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This book is dedicated to all the people that
worked in the GEOPLEX project and to all

the students and researchers that joined the
GEOPLEX public events: their enthusiasm

deeply motivated us to prepare this book



Foreword

The story behind this book begins during the International Conference on Robotics
and Automation 2001 which took place in Seoul, Korea in May of 2001. During the
farewell reception I had a nice talk with Henrik Christensen, founder and scientific
director of EURON, the European Robotic Network. Henrik mentioned that during
some discussion with the European commission it came out that there was interest
for good fundamental projects for the last call of FP5 related to the KA 4, Action
Line IV2.1 on Advance Control Systems. At the end of August, after discussions
with Arjan van der Schaft also at the University of Twente, it was decided to work
on a proposal related to the great potentials of port-Hamiltonian systems initially in-
troduced by Arjan van der Schaft and Bernhard Maschke. The deadline for the Sub-
mission was October 17® 2001 and it was at that stage not even clear who would be
involved in the consortium. Around the end of September the real writing began and
the consortium was formed by the University of Twente (NL) as a coordinator under
my responsibility, Control Lab Products (NL) who with the 20-sim modeling and
simulation program should have provided the tools implementing the new ideas in
the project, Université Claude Bernard Lyon 1 (F) under the leadership of Bernhard
Maschke, Universitat Politecnica de Catalunya (SP) under the leadership of Enric
Fossas Colet, Supelec (F) under the leadership of Romeo Ortega, Johannes Kepler
Universitat Linz (A) under the leadership of Kurt Schlacher, Katholieke Universiteit
Leuven (B) under the leadership of Ir. Herman Bruyninckx, I’Universita degli Studi
di Bologna (I) under the leadership of Claudio Melchiorri and finally the CNRS (F)
with Francoise Couenne: a great consortium was born.

During an incredible active period and difficult moments in which I did not be-
lieve we were going to make it, many sleepless nights and hard work brought us
to a successful submission before the deadline. The project name was “Geomet-
ric Network Modeling and Control of Complex Physical Systems” with Acronyms
GEOPLEX proposed by Herman Bruyninckx on an email dated 7" September 2001.

During the project preparation we decided to have as a deliverable a book which
would collect some of the major results of the project. This volume is the final result
of this effort. Many people have contributed to this volume and tough decisions have
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viii Foreword

been made in what to include and what to leave out in order to have a volume with
didactic value and with a reasonably homogeneous notation.

The official “book deliverable” was a draft and a lot of work still needed to be
done in order to get it to a useful publishable volume. The initial editorial efforts
where done by Vincent Duindam, Herman Bruyninckx and myself during many
meetings and discussions about the structure, the homogeneity and the various pos-
sibilities. After the end of the project, due to many obligations, the book has been
in stand-by for a while until I kindly asked the help and support of Alessandro
Macchelli (Alex) from the University of Bologna who has been also extremely sci-
entifically (and not only) active during the project. Thanks to Alex this major group
effort has finally become a real book and I can speak for the all consortium that we
are really proud of this result.

The four years of the project beside having been scientifically productive and
brought us to many new results, have created a wonderful interpersonal synergy
which is still bringing fruits to this beautiful field. The GEOPLEX journey has been
a great one and even if not all of you have enjoyed the great atmosphere and sci-
entific discussions, I hope you will enjoy the result of this successful project and
wonderful theory on port-Hamiltonian systems.

Enschede (NL), March 2009 Stefano Stramigioli



Preface

This preface gives a “bird’s eye” view on the paradigm of port-Hamiltonian sys-
tems [137] for modelling and control of complex dynamical systems, which will
be explained in detail in the rest of this book. The mentioned complexity comes,
in the first place, from the scale of the systems, which is too large to be captured
and controlled reliably by the traditional “block-diagram” approaches. This pref-
ace explains why this paradigm has a large potential to be successful in tackling
some of the big challenges in modern control theory and engineering. Three of the
paradigm’s major features are:

i) its scalability to very large interconnected multi-physics systems;
ii) its ability for incorporating non-linearities while retaining underlying conser-
vation laws;
iii) its integration of the treatment of both finite-dimensional and infinite-dimen-
sional components.

But also for more traditional control problems, the port-Hamiltonian systems pa-
radigm provides a solid foundation, which suggests new ways to look at control
problems and offers powerful tools for analysis and control.

The port-Hamiltonian systems paradigm has, over the last decade, succeeded in
matching the “old” framework of port-based network modeling of multi-domain
physical systems with the “new” framework of geometric dynamical systems and
control theory. It provides a very systematic approach to modelling, analysis and
control, via

i) the separation of the network interconnection structure of the system from the

constitutive relations of its components;

ii) the emphasis on power flow and the ensuing distinction between different kind
of variables;

iii) the analysis of the system through the properties of its interconnection structure
and the component constitutive relations;

iv) the achievement of control by interconnection, by means of stabilization by
Casimir generation and energy shaping , energy routing control (transferring
energy between components in the system), and port and impedance control.

ix



X Preface

Some familiarity with ‘geometry’, in particular ‘coordinate-free’ thinking and the
identification of physically different types of variables with different mathematical
objects, is the price to pay for a complete understanding of the paradigm: while port-
Hamiltonian systems may at first sight make things “unnecessarily complicated” for
the most simple systems, it can reach much further than traditional paradigms, with
not much more than the same set of concepts that are used for these simple systems.
This book’s major ambition is to convince its readers that

i) the extra mathematical complexity introduced in port-Hamiltonian systems is
the necessary minimum to represent the essential inherent properties of large-
scale interconnected physical systems;

ii) understanding these mathematical concepts drastically reduces the human effort
to master the intellectual “curse of dimensionality” created by tackling complex
dynamical systems by only the traditional “block-diagram” control approaches.

Complex dynamical systems

Modern control engineering is continuously challenged to provide modelling, anal-
ysis and control for ever more complex systems:

e Complexity in the sense that the modern consumer expects to see more ‘intelli-
gent’, better performing, and yet more miniaturized and/or lighter products. Most
of the current sensing and actuation components do not scale well towards these
meso- and milli-scales; at least, much less than the computational components.
Inevitably, this evolution requires the development of sensor/actuator compo-
nents that are integrated into the mechanical structure of the products. This will
most certainly lead to components that cannot be modelled (and produced !) any-
more as traditional finite-dimensional, i.e. “lumped parameter”, systems.

e Complexity in the sense that production, logistics and service facilities evolve
towards more distributed systems, with more decentrally controlled degrees of
freedom, more interactions between various controlled subsystems, less possi-
bilities to define, let alone measure, all relevant variables in the system, etc.
Continental-scale power grids are a nice example: electricity is often produced
further and further away from the final consumer; new energy sources (e.g., wind,
biomass, energy recuperation) require more flexibility and bring higher load and
source irregularities in the grid control system. Experience has shown that the
traditional “optimized” control of the power grids has quite some problems with
robustness against sudden transient effects, such as line breakage.

The traditional control approaches have, up to now, to a very large extent been
focusing on “human-scale” systems, where one single control engineer can compre-
hend the whole system, one centralized controller can do the whole job, and one
“Simulink” block diagram suffices to model the whole system dynamics to the re-
quired level of detail and to optimize its control to the required level of performance.
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This approach, however, seldom scales well in the above-mentioned evolution to-
wards more complex systems. Some of the major scaling problems are:

e Block diagram modeling of physical systems lacks compositionality: whenever
interconnecting a physical system to additional components the block diagram
modeling usually needs to be redone completely.

e The presence of fundamental physical properties such as conservation laws and
energy balance is not reflected in the block diagram structure, and easily gets out
of sight when the scale of the system grows.

e Block diagram causality: the large majority of control engineers is only familiar
with the “Simulink”-like block diagram approach. Most of them don’t even real-
ize that, for modelling and computational simplicity, this approach imposes one
specific physical and computational causality (i.e., a fixed choice of what is input
and what is output) onto the system model and onto its controller, while the real
physical system does not have these causal constraints.

e Non-linearities: the more nonlinear components appear in the system, the more
difficult it gets to provide stable, efficient and optimized controllers with the tra-
ditional linear state space control theory that most engineers are trained in.

e [ntegration of finite-dimensional and infinite-dimensional components: no mod-
elling and control paradigm has yet achieved the breakthrough in this domain.

e Network size: when the number of components in the system under control
grows, the number of state variables also grows, as well as the communication
delays between actuators, plant and sensors, the transmission line effects, etc.
This means that a traditional centralized controller will not work anymore.

e Robustness: the traditional state space control paradigm has a big focus on opti-
mized control, and the algorithms for designing robust controllers are still (im-
plicitly) targeted at centralized systems. However, all the above-mentioned com-
plexities drastically reduce the robustness of any optimal controller, if it has to
work on a real-world complex system.

The port-Hamiltonian systems paradigm

Port-Hamiltonian systems represent a control paradigm, in the sense that they pro-
vide a set of models, thought patterns, techniques, practices, beliefs, systematic pro-
cedures, terminology, notations, symbols, implicit assumptions and contexts, values,
performance criteria, ..., shared by a community of scientists, engineers and users
in their modelling, analysis, design and control of complex dynamical systems. Be-
ing a coherent paradigm by itself does not mean that port-Hamiltonian systems have
nothing in common with other control paradigms. The name “port-Hamiltonian”
systems, for example, refers to the two major components of the paradigm, which
exist for quite some time already:
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e Port: the modelling approach is port-based, more in particular it builds upon the
successful multi-domain Bond Graph way of composing complex systems by
means of power-preserving interconnections.

e Hamiltonian: the mathematical framework extends the geometric Hamiltonian
formulation of mechanics, by emphasizing the geometry of the state space and
the Hamiltonian function (total stored energy) as basic concepts for modelling
multi-physics systems.

Because of its roots in port-based modeling he port-Hamiltonian systems paradigm
extends the geometric Hamiltonian formulation of physics by generalizing the ge-
ometry of the classical phase space to the geometry of the state space of energy
variables which is determined by the (power-conserving) interconnection structure.
Furthermore, it allows for the incorporation of energy-dissipating' components, and
the presence of open ports modelling interaction with an (unknown) environment
or accessible for controller interaction. Port-Hamiltonian systems theory relies on a
rather limited amount of concepts from geometry. Geometry, in particular geometric
linear algebra in the linear case and differential geometry in the nonlinear case, has
proven to be a very appropriate mathematical formalism whenever one wants to sep-
arate generic, coordinate-free and (hence) intrinsic descriptions of systems from the
details and particularities of specific representations, and if one wants to capture the
physical characteristics of the variables involved in the mathematical description.
Port-Hamiltonian systems shares this sympathy for geometry with, among others,
the geometric nonlinear control theory paradigm [93, 156], and geometric mechan-
ics [24,40].

The systematic procedure for the modelling and control of complex dynamical
systems, as it is beginning to materialize in the port-Hamiltonian systems theory, is
as follows:

i) Model the system as energy storing and energy dissipating components, con-
nected via ports to power conserving transmissions and conversions.
ii) Separate the network structure from the constitutive relations of the compo-
nents.
iii) (Optionally) reduce the order of the system model while respecting the invariant
structure of the system dynamics.
iv) Identity the Casimir functions (conservation laws) in the system, in order to use
them in the design of the controller.
v) Control the system by interconnecting it to energy shaping and/or damping
injection components, and by adding energy routing controllers.

The first focus of a port-Hamiltonian controller is to achieve a feasible, stable and
robust control, instead of being driven by performance optimization from the start.
As motivated above, this focus is already difficult enough when controlling increas-
ingly complex dynamical systems.

! Of course, from a thermodynamical perspective energy is not dissipated but converted from,
say, the mechanical or electrical domain to, e.g., the thermal domain. It would therefore be more
appropriate to speak of ‘free energy’ that is dissipated.
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Fig. P.1 The logo of the X Ry 2
GEOPLEX project. il
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The last few years, significant progress has been made in the port-Hamiltonian sys-
tems paradigm, to a large extent thanks to the concerted efforts of the GEOPLEX
project [1], whose logo is displayed in Fig. P.1. Some of the major evolutions are:
the port-Hamiltonian approach has excellent results in the systematic separation
(conceptually, as well as in the mathematical representation) of the interconnection
structure and the dynamical properties of interconnected system; finite-dimensional
systems and infinite-dimensional systems can be described with unified concepts
and mathematical representations, and one is nearing the above-mentioned break-
through towards unified control of both domains; the energy shaping and damping
injection, as well as the energy routing, control approaches begin to mature and
show their advantages for the construction of safe and predictable controllers for
complex systems.

GEOPLEX does not only have theoretical developments, but also real-world ex-
perimental verifications of the port-Hamiltonian systems approach: walking robots,
teleoperated and haptic devices, piezo-controlled beams and plates, chemical engi-
neering of reaction processes, electrical grids with sources and flywheels, etc..

Port-based modelling

Port-based modelling as in the Bond Graph formalism [165] models a physical sys-
tem as the interconnection of (possibly a large amount) of components from a rather
small set of dynamic elements: energy storage, energy dissipation, energy trans-
portation or energy conversion. Each element interacts with the system via a port,
that consists of a couple of “dual” effort and flow quantities, whose product gives the
power flow in and out of the component. For example, force and velocity for a me-
chanical system, or current and voltage for an electric network. The network allows
(loss-less) power exchange between all components and describes the power flows
within the system and between the system and the environment. Some advantages
of the Bond Graph approach are:

e [t focuses on energy (in all its instantiations) as the fundamental physical concept
to appropriately model the real world.
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o It is multi-domain: the same concepts and mathematical representations are used
for mechanical, electrical, hydraulic, pneumatic, thermo-dynamical, ..., compo-
nents.

e [t is multi-scale: components can be decomposed hierarchically in smaller inter-
connected components.

e Its models are acausal: each component contains only “constitutive relation-
ships” which describe the dynamic relations between the port variables, without
imposing which ones are inputs and which ones are output.

The Bond Graph approach has proven to be very successful in the modelling of
complex systems, at least in the lumped parameter domain.

Differential geometry for systematic structuring

The above-mentioned system model networks, derived from port-based network
modelling, can be mathematically described and analysed by means of the con-
cept of a Dirac structure [54,59, 183], at least for “lumped parameter” (finite-
dimensional) systems. A Dirac structure can be regarded as a generalization of the
well-known Kirchhoff laws of electrical circuit theory. It separates the (power con-
serving) network topology (“interconnection”) from the (power storing or dissipat-
ing) dynamics of the components; both together provide a complete model of the dy-
namical system under study. The Dirac structure allows to bring all possible system
models, however complex, into the same mathematical form, strongly facilitating a
highly systematic treatment.

This systematic treatment has been extended to infinite-dimensional systems, for
which the Dirac structure is generalized into the Stokes-Dirac structure, by incorpo-
rating Stokes theorem applied to the underlying conservation laws. Again, the same
concepts are being reused.

Control by interconnection

The port-Hamiltonian systems paradigm uses the system’s interconnection structure
and its Hamiltonian (i.e., its total energy) as the primary vehicles for modelling and
control. If one wants to steer the system to one of its stable equilibrium states, it
is easy to do so: the Hamiltonian of the system assumes its minimum at this state,
so, by introducing dissipation in the controller (“damping injection”), the energy
in the system decreases until the minimum of energy, or, equivalently, the desired
equilibrium configuration is reached.

However, the natural equilibrium states of the system seldom correspond to the
desired system state. So, “energy shaping” is necessary, i.e., one has to add a con-
trol component to the system network, in such a way that the desired state in one
way or another corresponds to a stable equilibrium of the new system. In summary,
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the port-Hamiltonian approach to set-point control is “control by interconnection’:
the controller components that one adds to the plant network are the same kind of
components as the ones that make up the model of the plant itself. In doing so, the
first emphasis is on getting the controlled system robustly stable, possibly giving up
on “optimal performance” of some of the subsystems.

How is this energy-shaping achieved? Clearly, the Hamiltonian of the control
components may be chosen arbitrarily, but do not directly influence the shape of
the Hamiltonian with respect to the state variables of the original system. One way
to achieve energy-shaping is to add controller components in such a way that con-
served quantities (Casimirs) are enforced involving the state variables of the original
system and the controller states. Interestingly enough, these conserved quantities are
determined by the Dirac structure of the interconnected system (original system plus
controller system), thus leading to the problem of how to ‘shape’ or manipulate this
Dirac structure by the interconnection with a controller Dirac structure. The total
closed-loop energy function is then shaped by combining the Hamiltonian of the
original system with the Casimirs and suitably chosen Hamiltonians for the con-
troller systems. This procedure is systematic, but not explicit (that is, it still requires
insight from the control designer), and it is not guaranteed to be applicable in all sit-
uations. Another (but very much related !) approach to stabilization, which in princi-
ple offers more options, is the Interconnection-Damping-Assignment methodology,
where the energy function, the interconnection structure, as well as the damping
structure, are directly modified by state feedback

Software support

The GEOPLEX project consists of some academic research institutions, plus one
company: Controllab Products, which develops and markets the 20-sim [51] sim-
ulation and control software. 20-sim has Bond Graph modelling tools under the
hood, but can also provide more user-friendly (because domain-specific) iconic dia-
grams; it has extensive algorithmic support for causality determination, for solving
the differential equations governing a particular model (including controller), and
for transforming the control design into code for embedded control computers. In
addition, the software is being extended with some of the differential-geometric
concepts and tools that are developed by the academic GEOPLEX partners.

Who should read this book?

The target public of this book consists of “traditional” control engineers, confronted
with complex, multi-domain control problems, and graduate students in Systems and
Control. This book can extend their knowledge and understanding of advanced mod-
elling, analysis and control methods using the port-Hamiltonian systems paradigm,
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because port-Hamiltonian systems bring the systems’ inherent structure to the sur-
face explicitly. This is an advantage because every additional structure that the en-
gineer knows about its systems helps fo improve their analysis and control.

e Better insight into complex systems, via the explicit distinction between the in-
herent, coordinate-free physical properties of the systems, and the artificial, non-
physical “properties” that often show up in the specific coordinate-based algo-
rithms that are used to implement analysis and control;

e The acausal description of components is very appropriate for the modelling,
analysis and control of open systems, i.e., systems that can be interconnected to
other open systems;

e The port-Hamiltonian approach can interconnect finite-dimensional and infinite-
dimensional systems;

e Scalability: port-Hamiltonian structure is preserved by interconnection of mul-
tiple components modeled as port-Hamiltonian systems, also when components
come from different domains;

“Re-use” of the same theory for finite- and infinite-dimensional systems;
More modular, structured, and re-usable software framework, leading to more
user-friendly and more reliable modelling, simulation and design software tools;

e More structure means more “constraints” that make the “solution search space”
smaller, hence leading to potentially more efficient and more precise algorithms.

Outline of the book

This book aims at presenting a unified framework for modelling, analysis, simula-
tion and control of complex dynamical systems based on the port-Hamiltonian for-
malism. Background and concepts of a port-based approach to integrated modelling
and simulation of physical systems and their controllers are illustrated in Chap-
ter 1. These important notions are the conceptual motivation from a physical point
of view of what is elaborated mathematically and applied to particular cases in the
remaining chapters. In fact, in Chapter 2, it is shown how the representation of
a lumped-parameter physical system as a bond graph naturally leads to a dynam-
ical system endowed with a geometric structure, called port-Hamiltonian system.
The notion of Dirac structure is here introduced as the key mathematical concept
to unify the description of complex interactions in physical systems. Moreover, it is
shown how the port-Hamiltonian structure is related, among others, to the classical
Hamiltonian structure of physical systems. Furthermore, different representations
of port-Hamiltonian systems are discussed, as well as the ways to navigate between
them, and tools for analysis are introduced.

Port and port-Hamiltonian concepts are the basis of the detailed examples of
modelling in several domains illustrated in Chapter 3. Here, it is shown how port-
Hamiltonian systems can be fruitfully used for the structured modelling of elec-
tromechanical systems, robotic mechanisms and chemical systems. As far as the
chemical domain is concerned, expressions of the models representing momentum,



Preface Xvii

heat and mass transfer as well as chemical reactions within homogeneous fluids
are reported in the port-based formalism. Furthermore, some insights are also given
concerning the constitutive equations and models allowing to calculate transport and
thermodynamic properties.

These last concepts serve as a starting point for the generalization of the port-
Hamiltonian description of lumped parameter systems towards the distributed pa-
rameter ones. This is accomplished in Chapter 4 by extending the definition of
Dirac structure. In fact, it is shown how the Dirac structure and the port-Hamiltonian
formulation arise from the description of distributed parameter systems as systems
of conservation laws. In case of systems of two conservation laws, which describe
two physical domains in reversible interaction, they may be formulated as port-
Hamiltonian systems defined on a canonical interconnection structure, called canon-
ical Stokes-Dirac structure. Several examples of physical systems are provided in
order to illustrate the power of the proposed approach.

In the remaining chapters, it is shown how the port-Hamiltonian formulation
offers powerful methods for control of complex multi-physics systems. In Chap-
ter 5, a number of approaches to exploit the model structure of port-Hamiltonian
systems for control purposes is illustrated. Formulating physical systems as port-
Hamiltonian systems naturally leads to the consideration of impedance control prob-
lems, where the behavior of the system at the interaction port is sought to be shaped
by the addition of a controller system. As an application of this strategy of control
by interconnection within the port-Hamiltonian setting, the problem of stabilization
of a desired equilibrium by shaping the Hamiltonian into a Lyapunov function for
this equilibrium is considered. The mathematical formalism of port-Hamiltonian
systems provides various useful techniques, ranging from Casimir functions, Lya-
punov function generation, shaping of the Dirac structure by composition, and the
possibility to combine finite-dimensional and infinite-dimensional systems.

In this respect, the control problem of distributed parameter port-Hamiltonian
systems is discussed in Chapter 6. This chapter aims at extending some of the well-
established control techniques developed for finite dimensional port-Hamiltonian
systems illustrated in Chapter 5 to the infinite dimensional case. First result concerns
the control by damping injection, which is applied to the boundary and distributed
control of the Timoshenko beam. Then, the control by interconnection and energy
shaping via Casimir generation is also discussed, giving particular emphasis to the
stabilization of mixed finite and infinite dimensional port Hamiltonian system and
to the dynamical control of a Timoshenko beam.

March 2009 Herman Bruyninckx, Arjan J. van der Schaft
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Chapter 1
Port-Based Modeling of Dynamic Systems

P. C. Breedveld

Abstract Many engineering activities, in particular mechatronic design, require that
a multi-domain or ‘multi-physics’ system and its control system be designed as an
integrated system. This chapter discusses the background and concepts of a port-
based approach to integrated modeling and simulation of physical systems and their
controllers, with parameters that are directly related to the real-world system, thus
improving insight and direct feedback on modeling decisions. It serves as the con-
ceptual motivation from a physical point of view that is elaborated mathematically
and applied to particular cases in the remaining chapters.

1.1 Introduction

1.1.1 Modeling of dynamic systems

If modeling, design and simulation of (controlled) systems are to be discussed, some
initial remarks at the meta-level are required. It should be clear and it probably will
be, due to the way it is phrased next, that no global methodology exists that deals
with each problem that might emerge. In other words, no theory or model can be
constructed independently of some problem context. Nevertheless, in practice, not
only well-established theories are treated as some form of absolute ‘truth’, but also
(sub-)models of physical components are often considered as constructs that can
be independently manipulated, for instance in a so-called model library. Without
some reference to a problem context, such a library would be useless, unless there is
an implicit agreement about some generic problem context, such that some generic
sub-models can be stored for re-use. However, such a foundation is rather weak, as
implicit agreements tend to diverge, especially in case of real world problems.
Herein, we will focus on the generic problem context of the dynamic behavior
of systems that primarily belong to the domain of the (control) engineer, but also
of the physicist, the biologist, the physiologist, etc. These systems can be roughly
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characterized as systems that can be considered to consist for a large part of sub-
systems for which it is relevant to their dynamic behavior that they obey the basic
principles of macroscopic physics, like the conservation principles for fundamen-
tal physical quantities like ‘charge’, ‘momentum’, ‘matter’, ‘energy’ etc. as well as
the positive-entropy-production principle, in other words: the ‘laws’ of thermody-
namics. The other part is considered to consist of sub-models for which the energy
bookkeeping is generally not considered relevant for the dynamic behavior. Such
parts are generally addressed as the signal processing part (‘controller’) that is com-
monly for a large part realized in digital form for the common reasons of flexibility,
reproducibility, robustness (error correction), maintainability, etc., even though ana-
logue solutions are in some cases much less costly in terms of material and energy
consumption.

This chapter focuses on the description of the part for which energy bookkeep-
ing is relevant for the dynamic behavior, while keeping a more than open eye for
the connection to the signal part, either in digital or in analogue form. It is argued
that so-called ‘port-based modeling’ is ideally suited for the description of the en-
ergetic part of a multi-domain system, sometimes also called multi-physics system.
This means that the approach by definition deals with multidisciplinary systems like
those encountered in mechatronics for example.

Port-based physical system modeling aims at providing insight, not only in the
behavior of systems that an engineer working on multidisciplinary problems wishes
to design, build, troubleshoot or modify, but also in the behavior of the environment
of that system. A key aspect of the physical world around us is that ‘nature knows
no domains’. In other words, all boundaries between disciplines are man-made, but
highly influence the way humans interact with their environment. A key point each
modeler should be aware of is that any property of a model that is a result of one of
his own choices, should not affect the results of the model. Examples of modeler’s
choices are: relevance of time and space scales, references, system boundaries, do-
main boundaries, coordinates and metric. If a variation in one of these choices leads
to completely different conclusions about the problem for which the model is con-
structed, the model obviously does not serve its purpose as it tells us more about the
modeler than about the problem to be solved. Again, when the issue is phrased in
this manner, it is hard to disagree, but practice shows that this modeling principle is
often violated.

1.1.2 History of physical systems modeling of engineering systems

Several attempts to unified or systematic approaches of modeling have been launched
in the past. In the upcoming era of the large-scale application of the steam en-
gine over 150 years ago, the optimization of this multi-domain device (thermal,
pneumatic, mechanical translation, mechanical rotation, mechanical controls, etc.)
created the need for the first attempt to a systems approach. This need for such a
‘mecha-thermics’ approach was then named thermodynamics. Although many will
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not recognize a modern treatment of thermodynamics as the first systems theory,
it certainly was aimed originally in trying to describe the behavior of such a sys-
tem independently of the involved domains. However, it required a paradigm shift
or ‘scientific revolution’ in the sense of Kuhn (see [106]), due to the fact that the
concept of entropy had to be introduced for reasons of consistency, i.e. to be able
to properly ‘glue’ these domains together by means of the concept of a conserved
quantity called energy. The rather abstract nature of the concept of entropy, and to
some extent of the concept of conserved energy too, as energy was up till than con-
sidered a quantity that could be dissipated, has caused that students have considered
thermodynamics a ‘difficult’ subject ever since, resulting in only a relatively limited
number of engineers and scientists actively using the thermodynamic approach in
modeling of system behavior and system design.

Despite the fact that the first evidence of the use of feedback dates back to 200-
100 BC when water clocks required the water level in a reservoir to be kept constant,
followed by Cornelis Drebbel’s thermostat and James Watt’s fly-ball governor, it
was not before the late nineteen twenties that feedback was realized by means of
electric signals (Harold Stephen Black’s 1927 famous patent that he wrote on a
copy of the New York Times). At first, electronic feedback was used internally, to
reduce distortion in electric amplifiers, but later, especially during World War 1I,
this concept was used in radar control and missile guidance. One might say that the
multi-domain approach to feedback was transferred to a signal approach in which
the external power supply did not need to be part of the behavioral analysis. How-
ever, a more important paradigm shift was still to come, viz. the idea that the use
of feedback allowed the construction of components, viz. operational amplifiers,
with which basic mathematical operations could be mimicked, leading to analogue
computers. This gave a new meaning to the terminology ‘analogue simulation’ that
until then was conceived as mimicking behavior by means of analogue circuits or
mechanisms.

Just after World War 11, due to the rapidly increasing demand for electric power,
the USA was in great need for power plants, in particular hydro-power plants, which
should be able to deal with large and sometimes rapid fluctuations in the power
grid. Obviously, the success of control theory (cybernetics) during World War II in-
spired many to apply control theory to the dynamic problems involved in electric
power production. One such a civil engineer by the name of Henry M. Paynter!
(1923-2002, professor at MIT & UT Austin, Fig. 1.1) tried to use the early ana-
logue computers that he had invented together with James Philbrick, to simulate
the dynamics of the power plants to be built. He used the at that time common
description of block diagrams that display the computational structure of the differ-
ential and algebraic equations being used, as these mathematical operations were to
be mapped directly on the basic components of the analogue computer. However,
for reasons that will become clear in the course of this treatise (viz. related to the
concept of so-called ‘computational causality’) he ran into model formulation prob-
lems. At the beginning of the fifties he realized himself that the concept of a ‘port’

'See also http://www.me.utexas.edu/~lotario/paynter/hmp/index.html.
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Fig. 1.1 Prof. Henry M.
Paynter (Enschede, 1984).

introduced in electrical circuit theory a few years earlier by Wheeler & Dettinger
(see [219]), should be extended to arbitrary power ports that can be applied domain-
independently. Power ports include mechanical ports, hydraulic ports, thermal ports,
electric ports, etc., i.e. everything Paynter needed for the description of the dynamic
behavior of hydro-power plants.

In the following decade, after moving to the MIT mechanical engineering de-
partment, he designed a notation based on the efficient representation of the relation
between two ports by just one line that he called a ‘bond’. This so-called ‘bond
graph’ notation was completed when he finally introduced the concept of the junc-
tion in a lecture in 1959 [165]. Junctions not only make a bond graph a powerful
tool, but they are rather abstract concepts that require a similar paradigm shift as
the one mentioned for thermodynamics. Once this shift is made, it often induces
over-enthusiasm and over-expectations that not only lead to disappointment, but
also unnecessarily scare off experienced engineers and scientists who have learned
to accept the limitations of modeling.

As aresult, just like thermodynamics, bond graphs never became widely popular,
although they spread over the whole world and are still alive and continue to grow
after almost fifty years. By contrast, signal processing as well as analogue and later
digital computing are less constrained by physical reality. This allows mimicking
virtually everything, from physically correct or incorrect models to arbitrary mathe-
matical relations that describe imaginary systems. In the previous decade, this even
led to concepts like a ‘cyber world’, etc., even though the level of physical modeling
in most virtual environments is rather low, as demonstrated by the unnatural features
of much virtual behavior, even though there has been quite some progress recently
due to more awareness for the importance of the underlying physics.

Nevertheless, the introduction of rapid and flexible machinery for production,
assembly, manipulation (incl. surgery), etc., that has truly taken off in the nineties,
raised the need for a systems approach again. In these application areas physi-
cal constraints continue to limit imagination. The deliberate dynamic behavior as
well as the suppression of undesired dynamics of such devices heavily leans on
the application of digital electronics (microcomputers) and software, but a domain-
independent description of the parts in which power plays a role is crucial to make
a designer aware of the fact that a considerable part of these systems is constrained
by the limits of the physical world. This mix of mechanics, or rather physical sys-
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tem engineering in general, at the one hand and digital electronics, software and
control at the other hand has been named ‘mechatronics’, even though ‘digiphysics’
would have been a more appropriate label, as this probably would have prevented the
common misinterpretation that mechatronics is basically a modern form of motion
synchronization where the control by means of mechanisms (e.g. by cam wheels) is
replaced by electronic motion synchronization (e.g. by digitally controlled electric
motors). Nevertheless, we will continue to use the label ‘mechatronics’, even though
‘behavior’ has a wider meaning than ‘motion’.

1.1.2.1 History of bond graphs

When Henry Paynter introduced the junctions in April 1959, he concluded a pe-
riod of about a decade in which most of the underlying concepts were formed and
put together into a conceptual framework and corresponding notation. In the sixties
the bond graph notation, e.g. the half arrow to represent positive orientation and in-
sightful node labeling, was further elaborated by his students, in particular Dean C.
Karnopp, later professor at UC Davis (California, US), and Ronald C. Rosenberg,
later professor at Michigan State University (Michigan, US) who also designed the
first computer tool (ENPORT) that supported simulation of bond graph models.
In the early seventies Jan J. van Dixhoorn, professor at the University of Twente,
Netherlands, and Jean U. Thoma, professor at the University of Waterloo (Ontario,
Canada). and independent consultant in Zug, Switzerland, were the first to introduce
bond graphs in Europe.

These pioneers in the field and their students have been spreading these ideas
worldwide. Jan van Dixhoorn realized that an early prototype of the block-diagram-
based software TUTSIM could be used to input simple causal bond graphs, which,
about a decade later, resulted in a PC-based tool. This work laid the basis for the
development of a port-based computer tool at the University of Twente (‘20-sim’
or ‘“Twente-sim’). He also initiated research in modeling more complex physical
systems, in particular thermo-fluid systems and spatial mechanisms.

In the last two decades, bond graphs either have been a topic of research or are
being used in research at many universities worldwide and are part of (engineering)
curricula at a steadily growing number of universities. In the last decade, industrial
use has become increasingly important.

1.1.3 Tools needed for the integrated design of controlled physical
systems

Obviously, a smooth connection is needed between the information-theoretical de-
scriptions of the behavior of digital systems and physical systems theory. Since their
introduction bond graphs have allowed the combined use of power ports and sig-
nal ports, both in- and output, and a corresponding mix with block diagrams. As
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block diagrams can successfully represent all digital operations that are similar to
mathematical operations, the common bond graph/block diagram representation is
applicable. This graphical view supports a hierarchical organization of a model,
supporting reuse of its parts.

However, many systems that are studied by engineers, in particular control and
mechatronic engineers, differ from the engineering systems that were previously
studied in the sense that the spatial description of complex geometrical configu-
rations often plays an important role in the dynamic behavior, thus including the
control aspects of these systems. While dynamic influences of such mechanisms
could be suppressed by simply limiting the operating speed previously, the increas-
ing need for higher speeds and lighter mechanisms has made this solution obsolete.
This shows the need for a consistent aggregation of — at the one hand — the descrip-
tion of the configuration of a mechanism and — at the other hand — the displacements
in a system that in some way are related to the storage of potential or elastic energy.
Later this will be addressed as ‘the dual role of the displacement variable’. The ge-
ometric interpretation of physical structure that will be one of the main topics of
this book and can be seen as a generalization by abstraction of the description of
configuration space into the resulting approach in terms of manifolds, therefore also
carries a danger: a too high level of abstraction, despite its power in analysis, may
blur the above insight as the distinction between the two roles of the displacement
variable seems lost.

Another aspect of these systems is that only few realistic models can be solved
analytically, emphasizing the important role of a numerical approximation of the
solution (simulation). The aggregation of numerical properties in the representation
of dynamic systems allows that a proper trade-off is made between numerical and
conceptual complexity of a model, however, without confusing the two, a common
pitfall. The approach discussed herein offers a basis for making such a trade-off,
resulting in both a higher modeling efficiency and a higher numerical simulation
efficiency.

In a mechatronics approach, where a controlled system is designed as a whole, it
is advantageous that model structure and parameters are directly related to physical
structure in order to have a direct connection between design or modeling deci-
sions and physical parameters [49]. In addition, it is desired that (sub-)models be
reusable, despite the danger of non-matching problem contexts addressed earlier.
Common simulation software based on block-diagram or equation input does not
sufficiently support these features. The port-based approach towards modeling of
physical systems allows the construction of easily extendible models. As a result it
optimally supports reuse of intermediate results within the context of one modeling
or design project. Potential reuse in other projects depends on the quality of the doc-
umentation, particularly of the modeling assumptions. In addition, full integration
of user in- and output of configuration information in a modeling and simulation
tool, i.e. CAD-like input and 3D visualization of simulation results as one of the
views on model results, is required to support the insight in the influence of the
kinematic structure on the dynamic behavior. Currently, research is even focused
on extending this approach from multi-body systems to systems that contain parts
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that are until now analyzed separately by means of Finite Element Models (FEM),
which is limited to a vibration analysis in terms of eigen modes.

1.1.4 Object-oriented modeling

The port-based approach may be considered a kind of object-oriented approach to
modeling: each object is determined by constitutive relations at the one hand and
its interface, being the power and signal ports to and from the outside world, at the
other hand. Other realizations of an object may contain different or more detailed
descriptions, but as long as the interface (number and type of ports) is identical,
they can be exchanged in a straightforward manner. This allows top-down modeling
as well as bottom-up modeling. Straightforward interconnection of (empty) sub-
models supports the actual decision process of modeling, not just model input and
manipulation. Empty sub-model types may be filled with specific descriptions with
various degrees of complexity — these sub-models are said to be polymorphic [214]
— to support evolutionary and iterative modeling and design approaches [218]. Ad-
ditionally, sub-models may be constructed from other sub-models resulting in hier-
archical structures. Without trying to become part of the everlasting argument be-
tween object-oriented and process-oriented approaches, it should be noted that the
‘objects’ in this particular case represent behaviors or ‘processes’ (storage, transfor-
mation, etc.) with respect to energy, such that the label ‘process-oriented approach’
is applicable too. In this context it is interesting to note that when Paynter introduced
the elements of the bond graph notation, he was heavily inspired by the American
philosopher Charles Sanders Peirce, who proposed to ‘dualize’ graphical represen-
tation: where commonly the nodes of a graph represent ‘objects’ and its edges ‘oper-
ations’, Peirce proposed to represent ‘objects’ by edges and ‘operations’ by nodes:
we will see that the nodes of a bond graph indeed represent basic behaviors with
respect to energy, while its edges, the bonds, represent the relevant conjugate power
variables.

1.1.5 Design phases of engineering systems

Modeling, simulation and identification is often done for already existing systems.
The design of a controller has to be done for an already realized and given ‘process’
(incremental design). By contrast, in case of a full design the system does not yet
exist, which not only means that there is a large initial uncertainty, but also that there
is much more freedom to modify the design, not just the controller, but the complete
‘process’, including the mechanical construction. However, the next discussion will
show that a port-based approach is also crucial in modern design.
In a design process the following, iterative phases can be distinguished:
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Phase 1: A conceptual design is made of the system that has to be constructed, tak-
ing into account the tasks that have to be performed and identifying and modeling
the major components and their dominant dynamic behaviors, as well as the al-
ready existing parts of the system or its environment that cannot be modified.
The part of the model that refers to the latter parts can be validated already.

Phase 2: Controller concepts can be evaluated on the basis of this simple model.
This requires that the model is available in an appropriate form, e.g. as a transfer
function or a state space description. If this phase provides the insight that modi-
fication of some dominant behavior would be quite beneficial, revisiting Phase 1
can lead to the desired improvement. Another reason to return to Phase 1 may
be an alternative choice of system boundary or the boundary between physical
process (‘plant’) and controller.

Phase 3: When the controller evaluation is successful, the different components in
the system can be selected and a more detailed model can be made. The controller
designed in Phase 2 can be evaluated with the more detailed model and controller
and component selection can be changed. If the effects of the detailed model
prove to distort the originally foreseen performance, revisiting either Phase 2 or
even Phase 1 with the newly obtained insights can lead to improved performance.

Phase 4: When Phase 3 has been successfully completed the controller can be re-
alized electronically or downloaded into a dedicated microprocessor (embedded
system). This hardware controller can be tested with a hardware-in-the-loop sim-
ulation that mimics the physical system (‘plant’) still to be built. It is to be pre-
ferred that the translation from the controller tested in simulations is automat-
ically transferred to e.g. C-code, without manual coding; not only because of
efficiency reasons, but also to prevent coding errors. If this phase results in new
insights given the non-modeled effects of the implementation of the controller,
the previous phases may be revisited, depending on the nature of the encountered
problem.

Phase 5: Finally the physical system itself or a prototype can be built. As this is
usually the most cost intensive part of the process, this should be done in such a
way that those physical parameters that proved to be most critical in the previous
phases are open for easy modification as much as possible, such that final tuning
can lead to an optimal result. During the construction, new awareness of not
yet modeled, but relevant physical behavior, may result in changes to the model
of the physical systems, such that the impact on the final performance can be
immediately estimated and, if necessary, compensated by physical means or by
signal processing means.

Given the key role of structured, multi domain system modeling in the above pro-
cess, special attention is given to domain-independent modeling of physical systems
and the role of multiple views.
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1.1.6 Multiple views in the design and modeling process

Engineering deals with the integrated design of a tangible (‘mechanical’) system
and its embedded control system. In practice, this ‘mechanical system’ has a rather
wide scope. It may also contain hydraulic, pneumatic and even thermal parts that
influence its dynamic characteristics. This definition implies that it is important that
the system be designed as a whole as much as possible. This requires a systems
approach to the design problem. Because in mechatronics the scope is limited to
controlled mechanical systems, it will be possible to come up with more or less
standard solutions. An important aspect of mechatronic systems is that the synergy
realized by a clever combination of a physical system and its embedded control
system leads to superior solutions and performances that could not be obtained by
solutions in one domain. Because the embedded control system is often realized in
software, the final system will be flexible with respect to the ability to be adjusted
for varying tasks.

The interdisciplinary field of design thus requires tools that enable the simulta-
neous design of the different parts of the system. The most important disciplines
playing a role are mechanical engineering, electrical engineering and software en-
gineering, all based on a solid knowledge of physics and mathematics. One of the
ideas behind mechatronic design is that functionality can be achieved either by solu-
tions in the (physical) mechanical domain, or by information processing in electron-
ics or software. This implies that models should be closely related to the physical
components in the system. It also requires software tools that support such an ap-
proach. In an early stage of the design process simple models are required to make
some major conceptual design decisions. In a later stage (parts of the) models can
be more detailed to investigate certain phenomena in depth. The relation to physi-
cal parameters like inertia, compliance and friction is important in all stages of the
design. Because specialists from various disciplines are involved in mechatronic de-
sign, it is advantageous if each specialist is able to see the performance of the system
in a representation that is common in his or her own domain. Accordingly, it should
be possible to see the performance of the mechatronic system in multiple views.
Typical views that are important in this respect are: ideal physical models (IPMs)
represented by ‘iconic diagrams’, bond graphs, block diagrams, Bode plots, Nyquist
plots, state space description, time domain, animation, C-code of the controller.

This has been formalized as the so-called multiple view approach that is par-
ticularly well supported by window-based computer tools: a number of graphical
representations like iconic diagrams, which are domain-dependent, linear graphs,
which are more or less domain-independent, but limited to the existence of ana-
logue electric circuits [192] block diagrams, which represent the computational
structure, bond graphs, which are domain-independent, etc. as well as equations,
which represent the mathematical form in different shapes (transfer functions, state
space equations in matrix form, etc.) can serve as model representations in differ-
ent windows. The tool in which all examples of this chapter are treated, 20-sim,
has been designed on the basis of such a multiple view approach. Possible views in
20-sim are: equations, including matrix-vector form, block diagrams, (multi-)bond
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graphs, transfer functions, state-space representations (system, in- and output ma-
trices), time responses, phase planes, functional relationships, step responses, bode
plots, pole-zero plots, Nyquist diagrams, Nichols charts and 3D-animation. Where
possible, automatic transformation is provided and results are linked.

The port-based approach has been taken as the underlying structure of 20-sim,
formulated in the internal language SIDOPS [38], which makes it an ideal tool for
demonstration of the port-based and multiple view approaches. A more detailed in-
troduction to ports, bonds and the bond graph representation is given later. This
will give the reader sufficient insight in order to exercise it with the aid of a port-
based modeling and simulation software like 20-sim. This tool allows high level
input of models in the form of iconic diagrams, equations, block diagrams or bond
graphs and supports efficient symbolic and numerical analysis as well as simula-
tion and visualization. Elements and sub-models of various physical domains (e.g.
mechanical or electrical) or domain-independent ones can be easily selected from
a library and combined into a model of a physical system that can be controlled
by block-diagram-based (digital) controllers”. For more advanced issues, the inter-
ested reader is referred to the references. However, first we return to the meta-level
of modeling in order to address some important issues that should be clear upfront.

1.2 Modeling philosophy

1.2.1 ‘Every model is wrong’

This paradoxical statement seeks to emphasize that any ‘model’ that perfectly repre-
sents all aspects of an original system, assuming it can exist, would not be a model,
but an exact copy of that system (identity). When modeling, by contrast, one looks
for simple but relevant analogies, not for complex identities. As a consequence, a
model is much simpler than reality. This is its power and its weakness at the same
time. The weakness is that its validity is constrained to the problem context it was
constructed for, whereas its strength is the gain of insight that may be obtained in
the key behaviors that play a role in this particular context. In other words: ‘no
model has absolute validity’. The resulting advice is that one should always keep
the limitations of a model in mind and always try to make them explicit first. Espe-
cially in an early phase of a modeling or design process, such a focus may result in
interesting insights.

2 A demonstration copy of 20-sim that allows the reader to get familiar with the ideas presented in
this contribution can be downloaded from the Internet, http://www.20sim. com.



1.2 Modeling philosophy 11

1.2.2 ‘A model depends on its problem context’

Models should be competent to support the solution of a specific problem. This also
means that any type of archiving of a model or sub-model should always include in-
formation about the corresponding problem context. Without this context, the model
has no meaning in principle. Training of specialists and experts is often related to
what is sometimes called a ‘culture’ and that they are said to speak a ‘jargon’. This
culture and jargon reflect the existence of a particular (global) problem context, even
though this context is not explicitly described when models are made. For electrical
circuit designers, this problem context consists of the behavior of electric charges
and in particular of the voltages and currents related to this behavior, in a specific
part of the space-time scales. This behavior is such that electromagnetic radiation
plays no dominant role. Mechanical systems mostly belong to another part of the
space-time scale, although there may be considerable overlap, in particular in preci-
sion engineering.

These cultures and jargons easily lead to implicit assumptions too. The assump-
tions, in turn, may lead to model extrapolations that have no validity in the specific
problem context at hand due to the danger of ignoring these earlier assumptions.
These extrapolations often start from well-known classroom problems with analyt-
ical solutions like the model of a pendulum [35]. In other words: ‘implicit assump-
tions and model extrapolations should be avoided’. The resulting advice is that one
should focus at the model’s competence to represent the behavior of interest, not at
its ‘truth content’ and that it is better to start from scratch as much as possible instead
of trying to extrapolate standard (textbook) models without complete understanding
of the underlying assumptions.

1.2.3 Physical components versus conceptual elements

At all times it should be clear that (physical) components, i.e. identifiable, tangi-
ble system parts that can be physically disconnected and form a so-called physical,
often visible, structure, are to be clearly distinguished from (conceptual) elements,
i.e. abstract entities that represent some basic behavior, even though these concep-
tual elements are sometimes given the same name as the physical component. For
example, a resistor may be an electrical component with two connection wires and
some color code (cf. Fig. 1.2a), while the same name is used for the conceptual
element (commonly represented by Fig. 1.2b) that represents the dominant behav-
ior of the component with the same name, but also that of a piece of copper wire
through which a relatively large current flows or even the leakage in the compo-
nent ‘electrical capacitor’. Note that this model of the dominant behavior requires
that the problem context is such that the component ‘resistor’ is part of a current
loop in a network in which the behavior of the voltages and currents plays a role.
By contrast, other realistic problem contexts exist in which the dominant behavior
of the component ‘resistor’ is not represented by the element ‘resistor’, but by the
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element ‘mass’ or a combination of mechanical conceptual elements like ‘mass’,
‘spring’ and ‘damper’. For example, when this component is to be rapidly manipu-
lated in assembly processes, i.e. before it becomes part of an active electric circuit,
the element ‘mass’ could be a competent model.

Often, not only the dominant behavior of a component has to be described, but
also some other properties that are often called ‘parasitic’, because they generate a
conceptual structure and destroy the one-to-one mapping between components and
elements that seems to simplify modeling and design in a quite misleading way (cf.
Fig. 1.2c). Those areas of engineering in which materials can be manipulated to an
extent that all other behaviors than the dominant one are sufficiently suppressed to
achieve the desired functionality (like electrical engineering), have been the first to
apply network style dynamic models successfully. In our daily life we have learned
to make quick intuitive decisions about dominant behaviors (‘survival of the fittest’).
This type of learning stimulates implicit and intuitive decisions that may fail in more
complex engineering situations (counter-intuitive solutions).

Implicit assumptions are commonly not only made about the problem context,
but also about the reference, the orientation, the coordinates, and the metric and
about ‘negligible’ phenomena. Famous classroom examples may have an impact on
the understanding of real behavior for generations, especially due to the textbook
copying culture that is the result of what may be called a ‘quest for truth’ motiva-
tion, ignoring model competence. A notorious example is the false explanation that
the lift of an aircraft wing is solely due to the air speed differences and resulting
dynamic pressure differences in the boundary layer generated by the wing profile.
This explanation has survived many textbooks, even though the simple observation
that airplanes with such wing profiles can fly upside down falsifies this explanation
in an extremely simple and evident way.

Another example is a model of which the behavior changes after a change of
coordinates: as coordinates are a modeler’s choice, they cannot have any impact on
the behavior of the described system. Not keeping an open eye for these aspects of
modeling may lead to exercises that are documented in the scientific literature in
which controllers are designed to deal with model behaviors that are due to imper-
fections of the model and that are not observed at all in the real system or rather the
actual problem context.

Summarizing the crucial issues in the process of modeling of dynamic behavior:
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e Determination of the purpose of the model in a specific problem context in order
to be able to judge whether a model is competent for a particular problem context.
In other words: no generic, ‘true’ (sub)model exists by definition in the sense that
(sub)models are not exact copies of the (sub)systems to be modeled, but they may
be competent to support the solution of a particular problem related to the actual
system. This problem may be related to the past (trouble shooting), to the future
(conceptual design) and to the present (model-based, real-time control, including
the control of user interfaces in simulators).

e Identification of dominant and relevant behaviors and decomposition into ele-
mentary behaviors.

e Generation of a conceptual structure that combines these elementary behaviors
into a computable dynamic model of the relevant system behavior(s).

The discussion of these meta-level issues in modeling has paved the way for the
introduction of the concept of a ‘port’ in the next section.

1.3 Ports in dynamical systems models

1.3.1 Bilateral bonds versus unilateral signals

The concept of a port is generated by the fact that sub-models in a model have to
interact with each other by definition and accordingly need some form of concep-
tual interface. In physical systems, such an interaction is always (assumed to be)
coupled to an exchange of energy, i.e. a power. In domain-independent terminol-
ogy, such a relation is called a (power) bond accordingly. This bond represents a
bilateral relation and connects two (power) ports of the elements or sub-models that
are interacting (Fig. 1.3). Note that the energy conservation principle does not re-
quire the energy to traverse the intermediate space in a flow-like manner: if energy
is generated at one place at the same rate that energy is annihilated in other place,
the energy conservation principle would still hold. However, in addition we will at
all times apply Heaviside’s (macroscopic) principle, which states that this cannot be
the case and energy has to traverse the intermediate space, even when this space is
a conceptual space, thus giving meaning to the concept of a bond.

In the signal domain, the power of a signal relation is assumed to be negligible
compared to the powers that do play a role, such that a signal relation may be con-
sidered a ‘unilateral” relation. Note that ideal operational amplifiers have an infinite
input impedance and a zero output impedance in order to suppress the back-effect
and to be purely unilateral, but can only be approximated by adding external power.
The bilateral nature of the power relations (as opposed to unilateral signal relations)
suggests the presence of two variables that have some relation to the power rep-
resented by the bond. These so-called power-conjugate variables can be defined in
different ways, but they are commonly related to the power P by means of a product
operation and in the domain-independent case named effort e and flow f:
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Domain-dependent examples are force and velocity in the mechanical domain, volt-
age and current in the electrical domain, pressure and volume flow in the hydraulic
domain, etc. In principle, the flow variable can be seen as the rate of change of
some state, or ‘equilibrium-establishing variable’, whereas the effort variable can
be seen as the equilibrium-determining variable. In thermodynamics the latter are
called intensive states that do not depend on the extent of the system as opposed
to the extensive states that are proportional to the extent and not necessarily equal
in equilibrium. The common approach to port-based modeling distinguishes, simi-
lar to modeling electrical networks and simple mechanical systems, two dual types
of storage: capacitive or C-type storage and inertial or |-fype storage (examples of
C’s: electrical capacitor, spring, etc.; examples of I’s: coil, mass, etc.). This dis-
ables the use of the distinction between flow and effort as rate of change of state
and equilibrium-determining variable, respectively, for variable identification dur-
ing modeling. In other words: the common approach unnecessarily symmetrizes the
roles of effort and flow in the models. The so-called Generalized Bond Graph or
GBG approach introduced in 1979 [29] and further developed between 1979 and
1984 [32] circumvents this problem by using one type of storage and splitting the
corresponding domains into two that are explicitly connected by a so-called sym:-
plectic gyrator (SGY, to be elaborated later), thus leaving the discussion about the
force-voltage versus force-current analogy a non-issue [30,32]. Nevertheless, there
is a clear didactic preference to introduce the common approach using the force-
voltage analogy [91]. As this part of the book is to lay the physical foundations for
a rigorous mathematical treatment of system models that have been named ‘port-
Hamiltonian systems’ (cf. Chapter 2), where the Dirac structure is the abstraction of
a conceptual structure, it is relevant to note at this point that the GBG approach not
only leaves the symplectic gyrator explicit such that the distinction between flows
as elements of a linear space and the efforts as the elements of a dual linear space
(see Sect. B.1.1 in Appendix B) is also maintained in the mathematical picture, but
also, even more importantly, because the coupling between the domains that can
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be represented by a symplectic gyrator, is a special case from the point of view
of physics. To be more specific: in the mechanical case the coupling between the
kinetic and the potential domain only simplifies into a unit gyrator (or symplectic
gyrator) when working in an inertial frame, i.e. a non-accelerating frame, where the
coupling can be described by Newton’s second law; in the electromagnetic case the
coupling between the electric and the magnetic domain is described by Maxwell’s
equations, which only simplify into a symplectic gyrator under the quasi-stationary
assumption, which reflects the assumption that an electric circuit is not radiating,
or rather that its radiation may be neglected [30]. As a result, the GBG approach
provides more insight during modeling than the conventional approach. However,
in case of the simple examples that are inevitable during an introduction, the differ-
ence between the two approaches lies merely in the fact that the GBG represents the
SGY using only the C-type of storage port, while the conventional approach can be
considered to have eliminated this SGY by partial dualization, thus introducing the
dual type (I-type) of storage port. This is why the conventional approach will often
be used, while referring to the GBG approach as much as possible.

However, before we can discuss this in more detail, some more general issues
need to be addressed first.

1.3.2 Dynamic conjugation versus power conjugation

The two signals of the bilateral signal flow representing a physical interaction are
dynamically conjugated in the sense that one variable represents the rate of change
of the characteristic physical property, like electric charge, amount of moles, mo-
mentum, while the other variable represents the equilibrium-determining variable.
This is called dynamic conjugation. As long as no other domains are of interest, the
concept of energy is not particularly relevant, such that these variables do not need
to be related to a power, like the effort and flow discussed earlier, as the domain is
based on the conserved quantity that characterizes it. Examples are: temperature and
heat flow (product is not a power, heat is not a proper state if other domains are in-
volved), molar flow and concentration or mole fraction (product is not a power), etc.
The power-conjugated variables effort and flow are a subset of these dynamically
conjugated variables, due to the additional constraint that their product represents a
power.

This illustrates that the concept of a domain-independent conserved quantity,
the energy, is crucial for the consistent interconnection of physical phenomena in
different domains. The discussion of basic behaviors in Sect. 1.6 is based on this
and thus requires either the consistent use of power-conjugated variables or carefully
defined domain transitions that are power continuous and energy conserving.
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1.3.3 Bond graph notation

Bond graphs are labeled di-graphs: its edges are the bonds and represent the bilateral
signal flow of the power-conjugate variables effort and flow. The common conven-
tion for the position of the symbols for the effort and flow variables in a bond graph
with respect to their bond is that efforts are written above or to the left of a bond
and flows below or to the right. As this is ambiguous when the bond has a ‘north-
west inclination’ (considering the top of the paper to be ‘north’) the symbol for the
bond orientation is also used to indicate the position of the flow and is supposed
to be in line with the common convention. This edge orientation of the di-graph is
represented by a little stroke that forms a half-arrow with the line representing the
edge. This is the typical appearance of a bond (cf. the bond graph in Fig. 1.14). The
meaning of the half arrow will be discussed in more detail later in Sect. 1.6.1. The
labeled nodes of the bond graph are (multiport) elements that can be distinguished
on the basis of their behavior with respect to energy, power, and the conserved quan-
tities typical for a domain. An important property is the power continuity of a node:
a power continuous node satisfies an instantaneous power balance at all times, i.e.
the net power into the node is zero at all times. Obviously, non-degenerate one-ports
cannot be power continuous. The node labels are represented by mnemonic codes
that refer to the basic behavior.

1.3.3.1 Node types in a bond graph

There are nine (eight in the GBG!) basic node types that can be categorized in five
groups of basic physical behaviors:

1. Storage (‘first law’, energy conservation), node labels: C, | (I not in GBG)

2. Supply and demand (boundary conditions), labels: Se, Sf

3. Reversible transformation (configuration constraints, inter-domain connections),
labels: TF, GY

4. Distribution (topological constraints, intra-domain connections), labels: 0, 1

5. Irreversible transformation (‘second law’, positive entropy production, dissipa-
tion of free energy), label: R(S)

The storage elements can store energy reversibly and are consequently not power
continuous. The sources supply power to the system (from the environment) or drain
power from the system (to the environment) and are also not power continuous with
respect to the system accordingly. In fact, sources can be considered storage ele-
ments that are infinitely large with respect to the storage processes of interest, such
that, if the energy would be tracked, it would still satisfy the energy conservation
principle. The energy conservation principle prohibits other forms of power discon-
tinuity, i.e. all other elements should be power continuous in principle. The elemen-
tary transducers are power continuous two-ports, while the junctions are power con-
tinuous multi-ports, i.e. with two or more ports. The junctions are not parametrized.
In standard bond graphs, energy is replaced by its Legendre transform with respect
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to entropy, the free energy, which is not conserved and allows the thermal port of
the irreversible transducer to be omitted, thus changing the RS in a one-port resistor
R, which is a power discontinuous one-port. Common introductions to bond graphs
generally do not mention this and introduce the R as just another one-port, without
pointing out that its use implies the implicit assumption that the temperature of the
system can be considered constant with respect to the dynamics of interest. It would
be too disturbing to always point this out, but during the modeling process it is good
to be aware of this underlying assumption. Each of the above behaviors is discussed
in more detail in Sect. 1.6.

1.4 Computational causality

In pure mathematical terms, one can state that a subsystem with a number of (power)
ports, called multiport, is a multiple-input-multiple-output or MIMO system model,
of which the set of inputs and the set of outputs is not chosen a priori. The relation
between the input and output variables, the so-called constitutive relation, deter-
mines the nature of this multiport.

If the number of input variables is not equal to the number of output variables,
this means that there has to be at least one unilateral signal port as opposed to a
bilateral power port, as the latter is by definition characterized by one input and
one output. If this signal port is an input signal, the multiport is called ‘modulated’.
Modulation does not affect the power balance, in other words: no energy can be
exchanged via a signal port as its conjugate variable and thus the associated power
are zero by definition. Situations can exists too in which the model is modulated
although the number of inputs equals the number of outputs, because for each mod-
ulating signal there is also some output signal.

Although ports and bonds illustrate that two bilateral signals are involved in a
relation, no a priori choice about the direction of the corresponding signals needs to
be made. This is an important distinction with a conventional MIMO system (Fig-
ures 1.4a and 1.4b). A particular choice of this computational direction or causal-
ity is needed before a set of computable relations can be found or some particular
analysis can be performed. Often, such a ‘causality assignment’ leads to compu-
tational forms that are not obvious and would have led to modeling problems in
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conventional approaches, in particular when domain boundaries are crossed (cf. the
remarks about Paynter’s motivation in the introduction, Sect. 1.1.2). As a result,
bond causality, in particular its algorithmic assignment, does not only support the
solution of computational and analytical issues, it also gives the modeler immediate
feedback about the physical meaning of his modeling decisions and the trade-off
he has to make between conceptual and computational complexity (cf. Sect. 1.7).
This means that computational causality is not merely computational, but in fact ex-
presses the fact that time differentiation cannot be realized by physical means, while
time integration is naturally related to the process of storage (Riemann sum). The
adjective ‘computational’ is used merely to make a distinction with what is com-
monly called the ‘causality’ of signals, meaning that the effect of some input signal
in some output cannot precede the input signal, in other words a system model is
causal if it obeys the principle of the ‘arrow of time’ (time-reflection asymmetry).

If information about its (computational) causality is represented on a bond in a
bond graph by means of a so-called ‘causal stroke’ (cf. Fig. 1.5), the bond graph
simultaneously represents physical and computational structure [33, 98]. From the
latter point of view, a bond graph can be seen as a condensed block diagram. How-
ever, although any causal bond graph can be converted into a block diagram, the
reverse does not hold, as physical structure is lost in the first transformation.

The causal stroke is attached to that end of the bond where the effort signal comes
out, i.e. where it enters the connected port. This automatically means that the so-
called open end of the bond represents the computational direction of the flow signal
(cf. Fig. 1.5). The actual use and impact of the representation of computational
causality in the bond graph will become clear after the introduction of the basic
elements that each have particular causal port properties.

1.5 System versus environment: system boundary

The distinction between system and environment is determined by the role of these
parts: the environment can influence the system, but not dynamically interact with it.
In signal terminology: the environment may ‘influence’ the system via the system’s
inputs and ‘observe’ the system via its outputs, but the inputs cannot depend on
these outputs at the time scale of interest. In case of normal use, a car battery for
example, may be considered the environment of a dashboard signal light, as the
discharge caused by this small bulb will not affect the voltage of the battery in a
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considerable way. In other words, the car battery in this problem context (regular
car use) can be modeled by a voltage source. However, in a context of a car being
idle for three months (other time scale!) the car battery has to be made part of the
system and dominantly interacts with the resistance of the bulb like a discharging
capacitor. The resulting RC-model is competent in this problem context to predict
the time-constant of the discharge process. In severe winter conditions the thermal
port of this capacitor will have to be made part of this system model too, etc.

Note that, after a particular choice of the separation between unbounded envi-
ronment and bounded system, the influence of the environment on the system may
be conceptually concentrated in this finite system boundary by means of so-called
sources and sinks, also called boundary conditions or constraints, depending on the
domain background. They are part of the ideal conceptual elements to be discussed
in the next section.

From an energy point of view, the following viewpoint emerges. Since the uni-
verse is assumed to obey the first and second law of thermodynamics, viz. energy
conservation and positive entropy production, only being interested in a relatively
small part of the universe (system) that may still interact with the rest (its envi-
ronment) not only means that exchange with the environment of energy and all
conserved quantities can take place, but also that the entropy of the system may de-
crease. However, it is additionally assumed that this decrease can only be due to a
net flow out of the system, not by local annihilation. In other words: it is assumed
that the positive entropy production principle also holds locally. This justifies the
use of the concept of an irreversible transducer (RS).

1.6 Elementary behaviors and basic concepts

This section discusses in some more detail the conceptual elementary behaviors that
can be distinguished in the common description of the behavior of physical systems,
in particular from a port-based point of view. Before the individual elements can be
discussed, first the notation for the positive orientation in the form of the so-called
half-arrow needs to be elaborated.

1.6.1 Positive orientation and the half-arrow

Each bond represents a connection between two ports. However, with one loose end
it can be used to visualize the port it is connected to. The three variables involved,
viz. effort, flow and power, may have different signs with respect to this port. In
order to be able to indicate this, a half arrow, as opposed to the full arrow that is
commonly used to graphically represent the direction of a signal, is attached to the
bond, expressing the positive orientation of these variables, similar to the plus and
minus signs and the arrow that are used for an electric two-pole to represent the
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positive orientation of the voltage and the current respectively (Fig. 1.6). The half-
arrow does not indicate the direction of the flow or of the power: the direction is
opposite in case the corresponding variable has a negative value.

Just like the causal stroke, the half-arrow is an additional label to the bond, but
they do not affect each other (Fig. 1.7): the causal stroke merely fixates the direction
of the individual signal flows in the bilateral signal flow pair, whereas the half-arrow
merely represents positive orientation with respect to the connected ports.

1.6.2 Constitutive relations of elements

Each port of a bond graph node requires one constitutive relation, while the node
type determines the shape of this relation in the sense that it constrains the possible
forms of these constitutive relations.

Often, relatively small variations around the origin or some operating point can
be linearly approximated, resulting in just one parameter per port, e.g. capacitance,
resistance, etc. These constitutive parameters always consist of a combination of ge-
ometric parameters and material parameters. If a configuration is made time-variant,
a consequence can be that a geometric parameter becomes an energy state and re-
quires an additional power port of a storage element (e.g. condenser microphone,
coil with moving core, etc.) or a signal port of the other elements, resulting in state-
modulation.

However, as most physical variables have some upper limit, saturation, and thus
non-linearity, will occur in all constitutive relations of parametrized ports. Examples
are: the speed of light that shows that the parameter ‘mass’ cannot remain constant at
all times, breakdown voltage of a capacitor, force at which a spring breaks, magnetic
saturation, etc. It depends on the problem context whether or not such a nonlinear
range should be included in the model.

Each constitutive relation of a port may contain quantities of a different nature:

e conjugate power variables or port variables effort and flow (e, f);
e energy states (g, p);
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e dynamic parameters that characterize the constitutive relation (capacitance, resis-
tance, mass, spring constant, etc.); these parameters commonly depend on both
material and geometric parameters;

e material parameters (parameters that are characteristic for a specific material like
specific densities of all kinds);

e geometric or configuration parameters (constant spatial quantities like length,
surface, content, distance, etc.).

Making this distinction is of great help during modeling of dynamic behavior.
Take for example a simple ohmic resistor. Its constitutive relation relates the port-
variables u (voltage) and i (current) by means of a constant dynamic parameter, the
resistance R, resulting in the constitutive relation commonly addressed as Ohm’s
law: u = Ri. In turn the resistance depends on the specific resistance p of the mate-
rial (e.g. carbon) and its configuration, e.g. its length / and the cross-section area A:
R= %]. The variables in a dynamic model (port variables as well as state variables)
play a quite different role than the parameters, even though problem contexts may
exist in which a resistance is to be computed from a given voltage and a given cur-
rent. However, such a problem context cannot be considered to require a dynamic
model. This is different when the configuration is not constant, such that configura-
tion parameters become (configuration state) variables. An example is a potentiome-
ter, where the length of the carbon path in the circuit can be changed. However, this
does not give the resistance R the same nature as the port variables u and i: the re-
sistor keeps the same port variables and just becomes position-modulated due to the
position dependence of R.

Another example is a spring that may be described by Hooke’s law: F = Kx.
Many are inclined to categorize the variables and parameters in a similar manner
as those of the resistor: force F and displacement x as dynamic variables and the
spring constant K as the dynamic parameter that is a function of a material parameter
(Young modulus) and the configuration parameters (depending on the shape of the
spring). However, the product of the force F and the displacement x does not equal
the power of a spring, which is the product of the force F' and the velocity v, i.e. the
rate of change of the displacement x. This confirms that the ideal spring is a quite
different element than the ideal resistor with respect to its energetic properties: it
stores elastic energy and is characterized by an energy state that is the time integral
of the flow. The detailed discussion of the basic elements will start with this key
element (concept) of dynamic system models: storage.

1.6.3 Storage

The most elementary behavior that needs to be present in a system in order to be
dynamic is ‘storage’. In mathematical terms, one can describe this behavior by the
integration of the rate of change of some conserved quantity, viz. the stored quantity
or state, and by the relation of this state with the equilibrium determining variable,
the so-called constitutive relation, also called port characteristic.
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The storage ports are somewhat exceptional as the relation between the conju-
gate variables effort and flow contains two stages: the first stage is always integra-
tion with respect to time into an energy state. This operation can, if necessary, be
inverted into a differentiation with respect to time although this means that physi-
cally relevant information about the initial condition, i.e. the initial content of the
storage element, cannot be given a place in the model (cf. the later discussion of
causal port properties in Sect. 1.7). The second part is an unambiguous functional
relation between the (extensive) energy state (g- or p-type) and the conjugate power
variable (intensive state). The latter relation is not a priori constrained, except for
the constraint that if a node contains more than one storage port, i.e. if it is a multi-
port storage element, it should satisfy the Maxwell reciprocity conditions in order to
satisfy the energy conservation principle. However, qualitative properties of a stor-
age (multi)port, like intrinsic stability, may lead to additional constraints such as
positive-definiteness and positive diagonal elements of the Jacobian of the relation
(cf. Sect. 1.9.3).

The storage ports can also be classified as ‘history ports’, a terminology that re-
flects the required presence of an integration with respect to time, while all other
ports belong to the class of ‘non-history ports’, which means that their constitutive
relations only relate the variables at the current time instant, in other words the con-
stitutive relations are algebraic, although it can still be the case that states modulate
these elements. This state modulation particularly occurs in mechanism models in
which the geometric constraints can be represented by position-modulated trans-
formers and their multiport generalizations. The importance of choosing variables
that lead to insightful representations of complex mechanisms that can be easily
manipulated should not be underestimated.

At the signal level, other forms of history operations can exist, like flip-flops,
sample and hold, pure integration, etc. This distinction is helpful when preparing
a numerical simulation as it indicates that variables of previous numerical steps
need to be stored for future use. The presence of history ports is required to obtain
dynamic behavior.

If measurement of the relation between intensive and extensive states results in a
loop in the port characteristic (hysteresis), the port that is observed cannot be simply
represented by just one storage port, but contains at least one other storage port
through which power is exchanged. If this port is connected to a dissipative port, the
cycle will have to be clockwise due to the positive entropy production principle (cf.
Sect. 1.9.3 on multi-ports).

In the common classification of domains, many domains are characterized by two
types of states, viz. the generalized displacement and the generalized momentum,
following the common approach in the mechanical domain (Table 1.1). It has been
noted before that a different classification of domains, which for instance separates
the mechanical domain into a kinetic domain and a potential or elastic domain, can
easily resolve the paradoxical situation that results from the common choice [32].

Application of the common classification leads to two types of storage elements:

e the C-type storage element in which the flow is integrated into a generalized
displacement and related to the conjugate effort;



1.6 Elementary behaviors and basic concepts 23

Table 1.1 Domains with corresponding flow, effort, generalized displacement, and generalized
momentum.

f flow e effort q = [ fdr generalized p = [edt generalized

displacement momentum
electro- icurrent  u voltage ¢ = [idrcharge A = [udr magnetic
magnetic flux linkage

mechanical v velocity F force x = [vdt displacement p = [ F df momentum
translation

mechanical @ angular 7 torque 6 = [ dr angular dis- b = [T dt angular mo-

rotation velocity placement mentum
hydraulic ¢ volume p pressure V = [ ¢ dr volume I' = [ pdt momentum
pneumatic  flow of a flow tube
thermal T tempera- fs entropy S = [ fsdt entropy
ture flow
chemical  p chemical fy molar N = [ fydr number of
potential  flow moles
a
u
— /7 C
1
b
+ 4
/]
u C
Fig. 1.8 Bond graph repre-
sentation (a) of an electrical —

capacitor (b). = =

e the I-type storage element in which the effort is integrated into a generalized
momentum and related to the conjugate flow.

Both are dual in the sense that they can be transformed into each other by inter-
changing the roles of the conjugate variables effort and flow. Simple examples of
C-type storage elements are:

ideal spring (mechanical domain, GBG: elastic or potential domain);
ideal capacitor (electric domain, Fig. 1.8);

ideal reservoir (hydraulic/pneumatic domain, GBG: potential domain);
ideal heat capacitor (thermal domain).

The explicit use of the adjective ‘ideal’ tries to emphasize the difference between
elements and components although the naming is usually based on the component
that dominantly displays a particular elementary behavior.

Simple examples of I-type storage elements are:

e ideal mass (mechanical domain, GBG: C of the kinetic domain);
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Table 1.2 Thermodynamic framework of domains and variables.

f flow, equilibrium e effort, equilibrium deter- ¢ = [ fdr generalized

establishing mining, intensive state state, extensive state

electric i current u voltage g = [idt charge

magnetic  u voltage i current A = [udr magnetic
flux linkage

elastic / po- v velocity F force x = [vdt displacement

tential trans-

lation

kinetic F force v velocity p = [ Fdr momentum

translation

elastic / po- w angular velocity T torque 0 = [ wdr angular dis-

tential rota- placement

tion

kinetic rota- ® angular velocity T torque b = [T dr angular mo-

tion mentum

elastic ¢ volume flow p pressure V = [ ¢ dr volume

hydraulic

kinetic p pressure ¢ volume flow I' = [ pdt momentum

hydraulic of a flow tube

thermal T temperature fs entropy flow S = [ fsdr entropy

chemical u chemical potential fy molar flow N = [ fydt number of
moles

e ideal inductor (electric domain, GBG: C of the magnetic domain);
e ideal fluid inertia (hydraulic/pneumatic domain, GBG: C of the kinetic domain).

This common choice of domains leads to two disadvantages:

1. the asymmetry between effort and flow is destroyed as both can be considered a
rate of change;

2. no insight can be obtained from the fact that the concept of storage can take two
different forms.

This is why the GBG framework (Table 1.2) should get ample attention too.

Storage elements can be used in a domain-independent way due to the built-in
representation of the energy-conservation principle. Not only the stored quantity,
e.g. charge, matter, momentum, flux linkage, etc. is stored, but also the energy re-
lated to this storage. In case that more than one quantity is stored (multi-port storage)
the principle of energy conservation supports the description of the potential power
transfer from one domain into the other by means of cycle processes. Almost all
engineering transduction processes can be related to this concept and usefully ana-
lyzed with the tools that thermodynamics provides, even when the model contains
no thermal port. For instance, the insight that a set of two coupled coils, i.e. the
component ‘transformer’, does not transform direct current is easily explained this
way [36].



1.6 Elementary behaviors and basic concepts 25

1.6.4 Irreversible transformation

Next to the first law of thermodynamics, i.e. energy conservation, the second law
of thermodynamics, i.e. positive entropy production, has to be satisfied. However,
the entropy production is assumed to take place only in the two-port irreversible
transformers that are usually addressed as one-port ‘dissipators’ or ‘resistors’ due
to the fact that the thermal port can be omitted if the temperature is assumed to be
homogeneous and constant at the time scale of interest. This implicit assumption
is often not explicitly mentioned, which may lead to modeling inconsistencies, as
these one-ports are clearly power discontinuous: the energy of the system is in fact
be replaced in this case by its Legendre transform (see Sect. B.2 in Appendix B)
with respect to the entropy, i.e. the so-called free energy, which can be dissipated.
This reduces the irreversible, power continuous two-port transducer into a virtually
power discontinuous, i.e. ‘free energy dissipating’ one-port that is commonly called
dissipator, resistor or damper.

As the rest of the system has to satisfy the second principle too, all entropy pro-
duction is assumed zero there, which results in entropy continuity for all elements
except for the storage elements where reversible storage of entropy is allowed. ‘Re-
versible storage’ is a tautology, as irreversibilities would violate the basic concept
of storage, but is used here to make the distinction with the irreversible produc-
tion. The common acronym for an irreversible transducer is RS, derived from the
common acronym in the isothermal case, R, to which an S for source is added to
represent the entropy production.

Simple examples of irreversible transforming (resistive) elements are:

ideal electric resistor;
ideal friction;

ideal fluid resistor;
ideal heat resistance.

Due to the second principle of thermodynamics (positive entropy production), the
relation between the conjugate variables at the R-port can be linear or nonlinear as
long as the relation remains in the 1st and 3rd quadrant. However, the relation at the
S-port (always in the thermal domain) is intrinsically nonlinear, due to the absolute
zero-point of temperature (linear two-ports can be proven to be reversible).

In other words: the constraint on an R-port is that the functional relation should
satisfy the positive entropy production principle. For the common orientation defini-
tions (i.e. one-ports except sources positive towards the port; two-ports one inward,
other port outward) this means that this function cannot be in the second or fourth
quadrant and thus has to intersect with the origin.

There is no demand of linearity of the R-port characteristic, such that a diode
belongs to the class of electrical R-ports, even though it does not have an ohmic
(i.e. linear) resistance. Similarly, a check valve belongs to the class of hydraulic R-
ports. Nonlinear friction in a mechanical contact with Coulomb and static friction
and the Stribeck effect can still be described by a nonlinear R-port, although its
implementation requires special attention from a port-based perspective.
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The irreversible transducer does not change type when dualized. In principle, it
is a power-continuous, port-asymmetric two-port just like transformers and gyrators,
which will appear an uncommon conclusion at first sight. The notion of a port-
asymmetric multiport will be clarified further when port-symmetric multi-ports are
discussed.

1.6.5 Reversible transformation

Irreversible transformation more or less suggests the ‘possibility’ of, or rather, the
need for, the ideal concept of a reversible transducer. Reversible transducers cannot
store or produce entropy, as these properties are already concentrated in the storage
and RS elements, and hence, they have to be power continuous. Their most ele-
mentary form is the two-port. It can be formally proven that, independent of the do-
main, only two types of port-asymmetric, i.e. with non-exchangeable ports, power-
continuous two-ports can exist, at the one hand the so-called transformer (acronym:
TF) that relates the efforts of both ports and also the flows of both ports (‘non-
mixing’), and at the other hand the so-called gyrator (acronym: GY) that relates
the flow of one port with the effort of the other vice versa (‘mixing’). The consti-
tutive relations of two-ports are all multiplicative in form: the multiplication factor
(transformation or gyration ratio) can be constant (regular TF and GY) or depend
on an arbitrary time-dependent variable, the so-called modulating signal (acronyms:
MTF and MGY) and, in some cases, on the port variables, in which case modula-
tion changes into non-linearity. An example of the latter situation is the dominant
behavior of a centrifugal pump or turbine: a nonlinear GY (often incorrectly written
as a ‘port-modulated” MGY) with a hydraulic port (p,¢) and a rotation port (7,m)
with ratio (aw + b¢), i.e.

p=(a0+bd)®=aw*+bpw
T = (a0 +bd)$ = awd + bo*>

where a and b depend on the geometry and the fluid properties.

In fact, it is possible to ‘see’ the power-continuous, port-asymmetric RS as a
port-modulated gyrator (MGY) or transformer (MTF), depending the causality of
the R-port (the S-port has a fixed effort-in causality), modulated by the input of the
S-port (the absolute temperature) and the output of the R-port. However, not only
does this representation hide the property of irreversibility, it also results in a set of
incomputable relations if directly applied for simulation, so it is better to continue
to use it as a separate concept with its own acronym.

Simple examples of reversible transforming elements are:

ideal (or perfect) electric transformer;
ideal lever;

ideal gear box;

ideal piston-cylinder combination;
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e ideal positive displacement pump.
Simple examples of reversible gyrating elements are:

e ideal centrifugal pump;
e ideal turbine;
e ideal electric motor.

An ideal, continuously variable transmission is a simple example of a reversible,
modulated transforming element, while an ideal turbine with adjustable blades is a
simple example of a reversible, position-modulated gyrating element, albeit nonlin-
ear (cf. earlier remark).

In port-based models of planar and spatial mechanisms, specific types of (config-
uration) state-modulated (multiport) transformers play a crucial role, which exposes
the dual role of the displacement variable.

The reversible transformations appear in dual form just like most of the other
node types: the non-mixing, reciprocal transformer or TF-type transducer, and the
mixing, anti-reciprocal gyrator or GY-fype transducer.

1.6.6 Supply & demand (sources & sinks / boundary conditions)

As already announced, the supply and demand from and to the environment can
be concentrated in the (conceptual!) system boundary and represented by sources
or sinks. As sinks can be considered negative sources, only ideal sources are used
as ideal elements. Given that a port has two kinds of variables, effort and flow, two
kinds of sources may exist, Sources of effort and Sources of flow (acronyms: Se and
Sf). These two, dual sources correspond to the two, dual types of boundary condi-
tions (called Dirichlet and Neumann conditions in the context of partial differential
equations).

Generally speaking, all storage elements that are large compared to the dynamics
of interest (note that this cannot be considered independently of the resistance of
its connection to the rest of the system) may be approximated by infinitely large
storage elements that are identical to sources. An infinitely large C-type storage
element becomes an Se, an infinitely large |-type storage element becomes an Sf.
However, feedback control may turn a port into a source too, cf. a stabilized voltage
source. As the voltage may be adapted or modulated, these kinds of sources are
called modulated sources (MSe, MSf).

Simple examples are of (modulated) effort sources are:

e ideal (controlled) voltage source;
e ideal (controlled) pressure source, etc.

Simple examples are of (modulated) flow sources are:

e ideal (controlled) current source;
e ideal (controlled) velocity source, etc.
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A source is degenerate in the sense that its constitutive ‘relation’ merely states that
there should be no relation between its conjugate variables: the only constraint is
that the imposed variable is independent of the conjugate variable. So-called ‘non-
ideal sources’ violate this constraint, but can always be considered a combination of
an ideal source with one of the other node types (usually a resistor that represents
the so-called internal resistance). However, non-ideal sources influence the dynamic
characteristics of a system model while ideal sources do not.

1.6.7 Distribution

The topological constraints also appear in dual form: the so-called O-junction and
1-junction. The fact that these topological constraints are represented by nodes of
the graph are the most powerful feature of the bond graph representation, but at the
same time the most uncommon and potentially confusing aspect. The constitutive
relations (one per port) of the first type of junction require all efforts to be identical
and the flows to sum up zero with the choice of sign related to their positive orienta-
tion, similar to a Kirchhoff current law. The O-junction not only represents a gener-
alized, i.e. domain independent, Kirchhoff Current Law (KCL), but also the identity
of the conjugate efforts, such that it can be considered to represent a common ef-
fort. Paynter called this junction a zero-junction, due to the similarity between the
symbol for zero and the shape of a node in an electric circuit that satisfies the KCL.

The constitutive relations of the second type of junction, simply called 1-
junction, are dual: all flows should be identical and the efforts sum to zero with
the choice of sign related to their positive orientation (effort balance), similar to a
Kirchhoff voltage law. Similar to its dual node, the O-junction, a 1-junction not only
represents a generalized, i.e. domain independent, Kirchhoff Voltage Law (KVL),
but also the identity of the conjugate flows, such that it can be considered to repre-
sent a common flow.

The common approach to model mechanical constraints at the position level is
related to the dual nature of the position variable, both energy state and configura-
tion state. Merely from an energy point of view the mechanical constraints lie at
the velocity (mechanical flow) level and should be treated as such. However, the
description of the variable configuration requires a formulation at the position level,
commonly resulting in position modulation of the mechanical junction structure.

However, the (topological) structure may not be constant. In that case, the junc-
tion may depend on a logical state that, if it were, switches it ‘on’ and ‘off’. This
‘switched junction’ is represented by adding the letter X to the junction symbol, i.e.
X0 and X1, and is modulated by a Boolean signal. In the ‘off’-state, all connected
ports have zero power.

Another way to justify the need for the concept of a junction is that, in order
to be able to distribute power between subsystems in an arbitrary way, distribut-
ing elements with three or more ports are required. By assigning all energy stor-
age to the storage elements, all entropy production to the irreversible transducers
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(“dissipators’) and all exchange with the environment to the sources, only the prop-
erty of power continuity remains. Furthermore, the requirement that ports should
be connectable at will, requires that an interchange of ports of these distributing
or interconnecting elements has no influence. This is the so-called property of port
symmetry. It is important to note that it can be formally proven that only the require-
ments of power continuity and port symmetry result in two solutions, i.e. two types
of multi-ports (i.e. interconnection elements with two or more ports) with constitu-
tive relations that turn out to be linear and non-parametrized, the so-called junctions.
No assumption about domain or form of the constitutive relations is required. This
supports the above conclusion about the mechanical constraints. Port-symmetric,
power continuous two-ports are junctions too, which explains why the assumption
of port-asymmetry was required when discussing the TF and GY.

As mentioned before, really manipulating the concept of the junction in a way
that supports the modeling process, i.e. without using other modeling techniques
and translation first, requires some skill as the true understanding of the junctions
requires the paradigm shift mentioned earlier. Nevertheless, the results are powerful,
as will be demonstrated after the discussion of the causal port properties.

1.6.8 Summary of elements

Summarizing, we repeat that the following nine (GBG: eight) basic node-types are
distinguished:

e 4 (GBG: 3) one-ports: C, | (not in GBG), (M)Se, (M)Sf;
e 2 two-ports: (M)TF, (M)GY;

e 2n-ports withn > 1: 0, 1;

e | one- or two-port: (M)R(S).

The basic one-ports are power discontinuous, the basic two-ports are power-continuous
and port-asymmetric and the basic multi-ports are power continuous and port-
symmetric.

The power-continuous elements, with the exception of the RS, form together the
so-called Generalized Junction Structure. If the anti-reciprocal part of the GJS (the
gyrators) are split from this JS, a reciprocal, so-called Weighted Junction Structure
(WIJS) remains, in which the transformation ratios are the weighting factors. If these
are taken from the JS too, a so-called Simple Junction Structure (SJS) remains,
which consists of junctions and bonds.

1.6.9 Modulation and bond activation

It was already shortly mentioned that the letter M in the node symbol of some of the
parametrized nodes stands for ‘modulated’, expressing that the constitutive equation
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can depend on an external signal (modulation) without changing the nature of the
node or affecting the power balance. Storage elements are parametrized, but not
modulated in principle, as this would violate the basic concept of storage. However,
when it is obvious that either the power or the dynamic interaction related to one of
the ports of a multiport version of the storage element can be neglected at all times
with respect to the other port(s), modulation can be used (e.g. a variable capacitor
in a receiver circuit).

Modulation usually requires ‘bond activation’, i.e. the bond, a bi-lateral relation,
reduces to a uni-lateral relation, the signal, due to the fact that the other conjugate
variable can be neglected in the particular context. The terminology refers to the fact
that an active element, e.g. an operational amplifier, is required to obtain this situa-
tion. However, decomposition of nonlinear elements can also lead to junction struc-
tures containing internally modulated elements that are modulated by ‘true signals’,
in the sense there is no conjugate variable by definition. This means that internal
modulation that is related to decomposition cannot be considered bond activation.

Internal modulation can be useful in principle, but should be used as a model-
ing instrument with great care, as it can be used, in particular in case of internal
modulation by one of the port variables of the modulated node, to construct one
‘elementary’ behavior out of another one. For example, a voltage source directly
or indirectly modulated by its own conjugate flow behaves like a resistor, etc. In
other words: internally modulated sources not only violate the basic definition of a
source, they can also be used to construct virtually ‘anything’. Nevertheless, if used
with sufficient care, they can enhance insight in specific cases, such that a ‘veto’ on
their use would be inappropriate.

1.7 Causal port properties

Each of the nine (GBG: 8) basic port-types (C, I, R(S), TF, GY, Se, Sf, 0, 1)
introduced above has its own causal port properties, that can be categorized as fol-
lows: fixed causality, preferred causality, arbitrary causality and causal constraints.
The graphical representation of causality by means of the causal stroke has been
introduced already (cf. Fig. 1.5).

1.7.1 Fixed causality

It needs no explanation that a source of effort (Se) always has an effort as output
signal, in other words, the causal stroke is attached to the end of the bond that is
connected to the rest of the system (Figures 1.9 and 1.10a). Mutatis mutandis the
causal stroke of a flow source (Sf) is connected at the end of the bond connected to
the source (Fig. 1.10b). These causalities are called ‘fixed causalities’ accordingly.
Apart from these fundamentally fixed causalities, all ports of elements that may
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become nonlinear and non-invertible, i.e. all but the junctions, may become fixed
due to the fact that the constitutive relation may only take one form.

1.7.2 Preferred causality

A less strict causal port property is that one of the two possibilities is, for some rea-
son, preferred over the other. Commonly, this kind of property is assigned to storage
ports, as the two forms of the constitutive relation of a storage port require either
differentiation with respect to time or integration with respect to time (Fig. 1.11).
On the basis of numerical arguments, the integral form is preferred, due to the fact
that numerical differentiation amplifies numerical noise, but there are more funda-
mental arguments too. A first indication is found in the fact that the integral form
allows the use of an initial condition, while the differential form does not. An ini-
tial state or content of some storage element is a physically relevant property that
clearly illustrates the statement that integration ‘exists’ in nature, whereas differen-
tiation does not. Although one should be careful with the concept ‘existence’ when
discussing modeling, this statement seeks to emphasize that differentiation with re-
spect to time requires information about future states in principle, whereas integra-
tion with respect to time does not. The discussion of causal analysis will make clear
that violation of a preferred causality gives important feedback to the modeler about
his modeling decisions. Some forms of analysis require that the differential form
is preferred, but this requirement is never used in order to prepare the constitutive
relations for numerical simulation.
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1.7.3 Arbitrary causality

The expected next possibility in the sequence is that the causality of a port is neither
fixed nor preferred, thus arbitrary. Examples of arbitrary port causality are linear,
thus invertible, resistive ports. For example, the a-causal form of the constitutive
relation of an ohmic resistor is u — Ri = 0, the effort-out causal form is u = Ri, while
the flow-out causal form is i = u/R (cf. Fig. 1.16).

1.7.4 Causal constraints

Causal constraints only exist for basic multi-ports, i.e. elements with two or more
ports, like the transducers (TF, GY) and the junctions (0, 1). If the constitutive
relation of the two-port transducers is linear (the junctions are intrinsically linear),
the first port to which causality is assigned is arbitrary, but the causality of the second
port is immediately fixed. For instance, the two-port transformer always has one port
with effort-out causality and one with flow-out causality. By contrast, the causalities
of the ports of a two-port gyrator always have the same type of causality. In graphical
terms: a TF has only one causal stroke directed to it, while a GY has either both
causal strokes directed to it or none.

The fundamental feature of the junctions that either all efforts are common (O-
junction) or all flows are common (1-junction) shows that only one port of a 0-
junction can have ‘effort-in causality’ i.e. flow-out causality, viz. the result of the
flow-balance. By contrast, only one port of a 1-junction can have ‘flow-in causality’
i.e. effort-out causality, viz. the result of the effort-balance. In graphical terms: only
one causal stroke can be directed towards a 0-junction, while only one open end can
be directed towards a 1-junction.

1.7.5 Causal paths

A bond path between two ports of the type C, I, R, Se, or Sf via the (G)JS containing
0, 1, TF, and GY is called a causal path if the sequence of the causal strokes is such
that they have one direction, with the exception of a path through a GY where this
causal stroke direction is always altered. A causal path is equivalent with a signal
loop in a block diagram or signal flow graph, except for the case that a source port
(Se or Sf) is part of the path (cf. Fig. 1.12).
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Fig. 1.12 Causal paths and block diagram expansion to signal loops.
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1.8 Causal analysis: feedback on modeling decisions

1.8.1 Sequential Causality Assignment Procedure (SCAP)

Causal analysis, also called causality assignment or causal augmentation, is the al-
gorithmic process of putting the causal strokes at the bonds on the basis of the causal
port properties induced by the nature of the constitutive relations. Not only the final
result, but also the assignment process provides immediate feedback on modeling
decisions.

All sorts of causality assignment algorithms can be applied for different pur-
poses. The common purpose is to write the model equations in a form suitable for
simulation, i.e. maximizing the number of storage ports with integral causality. The
most common algorithm is the so-called Sequential Causality Assignment Proce-
dure (SCAP) [99]. Tt is not perfect, in the sense that it fails in some rare cases, but it
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not only generates a set of computable equations, but also gives feedback on mod-
eling decisions. This is the reason for not discussing a more robust, but also more
complex method that can be used for computer implementation [64, 65, 86]. Herein,
this distinction will not be made for the sake of clarity, as it is not relevant for most
simple models. A short description of the steps of the SCAP is:

Step 1a: If present, assign a fixed causal source port and propagate this causality
along the nodes with causal constraints until propagation terminates due to mul-
tiple possibilities. For instance, if a flow source is connected to a 1-junction, the
source-port immediately gets flow-out causality, which in turn means that the
corresponding port at the 1-junction gets flow-in causality, which means that all
other ports of the 1-junction get flow-out causality, etc. (Fig. 1.13). Repeat this
step until all source ports are augmented with a fixed causality. If propagation
leads to conflicts with other fixed causalities, the model is ill-posed, e.g. two
voltage sources in parallel or two force sources trying to impose the same force
(mechanically ‘in series’). If propagation leads to conflicts with preferred causal-
ities, the model contains differentiations of the inputs (input-dependent ‘states’).
However, also those storage ports that obtain integral causality as a result of
propagation of the fixed causality of one or more source-ports do not result in
independent states: only their initial conditions can be freely chosen, the rest of
their behavior is fully dictated by the source port(s), such that they do not con-
tribute to the characteristic dynamic behavior of the model. If all bond ports are
causal at this point, the model does not have its own dynamics, but is completely
determined by its inputs.

Step 1b: If present, assign a fixed causal port that is not a source port and propagate
this causality along the nodes with causal constraints until propagation termi-
nates due to multiple possibilities. Repeat this step until all ports of this type
are augmented with a fixed causality. If propagation leads to conflicts with other
fixed causalities or with preferred causalities, the causal path (signal loop) that
causes the conflict should be analyzed symbolically as to obtain a solution. This
propagation should not lead to non-preferred causalities as this would lead to
misleading conclusions about the order of the model, unless the fixed causal port
is a storage port itself. In that case, the non-preferred causality is similar to the
dependency that can occur during the next step.

Step 2: If present, assign a preferred causal port and propagate this causality along
the nodes with causal constraints until propagation terminates due to multiple
possibilities. Repeat this step until all ports with preferred causality are assigned.
If propagation leads to conflicts with other preferred causalities the model con-
tains dependent states (no independent initial condition). Fig. 1.14 shows the
bond graph of two rigidly linked inertia’s, e.g. the motor inertia and the load
inertia in a servo system model, including a transmission (TF), but without any
compliance. This shows the modeler that he has chosen a model in which two
storage ports depend on each other and form a signal loop (causal path) with an
integration that is compensated by a differentiation, i.e. a net algebraic loop. The
computational problem may be solved either by the application of implicit nu-
merical integration, by changing the model (the sequence of putting the causal



1.8 Causal analysis: feedback on modeling decisions 35

|:|R1 I:IRZ u-iR=0 U )"( I:I IR

resistor Ay ! resistor A,

resistor A, i resistor A,

u=iA,

T ) P=ui (

resistor A resistor A,

Fig. 1.16 Arbitrary causality of two resistors causing an algebraic loop.

strokes hints the modeler where a model change should be made, e.g. adding the
compliance of the transmission between the two rigid bodies, cf. Fig. 1.15), or by
symbolic manipulation (either manually or automatically) of the model. A tech-
nique to deal with this problem by adding some advanced control schemes to the
model is under investigation. This also changes the model, but not in a way that
can be physically interpreted [103].

Step 3: If not all ports are causal after the above steps, there are at least two ports
with arbitrary causality, resulting in a number of possibilities that all will lead to
causal paths between ports of elements that are described by algebraic constitu-
tive relations thus causing algebraic signal loops (Fig. 1.16). Choose the causality
of these ports not only in such a way that the number of algebraic loops is min-
imized, but also in such a way that the loop gains of these algebraic loops are
smaller than one as much as possible. This step is to be repeated until all bond
have their causality assigned. In a similar manner as in case of differential causal-
ity, the assignment procedure itself hints the modeler how to change the model
in order to prevent this kind of loop.

The causality assignment procedure is completely algorithmic. More advanced
variations on this algorithm exists and are implemented that can handle all possible
situations [86]. As a result, it can be used without using the notation itself, e.g. by
replacing the bond graph by the more common iconic diagram representation or the
linear graph notation. However, this largely reduces the amount of feedback that
can be given to the modeler about his modeling decisions, and the effect of model
modifications becomes less obvious. Nevertheless, if one is merely interested in
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converting a simple iconic diagram into code ready for simulation, this is a powerful
option.

A causal bond graph can always be straightforwardly expanded into a block di-
agram or signal flow graph. The experienced user will be able to obtain the same
information from a causal bond graph as from a block diagram, viz. the computa-
tional structure, while the bond graph already represents the physical structure in
a domain-independent way. This demonstrates one of the main advantages of the
bond graph representation: it can be seen immediately how changes in the physi-
cal structure affect the computational structure and thus the dynamic characteristics
vice versa. This is particularly helpful during conceptual design, troubleshooting
and solving problems related to numerical simulation.

At the other hand, not any block diagram or signal flow graph can be converted
into a causal bond graph as they generally do not contain conjugate port variables.
However, an attempt to convert a block diagram that represents the computational
structure of a model of a physical system into a bond graph can be a quite insightful
experience, as it may explicate earlier choices about the nature of the physical ports
as well as eliminations of physically relevant variables.

The earlier mentioned trade-off between conceptual and computational complex-
ity is illustrated by the simple example of a rigid constraint between two rigid bodies
(Fig. 1.14). Conceptual simplicity leads to a causal problem (a so-called dependent
inertia with differential causality) — the example already showed that a loop emerges
containing an integration and a differentiation, i.e. a ‘net’ algebraic loop — and con-
sequently to numerical complexity (DAE). A DAE is a mixed set of differential
and algebraic equations that cannot be solved straightforwardly by means of ex-
plicit numerical integration (e.g. with the common Runge-Kutta 4"-order method).
However, the way in which the causal problem emerges in the model during causal
analysis clearly suggests how the model can be modified in order to prevent the
causal problem. In this example, the rigid constraint can be replaced by an elastic
element, i.e. a finite rigidity. Although this gives the model some more conceptual
complexity, the numerical (structural) complexity is reduced, due to the fact that the
resulting equations are a set of ordinary differential equations (ODE) that can be
solved by explicit numerical integration schemes [10] 3.

The model still needs a rather stiff constraint and thus introduces dynamics at a
time scale that is not of interest. This means not only that both options to formulate
the model can be a solution depending on the problem context, the available tools,
etc., but also that a third solution can be obtained, viz. a symbolic transformation
of the model as to eliminate the dependent inertia. In other words: two rigidly con-
nected rigid bodies may be considered as one rigid body. This possibility is directly
induced by the causal analysis of the bond graph model.

3 See also the course slides at http: //www.npac.syr.edu/users/gcf/CPS615NI95/.
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Fig. 1.17 Iconic representation of a servo system with belt drive (graphical 20-sim input).
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Fig. 1.18 Simple, linear bond graph model of the servo system in Fig. 1.17.

1.8.2 Example of causal analysis

Fig. 1.17 shows an iconic diagram representation of the servo-system containing
a belt drive. The bond graph in Fig. 1.18 represents this simple linear model. It is
graphical input to 20-sim. This software puts the causal strokes automatically, and
immediately while drawing the graph. The order in which the strokes are put can be
indicated by sequence numbers, where i.j represents the jth propagation of putting
stroke i.

The fixed causalities are (M)Sf (1) and Se (2), where only Sf propagates via the
1-junction and imposes causality to the electrical | and R and the electrical port of
the GY, thus eliminating the electrical time constant that would have been present
in the model if the electrical source would have been a voltage source. The propa-
gation stops at the next 1-junction, after the mechanical port gets its causality via
the constraint of the GY (1.2). The preferred causalities are the remaining storage
elements, i.e. the inertia of the rotor (I 3), the compliance of the belt (C 4) and the
inertia of the mechanical load (I 5). The motor inductance (I 1.3) plays no dynamic
role as its current is imposed and its voltage (that is computed by differentiation)
does not affect the current amplifier (Sf 1), like the motor voltage (GY 1.1) and
the ohmic voltage drop in the circuit (R 1.4). Propagation of the motor inertia (| 3)
reaches as far as the O-junction representing the force in the belt, and propagation of
the inertia of the load completes the causality of this graph. Following causal strokes
through the graph (causal path) identifies the existence of signal loops.
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1.9 Hierarchical modeling

1.9.1 Word bond graphs

Organizing and representing larger system models in a hierarchy can increase ef-
ficiency and overview of the modeling process. An example is the so-called word
bond graph, in which the nodes represent physical components. They can also rep-
resent phenomena that may require sub-models that contain more than one basic
element. Word bond graphs are represented by words or text enclosed by ellipses
or circles. These words describe the basic behavior or purpose of a sub-model (as
for example in Fig. A.16 in Appendix A). This notation can also be used to support
the first modeling phase, in which the relevant physical components in a system
are identified, without further specification than their dominant behavior. It can be
decided later whether other elementary behaviors are also required to obtain a com-
petent model of this physical component.

1.9.2 Multi-bonds

In many cases, multiple bonds connect the nodes of a (word) bond graph. Simi-
lar to the notation of multiple signals as ‘double-lined arrows’, it can be useful to
represent multiple bonds by ‘double-lined half-arrows’ that are called multi-bonds.
The dimension of a multi-bond, i.e. the number of constituent bonds, can optionally
be written between the two lines of a multi-bond. Multi-bonds have initially been
introduced as vector bonds. As multi-bonds are frequently used to represent the co-
ordinates of vectors in planar and spatial mechanisms, while it merely represents
a column matrix and not a vector in space, this terminology appeared to be highly
confusing for a graphical representation and has been abandoned in the early eight-
ies. Apart from the advantages of efficiency and overview, one major disadvantage
of a multi-bond is that it is not suited to properly represent the causality, except for
the situation that the causalities of all constituent bonds are identical. In order to
cope with this problem and in order to be able to combine multi-bond representa-
tions with single bond representations, the concept of the direct sum was introduced,
represented by a vertical line perpendicular to the connected bonds. Formally speak-
ing, it can be considered a special multiport transformer that is characterized by a
unit matrix of which the order of the rows can be changed as to represent a change
of order of the participating bonds. In that case, this matrix has to be provided in
order to characterize the direct sum, otherwise a unit matrix (no change of order) is
assumed.
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1.9.3 Multiport generalizations

A word bond graph adds only one level to the model hierarchy in principle, although
multiple layers are possible if physical sub-components can be identified. However,
complex models also require different layers at the conceptual level. This requires
multiport generalizations of the nodes.

1.9.3.1 Sources

By definition, a multiport requires that its ports are interrelated. This means that the
sources cannot be combined into a multiport due to the nature of a source, i.e. no
dependency on the conjugate variables, but source arrays can be used (cf. the last
part of this section).

1.9.3.2 Multiport storage elements

The storage elements can be generalized into a multiport in which the number of
ports is equal to the number of energy states. The energy functions of these states
can be used to generate the constitutive relations of this multiport, similar to the
Gibbs relation in thermodynamics or to the Hamiltonian description of mechanical
systems. It is obvious that this makes this notation and approach an ideal instrument
to establish a link between these two huge scientific areas. The constitutive relation
has to satisfy the Maxwell reciprocity condition® in order to satisfy the energy con-
servation principle. This condition is also called Maxwell symmetry as it requires
the symmetry of the Jacobian of the constitutive relations.

However, a multiport storage element adds the potential of a new behavior that is
not represented by one of the basic elements, viz. reversible transformation by cycle
processes as opposed to the instantaneous reversible transformation represented by
a transformer or a gyrator. From a conceptual design point of view, it is worthwhile
to note that, in principle, instantaneous power fransduction between domains does
not ‘exist’ (e.g. passive DC transformers cannot be realized, often rotating parts or
cycling ‘working fluids’ are required to construct continuous power transducers),
but can only be approximated by relatively fast cycles or cycles in which the storage
can be neglected (e.g. intermittent elastic storage in the touching gears of a gear
box).

Another important observation with respect to multiport storage elements is that
the integral causality of the ports corresponds to a generating function that is equal
to the energy. If an integral causality of a port is changed into a differential one,
this corresponds to replacing the (extensive) energy state by its (intensive) conjugate
variable (partial derivative of the energy with respect to the conjugate state). This, in
turn, corresponds mathematically to a Legendre transform of a function of multiple

4 In Hamiltonian mechanics this is expressed as the energy being a so-called closed two-form.
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variables (cf. Sect. B.2 in Appendix B). Legendre transforms are not only often used
in thermodynamics, when the conjugate variable of a state (intensive state, effort)
can be assumed constant (e.g. free energy in case of constant temperature, enthalpy
in case of constant pressure, Gibbs free energy in case of constant temperature and
pressure), but also in mechanics, where the dual nature of the position variable,
i.e. energy state and configuration state, has led to a preference for the position
and its derivative, the velocity, instead of the true extensive energy states: position
and momentum. As a consequence, the Hamiltonian (kinetic energy T + potential
energy V) is often Legendre transformed into the Lagrangian (kinetic co-energy T*
- potential energy V), although this generally does not lead to equations that are
optimally suited for numerical simulation. This wide field of research is still under
study, but many important results have been obtained that appear not yet generally
known.

A final observation to be mentioned is that, in the linear case, a multiport
storage element can always be decomposed into some one-port storage elements
and a power continuous junction structure called Generalized Junction Structure
(GJS) or Dirac structure in mathematical terminology (cf. Sect. 2.1). If the num-
ber of independent parameters required to characterize the multiport or n-port, viz.
n+(n*> —n)/2 =n(n+1)/2, is equal to the number of parameters in the decom-
position, the decomposition is called a canonical decomposition. Decompositions
depend on the causality of the ports. Reversibly, a bond graph that only contains
storage elements and a non-modulated (except state modulation by the states of the
participating storage elements) junction structure with open ports can be composed
into one multiport storage element. There are only two types of canonical decompo-
sitions of a linear two-port storage element: three linear storage elements connected
by a Simple Junction Structure (SJS) (direct or immediate canonical decomposition)
or two linear storage elements connected by a GJS with only one linear transducer
(congruence canonical decomposition, see [31]).

Example 1.1 (Solenoid with configuration dependent inductance). Many different
configurations exist in which a solenoid has an inductance that is configuration de-
pendent, like a relay, a magnetic bearing or suspension system, a solenoid with
moving core like a linear motor, or an LVDT (linear variable displacement trans-
mitter), etc. They all have in common that the linear constitutive relation of the
electric (magnetic) port of a coil, viz. A = Li, where A is the flux linkage’, L the
self-inductance, and i the current, can be written: A = L(x)i, where x is some dis-
placement that represents a change of configuration (position of the core, changing
air gap in the magnetic circuit, etc.).

Since a storage element cannot be simply modulated by such a configuration
variable, it means that a second port emerges, which, due to the mechanical nature
of the configuration variable, is a mechanical port and this displacement also starts
playing a role in the stored magnetic energy

3 Its rate of change is the voltage of the electrical port: u = % = L%
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Obviously, the constitutive relations of the ports can be found by taking the partial
derivatives of this energy with respect to the energy states:
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The latter, more common relation can also be found by taking the co-energy E*
(negative Legendre transform of the magnetic energy) with respect to A:
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Note that in this case of a linear magnetic port, confusing energy and co-energy
would lead to a change of sign of the force. In case of a nonlinear magnetic port,
confusion between energy and co-energy may lead to even more serious differences,
thus showing that the distinction between energy and co-energy should not be ne-
glected, as, unfortunately, is often the case.

Without further specifying L(x) it is still possible to perform some generic anal-
ysis, e.g. by finding the Jacobian of the constitutive relations:
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Requiring that:
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with the latter equation is always true if the two earlier conditions are satisfied.

As intrinsic stability conditions require the diagonal elements of the Jacobian as
well as its determinant to be positive, this translates in both cases in the condition
that the self-inductance should always be positive and that the second derivative of
L(x) should be negative, independent of the way in which the magnetic port is driven
(i.e. by imposing a current or a flux linkage). The examples mentioned before can be
split into two groups: those in which L(x) is a bell-shaped function and those where
L(x) is hyperbolic. In the first case the middle part of the bell, between the flex
points, describes an intrinsically stable area. For instance, if a coil with moving core
is given a constant current, the core will react as if it is attached to a regular spring
as long as it is brought not to far from its equilibrium point, otherwise it will fly out.
By contrast, a magnetic circuit with a variable air gap always has a second derivative
of L(x) that is positive, which means that the air gap will always tend to collapse
when the magnetic circuit is activated, unless a mechanical spring is added, like in a
relay, or a virtual spring is created by means of a proportional feedback between air
gap (position of the moving part) and current with sufficient gain to make the spring
constant-like element in the Jacobian positive (magnetic levitation in bearings and
suspension systems).
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The shape of L(x) in magnetic levitation is often incorrectly chosen as C; + %
where it should be
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with C; > 0, thus showing that the self-inductance remains finite when the air gap
closes (x =0). As
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this two-port storage element is intrinsically unstable for all values of x > 0 and if
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The common derivation of the self-inductance of a solenoid while neglecting
fringing (‘infinitely long solenoid’) and while assuming that the field lines run
through a cross-section area A over a distance [ through iron with permeability
> 1 and over a distance x through air with u, = 1, leads to
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where n is the number of windings. In other words:
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where Ly, = L(0) = "2“+“rA. For larger values of x, the non-fringing assumption
does not hold, which leads to the addition of C;(Ly;,) to the above expression.
However, given that u, > 1, there are values of x for which / can be neglected, but
if the air gap x approaches 0, L(0) will definitely have a finite value as / cannot
be neglected in that situation. In problem contexts where x is assumed to vary only
around some operating point for which xu, > [, the approximation where C3 = 0
can be valid, but this constraint seems to be easily overlooked. In Example 2.2 in
Chapter 2, even a linear relation is chosen, inspired by the required control setting.

1.9.3.3 Multiport resistors

The resistive port of an irreversible transducer can also be generalized in multiport
form. The Jacobian of its relations has to be symmetric, as only this symmetric
part contributes to the entropy production. A potential non-symmetric Jacobian can
always be separated into a symmetric part that can be represented by a resistive
port and an antisymmetric part that can be represented by the multiport general-
ization of a gyrator, which is a power continuous junction structure element. This
issue has been a source of conflict in thermodynamics: in the thirties Onsager in-
troduced firstly his Onsager symmetry for the relation between generalized forces
(efforts) and generalized fluxes (flows), i.e. for what is now called a multiport re-
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sistor; next Casimir, inspired by a discussion with Tellegen, who introduced the
gyrator in electrical engineering in the late forties, extended this by showing that in
some cases there is an antisymmetric contribution. Finally, Truesdell showed that
a transformation of the conjugate variables can always symmetrize these relations,
which corresponds to changing the “port of view’ in a bond graph (Fig. 1.19). There
exist (canonical) decompositions of multiport R(S) elements similar to those of the
storage elements but the constraint on linearity is much less severe.

1.9.3.4 Multiport transducers

The elementary two-port elements, TF and GY, can be generalized in a straight-
forward manner by changing the scalar conjugate variables in their relations into
column matrices. The scalar transduction ratio then becomes a transduction matrix.
In case of a multiport transformer, the matrix itself describes the flow-relation and
its transpose the effort relation, as can be derived from power continuity.

In case of the gyrator there is simply one relation between efforts and flows that
is characterized by the gyration matrix. This makes clear that the format of the
constitutive relation of a gyrator is similar to that of a resistive port, even though
the gyrator belongs to the (generalized) junction structure. It can thus be seen as the
antisymmetric counterpart of a symmetric R-port too (cf. Fig. 1.19).

The causality constraints of the multiport transformer are related to the (partial)
invertibility of the transformation matrix. If the dimension of the inward multi-bond
is not equal to the dimension of the outward multi-bond, the matrix is not square
and singular as a result. This means that the causality of the multi-bonds cannot be
inverted. However, it may still be possible to invert the constitutive matrix partially.
This requires a mixed causality of the multi-bonds and accordingly the use of the
direct sum.

1.9.3.5 Multiport components

The port relations of arbitrary multi-ports can be used as a starting point for decom-
posing them into basic elements. The nature of the variables plays an important role:
constitutive relations of true power ports should be formulated in terms of efforts and
flows or their time integrals (energy states). If the latter case occurs, this indicates
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that the port should at least contain one storage element. Depending on the shape of
this relation, other elements may be needed to represent the corresponding behav-
ior. For instance, the presence of a cycle demonstrates the presence of either another
coupled storage port, or a form of hysteresis caused by a resistive phenomenon.

1.9.3.6 Arrays

In the multi-bond notation it is sometimes helpful to be able to collect a number of
the same symbols, even if they are not directly related. For instance, a collection
of 1-port I-type elements representing the storage of momentum of a body in three
independent coordinate directions has no power relation (at least, not in the inertial
frame), but should conceptually be connected. The concept of an array of bonds or
elements, represented by underlining the corresponding symbol is used. Nesting (ar-
rays of arrays, etc.) is possible, but only advised as long as it enhances insight. For
instance, three n-dimensional multi-bonds connected to an (n-dimensional) junction
array (each bond connects only to the junction in the array matching its index) has a
different meaning than three n-dimensional multi-bonds connected to a single junc-
tion (all bonds connected to one and the same junction), even though the difference
in notation is just the underlining of the junction symbol. The first is often encoun-
tered in models of planar and spatial mechanisms, while the second is encountered
in models of chemical reactions for example.

1.10 Example of the use of the port concept

Only the actual use of the port-concept can fully clarify its importance. Therefore,
a simple, but meaningful case study is discussed to illustrate it. A component that
may be used in engineering systems, viz. a control valve, but in which the control
is not realized by (digital) electronic signal processing, but physically, i.e. as an
energetic process, is taken as an example. This choice is made in order to focus on
the multidisciplinary modeling part on the basis of power ports.

1.10.1 Problem context

Under some operating conditions of a low-vacuum control valve (cf. Fig. 1.20a)
spontaneous, self-sustained oscillations occur [34]. Given the purpose of the valve,
viz. to maintain a constant ‘low’ vacuum in particular in medical applications, this
behavior is clearly undesired. In order to solve this problem, insight is to be ob-
tained in the source(s) of this behavior and the design parameters of the system that
should be modified in order to prevent it. Some simple oscilloscope measurements
of these oscillations, mainly showing shape and frequency, are available to the mod-



46 1 Port-Based Modeling of Dynamic Systems

eler as well as a construction drawing of the valve with data on geometry and used
materials.

1.10.2 Functional description of the valve

The intended basic operation of this control valve is that an orifice can be opened
and closed by a valve body that is connected to a diaphragm loaded by a coil spring.
Changing the position of the other end of this spring with a screw knob can set its
pretension. The diaphragm is part of the wall of the valve chamber that is at one
end pneumatically connected to the ‘supply’ pressure (a relatively high-level under-
pressure or ‘vacuum’) via the valve opening, and at the other end via an orifice and
a hose to the ‘mouth piece’ to suck superfluous body fluids away in a device as used
by dentists and surgeons. Given some desired low-level under-pressure or ‘low-
vacuum’, the pressure difference over the diaphragm will cause the valve opening
to get smaller if the actual pressure gets too low compared to the desired pressure.
Due to the increasing flow resistance of the variable orifice, the pressure difference
with the supply pressure (‘high’ vacuum) will increase again vice versa.

1.10.3 Analysis

If this common functional explanation is translated into a block diagram, it becomes
clear that the resulting model is not dynamic at all (Fig. 1.20b) as all relations are
algebraic. If oscillations occur, it is tempting to identify a damped second-order
system consisting of the valve body, the spring and the mechanical damping that is
always present. As such a model is not competent to explain sustained oscillations, it
seems natural to argue that the airflow is likely to drive these oscillations. The next
step that seems obvious is to conclude that the common chaotic behavior of flow
phenomena (turbulence) that is hard to model deterministically is likely to form the
onset of the oscillations, such that no attempt is made to create a competent dynamic
model and the problem is approached in an ad hoc way by changing the geometry
of the valve by trial and error. However, if one approaches this problem from a port-
based point of view, the analysis will make a distinction between power relations
and modulation and leads to another result, not only of the analysis, but also of the
identification of the actual physics that play a role in such a valve.

In a regular valve, a screw modulates the position of the body of the valve. The
fluid acts with a force on this body, trying to move it out of the valve seat. The reason
that the fluid cannot displace the valve body, while the human hand can do this, is the
presence of the transforming action of the screw/spindle. This amplifies the static
friction of the screw seen from the translating port of the screw/spindle. As this
static friction is only overcome during a hand turning the valve and the dynamics
of this process are at a completely different time scale than the flow phenomena
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in the valve, a change in position of the valve body is commonly modeled as a
modulation of the flow resistance of the valve. Hence, a position-modulated resistor
can describe the dominant behavior of an arbitrary valve. Fig. 1.21a shows how the
ports and port properties of such a valve can be defined in 20-sim, without having
to define the exact constitutive relations yet.

Feedback can be introduced by a diaphragm (membrane) that transforms the dif-
ference in pressure at its sides into a force that can cause a displacement. By con-
necting the body of the valve to the membrane, such that an increasing pressure
difference will close the valve and a decreasing pressure difference will open it, it
will thus have a counteraction in both cases, i.e. a negative feedback. The relation
between force and displacement is characterized by the stiffness of the diaphragm.
It needs to be increased in order to attenuate the position changes of the valve body.
This is achieved by connecting a spring. By connecting the other end of the spring to
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the screw, the screw can be used to change the set-point for the pressure difference
by changing its pretension. The screw serves as a combination of a (Coulomb) fric-
tion and a transformer that amplifies its effect similar to the regular valve described
above. The model of the complete valve has to be at least extended by an ideal trans-
former (TF) to represent the dominant behavior of the diaphragm, an ideal spring to
represent the elasticity of the spring and the diaphragm and a modulated force source
to introduce the pretension of the set-point. Fig. 1.21b shows this with a mixed use
of bond graph (TF, valve), block diagram (modulation and signal generator) and
iconic diagram elements (spring, force source and fixed world).

The source of the pressure difference described earlier has not been accurately
defined. One might conclude that the pressure difference between some supply pres-
sure and the ambient pressure is meant, as these are the two evidently present pres-
sures. However, this would cause the output pressure to fluctuate with the supply
pressure, which is commonly not desired. Furthermore, the output pressure is re-
quired to cause some fluid exchange with the environment, i.e. some flow connection
to the environment. As a consequence one is usually interested in setting the pres-
sure difference between the output pressure and the supply pressure. This means
that the valve needs to contain a more or less closed volume, the so-called valve
chamber, in which the output pressure is allowed to be different from both the sup-
ply pressure and the ambient pressure. Some opening needs to connect this chamber
to the environment in order to allow the desired flow. The dominant behavior of this
restriction is that of an ideal (fluid) resistor, whether a hose is attached to the ori-
fice or not. Parasitic behavior as fluid inertia (in case of a long hose) may be added
later when fine-tuning the model. Summarizing, the following ideal elements are
required in the model: a position-modulated resistor, a transformer, a spring and a
resistor (Fig. 1.22). As the spring is the only dynamic element (containing an inte-
gration with respect to time) in this model, oscillatory solutions are not likely.

The labeled nodes in the bond graph merely represent the elementary behaviors,
while their exact constitutive relations have not been determined yet. Some of them
will be nonlinear though. If the ambient pressure is chosen as the reference pressure
(zero-point), all pressures will obtain negative values in a low-vacuum control valve,
but the bond graph is simplified into the one in Fig. 1.23.
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The flows through the resistors are mainly dictated by the pressures imposed by
sources, except for the contribution to the valve chamber pressure by the spring.
It can be concluded that a linearization around an operating point leads to a first-
order model characterized by a time constant. At this point, one might be inclined
to bring the possibility of oscillatory behavior into the model by adding an ideal
mass to represent the dominant behavior of the valve body. Together with the ideal
spring, it forms a (damped) second-order system that has the potential of oscillatory
solutions. However, such oscillations are not self-exciting and not self-sustained,
unless the system would contain negative damping which would violate the laws of
physics. Note the change of position of some of the causal strokes and the causal
path from the R to the valve that indicates an algebraic loop (Fig. 1.24).

The causality assignment process hints the modeler to put a C-type storage el-
ement at the O-junction representing the pressure in the valve chamber in order to
prevent this algebraic loop. This element represents the compressibility of the air in
the valve chamber (Fig. 1.25) and will appear crucial in obtaining a model that is
competent to represent self-sustained oscillations.

Fig. 1.26 shows that this model contains a third-order loop via the position mod-
ulation of the valve and a causal path. It can be interpreted as follows: the position
that modulates the valve is (inversely) proportional to the flow through the valve.
The capacitance of the valve chamber relates the displaced volume (first integra-
tion!) of this flow to the pressure in the chamber. Via the diaphragm, this pressure
acts with a force on the valve body. The resulting change of its momentum (sec-
ond integration!) results in a change of its velocity. Finally this velocity causes its
displacement (third integration!) and thus results in the position that modulates the
valve resistor (closure of the loop). Under certain conditions, this third-order loop
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may have unstable solutions that are bounded by the non-linearities of the model,
like the valve body hitting the valve seat (end stops that can be added to the model
easily, but discussion is beyond the scope of this contribution). The causality of the
ports is derived automatically by 20-sim while drawing this graph and automatically
results in a computable set of equations for simulation. The same procedure is used
in case of iconic diagrams and other representations that contain the concept of a
port, although in those cases the feedback to the modeler that a third-order loop is
present cannot be obtained immediately.

At this point, this example should have illustrated that modeling should be fo-
cused on the relevant elementary behaviors present in a system, not merely on a
(one-to-one) translation of the functional relations as the designer of the valve in-
tended them, because this would never lead to taking into account the compressibil-
ity of the air in the valve chamber. The key elements in this model to represent the
observed behavior are: the nonlinear, position-modulated resistor, the valve body,
the diaphragm, and the capacitance of the valve chamber to create the third-order
loop, but also the spring with its adjustable pretension, the fluid resistor at the in-
let, the supply pressure and the valve body hitting the valve seat. The number of
elementary one- and multi-ports is relatively small.

After identification of the proper parameter values from the provided measure-
ment data, first simulation runs showed indeed self-starting and self-sustained os-
cillations with a shape that coincided with the shapes observed on the oscilloscope.
The frequency of these first results was only 10% off the observed frequency. Fine-
tuning of the model allowed these frequencies to be matched. However, the actual
problem was already solved before the parameter identification phase, because the
process of setting up the model structure already indicated the crucial role of the
valve chamber that was confirmed by an experienced senior craftsman at the work
floor where these valves were produced and assembled. He then remembered that
long ago the role of this valve chamber had been identified by trial and error. A re-
sult that had been forgotten over the years and didn’t play a role in the design of the
new valve that was causing the oscillation problems.

After this example, it should be clear that a bond graph without modulating sig-
nals can never result in three integrations in a loop. A causal path can only exist
between at most two storage elements, such that the number of integrations in the
corresponding signal loop is at most two. Hence, the modulating signal of the valve
that contains a third integration is also one of the crucial elements to create a model
that is competent to represent the instabilities.

The possibility of the oscillations that can result from the third-order loop is in-
herent to this particular type of design. None of the parts can be omitted or changed
as to break the third-order loop. For this reason, every designer of such valves should
have the insights discussed above in order to be able to choose the dimensions of
the valve such that it never displays undesired behavior in or near the range of op-
eration. This insight is more related to model structure than to particular simulation
results, although simulation results can help to identify the influence of the valve
chamber size on the modes of operation. This example demonstrates that a port-
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based approach provides this insight quite easily, although the use of this approach
should be supported by sufficient knowledge of engineering physics.

It is worth mentioning that similar types of valves are not only used as low-
vacuum control valves, but also as fuel-injection valves, pressure reduction valves,
etc.

1.11 Conclusion

This chapter has shown how port-based modeling of physical systems can help to
make proper decisions during the design of engineering systems and to create more
insight in the physics of the object to be modeled, in particular in a control setting.
This approach enables to easily move between finding solutions in the controller
domain and in the physical structure itself, which is the key aspect of a mechatronics
approach. Software tools that cover the different domains support this process.

Emphasis was on the background of physical modeling in general. In particular,
the paradigm shift to the port-based approach via the introduction of the concepts of
aport and a junction were discussed. An example demonstrated that one of the major
achievements is that a notation allowing a multiple-view approach provides insight
into the nature and background of the observed behavior. A bond graph representa-
tion gives the user who has gained some expertise in this graphical language, feed-
back about his modeling decisions via the representation of computational causality
by the causal stroke. As the approach focuses on insight, it is also particularly suited
for education [36]. All sorts of generalizations exist, but are beyond the scope of
this contribution. The interested reader is referred to the extensive literature on bond
graphs and port-based modeling.

1.12 Future Trends

The following general future trends in bond graphs and port-based modeling can be
distinguished:

e continuous improvement and extension of computer support for bond graph rep-
resentation, analysis and generation of numerical simulation models;

e mathematical formalization (port-Hamiltonian systems) of all aspects of the ap-
proach thus establishing a relation with other model views and analysis tech-
niques (see also Chapter 2);

e extension of port-interfaces to other sub-model descriptions like wave-scattering
variables (cf. Sect. 2.8) and finite elements;

e true integration of model parts that need modal analysis with a ‘lumped ap-
proach’;

e heuristic tools that support the port-based modeling decision process as well as
the settings of the numerical analysis;
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e support of knowledge management in order to store and use relevant information
about the problem context, model performance, etc.;
e use of the port-based approach for co-simulation.



Chapter 2
Port-Hamiltonian Systems

A. J. van der Schaft

Abstract In this chapter, we will show how the representation of a lumped-parameter
physical system as a bond graph naturally leads to a dynamical system endowed
with a geometric structure, called a port-Hamiltonian system. The dynamics are
determined by the storage elements in the bond graph (cf. Sect. 1.6.3), as well as
the resistive elements (cf. Sect. 1.6.4), while the geometric structure arises from
the generalized junction structure of the bond graph. The formalization of this geo-
metric structure as a Dirac structure is introduced as the key mathematical concept
to unify the description of complex interactions in physical systems. It will also
allow to extend the definition of a finite-dimensional port-Hamiltonian systems as
given in this chapter to the infinite-dimensional case in Chapter 4, thus dealing with
distributed-parameter physical systems. We will show how this port-Hamiltonian
formulation offers powerful methods for the analysis of complex multi-physics sys-
tems, also paving the way for the results on control of port-Hamiltonian systems
in Chapter 5 and in Chapter 6. Furthermore, we describe how the port-Hamiltonian
structure relates to the classical Hamiltonian structure of physical systems as being
prominent in e.g. classical mechanics, as well as to the Brayton-Moser description
of RLC-circuits.

2.1 From junction structures to Dirac structures

In the preceding chapter, we have seen how port-based network modeling of
lumped-parameter physical systems leads to a representation of the physical sys-
tem by generalized bond graphs. Generalized bond graphs consist of energy-storing
elements, resistive elements and power-continuous elements like transformers, gyra-
tors, 0- and 1-junctions. These elements are linked by bonds, each carrying a pair of
flow and effort variables, whose product equals the power through the bond. In order
to fix the direction of power flow, a half arrow is attached to each bond, indicating
the positive direction of power flow. Thus, a generalized bond graph is an oriented
graph with its nodes being decorated by one of the elements indicated above, and ev-
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ery edge (called ‘bond’) labeled by two scalar conjugate variables f € R (flow) and
e € R (effort). Furthermore, the elements at every node only involve the flow and ef-
fort variables associated with the bonds that are incident on that node. An important
extension of this definition of a bond graph is obtained by allowing for multi-bonds
(cf. Sect. 1.9.2) which are labeled by flow vectors f € R¥ and dual effort vectors
ec (Rk)* (cf. Sect. B.1.1 in Appendix B). Still a further extension (see Sect. 3.2),
which comes in naturally for 3-D mechanical systems, is to consider flows f which
take value in the Lie algebra se(3) (‘twists’) and efforts e which take value in the
dual Lie algebra se*(3) (‘wrenches’).

The key concept in the formulation of port-based network models of physical
systems as port-Hamiltonian systems is the geometric notion of a Dirac structure.
Loosely speaking, a Dirac structure is a subspace of the space of flows f and efforts
e such that for every pair (f, ) in the Dirac structure the power e X f is equal to zero,
and, furthermore, the subspace has maximal dimension with respect to this property.
This means that it is not possible to extend the subspace to a larger subspace that
still has this power-conserving property.

2.1.1 From 0- and 1-junctions to Dirac structures

Before mathematically formalizing the notion of a Dirac structure, we will start
with showing how the basic bond graph elements of O-junctions and 1-junctions as
encountered in the previous chapter share these properties of power-conservation
and maximal dimension.

Let us start with the simple O-junction relating two pairs of flows and efforts

(fi,e1) and (f2,e2) by
er=e fi+£=0 2.1
Clearly, the O-junction is power-conserving, that is,

e1fi+efp=0 (2.2)

But there is more: the O-junction is described by two independent equations involv-
ing 4 variables, and thus represents a 2-dimensional subspace of the 4-dimensional
space of total vectors (f1, f2,e1,e) of flow and effort variables. Furthermore, it can
be seen (this will be shown later on in full generality) that we cannot leave out one
of the equations in (2.1) while still retaining the power-conservation property (2.2),
that is, the dimension 2 is the maximal achievable dimension with respect to the
power-conservation property.
The same situation occurs for the simple 1-junction described by the relations

fi=r ej+e=0 (2.3)
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Fig. 2.1 Equivalence of _ o
bonds. 7 -

As for the O-junction, the 1-junction describes a two-dimensional subspace of the
four-dimensional space of total vectors (f1, f2,e1,e2) of flow and effort variables,
which is satisfying the power-conservation property (2.2).

Higher-dimensional O- and 1-junctions share the same properties. Recall that the
0-junction linking k bonds with pairs of flow and effort variables (f1,e1), -, (f&,ex)
is given by the equations

el=ey=--=¢; fit ot +fi=0 2.4

In this case we have k independent equations involving 2k flow and effort variables,
and thus the O-junction specifies a k-dimensional subspace of the space R?* of to-
tal vectors (f1,f2, -, f,€1,€2," - ,exr). Furthermore, all vectors in this subspace
satisfy the power-conservation property

etfi+erfo+---+efr =0, (2.5)

while & is the maximal dimension of a subspace with this property.
Similarly, the 1-junction linking k pairs of flow and effort variables (fi,e;),--,
(fx,ex) is given by the k independent equations

h=h="=fk ej+er+---+e =0 (2.6)

specifying a k-dimensional subspace of the space R* of vectors in the form
(f1,/2,-, frse1,€2,- - ,ex), satisfying the power-conservation property (2.5).

Remark 2.1. The case of 0- or 1-junctions where the incident £ bonds do not all
have the same orientation can be handled similarly. For example, in the case of a
0-junction the last equation of (2.4) changes into

efi+tafr+--+e&fi=0

where &; is 1 or —1 depending on the fact that the half-arrow of the i-th bond incident
on the O-junction is incoming or outgoing. Consequently, the power-conservation
property (2.5) changes into

geifi+&erfr+---+&erfi =0.

For conceptual and notational simplicity we will throughout only consider bonds
with incoming half-arrows on every incident node. In this respect we note that any
bond between two nodes with arbitrary half-arrow direction can be always repre-
sented by two bonds linked by a zero-junction in such a way that the half-arrows are
incoming for both nodes, see Fig. 2.1. (Although this may change the signs of the
flow and effort variables.)
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2.1.2 Dirac structures

0- and 1-junctions are prime examples of the general concept of a (constant) Dirac
structure, which is defined as follows. We start with an abstract finite-dimensional
linear space of flows .% (for simplicity one can think of .% = R¥). The elements of
Z will be denoted by f € .%, and are called flow vectors. The space of efforts is
given by the dual linear space & := .7 *, and its elements are denoted by ¢ € &. In
the case of .% = R¥ the space of efforts is & = (R¥)*, and as the elements f € RF are
commonly written as column vectors the elements e € (R¥)* are appropriately rep-
resented as row vectors. Then the fotal space of flow and effort variables is .7 x .F*,
and will be called the space of port variables. On the total space of port variables,
the power is defined by

P={elf) (fre) € F xF7, 2.7)

where (e | f) denotes the dual product, that is, the linear functional e € Z#* acting
on f € .Z.1f f is written as a column vector and e as a row vector, then the power is
simply the product (e | f) = ef. However, for simplicity, we will throughout write
the effort e also as a column vector, in which case

(el fy=e"f
Definition 2.1. A Dirac structure on % x .%* is a subspace 9 C .% x .%* such that

i) {e| f)=0,forall (f,e) € 2,
ii) dim% = dim .7 .

Property i) corresponds to power-conservation, and expresses the fact that the
total power entering (or leaving) a Dirac structure is zero. It can be shown that the
maximal dimension of any subspace ¥ C .F x .%* satisfying property i) is equal
to dim.%. Instead of proving this directly, we will give an equivalent definition
of a Dirac structure from which this claim immediately follows. Furthermore, this
equivalent definition of a Dirac structure has the advantage that it generalizes to
the case of an infinite-dimensional linear space .%, leading to the definition of an
infinite-dimensional Dirac structure. This will be instrumental in the definition of a
distributed-parameter port-Hamiltonian system later on in Chapter 4.

In order to give this equivalent characterization of a Dirac structure, we look
more closely at the geometric structure of the total space of flow and effort variables
F x Z*. In fact, related to the definition of power, there exists a canonically defined
bi-linear form < -,- > on the space .% x .%*, defined as

(e, (f7,) i= (e | 1)+ (e £ 2.8)

with (f,e%),(f?,e") € F x .F*. Note that this bi-linear form is indefinite, that
is, < (f,e),(f,e) > may be positive or negative, but it is non-degenerate, that is,
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< (f,e%),(f%,e") >=0forall (f°,e") implies that (f,e%) = 0. We can then give
the following fundamental definition, [54,67].

Proposition 2.1. A (constant) Dirac structure on F X F* is a subspace 9 C F X
F* such that
9 =9", (2.9)

where L denotes the orthogonal complement with respect to the bi-linear form
L - 2>
Proof. Let 9 satisfy (2.9). Then for every (f,e) € 2

0=<(fie),(fre) >= (e[ i+ (e[ f)=2(e]]f)
By non-degeneracy of < -, >
dim 2"+ = dim(Z x .Z*) —dim % = 2dim.Z —dim 2

and hence property (2.9) implies dim Z = dim.%#. Conversely, let & be a Dirac
structure and thus satisfying properties i) and ii) of Definition 2.1. Let (f%,e%), (f?,e?)
be any vectors contained in 2. Then by linearity also (f+ f?,e? +¢?) € 2. Hence

by property i)
0=(e"+e| 1)
=<e“ Ifb>+<eb |f“>+<e“\f">+<eb |fb> (2.10)
:<e“ |fb>+<eb |fa> —< (9,69, ( b,eb) >

since by another application of property i), (¢* | f) = (e’ | f*) = 0. This implies
that 2 C 2. Furthermore, by property ii) and dim 2 = 2dim.# — dim Z it fol-
lows that

dim 7 = dim 7

yielding 2 = 2.

Remark 2.2. Note that we have actually shown that property i) implies 2 C 2. To-
gether with the fact that dim 2 = 2dim.% — dim Z this implies that any subspace
9 satistying property i) has the property that dim ¥ < dim.%. Thus, as claimed be-
fore, a Dirac structure is a linear subspace of maximal dimension satisfying property

i).

Remark 2.3. The property 2 = & can be regarded as a generalization of Telle-
gen’s theorem in circuit theory, since it describes a constraint between two different
realizations of the port variables, in contrast to property i).

Remark 2.4. Tn the infinite-dimensional case (cf. Chapter 4), the property = 2+
will be taken as the definition of an infinite-dimensional Dirac structure.
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From a mathematical point of view, there are a number of direct examples of
Dirac structures 9 C & x Z#*. We leave the proofs as an exercise to the reader.

1. LetJ : %" — .Z be a skew-symmetric linear mapping, that is, J = —J*, where
J* Fr— () = F is the adjoint mapping. Then

graph J := {(f,e) €EFxXTF" | f:Je}

is a Dirac structure.
2. Let w: .7 — F* be a skew-symmetric linear mapping, then

grapha)::{(f,e)eﬂxf* | e:a)f}

is a Dirac structure.
3. Let ¥ C .7 be any subspace. Define

gorth:{eeﬂ* \ (e|f>=0forallf€g}

Then & x 4ot — F x F* is a Dirac structure.

2.1.3 Examples of Dirac structures

In this subsection we will discuss a number of physical examples of Dirac structures.

2.1.3.1 Transformers, gyrators, and ideal constraints

We have seen above that the bond graph elements of 0- and 1-junctions are key
examples of Dirac structures. Also transformers, gyrators and ideal constraints are
seen to be examples of Dirac structures. Indeed, recall the definition of a trans-
former. A transformer is a 2-port linking two bonds with flow and effort variables

(f1,e1) and (f2,e2) by
fHL=afi e| = —ae (2.11)

with o being a constant, called the transformer ratio. The subspace defined by (2.11)
is easily checked to be a Dirac structure. Also the multi-dimensional version of
(2.11)

fr=rf e = —e'T 2.12)

with (f%,e%) and (f?,e") being pairs of column vectors of flow variables and row
vectors of effort variables of the same dimension, and 7 being a matrix of appropri-
ate dimensions, is immediately seen to define a Dirac structure.
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Similarly, recall that a gyrator is given by the relations
fi=Be Ber =—fa, (2.13)

which again is defining a Dirac structure. The resulting unit gyrator for B =1 is
called the symplectic gyrator. The multi-dimensional version is given as the Dirac
structure defined by

fi=Ge fr=-G"e, (2.14)

where now, again for simplicity of notation, ¢ and e” denote column vectors, and
G is a matrix of appropriate dimensions.

Finally, ideal effort and flow constraints are trivial examples of Dirac structures.
Let (f,e) denote a (multi-dimensional) pair of flows and efforts. Then the effort

constraint
7:={(f.e) | e=0}

is defining a Dirac structure &, and the same holds for the ideal flow constraint

7:={(f.e) | =0}

2.1.3.2 Kirchhoff’s laws as Dirac structures

Consider an electrical circuit with n edges where the current through the i-th edge
is denoted by /; and the voltage over the i-th edge is V;. Collect the currents in
a single column vector / (of dimension n) and the voltages in an n-dimensional
column vector V. The following consequence of Kirchhoff’s current and voltage
laws is well-known. Let Kirchhoff’s current laws be written in matrix form as

AT=0 (2.15)

for some matrix .« (with n columns). Then Kirchhoff’s voltage laws can be written
in the following form. All allowed vectors of voltages V in the circuit are given as

V=uoFTA (2.16)

for any vector A of appropriate dimension. It is immediately seen that the total space
of currents and voltages allowed by Kirchhoff’s current and voltage laws

9::{(1,&/)\%1:0,\/:%%} 2.17)
defines a Dirac structure. Consequently

V1P (v2) 19 =0
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for all pairs (I¢,V%),(I*,V?) € 9. In particular, by taking V¢,I” equal to zero, we
obtain .
(V) 'rr=o

for all 1¢ satisfying (2.15) and all V? satisfying (2.16). This nothing else than Telle-
gen’s theorem.

2.1.3.3 Kinematic pairs

The equations describing a kinematic pair (e.g. a revolute or prismatic joint) in a
three-dimensional mechanical system are, from the Dirac structure point of view, of
the same type as Kirchhoft’s current and voltage laws.

Indeed, the constraint forces F' generated in a (frictionless and infinitely stiff)
kinematic pair produce no power on the velocities V allowed by the pair:

dV =0 F=aT2 (2.18)

where the columns of 7T form a basis for the space of allowed reaction forces, and
A is a vector of scalar reaction force coordinates.

2.1.3.4 The principle of virtual work

The principle of virtual work can be formulated as
n
Y Fidqi=0 (2.19)
i=1

where F = (Fy,---,F,) is the vector of impressed forces, and 8¢ = (8¢, ,0¢n)
denotes the vector of virtual displacements that are compatible with the kinematic
constraints of the system. The expression Y7 | F;8¢; equals the infinitesimal work
(or power) due to the impressed forces and the infinitesimal displacement. If the
kinematic constraints of the system are given as <7 8¢ = 0 then it follows that the
impressed forces should be given as F = .27 T, as in the previous subsection.

Originally, the principle of virtual work is formulated as an equilibrium condi-
tion: it expresses that a system with configuration coordinates ¢ = (q1,¢2," " ,qn),
which is subject to forces F(g), is at equilibrium g if the virtual work Y7 F;(g)Sg;
corresponding to any admissible virtual displacement 6¢q from g is equal to zero.
In D’ Alembert’s principle this was extended by adding the inertial forces p to the
impressed forces.
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Fig. 2.2 Port-Hamiltonian Z (resistive)
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.7 (storage) ¢ (control)

# (interaction)

2.2 Port-Hamiltonian systems

Crucial property of the concept of Dirac structure is that the standard intercon-
nection of Dirac structures is again a Dirac structure. This fact, formally to be
proved in Sect. 2.5, has the following important consequence. Recall from Chap-
ter 1 that any bond graph representation of a physical system can be summarized
as follows. The bond graph consists of energy-storing elements, resistive elements,
power-conserving elements such as transformers, gyrators, and ideal constraints,
and O- and 1-junctions linked by bonds. Furthermore, we may take together all
the power-conserving elements with the 0- and 1-junctions in order to obtain the
generalized junction structure (cf. Sect. 1.6.8). Since all the components of the gen-
eralized junction structure are Dirac structures, the generalized junction structure,
being the interconnection of Dirac structures, is also a Dirac structure. Hence the
bond graph can be compactly represented as an energy-storing multi-port contain-
ing all the energy-storing elements and a resistive multi-port containing all resistive
elements, linked by a Dirac structure. This is the starting point for the formulation
of a bond graph as a port-Hamiltonian system.

2.2.1 Geometric definition of a port-Hamiltonian system

In general, a port-Hamiltonian system can be represented as in Fig. 2.2. Central
in the definition of a port-Hamiltonian system is the notion of a Dirac structure,
depicted in Fig. 2.2 by &. Basic property of a Dirac structure is power conservation:
the Dirac structure links the various port variables in such a way that the total power
associated with the port-variables is zero.

The port variables entering the Dirac structure have been split in Fig. 2.2 in dif-
ferent parts. First, there are two internal ports. One, denoted by ., corresponds to
energy-storage and the other one, denoted by %, corresponds to internal energy-
dissipation (resistive elements). Second, two external ports are distinguished. The
external port denoted by ¥ is the port that is accessible for controller action. Also
the presence of sources may be included in this port. Finally, the external port de-
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noted by .7 is the interaction port, defining the interaction of the system with (the
rest of) its environment.

2.2.1.1 Energy storage port

The port variables associated with the internal storage port will be denoted by
(fs,es). They are interconnected to the energy storage of the system which is de-
fined by a finite-dimensional state space manifold 2~ with coordinates x, together
with a Hamiltonian function H : 2~ — R denoting the energy. The flow variables
of the energy storage are given by the rate x of the energy variables x. Furthermore,

the effort variables of the energy storage are given by the co-energy variables 871);1 (x),

resulting in the energy balance'

d oH, \ Jd'H,
$H = <8x(x) |x> = (x)x (2.20)

The interconnection of the energy storing elements to the storage port of the
Dirac structure is accomplished by setting

fs=—x es = (?TI;CI(X)

Note that this corresponds to an ordinary O-junction. Hence the energy balance
(2.20) can be also written as

d JTH

2.2.1.2 Resistive port

The second internal port corresponds to internal energy dissipation (due to friction,
resistance, etc.), and its port variables are denoted by (fg,er). These port variables
are terminated on a static resistive relation %. In general, a static resistive relation
will be of the form

R(fr.er) =0, 2.22)

with the property that for all (fg,eg) satisfying (2.22)
(er | fr) <0 (2.23)

A typical example of such a nonlinear resistive relation will be given in Example
2.15. In many cases we may restrict ourselves to linear resistive relations. (Note
that some types of non-linearity already can be captured in the description of the

! Throughout we adopt the convention that %—’1 (x) denotes the column vector of partial derivatives

of H.
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resistive port of the Dirac structure.) This means that the resistive port variables
(fr,er) satisfy linear relations of the form

Ryfr+Reer =0 (2.24)

The inequality (2.23) corresponds to the square matrices Ry and R, satisfying the
following properties of symmetry and semi-positive definiteness

RfR} =R.R} >0, (2.25)
together with the dimensionality condition
rank [Rf |Re] =dim f (2.26)

Indeed, by the dimensionality condition (2.26) and the symmetry (2.25) we can
equivalently rewrite the kernel representation (2.24) of & into an image representa-
tion

fr=RIA er = —R}A (2.27)

That is, any pair (fr,er) satisfying (2.24) can be written into the form (2.27) for a
certain A, and conversely any (fg,eg) for which there exists A such that (2.27) holds
is satisfying (2.24). Hence by (2.25) for all fg, er satisfying the resistive relation

ehfr=—(RFA) RIA = —ATR;RTA <0 (2.28)

Without the presence of additional external ports, the Dirac structure of the port-
Hamiltonian system satisfies the power-balance

e§ fs+epfr="0 (2.29)
which leads by substitution of the equations (2.21) and (2.28) to

d
3= —esfs=epfr<0 (2.30)

An important special case of resistive relations between fz and eg occurs when the
resistive relations can be expressed as an input-output mapping

fR = —F(eR) (231)
where the resistive characteristic F : R™ — R satisfies
ekF(eg) >0, egpcR™ (2.32)

In many cases, F' will be derivable from a so-called Rayleigh dissipation function
R :R™ — R, in the sense that
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F(eR) = 5712(61().

For linear resistive elements, (2.31) specializes to
fr = —Rex (2.33)

for some positive semi-definite symmetric matrix R = RT > 0.

2.2.1.3 External ports

Now, let us consider in more detail the external ports to the system. We shall dis-
tinguish between two types of external ports. One is the control port €, with port
variables (fc,ec), which are the port variables which are accessible for controller
action. The other type of external port is the interaction port %, which denotes the
interaction of the port-Hamiltonian system with its environment. The port variables
corresponding to the interaction port are denoted by ( f7, ;). Taking both the external
ports into account the power-balance (2.29) extends to

X fs+ebfr+elfo+elfi =0, (2.34)

whereby (2.30) extends to

d
g =cerfet+elfctelfi (2.35)

2.2.1.4 Port-Hamiltonian dynamics

The port-Hamiltonian system with state space 2, Hamiltonian H corresponding to
the energy storage port ., resistive port %, control port %, interconnection port .7,
and total Dirac structure & will be succinctly denoted by X = (2" ,H,%,%¢,.9,9).
The dynamics of the port-Hamiltonian system is specified by considering the con-
straints on the various port variables imposed by the Dirac structure, that is,

(fsvesafR7eRafC7eCaﬁ7€[) S -@7

and to substitute in these relations the equalities fg = —xX and eg = %—I){ (x). This leads
to the implicitly defined dynamics

JH
(40, G2 GO 0.0 S, O)ec) i) ) €7 236
with fz(t),eg(t) satisfying for all 7 the resistive relation

R(fr(),er(t)) =0 (2.37)
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In many cases of practical interest, the equations (2.36) will constrain the allowed
states x, depending on the values of the external control and interaction port vari-
ables (fc,ec) and (f7,er). Thus in a coordinate representation (as will be treated
in detail in the next section), port-Hamiltonian systems generally will consist of a
mixed set of differential and algebraic equations (DAEs).

Example 2.1 (General LC-circuits). Consider an LC-circuit with arbitrary network
topology. Kirchhoff’s current and voltage laws take the general form

AEIL —|—AEIC +A;Ip =0

Vi = ALA
Ve — Aok (2.38)
Vp = ApA

for certain matrices Ay, Ac and Ag. Here I;, Ic and Ip denote the currents, respec-
tively through the inductors, capacitors and external ports. Likewise, V;, V¢ and Vp
denote the voltages over the inductors, capacitors and external ports. (The matrices
Ar, Ac and Ag are in fact of a special nature, consisting of 0’s, 1’s, and —1’s, corre-
sponding to the circuit graph.) Kirchhoff’s current and voltage laws define a Dirac
structure & between the flows and efforts

f= e, Vi dp) = (—0,—9¢.1Ip)

JH JH
€ = (VCaILaVP) = @7%3VP

with Hamiltonian H(Q,¢) the total energy. Indeed, it easily follows that for all
Ic, Vi, Ip, Ve, I, Vp satisfying (2.38) ICTVC +IZVL +I£Vp =0, while dim Z =dim I+
dimVy, + dimIp. This leads to the port-Hamiltonian system in implicit form

—9=ALA
oH
@ —ACA,
Vp ZAPA,
oH )

with state vector x = (Q,¢). Clearly, in general these implicit equations are not
easily amenable to analysis. However, more convenient coordinate representations
can be obtained using the theory exposed in Sect. 2.4.

Example 2.2 (Electro-mechanical system). Consider the dynamics of an iron ball in
the magnetic field of a controlled inductor, shown in Fig. 2.3. The port-Hamiltonian
description of this system (with ¢ the height of the ball, p the vertical momentum,
and ¢ the magnetic flux of the inductor) is given as
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Fig. 2.3 Magnetically levi- +eo V o—
tated ball. R[T]
1
g I/ \‘
bl |
1 \{ q
oH
q 010 dq 0
pl=1-100||%]+ 0|V,
[0 00—4% on 1 (2.39)
[
JoH
I =—
e

This is a typical example of a system where the coupling between two different
physical domains (mechanical and magnetic) takes place via the Hamiltonian

2

p ¢
H —meg+ 4+ ¥
(g.p. @) =mgq+ 7+ (1= L)

2

where the last term depends both on a magnetic variable (in this case ¢) and a
mechanical variable (in this case the height g).

2.2.2 Modulated Dirac structures and port-Hamiltonian systems
on manifolds

For many systems, especially those with 3-D mechanical components, the Dirac
structure is actually modulated by the energy or by configuration variables, as de-
scribed in Sect. 1.6.9. Furthermore, the state space 2 is a manifold (Sect. B.1.2)
and the flows fg = —x corresponding to energy-storage are elements of the tangent
space T, 2 at the state x € 2, while the efforts es are elements of the co-tangent
space T,".2". The modulation of the Dirac structure is usually intimately related to
the underlying geometry of the system.

Example 2.3 (Spinning rigid body). Consider a rigid body spinning around its center
of mass in the absence of gravity. The energy variables are the three components of
the body angular momentum p along the three principal axes: p = (px, py, p), and
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the energy is the kinetic energy

1 P2 p2 p2
H(p)=— | &4+ 224 2
(p) 2<IX+1y+IZ ;

where Iy, I, I are the principal moments of inertia. Euler’s equations describing the
dynamics are

9H
Dx 0 —p; Py Ipx
po|=|p: 0 —po| | 5% (2.40)
Dz —py px O OH

~——— L dp;

J(p)

The Dirac structure is given as the graph of the skew-symmetric matrix J(p), i.e.,
modulated by the non-constant energy variables p.

Modulated Dirac structures often arise as a result of ideal constraints imposed on
the generalized velocities of the mechanical system by its environment, called kine-
matic constraints. In many cases, these constraints will be configuration dependent,
causing a Dirac structure modulated by the configuration variables.

Consider a mechanical system with n degrees of freedom, locally described
by n configuration variables ¢ = (qi,...,q,). Expressing the kinetic energy as
1G"M(q)¢, with M(g) > 0 being the generalized mass matrix, we define in the usual
way the Lagrangian function L(q, §) as the difference of kinetic energy and potential
energy P(q), i.e.

1
L(g:4) = 54"M(9)g — P(q) (241)

Suppose now that there are constraints on the generalized velocities ¢, described as
AY(q)g=0 (2.42)

with A(q) an n x k matrix of rank k everywhere (that is, there are k independent
kinematic constraints). Classically, the constraints (2.42) are called holonomic if
it is possible to find new configuration coordinates ¢ = (¢, ...,q,) such that the
constraints are equivalently expressed as

Got1 =Gnri2=""=q,=0 (2.43)

in which case one may eliminate the configuration variables g, ;. ,...,q,, since
the kinematic constraints (2.43) are equivalent to the geometric constraints

qn—k-&-l = Cp—ktls--+1qy =Cn (2.44)

for certain constants ¢, _j.1,...,c, determined by the initial conditions. Then the
system reduces to an unconstrained system in the (n — k) remaining configuration
coordinates (g, ...,q,_g)- If it is not possible to find coordinates g such that (2.43)
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holds (that is, if we are not able to integrate the kinematic constraints as above),
then the constraints are called non-holonomic.

The equations of motion for the mechanical system with Lagrangian L(q,q) and
constraints (2.42) are given by the Euler-Lagrange equations [154]

d /oL JL _ k m
dl((;q)—()q_A(q)/'L—i-B(q)u AER ueR
AT()G =0 (2.45)

where B(q)u are the external forces (controls) applied to the system, for some n x m
matrix B(g), while A(g)A are the constraint forces. The Lagrange multipliers A (¢)
are uniquely determined by the requirement that the constraints AT (¢g(¢))g(t) = 0
have to be satisfied for all 7.

Defining the generalized momenta

oL

P=%;" M(q)q, (2.46)

the constrained Euler-Lagrange equations (2.45) transform into constrained Hamil-
tonian equations

. OH
q—g(c],p)

P aaf]’(q,p) +A(g)A+Bq)u

y =BT(q)§I;(q,p)

oH
0= AT(q)(Tp(q,p) (2.47)

with H(g, p) = 3p™M~'(g)p + P(q) the total energy. The constrained Hamiltonian
equations (2.47) define a port-Hamiltonian system, with respect to the modulated
Dirac structure

9= {(fs,es,fc,ec> 0= AT(g)es, ec = B (q)es,

—fs = [OI {)] es+ {A?q)} A+ [B?q)] fo A€ Rk} (2.48)

Example 2.4 (Rolling euro). Let x,y be the Cartesian coordinates of the point of
contact of the coin with the plane. Furthermore, ¢ denotes the heading angle, and 6
the angle of Queen Beatrix’ head”. With all constants set to unity, the constrained
Lagrangian equations of motion are

2 On the Dutch version of the Euro.
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=

V=2

6 =—AicosQ—Arsing +u

=u (2.49)

with u; the control torque about the rolling axis, and u; the control torque about
the vertical axis. The total energy is H = $p?+ 1 p? 4§ p§ + 3 pi. The rolling con-
straints are X = @ cos @ and y = O sin @, i.e. rolling without slipping, which can be
written in the form (2.42) by defining

1 0 —cos® 0
AT(XJ,@,(P): Ol—sin¢ 0 ¢

This motivates to extend the definition of a constant Dirac structure 9 C .F x % *
(with .% a linear space) as given before in Proposition 2.1 to Dirac structures on
manifolds. Simply put, a Dirac structure on a manifold 2" is point-wise (that is, for
every x € 2") a constant Dirac structure 2 (x) C T, 2" x T} 2.

Definition 2.2. Let 2" be a manifold. A Dirac structure 2 on .2 is a vector sub-
bundle of the Whitney sum® 7.2" @ T*2" such that

D(x)C X XT;Z
is for every x € 2 a constant Dirac structure as before.

If, next to the energy storage port, there are additional ports (such as resistive, con-
trol or interaction ports) with port variables f € % and e € .%*, then a modulated
Dirac structure is point-wise specified by a constant Dirac structure

D(x) CTE XT X X F x F* (2.50)

2.2.3 Input-state-output port-Hamiltonian systems

An important special case of port-Hamiltonian systems as defined above is the class
of input-state-output port-Hamiltonian systems, where there are no algebraic con-
straints on the state space variables, and the flow and effort variables of the resistive,
control and interaction port are split into conjugated input-output pairs

Input-state-output port-Hamiltonian systems are defined as dynamical systems
of the following form

3 The Whitney sum of two vector bundles with the same base space is defined as the vector bundle
whose fiber above each element of this common base space is the product of the fibers of each
individual vector bundle.
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Fig. 2.4 Controlled LC-
circuit.

Ly L,
_le g
¢ 1@ ¢
\ i
X = [J(x) —R(x)} %—Z(x) +eg(x)u+k(x)d
xX: y:gT(x)%—iI(x) xex (2.51)
2= K0

where (u,y) are the input-output pairs corresponding to the control port ¢, while
(d,z) denote the input-output pairs of the interaction port .#. Note that y'u and z7d
equal the power corresponding to the control, respectively, interaction port. Here the
matrix J(x) is skew-symmetric, that is J(x) = —J 7 (x). The matrix R(x) = R (x) >0
specifies the resistive structure. From a resistive port point of view, it is given as
R(x) = gh(x)Rgr(x) for some linear resistive relation fg = —Reg with R =R >0
and gg representing the input matrix corresponding to the resistive port.

The underlying Dirac structure of the system is then given by the graph of the
skew-symmetric linear map

—%I(x) —gr(x) —g(x) —k(x)
?ngg 8 8 8 (2.52)
KT(x) 0 0 0

In general, the Dirac structure defined as the graph of the mapping (2.52) is a modu-
lated Dirac structure since the matrices J, gr, g and k may all depend on the energy
variables x.

Example 2.5 (LC-circuit with independent storage elements). Consider a controlled
LC-circuit (see Fig. 2.4) consisting of two inductors with magnetic energies H; (¢ )
and Hp(¢,) (@1 and ¢, being the magnetic flux linkages), and a capacitor with
electric energy H3(Q) (Q being the charge). If the elements are linear, then

Hi(¢1) = =01 HZ(%):TLZ

> 15
oL (%5 H3(Q) = 2CQ

Furthermore, let V = u denote a voltage source. Using Kirchhoff’s laws, one imme-
diately arrives at the input-state-output port-Hamiltonian system
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. 9H
0 01-1 zQ 0
. H
([.)1 =|-100 T(P] + 1{u
(03 100 OH 0
N———— L],
J
oH
y= w (= current through first inductor)
1

with H(Q, @1, ¢2) := Hi(¢1) + Hy(¢2) + H3(Q) the total energy. Clearly the matrix
J is skew-symmetric. In [145] it has been shown that, in this way, every LC-circuit
with independent storage elements can be modelled as an input-state-output port-
Hamiltonian system (with respect to a constant Dirac structure).

2.2.4 Input-state-output port-Hamiltonian systems with direct
feed-through

Input-state-output port-Hamiltonian systems with feed-through terms, i.e., direct
input-to-output coupling, are given as (for simplicity we do not take the interaction
port into account) [74,180]

= D)~ RN () + [2(2) — P -
y = [g(x) +P( )]T%(X) + [M(x) +S(x)]u
with the matrices P, R and S satisfying
7= Lﬁ((?) g((i))} >0 (2.54)

Compared with the skew-symmetric map (2.52) we see that in this case we have

[H - [0 [o]  [B0 2l o] s
It follows that ]
et 5 o

and thus

%H(x) = —elfe=u"y— [l uT] [lfT(ZCJB) ?83 m suly

thus recovering the basic energy balance for port-Hamiltonian systems.
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Fig. 2.5 Boost circuit with L
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Port-Hamiltonian input-state-output systems with feed-through terms readily
show up in the modeling of power converters [74], as well as in friction models
(see e.g. [104] for a port-Hamiltonian description of the dynamic LuGre friction
model).

2.2.5 Port-Hamiltonian systems with variable topology

In a number of cases, it is useful to model fast transitions in physical systems as
instantaneous switches. Examples include the description of switching elements,
like diodes and thyristors in electrical circuits, and impacts in mechanical systems.
Within the port-Hamiltonian description, one obtains in all these cases an (idealized)
model where the Dirac structure depends on the position of the switches, but, on the
other hand, the Hamiltonian H and the resistive elements are independent of the
position of the switches.

In both examples below, we obtain a switching port-Hamiltonian system, spec-
ified by a Dirac structure & depending on the switch position s € {0,1}" (here n
denotes the number of independent switches), a Hamiltonian H : 2~ — R, and a
resistive structure %. Furthermore, every switching may be internally induced (like
in the case of a diode in an electrical circuit or an impact in a mechanical system)
or externally triggered (like an active switch in a circuit or mechanical system).

Example 2.6 (Boost converter). Consider the power converter in Fig. 2.5. The circuit
consists of an inductor L with magnetic flux linkage ¢, a capacitor C with electric
charge g¢ and a resistance load R, together with a diode D and an ideal switch S,
with switch positions s = 1 (switch closed) and s = 0 (switch open). The diode is
modeled as an ideal diode with voltage-current characteristic vpip = 0, with vp <0
and ip > 0. The circuit is used to obtain a voltage at the resistance load (the output
voltage) that is higher than the voltage E of the input source (a step-up converter).

Taking as continuous state (energy) variables the electric charge g¢ and the mag-
netic flux linkage ¢, and as stored energy the quadratic function %q% + ﬁ(bLz , we
obtain the following port-Hamiltonian model of the circuit:

- el
2

=%
L
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Fig. 2.6 Model of a bouncing
pogo-stick: definition of the
variables (left), situation with-
out ground contact (middle),
and situation with ground
contact (right).

spring/damper
in series

spring/damper
parallel

foot fixed
to ground

\

Here s € {0, 1} denotes the switch, E and I are the voltage, respectively current, of
the input source, and ip and vp are respectively the current through and the voltage
across the ideal diode.

sum of forces
zero on foot

Example 2.7 (Bouncing pogo-stick). Consider the example of the vertically bounc-
ing pogo-stick in Fig. 2.6: it consists of a mass m and a mass-less foot, intercon-
nected by a linear spring (stiffness k and rest-length x() and a linear damper d. The
mass can move vertically under the influence of gravity g until the foot touches the
ground. The states of the system are taken as x (length of the spring), y (height of
the bottom of the mass), and p (momentum of the mass, defined as p = my). Fur-
thermore, the contact situation is described by a variable s with values s = 0 (no
contact) and s = 1 (contact). The total energy (Hamiltonian) of the system equals

H(x,y,p) = %k(x —x0)* +mg(y+yo) + ﬁpz (2.56)
where yy is the distance from the bottom of the mass to its center of mass.

When the foot is not in contact with the ground (middle figure), the total force
on the foot is zero (since it is mass-less), which implies that the spring and damper
forces must be equal but opposite. When the foot is in contact with the ground
(right figure), the variables x and y remain equal, and hence also x = y. For s = 0 (no
contact) the system can be described by the port-Hamiltonian system

E: —4 0 0] [k(x—x0)
m yl=1]10 01 mg (2.57)
p 0 —-10 L

i.e. two independent systems (spring plus damper, and mass plus gravity), while for
s = 1, the port-Hamiltonian description of the system is given as

X 0 0 1 k(x—xp)
yf=10 0 1 mg (2.58)
-1 -1-d £

d
dr

In this last case the resistive force —dx is added to the spring force and the gravita-
tional force exerted on the mass, while for s = 0 the resistive force is equal to the
spring force.
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The two situations can be taken together into one port-Hamiltonian system with
variable Dirac structure as follows

X % 0 s k(x—xp)
T yl=10 0 1 mg (2.59)
"lp —s —1 —s-d £

In addition, the conditions for switching of the contact are functions of the states,
namely as follows: contact is switched from off to on when y — x crosses zero in the
negative direction, and contact is switched from on to off when the velocity y — x of

the foot is positive in the no-contact situation, i.e. when £ + g(x —x0) > 0.

2.3 Relationships with classical Hamiltonian and
Euler-Lagrange equations

Historically, the Hamiltonian approach has its roots in analytical mechanics and
starts from the principle of least action, via the Euler-Lagrange equations and the
Legendre transformation, towards the Hamiltonian equations of motion. On the
other hand, the network approach stems from electrical engineering, and consti-
tutes a cornerstone of systems theory. While much of the analysis of physical sys-
tems has been performed within the Lagrangian and Hamiltonian framework, the
network modelling point of view is prevailing in modelling and simulation of (com-
plex) physical systems. The framework of port-Hamiltonian systems combines both
points of view, by associating with the interconnection structure (generalized junc-
tion structure in bond graph terminology) of the network model a geometric struc-
ture given by a Dirac structure. This is in contrast with the classical Hamiltonian
equations of motion where the geometric structure is basically determined by the
geometry of the phase space given as the cotangent bundle of the configuration
manifold.

In the first subsection we briefly describe the classical framework of Lagrangian
and Hamiltonian differential equations as originating from analytical mechanics,
and indicate how it naturally extends to port-Hamiltonian systems. Conversely, in
the second subsection we discuss how, starting from the port-Hamiltonian descrip-
tion, Legendre transformations may be useful in the description and analysis of the
system.

2.3.1 From Euler-Lagrange equations to port-Hamiltonian systems

The standard Euler-Lagrange equations are given as

d /oL, \ oL, .
o ((96}(%61)) - afq(%q) =1, (2.60)
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where g = (q1, ... ,qk)T are generalized configuration coordinates for the system
with k degrees of freedom, the Lagrangian L equals the difference K — P between
kinetic co-energy K(g,q) and potential energy P(q), and T = (71,..., %) is the
vector of generalized forces acting on the system. Furthermore, ‘3—; denotes the
column-vector of partial derivatives of L(q,q) with respect to the generalized ve-
locities ¢, .. .,qk, and similarly for t%' In standard mechanical systems the kinetic
co-energy K is of the form

N .

K(a,9) = 54'M(a)q 2.61)
where the k x k inertia (generalized mass) matrix M(g) is symmetric and positive
definite for all ¢. In this case the vector of generalized momenta p = (py,..., pk)T,
defined for any Lagrangian L as p = g—;, is simply given by

p=M(q)q, (2.62)

and by defining the state vector (¢1,...,qk, P1,- - - pk)T the k second-order equations
(2.60) transform into 2k first-order equations

JH

Gg==—(q,p) (=M '(q)p)
op (2.63)
,__9H
P="2, (¢;p)+7
where
| L7 .
H(q,p) = P M (g)p+P(q) <= 54 M(q)q+P(q)) (2.64)

is the total energy of the system*. The equations (2.63) are called the Hamiltonian
equations of motion, and H is called the Hamiltonian. The state space of (2.64) with
local coordinates (g, p) is usually called the phase space.

The following energy balance immediately follows from (2.63):

d JoTH JoTH JoTH
“H=— PR y— —— T =g'7 2.65
al =5 @p)it 5 S app="5"(a.p) (=d't), (65
expressing that the increase in energy of the system is equal to the supplied work
(conservation of energy).

If the Hamiltonian H (g, p) is assumed to be the sum of a positive kinetic energy
and a potential energy which is bounded from below, that is

Hig.p) = 3p"M " (g)p-+ P(g)

4 Note that, because of the fact that the kinetic energy is a quadratic function of the momenta p, it
equals the kinetic co-energy K (g, ), cf. Sect. B.2.
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and
M(q) =M"(q) >0, 3C > —eo  such that P(q) > C

then it follows that the system (2.63) with inputs # := 7 and outputs y := ¢ is a
passive (in fact, loss-less) state space system with storage function H (g, p) —C > 0°.
Since energy is defined up to a constant, we may as well take as potential energy the
function P(g) — C > 0, in which case the total energy H (g, p) becomes non-negative
and thus itself is a storage function.

System (2.63) is an example of a Hamiltonian system with collocated inputs and
outputs, which more generally is given in the following form

oH
q 25(4,1’)
oH
p=- Tq(Q7p) +B(q)u (2.66)

y =BT(4)?Z(%17)

with u, y € R™. Here B(q) is the input force matrix, with B(g)u denoting the gen-
eralized forces resulting from the control inputs «. In case m < k we speak of an
under-actuated system. If m = k and the matrix B(q) is invertible for all ¢, then the
system is fully actuated.

By definition of the output y = BT(g)¢g, we again obtain the energy balance

U ql0).pl0) =ut ()10 .67
For a system-theoretic treatment of the Hamiltonian systems (2.66), especially if the
output y can be written as the time-derivative of a vector of generalized configuration
coordinates, we refer to e.g. [39, 55,156,177, 178].

A major generalization of the class of Hamiltonian systems (2.66) consists in
considering systems which are described in local coordinates as

=100 0 () + gl

JH
y=¢"(0 5 ()

(2.68)

with x € 2" and u,y € R™. Here J(x) is an n x n matrix with entries depending
smoothly on x, which is assumed to be skew-symmetric

J(x)=—JT(x), (2.69)

3 ‘Loss-less’ is a strong form of ‘passive’; in the latter case, (2.65) need only be satisfied with the
equality sign ‘=’ replaced by the inequality sign ‘<’.
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and x = (x1,...,x,) are local coordinates for an n-dimensional state space manifold
Z . Because of (2.69), we easily recover the energy-balance %’(x(t)) =uT(1)y(t),
showing that (2.68) is loss-less if H > 0.

The system (2.68) with J satisfying (2.69) is an input-state-output port-Hamilto-
nian system with Dirac structure determined by J(x) and g(x) and Hamiltonian H.
Note that (2.66) (and hence (2.63)) is a particular case of (2.68) with x = (¢, p), and

J(x) = [_Olk {ﬂ 8(g:p) = [B?q)} :

If the matrix J satisfies the integrability conditions, see (2.219)

- a-]ik aka 8Jj,~
Jii(x) =— Jii(x) =— J =0 2.70
¥ [ S + a0 S+ 52w =0 @70
i,j,k=1,...,n, then we may find canonical coordinates in which the equations
(2.68) take the form
JH
q = Tp(qvpas) +g‘i(Q7pvs)M
oH
p=—=5-(q,0,5)+8p(q,p,s)u
aq P( )
$=gs(q,p,s)u 2.71)

oH oH
_ T T
y=28, (q7p7S)7q (4,p;s) +gp(q,p,S)fap (¢,p,5)+

oH
+g;r(q,p,S)g(q7p7S)

Apart from the appearance of the variables s, these equations are very close to the
standard Hamiltonian form (2.66). In particular, if g; = 0, then the variables s are
merely an additional set of constant parameters.

2.3.2 Port-Hamiltonian systems and Legendre transformations

First we will go into more detail about the Legendre transformation as already en-
countered before, and discussed in more detail in Sect. B.2. A slightly different
interpretation is given below. Consider a real-valued function F'(uy,up,---,u,) of
n variables uy,us,- - ,u,. Consider a second set of variables vi,v;,---,v,, and link
both sets of variables to each other by setting

oF o (2.72)

Vi:auiv P )

Now define the function F as
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F(Ml,"' sUn, Vg avl’l) =viul +~~~V,,uan(u1,~~ 7”7!) (273)
In order to simplify notation we will henceforth write u = (uy,uz, - ,uy),v =
(vi,va2,-++,v) and F(u,v) = viu— F(u). It is immediately checked that the par-
tial derivatives of F'(u,v) with respect to the variables uy, - ,uy,

are all zero whenever these partial derivatives are evaluated at points (u, V= %—Z)

Indeed _
oF _ _oF
&ui i 8u,~

Furthermore, if the mapping from u tov = % is invertible then we can express u as
a function u(v) of v, and we may define the function

(2.74)

F*(v) == F(u(v),v) = v u(v) — F(u(v)) (2.75)
The function F*(v) is called the Legendre transform of F (u).

Remark 2.5. A sufficient condition for local invertibility of the mapping from u to

. . . 2F . . .
v = % is that the Hessian matrix ‘371; is invertible.

Differentiating F*(v) with respect to v yields

IF* & iﬁau_;(v) 8717“
(9\/,' _j:l 8uj 8vl~ 8v,~

(2.76)

where all expressions at the right-hand side are evaluated at (u,v = ‘3—5) Since by
(2.74), the first term at the right-hand side is zero, it follows that

JF* oF
o (v) = a—w(u(v),v)) = u; 2.77)

Thus we have obtained a completely symmetric relation between the variables u and
v: if v is linked to u via (2.72) in an invertible manner, then conversely u is obtained
from v via (2.77).

This construction is immediately extended to functions F(u,w) depending on

additional variables w = (wy,- -+ ,w,). Linking in the same way the variables v =
(Viy o yvp) tou = (uy, - ,uy,) via
JF
v,-:a—ui(u,w)7 i=12,---,n, (2.78)

and defining the function F (u,v,w) = vIu — F (u,w) one obtains the Legendre trans-
form of F(u,w) with respect to u as the function F*(v,w) defined as



2.3 Relationships with classical Hamiltonian and Euler-Lagrange equations 79
F*(v,w) :=viu(v,w) — F(u(v,w),w) (2.79)

under the assumption that the map u — v defined by (2.78) is invertible and can be

solved as u = u(v,w). It follows as before that this inverse mapping is determined
by

oF* oF

(V’ W) - av,'

Bvi

Furthermore, with regard to the partial derivatives with respect to the additional
variables w, we obtain the following relationship between F(u,w) and F*(v,w):

(u(v, W)7V7 W) =Uuj (280)

oF oF* N
Tm(u’w)__Twi(v(u)’w)’ i=1,---,n (2.81)

A classical application of the Legendre transformation is the following. Consider a
classical Hamiltonian system

. OH
qi =
ErY
N palH i=1,--.n (2.82)
pi= 9qi
and suppose that the mapping
JH )
v;:api, i=1,---,n
from p=(p1, -+ ,pn) tov=(vy,---,v,) is invertible, leading to the Legendre trans-
form of H(q, p) with respect to p denoted as H* (g, v). It follows that
JoH*
Pi=—=—
81),‘
=1, 2.83
OH  OH" Tt (283)
dq; dq;i

and thus the Hamiltonian system (2.82) transforms into

qi =vi
d O0H* OH* i=1,-,n (2.84)
5 8v,~ N 8q,~

Denoting L(q,v) := H*(q,v) (the Lagrangian function) the equations (2.84) can be
taken together into the classical Euler-Lagrange equations
d JL JdL
(q,V)—(q,V)> :Oa i=1,---,n
( dr av,' 8qi v=g
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2.3.2.1 From port-Hamiltonian systems to the Brayton-Moser equations

Consider a port-Hamiltonian system without dissipation and external ports, which
can be represented by the set of differential equations

JH
x=J(x) . (x) (2.85)

with J(x) being skew-symmetric. Suppose that the mapping from the energy vari-
ables x to the co-energy variables e := %—I;(x) is invertible, so that the inverse trans-

formation from the co-energy variables to the energy variables is given by

x= % (e) (2.86)

with H* the Legendre transformation of H given as
H*(e) =e"x—H(x) (2.87)

Then the dynamics of the port-Hamiltonian system (2.85) can be equally well ex-
pressed in the co-energy variables e. Indeed, the time-evolution of ¢ may be obtained
from (2.85) by substituting x(¢) = aa%(e(t)) into the differential equation (2.85),
leading to

*H* |

W(e)e =J(x)e, (2.88)
where one may finally substitute x = % in order to obtain a differential equation
solely in the co-energy variables e.

What can we say about the particular structure of the port-Hamiltonian system

expressed in the co-energy variables e? Assume that we may find coordinates x =

(x4,%p), with dimx, = k and dimx,, = n —k, such that in these coordinates the matrix
J(x) takes the form
[0 -BE
J(x) = [BT () 0 } (2.89)
with B(x) a k x (n— k) matrix, and moreover the Hamiltonian H splits into a function
of x, and x,, that is, H can be written as

H(xg,xp) = Hy(xq) + Hp(xp) (2.90)

for certain functions H, and H,. Write, accordingly to the splitting x = (x,,x,) of
the energy variables, the co-energy variables as e = (ey, e),) with

JH, oH,
€a= dxg = dx,

It follows that the Legendre transform H*(e) of H(x) splits as H*(e) = H;(eq) +

Hj(ep). In such coordinates (2.88) takes the form
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BZH; de
a ) [d’q = { N _B(x>] {e"} 2.91)
0 88612,, % B*(x) 0 ep
Defining the function
P(eg,ep,x) := e;B(x)ep (2.92)

it follows (after multiplication of the last n — k equations in (2.91) by a factor —1)
that (2.91) can be alternatively written as

8;11;; 0 deg 9P

e ar | de

7 o ldep] — [84 (2.93)
0 —72"| la dep

P

This is the type of equations that were obtained for RLC-circuits in [27, 28], and
which are commonly called the Brayton-Moser equations (cf. Example 2.8 below).
These equations can be interpreted as gradient equations with respect to the mixed
potential function P and the indefinite inner product or pseudo-Riemannian metric
defined by the symmetric matrix

J%H}
aezq 0
" (2.94)
08

p

Note however that if the matrix B and therefore the function P non-trivially de-
pends on x then (2.93) is not valid if we substitute x = %(8) in the definition of

P(ey,ep,x) before taking the partial derivatives of P with respect to e, and e),.

Remark 2.6. If the Hamiltonian H does not split as H(xp,x,) = H,(x,) + Hy(xg)
then we obtain instead of (2.93) the more general type of equations

9*H* 9*H* de aP

8e5 degde, (qu - deq 705

PH*  _QPH* | |dep | T |22 (2.95)
" depdeq 3@% dr dep

Hence in this case the left-most matrix appearing in (2.95) is not symmetric any-
more, and hence does not define a (pseudo-) Riemannian metric.

By (2.85) and (2.89), the mixed potential function P can be rewritten as

Xg=xre, (2.96)

P(eg,ep,x) = eZB(x)ep =—e, »

Thus the function P denotes minus the power associated to the g-part of the system,
which is (since the total power is zero) also equal to the power of the p-part of the
system. Hence the mixed potential function P captures the interconnection structure
(or Dirac structure) of the port-Hamiltonian system, while the pseudo-Riemannian
metric (2.94) is determined by its Hamiltonian.
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Example 2.8. Consider an LC-circuit with independent capacitors C and indepen-
dent inductors L. Denoting the voltages and currents of the capacitors by v¢ and i¢c
and the voltages and currents of the inductors by vy, and iy, Kirchhoff’s current and
voltage laws can be written as

ic|] |0 —=B| |vc
i)l o @9
for some constant matrix B (consisting of elements 0, 1, and —1). Furthermore, the
Hamiltonian (total energy) splits as the sum of an electrical and magnetic energy

H(Qc,¢.) = Hc(Qc) + HL(¢L)

Thus, the above assumptions for deriving the Brayton-Moser equations are automat-
ically satisfied, leading to the standard Brayton-Moser equations (in the case of no
energy dissipation)

a;zzg 0 dve gi

Vv dr _ ve

| la | = |2 (2.98)
0 - a7 ar iL

with P(vc, i) = vEBip = —vlic = v]ir.

Example 2.9 (Example 2.14, continued). Consider the example of the rolling euro.
In (2.148), the explicit dynamical equations of the system on the constrained state
space has been obtained. Denoting x, = (x,y,0,¢) and x, = (p1, p2) it is clear that
the above assumptions for the derivation of the Brayton-Moser equations are satis-
fied, with

0 cosgp

_ |0 sing
B= 0 1 (2.99)

1 0

and
Lo, 1,
Hq(xq) =0 Hp(xp) = Epl + sz (2.100)
JH

However, in this case the mapping e = 5 is not invertible since the potential energy
H, =0, and thus we cannot derive Brayton-Moser equations for the rolling euro. On
the other hand, let us modify the example by adding a potential energy H, in such a
way that the mapping

_ JH, _JH, _ JH, JH,

EX—W ey—a—y 89—% e(pzw (2101)
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is an invertible mapping from (x,y,0,¢) to (ex,e,,eg,ep), allowing for the defini-
tion of the Legendre transform Hy (ex,ey,eg,eq,)G. Then the Brayton-Moser equa-
tions are given by (2.93) with B(¢) as above, and H: (e, ep,) = 3¢ + €2, .

The Brayton-Moser equations can be extended to the case of energy-dissipation
(and perhaps is most useful in this context). The idea is to modify the mixed poten-
tial function P (covering until now the power-conserving interconnection structure)
with Rayleigh functions corresponding to the resistive elements. Let us consider a
port-Hamiltonian system with dissipation (but still without external ports):

=) 20 () e

ex = 800 2 (1

(2.102)

where the resistive relation is specified by an (effort-controlled) Rayleigh dissipation
function R(eg), that is,

fe= =5 (ex) (2.103)

Suppose as before that we may find coordinates x = (x,,x,), dimx, = k, dimx, =
n — k such that, in these coordinates, the matrix J(x) takes the form

J(x) = [BT(zx) _%(x)} (2.104)

with B(x) a k X (n — k) matrix, and moreover, that the Hamiltonian H splits as
H(x4,x,) = Hy(xy) + Hp(x),). Furthermore, assume for simplicity that, in these co-
ordinates, gg(x) has the form

gr(Xg,Xp) = [_0[] (2.105)

This implies that eg = e),. Then (2.91) extends to
92H;

0 | [d
9¢g | [ 0 —B®]]e 01 oR
omldbwo]MLhﬁw (2.106)

de dr

Defining now the modified mixed potential function
P(eg,ep,x) = egB(x)ep—FR(ep) (2.107)

then the system (2.106) still takes the Brayton-Moser form (2.88) with respect to
this modified mixed potential function. Note that this new mixed potential function

® For example, one may think of a rolling disc on a curved surface with spring-like elements
corresponding to the motion in the 6 and ¢ directions.
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captures the interconnection structure as well as the specification of the resistive
port relation (by means of a Rayleigh dissipation function).

2.4 Representations of Dirac structures and port-Hamiltonian
systems

In the preceding section, we have provided the geometric definition of a port-
Hamiltonian system containing three main ingredients. First, the energy storage
which is represented by a state space manifold 2" specifying the space of energy
variables together with a Hamiltonian H : 2" — R defining the energy. Secondly,
there are the static resistive elements, and thirdly there is the Dirac structure link-
ing all the flows and efforts associated to the energy storage, resistive elements, and
the external ports (e.g. control and interaction ports) in a power-conserving manner.
This, together with the general formulation (Definition 2.2) of a Dirac structure,
leads to a completely coordinate-free definition of a port-Hamiltonian system, be-
cause of three reasons: (a) we do not start with coordinates for the state space mani-
fold 2", (b) we define the Dirac structure as a subspace instead of a set of equations,
(c) the resistive relations are defined as a subspace constraining the port variables
(freR).

This geometric, coordinate-free, point of view has a number of advantages. It
allows one to reason about port-Hamiltonian systems without the need to choose
specific representations. For example, in Sect. 2.6 we will see that a number of
properties of the port-Hamiltonian system, such as passivity, existence of conserved
quantities and algebraic constraints, can be analyzed without the need for choosing
coordinates and equations. On the other hand, for many purposes, e.g. simulation,
the need for a representation in coordinates of the port-Hamiltonian system is in-
dispensable. Then the emphasis shifts to finding the most convenient coordinate
representation for the purpose at hand. The examples of the previous section have
already been presented in this way. In this section, we will briefly discuss a number
of possible representations of port-Hamiltonian systems. It will turn out that the key
issue is the representation of the Dirac structure.

2.4.1 Representations of Dirac structures

Dirac structures admit different representations. Here we list the most important
ones, with proofs provided only for the first two cases. Further information can be
found in [25,54,59,87,179].
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Kernel and Image representation

Every Dirac structure ¥ C % x .#* can be represented in kernel representation as
.@:{(f,e)ef X ﬁ*\FerEe:o} (2.108)

for linear maps F : % — ¥ and E : .7 * — ¥ satisfying

(i) EF*+FE* =0,
y . (2.109)
(ii) rank(F+E)=dim.7,
where ¥ is a linear space with the same dimension as .%#, and where F* : ¥* — F*
and E* : V* — F** = .F are the adjoint maps of F and E, respectively.
It follows from (2.109) that & can be also written in image representation as

@:{(f,e)egz x f*|f:E*7L,e:F*A,7Le”//*} (2.110)

Sometimes it will be useful to relax this choice of the linear mappings F and E by
allowing 7" to be a linear space of dimension greater than the dimension of .%. In
this case we shall speak of relaxed kernel and image representations.

Matrix kernel and image representations are obtained by choosing linear coordi-
nates for .7, .%* and 7. Indeed, take any basis fi,--- , f,, for .# and the dual basis
er= [y, e, = [y for F*, where dim .# = n. Furthermore, take any set of linear
coordinates for 7. Then the linear maps F and E are represented by n x n matrices
F and E satisfying

(iy EFT+FET=0,

2.111
(i) rank [F | E] =dim.Z. ( )

In the case of a relaxed kernel and image representation F and E will be n’ x n
matrices with n’ > n.

A (constructive) proof for the existence of matrix kernel and image representa-
tions can be given as follows. Consider a Dirac structure & C .# x .#* where we
have chosen linear coordinates for .%, .%* and ¥'. In particular, choose any basis
fi,--+, fu for & and the dual basis ey = f{,--- ,e, = f,; for #*, where dim . = n.
Since & is a subspace of .% x .%* it follows that there exist square n X n matrices F

and E such that
ET
where rank [F | E| = dim.%. Thus any element (f,e) € Z can be written as
f=E™A e=FT)

for some A € R”". Since e f = 0 for every (f,e) € 2 this implies that
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ATFE™A =0

for every A, or equivalently, EFT + FET = 0. Conversely, any subspace Z given by
(2.111) is a Dirac structure, since it satisfies e! f = 0 for every (f,e) € 2 and its
dimension is equal to 7.

Constrained input-output representation
Every Dirac structure 2 C .% x . * can be represented as
@z{(f,e)eyx9*|f:Je+Gk, GTezo}, 2.112)

for a skew-symmetric mapping J : % — Z* and a linear mapping G such that
ImG = {f| (f,0) € Z}. Furthermore, KerJ={e| (0,e) € Z}.

The proof that (2.112) defines a Dirac structure is straightforward. Indeed, for
any (f,e) given as in (2.112) we have

el f=e"(Jet+GL)=e"Je+e"GL =0

by skew-symmetry of J and GTe = 0. Furthermore, let rank G = r < n. If r = 0 (or
equivalently G = 0) then the dimension of & is clearly n since in that case it is the
graph of the mapping J. For r # 0 the freedom in e will be reduced by dimension r,
while at the other hand the freedom in f will be increased by dimension r (because
of the term GA).

Conversely, let  C .7 x .#* be a Dirac structure. Define the subspace

%:{eefi* | 3f st (f,e)e@}

Define a matrix G such that .#;,=Ker G . Now choose any subspace .%#, which is
complementary to .%, that is,

Define the following subspaces of .7 :

Fypi= (7" T = (T
Then, .7 = .F 5 ® 4. Define now J : #* — .7 as follows:

1. Define J to be zero on .7,.
2. For every e € .7, there exists f € F4 with (f,e) € 2. Define Je = f. Do this
for a basis of .7/, and extend J to a linear map from .7/, to % 4.

Since (f,e) € 2 satisfies e' f = 0 it follows that eTJe = 0 for all e € .7 *, and thus
J is skew-symmetric.
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Hybrid input-output representation

Let 2 be given in matrix kernel representation by square matrices E and F as in 1.
Suppose rank F = m (< n). Select m independent columns of F, and group them into
a matrix F;. Write (possibly after permutations) F = [F 1 Fz] and correspondingly

E=[E | E)]
/I

Then it can be shown [25] that the matrix [Fl | Ez] is invertible, and

AR e

with J 1= — [F} | Ez]_1 [P, | Ei] skew-symmetric.

It follows that any Dirac structure can be written as the graph of a skew-
symmetric map. The vectors e, f> can be regarded as input vectors, while the com-
plementary vectors fi,e, can be seen as output vectors. (This is very much like the
multi-port description of a passive linear circuit, where it is known that although
it is not always possible to describe the port as an admittance or as an impedance,
it is possible to describe it as a hybrid admittance/impedance transfer matrix, for a
suitable selection of input voltages and currents and complementary output currents
and voltages [19].)

Canonical coordinate representation

There exists a basis for .% and dual basis for .%*, such that, in these bases, the vector
(f,e), when partitioned as (fy, fp, fr, fs,€q,€p, €r, €5), is in Z if and only if

fa=—¢p

fr=2eq (2.114)
fr =0

e, =0

For a proof we refer to [54]. The representation of a Dirac structure by canoni-
cal coordinates is very close to the classical Hamiltonian equations of motion, see
Sect. 2.4.4.

Remark 2.7. A special type of kernel representation occurs if not only EF* + FE* =
0 but in fact FE* = 0 (while still rank(F + E) = dim.%). In this case it follows
that ImE* C KerF. However, it follows from the kernel/image representation of
any Dirac structure that Ker F C ImE*, and thus Im E*= Ker F Hence in this case
the Dirac structure is the product of the subspace KerF C .% and the subspace
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Ker Fo™" —=KerE C .Z*, with -°" denoting the orthogonal complement with re-
spect to the duality product between % and .7 *. We have already encountered this
special type of Dirac structure in the case of Kirchhoff’s current and voltage laws
(Sect. 2.1.3.2) and in the case of kinematic pairs (Sect. 2.1.3.3), while mathemati-
cally it has been exemplified at the end of Sect. 2.1.1.

In [25,59,59, 185] it is shown how one may convert any of the above represen-
tations into any other. An easy transformation that will be used frequently in the
sequel is the transformation of the constrained input-output representation into the
kernel representation. Consider the Dirac structure & given in constrained input-
output representation by (2.112). Construct a linear mapping G- of maximal rank
satisfying

G*G=0

Then, pre-multiplying the first equation of (2.112) by G+, one eliminates the La-
grange multipliers A and obtains

@:{(f,e)ey‘xﬁ*mif:c;ije, GTezo}, 2.115)

which is easily seen to lead to a kernel representation. Indeed,

[E e

defines a kernel representation.

2.4.2 Representations of port-Hamiltonian systems

Coordinate representations of the port-Hamiltonian system (2.36) are obtained by
choosing a specific coordinate representation of the Dirac structure &. For example,
if Z is given in matrix kernel representation

9 = {(fs,es,fR,eR,f,e) € X XXX Frx T x FxF*|
Fyfs+Eses + Fefi+ Egen+ Ff + Ee=0} (2.116)
with

(i) EsF§ +FsEJ +ERFg +FREf +EFT+FET =0

] (2.117)
(i) rank [Fs | Es | Fg | Eg | F | E] =dim(2 x Fg x F)
then the port-Hamiltonian system is given by the set of equations

Fox(t) = ES%(X(I)) + Frfr(t) +Eger(t) + Ff(t) + Ee(t) (2.118)
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with fz(t),eg(t) satisfying for all 7 the resistive relation

R(fr(t),er(t)) =0 (2.119)

Note that, in general, (2.118) consists of differential equations and algebraic equa-
tions in the state variables x (DAEs), together with equations relating the state vari-
ables and their time-derivatives to the external port variables (f,e).

Example 2.10 (1-D mechanical systems). Consider a spring with elongation g and
energy function Hy(g), which for a linear spring is given as Hy(q) = %qu. Let
(vs, Fy) represent the external port through which energy can be exchanged with
the spring, where v, is equal to the rate of elongation (velocity) and F; is equal to
the elastic force. This port-Hamiltonian system (without dissipation) can be written

in kernel representation as

11| [—¢ 0 0| |kg| _

oo] L]+ [ 5 [7] = a2
Similarly we can model a moving mass m with scalar momentum p and kinetic
energy H,,(p) = ﬁ p? as the port-Hamiltonian system

11][-p]  fo0][2]
{0 0] [Fm} * [1 —1} [V} =0 (2.121)

where (F,,v,) are respectively the external force exerted on the mass and the ve-
locity of the mass.
The mass and the spring can be interconnected to each other using the symplectic

gyrator
ve| |0 1| |F
=[]l

Collecting all equations we have obtained a port-Hamiltonian system with energy
variables x = (g, p), total energy H(q, p) = Hs(q) + Hy(p) and with interconnected
port variables (vg, Fy, Fy,vy). After elimination of the interconnection variables
(vs, Fy, Fyy,vin) one obtains the port-Hamiltonian system

[(1) (1)} {:i] + [_0 I (])] {kﬂ =0 (2.123)

which is the ubiquitous mass-spring system. Note that the Dirac structure of this
mass-spring system is derived from the Dirac structures of the spring system and
the mass system together with their interconnection by means of the symplectic
gyrator (which itself defines a Dirac structure). How to systematically derive the
resulting interconnected Dirac structure is studied in Sect. 2.5.

In case of a Dirac structure modulated by the energy variables x and the state
space 2 being a manifold, the flows f;, = —x are elements of the tangent space T, 2
at the state x € 27, and the efforts e, are elements of the co-tangent space 7.2 .
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Still, locally on 2", we obtain the kernel representation (2.118) for the resulting
port-Hamiltonian system, but now the matrices Fy, Es, F and E will depend on x.

The important special case of input-state-output port-Hamiltonian systems as
treated before

x:J(x)aa—Ij(x)—Fg(x)u o

v=" 0

can be interpreted as arising from a hybrid input-output representation of the Dirac
structure (from eg,u to fs,y). If the matrices J, g depend on the energy variables x,
then this is again a modulated Dirac structure.

In general, by a combination of the hybrid representation and the constrained
input-output representation, it can be shown that, locally, any port-Hamiltonian sys-
tems can be represented in the following way

X = J(x)ga—lj(x) +g(x)u+b(x)A
y = gT(x)aa—Ij(x) xeZx (2.124)
JoH

0=">"(x)=
)
where yTu denotes the power at the external port.

Example 2.11 (Coupled masses — Internal constraints). Consider two point masses
my and my that are rigidly linked to each other, moving in one dimension. When
decoupled, the masses are described by the port-Hamiltonian systems

pi=F
P i=1,2 (2.125)
Vi = m

with F; denoting the force exerted on mass m;. Rigid coupling of the two masses is
achieved by setting

M =-5K Vi =W (2.126)

This leads to the port-Hamiltonian system

[1] [ 1 }
P2 —1
pl‘| (2.127)

o-p -1

my

where A = F| = —F, now denotes the infernal constraint force. The resulting inter-
connected system no longer has external ports. On the other hand, external ports for
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the interconnected system can be included by either extending (2.125) to

pi=F+F™
Vi = r%’l i=1,2 (2.128)
V?Xt f ﬁ

i m;

with £ and v{*' denoting the external forces and velocities, or by modifying the
interconnection constraints (2.126) to e.g. F +F +F*' =0 and v; = v, = !, with
F*' and v** denoting the external force exerted on the coupled masses, respectively
the velocity of the coupled masses.

2.4.3 Elimination of Lagrangian multipliers and constraints

As shown above, it is relatively easy to eliminate the Lagrange multipliers in any
constrained input-output representation of the Dirac structure. As a result, it is also
relatively easy to eliminate the Lagrange multipliers in any port-Hamiltonian sys-
tem. Indeed, consider the port-Hamiltonian system (2.124). The Lagrange multi-
pliers A can be eliminated by constructing a matrix b (x) of maximal rank such
that

b (x)b(x) =0

Then, by pre-multiplication with this matrix 5" (x), one obtains the equations

bt (x)i = bt (x)](x)%—i](x) + bt (x)g(x)u
y = gT(x)%(x) xe & (2.129)

JH
0=>b" (x) ()

without Lagrange multipliers. This is readily seen to be a kernel representation of
the port-Hamiltonian system.

Example 2.12 (Example 2.11, continued). Consider the system of two coupled
masses in Example 2.11. Pre-multiplication of the dynamic equations by the row
vector [1 1} yields the equations

pr+p2=0 LAR R (2.130)

mp - mz

which constitutes a kernel representation of the port-Hamiltonian system, with ma-

trices
11 00
7= oo =1
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A more difficult question concerns the possibility to solve for the algebraic con-
straints of a port-Hamiltonian system. This is a problem which is independent of the
specific representation of the port-Hamiltonian system. In case of the representation
(2.129), the algebraic constraints are given by

0= bT(x)%—Z(x) (2.131)

In general, these equations will constrain the state variables x. However, the precise
way this takes place very much depends on the properties of the Hamiltonian H as
well as of the matrix b(x). For example, if the Hamiltonian H is such that its gradient
%—Z(x) happens to be contained in the kernel of the matrix b" (x) for all x, then the
algebraic constraints (2.131) actually do not constrain the state variables.

In general, under constant rank assumptions, the set

Ze = {xe 2| bT(x)‘;—Z(x) :0}

will define a sub-manifold of the total state space 27, called the constrained state
space. In order that this constrained state space qualifies as the state space for a port-
Hamiltonian system without further algebraic constraints, one needs to be able to
restrict the dynamics of the port-Hamiltonian system to the constrained state space.
This is always possible under the condition that the matrix

J’°H
bT(x)W(x)b(x) (2.132)

has full rank. Indeed, under this condition, the differentiated constraint equation

2
0= 5 (W) =W S wewa @13

(with * denoting unspecified terms) can always be uniquely solved for A, leading to
a uniquely defined dynamics on the constrained state space 2. Using terminology
from the theory of DAEs, the condition that the matrix in (2.132) has full rank
ensures that the index of the DAEs specified by the port-Hamiltonian system is
equal to 1, [37]. If the matrix in (2.132) does not have full rank, it may be necessary
to further constrain the space 2. by considering apart from the algebraic constraints
(2.131), also their time-derivatives (sometimes called secondary constraints).

Example 2.13 (Example 2.11, continued — DAE index). Differentiating the con-
straint equation 5711 — r’% = 0 and using the dynamical equations p; = A and
p> = —A, one obtains

mj ma

(1+1>7L =0 (2.134)
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which obviously determines the constraint force A to be equal to 0. Thus, the index
of this system equals one. Defining the total momentum p = p; + p», one trivially
obtains the reduced system p = p; + p» =0.

On the other hand, suppose that the mass m; is connected to a linear spring with
spring constant k; and elongation g, and that the mass my is connected to a lin-
ear spring with spring constant k, and elongation g». Then the dynamical equations
change into p; = —k1q; + A and py = —kpq> — A, and differentiation of the con-
straint 5711 — ,’1% =0 leads to

k k 1 1
U S <+ ) A=0 (2.135)
ny my

This still determines the constraint force A as

nimy k1 k2
= (g - g
my +ny 2

and results in the (obvious) dynamical equation for the total momentum p given by
pP=—kiqi —kaq> (2.136)

Generalizing Example 2.13, let us consider the equations of a mechanical system
subject to kinematic constraints as discussed in Sect. 2.2.2. The constrained Hamil-
tonian equations (2.47) define a port-Hamiltonian system with respect to the Dirac
structure Z (in constrained input-output representation):

7= {(fs,es,fcyec) | 0=[0A"(q)] es, ec = [0 B"(q)] es,

—fs= [_(;n g] es+ {A?q)} A+ [B?q)] fo, A€ Rk} (2.137)

The algebraic constraints on the state variables (g, p) are thus given as

oH
0= A%)a—p(q,p) (2.138)

The constrained state space is therefore given as the following subset of the phase
space (g, p):

2, = {(w) IAT(qﬁf(q,p) —0} (2.139)

We may solve for the algebraic constraints and eliminate the resulting constraint
forces A(g)A in the following way. Since rank A(g) = k, there exists locally an
n % (n—k) matrix S(g) of rank n — k such that

A'(q)S(g) =0 (2.140)
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Now define p= (ﬁ17ﬁ2> - (p~17'"aﬁn—kvﬁn—k+17"'7ﬁn) as

(@)p

@p P eR"K B e Rk (2.141)

ﬁl — ST
ﬁ2 i AT
It is readily checked that (¢,p) — (¢,p',p?) is a coordinate transformation. In-
deed, by (2.140), the rows of ST(g) are orthogonal to the rows of AT(g). In the new

coordinates, the constrained Hamiltonian system (2.47) takes the form (see [182]
for details), * denoting unspecified elements,

of
; 0, S(9) <] | 9
ﬁl _ _ST(q) (—pT[SiaSj](Q))i,j* gg +
% . " x| | 9
9p?
0 0 (2.142)
n A+ |Be(q) | u
AT(q)A(q) B(q)

JH JH
AT(Q)TP ZAT(Q)A(CI)Tﬁz =0

with H(q, p) the Hamiltonian H expressed in the new coordinates g, 5. Here, S;
denotes the i-th column of S(g), i = 1,...,n—k, and [S;,S;] is the Lie bracket of S;
and S, in local coordinates ¢ given as (see e.g. [2,156])

55]0) = S2@S(0) - 5500 143

with %—qu and %—f{" denoting the n x n Jacobian matrices.
Since A only influences t%le p?-dynamics, and the constraints AT (q) %—I; (¢,p)=0
are equivalently given by g—;(q, P) = 0, the constrained dynamics is determined by

the dynamics of ¢ and j!, which serve as coordinates for the constrained state space

e
OH. (=1
q} B NEAS 0
1| =Je(q.p") + u (2.144)
1 ~ )
{P ot (@.p")] " |Be(a)
where H,.(q,p") equals H(q,p) with p? satisfying 352 = 0, and where the skew-
symmetric matrix J.(g, p') is given as the left-upper part of the structure matrix in
(2.142), that is
O, S(q)
Je(g.p') = , (2.145)
~8M(q) (=P"[51.5,1(a)), ;

where p is expressed as function of ¢, 5, with 5 eliminated from 99;12 = 0. Further-

more, in the coordinates ¢, p, the output map is given in the form
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oA
y=|BI(g) B'(q)] [%H] (2.146)
dap?

which reduces on the constrained state space % to

0H
y= 33(4)371(%15') (2.147)

Summarizing, (2.144) and (2.147) define a port-Hamiltonian system on 2., with
Hamiltonian H, given by the constrained total energy, and with structure matrix J.
given by (2.145).

Example 2.14 (Example 2.4, continued). Define according to (2.141) new p-coordinates

P1=Do

P2 =Ppe + PxCOS P + pysin@
P3 =Dx — P COSP

P4 =py—posing

The constrained state space 2. is given by p3 = ps4 = 0, and the dynamics on 2 is
computed as

r d
X 0 cosg ap);f 00
y 0 sing ;Hy 00
6 . 04 0 1 aec + 00 uj
ol 1o | (2] 00| [u
bl 0 0 0 —-10 0 o 01 (2.148)
D2 |—cos@ —sing —1 0 0 O 311;1 10

L9p, |

[y1:| _ %Pz
2 P

where H.(x,y,0,9,p1,p2) = $p} + 1 3.

2.4.4 Port-Hamiltonian systems in canonical coordinates —
Casimirs and algebraic constraints

Consider a port-Hamiltonian system without resistive ports and external ports (so
only containing energy-storage ports). Then, the flows f € .% are given as the flows
fs of the energy storage, and the efforts e € .7 as the efforts eg. By the canonical
coordinate representation, we may consider a basis for .# and a dual basis for .#*
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such that the Dirac structure is described by (2.114). In general, however, .# is mod-
ulated by the energy variables. In fact, if the state space £ is a manifold, then .%#
at any point x € 2~ will be given as the tangent space 7,.2 . Furthermore, also the
Dirac structure, being given at any point x as a subspace Z(x) C Ty 2" x T 2, will
be a modulated Dirac structure. If the Dirac structure Z satisfies an additional infe-
grability condition then we can choose local coordinates x = (g, p,r,s) for 2~ (with
dimg = dim p), such that, in the corresponding bases for (fy, fp, f;, fs) for T2 and
(eq,ep,er,e5) for T 2, the Dirac structure on this coordinate neighborhood is still
given by the relations (2.114). For more details regarding the precise form of the
integrability conditions see Sect. 2.7.
Substituting the flow and effort relations of the energy storage

. JoH ) 0H
fq:_q eq:aq fp:_P ep:ap
, _JH . _O0H
fr=—ta=g f==8 =g

into the canonical coordinate representation (2.114) of the Dirac structure yields the
following dynamics:

oH
=9
 oH
P="34 (2.149)
F=0

OH
0="3

The variables g, p are the canonical coordinates known from classical Hamiltonian
dynamics. Furthermore, the variables r have the interpretation of conserved quan-
tities or Casimirs, see Section Sect. 2.6.2. Indeed every function K(r) will satisfy
the property dIK 0. Finally, 8 = 0 specify the algebraic con-
straints present in the system.

If the Hamiltonian H satisfies additional regularity properties such as the par-

tial Hessian matrix a " being invertible, then by the Implicit Function theorem we
may in principle eliminate the algebraic constraints by solving for s as a function
s(q, p,r). Then the DAEs (2.149) reduce to the ODEs

_on
oH 2.150
p=-22 (2.150)
q
F=0

where H(q, p,r) := H(q,p,r.s(q,p,r)).



2.4 Representations of Dirac structures and port-Hamiltonian systems 97

2.4.5 Well-posedness of port-Hamiltonian systems

As we have seen above, coordinate representations of port-Hamiltonian systems of-
ten lead to mixed sets of differential and algebraic equations (DAEs). This implies
that the existence of unique solutions for feasible initial conditions is not guaran-
teed. In particular, problems may arise for port-Hamiltonian systems where the flow
variables of the resistive ports are input variables for the dynamics, while the re-
sistive relation is not effort-controlled. This is illustrated by the following example
taken from [174].

Example 2.15 (Degenerate Van der Pol oscillator). Consider a degenerate form of
the V an der Pol oscillator consisting of a 1-F capacitor

0=1I V=0 (2.151)

in parallel with a nonlinear resistor with the characteristic:

{(fR,eR) =(LV)|V= —%P +1} (2.152)

This resistive characteristic is clearly not voltage-controlled, but instead is current-
controlled. Hence the resistive relation cannot be expressed as an input-output map-
ping as in (2.31).

As a consequence, the equations (2.151) and (2.152) define an implicitly defined
dynamics on the one-dimensional constraint sub-manifold R in (1,V') space given
by

1
R= {(I,V)|V+3I3—I:0}.

Difficulties in the dynamical interpretation arise at the points (71, f%) and (1, %)
At these points V' is negative, respectively positive (while the corresponding time-
derivative of I at these points tends to plus or minus infinity, depending on the di-
rection along which these points are approached). Hence, because of the form of
the constraint manifold R it is not possible to “integrate” the dynamics from these
points in a continuous manner along R. These points are sometimes called impasse
points.

For a careful analysis of the dynamics of this system we refer to [174]. In par-
ticular, it has been suggested in [174] that a suitable interpretation of the dynamics
from these impasse points is given by the following jump rules:

2 2 2 2
(173) . <2,3) (1,3) - <2,3) 2.153)

The resultant trajectory (switching from the region / < —1 to the region / > 1) is a
‘limit cycle’ that is known as a relaxation oscillation.

Existence and uniqueness of solutions is guaranteed if the resistive relation is
well-behaved and the DAEs are of index 1 as discussed in the previous Sect. 2.4.3.
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Indeed, consider again the case of a port-Hamiltonian system given in the format

X = [J(x) —R(x)] %—Ij—f(x) +g(x)u+b(x)A
y = gT(x)a&—I:(x) xex (2.154)
0= 5" % )

Imposing the same condition as before in Sect. 2.4.3, namely that the matrix

J’H
bT ()57 (1)b(x) (2.155)

has full rank, it can be seen that there is a unique solution starting from every feasible
initial condition xy € 2. Furthermore, this solution will remain in the constrained
state space 2. for all time.

Example 2.16. A somewhat trivial example of a case where multiple solutions arise
from feasible initial conditions can be deduced from the example of a linear LC-
circuit with standard Hamiltonian H(Q,¢) = %QZ + ﬁ¢2, where the voltage over
the capacitor is constrained to be zero:

. 1
0=,9+4
: 1
o= EQ (2.156)
1

Here A denotes the current through the external port whose voltage is set equal to
zero. Since b (x) 9;7121 (x)b(x) in this case reduces to % it follows that there is a unique
solution starting from every feasible initial condition. Indeed, the constrained state
space 2, of the above port-Hamiltonian system is simply given by {(Q,¢) | 0 =0},
while the Lagrange multiplier A for any feasible initial condition (0, ¢y) is uniquely
determined as A = —%q). Now ever, consider the singular case where C = oo, in
which case the Hamiltonian reduces to H(Q, ¢) = ﬁq)z and the constraint equation
0= éQ becomes vacuous, i.e., there are no constraints anymore. In this case the
Lagrange multiplier A (the current through the external port) is not determined any-
more, leading to multiple solutions (Q(t), ¢ (¢)) where ¢(¢) is constant (equal to the
initial value @) while Q(¢) is an arbitrary function of time.
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Fig. 2.7 The composition of

P4 and . fi

2.5 Interconnection of port-Hamiltonian systems

Crucial feature of network modeling, analysis and control is ‘interconnectivity’ or
‘compositionality’, meaning that complex systems can be built up from simpler
parts, and that certain properties of the complex system can be studied in terms of its
constituent parts and the way they are interconnected. The class of port-Hamiltonian
systems completely fits within this paradigm, in the sense that the power-conserving
interconnection of port-Hamiltonian systems again defines a port-Hamiltonian sys-
tem. Furthermore, it will turn out that the Hamiltonian of the interconnected system
is simply the sum of the Hamiltonians of its parts, while the Dirac structure of the
interconnected system is solely determined by the Dirac structures of its compo-
nents.

2.5.1 Composition of Dirac structures

In this subsection, we investigate the composition or interconnection properties of
Dirac structures. Physically it is clear that the composition of a number of power-
conserving interconnections with partially shared variables should yield again a
power-conserving interconnection. We show how this can be formalized within the
framework of Dirac structures.

First, we consider the composition of fwo Dirac structures with partially shared
variables. Once we have shown that the composition of two Dirac structures is again
a Dirac structure, it is immediate that the power-conserving interconnection of any
number of Dirac structures is again a Dirac structure. Thus consider a Dirac structure
94 on a product space .#| X .%; of two linear spaces .%| and .%,, and another Dirac
structure % on a product space %, x %3, with also .%3 being a linear space. The
linear space .7, is the space of shared flow variables, and .7 the space of shared
effort variables; see Fig. 2.7.

In order to compose ¥4 and Zp, a problem arises of sign convention for the
power flow corresponding to the power variables (f>,e2) € %, x %5 Indeed, if
(e| f) denotes incoming power (see the previous section), then for

(flaelaaneA> E.@A Cy] Xﬁl* Xﬁzxﬂz*

the term (e, | fa) denotes the incoming power in %4 due to the power variables
(fa,ea) € Fp x Z5, while for
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(fB,eB, f3.€3) € Dp C Fa X F5 X F3 X Fy

the term (ep | f5) denotes the incoming power in Zg. Clearly, the incoming power
in 9, due to the power variables in .7, x .%; should equal the outgoing power from
2p. Thus we cannot simply equate the flows f4 and fp and the efforts e4 and e,
but instead we define the interconnection constraints as

Ja=—fp€F ea=ep€c F; (2.157)

In bond graph terminology we link the two bonds corresponding to (f4,e4) and
(fB,ep) by a O-junction. Therefore, the composition of the Dirac structures 4 and
P, denoted P, || Dg, is defined as
Ia | = {(fr.e1.f3.€3) € F1 X Fi x Fy x Fi | 3(fne2) € Fo x
s.t. (fi,e1,/2,€2) € Za and (= fa,e2, f3,€3) € 93}

The fact that the composition of two Dirac structures is again a Dirac structure has
been proved in [59, 179]. Here we follow the simpler alternative proof provided
in [45] (inspired by a result in [153]), which also allows one to study the regularity
of the composition, and to obtain explicit representations of the composed Dirac
structure.

Theorem 2.1. Let Y4 and P be Dirac structures (defined with respect to % X
F| X Fy x FS, respectively Fy x F5 x F3 x F5, and their bi-linear forms). Then
D4 || D is a Dirac structure with respect to the bi-linear form on Fy x F{ x F3 x
Proof. Consider 74 and % defined in matrix kernel representation by

Da :{(flaelaaneA) € P\ X F| x Fo x Fy | Fifi +Eie1 + Foafa+ Exes = 0}
Z: Z{(foes,f%%) € Ty X Ty x F3x T3 | Fapfp+ Eapep+ F3f3 + Ezes = 0}
In the following we shall make use of the following basic fact from linear algebra.

(A s.t. AL =b)] < [Vast. a’A=0=a'b=0]

Note that Z4 and 3 are alternatively given in matrix image representation as

El 0

Ff 0

Ef ET
@A =1Im 2 @B =1Im 2B
EL FQT%g

0 El

0 F
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Hence, (f1,e1, f3,e3) € D4 || Zp if and only if it exists A4 and Ap such that

fi Ef 0

(4] FIT 0

o| = |7 5|
24 ~ 1B B

f3 0 Ff

e3 0 E

which means that for all B, o, B2, @2, B3, 03] such that
ET 0
oo

T T
T T aT T T 11 |E2a Eap | _
Bl of By oy By o] =0

we have that
ﬁlel Jr(X;rel +ﬁ3Tf3+a3Te3 =0.

Equivalently, for all [a;, B, a2, B2, &3, B3] such that

(04
B

R E Fy Eyy 00 (0%) _0

0 0 —FpEnFE|B
a3
Bs

we have that
Blfi+ofer+Blfs+aies=0 (2.158)

which means that for all (o, 1,03, 83) € Z4 || Zs, relation (2.158) is equivalent to
require that (f1,e1, f3,e3) € (Za || DB)*. Thus, Z4 || Zp = (Za || Z)*, and so it
is a Dirac structure.

In the following theorem, an explicit expression is given for the composition of
two Dirac structures in terms of a matrix kernel/image representation.

Theorem 2.2. Let .%;,i = 1,2,3 be finite-dimensional linear spaces with dim.%; =
n;. Consider Dirac structures Ip C Fi X F| X Fop X Ff, ng =dim.F| x Fp =
ni+ny, D C Fo x Fi x F3 x F5, ng =dim.F x F3 = ny +n3, given by relaxed
matrix kernel/image representations (Fa,Ex) = ([Fi | Faal,[E1 | E24]), with Fp and
E4 nly X ng matrices, ny > ny, respectively (Fg,Eg) = ([Fap | F3),[Eap | E3]), with
Fg and Eg njy X ng matrices, njy > ng. Define the (ny +njp) x 2ny matrix
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12 EZA]

2.159
—Fp Erp ( )

|

and let Ly and Lg be m x n1'4, respectively m x ng, matrices (m = dimKerMT),with
L= Ly | Lg] KerL =ImM (2.160)
Then
F = [L4F | LgF3] E = [L4E; | LgEs] (2.161)
is a relaxed matrix kernel/image representation of D4 || .

Proof. Consider the notation corresponding to Fig. 2.7 and for any A4 € R™, Ag €
R"s their associated elements in P4, respectively Zp, given by

fi] Ei f3 Eg,i
erl _ 1B, sl _ |5 2.162
fA EzTA A fB EZTB B ( )
ea | F2F£1 ep FZFII;

Since

Epl, _[fa]l_[-f8]_[-E}s A T
[FZE]M— _EA}_{ os }—{ EL As < g € KerM (2.163)

it follows that (f1, f3,e1,e3) € Za || Zp if and only if exists [A], lg]TE KerMT such
that (2.162) holds for some (fa,e4) and (fp,ep), necessarily satisfying fa = —fp

and e4 = ep. For any matrix L defined as in (2.160) we can write [A,, lg]Te KerMT
as

)~A _ LX m
l:)LB:| = [Lg A ALeR (2.164)
Substituting (2.164) in (2.162) we obtain the following characterization of %4 || Zp
ET
ANE
Ia || D= (fi.e1.f3.€3) | =|rh A, L €R™ (2.165)
f3 Es ]t
e3 F3T B

which corresponds to the relaxed matrix image representation given in (2.161).

Remark 2.8. The relaxed kernel/image representation (2.161) can be readily under-
stood by pre-multiplying the equations characterizing the composition of &4 with
D
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FLE Fop Eon 0 0 | | f2

00 PpEpFE||e| O (2.166)

by the matrix L := [L4 | Lg]. Since LM = 0 this results in the relaxed kernel repre-
sentation
LpFi fi +LsE1e) +LgFs f3 + LpEze3 = 0 (2.167)

corresponding to (2.161).

Instead of the canonical interconnection constraints fy = —fp, e4 = ep (cf.
(2.157)), another standard power-conserving interconnection is the ‘gyrative’ in-
terconnection

fa=ep fp=—ea (2.168)

Composition of two Dirac structures &4 and Zp by this gyrative interconnection
also results in a Dirac structure. In fact, the gyrative interconnection of Z4 and Zp
equals the interconnection %y || .# || 2B, where .# is the gyrative (or symplectic)
Dirac structure

fia = —eip fiB=eja (2.169)

interconnected to Z4 and Zp via the canonical interconnections fj4 = — fa,ej4 = ea
and fip = —fp, e = ep.

Example 2.17 (Port-Hamiltonian systems with effort or flow constraints). Consider
a general port-Hamiltonian system given in kernel representation as

oH
Fsi(t) = Es = (x(0)) + Fr (1) + Erex(t) + Ff(1) + Ee() =0 (2.170)
with fz(t),eg(t) satisfying for all 7 the resistive relation

R(fz(1), ex(t)) =0 2.171)

Suppose the system is constrained by imposing the effort constraints e = 0. This cor-
responds to the composition of the Dirac structure of the port-Hamiltonian system
with the ‘effort-constraint” Dirac structure 2°¢ defined as

@°°={(f,e)ey><gf*|e:o} (2.172)

It follows that the matrix M in this case is given as

(2.173)

fp

017
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where the dimensions of the square zero matrix 0 and the identity matrix / are equal
to the dimension of .% . Hence the matrix L = [Lec L ] should satisfy

(L L] [’; ﬂ =0 (2.174)

It follows that the composed Dirac structure Z5; corresponding to the effort-

constraint e = 0 is given by the explicit equations
LFsfs+ L Eses + L Fr fr + L*Egeg = 0 (2.175)

where L€ is a matrix of maximal rank satisfying
L*¥F=0 (2.176)

It follows that the constrained port-Hamiltonian system resulting from imposing the
effort constraints e = 0 is given as the port-Hamiltonian system

ec

JH
LSFox = L“EST;Cd (x) + L Fg fg + L Egex, (2.177)

with fg, eg satisfying the resistive relation R(fz(¢),er(t)) = 0. Similarly, the reduced
Dirac structure Qrfgd corresponding to the flow-constraints f = 0 is given by the
equations

LEFs fs+ LEges + L F fr + L Eger = 0 (2.178)

where L is any matrix of maximal rank satisfying
LCE =0 (2.179)

A similar analysis can be made for any hybrid set of effort and flow constraints of
complementarity type

ei=0 (ieKk) fi=0 (j¢K) (2.180)
for any subset K C {1,---, p}, where p = dim.Z.

Example 2.18 (Feedback interconnection). The standard feedback interconnection
of two input-state-output systems can be regarded as an example of a gyrative in-
terconnection as above. Indeed, let us consider two input-state-output systems as in
(2.51), for simplicity without external inputs d and external outputs z,

0H,;
X = [Ji(xi) fRi(xi)] W(Xi) + gi(xi)u;
9. i xi € Z; (2.181)
yi = & (xi)5—(xi)
! ax,-

Zil

for i = 1,2. The standard feedback interconnection
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U= -y Uy =y (2.182)

is equal to the negative gyrative interconnection between the flows u;, u and the
efforts y;, y». The closed-loop system is the port-Hamiltonian system

{xl] _ [Jl(x)_Rl(xl) —gl(xl)gg(xz)] Fﬁl(n)l
X

T [ 2(m)gT (1) hax2) — Rax) | | 52 (x2)

with state space 27 x 27 and Hamiltonian H; (x;) + H (x2).

2.5.2 Regularity of interconnections

In this subsection we study a particular property in the composition of Dirac struc-
tures, namely the property that the variables corresponding to the ports through
which the connection takes place (the infernal port variables) are uniquely deter-
mined by the values of the external port variables’. The concept of regularity can
thus be regarded as a kind of observability property (inferring the values of the in-
ternal variables from the values of the external port variables).

Definition 2.3. Given two Dirac structures 4 C %1 X F#|" X F» x F5 and Yp C
Ty X F5 x F3 x F5 . Their composition is said to be regular if the values of the port
variables in .%, x .%; are uniquely determined by the values of the port variables in
F1 X F| x F3x F5; that is, the following implication holds:

(fi.e1,fr.€2) € Da, (—fr,e2, f3,€3) € D

; 7 —fe=6 (2183
(fi,e1,,8) € Du, (—fr, 2, f3,€3) € Dp } = f=f,ea=8& (2.183)

The following proposition yields an explicit characterization for regularity in
terms of the matrix M defined in the previous theorem.

Proposition 2.2. The composition of two Dirac structures Y4 and 9 given in ma-
trix kernel representation by ([Fi | Faal, [E1 | E24)) and ([F3| Fal, [E3 | E2B)), respec-
tively, is a regular interconnection if and only if the (n) +2n, +n3) X 2n, matrix M

defined in (2.159) is of full rank (= 2n;).

Proof. Let (fi,e1,f3,e3) € D4 || ZB, and let (f2,e2) be such that (fi, e, f2,e2) €
D, (f3,€3,—f2,e2) € Zp. Then, by linearity, it is easy to prove that (f3, ¢}) satisfies

(f1>el7f2/7e/2) S @A and (f3ae37_f2/>e/2) € -@B if and Only if (f~2752) = (fZ_féan_
¢) satisfies

(0,0, /2,82) € Da
(Ovoa_fzaéZ) € @B

7 The concept of regularity of compositions of Dirac structures is related to the concept of regular
interconnection of linear dynamical systems in the behavioral framework [220]; see [45] for details.
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In matrix kernel representation, this means that

T T
[Fi |E1 | Foa | E24] [oofgéﬂ =0 [Foa | Ena| [fg ég] =0
T A T
[F3|E3|—F23\E23][00§éﬂ =0 [Fop| — Eap] [fg gﬂ =0
which is equivalent to
(7T &1 e KerM
Hence fz =0and &, =0 if and only if KerM = 0.

Example 2.19 (Example 2.17, continued). Consider again a port-Hamiltonian sys-
tem in kernel representation. For effort constraints e = 0 the matrix M is given as

e[y

which has full rank if and only if rank F = dim.#. Similarly, the interconnection
corresponding to flow constraints f = 0 is regular if and only if rank £ = dim.%.

Example 2.20. A typical case of the preceding example is an input-state-output port-
Hamiltonian system with output constraints. Indeed, consider an input-state-output
port-Hamiltonian system with Dirac structure &4 the graph of the skew-symmetric

map
—J —g
L’T 0 } (2.184)

Consider the composition of QA with the Dirac structure Zp corresponding to the
zero-output constraint y = g7 (T = 0. In kernel representation %, is given as

e LY A

while 3 is given by
.@B:{(u,y) | O~u+1~y:0} (2.186)

Hence the matrix M in this case is given by

g0
M= |01
01

which has full rank if and only if rank g = dimy. Hence, the composition is not reg-
ular if rank g < dimy, in which case the input variable u is not uniquely determined.
This type of irregularity is common in mechanical systems where dependent kine-
matic constraints lead to non-uniqueness of the constraint forces. A typical case is a
table with four legs standing on the ground.
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Fig. 2.8 Interconnection of
port-Hamiltonian systems

The standard feedback interconnection is an obvious example of a regular inter-
connection, since the interconnection variables (f>,e,) are uniquely determined as
being the outputs of one of the two interconnected systems.

2.5.3 Interconnection of port-Hamiltonian systems

The result derived in Section 2.5.1 concerning the compositionality of Dirac struc-
tures immediately leads to the result that any power-conserving interconnection of
port-Hamiltonian systems again defines a port-Hamiltonian system. This can be re-
garded as a fundamental building block in the theory of port-Hamiltonian systems.
The result not only means that the theory of port-Hamiltonian systems is a com-
pletely modular theory for modelling, but it also serves as a starting point for design
and control.

Consider k port-Hamiltonian systems (%;,.%;,%;,H;), i = 1,---,k, intercon-
nected by a Dirac structure & on .#| X --- X .F x ., with .# a linear space of
flow port variables, cf. Fig. 2.8. This can be seen to define a port-Hamiltonian sys-
tem (2°,.%,9,H), where 2" := 2| X -+ X 2}, H:=H| + -+ Hy, and where the
Dirac structure 2 on 2" x .7 is determined by 2, - , %, and ;. Indeed, consider
the product of the Dirac structures 7, , Zy on (27 X F1) X (Z2 X Fp) X -+ X
(Zk x F), and compose this with the Dirac structure Zj on () X --- X F) X F.
This yields a total Dirac structure 2 modulated by x = (x,---,x;) € 2" = 2] %
.-+ X 2} which is point-wise given as

9(-x17"'7xk)cnlf%X];tf%ix"'xnk%xz?z%cxﬁxy*
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Finally we mention that the theory of composition of Dirac structures and the inter-
connection of port-Hamiltonian systems can be also extended to infinite-dimensional
Dirac structures and port-Hamiltonian systems [107, 164].

2.6 Analysis of port-Hamiltonian systems

In this section, we will briefly discuss some of the structural properties of port-
Hamiltonian systems. More details, and their application for control, can be found
in Chapter 5. First, we will discuss the implications of the energy-balance that is un-
derlying the port-Hamiltonian structure. Next, we will discuss the existence of con-
served quantities, independent of the Hamiltonian, which may be analyzed on the
basis of the Dirac structure. Dually, we will briefly discuss the determination of alge-
braic constraints based on the Dirac structure. Finally, for linear port-Hamiltonian
systems without energy dissipation, some issues of realization theory will be ad-
dressed.

2.6.1 Passivity
A basic property of any port-Hamiltonian system is its energy balance, cf. (2.35)

1 = e+ ebfe+ el fr < et el (2.187)
where the inequality holds because the term e,Te fr 1s always less than or equal to
zero (by definition of the resistive elements). This implies that any port-Hamiltonian
system is passive with respect to the supply rate eg fc+ e,T f1 and storage function
H if H qualifies as a storage function, that is, if H is semi-positive definite, i.e.
H(x) > 0 for all x. In general, the converse is not true, that is, not every passive
system is a port-Hamiltonian system. This is illustrated by the following example.

Example 2.21. Consider the system
X2 —X2 1
_ 2
Y =Xx2

which is passive (in fact, loss-less) with respect to the storage function H(xy,x;) =
%x%x%. However, it is easy to see that there does nor exist a 2 x 2 matrix J(x) =

—JT(x), with entries depending smoothly on x, such that

)= ]
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However, for a linear input-state-output system

X=Ax+Bu

y=Cx+Du (2.188)

we will show that, under a natural extra condition, every passive system can be
written as a port-Hamiltonian system.

We consider linear port-Hamiltonian input-state-output systems with feed-through
term (see Sect. 2.2.4)

X(t) = (J—R)Ox(t)+ (G—P)u(t)

2.189
y(t) = (G+P)TQx(t) + (M+S)u(t) ( )

where J is a skew-symmetric n X n matrix and M is a skew-symmetric k X k matrix.
The Hamiltonian H (x) (the energy of the system) is given by the quadratic function
H(x) = %xTQx, where Q is a symmetric n X n matrix. Furthermore, R is an n X n
symmetric matrix, S is a symmetric k X k matrix, and G and P are n X k matrices,
satisfying the following condition:

R P
>
In particular, if P = 0, then this condition reduces to the condition that R > 0 and
S>0.

Theorem 2.3. The following properties hold:

1. If the system (2.188) is passive with quadratic storage function %xTQx satisfying
0 >0, and Ox = 0 implies Ax = 0 and Cx =0, then (2.188) can be rewritten into
the port-Hamiltonian form (2.189).

2. If Q > 0, then the port-Hamiltonian linear system (2.189) is passive.

Remark 2.9. Note that the condition (Qx = 0 = Ax = 0, Cx = 0) is automatically
satisfied if Q > 0.

Proof. Because of the condition (Qx = 0 = Ax = 0, Cx = 0), it follows from linear
algebra that there exists a matrix X such that

A B | 100
[—C —D} Z[OI} (2.191)
In fact, if Q > 0 then such a X is uniquely defined as
[ A0!' B
X:.= [—CQI —D] (2.192)

Now, passivity of the system (2.188) with quadratic storage function %xT Ox amounts
to the differential dissipation inequality
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xTQk—uTy <0 (2.193)

for all x,u. Substituting X = Ax + Bu and y = Cx + Du, and making use of (2.191),

this can be rewritten as
T 1|Q0|[Q0] |x
[xT uT] [0 1}2 [0 1] M <0 (2.194)
for all x,u, or equivalently

[g (;] (z+z7) [g ?] <0 (2.195)

It follows from basic linear algebra that we can choose X satisfying (2.191) in such
a way that

r+xT<o0 (2.196)

Hence, if we write £ = J — R, with J = —JT and R = RT, then R > 0. Now, denote
_ J G _ R P

J= [—GT _M} R= [PT S] (2.197)

withJ = —JT, M = —M", R=R" and S = ST. Then, (2.188) can be written as
X1 J G R P]) [Ox
S SR

x=(J—R)Qx+ (G—P)u
y=(G+P) Qx+(M+S)u,

which is a system with Hamiltonian dynamics (2.189).
Secondly, we show that port-Hamiltonian linear systems (2.189) are passive with

the Hamiltonian H (x) = %xTQx being a storage function. Along trajectories of the
port-Hamiltonian linear system we have (time arguments left out for brevity):

or equivalently

(2.199)

d T
$H(x)—x Ox

R P
e a[B[] e
<yTu
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2.6.2 Casimirs of port-Hamiltonian systems

Passivity is a key property for stability analysis since the Hamiltonian function H
may serve as a Lyapunov function. However, in some cases, the Hamiltonian H does
not have a minimum at the equilibrium x* under study, in which case H alone is not
itself a Lyapunov function. A well-known method in Hamiltonian systems, some-
times called the Energy-Casimir method, is to use in the Lyapunov analysis, next
to the Hamiltonian function, additional conserved quantities (dynamical invariants)
which may be present in the system. Indeed, if we may find conserved quantities,
then candidate Lyapunov functions can be sought within the class of combinations
of the Hamiltonian H and those conserved quantities.

Consider a port-Hamiltonian system without control and interaction ports, in
which case the energy balance (2.187) reduces to

dy— exfr <0 (2.201)
dr

Consider functions C : 2~ — R such that %C = 0 along the trajectories of the sys-
tem. Such a function C is called a conserved quantity. Suppose that we can find a
conserved quantity C : 2" — R such that V := H + C has a minimum at the equilib-
rium x*. Then we can still infer stability or asymptotic stability by replacing (2.187)
by

d
SV =ehfi<0 (2.202)

and thus using V as a Lyapunov function.

Functions that are conserved quantities of the system for every Hamiltonian are
called Casimir functions. It turns out that Casimirs are completely characterized by
the Dirac structure of the port-Hamiltonian system. Indeed, a function C: 2" — R is
a Casimir function of the autonomous port-Hamiltonian system (without resistive,

control and interaction port) £ = (2",H, %), if and only if the gradient vector e =
a'c

S satisfies
el fs =0, for all fs for which Jeg s.t. (fs,e5) € 2 (2.203)
Indeed, (2.203) is equivalent to

d oTc oTc
EC = W(X(I))X(I) = W(X(f))fs =elfs=0 (2.204)

for every port-Hamiltonian system (£, H, %) with the same Dirac structure . By

the power-conservation property of the Dirac structure, (2.203) is readily seen to be

. . T .
equivalent to the requirement that ¢ = aa—xc satisfies

(0,e) e 2

Indeed, let e satisfy (2.203). Then
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eTfs+es-0=0 (2.205)

for all (fs,es) € 9, implying that (0,¢) € 2+ = 2. Conversely, if (0,e) € 2 then
(2.205) holds for all (fs,es) € & implying (2.203).

Example 2.22. The well-known Casimir in the case of a spinning rigid body (Ex-
ample 2.3) is the total angular momentum p)zc =+ p§ + pg (whose vector of partial
derivatives is in the kernel of the matrix J(p) in (2.40). Similarly, in the LC-circuit
of Example 2.5 the total flux ¢; + ¢, for u = 0 is a Casimir.

Example 2.23. Consider a mechanical system with kinematic constraints (2.47) with
u=0. Then (0,¢) € Z if and only if

101 0 T _
O{_IO}6+L‘<‘])}/’L [0AT(g)]e=0
Partioning ¢ = [e, eIT,]T this means that e, = A(q)A, or equivalently, e, € ImA(q).

Since in general A(q) is depending on ¢ finding Casimirs now involves an addi-
tional integrability condition, see also Sect. 2.7. In fact, Casimirs correspond to

vectors e, € ImA(g) which additionally can be written as a vector of partial deriva-
aC

tives 5~ (g) for some function C(g) (the Casimir). In the case of Example 2.14 it can
be verified that this additional integrability condition is not satisfied, correspond-
ing to the fact that the kinematic constraints in this example are completely non-
holonomic. On the other hand, in Example 2.13, where the kinematic constraints
are holonomic, a Casimir is given by C(q1,92) = g1 — ¢2. In general it can be
shown [182] that there exist as many independent Casimirs as the rank of the ma-
trix A(g) if and only if the kinematic constraints are holonomic, in which case the
Casimirs are equal to the integrated kinematic constraints.

2.6.2.1 Casimirs in the presence of resistive elements

Similarly, we define a Casimir function for a port-Hamiltonian system with dissipa-
tion X = (2 ,H,%,2) to be any function C : 2~ — R satisfying

T
(O,e = ac,o,o) €D (2.206)
dx
Indeed, this will imply that
d aTc , otc T
ac = W(x(t))x(t) = W(X(I))fs =e fs=0 (2.207)

for every port-Hamiltonian system (2, H, %, Z) with the same Dirac structure .
In fact, every element (0,¢,0,0) € & satisfies

0=< (0,€,0,0),(fs,es, fr,er) >=e" fs
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for all (fs,es, fr,er) € Z, thus implying for e = g—g the previous equality (2.207).
At this point, one might suspect that the definition of Casimir function may be
relaxed by requiring that (2.206) only holds for a specific resistive relation

Rifr+Reer =0 (2.208)

As before, here the square matrices Ry and R, satisfy the symmetry and semi-
positive definiteness condition (see (2.25))

R(R; =R.R} >0 (2.209)
together with the rank condition
rank [Rf |Re] =dim fz (2.210)

We show that actually this is not a relaxation, if the required semi-definite positive-
ness of the resistive relation is strengthened to positive-definiteness

R¢R} =R.R} >0 (2.211)

In this case the condition for a function to be a Casimir for one resistive relation will
imply that it is a Casimir for all resistive relations.
Indeed, let C : 2~ — R be a function satisfying (2.206) for a specific resistive

port Z defined by matrices Ry and R, as above. This means that e = %—f(x) satisfies

el fs=0
for all fg for which there exist eg, fg and eg such that
(fs,es, frrer) € Rifr+R.er =0

This implies that (0,e) € (2 || Z)*.

At this point we note that the proof of the composition of two Dirac structures
(see Theorem 2.1) resulting in a new Dirac structure, immediately extends to the
composition of a Dirac structure and a resistive structure:

Proposition 2.3. Let & be a Dirac structure defined with respect to Fg x F§ x
Fr x Fg. Furthermore, let % be a resistive structure defined with respect to Fg X
Fp given by

Ryfr+Reegr =0 (2.212)

where the square matrices Ry and R, satisfy the symmetry and semi-positive defi-
niteness condition
RR! =R.R} >0 (2.213)

Define the composition 9 || Z of the Dirac structure and the resistive structure in
the same way as the composition of two Dirac structures. Then

2| #)-=2| (-%) (2.214)
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where —% denotes the pseudo-resistive structure® given by
Ryfr —Reer =0 (2.215)

Proof. We follow the same steps as in the above proof that the composition of two
Dirac structures is again a Dirac structure, where we take .7 = Fg, %, = F, and
F3 void. Because of the sign difference in the definition of a resistive structure as
compared with the definition of a Dirac structure, we immediately obtain the stated
proposition.

Hence (0,¢) € (2 || #)* = 2 || (—%), and thus there exist fg,ég such that

RffR —R.ég = 0 and satisfying (0, e, fr,ér) € 2. Therefore
0=e"-0+2epfr =xfr

By writing the pseudo-resistive structure —% in image representation fg = RI A and
ép = R}l, it follows that

ATRRIA =0
and, by the positive-definiteness condition R¢R; = R,R} > 0, this implies that 2 =0,
whence fg = ég = 0. Hence not only (0, e, fr,ér) € 2, but actually (0,e,0,0) € 2,
implying that e is the gradient of a Casimir function as defined before.

Of course, the above argument does not fully carry through if the resistive re-
lations are only semi-positive definite. In particular, this is the case if R fRZ =0
(implying zero energy dissipation), corresponding to the presence of ideal power-
conserving constraints. In fact, if R fRZ = (), then the resistive structure reduces to a
particular type of Dirac structure.

The fact that a Casimir for one resistive relation is actually a Casimir for all resis-
tive relations is closely related to the so-called dissipation obstacle for the existence
of Casimir functions in the case of input-state-output port-Hamiltonian systems,
cf. [160, 161, 180]. In fact, let us consider a Casimir C : 2~ — R for an input-state-
output port-Hamiltonian system without external (control and interaction) ports for
a specific resistive structure, that is

2 CW 00 R =0

Post-multiplication by %—f (x) immediately implies

oTc aC
S DU () ~R() 5= () =0

Then, by transposition, we obtain a second equation

8 _Z is called a pseudo-resistive structure since it corresponds to a negative instead of a positive
resistance.
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atc aC
&) (I R 5 (0) =0

Adding these two equations one derives

oTc oC
5 RS- (1) =0

which by positive semi-definiteness of R(x) implies

aTc
W(x)R(X) =0

(and then also a;—f(x)J (x) = 0). This so-called dissipation obstacle implies that
Casimirs are necessarily independent of those state space coordinates that are di-
rectly affected by physical damping. We conclude that the dissipation obstacle for
finding Casimirs directly generalizes to port-Hamiltonian systems defined with re-
spect to a general Dirac structure, and that it is equivalent to the observation that a
function that is a conserved quantity with respect to one positive definite resistive

relation is necessarily conserved for all resistive relations.

2.6.3 Algebraic constraints of port-Hamiltonian systems

Algebraic constraints on the state variables are primarily determined by the Dirac
structure, as well as by the Hamiltonian. Indeed, let us first consider a port-
Hamiltonian system without external and resistive ports, described by a Dirac struc-
ture & and a Hamiltonian H. Define for every x € 2 the subspace

Py(x) == {a €T 2 | 3X € T,2 such that (., X) € @(x)} (2.216)

This defines a co-distribution on the manifold .2". Then the definition of the port-
Hamiltonian system implies that

JH
or (x) € Py(x) (2.217)

In general, this imposes algebraic constraints on the state variables x € 2. In par-
ticular, if the Dirac structure is given in image representation as

D(x) = {(X,a) ETXXT'Z | X=E"(x)A, o = FT(x)),} (2.218)

then it follows that

(Z—Z(x) cImFT(x)
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In the case of external ports, these algebraic constraints on the state variables x may
also depend on the external port variables. A special case arises for resistive ports.
Consider a Dirac structure

{(X.a fier) € 2(0) C T2 < T} 2 % T x T}
with the resistive flow and effort variables satisfying a relation

R(fr,er) =0

Then the gradient of the Hamiltonian has to satisfy the condition

JH
TX(X) S {oceTx*%| HX,fR,eREn%XQRXyE

s.t. (X, 0, fryer) € D(x),R(fr,er) = 0}

Depending on the resistive relation R(fg,eg) = 0 this may again induce algebraic
constraints on the state variables x.

2.7 Integrability of modulated Dirac structures

A key issue in the case of modulated Dirac structures is that of integrability. Loosely
speaking, a Dirac structure is integrable if it is possible to find local coordinates for
the state space manifold such that, in these coordinates, the Dirac structure becomes
a constant Dirac structure, that is, it is nof modulated anymore by the state variables.

First let us consider modulated Dirac structures which are given for every x € 2~
as the graph of a skew-symmetric mapping J(x) from the co-tangent space T, 2" to
the tangent space 72" (see also the discussion at the end of Sect. 2.1.1). Integrabil-
ity in this case means that the structure matrix J satisfies the conditions

n aJ; i T
ZﬁﬂbﬁW*MW£WHMW%ﬂ@:0 (2.219)
=1

with i, j,k=1,...,n.In this case we may find, by Darboux’s theorem (see e.g. [217])
around any point xo where the rank of the matrix J(x) is constant, local coordinates
x = (g, p,r) in which 