible manufacturing process. Intelligent
robotic workcells and computer integrated manufacturing are effective tools to
increase manufacturing competitiveness.
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Figure 1.2. General structure of FMS.

In a manufacturing environment, FMS are generally constructed based on a
hierarchical architecture (Buzacott, 1985; Jones and McLean, 1986). The FMS
hierarchy consists of the following levels: facility, cell, and workstation and
equipment. The levels in the hierarchical architecture have the following functions:

The facility level implements the manufacturing engineering, resource, and
task management functions.

The control functions at the cell level are job sequencing, scheduling,
material handling, supervision, and coordination of the physical activities
of workstations and robots.

Machining operations are performed at the workstation level.

The structure of the FMS control system is shown in Figure 1.2. In the
above architecture, the control mechanisms are established in such a way that the
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Figure 1.3. Basic definition of the manufacturing process.

upper-level components issue commands to lower-level ones and receive feedback
upon the completion of command execution by these lower-level components.
The physical components at each level are computer systems and control devices,
connected by a communication network such as a local area network (LAN) with
a manufacturing automation protocol (MAP) (Buzacott, 1985; Jones and McLean,
1986). Control software is a key component in achieving a high degree of FMS
flexibility.

The design of robotic cell control software involves the application and im-
plementation of concepts and methods from different scientific disciplines. For a
robotic workcell one has to define theprocess according to which the goods are to
be manufactured. This process should be defined, designed, and then loaded into
the components of the manufacturing cell and executed.

The synthesis of the manufacturing process and its enactment have to be per-
formed off-line and thus executed in a radically different environments, in contrast
to software engineering, which has largely the luxury to be able to design, quality
assure, and execute the programs in roughly the same environment (Chroust, 1992;
Pichler, 1989).

With respect to the above hierarchy of manufacturing activities, we list the
major subtasks to be performed and provide a process model for it (Saridis, 1983;
Black, 1988; Jacak and Rozenblit, in press; Jacak and Rozenblit, 1994). On the
highest level of abstraction we have (Figure 1.3):

Preparation of the Basic Operating Plan:
In this step the sequence of processing steps (as defined by the processing
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Off-line phase (Part I)
Off line planning and programming

Figure 1.4. Organization of  Part I of the book.
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On-line phase (Part II)
On-line control and coordination

Figure 1.5. Organization of Part II of the book. NN, neural network.

requirements of the product and the applied technology) are defined and
the individual processing steps assigned to machines (or machine classes).
The subtasks of this process step are: (1) material selection, (2)
technological operation selection, (3) machine and tool selection, (4)
machining parameter selection, and (5) machining process sequencing
(Black, 1988; Wang and Li, 1991).

Modeling of the Processing Workcell:
It is necessary for there to be an easy way to describe the physical layout of
the cell and specify its components, and easy ways to change it and to
provide a large repository of standardized models in a library. The result is
a so-called virtual cell, a complete description of the real cell and its
components.
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Task Planning and Programming of Cell Equipment:
The automatic programming and task planning is based on logical and
geometric models of the cell and robots, mathematical algorithms, and to a
certain extent experiments. The generation of a robot action sequence is
only one phase in the hierarchy of steps required to plan the robot’s
behavior in programmable robotic cells. To make the generation of the
robot plan applicable to practical problems, more systematic approaches to
the design and planning of actions are needed to enhance their performance
and enable their cost-effective implementation. At the implementation
level, the system for generating the action plan should be capable of
reasoning about the geometry and times of actions. Special attention must
be focused on questions of directional approach (“what is the best
orientation under which a partial product is to be moved toward the
machine?”), on collision-freeness, and on optimization of the desired
attributes (be it time, energy consumption, speed, etc.) (Prasad, 1989;
Bedworth et al., 1991; Maimon, 1987; Lozano-Perez, 1989; Latombe,
1991; Shin and McKay, 1986; Shin and McKay, 1985).

Materials Flow — Event-Based Emulation:
Only for very simple producer/consumer models can the actual behavior of
the product flow be computed in a closed analytical form. In practically all
interesting cases only simulation can provide a solution (Ranky and Ho,
1985; Wloka, 1991; Rozenblit and Zeigler, 1988; Jacak and Rozenblit,
1993).

The basic manufacturing process specification is shown in Figure 1.3. For
most of the presented steps no closed solution or construction method exists, and
thus we are forced to verify and validate the results of our engineering efforts
heuristically.

1.2. How to Read this Book

In this book we introduce basic research issues associated with each subsystem
of the intelligent robotic cell and discuss how different discrete system theory,
artificial intelligence, fuzzy set theory, and neural network tools and methods can
address these issues. Each block of a workcell control synthesis system need
different mathematical and system engineering tools such as graph searching,
optimization, neural computing, fuzzy decision making, simulation of the discrete
dynamic system, and event based system methods.

The book is organized as follows:
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Part I gives detailed descriptions and solutions of problems relating to planning
the technological process androbots motions. The methods presented here are used
in off-line synthesis of the intelligent robotic cell (Chapters 2–6). Methods and
algorithms are given to obtain executable plans of robot motions and manipulations
based only on general descriptions of the technological task or on the final state
of the assembly process. Examples of software systems are given for the design
of intelligent control of robotic systems. The plan of this part of  book is shown in
Figure 1.4.

Part II treats the real-time, event-based multilevel coordination and control
of robotic system (Chapters 7–11). The components of such control systems
use discrete event, neural network, and fuzzy-logic based controllers. Different
coordination methods are described depending on the state of  knowledge about
the surrounding environment of the robotic agent. These methods need different
degrees of autonomy for the robotic agent. Possible solutions for obtaining the
required intelligent behavior of robotic systems are presented.

Chapter 10 describes the synchronized simulation of the manufacturing process
performed in a virtual cell parallel to the real technological process, which allows
rapid monitoring and diagnosis. The object-oriented specification of an intelligent
organizer, coordinator, and executor of cell actions is described in Chapter 11. The
plan of this part of the book is shown in Figure 1.5.



CHAPTER 2

Intelligent Robotic Systems

A robotic system and its control are termed intelligent if the system can self-
determine its decision choices based upon the simulation of needed solutions or
upon experience stored in the form of rules in its knowledge base. The required
level of intelligence depends on how the complete its knowledge is about its
environment. The different classes of intelligent robotic systems are shown in
Figure 2.1. One such system is the intelligent robotic workcell. Intelligent robotic
cells are effective tools to increase productivity and quality in modern industry.

2.1. The Intelligent Robotic Workcell

In recent years, the use of flexible manufacturing systems has enabled partial
or complete automation of machining and assembly of products. The flexible
manufacturing system (FMS) is an efficient production system which can be
directly integrated with production functions (Prasad, 1989; Bedworth et al., 1991;
Black, 1988).

The basic building block of  the system is the robotic manufacturing cell, called
the robotic workcell. The parts processed in the system are selected and grouped
into families based on the similarity of operations (Prasad, 1989; Bedworth et
al., 1991). The machines related to these families are grouped and allocated to
the cells. This provides benefits such as reduced setup and flow times and lower
in-process inventory levels through simplified work flows. They consist of three
main components:

a production system (technological devices)

a material handling system (robots)

a hierarchical computer-assisted control system

Robotic cellular manufacturing systems are data-intensive systems. The ro-
botic workcell integrates all aspects of manufacturing. The intelligent robotic

9
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Figure 2.1. Intelligent robotic systems: Classes, structures, and methods.
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workcell, and consequently intelligent cellular manufacturing systems, represent
the direction of the development of modern manufacturing (Kusiak, 1990; Prasad,
1989; Saridis, 1983; Meystel, 1988).

Definition 2.1.1 (Intelligent Robotic Cell). The robotic cell and its control are
termed intelligent if it can self-determine its decisions choices based upon the
simulation of needed solutions in virtual world or upon experience gained in the
past both from failures and successful solutions which are stored in the form of rules
in the system knowledge base (Kusiak, 1990; Sacerdot, 1981; McDermott, 1982;
Saridis, 1989; Yoshikawa and Holden, 1990). An intelligent robotic system in the
industrial world is a computer-integrated cellular system consisting of  partially or
fully intelligent robotic workcells.

The planning and control within a cell is done off-line and on-line by a hier-
archical controller which itself is regarded as an integral part of the cell. Such a
structured robotic manufacturing cell will be called a computer-assisted robotic
cell (CARC).

The main purpose of the CARC is to synthesize and execute a sequence of
actions so that the overall system objectives are achieved even under circumstances
which may require replanning.

The control system should tie all the data available to the solutions required
to run the manufacturing system effectively. Some of the problems to be solved
in such an environment are grouping, machine choice and process and motion
planning.

Definition 2.1.2 (Control Task of CARC). The intelligent computer-assisted ro-
botic cell should be able to self-determine for given technological task the control
of workcell actions such that:

the task is realized

deadlocks are avoided

maximal flow time is minimal

work-in-process factor is minimal

geometric constraints are satisfied

collisions between robotic agents are avoided

Design and control of intelligent robotic manufacturing systems involves the
application and implementation of concepts, methods, and tools from different
disciplines of science, mathematics, and engineering. To synthesize a completely
autonomous or semiautonomous computer-assisted robotic cell operating in dy-
namic environment we use concepts, ideas, and tools from artificial intelligence,
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computational intelligence, andgeneral systemtheory, suchas hierarchical decom-
position of control problems, the hierarchy of specification models, and discrete
and continuous simulation from system theory, and action planning methods,
graph-searching of the model’s state, neural computation, learning, and fuzzy
decision making from artificial and computational intelligence.

2.2. Hierarchical Control of the Intelligent Robotic Cell

The control problem of a computer-assisted robotic cell is a complicated one.
Due to the large number of possible solutions (which differ depending on the
sequence of technological operations, sequence of sensor-dependent robot actions,
geometric forms of manipulator paths, and dynamics of movements along the
paths), it is necessary to apply a a stratified methodology. This is possible since
robot actions can be modeled in terms of different conceptual frameworks, namely,
operational, geometrical, kinematic, and dynamic.

Thus, to reduce the complexity of the control problem, we propose to apply
a hierarchical decomposition process to break down the original problem into a
set of subproblems. In this way, the solution of the control synthesis problem is
formulated in terms of successive levels ofa model ofa flexible production system
behavior.

The control laws which govern the operation of a CARC are structured hierar-
chically. We distinguish three basic levels ofcontrol:

the execution (workstation) level

the coordination (cell) level

the organization level

This follows the classification of intelligent control systems often cited in
the literature (Kusiak, 1990; Lenz, 1989; Saridis, 1983; Meystel, 1988; Maimon,
1987).

The organization level accepts and interprets related feedback from the lower
levels, defines the strategy of task sequencing to be executed in real-time
and processes large amounts of information with little or no precision. Its
functions are defined to be reasoning, decision making, learning feedback,
and long-term memory exchange.

The coordination level defines the routing of the part in logical and geometric
terms and coordinates the activities of workstations and robots, which in
turn coordinate the activities of the equipment in the workstation. It is
concerned with the formulation of the actual control task to be executed by
the lowest level.
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Figure 2.2. Functional structure of an intelligent robotic system.

The execution level is composed of device controllers, and executes the action
programs issued by the coordinator.

An intelligent CARC (with the hierarchical structure shown in Figure 2.2)
composed of the three interactive levels of organization, coordination, and exe-
cution, is modeled with the aid the theory of intelligent systems (Sacerdot, 1981;
Saridis, 1989). Figure 2.3 presents the knowledge base and the different classes
of formal models which are needed for the planning and control of cell action. All
planning and decision making actions are performed within the higher levels. In
general, the performance of such systems is improved through self-planning with
different planning methods and through self-modification with learning algorithms
and schemes interpreted as interactive procedures for the determination of the best
possible cell action. There are two major problems in the planning and synthesis
of such complex control laws. The first depends on coordination and integration
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Figure 2.3. Structure of a knowledge base for an intelligent robotic cell.

at all levels in the system, from that of the cell, where a number of machine must
cooperate, to that of the whole manufacturing workshop, where all cells must
be coordinated. The second problem is that of automatic action planning and
programming of the elements of the system.

Thus, the control problem of a robotic cell can be considered as having two
main elements.

The first, which we shall call logical control or operational control, relates
to the coordination ofevents, for example, the loading of a part into a
machine and the starting of the machine program cycle. Logical control
acts to satisfy ordering constraints on event sequences.

The second, termed geometric and dynamic control, relates to the
determination of the geometric and dynamic parameters of motions for the
elements of the system. Geometric control ensures that the position, path,
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and time of movement of all elements of the system and its environment
satisfy the geometric and dynamic constraints at all times.

2.3. Centralization versus Autonomy of the Robotic Cell
Agent

For a multirobot system forming a robotic cell, there are two extreme possi-
bilities a centralized or a distributed system.

In a centralized robotic system, each robot is only a collection of sensors,
actuators and some local feedback loops. Almost all tasks are processed in a
coordinator (central controller). The communication between the coordinator and
the robots only involves sending data from sensors to the coordinator and receiving
detailed commands from the coordinator.

Conversely, in a distributed robotic system, each robot plans and solves a prob-
lem (task) “independently” and communicates its information, which is processed
in each robot.

2.3.1. Centralized Control of the Intelligent Robotic Cell

A multirobot system which aims at cooperative work always has some tasks
which are common to the whole system rather than to individual robots, e.g., a
task for planning the manipulation, or a task for global cooperation, etc. These
tasks are suited for processing in a coordinator rather than in each robot. However,
in a centralized system, defects such as the limitation of processing ability or lack
of fault tolerance might become more significant as the system becomes larger,
because the processing of all of tasks is performed by the coordinator. Moreover,
since the robots are distributed physically, it is more suitable to process some tasks
separately rather than concentrating them at the coordinator. Centralized systems,
due to the limits on available computational power and the existence ofoverhead
in transferring data between the robots and the central system (coordinator), are
not appropriate for other than small groups of robots. Thus, centralizedprocessing
is not quite suitable for cooperative work via multiple robots.

2.3.2. Distributed Control of the Intelligent Robotic Cell

The trend in studies of distributed autonomous robotic systems seems to in-
dicate that this approach is superior to centralized system from the view points
of flexibility, robustness and fault-tolerance ability. In a pure distributed system,
the processing of a cooperative manipulation task which is common to the whole
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system is also done separately. In this situation, cooperation among distributed
agents becomes necessary to perform the task. This kind of cooperation requires
excessive robot intelligence, excessive communication, and tautological process-
ing. These are unnecessary and unnatural for constructing a multirobot system and
can be thought of as a type of loss to the whole system (Ahmadabi and Nakano,
1996; Lambrinos and Scheier, 1996; Wang et al., 1996; Kosuge and Oosumi,
1996).

A mixed form, rather than aiming at constructing a pure distributed robotic
system, is a multirobot system which maintains a coordinator as its leader, and
incorporates homogeneous behavior-based robots which have limited abilities for
manipulation. In contrast to the coordinator in a centralized system, the coordinator
here acts as a leader and an organizer which coordinates robot behavior, generates
goals for the robots, and offers some global position information to each robot to
modify its own data. It does not perform any calculation of target object dynamics
or force distribution for dynamic cooperation, and does not do any path planning
for each robot.

In contrast to collision avoidance among moving robots, in this system, the
robots which are working on a manipulation interfere with each other dynamically
through the target object. For cooperation, some information about the target
object and other robots can be obtained from sensors on each robot. Then, with the
information obtained from the coordinator by communication and from sensors,
cooperation with other robots for manipulation work can be realized, and the
necessity of communication among robots vanishes.

A system without communication among robots has the advantage of avoiding
a rapid increase of communication quantity when the number of robots in the
system increases. Such a system is not just a simple mixture of the two types of
systems, centralized and distributed, in order to obtain an average of the advantages
of each system. The coordinator, the leader of the system, not only compensates
for the incompleteness of each robot’s ability, but also serves to organize robots
whose behavioral attributes include limited manipulating ability and cooperative
ability. As an illustration, consider that even among human beings, a better quality
of cooperation often appears in a group with a leader or a supervisor when a
difficult task is being performed.

2.3.3. Cooperation in the Robot Group

Various researchers on multirobot systems have different targets in mind, and
thus there are various definitions of cooperation. The most basic and essential point
of the cooperation between multiple robots is that they perform a task together
without conflict.

For performing different tasks, the information and factors involved in achiev-
ing cooperation will be different. This gives different characteristics to the different
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cooperation strategies. Cooperation in a group of robots can be defined such that
both the information obtained or exchanged by each robot and the elements of the
task which the cooperation is working to achieve, include dynamic factors (such
as accelerations of forces).

In general, dynamic cooperation is only necessary when performing a task with
a dynamic system, whether in a model-based or in a behavior-based approach. Of
course, behavior-based cooperation strategy is different from the strategy applied
in a model-based cooperating robotic system.

In the model-based approach, cooperation in a group of robots is achieved in
two steps:

generating a set of the desired physical parameters (e.g., the desired path
and torque of each robot) by using a model-based planner (off-line phase)

controlling the robot mechanisms to realize the desired parameters.

Therefore, a dynamic cooperation strategy in the model-based approach is
required to consider dynamic factors of the system in the planning stage and to
guarantee that its controller is able to cope with the dynamic characteristic of the
system.

On the contrary, the behavior-based approach is based on the idea that robot
control can be realized by constructing arobot’s behavioral attributes from a certain
quantity of behavioral elements. Each behavioral element constructs a behavior
control mechanism to act on the world in some situation. Cooperation among
robots emerges from robot behavioral attributes and their interaction through the
object and the environment. Thus a dynamic cooperation strategy must be such that
a robot’s behavior acts on the object and on the environment dynamically. Also,
each robot’s behavioral attributes must be able to cope with the dynamic interaction
(Wang et al., 1996; Kosuge and Oosumi, 1996; Haddadi, 1995; Wooldridge et al.,
1996).

2.4. Structure and Behavior of the Intelligent Robotic
System

The intelligent control of a computer-assisted robotic cell is synthesized and
executed in two phases, namely:

Planning and off-line simulation

On-line simulation based monitoring and intelligent control

In the first phase a hierarchical simulation model of a robotic workcell termed
a virtual cell is created. Because the computer-assisted robotic cell has to make too
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Figure 2.4. Structure of computer-assisted robotic cell (CARC).

many subjective decisions on the basis of deterministic programming methods, the
knowledge database and knowledge-based decision support system need to act as
an adviser. Such a knowledge database is represented by the virtual workcell. The
are two basic types of simulation employed for modeling manufacturing systems:
discrete and continuous simulation. Discrete simulation is event oriented and
is based on the concept of a complex discrete events system (DEVS) (Zeigler,
1984; Rozenblit and Zeigler, 1988). Workcell components such as NC-machine
tools, robots, conveyors, etc., are modeled as elementary DEVS systems. Discrete
changes of state of these systems are of interest. This type of simulation is used
for verification and testing different variant of workcell task realizations, called
processes, obtained from the Process Planner. Process planning is based on
the description of task operations and their precedence relations. The resulting
fundamental planes of cell action describe different ways to decompose the cell
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task into ordered sequences of technological operations. To simulate the variants
of a process the system know how individual robot actions are carried out. For
the detailed modeling of cell components the continuous simulation approach and
motion planning methods are used.

The geometrical interpretations of cell actions obtained from the Motion Plan-
ner and tested in a geometric cell simulator allow us to select the optimal task
realizations which establish the logical control unit of  the control system. The mo-
tion trajectories of robots obtained by continuous simulation create the geometric
control unit of the control system.

In the second phase the real-time discrete event simulator of a CARC generated
in the first phase is used to generate a sequence of future events of a virtual cell in
a given time window. These events are compared with the current states of a real
cell and are used to predict motion commands for the robots and to monitor the
process flow. The simulation model is modified at any time when the states of the
real cell change, and current real states are introduced into the model.

The structure of a computer-assisted robotic cell is shown in Figure 2.4.
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CHAPTER 3

Virtual Robotic Cells

Robotic cells are formed by group technology clustering techniques such as the
rank order clustering (ROC) method (Black, 1988; King, 1980; Wang and Li,
1991); improved methods also exist (Black, 1988). The problem of grouping
parts and machines has been extensively studied. The available approaches can be
classified as follows:

evaluative methods

clustering algorithms

similarity coefficient-based methods

bond energy algorithms

cost-based heuristics

within-cell utilization-based heuristics

neural network-based approaches

A real cell is a fixed physical group of machines and a virtual cell is a formal
representation (computer model) of a machine group in the central computer of
a control system. Each cell is designated for the production of a small family of
parts. The production related to one type of part is called a technological task.

More specifically, an intelligent robotic cell is a set of NC (or CNC)-program-
mable machines (technological devices) D called workstations and production
stores M, connected by a flexible material handling facility R (such as robots or
automated guided vehicles), and controlled by a computer net (LAN) connected
with a sensory system.

Each workstation has its own control and programming system. A workstation
(machine) can have abuffer. Parts are automatically loaded into the machine
from the buffer. Then they are machined and subsequently can be stored in the
buffer. Depending on the type of technological operation to be carried out on a
part, various tooling programs can be used to control the workstation’s machining
process.

23
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The virtual robotic cell has a hierarchical structure of models. The robotic
cell modeling process proceeds in two phases, namely (1) modeling of the logical
structure of the cell and (2) modeling of the geometry of the cell.

3.1. Logical Model of the Robotic Cell

In the first phase, the workcell entity structure needs to be designed, i.e., a
logical structure of the cell must be created. The group of machines is divided into
subgroups, called machining centers, which are serviced by separate robots. Parts
are transferred between machines by the robots from set R, which service the cell.

A robot can service only those machines within its service space
is the Cartesian base frame). The set of devices which

lie in the rth robot service space is denoted by More specifi-

Example 3.1.1. Consider Example_Cell. To perform the technological tasks the
following machines are grouped: NC-millers WHD 25 (d01) and FYD 30 (d03),
NC-lathes TNS 26e (d02) and Weiler 16 (d04), a quality inspection center (d05), a
feeder conveyor (m01), conveyor (m02), and an output conveyor (m03).

The workcell is serviced by two IRb ASEA robots {r01, r02}. The machining
center serviced by robot r01 consists of the following devices:

The machining center of robot r02 has the following equipment:

The logical structure of the manufacturing workcell is shown in Figure 3.1.

3.2. Geometrical Model of the Robotic Cell

In the second phase of the modeling process the geometry of the virtual cell
must be created.

Formally the geometry of the cell is defined as follows (Brady, 1986; Yoshikawa
and Holden, 1990; Jacak, in press; Ranky and Ho, 1985; Wloka, 1991):

cally, the device belongs to a group serviced by robot r [i.e., if all
positions of its buffer lie in the service space of robot r.

Consequently, the logical model of a workcell is represented by
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Figure 3.1. Logical structure of a virtual cell.

The first component of the cell geometry description

represents the set of geometrical models of the cell’s objects. Ed is the coordinate
frame of the object (device) d, and Vi is the polyhedral approximation of geometry
dth object in Ei (Ranky and Ho, 1985; Wloka, 1991).

The second component of the geometrical model

represents the cell layout as a set of transformations between an object’s coordinate
frame Ed and the base coordinate frame E0 (Brady, 1986).

Consequently, a geometry modeling process has two phases: (1) workcell
object modeling and (2) workcell layout modeling.

3.2.1. Workcell Object Modeling

The geometric model of each object is created through solid modeling (Bed-
worth et al., 1991; Yoshikawa and Holden, 1990), Which incorporates the design
and analysis of virtual objects created from primitives of solids stored in a geo-
metric database. Constructive solid geometry handles primitives of solids, which
are bounded intersections ofclosed half-spaces defined by planes or shapes. More
complex objects (such as technological devices, auxiliary devices or static obsta-
cles) can be built by composition using set operations, such as the union, intersec-
tion, and difference of solid bodies. As an example ofvirtual object synthesis, the
modeling of the NC-lathe WH64 VF is shown in Figure 3.2.

3.2.2. Workcell Layout Modeling

Workcell objects Vd can be placed in a robot’s workscene in any position and
orientation. The transformation between the object frame Ed and
the base frame E0 is used to calculate the location of virtual objects (devices, stores,
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Figure 3.2. The geometric model of the NC-lathe WH64 VF.

robots). The virtual objects (devices, stores) are loaded from a catalogue into the
Cartesian base frame and can be located anywhere in the cell using translation and
rotation operations in the base coordinate frame (Jacak, in press).

The layout of the manufacturing workcell considered in the example Example_
Cell is presented in Figure 3.3.

Major drawbacks of such graphics modeling include the following:

Unless already stored in the catalogue, the graphics images of the robots,
devices, and other components of the cell must be designed by the user.
This is often time-consuming.

Using three-dimensional polyhedral approximation of objects, collisions
can be detected by complex time-consuming computer geometry
algorithms.

3.3. Basic Methods of Computational Geometry

We focus on defining tools for the efficient computation of distances between
bodies of objects in three-dimensional space.

3.3.1. Distance Computing Problem

The most natural measure of the proximity is the Euclidean distance between
two objects, i.e., the length of the shortest line segment joining the two objects.
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Figure 3.3. The geometric model of the robotic workcell Example_Cell.

There is an extensive computational geometry literature concerning the distance
calculation problem (Gilbert et al., 1988). Many algorithms have been specifi-
cally designed to achieve bounds on the form of the asymptotic time. For two-
dimensional problems, Schwartz (1981) gives an O(log2 M) algorithm, and more
recently, O(log M) has been used (Schwartz, 1981) (M is the number of vertexes).
The three-dimensional problem has been considered (Red, 1983) with a time of
O(M log M). Because of their complexity and special emphasis on asymptotic
performance, it is not clear that the algorithms are efficient for practical problems.
Other schemes have also been described: Red (1983) presents a program which
uses a projection approach for polyhedra with facial representation, Gilbert (1988)
considers negative distances for polytopes, Mayer (1986) considers boxes and their
distances, and Lumelsky (1985) considers line segments.

Let O1 and O2 denote two convex solids, x and z two points belonging respec-
tively to O1 and O2, and n a unit vector. The notation (n|x) refers to the inner
product of vectors n and x.

The Euclidean distance between O1 and O2, equal to

can be computed by alternatively projecting a point of O1 onto O2, the point of O2

that we obtain onto O1, etc., until the distance between the points converges. For
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nonoverlapping objects the Euclidean distance can be defined as

where

If they do overlap, such a distance becomes negative and measures how far objects
interpenetrate.

The interesting point in this definition is that is always lower than
Let us define the influence distance as the threshold on interac-

Note that the computation of can be decomposed into

2. With compute the first point x' of O1 in direction –n.

3. Then and we have

It can be shown that converges toward if the procedure is repeatedly
applied (Faverjon, 1986).

It is also possible toconvert the distance probleminto aquadratic programming
problem and apply a feedback neural network to solve it (Lee and Bekey, 1991;
Jacak, 1994b). Obstacles are modeled as unions of convex polyhedra in 3D
Cartesian space. A polyhedral obstacle can be represented by a set of linear

tions between objects. Then, if is greater than for some value n, the same
stands for the exact distance and we can declare these objects to be noninteracting.

for an arbitrary point o. Based on such a definition of   we can use the following
procedure for distance estimation:

1. Select an arbitrary point x in O1 and project it on O2.

inequalities where The polyhedral object is modeled by a
connectionist network with three units in the bottom layer which represent the
x,y,z coordinates of the point. Each unit in the second layer corresponds to one
inequality constraint of the object: The connections between the bottom and the
second layer have their weights equal to the coefficients aj, bj of the corresponding
face. Then the jth face of the polyhedral object is represented by a neuron with a
sigmoid function
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When a point is given to the bottom-layer units, each of the second-layer neurons
decides whether the given point satisfies its constraints. To reduce the training
time we can apply hybrid techniques which automatically create the full network
topology and values of neural weights based on symbolic computation of the
polyhedral object’s faces.

Let M, N denote the number of neurons representing the objects O1 and O2,
respectively. The distance between objects O1 and O2, i.e., is the
solution of the following optimization problem:

with constraints

The above problem can be transformed into a problem without constraints by
introducing the penalty function r(x,z) defined as

where is the neuron activation function given by Equation (3.9). Then the
modified criterion function is

The solution of the above problem can be obtained by attaching a feedback around
a feedforward network to form a recurrent loop. This coupled neural network is
the neural implementation of the gradient method ofdistance calculation (Lee and
Bekey, 1991; Park and Lee, 1990; Han and Sayeh, 1989; Jacak, 1994b).

Let then

where
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Figure 3.4. Neural computation of the distance between objects O1 and O2.

and c(d) is called the update ratio and can be chosen as

where is the Hessian of w.
It should be noted that the Hessian of w is easy to compute based on the

output of the neurons The structure of a neural network realizing the distance
calculation is shown in Figure 3.4. The above method can be easy extended for
nonpolyhedral objects (Jacak, 1994b).

3.3.2. Intersection Detection Problem

In many cases of collision detection it is possible to avoid calculating the
minimal distance between two objects by testing the intersection only. The most
important problem is the detection of an intersection between a line segment and
a convex solid.
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To obtain fast and fully computerized methods for intersection detection we
can use the additional geometrical representation of each cell’s object. Each vol-
ume representation decomposes objects into primitive volumes such as cylinders,
boxes, or cubes. We introduce the ellipsoidal representation of 3D objects, which
uses ellipsoids for filling the volume. Instead of planes that are in polyhedral
approximation, the surface of the object is modeled by parts of ellipsoids. The
accuracy of representation depends on the number of ellipsoids and their distri-
bution in the object. The algorithm for packing primitive volumes with touching
ellipsoids or spheres has the following major stages: (1) distance calculation, (2)
search for the local centers of the ellipsoids, and (3) selection of ellipsoids.

The steps are repeated performed until sufficient accuracy is reached. The el-
lipsoid packing algorithm transforms each primitive solid into a union of ellipsoids,
and consequently the geometry of the virtual object is represented by

and ri represents the centers of the ellipsoids, Di is the matrix of the major axes,
and Ai is the matrix of the axis lengths.

As an example, a parallelepiped is packed by a bigger central ellipsoid and
eight smaller spheres in the corners. The packed ellipsoids are a hierarchical
representation in the sense that for gross representation only the biggest ellipsoids
are used.

3.3.2.1. Intersection of an ellipsoid with a line segment. The ellipsoidal rep-
resentation of a virtual object can be used to test the feasibility of a robot configu-
ration, represented by the robot’s skeleton. Checking for the collision-free nature
of a robot configuration can be reduced to the “broken line–ellipsoid” intersection
detection problem, which in this case has the following analytical solution.

Let a point from the given line segment [P, Q] be given by

Plugging the point p into the equation of the ellipsoid [Equation (3.16)] gives the
following condition of  nonintersection between the line segment the and ellipsoid

where

It is easy to show that:
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Figure 3.5. Hierarchy of virtual cell models.

Fact 3.3.1. The line segment [P, Q] does not intersect with the ellipsoid if

The virtual robotic workcell is represented by a multilayer system of models
which can be used as a knowledge base for planning systems. The hierarchy of
workcell models is shown in Figure 3.5.
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Planning of Robotic Cell Actions

Small-batch production requires complex control systems with reasonably high
flexibility; not only with regard to manufacturing equipment, but also in con-
nection with planning, scheduling, handling, and management decision-making
procedures.

The computer integrated manufacturing (CIM) system integrates all aspects
of manufacturing. The key to a successful CIM implementation is “integra-
tion”. Every component in a manufacturing system has to be an integral part of
the system. The various components of a system such as CAD (computer-aided
design), CAM (computer-aided manufacturing), FMS (flexible manufacturing sys-
tem), CAT (computer-aided testing), and so on must be integrated (Prasad, 1989;
Bedworth et al., 1991; Yoshikawa and Holden, 1990; Black, 1988; Wang and Li,
1991). The communication between CAD and CAM is a key link which to a great
extent determines the success of CIM. Computer-aided process planning (CAPP)
serves as the bridge between CAD and CAM. CAPP determines how a design will
be made in a manufacturing system.

The manufacturing process includes not only processes acting directly upon the
manufactured objects, but also preparatory processes (such as production planning,
process planning, production scheduling, etc.) and auxiliary processes (such as
equipment maintenance, workpiece handling, quality inspection, etc.).

4.1. Task Specification

To begin the synthesis of a computer-assisted robotic cell (CARC) control, one
specifies the family of technological tasks to be realized in the cell.

Machining Task: All activities that consist of material-removal operations
constitute machining. Examples are turning, drilling, and face milling.

Assembly Task: Assembly involves assembling the manufactured parts to form
the required products. In order to perform this task, the parts have to be
machined according to the required specifications and tolerances.

33
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Depending on how the parts arrive at the machines, there are two modes of
processing (machining or assembly), flow shop and job shop. In the flow shop, all
parts flow in one direction, whereas in the job shop, the parts may flow in different
directions; also, a machine can be visited more than once by the same part. In
both cases, a part does not have to visit all machines.

4.1.1. Machining Task Specification

In this section we focus on issues involved in the machining process. The
machining process of part may include various machining operations, such as
turning, milling, drilling, grinding, broaching, gear-cutting, etc., depending on the
required shape, dimensions, tolerance, and surface quality of the part.

The basic components of the machining process are operations. An operation
is a complete portion of the machining process for cutting, grinding, or otherwise
treating a workpiece at a single workplace. The operation is characterized by
unchanged equipment, unchanged workpiece, and continuity. Each operation is
to be processed by a most one machine at a time.

Process planning for CARCs is critically dependent on the task representa-
tion. Several task representation schemes have been proposed (Sacerdot, 1981;
Lifschitz, 1987; Homem De Mello and Sanderson, 1990; Sanderson et al., 1990;
Maimon, 1987), and include lists of operations, triangle tables, and AND/OR
graphs.

Here, we use a general description of a workcell machining task, formally
specified as follows.

Definition 4.1.1 (The Machining Task). The machining task realized by a robotic
cell is represented by a three-tuple:

where O is a finite set of technological operations (machine, test, etc.) required to
process the parts, is the partial order precedence relation on the set O,
and is the relation of device or store assignment.

The partial order represents an operational precedence, i.e., means that
the operation q is to be completed before the operation o can begin.
means that the operation o can be performed on the workstation d, and if
then m is the production store from the set M where the parts can be stored after
the operation o has been completed. The parts are transferred between devices by
the robots.

Based on the previously defined logical model of the cell and the description
of the set Group(r), we can define the relation which describes the transfer of
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Figure 4.1. The machining task.

parts after each technological operation of the task

where

and

and

We assume that for each operation oi there exists a robot ri which can transfer
parts between the workstation di and stores mi from the set
Group(ri). In a special case is a partial function, i.e.,
Example 4.1.1. In the example Example_Cell, the manufacturing cell should
perform a task consisting of the following operations:

{A,D,E} mill operations

{B,C,F} turn operations

{G} quality test operation

The precedence relation is shown in Figure 4.1. To perform this task the
following machines are grouped: the NC-millers WHD 25 (d01) and FYD 30 (d03),
the NC-lathes TNS 26e (d02) and Weiler 16 (d04), and quality inspection center
(d05), a feeder conveyor (m01), a conveyor (m02) and an output conveyor (m03).

The symbols in brackets represent the logical names of the cell devices. The
allocation relation α is illustrated in Figure 4.2.

Such a task is realized in robotic cells based on the group technology concept,
which groups parts together based on their similarities. Such a cellular man-
ufacturing approach organizes machines and robots into groups responsible for
producing a family of parts.
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Figure 4.2. The allocation relation.

4.1.2. Assembly Task Specification

The second type of technological task is the assembly task. All operations
which lead from parts to the required final product constitute assembly.

Definition 4.1.2 (The Assembly Task). The assembly task is the partial ordered
set of the assembly operations over the parts:

where A is a finite set of assembly operations required to process the final product,
is the partial orderprecedence relation on the set A, is

the relation of machining task assignment (where MTasks is the set of machining
tasks), and is the relation of assembly station assignment.

The precedence relation among operations for the final product can be repre-
sented by a complex directed graph (digraph). In this digraph any node of degree
1, i.e., with the number of edges incident to the node equal to 1, denotes the initial
operation The initial operation is directly connected with the appropriate
machining task Taski which prepared the initial part,

Any node of degree greater than 1 denotes a subassembly operation and the root
node denotes a final assembly operation. The arcs of the digraph correspond to
precedence constraints. The partial order represents an operational precedence,
i.e., means that the assembly operation a is to be completed before the as-
sembly operation b can begin. Based on this description we can use the previously
defined digraph as a representation of the final product. The nodes of the graph
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represent the parts or subassemblies. Each initial node denotes a part (and corre-
sponds to a machining task that prepared this part) and the rest of the nodes denote
a subassembly or a final product. Each part is connected to one subassembly.

The mapping between initial operations (initial nodes, parts) and machining

operation) can be obtained as a result of the machining task Taski. The graph
representation allows assembly at a particular node of only one subassembly with
any number of parts or any number of subassemblies without parts at all. Then
each subassembly node can be represented by the set of initial parts, which are the
initial nodes in the subassembly tree expanded from the subassembly node.

Given two subassemblies ai and aj characterized by their sets of parts Pai,
respectively, and Paj, we say that joining ai and aj is an assembly operation if the
set characterizes a new subassembly ak. The subassemblies ai and
aj are input subassemblies of the assembly operation, and ak (with
is the output subassembly of the assembly operation. Due to the assumption
of unique geometry, an assembly operation can be characterized by its input
subassemblies only, and it can be represented by a set of two subsets of parts.

The set of connections in the representation of an assembly operation corre-
sponds to a cut-set of the graph ofconnections of the operation’s output subassem-
bly. Conversely, each cut-set of a subassembly’s graph of connections corresponds
to an assembly operation (Homem De Mello and Lee, 1991; Homem De Mello
and Sanderson, 1990). Given the set of all cut-sets of a subassembly’s graph of
connections, the set of their corresponding assembly operations is referred to as
the operations of the subassembly.

An example of an assembly task is shown in Figure 4.3.

tasks is described by the relation means that the part (initial
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4.2. Methods for Planning Robotic Cell Actions

Process planning for a mechanical product involves preparation of a plan that
outlines the routes, operations, machine tools, and fixtures required to produce the
part. In the last decade there has been the trend to automate process planning, since
it increases production efficiency. Examples of such systems are CAPP, CPPP,
MIPLAN, and GenPLAN.

There are two basic approaches to process planning: (1) variant approaches
and (2) generative approaches (Kusiak, 1990). In the variant approach each part
is classified based on a number of attributes and coded using a classification and
coding system. The code determines the process plan. The variant approach can
be useful in a case where there is a great deal of similarity between parts (Kusiak,
1990).

4.2.1. Assembly Task Planning

Assembling a mechanical structure is typically performed by a series of op-
erations, such as insertions of a peg into a hole. Under this model, the first stage
in the design of an assembly system must be to identify the operations necessary
to manufacture the given assembly and to specify the sequence in which they are
to be performed. The selection of such a sequence of operations is called the
assembly planning process.

Definition 4.2.1 (The Assembly Process). Given an assembly task Assembly
(Definition 4.3) that has I parts, an ordered set of I – 1 assembly operations

Assembly_Process = (a1, a2, ... aI–1)

is an assembly sequence or an assembly process if:

no two operations have a common input subassembly

the output subassembly of the last operation is the whole assembly

the input subassembly to any operation ai is either a one-part subassembly
or the output subassembly of an operation that precedes ai

To any assembly sequenceAssembly_Sequence = (a1,a2, ... aI–1) there corre-
sponds an ordered sequence

Assembly_Trace = (as1, as2, ..., asI)

of I assembly states of the assembly process.
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The state as1 is the state in which all parts are separated. The state asI is
the state in which all parts are joined forming the whole assembly. Any two
consecutive states asi and asi+1 are such that only the two input subassemblies of
the operation ai are in asi and not in asi+1, and only the output subassembly of
operation ai is in asi+1 and not in asi. Therefore, an assembly sequence can also
be characterized by an ordered sequence of states. The assembly sequence states
the assembly process.

A computer system for assembly planning must have a way to represent the
assembly plans it generates. Several methodologies for representing assembly
plans have been utilized. These include representations based on directed graphs,
on AND/OR graphs, on establishment conditions, and on precedence relationships
(Homem De Mello and Lee, 1991; Homem De Mello and Sanderson, 1990). An
AND/OR graph can also be use to represent the set of all assembly sequences. The
nodes in this graph are the subsets of parts that characterize stable subassemblies.
The hyperarcs correspond to the geometrically and mechanically feasible assembly
operations. Each hyperarc is an ordered pair in which the first element is a node
that corresponds to a stable subassembly ak and the second element is a set of two
nodes {ai, aj} such that and the assembly operation characterized
by ai and aj is feasible. Each hyperarc is associated to a decomposition of the
subassembly that corresponds to its first element and can also be characterized by
this subassembly and the subset of all its connections that are not in the graphs of
connections of the subassemblies in the hyperarc’s second element. This subset
of connections associated to a hyperarc corresponds to a cut-set in the graph of
connections of the subassembly in the first elements of the hyperarc. The formal
definition of an assembly AND/OR graph can be found in (Homem De Mello and
Lee, 1991; Kusiak, 1990).

Every feasible assembly sequence in the directed graph of an assembly task
(Definition 4.3) corresponds to a feasible assembly tree in the AND/OR graph
of assembly sequences, and every feasible assembly tree in the graph AND/OR
corresponds to one or more feasible assembly sequences in the directed graph of
a feasible assembly task.

Assembly planning is a computationally intensive task. The problem of gen-
erating the assembly sequences for a product can be transformed into the problem
of generating the disassembly sequences for the same product. Since assembly
task are not necessarily reversible, the equivalence of the two problems will hold
only if each operation used in disassembly is the reverse of a feasible assembly
operation, regardless of whether this reverse operation itself is feasible or not.

In the disassembly problem each operation splits one subassembly into smaller
subassemblies, maintaining all contacts between the parts in either of the smaller
subassemblies.

This transformation leads to a decomposition approach in which the problem
of disassembling one assembly is decomposed into distinct subproblems, each
being to disassemble one subassembly. It is assumed that exactly two parts or
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subassemblies are joined at each time, and that whenever parts are joined forming
a subassembly all contacts between the parts in that subassembly are established.

The decomposition algorithm returns the AND/OR graph representation of the
assembly process. The correctness of the algorithm is based on the assumption
that it is always possible to decide correctly whether or not two subassemblies can
be joined, based on geometrical and physical criteria.

Based on this approach, different computer aided assembly planning systems
have been implemented, including LEGA, GRASP, XAP, BRAEN, COPLANNER,
and DFA. More exact descriptions are given in (Homem De Mello and Lee, 1991).

In this chapter we focus on the machining planning problem in which only the
general description ofa task is provided (Definition 4.1.1).

4.2.2. Machining Task Planning

Machining process planning can be divided into two stages (Wang and Li,
1991):

machining operations design:
i.e., selection of machining methods and machine tools for each operation,
and specification of each operation

process route planning:
i.e., determination of the sequence of machining operations

Process route planning is the overall planning of a part manufacturing process.
The objective is to determine the sequence of operations in a process plan. The
precedence of operations is based on operation constraints, tooling constraints
andpart geometry constraints. Several alternative process plans are evaluated and
compared so that the best plan can be selected. The evaluation of the alternatives
should be a synthetic analysis from the technological and manufacturing efficiency
points of view.

Then the main purpose of an intelligent control of autonomous robotic workcell
(CARC) for the machining process is to synthesize and execute a sequence of
machine and robot actions so that the all operations are realized. Such systems
should enable automatic generation and interpretation of robot and NC machine
actions. There are two major problems in designing such complex control systems
(Sacerdot, 1981; Saridis, 1983; Meystel, 1988). The first depends on coordination
and integration at all levels in the manufacturing system. The second problem
is that of automatic programming of the elements of the system. The control of
manufacturing can be considered as having two elements. The first, which we
shall call logical control relates to the coordination of events required to satisfy
ordering constraints on event sequences and is adequate for a sequence of process
operations. The second, termed geometric and dynamic control, relates to the
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determination of the geometry and dynamic parameters of motion of the elements
of the system.

In this chapter we focus on the production route planning problem in which
only a general description of a task is provided (Definition 4.1.1).

In other words, the route planning problem is to find for a given task the most
efficient sequence of machines through which parts must flow during repetitive
task executions. Such a route is called the fundamental plan of the workcell action.

Searching for the most efficient plan requires that we define plan comparison
criteria. One such criterion is that the sequence of operations and robot/machine
actions related to it should minimize the mean flow time of parts (Kusiak, 1990;
Bedworth et al., 1991). The information necessary to evaluate the efficiency of a
plan is usually available during the actual execution of the plan in a real workcell or
in its simulation model (Maimon, 1987; Jacak and Rozenblit, in press; Jacak and
Rozenblit, 1994). The flow time ofevery job is the sum of theprocessing time, the
waiting time, and the time of interoperational moves, called the transfer time. The
waiting and transfer times depend on the order of operations in a task and on the
interpretation of robot movements. Each route determines different topology of
robot motion trajectories, different deadlock avoidance conditions, and a different
job flow time. Therefore, route planning is a critical issue in all manufacturing
problems.

4.2.2.1. Basic terminology of concurrent technological process planning. In
the process planning phase, we must find an ordered sequence of technological
operations from Task (Definition 4.1.1), called aprocess, with a minimum number
of deadlock cases. This problem is related to operations scheduling (Kusiak,
1990; Jones and McLean, 1986). To explain it in more detail, we introduce some
additional notions.

Definition 4.2.2 (The Machining Process). The ordered execution sequence of
L operations of Task (Definition 4.1.1) is called a pipeline sequential machining
process

if the following conditions hold:

if for two operations oi and oj from Task, then i <  j

for each i = 1, ..., L – 1 there exists a robot which can transfer a part from
machine di (or store mi) assigned to operation oi to machine di+1 assigned
to operation oi+1, i.e.,



42 Chapter 4

A process can be realized by different sequences of technological devices
(called resources) required by successive operations from the list at the time of
their execution. This set of new sequences, denoted P, is called the production
route. A productionroute is an ordered list of resources which has at most

where if there exists a robot which can transfer
parts directly from di to di+1 and res(oi) = (di,mi) if  the robot r can transfer parts
only from the production store mi to di+1. We assume that there always exists a
robot transferring parts from di to mi. By mf and mo we denote the feeder and the
output conveyor, respectively.

Each execution of a process is called a job. A job Jb is characterized by a
production route p, its start time tJb, and two status functions:

and

defined as follows:
The stage function indicates the stage of job Jb with respect to

production route p at time t, where means that the first resource
in the production route p(1) has not yet been allocated to the job.

indicates that the job has been completed. means that
the operation oj is being executed and that a part is currently being processed by
the workstation p(i) from the route p (or is at a store).

next resource in the production route. If the operation oj has finished
at the workstation (where i = 2j or i = 2j – 1) and the job is waiting
for the next resource (workstation) p(i + 1). Otherwise, Transitions
in the wait function (from 0 to 1) occur when a job finishes using the resource for
the current stage.

The production route p has L stages. During the stage i, the operation oi is
executed and thus the resource (machine) is required for a finite period

job for some waiting time units, the next machine must be assigned
to the job. This allocation strategy places a higher priority on the allocation of
machines than on the allocation of stores. The job continues to hold the resource

2L + 1 stages, where L denotes the length of the list The route is created on-line
during the execution of the technological operations.

Definition 4.2.3 (The Production Route). The production route is denoted by

The wait function indicateswhether the job Jb is waiting for the

of time. After this interval, if it is not possible to allocate the store to the
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di or mi and cannot advance to stage i + 1 until the machine di+1 is allocated to
it. This creates a potential for deadlocks among a set of successive executions of
processes in the cell. As we noted previously, the process being planned should
minimize the number of deadlock cases. Avoiding deadlock causes an increase
in job waiting time and consequently an increase in the makespan. Therefore, in
designing the cell planning and control algorithm one needs to examine carefully
the deadlock-avoidance conditions andtheir effects on the entire process. A quality
criterion of process planning should be defined to assess how well the algorithm
performs.

In the workcell considered in this chapter, the so-called circular-wait deadlock
among pipeline processes can occur.

Definition 4.2.4 (Circular-Wait Deadlock). Circular wait occurs if there is a
closed chain of jobs in which each job is waiting for a machine held by the next
job in the chain (Coffman et al., 1971; Deitel, 1983).

4.3. Production Routes — Fundamental Plans of Action

The route planning algorithm should take into account the conditions for
deadlock avoidance. In order to formulate a quality criterion of process planning,
we first describe the procedure ofdeadlock avoidance presented in (Banaszak and
Roszkowska, 1988; Krogh and Banaszak, 1989).

4.3.1. Quality Criterion for Route Planning

To avoid blocking, the production route p is partitioned into a unique set of Z
sublists called zones,

where every zone has the form zk = (skuk), where is the
sublist of resources which appear only once in a production route. Such resources
are called unshared resources. In addition, if p(i) =p(i + 1) and there exists no

then p(i) and p(i + 1) are unshared resources, too. In
addition, is the sublist of resources which are used more
than once in a route.

The sublists uk and sk of the zone zk are referred to as the unshared and shared
subzones of zk, respectively. I(k) and J(k) denote the number of unshared and
shared resources in subzones uk and sk, respectively.

Now we consider the deadlock problem for a machining system and an algo-
rithm for preventing the occurrence of deadlocks based on the method described
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in (Banaszak and Roszkowska, 1988; Krogh and Banaszak, 1989). The deadlock-
avoidance algorithms proposed for computer operating systems (Coffman et al.,
1971; Deitel, 1983) are notefficient forpipelineprocesses. They donot incorporate
the production route information which indicates the specific order in which re-
sources of a cell must be allocated and deallocated tojobs. According to the defini-
tion of a production route p, we can specify the function NextJb(p(i), t) = p(i + 1).
This function determines the next resource required by the job Jb holding the
resource p(i).

A resource allocation policy is a rule which assigns a resource d to a job Jb for
which NextJb(t) = d. In general, unrestricted allocation of an available resource
required by a job can lead to a deadlock among a set of jobs in the system. To
avoid deadlocks, we use the restricted allocation policy proposed in (Banaszak
and Roszkowska, 1988; Krogh and Banaszak, 1989).

Let C(d) denote the capacity of a machine, i.e., the maximum number of jobs
to which the machine (or store) can be allocated. h(d) denotes the number of
jobs which are currently allocated to the machine d. Assume that the machine
NextJb(t) = v belongs to the zone zk, i.e.,

The restricted allocation policy is defined by the following rules:

A. If and or and or and
then resource can be allocated to job Jb, i.e.,

B. If and then resource can be allocated to job Jb if
and

C. If and then resource can be allocated to job Jb
if

Here
It means that if the current capacity of the required resource is

then the resource can be allocated to job Jb, or if the capacity of the
required resource is then the resource can be allocated to job
Jb only if there does not exist another fully allocated resource in the zone.

In both cases the entire unshared zone is treated as one resource. The complete
formal explanation of the restriction allocation policy is presented in (Krogh and
Banaszak, 1989).

Fact 4.3.1. The circular-wait deadlock can never occur under the restricted allo-
cation policy described in rules A–C) (Krogh and Banaszak, 1989).
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We use the above conditions to formulate the planning quality criterion. Our
goal is to optimize the production rate, i.e., minimize the job waiting times. Fact
4.3.1 can be derived. Let zone zk have n(k) = J(k) + 1 elements. J(k) is the
number of shared machines and 1 denotes all the unshared devices. Assume that
the probability of a machine being completely full is equal to w, i.e.,

Proof A job Jb will have to wait if the resource required by it has only one
place free in its input buffer and there exists a second, completely full resource in
its zone. Thus

The more elements (machines) that belong to a zone (the subzone uk is treated
as one element), the higher is the probability that a job will wait for resource
allocation. Thus, the production routes should contain zones with a minimum
number of elements. Based on previous remarks, we introduce the measure of
route quality.

Let p = (zk|k = 1, ..., Z) be the production route of the process where
zk = (skuk), with the unshared subzone and

the shared subzone. In several cases the first zone may contain only
an unshared subzone (i.e., z1 = u1) and the last subzone may contain only a shared
subzone (i.e., zZ = sZ). By n(k) we denote the number of elements in the zone zk.
If zk = (skuk), then n(k) = J(k) + 1; ifzk = uk, then n(k) = 1, and if zk = sk then
n(k) = J(k). Also, if there exist resources and in the subzone sk such that

then n(k) = (J(k) – l) + l.
The measure of route quality is defined as

Fact 4.3.3. If a production route is composed of only unshared resources, then the
measure of route quality is minimal (v1 = 1). If it contains only shared resources,
then the measure of route quality has a maximum value.

Fact 4.3.2. If there exists a job Jb such that and h(x) < C(x),
then the probability that the job Jb waits for processing is
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Another way to construct a heuristic measure of deadlock cases in the produc-
tion route is to approximate the probability that the job will wait for processing,
called the probability of waiting (Rogalinski, 1994).

In order to calculate the probability of waiting, let us define the probability
that the device d is completely full as a function of the capacity of this device and
of the times of the technological operations performed by it.

The probability that device d is completely full is given by

where and
denotes the processing time of operation o.

The definition just proposed of the probability that device d is completely full
satisfies the property, i.e., the probability of an impossible event
(filling up a device which has a limitless capacity or does not perform any time-
consuming operation) equals 0, and the probability of a certain event (filling up
a device which has capacity equal to 1 and performs the most time-consuming
operations) equals 1.

When the probability of waiting for the zone zk is calculated the whole
nonempty unshared subzone is treated as one resource
d* which has a capacity given by

and Time(d*) is given by

Thus, the probability that the nonempty unshared subzone uk is completely full,
i.e.,

takes the form

If the unshared subzone uk is empty, the probability of filling it up equals zero.
The state of possible deadlock in the zone zk occurs when there are at least

two resources completely full in the zone zk. Because one device can belong to
various zones or to various production routes we assume that different resources
are filled up independently. To calculate the deadlock factor of the zone zk three
cases are considered:
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There is no device in the zone zk for which the probability of filling up
equals 1

There is exactly one resource in the zone zk for which the probability of
filling up equals 1

There are at least two devices in the zone zk for which the probability of
filling up equals 1

Let w(i) denote the probability that the ith resource in the zone zk is completely
full and w(0) denote the probability that resource d* which replaces the unshared
subzone uk is completely full. According to the assumption that resources are
filled up independently, the waiting probability of the zone zk takes the form

where w(0) = w(d*).

Fact 4.3.4. It is easy to prove the following facts (Rogalinski, 1994):

i. Exchange of a succession of resources in the unshared subzone uk or in the
shared subzone sk does not change the probability of waiting

ii. Increase of the probability of filling up any resource in the zone zk (all
unshared resources are treated as one resource d*) can at most increase
the probability of waiting

iii. Adding to the shared subzone sk a new resource for which the probability of
filling up is different from 0 can at most increase the probability of waiting

Now we can state the production process planning problem with the minimiza-
tion of the probability of waiting. The production route p can be partitioned into
a unique set of zk zones. Then the quality measure of the production route p is as
follows:
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The function v(p) (v1 or v2) is used to evaluate the technological process being
planned. Our task is to find an ordered sequence of operations from Task which
is feasible and which minimizes the function v(p). This problem may have more
than one solution.

4.3.2. Process Route Planning Algorithm

The function v(p) is used to evaluate the technological process being planned.
The Process planning problem can be formulated as follows:

Find a feasible, ordered sequence of operations from Task (Definition
4.1.1) and production route p which minimizes the function v(p).

This is a permutation problem which may have more than one solution. To
solve it, we proceed as follows:

Task is represented by a directed acyclic graph. Let

predecessors in relation To solve the planning problem under consideration,
we propose the backtracking procedure in Figure 4.4.

The evaluation function f(q) is calculated as follows: Let PATH be a list
(o1, ...,o j). Let

Create temporarily the subprocess Calculate its
production subroute and decompose it into zones (zk|k = 1, ..., Zj+1).

Calculate the measure of route quality and the

The output list PROCESSES in the route planning procedure contains only
feasible, ordered sequences of technological operations realizing the Task. The
procedure expands the OR-graph of operations depthwise, one at a time, along
one path with different possible choices of the return point in the case of
failure. The backtracking node lies either at the next higher level, if operations at
the level are not admissible, or at a much higher level, if a contradiction
occurs.

Fact 4.3.5. If there exists a production route for a given Task, then the backtracking
procedure finds the optimal ordered sequence of operations computed by the
function v.

Proof Let be a subprocess of and pj =
(zk|k = 1, ..., Zj) be a subroute of route p. It can be seen that
According to step (*) of the procedure, we eliminate the subprocess

(K < L) be a subprocess of and pK = (zk|k = 1, ..., ZK) be a subroute of
minimal route p. Let START denote the list of operations which have no immediate
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Figure 4.4. Route planning procedure.
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(o1, o2, ..., oj, q) if v(pj+l) > v(p*), where p* is a previously obtained optimal
route. It is clear that

In step (**) the suboptimal solutions are eliminated.
Each from the set PROCESSES determines a different fundamental plan of

robot and machine actions and a different law of workcell control. To minimize
the flow time of jobs, variants of the fundamental plan should be tested.

Example 4.3.1. For the task of the Example_Cell the following routes, among
others, can be computed, with different values of quality measure function v:

where | ... | denotes a zone.
The route planner generates only one optimal production route p* for which

v1(p*) = 2:

The optimal route p* is shown in Figure 4.5.

4.3.3. Process Route Interpreter

Based on a sequence of operations and its route p the fundamental plan of
workcell actions is first created. This fundamental plan describes the decomposi-
tion of a technological task into an ordered sequence of robot and machine actions
which are used to realize the task.

The model of the robotic agent is reduced to a fundamental transfer action:

Action_robot(r) = Transfer part From a To b

which denotes the transfer of a part from a workstation or a store a to a workstation
or a store b.

The machine’s activity is represented by

Action_machine(d) = Execute o On b

which is interpreted as the beginning of the execution of an operation o from the
set O on the machine b.
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Figure 4.5. Optimal production route p*.

Based on the sequence of operations obtained through task planning, we
create a fundamental plan of actions for the cell’s components, i.e.,

Each Actioni consists of three parts which determine: (1) the preconditions of an
action, (2) the robot’s motion parameters to execute the ith operation of  and (3)
the action execution parameters.

The ith action has the following form:

The Cond(oi) segment describes the preconditions which must be satisfied
in order for the operation oi to be executed. It also establishes the geometric
parameters for the robot’s motion trajectories. The preconditions are formulated
as a function of both the workcell and job state.

Let i-B(d) denote the state of the ith position of the workstation d’s buffer
B(d), where This state can be characterized as follows:

i-B(d) = (0,0): the position is free

i-B(d) = (j, 0): the position is occupied by a part before the operation oj

i-B(d) = (j, 1): the position is occupied by a part after the operation oj
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Figure 4.6. Interpretation of a fundamental action.
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Using the above specification, the Cond(oi) segment can be defined by the follow-
ing instructions of the task-oriented robot programming language (Figure 4.6):

LOOP FOR(i=1,...,L)
IF there exists j-Buffer(d(i))=(0,0) THEN

IF there exists k-Buffer(d(i-1))=(i-1,1) THEN
SET Pickup-position=Frame_k-Buffer (d(i-1))

ELSE
IF there exists k-Store(m(i-1))=(i-1,1) THEN

SET Pickup_position=Frame_k-Store(m(i-1))
ELSE go to LOOP

SET Place_position =Frame_j-Buffer(d(i))
IF PROCEDURE(Deadlock_Av(d(i))=True THEN

BEGIN Transfer & Execution
ELSE ELSE

IF there exists k-Buffer(d(i-1))=(i-1,1) THEN
IF there exists j-Store(m(i-1))=(0,0) THEN

SET Pickup_position=Frame_k-Buffer (d(i-1))
SET Place_position =Frame_j-Store(m(i-1))

ELSE go to LOOP
ELSE go to LOOP

END LOOP

By d(i) and m(i) we denote respectively the workstation and store assigned
to the operation oi. The call PROCEDURE (Deadlock_Av (d(i))) checks to
see if the deadlock avoidance conditions for device d(i) are satisfied. If they are
satisfied, then the subactions Transfer and Execution are activated.

In addition, the geometrical parameters of the Transfer subaction are estab-
lished and stored in Frames_Table.

The Frames_Table determines the geometrical initial and final positions and
orientations of the robot’s effector for each robot movement. For movements which
realize the transfer of parts, the initial and final positions result directly from the
sequence of machines in route p. The parameters indicate the geometrical places
between which Transfer has to be performed. This subaction is realized by a robot
servicing the workstation d(i).

The elementary robot actions can be expressed as basic macro-instructions.
The basic macro-instructions are (Jacak and Rozenblit, 1992a; Jacak and Rozenblit,
1992b; Jacak and Rozenblit, in press):

MOVE (EMPTY, HOLDING) TO position
PICKUP AT position
PLACE ON position
WAIT FOR sensor input signal
INITIALIZE output signal
GRASP, OPEN GRIPPER, and CLOSE GRIPPER

The basic instructions may be combined into higher level macros, e.g., the
PICK-AND-PLACE instruction (Jacak and Rozenblit, 1992b).

In this set of instructions, the action Transfer(oi–1, oi) is interpreted as the
PICK-AND-PLACE part FROM x TO y macro, where x denotes the geo-
metrical data of a workstation’s buffer (store), and y is the position and orientation
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of the buffer of the next workstation. The parameters x and y are determined by
segment Cond(oi), namely

x= Pickup_frame
y= Place_frame

This macroinstruction is decomposed into a sequence of more primitive in-
structions as illustrated below and in Figure 4.6:
[ PICK-AND-PLACE part FROM x TO y :=]

MOVE EMPTY TO x+v (x=position of buffer of machine d
and v is approach vector)

PICKUP AT x :=
[begin PICKUP]
CENTER GRIPPER (grasp orientation of effector)
OPEN GRIPPER
MOVE EMPTY FROM x+v TO x WITH APPROACH = v
CLOSE GRIPPER
WAIT FOR contact signal with part
MOVE HOLDING FROM x TO x+v WITH DEPARTURE = v

[end PICKUP]
MOVE HOLDING FROM x+v TO y+v (y=position of the

next machine buffer)
PLACE ON y

[end PICK-AND-PLACE]
The above sequence of instructions is used to synthesize automatically the

robot’s motion program. The instructions for the action Execute can be translated
in a similar manner.

The instructions may be interpreted in various ways. The implementation
and interpretation of the fundamental plan is carried out using the automatic
task-level programming approach in which detailed paths and trajectories, gross
and fine motion, and grasping and sensing instructions are specified. Each route
determines a specific topology of robot motion tracks, distinct deadlock-avoidance
conditions, and a certain job flow time. Therefore, route planning is critical for
problems such as the maximum-rate and minimum-jobs-in-process optimization
problems.

Consequently, the automatic design of a geometrical motion route must de-
termine, for each robot r servicing the process, a set of cell-state-dependent time
trajectories of the robot’s motions. To generate trajectories of robot motions, a
geometrical model of the virtual robotic system as well as models of the robot’s
kinematics and dynamics need to be available.
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Off-Line Planning of Robot Motion

The production route p for a machining task determines the parameters of the
robot’s movements and manipulations (such as initial and final positions) needed
to carry out this task. The set of all of a robot’s motions between devices and
stores needed to perform a given process is called a geometric route or geometric
control.

Consequently, the automatic design of a geometric route must determine, for
each robot r servicing the process, a set of cell-state-dependent time trajectories
of the robot’s motions.

To generate trajectories of robot motions, a geometrical model of the virtual
robotic system as well as models of the robot’s kinematics and dynamics need
to be available.

Based on the sequence of operations and its route p the positions table
(Frames_Table) for all motions of each robot is first created. The Frames-
Table determines the geometrical initial and final positions and orientations of
the robot’s effector for each robot movement. For movements which realize the
transfer of parts, the initial and final positions result directly from the sequence
of machines in route p.

The robot motion trajectory planning process is performed in two stages: (1)
planning of the geometrical track of the motion, and (2) planning of the motion
dynamics along a computed track.

5.1. Collision-Free Path Planning of Robot Manipulator

The path planner creates variants of the geometric tracks of the manipulator
which executes a given action. It uses robot-dependent planning techniques and
a discrete system formalism (Jacak, 1989b; Jacak, 1989a; Jacak, 1991). Such a
path planner should be able to determine the collision-free track of robot motion
from the initial to the final effector locations based on geometric and kinematic
descriptions of the robot and its environment and the initial and final positions
of the effector end.

55
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The problem of moving in space while avoiding collisions with the environ-
ment is known as obstacle avoidance or path planning. For the robot’s manipu-
lator, the problem is more complicated than for a mobile robot. Not only must
the effector end move to the desired destination without collisions with obsta-
cles, but the links of the arm must also avoid collisions. This problem has been
addressed in various ways and is widely reported in the literature (Brooks, 1983;
Barraquand et al., 1992; Jacak, 1991; Kircanski and Timcenko, 1992; Latombe,
1991; Lozano-Perez, 1989).

Research in the area of obstacle avoidance can be broadly divided into two
classes of methodologies: global and local. Global methods rely on the de-
scription of the obstacles in the configuration space of a manipulator (Latombe,
1991; Lozano-Perez, 1989). Local methods rely on the description of the ob-
stacles and the manipulator directly in the Cartesian workspace (Brooks, 1983;
Barraquand et al., 1992; Kircanski and Timcenko, 1992; Jacak, 1989b; Jacak,
1990; Latombe, 1991).

Global methodologies require that two main problems be addressed. First,
the obstacles must be mapped into the configuration space of the manipulator.
Second, a path through the configuration space must be found for the point
representing the robot arm.

To obtain a uniform representation of the robot and its environment, a trans-
formation of the geometrical model of the work scene from the base Cartesian
frame into the joint space is often performed (Latombe, 1991; Lozano-Perez,
1989). Transformations called configuration-space methods are very complex
and inefficient, particularly for the redundant robots. Such methodologies have
several disadvantages. The algorithms necessary for configuration space genera-
tion are computationally intensive, and the computational costs increase quickly
as a function of the robot’s degrees of freedom, at least exponentially for geo-
metric search techniques (Latombe, 1991; Lozano-Perez, 1989). Thus, they are
suited only for off-line path planning and cannot be used for real-time obstacle
avoidance. An immediate consequence is that global methods are difficult to
use for obstacle avoidance in dynamic environments. Also, it is very difficult to
describe complicated motion planning task using such algorithms, such as those
tasks arising when two manipulators cooperate.

An alternative to global methodologies is provided by local ones (Latombe,
1991). The main advantage of local techniques is that they are less computa-
tionally intensive than global ones. Thus they can be used in real time control.
Further, they provide the necessary framework to deal with dynamic environ-
ments.

Most planning methods are based on arbitrary discretization of either the
joint space or the Cartesian space of the robot’s manipulator. This discretization
decides the accuracy with which the terminal point of motion can be reached, as
well as the exactness of the relation between the manipulator and the obstacle
(Jacak, 1989b; Jacak, 1989a; Jacak, 1991).
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Due to the discretization, the number of possible manipulator configurations
is finite. The search through the whole set of configurations requires a huge
computational effort and is unrealistic in real time. However, the process of
a local (partial) search of the configuration set, directed toward finding a path
which is not always the shortest one, can be described by an implicit graph of
configurations. The computational efficiency of such graph-searching methods
depends first on the ease of generating new nodes (configurations) of the implic-
itly extended graph, the ease of testing whether the generated nodes are feasible
and nonrepeatable, and the ease of calculating the cost and heuristic evaluation
functions. Hence, a model of robot kinematics should be a mathematical system
endowed with an ability to produce a new configuration of the manipulator on
the basis of an old configuration and a desired input signal. The model should
facilitate direct analysis of a robot location with respect to objects in its real
world environment and should be not too complex computationally.

5.1. 1. Neural and Discrete Models of Robot Kinematics

The most suitable model of robot kinematics is a discrete dynamic system
M defined as

where:

The set Q denotes the state of the manipulator. The state
determines the position of the manipulator, called the manipulator’s
configuration, in the real space in which the physical robot operates. The
most frequently used description of a state of the manipulator with n
degrees of freedom is its representation as a vector of joint variables:

where is the range of change of the ith joint angle.

U denotes the set of input signals of M.

The output Y ensures the possibility of geometrically representing the
robot’s body in a 3D base frame. For this purpose it is convenient to use
a skeleton model of the manipulator described as the vector

where is the point in the base coordinate frame
describing the current position of the ith joint and is the position of
the effector end.
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The function is a discrete one-step transition function of
the form

where k is the discrete moment of time.

is an output function of the form

The properties of such a model of the robot kinematics depend on the method
of specification of its components, specifically on the input set U.

There are two ways to construct such a model. The first one involves dis-
cretely changing the state in the joint space and then translating it into the base
Cartesian space. The second one involves constructing a model operating on the
robot arm directly in the discretized base frame. These two approaches to the
trajectory planning problem are referred to as joint space planning and Cartesian
space planning, respectively.

5.1.2. Neural Network-Based Path Planning in Joint
Space

One way to construct a model of the robot’s kinematics is based on an
arbitrary discretization of angle increments of the manipulator joints (Jacak,
1989b).

5.1.2.1. Discrete model of robot kinematics. In order to specify the input set
U of the model M the discretization of the robot’s joint space Q is performed,

where
Using the fact that all the angles can change only by a define increment, we

define the input set U of the model M as

where is the set of possible (admissible) directions of changes
of the ith joint angle.

Having defined the set U, it is possible to describe the changes of successive
configurations of the robot’s link as a discrete linear dynamic system of the form
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where is the vector of increments of angles of the joint, and is a
diagonal matrix describing the length of the angle’s step changes at each
joint, i.e.,

In order to make it possible to check the configuration with respect to obstacle
locations, it is necessary to create an output function g. As stated previously,
the manipulator’s position in the base frame is represented by the skeleton of
the robot arm.

Recall that the ith joint position in Cartesian base space, assuming that all
the joint variables are known, is described by the Denavit–Hartenberg matrix
(Brady, 1986).

where is the transformation matrix between the coordinate frame of the
ith joint and the coordinate frame of the (i – 1)th joint, is the rotation
matrix, and is the translation vector. The last column of the matrix i.e.,
can be used to determine the output function of model M as

where is the last column of the matrix
The components of the output function g are highly nonlinear trigonometric

functions. Path planning and next control based on the computation of such for-
ward kinematics is computationally expensive and requires frequent calibration
to maintain accuracy. In particular, the use of multiple and redundant robot arms
makes path planning based on numerical computation extremely difficult.

Therefore it is attractive to develop a neural network which automatically
generates the robot kinematics. Neural networks can be used to reduce the
computational complexity of the model of robot kinematics. Additionally, neural
network can give robots the ability to learn and to self-calibrate (Jacak, 1994b;
Kung and Hwang, 1989; Lee and Bekey, 1991).

Neural network approach to the modeling of the output function g. The
recent surge of interest in massively parallel algorithms has prompted researchers
to investigate the use of neural networks for robotics applications. While not
as accurate as traditional numerical methods, these new approaches promise
speedups for problems where accuracy is not a fundamental issue. The main
idea is to use these methods to obtain good initial values for more accurate fine-
tuning operations or to use external feedback loops to increase the accuracy of
these methods (Guez and Ahmad, 1998a).

Many researchers in the field of robotics have used neural networks to im-
plement kinematics calculations. The theoretical basis for the applicability of
neural networks to computationally complex problems can be found in reports
on function approximation by the superposition of elementary functions. This
research [(Gallant and White, 1988; Hornik et al., 1990; White, 1990; Hornik,
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Figure 5.1. Skeleton model of two-dimensional manipulator.

1991; Kreinovich, 1991), among others] shows that any function can be approx-
imated arbitrarily closely by a feedforward neural network with only one hidden
layer. To reduce the size of the network, it is sometimes beneficial to introduce
a second hidden layer (Lippman, 1987; Chester, 1991).

Using this notion of neural networks as universal approximators, there have
been several attempts to apply them to solve robot kinematics problems, e.g.,
(Elsley, 1988; Guez and Ahmad, 1998b; Josin et al., 1988). Further research has
shown that the networks used for these problems (mostly feedforward networks
trained by backpropagation) provide adequate behavior for small robots, but do
not scale up well for larger problems, i.e., to robots with more than three degrees
of freedom.

Various improvements have been suggested to remedy this situation. Ye-
ung and Bekey (1989) used context-sensitive networks to achieve better scale-up
properties. Guo and Cherkassy (1989) proposed the use of Hopfield-type net-
works. Kung and Hwang (1989) discussed possible neural implementations by
a ring VLSI systolic architecture.

SIGMOIDAL NEURAL NETWORK APPROACH: Most neural networks that are used
to learn mapping problems (as is the case for the robot kinematics problem)
are multilayer feedforward networks composed of sigmoidal units. The terms
multilayer and feedforward describe the topology of the network — in this
case, the activation values propagate forward from an input through at least
one hidden layer to the output layer. The term sigmoidal refers to the activation
function of these neurons, which is monotonic, bounded, and differentiated. Such
networks can be trained by the most widely used network training algorithm,
the backpropagation algorithm.

Example 5.1.1. As an example, we investigate the forward and inverse kine-
matics of a simple two-dimensional 3-DOF manipulator. Such a manipulator is
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the simplest redundant robot in two dimensions. Figure 5.1 shows the skeleton
of such a robot. For this example, the joint angles and were all chosen
in the interval

The Cartesian position (x,y) can be calculated from the joint angles
as follows (using trigonometric simplifications):

The Jacobian matrix of partial derivatives can easily be calculated as

Preliminary testing of the backpropagation algorithm on highly nonlinear
functions (Chester, 1991; Lee and Bekey, 1991) revealed that an architecture
with two hidden layers shows better performance than one with only one hidden
layer.

Experiments with the algorithm have also shown it to be advantageous to
use a decoupled network architecture. In such a network, the hidden units are
divided into disjoint subsets, each subset connecting to only one output neuron.
For large networks, this would also allow each subnet to be trained separately,
thus reducing the total training times.

Comparing the equations for direct and inverse kinematics, one can imme-
diately see the similarity. We therefore start our investigations on the mathe-
matically “easier” problem of direct kinematics, since the results obtained there
can be extended to the “harder” problem of inverse kinematics. In the neural
network approach, the only difference lies in the size of the network needed to
represent the solution.

The three topologies on which we focus in the present experiment have 8,
10, and 12 hidden neurons, respectively, for each output neuron, arranged into
two hidden layers of 4, 5, and 6 neurons each. Figure 5.2 shows the topology of
the decoupled network with 10 hidden units per output neuron. The behavior of
the network with only 8 hidden units per output neuron proved to have inferior
behavior to the other two networks (both in the training and the testing phase).
To study the effect that the size of the training set has on the performance of
the network, we trained each network topology with two different pattern sets.
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Figure 5.2. The topology of a decoupled network.

For the first set, seven equidistant sample points were chosen in the joint
range interval For three joints, this results in a total of
patterns. Likewise, one can also pick 13 equidistant points in
obtaining a larger pattern set with elements. In the remainder of
this section, these two pattern sets will be referred to as “small” and “regular,”
respectively.

Since the network should not only display acceptable behavior (i.e., small
errors) on the patterns it has used for training, but also interpolate reasonably
well between those patterns, a network is generally tested with a pattern set
that is different from the one used in training. To this end, 1000 patterns were
created, of which the input components were chosen randomly in

It should be kept in mind that networks which use the logistic activation
function in all neurons can only produce output values in the range between 0
and 1. Therefore, the pattern sets were all scaled to this range.

The standard backpropagation algorithm was used to train the networks.
Table 5.1 displays the result of training the two network topologies with the two
pattern sets. The error values in the table are the average Euclidean distances
between desired and actual outputs.

The rows in this table are to be read as follows: In the rows labeled “Train-
ing,” the average error of the network on the pattern set with which it was trained
is given. In the rows labeled “Testing,” the results of testing the networks with
a randomly generated pattern set are displayed. The labels “small” and “regu-
lar” indicate which pattern set was used to train the network. The table shows
how the behavior of the network gets better (i.e., the average error decreases) as
training times increase.

A surprising, albeit satisfactory result is that the network seems to interpolate
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very well, as the average errors for the random testing set are even smaller than the
errors for the training sets. It can also be seen that the “capacity” of the network
with only 10 hidden neurons per output unit is already reached after 250,000
epochs. Further training for this net did not result in a noticeable decrease in the
error. On the other hand, the network with 12 hidden neurons per output unit still
shows an improvement of about 10% in the last 200,000 training cycles. These
training runs also verified the expectation that error size is dependent on the size
of the training set. It can be seen that networks which used the larger training set
have much better behavior than those that used the smaller set.

JACOBIAN MATRIX CALCULATIONS BASED ON A SIGMOID NEURAL NETWORK: The
Jacobian matrix of a kinematic equation is necessary to compute the inverse of
the kinematics. For this reason we analyze briefly the possibilities for the neural
modeling of the Jacobian components. The functions that appear in the Jacobian
matrix of the end effector are very similar in nature to the equations that describe
the forward kinematics.
Example 5.1.2. For Jacobian network training we fixed a topology—using
hidden neurons for each output neuron—and limited our attention to comparing
how the average error grew for a larger network. The problem scaled up very well,
as Table 5.2 shows. In this table, the third column from Table 5.1 is compared with
the average error of a network calculating the Jacobian matrix of the end effector.
Both networks use 10 hidden neurons per output unit and were trained for 250,000
cycles.

Considering that there are three times as many output neurons in the Jacobian
network as in the direct kinematic network, the results are satisfactory in the sense
that the average error does indeed grow less than linearly. For the Euclidean
distance between desired and actual outputs as error measure, it can easily be seen
that the theoretical growth of the error is the square root of the number of output
neurons.

SINUSOIDAL NEURAL NETWORK FOR DIRECT KINEMATIC MODELING: It can be seen
from the equations describing the position of the end effector of a manipulator that
in general the position of a robot manipulator can be described by trigonometric
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functions. In the case of a two-dimensional manipulator, the position is determined
by the weighted sum of such functions. For three-dimensional manipulators, the
equations can involve multiplication of trigonometric functions as well.

We can use a multilayer feedforward neural network with hidden units having
sinusoidal activation functions (Kung and Hwang, 1989; Lee and Bekey, 1991;
Lee and Kil, 1989; Lee and Kil, 1990). To reduce the training time we can apply
hybrid techniques which automatically create the full network topology and values
of the neural weights based on symbolic computation of forward kinematic model
components.

Each component of an output function g can be represented in the form of

where is either or 1
Then, after simplification, the output function g representing the forward kine-

matics of a robot manipulator with n rotaryjoints can be described by the weighted
sum of sinusoidal functions

where defines the (i,s) output representing the sth Cartesian
variable of ith joint position; q is the joint state vector; and
represents the weight vector of the jth sinusoidal function with

The parameter I is understood to be large enough that the sum can accommo-
date all summands for each i.

as constants, with some taking their place as variables.
From this description, it can be seen that a network with one hidden layer of

sinusoidal units can implement such a function. There are two restrictions that
have to be kept in mind:

First, the size of the net needed to implement the functions in Equation (5.12)
depends on the complexity of the manipulator, and cannot be determined before-
hand.

If the manipulator has prismatic joints, some of the will have to be treated
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Figure 5.3. Symbolic computation system for neural kinematics and Jacobian model design.

Second, the weights need to be calculated (the vectors can be determined
directly and are not changed).

There are two possibilities to deal with the task of obtaining the appropriate
network topology for such a network: One is to start with the largest possible
network, learn all the values, and then “prune” those parts of the network which
do not contribute to the output, i.e., cut those sinusoidal units that have links of
weight zero connecting them to the output. The maximal number of sinusoidal
units for a manipulator with n rotary joints is as there are possibilities to
weight the inputs with values in {–1,0,1}. Theotherpossibility is to use
an algorithm that starts with a small number of sinusoidal units and dynamically
creates more as they are needed.

As a another method, we can use symbolic computation methods to create the
neural networks implementing the kinematic models. The structure of the system
for neural kinematics and Jacobian model design is presented in Figure 5.3. The
systemconsists of six elements groupedinto two levels. The symboliccomputation
level consists of the following modules:

the procedure for computation of the direct kinematics

the procedure for computation of the Jacobian matrix

the set of simplification and expansion rules

The neural network level is made up of

the neural network synthesizer

the neural network trainer

the calibration module
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Figure 5.4. Generation of the real Jacobian and the real kinematic models.

The input to the symbolic computation level is the set of Denavit–Hartenberg
parameters (Paul, 1981), which describe the robot’s ge-
ometry. The symbolic output from this level goes to the neural network level, where
the neural network implementation of the kinematic and the Jacobian matrices is
generated and the calibration process is performed.

Figure 5.4 shows how the parameters of a manipulator are transformed step
by step into the neural kinematic and Jacobian models. The procedure is started
by calculating the standard nominal kinematic matrix (by the kinematic model
generator). The matrix entries are then transformed into a weighted sum-of-sines
format which can directly be implemented as a neural network. This implementa-
tion is done in the neural network synthesizer. Next, the neural model is trained,
using some measurement data, to implement the actual kinematics. The trained
kinematic matrix is now expressed in Cartesian and RPY coordinates (Paul, 1981).
Based on this model, the Jacobian generator computes the Jacobian matrix, which
is also expressed in Cartesian and RPY coordinates. In the next step, this matrix
is transformed into a weighted sum-of-sines format and implemented as a neural
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network.
Example 5.1.3 (Symbolic computation-based neural model of the kinematics).
Recall that the whole model of the robot kinematics can be calculated as (Paul,
1981)

where

and

As the example manipulator we use a rotary planar manipulator with four
joints. For such a manipulator, the kinematic matrix generated by the kinematic
model generator has the form

where

and  for
Note that this model takes into account only the nonzero parameters of the

manipulator.
In general, multiplications of sines and cosines can occur in the kinematic

matrix obtained from the kinematic model generator. In order to allow a neural
network implementation using only linear and sinusoidal neurons, we have to
transform multiplicative expressions into the weighted sum-of-sines format. Here,
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sums of input angles are used as arguments to the sine functions. More precisely,
the ikth element   of the kinematic matrix is transformed
into the weighted sum-of-sines format

Notice the similarity of this equation to Equation (5.12). Here we also use
as the weight vector of the joint angles and as the weight vector of the sines;
however, we use explicit biases and aik, whereas Equation (5.12) used an
augmented weight vector The difference is negligible when calibrating a
neural implementation of fik(q), but Equation (5.14) allows an exact representation
of the symbolic expression returned by the transformation module. Again, the
parameter I is understood to be large enough that the sum can accommodate all
summands for each ik.

Using the neural representation of such a sum, the calibration can be per-
formed by additional training for relearning the weights in the network. Using
trigonometric identities, one can write

These expressions are used as the transformation rules in the expression form
converter to obtain the required format of the kinematic elements.

with

for

In the presented example the kinematic matrix for the 4-DOF manipulator
takes the form
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Figure 5.5. Neural network designed for Equation (5.16).

Thex coordinate of the translation vector (the last column of ) is given by

with and as defined in Equation (5.15).
This is the form of the matrix entry when only nonzero nominal elements

are considered. To compare the effects of calibration for different complexities
of networks, two neural networks are investigated. One was constructed for the
Equation (5.16) and the other for the equation

where all length parameters of the manipulator are taken into account. The
topologies of these neural networks are shown in Figures 5.5 and 5.6. For the
RPY-angles, the resulting network has a slightly different form.

CALIBRATION OF NEURAL NETWORK KINEMATIC MODEL: Robot calibration is a
necessary step in realizing a true on-line robot programming environment on a
modem factory floor. Calibration is a process by which the accuracy of the ma-
nipulator is improved by modifying its control software. The model of kinematics
encoded in a typical controller software refers to some standard geometry of the
manipulator’s mechanisms. Such a model is usually called nominal. Due to in-
evitable deviations of the kinematics from the standard mentioned above (caused by
link parameter errors, clearances in the mechanism’s connections, thermal effects,
flexibility of the links and the gear train, gear backlash, and encoder resolution
errors), the actual kinematics may differ from the nominal kinematics.

The problem of recovering the actual kinematics on the basis of the nominal
kinematics and some measurements is referred to in the robotic literature as the
kinematic calibration problem.
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Figure 5.6. Neural network designed for Equation (5.17).

Since the network implementing the nominal robot kinematics is a network
with one hidden layer of sinusoidal units, it is possible to train either only the set
of weights connecting the hidden to the output layer, or the weights between the
input and hidden layer as well.

The former approach is considerably simpler than the latter, as it only involves
training of the outermost layer of the network. For such a task, the delta rule
(Yeung and Bekey, 1989) learning algorithm which minimizes the mean square
distance between actual and nominal kinematics is sufficient. In mathematical
formulation, the update rule for the weights can be stated as

with the step size (usually between 0 and 1) and the ikth actual entry
in the matrix of kinematic values. The meaning of the other symbols is as in
Equation (5.14). This update process sequentially changes the such that the
difference between the  and tends to zero.

Example 5.1.4. Now we describe experiments for two types of neural kinematic
models to illustrate the importance of selecting the proper model.

In the first experiment we take into account only nonzero manipulator param-
eters (the simple model), and in the second one (the extended model) we consider
all length parameters of the manipulator.

We present the results of  applying the calibration procedure to the neural model
of the x component of the translation vector For this purpose two output data
types arecompared: thelocation predictedby theneuralmodel, andthe actual
location

The equations describing the x component of the translation vector in
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the kinematic matrix for the simple and the extended model are given in Equa-
tions (5.16) and (5.17), respectively.

The absolute error is defined as

with Num being the number of control points.
In these experiments 1000 points from a uniform grid in the workspace of the

manipulator were taken as the control points for testing the calibration results. One

The topologies of the networks for the two types of models for and are
shown in Figures 5.5 and 5.6. The results in Table 5.3 show improvements in mean
error and maximum error when various error sources are present. The first column
in the table defines the combination of error sources by using the following binary
coding:

errors in the link lengths 000001
errors in the link offsets 000010
errors in the joint offsets 000100
errors in the transducers’ convergence rates       001000
errors in the robot’s base system 010000
noise in the location measurements 100000

Similarly, the mean absolute error is given by



72 Chapter 5

Figure 5.7. The mean error of effector position in the XY  plane for (a) noncalibrated and (b) calibrated
neural-based robot kinematics.

hundred points, also from the uniform grid, were used as the learning patterns.
The number of learning cycles was 1000. The mean error of end-effector position
in XY plane is shown in Figure 5.7.

In each case it was possible to reduce the maximal error after calibration to the
level of

To compare the calibration method presented above with results obtained by
calibration based on identification methods, let us recall some other researchers’
results. Wu and Young (1993) proposed to use a robot accuracy compensator. With
this compensator applied to a PUMA 560 manipulator they reduced the PUMA’s
position errors from 7.1 mm to 0.4 mm. The theoretical value of the position error
they obtained was 0.2 mm.

Mooring et al. (1991) used two different manipulator models (modified
Denavit–Hartenberg model and zero-reference-position model) for a PUMA 560
robot and reduced the position error from 43 mm to 0.8 mm.

Borm and Menq (1991) pointed out the importance of determining the optimal
measurement configuration. Using an iterative least square based estimation algo-
rithm with a set of optimal measured positions for an RM-501 robot, they reduced
the position errors from 28 mm to 0.6 mm.

Duelen and Schröer (1991) presented a calibration procedure which allows
the automatic determination of all kinematic parameters, i.e., those of geometric
origin as well as nongeometric ones. For a SCARA robot, their method reduced
the mean position error from 5.7 mm to 0.4 mm.

As we can see, the methods mentioned above reduce the position errors of
manipulators to tenths of a millimeter. The accuracy of our method seems to be
limited only by measurement equipment precision.

APPLYING THE CALIBRATED KINEMATIC MODEL TO NEURAL JACOBIAN CALCULA-
TION: Similarly as in the previous section, we analyze now the possibility of
modeling the Jacobian matrix with sinusoidal neuron networks. One well-known
method for calculating the Jacobian matrix of a robot’s manipulator is described
by Spong and Vidyasagar (1989). This method calculates the Jacobian matrix
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without taking derivatives of the kinematic equations. However, the algorithm
requires all partial kinematic matrices of the manipulator, described in terms of
Denavit–Hartenberg parameters, to be known beforehand. The Jacobian obtained
from this algorithm describes the dependence

where v is the vector of linear velocities and the vector of angular velocities.
For the linear velocities it is not difficult to find the coordinate frame, as they

are described in the base coordinate frame. It is, however, impossible to do so for
the angular velocities, because there does not exist an orientation vector whose
first derivatives are equal to these velocities.

Due to this fact, we can express the Jacobian matrix in Cartesian RPY coordi-
nates. Although there exists a method that directly calculates the Jacobian matrix
in these coordinates, we will calculate it using a method that yields a form that is
more useful for neural network implementation.

Each of the elements and of the translation part of the kinematic matrix
has a form given by Equation (5.14). The partial derivative of with respect to
is described by

where is the ith component of the weight vector associated with
The partial derivatives of and are similar to that for as only the weights

and bias need to be changed.
It is easy to observe that the structure of a neural network for such elements of

Jacobian matrix is the same as for the corresponding kinematic matrix elements.
The difference lies only in the parameters of the net.

For the RPY angles we obtain

where are the elements of the rotation part of the kinematic matrix Note that
only the five elements and from the rotation part of the matrix
[Equation (5.13)] are used.



74 Chapter 5

In order to show the weighted sum-of-sines format of the above derivatives,
we can use the corresponding format of the rotation elements from our example
of the manipulator (Example 5.1.3), to write, e.g.,

The scalar factor cannot be implemented by the neural network and needs
to be calculated with the help of additional parallel hardware.

Repeating this calculation for the derivatives of leads to an expression of
the same form, but with different indexes. The derivative of is similar to the
right-hand side of Equation (5.18), again with appropriate weights and bias. It can
be seen that the topologies of the neural networks implementing the denominators
of these derivatives are much more complicated than those implementing the
corresponding elements of the kinematic matrix. Given the form of the above
expressions, it can be seen that they are already in the weighted sum of sines
format and need no further transformation.

The overall structure of the resulting system that calculates the Jacobian matrix
elements in RPY Cartesian coordinates is shown in Figure 5.8. It can be seen in
Equations (5.18) and (5.19) how the weights and of the Jacobian matrix
elements can be calculated from the corresponding weights and biases of the
kinematic networks.

The discrete model of robot kinematics based on neural network computation
is shown in Figure 5.9. Such a form, obtained from the symbolic level of net-
work generation, represents the input–output function of a neural network with
sinusoidal hidden units.

5.1.2.2. Finite-state machine model of robot kinematics. In order to apply fast
methods of geometricalpathplanning,therobotkinematicsmodelshouldfacilitate
the direct analysis of robot location with respect to objects in its environment
modeled in Cartesian space. The discrete model of a robot’s kinematics with n
degrees of freedom can be simplified when the robot has a planar manipulator,
i.e., all the joints lie on a plane which can rotate around the Z axis (Jacak, 1989b;
Jacak, 1991).
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Figure 5.8. Neural and numerical processing system for Jacobian calculation.

In this case the model of robot kinematics is reduced to the following finite
state machine:

where:

Y denotes the set of robot configurations in the Cartesian base frame, i.e.,
the configuration

where is the point in the Cartesian base frame
describing the actual position of the ith joint. For such a specification the
state of the robot model is equal to the skeleton of the manipulator and the
output function g can be omitted.

U is the input signal set. Recall that in order to specify the set U the
discretization of the robot’s joint space Q is performed [Equation (5.6)]. In
this case the input signal set and denotes the

increase (decrease) of the appropriate joint angle (Jacak,
1991).
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Figure 5.9. Neural network-based model of robot kinematics.

is the one-step state transition function of a finite-state
machine of the form

and is defined as follows (Jacak, 1991):

Let where and
then

where is the transformation between the base frame and
the manipulator arm plane.

The component is recursively calculated as follows:



Off-Line Planning of Robot Motion 77

Figure 5.10. Finite-state machine model of robot kinematics.

and each is a constant matrix,

The construction of the transition function f of the robot kinematics model
allows us to obtain, by simple computations, successive configurations of the
robot with respect to the Cartesian base frame. The complete formal explanation
of the FSM model of robot kinematics, shown in Figure 5.10, is presented in
(Jacak, 1989b; Jacak, 1991).

5.1.2.3. Searching strategies for collision-free robot movements. The problem
of collision-free robot movement planning based on a discrete model M amounts
to finding a sequence

of input signal vectors such that:

a. The terminal configuration reaches the effector’s final position  i.e.,

where and

b. Every configuration q(i) for does not collide with any obstacle
in the robot’s environment.
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c. The sequence should minimize the motion-cost function

expressing, e.g., the length of the effector path.

In order to solve the path planning problem we apply a graph searching
procedure to the manipulator’s state transition graph. The development of the
search graph will start from the node (configuration) q(0) by the action f for all
possible input signals from the set U. Then the successor set of the node q(k) is
as follows:

Every node of the graph has successors. Thus, it becomes essential to check
rapidly for the nonrepeatability of the nodes generated and their feasibility.

Configuration feasibility testing. A configuration q is said to be feasible if
does not collide with any obstacle in the work scene. The space occupied by
the robot manipulator at configuration q can be approximated by rotary cylinders
whose axes are individual links of the skeleton model. In order to check, using
only its skeleton model, whether the manipulator moves in a collision-free way,
we extend the objects in each direction by the value of the maximal radius of the
cylinders which approximate the links.

To obtain fast and fully computerized methods for collision detection, we use
additional geometric representations of each object on the scene. We introduce the
ellipsoidal representation of 3D objects [Equation (3.16)], whichuses ellipsoids for
filling the volume. The ellipsoidal representation of a virtual object is convenient
to test the feasibility of robot configurations. Checking for the collision-freeness of
the robot configuration can be reduced to the “broken line-ellipsoid” intersection
detection problem, which in this case has easy analytical solution (Fact 3.3.1). Let

for denote an obstacle in the scene. Taking into account the
above statements, we define the set of feasible configurations as

where Seg(q) is a broken line joining points
Search technique for the track of the motion. In order to solve the reachability

problem of the terminal configuration, we apply a graph search procedure to the
state-transition graph of the model M. This procedure generates (makes explicit)
part of an implicit specified graph. For this purpose we exploit the state-transition
graph of model M generated implicitly by applying the function f. The process of
applying the transition function to the start node (the initial configuration) we call
expanding the node. Expanding successors of etc., ad infinitum makes
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explicit the graph that is implicitly defined by and the function f.  The graph
search control strategy is a process of making explicit a portion of an implicit graph
sufficient to include a goal node. The way of expanding the graph will depend on
the form of the cost function, the evaluation function, and the way of expanding
the node. The cost of a path between two nodes is the sum of the cost of all the
arcs connecting the nodes along the path. Let the function c(q) give the actual cost
of the path in the search tree from start node to the node q for all q accessible
from and the function h(q) give the cost estimate of the path from node q to
the goal node We call h the heuristic function. The evaluation function v(q)
at any node q gives the sum of the cost of the part from to q plus the cost of
the part from q to the goal node i.e.,

A configuration q is said to be feasible if it does not collide with any object in
the cell. The development of the search graph will start from the initial position,
represented by the or configuration, by the action of function f for all
possible inputs u.

To find the shortest path in the state-transition graph connecting the initial
node and the final node (such that nth component of the final node

is), we use the A* algorithm with penalty function (Pearl, 1984;
Pearl, 1988; Nilsson, 1980; Jacak, 1989b). As the cost function between two
nodes q,q′ joined by an arc, we shall assume the distance traveled by the effector
while passing from configuration q to q′ , i.e.,

or

or

Let denote the center of gravity of the ith obstacle, and let Any
motion of the effector toward the obstacle will be penalized by increasing the value

potentially may be found between the actual position and the goal point
The set of potentially active obstacles for configuration q is defined as

of the evaluation function at configuration This is realized by adding the value
of a penalty function p. The value of p will depend only on those obstacles that
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Denote by

the vector joining the center of gravity of the jth obstacle to the actual position of
the end of the effector in configuration q, and by

the translation vector of the end of the effector while passing from configuration
q to q′ .

The component of the penalty function generated by the jth obstacle from the
set VO(q) upon passing from configuration q to q′ can be expressed as

where the angle defines a cone around the direction along which the motion is
performed, and the penalty function is in effect.

The penalty function for approaching the obstacles is equal to the sum of
functions i.e.,

The heuristic function h is defined as the rectilinear distance between the current
effector position and the final position

Fact 5.1.1. It is also easily seen that the heuristic function h satisfies the monotone
restriction whenever

The structure of such a path planner is shown in Figure 5.11.
Remarks. The basic advantages of a such technique lie in the possibility of

expressing successive robot configurations immediately in the basic Cartesian
frame by means of a computationally simple recurrent transition function of the
finite-state model M or neural implementation of the manipulator’s kinematics.
This function can be calculated using only the operations of addition, multiplication
by constant    matrices, and taking square roots. Some obvious disadvantages of
this approach come from restricting the modeling only to planar robots. However,
an extension of the model to nonplanar manipulators complicates only the state
transition function by introducing an additional coordinate frame. In this case, the
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Figure 5.11. Structure of a path planner based on joint space discretization.

general model [Equation (5.1)] can be applied with the neural implementation of
the output function g.

The possibility of expressing the robot’s configuration directly in the Cartesian
space allows one to abandon the transformation of the workspace with obstacles
into the joint space. This fact becomes of particular importance from the viewpoint
of effectiveness of testing solution feasibility. Checking for the collision-freeness
of the configuration has been reduced to the broken line–ellipsoid intersection
detection problem. which has a simple analytical solution (Fact 3.3.1). The
technique of searching for collision-free paths has been reduced to the problem
of model state graph searching. Due to the cardinality of the model’s input
set, this planning technique is especially applicable to robots that do not have a
large number of degrees of freedom n — typically, Indeed the number
of discrete configurations that are the successors of the given configuration q
increases exponentially with the number of degrees of freedom. Testing all would
be too time consuming for robots with many degrees of freedom. As long as
this raises no difficulty.

However, when n becomes too big, the size of the successor set becomes
too large. In this case, at each step of the expanding node process, a limited



82 Chapter 5

(and relatively small) number of configurations in the successor set of the current
configuration q is iteratively considered. Each iteration consists of randomly
selecting the successors of q using a uniform probability distribution law. The
number of configurations is limited. As the algorithm uses a random procedure to
build the search graph, it is not guaranteed to find a solution whenever one exists.
Such a method is only probabilistically complete.

5.1.3. Neural Network Based Path Planning in Cartesian
Space

Due to the discretization of the joint space, the number of possible states of
the robot arm is finite, but too large to be determined explicitly. Thus, it is very
important to find a method to reduce the number of possible states. This can be
done by performing the discretization of the Cartesian space. This leads to the
assumption that an input signal of M has to be a generalized vector of displacement
of the effector end. The location of the effector end is generally described as a
vector

where is the position of the effector end and are
the Euler angles (or RPY angles representing the orientation of the effector
(Brady, 1986; Jacak, 1991;Sciavicco and Siciliano, 1988). By a generalized vector
of the effector’s displacement in the base frame we mean a vector

which consists of the displacement vector of the work point and the orientation
change vector. Assuming that the effector position and orientation can change
only by a defined increment we can construct the set of inputs of the model M
as

where is the set of possible increments of the effector dis-
placement along the X axis. Similarly, we define the sets The
number of elements of the set U depends on the type of task and the type of discrete
geometry used to discretize the base frame.

5.1.3.1. Inverse model of robot kinematics. For the above reasons the model of
manipulator kinematics must be able to generate a sequence of robot configurations
which realize the motion along the desired effector displacement. To determine
the one-step transition function  f, the inverse kinematics of the robot manipulator
is needed. We can use the relationship between the joint and the Cartesian velocity.
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The direct kinematic equation allows us to establish the relationship between the
joint configuration q and the generalized position of the effector end:

where is the last column of the matrix [Equation (5.13)]. This equation can be
transformed into an equation describing the relationship between joint velocities
and Cartesian velocities:

where J(q) is the Jacobian matrix For a kinematically redundant ma-
nipulator the dimension of the joint space is greater than the dimension of the
Cartesian space: Consequently, the Jacobian matrix
J(q) is rectangular, and there exists no unique inverse velocity transformation. A
rectangular matrix J does not have an unique inverse but it is possible
to find a generalized inverse so that In fact, there exists an infinite
number of matrices with the above property. The problem then is choosing
one of these. The most commonly used generalized inverse is the pseudo-inverse,
or the Moore–Penrose inverse (Klein and Huang, 1983; Nakamura and Hanafusa,
1987; Luca et al., 1991). For this is

where A general solution can be found by adding
a null vector to the specific solution

where is the joint velocity vector minimizing the performance
function h, and is its projection into the null space of J cor-
responding to a self-motion of the linkage that does not move the effector end.
Recall that adding a null vector does not affect the Cartesian space velocity vector

Most of the approaches to the kinematic control of a redundant manipulator
focus on resolving redundancy by applying the generalized inverse to the ma-
nipulator Jacobians based on a performance function such as the manipulability
measure (Yoshikawa, 1985), condition number, manipulator-velocity ratio (Dubey
and Luh, 1987), compatibility index, or minors of the Jacobian matrix (Dubey and
Luh, 1987; Nakamura and Hanafusa, 1987; Chung et al., 1992). However, when
a manipulator with a large number of redundant degrees of freedom is required,
the pseudo-inverse approaches have great difficulty in formulating a performance
function and finding its gradient vector even with the aid of symbolic calcula-
tions. It makes real-world applications unrealistic. For these reasons we will use a
method which requires only the computation of direct kinematics based on neural
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processing. Such a solution of inverse kinematic problems can be obtained by at-
taching a feedback network around a feedforward network to form a recurrent loop
such that, given the desired Cartesian location of the feedforward network,
the feedback network iteratively generates joint angle correction terms to move the
output of the forward network toward the given location (Kung and Hwang, 1989;
Lee and Bekey, 1991). This coupled neural network is the neural implementation
of the gradient method (Goldenberg et al., 1985; Chang, 1987) of position error
minimization.

Let

denote the location error between the current position and orientation of the
effector-end calculated by forward kinematics and a desired Cartesian location

Then the inverse kinematic problem can be transformed to an optimization
problem with constraints as follows:

For a given Cartesian location find the joint configuration q* that
minimizes the performance criterion

The performance criterion v can be treated as a Lyapunov error function.
Calculating the time derivative of v ,we obtain

With the choice of

the dynamic system ensures that e converges to zero, and the time derivative of v

is negative if is positive.
The dynamic system given by Equation (5.39) can be transformed into the

following discrete dynamic system:
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Convergence. It is easy to observe that the above solution represents a so-called
gradient system of the form

The function v(q) is positive definite and

For positive such a system is stable and it can easily be shown that isolated
minima are asymptotically stable (Hirsch and Smale, 1974).

The speed of convergence is strongly influenced by the parameter To find
the best parameter we can calculate the generalized least square solution as the
solution of the discrete dynamical system:

where C(q) is the normal equation matrix of the form

We present three different possibilities for calculating the parameter values for
in Equation (5.40).

A. The system (5.41) may be regarded as the system (5.40) with the parameter
taken as the inverse of the normal equation matrix, i.e.,

Such a generalized least squares procedure will often fail to converge
because the errors of the initial approximations are too large. Moreover,
such a system needs to calculate the inverse of matrix C(q(k)) for each
iteration step.

B. The system (5.40) is equivalent to the gradient method. The parameter is
generally referred to as the convergence rate and should be selected at each
step of the iterative process to minimize

The solution obtained in this way is
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More exactly,

where is the Hessian matrix. This choice of
parameter requires the computation of the Hessian of t(q), which is
generally numerically intensive.

C. Let us try setting the parameter to

It can be shown (Lee and Bekey, 1991) that the dynamic system (5.39) with
such a parameter has an equilibrium point in q* if and only if q* is a
solution vector of the error e, i.e.,

iff

The formula forupdating determined by Equation (5.40) and
guarantees the convergence as long as exists.

Neural processing-based inverse kinematics for redundant manipulators. We
apply the discrete dynamical system presented above to calculate the inverse
kinematics by neural processing. The system needs only to calculate the direct
kinematics of a robot manipulator. Recall that the equations for the forward
kinematics of a manipulator can be reduced to a weighted sum of sines through
trigonometric transformations.

More precisely, the kth element of the kinematic matrix (a function of joint
angles q) is transformed into the weighted sum-of-sines format

Here we use as the weight vector of the joint angles and as the weight
vector of the sinusoidal units, as well as biases and Neural networks can
be used to reduce the computational complexity of the robot kinematic model.
Additionally, neural networks can give robots the ability to self-calibrate in a
learning-like manner.

The solution of the inverse kinematic problem can be obtained by attaching a
feedback network around a feedforward network to form a recurrent loop. Given
a desired Cartesian location the feedback network iteratively generates joint
angle correction terms to move the output of the forward network toward the
given location. This coupled neural network, shown in Figure 5.12, is the neural
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Figure 5.12. Coupled neural network for unconstrained inverse calculation.

implementation of the gradient method [Equation (5.40)] (Goldenberg et al., 1985;
Chang, 1987) of position error minimization.

In the case of a redundant manipulator with joint-range constraints, the in-
verse kinematic problem can be transformed into an optimization problem with
constraints as follows:

For a given Cartesian location find the joint configuration q* that
minimizes the performance criterion v ,

The above problem can be transformed into a problem without constraints by
introducing a penaltyfunction to obtain the joint limits. To this purpose we use
additional errors for each degree of freedom, i.e.,
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The penalty function is defined as

Then the modified performance function is given by

The modified function v can be interpreted as the Lyapunov function of a
dynamic system. Error dynamics is involved to ensure convergence of to

With the choice of

the error e converges to zero when the constraints are satisfied.
This  issue  can  be  recognized by considering  the time derivative of  the  Lyapunov

function for which the time derivative of v is negative  if α is  positive. The gradient
of v has the following form:

where is the Jacobian matrix, is the diagonal matrix with entries
and is the diagonal matrix of first derivatives of

It can easily be seen that
The discrete form of Equation (5.46) represents the variant of an iterative

gradient method (Han and Sayeh, 1989) written as

In our case

By using the sigmoid function in the penalty function with a large value
of β , we activate the errors     and     only if             or respectively.

where                                                                                     is  a  diagonal  matrix with
entries             and       is a diagonal matrix with entries
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The solution of the inverse kinematic problem with limited joint ranges presented
here uses only direct kinematic models, namely and Jacobian The
computational burden can be drastically reduced by neural implementation of the
performance function and its gradient.

The Jacobian can be obtained directly from the output of sinusoidal units
of a feedforward neural network in a similar way as for the forward kinematics

The penalty function and its gradient can be computed by a neural network
that implements the joint range limits. Each joint’s limit is represented by two
neurons with the sigmoid activation function The outputs of these neurons are
used directly to calculate the gradient of

A neural implementation of Equation (5.46) defining the update rule for a
feedback network is shown in Figure 5.13. The update of q based on guarantees
the convergence of the feedback network output to a given location  if this
location lies in the joint’s range. The control unit of the network stops the iterative
calculations when the location error e is less than a given limit or if the number of
iterations exceed some other given limit. The above approach corresponds with
the method developed by Sciavicco and Siciliano (1988) and used by Lee (1991).
When the neural network implementation of the inverse kinematic solution is ex-
tended to the case of redundant manipulators, constraints on the joint variables can
be automatically incorporated in the solution algorithm. Neural implementation
of the inverse kinematics yields the continuity of the solution, drastic reduction
of computational time, and generation of joint velocities without additional cost.
The end point of the manipulator keeps tracking the desired trajectory and the re-
sulting joint trajectories avoid violating the mechanical limits on the joint variable.
The activation and deactivation of constraints are automatically performed by the
neural subnetwork representing the limit constraints.

Example 5.1.5. The Figure 5.14 presents the behavior of the neural gradient
algorithm in the case of the three-link and 2D arm model with link length equal to
0.5 (the column length is 0.8).

In the simulation run the algorithm had to move the manipulator end from the
start point S = (0.8, 1.5) to the final point F = (0.0, 1.8).

It can be seen in Figure 5.14 that only 12 iterations were necessary to achieve
a solution with error value less than 0.01 (see Table 5.4). The error measure is the
Euclidean distance between the current and desired positions of the arm end.
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Figure 5.13. Inverse kinematics for manipulators constrained with joint ranges.
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Figure 5.14. Experimental results.

5.1.3.2. State transition f of the system M.  Based on the above method we
can define the state transition function f of the system M as follows:

where
The output function g is the same as in the previous model M [Equation (5.10)],

i.e.,

This completes the full description of the model M with respect to the Cartesian
space discretization.

5.1.3.3. Search for collision-free path. Recall that the problem of collision-
free robot movement planning amounts to finding a sequence
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of input signals of the model M such that the terminal configuration reaches
the effector’s final position no configuration collides with any obstacle in the
robot’s environment, and the input sequence minimizes the motion-cost function,
expressing, e.g., the length of the effector path.

In order to solve the path planning problem we apply the same graph-searching
procedure to the state transition graph of the model M as for the previously
presented model specification. The development of the search graph starts from
the node (configuration) by the action f for all possible input signals from
the set U, i.e., the successor set of each node is given by

The number of successors of the node q depends on the type of discrete geometry
used to discretize the Cartesian space.

When the 6-conjunctive discrete geometry is used, the generalized displace-
ment vector has one of the forms

Then, for a given configuration q, the state transition function f generates 12 suc-
cessors of q, independent of the number of degrees of freedom of the manipulator.
It reduces greatly the computational complexity of the graph-searching procedure.

The successor set generation using the kinematic model. For a kinematically
redundant manipulator the dimension of the joint space is greater than the dimen-
sion of the Cartesian space These extra degrees of
freedom of a redundant manipulator can be used to achieve some subgoals such
as singularity avoidance or obstacle avoidance (Maciejewski and Klein, 1985;
Chirikjian and Budrick, 1990; Lee and Lee, 1990). Although one or two degrees
of redundancy can be used to satisfy the above subgoals, the use of hyperredun-
dancy becomes very attractive because of the flexibility and dexterity in motion, it
offers for given tasks in a complex environment. However, studies on the kinematic
control of redundant manipulators with a large number of degrees of redundancy
have  not  been performed extensively because of  the lack of  appropriate  techniques
(Lee and Lee, 1990).

Note that a link avoids a joint’s range limit if  its distance from the limit is greater
than some epsilon distance depending on the value of of the sigmoid function
If all links satisfy this condition, there is no reason to modify the current solution,
and the model will select one of the possible configurations, depending
on the initial joint configuration. Such a configuration is said to be not feasible
if it collides with the obstacles in the work scene, but this does not mean that
there does not exist another collision-free configuration from the possible
configurations.
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COLLISION-FREE ROBOT CONFIGURATIONS: Since the inverse kinematic algo-
rithm provides joint configurations which are adjacent to each other as the ma-
nipulator proceeds through the successive effector-end locations, one or more
constraints need to be introduced directly during the calculation of the successor
set in order to avoid collisions with obstacles. One of the potential advantages of
a kinematically redundant manipulator is the use of the extra (redundant) degrees
of freedom to maneuver in a complex workspace and avoid contact with obstacles.

It can be assumed that a link has avoided a convex obstacle if its minimum dis-
tance from the obstacle is greater than a preplanned threshold distance (Sciavicco
and Siciliano, 1988).

If the distance between one of the links and an obstacle becomes less than the
threshold, the current solution is to be modified. It is understood that at most n – m
constraints of such type can be activated.

The coupled neural network realizing the gradient algorithm [Equation (5.47)]
calculates a joint configuration that is a solution to the inverse kinematic problem.
Nevertheless, it can happen that even though the end-effector position is collision-
free, collisions occur on some of the manipulator links. In this case the manipulator
configuration has to be changed. To do so, we can use the same gradient algorithm
with a modified performance function. Such a function can be defined similarly
to the performance function for joint limitation. Below we briefly present the
definition of the distance performance function.

Let

indicate the position of a point situated on the ith link of the robot skeleton, and
denote the point of an obstacle at a minimum distance from the link

to the obstacle, i.e., the ith link-obstacle distance is (see
Figure 5.15).

Additionally,  let  be  the threshold  distance. If  the  distance     becomes
less than the threshold distance there is a danger of collision, and the joint
changes need to be modified according to the new constraints.

In analogy to the penalty function definition for the avoidance of joint limits,
we use the additional errors for each link

The penalty function can be defined as

where and is the vector of sigmoid
functions
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Figure 5.15. Distance between an obstacle and a link of the manipulator.

Then the modified performance function is

By using the sigmoid function in the penalty function with a large value of
we activate the error only if

The gradient of the modified function w has the following form:

where is sthe Jacobian matrix of the point closest to the obstacle.
If there are many obstacles in the scene, we consider only the obstacle which is

closest to the link. Such a penalty function corresponds to the approach proposed
in (Sciavicco and Siciliano, 1988). For computational experiments we use the
neural network representation of the function
Example 5.1.6. The simulation results are presented in Figure 5.16. The task of
the manipulator was to trace a path (from  a start point Start to the end point Final)
that had been specified by a linear path planner.

The gradient algorithm used for the simulations is
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Figure 5.16. Skeleton tracks of collision-free movements.

where  is the weight of the gradient of
The length of each manipulator link was set to 1.0. The parameter values

used in the gradient algorithm were and  and the initial manipulator
configuration was

As can be seen in Figure 5.16, the neural-processed gradient algorithm pro-
duced collision free manipulator configurations. In each step of the algorithm
the pairs of nearest link-to-obstacle points were calculated and then used in the
parametrized Jacobian calculation.

As mentioned, the gradient algorithm is not able to find a solution if too
many constraints are active. Testing revealed that in such cases the gradient
algorithm produces undesirable solutions. One more disadvantage of the proposed
method is that the configurations obtained during path tracing depend on the initial
configuration. This sometimes leads the algorithm to a bad solution, even if a
correct solution exists.

Search process. To find the shortest path in the state-transition graph connect-
ing the initial node and the final node we use the A* algorithm
(Pearl, 1984; Pearl, 1988;Nilsson, 1980). As the cost function between two nodes

joined by an arc, we shall assume the Euclidean distance in Cartesian space
traveled by the effector while passing from configuration q to  [Equation (5.29)].
The function which estimates the distance from the actual configuration q to the
final position is defined as the rectilinear distance between the effector end
in configuration q and the terminal position. It is easily seen that the heuristic
function is the lower bound of the function calculated for the path between q and
the goal node.

Let configuration q be chosen as the best node from the list OPEN (Nilsson,
1980; Jacak, 1989b). For q let us find the set of collision free successors based on
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the above kinematic model M. Remove from this set the configurations which are
ancestors of q. In order to simplify the procedure of successor generation, we can
additionally introduce a list of initially empty forbidden nodes FORBID and add
to it the nodes for which there does not exist a collision-free configuration.

From the reduced set of successors, we choose those configurations which
have not been present until now on the list OPEN or CLOSED, and introduce the
configuration into OPEN, establishing q as their predecessor. For all new and
newly marked nodes of the list OPEN we calculate the evaluation function, and
order the list according to increasing values of it. Then we repeat the procedure.

Remarks. In this chapter we have presented two search methods for collision-
free robot motion planning using two different models of robot kinematics, with
neural processing as the background. Both models have the form of a discrete
dynamical system which can be directly used for search-graph generation.

The first model, based on joint space discretization, allows us to use a few
efficient algorithms of graph searching (Pearl, 1984; Pearl, 1988; Nilsson, 1980)
with different costs and heuristic functions. Basic advantages of such a model
lie in the possibility of expressing successive robot configurations in the basic
Cartesian frame by means of neural implementation of its output function. Due to
the cardinality of the model’s input set, this planning technique is well applicable to
robots that do not have  a  large number of  degrees of  freedom—typically,
Indeed the number of discrete configurations that are successors of the given
configuration q increases exponentially with the number of degrees of freedom.
An illustration of this approach of planning a collision-free path for the manipulator
is shown in the top part of Figure 5.17, where simulation results are presented for
a robot with 4 degrees of freedom in macromovements. Figure 5.17 visualizes
the track of the skeleton from initial to final position and shows the expanded
planning search tree. However, when n becomes too big, the size of the successor
set becomes too large.

In this case, the second method, employing a kinematic model based on Carte-
sian space discretization, is more efficient. The simulation results for the same
manipulator are shown in the bottom part of Figure 5.17. The scene is identical
to the scene in the previous example. Figure 5.17 illustrates successively selected
configurations of the whole manipulator and the expanded planning search tree.
To increase the efficiency of the search procedure we can additionally introduce
to the heuristic function precomputed values of the numerical potential field us-
ing the wavefront expansion algorithm (Barraquand et al., 1992; Latombe, 1991).
However, since it is a heuristic method, it does not always guarantee finding the
optimal track.

The second model also can be a good tool for searching for the robot motion
trajectory in the presence of obstacles in the real world, by using proximity sensors
(Espiau and Boulic, 1985).
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Figure 5.17. Skeleton tracks of collision-free robot movements.
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Figure 5.18. Voxel tracks of collision-free motion.

5.1.3.4. Continuous track calculation. From the path planner, we obtain an
ordered sequence

of configurations which defines how to move the effector end from the initial
to the final position. Then a geometric track can be constructed by connecting
configurations from track*. This is accomplished by using cubic splines (Jacak
et al., 1992). Finally, the geometric track is given in the form of a parametrized
curve:

where the initial and final configurations of the track and correspond to
the points and respectively.

Additionally, we introduce the raster representation of the geometric track of
robot movement. The service space of each robot can be discretized in
the form of a cubic raster, i.e.,

The path planner generates all possible geometric tracks of robot movements. For
a given track we can establish the subset of raster elements (voxels) which
are visited by the robot manipulator during the motion (see Figure 5.18):
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where Seg is the broken line joining the points of the output function g of model M
[Equation (5.1)] and represents the robot’s skeleton. The set of volume elements
Tor is a gross approximation of the geometric track of robot movement and can be
used for fast collision detection between two moving robots. Based on the methods
presented above, the CARC path planner is capable of automatically calculating
collision-free tracks for all motions of the robots in a cell with respect to a given
production route p, as well as for one selected movement.

Example 5.1.7. The result  shown in Figure 5.19 demonstrate the collision-free
paths for the holding motions from the optimal route p* calculated by the process
planner for Example_Cell.

Now the optimal speed and acceleration of movements along the computed
tracks can be found by the trajectory planning package of CARC.

5.2. Time-Trajectory Planner

The trajectory planner receives the geometrical tracks as input and determines
a time history of position, velocity, acceleration, and input torques which then can
be fed to the trajectory tracker. In the trajectory planner, the robot is represented
by a model of the manipulator dynamics (Brady, 1986; Shin and McKay, 1986;
Shin and McKay, 1985).

5.2.1. Modeling of Robot Dynamics

There are a number of ways to obtain the dynamic equations of the robot
manipulator. The trajectory planner uses the Lagrange description, which yields a
set of differential equations in the form

or

where is the (n×n) inertia matrix of  the  robot,  is the (n×n×n ) array
of centrifugal and Coriolis terms for the robot, R is the (n × n) diagonal matrix of
viscous friction coefficients for the robot, is the (n × 1) vector of the robot’s
center-of-gravity terms, F is the (n × 1) vector of  the robot’s input torques and
forces, q is the (n × 1) vector of generalized coordinates (configuration), and n is
the number of degrees of freedom (DOF).
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Figure 5.19. Collision-free motion realizing the optimal route p*.
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The first step to obtain the equations consists of modeling the robot body. The
body can be considered as a set of elementary parts (cones, cylinders, cubes, etc.)
that make up the links of the robot. Then the dynamic parameters of the robot’s
links (masses, inertia matrix coefficients, centers of gravity) are determined as
functions of the parameters of elementary parts (lengths, radii, heights, etc.).

The equations of the robot’s dynamics can be obtained by applying the Euler–
Lagrange formalism or the Newton’s approach.

In the first approach the principle of minimal action is exploited to derive the
Euler–Lagrange equation:

where is the Lagrange function (difference between
kinetic and potential energy of a robot) and F denotes the external forces/torques
acting on the robot. In this approach the equations of the robot’s dynamics are
obtained in closed form.

In the second approach, Newton equations of motion are formulated for each
component of the robot. In this approach the resulting equations offer the robot’s
dynamics most often take a recursive form.

The two approaches are equivalent not only in the sense that they lead to the
same equations, but also in that the computational effort to calculate them is almost
the same. In the past, the Newton approach was preferred when calculations were
performed on sequential computers.

For modeling the robot’s dynamics we will take advantage of the Euler–
Lagrange approach. There are many schemes to compute the dynamics in such a
manner as to get the resulting equations as quickly as possible. We concentrate on
the scheme described by Luh et al. (1986), in which the equations of the robot’s
dynamics take the form:

where
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if joint k is rotational

if joint k is translational

where is the 4 × 4 matrix transforming coordinates from the kth frame to the
jth frame, i.e., is the pseudo-inertia matrix for the ith link
(expressed in the ith coordinate frame); is the gravity vector; is the mass
of the ith link; is the vector connecting the center of gravity of the ith link with
the origin of the ith coordinate frame (and expressed in the ith coordinate frame),
and tr is the trace operator.

Fact 5.2.1. The  components are

and

Computing partial derivatives can be avoided by multiplying subchain matrices
by the matrix Q.

In order to derive Equation (5.64), the kinematic and dynamic parameters
should be known. The kinematic parameters influence the transformation matrices
[Equation (5.13)] while the dynamic ones (together with
the kinematic parameters) influence the pseudo-inertia matrices (where

Kinematic parameters were discussed in the previous chapter, so here
we concentrate on dynamic ones. There are two possible ways to obtain these
parameters: by modeling the robot’s body, and by doing measurements on its
parts.

The first method is usually applied in CAD/CAM systems while the second
is used by robot manufacturers and when doing research on robots. We follow
the first route and model the robot. As a rule, some primitive objects are needed
to model the robot’s body. Primitives need to be simple in shape and appropriate
for approximating any volume. The most popular elementary objects are balls,
ellipsoids, cones, and cylinders. The derivation of the pseudo-inertia matrix for



Off-Line Planning of Robot Motion 103

every primitive object (expressed in its own coordinate frame attached to its center
of gravity) is a simple task. As can be seen from Equation (5.64), pseudo-inertia
matrices should be expressed in appropriate frames, usually different from the
frames attached to the center of gravity (CG) of each link. The Steiner Theorem
can be used to transform pseudo-inertia matrices from the CG frame to the link
frame:

where is the pseudo-inertia matrix in the frame attached to the CG, I is the
pseudo-inertia matrix in the link’s frame, and T is the transformation matrix from
the CG frame to the link’s frame. Superscript T denotes matrix transposition.

It should be pointed out that equation (5.64) is an idealized version of the
equation of a real robot. There are at least two main sources of differences
between the two sets of equations:

The formalism to derive equation (5.64) is based on an energy-preserving
principle, so dissipative phenomena are not taken into account (e.g.,
viscous friction is determined by doing experiments on a real robot).

When modeling a robot’s body by simple (unified) components, any
irregularity in material density or shape cannot be properly modeled;
additionally, real robot parameters can vary from one item to another and
even parameters of the robot as given by a manufacturer can be used only
as approximate values. Moreover, some parameters can vary over the
usage time in an unpredictable manner.

The coefficients of Equation (5.62) are not independent of one another. Coriolis
and centripetal terms can be obtained as follows (McKerrow, 1991):

Below we list the most important properties of  the coefficients:

Example 5.2.1. Following the Euler–Lagrange formalism, we modeled the
PUMA-like robot depicted in Figure 5.20; it kinematic parameters are presented
in Table 5.5 and a complete list of parameters of the PUMA-like robot is presented
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Figure 5.20. A PUMA-like robot with coordinate axes.

in Table 5.6. The pseudo-inertia matrices for the PUMA-like robot modeled as a
set of cylinders (cf. Figure 5.20) are
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The following equations connect the robot parameters with the terms of the pseu-
doinertia matrices.

Link No. 1:
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Link No. 3 and an object:

The pseudo-inertia matrix for an object is defined as

where dm is an infinitesimal element of a mass, and (x,y,z) are the coordinates of
the elements in the frame in which the pseudo-inertia matrix is calculated.

We assume that the cylinder has a height a radius and a constant
density For a cylinder with a mass distributed uniformly (mass density is a
constant) and a coordinate frame attached at the cylinder center of gravity, and for
the z-axis lying along the height of the cylinder, the matrix takes the form

The following examples give the coefficients of the equations of the robot’s
dynamics derived using the Euler–Lagrange approach and technical data for a
PUMA-like robot:
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5.2.2. Symbolic and Neural Network-Computed Robot
Dynamics

In order to fully utilize a robot’s capability its dynamics should be taken into
account. Because a robot’s controllers have to calculate the dynamics in each
control interval (usually tens of milliseconds), steps need to be taken to make the
calculations possible. Approaches used to reduce the computational complexity
of calculating the dynamic model include the following:

Ignore terms which are in some sense small. The omission can be general
in scope or only local, valid for particular trajectories or points. Leaving
out some terms may cause problems in preserving the robot structure (e.g.,
symmetry and positive definiteness of its inertia matrix).

Measure some quantities instead of calculating some terms. Some dynamic
parameters can be estimated on the basis of the measurements.
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Unfortunately these methods introduce new error sources. Computation on
parallel computers significantly reduces the amount of time needed to compute a
robot’s dynamics. The true solution of the problem of implementing the dynamics
will come through the use of powerful integrated chips, which will make it possible
to apply neural network techniques that can exploit the speed of optoelectronics
and give flexibility and robustness.

For robotic applications the most promising activation function of a single
neuron is the sinusoidal function (Jacak et al., 1994b; Lee and Bekey, 1991),
although general (not specialized) structures are in use as well (Miller et al.,
1990). The reason for this is that the main robotic transformations — kinematic,
dynamic, Jacobian matrix — use sine and cosine (sines with biases in neural
terms) functions as elementary blocks of expressions. It is worth noting here
that by knowing the structure of a robot’s kinematics or dynamics in advance,
the problem of deriving the equations governing the behavior of a real robot
reduces to merely identifying coefficients. In this way the problem of structure
identification is reduced to the much simpler problem of parameter estimation.
First let us observe that having fixed the structure of a robot’s dynamics, the whole
information about the dynamics is found in its coefficients

So it is enough to transform the coefficients into neural
network form to get the neural representation of the robot’s dynamics. As can
easily be seen, the coefficients are functions of the robot configuration q and are in
fact kinematic-like in nature. The transformation assumes that the robot has only
rotary joints, so the motion variables enter into coefficients only as functions
of sines or cosines. Therefore any coefficient can be expressed as follows:

where is an expression from the set
and is the number of coefficients.

It is a simple exercise to transform any expression in the form of a multiplication
of sines/cosines into the form described by Equation (5.75). Assuming that a
sinusoidal neuron is available (a neuron with sinusoidal activation function), any
of the coefficients can be implemented as a neural network. The structure of the
neural network model of a robot’s dynamics is shown in Figure 5.21.

Because any neural network learning algorithm is sensitive to the choice of
some parameters, there is a need to normalize the coefficients of the robot’s
dynamics in order to avoid a decrease in the effectiveness of the learning process
due to the parameters of a particular robot. An advantage of the normalization
lies in making the process of learning independent of a robot’s parameters, so that
the learning procedure can be treated in quite a general way. The normalization
consists in dividing any coefficient of the robot’s dynamics by a properly chosen
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Figure 5.21. Neural network structure for robot dynamics.

constant value, a normalization factor (NormF). It is natural to take the value

So the normalized coefficients take the form

5.2.2.1. Calibration of  neural model of  robot dynamics. Calibration is per-
formed to model properly a real object (robot), using as input data a rough model
(e.g., obtained with some simplifying assumption). In our case the calibration
process is carried out in two main steps: the active and passive modes of the
robot’s dynamics learning. The main difference between the two modes lies in the
ability (active mode) or inability (passive mode) to perform active experiments on
the robot, i.e., the robot can be controlled by allowable controls.

The active mode of learning requires that one perform experiments on the robot
manipulator for which the networks were built. From this step of calibration the
real dynamics of the robot with zero payload is obtained. The passive mode of
learning is applied to tune the net coefficients while performing a real task in the
robotic workcell. It has to be done because of change in the work conditions of a
manipulator (i.e., different payloads).

Active mode of  learning. The aim of the active mode of learning is to obtain
the real dynamics of  a robot with zero payload (RD0). RD0 is the dynamics of
a robot when no external forces/torques act on it and its gripper does not hold
any object. A characteristic feature of this mode is that active experiments on
a real robot are allowed as well. An active experiment relies on forcing a robot
to follow prescribed trajectories and measuring important robotic data during this
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process: configurations, velocities, accelerations and resulting torques/forces. The
trajectories in the active mode can be chosen freely, but in such a way as to make
identification of the robot’s dynamic parameters as easy as possible. A trajectory
can be shrunk just to a single point in phase space. The hypothesis for the
active mode of learning is as follows:

By choosing appropriate trajectories (points) in phase space, the problem
of identifying dynamic parameters of a robot can be decomposed into a set
of simpler kinematic problems.

This is of great importance when neural techniques are used to derive the
robot’s dynamics. Looking back at Equation (5.62), it is easy to observe that many
of the parameters depending on the configuration q are multiplied by velocities
or accelerations. The classical algorithm used to train neural networks (back-
propagation method) does not work in this case. Other algorithms for training
fail as well. By taking advantage of the possibility to choose freely a measuring
(identification) point, we can avoid the difficulties. A RD0 is identified in terms
of four subsequent submodes:

A. Quasistatic submode:
In this submode so Equation (5.62) becomes

and gravitational terms can be identified. By performing a set of
experiments we get patterns ready to be used to train the
gravitational net,

B. Constant-velocity submodes:
Two submodes are characterized by a condition of constant velocity. In the
viscous friction submode a robot passes a trajectory with velocities chosen
to be Then

This way, viscous friction coefficients and centripetal terms are identified.
Let us observe that F is measured, while G(q) is computed based on
results of the previous submode.
Other Coriolis terms are identified in accordance with the following
formula
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C. Inertia submode:
Having identified G(q),R, and N(q), only M(q) remains to be identified.
The identification is easier when while
j = 1,…, i – l, i + l,…, n. In this case the equations of the robot’s
dynamics can be written as follows:

A direct measurement of accelerations is hardly ever possible. Therefore
the following procedure to get values for the is suggested: Rotate a
single axis when measuring  forces/torques F acting in the  joint
configuration for q and velocity over an interval of  time. The
measurement is accurate and easy to perform. Then approximate the value
of by  examining  in the interval. The approximate acceleration
value is better than when the ordinary approximation of acceleration is
used (division of the differences of velocity at two time points by the time
interval between them).

Experiments for the submodes are performed using as input the data for the
training neural network which realize the coefficients of Equation (5.62). By
choosing proper values for velocities and accelerations, the identification of dy-
namic parameters has been decomposed into a set of kinematic problems that can
easily be solved by applying a standard backpropagation algorithm.

Example 5.2.2. In this example only the active mode of learning is considered.
Some tests were performed in order to evaluate the active mode of learning.
We distinguish among noncalibrated dynamics, calibrated dynamics, and real
dynamics taken as a pattern dynamics. The nominal dynamics (noncalibrated
dynamics) can be uniquely described by the following set of parameters:

The variation of the nominal dynamics was taken as the real dynamics. The
parameters differ by approximately of their nominal values:

To evaluate the learning process, some indices need to be introduced such as
the mean of the difference between an identified coefficient of the neural dynamics
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Figure 5.22. The mean error for (a) noncalibrated and (b) calibrated  term of the model of robot
dynamics.

and its real value,

Superscripts net and real are abbreviated forms of neural network and real dynam-
ics, respectively, and pr stands for a particular identified parameter. The chosen
test results for the coefficient of the neural-based dynamics model are shown
in Figure 5.22.

Passive mode of learning. Although after performing the active mode of
learning, the dynamics of a robot with zero payload is known, the coefficients of
the robot dynamics depend on the payload parameters. The coefficients can vary
when different payloads are carried. So there is a need for tuning the coefficients
while a real task is being performed in the robotic cell. In classical robotics,
the tuning is performed as an adaptation algorithm (Craig, 1981; Spong and
Vidyasagar, 1989). In the approach here based on neural techniques we propose
an algorithm to change the weights of the network to react properly to different
payloads.

The algorithm is not as simple as in the active mode of learning when, by
proper choice of learning sequences, neural network-modeled coefficients were
obtained. When doing real work, we can only get information about coefficients
by  passive experiments, i.e., by following trajectories prescribed by a user.

We consider two approaches to identify properly dynamic coefficients, both of
which take advantage of the neural representation. In Figure 5.23, the general idea
of the approaches is depicted. Index d denotes the desired value of a particular
variable. The robot’s dynamics will be properly modeled when
and In the case when at least one of the above conditions is not satisfied,
some weights of the network have to be changed to satisfy the conditions. The
tuning can be performed either by a backpropagation algorithm adapted for our
purposes or by a tuning process based on a negative gradient method coupled
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Figure 5.23. Passive training of  neural dynamics.

with an optimization procedure for finding the minimum of a goal function along
particular lines in parameter space.

PARAMETER TUNING BASED ON OPTIMIZATION PRINCIPLE: The idea behind the
method is as follows: when obtaining the nominal dynamics a payload is modeled
as well (the robot dynamics with zero payload is just the dynamics obtained by
zeroing all the payload parameters, masses, inertia terms, and center of gravity
positions), so the information about which parameter of the payload influences
which coefficient of the robot dynamics is kept. When an unknown payload is
identified, an algorithm modifying the parameter values is applied.

Let us assume that the parameters are independent of each other and call them
where np is the number of payload parameters. The algorithm is

based on a numerical negative gradient method combined with a procedure for
minimizing a goal function along the negative gradient.

The algorithm consists in the following steps:

Step 1. Read in the parameter space:

Step 2. Set the iteration counter to zero, and read in the initial value for

Step 3. Read in the state  and the torques  acting on the robot.

Step 4. Numerically determine the negative gradient of the goal function GJ
defined as follows:

where are the measured torques acting on the robot, while F(p)
is the output of the neural networks, given state as input.
Obviously the value depends on the current set of parameters p. The
negative gradient is determined in a sequential manner. Two values
are taken for each parameter (j = 1,…, n) to determine the gradient:
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and

Then Inverse_Dynamics  and
Inverse_Dynamics are computed by a neural

network with weights set according to the value of the parameter
vector. The smallest value from the set is found and the
appropriate (leading to the smallest values) is stored. The
procedure is repeated for all parameters. As a result a vector of is
obtained.

Step 5. Along a line in parameter space starting at the point and passing
through the point a minimization is performed (e.g., golden
division method). As a result, a new point in parameter space is
obtained.

Step 6. Set

Step 7. Check the stop condition:

if  then STOP; the best
set of  parameters has been found;
otherwise, after incrementing   goto Step 4.

The metric used in Step 7 can be any metric, although from a numerical
standpoint, metrics of types 1 and are preferable. Step 5 is introduced to allow
global search and to penetrate more promising areas of parameter space. The
algorithm can be executed for different states (in Step 3 the state was fixed). Any
intermediate result can influence the neural network immediately.
Example 5.2.3. In order to examine the method of parameter tuning based on the
optimization principle, the following test was performed. Let us assume that in
a state q = (1,1,1), the robot (Figure 5.20) running till
then without any payload grabs a cylinder with a mass of 1.5 kg, height 0.3 m,
and radius 0.05 m. The algorithm presented in the previous section, generates the
sequence of points in parameter space as depicted in Figure 5.24.

The parameter space was chosen to be

The process of  parameter change has the following phases: iteration 1, the start-
ing point; iterations 2–4, establishment of the negative gradient, iterations 5–14,
traveling along the negative gradient direction.

The number of iteration can be decreased by finishing computations when the
error becomes less than a given minimal value.
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Figure 5.24. Passive learning of a parameter of  the dynamics.

NEURAL NETWORK TUNING BASED ON A VARIANT OF THE BACKPROPAGATION AL-
GORITHM: The other method of performing passive learning applies a slightly
modified backpropagation algorithm for training the neural network. In order to
apply the backpropagation algorithm, the error must be known for each neural
network modeling a coefficient of the robot’s dynamics. Unfortunately, the only
parameters available to measure on a real robot are the current state (i.e., configu-
ration, velocity, and acceleration of each joint) and torques/forces F acting on the
robot. To get the error in terms of F, the current state is entered into the neural
network as input data. After computing the inverse dynamics, the network gives an
output When the robot’s dynamics is modeled correctly, otherwise
the difference between the two values can be treated as an error.

Then the error, now expressed in terms of  F, must be transformed into a set of
errors for particular networks. The classical backpropagation algorithm uses the
following rule:

(Classical backpropagation rule).

As the simplest possible rule, it has an obvious drawback. If we add all errors
coming from nets and weight them by appropriate terms, we get

and the last expression is usually different than

The rule should respect the common-sense rule that

(Common-sense rule). Let us define
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Then the error transformation is governed by

It is easy to check that the total error is just the sum of weighted errors coming
from the nets. This rule is not unique and any metric can be used.

Being more natural, this rule leads to obvious errors when applied to robot
dynamics. Let us consider the branch From theoretical considerations we
know that this entry is constant at zero. But the common-sense rule prompts us to
use the value of which is bigger than zero for nonzero
velocity

The next rule tries to avoid such situations:
(Proportional excitement rule). Let us define as

where is the output coming from the ith net; then the error transformation is
governed by

For comparison we define the final rule as:

(Null rule). The error on a net is assumed to be constant and equal to zero.
The existence of many rules is a consequence of the fact that the number of

errors on a net is bigger than the number of outputs.
Example 5.2.4. The following test was performed to judge the effectiveness of
each rule. For conditions different from the nominal ones
0.05 m, and m fixed for the time of the experiment, and randomly
generated points in configuration space, an error was introduced to the
patterns and examined. The error was defined as follows:

where is the value of the error prompt by the kth error propagation rule
for the ith neural network modeling the robot’s coefficients, is the value of
the error prompt for the ideal error propagation algorithm, and s denotes the sth
experimental item.

The number of experiments is taken as Num = 100 and the performance index
is defined as
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Results for a given coefficient are summarized in Table 5.7, which compares
the classical backpropagation rule (rule 1), the common-sense rule (rule 2), the
proportional excitement rule (rule 3), and the null rule (rule 0).

Now it is reasonable to couple symbolic computations with classical math-
ematical apparatus in order to get domain (robotic)-specific knowledge without
performing tedious and very complicated computations. The specialized structure
of neural nets can be treated with a known (after performing symbolic computa-
tions of the robot’s dynamics) and small number of neurons, so the dynamics is
easy to implement within a chip with relatively small capacity. The active mode
of learning should be performed very carefully because the number of variables
decreases significantly (in fact only object parameters remain) and the starting
point for the passive mode of learning can be established properly. The most im-
portant step in active mode of learning is to detect gravity terms properly. This is
because in the next submodes, the gravity terms are frozen [cf. Equations (5.78)–
(5.82)] and errors in gravity identification propagate to other components of the
robot’s dynamics. In fact, the passive mode of learning in static conditions lead to
the conclusion that learning based on tuning is more efficient than that based on
backpropagation algorithms and has the following advantages:

It bears more domain specific information (not only the structure of robot
dynamics, but also how unknown variables, object parameters, enter into
the weights of nets).

It works well even when an error at a single point in state space is available
(just opposite to the backpropagation algorithms).

As a straightforward consequence of the previous remark one might
suspect that an error cannot accumulate while the process of learning is
being performed,

The complexity of the tuning algorithm grows linearly with the number of
varied parameters; when the antigradient is established the optimization is
performed for one variable function.

The main disadvantage of this method is that a parameter-dependent function
needs to be be known for any weight depending on the variable parameters.
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5.2.3. Optimal Trajectory Planning Problem

Because of the nonlinearity and highly coupled nature of the manipulator
dynamics, the conventional optimal control approach is complicated and too time
consuming for on-line implementation. Instead a two-stage optimization approach
has been commonly used to tackle the problem. The first stage involves an off-line
trajectory planning model, which yields a time history of the joint angles and joint
velocities (as well as joint accelerations) to be followed by the robot’s arm to
carry out a prescribed task. The time trajectory of robot motion is planned with
the objective of achieving minimum cost or minimum time. The second stage
is the on-line path tracking problem. This section treats the problem of the first
stage, that is, minimum-cost trajectory planning for manipulators with general
minimum-cost objectives. Particular solutions for minimum criteria have been
found (Shin and McKay, 1986; Shin and McKay, 1985).

Minimum-time task is especially easy to solve because of the existence of a
local law for global optimal control (i.e., minimum/maximum acceleration rule
(Shin and McKay, 1986)). For a general criterion there does not exist such a law.
The trajectory planner receives as input some sort of geometric path description
from which it calculates the time history of the desired positions and velocities.

One possible approach to the solution of the stated trajectory planning problem
is to apply one of the standard tools of optimal control theory, Pontryagin’s maxi-
mum principle. Since the trajectory planning problem frequently requires state or
mixed state-control constraints, the maximum principle is not usually applicable
even if appropriate equations can be formulated. Therefore we take a more intu-
itive approach to develop optimal planning methods. The early trajectory planning
methods presented by Luh and Lin (1986) use a nonlinear programming approach
to solve the planning problem. These methods suffer from the deficiency that the
manipulator dynamics is not taken into account so that the robot’s joint actuators
are likely to be underutilized. In more recent publications [e.g., (Shin and McKay,
1986; 1985)] the robot’s dynamics is taken into account. Shin and McKay (1985)
adopt a dynamic programming approach to the trajectory planning problem. They
consider a general form of the joint torque constraints and general minimum-cost
objectives such as minimum energy loss. Dynamics programming has the advan-
tage that it is a well-established method and also gives the control law for any point
on the curve (path). On the other hand, if it is implemented in the most obvious and
straightforward manner (on the discretized phase plane), it uses a large amount of
computer memory and time for computation. The computation time also increases
quickly as the density of the discretization and hence the solution accuracy are
made finer.

For this reason other methods or modifications of existing ones are being sought
in an attempt to achieve considerably increased speed. One modification, namely
the method of optimal cost trajectory planning, is based on the graph-searching
algorithm of this chapter. It is purpose of this chapter to extend the work done
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in (Shin and McKay, 1985; Jacak et al., 1992) and present a trajectory planner
based on a discrete robot model and heuristic search methods applied to the state
graph of the model of the dynamics. Before discussing the proposed method of
trajectory planning based on the graph-searching algorithm, I first describe briefly
the optimal trajectory planning problem and its standard solutions.

5.2.3.1. Optimal trajectory of motion. For the trajectory planning problem we
have to consider the effects of restricting the manipulator’s motions to a preplanned
collision-free geometrical path which specified by the (collision-free) path planner.
The path planner usually yields a sequence of manipulator configurations described
in joint space by the joint position vector. A smooth geometric path can be
constructed by connecting intermediate configurations with means such as cubic
splines. Then the smooth geometric path of the motion is given by a parametrized
curve comprising a set of n functions of a single parameter s [Equation (5.58)].
We assume that the joint vector varies continuously with s. Since the parameter
s along with the functions completely describe the joint positions, s will be
referred to as the “position” variable. The ith joint velocity then becomes

where is the pseudo-velocity of the manipulator. It is also assumed that the
derivatives and exist, and that the derivatives are never
all zero simultaneously. In order to present the dynamic model of the robot the
Einstein summation convention is used and all indices run from 1 to n. Plugging
this into the known dynamic equation of the robot’s manipulator [Equation (5.61)]
gives the following equations of motion along the geometric path:

where is the torque or force applied at the ith joint. is the n × n inertia
matrix, is the Coriolis force array, is the matrix representing viscous friction,

is the gravitational force, and n is the number of robot joints.
Introducing shorthand notation (Shin and McKay, 1985) equations (5.90) can

be expressed as follows

where the quantities are functions of  s.
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The goal of automation is to produce at as low a cost as possible. Such cost
depends upon the cost of driving the robot, which varies with the robot motion.
Let the functional C given by

(L is the objective function and T is the time of motion) describe the cost of the
robot motion. Using the parametrized curve, the cost functional can be transformed
into

More exactly, the cost of motion along a track is assumed to be

where for general minimal energy motion. For minimal time motion,
and

Then the minimum-cost control problem can be stated as follows:

Trajectory planning problem. Given a curve in the robot’s joint space, a
model of  the robot’s dynamics, and the robot’s actuator characteristics, find
the set of signals to the actuators that will drive the robot from its initial
configuration to the desired final one with minimum cost.

More formally, assume that the constraints of the input torques can be expressed
in terms of the state of the robot, i.e.,

The optimal trajectory planning problem is to find the control F(s) which minimize
the functional C of  cost (5.93).

In such cases the standard tools of optimal control theory, such as the maximum
principle, are not applicable. This problem is solved using a discretization of the
parameter s into intervals where Assuming that in each
interval thepseudo-acceleration one can express the pseudo-
velocity in this interval as a function ofs as follows (Shin and McKay, 1985)
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where denotes and Given the formulas for the velocity
the incremental cost of motion in the interval under consideration can be found
using the formula

where

With these formulas at hand it is possible to solve our optimization problem using
the  dynamic  programming  algorithm (Shin and McKay, 1985).

To use dynamic programming, a grid is set up so that the position parameter s
is used as the state variable. Thus a column of  the grid corresponds to a fixed value
of s, while a row corresponds to a fixed value. One starts at the desired final
state (the last column of the grid, with the row corresponding to the desired final
value) and assigns that state zero cost. All other states with position  are given
a cost of infinity. Once costs have been computed, the dynamic programming
algorithm can be applied with respect to the following recursive form:

where is the optimal cost from to
The standard algorithm starts at the last column. For each point in the previous

column one finds all the accessible points in the current column, determines the
minimum cost to go from the previous to the current column, and the increments
cost accordingly. The point is accessible if  there exists a realizable torque

which achieves this point. It can be easily checked by the condition given
in (Shin and McKay, 1985). Determining which points are accessible from one
column to the next is simply a matter of checking to see if the slope of the curve
connecting the two points gives a feasible value. The slope limits can be found
from the constraints on the actuator torques. For each point in the previous grid
points, the optimal choice of the next grid point is recorded. When the initial
state is reached, the optimal trajectory is found by following the pointer chain
which starts at the given initial state. The incremental cost is computed for the
minimum-cost problem so that a running sum can be kept for the total cost.

5.2.4. Neural Network-Computed Dynamics for
Time-Trajectory Planning

The application of the dynamical programming method leads to the analysis
of all the nodes of the grid starting from the node It is easy to
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observe that the pair describes the state of the reduced dynamical system
(5.90). Assuming that at the kth step of the discretization the state of system (5.90)
is (k = 0, 1,..., N), we can reach the next nodes of the grid by
using the feasible input F(s) on the interval such that the obtained
pseudo-velocity is feasible at point  i.e., there must exist F(s) such that

where is described by formula (5.96). The feasibility of
for the given is easy to prove by applying the rules proposed in (Shin
and McKay, 1985).

Hence, we can establish that each state [node of the grid  can be
expanded into the following set of states (nodes):

where is given by formula (5.96).
The set is called the set of successors of the node Such

a definition allows one to expand locally the state graph of the discretized system
(5.90).

The optimization task (5.93) now can be reformulated into the task of finding
the minimum-cost path on the state graph connecting the starting node
with the final node The dynamical programming method can create
the full graph of states. To reduce the computational complexity of the problem
we propose a method based on methods applied in AI. The method relies on
sequentially expanding the state graph of the dynamical system (5.90). Expanding

successors of etc., ad infinitum makes explicit the graph that is
implicitly defined by the rules (5.99) of creating a successor set. A graph-search
control strategy is a process of making explicit the portion of the implicit graph
sufficient to reach the goal node The way of expanding the graph will
depend on the form of the cost function and the evaluation function.

As noted previously, the cost of transition from node to node
is equal to defined by formula (5.97). This means that there
exists F(s) for which and the cost of an arc directed from node

to node is equal to The cost of a path between two nodes is
then the sum of the costs of all the arcs connecting the nodes along the path.

Let the function give the actual cost of the path in the search tree
from the start node to the node for all accessible from

and let the function give the cost estimate of the path from the
node to the goal node We call h the heuristic function.

The evaluation function at any node consists of the cost of
the path from to and the estimated cost of the path from
to the goal node.

Our problem can be solved using a more effective bidirectional search strategy
as well. The other direction is evaluated by the same procedure with the starting
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node For calculating the optimal path we check all points belonging to
both direction trees and choose the path on which the sum of the cost functions in
both directions is minimal. The bidirectional process expands many fewer nodes
than does the unidirectional one. The choice of evaluation function to order nodes
in the list OPEN critically determines the search results.

5.2.4.1. The evaluation function e. As we saw previously, the evaluation
function consists of two components, namely

where w(v) gives the cost of the path in the search tree from the start node
for the forward direction for the backward direction]

to the node and the heuristic function h(v) gives the cost estimate
of the path from the node v to the goal node for the forward
direction for the backward direction]. The cost function w(v)
can be calculated with the help of the cost of transition from node

to node described by formula (5.97). The cost
of path w(v) between the start node and node v is then the sum of the costs of all
the arcs connecting the nodes along path,

The selection of the heuristic function h(v) is critical in determining the heuristic
power of the search algorithm.

The heuristic function h. The heuristic function h estimates the cost of move-
ment from the present node to the goal node for
a forward procedure for a backward procedure]. The heuristic
function h is a lower bound of the optimal cost of movement from to
(Nilsson, 1980).

An admissible heuristic function is the optimal cost of robot movement, without
imposing limitations on its geometric shape, from the state to the state

i.e.,

where and Such a function meets the condition of  being a
lower bound.

Finding such a function, however, cannot be solved for the general case.
Because of this we will show another method for estimating the cost of movement
to the goal node which allows us to construct a nontrivial heuristic function. The
idea is to use the knowledge about local minima gathered in subsequent steps of
evaluating the cost of searching.
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Suppose that we are in the node of the forward searching proce-
dure. Let denote the minimal current cost of transition from node to
node if such a transition is calculated in the expansion process. Other-
wise the current cost is equal to zero.

By we denote the current cost for the forward/backward searching
direction. Denote by the current estimation of the cost of the path in the
interval it is given by

Then the heuristic function is defined as follows:

where and denote the minimal current cost of transition from the layer
to the layer in the forward (backward) search tree if such a transition is
calculated during the expansion process. Otherwise it is set to zero.

Observe that such a function meets the condition of the lower bound of the
actual optimal cost of searching restricted to current information about the search
process. At the beginning, and are both equal to zero and they become
nontrivial during the execution of the procedure.

The construction of the function h requires bidirectional searching.

Fact 5.2.2. The heuristic  function defined in Equation (5.103) is monotonic and
lower-bound of real cost of achieving the goal node. While the properties are met
the solution is optimal.

The heuristic function based on learning allows for an essential reduction of
the number of extended nodes slightly worsening the quality of the results. The
number of extended nodes can be used as the evaluation criterion of the power of
heuristic function, as can the relative deviation of the current value of the criterion
function obtained by the proposed graph search from its optimal value obtained by
dynamic programming. Tests lead to the conclusion that a heuristic function based
on learning allows for an essential reduction of the number of extended nodes
and leads to results which differ slightly from optimal. Also, different heuristic
functions can be used to improve the power of the algorithm. Such results are
presented in (Jacak et al., 1992).

The trajectory planner generates the sequence of optimal pseudo-velocity val-
ues, i.e.,
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Figure 5.25. Minimum-time trajectory of  the first movement along the optimal route

for each for Based on equation (5.96) it is easy to compute the
sequence of optimal pairs for which approximates the optimal
function Plugging this function into (5.58) for q(s) gives the optimal time
trajectory of robot motion.

Hence, the trajectory planner yields an optimal trajectory, the time and energy
needed for robot movement along each geometrical track. The motion planner is
capable of automatically calculating the optimal trajectories with respect to desired
quality criteria for all holding movements resulting from the production route as
well as the optimal trajectory for all empty movements.

Example 5.2.5. The trajectory planner results shown in Figure 5.25 demonstrate
the minimum-time trajectory of the first movement from the optimal route
calculated by the process and path planner for the Example_Cell.

To generate automatically the cell-control program, the process planner deter-
mine the succession of technological operations. Then, for each robot r servicing
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the process, a set of time trajectories of the robot’s motions for all transfer opera-
tions of a given route is established,

and

where the trajectory is a function mapping the time interval into the
joint space Q(r) of the robot r (Brady, 1986; Jacak and Rozenblit, 1992a). These
functions realize the transfer of parts between machines of the cell and, for each
part, they ensure that all the operations from Task are executed in a preplanned
order. The set is called the geometric and dynamic control of the
robotic agents in the flexible workcell. The structure of the motion planner is
shown in Figure 5.26.

The time trajectories of motions provide the basis for computing the times of
each elementary action. For each motion command, we can change the geometry
of movement or change the motion dynamics by selecting criteria for optimal
trajectory planning. Variant interpretations obtained from the motion planning
allow us to test and select the logical control law which minimizes the makespan.
To calculate the makespan for different sequences of operations and different
selection rules, we use the DEVS simulator, which is described in the Part II of
this book.

Consequently, we can test and select the logical control of a cell with respect
to different criteria. The intelligent robotic cell planning system is capable of
calculating and automatically choosing the best logical control (production route)
which minimize the global quality criterion in the form

Example 5.2.6. In the Example_Cell the best route has the following dynamic
parameters: length = 14.87m, time of motion = 9.76s, energy of motion =
1837J.

The geometrical route planner completes the description of the CAPP/CAM
components of the intelligent autonomous robotic cell CARC.

5.3. Planning for Fine Motion and Grasping

When the workspace is too densely occupied by obstacles, the robot may not
attain the goal configuration with the desired precision and orientation. In such
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Figure 5.26. Structure of  the motion planner.
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cases some additional preplanning of the motion path in the goal region and on-
line sensing must be explicitly incorporated into the motion plans. Such motion is
called fine motion. Precise control of the effector end is crucial to accomplishing
advanced robot tasks.

5.3.1. Fine Motion Planner

Given two regions IR and GR in the workspace called the initial region and the
goal region, respectively, the fine motion planning problem is to generate a motion
strategy whose execution is guaranteed to return success with a final configuration
in GR whenever the initial configuration is in IR. The motion between the both
regions, called gross motion, can be realized less precisely and can be planned
using the previous presented planner.

5.3.1.1. Conditional geometric path planning. In both regions it is very im-
portant to create a geometric path of motion that satisfies the additional conditions
concerning the geometrical relationships between the manipulated object OM and
objects  from its environment. Such a type of path will be called
a conditional geometric path of motion.

For determining the degree of additional conditions between the object OM
and its environment we select a set of l test points from the object (or from the
gripper). For the ith test point the motion conditions can be defined as

where the constraint function is a positive function, i.e., and

is the vector of current distances between the ith test point and objects

Conditional path planning can be transformed into an optimization problem
with two constraints. One is to minimize the length of the path achieving the final
position and the other is to satisfy the distance constraints along the path from the
beginning of the goal (or initial region).

5.3.1.2. Neural computation-based conditional path planning. These two
constraints can be implemented by a neural network representation of the penalty
function associated with the ith test point in the following form:

where is the neuron with sigmoid function representing the constraint
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p is the current position of  the ith test point, and  is the neuron representing
the goal region GR (d is the range of the goal region and is the center point of
the goal region).

We present two methods to solve the conditional fine motion planning problem.
The first is based on the artificial potential field approach, and the second on
minimizing the energy of motion.

5.3.1.3. Potential field method. Let p be a point in the base coordinate frame
The field of artificial forces F(p) is produced by a differentiable potential

function (Latombe, 1991; Lee and Bekey, 1991)

with forces

U is constructed as the sum of two elementary potential functions:

where is the attractive potential associated with the goal position and is
the repulsive potential associated with the conditional geometric path.

Attractive potential. We use the parabolic-well attractive field to compute the
attractive potential field:

where and
Repulsive potential. To model the repulsive potential we use the conditional

geometric path potential

Using the above relationships which describe the value of the potential field at
point  p, we deduce the following equation of  motion of  point p.

where and are the attractive and repulsive forces for
each test point, respectively.



130   Chapter 5

Figure 5.27. Fine motion of  a six-DOF manipulator.

Example 5.3.1 (Problem of  keeping a  fixed distance). In experiments with fine
motion planning the potential field method was used. The problem we seek to
solve is specified as follows:

For a given initial configuration of a six-DOF manipulator on the plane
and for a given placement of the object that has to be picked up, find the
manipulator track that ensures a good (center) grasp.

Introducing the test point p in the center of the gripper (tool center point) we
can define the constraint function f in the goal region as follows:

where and are two points situated symmetrically near the object OM (see
Figure 5.27). Assuming the parabolic attractive potential field in the form

where and the potential field-based
path planner is able to produce the desired path. This path can be treated as the
input to the inverse kinematics module. In this way the manipulator configurations
to achieve a given task are calculated. The result of such a simulation is shown in
Figure 5.27.

5.3.1.4. Minimal energy method. The fine motion planning algorithm pre-
sented here is based on minimizing the energy of the path lengths and the con-
straint penalty. Let p represent the reference point from the object OM for which
the path is to be planned. Then the energy of the path length is defined as the sum
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of the squares of all the lengths of the line segments connecting the route points
of motion p(k) for

The total energy E of the path is defined as

where l is the number of test points. This implies that individual route points
should move in directions that minimize the energy.

Based on the gradient of the energy function the path planning algorithm can
be implemented as a coupled connectionist network (Lee and Bekey, 1991). It
should be noted that the gradient of the total energy is easy to compute based on
the output of neurons and

The sequence of optimal route points represents the effector path in the goal
(initial) region and is the input data for the robot movement track planner presented
in the previous section.

5.3.2. Grasp Planner

In order to control properly the position and the attitude of a grasped object a
suitable set of contact forces must always be applied by the manipulating structure
in accord with the following basic specifications: the resultant wrench must be
appropriate to the assigned object motion, and the set of applied contact forces
must satisfy the appropriate physical constraint.

Because the contacts are not restricted to the end areas on the individual fingers
of the gripper, therefore sensing capability on the whole surface is needed.

Distributed tactile elements suitable to give a detailed map of contact areas
with relative pressure distribution are necessary in case of large or segmented
contact areas on the same finger. If distributed tactile sensors are mounted all over
the finger links, the robot can detect any touch between finger and object. Several
works have discussed the shape recognition of an object using finger tactile sensors.
The design of grasp planning systems has been greatly conditioned by the large
amount of sensory information which needs to be acquired and elaborated in real
time. This heavy computational burden led to the design of neural network-based
grasp planners.

We assume that the fingers of the gripper are equipped with distributed tactile
sensors (touch sensors) organized in matrix form.

The object is grasped in a fixed specified sequence, depending on the solid
contour. An approximation of the contour of the object can be obtained by
sequentially grasping and interpreting of the sensor signals.

For the approximation of the contour it is divided into a constant number, say
K, of segments and for each ith segment grip points are chosen. Some of  these
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Figure 5.28. Symbolic computation-based training of a neural network for grasping.

points are used for contour approximation. The set of grip points is grouped in
pairs.

The signals from the sensors create the input vector for the feedforward neural
network which calculates the best pair of points and the grasping forces to be used
for grip realization.

5.3.2.1. Symbolic computation-based grasp learning. The training of this
network is performed with the simulation approach, using symbolic representation
of the object to be grasped.

The object is represented by a geometric model built up through solid modeling
techniques. Based on the contour segmentation the pair of grip points is
generated. For every pair of grip points we simulate the touch sensor signals for
each finger, and so model the input vector of patterns.

For a given pair of grip points a mathematical analysis of grasping forces is
performed and the feasibility of the forces is tested. The best pair according to the
criterion of minimal grasp force is used as the pattern output of the neural network
together with the generated grasp forces. The idea of such a grasp planner is shown
in Figure 5.28.

The objects considered in the learning phase are sums of convex polyhedra.
In addition, the physical characteristics of each object, i.e., mass, coefficient of
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friction and the stiffness R, are given.
We assume that the object is placed on a table and a two-finger parallel jaw is

used to pick it up. Each jth link of a finger is equipped with an l × k  touch sensor
matrix with the values 0 or 1.

Before analyzing feasible grip points using mating surfaces, all the forbidden
surfaces which the gripper cannot reach should be avoided. Since initial and
final grasp configurations are known beforehand, this can be done by analyzing
the geometrical constraints of the object and the environment with respect to
the gripper constraints. The analysis is based on two criteria. Initially, feasible
gripping points are found by analyzing the geometrical characteristics of the object
to be picked up and the gripper’s geometry. Then one finds gripping points such
that the object is in equilibrium in the gripper using the given forces, and then one
obtains the optimal gripping points by analyzing the rigidity of the object with
respect to the gripper.

5.3.2.2. Optimal grasping forces. Most authors (Wolter et al., 1985; Lozano-
Perez, 1981; Gatrell, 1989) find grip points by considering the rotational and
slippage effects when the gripper forces are applied against the surface of the
object. Though this approach seems to be an extension of the work of (Wolter et
al., 1985), the analysis of the stability of the object in the gripper is considered
using concepts described in (Kumar and Waldron, 1991). As in many applications,
the gripper is made of metal and the gripping points are relatively point contacts,
and by simply verifying the rigidity of  the object we find effective optimal gripping
points.

The object is considered as the sum of convex polyhedra. An object OM to
be grasped and moved has an intrinsic coordinate system with respect to which
points in it can be specified. The physical characteristics of each object are its
mass, coefficient of friction, and rigidity.

The grasping activity is analyzed assuming a two-finger parallel jaw and that
the object to be grasped stays on the workstation serviced by the robot. The
solution uses a the top-down structure. The problem can be divided into two
subproblems.

A. Find feasible grip points using the geometrical characteristics of the object,
gripper, and the workstation serviced by the robot.

B. Find the best pair of grip points for each pair of surface points of the object
by analyzing the stability and rigidity of object with respect to the gripper.

Selecting  feasible gripping points. All possible gripping points can be ana-
lyzed using the geometrical characteristics of the object, gripper, and workstation
serviced by the robot.

This analysis is carried out by first finding all possible gripping surfaces of  the
object. Before finding these surfaces, excluded surfaces should be avoided.
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UNREACHABLE  SURFACES: Let      be  the set of all of the surfaces of the object
OM, i.e., All the surfaces which the gripper cannot reach are
called excluded surfaces (Feddema and Ahamed, 1985). There are two types of
excluded surfaces, unreachable and coexcluded surfaces. Unreachable surfaces
are those already in contact with other surfaces from the environment at the initial
position, and coexcluded surfaces are parallel for the unreachable surfaces for the
proposed parallel jaw.

From the set we eliminate the subset of surfaces already in contact with
other surfaces from the environment’ and all surfaces nearly parallel to each of  the
surfaces of

After analyzing excluded surfaces, all the grip points can be found using
individual surfaces that belong to the set of feasible surfaces.

SELECTION OF MATING SURFACES OF THE GRIPPER: Based on the “grasp view”
(approach view of the object, typically top view or side view) the contour of the
object is established. In the next step we select a pair of surface elements which
connect to the contour and are nearly parallel, facing away from and opposite to
each other. Each such pair determines an orientation vector. This can be easily
analyzed using the symbolic surface equation

The vectors A, B, C have unit length and point outward from the face.
Each pair of faces belonging to the contour passes through a series of filters

which eliminate geometrically infeasible pairs.
To ensure that two faces are parallel within an angle the angle between

normal vectors must be within the range
Selection of contact points of the robot gripper. After selecting a pair of

surfaces, specific grip positions must be chosen on these surfaces. In order to
ensure that a grip can be found in as many run-time situations as possible, a diverse
set of grips is proposed. These vectors are selected using the raster method. This
is done by selecting contact points from all pairs of surfaces. The selection of a
pair of contact points is done starting from the middle point of the chosen face.
In this way, various points are selected along all symmetries of  the face and along
the edges of the face. Each point is analyzed with appropriate point from the
other surface which is nearly parallel to the chosen face. The selected points are
grouped according to the fixed segmentation of the “grasp contour” of the object.
Additionally, the simulated values of the sensors signals are stored.

For each surface two types of vectors are found: one parallel to the considered
edge on a specific surface, the second perpendicular to the surface on which the
position vectors for gripping will be selected. This pair of gripping points should
lie on the plane formed between these two points and the resultant force vector in
order to avoid a rotational effect in the initial configuration (Figure 5.29).
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Figure 5.29. Grasping plane.

Calculation of optimal grip points. From the feasible grip points, semioptimal
grip points can be obtained by analyzing the stability of the object with respect to
the gripper, considering the forces distributed between them and the rigidity of the
object. The best (optimal) pair of grip points for each pair of mating surfaces can
be obtained by finding the maximum angle between the position vector of each
grip point with respect to the resultant external force of the object.

STABILITY OF THE OBJECT IN THE GRIPPER: Gripper–object contacts are modeled
as point contacts, which means that the gripper can apply any three force compo-
nents, but no moments. A quasistatic approach to the problem has been adopted
which considers the resultant of the inertial forces and moments on the object, and
all external forces and moments excluding the grasping forces are always balanced
by the grasping forces. The contact forces of these grip points can be divided into
two types of forces: equilibrating and interaction forces:

Equilibrating forces are forces required to maintain the object in equilibrium with-
out squeezing it, while the interaction forces squeeze the object with zero resultant
force. The interaction forces are defined by the geometry in the two-fingers grasp,
as the component of the difference of the contact forces projected along the line
joining the two contact points (Cutkosky, 1985). Thus the object–gripper system
is required to maintain the object in equilibrium while the interaction forces ensure
that the friction angle at each contact point is within allowable limits.

For further calculation, we denote by the position vector of ith grip point,
by n the number of grip points (in this case n = 2), by  the grasping force at the
ith contact point, and by 0 the center of n contact points.

The equilibrium equation for the grasped object may be written as follows:
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where w is the 6 × 1 external force vector consisting of the inertial forces and
torques and the weight of  the object, F is the unknown 3n × 1 contact force vector,
and G is the 6 × 3n coefficient matrix. G is analogous to the Jacobian matrix
encountered in the kinematics of the serial chain manipulator. Each column vector
is a zero-pitch screw through a point contact in screw coordinates. If
and are zero-pitch screw axes parallel to the X, Y, and Z axes through the ith
contact point, then

EQUILIBRATING FORCES: It has been shown (Cutkosky, 1985; Kumar and Wal-
dron, 1989) that the pseudo-inverse solution for the force system can be found
through an equilibrating force calculation. In this case w always belongs to the
column space of G. The pseudo-inverse, then, is a right inverse which yields a
minimum norm solution,

Since the solution vector must belong to the row space of G (Noble, 1976), we
have

where c is a 6 × 1 constant vector.
If is the equilibrating force at the ith contact point and   and are two

3 × 1 vectors such that then

where is the position vector of the ith contact point.
The above equilibrium equation may be rewritten as

where Q and T are external force and moment components of the load vector w.
INTERACTION FORCES: The interaction forces are determined by the geometry.

They are equal and opposite along the line (e) joining two grip points as shown in
Figure 5.30.

The problem of determining the forces at grip points may be decomposed into
two subproblems:

I. Determination of the equilibrating forces required to maintain the
equilibrium of the gripped body assuming that the finger interaction forces
are absent.

II. Determination of the interaction forces needed to produce without
violating the constraints.
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Figure 5.30. Interaction forces.

STABLE  GRASP: If is the coefficient of friction and is the maximum
allowable grasping force, the following two conditions should be satisfied for a
stable grasp.

1. Friction condition:

2. Maximum force condition:

If  and are unit normal vectors and  and are the angles between
the resultant contact force vector and the normal on each contact point
respectively, the necessary and sufficient condition for producing a stable
grasp is

where is the friction coefficient.

In order to obtain a stable grasp, the valid range of interaction force factor
a must be chosen such that

satisfies the inequalities (5.127) and (5.129).
If is the interaction force, then it should satisfy the following equality:
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where E is a constant unit vector.

Hence, the force is a function of i.e.,

3. Deforming condition:
Assuming that the gripper is sufficiently rigid in order to grasp any object,
we evaluate the rigidity of the object. The rigidity of any material can be
evaluated by

where As is the cross-sectional area, L is the length over which the force is
applied, and F is the force applied in the specified cross-sectional area

Evaluating the rigidity condition gives the limit on the range of interaction
force from the above stability condition.

where R is the rigidity of the material used to construct the object.

The force depends on the hardness of the gripper and the material of the
object. If the above conditions are satisfied, then the gripper can take the object
at the contact points without deforming the object’s shape. Determination of the
gripping forces can be realized using a helicoidal velocity field. The interaction
forces should be chosen in such a way that the grasp forces for a given pair of
contact points are maximal inside a friction cone. This depends on
the proper choice of the force factor

BEST INTERACTION FORCE FACTOR The best α is that for which the angle
formed between the normal n and the resultant contact force vector  at the
considered grip point is minimum. To find such an it is necessary to calculate
the first derivative of the following criterion:

Local extreme values of  the derivative of  this expression give the whose forms
the minimum angle with the normal n.

If  this value lies inside the range of obtained from the stability condition, it is
considered the best choice. Otherwise we must consider extreme  values in order
to find the best for the smaller angle formed between and n. It is obvious that
sometimes two different values of  are given for two-finger grasping.
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Figure 5.31. Contact forces for a cone. Left: Mass = 2 kg, friction coefficient = 0.5, rigidity = 0.7;
best Resultant contact forces: Right: Mass = 2 kg,
friction coefficient = 0.5, rigidity = 0.3; best α  does not exist. Resultant contact forces: do not
exist.

Example 5.3.2. The analysis of grasping forces for a cone-shaped object is con-
sidered without selecting the best choice for grasping, to show how the resultant
contact force is increased along the edge when the distance between contact points
is decreased. Based on the rigidity concept, the force is inversely proportional to
this distance. It can be shown that no grasping exists when the distance between
two contact points is too large. We analyze two cases:

Case 1. A cone with mass = 2.0 kg, friction coefficient = 0.5, and
rigidity = 0.7.

Case 2. A cone with mass = 2.0 kg, friction coefficient = 0.5, and
rigidity = 0.3. The forces are shown in Figure 5.31.

This example shows that, for the contact points in Figure 5.31, when rigidity
decreases it is impossible to grasp the object because the maximum grasping force
decreases and therefore the interaction force factor does not lie inside a valid
range obtained from the equilibrium conditions. In other words, when the rigidity
decreases and when the distance between the pair of grasping points increases, the
object tends to be deformed.

BEST GRASPING FORCES: The best solution is found for the largest angle formed
between the resultant contact force and the net external force vector acting on the
object for each pair of grip points such that the stability condition is not violated
and there is no collision with nearby objects during the movement of the object to
its destination. In this form, we can obtain a pair of grip points for every pair of
surfaces of any object.

Training pattern preparation. The method presented above finds the optimal
solution for two-finger grasping and also finds the best choice for grasping at
each pair of nearly parallel surfaces of the object. The analysis is performed for
all chosen contact points, and for each pair of points the grasping forces are
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calculated. From all points we choose a pair for which the grasping forces are
minimal. The best grasping point is calculated as

Based on the above grasp planning algorithm, the pattern pair for neural network
training is taken as the following set:

The symbolic calculation-based grasp planning process is performed for many
fully modeled virtual objects. The best grasp points and model signals from finger
sensors create the pattern set using to train the neural network.
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CAP/CAM Systems for Robotic Cell
Design

There is currently a great deal of research and development effort aimed at in-
tegrating CAD/CAP/CAM systems and generating production process robot and
machine programs using graphics simulation (Prasad, 1989; Bedworth et al., 1991;
Faverjon, 1986; Speed, 1987; Ranky and Ho, 1985; Wloka, 1991).

In this chapter we give a brief description of the CAD/CAP/CAM systems
ICARS (intelligent control of autonomous robotic system) and HyRob (hybrid
calculation-based robot modeler), experimental process engineering environ-
ments, which provides many of the automatic planning and simulation tools for
the synthesis of manufacturing processes and their control in CARC (Jacak and
Rozenblit, 1992a; Jacak, in press).

ICARS and HyRob are complete structured software systems which, based on
the specification of technological tasks, technical data, and cell models, allow the
development, design, programming, execution, and testing of  logical and geometric
control of  the machining process in a flexible robotic workcell as well as the fuzzy-
neural control of  individual robotic agents.

6.1. Structure of the CAP/CAM System ICARS

Possible robot and machine actions are modeled in ICARS in terms of  different
conceptual frameworks, namely logical, geometrical, kinematic, and dynamic.
ICARS, which enables automatic generation of logical and geometric control of
manufacturing cell, has a modular structure consisting of  three basic modules:

1. Process sequencing module (Taskplan)

2. Graphics modeling and simulation module (Grim)

3. Optimal and collision-free motion planning module (Groplan)

141
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Process planning in the Taskplan (task planner) module is carried out based on
description of  the technological operations of  the underlying machining process, of
the manufacturing cell and its resources such as devices, robots, stores, or fixtures,
and of the precedence relation over the set of  technological operations.

Task specification data are used to synthesize a geometrical model of  the cell
(virtual workcell) and simulate it in the 3D graphics simulation module Grim
(graphic representation of  industrial-robot motions).

The software of the Grim system enables the geometric modeling of each
object of  the cell and planning of  the cell layout. Moreover, Grim can simulate
different robots with direct/inverse kinematics and their dynamics and provide
a “teach-in” method in an on-line mode. These models are imported from the
HyRob system, which enables the design of any robot manipulator with neural-
based kinematic and dynamic models obtained in an automatic way.

In this implementation the graphic simulation system is presented using the
example of IRb ASEA and Adept robots. Grim allows 3D graphical display of
the robot and its movement with free choice of  the viewpoint, including zooming
and the performance of the collision tests.

Such a robot simulation makes it possible to test the realization of  the techno-
logical process and estimate the geometrical parameters of  each transfer operation.

The process planner (Taskplan) then uses the geometrical data from Grim
simulator for logical control (production route) planning. The basic problem here
is the derivation of  an ordered sequence of  robot actions that can be used to perform
the task. It is solved by finding an ordered and feasible sequence of technological
operations which can be transformed directly into a sequence of robot actions.
Such a fundamental action plan for a technological task determines the programs
of robot manipulations which service the process. Every program is a sequence
of motion and grasp actions. The interpretation of the fundamental plan (logical
control) is carried out using an automatic motion planning approach in which the
detailed paths and trajectories are specified using both gross and fine motions.

The main unit of the ICARS modules is the motion planner Groplan (geo-
metrical route planning). The motion planner automatically creates variants of
collision-free time trajectories of the manipulator movements which execute the
individual robot actions. Such a planner is based on robot-dependent planning
techniques and a discrete dynamical system formalism.

The Groplan unit automatically generates collision-free geometric paths of
robot movements for the whole production route obtained from the Taskplan
system. Moreover, Groplan allows one to optimize the dynamics of  motion along
paths with respect to time or energy criteria. Each of the planned movements
is transferred automatically to the simulator Grim, which performs 2D and 3D
animated computer simulation of cell actions. Automatically generated time
trajectories of  robot motions can be used as geometric control routines of  a robotic
cell when they are compiled with a postprocessor into a specified control code.
The detailed ICARS system architecture is shown in Figure 6.1.
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Figure 6.1. Structure of  the CAP/CAM system ICARS.

6.2. Intelligent Robotic Cell Design with ICARS

6.2.1. Task Specification Process

To begin the design of  an intelligent robotic workcell with ICARS, one specifies
the technological task to be realized by the cell being designed. The technological
task consists of  a finite set of machining operations, an operations precedence rela-
tion, and operations allocation relation (Definition 4.1.1). Moreover, the workcell
entity structure needs to be created.

The first module of ICARS (Taskplan) allows the description of the tech-
nological task and cell structure in standard form. Taskplan includes a special
editor that enables the easy specification of each task and cell components. The
logical names of operations (A, B, C,...) and cell devices [such as machines (d0l,
d02,...), stores (m01, m02,...), robots (r01, r02,...)] are automatically assigned by
the Taskplan editor. The sample display of the Taskplan editor package shown
in Figure 6.2 demonstrates the operations precedence relation.
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Figure 6.2. Example of an input screen of the Taskplan editor — the operations precedence relation.

6.2.2. Cell Geometry Modeling and Design

Task and cell specification data are used to synthesize a geometric model of  the
workcell (virtual workcell) in the graphics modeling module Grim. The software
of  the Grim module enables the geometric modeling of each object of  the workcell
and planning of the workcell layout.

6.2.2.1. Workcell object modeling. Complex objects such as technological
devices, auxiliary devices, or static obstacles, are composed of solid primitives
such as cuboids, pyramids, regular polyhedra, prisms, and cylinders. The main
Grim menu allows the operator to load primitives from a catalog into the object’s
own base frame and rotate and transfer them for complex object composition. The
geometric models of the objects can be stored in an open catalog.

6.2.2.2. Workcell layout modeling. The objects can be placed in a robot’s
workscene in any position and orientation. The transformations between the
object frames and the base frame are performed automatically.

Grim allows the user to transfer the model of an object from the catalog to the
workscene (edited on screen) and to locate it in the desired position and orientation
with a user-friendly screen management system.

Grim presents a 3D graphic display of the robot and its environment with a
free choice of  the viewpoint, including zoom, and of  a window system (up to four
windows each with its own viewpoint and zoom). Figure 6.3 shows examples of
models of  the object and the workcell layout, created with Grim.
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Figure 6.3. Model of  a virtual object and of  the cell layout.

6.2.3. Route Planning

Taskplan package of  ICARS automatically sequences operations based on the
task and cell descriptions, including allocation, specification of  machining param-
eters (processing time), partial ordering of operations, and the logical structuring
of  a cell. Taskplan creates optimal sequences of machines (there can be more than
one solution) called production routes along which the parts flow during the ma-
chining process. Figure 6.4 shows the result of  the process planning, i.e., a sample
output screen of  Taskplan, and an example of  the calculated optimal logical route.

6.2.4. Geometrical Route Planning and Programming

The ICARS module Groplan automatically generates geometric paths of  robot
movements for the whole production route obtained from the Taskplan system.
Moreover, Groplan allows one to optimize the dynamics of motion along paths
with respect to time or energy criteria. Groplan can simulate robots with direct/
inverse kinematics and their dynamics and provide a teaching method in an on-
line teach-in mode. The different robot models are imported from the HyRob
system. The standard version of  ICARS is equipped with geometric, kinematic,
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Figure 6.4. Output screen of  Taskplan — the production route.

and dynamic models of IRb ASEA and Adept robots. The Groplan module
consists of  two packages: a path planner package and a trajectory package.

6.2.4.1. Path planner package. Based on the graphic model of the cell, the
path planner allows the operator to establish precisely the position and orientation
of the robot’s effector end at each location of the machine’s buffer or store. The
operator can place the robot manipulator in the desired position on the screen and
can move the robot’s effector end in Cartesian base space as well as the robot’s
skeleton in the internal joint space. For each robot position a collision test is
automatically performed.

The Groplan path planner facilitates motion programming and planning for
any two given points along the following paths:

straight line in Cartesian base frame

circle in Cartesian base frame

linear path in the joint coordinate frame

linear path in the cylinder coordinate frame

automatic collision-free path

The sequence of movements can be stored as an off-line programmed robot
motion program.
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Figure 6.5. Collision-free track of a robot movement.

Groplan offers automatic collision-free path planning for all motions of a
cell’s robots with respect to a given production route, as well as for the one
selected movement.

Each planned movement is transferred automatically to the graphics simulator,
which allows the demonstration of each path of an effector’s movement by com-
puter animation in a 3D representation of the cell layout. Additionally, Groplan
enables the display of geometric tracks of  the skeleton or the whole track of  the
robot’s body for all motions on the geometric route.

The package offers the possibility of computer animation for the whole geo-
metric route or only for the selected movement. The sample display of the path
planner package shown in Figure 6.5 demonstrates the collision-free geometric
track of one selected robot movement.

6.2.4.2. Time-trajectory planning. The Groplan  trajectory planner optimizes
the motion dynamics with respect to time or energy criteria. Moreover, the dynamic
parameters of motion along a given path, including the length of effector motion,
the time of motion, and the global energy of motion, are calculated and displayed.
The graphics editor of Grim allows the 2D display of such function graphs as the
following:

the optimal joint trajectories

joint velocities
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Figure 6.6. Multiwindows screen of the trajectory planner package.

joint accelerations

drive currents

joint  jerks

Figure 6.6 presents the sample display of  an optimal trajectory. Automatically
generated time trajectories of robot motions can be used as geometric control
routines of  a robotic workcell. Moreover, Groplan can calculate and automatically
choose the best production route (logical control of  the cell) which minimizes a
global quality criterion.

6.3. Structure of  the HyRob System and Robot Design
Process

The structure of  the HyRob system is shown in Figure 6.7. The kinematics and
dynamics modelers are the main parts of  the HyRob system. When starting a new
project, the modules of  the kinematics and dynamics modelers should be executed
in the order presented in Figure 6.7. This is due to the fact that some modules
require the output of other modules as their input, and cannot be executed before
this input is available.
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Figure 6.7. HyRob modules.

6.3.1. Robot Kinematic Data Specification Module

This is one of the top-level specification modules in the system. It queries the
user for the Denavit–Hartenberg (and other) parameters of a robot to be used in
the system and stores them in a special format. The first step is the specification
of  the Denavit–Hartenberg parameters d, s, and as well as the range limits
and for each joint (the value of has to be given in radians). The Denavit–
Hartenberg parameter file of  the robot is created after all link information is entered
by the user. This module is one of the centerpieces of the whole system. It has to
be selected first when using the kinematics modeler for the first time because it is
used to select or create the robot types that should be used in the ICARS project.
The nominal data for each robot is not project-specific and therefore can be used
in more than one project.

6.3.2. Symbolic Calculation-Based Kinematics Builder

With the information from the nominal kinematic parameters file, the module
calls the computer algebra system Mathematica (possibly on a remote computer)
and creates a file with the kinematic equations of the robot.
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Figure 6.8. Example of  a neural network synthesizer output.

6.3.3. Neural Network Synthesizer for Robot Kinematics

The module calls the computer algebra system Mathematica once more and
transforms the kinematic equations of  the robot into the form of a sinusoidal neural
network. It produces the kinematic equations in a sum-of-sines format. The values
of  the all network weights are calculated. The resulting network is then displayed
on the screen (see Figure 6.8).

The number of neurons in the network is displayed in the title bar of the
window.

6.3.4. Measurement Data Interface

The measurement data interface is used to generate data on the pattern for the
robot kinematics trainer. The user is then queried for the number of cycles. This
value is needed in the training (calibration) module, an item in the kinematics
modeler. The number of  cycles determines how many times the kinematics neural
network has to go through the list of  measurement points in the calibration process.
This module is used to calculate the differences between symbolic calculation
based nominal kinematic parameters and the slightly different “real” values of
these parameters obtained from a measurement system.

6.3.5. Training Module for Direct Kinematics

The calibration (training) process is started by selecting a “real” data file of
robot kinematics. The symbolic calculation based nominal kinematics of  the robot
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is now trained (using a backpropagation method and delta rule) based on the
information specified in the measurement data interface module.

Depending on the parameter values of learning items and learning cycles
(specified in the measurement data interface module), the calibration process can
take several minutes.

6.3.6. Calibrated Jacobian Neural Network Builder

After the calibration process, the calibrated neural network is transformed back
to a symbolic expression format by the Mathematica function builder. The sym-
bolic representation of  the calibrated kinematics is then processed by Mathematica
to calculate the Jacobian matrix.

This matrix is also transformed into a neural network format, resulting in a
parallel neural implementation of  the calibrated Jacobian matrix.

6.3.7. Inverse Kinematics Builder

The inverse kinematics builder is a stand alone module and can also be called
from outside the HyRob system.

The neural-implemented robot direct kinematics and its Jacobian matrix can
be loaded from the ICARS project database. After selecting a robot, a wireframe
model of the robot is displayed on the screen. Next, the module calls the neural
network synthesizer to create a coupled neural network for the inverse kinematics,
which consists of neural networks for the direct kinematics and the Jacobian
calculation together with a numerical part for calculation of  the parameters by the
gradient method.

After selecting the gradient method parameter values, the simulation can be
run. The robot is animated and shown proceeding along the path specified by the
sequence of route points in Cartesian space.

The modules of the HyRob system for synthesizing the neural implementation
of the robot dynamics have similar properties.

6.3.8. Remark

The ICARS and HyRob systems have been developed in cooperation between
the University of  Linz (Austria) and the University of  Wroclaw (Poland) and are
available at the Research Institute for Symbolic Computation, University of  Linz,
Austria.
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CHAPTER 7

The Execution Level of Robotic Agent
Action

Process planning based on the description of task operations and their precedence
relation creates a fundamental plan of cell action by decomposing the task into
an ordered sequence of technological operations. In the next phase a real-time
event-based controller of the computer-assisted robotic cell (CARC) is synthesized
which generates via simulation a sequence of future events of a virtual cell in a
given time window. These events are compared with the current states of the real
cell and are used to predict motion commands for the robots and to monitor the
process flow. The simulation model is modified any time the states of the real cell
change and current real states are introduced into the model.

The simulation used to create a control system is event oriented and is based on
complex DEVS (discrete event system) concept introduced by B. Zeigler (Figure
7.1). Such a model has the following structure:

where

X is the set of external input events

S is the set of the sequential states

Y is the output value set

is the internal transition specification function

is the external transition specification function

is the output specification function

ta is the time advance function function

with the following constraints:

155
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Figure 7.1. Structure of DEVS and its control database.

a. The total state set of the system specified by Dev is

b. is a mapping from S to S:

c. is a function:

d. ta is a mapping from S to the nonnegative reals with infinity:

e. is a mapping from S to Y:

Further explanation of DEVS and its semantics is presented in (Zeigler, 1984;
Jacak and Rozenblit, 1992b; Jacak and Rozenblit, in press).

Workcell components such as NC-machine tools, robot conveyors, etc., are
modeled as elementary DEVS systems. Discrete changes of state of these systems
are of interest. We separate the description of the model from simulation data. A
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set of circumstances under which a model is experimented with is called a control
database (Zeigler, 1984).

The variants of the fundamental plan of actions obtained from the process
planner should be tested by a simulator and then controlled in a real workcell. For
the simulation, the system must have knowledge of how individual robot actions
are carried out in the process.

The most important parameters are the time it takes to complete an operation
o and the time the robot requires to service a workstation. The time depends
on the type of machine on which the operation o is being executed. It is fixed, but
can be changed by replacing the machine.

Similarly, the times of the PICKUP and PLACE operations are determined by
the type of part and the machine on which the part is processed.

The times of the robot’s interoperational moves (transfers) depend on
the geometry of the workscene and the cost function of the robot’s motion. This
function determines the dynamics of motion along the geometric tracks and the
duration of the moves. These data must be accessible in order to simulate the
entire system and are the database for control.

Based on the fundamental plan of actions and its production route p, the posi-
tion table (Frames_Table) for all motions of each robot is created. The production
route and Frames_Table determine the geometric parameters of the robot’s move-
ments. The path planner computes the shortest collision-free geometric track of
motion. Then the optimal speed and acceleration of moves along the precomputed
track are calculated. This task is solved by the trajectory planner. The trajectory
planner receives the geometric tracks as input and determines the time history
of position, velocity, acceleration, and input torques, which are then input to the
trajectory tracker.

Hence we obtain the optimal trajectory and the times of the manipulator transfer
moves. The time trajectories of the motions are the basis for computing the times
of each fundamental action. In this way we create the knowledge base of the
discrete event-based simulator. The structure of the control database is shown in
Figure 7.1.

7.1. Event-Based Modeling and Control of Workstation

Each workstation is modeled by two coupled atomic discrete event
systems (DEVS) called the active and the passive models of device (Jacak and
Rozenblit, 1994; Jacak and Rozenblit, 1993)

where is the active model and is the passive model. The active atomic
DEVS performs the simulation process and the passive atomic DEVS represents
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the register of real states of the workstation as obtained from sensor signals, and
acts as a synchronizer between the real and simulated processes.

This complex model is a modified version of the events system proposed by
B. Zeigler and has the following structure.

7.1.1. The Active Model of a Workstation

We have

where

(d) is the set of external input virtual event types

(d) is the set of sequential virtual states

is the set of internal transition specification functions

is the external transition specification function

is the time advance function

with the following constraints:

a. The total virtual event set of the system specified by is

b. is the set of parametrized internal state-transition functions:

c. is the external state-transition function:

d. ta is a mapping from to the nonnegative reals with infinity:

We describe now each component of an active workstation model. Each
workstation can have a buffer. The capacity of this buffer is denoted by
C(d). If a workstation has no buffer, then C(d) = 1.

Let NC(d) (NC program register) denote the set of operations performed on
the workstation d, i.e.,
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7.1.1.1. The virtual state set of a workstation. The state set of d is defined by

where denotes the state set of the machine and denotes the state set of
its buffer. The state set is defined as

where

signifies that the machine is free

and (busy, a) signifies that the machine is
busy processing the a-operation

and (done, a) signifies that the machine
has completed the a-operation and is not free

The state set of workstation’s buffer is specified as

Let and then

ith position of the buffer is free
ith position of the buffer is reserved for a part being
currently processed
ith position of the buffer is occupied by a part before
operation a
ith position of the buffer is occupied by a part after
operation a

The state of the workstation’s buffer is described by a vector whose coordinates
specify the current state of each position in the buffer. We assume that the ith
position denotes the location at which a part is placed in the buffer.

7.1.1.2. Event-based workstation controller. Given the virtual state set, we
now define the internal state-transition functions These functions represent
the model of the workstation controller. The internal state transition function
describes the control mechanism which determines the work of the device. Each
of these functions is parametrized by the external parameter u which is loaded into
the workstation from a higher level of control, namely from the workcell organizer.
The parameter u U is the operation’s choice function, and represents the priority
strategy of the workstation.

The strategy u can be interpreted as a function which determines the current
realization priority for each operation from Task.
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For the given operation o such a priority is represented by the pair
where is the membership function of the fuzzy representation of the
priority (see Chapter 9). This function is calculated by the fuzzy decision system
based organization level.

Then the operation’s choice function is given by

where

such that

The strategy u defines the priority rule under which the operations will be
chosen to be processed from the device’s buffer.

Let and let

be the set of operations awaiting processing.
Then the internal transition function

is specified as follows:

Fact 7.1.1. It is clear that if = (done, a) = (busy, a), then
because the workstation cannot process two parts simultaneously.

The internal function is used to perform the control process of the workstation.
7.1.1.3. Modeling of workstation–robotic agent interaction. The interaction

between robot and workstation is modeled by the external state transition function.
The communication between the workstation and robot is realized by exchanging
external events. The robot generates events, called the set of the workstation’s
external events, which act on the workstation and change its state.
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The set of external virtual events for the workstation model is defined as
follows:

where

ON ith position signifies that before the a
operation a part is placed on the ith position of the (d-workstation’s buffer

AT ith position signifies that after a operation a
part is removed from the ith position of the d-workstation’s buffer

The robot’s influence on the workstation is realized by the exchange of events and
is modeled by the external transition function. The external transition function

for each workstation d is defined in the following way. Let
then

7.1.1.4. Time advance model. The time advance function for  determines
the time needed to process a part on the dth workstation. It is defined in the
following manner. Let then

denotes the tooling/assembly time of operation a for the workstation d.
The terms and denote the loading and setup, and unloading
times for d, respectively.

Let at time the workstation be in the active state s, which began at time
moment and such that This means that during the interval of time

the state s is active. After this time the workstation transfers its state
from s into which will be active in the next time interval
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Figure 7.2. Active DEVS model of a workstation.

Fact 7.1.2. It is easy to observe that external events are not able to change the
advance time for each active state.

Let x = (e, t) be an external event different from which occurs at time
The workstation changes its state to state and

the advance time of the new state is equal to

The above is a complete active model of a cell’s workstation.

Example 7.1.1. An example of a discrete event model of a workcell which has
only one place in its buffer is shown in Figure 7.2.
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7.1.2. The Passive Model of a Workstation

The passive model of a workstation is represented by a finite-state machine
(FSM):

where

is the set of the external input real events

is the set of the sequential real states

is the external real-state transition specification function

is the updating function

with the following constraints:

a. is the real-state transition function (one-step transition function):

b. is the updating function (output function):

where UP = {0,1} and 0 denotes that the updating process is stopped and
1 denotes that updating should be performed.

The interaction between external sensors and the workstation is modeled by
the state transition function The external sensor system generates real events
which can be used to synchronize the simulated technological process with a real
technological process.

7.1.2.1. Registration process. The set of real events for the workstation model
is defined as follows:

where

signifies that before the a operation a part is placed on the ith
position of the d-workstation’s buffer

signifies that after the a operation a part is removed from the ith
position of the d-workstation’s buffer



164 Chapter 7

signifies that before the a operation a part is loaded into the
machine and processing is begun

signifies that the machine has completed the a operation, the
machine is unloaded, and a part is placed on the ith position of the
d-workstation’s buffer

We assume that the state set of the passive model is the same as the state
set of the active model, i.e.,

Then the state transition function for the workstation d can be defined as
follows: Let then

Such a state transition function represents the real-state registration mechanism of
the workstation.

7.1.2.2. Synchronization. The updating signal set is UP = {0,1}, where 0
denotes that the updating process is stopped and 1 denotes that updating should be
performed. The output function is a function which forces the real state in the
active model of workstation when updating is needed, i.e.,

The above is a complete model of a cell’s workstation.

7.2. Discrete Event-Based Model of Production Store

We can define a model of a production store in a similar manner. The state set
of a store m is specified as a vector of states of each store position, i.e.,

where if then

ith position of store is free
ith position of store is occupied by a part after operation a

The set of external events for m is similar to the set of external events of a
workstation.

The internal transition is an identity function which can be omitted. The
external transition function for each store m can be defined in the same manner
as the function The time advance function for is equal to
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7.3. Event-Based Model and Control of a Robotic Agent

Each robot r R is modeled by two coupled systems, the active and passive
models of the device,

where is the active discrete event model and is the passive model.
The active atomic DEVS performs the simulation process and the passive model
represents the register of real states of the robot and acts as a synchronizer between
the real and simulated processes.

7.3.1. Event-Based Model of a Robotic Agent

To create an active model of a robot, we use a discrete event atomic system
which generates external events for other devices from the set D. Such an event
generator receives as external input events the outputs of the cell state recognizer
(acceptor) and the cell controller (selector) (see next section) in order to determine
its own state.

The model of a robot r is defined by the following DEVS:

The DEVS model of each robot contains the state set

where:

is the set of possible goals of the robot’s
actions, i.e., (a, (w,j), (v,i)) GOAL denotes the initial (v, i) and final
(w, j) effector frames for the robot motion that transfers the part before
operation a, and (w, j), (v, i) have the same meaning for POSE. We assume
that the empty set  GOAL.

is the set of effector frame numbers of the robot’s
effector end in the base Cartesian space (effector frame = position and
orientation), and (v, i) POSE denotes the effector frame which
determines the grasp on the part at the ith position of the v-workstation’s
buffer.

HS is the set of states of the effector, i.e., HS = {Empty, Holding}.
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The set of external events for the model of the robot is defined as follows:

where:

part (a, 0) FROM (v, i) TO (w, j)

signifies that a part before the a operation should be picked from the i position on
the v-device’s buffer and placed at the j position of the w-device’s buffer; and

Given the state and external event set, we now define the transition functions.
Let Then the internal transition function

is specified as follows:

The external transition function for each robot r is defined as follows. Let
then

for all other states

The internal and external state transition functions are shown in Figure 7.3. The
time advance functions determine the following times for the Empty and Holding
states:
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Figure 7.3. State transition and generated events for the model of the robot.

a. The time of motion to position

b. The time of the pickup operation:

c. The motion time from position i to position j:

d. The time of the placement operation at the wth workstation:

The last component of is the set of functions which generate external
events for workstations or stores and the cell controller:

where is the set of devices ser-
viced by robot r in process

The function generates external events for the model of the worksta-
tion d. More specifically, this function is defined as follows: For s(r) =
((a, (w, j), (v, i)), (v, i), Holding)

and for s(r) =  ((a, (w, j), (v, i)), (w, j), Empty)



168 Chapter 7

and

The model of the robot also generates external events (i.e., PICKUP and
PLACE) for machines which trigger their corresponding simulators.

7.3.2. Passive State Register of the Robot Model

The passive model of a robot represents the measurement system of the robot’s
control. Each robot has own internal sensor system which can measure at every
time point the real state of the robot,

where:

Int_Sens(r) is the set of the internal sensor signals from the robot control
system

is the set of the sequential real states

is the input function,

is the updating function

with the following constraints:

a. is the input function:

b. is the updating function (output function):

where UP = {0,1}, where 0 denotes that the updating process is stopped
and 1 denotes that updating should be performed.

The interaction between internal sensors and the robot model is described by
the input function The internal sensor system generates signals which can be
used to synchronize the simulated technological process with the real technological
process.

We assume that the state set of the passive model is the same as the state
set of the active model, i.e., Then the input function for the
robot r can be defined as follows:
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where is the joint configuration of robot r.
The output function forces the real state in the active model of the robot

when updating is needed, i.e.,

The virtual workstations and robots (DEVS models) together with the real
devices and robots represent the execution level of the CARC control system. The
structure of the CARC execution level is illustrated in Figure 7.4.

7.4. Neural and Fuzzy Computation-Based Intelligent
Robotic Agents

The executionof the transfer operations is realized by an event-based intelligent
controller for each robot. The robot controller receives as input the output signals
from the cell controller in order to determine its motion task. Additionally, the
robot controller obtains the preplanned collision-free path realizing the transfer
task from the coordination level.

The principal task of the intelligent local controller of a robotic agent is the
execution of the given path of movement so that the robot action does not result in
a collision with currently active dynamic objects (such as other robotic agents) in
the cell. While the robot is tracking a preplanned path, some extraneous dynamic
objects may enter the work space. These dynamic obstacles are detected by sensors
mounted on the links of the manipulator. The sensor readings are analyzed to check
for collision (see Figure 7.5). The problem of finding the path of a robot equipped
with sensors has been dealt with by Lumelsky and Sun (1989). In this approach
the manipulator moves along a specified path and traces the outer boundary of the
obstacle when one of the links touches an obstacle. In our case the objective of
sensory manipulation is preventive collision avoidance.

Recall that we prepared collision-free trajectories of motion for individual
robotic agents during the off-line planning phase and the robot controller has
local information about static obstacles in the robot’s environment. For preventive
collision avoidance we install ultrasonic sensors and a sensitive skin on each
manipulator link and then use a neural network to estimate the proximity of objects
to the link in question. The resulting distances are compared with the local virtual
model of the robot’s environment to recognize the new obstacles. The perception
process realized by the neural network can be defined as the process of deriving
specific items of information about meaningful structures in the environment from
the sensor information.

The structure of an intelligent reactive controller is presented in Figure 7.6.
The system consists of four main parts:
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Figure 7.4. Structure of the execution level of a robotic workcell.
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Figure 7.5. Intelligent robotic agent.

The decision-making system

The intelligent reactive one-step geometric path planner based on a
multisensor local world model

The intelligent one-step trajectory planner with neural-network based
dynamics of the robot

The intelligent reactive dynamic controller

The off-line trajectory planner is used every time a new goal state of the
manipulator is set to the motion controller input. Then this planner computes the
trajectory that allows one to achieve the manipulator goal state. It is clear that this
trajectory does not ensure dynamical obstacle avoidance since we have no a priori
information about these objects.

Figure 7.6. Intelligent controller of a robotic agent.
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In the case when objects disturbing the off-line trajectory execution are reported
via system sensors, the intelligent reactive one-step path planner is used to find new
manipulator path segments. At the same time the intelligent one-step trajectory
planner is used to calculate a time-trajectory segment corresponding to each path
segment found by the path planner. To drive the robot manipulator along desired
trajectories, the intelligent reactive dynamic controller is applied.

The decision-making system decides what the current mode of the motion
controller work should be. Generally there are two possible main kinds of system
work modes. The first is Tracing, in which the manipulator traces the trajec-
tory preplanned by the off-line trajectory planner. In this kind of work mode the
intelligent reactive controller is the only module used on-line to control the ma-
nipulator. In the second kind of work mode, the Detour mode, more system units
are involved. When the system is switched to this mode some on-line trajectory
planning is necessary.

7.4.1. Intelligent and Reactive Behavior of a Robotic
Agent in the Presence of Uncertainties

The intelligent reactive controller allows one to drive a robot arm in the presence
of environmental uncertainties. Based on signals coming from external sensors as
well as its internal signals, the system produces the robot’s input torques which
make the robot perform a prescribed task.

7.4.1.1. Execution steps of the intelligent reactive controller of motion. When
the intelligent reactive controller obtains the goal state from a higher layer, the off-
line trajectory planner (see Chapter 5) uses the knowledge base to plan a trajectory
connecting the current state of the robot with the goal state. When the trajectory is
preplanned, the decision-making system calls the neural-based intelligent reactive
controller to move the robot along this trajectory. The situation changes when
the decision system reports (via the sensor system) an object in the scene which
disturbs the trajectory execution. Then it calculates the desired direction of robot
movement prohibiting the collision and passes it to the input of the intelligent
reactive one-step path planner.

The path planner calculates a path segment lying along the desired direction of
movement and passes it to the intelligent one-step trajectory planner, which finds
the trajectory segment allowing the realization of the path segment just planned.
Then the decision making system forces the controller to perform the trajectory
planned by the one-step trajectory planner. The data flow corresponding to the
above computations is shown in Figure 7.7.

We point out again that the most time consuming calculations in this case, i.e.,
the computation of the inverse kinematics, can be performed with the use of neural
implementation.
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Figure 7.7. Data flow in the on-line trajectory planning stage.

The one-step path planner, in each step of its work, calculates only one point
from the path segment along the given direction, which is used as input to the
one-step trajectory planner. This planner calculates the trajectory segment leading
to this point according to an established algorithm. During these steps the one-step
planner and the one-step trajectory planner check whether the point is reachable
without collision and without violating limiting constraints on the joint.

The on-line calculation steps described so far form the first cyclic loop in
the system. This loop can be called the on-line trajectory planning loop since
it finds the consecutive trajectory segments. The second loop in the system
appears in the path execution stage. Figure 7.8 depicts the data flow in this stage.
Here, when the one-step path planner sent the new desired position to the one-
step trajectory planner, this generates the sequence of the new states in the joint
space. Simultaneously the robot controller is called to drive the robot manipulator
according to the desired state. This state continues until the desired position is
achieved.

When the danger of collision disappears, the decision-making system forces
the robot to return to the preplanned trajectory and then to execute the rest of it.

Below we describe the calculations performed by the motion controller com-
ponents during one step of the system process.

7.4.1.2. Path segment planning step. When the motion controller is in one of
the on-line modes, the intelligent reactive one-step path planner is used to find
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Figure 7.8. Data flow in the on-line trajectory execution stage.

segments of the path along which the manipulator should move. This task relies
every time on finding one path point to which the robot manipulator should move.
To this aim, the planner performs the following calculations in every iteration step
of its work:

It sets an arbitrary point in the workspace lying the direction of the desired
movement.

It uses the neural implementation of the inverse kinematics based on
generalized sensor readings to calculate a collision-free position of the
manipulator in the joint space.

Workspace point selection. The task to be performed now is to set an arbitrary
point in the workspace lying in the direction of the desired movement. The
manipulator end effector should travel to this point in the current step of activity.
This point is generated by the control unit of the module. The control unit does
this by translating the current manipulator end-effector position in the workspace
by a unit vector in the desired movement direction multiplied by a scaling factor.

Joint-space position calculation. The point set by the control unit, the gener-
alized sensor readings, and the current manipulator position in the joint space are
used as inputs to the inverse kinematics module. This module finds the manip-
ulator position in the joint space at which the manipulator end effector achieves
the given point. The calculations are done iteratively. They start from the current
manipulator position (which is treated as a temporary position) and follow by
updating the temporary position in each step. The updating terms are calculated
as a scaled gradient of the performance function to be minimized.
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In each iteration of the algorithm for the inverse kinematics calculation the
forward kinematics, the Jacobian matrix, and the terms responsible for the admis-
sibility of the calculated positions (only collision-tree positions within the joint
ranges) are calculated.

7.4.1.3. Trajectory-segment planning step. Now the task is to find functions
of time that describe changes of the joint’s acceleration, velocity, and position such
that they start from the manipulator’s current state and go to the desired position
without violating the acceleration and velocity constraints. To do this, the planner
performs the following calculations in every iteration step of its work:

It uses the neural network dynamic model with zero payload to calculate
limits on joint velocities and accelerations.

It computes the period of time in which the current move must be
performed.

It computes the current trajectory segment.

Computation of limits on the joint motions. To calculate the maximal velocities
and maximal and minimal accelerations which cannot be violated along the path
segment considered in the present iteration, we assume that the move to the
next point is to be performed along a straight line in the joint space. Since the
present task is only to estimate the limit values, and since for typical situations
consecutive points on the joint path lie close to one another, the limits obtained
with this assumption are very similar to the real ones. With this assumption we
parametrize the joint trajectory by an unknown, strictly monotonic function s(t)
where t is time, substitute this trajectory into the dynamic equations of the robot, set
the components of input torques to their limiting values, and solve the equations,
obtaining the limiting values of and This leads in a straightforward way to the
limiting values of the joint velocities and accelerations in the neighborhood ofthe
current path segment.

Computation of duration of movement. Having computed limits on joint ve-
locities and accelerations, we are in a position to find the time period within which
the manipulator is to perform the desired movement. First, based on the value of
the desired end-effector velocity, we compute the lower bound of the movement
realization time td min. Then for each joint we check if it is possible within time
td min to realize the movement from the initial state to the desired position without
violating the velocity and acceleration limits. If we can, the time td min is the time
we are looking for, if not, then for the joint for which the condition was not satisfied
we compute a new value of the time td such that the move is now realizable and
check whether it is valid for the rest of the joints. We repeat the procedure until it
is possible to perform the movement of each joint within the calculated time.
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Trajectory segment computation. The previous steps of the calculation yield
the final time within which the movement must be realized, and joint velocity
and acceleration limits in the form

Now we are in a position to calculate the current trajectory segment. The parame-
ters are established by a fuzzy logic-based method. The calculations are performed
separately for each manipulator joint. The calculated trajectory is in a form ready
to be executed by the controller.

7.4.1.4. Trajectory execution step. Both kinds of trajectories, one obtained
from the off-line trajectory planner and one from the intelligent one-step trajectory
planner are executed by the intelligent reactive dynamic controller. The main com-
putations performed by the dynamic controller are calculation of the sequence of
manipulator input torques which will drive the manipulator along the desired tra-
jectories. The most time-consuming calculations, i.e., the computation of the robot
inverse dynamics, are performed in this case by neural networks. Additionally,
taking advantage of the possibility of neural network learning, some adaptation of
the controller is performed (Jacak et al., 1995e; Jacak et al., 1995g). This adaption
allows the control system to react to changes of the robot dynamic parameters (for
example, different payloads in the gripper).

7.4.2. Multisensor Image Processing-Based
World-Modeling and Decision-Making System

Instead of assuming only a sensitive skin on each manipulator link which
responds only when the obstacle actually touches the manipulator, we install
additional r rings of ultrasonic range finders on the links and use the neural
network to estimate the proximity of obstacles to the link in question.

The sensing process is defined as that by which measurements of sensor read-
ings are obtained. The perception process realized by the neural network is defined
as the process of deriving from the sense data specific items of information about
meaningful structures in the environment.

The inputs of the neural network are the signals from the jth ultrasonic
sensors of rth rings mounted on the manipulator links. The outputs of the neural
network are vectors representing the minimal distances to objects
in the robot’s environment for eachjoint of the manipulator.

Thesensingprocesscanbe interpretedasamappingof thestateof theultrasonic
sensors and the touch sensors into a set of multisensor images of much lower
dimension. The neural net performing the sensing process is trained based on a



The Execution Level of Robotic Agent Action 177

Figure 7.9. Sensor system.

geometrical model of the workcell during the off-line planning ofmovements for
the individual robots. The sensor system is shown in Figure 7.9.

7.4.2.1. Physical principles of sonar ranging. Most conventional ranging sys-
tems employ a single acoustic transducer that acts as both a transmitter and receiver.
After the transmitted pulse encounters an object, an echo may be detected by the
same transducer acting as a receiver. The waveform of a typical echo observed as
the output of the detection circuit has an oscillatory characteristic with decreas-
ing amplitude (see Figure 7.10). A threshold level, denoted by is included to
suppress erroneous readings generated by electronic or acoustic noise.

A range measurement is obtained from the round-trip time of flight by

Figure 7.10. Typical echo waveform.
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where c is the speed of sound in air and is the time when the echo waveform first
exceeds the threshold. The minimum range is determined by the time required
for the transducer to switch from being a transmitter to a receiver, and allowing
for the large transmitted voltage transients to decay below the threshold value.
The maximum range is usually determined by the range in which the amplitude
of the echo from a strong reflector falls below the threshold value. The maximal
amplitude A of the waveform plays a crucial role in the detection process. In some
cases it can be lower than the threshold which can lead to detection errors. It
was observed (Kuc and Viard, 1991) that the amplitude A can be described as a
function of bearing (the angle with respect to the transducer orientation) and range.
Other factors that influence the sensing process include, for example, the resonant
frequency of the transducer, beam spreading and absorption, and reflection.

7.4.2.2. Sensor data combination. When a manipulator is equipped with many
sensors and these sensors are mounted on different manipulator links the problem
arises of how to combine the sensor readings to obtain useful information (Pau,
1988; Aggarwal and Wang, 1991). “Useful information” includes, for example, the
distance from the nearest obstacle to the manipulator body, or “the safe” direction
of manipulator movements. or the nature of a visible obstacle (dynamic or static).

Here, we combine the sensor readings in such a way that a manipulator can
perform a given task. To this aim we apply an inverse kinematics algorithm that
uses sensor combination methods as described below.

Projection method. The inverse kinematics algorithm (see Section 5.1) re-
quires two inputs from the sensor data combination algorithm: a vector from a
particular manipulator joint to the nearest obstacle (or equivalently, in the opposite
direction, an escape vector), and the distance to it. To find such data we make the
following assumptions:

The manipulator model is a skeleton model

Sensors are mounted directly onto manipulator links

The positions and orientations of the sensing vectors are known

The output from the ith sensor is equal to if  there is no obstacle
within the sensing range and is equal to the distance to the
visible obstacle otherwise

Combination is performed only for sensors belonging to the same link

Each link has its start position b (joint position) and the position of the link
end is e

With these assumptions, let us consider the case of a manipulator link and the
set of sensors mounted on it. Such a link (see Figure 7.11) can be interpreted as
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Figure 7.11. Manipulator link with sensors.

part of a line with sensors represented by vectors (we use a 2D representation
for clearer explanation of the method).

The data combination algorithm combines two operations, namely vector pro-
jection and minimum finding. It can be expressed in the form

where is the ith sensor output, is the unit vector int the sensing direction (in
the global coordinate frame), is the angle between and the link, l is the link
length, and the position of the ith sensor on the link. Figure 7.12 shows a simple
example of sensor data combination is shown. The resulting vector w lies on the
projection line k which is perpendicular to the link.

Linear approximation method. In the previous subsection we made some
assumptions about the manipulator and sensor models. We make these assumptions
here as well. Now we also assume that when the sensor j “sees” an obstacle, this
obstacle is identified with a point In the situation when no obstacle is visible,

is identical with the mounting point of sensor j (which, in fact, lies on the link).
Knowing the link’s position, the vector and the distance we are able to

calculate the position of this point in the global coordinate frame.
Let the point be a “brother” of the point created in the following way (see

Figure 7.13):

if the obstacle is visible, and

otherwise. is the unit vector perpendicular to the link, created from the vector
In the next step, using well-known linear approximation methods (based on
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Figure 7.12. Example of sensor data combination based on the projection method.

Figure 7.13. Example of sensor data combination based on the linear approximation method.
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square error minimization), we can find a line approximating the set of points

Now the vector representing the distance of the link to the nearest obstacle
may be calculated from the normal projection of the link end e onto the line
according to the following equation (see Figure 7.13)

Application of these methods to each manipulator link produces a set of vectors
D. Each particular vector from this set can be interpreted as the distance to the
obstacle and the direction to it for the appropriate manipulator joint. So it can be
used in the decision system and one-step path-planning module.

Recall that in the first phase of workcell control development, i.e., during the
off-line motion planning, a local model of the environment of the movement path is
prepared. In general, the preplanned geometric and dynamic trajectory of motion
of a robot r together with a local model of the world can be expressed as

where is the parametrized track created by the path planner of the mo-
tion of robot r in the joint space, is the time parameterization of motion
along the track, as calculated by the off-line trajectory planner, and

is the sensor-image compatible local model of the path
environment. represents the minimal distance vector from the ith joint to a
static obstacle at point s of the trajectory.

7.4.2.3. Decision-making system. During the motion the local model is com-
pared with the output of a neural network-based sensor-image processor and the
following external events for a DEVS-based decision making system are created:

{Path_free, New_obstacle, Danger_increasing, Danger_ decreasing}

The decision-making system is represented by an event-oriented DEVS whose
transition function is presented in Figure 7.14.

Tracking denotes the state when the robot manipulator is tracking its currently
assigned individual collision-free path. Pause is the state when the manipulator is
stationary. Detour denotes the state when the manipulator is trying to circumvent
an obstacle. Advance denotes the state when the obstacle has been circumvented
and the manipulator is approaching its immediate goal. Abandon denotes the
abandonment of the assigned path and Deadlock is the state when the environment
and the manipulator seem to be static.

If the dynamic obstacle comes dangerously near to the link, the manipulator is
stopped or is reconfigured to avoid touching the obstacle. Under extreme cases, it
might happen that the obstacle cannot be avoided if the end effector is to pursue its
preplanned path. The manipulator must now be moved to give way to the obstacle.
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Figure 7.14. Event-based decision system for motion planning.

Then the manipulator is made to go through a sequence of actions to bring back
the end effector to its original path. To realize such a task the local controller of
the robot uses the above event-based decisions as the strategy to change between
manipulator motion along the preplanned trajectory and neural calculation-based
on-line planning of the motion to adopt at each step.

In extreme cases the robot must abandon the preplanned trajectory and find
the next collision-free position. This position should be as near as possible to the
preplanned path.

7.4.3. Neural Computation-Based On-Line Geometrical
Path Planner in the Presence of Unknown Objects
in the Environment

The one-step path planning and reactive control approach is based on the
computation of robot kinematics and dynamics, and is computationally expensive.
Therefore it is attractive to develop a neural network which automatically generates
a safe configuration of the robot. Neural networks can be used to reduce the
computational complexity of the model of robot kinematics. Additionally, neural
networks can give robots the ability to learn and self-calibrate. Some neural
network models used to attack this problem include the backpropagation network
(Guo and Cherkassky, 1989; Martinez and Schulten, 1990), the Hopfield network
(Kung and Hwang, 1989; Wu et al., 1993), the context-sensitive network (Lee
and Bekey, 1991; Kawato et al., 1987; Yeung and Bekey, 1989), and the two-
layer counterpropagation network (Hecht-Nielsen, 1987). Experiments show that
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the forward kinematics models based on these neural network types have many
disadvantages. For all of them the training time is too long for on-line relearning
and these approaches can only provide approximations of the robot positions in
the base frame. For this reason we use a multilayer feedforward neural network
with hidden units having sinusoidal activation functions (Lee and Bekey, 1991;
Lee and Kil, 1989; Lee and Kil, 1990) (see Chapter 5). To reduce the training time
we apply hybrid techniques which automatically create the full network topology
and values of the neural weights based on symbolic computation of components
of the forward kinematics model.

Each component of the direct kinematics can be represented in the form

where defines the (i, m) output of the neural network representing the sth
Cartesian variable of the ith joint position, q is the joint state vector, and

represents the weight vector of the jth sinusoidal function.
Such a form, obtained from symbolic network generation, represents the input–

output function of a neural network with sinusoidal hidden units (see Chapter 5).
For the above reasons the model of manipulator kinematics must generate

a sequence of robot configurations which realizes the motion along the desired
effector displacement and avoids obstacles.

In Section 7.4.2 we described some methods for combining signals from sen-
sors mounted onto robot links. Using these methods we can obtain the generalized
distance and the vector from a particular robot joint to the nearest obstacle. We
are going to use this information now and combine it with the inverse kinematics
computation (methods for the inverse kinematics computation without obstacle
avoidance are described in Chapter 5).

The solution of the inverse kinematics problem can be obtained by attaching
a feedback network around a forward network to form a recurrent loop such that,
given a desired Cartesian location from the path of a feedforward network, the
feedback network iteratively generates joint angle correction terms to move the
output of the forward network toward the given location. To avoid obstacles, we
can add additional conditions combining the information from the local model
of the robot’s environment (the values of the neural network outputs with the
current position ofeach robot joint.

Let

denote the location-error between the current position of the effector end (in step
k) calculated by the forward kinematics and the desired next Cartesian location

(in step ) on the path.
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Figure 7.15. The ellipse function.

Obstacle avoidance can be achieved by introducing additional errors for each
joint, i.e., errors between virtual points and the joint positions

7.4.3.1. Virtual points. The virtual points are the positions of the ith link
that achieve collision avoidance and are given by

where is the vector to the nearest obstacle (the generalized output from sensors
mounted onto ith link), and is an ellipse
function parametrized by a, b (radials of the ellipse; see Figure 7.15).

Using formula (7.34), the virtual points are placed on the opposite side of
the joint with respect to the obstacle (see Figure 7.16). Note that the parameter
b can be interpreted as an emergence threshold. The terms i = 1,... ,n – 1,
are defined to avoid collision. But the points cannot be placed too far from
the corresponding joints because this would yield a discrepancy from the goals.
Therefore the parameters a and b have to be set carefully. The influence of a
virtual point on the robot skeleton is shown in Figure 7.17.

Figure 7.16. A virtual point.
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Figure 7.17. Virtual points.

7.4.3.2. Inverse kinematics with on-line obstacle avoidance. To solve the in-
verse kinematic problem in our particular case we transform it into an optimization
problem as follows:

For a given end-effector position find a joint configuration q* that
minimizes the performance criterion

and for i =1,...,n,

where: is a coefficient set, and is the
position error.

The above problem can be transformed into a problem without constraints
by introducing the penalty function to obtain the limits on the joints. To this
purpose we use additional errors for each degree of freedom, i.e.,

The penalty function is defined as (see Chapter 5)
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where and is a diagonal matrix and

Then the modified performance function is given by

By using the sigmoid function in the penalty function with large value of
we activate the error or only if respectively.

Method based on a Lyapunov function. Let the performance criterion be
such a function candidate. It is easy to see that is a locally positive definite
function and if

then is the solution of the inverse kinematic problem.
The modified function can be interpreted as the Lyapunov function of the

dynamics system. The time derivative of is given by

where the gradient of the function has the following form:

where is the Jacobian matrix of the kinematics
is the diagonal matrix with and is the

diagonal matrix of the first derivative of such that
From (7.40) we can formulate an update rule to determine in such a way

as to guarantee the convergence to a solution in the sense of Lyapunov. With the
choice

becomes nonpositive throughout the convergence process. Updating q with
iteratively the errors converge to 0, i.e., the inverse kinematics is calculated.

Note that the solution of the inverse kinematics problem presented above uses
only direct kinematics models, namely and Jacobians and both of these
components can be implemented as neural networks. But the update rule (7.42)
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cannot be implemented in a neural algorithm because it needs some additional
terms to assure convergence stability and to increase the convergence rate.

Substituting (7.42) into (7.40), we obtain the following differential equation:

with the solution

The exponential convergence dynamics can be modified for faster convergence
by modification of So, instead of (7.42), can be calculated as follows:

where α is a positive real constant. It can be seen that if q converges to
asymptotically. If 1/2 < < 1, q converges to within a finite time.

In practice, either (7.42) and (7.45) when implemented in discrete form needs
careful control of the integration steps or update intervals. Let us consider the
discrete version of (7.42),

with k representing the kth iteration. Then can be calculated from

where t(k) represents the kth update interval, and can be determined from
(7.42) or (7.45). The stability associated with the updates rules given by (7.46) is
dependent upon the proper selection of update intervals

Steepest descent method. Minimization of the performance criterion can
be done not only by using a Lyapunov function method, but also by applying a
numerical technique, namely the steepest descent method. The idea of this method
lies in the following algorithm.

Start at a point As many times as needed, move from point to the
point by minimizing along the line from qi in the direction of  the local
downhill

This algorithm seems to be very simple, but it has some disadvantages. There-
fore we propose to solve the inverse kinematics problem by applying the Polak–
Ribiere conjugate gradient method. For further information we refer the reader to
(William, 1990).
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Figure 7.18. Structure of the one-step path planner.

7.4.3.3. One-step path planning based on multisensor data combination. Sec-
tion 7.4 presented the system structure of the intelligent reactive motion controller.
The one-step path planner (OSPP) is the part responsible, for finding collision-free
positions for the manipulator. The OSPP starts its work when the decision system
switches the controller to the on-line mode. Such a situation occurs for the follow-
ing states of the decision system: Abandon, Detour, and Advance. Based on such
inputs as current position, sensor signals, and the desired direction of movement,
the OSPP produces consecutive collision-free positions which are input to the
one-step trajectory planner.

Structure of the one-step path planner. The structure of the one-step path
planner is shown in Figure 7.18. In this structure we can distinguish two parts:
the control unit module and the inverse kinematics module.

The control unit module is the master of the inverse kinematics module. It
provides the initial parameters of the minimization algorithms according to the
input signals, it starts the computations in the loop of the inverse kinematics
module, and it stops these computations when a solution is found. This module is
responsible for communication with the decision system so that when necessary, it
runs the inverse kinematics computations (on-line mode of controller) and informs
the decision system about the obtained solution. Lack of solutions (in the case of
collision, for example) leads to the state Deadlock of the decision system.

The inverse kinematics module contains parts for forward kinematics and Jaco-
bian computations implemented as neural networks. These parts are incorporated
in a closed-loop system to realize the minimization algorithm presented above.
The minimization algorithm finds the solution of the inverse kinematics problem
including obstacle avoidance. Because the computations performed in the loop
are initialized with the desired position of the manipulator end, this position is
calculated earlier by the control unit with desired direction of movement of the
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Figure 7.19. Structure of the controller ofa robot’s arm.

manipulator’s end. The other inputs (current position and sensor signals) are
taken into account in each step of the algorithm. The sensor signals are obtained
after sensor data combination, where the current position input reflects the real
manipulator configuration.

Connection with the one-step trajectory planner. The path point that is the
output from the OSPP module is nothing but the next manipulator configuration
in the joint space that allows the performance of the prescribed task with the
avoidance of obstacles. But the path point is not enough to drive the manipulator,
since it is a dynamic object. To this aim the time trajectory of the motion has to
be known. The task ofcomputing the trajectory of the motion is performed by the
one-step trajectory planner.

7.4.4. Neural Network and Fuzzy Logic-Based On-Line
Time-Trajectory Planner

The intelligent planning and control system drives a robot arm in the presence
of environmental uncertainties. Based on the signals coming from the external
sensors as well as its internal signals, the system inputs forces and torques to the
robot by which the robot performs a prescribed task.

As we have mentioned, the system consists of two main parts: the geometric
motion planner based on a multisensor local world-model builder and the reactive
dynamic motion planner and controller.

The structure of the dynamic motion planning and control system is shown
in Figure 7.19. When moving the manipulator from one point to another, the
geometric motion planner (see Section 7.1 for complete description) uses the local
world model to check whether the point is reachable without collision and without
violating the limiting constraints on the joint. When this is possible, the point is
passed to the reactive dynamic motion planner and controller.
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The reactive dynamic motion planner and controller consists of the following
blocks:

A neural network-based robot dynamics model, which allows the
computation of the inverse dynamics problem which is a necessary step in
robot control (see Section 5.2 and (Jacak et al., 1995g))

A one-step trajectory planner, which produces admissible trajectories
based on a sequence of points from the robot’s paths and exploits the
model of robot dynamics

A motion controller, which is a typical closed-loop computed torque
controller equipped with a neural-computed dynamic model tuned during
the control process

This section describes the details of the one-step trajectory planner. The first
three subsections consider the signal part of this module; then a fuzzy tuning
system is applied to obtain values of the one-step trajectory planner’s parameters.
The section finishes with examples of the implementation ofthe one-step trajectory
planner.

7.4.4.1. One-step trajectory planner. A time trajectory of the motion is needed
in order to control a robot arm along a given path. In the presented system this
task is performed by the one step trajectory planner. Because movements of the
arm are performed in an environment with uncertainties, only local information
concerning the path is available, which makes planning of the whole time trajectory
impossible.

Thus the part of the arm’s trajectory leading to the next point on the arm’s path
is planned in every iteration of the planner. It is assumed that the arm’s motion is to
be performed with piecewise constant acceleration in the internal space. Since it is
necessary to know the robot’s maximal velocities and accelerations for trajectory
planning and the only known constraints are put on the robot’s input torques and
forces, a model of the dynamics must be used to calculate the required limits. Here
the neural network dynamic model with zero payload is used [see Section 5.2 or
(Jacak et al., 1995g)].

Now the task is to find functions parametrized by time that describe changes
of the joints’ accelerations, velocities, and positions such that they start from the
manipulator’s current state and go to the desired position without violating the
constraints on the accelerations and velocities.

In every iteration of the one-step trajectory planner the following data are used
as the planner input:

maximal input torques and forces to the robot

desired end-effector velocity
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current manipulator position in Cartesian coordinates

current manipulator state in joint space

desired position in Cartesian as well as in joint coordinates

Using these data, the trajectory planner performs the following calculations in
every iteration:

Phase 1. Based on the robot’s maximal input torques and force values and the
current and desired manipulator states in joint space, it uses the
neural network dynamic model with zero payload to calculate the
limits on joint velocities and acceleration.

Phase 2. Based on the desired end-effector velocity, the current and desired
manipulator positions in Cartesian coordinates, and the limits on
joint velocities and accelerations, it computes the time period in
which the current movement must be performed.

Phase 3. Using the current and desired manipulator states in joint space, the
time in which the current movement must be performed and the
limits on joint velocities and accelerations, it computes the current
trajectory segment.

Each of these steps will be described below.
Computation of limits on the joints. To calculate the maximal velocities and

maximal and minimal accelerations which cannot be violated along the path seg-
ment considered in the present iteration, we assume that the movement is to be
performed along a straight line in joint space. Since the present task is only to
estimate the limiting values, and since for typical situations consecutive points on
the joint path lie close to one another, the limits obtained with this assumption are
very similar to the real ones. This assumption allows us to write

where is the current manipulator configuration in joint space is the
desired manipulator configuration in joint space (at and s(t) is an unknown,
strictly monotonic function of time t such that

With (7.47) the joint velocities and accelerations along the path are given as
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Substituting (7.47) and (7.48) into the robot dynamic model given as

where M is the robot’s inertia matrix, N is the robot’s array of centrifugal and
Coriolis terms, G is the robot’s vector of gravity terms, and F is the vector of the
robot’s input torques and forces, we obtain

By choosing and setting the components of F to their limiting values,
we can easily compute the limiting values of and This, together with the
dependences (7.48), leads to the limiting values of joint velocities and accelerations
in the neighborhood of and As mentioned before, a neural network dynamic
model with zero payload is used as the model of the robot dynamics.

Computation of duration of movement. Having computed the limits on joint
velocities and accelerations, we are in a position to find the time period within
which the manipulator will be able to perform the desired movement. First we
compute the lower bound of the movement realization time with the use of
the desired end-effector velocity as

where and are the initial and desired Cartesian positions, respectively, and
denotes the Euclidean norm.
Then for each joint we check if it is possible within time to realize the

movement from to without violating the velocity and acceleration limits.

If yes, then the time is the time we are looking for.

If not, then for the joint for which the condition was not satisfied we
compute a new value of the time such that the move is now realizable
and check if it is valid for the rest of the joints. We repeat the procedure
until it is possible to perform the movement of each joint within the
calculated time.

Trajectory segment planning. Because for every manipulator joint the mo-
tion planning is performed in the same way, from now on we will continue the
description for one joint only.

From the previous steps of the calculation we obtained the final time within
which the movement must be realized, and joint velocity and acceleration limits
in the form
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With the assumption that we move with piecewise constant acceleration in the
internal space and the conclusion that each move can be realized with no more
than two switchovers, the expression for joint acceleration is

where is the sequence of joint accelerations, and is the time of the
switch from to

For (7.53), the velocity can be computed as

where is the initial joint velocity.
Continuing with the integration we obtain the expression for the path increment

Since there are typically infinitely many possible trajectories satisfying the
admissibility conditions, an optimization criterion is needed to select only one
trajectory. Two criteria are proposed:

the minimization of jerks

the minimization of overshoots

THE MINIMIZATION OF JERKS: To describe the first criterion, we have to find
an expressions for the jerks. After computing the time derivative of acceleration
(7.53) we obtain

The absolute value of is simply expressed by

From (7.57) it follows immediately that the jerk minimization criterion can be
written as
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THE MINIMIZATION OF OVERSHOOTS: To state the overshoot minimization crite-
rion we need to introduce a formula describing a linear path, since an overshoot
is defined as the difference between the real and linear paths in joint space. The
linear path can be expressed as

Now we can formulate the overshoots minimization criterion in two different ways:

Without going into details, we can state that both criteria have the form

Now we formulate the optimization problem as follows:

Find the accelerations and the switch moment such that

with

The joint interval denotes the desired path increment (obtained
from the one-step path planner) and is the maximal allowed difference from

One can see that this problem is a typical polyoptimization problem. It can be
solved by transforming it into a monooptimization problem in the following way.
First we normalize both criteria according to the formula

Next we combine the criteria to get a new criterion in the form
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Figure 7.20. The primary fuzzy sets.

Because this method takes some parameters (i.e., and ) as inputs that have to be
set beforehand according to some criterion, we use a fuzzy logic-based self-tuning
method to establish their values. The principles of this method will be sketched in
the next subsection.

7.4.4.2. Fuzzy tuning. We apply a fuzzy rules-based decision system (see
(McDermott, 1982; Efstathiou, 1987; Zadeh, 1973) for more details) to calculate
the values of  the one-step trajectory planner parameters. As input to the system we
use two signals coming from the on-line path planner, namely the current minimal
distance d between the robot body and obstacles in the scene, and the distance
to the last point on the path.

Fuzzyfication. These input values do not form a fuzzy set, but are crisp values.
Therefore they first have to be fuzzyfied. In general, linguistic variables will be
associated with a term set, with each term in the term set defined on the same
universe of discourse. A fuzzyfication or fuzzy partition determines the number
of primary fuzzy sets.

The possible primary fuzzy sets to describe these distances are, for example,
small (S), medium (M), large (L). For each term S, M, and L a trapezoid-shaped
membership function is used to cover the whole domain (universe) (see Figure
7.20). In principle, any shape is possible, for example, a bell-shaped function,
but the simple form has many advantages: it is easy to represent and it lowers the
computational complexity of the system. Because the universe is nonnormalized,
the term could be asymmetrical and unevenly distributed in the domain. The
union of the primary fuzzy set satisfies the epsilon-completeness property. The
membership function of a primary fuzzy set depends on a vector of parameters,
which determine its shape.

The same method can be used to define the terms and the primary fuzzy sets
for the outputs of the fuzzy tuning system.

The same linguistic values can be assigned to both variables and small
(S), medium (M), and large (L).

Now we define a decision system as shown in Figure 7.21.
The rule system. In general, a fuzzy decision rule is a fuzzy relation which

is expressed as a fuzzy implication. The choice of fuzzy implication reflects not
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only the intuitive criteria for implication, but also the effect of the connective also.
In general, fuzzy implication functions can be classified into three main categories
(Zadeh, 1973; Baldwin and Guild, 1980):

the fuzzy conjunction

the fuzzy disjunction

the fuzzy implication

Just like in classical fuzzy control, we use only if-then rules. The rule base
consists of all if-then rules. An if-then rule is represented by a fuzzy relation
(Baldwin and Guild, 1980). The rule base can be derived from expert knowledge,
or can be extended by learning (Wang and Mendel, 1992). It is composed of a
set of fuzzy rules with multiple distance variables (statistics inputs) and a single
decision variable (output distances), represented as

if (x is A and y is B), then z is C.

For the sake of simplicity, we use a simple rule base in this case. We consider
fuzzy decision rules with two inputs and two separate outputs A list
of fuzzy rules applied in the tuning system is given below.

For the output

R_1: if d is S and is S, then is S
R_2: if d is S and is M, then is S
R_3: if d is S and is L, then is S
R_4: if d is M and is S, then is S
R_5: if d is M and is M, then is M
R_6: if d is M and is L, then is M

R_7: if d is S and is S, then is M
R_8: if d is S and is M, then is L
R_9: if d is S and is L, then is L

For the output

R_10: if d is S and is S, then is S

R_11: if d is S and is M, then is S
R_12: if d is S and is L, then is M

R_13: if d is M and is S, then is S

R_14: if d is M and is M, then is S
R_15: if d is M and is L, then is M
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R_16: if d is L and is S, then is S

R_17: if d is L and is M, then is M

R_18: if d is L and is L, then is L

The premises are compared with the input values of the fuzzy tuning system
so that it can be decided which rules can be used and in which way, and which
rules cannot be used. Thus we can determine which rules can be fired, together
with the strength of each firing operation. This strength depends on how much the
input values and the premises of the rule correspond to each other.

The decision-making system. The rules can be fired according to the fuzzyfica-
tion interface, each with a particular strength. This strength determines the amount
of influence the conclusion of a particular rule has on the general conclusion of
the system. The inference mechanisms employed in the fuzzy tuning system are
similar to those used in a typical expert system. In the decision system, we reduce
the inference mechanisms to only one-level, forward data-driven inference. In
other words, we do not employ chaining inference mechanisms.

In the system, the firing strength of each rule R_i is expressed by the intersec-
tion operator. This strength determines the amount of influence the conclusion of
a particular rule has on the general conclusion of the system. Usually this is done
in the following way. Say the strength is a, then the output fuzzy set is “cut off”
at a or all the membership degrees are multiplied by a. Hence, mathematically,
the output fuzzy set is determined by

or by a more complex operation. The result of this is a set of “cut off” fuzzy sets.
They are combined using the union function and handed to the defuzzyfication
interface.

Defuzzyfication. The fuzzy set that comes in the form of output has a very
complicated form because it is a combination of several “cut-off” fuzzy sets as
described above. The goal of the defuzzyfication interface is to find one single
crisp value that summarizes this output fuzzy set. There are several mathematical
operation that perform this, each with its own advantages and disadvantages. The
most frequently used operation is the center-of-gravity method; another is the
middle-of-maxima method. This method simply takes the first value that has the
highest membership degree. The complete one-step trajectory planning system is
shown in Figure 7.21.
Example 7.4.1. The performance of the one-step trajectory planner has been
tested for a three-DOF Puma-type robot manipulator (see Figure 5.20). Two
types of simulation for the one-step trajectory planner were performed, a simula-
tion applying either the jerk minimization or the overshoot minimization criterion
separately. To make this example more illustrative, it is assumed that in each step,

[see (7.53) in Section 7.4.4.1] is equal to zero. The manipulator had to follow
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Figure 7.21. Structure of a fuzzy tuning system.
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a straight-line segment back and forth in the work space. For greater clarity in
the figures a small offset is put between the path points when tracing them back
and forth. Table 7.1 presents the Cartesian coordinates of the path points to be
followed and the corresponding points from joint space.

The first experiment illustrates the performance of the one-step trajectory
planner while applying the jerk minimization criterion. Figure 7.22 shows the
Cartesian position of the manipulator’s end effector and the position and acceler-
ation of the manipulator joint for the case of jerk minimization and precise path
tracing, i.e., when and As could be expected, for some types of
paths considerably large overshoots occurred with use of this criterion, however,
the jerks corresponding to the planned trajectory are small.

Now we show the behavior of the planner when the overshoot minimization
criterion is used. In Figure 7.23 the Cartesian position and the joint position and
acceleration are shown with the overshoot minimization criterion applied in the
precise path tracing mode and With this criterion the planner
planned trajectories as close to linear in joint space as possible; however, the
controls needed to follow them take maximal values in short time intervals. That
causes very large values of input jerks. This is extremely strenuous to the robot
body.

We also considered the application to trajectory planning of the same overshoot
minimization criterion but now allowing the joint to not pass exactly through all
points on the path. The results for this case (i.e., and ) are shown in
Figure 7.24. In this case the number of acceleration switches is reduced drastically.
A comparison of Figure 7.23 with Figure 7.24 shows how large an improvement
can be achieved.

Remarks. The simulations performed on the one-step trajectory planner lead
to the following conclusions:
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Figure 7.22. Cartesian position and joint position for jerks with and
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Figure 7.23. Cartesian position and joint position for jerks with and
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Figure 7.24. Cartesian position and joint position for jerks with and
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The presented planning method allows us to plan robot trajectory segments
realizing a desired path in real time

The use of the pure jerk minimization criterion can lead to large overshoots
between path points

The disadvantage of applying the pure overshoot minimization criterion
lies in large values of jerks occurring during the path tracing

Allowing the joint to not pass exactly through all points on a path usually
reduces the number of acceleration switches

Combining jerk minimization with overshoot minimization yields
trajectories with features between the two cases mentioned above.
Appropriate choice of parameters (using fuzzy logic) yields trajectories
with the prescribed features

7.4.5. Neural Computation-Based Reactive Executor of
an Agent's Action in the Presence of Uncertainties

Since a robot dynamic is usually highly nonlinear and coupled, sophisticated
methods have to be applied to control it. In the present application the trajectory
preplanned by the one-step trajectory planner is executed by a typical computed
torque controller (Spong and Vidyasagar, 1989) with PD loop. The main idea of
such a controller is to apply a dynamic linearization module to obtain a dynamic
is are relatively simple to control.

7.4.5.1. Motion controller with passive learned neural dynamics. The inverse
dynamics calculation unit applies a neural network-based model of the robot
dynamics. The model is created for the nominal dynamics and then calibration is
performed to improve the performance of the controller. The calibration is carried
out in two stages: an active mode of learning and a passive mode of learning.
The main difference between the two modes lies in the ability (active mode) or
inability (passive mode) to perform active experiments on the robot, i.e., the robot
can be controlled by allowable controls.

First, the active mode of neural net learning is used (for more details see
Section 5.2). This step of the calibration yields the real dynamics of a robot with
zero payload. Next, while performing a real task in a robotic workcell, the passive
mode of learning is applied to modify the net coefficients. This has to be done
because of the possibility of changes in the manipulator’s work conditions (i.e.,
different payloads).

Such an approach allows us to train the neural network model to fit the actual
robot dynamics during the control process.



204 Chapter 7

Figure 7.25. Architectures of learning strategies for neural net (NN) modeling of robot dynamics.

Generally, many architectures of neural network training can be used in the
robot controller. The simplest one is when the net used for robot control is trained
while performing a task (see Figure 7.25a). Another strategy is to train a copy
of the working net and set up the working net when the process of training is
completed. This situation is illustrated in Figure 7.25b.

Finally, a more advanced strategy is to apply a multinet updating mechanism.
The main idea of this strategy consists in preparing a collection of several neural
nets pretrained (using, forexample, the active mode of learning) for the parameters
of different gripped objects and using one of them in the controller. The selected
net (for example, that which gives as output value the one closest to the actual
robot input) is applied in one of the previous modes. Figure 7.25c presents this
situation.

We use two approaches to identify the dynamic coefficients. Both take advan-
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Figure 7.26. The neural net learning schemes with the use of (a) tuning and (b) backpropagation
algorithms.

tage of the neural representation (Figure 7.26). The main difference between the
two methods lies in the parallel (for tuning) and the sequential (for backpropaga-
tion) manner of the changes in net coefficients. For details of the algorithms and
the methods used to test performance in the static mode see Section 5.2.

The computed torque (CT) controller for the robot dynamics is described by

with M, N, and G defined as in Equation (7.49) and R denoting the robot’s viscous
friction matrix; the controller is given by

where are the desired position, velocity, and acceleration, respectively,
and are the controller gains, which are symmetric, positive-definite matrices
(usually diagonal to get a set of simple, easy-to-check stability conditions).

The detailed structure of the controller is depicted in Figure 7.27.
Plugging Equations (7.65) into Equation (7.64) and denoting errors as

we obtain the following error equation:

It is an easy to see that the matrices and being symmetric and positive
definite is a necessary and sufficient condition for asymptotic stability of Equa-
tion (7.66) and thus for the stability of the control system given by Equations (7.65).
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Figure 7.27. Computed torque controller with a neural model of the inverse dynamics.

7.4.5.2. The performance analysis. The performance of the computed torque
controller with a neural model of the robot dynamics will be tested for the same
Puma-type robot manipulator as the one-step trajectory planner (see Figure 5.20).
Example 7.4.2. The trajectory preplanned by the one-step trajectory planner (see
Example 7.4.1) will be executed by the control system. The main aims of the
performed simulation are to evaluate methods for neural network training presented
in Section 5.2 in dynamic circumstances, and to observe phenomena which do not
arise in static circumstances.

We present first the behavior of a typical computed torque controller in which
no adaptation processes are applied, and then a set of various simulations with
the CT controller based on the neural model of inverse dynamics. The aim of
the first simulation is to create a basis for comparing the typical computed torque
controller (i.e., in which a nominal dynamics model without any calibration and
adaptation is applied) with the controller proposed above. Figure 7.28 shows how
the computed torque controller with nominal dynamics works in driving a real
manipulator without any payload, slightly different from nominal one. It is a
straightforward observation that such a controller is unable to control the robot
properly. Additional steps need to be taken to improve controller performance.

Now we show the behavior of the same controller as in the previous simulation,
when the real dynamics differs from the nominal dynamics (calculated for zero
payload), but with the controller using the neural-computed and calibrated model
of the robot dynamics. We assume that the robot carries an object at time 0.7 sec.
Figure 7.29 shows the performance of the controller when a payload is gripped.
Such a system works well when there are no disturbances in the robot dynamics,
but it cannot deal well with them. One can easily observe that there is a large
difference between the executed and desired trajectories.
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Figure 7.28. Cartesian position and joint control obtained with a typical CT controller with standard
calculated dynamics without any calibration.

Figure 7.29. Joint control obtained with the CT controller with a calibrated neural model of the robot
dynamics and with a real dynamic disturbance (without passive learning).
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Figure 7.30. Joint control obtained with the CT controller with a neural model of the robot dynamics
and with a real dynamic disturbance while applying passive learning.

To avoid tracing errors as in the previous simulation, the passive learning of
the neural network can be applied. As before, the robot grips a payload at time
0.7. The performance of the system for disturbed robot dynamics is shown in
Figure 7.30. One can see a large improvement in the system properties. There is a
small error in the trajectory tracing just after the dynamic disturbance occurs, but
thanks to the fast adaptation of the dynamics model to the new conditions, it goes
to zero rapidly.

In addition to the above investigations, we show the results of a simulation
in which we forced network learning to start with a delay. The other simulation
conditions are the same as in the previous simulations. The results of this run are
illustrated in Figure 7.31. This simulation shows how important it is to train the

Figure 7.31. Joint control obtained with the CT controller with a neural model of the robot dynamics
and with a real dynamic disturbance while applying delayed passive learning.
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network to new conditions in a very short time after disturbances occur. It is worth
noting that in spite of the fact that the dynamics was learned properly, an error
which appeared just after gripping an object stayed at almost the same level until
the end of the trajectory.

Remarks. The following remarks can be made based on the performed simu-
lations:

The performance of the computed torque controller with a neural model of
the robot dynamics is already good enough for robotic arm control.

The passive learning method based on tuning seems to be better than the
passive learning method based on a backpropagation algorithm.

To perform the learning process for tuning it is enough to have information
in the form of a point in the state space, while for the backpropagation
algorithm information should be collected over an interval of time.

The necessity of collecting patterns for the backpropagation algorithm
causes the period of time top be long between the occurrence of a
disturbance and the moment when the neural model fits well to the real is
long.

It is difficult to construct a good strategy of transferring error from the
output of the inverse dynamics model to the outputs of neural nets
modeling the dynamics coefficients.

The period of time between the occurrence ofa disturbance and the
moment when the neural model fits well to the real dynamics should be as
short as possible. Otherwise an unavoidable error occurs (see Figure 7.31).

If it is impossible to adopt the neural network to new conditions quickly, an
integrating part needs to be added to the PD loop. This part would work
only for a short time after the occurrence of a disturbance to reduce the
constant part of the error.

To speed up the learning, we can use network updating based on either
internal controller signals or external signals. The weights of the neural
network dynamic models are stored for several different manipulators
payloads, and in the case of obtaining an external signal the proper set of
weights is updated.
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CHAPTER 8

The Coordination Level of a
Multiagent Robotic System

The activation of each machine is caused by an external event generated by the
model of a robot. The events generated by the cell’s robots depend on the states
of the workstations and the given fundamental plan PROCESSES. The
coordination level of the intelligent control system ofa robotic cell consists of two
main components, the acceptor and the cell controller.

8.1. Acceptor: Workcell State Recognizer

We define a system (called an acceptor) which observes and recognizes the
states of each workstation. The acceptor acts as a filter. Only states waiting for the
processing cell are recognized and transferred to the cell controller. Other states
are ignored. The acceptor is defined as the following discrete event system (Jacak
and Rozenblit, 1992b; Jacak and Rozenblit, in press):

Here

where
is the general

state set of robotic cells and Time is the time base.

PROCESSES is the set of technological processes generated by the route
planner.

is the output set, i.e., the set of accepted states,

is an input–output function.

211
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The role of the acceptor is to select the global events which will lead the robots
to service the workstations. Let us define the set of acceptor outputs as the set of
subsets of operations and position indexes, i.e.,

where the set and N denotes the set of natural
numbers. More exactly, if then y = (a, (w, i), (v,j)), which means “the
operation a waits on the device w in the position i for transport to the device v in
the position i.”

The acceptor’s input–output function is given by

and

where
The predicate Activ determines which operation from PROCESSES

requires service when the cell’s state is equal to s, namely:

For PROCESSES and  the predicate
iff one of following conditions holds:

i. and for the jth coordinate and
and for the ith coordinate

and deadlock-avoidance conditions (4.9) for the workstation v are satisfied,
i.e., Avoid_Dead(v) =TRUE.

ii. and for the jth coordinate and
and for all coordinates and for s(w) the

ith coordinate and deadlock-avoidance conditions (4.9) for the
workstation v are satisfied, i.e., Avoid_Dead(v) =TRUE.

iii. and for the ith coordinate and
and for all coordinates and for s(v) the jth

coordinate

for all other cases.

The output of the acceptor can be an empty set or it contain indexes of only
those operations which can be executed without deadlock.

Not all operations can be performed simultaneously. Therefore, to select the
operations which can be executed concurrently, we introduce a discrete event
system called the cell coordinator and controller.
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This system can be constructed based on different principles, depending on
the intelligence of the robotic workcell components. The most popular industrial
coordination system concentrates the decision-making power at a higher level, i.e.,
the coordination level. The role of the components of the cell is reduced to the
nonautonomous execution of the coordinator’s decisions. Such a system is called
a centralized robotic system coordinator.

In modem industrial practice the decision-making power tends to be distributed
among all workcell components. The components have become more autonomous
and can adapt their behavior to changes in the surrounding environment. Such a
workcell coordination system is called a distributed robotic system coordinator.
This system needs only partial knowledge about the workcell behavior.

In the extreme case the system has very poor knowledge about the surrounding
environment (for example, a system which acts in the real world). In this case
the system component (i.e., robotic agent) should be extremely autonomous and
should be able to self-replan and to execute its actions in a reactive way.

8.2. Centralized Robotic System Coordinator

The centralized robotic system coordinator needs full knowledge about the
workcell and the possible changes of its states.

The cell controller is a discrete event system defined as follows (Jacak and
Rozenblit, 1994; Jacak and Rozenblit, 1993):

where

is the state set where is the acceptor output and
is the set of unemployed robots, i.e.,

is the external event set.

is a set of parametrized internal state-transition functions:

where U is the strategy set (see Chapter 9).

is an external state-transition function:

is the set of functions which generate the external events for the robots
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8.2.1. Coordinator of Nonautonomous Actions of the
Robotic Agent

The principal task in the synthesis of the robotic cell coordinator is the estab-
lishment of the internal state transition function This function is mathematical
model of control law for coordination activity.

The internal state transition function chooses from the set of waiting op-
erations (given by the cell acceptor) only that subset of operations which
are simultaneously realizable without collisions among robots and have
the greatest priority with respect to the strategy given by the organization
level.

The transition function acts on the acceptor outputs in the following steps:
Let be the operation set waiting for servicing which is
generated in the acceptor output. A state of the cell controller is given by s(c) =

where is the set of unemployed robotic agents.

8.2.1.1. Internal selection rule: Elimination by collision prevention. In the
first phase the nonrealizable operations from the operation set given by the acceptor
output should be eliminated, i.e., from the set of operations we should choose a
subset for which the robot actions do not result in a collision.

Here and the relation κ denotes the collision relation (see next
paragraph). From the set of operations y one chooses a subset for which the robot
actions do not result in a collision between currently active robots.

Collision relation. In general, a collision relation between two robots r and
can be defined as

where : Time denotes the time function describing the robot’s move-
ment in the Cartesian base frame when it realizes the trajectory q(r); and

is the volume occupied by robot r in configuration q(t) when the time
trajectory [Equation (5.104)] is realized.

Hence, r κ   means that the simultaneous actions of robots lead to a
collision.

The above definition is too complex for testing in real time, and for this reason
we usually use the gross approximation of the robot track [Equation (5.60)] to
establish the collision-free condition between two moving robots. Recall that for
a given track we can establish the subset of raster elements (voxels) which
are visited by the robot manipulator during the motion (Section 5.1).
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This makes it possible to create a new relation defining the collision-free
condition between two robots Let robots r and realize the trajectories
and respectively.

Definition 8.2.1 (Strong collision-free condition). The robots are
strongly collision-free along their trajectories if

where Tor(q) is defined by Equation (5.60).

Such a strong collision-free condition is only a sufficient condition for general
collision-free relation (Definition 8.3).

Fact 8.2.1. It is clear that

and

where denotes the service space of robot r.

When it does not mean that
because the common voxels can be visited by the robots r and at different
moments of time.

An example of a raster representation of robot trajectories is shown in Figure
8.1. The black voxels represent the collision subspace of the service space of both
robots r and We assume that the job of robot has a greater priority than the
job of robot r. In this case, robot r cannot be activated until robot has finished
its motion. Such a strategy of collision prevention leads to additional waiting time
by robot r.

To avoid this, we apply priority-based Start–Stop synchronization of the robot
motions. The robot with greater priority realizes its trajectory without testing
for possible collisions. The robot with lower priority r moves only to the boundary
of the collision subspace and waits there until this subspace becomes free. Then it
continues with the rest of the trajectory. In this case the current robot positions need
to be tested. An example of priority-based start–stop synchronization is presented
in Figure 8.2. Another, more complex method for testing for collision-freeness
can be found in (Latombe, 1991).

The strong collision-free relation can be used to perform the first step of
calculating the transition function
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Figure 8.1. Raster model of collision subspace.

Figure 8.2. Priority-based start–stop synchronization.
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8.2.1.2. External selection rule: Priority. For the set only opera-
tions which have the highest priority should be chosen. Each function is
parametrized by the external parameter u which is loaded into the cell controller
from a higher level of control, namely from the workcell organizer (see Chapter 9).
The parameter is the operation’s choice function, and represent the priority
strategy of workcell CARC [Equation (9.6)]. The strategy u defines the fuzzy set
over the set of technological operations

The choice function u defines the membership function for the operation set which
is created by the fuzzy organizer of CARC. The selection function u defines the
type of priority rule under which operations are chosen to be processed from the
set

To perform the operation selection we find the one-to-one partial function
which assigns the operation to unemployed robots. More exactly we construct the
partial function

with the following constraints:

i. There must exist a robot r which services the devices realizing the chosen
operation

ii. is a one-to-one function, i.e., one robot can service only one operation

iii. A maximum number of operations should be executed simultaneously

iv. For the selected subset of operations the robot actions do not result in a
collision, i.e.,

The collision-freeness can be tested by using the strong collision-freeness
relation Col_Free.

v. The selected operations should have the highest priority, i.e.,
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This rule represents an external selection strategy which applies to the set of
all operations waiting to be executed. The priority strategy u is loaded into the cell
controller from the organization level.

The symbols and denote the domain and codomain of the function
respectively.
Based on such a function we define the state transition function as

follows:

Fact 8.2.2. It is easy to observe that if

then

and

In the case of nonautonomous robotic agents, the coordination level should
be able not only to select the most important operation, but also to prevent col-
lision among active robots. For this reason the knowledge base contains off-line
preplanned phase trajectories of the motions for each agent.

The centralized structure of the coordinator of nonautonomous agents is shown
in Figure 8.3.

8.2.2. Interaction between Robotic Agents —
Coordinator

The interaction between cell controller and robots (nonautonomous agents) is
modeled by an external state transition function of DEVS and a set of functions

The external transition function is defined below.
Let then

for

The last component ofCell-Contr is the set of functions which generate external
events for robots,

The function is defined as follows:
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Figure 8.3. Centralized coordinator of robotic agent actions.

For

where
This completes the cell’s discrete event model specification. The general

structure of the cell levels is shown in Figure 8.4.

8.3. Distributed Robotic System Coordinator

The coordination system presented in this section allows distribution of the
computational effort usually carried out by the coordinator of a robotic multiagent
system to the agents themselves. By using intelligent robotic agents, the intelli-
gence can therefore be shifted down from the coordinator level to the individual
manipulators. A further characteristic of such autonomous manipulators is their
ability to directly react to the environment without having to contact a supervising
system (see Section 7.4).

8.3.1. Distributed Control of Autonomous Agents

The cell controller, as in the previous case, is discrete event system:
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Figure 8.4. DEVS model of CARC coordination level.

The internal state transition function establishes the coordination law of the
autonomous agents. We assume that each robotic agent is equipped in an intelligent
reactive control system. Recall that such a robot is able to plan a trajectory of
motion in real time, and this trajectory is adapted according to the current sensor
readings (see Section 7.4).

Therefore, the internal state transition function of a distributed robotic
system coordinator chooses from the set of operations (given by the cell acceptor)
only that subset of operations which have the greatest priority with respect to the
strategy given by the organization level. Then the calculation of the state transition
function is based only on the modified external selection rule.

Let be the set of operations waiting for servicing, which
is generated in the acceptor output, and let the state of the cell controller be

8.3.1.1. External selection rule: Priority. For the set y, only those operations
should be chosen which have the highest priority. Each function  is parametrized
by the external parameter u, which is loaded into cell controller from a higher level
of control, namely from the workcell organizer. The selection function u defines
the type of priority rule under which the operations are chosen to be processed
from the set y.

To perform the operation selection we find the one-to-one partial function
which assigns the operation to the unemployed robots. More exactly we construct
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the partial function

with the following four constraints:

i. There must exist a robot which services the devices realizing the chosen
operation

ii. is one-to-one function, i.e., one robot can service only one operation

iii. A maximum number of operations should be executed simultaneously

iv. The selected operations should have the highest priority, i.e.,

The priority measure µ  is loaded into the cell controller from the
organization level.

Based on such a function  we define the state transition function as in  the
previous case [Equation (8.5)]. The distributed structure of the coordinator of the
autonomous agents is shown in Figure 8.5. In contrast to centralized coordination,
the autonomous agent obtains from the coordinator only information about the
pick and place positions for the transfer operation and the agent itself plans the
collision free dynamic trajectory which realizes the transfer operation.

8.4. Lifelong-Learning-Based Coordinator of Real-World
Robotic Systems

The development of intelligent knowledge-based autonomous agents that learn
by themselves to perform complex real-world tasks is an open challenge for system
and control theory, robotics, and artificial intelligence.

In this section we present the concept of an autonomous robotic agent that is
capable of showing machine learning-based and reactive behavior. Experience
has shown that especially in real world acting domains neither purely reactive
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Figure 8.5. Distributed coordinator of the actions of autonomous robotic agents.

nor purely machine learning-based approaches suffice to meet the requirements
imposed by the environment.

In multiagent robotic systems, one is primary interested in the behavior and
interactions of a group of agents based on the models of the agents themselves.
The idea of the reactive model is to specify an agent by its behavior, i.e., the way
the agent reacts to certain environmental stimuli. With every perceptual input one
associates a certain action, an effector output, which is expressed in the form of
rules or procedures that calculate the reaction of the agent. Reactive systems have
no internal history or long-term plans, but calculate or choose their next action
solely upon the current perceptual situation (Jacak and Buchberger, 1996b).

On the other hand, machine learning-based models are motivated by the rep-
resentation of the system’s knowledge. The adoption of symbolic AI techniques
has led to the introduction of beliefs and intentions into the reasoning processes
of the system. Intentions enable a system to reason about its state and the state
of the environment. Such cognitive models permit the use of more powerful and
more general methods than reactive models, though they have inadequacies for
real-time applications.

Designing an autonomous system requires prior knowledge about the system
itself, its environment, and the task it is to perform. Some knowledge is usually
easy to obtain, but other knowledge might not be accessible or very hard to obtain.
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Usually an agent has only partial information about the state of the as world
obtained by its perception system. Machine learning aims to overcome limitations
such as knowledge bottlenecks and engineering and tractability bottlenecks (Thrun,
1994) by enabling an agent to collect its knowledge on the fly, through real-world
experimentation. More complex tasks require more training data to achieve a task.
The collection of training data is an expensive undertaking due to the slowness
of the system’s hardware. Thus, the time required for real-world experimentation
has frequently been found to be a limiting factor in rigorous machine learning
techniques. The task of learning from real-world experiments can be simplified
by considering a system that encounters collections of control learning problems
over its entire lifetime.

8.4.1. Structure of Lifelong-Learning-Based Coordinator
and Controller

The section gives the concept of an intelligent controller of robotic agents that
uses both machine learning and reactive behavior. Machine learning is used to
collect information about the environment and to plan robot actions based on this
information. Processing, storing and using information obtained during several
task executions is called lifelong learning. Reactive behavior is needed to execute
actions in a dynamically changing environment. The structure of such robotic
agent (presented in Figure 8.6) consists of two independent subsystems: the action
planning system (coordination level), and the action execution system (control
level).

The coordination of the activities of these subsystems is realized by exchange
of messages via a communication channel.

In classical approaches (Geneserth and Nilsson, 1987) we assume that the full
model of the agent and its influence on the surrounding world is known. More
exactly, the set of world states is given and the model of the agent’s activities
is specified by two functions: the action function do and the observation function
see:

where A is the action (control) set and O is the observation set obtained from
perception subsystem of the agent.

There are various methods for specifying the model of an agent, based on the
use of graph searching and resolution procedures (Geneserth and Nilsson, 1987),
for finding the sequence of actions
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Figure 8.6. Components of a intelligent robotic agent.

called the fundamental plan (see Chapter 4), by which the agent goes from the
current state to the given goal state. One such approach, based on a finite state
machine formalism, is presented in (Sierocki, 1996).

In contrast to the above approaches, we assume that an agent has no prior
information about the state of its environment, so it cannot establish the world
state observation function see:

Since the observation space of the agent’s perception subsystem O consists of
the set of all possible vectors which are collections of appropriate sensor signals,
this space will be mapped to (interpreted as) a “conceptual” state space S of the
real world. To this aim, one has to construct the generalization function

which maps any observation vector to a conceptual world state class
in such a way that the closer points are in O, the closer their corresponding classes
will be in S, with neighboring points in O being mapped to the same conceptual
world state class. This property of the mapping is called local generalization (Han
and Zhang, 1994).

Having found a generalized state in the agent’s conceptual space, one has to
find an agent’s action sequence leading it toward its goal. This can be done during
the action planning stage, when the next action can be determined from the
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previous action and the conceptual state with the function

as the action that maximizes the value function (Thrun, 1994):

where:

The value function is a function that returns scalar utility values.
These values have to be learned over the whole lifetime of the agent while
it is acting in the same environment. This learning can be accomplished
with the Q-learning method (Thrun, 1994), a popular method for learning
to select actions from delayed or sparse reward (Section 8.4.4).

The function do models the effect of an agent’s behavior on the conceptual
state space as

One can see that the machine-learning-based behavior of an autonomous agent
can be completely characterized by the three functions gen, do, and During the
action planning stage, these three functions interact in the following way:

1. Start by obtaining a conceptual state from gen as

where is the current observation vector.

2. Obtain the next action from as

3. Obtain the next conceptual state as

4. If the goal is not reached, let and go to step 2.

The advantage of this approach to action planning is that the sequences of
actions and conceptual states can be derived without moving the agent. The agent
controller consists of five main parts:

The conceptual world state generalization module, which generalizes the
agent’s sensor system observations
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Figure 8.7. Structure of an autonomous agent based on the lifelong-learning approach.

The action planner, which finds sequences of agent actions realizing
desired goals

the modeler of the agent behavior on the environment, which models the
interaction between the agent and the conceptual world

The action interpreter, which transforms elementary agent actions to goal
states in its joint space

The action executor, which calculates controls that drive the agent toward
its goal state

The structure of such an intelligent agent is shown in Figure 8.7. The com-
ponents of the autonomous agent that implement the reactive behavior (the action
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Figure 8.8. Generalization process.

interpreter interand the action execution controller contr; see Figure 8.7) are
described in the next section.

8.4.2. Conceptual State Space of the Real World

One of the main components of the machine learning layer in an autonomous
robotic agent is the module for building a function that gives conceptual states from
sensor data. Recall that in our structure of the autonomous agent based on the
lifelong learning approach (see Figure 8.7) we have only incomplete knowledge
about the environment and are thus unable to establish the world state observation
function see: The only information available to us comes from the
m-dimensional vectors of the perception subsystem that consists of the external
sensor signals.

The goal is thus to construct a world state generalization function gen:
that forms conceptual states as categories of observation vectors. This leads to
a clustering of the observation vectors, with vectors in the same cluster being
mapped to the same conceptual state by the function gen. Unknown real-world
states are perceived by the sensor system as observation vectors o that are then
processed and clustered by the gen function, leading to the conceptual states. The
observation process is shown in Figure 8.8. The function that produces conceptual
world states from observation vectors can be implemented as a neural network, so
that new conceptual states can be incorporated into the implementation of gen by
an unsupervised learning process.

8.4.2.1. Neural implementation of generalization algorithm. The problem of
obtaining conceptual world states from sensor input in such a way as to preserve
proximity information among the sensor vectors can be solved by a neural network
that forms clusters in its input space, and produces a “good” representative of this
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cluster as output. The network is trained in an unsupervised manner, so no other
input but the sensor vectors is necessary.

The network operates in a way that is a combination of the Kohonen clus-
tering algorithm (Kohonen, 1988) and the class creation and pruning methods
incorporated in the fuzzyART and fuzzyARTMAP algorithms (Carpenter et al.,
1991; Carpenter and Tan, 1993). The topology of the network consists of an input
layer and an output layer, with full connection between these two layers. The
input layer has dimensionality m, and the output layer grows and shrinks as new
category neurons (each representing a conceptual state) are added and deleted.

For the training process (described below), the robotic agent is first operated
in an active mode, i.e., sensor readings are taken with the robot in positions that
can be chosen by the user to get desirable sensor readings. At each position, sonar
readings are taken while the position of the manipulator is perturbed slightly; this
is done to obtain a set of similar sensor vectors. This process is repeated for several
positions of the manipulator. The sensor readings obtained in this active mode
serve as the initial training data for the generalization network.

The passive mode of learning takes place when the robot performs a task in its
environment. Again, sensor readings are taken and the network is trained, but in
contrast to the active mode, it is not possible for the user to specify the position of
the robot.

Just as in the Kohonen algorithm, the clustering algorithm presented here is
based on measuring the similarity of an input vector with the category information
that is stored for each category as the weights of the corresponding output neurons.
The similarity measure between sensor vector o and weight w used in the algorithm
is the Euclidean distance, i.e.,

When an input vector is presented to the network, all the output neurons calculate
their distance (i.e., the distance of their weight vector to the input) in parallel. The
neuron with the smallest distance wins.

At this point, we use an idea from the fuzzyART algorithm and check whether
the winning neuron is close enough to be able to represent the input vector,
or whether the input vector is so dissimilar from the winning neuron’s weights
(and thus from all the other categories as well) that it has to be placed in a new
category. For this, we define a similarity radius as the maximum distance that an
observation vector can be from the winning neuron’s weights to still be considered
close enough to fall into that category.

8.4.2.2. Category neuron training. If the observation vector is within one
similarity radius of the winning neuron’s weight i.e.,
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then the weight is used to reflect the new entry in this category by moving in the
direction of o:

where is a scalar factor in [0,1] that determines how far  is changed in the
direction of o.

8.4.2.3. Category neuron creation. If the sensor vector is not within the sim-
ilarity radius of the winning neuron, it is not similar enough to any of the current
categories to be included in one of them, and a new category has to be created. In
this algorithm, this corresponds to the creation of a new output neuron that is fully
connected to the input layer, and whose weight vector is equal to the sensor vector.
The network starts with one output neuron that is created upon presentation of the
first input pattern. Output neurons are created when an observation vector is found
not to be within one similarity radius of any of the output neurons. It is clear that
the smaller the similarity radius, the more output neurons will be created, because
the criterion for similarity is the stronger, the smaller is this radius.

8.4.2.4. Category neuron pruning. To prevent a proliferation of output neu-
rons, we include a pruning step that cuts output neurons. The pruning can be done
according to two different criteria:

A neuron is cut when it has not been the winning neuron for a given period
of time.

A neuron is cut when it encodes too small a fraction of sensor vectors
compared with the output neuron that encodes the most observation
vectors.

The second method produces neurons with a longer lifetime, i.e., they are not
pruned and recreated as often as in the first method. More precisely, we can
cut a neuron when it represents a category with less than 10% of the number of
observation vectors in the category that has the highest number of vectors.

The output associated with the clustering algorithm is not the output of the net-
work, as these are only the similarity numbers for the various categories. Instead,
the output of the algorithm is the weight vector of the winning output neuron.
In other words, the algorithm output is the representative of the category that is
most similar to the input presented to the network. If the observation vector is
within the similarity radius of one of the output neurons, the output is the weight
vector of this neuron; otherwise, it is the observation vector itself (which is also
incorporated in the network as a new category neuron).

The network presented above produces conceptual states from observation
vectors. These conceptual states are then used as inputs for the do function that
models the effects of the agent’s behavior on the conceptual state space. The
network that implements this function is presented in the next section.
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Figure 8.9. Structure of the network modeling the function do.

8.4.3. Learning of Agent Actions for Prediction and
Coordination

The function do can be seen as the state transition function of a dynamical
system with states in S and inputs in A. As such, it can be implemented by a
multilayer feedforward network that learns and refines the mapping as the robot
operates. The neural network runs in two different modes:

The training mode, when input patterns and desired outputs are
presented to the network, and the network is trained on this static mapping.

The recall mode, when the conceptual state information is not obtained
from the gen function, but from memory cells that store the previous state
output of the do network and feed it back as input with the next action.

The structure of such a network, operating on state information from the gen
function in the training mode and on state information from its own delayed output
in the recall mode is shown in Figure 8.9. The multilayer feedforward network
that implements the static function do can be trained with the backpropagation
algorithm. The training process is slightly different from the standard case, as the
desired network output is a conceptual state that represents many observation
vectors, and thus all actual network outputs belonging to this same category
should be treated as correct outputs. This is accomplished by presenting as an
input to the gen network (this is possible because of the same dimensionality of O
and S). If i.e., if the actual and the desired outputs of the do network
are in the same conceptual state, then no training is performed. Otherwise, the
network is trained with the error being the difference between  and

8.4.3.1. Extensions of the learning algorithm. The above algorithm can be
extended in a variety of ways to increase the accuracy of the modeling. Some
possible extensions are:

a. Changing the number of hidden neurons in the action effect modeling
network.
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b. Eliminating old patterns when their inclusion in the training set makes it
inconsistent.

c. Extending the number of previous actions and conceptual states used as
inputs for the action effect modeling network.

a. The current implementation uses a fixed number of hidden neurons in
the do network. Extensions are made to increase the number of hidden neurons
when an increase in the number of category neurons in the gen network (and
thus the possible conceptual state inputs to do) decreases the performance of the
do network. A possible approach is to use a second network with more hidden
neurons and train it in parallel with the regular network, and when performance
decreases in the regular network, use the second network to replace the regular
network.

b. Another limitation of sensor-based systems is that the range of the sensors
limits the perception range of the agent to a small area. With these limitations,
it is possible that the training set for the do network contains different desired
conceptual state outputs for the same pair of state and action. This makes training
the network impossible, as do would then be a relation and not a function. One
straightforward solution would be to eliminate the older pattern, as it reflects a
situation that is not as relevant as the current situation.

c. Since eliminating patterns, as proposed in (b), is a very crude approach and
much information is lost, we can use a different, more elaborate method. Instead
of using only the current conceptual state and the current action  to predict the
next conceptual state a “history” of states and actions before and could
be taken into account as well. The number of previous states and actions that
should be taken into consideration cannot be determined beforehand and depend
on the complexity of the robot environment. A possible solution is to use an
overdetermined system (some large number of previous states and actions), and
use a genetic algorithm to find those past states and actions that can contribute to
determining the next state, while eliminating those that are not relevant. Such a
genetic algorithm was developed in a different context (Jacak and Dreiseitl, 1996;
Jacak and Dreiseitl, 1995).
Example 8.4.1. A two-dimensional 4-DOF manipulator was placed next to an
obstacle in a simple scene. Sensors were mounted on both sides in the middle of
each link with sensor readings scaled from 0 (contact) to 1 (time out at infinity).
Since there are no objects on the left of the manipulator, we disregarded the
sensors on that side since they always showed a distance of infinity, reducing the
observation space dimensionality to 4.

The training of the two networks for the gen and do function was performed
in two steps:

The active mode of learning for the generalization network
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Figure 8.10. (a) Sensor readings taken during the active mode of learning. (b) Conceptual states of
sensor readings on the last two links.

A simulated normal operation of the robot when both the generalization
and the state transition network were trained

During the active learning of the generalization network, we placed the ma-
nipulator into five positions that were far apart in the manipulator’s
configuration space. Each of these positions was changed slightly four tunes and
sensor readings were taken (see Figure 8.10a). Using this training data of 20
observation vectors for the generalization network resulted in five conceptual state
categories (see Figure 8.10b). However, these five categories were the result of one
category being formed for two positions that were identical in sensor space (both

Figure 8.11. (a) Sensor readings taken during normal operation of the robot (passive learning). (b)
Conceptual states of sensor readings on the last two links.
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Figure 8.12. State transition graph of the function do obtained during simulation.

now represented by conceptual state and the sensor reading of one position
being split into two distinct conceptual states and  because the small changes
caused one sensor not to see the obstacle.

During the simulated normal operation of the robot, the actions (i.e., move-
ments of the effector end) up, down, left, and right and appropriate combinations
thereof were allowed. Actions were performed with the manipulator being in
one of the five original positions used for training the generalization network (see
Figure 8.11a). The states reached during operation of the robot are shown in
Figure 8.12. During the work of the state transition network, two more conceptual
states and see Figure 8.11b) were created by the generalization network and
incorporated into the training of the state transition network. Both networks were
able to learn the training patterns in fewer than 1000 presentations of the patterns.

8.4.4. Q-Learning-Based Intelligent Robot Action Planner

The inadequacy of classical planning algorithms for real-time applications
involving lack of full knowledge about the surrounding world has motivated the
use of learning approaches in order for rapidly finding timely behavior of the
agent. The task of learning from scratch can be simplified by considering agents
that memorize whole collections of actions and their effects over their entire
lifetime. In such a lifelong learning scenario (Thrun, 1994), learning tasks are
related in that they all play out in the same surrounding world, and they involve
the same agent hardware.

To synthesize the action planner we use Q-learning method (Thrun, 1994).
Q-Learning is a popular method for learning to select actions from delayed and
sparse rewards. The goal of Q-learning is to learn the strategy for generating
whole action sequences which maximize an externally given reward function. The
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reward may be delayed and/or sparse, i.e., reward is only received upon reaching
the goal of the task or upon total failure.

Let O be the set of all possible system percepts and gen : be the
generalization function mapping the current observation o into the conceptual
state of the surrounding world.

We now use the restrictive Markov assumption, i.e., we assume that at any
discrete point of time, the agent can observe the complete conceptual state of
the world. (See (Thrun, 1994; Thrun and Mitchell, 1993) for approaches to
reinforcement learning in partially observable worlds.)

This assumption is motivated by the fact that an agent without external knowl-
edge about the surrounding world is not enable to decide if an observation contains
the complete state of the world. Roughly speaking, we assume that each observa-
tion represents the full knowledge about the world achieved by the agent.

Additionally, let A be the action set of the agent. Based on the observation o and
the adequate state gen(o), the agent picks an action As a result, the world
state changes. The trainer also receives a scalar reward value, denoted by r(s,a),
which measures the action’s performance. Such a reward can be exclusively
received upon reaching a designated goal or upon total failure, respectively.

The Q-learning method finds an action strategy

mapping from conceptual world states S to actions A which, when applied to action
selection, maximizes the so-called cumulative discounted future reward,

where is the discount factor.
To find rapidly the best action in the current state s the key of Q-learning is to

learn a value function for picking the actions. A value function

maps conceptual states perceived by the agent and actions to scalar
utility values.

In the ideal case is, after learning, the maximum cumulative reward one
can expected upon executing action a in state s. The function schedules actions
according to their reward. The larger the expect cumulative reward for applying
action a in the current state s, the larger is its value

After learning, the value function generates optimal actions by picking the
action which maximizes for the current state s, i.e.,
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The values of have to be learned over the whole lifetime of the agent acting
in the same surrounding world. The function is realized as a complex neural
network which consists of networks approximating the functions

for

Initially, all values are set to zero. During learning, values are incrementally
updated, using the following standard recursive procedure.

Suppose the agent just executed a whole action sequence which, starting at
some initial state led to a final state with reward For all steps
i within this episode, is updated through a mixture of the values of
subsequent state action pairs up to the final state. This standard procedure has the
following form (Thrun and Mitchell, 1993):

Such Q-learning learns individual strategies independently, ignoring opportunity
for the transfer of knowledge across different tasks (Thrun and Mitchell, 1993).
In order to transfer knowledge the planner needs to learn the predictive action
model plan : The action model describes indirectly the effect of
the agent actions. Such a function is a priori unknown and has to be learned
based on the observed state transition over the whole lifetime of the agent. Once
trained, the neural network model can be used to analyze observed episodes by
additional explanation. The explanation makes it possible derive the slopes of the
value function The slopes are used for generalizing the episodes. The slopes
generalize training instances in sensor space and conceptual word state space,
since they indicate how small changes will affect the target value function They
are extracted from the general action model, which is acquired and used over the
entire lifetime of the agent. Hence, in the lifelong learning context such a neural
network transfers knowledge.
Example 8.4.2. To illustrate the Q-learning-based action planning we present
some experiment results. The experiment was performed with the Scara Adept
One robot equipped with eight sonar sensors. The location of the sensors and the
surrounding environment are presented in Figure 8.13.

During the active mode of learning the generalization system creates eight
conceptual states. The sensor readings and the aggregation of these readings
into conceptual states is shown in Figure 8.13. The partial function do (partial
knowledge) is stored as the state transition table (Figure 8.14). Based on this
knowledge the Q-method generates the following action plan for transition from
initial state to final state

Actions = (right, back, right, right, front, right, back)
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Figure 8.13. Adept One and its conceptual states.

with state trace

where “right, back, front, left” are the elementary actions of the robot.
During the execution of this plan there is an error between predicted states

and and the observed states. This dynamic change in the environment requires
the creation of new conceptual states and retraining of the state-transition neural
network. The generalization function generates two new states and the Q-learning
based function plan modifies the plan as follows:

The error occurring during tracing is presented in Figure 8.15.

8.4.5. The Agent's Action Interpreter

While the robot is tracking a path in an unknown environment, some extraneous
object may enter the work space. These objects int the real world are detected with
the help of sensors mounted on the links of the manipulator. As the perception
system of such a robotic agent we install ultrasonic sensors and a sensitive skin

Figure 8.14. State transition table.
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Figure 8.15. Tracing error.

on each manipulator link and then use a neural network to estimate the proximity
of objects to the link in question. The vector of sensor signal values together with
the distance to the goal position establishes the points in the sensor space, which
are used to construct the conceptual state space of the real world.

Let be the finite length of the displacement vector of the effector end in Carte-
sian space. Based on we introduce the following set of standard displacement
vectors of the effector end:

Additionally, we decide on the form of the geometric shape of the robot’s manip-
ulator, which is especially important if the number of degrees of freedom is large.
To describe the topological form of the manipulator shape, especially for the last
arm links, we use the following set of terms:

Such a set determines the shape of the wrist in the case of a planar manipulator.
For a nonplanar wrist the Wrist Shape set has to be extended by additional terms,
namely “arch left” and “arch right.” Based on these two sets we introduce the
elementary action set A:

where the pair denotes the displacement of the effector-end action
with simultaneous changes of the wrist shape. For the above action set is necessary
to find the model of robot kinematics which makes it possible to calculate the
resulting configuration. Let denote the joint space of the robot. Hence the
kinematics model can be expressed as a discrete dynamical system in the form
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where q(k) is the intern manipulator state at the time k, a(k) is the applied action,
and q(k+1) is the resulting state. The main problem of action interpretation
for this model of the kinematics is how to find the next state function inter.
Recall that the function is to be found by solving the underdetermined kinematics
equations of the manipulator. In order to choose one configuration from among
many possibilities, we use the modified method proposed in (Jacak, 1989a; Jacak,
1991). Let  for i = 1,...,n denote the ith component ofthe directkinematics,
i.e., describes the position of the ith joint in Cartesian space. Based
on the displacement vector we can define the goal point of the motion as

In order to choose one configuration from among many possibilities, we de-
compose the whole manipulator into two submanipulators. We introduce two pa-
rameter calculated on the basis of two sets of joint numbers. Let
denote an arbitrary set of initial joints of the submanipulator (i.e., subsequence
of the kinematic chain from 1 to n – 2), and let G = {k,..., n} stand for the set
of terminal joints of the submanipulator. From these sets we choose joints which
decompose the manipulator into active and passive parts. The selection strategy
for changing the configuration acts as follows:

where denote the relatives maximum (minimum) reach between
joints i and j [i.e., the maximum (minimum) size of the kinematic chain connect-
ing the joints and These two parameters
determine the active and passive parts of the manipulator. The new position for
each joint in Cartesian space is determined as

The Joint Position Procedure determines the new position of the joint based on
the transformation of the inverse kinematic problem into an optimization problem
(Jacak, 1995; Jacak et al., 1995c; Jacak et al., 199Sd). For a planar manipulator,
the procedure can be reduced to a simple algebraic algorithm (Jacak, 1989a).
The activation of the manipulator part depends on the set G. We introduce two
strategies:

Active Terminal Joints — Reach Motion Strategy Let G = {n}. Then due to
the above equation the number of terminal joints k of the configuration
change is equal to n and the number of initial joints l of the configuration
change is determined as
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Figure 8.16. Action interpretation.

Such a choice of l ensures that to achieve a desirable shift of the end
effector, a minimum number of links will be set in motion, counting from
the end of the manipulator. The configuration of the submanipulator from
joint 1 to l remains unchanged.

Active Initial Joints — Gross Motion Strategy Let G = {3,...,n}. Thus, the
required shift of the effector end is realized by moving a minimum number
of joints counting from the base of the manipulator. The submanipulator
defined by numbers g and n preserves its geometric shape but the positions
of its joints are shifted by a vector A sequence of these configurations
corresponds to the gross motion aimed at placing the effector end in the
neighborhood of the terminal point.

Observe that for joints l and g the new configuration has already preserved the
geometric form of submanipulators from 1 to l and from g to n, i.e., the distances
and angles in those segments of the kinematic chain are kept fixed.

By appropriate choice of the set G we activate only one segment of the
kinematic chain while keeping the second unchanged in shape. By com-
posing successive configurations one can produce a definite geometric shape
of the kinematic chain according to the second element of the action pair

shape). For example, for the action a = straighten out) the new config-
uration inter(q, a) can be produced from an actual configuration
by a sequence of transition of the following types:

reach motion strategy for additional displacement

gross motion strategy for negative displacement

gross motion strategy for desirable displacement
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Similarly we can define the transition function inter for the rest of the actions.
As a result of using such an interpreter we obtain the goal configuration of the

movement step in order to realize the given action. This configuration is the input
for the reactive motion controller (executor). An example of an interpretation of
the robot action is presented in Figure 8.16.

While the robotic agent is tracking a path calculated by the action interpreter,
some extraneous dynamic object (another robot) may enter the work space. These
dynamic obstacles are detected with the help of sensors mounted on the links of
the manipulator. To avoid possible collisions we use the intelligent and reactive
robotic agent presented in Section 7.4.



CHAPTER 9

The Organization Level of a Robotic
System

The organizer accepts and interprets related feedback from lower levels, defines the
strategy of task realization and processes large amounts of information with little
or no precision. Its functions are reasoning, decision making, learning feedback,
and long term memory exchange.

9.1. The Task of the Robotic System Organizer

The organizer determines the best strategy for realizing the current set of
technological tasks (TASKS) quasiordered by the task–priority relation

If for two tasks we have then the task has a higher
priority than the task

Each task is characterized by a set of technological operation
[Equation (4.1)] and a number of parts to be processed. Moreover, for some
tasks the critical finishing time is given.

In a given state of the computer assisted robotic cell there are many parts
waiting for processing (recognized on the execution level and the coordination
level) which cannot be processed simultaneously. Based on feedback information
from the execution and coordination levels, the organizer creates a strategy u which
chooses the technological operation to be performed by determining the priority
of the operations waiting for execution.

The inputs (feedback information from the execution and coordination levels)
of the CARC organizer are represented by a vector of statistics V calculated from
the event trace and the current state of the CARC. The inputs to the organization
level are defined as follows (Bedworth et al., 1991; Black, 1988; King, 1980; Wang
and Li, 1991):

241
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the work-in-process factor: the number of jobs (parts) being currently
processed in the cell

the mean waiting time of a job during its stay in the cell

the mean production time of a job during its stay in the cell

C, the mean job cost

UT, the device utilization vector

W, the productivity: the number of finished jobs per unit of time

The organizer can chosen among of such the strategies of operation scheduling
as (Prasad, 1989; Bedworth et al., 1991; King, 1980; Wang and Li, 1991):

just-in-time (JIT)

maximum waiting time (MW): the operation with longest waiting time is
given preference

minimum setup time (MS): the operation requiring the shortest time to
change the processing tool is given preference

push strategy (PUSH)

first free buffer (BUF)

minimum transfer cost (MT): the operation with minimal transfer cost is
given preference

These strategies are described in the next section. The set of  possible strategies
is denoted by U. To realize the organization process we develop a general fuzzy
organizer of the robotic workcell.

9.2. Fuzzy Reasoning System at the Organization Level

We apply a fuzzy rules-based decision system to create the organization level of
a CARC (Lee, 1990; Valavanis and Stellakis, 1991; Zadeh, 1973; Efstathiou, 1987;
Sugeno, 1985). To solve the organization problem we introduce three families of
fuzzy sets.
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9.2.1. Tasks, Scheduling Strategy, and Input
Fuzzyfication

9.2.1.1. Technological task fuzzyfication. The order of realization and the
importance of  tasks at a particular stage of their execution can be described by the
time-dependent fuzzy set of tasks

where denotes the set of time instants (check points) at which all the tasks from
the set TASKS must be realized.

The membership function is called the task priority function at the moment
because its value at can be thought of as the preference

of the task Z at the realization stage i.
At the initial stage 0 when the set of tasks starts to be realized the values of

function are assumed a priori to meet the following condition:

It is easy to construct an algorithm which can generate for a finite set TASKS and a
given ordering relation the values of  satisfying Equation (9.1) (Jacak, 1985).

The considered set of tasks is a dynamic set. The dynamics are expressed by
the variation of the set of tasks to be realized at each stage. The dynamic priority
of the tasks is represented by the values of the membership function The
modification of this function at the ith stage depends on the degree to which the
task was realized at the previous stage.

Let denote the distance from the current realization state of the task Z to
its finished state:

where is the number of realized jobs from task Z in moment Based on
such the definition we can modify a priority function at the stage i+1 as follows
(Jacak, 1985):

Due to such a modification, preference is given to tasks which are nearly finished.
Additionally, the value of the priority function at each stage of task realization can
be modified by a human operator. By introducing such variability into the function

the realization of every task becomes a process of adaptation to the stage of
decision making and to changing conditions.
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9.2.1.2. Fuzzyfication of scheduling strategies. The second family of fuzzy
sets is related to the scheduling strategies. Let U be a set of scheduling strategies.
Each strategy determines the priorities for a given set of machining opera-
tions. Such preferences can be represented in terms of the values of a membership
function of a fuzzy set related to a given strategy. Then each scheduling strategy,
such as JIT, MW, MS, PUSH, BUF, MT, FIFO, or LIFO, is transformed into a
fuzzy set over the machining operations for a given technological task.

Let denote the set of operations for the machining task For
every strategy and every task Z we introduce the fuzzy set

The membership function represents the priority of realization of the o
operation with respect to the u strategy.

The JIT and PUSH strategies are independent of the current state of the workcell
and depend only on the sequence of operations in the production route

JIT strategy  If the production route  then the JIT strategy can
be represented by a fuzzy set with a linear membership function:

PUSH strategy The PUSH strategy is transformed into a fuzzy set with
membership function as follows:

The fuzzy representations for the remaining strategies depend on the current
state of the workcell. For these strategies we define the membership func-
tion of the related fuzzy set, which depends on the current state s(t) of the
workcell. Based on the general state of the workcell s(t), we create a set of
parts (jobs) for a task Z in the cell and waiting for processing, i.e., the set

part k wait for operation l}. It is possible that more than
one part (job) wait for the same machining operation.

MS strategy The minimum setup time strategy (MS) has the following fuzzy
representation:

where and denotes the time
needed to change the workstation’s tool.



The Organization Level of a Robotic System 245

Figure 9.1. The primary fuzzy sets of the work-in-process factor.

The maximum waiting time strategy can be modeled in an analogous way.
The combined scheduling strategies determine the output of the organization

level of the CARC.

9.2.1.3. Organizer input fuzzyfication. The third family of fuzzy sets is related
to the organizer inputs. The inputs of the CARC organizer represent the global
state of the workcell statistics. These inputs can be obtained from the event trace
analysis or from aggregation of the current state. The input values of the cell
organizer do not form a fuzzy set, but are crisp. Therefore they first have to be
fuzzyfied. In general, linguistic variables will be associated with a term set each
term in the of which is defined on the same universe of discourse. A fuzzyfication
or fuzzy partition determines the number of primary fuzzy sets.

If we consider the work-in-process factor (the current number of parts being
in the cell), then possible primary fuzzy sets to describe the number of jobs being
processed are e.g., too many (TM), approximately good (AG), and too little (TL).
For each term TM, AG, and TL a certain bell-shaped membership function is used
to cover the whole domain (universe). In principle, any shape is possible, but the
simple form has many advantages because it is easy to represent and it lowers the
computational complexity of the system. To cover the whole domain of the work-
in-process factor [0, C], where C is the capacity of whole workcell, we apply a
trapezoid-shaped function to define the membership function as shown in Figure
9.1. Because the universe is nonnormalized, the function could be asymmetrical
and unevenly distributed in the domain. The membership function of a primary
fuzzy set depends on a vector of parameters which determine its shape (see
Figure 9.1).

This same method can be used to define the terms and the primary fuzzy sets
for the other inputs of the organizer. For the mean waiting time of the job
we convert input data into three linguistic values, namely short (S), quite good
(G), and too long (L), which are viewed as labels of primary fuzzy sets. To
express the membership function of the primary fuzzy set, we apply functional
definitions (Lee, 1990; Zadeh, 1973) in a trapezoid-shaped form analogously as
for the previous input. This can be done for each input of the workcell organizer,
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Figure 9.2. Structure of the robotic workcell organizer.

i.e.,

9.3. The Rule Base and Decision Making

To synthesize the workcell organizer we apply the structure of the decision
system shown in Figure 9.2.

9.3.1. The Rule Base

In general, a fuzzy decision rule is a fuzzy relation which is expressed as a
fuzzy implication. The choice of fuzzy implication reflects not only the intuitive
criteria for implication, but also the effect of the connective also. In general,
fuzzy implication functions can be classified into three main categories: fuzzy
conjunction, fuzzy disjunction, and fuzzy implication (Zadeh, 1973; Baldwin and
Guild, 1980). Just as in classical fuzzy control, we use only if–then rules. The
rule base consists of all if–then rules. The rule base can be derived from expert
knowledge, or can be extended by learning (Wang and Mendel, 1992). It is
composed of a set of fuzzy rules with multiple workcell state variables (input
statistics) and a single decision variable (output strategy), represented as

In this chapter let us for simplicity take a simple rule base. We consider fuzzy
decision rules in the case of two inputs (work-in-process factor and mean waiting
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time ) and a single output u of  the fuzzy organizer. Examples of fuzzy rules
using only four scheduling strategies (just-in-time, JIT; maximum waiting time,
MW; minimum setup time, MS; and push strategy, PUSH), are as follows:

R_l: if is TL and is S, then u is PUSH

R_2: if is TL and is G, then u is PUSH
R_3: if is TL and is L, then u is MW
R_4: if is AG and is S, then u is MS
R_5: if is AG and is G, then u is MS
R_6: if is AG and is L, then u is MW
R_7: if is TM and is S, then u is JIT
R_8: if is TM and is G, then u is JIT
R_9: if is TM and is L, then u is JIT

The premises are compared with the input values of the cell organizer such
that it is decided which rules can be used and which rules cannot be used, and in
what way they can be used. As result it is determined which rules can be fired,
together with the strength of each firing operation. This strength depends on how
much the input value and the premise of the rule correspond to each other.

9.3.2. Decision-Making System

The rules can be fired according to the fuzzyfication interface, each with
its particular strength. This strength determines the amount of influence the
conclusion of a particular rule has on the general conclusion of the system.  The
inference mechanisms employed in the organizer’s decision-making system are
similar to those used in a typical expert system. In our decision system we reduce
the inference mechanisms to one-level forward data-driven inference. In other
words we do not employ chaining inference mechanisms.

The general consequence u is deduced from the compositional rule of inference
by employing the definitions of a fuzzy implication function and the connective
also. To generate the conclusion of a particular rule (R_i), we use the Larsen
product operator (Baldwin and Guild, 1980) expressed as the composition

In an on-line process, the global states of the workcell play an essential role in
decision actions. The inputs are crisp, and In general, a
crisp value may be treated as a fuzzy singleton. Then the firing strength  of each
rule R_i may be expressed by the intersection operator as follows:
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Using the Larsen product operation rule as a fuzzy implication function we deter-
mine the ith fuzzy decision (for rule R_i) as:

To create the general conclusion of the organizer’s decision system, the definition
of the connective “also” in the form of  triangular co-norms is used (Tilli, 1992; Lee,
1990). Consequently, the membership function of the inferred consequence is
pointwise given by

where the symbol can denote:  union; algebraic sum; bounded sum;
disjoint sum; or drastic sum (Dubois and Prade, 1985). In the given fuzzy

organizer we apply the algebraic sum in the form
The general conclusion of the organizer’s decision system is computed for each

technological task Z. In other words, the fuzzy reasoning system generates the
general conclusion in the form of the fuzzy strategy for each
Additionally, the fuzzy priority of tasks is used to compose the output of
the decision system. The decision system create a new fuzzy set over the set of
operations for each task using the Larsen product operator

The membership function represents the preference of operations with
respect to the current feedback information from the workcell. This new fuzzy
set is transferred into a new scheduling strategy at the execution and coordination
levels,

Recall that the execution and coordination levels use directly the values of mem-
bership functions to determine the priority of the waiting operations. Hence the
defuzzyfication process can be omitted.

After the selection of operations to be realized on the execution level and their
realization new feedback information is communicated from the coordination level
to the organization level. This information is used to modify the parameters of the
input’s primary fuzzy sets.

Consider, for example, the organization level of a robotic workcell which
realize L technological operations. We analyze the fuzzy decision system having
the two inputs (work-in-process factor) and  (mean waiting time) and a single
output u. Figure 9.3 illustrates the fuzzy decision-making system with the above
“if–then” rules. The activity of rules Rule_8 and Rule_9 as well as the general
conclusion of the organizer are presented.
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Figure 9.3. Example of fuzzy decision making.

9.3.2.1. Learning. After the selection of operations to be realized on the
execution level and their realization the new feedback information is communicated
from the coordination level to the organization level. This information can be used
to modify the input’s membership function parameters. A general stochastic
approximation learning algorithm can be used, i.e.,

where is the vector of the input’s membership function parameters, b is the
updating rate matrix, and (grad( V)) is the stochastic gradient of  the statistics V.

Example 9.3.1. We consider now the organization level of a robotic workcell
which realizes three technological tasks.

Simulation scenario. The results are based on the simulation of a cell with five
robots, ten machines, two input conveyers, and one output conveyer. Its layout is
given in Figure 9.4.

We consider three tasks with loops and shared machines for this cell. The
logical structure of the routes is given in Figure 9.5. The following simulation
runs use a single input parameter WIP (work-in-process factor). We examine and
control the number of parts that are within the cell during the run of the simulator.
Figure 9.6 shows the number of parts on time using the strategies JIT and PUSH
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Figure 9.4. Cell layout of the simulation scenario.

Figure 9.5. Routes of the simulation scenario.
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Figure 9.6. Bandwidth of the work-in-process factor WIP.

as proposed in Section 9.2. Note that the PUSH strategy takes longer to run than
the JIT strategy. The lower WIP value at the end is caused by the finishing of one
or two of the tasks. Here WIP can be regulated between 25 and 40.

Gain. We regulated WIP with several different versions of the linguistic vari-
ables within the range 20–40. On every run three linguistic variables (too low,
average good, and too much) were defined with the same proportional relationship
to one another. Figure 9.7 shows an example, where  denotes the desired WIP
factor. If WIP is too low, we use the strategy PUSH. This raises the number of
parts in the cell. On the other hand, if WIP is too much we choose strategy JIT,
where parts are pulled out of the cell. For values of WIP that are average good we

Figure 9.7. Example of linguistic variables for WIP.
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Figure 9.8. Processing time for different values of the WIP factor.
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select the neutral strategy ONE (see Chapter 10). Table 9.1 shows the selected
with the total processing time of all tasks and the gain in relation to the strategy
ONE. The processing time for ONE was 53,984 time units. It is equal to the
behavior without different priorities. Here goes from 20 to 40 which covers the
whole controllable range. The same data are presented in Figure 9.8. As can be
seen in this figure, there are several minima in the processing time. The shortest
processing time is obtained at a WIP factor of approximately 28 parts. The total
gain compared with ONE is 7.9%.
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CHAPTER 10

Real-Time Monitoring

The event-based workcell controller is an integral part of the CARC. The ex-
ternal events generated sequentially by the cell controller and robots activate the
workcell’s devices and coordinate the transfer actions.

The discrete-event model of the workcell generates a sequence of future events
of the virtual cell in a given time window, called a trace. A trace of the behavior
of a device d is a finite sequence of events (state changes) in which the process
has been engaged up to some moment in time.

A trace in a time window is denoted as a sequence of pairs (state, time) (Zeigler,
1984; Jacak and Rozenblit, 1994; Jacak and Rozenblit, 1993), i.e.,

where
The events from a trace are compared with the current states of the real cell

and are used to predict motion commands for the robots and to monitor the process
flow. The simulation model is modified at any time the states of the real cell
change, and current real states are introduced into the model.

10.1. Tracing the Active State of Robotic Systems

Let be the active state of device d and and let

be a sequence of external virtual events in the time interval where
represents the moment in time when the device has changed to state s,

Fact 10.1.1. It is easy to prove that a trace in the interval has the
following form:

255
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and

where

Moreover, the following facts can be proved:

Fact 10.1.2. If then

and if

then

10.2. Monitoring and Prediagnosis

Let be the trace of virtual events of device d in the time interval
where is the moment of the last updating:

where and is the virtual state of the DEVS model of device d.
The monitoring process shown in Figure 10.1 is performed as follows:
Let sr(t) be the current real state of device d, modeled by a passive

discrete system, and let Then, the monitoring algorithm has the following
form:

If
for
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Figure 10.1. Monitoring of event trace.

then

call diagnosis

else

call updating

10.2.1. Updating

Let be the current real state of device d at time t, registered by the
passive automaton, and let  be a virtual state of the simulator
of device d at time

If and with where is the tolerance
time window, then synchronization is performed between the real and the virtual
cell.

An easy method for updating is to synchronize every device and robot of the
workcell. The device d generates external signals for the updating module of
the workcell controller, and the controller performs the so-called global updating
process, namely

Such a global updating process need not be necessary for each device, and
only parts of some devices may need updating. To specify such a local updating
process we introduce a causality relation between events.
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Let the predicate Occ(e) denote that the event e has occurred. The causality
relation is defined as follows:

and expresses that event e is one of the causes of event
The causality relation is reflexive, asymmetric and transitive.
Let Trace be the union of all device and

robot traces. Based on the above definition we can construct the set of devices and
robots for which the updating of the virtual process is needed.

Now we define the local updating process as follows:

Fact 10.2.1. It is easy to prove that the local updating process so defined is
equivalent to the global one, i.e., synchronization of devices and robots from the
set UpDate is equivalent to the synchronization of all devices and robots of the
workcell.

Moreover, we have the following result:

Fact 10.2.2. If then and synchronization is necessary only
for the device d.

The synchronization process is illustrated in Figure 10.2.

10.2.2. Prediagnosis

Let be the current real state of device d at time t, as registered by the
passive automaton, and let be the virtual state of the simulator
of device d at time

Let and with or where is the
tolerance time window.

In this case the diagnosis of the real cell is performed. To reduce the complexity
of such a process we use the same causality relation in order to eliminate devices
which do not need to be diagnosed. By we denote the set of events
which are direct causes of event i.e.,
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Figure 10.2. Updating process in the DEVS model.
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From the set we eliminate those events which were previously moni-
tored, i.e.,

Based on the set we find the devices or robots for which diagnosis is
needed as follows:

In addition, a taxonomy of failure types can be performed.
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Object-Oriented Discrete-Event
Simulator of Intelligent Robotic Cells

Chapters 7–9 present the discrete control of the computer assisted robotic cell
(CARC). The on-line control system of the CARC has a hierarchical structure,
with three main levels of control: the execution level, the coordination level,
and the organization level.

The execution level consists of device controllers. It executes the action
programs generated by the coordinator. The coordination level defines routing
of the parts from the logical and geometric perspectives and coordinates the
activities of workstations and robotic agents. The organizer accepts and inter-
prets related feedback from the executor and the coordinator and defines the
strategy of task sequencing to be executed in real time.

Chapter 9 proposed several strategies of task sequencing based on fuzzy
rules. To verify and test different task realizations, a model was prepared
that simulates the behavior of all the components of the robotic cell. The
coordinator level chooses the technological operations to perform based on the
priorities of the operations. These depend on the current strategy of operation
scheduling and are set up by the organizer.

The presented implementation of the simulator realizes the following ob-
jectives:

It defines various structures of the manufacturing cell and production
tasks performed in the cell (these data can be obtained from ICARS
system; see Chapter 6).

It defines the various control strategies produced by the fuzzy
rules-based decision-making system.

It changes the control rule during the simulation.

It writes various messages which make it possible to observe the
behavior of all the devices in the workcell.

It monitors the WIP (work-in-process) factor and the waiting time
during the simulation process and calculates various statistics.

261
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11.1. Object-Oriented Specification of Robotic Cell
Simulator

In implementing the robotic cell control simulator we consider a workcell
consisting of a set of workstations, stores, robots, and input/output conveyers
(see Chapter 2). Such a cell performs the production tasks.

The production task (see Chapter 4) relies on the realization of a pipeline
sequence of machining processes on parts. A machining process is an ordered
set of operations which have to be performed on a part. The first operation
is always performed by an input conveyer which brings a new part. The
last operation is always performed by an output conveyer which delivers the
finished part. The other operations are machining or storing. The machining
operations are performed by workstations and storing operations are performed
by stores.

A workstation might need special equipment in order to perform some oper-
ations. In this case it has to install this equipment. Installation or uninstallation
of equipment is called a setup.

All workstations and stores have an input/output buffer. Such buffers store
the parts before and after the operations are performed. The parts are trans-
ported between devices (workstations, stores, or conveyers) by robots. A robot
picks up a part from the buffer of the first device, moves it, and places it onto
the buffer of the second device. A robot can move parts only between devices
which are in its range. The logical and geometrical model of a workcell (see
Chapter 3) can be developed by the ICARS system (see Chapter 6).

11.1.1. Control and Input Files of the Workcell Simulator

On startup the discrete event simulator reads the main input file which
contains the description of the logical structure of the robotic workcell and the
specification of the production tasks to be performed in this cell.

11.1.1.1. Specification of the workcell resources. The first part of the main
input file specifies the logical structure of the workcell (see Chapter 3). It
contains the following lists of resources*:

1. List of workstations:

WORKSTATION nameworkstation numbercapacity

where
*Each resource has own logical name, which can be used in the main input file only once.
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nameworkstation logical name of the workstation
numbercapacity capacity of the buffer for parts

2. List of stores:

STORE namestore numbercapacity

where

namestore logical name of the store
numbercapacity        capacity of the buffer for parts

3. List of input conveyers:

INPUTCONVEYER nameinput

where

nameinput  logical name of the input conveyer

4. List of output conveyers:

OUTPUTCONVEYER nameoutput

where

nameoutput       logical name of the output conveyer

5. List of special equipment*:

EQUIPMENT nameequipment valueinstalltime valueuninstalltime

where

nameequipment logical name of the equipment
valueinstalltime      time needed to install the equipment on a

workstation

valueuninstalltime time needed to uninstall the equipment from a
workstation

*The equipment is installed on a workstation when it is needed. Only one piece of equipment
can be installed on a workstation at any given time. If any equipment other than what is
currently needed is installed, the previous equipment is uninstalled and the new equipment is
installed.
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6. List of robots:

ROBOT namerobot

where

namerobot   logical name of the robot

11.1.1.2. Specification of the robot movements. The second part of the
main input file specifies all possible robot movements. The current position of
the robot is defined by the name of the device where the robot actually is. At
the beginning of simulation the robot’s position is undefined, and is denoted
INIT. There are two lists which describe the robot’s motions:

1. List of robot’s range:

RANGE namerobot namedevice

where

namedevice  is the logical name of the device (workstation, store,
input/output conveyer) which is in the range of the robot
namerobot

2. List of robot’s movements *:

MOVEMENT namerobot namestart namefinish valueemptytime

where

valueemptytime  is the time of motion from the device† namestart         to
the device namefinish without any part in the robot’s gripper

valueholdingtime the time of motion from the device namestart      to
the device namefinish with a part in the robot’s gripper

*To avoid errors during the simulation all possible movements between devices within the range
of the robot should be specified.†
The initial robot position is denoted INIT.

valueholdingtime
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11.1.1.3. Specification of the technological tasks. The last part of the main
input file contains the specification of the production tasks which should be
concurrently performed in the workcell (see Chapter 4). Each task is defined
as follows:

TASK nametask numberoperations numberparts valuestarttime
valuefinishtime valuepriority

where

nametask  is the logical name of the task

numberoperations is the number of operations Which have to be performed
on each part

numberparts     is the number of parts which should be produced

valuestarttime            is the time at which the realization of the task should be
started

valuefinishtime is the time at which the realization of the task should be
finished

valuepriority is the priority of the task

The task declaration is followed by a list of all operations in the form

OPERATION nameoperation namedevice nameequipment valueplacetime
valueoperationtime valuepicktime

where

nameoperation is the logical name of the operation

namedevice is the logical name of the device which performs the operation
nameoperation

nameequipment is the logical name of the equipment or the keyword
“NONE” if no equipment is needed

valueplacetime is the time needed for a robot to place a part into the buffer
of the device namedevice

valueoperation is the time needed for the device namedevice to perform
the operation

valuepicktime is the time needed for the robot to pick up a part from the
buffer  of  the  device namedevice
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Figure 11.1. Example of a workcell layout.

The first operation has to be performed by the input conveyer and the last one  by
the output conveyer. The other operations have to be performed by workstations
or stores. For all operations performed by workstations without any special
equipment and for all operations performed by stores and input/output conveyers
the keyword “NONE” should be used instead of nameequipment.
Example 11.1.1. As an example of the input file we present here a simple
workcell which contains three workstations (W1, W2, W3), a store (S), an
input conveyer (IN), an output conveyer (OUT), and two robots (R1, R2). The
workstation W2 has special equipment EQ to perform certain operations. To
install or uninstall the equipment EQ the workstation W2 needs 2.5 units of
time. The capacity of the workstations’ buffers is 5, and the capacity of the
store’s buffer is 10. The range of the robot Rl includes the workstations W1
and W2, the store S, and the input conveyer IN. The range of the robot R2
includes the workstations W2 and W3, the store S and the output conveyer
OUT. The workcell layout is shown in Figure 11.1.

We assume that the time of movement between any two devices is equal
to 5 units if there is a part in the robot’s gripper. Otherwise the time of
movement between any two devices is equal to 3 units.

The workcell has to perform two production tasks and The pro-
duction process for task has four operations: O1A, O1B, O1C, O1D. The
production process for task has five operations: O2A, O2B, O2C, O2D,
O2E. The detailed data needed to specify the production tasks in the main
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input file are given in tables 11.1 and 11.2.
The main input file of the simulator has the following form:
WORKSTATION
WORKSTATION
WORKSTATION
STORE
INPUTCONVEYER
OUTPUTCONVEYER
EQUIPMENT
ROBOT
ROBOT
RANGE
RANGE

W1
W2
W3
S
IN
OUT
EQ
R1
R2
R1
R2

W1
W1
W1
W2
w2
W2
s
s
s
IN
IN
IN
INIT

R1
R1
R1
R1
R1
R1
R1
R1
R1
R1
R1
R1
R1

5
5
5
10

2.5 2.5

W1, W2, S, IN
W2, W2, S, OUT

MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT

W2
S
IN
W1
S
IN
W1
W2
IN
W1
W2
S
IN

3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5
5
5
5
5
5

MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT

R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2
R2

W2
W2
W2
W3
W3
W3
S

S
OUT
OUT
OUT
INIT
INIT
INIT

W3
S
OUT
W2
S
OUT
W2
W3
OUT
W2
W3
S
W2
W3
S

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

OPERATION
OPERATION
OPERATION
OPERATION

O1A
O1B
O1C
O1D

IN
W1
W2
OUT

NONE
NONE
NONE
NONE

0
1.0
1.0
0.5

15
35
20
10

1.5
1.0
1.0
0

OPERATION
OPERATION
OPERATION
OPERATION
OPERATION

02A
02B
02C
02D
02B

IN
W2
s
W3
OUT

NONE
EQ
NONE
NONE
NONE

0
1.0
1.0
1.0
0.5

15
25
5
40
10

1.5
1.0
1.0
1.0
0

TASK Z1 4 1000 0 1500 0.7

TASK Z2 5 600 500 2000 0.3

MOVEMENT
MOVEMENT
MOVEMENT

MOVEMENT
MOVEMENT
MOVEMENT

MOVEMENT
MOVEMENT
MOVEMENT
MOVEMENT

MOVEMENT

MOVEMENT

MOVEMENT

S
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Figure 11.2. An example of a monitor diagram showing the global WIP factor.

11.1.1.4. Monitoring process. The organizer uses the work-in-process (WIP)
factor and the mean waiting time as an input variables. In order to observe the
current values of these factors the monitor facility is implemented in the simulator.
When the simulator works in the monitor mode it draws a diagram showing the
current value of the WIP factor. It can draw a global WIP factor or a WIP factor for
each task separately. Similarly, it can draw the mean waiting time or the waiting
time for each task separately. An example of a monitor diagram is shown in Figure
11.2.

11.1.1.5. Statistics. The statistics calculation module of the simulator prepares
the statistics for the organization layer of the CARC. The following options are
possible:

robots This option allows the calculation of statistics about the robots. For each
robot the simulator calculates the total times of:

waiting
empty movements
holding movements
grasping parts

workstations This option allows the calculation of statistics about the
workstations. For each workstation the program writes the total time of:

waiting
machining
setting up

In addition, the program writes the mean time for filling of the workstation
buffer.

•
•
•
•

•
•
•
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stores This option allows the calculation of statistics about the stores. For each
store the program writes the mean time for filling of the store.

tasks This option allows the calculation of statistics about the tasks. For each
task the simulator calculates the number of finished parts and the number
of parts which are currently in process. If there are some finished parts, the
program writes the mean process time, the mean transport time, the mean
time of waiting for transport, and the mean time of waiting for machining.

movements This option allows the calculation of statistics about a robot’s
movements. For each robot the simulator writes the number of empty and
holding movements.

The graph module of the simulator makes it possible to draw graphs for, e.g.,
the WIP factor, the waiting time, the finished parts, and the productivity.

11. 2. Object Classes of Robotic Cell Simulator

To implement the simulator the discrete event system specification (DEVS)
(see Chapter 7) formalism was employed. In such a formalism one specifies the
basic models (atomic DEVS) from which larger ones are to be built and how these
models are to be connected together. Each object is modeled by an atomic DEVS;
the change of the object’s state is called an event. There are active and passive
states. If an object’s state is active, it changes in a self-acting way into another state
after the activation tune. A passive state can be changed into another state only
under the influence of external events. The application of the DEVS formalism in
workcell modeling is described in Chapters 7 and 8.

There are two basic classes of implementation. The first represents atomic
DEVS modeling of objects in the workcell and the second represents events. The
interdependence between an object’s states and events is presented in a graphic
way. Figure 11.3 explains the symbols used in the following sections. Subsequent
figures show the events and states of atomic DEVS for classes representing various
objects.

11.2.1. Classes

The implementation of the discrete event simulator makes extensive use of the
class concept of C++. There are classes for all important objects. Figure 11.4
gives a brief overview of the most important classes used in the implementation
of the CARC simulator. For each class we give the most important data members
and member functions.
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Figure 11.3. Symbols used to explain the interdependence between an object’s states and events.

11.2.1.1. Class Buffer. The class Buffer      is used to represent one place in a
buffer. The whole buffer is represented as an array of Buffer     (see Figure 11.5).

Data members:

Status — State of  the place in the buffer. The following values are admissible:
BuffReserved, BuffOccupiedLoading,
BuffOccupiedBeforeOper, BuffOccupiedDuringOper,
BuffOccupiedAfterOper.

PartPtr — Pointer to the part located in the buffer place.

GrippOcc — Moment when the buffer’s place became occupied.

Member function:

Buffer (constructor)—Constructs a new place in the buffer.

11.2.1.2. Class Equipment. The class Equipment     is used to represent the
special equipment needed to perform certain machining  operations. All objects
belonging to the class Equipment     are gathered in a list. An object is added to
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Figure 11.4. Class hierarchy in the discrete event simulator.
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Figure 11.5. States and events for each buffer position in the workstation (class Buffer     ).

the list when the constructor Equipment     is executed. It is removed from the list
when the destructor ~Equipment      is executed.

Data members:

FirstEquipment (static data) — Pointer to the first equipment in the list.

PrevEquipment — Pointer to the previous equipment in the list.

NextEquipment — Pointer to the next equipment in the list.

Name — Name of the equipment.

InstallTime — Time needed by the workstation to install the equipment.

UninstallTime — Time needed by the workstation to uninstall the equipment.

Member functions:

Equipment (constructor) — Constructs new equipment.
~Equipment (destructor) — Destroys equipment.

GetName — Returns the name of the equipment.

GetFirstEquipment (static function)—Returns the pointer to the first
equipment in the list.

GetNextEquipment — Returns the pointer to the next equipment in the list.
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GetInstallTime —Returns the time needed by the workstation to install the
equipment.

GetUninstallTime — Returns the time needed by the workstation to uninstall
the equipment.

11.2.1.3. Class Device. This is a base class for all devices in the workcell. All
objects belonging to the class Device  are gathered in a list. An object is added
to the list when the constructor Device  is executed. It is removed from the list
when the destructor~Device       is executed.

Data members:

Name —Name of the device.

FirstDevice (static data) — Pointer to the first device in the list.

PrevDevice — Pointer to the previous device in the list.

NextDevice — Pointer to the next device in the list.

Member functions:

Device (constructor) — Constructs a new object

~Device (virtual destructor) — Destroys an object.

GetName — Returns the name of the object.

DeviceKind (virtual function) — Returns the kind of object; there are the
following kinds of objects: IN_CONV, OUT_CONV, WORKST, STORE.

Shared — Returns a nonzero value if  the object is shared.

Reserve (virtual function) — Reserves one place in the object’s buffer for a part.

OccupyDevice (virtual function) — Occupies a place in the object’s buffer.

InitOperation (virtual function) — Initializes an operation on a part.

FreeDevice (virtual function) — Frees one place in the object’s buffer.

LW (virtual function)—Returns the number office places in the object’s buffer.
For the in/output conveyer this function always returns a nonzero value.
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11.2.1.4. Class Workstation. This class is used to represent objects performing
various machining operations. It is based on the class Device.    All objects
belonging to the class Workstation          are gathered in a list. An object is added
to the list when the constructor Workstation       is executed. It is removed from
the list when the destructor ~Workstation        is executed (see Figure 11.6).

Data members:

FirstWorkstation (static data)—Pointer to the first workstation in the list

PrevWorkstation — Pointer to the previous workstation in the list

NextWorkstation — Pointer to the next workstation in the list

Capacity — Capacity of the workstation’s buffer

Buf — Pointer to the first place of  the buffer The whole buffer is represented as
an array which has as many elements as the capacity. Each element of the
array is an object belonging to the class Buffer.

State —State of the workstation. The following values are admissible: WAIT,
UNINSTALL, INSTALL, WORK.

AktBuf —Number of active positions of the buffer.

AktEquipment — Pointer to the equipment currently installed on the
workstation.

Member functions:

Workstation (constructor) — Constructs a new object.
~Workstation (destructor) — Destroys an object.

GetFirstWorkstation (static function) — Returns the pointer to the first
workstation in the list.

GetNextWorkstation — Returns the pointer to the next workstation in the list.

GetCapacity — Returns the capacity of buffer.

StartWork — Starts an operation on the workstation.

FinishInstallation — Finishes equipment installation.

FinishUninstallation —Finishes equipment uninstallation.

FinishMachining — Finishes a machining operation.
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Figure 11.6. States and events for objects belonging to the class Workstation.

11.2.1.5. Class Store. This class is used to represent objects  that store parts
between machining operations. It is based on the class Device. All objects
belonging to the class Store    are gathered in a list. An object is added to the list
when the constructor Store  is executed. It is removed from the list when the
destructor ~Store       is executed (see Figure 11.7).

Data members:

FirstStore (static data)—Pointer to the first store in the list.

PrevStore — Pointer to the previous store in the list.

NextStore — Pointer to the next store in the list.

Capacity — Capacity of the store’s buffer.

Buf — Pointer to the first place of the buffer. The whole buffer is represented as
an array which has as many elements as the capacity. Each element of the
array is an object belonging to the class Buffer.

Member functions:

Store (constructor) — Constructs a new object.
~Store (destructor) — Destroys an object.

GetFirstStore (static function) — Returns the pointer to the first store in the list.
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Figure 11.7. States and events for each buffer position in the store (class Buffer    ).

GetNextStore — Returns the pointer to the next store in the list.

GetCapacity — Returns the capacity of the buffer.

StartWork — Starts a storing operation.

FinishStoring —Finishes a storing operation.

11.2.1.6. Class InputConveyer. This class is used to represent objects serving
new parts. It is based on the class  Device  . All objects belonging to the class
InputConveyer are gathered in a list. An object is added to the list when the
constructor InputConveyer    is executed. It is removed from the list when the
destructor ~InputConveyer is executed (see Figure 11.8).

Data members:

FirstInputConveyer (static data)—Pointer to the first input conveyer in the list.

PrevInputConveyer —Pointer to the previous input conveyer in the list.

NextInputConveyer — Pointer to the next input conveyer in the list.

PartPtr — Pointer to the part served by the input conveyer.

ListZad — Pointer to the beginning of the list which contains tasks serviced by
the input conveyer.

Member functions:
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Figure 11.8. States and events for objects belonging to the class InputConveyer.

InputConveyer (constructor) — Constructs a new object.
~InputConveyer (destructor) — Destroys an object.

GetFirstInputconv (static function) — Returns the pointer to the first input
conveyer in the list.

GetNextInputconv — Returns the pointer to the next input conveyer in the list.

GetNewPart — Starts the first operation on a new part.

11.2.1.7. Class OutputConveyer. This class is used to represent objects send-
ing finished parts. It is based on the class Device. All objects belonging to the
class OutputConveyer  are gathered in a list.  An object is added to  the list
when the constructor OutputConveyer    is executed. It is removed from the list
when the destructor ~OutputConveyer   is executed (see Figure 11.9).

Data members:

FirstOutputConveyer (static data) — Pointer to the first output conveyer in the
list.

PrevOutputConveyer — Pointer to the previous output conveyer in the list.

NextOutputConveyer — Pointer to the next output conveyer in the list.

PartPtr — Pointer to the part served by the output conveyer.

ListZad — Pointer to the beginning of the list which contains the tasks serviced
by the output conveyer.

Member functions:
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Figure 11.9. States and events for objects belonging to the class OutputConveyer.

OutputConveyer (constructor) — Constructs a new object.
~OutputConveyer (destructor)—Destroys an object.

GetFirstOutputconv (static function) — Returns the pointer to the first output
conveyer in the list.

GetNextOutputconv — Returns the pointer to the next output conveyer in the
list.

11.2.1.8. Class Robot. This class is used to represent the robots in the work-
cell. All objects belonging to the class Robot  are gathered in a list. An object is
added to the list when the constructor Robot    is executed. It is removed from the
list when the destructor ~Robot is executed (see Figure 11.10).

Data members:

FirstRobot (static data) — Pointer to the first robot in the list.

PrevRobot — Pointer to the previous robot in the list.

NextRobot — Pointer to the next robot in the list.

NOFreeRobots (static data)—Number of waiting robots.

Name —Name of the robot.

State — State of the robot. The following values are admissible: RobWait,
MoveEmpty, Pickup, MoveHolding, PlaceOn.

RobPosition — Pointer to the device that the robot is near.

Action — Structure which describes the current robot action. It has the
following data members:

PartPtr — Pointer to the part which is moved.
FromDev — Pointer to the device the part is moved from.
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ToDev — Pointer to the device the part is moved to.

ToBuf — Position number in the buffer of the goal device.

FromOper — The number of the operation last performed on the moved part.

ToOper — The number ofthe operation which has to be performed on the
part

Range — Pointer to the beginning of  the list of the devices which are in range of
the robot.

Movements — Pointer to the begin of  the list of  robot’s movements.

Member functions:

Robot (constructor) — Constructs a new robot.

~Robot (destructor) — Destroys a robot.

GetFirstRobot (static function) — Returns the pointer to the first robot in the
list.

GetNextRobot — Returns the pointer to the next robot in the list.

GetName — Returns the name of the robot.

InRange — Returns a nonzero value if the specified devices are in the range of
the robot.

InitAction —Initializes a new robot action.

InitEmptyMove — Starts an empty movement.

FinishEmptyMove — Finishes an empty movement.

InitPickUp — Starts a “pickup” action.

FinishPickUp — Finishes the “pickup” action.

InitHoldingMove — Starts a holding movement.

FinishHoldingMove —Finishes the holding movement.

InitPlaceOn — Starts a “place on” action.

FinishPlaceOn — Finishes the “place on” action.
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Figure 11.10. States and events for objects belonging to the classRobot .

11.2.1.9. Class Operation. This class is used to represent operations which
have to be performed on parts. All operations for a task are grouped in an array
(see description of the class  Task      ).

Data members:

Name —Name of  the operation.

Kind —Kind of operation.

Nodefined, GettingPart, SendingPart, StoringPart,
MachiningPart.

OperDevice — Pointer to the device which performs the operation.

OperEquipment — Pointer to the equipment which is needed to perform the
operation. If no equipment is needed, this pointer takes a value NULL.

SharedDev — Pointer to the first element of the list of shared devices belonging
to the same zone as the device carrying out the operation. This information
is used by the deadlock-avoidance algorithm.
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UnsharedDev — Pointer to the first element of the list of unshared devices
belonging to the same zone as the device carrying out the operation. This
information is used by the deadlock-avoidance algorithm.

PlacingTime — Time needed for the robot to place a part into the buffer of the
device which performs the operation.

MachiningTime — Time needed to perform the operation.

PickingTime — Time needed for the robot to pick up a part from the buffer of
the device which performs the operation.

Priority — The priority of the operation. This value is set by the organizer.

Member functions:

Operation (constructor) — Constructs a new object.
~Operation (destructor) — Destroys an object.

GetName — Returns the name of the operation.

GetMachiningTime — Returns the time needed to perform the operation.

GetPickingTime — Returns the time needed for the robot to pick up a part after
the operation is finished.

GetPlacingTime — Returns the time needed for the robot to place a part before
the operation is started.

GetDevice — Returns the pointer to the device which performs the operation.

GetEquipment — Returns the pointer to an equipment needed to perform the
operation.

GetPriority — Returns the current priority of the operation.

SetPriority — Sets a new value of the operation’s priority.

11.2.1.10. Class Task. This class is used to represent the production tasks to
be realized in the workcell. All objects belonging to the class Task    are gathered
in a list. An object is added to the list when the constructor Task   is executed. It
is removed from the list when the destructor ~Task    is executed.

Data members:

FirstTask (static data) — Pointer to the first task in the list.

NextTask — Pointer to the next task in the list.
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PrevTask — Pointer to the previous task in the list.

Name —Name of  the task.

NOOper — Number of operations which have to be performed on a part.

OperTabl — Pointer to the first element of the array which contains the
operations.

NOPart — Number of parts which have to be produced.

NOStartedPart —Number of parts the production process has been started on.
This value is calculated on-line during the simulation.

Member functions:

Task (constructor) — Constructs a new object.

11.2.1.11. Class Part. This class is used to represent the parts  which are
currently in process. All objects belonging to the class Part  are gathered in a
list. An object is added to the list when the constructor Part     is executed. It is
removed from the list when the destructor~Part      is executed (see Figure 11.11).

Data members:

FirstPart (static data) — Pointer to the first part in the list.

NextPart — Pointer to the next part in the list.

PrevPart — Pointer to the previous part in the list.

NOActiveParts (static data)—Number of parts with which the operation is
realized.

NOWaitingParts (static data)—Number of parts waiting for the next operation.

Name — Name of the part.

TaskPtr — Pointer to the task the part belongs to.

State — State of the part. The following values are admissible:
Performed, WaitForMachining, WaitForTransport,
Assigned, Transported.

ChwZm — Time instant the part’s state was changed.

WaitingForMachiningTime — Total time the part has been waiting for the
machining operation.

~Task (destructor) — Destroys an object.
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MachiningTime — Total time the machining operations have been performed
on the part.

WaitingForTransportTime — Total time the part has been waiting for
transport.

TransportTime — Total time the part has been transported.

Member functions:

Part (constructor) — Constructs a new part.

Part (destructor) — Destroys the part.

GetName — Returns the name of the part.

GetFirstPart (static function)—Returns the pointer to the first part in the list.

GetNextPart — Returns the pointer to the next part in the list.

GetActOper —Returns the pointer to the operation which is actually performed
on the part.

GetTask — Returns the pointer to the task the part belongs to.

StartMachining — Starts the machining operation on the part.

FinishMachining — Finishes the machining operation on the part.

11.2.1.12. Class Event. This is a base class for all EVENT_.... classes. All
objects belonging to the class Event are gathered in an ordered list. An object
is added to the list when the constructor Event  is executed. It is removed from
the list when the destructor Event  is executed. This class has a virtual function
Handle. This function is called by the event management system when the event
take place. After that the virtual destructor is called and the object is removed
from the list. If there is no object in the event list, the simulation is stopped.

Data members:

FirstEvent (static data) — Pointer to the first event in the list.

NextEvent — Pointer to the next event in the list.

PrevEvent — Pointer to the previous event in the list.

ActivationMoment — Tune instant the event was generated.

PassMoment — Time instant the event takes place.

Member functions:

~
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Figure 11.11. States and events for objects belonging to the class Part.

Event (constructor) — Constructs a new event.

Event (virtual destructor) — Destroys the event.

EventKind (virtual function) — Returns the kind of event.

Handle (virtual function)—Executed when the event takes place.

11.2.1.13. Classes EVENT_... Those classes are used to represent all events
taking place in the simulated workcell. All objects belonging to these classes are
based on the class Event. Each class represents a specific kind of event generated
by the objects which represent devices, robots, etc.

the event management system when the event take place. After that the virtual
destructor is called and the object is removed from the list. If there is no object in
the event list, the simulation is stopped.

~

These classes have a virtual  function   Handle.    This function is called  by
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11.3. Object-Oriented Implementation of Fuzzy Organizer

The coordinator of the workcell chooses the technological operations to be
performed based on the operations’ priorities. The priorities depend on the current
strategy of operation scheduling and are set up by the organizer. The organizer is
started during the simulation on discrete time instants.

The event management system of the simulator generates the  event EVENT_
Call_ORG periodically. When the event EVENT_Call_ORG  takes place, the
current state of the workcell is measured and the values of the input variables are
calculated. Next the main organizer’s procedure (ORG_Do) is executed. It returns
the priorities of the operations for each task.

The ORG_Do procedure is called with the following parameters:

Time—the current time instant of simulation

ParamPtr—the pointer to the vector of input variables

FinishedPtr—the pointer to the vector of finished parts

WaitingPtr—the pointer to the array of waiting times

The presented version of the organizer uses two input variables: (1) the work-
in-process (WIP) factor which is the number of parts currently in process, and (2)
the mean waiting time (MW), which is calculated as follows:

where Waiting_Time is the total waiting time for all parts finished since the last
call of the organizer, and Process_Time is the total processing time for all parts
finished since the last call of the organizer.

The vector of finished parts contains for each task the number of parts which
have been finished. The array of waiting times contains for each operation the
current total time the parts have been waiting for the operation.

The ORG_Do procedure returns the pointer to the array which contains the
actual priority for each operation.

11.3.1. Object-Oriented Fuzzy Organizer

This section describes rules for implementing the fuzzy organizer. The theo-
retical background of the organizer is given in Chapter 9 and (Jahn, 1996).

The organizer is responsible for keeping the load of the cell components at a
proper amount. Figure 11.12 shows the embedding of the organizer within the
simulator. While the simulator is running, the organizer accepts the state of the
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Figure 11.12. Role of  the organizer.

cell at discrete time instants. Its task is to define the priorities of the operations
for each task. These priorities are used by the execution level to determine which
part has to be moved from one machine to another or which operation has to be
performed if several parts concurrently require movement or processing.

The process of determining these priorities is influenced by

the state of the cell — measured by several input variables

the task specifications — given by the simulator’s main input file

the strategies selected by the rule database — specified by the organizer’s
control file

The rule database is organized as a fuzzy logic rule database according to
Chapter 9. Its structure is defined in the following subsections.

The effect of holding the load of the cell in a specific range is that the flow of
parts is regulated, which results in optimized throughput and therefore a shorter
completion time for the tasks. Prior to this optimization step the desired values of
the input variables need to be determined. This is given in Section 11.3.3.1.

11.3.1.1. Control  files of  the organizer. On startup the organizer reads the
main input file of the simulator and the default control file.* While the simulator
is running the user can switch interactively to an alternate control file.

Syntax of  the control  file. The structure of the control file using EBNF is as
follows†:

* Both files are specified on the command line when the simulator is started.
† Subscripted text is to be interpreted as semantic context; it aids in understanding the meaning of the

symbols.
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control-file = input_sets strategies rules closing.
input-sets = "INPUT_SETS" iset {iset}.
iset = "BASE" namebaiant "KEY" nunberkey ling_block {ling_block}.
ling_block = "LING" nameling ling_val {ling_val}.
ling_val = valuebaseset valueµ.
strategies = "STRATEGIES" strat {strat}.
Strat = "JIT" | "POSH" | "MS" | "SOR" | "LOR" | "ONE" | "MW".
rule = namerule ":" "IF" cond {"AND" cond} "THEN" strat.
cond = namebaseset "IS" nameling.
closing = weights_distance [weight_dprio] report_rate.
weights_distance = "WEIGHT_PARTS" number "WEIGHT_TIME" number.
weight_dprio = "WEIGHT_DPRIO" number.
report_rate = "REPORT" number.
number =["+"|"-"] digit {digit}.
value = number ["." {digit}].
name = alpha {alpha | digit | "-"}.
alpha = "a"|"b"|"c" ... |"z" | "A"|"B"|"C" ... |"Z".
digit = "0"|"1"|"2" ... "9".

The control file starts with the definition of input sets in which linguistic
variables are defined on the input variables which reflect the state of the cell.
namebaseset   acts as a label to refer to this variable in the rules below. The
expression numberkey couple namebaseset with  a  parameter  passed  from  the
coordination level to the organizer. Table 11.3 shows the parameters available.* To
every input variable a set of linguistic variables is assigned using ling_block.
Such a definition consists of several pairs of numbers which specify the edges of
the graph. Linear interpolation is used between the edges. Values outside the
defined range are assumed to have the same membership function as the nearest
defined edge. Figure 11.13 shows the graphical representation of the definition
given in table 11.4. This defines a linguistic variable good on a base set WIP using
parameter zero.

11.3.1.2. Strategies. The definition of input sets to be used in the rule base
is followed by a declaration of the strategies to be used in the rule base. Seven
strategies are known by the organizer.

Strategies assign a value to every operation of the production routes. These
values are interpreted as the membership function of operations. The abbreviations
used to identify these strategies are as follows:

*In addition, the average waiting time for every operation is also passed. This is used by the strategy
Minimum Waiting Time (MW).
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Figure 11.13. Graphical representation of a linguistic variable.

ONE The value 1 is assigned to every operation. In this case every operation has
the same priority. This simulates the behavior without control by the
organizer. It is useful for testing purposes and in the case where the state of
the cell is in a desired state where no intervention is necessary.

JIT Parts that are almost finished by the cell are preferred by this strategy:

where oi denotes operation i of a task, and L denotes the length of the
production route under consideration.

PUSH Parts that are at the beginning of their production route are preferred:

MS The operation with the shortest setup time is assigned a membership of 1.
Other operations have a lower membership according to their setup time.
These membership functions are built on startup and therefore do not
regard the current state of the workstations.
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MW The waiting time of operations passed by the coordination level is used as a
membership function directly. Operations with long waiting times are
preferred. See also Section 9.2.

SOR The operation with the shortest processing time is assigned a membership
of 1. Other operations get lower membership functions according to their
processing time.

LOR The opposite of SOR. Long operations are preferred.

For every strategy declared in the input file the organizer allocates a vector
of membership functions for each task. If there are many tasks, then omitting
strategies from the strategies clause that are not used in the rules base can
save a notable amount of main memory.

11.3.1.3. Rule base. The main purpose of the control file is the definition of
the rules base. It combines the linguistic variables from the input_sets clause
and the declared strategies to form a mixed strategy according to the current state
of the cell. If the rule base is formed properly, the resulting mixed strategy pulls
the current state to the desired one.

The rules base consists of a number of rules which select strategies for concrete
values for the input variables. For details of evaluating and combining rules see
Chapter 9. In a rule not every input variable must occur. Furthermore, the author
of the rules base is responsible for ensuring that all cases that may happen during
simulation are covered by rules.

11.3.1.4. Closing block. The closing block contains constants that  define
parameters for calculating the realization state of a task. For details see Section
9.2. The influence of the dynamic priority, which itself is based on the parameters
discussed above, is regulated by the clause weight_dprio. Selecting zero
eliminates the dynamic priority from the resulting priorities for the operations.
This is useful for tuning the linguistic variables where the realization time for the
task is not regarded.

The last clause is named report_rate. It determines how often reports are
generated from the organizer into the output files. It acts as a divisor to the number
of calls to the organizer.

11.3.2. Object Classes for Fuzzy Organizer

The implementation makes extensive use of the class concept of  C++. Classes
exist for the following objects:

elements from the main input file

– equipment

•
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–  workstation
–  operation

–  task

elements from the control file

– input set

– linguistic variable
– strategy

– rule

The class Task includes vectors of the current membership values for every
operation within a task. All of the above objects are gathered in lists.

The lexical analyzer is built with a base class BASELEX which contains meth-
ods to read and print lines from an input set. The class SYMLEX is a refinement of
BASELEX and introduces methods for lexical analysis such as finding symbols,
maintaining a names list, and recognizing and skipping comments.

11.3.3. Determining the Optimal Values of the Fuzzy
Organizer Parameters

11.3.3.1. Tuning. Finding proper strategies and parameters for the control file
is essential for tuning the behavior of the cell. This task is broken down into
several subtasks:

1. Determine input parameters.

2. Define linguistic variables on these parameters.

3. Find strategies for combinations of the linguistic variables.

4. Determine the optimal values of the input parameters since they are
regulated by the controller.

5. Set the data of the linguistic variables according to the optimal values.

11.3.3.2. How strategies work. Strategies pull the state of the cell (reflected
by the input parameters) to proper values. Figure 11.14 shows an example with two
input parameters and three linguistic variables defined on every input parameter.
The goal is to keep the values of the input parameters in the middle range (criterion
1 is good, criterion 2 is good). For this reason we need to place strategies on the
other positions that pull the parameters toward the middle position as is done in
the upper left corner of Figure 11.14 (low, high). Sometimes it is difficult to find a
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Figure 11.14. How strategies work.

strategy that points exactly to the middle position. In this case another strategy can
be selected that goes to other positions, which then point to the middle position as
shown in the upper right comer,

The middle position (good, good) reflects the desired state of the cell. So we
place a neutral strategy (like ONE) on this position, where the same priority is
assigned to all operations.

To find the desired values of the input parameters we first determine the
bandwidth of these parameters. As an example, the upper bound of WIP depends
on the capacity of the magazines and workstations, and on the deadlocks that can
occur when production routes loop in the cell or tasks share the same workstations.
The lower bound of WIP is given by the logic of the coordination level: If a part is
waiting for transfer or processing and the desired task can be performed and there
is no other part waiting for the same task, this part is selected not regarding the
current priority of the part.

The lower bound of WIP can be observed by running the simulator with a
control file like the following:

INPUT_SETS
BASE wip key 0

LING any 0 1
STRATEGIES JIT
rule_1:    IF wip IS any THEN JIT

WEIGHT_PARTS 1000
WEIGHT_TIME  1000

This selects the strategy JIT for all values of WIP and therefore loads as few
parts as possible into the cell. The upper bound of WIP can be found by selecting
the strategy PUSH for all values of WIP.

The optimal value of WIP which will result in a minimal processing time
of all tasks lies somewhere within the resulting bandwidth. It can be found by
experiment.
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11.3.3.3. Data for linguistic variables. The data that define the linguistic
variables set the desired state of the cell. If the rules select strategies that point
to the proper direction, we can select any load of the cell within the controllable
bandwidth only by changing the data that define the linguistic variables. Again
the right shape of these variables can be determined by experiment.

11.3.4. Calculation of Priorities

The priority of an operation is determined by the output of the rule base, the
general priority of the task, and the dynamic priority of the task (see Section 9.2).
For any operation its priority  is built as

where

denotes the priority of the operation according to the rule base

is the static priority of the task given in the main input file

is the weight for the dynamic priority given by the entry
WEIGHT_DPRIO  in the control file; its default is 1

denotes the dynamic priority of the task at state i

The priority according to the rule base is built on the membership values
of the strategies and the weights for the strategy of rule r,

Here a weighted average is used. This guarantees smooth switching from one rule
to another when input parameters change with time.

The dynamic priority at state i is calculated as

where

denotes the dynamic priority at the former state i – 1

is the distance of the task at state i from its conclusion



Object-Oriented Discrete-Event Simulator of Intelligent Robotic Cells 293

This distance of a task to its finishing state is calculated as

where

denotes the current time (at state i)

is the start time of the task given in the main input file

is the finish time of the task, also from the main input file

is the whole number of parts to be processed for this task (main input
file)

is the number of parts already finished by the cell at the current time

denotes the weight of the parts term given in the WEIGHT_PARTS entry
of the control file

is the weight of the time term given in the WEIGHT_TIME entry of the
control file
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Index

Acceleration, trajectory planner, 127
Acceptor, workcell state recognizer, 211–213
Action interpreter, 225, 237–240
Actions, see also Execution level

learning for prediction and coordination,
230–233

planning, 6, 14, 225; see also Planning cell
actions

Active learning, 203, 228
Active mode

monitoring, 255–256
neural model of robot dynamics, 109–112

Active model, workstation, 158–162
Advance, sensor model, 181, 182
Agent, event-based modeling and control of,

165–169
Allocation relation, 35, 36
Assembly tasks, 34, 35–40
Attractive potential, fine motion planning, 129
Automatic planning

action, 14
collision-free path planning, 147
task-level, 54

Autonomous agents. 10, 15–17
classification of, 2
distributed control, 219–221

Backpropagation network, 60, 115–117, 205
Behavior of workcell, 17–19
Bidirectional search, trajectory planning, 122–

123, 127
BRAEN, 40

Calibrated kinematic model, 72–74
Calibrated neural model, computed torque con-

troller, 207
Calibration

kinematics, measurement data interface, 150
neural model of robot dynamics, 109–118
neural network kinematic model, 67–72

CAP/CAM systems, 102, 141–151
HyRob system structure and design process

148–151
intelligent design with ICARS, 143–148
structure of ICARS, 141–143

CARC (computer-assisted robotic cell) control
11–12

Cartesian space
collision-free robot search process, 97
discretization of, 56
kinematic matrix expressions, 66–67
path planning, 82–83

Category neurons, 229–230
Cell controller, 4, 12; see also Control system
Cell design: see CAP/CAM systems: Workcells
Cell level of control, 3, 12, 13
Centralized agent, 15–17
Centralized robotic system coordinator, 213–219
Circular-wait-deadlock, 43, 44
Classification of workcells, 1–2
Collision-free condition, 215
Collision-free path planning, 55–99, see also

Path planner
Groplan, 147
optimal trajectory of motion, 119–123

Collision-free path search, 77–78, 91–97
Collision-free robot configurations, 93–97
Collision relation, 214–215
Common-sense rule, 115–116
Communications networks, 3
Computational geometry modeling methods,

26–32
Computed torque controller, 205, 206–209
Computer-assisted robotic cell (CARC) control

task, 11–12
Conceptual state space, 225, 227–230
Concurrent process planning, 41
Conditional path planning, 128–129
Configuration feasibility testing, 78
Constant-velocity submodes, 110
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Context-sensitive networks, 60
Continuous track calculation, 98–99, 100
Control files, object-oriented implementation

of fuzzy organizer, 286–287
Control system, 3, 4, 10, 12–15, 23; see also

Execution level; Organization level
of system

ICARS, 141–148, 149, 151
machining task planning, 40
multiagent system: see Coordination of

multiagent system
robotic workcell components, 9
unit module, path planner in presence of un-

known objects in environment, 188
Control task, computer assisted robotic cell

(CARC), 11–12
Convergence, path planning, 85–86
Coordination level of control, CARC, 7, 12, 13
Coordination level of knowledge, 14
Coordination of multiagent system, 211–240

acceptor, workcell state recognizer, 211–213
centralized, 213–219
distributed, 219–221
lifelong-learning-based, real-world systems,

221–240
action interpreter, 237–240
conceptual state space, 227–230
learning of agent actions for prediction

and coordination, 230–233
Q-learning-based action planner, 233–237
structure, 223–227

Coordinator, centralized, 15, 213–219
COPLANNER, 40
Cost

organization inputs, 242
robot motion and, 120
time–trajectory planning, 122

Cubic spline interpolation, 127

Deadlock, 43–46
path planner in presence of unknown objects

in environment, 188
sensor model, 181, 182

Decision making, organization level, 246–253
Decision system, 171, 188

path planner in presence of unknown objects
in environment, 188

sensor model, 181–182
Decomposition approach, assembly–disassem-

bly sequences, 39–40
Decoupled network topology network, 62
Deforming condition, grasp, 138
Denavit–Hartenberg model, 72, 104, 149

Design systems: see CAP/CAM systems
Detour, sensor model, 181
DFA, 40
Diagnostic system, 18
Direct kinematics

sinusoidal neural network, 64–67
training module, 150–151

Disassembly sequences, 39
Discrete event system (DEVS), 18–19; see also

Event-based modeling; Object-
oriented discrete-event simulator

control system creation, 155–157
distributed control, 219–221
event-based modeling and control, 157–164
monitoring and updating, 256–259

Discrete model of robot kinematics, 57–58, 127
Discretization of space, 56–57
Distance computing problem, 27–31
Distributed controls, 16–17
Distributed coordination of multiagent system,

219–221
Duration of movement, 175, 192
Dynamic control, 15, 17

machining task planning, 40
optimal trajectory of motion, 119, 120, 121
time–trajectory planning, 121–122, 126; see

also Time–trajectory planner
Dynamic linearization module, neural network-

based executor, 203–205

Encoder resolution, neural network kinematic
model calibration, 69

Equilibrating forces, object-gripper system,
135–136

Euler–Lagrange equation, 101, 103–107
Evaluation function, time–trajectory planning, 123
Event-based modeling

agent, 165–169
motion planning, 176–182
production store, 164–165
workstation, 157–164

Event coordination, 14
Excluded surfaces, 134
Execution level, 7

agent action in presence of uncertainty, 203–
209

CARC, 12, 13
event-based modeling and control of agent,

165–169
event-based modeling and control of work-

station, 157–164
event-based modeling of production store,

164–165
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Execution level (cont.)
lifelong learning-based coordinator, 227
neural and fuzzy computation-based agents,

169–209
intelligent and reactive behavior in pres-

ence of uncertainty, 172–176
multisensor image processing-based world

modeling and decision-making sys-
tems, 176–182

on-line geometric path planner in presence
of unknown object, 182–189

on-line time trajectory planner, 189–203
reactive executor of agent action in pres-

ence of uncertainty, 203–209
structure of workcell, 170

Execution level of knowledge, 14
Extended model, neural kinematic, 70
External selection rule

coordination of nonautonomous actions.
217–218

distributed control, 220–221

Facility level of flexible manufacturing sys-
tems, 3

Feedback network, update rule, 89, 90
Feedforward network topology, 60
Final state machine model of robot kinematics,

74–77
Fine motion planner, 128–131
Finger sensors, 140
Finite state machine model of robot kinemat-

ics, 74–77
First free buffer strategy, 242
Flexible manufacturing systems (FMS), 2–3,

9–12
Flow time, 41
Force, grasp, 137–138
Force factor, gripper, 138–139
Forward kinematics, 60–63
Frames Table, 55, 157
Friction condition, grasp, 137
Fundamental plan

lifelong learning-based coordinator, 224
workcell action, 41

fuzzyART and fuzzyARTMAP algorithm, 228
Fuzzy computation-based agents, 169–209

intelligent and reactive behavior in presence
of uncertainty, 172–176

multisensor image processing-based world
modeling and decision-making sys-
tems, 176–182

on-line geometric path planner in presence
of unknown object, 182–189

Fuzzy computation-based agents (cont.)
on-line time trajectory planner, 189–203
reactive executor of agent action in presence

of uncertainty, 203–209
Fuzzy organization level, 7
Fuzzy organizer, object-oriented simulation,

285–293
Fuzzy reasoning, organization level, 242–246
Fuzzy tuner, time–trajectory planner, 195–203

Gain, fuzzy decision making, 251, 252, 253
Gear behavior, 69
Generalization algorithm, neural implementa-

tion of, 228–229
Geometrical model, 24–26, 27, 32
Geometric control, 15

machining task planning, 40
time–trajectory planning, 126

Geometric path planning
conditional, 128–129
in presence of unknown object, 182–189

Global methodology of obstacle avoidance, 56
Global state of workcell statistics, 245
Global updating, 257–258
Gradient algorithm, 85–86, 94, 95
Graphics, GRIM module, 141, 142; see also

CAP/CAM systems
Graphics modeling, 26
GRASP, 40
Grasping/gripper, 131–140

grasp learning, 132–133
optimal grasping forces, 133–140
selection of mating surfaces, 133–135
stability of object in, 135–136
symbolic computation-based, 132–133

Grim module, 141, 142, 143, 144
GROPLAN, 142, 143, 145–148

Heuristic function
monotone restriction and, 80–82
time–trajectory planning, 123–126

Hierarchical architecture of flexible manufac-
turing systems, 3. 4

Hierarchical control, 9, 10, 12–15
Hopfield-type networks, 60
HyRob system structure and design process.

148–151

ICARS
HyRob system, 149, 151
intelligent design with, 143–148
structure of, 141–143

If–then rules, 195–203, 246
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Inertia submode, 110
Intelligent controller, 171
Intelligent control of autonomous robotic sys-

tem (ICARS): see ICARS
Intelligent and reactive behavior in presence of

uncertainty, 172–176
Intelligent robotic workcell, 2–7, 9–12

centralization versus autonomy, 15–17
components and definitions, 9–12
distributed control of, 16–17
hierarchical control, 12–15
structure and behavior of, 17–19
workcell, 9–12

Interaction forces, object-gripper system, 135,
136–137

Internal selection rule, 214–216
Intersection detection problem, 31–32
Inverse dynamics, neural network-based execu-

tor, 206–209
Inverse kinematics, 60–63, 82–90; see also

Neural networks
HyRob system, 151
with on-line obstacle avoidance, 185–186
path planner, 127

in Cartesian space, redundant manipula-
tors, 86–92

in presence of unknown objects in envi-
ronment. 188–189

sensor data combination algorithm, 178–179

Jacobian
calibrated kinematic model application to,

72–74, 75
inverse kinematics builder HyRob system,

151
path planning in Cartesian space, 83
sigmoid neural network-based training, 63,

64–67
Jerk minimization, 193, 199, 200, 201, 202,

203
Job, defined, 42
Joint motion

execution level of system, 175
limits, computation of, 191–192

Joint space discretization, 56
collision-free robot search process, 96
path planner structure, 80–81

Joint space position calculation, 174–175
Joint velocity, 82–83
Just-in-time strategy, 242, 244

fuzzy organizer, 288, 290
rule base, 247

Kinematic models, 57–58
neural network, see also Neural networks

calibration of, 67–72
symbolic computation-based neural model

of, 67–69, 149
successor set generation, 92
synthesizer, 150
training module, 150–151

Knowledge base, 10, 14
Knowledge bottlenecks, 223

Layout modeling, 26, 32, 144
Learning, see also Neural networks

fuzzy decision making, 249
neural model of robot dynamics, 109–118

LEGA, 40
Lifelong-learning-based systems, real-world,

221–240
action interpreter, 237–240
conceptual state space, 227–230
learning of agent actions for prediction and

coordination, 230–233
Q-learning-based systems, action planner,

233–237
structure, 223–227

Linear approximation method, sensor model,
178, 179, 180

Link parameter errors, 69
Local area networks, 3
Local methodology of obstacle avoidance, 56
Local updating, 258
Logical control, 14, 40
Logical model, 24, 32
Lyapunov function, 88, 186–187

Machine model, final state, 74–77
Machine selection, 4, 1 1
Machining

assembly task specification, 37
control systems, 4
defined, 33
flexible manufacturing system architecture, 3
operations design, 40
planning cell actions, 34–35, 40–43

Manipulator models
position error reduction, 72
sensor data combination, 178

Material handling system, 9
Material selection, 4
Materials flow, 5
Mathematica, 149
Maximum force condition, grasp, 137–138
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Maximum processing time, 289
Maximum wait time strategy, 226, 247, 289
Measurement data interface, robot kinematics

trainer, 150
Minimal energy method, 130–131
Minimum processing time strategy, 289
Minimum setup time strategy, 242, 244, 247, 288
Minimum transfer cost strategy, 242
Model-based approach, robot group control, 17
Modeler, lifelong learning-based coordinator, 225
Modeling of workcell, 4; see also Virtual ro-

botic cells
Monitoring, 4, 7, 255–261

object-oriented simulator, 268
on-line, 18
prediagnosis, 256–261
tracing active state of system, 255–256

Monotone restriction, 80–82
Motion controller, 4, 192

execution level, 172–175
neural network dynamics, passively ac-

quired, 203–205
Motion planning, 5, 6, 7, 19

control system problems, 11
GROPLAN, 142, 143
object-oriented simulator, 264
off-line: see Robot motion, off-line planning

Motion track, search technique for, 78–80
Multiagent system coordination, 16: see also

Coordination of multiagent system
Multilayer network topology, 60
Multisensor systems

data combination, path planning, 188–189
neural and fuzzy computation-based, 176–182

Network, 10, 23
Neural gradient algorithm, 89, 90
Neural models of robot kinematics, 57–58
Neural networks

execution, 169–209
intelligent and reactive behavior in pres-

ence of uncertainty, 172–176
multisensor image processing-based world

modeling and decision-making sys-
tems, 176–182

on-line geometric path planner in presence
of unknown object, 182–189

on-line time trajectory planner, 189–203
reactive executor of agent action in pres-

ence of uncertainty, 203–209
HyRob system, 151
kinematic model calibration, 67–72

Neural networks (cont.)
kinematics output, 150
path planning, conditional, 128–129
path planning in Cartesian space, 82–99

continuous track calculation, 98–99
inverse model of robot kinematics, 82–90
search for collision free path, 91–97
state transition of system, 91

path planning in joint space, 58–82
discrete model of robot kinematics, 58–74
finite state machine model of robot kine-

matics, 74–77
search strategies for collision-free robot

movements, 77–82
path planning in presence of unknown ob-

jects in environment, 182–189
inverse kinematics with on-line obstacle

avoidance, 185–186
Lyapunov function, method based on,

186–187
one-step path planning based on multisen-

sor data combination, 188–189
steepest descent method, 187
virtual points, 184

tuning, backpropagation algorithm, 115–117
Newton equations, 101
Nominal kinematics, 69
Non-autonomous agents, 1, 10
Null rule, 116–117

Object modeling, 25
Grim module, 144
virtual cell modeling, 25

Object-oriented discrete-event simulator, 261–293
fuzzy organizer implementation, 285–293

object classes, 289–290
optimal values, 290–293
organizer, 285–289

object classes, 269–285, 289–290
buffer, 270, 271
device, 273
equipment, 270, 271, 272–273
event, 283–284
InputConveyer, 276–277
operation, 280–281
OutputConveyer, 277–278
part, 282–283
Robot, 278–279, 280
store, 275–276
task, 281–282
workstation, 274, 275

specification, 262–269
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Objects/obstacles, environmental
neural network-based path planner, 182–189
sensor model, 181–182

Obstacle avoidance, 56
Off-line planning, 171; see also Robot motion,

off-line planning
Off-line simulation, 17
One-step path planning based on multisensor

data combination, 188–189
One-step trajectory planner, 190–195
On-line obstacle avoidance, 185–186
On-line planning

geometric path planner in presence of un-
known object, 182–189

time trajectory planner, 189–203
Operating plan, 4, 5
Operational control, 14
Optimal grasping forces, 133–140
Optimization, time–trajectory planning, 122
Organization level of knowledge, 14
Organization level of system, 7, 241–253

control, 12, 13
fuzzy reasoning, 242–246
rule base and decision making, 246–253
task of organizer, 241–242

Organizer input fuzzification, 245
Output function g modeling, 59–60
Overshoot minimization, 194, 199, 203

Parameter tuning, 113–114
Partial derivative computation, 102
Partially autonomous agents. 1, 10
Passive learning

computed torque controller, 207, 208, 209
generalization algorithm implementation, 228
neural network-based executor, 203–205

Passive mode, neural model of robot dynamics,
109, 112–113

Passive model, workstation, 163–164
Passive state register of robot model, 168–169
Path planner, 127, 147

execution level of system, 171
motion controller, 172–173
segment planning step, 173–175

of manipulator, 55–99
neural and discrete models of robot kine-

matics, 57–58
neural network-based planning in Cartesian

space, 82–99; see also Neural networks
neural network-based planning in joint

space, 58–82; see also Neural networks
optimal trajectory of motion, 119–123

Path planner (cont.)
neural network and fuzzy computation-based in

presence of unknown object, 182–189
inverse kinematics with on-line obstacle

avoidance, 185–186
Lyapunov function, method based on,

186–187
one-step path planning based on multisensor

data combination, 188–189
steepest descent method, 187
virtual points, 184

Pause, sensor model. 181, 182
Penalty function, 80, 93
Performance function, 94
Planning, 4, 17, 18; see also Execution level;

Path planners; Robot motion, off-line
planning

Planning cell actions, 33–54
methods for, 38–43

assembly task, 38–40
machining, 40–43

on-line: see On-line planning
production routes, fundamental plans of ac-

tion, 43–54
process route, algorithm for, 48–50
process route interpreter, 50–54
route planning, quality criterion, 43–48

task specification, 33–38
assembly, 35–37
machining, 34–35

Polyoptimization problem, 194
Potential field method, 129–130
Precedence relation, 34, 35, 36
Prediagnosis, 256–261
Priority-based start-stop synchronization, 215,

216
Process definition, 3
Processing steps, 4
Processing time, 41, 289
Process planner, 19, 141, 142, 143, 144
Process route, 40

algorithm for, 48–50
interpreter, 50–54

Process sequencing, 4
Product flow simulation, 5
Production route planning, 43–54

machining task, 42
process route, algorithm for, 48–50
process route interpreter, 50–54
quality criterion, 43–48

Production store, event-based modeling of,
164–165
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Production system, robotic workcell compo-
nents, 9

Production time, organization inputs, 242
Productivity, organization inputs, 242
Programming, 5, 14
Projection method, sensor model, 179, 180
Proportional excitement rule, 116
Pseudoinertia matrices, 104, 105, 106
PUMA-like robot

one-step trajectory planning, 197
robot dynamics modeling, 102–107

Push strategy, 242, 244
object-oriented implementation of fuzzy or-

ganizer, 288
rule base, 247

Q-learning-based systems, action planner, 233–
237

Quasistatic submode, 110

Ranging, sonar, 177–178
Reactive behavior in presence of uncertainty,

172–176, 203–209
Real cell, 23
Real-time monitoring: see Monitoring
Recall mode, 230
Recurrent loop, 29
Redundant manipulators, path planning in Car-

tesian space, 86–92
Registration, workstation model, 163–164
Resource allocation policy, route planning, 43–46
Resource management, 4
Resources, object-oriented simulator, 262–264
Reward function, Q-learning, 234
Robot group cooperation, 16–17
Robotic workcells: see Workcells
Robot motion, off-line planning, 55–140

collision-free path planning of manipulator,
55–99

neural and discrete models of robot kine-
matics, 57–58

neural network-based planning in Carte-
sian space, 82–99; see also Neural
networks

neural network-based planning in joint
space, 58–82; see also Neural networks

fine motion, 128–131
grasping, 131–140
time trajectory planner, 99–126, 127

modeling of robot dynamics, 99, 101–107
neural network-computed dynamics for,

121–126, 127

Robot motion, off-line planning (cont.)
time trajectory planner (cont.)

optimal trajectory planning problem, 118–
121

symbolic and neural network-computed
robot dynamics, 107–117

Route planning
production: see Production route planning
Taskplan, 145

RPY angles, 73
RPY coordinates, 66–67, 74
Rule base, organization level, 246–253

Scheduling, 4
Scheduling fuzzification, 244
Search strategies, 91–97

collision-free robot movements, 77–82
for collision-free robot movements, 77–78
time–trajectory planning, 122–123

Search technique for motion track, 78–80
Selection rules, coordination of

nonautonomous actions, 214–218
Sensor data combination, 178–181
Sensors

conceptual states, 232, 233
grasp planning, 140
multisensor image processing-based world

modeling and decision-making sys-
tems, neural and fuzzy computation-
based, 176–182

one-step path planning based on multisensor
data combination, 188–189

Shortest processing time strategy, 289
Sigmoidal neural network approach, 60–63
Similarity radius, 228
Simple model, neural kinematic, 70
Simulation, see also Virtual robotic cells

fuzzy decision making. 249, 250
GRIM, 141, 142, 143, 144
object-oriented: see Object-oriented discrete-

event simulator
off-line, 17
on-line, 18

Sinusoidal function, 108
Sinusoidal neural network, direct kinematic

modeling, 64–67
Sonar ranging, 177–178
Stage function, machining process, 42
Start–stop synchronization, priority-based, 215,

216
State transition function, 91
Statistics, object-oriented simulator, 268–269
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Status functions, machining process, 42
Steepest descent method, 187
Successor set generation, 92
Surfaces, unreachable, 134
Symbolic calculation-based grasp learning,

132–133
Symbolic calculation-based grasp planning, 140
Symbolic calculation-based kinematics, 67–69,

149
Synchronization, workstation model, 164

Task fuzzification, 243
Task management, 3, 4
Taskplan, 144

ICARS, 141, 142
route planning, 145

Task planning, 5
Tasks

assembly and machining, 33–38
object-oriented simulator, 265–267
time–trajectory planning, 126

Technological operations, machining task spec-
ification, 34

Technological task, 23
Technological task fuzzification, 243
Thermal effects, neural network kinematic

model calibration, 69
Time planning

Groplan, 147–148
organization inputs, 242

Time–trajectory planner, 99–126, 127
Groplan, 147–148
modeling of robot dynamics, 99, 101–107
neural network and fuzzy logic-based, 189–203

fuzzy tuner, 195–203
one-step trajectory planner, 190–195

neural network-computed dynamics for,
121–126, 127

on-line, 189–203
optimal trajectory planning problem, 118–121
symbolic and neural network-computed ro-

bot dynamics, 107–117
Tooling, machining task planning, 40
Tool selection, 4
Torque controller, 205, 206–209
Tracking, sensor model, 181
Tractability bottlenecks, 223
Training mode, 230
Training module, direct kinematics, 150–151
Training pattern preparation, grasping forces,

139–140

Trajectory planning, 127, 192–193; see also
Time–trajectory planner

execution level of system, 171, 175–176
one-step, path planner connection, 189
optimal motion, 119–123

Tuning
fuzzy organizer optimization, 290
neural network-based executor, 205

Two-dimensional manipulator, 60–63

Uncertainty
reactive behavior in presence of, 172–176
reactive executor of agent action in presence

of, 203–209
Unknown objects, neural network-based path

planner, 182–189
Unreachable surfaces, 134
Update ratio, 30
Update rule for feedback network, 89, 90
Updating, monitoring, 257–258

Value function, Q-learning, 234
Velocities, trajectory planner, 127
Virtual points, path planning, 184
Virtual robotic cells, 4, 23–32

computational geometry methods, 26–32
defined, 23
distance computing problem, 27–31
geometrical model, 24–26, 27
intersection detection problem, 31–32
layout modeling, 26
logical model, 24
object modeling, 25

Virtual workcell: see CAP/CAM systems

Wait function, 42, 43–46
Waiting time, 41, 242
Workcells, 1–7, 9–12; see also Intelligent ro-

botic workcell
object modeling, 25
virtual: see CAP/CAM systems; Virtual ro-

botic cells
Work-in-process, 268, 285, 290
Workspace point selection, 174
Workstation, 3, 4, 23–24

event-based modeling and control of, 157–164
interaction with agent, modeling, 160–162

XAP, 40

Zero-reference position model, 72
Zones, route planning, 43




