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Preface

Preface

This is a book on linear algebra and matrix theory. While it is self contained, it will work
best for those who have already had some exposure to linear algebra. It is also assumed that
the reader has had calculus. Some optional topics require more analysis than this, however.

I think that the subject of linear algebra is likely the most significant topic discussed in
undergraduate mathematics courses. Part of the reason for this is its usefulness in unifying
so many different topics. Linear algebra is essential in analysis, applied math, and even in
theoretical mathematics. This is the point of view of this book, more than a presentation
of linear algebra for its own sake. This is why there are numerous applications, some fairly
unusual.

This book features an ugly, elementary, and complete treatment of determinants early
in the book. Thus it might be considered as Linear algebra done wrong. I have done this
because of the usefulness of determinants. However, all major topics are also presented in
an alternative manner which is independent of determinants.

The book has an introduction to various numerical methods used in linear algebra.
This is done because of the interesting nature of these methods. The presentation here
emphasizes the reasons why they work. It does not discuss many important numerical
considerations necessary to use the methods effectively. These considerations are found in
numerical analysis texts.

In the exercises, you may occasionally see ↑ at the beginning. This means you ought to
have a look at the exercise above it. Some exercises develop a topic sequentially. There are
also a few exercises which appear more than once in the book. I have done this deliberately
because I think that these illustrate exceptionally important topics and because some people
don’t read the whole book from start to finish but instead jump in to the middle somewhere.
There is one on a theorem of Sylvester which appears no fewer than 3 times. Then it is also
proved in the text. There are multiple proofs of the Cayley Hamilton theorem, some in the
exercises. Some exercises also are included for the sake of emphasizing something which has
been done in the preceding chapter.
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Preliminaries

Preliminaries

1.1 Sets And Set Notation

A set is just a collection of things called elements. For example {1, 2, 3, 8} would be a set
consisting of the elements 1,2,3, and 8. To indicate that 3 is an element of {1, 2, 3, 8} , it is
customary to write 3 ∈ {1, 2, 3, 8} . 9 /∈ {1, 2, 3, 8} means 9 is not an element of {1, 2, 3, 8} .
Sometimes a rule specifies a set. For example you could specify a set as all integers larger
than 2. This would be written as S = {x ∈ Z : x > 2} . This notation says: the set of all
integers, x, such that x > 2.

If A and B are sets with the property that every element of A is an element of B, then A is
a subset of B. For example, {1, 2, 3, 8} is a subset of {1, 2, 3, 4, 5, 8} , in symbols, {1, 2, 3, 8} ⊆
{1, 2, 3, 4, 5, 8} . It is sometimes said that “A is contained in B” or even “B contains A”.
The same statement about the two sets may also be written as {1, 2, 3, 4, 5, 8} ⊇ {1, 2, 3, 8}.

The union of two sets is the set consisting of everything which is an element of at least
one of the sets, A or B. As an example of the union of two sets {1, 2, 3, 8} ∪ {3, 4, 7, 8} =
{1, 2, 3, 4, 7, 8} because these numbers are those which are in at least one of the two sets. In
general

A ∪B ≡ {x : x ∈ A or x ∈ B} .

Be sure you understand that something which is in both A and B is in the union. It is not
an exclusive or.

The intersection of two sets, A and B consists of everything which is in both of the sets.
Thus {1, 2, 3, 8} ∩ {3, 4, 7, 8} = {3, 8} because 3 and 8 are those elements the two sets have
in common. In general,

A ∩B ≡ {x : x ∈ A and x ∈ B} .

The symbol [a, b] where a and b are real numbers, denotes the set of real numbers x,
such that a ≤ x ≤ b and [a, b) denotes the set of real numbers such that a ≤ x < b. (a, b)
consists of the set of real numbers x such that a < x < b and (a, b] indicates the set of
numbers x such that a < x ≤ b. [a,∞) means the set of all numbers x such that x ≥ a and
(−∞, a] means the set of all real numbers which are less than or equal to a. These sorts of
sets of real numbers are called intervals. The two points a and b are called endpoints of the
interval. Other intervals such as (−∞, b) are defined by analogy to what was just explained.
In general, the curved parenthesis indicates the end point it sits next to is not included
while the square parenthesis indicates this end point is included. The reason that there
will always be a curved parenthesis next to ∞ or −∞ is that these are not real numbers.
Therefore, they cannot be included in any set of real numbers.

A special set which needs to be given a name is the empty set also called the null set,
denoted by ∅. Thus ∅ is defined as the set which has no elements in it. Mathematicians like
to say the empty set is a subset of every set. The reason they say this is that if it were not

http://bookboon.com/
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Preliminaries

so, there would have to exist a set A, such that ∅ has something in it which is not in A.
However, ∅ has nothing in it and so the least intellectual discomfort is achieved by saying

∅ ⊆ A.
If A and B are two sets, A \ B denotes the set of things which are in A but not in B.

Thus
A \B ≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. Given x ∈ D, f (x) is the name of the thing in R which results from doing
f to x. Then D is called the domain of f. In order to specify that D pertains to f , the

so, there would have to exist a set A, such that ∅ has something in it which is not in A.
However, ∅ has nothing in it and so the least intellectual discomfort is achieved by saying

∅ ⊆ A.
If A and B are two sets, A \ B denotes the set of things which are in A but not in B.

Thus
A \B ≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. Given x ∈ D, f (x) is the name of the thing in R which results from doing
f to x. Then D is called the domain of f. In order to specify that D pertains to f , the
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Preliminaries

notation D (f) may be used. The set R is sometimes called the range of f. These days it
is referred to as the codomain. The set of all elements of R which are of the form f (x)
for some x ∈ D is therefore, a subset of R. This is sometimes referred to as the image of
f . When this set equals R, the function f is said to be onto, also surjective. If whenever
x ̸= y it follows f (x) ̸= f (y), the function is called one to one. , also injective It is
common notation to write f : D �→ R to denote the situation just described in this definition
where f is a function defined on a domain D which has values in a codomain R. Sometimes

you may also see something like D
f�→ R to denote the same thing.

1.3 The Number Line And Algebra Of The Real Num-
bers

Next, consider the real numbers, denoted by R, as a line extending infinitely far in both
directions. In this book, the notation, ≡ indicates something is being defined. Thus the
integers are defined as

Z ≡{· · · − 1, 0, 1, · · · } ,

the natural numbers,
N ≡ {1, 2, · · · }

and the rational numbers, defined as the numbers which are the quotient of two integers.

Q ≡
{m

n
such that m,n ∈ Z, n ̸= 0

}

are each subsets of R as indicated in the following picture.

0

1/2

1 2 3 4−1−2−3−4
��

As shown in the picture, 1
2 is half way between the number 0 and the number, 1. By

analogy, you can see where to place all the other rational numbers. It is assumed that R has
the following algebra properties, listed here as a collection of assertions called axioms. These
properties will not be proved which is why they are called axioms rather than theorems. In
general, axioms are statements which are regarded as true. Often these are things which
are “self evident” either from experience or from some sort of intuition but this does not
have to be the case.

Axiom 1.3.1 x+ y = y + x, (commutative law for addition)

Axiom 1.3.2 x+ 0 = x, (additive identity).

Axiom 1.3.3 For each x ∈ R, there exists −x ∈ R such that x + (−x) = 0, (existence of
additive inverse).

Axiom 1.3.4 (x+ y) + z = x+ (y + z) , (associative law for addition).

Axiom 1.3.5 xy = yx, (commutative law for multiplication).

Axiom 1.3.6 (xy) z = x (yz) , (associative law for multiplication).

http://bookboon.com/
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Axiom 1.3.7 1x = x, (multiplicative identity).

Axiom 1.3.8 For each x ̸= 0, there exists x−1 such that xx−1 = 1.(existence of multiplica-
tive inverse).

Axiom 1.3.9 x (y + z) = xy + xz.(distributive law).

These axioms are known as the field axioms and any set (there are many others besides
R) which has two such operations satisfying the above axioms is called a field. Division and
subtraction are defined in the usual way by x− y ≡ x+ (−y) and x/y ≡ x

(
y−1

)
.

Here is a little proposition which derives some familiar facts.

Proposition 1.3.10 0 and 1 are unique. Also −x is unique and x−1 is unique. Further-
more, 0x = x0 = 0 and −x = (−1)x.

Proof: Suppose 0′ is another additive identity. Then

0′ = 0′ + 0 = 0.

Thus 0 is unique. Say 1′ is another multiplicative identity. Then

1 = 1′1 = 1′.

Now suppose y acts like the additive inverse of x. Then

−x = (−x) + 0 = (−x) + (x+ y) = (−x+ x) + y = y

Finally,
0x = (0 + 0)x = 0x+ 0x

and so
0 = − (0x) + 0x = − (0x) + (0x+ 0x) = (− (0x) + 0x) + 0x = 0x

Finally
x+ (−1)x = (1 + (−1))x = 0x = 0

and so by uniqueness of the additive inverse, (−1)x = −x. �

1.4 Ordered fields

The real numbers R are an example of an ordered field. More generally, here is a definition.

Definition 1.4.1 Let F be a field. It is an ordered field if there exists an order, < which
satisfies

1. For any x ̸= y, either x < y or y < x.

2. If x < y and either z < w or z = w, then, x+ z < y + w.

3. If 0 < x, 0 < y, then xy > 0.

With this definition, the familiar properties of order can be proved. The following
proposition lists many of these familiar properties. The relation ‘a > b’ has the same
meaning as ‘b < a’.

Proposition 1.4.2 The following are obtained.

http://bookboon.com/
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1. If x < y and y < z, then x < z.

2. If x > 0 and y > 0, then x+ y > 0.

3. If x > 0, then −x < 0.

4. If x ̸= 0, either x or −x is > 0.

5. If x < y, then −x > −y.

6. If x ̸= 0, then x2 > 0.

7. If 0 < x < y then x−1 > y−1.

Proof: First consider 1, called the transitive law. Suppose that x < y and y < z. Then
from the axioms, x+ y < y + z and so, adding −y to both sides, it follows

x < z

Next consider 2. Suppose x > 0 and y > 0. Then from 2,

0 = 0 + 0 < x+ y.

Next consider 3. It is assumed x > 0 so

0 = −x+ x > 0 + (−x) = −x

Now consider 4. If x < 0, then

0 = x+ (−x) < 0 + (−x) = −x.
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Consider the 5. Since x < y, it follows from 2

0 = x+ (−x) < y + (−x)

and so by 4 and Proposition 1.3.10,

(−1) (y + (−x)) < 0

Also from Proposition 1.3.10 (−1) (−x) = − (−x) = x and so

−y + x < 0.

Hence
−y < −x.

Consider 6. If x > 0, there is nothing to show. It follows from the definition. If x < 0,
then by 4, −x > 0 and so by Proposition 1.3.10 and the definition of the order,

(−x)2 = (−1) (−1)x2 > 0

http://bookboon.com/
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By this proposition again, (−1) (−1) = − (−1) = 1 and so x2 > 0 as claimed. Note that
1 > 0 because it equals 12.

Finally, consider 7. First, if x > 0 then if x−1 < 0, it would follow (−1)x−1 > 0 and so
x (−1)x−1 = (−1) 1 = −1 > 0. However, this would require

0 > 1 = 12 > 0

from what was just shown. Therefore, x−1 > 0. Now the assumption implies y+(−1)x > 0
and so multiplying by x−1,

yx−1 + (−1)xx−1 = yx−1 + (−1) > 0

Now multiply by y−1, which by the above satisfies y−1 > 0, to obtain

x−1 + (−1) y−1 > 0

and so
x−1 > y−1. �

In an ordered field the symbols ≤ and ≥ have the usual meanings. Thus a ≤ b means
a < b or else a = b, etc.

1.5 The Complex Numbers

Just as a real number should be considered as a point on the line, a complex number is
considered a point in the plane which can be identified in the usual way using the Cartesian
coordinates of the point. Thus (a, b) identifies a point whose x coordinate is a and whose
y coordinate is b. In dealing with complex numbers, such a point is written as a + ib and
multiplication and addition are defined in the most obvious way subject to the convention
that i2 = −1. Thus,

(a+ ib) + (c+ id) = (a+ c) + i (b+ d)

and

(a+ ib) (c+ id) = ac+ iad+ ibc+ i2bd

= (ac− bd) + i (bc+ ad) .

Every non zero complex number, a+ib, with a2+b2 ̸= 0, has a unique multiplicative inverse.

1

a+ ib
=

a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

You should prove the following theorem.

Theorem 1.5.1 The complex numbers with multiplication and addition defined as above
form a field satisfying all the field axioms listed on Page 13.

Note that if x+ iy is a complex number, it can be written as

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

http://bookboon.com/
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Now

(
x√

x2+y2
, y√

x2+y2

)
is a point on the unit circle and so there exists a unique θ ∈ [0, 2π)

such that this ordered pair equals (cos θ, sin θ) . Letting r =
√

x2 + y2, it follows that the
complex number can be written in the form

x+ iy = r (cos θ + i sin θ)

This is called the polar form of the complex number.
The field of complex numbers is denoted as C. An important construction regarding

complex numbers is the complex conjugate denoted by a horizontal line above the number.
It is defined as follows.

a+ ib ≡ a− ib.

What it does is reflect a given complex number across the x axis. Algebraically, the following
formula is easy to obtain. (

a+ ib
)
(a+ ib) = a2 + b2.

Definition 1.5.2 Define the absolute value of a complex number as follows.

|a+ ib| ≡
√
a2 + b2.

Thus, denoting by z the complex number, z = a+ ib,

|z| = (zz)
1/2

.

With this definition, it is important to note the following. Be sure to verify this. It is
not too hard but you need to do it.

Remark 1.5.3 : Let z = a+ ib and w = c+ id. Then |z − w| =
√

(a− c)
2
+ (b− d)

2
. Thus

the distance between the point in the plane determined by the ordered pair, (a, b) and the
ordered pair (c, d) equals |z − w| where z and w are as just described.

For example, consider the distance between (2, 5) and (1, 8) . From the distance formula

this distance equals

√
(2− 1)

2
+ (5− 8)

2
=

√
10. On the other hand, letting z = 2+ i5 and

w = 1+ i8, z−w = 1− i3 and so (z − w) (z − w) = (1− i3) (1 + i3) = 10 so |z − w| =
√
10,

the same thing obtained with the distance formula.
Complex numbers, are often written in the so called polar form which is described next.

Suppose x+ iy is a complex number. Then

x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)
.

Now note that (
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

= 1

and so (
x√

x2 + y2
,

y√
x2 + y2

)

is a point on the unit circle. Therefore, there exists a unique angle, θ ∈ [0, 2π) such that

cos θ =
x√

x2 + y2
, sin θ =

y√
x2 + y2

.
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The polar form of the complex number is then

r (cos θ + i sin θ)

where θ is this angle just described and r =
√
x2 + y2.

A fundamental identity is the formula of De Moivre which follows.

Theorem 1.5.4 Let r > 0 be given. Then if n is a positive integer,

[r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) .

Proof: It is clear the formula holds if n = 1. Suppose it is true for n.

[r (cos t+ i sin t)]
n+1

= [r (cos t+ i sin t)]
n
[r (cos t+ i sin t)]

which by induction equals

= rn+1 (cosnt+ i sinnt) (cos t+ i sin t)

= rn+1 ((cosnt cos t− sinnt sin t) + i (sinnt cos t+ cosnt sin t))

= rn+1 (cos (n+ 1) t+ i sin (n+ 1) t)

by the formulas for the cosine and sine of the sum of two angles. �

Corollary 1.5.5 Let z be a non zero complex number. Then there are always exactly k kth

roots of z in C.

Proof: Let z = x + iy and let z = |z| (cos t+ i sin t) be the polar form of the complex
number. By De Moivre’s theorem, a complex number,

r (cosα+ i sinα) ,

is a kth root of z if and only if

rk (cos kα+ i sin kα) = |z| (cos t+ i sin t) .

This requires rk = |z| and so r = |z|1/k and also both cos (kα) = cos t and sin (kα) = sin t.
This can only happen if

kα = t+ 2lπ

for l an integer. Thus

α =
t+ 2lπ

k
, l ∈ Z

and so the kth roots of z are of the form

|z|1/k
(
cos

(
t+ 2lπ

k

)
+ i sin

(
t+ 2lπ

k

))
, l ∈ Z.
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Since the cosine and sine are periodic of period 2π, there are exactly k distinct numbers

which result from this formula. �

Example 1.5.6 Find the three cube roots of i.

First note that i = 1
(
cos

(
π
2

)
+ i sin

(
π
2

))
. Using the formula in the proof of the above

corollary, the cube roots of i are

1

(
cos

(
(π/2) + 2lπ

3

)
+ i sin

(
(π/2) + 2lπ

3

))

where l = 0, 1, 2. Therefore, the roots are

cos
(π
6

)
+ i sin

(π
6

)
, cos

(
5

6
π

)
+ i sin

(
5

6
π

)
,

and

cos

(
3

2
π

)
+ i sin

(
3

2
π

)
.

so, there would have to exist a set A, such that ∅ has something in it which is not in A.
However, ∅ has nothing in it and so the least intellectual discomfort is achieved by saying

∅ ⊆ A.
If A and B are two sets, A \ B denotes the set of things which are in A but not in B.

Thus
A \B ≡ {x ∈ A : x /∈ B} .

Set notation is used whenever convenient.

1.2 Functions

The concept of a function is that of something which gives a unique output for a given input.

Definition 1.2.1 Consider two sets, D and R along with a rule which assigns a unique
element of R to every element of D. This rule is called a function and it is denoted by a
letter such as f. Given x ∈ D, f (x) is the name of the thing in R which results from doing
f to x. Then D is called the domain of f. In order to specify that D pertains to f , the
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Thus the cube roots of i are
√
3
2 + i

(
1
2

)
, −

√
3

2 + i
(
1
2

)
, and −i.

The ability to find kth roots can also be used to factor some polynomials.

Example 1.5.7 Factor the polynomial x3 − 27.

First find the cube roots of 27. By the above procedure using De Moivre’s theorem,

these cube roots are 3, 3
(

−1
2 + i

√
3
2

)
, and 3

(
−1
2 − i

√
3
2

)
. Therefore, x3 + 27 =

(x− 3)

(
x− 3

(
−1

2
+ i

√
3

2

))(
x− 3

(
−1

2
− i

√
3

2

))
.

Note also
(
x− 3

(
−1
2 + i

√
3
2

))(
x− 3

(
−1
2 − i

√
3
2

))
= x2 + 3x+ 9 and so

x3 − 27 = (x− 3)
(
x2 + 3x+ 9

)

where the quadratic polynomial, x2 + 3x + 9 cannot be factored without using complex
numbers.

The real and complex numbers both are fields satisfying the axioms on Page 13 and it is
usually one of these two fields which is used in linear algebra. The numbers are often called
scalars. However, it turns out that all algebraic notions work for any field and there are
many others. For this reason, I will often refer to the field of scalars as F although F will
usually be either the real or complex numbers. If there is any doubt, assume it is the field
of complex numbers which is meant. The reason the complex numbers are so significant in
linear algebra is that they are algebraically complete. This means that every polynomial∑n

k=0 akz
k, n ≥ 1, an ̸= 0, having coefficients ak in C has a root in in C.

Later in the book, proofs of the fundamental theorem of algebra are given. However, here
is a simple explanation of why you should believe this theorem. The issue is whether there
exists z ∈ C such that p (z) = 0 for p (z) a polynomial having coefficients in C. Dividing by
the leading coefficient, we can assume that p (z) is of the form

p (z) = zn + an−1z
n−1 + · · ·+ a1z + a0, a0 ̸= 0.

If a0 = 0, there is nothing to prove. Denote by Cr the circle of radius r in the complex plane
which is centered at 0. Then if r is sufficiently large and |z| = r, the term zn is far larger
than the rest of the polynomial. Thus, for r large enough, Ar = {p (z) : z ∈ Cr} describes
a closed curve which misses the inside of some circle having 0 as its center. Now shrink r.
Eventually, for r small enough, the non constant terms are negligible and so Ar is a curve
which is contained in some circle centered at a0 which has 0 in its outside.

0
Ar r large

a0

Ar

r small

Thus it is reasonable to believe that for some r during this shrinking process, the set
Ar must hit 0. It follows that p (z) = 0 for some z. This is one of those arguments which
seems all right until you think about it too much. Nevertheless, it will suffice to see that
the fundamental theorem of algebra is at least very plausible. A complete proof is in an
appendix.
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1.6 Exercises

1. Let z = 5 + i9. Find z−1.

2. Let z = 2 + i7 and let w = 3− i8. Find zw, z + w, z2, and w/z.

3. Give the complete solution to x4 + 16 = 0.

4. Graph the complex cube roots of 8 in the complex plane. Do the same for the four
fourth roots of 16.

5. If z is a complex number, show there exists ω a complex number with |ω| = 1 and
ωz = |z| .

6. De Moivre’s theorem says [r (cos t+ i sin t)]
n
= rn (cosnt+ i sinnt) for n a positive

integer. Does this formula continue to hold for all integers, n, even negative integers?
Explain.

7. You already know formulas for cos (x+ y) and sin (x+ y) and these were used to prove
De Moivre’s theorem. Now using De Moivre’s theorem, derive a formula for sin (5x)
and one for cos (5x). Hint: Use the binomial theorem.

8. If z and w are two complex numbers and the polar form of z involves the angle θ while
the polar form of w involves the angle ϕ, show that in the polar form for zw the angle
involved is θ + ϕ. Also, show that in the polar form of a complex number, z, r = |z| .

9. Factor x3 + 8 as a product of linear factors.

10. Write x3 + 27 in the form (x+ 3)
(
x2 + ax+ b

)
where x2 + ax+ b cannot be factored

any more using only real numbers.

11. Completely factor x4 + 16 as a product of linear factors.

12. Factor x4 + 16 as the product of two quadratic polynomials each of which cannot be
factored further without using complex numbers.

13. If z, w are complex numbers prove zw = zw and then show by induction that z1 · · · zm =
z1 · · · zm. Also verify that

∑m
k=1 zk =

∑m
k=1 zk. In words this says the conjugate of a

product equals the product of the conjugates and the conjugate of a sum equals the
sum of the conjugates.

14. Suppose p (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 where all the ak are real numbers.
Suppose also that p (z) = 0 for some z ∈ C. Show it follows that p (z) = 0 also.

15. I claim that 1 = −1. Here is why.

−1 = i2 =
√
−1

√
−1 =

√
(−1)

2
=

√
1 = 1.

This is clearly a remarkable result but is there something wrong with it? If so, what
is wrong?

16. De Moivre’s theorem is really a grand thing. I plan to use it now for rational exponents,
not just integers.

1 = 1(1/4) = (cos 2π + i sin 2π)
1/4

= cos (π/2) + i sin (π/2) = i.

Therefore, squaring both sides it follows 1 = −1 as in the previous problem. What
does this tell you about De Moivre’s theorem? Is there a profound difference between
raising numbers to integer powers and raising numbers to non integer powers?

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Linear Algebra I Matrices and Row operations

23 

Preliminaries

17. Show that C cannot be considered an ordered field. Hint: Consider i2 = −1. Recall
that 1 > 0 by Proposition 1.4.2.

18. Say a + ib < x + iy if a < x or if a = x, then b < y. This is called the lexicographic
order. Show that any two different complex numbers can be compared with this order.
What goes wrong in terms of the other requirements for an ordered field.

19. With the order of Problem 18, consider for n ∈ N the complex number 1 − 1
n . Show

that with the lexicographic order just described, each of 1− in is an upper bound to
all these numbers. Therefore, this is a set which is “bounded above” but has no least
upper bound with respect to the lexicographic order on C.

1.7 Completeness of R
Recall the following important definition from calculus, completeness of R.

Definition 1.7.1 A non empty set, S ⊆ R is bounded above (below) if there exists x ∈ R
such that x ≥ (≤) s for all s ∈ S. If S is a nonempty set in R which is bounded above,
then a number, l which has the property that l is an upper bound and that every other upper
bound is no smaller than l is called a least upper bound, l.u.b. (S) or often sup (S) . If S is a
nonempty set bounded below, define the greatest lower bound, g.l.b. (S) or inf (S) similarly.
Thus g is the g.l.b. (S) means g is a lower bound for S and it is the largest of all lower
bounds. If S is a nonempty subset of R which is not bounded above, this information is
expressed by saying sup (S) = +∞ and if S is not bounded below, inf (S) = −∞.

Every existence theorem in calculus depends on some form of the completeness axiom.

Axiom 1.7.2 (completeness) Every nonempty set of real numbers which is bounded above
has a least upper bound and every nonempty set of real numbers which is bounded below has
a greatest lower bound.
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It is this axiom which distinguishes Calculus from Algebra. A fundamental result about
sup and inf is the following.

Proposition 1.7.3 Let S be a nonempty set and suppose sup (S) exists. Then for every
δ > 0,

S ∩ (sup (S)− δ, sup (S)] ̸= ∅.

If inf (S) exists, then for every δ > 0,

S ∩ [inf (S) , inf (S) + δ) ̸= ∅.

Proof: Consider the first claim. If the indicated set equals ∅, then sup (S) − δ is an
upper bound for S which is smaller than sup (S) , contrary to the definition of sup (S) as
the least upper bound. In the second claim, if the indicated set equals ∅, then inf (S) + δ
would be a lower bound which is larger than inf (S) contrary to the definition of inf (S). �
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1.8 Well Ordering And Archimedean Property

Definition 1.8.1 A set is well ordered if every nonempty subset S, contains a smallest
element z having the property that z ≤ x for all x ∈ S.

Axiom 1.8.2 Any set of integers larger than a given number is well ordered.

In particular, the natural numbers defined as

N ≡{1, 2, · · · }

is well ordered.
The above axiom implies the principle of mathematical induction.

Theorem 1.8.3 (Mathematical induction) A set S ⊆ Z, having the property that a ∈ S
and n+ 1 ∈ S whenever n ∈ S contains all integers x ∈ Z such that x ≥ a.

Proof: Let T ≡ ([a,∞) ∩ Z) \ S. Thus T consists of all integers larger than or equal
to a which are not in S. The theorem will be proved if T = ∅. If T ̸= ∅ then by the well
ordering principle, there would have to exist a smallest element of T, denoted as b. It must
be the case that b > a since by definition, a /∈ T. Then the integer, b− 1 ≥ a and b− 1 /∈ S
because if b − 1 ∈ S, then b − 1 + 1 = b ∈ S by the assumed property of S. Therefore,
b− 1 ∈ ([a,∞) ∩ Z) \ S = T which contradicts the choice of b as the smallest element of T.
(b− 1 is smaller.) Since a contradiction is obtained by assuming T ̸= ∅, it must be the case
that T = ∅ and this says that everything in [a,∞) ∩ Z is also in S. �

Example 1.8.4 Show that for all n ∈ N, 1
2 · 3

4 · · ·
2n−1
2n < 1√

2n+1
.

If n = 1 this reduces to the statement that 1
2 < 1√

3
which is obviously true. Suppose

then that the inequality holds for n. Then

1

2
· 3
4
· · · 2n− 1

2n
· 2n+ 1

2n+ 2
<

1√
2n+ 1

2n+ 1

2n+ 2

=

√
2n+ 1

2n+ 2
.

The theorem will be proved if this last expression is less than 1√
2n+3

. This happens if and

only if (
1√

2n+ 3

)2

=
1

2n+ 3
>

2n+ 1

(2n+ 2)
2

which occurs if and only if (2n+ 2)
2
> (2n+ 3) (2n+ 1) and this is clearly true which may

be seen from expanding both sides. This proves the inequality.

Definition 1.8.5 The Archimedean property states that whenever x ∈ R, and a > 0, there
exists n ∈ N such that na > x.

Proposition 1.8.6 R has the Archimedean property.

Proof: Suppose it is not true. Then there exists x ∈ R and a > 0 such that na ≤ x
for all n ∈ N. Let S = {na : n ∈ N} . By assumption, this is bounded above by x. By
completeness, it has a least upper bound y. By Proposition 1.7.3 there exists n ∈ N such
that

y − a < na ≤ y.

Then y = y − a+ a < na+ a = (n+ 1) a ≤ y, a contradiction. �
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Theorem 1.8.7 Suppose x < y and y − x > 1. Then there exists an integer l ∈ Z, such
that x < l < y. If x is an integer, there is no integer y satisfying x < y < x+ 1.

Proof: Let x be the smallest positive integer. Not surprisingly, x = 1 but this can be
proved. If x < 1 then x2 < x contradicting the assertion that x is the smallest natural
number. Therefore, 1 is the smallest natural number. This shows there is no integer, y,
satisfying x < y < x+ 1 since otherwise, you could subtract x and conclude 0 < y − x < 1
for some integer y − x.

Now suppose y − x > 1 and let

S ≡ {w ∈ N : w ≥ y} .

The set S is nonempty by the Archimedean property. Let k be the smallest element of S.
Therefore, k − 1 < y. Either k − 1 ≤ x or k − 1 > x. If k − 1 ≤ x, then

y − x ≤ y − (k − 1) =

≤0︷ ︸︸ ︷
y − k + 1 ≤ 1

contrary to the assumption that y − x > 1. Therefore, x < k − 1 < y. Let l = k − 1. �
It is the next theorem which gives the density of the rational numbers. This means that

for any real number, there exists a rational number arbitrarily close to it.

Theorem 1.8.8 If x < y then there exists a rational number r such that x < r < y.

Proof: Let n ∈ N be large enough that

n (y − x) > 1.

Thus (y − x) added to itself n times is larger than 1. Therefore,

n (y − x) = ny + n (−x) = ny − nx > 1.

It follows from Theorem 1.8.7 there exists m ∈ Z such that

nx < m < ny

and so take r = m/n. �

Definition 1.8.9 A set S ⊆ R is dense in R if whenever a < b, S ∩ (a, b) ̸= ∅.

Thus the above theorem says Q is “dense” in R.

Theorem 1.8.10 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and
real number r such that 0 ≤ r < a and b = pa+ r.

Proof: Let S ≡ {n ∈ N : an > b} . By the Archimedean property this set is nonempty.
Let p + 1 be the smallest element of S. Then pa ≤ b because p + 1 is the smallest in S.
Therefore,

r ≡ b− pa ≥ 0.

If r ≥ a then b − pa ≥ a and so b ≥ (p+ 1) a contradicting p + 1 ∈ S. Therefore, r < a as
desired.

To verify uniqueness of p and r, suppose pi and ri, i = 1, 2, both work and r2 > r1. Then
a little algebra shows

p1 − p2 =
r2 − r1

a
∈ (0, 1) .

Thus p1 − p2 is an integer between 0 and 1, contradicting Theorem 1.8.7. The case that
r1 > r2 cannot occur either by similar reasoning. Thus r1 = r2 and it follows that p1 = p2.
�

This theorem is called the Euclidean algorithm when a and b are integers.
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1.9 Division And Numbers

First recall Theorem 1.8.10, the Euclidean algorithm.

Theorem 1.9.1 Suppose 0 < a and let b ≥ 0. Then there exists a unique integer p and real
number r such that 0 ≤ r < a and b = pa+ r.

The following definition describes what is meant by a prime number and also what is
meant by the word “divides”.

Definition 1.9.2 The number, a divides the number, b if in Theorem 1.8.10, r = 0. That
is there is zero remainder. The notation for this is a|b, read a divides b and a is called a
factor of b. A prime number is one which has the property that the only numbers which
divide it are itself and 1. The greatest common divisor of two positive integers, m,n is that
number, p which has the property that p divides both m and n and also if q divides both m
and n, then q divides p. Two integers are relatively prime if their greatest common divisor
is one. The greatest common divisor of m and n is denoted as (m,n) .

There is a phenomenal and amazing theorem which relates the greatest common divisor
to the smallest number in a certain set. Suppose m,n are two positive integers. Then if x, y
are integers, so is xm+ yn. Consider all integers which are of this form. Some are positive
such as 1m + 1n and some are not. The set S in the following theorem consists of exactly
those integers of this form which are positive. Then the greatest common divisor of m and
n will be the smallest number in S. This is what the following theorem says.

Theorem 1.9.3 Let m,n be two positive integers and define

S ≡ {xm+ yn ∈ N : x, y ∈ Z } .

Then the smallest number in S is the greatest common divisor, denoted by (m,n) .
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Proof: First note that both m and n are in S so it is a nonempty set of positive integers.
By well ordering, there is a smallest element of S, called p = x0m+ y0n. Either p divides m
or it does not. If p does not divide m, then by Theorem 1.8.10,

m = pq + r

where 0 < r < p. Thus m = (x0m+ y0n) q + r and so, solving for r,

r = m (1− x0) + (−y0q)n ∈ S.

However, this is a contradiction because p was the smallest element of S. Thus p|m. Similarly
p|n.

Now suppose q divides both m and n. Then m = qx and n = qy for integers, x and y.
Therefore,

p = mx0 + ny0 = x0qx+ y0qy = q (x0x+ y0y)

showing q|p. Therefore, p = (m,n) . �
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There is a relatively simple algorithm for finding (m,n) which will be discussed now.
Suppose 0 < m < n where m,n are integers. Also suppose the greatest common divisor is
(m,n) = d. Then by the Euclidean algorithm, there exist integers q, r such that

n = qm+ r, r < m (1.1)

Now d divides n and m so there are numbers k, l such that dk = m, dl = n. From the above
equation,

r = n− qm = dl − qdk = d (l − qk)

Thus d divides both m and r. If k divides both m and r, then from the equation of 1.1 it
follows k also divides n. Therefore, k divides d by the definition of the greatest common
divisor. Thus d is the greatest common divisor of m and r but m+ r < m+ n. This yields
another pair of positive integers for which d is still the greatest common divisor but the
sum of these integers is strictly smaller than the sum of the first two. Now you can do the
same thing to these integers. Eventually the process must end because the sum gets strictly
smaller each time it is done. It ends when there are not two positive integers produced.
That is, one is a multiple of the other. At this point, the greatest common divisor is the
smaller of the two numbers.

Procedure 1.9.4 To find the greatest common divisor of m,n where 0 < m < n, replace
the pair {m,n} with {m, r} where n = qm + r for r < m. This new pair of numbers has
the same greatest common divisor. Do the process to this pair and continue doing this till
you obtain a pair of numbers where one is a multiple of the other. Then the smaller is the
sought for greatest common divisor.

Example 1.9.5 Find the greatest common divisor of 165 and 385.

Use the Euclidean algorithm to write

385 = 2 (165) + 55

Thus the next two numbers are 55 and 165. Then

165 = 3× 55

and so the greatest common divisor of the first two numbers is 55.

Example 1.9.6 Find the greatest common divisor of 1237 and 4322.

Use the Euclidean algorithm

4322 = 3 (1237) + 611

Now the two new numbers are 1237,611. Then

1237 = 2 (611) + 15

The two new numbers are 15,611. Then

611 = 40 (15) + 11

The two new numbers are 15,11. Then

15 = 1 (11) + 4
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The two new numbers are 11,4
2 (4) + 3

The two new numbers are 4, 3. Then

4 = 1 (3) + 1

The two new numbers are 3, 1. Then

3 = 3× 1

and so 1 is the greatest common divisor. Of course you could see this right away when the
two new numbers were 15 and 11. Recall the process delivers numbers which have the same
greatest common divisor.

This amazing theorem will now be used to prove a fundamental property of prime num-
bers which leads to the fundamental theorem of arithmetic, the major theorem which says
every integer can be factored as a product of primes.

Theorem 1.9.7 If p is a prime and p|ab then either p|a or p|b.

Proof: Suppose p does not divide a. Then since p is prime, the only factors of p are 1
and p so follows (p, a) = 1 and therefore, there exists integers, x and y such that

1 = ax+ yp.

Multiplying this equation by b yields

b = abx+ ybp.

Since p|ab, ab = pz for some integer z. Therefore,

b = abx+ ybp = pzx+ ybp = p (xz + yb)

and this shows p divides b. �

Theorem 1.9.8 (Fundamental theorem of arithmetic) Let a ∈ N\ {1}. Then a =
∏n

i=1 pi
where pi are all prime numbers. Furthermore, this prime factorization is unique except for
the order of the factors.

Proof: If a equals a prime number, the prime factorization clearly exists. In particular
the prime factorization exists for the prime number 2. Assume this theorem is true for all
a ≤ n− 1. If n is a prime, then it has a prime factorization. On the other hand, if n is not
a prime, then there exist two integers k and m such that n = km where each of k and m
are less than n. Therefore, each of these is no larger than n− 1 and consequently, each has
a prime factorization. Thus so does n. It remains to argue the prime factorization is unique
except for order of the factors.

Suppose
n∏

i=1

pi =
m∏
j=1

qj

where the pi and qj are all prime, there is no way to reorder the qk such that m = n and
pi = qi for all i, and n + m is the smallest positive integer such that this happens. Then
by Theorem 1.9.7, p1|qj for some j. Since these are prime numbers this requires p1 = qj .
Reordering if necessary it can be assumed that qj = q1. Then dividing both sides by p1 = q1,

n−1∏
i=1

pi+1 =
m−1∏
j=1

qj+1.
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Since n+m was as small as possible for the theorem to fail, it follows that n− 1 = m− 1
and the prime numbers, q2, · · · , qm can be reordered in such a way that pk = qk for all
k = 2, · · · , n. Hence pi = qi for all i because it was already argued that p1 = q1, and this
results in a contradiction. �

1.10 Systems Of Equations

Sometimes it is necessary to solve systems of equations. For example the problem could be
to find x and y such that

x+ y = 7 and 2x− y = 8. (1.2)

The set of ordered pairs, (x, y) which solve both equations is called the solution set. For
example, you can see that (5, 2) = (x, y) is a solution to the above system. To solve this,
note that the solution set does not change if any equation is replaced by a non zero multiple
of itself. It also does not change if one equation is replaced by itself added to a multiple
of the other equation. For example, x and y solve the above system if and only if x and y
solve the system

x+ y = 7,

−3y=−6︷ ︸︸ ︷
2x− y + (−2) (x+ y) = 8 + (−2) (7). (1.3)

The second equation was replaced by −2 times the first equation added to the second. Thus
the solution is y = 2, from −3y = −6 and now, knowing y = 2, it follows from the other
equation that x+ 2 = 7 and so x = 5.

Why exactly does the replacement of one equation with a multiple of another added to
it not change the solution set? The two equations of 1.2 are of the form

E1 = f1, E2 = f2 (1.4)

where E1 and E2 are expressions involving the variables. The claim is that if a is a number,
then 1.4 has the same solution set as

E1 = f1, E2 + aE1 = f2 + af1. (1.5)
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Why is this?
If (x, y) solves 1.4 then it solves the first equation in 1.5. Also, it satisfies aE1 = af1

and so, since it also solves E2 = f2 it must solve the second equation in 1.5. If (x, y) solves
1.5 then it solves the first equation of 1.4. Also aE1 = af1 and it is given that the second
equation of 1.5 is verified. Therefore, E2 = f2 and it follows (x, y) is a solution of the second
equation in 1.4. This shows the solutions to 1.4 and 1.5 are exactly the same which means
they have the same solution set. Of course the same reasoning applies with no change if
there are many more variables than two and many more equations than two. It is still the
case that when one equation is replaced with a multiple of another one added to itself, the
solution set of the whole system does not change.

The other thing which does not change the solution set of a system of equations consists
of listing the equations in a different order. Here is another example.

Example 1.10.1 Find the solutions to the system,

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
top-performing  
graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report
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x+ 3y + 6z = 25
2x+ 7y + 14z = 58

2y + 5z = 19
(1.6)

To solve this system replace the second equation by (−2) times the first equation added
to the second. This yields. the system

x+ 3y + 6z = 25
y + 2z = 8

2y + 5z = 19
(1.7)

Now take (−2) times the second and add to the third. More precisely, replace the third
equation with (−2) times the second added to the third. This yields the system

x+ 3y + 6z = 25
y + 2z = 8

z = 3
(1.8)

At this point, you can tell what the solution is. This system has the same solution as the
original system and in the above, z = 3. Then using this in the second equation, it follows
y + 6 = 8 and so y = 2. Now using this in the top equation yields x + 6 + 18 = 25 and so
x = 1.

This process is not really much different from what you have always done in solving a
single equation. For example, suppose you wanted to solve 2x + 5 = 3x − 6. You did the
same thing to both sides of the equation thus preserving the solution set until you obtained
an equation which was simple enough to give the answer. In this case, you would add −2x
to both sides and then add 6 to both sides. This yields x = 11.

In 1.8 you could have continued as follows. Add (−2) times the bottom equation to the
middle and then add (−6) times the bottom to the top. This yields

x+ 3y = 19
y = 6
z = 3

Now add (−3) times the second to the top. This yields

x = 1
y = 6
z = 3

,

a system which has the same solution set as the original system.
It is foolish to write the variables every time you do these operations. It is easier to

write the system 1.6 as the following “augmented matrix”




1 3 6 25
2 7 14 58
0 2 5 19


 .

It has exactly the same information as the original system but here it is understood there is

an x column,




1
2
0


 , a y column,




3
7
2


 and a z column,




6
14
5


 . The rows correspond
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to the equations in the system. Thus the top row in the augmented matrix corresponds to
the equation,

x+ 3y + 6z = 25.

Now when you replace an equation with a multiple of another equation added to itself, you
are just taking a row of this augmented matrix and replacing it with a multiple of another
row added to it. Thus the first step in solving 1.6 would be to take (−2) times the first row
of the augmented matrix above and add it to the second row,




1 3 6 25
0 1 2 8
0 2 5 19


 .

Note how this corresponds to 1.7. Next take (−2) times the second row and add to the
third, 


1 3 6 25
0 1 2 8
0 0 1 3




which is the same as 1.8. You get the idea I hope. Write the system as an augmented matrix
and follow the procedure of either switching rows, multiplying a row by a non zero number,
or replacing a row by a multiple of another row added to it. Each of these operations leaves
the solution set unchanged. These operations are called row operations.

Definition 1.10.2 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

It is important to observe that any row operation can be “undone” by another inverse
row operation. For example, if r1, r2 are two rows, and r2 is replaced with r′2 = αr1 + r2
using row operation 3, then you could get back to where you started by replacing the row r′2
with −α times r1 and adding to r′2. In the case of operation 2, you would simply multiply
the row that was changed by the inverse of the scalar which multiplied it in the first place,
and in the case of row operation 1, you would just make the same switch again and you
would be back to where you started. In each case, the row operation which undoes what
was done is called the inverse row operation.

Example 1.10.3 Give the complete solution to the system of equations, 5x+10y−7z = −2,
2x+ 4y − 3z = −1, and 3x+ 6y + 5z = 9.

The augmented matrix for this system is



2 4 −3 −1
5 10 −7 −2
3 6 5 9




Multiply the second row by 2, the first row by 5, and then take (−1) times the first row and
add to the second. Then multiply the first row by 1/5. This yields




2 4 −3 −1
0 0 1 1
3 6 5 9



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Now, combining some row operations, take (−3) times the first row and add this to 2 times
the last row and replace the last row with this. This yields.




2 4 −3 −1
0 0 1 1
0 0 1 21


 .

Putting in the variables, the last two rows say z = 1 and z = 21. This is impossible so
the last system of equations determined by the above augmented matrix has no solution.
However, it has the same solution set as the first system of equations. This shows there is no
solution to the three given equations. When this happens, the system is called inconsistent.

This should not be surprising that something like this can take place. It can even happen
for one equation in one variable. Consider for example, x = x+1. There is clearly no solution
to this.

Example 1.10.4 Give the complete solution to the system of equations, 3x − y − 5z = 9,
y − 10z = 0, and −2x+ y = −6.

The augmented matrix of this system is




3 −1 −5 9
0 1 −10 0
−2 1 0 −6




Replace the last row with 2 times the top row added to 3 times the bottom row. This gives




3 −1 −5 9
0 1 −10 0
0 1 −10 0




Next take −1 times the middle row and add to the bottom.



3 −1 −5 9
0 1 −10 0
0 0 0 0




Take the middle row and add to the top and then divide the top row which results by 3.




1 0 −5 3
0 1 −10 0
0 0 0 0


 .

This says y = 10z and x = 3 + 5z. Apparently z can equal any number. Therefore, the
solution set of this system is x = 3 + 5t, y = 10t, and z = t where t is completely arbitrary.
The system has an infinite set of solutions and this is a good description of the solutions.
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This is what it is all about, finding the solutions to the system.

Definition 1.10.5 Since z = t where t is arbitrary, the variable z is called a free variable.

The phenomenon of an infinite solution set occurs in equations having only one variable
also. For example, consider the equation x = x. It doesn’t matter what x equals.

Definition 1.10.6 A system of linear equations is a list of equations,

n∑
j=1

aijxj = fj , i = 1, 2, 3, · · · ,m

where aij are numbers, fj is a number, and it is desired to find (x1, · · · , xn) solving each of
the equations listed.

As illustrated above, such a system of linear equations may have a unique solution, no
solution, or infinitely many solutions. It turns out these are the only three cases which can

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
curricula of over 1,000 courses and qualifications. 

We are based in the dynamic yet conveniently compact city of Manchester, 
located at the heart of a sophisticated transport network including a major 
international airport on the outskirts. Parts of the campus are acclaimed for 
their architectural style and date back over 150 years, in direct contrast to 
our teaching style which is thoroughly  modern, innovative and 
forward-thinking. 

MMU offers undergraduate and postgraduate courses in 
the following subject areas: 

• Art, Design & Performance 
• Computing, Engineering & Technology 
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• Science, Environmental Studies & Geography 
• Law, Education & Psychology 
• Food, Hospitality, Tourism & Leisure Studies 
• Humanities & Social Science 

For more details or an application form
please contact MMU International.
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telephone: +44 (0)161 247 1022
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occur for linear systems. Furthermore, you do exactly the same things to solve any linear
system. You write the augmented matrix and do row operations until you get a simpler
system in which it is possible to see the solution. All is based on the observation that the
row operations do not change the solution set. You can have more equations than variables,
fewer equations than variables, etc. It doesn’t matter. You always set up the augmented
matrix and go to work on it. These things are all the same.

Example 1.10.7 Give the complete solution to the system of equations, −41x+15y = 168,
109x− 40y = −447, −3x+ y = 12, and 2x+ z = −1.

The augmented matrix is




−41 15 0 168
109 −40 0 −447
−3 1 0 12
2 0 1 −1


 .

To solve this multiply the top row by 109, the second row by 41, add the top row to the
second row, and multiply the top row by 1/109. Note how this process combined several
row operations. This yields 


−41 15 0 168
0 −5 0 −15
−3 1 0 12
2 0 1 −1


 .

Next take 2 times the third row and replace the fourth row by this added to 3 times the
fourth row. Then take (−41) times the third row and replace the first row by this added to
3 times the first row. Then switch the third and the first rows. This yields




123 −41 0 −492
0 −5 0 −15
0 4 0 12
0 2 3 21


 .

Take −1/2 times the third row and add to the bottom row. Then take 5 times the third
row and add to four times the second. Finally take 41 times the third row and add to 4
times the top row. This yields




492 0 0 −1476
0 0 0 0
0 4 0 12
0 0 3 15




It follows x = −1476
492 = −3, y = 3 and z = 5.

You should practice solving systems of equations. Here are some exercises.

1.11 Exercises

1. Give the complete solution to the system of equations, 3x − y + 4z = 6, y + 8z = 0,
and −2x+ y = −4.

2. Give the complete solution to the system of equations, x+3y+3z = 3, 3x+2y+z = 9,
and −4x+ z = −9.
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3. Consider the system −5x + 2y − z = 0 and −5x − 2y − z = 0. Both equations equal
zero and so −5x + 2y − z = −5x − 2y − z which is equivalent to y = 0. Thus x and
z can equal anything. But when x = 1, z = −4, and y = 0 are plugged in to the
equations, it doesn’t work. Why?

4. Give the complete solution to the system of equations, x+2y+6z = 5, 3x+2y+6z = 7
,−4x+ 5y + 15z = −7.

5. Give the complete solution to the system of equations

x+ 2y + 3z = 5, 3x+ 2y + z = 7,

−4x+ 5y + z = −7, x+ 3z = 5.

6. Give the complete solution of the system of equations,

x+ 2y + 3z = 5, 3x+ 2y + 2z = 7

−4x+ 5y + 5z = −7, x = 5

7. Give the complete solution of the system of equations

x+ y + 3z = 2, 3x− y + 5z = 6

−4x+ 9y + z = −8, x+ 5y + 7z = 2

8. Determine a such that there are infinitely many solutions and then find them. Next
determine a such that there are no solutions. Finally determine which values of a
correspond to a unique solution. The system of equations for the unknown variables
x, y, z is

3za2 − 3a+ x+ y + 1 = 0
3x− a− y + z

(
a2 + 4

)
− 5 = 0

za2 − a− 4x+ 9y + 9 = 0

9. Find the solutions to the following system of equations for x, y, z, w.

y + z = 2, z + w = 0, y − 4z − 5w = 2, 2y + z − w = 4

10. Find all solutions to the following equations.

x+ y + z = 2, z + w = 0,

2x+ 2y + z − w = 4, x+ y − 4z − 5z = 2

1.12 Fn

The notation, Cn refers to the collection of ordered lists of n complex numbers. Since every
real number is also a complex number, this simply generalizes the usual notion of Rn, the
collection of all ordered lists of n real numbers. In order to avoid worrying about whether
it is real or complex numbers which are being referred to, the symbol F will be used. If it is
not clear, always pick C. More generally, Fn refers to the ordered lists of n elements of Fn.

Definition 1.12.1 Define Fn ≡ {(x1, · · · , xn) : xj ∈ F for j = 1, · · · , n} . (x1, · · · , xn) =
(y1, · · · , yn) if and only if for all j = 1, · · · , n, xj = yj . When (x1, · · · , xn) ∈ Fn, it is
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conventional to denote (x1, · · · , xn) by the single bold face letter x. The numbers xj are
called the coordinates. The set

{(0, · · · , 0, t, 0, · · · , 0) : t ∈ F}

for t in the ith slot is called the ith coordinate axis. The point 0 ≡ (0, · · · , 0) is called the
origin.

Thus (1, 2, 4i) ∈ F3 and (2, 1, 4i) ∈ F3 but (1, 2, 4i) ̸= (2, 1, 4i) because, even though the
same numbers are involved, they don’t match up. In particular, the first entries are not
equal.

1.13 Algebra in Fn

There are two algebraic operations done with elements of Fn. One is addition and the other
is multiplication by numbers, called scalars. In the case of Cn the scalars are complex
numbers while in the case of Rn the only allowed scalars are real numbers. Thus, the scalars
always come from F in either case.

Definition 1.13.1 If x ∈ Fn and a ∈ F, also called a scalar, then ax ∈ Fn is defined by

ax = a (x1, · · · , xn) ≡ (ax1, · · · , axn) . (1.9)

This is known as scalar multiplication. If x,y ∈ Fn then x+ y ∈ Fn and is defined by

x+ y = (x1, · · · , xn) + (y1, · · · , yn)
≡ (x1 + y1, · · · , xn + yn) (1.10)

With this definition, the algebraic properties satisfy the conclusions of the following
theorem.

Theorem 1.13.2 For v,w ∈ Fn and α, β scalars, (real numbers), the following hold.

v +w = w + v, (1.11)

the commutative law of addition,

(v +w) + z = v+(w + z) , (1.12)

the associative law for addition,
v + 0 = v, (1.13)

the existence of an additive identity,

v+(−v) = 0, (1.14)

the existence of an additive inverse, Also

α (v +w) = αv+αw, (1.15)

(α+ β)v =αv+βv, (1.16)

α (βv) = αβ (v) , (1.17)

1v = v. (1.18)

In the above 0 = (0, · · · , 0).
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You should verify that these properties all hold. As usual subtraction is defined as
x− y ≡ x+(−y) . The conclusions of the above theorem are called the vector space axioms.

1.14 Exercises

1. Verify all the properties 1.11-1.18.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)

You should verify that these properties all hold. As usual subtraction is defined as
x− y ≡ x+(−y) . The conclusions of the above theorem are called the vector space axioms.

1.14 Exercises

1. Verify all the properties 1.11-1.18.

2. Compute 5 (1, 2 + 3i, 3,−2) + 6 (2− i, 1,−2, 7) .

3. Draw a picture of the points in R2 which are determined by the following ordered
pairs.

(a) (1, 2)

(b) (−2,−2)

(c) (−2, 3)
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(d) (2,−5)

4. Does it make sense to write (1, 2) + (2, 3, 1)? Explain.

5. Draw a picture of the points in R3 which are determined by the following ordered
triples. If you have trouble drawing this, describe it in words.

(a) (1, 2, 0)

(b) (−2,−2, 1)

(c) (−2, 3,−2)

1.15 The Inner Product In Fn

When F = R or C, there is something called an inner product. In case of R it is also called
the dot product. This is also often referred to as the scalar product.

Definition 1.15.1 Let a,b ∈ Fn define a · b as

a · b ≡
n∑

k=1

akbk.

With this definition, there are several important properties satisfied by the inner product.
In the statement of these properties, α and β will denote scalars and a,b, c will denote
vectors or in other words, points in Fn.

Proposition 1.15.2 The inner product satisfies the following properties.

a · b =b · a (1.19)

a · a ≥ 0 and equals zero if and only if a = 0 (1.20)

(αa+ βb) · c =α (a · c) + β (b · c) (1.21)

c · (αa+ βb) = α (c · a) + β (c · b) (1.22)

|a|2 = a · a (1.23)

You should verify these properties. Also be sure you understand that 1.22 follows from
the first three and is therefore redundant. It is listed here for the sake of convenience.

Example 1.15.3 Find (1, 2, 0,−1) · (0, i, 2, 3) .

This equals 0 + 2 (−i) + 0 +−3 = −3− 2i
The Cauchy Schwarz inequality takes the following form in terms of the inner product.

I will prove it using only the above axioms for the inner product.

Theorem 1.15.4 The inner product satisfies the inequality

|a · b| ≤ |a| |b| . (1.24)

Furthermore equality is obtained if and only if one of a or b is a scalar multiple of the other.
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Proof: First define θ ∈ C such that

θ (a · b) = |a · b| , |θ| = 1,

and define a function of t ∈ R

f (t) = (a+ tθb) · (a+ tθb) .

Then by 1.20, f (t) ≥ 0 for all t ∈ R. Also from 1.21,1.22,1.19, and 1.23

f (t) = a · (a+ tθb) + tθb · (a+ tθb)

= a · a+ tθ (a · b) + tθ (b · a) + t2 |θ|2 b · b

= |a|2 + 2tRe θ (a · b) + |b|2 t2 = |a|2 + 2t |a · b|+ |b|2 t2

Now if |b|2 = 0 it must be the case that a · b = 0 because otherwise, you could pick large
negative values of t and violate f (t) ≥ 0. Therefore, in this case, the Cauchy Schwarz
inequality holds. In the case that |b| ̸= 0, y = f (t) is a polynomial which opens up and
therefore, if it is always nonnegative, its graph is like that illustrated in the following picture

t t

Then the quadratic formula requires that

The discriminant︷ ︸︸ ︷
4 |a · b|2 − 4 |a|2 |b|2 ≤ 0

since otherwise the function, f (t) would have two real zeros and would necessarily have a
graph which dips below the t axis. This proves 1.24.

It is clear from the axioms of the inner product that equality holds in 1.24 whenever one
of the vectors is a scalar multiple of the other. It only remains to verify this is the only way
equality can occur. If either vector equals zero, then equality is obtained in 1.24 so it can be
assumed both vectors are non zero. Then if equality is achieved, it follows f (t) has exactly
one real zero because the discriminant vanishes. Therefore, for some value of t, a+ tθb = 0
showing that a is a multiple of b. �

You should note that the entire argument was based only on the properties of the inner
product listed in 1.19 - 1.23. This means that whenever something satisfies these properties,
the Cauchy Schwartz inequality holds. There are many other instances of these properties
besides vectors in Fn. Also note that 1.24 holds if 1.20 is simplified to a · a ≥ 0.

The Cauchy Schwartz inequality allows a proof of the triangle inequality for distances
in Fn in much the same way as the triangle inequality for the absolute value.

Theorem 1.15.5 (Triangle inequality) For a,b ∈ Fn

|a+ b| ≤ |a|+ |b| (1.25)

and equality holds if and only if one of the vectors is a nonnegative scalar multiple of the
other. Also

||a| − |b|| ≤ |a− b| (1.26)
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Proof : By properties of the inner product and the Cauchy Schwartz inequality,

|a+ b|2 = (a+ b) · (a+ b) = (a · a) + (a · b) + (b · a) + (b · b)

= |a|2 + 2Re (a · b) + |b|2 ≤ |a|2 + 2 |a · b|+ |b|2

≤ |a|2 + 2 |a| |b|+ |b|2 = (|a|+ |b|)2 .

Taking square roots of both sides you obtain 1.25.
It remains to consider when equality occurs. If either vector equals zero, then that

vector equals zero times the other vector and the claim about when equality occurs is
verified. Therefore, it can be assumed both vectors are nonzero. To get equality in the
second inequality above, Theorem 1.15.4 implies one of the vectors must be a multiple of
the other. Say b = αa. Also, to get equality in the first inequality, (a · b) must be a
nonnegative real number. Thus

0 ≤ (a · b) = (a·αa) = α |a|2 .

Therefore, α must be a real number which is nonnegative.
To get the other form of the triangle inequality,

a = a− b+ b

so
|a| = |a− b+ b| ≤ |a− b|+ |b| .

Therefore,
|a| − |b| ≤ |a− b| (1.27)

Similarly,
|b| − |a| ≤ |b− a| = |a− b| . (1.28)
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It follows from 1.27 and 1.28 that 1.26 holds. This is because ||a| − |b|| equals the left side

of either 1.27 or 1.28 and either way, ||a| − |b|| ≤ |a− b| . �

1.16 What Is Linear Algebra?

The above preliminary considerations form the necessary scaffolding upon which linear al-
gebra is built. Linear algebra is the study of a certain algebraic structure called a vector
space described in a special case in Theorem 1.13.2 and in more generality below along with
special functions known as linear transformations. These linear transformations preserve
certain algebraic properties.

A good argument could be made that linear algebra is the most useful subject in all
of mathematics and that it exceeds even courses like calculus in its significance. It is used
extensively in applied mathematics and engineering. Continuum mechanics, for example,
makes use of topics from linear algebra in defining things like the strain and in determining
appropriate constitutive laws. It is fundamental in the study of statistics. For example,
principal component analysis is really based on the singular value decomposition discussed

It follows from 1.27 and 1.28 that 1.26 holds. This is because ||a| − |b|| equals the left side

of either 1.27 or 1.28 and either way, ||a| − |b|| ≤ |a− b| . �

1.16 What Is Linear Algebra?

The above preliminary considerations form the necessary scaffolding upon which linear al-
gebra is built. Linear algebra is the study of a certain algebraic structure called a vector
space described in a special case in Theorem 1.13.2 and in more generality below along with
special functions known as linear transformations. These linear transformations preserve
certain algebraic properties.

A good argument could be made that linear algebra is the most useful subject in all
of mathematics and that it exceeds even courses like calculus in its significance. It is used
extensively in applied mathematics and engineering. Continuum mechanics, for example,
makes use of topics from linear algebra in defining things like the strain and in determining
appropriate constitutive laws. It is fundamental in the study of statistics. For example,
principal component analysis is really based on the singular value decomposition discussed
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in this book. It is also fundamental in pure mathematics areas like number theory, functional
analysis, geometric measure theory, and differential geometry. Even calculus cannot be
correctly understood without it. For example, the derivative of a function of many variables
is an example of a linear transformation, and this is the way it must be understood as soon
as you consider functions of more than one variable.

1.17 Exercises

1. Show that (a · b) = 1
4

[
|a+ b|2 − |a− b|2

]
.

2. Prove from the axioms of the inner product the parallelogram identity, |a+ b|2 +

|a− b|2 = 2 |a|2 + 2 |b|2 .

3. For a,b ∈ Rn, define a · b ≡
∑n

k=1 βkakbk where βk > 0 for each k. Show this satisfies
the axioms of the inner product. What does the Cauchy Schwarz inequality say in
this case.

4. In Problem 3 above, suppose you only know βk ≥ 0. Does the Cauchy Schwarz in-
equality still hold? If so, prove it.

5. Let f, g be continuous functions and define

f · g ≡
∫ 1

0

f (t) g (t)dt

show this satisfies the axioms of a inner product if you think of continuous functions
in the place of a vector in Fn. What does the Cauchy Schwarz inequality say in this
case?

6. Show that if f is a real valued continuous function,

(∫ b

a

f (t) dt

)2

≤ (b− a)

∫ b

a

f (t)
2
dt.
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in this book. It is also fundamental in pure mathematics areas like number theory, functional
analysis, geometric measure theory, and differential geometry. Even calculus cannot be
correctly understood without it. For example, the derivative of a function of many variables
is an example of a linear transformation, and this is the way it must be understood as soon
as you consider functions of more than one variable.

1.17 Exercises

1. Show that (a · b) = 1
4

[
|a+ b|2 − |a− b|2

]
.

2. Prove from the axioms of the inner product the parallelogram identity, |a+ b|2 +

|a− b|2 = 2 |a|2 + 2 |b|2 .

3. For a,b ∈ Rn, define a · b ≡
∑n

k=1 βkakbk where βk > 0 for each k. Show this satisfies
the axioms of the inner product. What does the Cauchy Schwarz inequality say in
this case.

4. In Problem 3 above, suppose you only know βk ≥ 0. Does the Cauchy Schwarz in-
equality still hold? If so, prove it.

5. Let f, g be continuous functions and define

f · g ≡
∫ 1

0

f (t) g (t)dt

show this satisfies the axioms of a inner product if you think of continuous functions
in the place of a vector in Fn. What does the Cauchy Schwarz inequality say in this
case?

6. Show that if f is a real valued continuous function,

(∫ b

a

f (t) dt

)2

≤ (b− a)

∫ b

a

f (t)
2
dt.
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2.1 Matrices

You have now solved systems of equations by writing them in terms of an augmented matrix
and then doing row operations on this augmented matrix. It turns out that such rectangular
arrays of numbers are important from many other different points of view. Numbers are
also called scalars. In general, scalars are just elements of some field. However, in the first
part of this book, the field will typically be either the real numbers or the complex numbers.

A matrix is a rectangular array of numbers. Several of them are referred to as matrices.
For example, here is a matrix. 


1 2 3 4
5 2 8 7
6 −9 1 2




This matrix is a 3 × 4 matrix because there are three rows and four columns. The first

row is (1 2 3 4) , the second row is (5 2 8 7) and so forth. The first column is




1
5
6


 . The

convention in dealing with matrices is to always list the rows first and then the columns.
Also, you can remember the columns are like columns in a Greek temple. They stand up
right while the rows just lay there like rows made by a tractor in a plowed field. Elements of
the matrix are identified according to position in the matrix. For example, 8 is in position
2, 3 because it is in the second row and the third column. You might remember that you
always list the rows before the columns by using the phrase Rowman Catholic. The symbol,
(aij) refers to a matrix in which the i denotes the row and the j denotes the column. Using
this notation on the above matrix, a23 = 8, a32 = −9, a12 = 2, etc.

There are various operations which are done on matrices. They can sometimes be added,
multiplied by a scalar and sometimes multiplied. To illustrate scalar multiplication, consider
the following example.

3




1 2 3 4
5 2 8 7
6 −9 1 2


 =




3 6 9 12
15 6 24 21
18 −27 3 6


 .

The new matrix is obtained by multiplying every entry of the original matrix by the given
scalar. If A is an m× n matrix −A is defined to equal (−1)A.

Two matrices which are the same size can be added. When this is done, the result is the
matrix which is obtained by adding corresponding entries. Thus




1 2
3 4
5 2


+




−1 4
2 8
6 −4


 =




0 6
5 12
11 −2


 .
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Two matrices are equal exactly when they are the same size and the corresponding entries
are identical. Thus 


0 0
0 0
0 0


 ̸=

(
0 0
0 0

)

because they are different sizes. As noted above, you write (cij) for the matrix C whose
ijth entry is cij . In doing arithmetic with matrices you must define what happens in terms
of the cij sometimes called the entries of the matrix or the components of the matrix.

The above discussion stated for general matrices is given in the following definition.

Definition 2.1.1 Let A = (aij) and B = (bij) be two m × n matrices. Then A + B = C
where

C = (cij)

for cij = aij + bij . Also if x is a scalar,

xA = (cij)

where cij = xaij . The number Aij will typically refer to the ijth entry of the matrix A. The
zero matrix, denoted by 0 will be the matrix consisting of all zeros.

Do not be upset by the use of the subscripts, ij. The expression cij = aij + bij is just
saying that you add corresponding entries to get the result of summing two matrices as
discussed above.

Note that there are 2 × 3 zero matrices, 3 × 4 zero matrices, etc. In fact for every size
there is a zero matrix.

With this definition, the following properties are all obvious but you should verify all of
these properties are valid for A, B, and C, m× n matrices and 0 an m× n zero matrix,

A+B = B +A, (2.1)

the commutative law of addition,

(A+B) + C = A+ (B + C) , (2.2)

the associative law for addition,
A+ 0 = A, (2.3)

the existence of an additive identity,

A+ (−A) = 0, (2.4)

the existence of an additive inverse. Also, for α, β scalars, the following also hold.

α (A+B) = αA+ αB, (2.5)

(α+ β)A = αA+ βA, (2.6)

α (βA) = αβ (A) , (2.7)

1A = A. (2.8)

The above properties, 2.1 - 2.8 are known as the vector space axioms and the fact that
the m×n matrices satisfy these axioms is what is meant by saying this set of matrices with
addition and scalar multiplication as defined above forms a vector space.
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Definition 2.1.2 Matrices which are n × 1 or 1 × n are especially called vectors and are
often denoted by a bold letter. Thus

x =




x1

...
xn




is an n × 1 matrix also called a column vector while a 1× n matrix of the form (x1 · · ·xn)
is referred to as a row vector.

All the above is fine, but the real reason for considering matrices is that they can be
multiplied. This is where things quit being banal.

First consider the problem of multiplying an m× n matrix by an n × 1 column vector.
Consider the following example

(
1 2 3
4 5 6

)


7
8
9


 =?

It equals

7

(
1
4

)
+ 8

(
2
5

)
+ 9

(
3
6

)

Thus it is what is called a linear combination of the columns. These will be discussed
more later. Motivated by this example, here is the definition of how to multiply an m × n
matrix by an n× 1 matrix. (vector)

Definition 2.1.3 Let A = Aij be an m× n matrix and let v be an n× 1 matrix,

v =




v1
...
vn


 , A = (a1, · · · ,an)

where ai is an m× 1 vector. Then Av, written as

(
a1 · · · an

)



v1
...
vn


 ,

is the m× 1 column vector which equals the following linear combination of the columns.

v1a1 + v2a2 + · · ·+ vnan ≡
n∑

j=1

vjaj (2.9)

If the jth column of A is 


A1j

A2j

...
Amj




then 2.9 takes the form

v1




A11

A21

...
Am1


+ v2




A12

A22

...
Am2


+ · · ·+ vn




A1n

A2n

...
Amn



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Thus the ith entry of Av is
∑n

j=1 Aijvj . Note that multiplication by an m× n matrix takes
an n× 1 matrix, and produces an m× 1 matrix (vector).

Here is another example.

Example 2.1.4 Compute



1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all, this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) .
Note how the inside numbers cancel. To get the entry in the second row and first and only

Thus the ith entry of Av is
∑n

j=1 Aijvj . Note that multiplication by an m× n matrix takes
an n× 1 matrix, and produces an m× 1 matrix (vector).

Here is another example.

Example 2.1.4 Compute



1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 .

First of all, this is of the form (3× 4) (4× 1) and so the result should be a (3× 1) .
Note how the inside numbers cancel. To get the entry in the second row and first and only
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column, compute

4∑
k=1

a2kvk = a21v1 + a22v2 + a23v3 + a24v4

= 0× 1 + 2× 2 + 1× 0 + (−2)× 1 = 2.

You should do the rest of the problem and verify




1 2 1 3
0 2 1 −2
2 1 4 1







1
2
0
1


 =




8
2
5


 .

With this done, the next task is to multiply an m × n matrix times an n × p matrix.
Before doing so, the following may be helpful.

(m×
these must match

n̂) (n× p ) = m× p

If the two middle numbers don’t match, you can’t multiply the matrices!

Definition 2.1.5 Let A be an m × n matrix and let B be an n × p matrix. Then B is of
the form

B = (b1, · · · ,bp)

where bk is an n× 1 matrix. Then an m× p matrix AB is defined as follows:

AB ≡ (Ab1, · · · , Abp) (2.10)

where Abk is an m× 1 matrix. Hence AB as just defined is an m× p matrix. For example,

Example 2.1.6 Multiply the following.

(
1 2 1
0 2 1

)


1 2 0
0 3 1
−2 1 1




The first thing you need to check before doing anything else is whether it is possible to
do the multiplication. The first matrix is a 2×3 and the second matrix is a 3×3. Therefore,
is it possible to multiply these matrices. According to the above discussion it should be a
2× 3 matrix of the form




First column� �� �
(

1 2 1
0 2 1

)


1
0
−2


,

Second column� �� �
(

1 2 1
0 2 1

)


2
3
1


,

Third column� �� �
(

1 2 1
0 2 1

)


0
1
1







You know how to multiply a matrix times a vector and so you do so to obtain each of the
three columns. Thus

(
1 2 1
0 2 1

)


1 2 0
0 3 1
−2 1 1


 =

(
−1 9 3
−2 7 3

)
.

Here is another example.
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Example 2.1.7 Multiply the following.




1 2 0
0 3 1
−2 1 1




(
1 2 1
0 2 1

)

First check if it is possible. This is of the form (3× 3) (2× 3) . The inside numbers do not
match and so you can’t do this multiplication. This means that anything you write will be
absolute nonsense because it is impossible to multiply these matrices in this order. Aren’t
they the same two matrices considered in the previous example? Yes they are. It is just
that here they are in a different order. This shows something you must always remember
about matrix multiplication.

Order Matters!

Matrix multiplication is not commutative. This is very different than multiplication of
numbers!

2.1.1 The ijth Entry Of A Product

It is important to describe matrix multiplication in terms of entries of the matrices. What
is the ijth entry of AB? It would be the ith entry of the jth column of AB. Thus it would
be the ith entry of Abj . Now

bj =




B1j

...
Bnj




and from the above definition, the ith entry is

n∑
k=1

AikBkj . (2.11)

In terms of pictures of the matrix, you are doing




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B11 B12 · · · B1p

B21 B22 · · · B2p

...
...

...
Bn1 Bn2 · · · Bnp




Then as explained above, the jth column is of the form




A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
Am1 Am2 · · · Amn







B1j

B2j

...
Bnj




which is a m× 1 matrix or column vector which equals




A11

A21

...
Am1


B1j +




A12

A22

...
Am2


B2j + · · ·+




A1n

A2n

...
Amn


Bnj .
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The ith entry of this m× 1 matrix is

Ai1B1j +Ai2B2j + · · ·+AinBnj =

m∑
k=1

AikBkj .

This shows the following definition for matrix multiplication in terms of the ijth entries of
the product harmonizes with Definition 2.1.3.

This motivates the definition for matrix multiplication which identifies the ijth entries
of the product.

Definition 2.1.8 Let A = (Aij) be an m× n matrix and let B = (Bij) be an n× p matrix.
Then AB is an m× p matrix and

(AB)ij =
n∑

k=1

AikBkj . (2.12)

Two matrices, A and B are said to be conformable in a particular order if they can be
multiplied in that order. Thus if A is an r × s matrix and B is a s × p then A and B are
conformable in the order AB. The above formula for (AB)ij says that it equals the ith row

of A times the jth column of B.

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY. 
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://bookboon.com/
http://bookboon.com/count/advert/96187bc1-08b7-494f-9730-9fec00d3acd8


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

54 

Linear Transformations

Example 2.1.9 Multiply if possible




1 2
3 1
2 6




(
2 3 1
7 6 2

)
.

First check to see if this is possible. It is of the form (3× 2) (2× 3) and since the inside
numbers match, it must be possible to do this and the result should be a 3× 3 matrix. The
answer is of the form





1 2
3 1
2 6




(
2
7

)
,




1 2
3 1
2 6




(
3
6

)
,




1 2
3 1
2 6




(
1
2

)


where the commas separate the columns in the resulting product. Thus the above product
equals 


16 15 5
13 15 5
46 42 14


 ,
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a 3× 3 matrix as desired. In terms of the ijth entries and the above definition, the entry in
the third row and second column of the product should equal

∑
j

a3kbk2 = a31b12 + a32b22 = 2× 3 + 6× 6 = 42.

You should try a few more such examples to verify the above definition in terms of the ijth

entries works for other entries.

Example 2.1.10 Multiply if possible




1 2
3 1
2 6







2 3 1
7 6 2
0 0 0


 .

This is not possible because it is of the form (3× 2) (3× 3) and the middle numbers
don’t match.

Example 2.1.11 Multiply if possible




2 3 1
7 6 2
0 0 0







1 2
3 1
2 6


 .

This is possible because in this case it is of the form (3× 3) (3× 2) and the middle
numbers do match. When the multiplication is done it equals




13 13
29 32
0 0


 .

Check this and be sure you come up with the same answer.

Example 2.1.12 Multiply if possible




1
2
1


(

1 2 1 0
)
.

In this case you are trying to do (3× 1) (1× 4) . The inside numbers match so you can
do it. Verify 


1
2
1


(

1 2 1 0
)
=




1 2 1 0
2 4 2 0
1 2 1 0




2.1.2 Digraphs

Consider the following graph illustrated in the picture.

1 2

3

There are three locations in this graph, labelled 1,2, and 3. The directed lines represent
a way of going from one location to another. Thus there is one way to go from location 1
to location 1. There is one way to go from location 1 to location 3. It is not possible to go
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from location 2 to location 3 although it is possible to go from location 3 to location 2. Lets
refer to moving along one of these directed lines as a step. The following 3 × 3 matrix is
a numerical way of writing the above graph. This is sometimes called a digraph, short for
directed graph. 


1 1 1
1 0 0
1 1 0




Thus aij , the entry in the ith row and jth column represents the number of ways to go from
location i to location j in one step.

Problem: Find the number of ways to go from i to j using exactly k steps.
Denote the answer to the above problem by akij . We don’t know what it is right now

unless k = 1 when it equals aij described above. However, if we did know what it was, we
could find ak+1

ij as follows.

ak+1
ij =

∑
r

akirarj

This is because if you go from i to j in k + 1 steps, you first go from i to r in k steps and
then for each of these ways there are arj ways to go from there to j. Thus akirarj gives
the number of ways to go from i to j in k + 1 steps such that the kth step leaves you at
location r. Adding these gives the above sum. Now you recognize this as the ijth entry of
the product of two matrices. Thus

a2ij =
∑
r

airarj , a3ij =
∑
r

a2irarj

and so forth. From the above definition of matrix multiplication, this shows that if A is the
matrix associated with the directed graph as above, then akij is just the ijth entry of Ak

where Ak is just what you would think it should be, A multiplied by itself k times.
Thus in the above example, to find the number of ways of going from 1 to 3 in two steps

you would take that matrix and multiply it by itself and then take the entry in the first row
and third column. Thus 


1 1 1
1 0 0
1 1 0




2

=




3 2 1
1 1 1
2 1 1




and you see there is exactly one way to go from 1 to 3 in two steps. You can easily see this
is true from looking at the graph also. Note there are three ways to go from 1 to 1 in 2
steps. Can you find them from the graph? What would you do if you wanted to consider 5
steps? 


1 1 1
1 0 0
1 1 0




5

=




28 19 13
13 9 6
19 13 9




There are 19 ways to go from 1 to 2 in five steps. Do you think you could list them all by
looking at the graph? I don’t think you could do it without wasting a lot of time.

Of course there is nothing sacred about having only three locations. Everything works
just as well with any number of locations. In general if you have n locations, you would
need to use a n× n matrix.

Example 2.1.13 Consider the following directed graph.
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1 2

3 4

Write the matrix which is associated with this directed graph and find the number of ways
to go from 2 to 4 in three steps.

Here you need to use a 4×4 matrix. The one you need is




0 1 1 0
1 0 0 0
1 1 0 1
0 1 0 1




Then to find the answer, you just need to multiply this matrix by itself three times and look
at the entry in the second row and fourth column.




0 1 1 0
1 0 0 0
1 1 0 1
0 1 0 1




3

=




1 3 2 1
2 1 0 1
3 3 1 2
1 2 1 1




There is exactly one way to go from 2 to 4 in three steps.
How many ways would there be of going from 2 to 4 in five steps?




0 1 1 0
1 0 0 0
1 1 0 1
0 1 0 1




5

=




5 9 5 4
5 4 1 3
9 10 4 6
4 6 3 3




There are three ways. Note there are 10 ways to go from 3 to 2 in five steps.
This is an interesting application of the concept of the ijth entry of the product matrices.
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2.1.3 Properties Of Matrix Multiplication

As pointed out above, sometimes it is possible to multiply matrices in one order but not
in the other order. What if it makes sense to multiply them in either order? Will they be
equal then?

Example 2.1.14 Compare

(
1 2
3 4

)(
0 1
1 0

)
and

(
0 1
1 0

)(
1 2
3 4

)
.

The first product is (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)
,

the second product is (
0 1
1 0

)(
1 2
3 4

)
=

(
3 4
1 2

)
,
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and you see these are not equal. Therefore, you cannot conclude that AB = BA for matrix
multiplication. However, there are some properties which do hold.

Proposition 2.1.15 If all multiplications and additions make sense, the following hold for
matrices, A,B,C and a, b scalars.

A (aB + bC) = a (AB) + b (AC) (2.13)

(B + C)A = BA+ CA (2.14)

A (BC) = (AB)C (2.15)

Proof: Using the above definition of matrix multiplication,

(A (aB + bC))ij =
∑
k

Aik (aB + bC)kj

=
∑
k

Aik (aBkj + bCkj)

= a
∑
k

AikBkj + b
∑
k

AikCkj

= a (AB)ij + b (AC)ij
= (a (AB) + b (AC))ij

showing that A (B + C) = AB +AC as claimed. Formula 2.14 is entirely similar.
Consider 2.15, the associative law of multiplication. Before reading this, review the

definition of matrix multiplication in terms of entries of the matrices.

(A (BC))ij =
∑
k

Aik (BC)kj

=
∑
k

Aik

∑
l

BklClj

=
∑
l

(AB)il Clj

= ((AB)C)ij .�

Another important operation on matrices is that of taking the transpose. The following
example shows what is meant by this operation, denoted by placing a T as an exponent on
the matrix. 


1 1 + 2i
3 1
2 6




T

=

(
1 3 2

1 + 2i 1 6

)

What happened? The first column became the first row and the second column became
the second row. Thus the 3 × 2 matrix became a 2 × 3 matrix. The number 3 was in the
second row and the first column and it ended up in the first row and second column. This
motivates the following definition of the transpose of a matrix.

Definition 2.1.16 Let A be an m × n matrix. Then AT denotes the n ×m matrix which
is defined as follows. (

AT
)
ij
= Aji

The transpose of a matrix has the following important property.
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Lemma 2.1.17 Let A be an m× n matrix and let B be a n× p matrix. Then

(AB)
T
= BTAT (2.16)

and if α and β are scalars,

(αA+ βB)
T
= αAT + βBT (2.17)

Proof: From the definition,
(
(AB)

T
)
ij

= (AB)ji

=
∑
k

AjkBki

=
∑
k

(
BT

)
ik

(
AT

)
kj

=
(
BTAT

)
ij

2.17 is left as an exercise. �

Definition 2.1.18 An n × n matrix A is said to be symmetric if A = AT . It is said to be
skew symmetric if AT = −A.

Example 2.1.19 Let

A =




2 1 3
1 5 −3
3 −3 7


 .

Then A is symmetric.

Example 2.1.20 Let

A =




0 1 3
−1 0 2
−3 −2 0




Then A is skew symmetric.

There is a special matrix called I and defined by

Iij = δij

where δij is the Kronecker symbol defined by

δij =

{
1 if i = j
0 if i ̸= j

It is called the identity matrix because it is a multiplicative identity in the following sense.

Lemma 2.1.21 Suppose A is an m× n matrix and In is the n× n identity matrix. Then
AIn = A. If Im is the m×m identity matrix, it also follows that ImA = A.

Proof:

(AIn)ij =
∑
k

Aikδkj

= Aij

and so AIn = A. The other case is left as an exercise for you.
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Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡
{

1 if i = j
0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. �

Definition 2.1.22 An n × n matrix A has an inverse A−1 if and only if there exists a
matrix, denoted as A−1 such that AA−1 = A−1A = I where I = (δij) for

δij ≡
{

1 if i = j
0 if i ̸= j

Such a matrix is called invertible.

If it acts like an inverse, then it is the inverse. This is the message of the following
proposition.

Proposition 2.1.23 Suppose AB = BA = I. Then B = A−1.

Proof: From the definition B is an inverse for A. Could there be another one B′?

B′ = B′I = B′ (AB) = (B′A)B = IB = B.

Thus, the inverse, if it exists, is unique. �
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2.1.4 Finding The Inverse Of A Matrix

A little later a formula is given for the inverse of a matrix. However, it is not a good way
to find the inverse for a matrix. There is a much easier way and it is this which is presented
here. It is also important to note that not all matrices have inverses.

Example 2.1.24 Let A =

(
1 1
1 1

)
. Does A have an inverse?

One might think A would have an inverse because it does not equal zero. However,

(
1 1
1 1

)(
−1
1

)
=

(
0
0

)

and if A−1 existed, this could not happen because you could multiply on the left by the
inverse A and conclude the vector (−1, 1)

T
= (0, 0)

T
. Thus the answer is that A does not

have an inverse.
Suppose you want to find B such that AB = I. Let

B =
(
b1 · · · bn

)

Also the ith column of I is

ei =
(
0 · · · 0 1 0 · · · 0

)T

Thus, if AB = I, bi, the i
th column of B must satisfy the equation Abi = ei. The augmented

matrix for finding bi is (A|ei) . Thus, by doing row operations till A becomes I, you end up
with (I|bi) where bi is the solution to Abi = ei. Now the same sequence of row operations
works regardless of the right side of the agumented matrix (A|ei) and so you can save trouble
by simply doing the following.

(A|I) row operations→ (I|B)

and the ith column of B is bi, the solution to Abi = ei. Thus AB = I.
This is the reason for the following simple procedure for finding the inverse of a matrix.

This procedure is called the Gauss Jordan procedure. It produces the inverse if the matrix
has one. Actually, it produces the right inverse.

Procedure 2.1.25 Suppose A is an n × n matrix. To find A−1 if it exists, form the
augmented n× 2n matrix,

(A|I)

and then do row operations until you obtain an n× 2n matrix of the form

(I|B) (2.18)

if possible. When this has been done, B = A−1. The matrix A has an inverse exactly when
it is possible to do row operations and end up with one like 2.18.

As described above, the following is a description of what you have just done.

A
RqRq−1···R1→ I

I
RqRq−1···R1→ B
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where those Ri sympolize row operations. It follows that you could undo what you did by
doing the inverse of these row operations in the opposite order. Thus

I
R−1

1 ···R−1
q−1R

−1
q→ A

B
R−1

1 ···R−1
q−1R

−1
q→ I

Here R−1 is the row operation which undoes the row operation R. Therefore, if you form
(B|I) and do the inverse of the row operations which produced I from A in the reverse
order, you would obtain (I|A) . By the same reasoning above, it follows that A is a right
inverse of B and so BA = I also. It follows from Proposition 2.1.23 that B = A−1. Thus
the procedure produces the inverse whenever it works.

If it is possible to do row operations and end up with A
row operations→ I, then the above

argument shows that A has an inverse. Conversely, if A has an inverse, can it be found by
the above procedure? In this case there exists a unique solution x to the equation Ax = y.
In fact it is just x = Ix = A−1y. Thus in terms of augmented matrices, you would expect
to obtain

(A|y) →
(
I|A−1y

)

That is, you would expect to be able to do row operations to A and end up with I.
The details will be explained fully when a more careful discussion is given which is based

on more fundamental considerations. For now, it suffices to observe that whenever the above
procedure works, it finds the inverse.

Example 2.1.26 Let A =




1 0 1
1 −1 1
1 1 −1


. Find A−1.

Form the augmented matrix



1 0 1 1 0 0
1 −1 1 0 1 0
1 1 −1 0 0 1


 .

Now do row operations until the n×n matrix on the left becomes the identity matrix. This
yields after some computations,




1 0 0 0 1
2

1
2

0 1 0 1 −1 0
0 0 1 1 − 1

2 − 1
2




and so the inverse of A is the matrix on the right,



0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 .

Checking the answer is easy. Just multiply the matrices and see if it works.



1 0 1
1 −1 1
1 1 −1







0 1
2

1
2

1 −1 0
1 − 1

2 − 1
2


 =




1 0 0
0 1 0
0 0 1


 .

Always check your answer because if you are like some of us, you will usually have made a
mistake.
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Example 2.1.27 Let A =




1 2 2
1 0 2
3 1 −1


. Find A−1.

Set up the augmented matrix (A|I)



1 2 2 1 0 0
1 0 2 0 1 0
3 1 −1 0 0 1




Next take (−1) times the first row and add to the second followed by (−3) times the first
row added to the last. This yields




1 2 2 1 0 0
0 −2 0 −1 1 0
0 −5 −7 −3 0 1


 .

Then take 5 times the second row and add to −2 times the last row.



1 2 2 1 0 0
0 −10 0 −5 5 0
0 0 14 1 5 −2




Next take the last row and add to (−7) times the top row. This yields




−7 −14 0 −6 5 −2
0 −10 0 −5 5 0
0 0 14 1 5 −2


 .

Now take (−7/5) times the second row and add to the top.




−7 0 0 1 −2 −2
0 −10 0 −5 5 0
0 0 14 1 5 −2


 .
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Finally divide the top row by −7, the second row by -10 and the bottom row by 14 which
yields 


1 0 0 − 1

7
2
7

2
7

0 1 0 1
2 − 1

2 0
0 0 1 1

14
5
14 − 1

7


 .

Therefore, the inverse is 


− 1
7

2
7

2
7

1
2 − 1

2 0
1
14

5
14 − 1

7




Example 2.1.28 Let A =




1 2 2
1 0 2
2 2 4


. Find A−1.
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Write the augmented matrix (A|I)



1 2 2 1 0 0
1 0 2 0 1 0
2 2 4 0 0 1




and proceed to do row operations attempting to obtain
(
I|A−1

)
. Take (−1) times the top

row and add to the second. Then take (−2) times the top row and add to the bottom.




1 2 2 1 0 0
0 −2 0 −1 1 0
0 −2 0 −2 0 1




Next add (−1) times the second row to the bottom row.




1 2 2 1 0 0
0 −2 0 −1 1 0
0 0 0 −1 −1 1




At this point, you can see there will be no inverse because you have obtained a row of zeros
in the left half of the augmented matrix (A|I) . Thus there will be no way to obtain I on
the left. In other words, the three systems of equations you must solve to find the inverse
have no solution. In particular, there is no solution for the first column of A−1 which must
solve

A




x
y
z


 =




1
0
0




because a sequence of row operations leads to the impossible equation, 0x+ 0y + 0z = −1.

2.2 Exercises

1. In 2.1 - 2.8 describe −A and 0.

2. Let A be an n×nmatrix. Show A equals the sum of a symmetric and a skew symmetric
matrix.

3. Show every skew symmetric matrix has all zeros down the main diagonal. The main
diagonal consists of every entry of the matrix which is of the form aii. It runs from
the upper left down to the lower right.

4. Using only the properties 2.1 - 2.8 show −A is unique.

5. Using only the properties 2.1 - 2.8 show 0 is unique.

6. Using only the properties 2.1 - 2.8 show 0A = 0. Here the 0 on the left is the scalar 0
and the 0 on the right is the zero for m× n matrices.

7. Using only the properties 2.1 - 2.8 and previous problems show (−1)A = −A.

8. Prove 2.17.

9. Prove that ImA = A where A is an m× n matrix.

10. Let A and be a real m × n matrix and let x ∈ Rn and y ∈ Rm. Show (Ax,y)Rm =(
x,ATy

)
Rn where (·, ·)Rk denotes the dot product in Rk.
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11. Use the result of Problem 10 to verify directly that (AB)
T
= BTAT without making

any reference to subscripts.

12. Let x =(−1,−1, 1) and y =(0, 1, 2) . Find xTy and xyT if possible.

13. Give an example of matrices, A,B,C such that B ̸= C, A ̸= 0, and yet AB = AC.

14. Let A =




1 1
−2 −1
1 2


, B =

(
1 −1 −2
2 1 −2

)
, and C =




1 1 −3
−1 2 0
−3 −1 0


 . Find

if possible the following products. AB,BA,AC,CA,CB,BC.

15. Consider the following digraph.

1 2

3 4

Write the matrix associated with this digraph and find the number of ways to go from
3 to 4 in three steps.

16. Show that if A−1 exists for an n×n matrix, then it is unique. That is, if BA = I and
AB = I, then B = A−1.

17. Show (AB)
−1

= B−1A−1.

18. Show that if A is an invertible n× n matrix, then so is AT and
(
AT

)−1
=

(
A−1

)T
.

19. Show that if A is an n×n invertible matrix and x is a n× 1 matrix such that Ax = b
for b an n× 1 matrix, then x = A−1b.

20. Give an example of a matrix A such that A2 = I and yet A ̸= I and A ̸= −I.

21. Give an example of matrices, A,B such that neither A nor B equals zero and yet
AB = 0.

22. Write




x1 − x2 + 2x3

2x3 + x1

3x3

3x4 + 3x2 + x1


 in the form A




x1

x2

x3

x4


 where A is an appropriate matrix.

23. Give another example other than the one given in this section of two square matrices,
A and B such that AB ̸= BA.

24. Suppose A and B are square matrices of the same size. Which of the following are
correct?

(a) (A−B)
2
= A2 − 2AB +B2

(b) (AB)
2
= A2B2

(c) (A+B)
2
= A2 + 2AB +B2

(d) (A+B)
2
= A2 +AB +BA+B2

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

68 

Linear Transformations

(e) A2B2 = A (AB)B

(f) (A+B)
3
= A3 + 3A2B + 3AB2 +B3

(g) (A+B) (A−B) = A2 −B2

(h) None of the above. They are all wrong.

(i) All of the above. They are all right.

25. Let A =

(
−1 −1
3 3

)
. Find all 2× 2 matrices, B such that AB = 0.

26. Prove that if A−1 exists and Ax = 0 then x = 0.

27. Let

A =




1 2 3
2 1 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

28. Let

A =




1 0 3
2 3 4
1 0 2


 .

Find A−1 if possible. If A−1 does not exist, determine why.

29. Let

A =




1 2 3
2 1 4
4 5 10


 .

Find A−1 if possible. If A−1 does not exist, determine why.

30. Let

A =




1 2 0 2
1 1 2 0
2 1 −3 2
1 2 1 2




Find A−1 if possible. If A−1 does not exist, determine why.
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2.3 Linear Transformations

By 2.13, if A is an m× n matrix, then for v,u vectors in Fn and a, b scalars,

A




∈Fn

� �� �
au+ bv


 = aAu+ bAv ∈ Fm (2.19)

Definition 2.3.1 A function, A : Fn → Fm is called a linear transformation if for all
u,v ∈ Fn and a, b scalars, 2.19 holds.

From 2.19, matrix multiplication defines a linear transformation as just defined. It
turns out this is the only type of linear transformation available. Thus if A is a linear
transformation from Fn to Fm, there is always a matrix which produces A. Before showing
this, here is a simple definition.
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Definition 2.3.2 A vector, ei ∈ Fn is defined as follows:

ei ≡




0
...
1
...
0




,

where the 1 is in the ith position and there are zeros everywhere else. Thus

ei = (0, · · · , 0, 1, 0, · · · , 0)T .

Of course the ei for a particular value of i in Fn would be different than the ei for that
same value of i in Fm for m ̸= n. One of them is longer than the other. However, which one
is meant will be determined by the context in which they occur.

These vectors have a significant property.

Lemma 2.3.3 Let v ∈ Fn. Thus v is a list of numbers arranged vertically, v1, · · · , vn. Then

eTi v = vi. (2.20)

Also, if A is an m× n matrix, then letting ei ∈ Fm and ej ∈ Fn,

eTi Aej = Aij (2.21)

Proof: First note that eTi is a 1 × n matrix and v is an n × 1 matrix so the above
multiplication in 2.20 makes perfect sense. It equals

(0, · · · , 1, · · · 0)




v1
...
vi
...
vn




= vi

as claimed.
Consider 2.21. From the definition of matrix multiplication, and noting that (ej)k = δkj

eTi Aej = eTi




∑
k A1k (ej)k

...∑
k Aik (ej)k

...∑
k Amk (ej)k




= eTi




A1j

...
Aij

...
Amj




= Aij

by the first part of the lemma. �

Theorem 2.3.4 Let L : Fn → Fm be a linear transformation. Then there exists a unique
m× n matrix A such that

Ax = Lx

for all x ∈ Fn. The ikth entry of this matrix is given by

eTi Lek (2.22)

Stated in another way, the kth column of A equals Lek.
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Proof: By the lemma,

(Lx)i = eTi Lx = eTi xkLek =
(
eTi Lek

)
xk.

Let Aik = eTi Lek, to prove the existence part of the theorem.
To verify uniqueness, suppose Bx = Ax = Lx for all x ∈ Fn. Then in particular, this is

true for x = ej and then multiply on the left by eTi to obtain

Bij = eTi Bej = eTi Aej = Aij

showing A = B. �

Corollary 2.3.5 A linear transformation, L : Fn → Fm is completely determined by the
vectors {Le1, · · · , Len} .

Proof: This follows immediately from the above theorem. The unique matrix determin-
ing the linear transformation which is given in 2.22 depends only on these vectors. �

This theorem shows that any linear transformation defined on Fn can always be con-
sidered as a matrix. Therefore, the terms “linear transformation” and “matrix” are often
used interchangeably. For example, to say that a matrix is one to one, means the linear
transformation determined by the matrix is one to one.

Example 2.3.6 Find the linear transformation, L : R2 → R2 which has the property that

Le1 =

(
2
1

)
and Le2 =

(
1
3

)
. From the above theorem and corollary, this linear trans-

formation is that determined by matrix multiplication by the matrix
(

2 1
1 3

)
.

Definition 2.3.7 Let L : Fn → Fm be a linear transformation and let its matrix be the
m × n matrix A. Then ker (L) ≡ {x ∈ Fn : Lx = 0} . Sometimes people also write this as
N (A) , the null space of A.

Then there is a fundamental result in the case where m < n. In this case, the matrix A
of the linear transformation looks like the following.

Theorem 2.3.8 Let A be an m × n matrix where m < n. Then N (A) contains nonzero
vectors.

Proof: First consider the case where A is a 1× n matrix for n > 1. Say

A =
(
a1 · · · an

)

If a1 = 0, consider the vector x = e1. If a1 ̸= 0, let

x =




b
1
...
1



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where b is chosen to satisfy the equation

a1b+

n∑
k=2

ak = 0

Suppose now that the theorem is true for any m × n matrix with n > m and consider an
(m× 1) × n matrix A where n > m + 1. If the first column of A is 0, then you could let
x = e1 as above. If the first column is not the zero vector, then by doing row operations,
the equation Ax = 0 can be reduced to the equivalent system

A1x = 0

where A1 is of the form

A1 =

(
1 aT

0 B

)

where B is an m × (n− 1) matrix. Since n > m + 1, it follows that (n− 1) > m and so
by induction, there exists a nonzero vector y ∈ Fn−1 such that By = 0. Then consider the
vector

x =

(
b
y

)

A1x has for its top entry the expression b + aTy. Letting B =




bT
1
...

bT
m


 , the ith entry of

A1x for i > 1 is of the form bT
i y = 0. Thus if b is chosen to satisfy the equation b+aTy = 0,
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then A1x = 0.�

2.4 Subspaces And Spans

Definition 2.4.1 Let {x1, · · · ,xp} be vectors in Fn. A linear combination is any expression
of the form

p∑
i=1

cixi

where the ci are scalars. The set of all linear combinations of these vectors is called
span (x1, · · · ,xn) . If V ⊆ Fn, then V is called a subspace if whenever α, β are scalars
and u and v are vectors of V, it follows αu + βv ∈ V . That is, it is “closed under the
algebraic operations of vector addition and scalar multiplication”. A linear combination
of vectors is said to be trivial if all the scalars in the linear combination equal zero. A set
of vectors is said to be linearly independent if the only linear combination of these vectors
which equals the zero vector is the trivial linear combination. Thus {x1, · · · ,xn} is called
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linearly independent if whenever
p∑

k=1

ckxk = 0

it follows that all the scalars ck equal zero. A set of vectors, {x1, · · · ,xp} , is called linearly
dependent if it is not linearly independent. Thus the set of vectors is linearly dependent if
there exist scalars ci, i = 1, · · · , n, not all zero such that

∑p
k=1 ckxk = 0.

Proposition 2.4.2 Let V ⊆ Fn. Then V is a subspace if and only if it is a vector space
itself with respect to the same operations of scalar multiplication and vector addition.

Proof: Suppose first that V is a subspace. All algebraic properties involving scalar
multiplication and vector addition hold for V because these things hold for Fn. Is 0 ∈ V ? Yes
it is. This is because 0v ∈ V and 0v = 0. By assumption, for α a scalar and v ∈ V, αv ∈ V.
Therefore, −v = (−1)v ∈ V . Thus V has the additive identity and additive inverse. By
assumption, V is closed with respect to the two operations. Thus V is a vector space. If
V ⊆ Fn is a vector space, then by definition, if α, β are scalars and u,v vectors in V, it
follows that αv + βu ∈ V . �

Thus, from the above, subspaces of Fn are just subsets of Fn which are themselves vector
spaces.

Lemma 2.4.3 A set of vectors {x1, · · · ,xp} is linearly independent if and only if none of
the vectors can be obtained as a linear combination of the others.

Proof: Suppose first that {x1, · · · ,xp} is linearly independent. If xk =
∑

j ̸=k cjxj , then

0 = 1xk +
∑
j ̸=k

(−cj)xj ,

a nontrivial linear combination, contrary to assumption. This shows that if the set is linearly
independent, then none of the vectors is a linear combination of the others.

Now suppose no vector is a linear combination of the others. Is {x1, · · · ,xp} linearly
independent? If it is not, there exist scalars ci, not all zero such that

p∑
i=1

cixi = 0.

Say ck ̸= 0. Then you can solve for xk as

xk =
∑
j ̸=k

(−cj) /ckxj

contrary to assumption. �
The following is called the exchange theorem.

Theorem 2.4.4 (Exchange Theorem) Let {x1, · · · ,xr} be a linearly independent set of vec-
tors such that each xi is in span(y1, · · · ,ys) . Then r ≤ s.

Proof 1: Suppose not. Then r > s. By assumption, there exist scalars aji such that

xi =
s∑

j=1

ajiyj
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The matrix whose jith entry is aji has more columns than rows. Therefore, by Theorem
2.3.8 there exists a nonzero vector b ∈ Fr such that Ab = 0. Thus

0 =
r∑

i=1

ajibi, each j.

Then
r∑

i=1

bixi =
r∑

i=1

bi

s∑
j=1

ajiyj =
s∑

j=1

(
r∑

i=1

ajibi

)
yj = 0

contradicting the assumption that {x1, · · · ,xr} is linearly independent.
Proof 2: Define span{y1, · · · ,ys} ≡ V, it follows there exist scalars c1, · · · , cs such

that

x1 =
s∑

i=1

ciyi. (2.23)

Not all of these scalars can equal zero because if this were the case, it would follow that
x1 = 0 and so {x1, · · · ,xr} would not be linearly independent. Indeed, if x1 = 0, 1x1 +∑r

i=2 0xi = x1 = 0 and so there would exist a nontrivial linear combination of the vectors
{x1, · · · ,xr} which equals zero.

Say ck ̸= 0. Then solve (2.23) for yk and obtain

yk ∈ span


x1,

s-1 vectors here� �� �
y1, · · · ,yk−1,yk+1, · · · ,ys


 .

Define {z1, · · · , zs−1} by

{z1, · · · , zs−1} ≡ {y1, · · · ,yk−1,yk+1, · · · ,ys}

Therefore, span {x1, z1, · · · , zs−1} = V because if v ∈ V, there exist constants c1, · · · , cs
such that

v =
s−1∑
i=1

cizi + csyk.

Now replace the yk in the above with a linear combination of the vectors, {x1, z1, · · · , zs−1}
to obtain v ∈ span {x1, z1, · · · , zs−1} . The vector yk, in the list {y1, · · · ,ys} , has now been
replaced with the vector x1 and the resulting modified list of vectors has the same span as
the original list of vectors, {y1, · · · ,ys} .

Now suppose that r > s and that span {x1, · · · ,xl, z1, · · · , zp} = V where the vectors,
z1, · · · , zp are each taken from the set, {y1, · · · ,ys} and l+ p = s. This has now been done
for l = 1 above. Then since r > s, it follows that l ≤ s < r and so l+1 ≤ r. Therefore, xl+1

is a vector not in the list, {x1, · · · ,xl} and since span {x1, · · · ,xl, z1, · · · , zp} = V, there
exist scalars ci and dj such that

xl+1 =
l∑

i=1

cixi +

p∑
j=1

djzj . (2.24)

Now not all the dj can equal zero because if this were so, it would follow that {x1, · · · ,xr}
would be a linearly dependent set because one of the vectors would equal a linear combination
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of the others. Therefore, (2.24) can be solved for one of the zi, say zk, in terms of xl+1 and
the other zi and just as in the above argument, replace that zi with xl+1 to obtain

span


x1, · · ·xl,xl+1,

p-1 vectors here� �� �
z1, · · · zk−1, zk+1, · · · , zp


 = V.

Continue this way, eventually obtaining

span {x1, · · · ,xs} = V.

But then xr ∈ span {x1, · · · ,xs} contrary to the assumption that {x1, · · · ,xr} is linearly
independent. Therefore, r ≤ s as claimed.

Proof 3: Suppose r > s. Let zk denote a vector of {y1, · · · ,ys} . Thus there exists j as
small as possible such that

span (y1, · · · ,ys) = span (x1, · · · ,xm, z1, · · · , zj)

where m+ j = s. It is given that m = 0, corresponding to no vectors of {x1, · · · ,xm} and
j = s, corresponding to all the yk results in the above equation holding. If j > 0 then m < s
and so

xm+1 =

m∑
k=1

akxk +

j∑
i=1

bizi

Not all the bi can equal 0 and so you can solve for one of them in terms of xm+1,xm, · · · ,x1,
and the other zk. Therefore, there exists

{z1, · · · , zj−1} ⊆ {y1, · · · ,ys}

such that
span (y1, · · · ,ys) = span (x1, · · · ,xm+1, z1, · · · , zj−1)

contradicting the choice of j. Hence j = 0 and

span (y1, · · · ,ys) = span (x1, · · · ,xs)

It follows that
xs+1 ∈ span (x1, · · · ,xs)

contrary to the assumption the xk are linearly independent. Therefore, r ≤ s as claimed. �

Definition 2.4.5 A finite set of vectors, {x1, · · · ,xr} is a basis for Fn if span (x1, · · · ,xr) =
Fn and {x1, · · · ,xr} is linearly independent.

Corollary 2.4.6 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases1 of Fn. Then r = s = n.

1This is the plural form of basis. We could say basiss but it would involve an inordinate amount of
hissing as in “The sixth shiek’s sixth sheep is sick”. This is the reason that bases is used instead of basiss.
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Proof: From the exchange theorem, r ≤ s and s ≤ r. Now note the vectors,

ei =

1 is in the ith slot� �� �
(0, · · · , 0, 1, 0 · · · , 0)

for i = 1, 2, · · · , n are a basis for Fn. �
Lemma 2.4.7 Let {v1, · · · ,vr} be a set of vectors. Then V ≡ span (v1, · · · ,vr) is a sub-
space.

Proof: Suppose α, β are two scalars and let
∑r

k=1 ckvk and
∑r

k=1 dkvk are two elements
of V. What about

α
r∑

k=1

ckvk + β
r∑

k=1

dkvk?

Is it also in V ?

α

r∑
k=1

ckvk + β

r∑
k=1

dkvk =

r∑
k=1

(αck + βdk)vk ∈ V
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so the answer is yes. �
Definition 2.4.8 A finite set of vectors, {x1, · · · ,xr} is a basis for a subspace V of Fn if
span (x1, · · · ,xr) = V and {x1, · · · ,xr} is linearly independent.

Corollary 2.4.9 Let {x1, · · · ,xr} and {y1, · · · ,ys} be two bases for V . Then r = s.

Proof: From the exchange theorem, r ≤ s and s ≤ r. �
Definition 2.4.10 Let V be a subspace of Fn. Then dim (V ) read as the dimension of V
is the number of vectors in a basis.

Of course you should wonder right now whether an arbitrary subspace even has a basis.
In fact it does and this is in the next theorem. First, here is an interesting lemma.

Lemma 2.4.11 Suppose v /∈ span (u1, · · · ,uk) and {u1, · · · ,uk} is linearly independent.
Then {u1, · · · ,uk,v} is also linearly independent.

Proof: Suppose
∑k

i=1 ciui + dv = 0. It is required to verify that each ci = 0 and
that d = 0. But if d ̸= 0, then you can solve for v as a linear combination of the vectors,
{u1, · · · ,uk},

v = −
k∑

i=1

(ci
d

)
ui

contrary to assumption. Therefore, d = 0. But then
∑k

i=1 ciui = 0 and the linear indepen-
dence of {u1, · · · ,uk} implies each ci = 0 also. �
Theorem 2.4.12 Let V be a nonzero subspace of Fn. Then V has a basis.

Proof: Let v1 ∈ V where v1 ̸= 0. If span {v1} = V, stop. {v1} is a basis for V .
Otherwise, there exists v2 ∈ V which is not in span {v1} . By Lemma 2.4.11 {v1,v2} is a
linearly independent set of vectors. If span {v1,v2} = V stop, {v1,v2} is a basis for V. If
span {v1,v2} ̸= V, then there exists v3 /∈ span {v1,v2} and {v1,v2,v3} is a larger linearly
independent set of vectors. Continuing this way, the process must stop before n + 1 steps
because if not, it would be possible to obtain n+1 linearly independent vectors contrary to
the exchange theorem. �

In words the following corollary states that any linearly independent set of vectors can
be enlarged to form a basis.

Corollary 2.4.13 Let V be a subspace of Fn and let {v1, · · · ,vr} be a linearly independent
set of vectors in V . Then either it is a basis for V or there exist vectors, vr+1, · · · ,vs such
that {v1, · · · ,vr,vr+1, · · · ,vs} is a basis for V.

Proof: This follows immediately from the proof of Theorem 2.4.12. You do exactly the
same argument except you start with {v1, · · · ,vr} rather than {v1}. �

It is also true that any spanning set of vectors can be restricted to obtain a basis.

Theorem 2.4.14 Let V be a subspace of Fn and suppose span (u1 · · · ,up) = V where
the ui are nonzero vectors. Then there exist vectors {v1 · · · ,vr} such that {v1 · · · ,vr} ⊆
{u1 · · · ,up} and {v1 · · · ,vr} is a basis for V .

Proof: Let r be the smallest positive integer with the property that for some set
{v1 · · · ,vr} ⊆ {u1 · · · ,up} ,

span (v1 · · · ,vr) = V.

Then r ≤ p and it must be the case that {v1 · · · ,vr} is linearly independent because if it
were not so, one of the vectors, say vk would be a linear combination of the others. But
then you could delete this vector from {v1 · · · ,vr} and the resulting list of r − 1 vectors
would still span V contrary to the definition of r. �
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2.5 An Application To Matrices

The following is a theorem of major significance.

Theorem 2.5.1 Suppose A is an n × n matrix. Then A is one to one (injective) if and
only if A is onto (surjective). Also, if B is an n × n matrix and AB = I, then it follows
BA = I.

Proof: First suppose A is one to one. Consider the vectors, {Ae1, · · · , Aen} where ek
is the column vector which is all zeros except for a 1 in the kth position. This set of vectors
is linearly independent because if

n∑
k=1

ckAek = 0,

then since A is linear,

A

(
n∑

k=1

ckek

)
= 0

and since A is one to one, it follows

n∑
k=1

ckek = 0

which implies each ck = 0 because the ek are clearly linearly independent.
Therefore, {Ae1, · · · , Aen} must be a basis for Fn because if not there would exist a

vector, y /∈ span (Ae1, · · · , Aen) and then by Lemma 2.4.11, {Ae1, · · · , Aen,y} would be
an independent set of vectors having n+ 1 vectors in it, contrary to the exchange theorem.
It follows that for y ∈ Fn there exist constants, ci such that

y =

n∑
k=1

ckAek = A

(
n∑

k=1

ckek

)

showing that, since y was arbitrary, A is onto.
Next suppose A is onto. This means the span of the columns of A equals Fn. If these

columns are not linearly independent, then by Lemma 2.4.3 on Page 74, one of the columns
is a linear combination of the others and so the span of the columns of A equals the span of
the n−1 other columns. This violates the exchange theorem because {e1, · · · , en} would be
a linearly independent set of vectors contained in the span of only n− 1 vectors. Therefore,
the columns of A must be independent and this is equivalent to saying that Ax = 0 if and
only if x = 0. This implies A is one to one because if Ax = Ay, then A (x− y) = 0 and so
x− y = 0.

Now suppose AB = I. Why is BA = I? Since AB = I it follows B is one to one since
otherwise, there would exist, x ̸= 0 such that Bx = 0 and then ABx = A0 = 0 ̸= Ix.
Therefore, from what was just shown, B is also onto. In addition to this, A must be one
to one because if Ay = 0, then y = Bx for some x and then x = ABx = Ay = 0 showing
y = 0. Now from what is given to be so, it follows (AB)A = A and so using the associative
law for matrix multiplication,

A (BA)−A = A (BA− I) = 0.

But this means (BA− I)x = 0 for all x since otherwise, A would not be one to one. Hence
BA = I as claimed. �
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This theorem shows that if an n × n matrix B acts like an inverse when multiplied on
one side of A, it follows that B = A−1and it will act like an inverse on both sides of A.

The conclusion of this theorem pertains to square matrices only. For example, let

A =




1 0
0 1
1 0


 , B =

(
1 0 0
1 1 −1

)
(2.25)

Then

BA =

(
1 0
0 1

)

but

AB =




1 0 0
1 1 −1
1 0 0


 .

2.6 Matrices And Calculus

The study of moving coordinate systems gives a non trivial example of the usefulness of the
ideas involving linear transformations and matrices. To begin with, here is the concept of
the product rule extended to matrix multiplication.

Definition 2.6.1 Let A (t) be an m × n matrix. Say A (t) = (Aij (t)) . Suppose also that
Aij (t) is a differentiable function for all i, j. Then define A′ (t) ≡

(
A′

ij (t)
)
. That is, A′ (t)

is the matrix which consists of replacing each entry by its derivative. Such an m×n matrix
in which the entries are differentiable functions is called a differentiable matrix.

The next lemma is just a version of the product rule.

Lemma 2.6.2 Let A (t) be an m × n matrix and let B (t) be an n × p matrix with the
property that all the entries of these matrices are differentiable functions. Then

(A (t)B (t))
′
= A′ (t)B (t) +A (t)B′ (t) .

Proof: This is like the usual proof.

1

h
(A (t+ h)B (t+ h)−A (t)B (t)) =

1

h
(A (t+ h)B (t+ h)−A (t+ h)B (t)) +

1

h
(A (t+ h)B (t)−A (t)B (t))

= A (t+ h)
B (t+ h)−B (t)

h
+

A (t+ h)−A (t)

h
B (t)

and now, using the fact that the entries of the matrices are all differentiable, one can pass
to a limit in both sides as h → 0 and conclude that

(A (t)B (t))
′
= A′ (t)B (t) + A (t)B′ (t)�
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2.6.1 The Coriolis Acceleration

Imagine a point on the surface of the earth. Now consider unit vectors, one pointing South,
one pointing East and one pointing directly away from the center of the earth.

GET THERE FASTER
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�i

�k
�
j

Denote the first as i, the second as j, and the third as k. If you are standing on the earth
you will consider these vectors as fixed, but of course they are not. As the earth turns, they
change direction and so each is in reality a function of t. Nevertheless, it is with respect
to these apparently fixed vectors that you wish to understand acceleration, velocities, and
displacements.

In general, let i∗, j∗,k∗ be the usual fixed vectors in space and let i (t) , j (t) ,k (t) be an
orthonormal basis of vectors for each t, like the vectors described in the first paragraph.
It is assumed these vectors are C1 functions of t. Letting the positive x axis extend in the
direction of i (t) , the positive y axis extend in the direction of j (t), and the positive z axis
extend in the direction of k (t) , yields a moving coordinate system. Now let u be a vector
and let t0 be some reference time. For example you could let t0 = 0. Then define the
components of u with respect to these vectors, i, j,k at time t0 as

u ≡ u1i (t0) + u2j (t0) + u3k (t0) .

Let u (t) be defined as the vector which has the same components with respect to i, j,k but
at time t. Thus

u (t) ≡ u1i (t) + u2j (t) + u3k (t) .

and the vector has changed although the components have not.
This is exactly the situation in the case of the apparently fixed basis vectors on the earth

if u is a position vector from the given spot on the earth’s surface to a point regarded as
fixed with the earth due to its keeping the same coordinates relative to the coordinate axes
which are fixed with the earth. Now define a linear transformation Q (t) mapping R3 to R3

by
Q (t)u ≡ u1i (t) + u2j (t) + u3k (t)

where
u ≡ u1i (t0) + u2j (t0) + u3k (t0)

Thus letting v be a vector defined in the same manner as u and α, β, scalars,

Q (t) (αu+ βv) ≡
(
αu1 + βv1

)
i (t) +

(
αu2 + βv2

)
j (t) +

(
αu3 + βv3

)
k (t)

=
(
αu1i (t) + αu2j (t) + αu3k (t)

)
+

(
βv1i (t) + βv2j (t) + βv3k (t)

)

= α
(
u1i (t) + u2j (t) + u3k (t)

)
+ β

(
v1i (t) + v2j (t) + v3k (t)

)

≡ αQ (t)u+ βQ (t)v
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showing that Q (t) is a linear transformation. Also, Q (t) preserves all distances because,
since the vectors, i (t) , j (t) ,k (t) form an orthonormal set,

|Q (t)u| =

(
3∑

i=1

(
ui
)2
)1/2

= |u| .

Lemma 2.6.3 Suppose Q (t) is a real, differentiable n×n matrix which preserves distances.

Then Q (t)Q (t)
T
= Q (t)

T
Q (t) = I. Also, if u (t) ≡ Q (t)u, then there exists a vector, Ω (t)

such that
u′ (t) = Ω (t)× u (t) .

The symbol × refers to the cross product.

Proof: Recall that (z ·w) = 1
4

(
|z+w|2 − |z−w|2

)
. Therefore,

(Q (t)u·Q (t)w) =
1

4

(
|Q (t) (u+w)|2 − |Q (t) (u−w)|2

)

=
1

4

(
|u+w|2 − |u−w|2

)

= (u ·w) .

This implies (
Q (t)

T
Q (t)u ·w

)
= (u ·w)

for all u,w. Therefore, Q (t)
T
Q (t)u = u and so Q (t)

T
Q (t) = Q (t)Q (t)

T
= I. This proves

the first part of the lemma.
It follows from the product rule, Lemma 2.6.2 that

Q′ (t)Q (t)
T
+Q (t)Q′ (t)

T
= 0

and so

Q′ (t)Q (t)
T
= −

(
Q′ (t)Q (t)

T
)T

. (2.26)

From the definition, Q (t)u = u (t) ,

u′ (t) = Q′ (t)u =Q′ (t)

=u� �� �
Q (t)

T
u (t).

Then writing the matrix of Q′ (t)Q (t)
T

with respect to fixed in space orthonormal basis
vectors, i∗, j∗,k∗, where these are the usual basis vectors for R3, it follows from 2.26 that
the matrix of Q′ (t)Q (t)

T
is of the form




0 −ω3 (t) ω2 (t)
ω3 (t) 0 −ω1 (t)
−ω2 (t) ω1 (t) 0




for some time dependent scalars ωi. Therefore,




u1

u2

u3




′

(t)=




0 −ω3 (t) ω2 (t)
ω3 (t) 0 −ω1 (t)
−ω2 (t) ω1 (t) 0







u1

u2

u3


 (t)
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where the ui are the components of the vector u (t) in terms of the fixed vectors i∗, j∗,k∗.
Therefore,

u′ (t) = Ω (t)× u (t) = Q′ (t)Q (t)
T
u (t) (2.27)

where
Ω (t) = ω1 (t) i

∗+ω2 (t) j
∗+ω3 (t)k

∗.

because

Ω (t)× u (t) ≡

������
i∗ j∗ k∗

w1 w2 w3

u1 u2 u3

������
≡

i∗
(
w2u

3 − w3u
2
)
+ j∗

(
w3u

1 − w3
1

)
+ k∗ (w1u

2 − w2u
1
)
.

This proves the lemma and yields the existence part of the following theorem. �

Theorem 2.6.4 Let i (t) , j (t) ,k (t) be as described. Then there exists a unique vector Ω (t)
such that if u (t) is a vector whose components are constant with respect to i (t) , j (t) ,k (t) ,
then

u′ (t) = Ω (t)× u (t) .

Proof: It only remains to prove uniqueness. SupposeΩ1 also works. Then u (t) = Q (t)u
and so u′ (t) = Q′ (t)u and

Q′ (t)u = Ω×Q (t)u = Ω1 ×Q (t)u

for all u. Therefore,
(Ω−Ω1)×Q (t)u = 0

for all u and since Q (t) is one to one and onto, this implies (Ω−Ω1)×w = 0 for all w and
thus Ω−Ω1 = 0. �

Now let R (t) be a position vector and let

r (t) = R (t) + rB (t)

where
rB (t) ≡ x (t) i (t)+y (t) j (t)+z (t)k (t) .

�

�
�

R(t)

rB(t)

r(t)
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In the example of the earth, R (t) is the position vector of a point p (t) on the earth’s
surface and rB (t) is the position vector of another point from p (t) , thus regarding p (t)
as the origin. rB (t) is the position vector of a point as perceived by the observer on the
earth with respect to the vectors he thinks of as fixed. Similarly, vB (t) and aB (t) will be
the velocity and acceleration relative to i (t) , j (t) ,k (t), and so vB = x′i + y′j + z′k and
aB = x′′i + y′′j + z′′k. Then

v ≡ r′ = R′ + x′i+ y′j+ z′k+xi′ + yj′ + zk′.

By , 2.27, if e ∈{i, j,k} , e′ = Ω× e because the components of these vectors with respect
to i, j,k are constant. Therefore,

xi′ + yj′ + zk′ = xΩ× i+ yΩ× j+ zΩ× k

= Ω× (xi+ yj+ zk)

and consequently,

v = R′ + x′i+ y′j+ z′k+Ω× rB = R′ + x′i+ y′j+ z′k+Ω× (xi+ yj+ zk) .
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Now consider the acceleration. Quantities which are relative to the moving coordinate
system and quantities which are relative to a fixed coordinate system are distinguished by
using the subscript B on those relative to the moving coordinate system.

a = v′ = R′′ + x′′i+ y′′j+ z′′k+

Ω×vB� �� �
x′i′ + y′j′ + z′k′ + Ω′ × rB

+Ω×




vB� �� �
x′i+ y′j+ z′k+

Ω×rB(t)� �� �
xi′ + yj′ + zk′




= R′′ + aB +Ω′ × rB + 2Ω× vB +Ω× (Ω× rB) .

The acceleration aB is that perceived by an observer who is moving with the moving coor-
dinate system and for whom the moving coordinate system is fixed. The term Ω× (Ω× rB)
is called the centripetal acceleration. Solving for aB ,

aB = a−R′′ −Ω′ × rB − 2Ω× vB −Ω× (Ω× rB) . (2.28)

Here the term − (Ω× (Ω× rB)) is called the centrifugal acceleration, it being an acceleration
felt by the observer relative to the moving coordinate system which he regards as fixed, and
the term −2Ω× vB is called the Coriolis acceleration, an acceleration experienced by the
observer as he moves relative to the moving coordinate system. The mass multiplied by the
Coriolis acceleration defines the Coriolis force.

There is a ride found in some amusement parks in which the victims stand next to
a circular wall covered with a carpet or some rough material. Then the whole circular
room begins to revolve faster and faster. At some point, the bottom drops out and the
victims are held in place by friction. The force they feel is called centrifugal force and it
causes centrifugal acceleration. It is not necessary to move relative to coordinates fixed with
the revolving wall in order to feel this force and it is pretty predictable. However, if the
nauseated victim moves relative to the rotating wall, he will feel the effects of the Coriolis
force and this force is really strange. The difference between these forces is that the Coriolis
force is caused by movement relative to the moving coordinate system and the centrifugal
force is not.

2.6.2 The Coriolis Acceleration On The Rotating Earth

Now consider the earth. Let i∗, j∗,k∗, be the usual basis vectors fixed in space with k∗

pointing in the direction of the north pole from the center of the earth and let i, j,k be the
unit vectors described earlier with i pointing South, j pointing East, and k pointing away
from the center of the earth at some point of the rotating earth’s surface p. Letting R (t) be
the position vector of the point p, from the center of the earth, observe the coordinates of
R (t) are constant with respect to i (t) , j (t) ,k (t) . Also, since the earth rotates from West
to East and the speed of a point on the surface of the earth relative to an observer fixed in
space is ω |R| sinϕ where ω is the angular speed of the earth about an axis through the poles
and ϕ is the polar angle measured from the positive z axis down as in spherical coordinates.
It follows from the geometric definition of the cross product that

R′ = ωk∗ ×R

Therefore, the vector of Theorem 2.6.4 is Ω = ωk∗ and so

R′′ =

=0� �� �
Ω′ ×R+ Ω×R′ = Ω× (Ω×R)
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since Ω does not depend on t. Formula 2.28 implies

aB = a−Ω× (Ω×R)− 2Ω× vB −Ω× (Ω× rB) . (2.29)

In this formula, you can totally ignore the term Ω× (Ω× rB) because it is so small when-
ever you are considering motion near some point on the earth’s surface. To see this, note

ω

seconds in a day� �� �
(24) (3600) = 2π, and so ω = 7.2722 × 10−5 in radians per second. If you are using

seconds to measure time and feet to measure distance, this term is therefore, no larger than

(
7.2722× 10−5

)2 |rB | .
Clearly this is not worth considering in the presence of the acceleration due to gravity which
is approximately 32 feet per second squared near the surface of the earth.

If the acceleration a is due to gravity, then

aB = a−Ω× (Ω×R)− 2Ω× vB =

≡g� �� �
−GM (R+ rB)

|R+ rB |3
−Ω× (Ω×R)− 2Ω× vB ≡ g − 2Ω× vB.

Note that
Ω× (Ω×R) = (Ω ·R)Ω− |Ω|2 R

and so g, the acceleration relative to the moving coordinate system on the earth is not
directed exactly toward the center of the earth except at the poles and at the equator,
although the components of acceleration which are in other directions are very small when
compared with the acceleration due to the force of gravity and are often neglected. There-
fore, if the only force acting on an object is due to gravity, the following formula describes
the acceleration relative to a coordinate system moving with the earth’s surface.

aB = g−2 (Ω× vB)

While the vectorΩ is quite small, if the relative velocity, vB is large, the Coriolis acceleration
could be significant. This is described in terms of the vectors i (t) , j (t) ,k (t) next.

Letting (ρ, θ, ϕ) be the usual spherical coordinates of the point p (t) on the surface
taken with respect to i∗, j∗,k∗ the usual way with ϕ the polar angle, it follows the i∗, j∗,k∗

coordinates of this point are 


ρ sin (ϕ) cos (θ)
ρ sin (ϕ) sin (θ)

ρ cos (ϕ)


 .

It follows,
i =cos (ϕ) cos (θ) i∗ + cos (ϕ) sin (θ) j∗ − sin (ϕ)k∗

j = − sin (θ) i∗ + cos (θ) j∗ + 0k∗

and
k =sin (ϕ) cos (θ) i∗ + sin (ϕ) sin (θ) j∗ + cos (ϕ)k∗.

It is necessary to obtain k∗ in terms of the vectors, i, j,k. Thus the following equation
needs to be solved for a, b, c to find k∗ = ai+bj+ck

k∗

� �� �


0
0
1


 =




cos (ϕ) cos (θ) − sin (θ) sin (ϕ) cos (θ)
cos (ϕ) sin (θ) cos (θ) sin (ϕ) sin (θ)

− sin (ϕ) 0 cos (ϕ)







a
b
c


 (2.30)
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The first column is i, the second is j and the third is k in the above matrix. The solution
is a = − sin (ϕ) , b = 0, and c = cos (ϕ) .

Now the Coriolis acceleration on the earth equals

2 (Ω× vB) = 2ω




k∗

� �� �
− sin (ϕ) i+0j+cos (ϕ)k


× (x′i+y′j+z′k) .

This equals
2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] . (2.31)

Remember ϕ is fixed and pertains to the fixed point, p (t) on the earth’s surface. Therefore,
if the acceleration a is due to gravity,

aB = g−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where g = −GM(R+rB)

|R+rB |3 −Ω× (Ω×R) as explained above. The term Ω× (Ω×R) is pretty

small and so it will be neglected. However, the Coriolis force will not be neglected.

Example 2.6.5 Suppose a rock is dropped from a tall building. Where will it strike?
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Assume a = −gk and the j component of aB is approximately

−2ω (x′ cosϕ+ z′ sinϕ) .

The dominant term in this expression is clearly the second one because x′ will be small.
Also, the i and k contributions will be very small. Therefore, the following equation is
descriptive of the situation.

aB = −gk−2z′ω sinϕj.

z′ = −gt approximately. Therefore, considering the j component, this is

2gtω sinϕ.

Two integrations give
(
ωgt3/3

)
sinϕ for the j component of the relative displacement at

time t.
This shows the rock does not fall directly towards the center of the earth as expected

but slightly to the east.
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Example 2.6.6 In 1851 Foucault set a pendulum vibrating and observed the earth rotate
out from under it. It was a very long pendulum with a heavy weight at the end so that it
would vibrate for a long time without stopping2. This is what allowed him to observe the
earth rotate out from under it. Clearly such a pendulum will take 24 hours for the plane of
vibration to appear to make one complete revolution at the north pole. It is also reasonable
to expect that no such observed rotation would take place on the equator. Is it possible to
predict what will take place at various latitudes?

Using 2.31, in 2.29,
aB = a−Ω× (Ω×R)

−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] .

Neglecting the small term, Ω× (Ω×R) , this becomes

= −gk+T/m−2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k]

where T, the tension in the string of the pendulum, is directed towards the point at which
the pendulum is supported, and m is the mass of the pendulum bob. The pendulum can be
thought of as the position vector from (0, 0, l) to the surface of the sphere x2+y2+(z − l)

2
=

l2. Therefore,

T = −T
x

l
i−T

y

l
j+T

l − z

l
k

and consequently, the differential equations of relative motion are

x′′ = −T
x

ml
+ 2ωy′ cosϕ

y′′ = −T
y

ml
− 2ω (x′ cosϕ+ z′ sinϕ)

and

z′′ = T
l − z

ml
− g + 2ωy′ sinϕ.

If the vibrations of the pendulum are small so that for practical purposes, z′′ = z = 0, the
last equation may be solved for T to get

gm− 2ωy′ sin (ϕ)m = T.

Therefore, the first two equations become

x′′ = − (gm− 2ωmy′ sinϕ)
x

ml
+ 2ωy′ cosϕ

and
y′′ = − (gm− 2ωmy′ sinϕ)

y

ml
− 2ω (x′ cosϕ+ z′ sinϕ) .

All terms of the form xy′ or y′y can be neglected because it is assumed x and y remain
small. Also, the pendulum is assumed to be long with a heavy weight so that x′ and y′ are
also small. With these simplifying assumptions, the equations of motion become

x′′ + g
x

l
= 2ωy′ cosϕ

and
y′′ + g

y

l
= −2ωx′ cosϕ.

2There is such a pendulum in the Eyring building at BYU and to keep people from touching it, there is
a little sign which says Warning! 1000 ohms.
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These equations are of the form

x′′ + a2x = by′, y′′ + a2y = −bx′ (2.32)

where a2 = g
l and b = 2ω cosϕ. Then it is fairly tedious but routine to verify that for each

constant, c,

x = c sin

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
, y = c cos

(
bt

2

)
sin

(√
b2 + 4a2

2
t

)
(2.33)

yields a solution to 2.32 along with the initial conditions,

x (0) = 0, y (0) = 0, x′ (0) = 0, y′ (0) =
c
√
b2 + 4a2

2
. (2.34)

It is clear from experiments with the pendulum that the earth does indeed rotate out from
under it causing the plane of vibration of the pendulum to appear to rotate. The purpose
of this discussion is not to establish these self evident facts but to predict how long it takes
for the plane of vibration to make one revolution. Therefore, there will be some instant in
time at which the pendulum will be vibrating in a plane determined by k and j. (Recall
k points away from the center of the earth and j points East. ) At this instant in time,
defined as t = 0, the conditions of 2.34 will hold for some value of c and so the solution to
2.32 having these initial conditions will be those of 2.33 by uniqueness of the initial value
problem. Writing these solutions differently,

(
x (t)
y (t)

)
= c

(
sin

(
bt
2

)
cos

(
bt
2

)
)
sin

(√
b2 + 4a2

2
t

)

This is very interesting! The vector, c

(
sin

(
bt
2

)
cos

(
bt
2

)
)

always has magnitude equal to |c|

but its direction changes very slowly because b is very small. The plane of vibration is

determined by this vector and the vector k. The term sin
(√

b2+4a2

2 t
)
changes relatively fast

and takes values between −1 and 1. This is what describes the actual observed vibrations
of the pendulum. Thus the plane of vibration will have made one complete revolution when
t = T for

bT

2
≡ 2π.

Therefore, the time it takes for the earth to turn out from under the pendulum is

T =
4π

2ω cosϕ
=

2π

ω
secϕ.

Since ω is the angular speed of the rotating earth, it follows ω = 2π
24 = π

12 in radians per
hour. Therefore, the above formula implies

T = 24 secϕ.

I think this is really amazing. You could actually determine latitude, not by taking readings
with instruments using the North Star but by doing an experiment with a big pendulum.
You would set it vibrating, observe T in hours, and then solve the above equation for ϕ.
Also note the pendulum would not appear to change its plane of vibration at the equator
because limϕ→π/2 secϕ = ∞.

The Coriolis acceleration is also responsible for the phenomenon of the next example.

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

92 

Linear Transformations

Example 2.6.7 It is known that low pressure areas rotate counterclockwise as seen from
above in the Northern hemisphere but clockwise in the Southern hemisphere. Why?

Neglect accelerations other than the Coriolis acceleration and the following acceleration
which comes from an assumption that the point p (t) is the location of the lowest pressure.

a = −a (rB) rB

where rB = r will denote the distance from the fixed point p (t) on the earth’s surface which
is also the lowest pressure point. Of course the situation could be more complicated but
this will suffice to explain the above question. Then the acceleration observed by a person
on the earth relative to the apparently fixed vectors, i,k, j, is

aB = −a (rB) (xi+yj+zk)− 2ω [−y′ cos (ϕ) i+(x′ cos (ϕ) + z′ sin (ϕ)) j− (y′ sin (ϕ)k)]

Therefore, one obtains some differential equations from aB = x′′i+ y′′j+ z′′k by matching
the components. These are

x′′ + a (rB)x = 2ωy′ cosϕ

y′′ + a (rB) y = −2ωx′ cosϕ− 2ωz′ sin (ϕ)

z′′ + a (rB) z = 2ωy′ sinϕ

Now remember, the vectors, i, j,k are fixed relative to the earth and so are constant vectors.
Therefore, from the properties of the determinant and the above differential equations,

(r′B × rB)
′
=

������
i j k
x′ y′ z′

x y z

������

′

=

������
i j k
x′′ y′′ z′′

x y z

������

=

������
i j k

−a (rB)x+ 2ωy′ cosϕ −a (rB) y − 2ωx′ cosϕ− 2ωz′ sin (ϕ) −a (rB) z + 2ωy′ sinϕ
x y z

������
Then the kth component of this cross product equals

ω cos (ϕ)
(
y2 + x2

)′
+ 2ωxz′ sin (ϕ) .

The first term will be negative because it is assumed p (t) is the location of low pressure
causing y2+x2 to be a decreasing function. If it is assumed there is not a substantial motion
in the k direction, so that z is fairly constant and the last term can be neglected, then the
kth component of (r′B × rB)

′
is negative provided ϕ ∈

(
0, π

2

)
and positive if ϕ ∈

(
π
2 , π

)
.

Beginning with a point at rest, this implies r′B ×rB = 0 initially and then the above implies
its kth component is negative in the upper hemisphere when ϕ < π/2 and positive in the
lower hemisphere when ϕ > π/2. Using the right hand and the geometric definition of the
cross product, this shows clockwise rotation in the lower hemisphere and counter clockwise
rotation in the upper hemisphere.

Note also that as ϕ gets close to π/2 near the equator, the above reasoning tends to
break down because cos (ϕ) becomes close to zero. Therefore, the motion towards the low
pressure has to be more pronounced in comparison with the motion in the k direction in
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order to draw this conclusion.

2.7 Exercises

1. Show the map T : Rn → Rm defined by T (x) = Ax where A is an m× n matrix and
x is an m× 1 column vector is a linear transformation.

2. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3.

3. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4.

4. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of −π/3.

5. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3.
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6. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/12. Hint: Note that π/12 = π/3− π/4.

7. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 2π/3 and then reflects across the x axis.

8. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/3 and then reflects across the x axis.

9. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and then reflects across the x axis.

10. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/6 and then reflects across the x axis followed by a reflection across the
y axis.

11. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/4.

12. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of π/4 and next reflects every vector across the x axis. Compare with the
above problem.

13. Find the matrix for the linear transformation which reflects every vector in R2 across
the x axis and then rotates every vector through an angle of π/6.

14. Find the matrix for the linear transformation which reflects every vector in R2 across
the y axis and then rotates every vector through an angle of π/6.

15. Find the matrix for the linear transformation which rotates every vector in R2 through
an angle of 5π/12. Hint: Note that 5π/12 = 2π/3− π/4.

16. Find the matrix for proju (v) where u = (1,−2, 3)
T
.

17. Find the matrix for proju (v) where u = (1, 5, 3)
T
.

18. Find the matrix for proju (v) where u = (1, 0, 3)
T
.

19. Give an example of a 2 × 2 matrix A which has all its entries nonzero and satisfies
A2 = A. A matrix which satisfies A2 = A is called idempotent.

20. Let A be an m × n matrix and let B be an n × m matrix where n < m. Show that
AB cannot have an inverse.

21. Find ker (A) for

A =




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2


 .

Recall ker (A) is just the set of solutions to Ax = 0.

22. If A is a linear transformation, and Axp= b, show that the general solution to the
equation Ax = b is of the form xp+y where y ∈ ker (A). By this I mean to show that
whenever Az = b there exists y ∈ ker (A) such that xp + y = z. For the definition of
ker (A) see Problem 21.
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23. Using Problem 21, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




11
7
18
7




24. Using Problem 21, find the general solution to the following linear system.




1 2 3 2 1
0 2 1 1 2
1 4 4 3 3
0 2 1 1 2







x1

x2

x3

x4

x5




=




6
7
13
7




25. Show that the function Tu defined by Tu (v) ≡ v − proju (v) is also a linear transfor-
mation.

26. If u = (1, 2, 3)
T
, as in Example 9.3.22 and Tu is given in the above problem, find the

matrix Au which satisfies Aux = Tu (x).

27. Suppose V is a subspace of Fn and T : V → Fp is a nonzero linear transformation.
Show that there exists a basis for Im (T ) ≡ T (V )

{Tv1, · · · , Tvm}

and that in this situation,
{v1, · · · ,vm}

is linearly independent.

28. ↑In the situation of Problem 27 where V is a subspace of Fn, show that there exists
{z1, · · · , zr} a basis for ker (T ) . (Recall Theorem 2.4.12. Since ker (T ) is a subspace,
it has a basis.) Now for an arbitrary Tv ∈ T (V ) , explain why

Tv = a1Tv1 + · · ·+ amTvm

and why this implies

v − (a1v1 + · · ·+ amvm) ∈ ker (T ) .

Then explain why V = span (v1, · · · ,vm, z1, · · · , zr) .

29. ↑In the situation of the above problem, show {v1, · · · ,vm, z1, · · · , zr} is a basis for V
and therefore, dim (V ) = dim (ker (T )) + dim (T (V )) .

30. ↑Let A be a linear transformation from V to W and let B be a linear transformation
from W to U where V,W,U are all subspaces of some Fp. Explain why

A (ker (BA)) ⊆ ker (B) , ker (A) ⊆ ker (BA) .

ker(B)

A(ker(BA))

ker(BA)

ker(A) �A
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31. ↑Let {x1, · · · ,xn} be a basis of ker (A) and let {Ay1, · · · , Aym} be a basis ofA (ker (BA)).
Let z ∈ ker (BA) . Explain why

Az ∈ span {Ay1, · · · , Aym}

and why there exist scalars ai such that

A (z − (a1y1 + · · ·+ amym)) = 0

and why it follows z − (a1y1 + · · ·+ amym) ∈ span {x1, · · · ,xn}. Now explain why

ker (BA) ⊆ span {x1, · · · ,xn,y1, · · · ,ym}

and so
dim (ker (BA)) ≤ dim (ker (B)) + dim (ker (A)) .

This important inequality is due to Sylvester. Show that equality holds if and only if
A(kerBA) = ker(B).

32. Generalize the result of the previous problem to any finite product of linear mappings.
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33. If W ⊆ V for W,V two subspaces of Fn and if dim (W ) = dim (V ) , show W = V .

34. Let V be a subspace of Fnand let V1, · · · , Vm be subspaces, each contained in V . Then

V = V1 ⊕ · · · ⊕ Vm (2.35)

if every v ∈ V can be written in a unique way in the form

v = v1 + · · ·+ vm

where each vi ∈ Vi. This is called a direct sum. If this uniqueness condition does not
hold, then one writes

V = V1 + · · ·+ Vm

and this symbol means all vectors of the form

v1 + · · ·+ vm, vj ∈ Vj for each j.

Show 2.35 is equivalent to saying that if

0 = v1 + · · ·+ vm, vj ∈ Vj for each j,

then each vj = 0. Next show that in the situation of 2.35, if βi =
{
ui
1, · · · , ui

mi

}
is a

basis for Vi, then {β1, · · · , βm} is a basis for V .

35. ↑Suppose you have finitely many linear mappings L1, L2, · · · , Lm which map V to V
where V is a subspace of Fn and suppose they commute. That is, LiLj = LjLi for all
i, j. Also suppose Lk is one to one on ker (Lj) whenever j ̸= k. Letting P denote the
product of these linear transformations, P = L1L2 · · ·Lm, first show

ker (L1) + · · ·+ ker (Lm) ⊆ ker (P )

Next show Lj : ker (Li) → ker (Li) . Then show

ker (L1) + · · ·+ ker (Lm) = ker (L1)⊕ · · · ⊕ ker (Lm) .

Using Sylvester’s theorem, and the result of Problem 33, show

ker (P ) = ker (L1)⊕ · · · ⊕ ker (Lm)

Hint: By Sylvester’s theorem and the above problem,

dim (ker (P )) ≤
∑
i

dim (ker (Li))

= dim (ker (L1)⊕ · · · ⊕ ker (Lm)) ≤ dim (ker (P ))

Now consider Problem 33.

36. Let M (Fn,Fn) denote the set of all n×n matrices having entries in F. With the usual
operations of matrix addition and scalar multiplications, explain why M (Fn,Fn) can

be considered as Fn2

. Give a basis for M (Fn,Fn) . If A ∈ M (Fn,Fn) , explain why
there exists a monic (leading coefficient equals 1) polynomial of the form

λk + ak−1λ
k−1 + · · ·+ a1λ+ a0

such that
Ak + ak−1A

k−1 + · · ·+ a1A+ a0I = 0
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The minimal polynomial of A is the polynomial like the above, for which p (A) = 0
which has smallest degree. I will discuss the uniqueness of this polynomial later. Hint:
Consider the matrices I, A,A2, · · · , An2

. There are n2+1 of these matrices. Can they
be linearly independent? Now consider all polynomials and pick one of smallest degree
and then divide by the leading coefficient.

37. ↑Suppose the field of scalars is C and A is an n × n matrix. From the preceding
problem, and the fundamental theorem of algebra, this minimal polynomial factors

(λ− λ1)
r1 (λ− λ2)

r2 · · · (λ− λk)
rk

where rj is the algebraic multiplicity of λj , and the λj are distinct. Thus

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk = 0

and so, letting P = (A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λkI)
rk and Lj = (A− λjI)

rj

apply the result of Problem 35 to verify that

Cn = ker (L1)⊕ · · · ⊕ ker (Lk)

and that A : ker (Lj) → ker (Lj). In this context, ker (Lj) is called the generalized
eigenspace for λj . You need to verify the conditions of the result of this problem hold.

38. In the context of Problem 37, show there exists a nonzero vector x such that

(A− λjI)x = 0.

This is called an eigenvector and the λj is called an eigenvalue. Hint:There must exist
a vector y such that

(A− λ1I)
r1 (A− λ2I)

r2 · · · (A− λjI)
rj−1 · · · (A− λkI)

rk y = z ̸= 0

Why? Now what happens if you do (A− λjI) to z?

39. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which
satisfies

Q (t)Q (t)
T
= I

Suppose also the entries of Q (t) are differentiable. Show
(
QT

)′
= −QTQ′QT .

40. Remember the Coriolis force was 2Ω× vB where Ω was a particular vector which
came from the matrix Q (t) as described above. Show that

Q (t) =




i (t) · i (t0) j (t) · i (t0) k (t) · i (t0)
i (t) · j (t0) j (t) · j (t0) k (t) · j (t0)
i (t) · k (t0) j (t) · k (t0) k (t) · k (t0)


 .

There will be no Coriolis force exactly when Ω = 0 which corresponds to Q′ (t) = 0.
When will Q′ (t) = 0?

41. An illustration used in many beginning physics books is that of firing a rifle hori-
zontally and dropping an identical bullet from the same height above the perfectly
flat ground followed by an assertion that the two bullets will hit the ground at ex-
actly the same time. Is this true on the rotating earth assuming the experiment
takes place over a large perfectly flat field so the curvature of the earth is not an
issue? Explain. What other irregularities will occur? Recall the Coriolis acceleration
is 2ω [(−y′ cosϕ) i+(x′ cosϕ+ z′ sinϕ) j− (y′ sinϕ)k] where k points away from the
center of the earth, j points East, and i points South.
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Determinants

3.1 Basic Techniques And Properties

Let A be an n × n matrix. The determinant of A, denoted as det (A) is a number. If the
matrix is a 2×2 matrix, this number is very easy to find.

Definition 3.1.1 Let A =

(
a b
c d

)
. Then

det (A) ≡ ad− cb.

The determinant is also often denoted by enclosing the matrix with two vertical lines. Thus

det

(
a b
c d

)
=

����
a b
c d

���� .

Example 3.1.2 Find det

(
2 4
−1 6

)
.

From the definition this is just (2) (6)− (−1) (4) = 16.
Assuming the determinant has been defined for k × k matrices for k ≤ n − 1, it is now

time to define it for n× n matrices.

Definition 3.1.3 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix, cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

Now here is the definition of the determinant given recursively.

Theorem 3.1.4 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =
n∑

i=1

aij cof (A)ij . (3.1)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.
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Note that for a n× n matrix, you will need n! terms to evaluate the determinant in this
way. If n = 10, this is 10! = 3, 628 , 800 terms. This is a lot of terms.

In addition to the difficulties just discussed, why is the determinant well defined? Why
should you get the same thing when you expand along any row or column? I think you
should regard this claim that you always get the same answer by picking any row or column
with considerable skepticism. It is incredible and not at all obvious. However, it requires
a little effort to establish it. This is done in the section on the theory of the determinant
which follows.

Notwithstanding the difficulties involved in using the method of Laplace expansion,
certain types of matrices are very easy to deal with.

Definition 3.1.5 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii, as shown.




∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

You should verify the following using the above theorem on Laplace expansion.

Corollary 3.1.6 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

Proof: The corollary is true if the matrix is one to one. Suppose it is n× n. Then the
matrix is of the form (

m11 a
0 M1

)

where M1 is (n− 1)×(n− 1) . Then expanding along the first row, you get m11 det (M1)+0.
Then use the induction hypothesis to obtain that det (M1) =

∏n
i=2 mii. �

Example 3.1.7 Let

A =




1 2 3 77
0 2 6 7
0 0 3 33.7
0 0 0 −1




Find det (A) .

From the above corollary, this is −6.
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There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT

)
.

There are many properties satisfied by determinants. Some of the most important are

listed in the following theorem.

Theorem 3.1.8 If two rows or two columns in an n× n matrix A are switched, the deter-
minant of the resulting matrix equals (−1) times the determinant of the original matrix. If
A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”. In addition
to this, if A and B are n× n matrices, then

det (AB) = det (A) det (B) ,

and if A is an n× n matrix, then

det (A) = det
(
AT

)
.
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This theorem implies the following corollary which gives a way to find determinants. As
I pointed out above, the method of Laplace expansion will not be practical for any matrix
of large size.

Corollary 3.1.9 Let A be an n×n matrix and let B be the matrix obtained by replacing the
ith row (column) of A with the sum of the ith row (column) added to a multiple of another
row (column). Then det (A) = det (B) . If B is the matrix obtained from A be replacing the
ith row (column) of A by a times the ith row (column) then a det (A) = det (B) .

Here is an example which shows how to use this corollary to find a determinant.

Example 3.1.10 Find the determinant of the matrix

A =




1 2 3 4
5 1 2 3
4 5 4 3
2 2 −4 5




Replace the second row by (−5) times the first row added to it. Then replace the third
row by (−4) times the first row added to it. Finally, replace the fourth row by (−2) times
the first row added to it. This yields the matrix

B =




1 2 3 4
0 −9 −13 −17
0 −3 −8 −13
0 −2 −10 −3




and from the above corollary, it has the same determinant as A. Now using the corollary
some more, det (B) =

(−1
3

)
det (C) where

C =




1 2 3 4
0 0 11 22
0 −3 −8 −13
0 6 30 9


 .

The second row was replaced by (−3) times the third row added to the second row and then
the last row was multiplied by (−3) . Now replace the last row with 2 times the third added
to it and then switch the third and second rows. Then det (C) = − det (D) where

D =




1 2 3 4
0 −3 −8 −13
0 0 11 22
0 0 14 −17




You could do more row operations or you could note that this can be easily expanded along
the first column followed by expanding the 3×3 matrix which results along its first column.
Thus

det (D) = 1 (−3)

����
11 22
14 −17

���� = 1485

and so det (C) = −1485 and det (A) = det (B) =
(−1

3

)
(−1485) = 495.

The theorem about expanding a matrix along any row or column also provides a way to
give a formula for the inverse of a matrix. Recall the definition of the inverse of a matrix
in Definition 2.1.22 on Page 61. The following theorem gives a formula for the inverse of a
matrix. It is proved in the next section.
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Theorem 3.1.11 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Theorem 3.1.11 says that to find the inverse, take the transpose of the cofactor matrix
and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

Example 3.1.12 Find the inverse of the matrix

A =




1 2 3
3 0 1
1 2 1




First find the determinant of this matrix. This is seen to be 12. The cofactor matrix of
A is 


−2 −2 6
4 −2 0
2 8 −6


 .

Each entry of A was replaced by its cofactor. Therefore, from the above theorem, the inverse
of A should equal

1

12




−2 −2 6
4 −2 0
2 8 −6




T

=




− 1
6

1
3

1
6

− 1
6 − 1

6
2
3

1
2 0 − 1

2


 .
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This way of finding inverses is especially useful in the case where it is desired to find the
inverse of a matrix whose entries are functions.

Example 3.1.13 Suppose

A (t) =




et 0 0
0 cos t sin t
0 − sin t cos t




Find A (t)
−1

.

First note det (A (t)) = et. A routine computation using the above theorem shows that
this inverse is

1

et




1 0 0
0 et cos t et sin t
0 −et sin t et cos t




T

=




e−t 0 0
0 cos t − sin t
0 sin t cos t


 .
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This formula for the inverse also implies a famous procedure known as Cramer’s rule.
Cramer’s rule gives a formula for the solutions, x, to a system of equations, Ax = y.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =

n∑
j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .

By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Procedure 3.1.14 Suppose A is an n × n matrix and it is desired to solve the system
Ax = y,y = (y1, · · · , yn)T for x = (x1, · · · , xn)

T
. Then Cramer’s rule says

xi =
detAi

detA

where Ai is obtained from A by replacing the ith column of A with the column (y1, · · · , yn)T .

The following theorem is of fundamental importance and ties together many of the ideas
presented above. It is proved in the next section.

Theorem 3.1.15 Let A be an n× n matrix. Then the following are equivalent.

1. A is one to one.

2. A is onto.

3. det (A) ̸= 0.

3.2 Exercises

1. Find the determinants of the following matrices.

(a)




1 2 3
3 2 2
0 9 8


 (The answer is 31.)

(b)




4 3 2
1 7 8
3 −9 3


(The answer is 375.)
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(c)




1 2 3 2
1 3 2 3
4 1 5 0
1 2 1 2


, (The answer is −2.)

2. If A−1 exist, what is the relationship between det (A) and det
(
A−1

)
. Explain your

answer.

3. Let A be an n × n matrix where n is odd. Suppose also that A is skew symmetric.
This means AT = −A. Show that det(A) = 0.

4. Is it true that det (A+B) = det (A) + det (B)? If this is so, explain why it is so and
if it is not so, give a counter example.

5. Let A be an r×r matrix and suppose there are r−1 rows (columns) such that all rows
(columns) are linear combinations of these r − 1 rows (columns). Show det (A) = 0.

6. Show det (aA) = an det (A) where here A is an n× n matrix and a is a scalar.

7. Suppose A is an upper triangular matrix. Show that A−1 exists if and only if all
elements of the main diagonal are non zero. Is it true that A−1 will also be upper
triangular? Explain. Is everything the same for lower triangular matrices?

8. Let A and B be two n× n matrices. A ∼ B (A is similar to B) means there exists an
invertible matrix S such that A = S−1BS. Show that if A ∼ B, then B ∼ A. Show
also that A ∼ A and that if A ∼ B and B ∼ C, then A ∼ C.

9. In the context of Problem 8 show that if A ∼ B, then det (A) = det (B) .

10. Let A be an n× n matrix and let x be a nonzero vector such that Ax = λx for some
scalar, λ. When this occurs, the vector, x is called an eigenvector and the scalar, λ
is called an eigenvalue. It turns out that not every number is an eigenvalue. Only
certain ones are. Why? Hint: Show that if Ax = λx, then (λI −A)x = 0. Explain
why this shows that (λI −A) is not one to one and not onto. Now use Theorem 3.1.15
to argue det (λI −A) = 0. What sort of equation is this? How many solutions does it
have?

11. Suppose det (λI −A) = 0. Show using Theorem 3.1.15 there exists x ̸= 0 such that
(λI −A)x = 0.

12. Let F (t) = det

(
a (t) b (t)
c (t) d (t)

)
. Verify

F ′ (t) = det

(
a′ (t) b′ (t)
c (t) d (t)

)
+ det

(
a (t) b (t)
c′ (t) d′ (t)

)
.

Now suppose

F (t) = det




a (t) b (t) c (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


 .

Use Laplace expansion and the first part to verify F ′ (t) =

det




a′ (t) b′ (t) c′ (t)
d (t) e (t) f (t)
g (t) h (t) i (t)


+ det




a (t) b (t) c (t)
d′ (t) e′ (t) f ′ (t)
g (t) h (t) i (t)




+det




a (t) b (t) c (t)
d (t) e (t) f (t)
g′ (t) h′ (t) i′ (t)


 .
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Conjecture a general result valid for n × n matrices and explain why it will be true.
Can a similar thing be done with the columns?

13. Use the formula for the inverse in terms of the cofactor matrix to find the inverse of
the matrix

A =




et 0 0
0 et cos t et sin t
0 et cos t− et sin t et cos t+ et sin t


 .

14. Let A be an r×r matrix and let B be an m×m matrix such that r+m = n. Consider
the following n× n block matrix

C =

(
A 0
D B

)
.

where the D is an m× r matrix, and the 0 is a r ×m matrix. Letting Ik denote the
k × k identity matrix, tell why

C =

(
A 0
D Im

)(
Ir 0
0 B

)
.

Now explain why det (C) = det (A) det (B) . Hint: Part of this will require an expla-
nation of why

det

(
A 0
D Im

)
= det (A) .

See Corollary 3.1.9.

15. Suppose Q is an orthogonal matrix. This means Q is a real n×n matrix which satisfies

QQT = I

Find the possible values for det (Q).

16. Suppose Q (t) is an orthogonal matrix. This means Q (t) is a real n× n matrix which
satisfies

Q (t)Q (t)
T
= I

Suppose Q (t) is continuous for t ∈ [a, b] , some interval. Also suppose det (Q (t)) = 1.
Show that it follows det (Q (t)) = 1 for all t ∈ [a, b].
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3.3 The Mathematical Theory Of Determinants

It is easiest to give a different definition of the determinant which is clearly well defined
and then prove the earlier one in terms of Laplace expansion. Let (i1, · · · , in) be an ordered
list of numbers from {1, · · · , n} . This means the order is important so (1, 2, 3) and (2, 1, 3)
are different. There will be some repetition between this section and the earlier section on
determinants. The main purpose is to give all the missing proofs. Two books which give
a good introduction to determinants are Apostol [1] and Rudin [22]. A recent book which
also has a good introduction is Baker [3]

3.3.1 The Function sgn

The following Lemma will be essential in the definition of the determinant.
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Lemma 3.3.1 There exists a unique function, sgnn which maps each ordered list of num-
bers from {1, · · · , n} to one of the three numbers, 0, 1, or −1 which also has the following
properties.

sgnn (1, · · · , n) = 1 (3.2)

sgnn (i1, · · · , p, · · · , q, · · · , in) = − sgnn (i1, · · · , q, · · · , p, · · · , in) (3.3)

In words, the second property states that if two of the numbers are switched, the value of the
function is multiplied by −1. Also, in the case where n > 1 and {i1, · · · , in} = {1, · · · , n} so
that every number from {1, · · · , n} appears in the ordered list, (i1, · · · , in) ,

sgnn (i1, · · · , iθ−1, n, iθ+1, · · · , in) ≡

(−1)
n−θ

sgnn−1 (i1, · · · , iθ−1, iθ+1, · · · , in) (3.4)

where n = iθ in the ordered list, (i1, · · · , in) .

Proof: To begin with, it is necessary to show the existence of such a function. This is
clearly true if n = 1. Define sgn1 (1) ≡ 1 and observe that it works. No switching is possible.
In the case where n = 2, it is also clearly true. Let sgn2 (1, 2) = 1 and sgn2 (2, 1) = −1
while sgn2 (2, 2) = sgn2 (1, 1) = 0 and verify it works. Assuming such a function exists for n,
sgnn+1 will be defined in terms of sgnn . If there are any repeated numbers in (i1, · · · , in+1) ,
sgnn+1 (i1, · · · , in+1) ≡ 0. If there are no repeats, then n + 1 appears somewhere in the
ordered list. Let θ be the position of the number n + 1 in the list. Thus, the list is of the
form (i1, · · · , iθ−1, n+ 1, iθ+1, · · · , in+1) . From 3.4 it must be that

sgnn+1 (i1, · · · , iθ−1, n+ 1, iθ+1, · · · , in+1) ≡

(−1)
n+1−θ

sgnn (i1, · · · , iθ−1, iθ+1, · · · , in+1) .

It is necessary to verify this satisfies 3.2 and 3.3 with n replaced with n + 1. The first of
these is obviously true because

sgnn+1 (1, · · · , n, n+ 1) ≡ (−1)
n+1−(n+1)

sgnn (1, · · · , n) = 1.

If there are repeated numbers in (i1, · · · , in+1) , then it is obvious 3.3 holds because both
sides would equal zero from the above definition. It remains to verify 3.3 in the case where
there are no numbers repeated in (i1, · · · , in+1) . Consider

sgnn+1

(
i1, · · · ,

r
p, · · · , sq, · · · , in+1

)
,

where the r above the p indicates the number p is in the rth position and the s above the q
indicates that the number, q is in the sth position. Suppose first that r < θ < s. Then

sgnn+1

(
i1, · · · ,

r
p, · · · ,

θ
n+ 1, · · · , sq, · · · , in+1

)
≡

(−1)
n+1−θ

sgnn

(
i1, · · · ,

r
p, · · · , s−1

q , · · · , in+1

)

while

sgnn+1

(
i1, · · · ,

r
q, · · · ,

θ
n+ 1, · · · , sp, · · · , in+1

)
≡

(−1)
n+1−θ

sgnn

(
i1, · · · ,

r
q, · · · , s−1

p , · · · , in+1

)
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and so, by induction, a switch of p and q introduces a minus sign in the result. Similarly, if
θ > s or if θ < r it also follows that 3.3 holds. The interesting case is when θ = r or θ = s.
Consider the case where θ = r and note the other case is entirely similar.

sgnn+1

(
i1, · · · ,

r
n+ 1, · · · , sq, · · · , in+1

)
≡

(−1)
n+1−r

sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
(3.5)

while

sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n+ 1, · · · , in+1

)
=

(−1)
n+1−s

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
. (3.6)

By making s− 1− r switches, move the q which is in the s− 1th position in 3.5 to the rth

position in 3.6. By induction, each of these switches introduces a factor of −1 and so

sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)
= (−1)

s−1−r
sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
.

Therefore,

sgnn+1

(
i1, · · · ,

r
n+ 1, · · · , sq, · · · , in+1

)
= (−1)

n+1−r
sgnn

(
i1, · · · ,

s−1
q , · · · , in+1

)

= (−1)
n+1−r

(−1)
s−1−r

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= (−1)
n+s

sgnn

(
i1, · · · ,

r
q, · · · , in+1

)
= (−1)

2s−1
(−1)

n+1−s
sgnn

(
i1, · · · ,

r
q, · · · , in+1

)

= − sgnn+1

(
i1, · · · ,

r
q, · · · ,

s
n+ 1, · · · , in+1

)
.

This proves the existence of the desired function. Uniqueness follows easily from the follow-
ing lemma.

Lemma 3.3.2 Every ordered list of {1, 2, · · · , n} can be obtained from every other ordered
list by a finite number of switches. Also, sgn is unique.

Proof: This is obvious if n = 1 or 2. Suppose then that it is true for sets of n − 1
elements. Take two ordered lists of numbers, P1, P2. To get from P1 to P2 using switches,
first make a switch to obtain the last element in the list coinciding with the last element of
P2. By induction, there are switches which will arrange the first n− 1 to the right order.

To see sgnn is unique, if there exist two functions, f and g both satisfying 3.2 and 3.3,
you could start with f (1, · · · , n) = g (1, · · · , n) and applying the same sequence of switches,
eventually arrive at f (i1, · · · , in) = g (i1, · · · , in) . If any numbers are repeated, then 3.3
gives both functions are equal to zero for that ordered list. �
Definition 3.3.3 When you have an ordered list of distinct numbers from {1, 2, · · · , n} , say
(i1, · · · , in) , this ordered list is called a permutation. The symbol for all such permutations
is Sn. The number sgnn (i1, · · · , in) is called the sign of the permutation.

A permutation can also be considered as a function from the set

{1, 2, · · · , n} to {1, 2, · · · , n}

as follows. Let f (k) = ik. Permutations are of fundamental importance in certain areas
of math. For example, it was by considering permutations that Galois was able to give a
criterion for solution of polynomial equations by radicals, but this is a different direction
than what is being attempted here.

In what follows sgn will often be used rather than sgnn because the context supplies the
appropriate n.
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3.3.2 The Definition Of The Determinant

Definition 3.3.4 Let f be a real valued function which has the set of ordered lists of numbers
from {1, · · · , n} as its domain. Define

∑
(k1,··· ,kn)

f (k1 · · · kn)

to be the sum of all the f (k1 · · · kn) for all possible choices of ordered lists (k1, · · · , kn) of
numbers of {1, · · · , n} . For example,

∑
(k1,k2)

f (k1, k2) = f (1, 2) + f (2, 1) + f (1, 1) + f (2, 2) .

Definition 3.3.5 Let (aij) = A denote an n × n matrix. The determinant of A, denoted
by det (A) is defined by

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · ankn

where the sum is taken over all ordered lists of numbers from {1, · · · , n}. Note it suffices to
take the sum over only those ordered lists in which there are no repeats because if there are,
sgn (k1, · · · , kn) = 0 and so that term contributes 0 to the sum.

Let A be an n × n matrix A = (aij) and let (r1, · · · , rn) denote an ordered list of n
numbers from {1, · · · , n}. Let A (r1, · · · , rn) denote the matrix whose kth row is the rk row
of the matrix A. Thus

det (A (r1, · · · , rn)) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.7)

CAREERKICKSTART
An app to keep you in the know

Whether you’re a graduate, school leaver or student, it’s a difficult time to start your career.  
So here at RBS, we’re providing a helping hand with our new Facebook app. Bringing together  
the most relevant and useful careers information, we’ve created a one-stop shop designed  
to help you get on the career ladder – whatever your level of  education, degree subject or  
work experience.

And it’s not just finance-focused either. That’s because it’s not about us. It’s about you.  
So download the app and you’ll get everything you need to know to kickstart your career.

So what are you waiting for?

Click here to get started.
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and A (1, · · · , n) = A.

Proposition 3.3.6 Let (r1, · · · , rn) be an ordered list of numbers from {1, · · · , n}. Then

sgn (r1, · · · , rn) det (A) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) ar1k1 · · · arnkn (3.8)

= det (A (r1, · · · , rn)) . (3.9)

Proof: Let (1, · · · , n) = (1, · · · , r, · · · s, · · · , n) so r < s.

det (A (1, · · · , r, · · · , s, · · · , n)) = (3.10)

∑
(k1,··· ,kn)

sgn (k1, · · · , kr, · · · , ks, · · · , kn) a1k1 · · · arkr · · · asks · · · ankn ,

and renaming the variables, calling ks, kr and kr, ks, this equals

=
∑

(k1,··· ,kn)

sgn (k1, · · · , ks, · · · , kr, · · · , kn) a1k1 · · · arks · · · askr · · · ankn
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=
∑

(k1,··· ,kn)

− sgn


k1, · · · ,

These got switched� �� �
kr, · · · , ks , · · · , kn


 a1k1 · · · askr · · · arks · · · ankn

= −det (A (1, · · · , s, · · · , r, · · · , n)) . (3.11)

Consequently,

det (A (1, · · · , s, · · · , r, · · · , n)) = − det (A (1, · · · , r, · · · , s, · · · , n)) = − det (A)

Now letting A (1, · · · , s, · · · , r, · · · , n) play the role of A, and continuing in this way, switch-
ing pairs of numbers,

det (A (r1, · · · , rn)) = (−1)
p
det (A)

where it took p switches to obtain(r1, · · · , rn) from (1, · · · , n). By Lemma 3.3.1, this implies

det (A (r1, · · · , rn)) = (−1)
p
det (A) = sgn (r1, · · · , rn) det (A)

and proves the proposition in the case when there are no repeated numbers in the ordered
list, (r1, · · · , rn). However, if there is a repeat, say the rth row equals the sth row, then the
reasoning of 3.10 -3.11 shows that det(A (r1, · · · , rn)) = 0 and also sgn (r1, · · · , rn) = 0 so
the formula holds in this case also. �

Observation 3.3.7 There are n! ordered lists of distinct numbers from {1, · · · , n} .

To see this, consider n slots placed in order. There are n choices for the first slot. For
each of these choices, there are n− 1 choices for the second. Thus there are n (n− 1) ways
to fill the first two slots. Then for each of these ways there are n−2 choices left for the third
slot. Continuing this way, there are n! ordered lists of distinct numbers from {1, · · · , n} as
stated in the observation.

3.3.3 A Symmetric Definition

With the above, it is possible to give a more symmetric description of the determinant from
which it will follow that det (A) = det

(
AT

)
.

Corollary 3.3.8 The following formula for det (A) is valid.

det (A) =
1

n!
·

∑
(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn . (3.12)

And also det
(
AT

)
= det (A) where AT is the transpose of A. (Recall that for AT =

(
aTij

)
,

aTij = aji.)

Proof: From Proposition 3.3.6, if the ri are distinct,

det (A) =
∑

(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

Summing over all ordered lists, (r1, · · · , rn) where the ri are distinct, (If the ri are not
distinct, sgn (r1, · · · , rn) = 0 and so there is no contribution to the sum.)

n! det (A) =
∑

(r1,··· ,rn)

∑
(k1,··· ,kn)

sgn (r1, · · · , rn) sgn (k1, · · · , kn) ar1k1 · · · arnkn .

This proves the corollary since the formula gives the same number for A as it does for AT .
�
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Corollary 3.3.9 If two rows or two columns in an n × n matrix A, are switched, the
determinant of the resulting matrix equals (−1) times the determinant of the original matrix.
If A is an n×n matrix in which two rows are equal or two columns are equal then det (A) = 0.
Suppose the ith row of A equals (xa1 + yb1, · · · , xan + ybn). Then

det (A) = x det (A1) + y det (A2)

where the ith row of A1 is (a1, · · · , an) and the ith row of A2 is (b1, · · · , bn) , all other rows
of A1 and A2 coinciding with those of A. In other words, det is a linear function of each
row A. The same is true with the word “row” replaced with the word “column”.

Proof: By Proposition 3.3.6 when two rows are switched, the determinant of the re-
sulting matrix is (−1) times the determinant of the original matrix. By Corollary 3.3.8 the
same holds for columns because the columns of the matrix equal the rows of the transposed
matrix. Thus if A1 is the matrix obtained from A by switching two columns,

det (A) = det
(
AT

)
= − det

(
AT

1

)
= − det (A1) .

If A has two equal columns or two equal rows, then switching them results in the same
matrix. Therefore, det (A) = − det (A) and so det (A) = 0.

It remains to verify the last assertion.

det (A) ≡
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · (xarki

+ ybrki
) · · · ankn

= x
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1
· · · arki

· · · ankn

+y
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) a1k1 · · · brki · · · ankn ≡ x det (A1) + y det (A2) .

The same is true of columns because det
(
AT

)
= det (A) and the rows of AT are the columns

of A. �

3.3.4 Basic Properties Of The Determinant

Definition 3.3.10 A vector, w, is a linear combination of the vectors {v1, · · · ,vr} if there
exist scalars c1, · · · cr such that w =

∑r
k=1 ckvk. This is the same as saying

w ∈ span (v1, · · · ,vr) .

The following corollary is also of great use.

Corollary 3.3.11 Suppose A is an n × n matrix and some column (row) is a linear com-
bination of r other columns (rows). Then det (A) = 0.

Proof: Let A =
(
a1 · · · an

)
be the columns of A and suppose the condition that

one column is a linear combination of r of the others is satisfied. Then by using Corollary
3.3.9 you may rearrange the columns to have the nth column a linear combination of the
first r columns. Thus an =

∑r
k=1 ckak and so

det (A) = det
(
a1 · · · ar · · · an−1

∑r
k=1 ckak

)
.
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By Corollary 3.3.9

det (A) =

r∑
k=1

ck det
(
a1 · · · ar · · · an−1 ak

)
= 0.

The case for rows follows from the fact that det (A) = det
(
AT

)
. �

Recall the following definition of matrix multiplication.

Definition 3.3.12 If A and B are n × n matrices, A = (aij) and B = (bij), AB = (cij)
where cij ≡

∑n
k=1 aikbkj .

One of the most important rules about determinants is that the determinant of a product
equals the product of the determinants.

Theorem 3.3.13 Let A and B be n× n matrices. Then

det (AB) = det (A) det (B) .

Proof: Let cij be the ijth entry of AB. Then by Proposition 3.3.6,

det (AB) =
∑

(k1,··· ,kn)

sgn (k1, · · · , kn) c1k1 · · · cnkn

=
∑

(k1,··· ,kn)

sgn (k1, · · · , kn)

(∑
r1

a1r1br1k1

)
· · ·

(∑
rn

anrnbrnkn

)

=
∑

(r1··· ,rn)

∑
(k1,··· ,kn)

sgn (k1, · · · , kn) br1k1 · · · brnkn (a1r1 · · · anrn)

=
∑

(r1··· ,rn)

sgn (r1 · · · rn) a1r1 · · · anrn det (B) = det (A) det (B) .�
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The Binet Cauchy formula is a generalization of the theorem which says the determinant
of a product is the product of the determinants. The situation is illustrated in the following
picture where A,B are matrices.

B A

Theorem 3.3.14 Let A be an n×m matrix with n ≥ m and let B be a m×n matrix. Also
let Ai

i = 1, · · · , C (n,m)

be the m×m submatrices of A which are obtained by deleting n−m rows and let Bi be the
m×m submatrices of B which are obtained by deleting corresponding n−m columns. Then

det (BA) =

C(n,m)∑
k=1

det (Bk) det (Ak)

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

117 

Derterminants

Proof: This follows from a computation. By Corollary 3.3.8 on Page 113, det (BA) =

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) (BA)i1j1 (BA)i2j2 · · · (BA)imjm

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

n∑
r1=1

Bi1r1Ar1j1

n∑
r2=1

Bi2r2Ar2j2 · · ·
n∑

rm=1

BimrmArmjm

Now denote by Ik one of the r subsets of {1, · · · , n} . Thus there are C (n,m) of these.

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

∑
(j1···jm)

sgn (i1 · · · im) sgn (j1 · · · jm) ·

Bi1r1Ar1j1Bi2r2Ar2j2 · · ·BimrmArmjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!

∑
(i1···im)

sgn (i1 · · · im)Bi1r1Bi2r2 · · ·Bimrm ·

∑
(j1···jm)

sgn (j1 · · · jm)Ar1j1Ar2j2 · · ·Armjm

=

C(n,m)∑
k=1

∑
{r1,··· ,rm}=Ik

1

m!
sgn (r1 · · · rm)

2
det (Bk) det (Ak)B

=

C(n,m)∑
k=1

det (Bk) det (Ak)

since there are m! ways of arranging the indices {r1, · · · , rm}. �

3.3.5 Expansion Using Cofactors

Lemma 3.3.15 Suppose a matrix is of the form

M =

(
A ∗
0 a

)
(3.13)

or

M =

(
A 0
∗ a

)
(3.14)

where a is a number and A is an (n− 1) × (n− 1) matrix and ∗ denotes either a column
or a row having length n − 1 and the 0 denotes either a column or a row of length n − 1
consisting entirely of zeros. Then det (M) = a det (A) .

Proof: Denote M by (mij) . Thus in the first case, mnn = a and mni = 0 if i ̸= n while
in the second case, mnn = a and min = 0 if i ̸= n. From the definition of the determinant,

det (M) ≡
∑

(k1,··· ,kn)

sgnn (k1, · · · , kn)m1k1 · · ·mnkn
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Letting θ denote the position of n in the ordered list, (k1, · · · , kn) then using the earlier
conventions used to prove Lemma 3.3.1, det (M) equals

∑
(k1,··· ,kn)

(−1)
n−θ

sgnn−1

(
k1, · · · , kθ−1,

θ

kθ+1, · · · ,
n−1

kn

)
m1k1 · · ·mnkn

Now suppose 3.14. Then if kn ̸= n, the term involving mnkn in the above expression equals
zero. Therefore, the only terms which survive are those for which θ = n or in other words,
those for which kn = n. Therefore, the above expression reduces to

a
∑

(k1,··· ,kn−1)

sgnn−1 (k1, · · · kn−1)m1k1 · · ·m(n−1)kn−1
= a det (A) .

To get the assertion in the situation of 3.13 use Corollary 3.3.8 and 3.14 to write

det (M) = det
(
MT

)
= det

((
AT 0
∗ a

))
= a det

(
AT

)
= a det (A) .�

In terms of the theory of determinants, arguably the most important idea is that of
Laplace expansion along a row or a column. This will follow from the above definition of a
determinant.

Definition 3.3.16 Let A = (aij) be an n×n matrix. Then a new matrix called the cofactor
matrix cof (A) is defined by cof (A) = (cij) where to obtain cij delete the ith row and the
jth column of A, take the determinant of the (n− 1)× (n− 1) matrix which results, (This

is called the ijth minor of A. ) and then multiply this number by (−1)
i+j

. To make the
formulas easier to remember, cof (A)ij will denote the ijth entry of the cofactor matrix.

The following is the main result. Earlier this was given as a definition and the outrageous
totally unjustified assertion was made that the same number would be obtained by expanding
the determinant along any row or column. The following theorem proves this assertion.

Theorem 3.3.17 Let A be an n× n matrix where n ≥ 2. Then

det (A) =
n∑

j=1

aij cof (A)ij =

n∑
i=1

aij cof (A)ij . (3.15)

The first formula consists of expanding the determinant along the ith row and the second
expands the determinant along the jth column.

Proof: Let (ai1, · · · , ain) be the ith row of A. Let Bj be the matrix obtained from A by
leaving every row the same except the ith row which in Bj equals (0, · · · , 0, aij , 0, · · · , 0) .
Then by Corollary 3.3.9,

det (A) =
n∑

j=1

det (Bj)

For example if

A =




a b c
d e f
h i j




and i = 2, then

B1 =




a b c
d 0 0
h i j


 , B2 =




a b c
0 e 0
h i j


 , B3 =




a b c
0 0 f
h i j




http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

119 

Derterminants

Denote by Aij the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth

column of A. Thus cof (A)ij ≡ (−1)
i+j

det
(
Aij

)
. At this point, recall that from Proposition

3.3.6, when two rows or two columns in a matrix M, are switched, this results in multiplying
the determinant of the old matrix by−1 to get the determinant of the new matrix. Therefore,
by Lemma 3.3.15,

det (Bj) = (−1)
n−j

(−1)
n−i

det

((
Aij ∗
0 aij

))

= (−1)
i+j

det

((
Aij ∗
0 aij

))
= aij cof (A)ij .

Therefore,

det (A) =
n∑

j=1

aij cof (A)ij

which is the formula for expanding det (A) along the ith row. Also,

det (A) = det
(
AT

)
=

n∑
j=1

aTij cof
(
AT

)
ij
=

n∑
j=1

aji cof (A)ji

which is the formula for expanding det (A) along the ith column. �

3.3.6 A Formula For The Inverse

Note that this gives an easy way to write a formula for the inverse of an n×n matrix. Recall
the definition of the inverse of a matrix in Definition 2.1.22 on Page 61.

Theorem 3.3.18 A−1 exists if and only if det(A) ̸= 0. If det(A) ̸= 0, then A−1 =
(
a−1
ij

)
where

a−1
ij = det(A)−1 cof (A)ji

for cof (A)ij the ijth cofactor of A.

Proof: By Theorem 3.3.17 and letting (air) = A, if det (A) ̸= 0,

n∑
i=1

air cof (A)ir det(A)−1 = det(A) det(A)−1 = 1.

Now in the matrix A, replace the kth column with the rth column and then expand along
the kth column. This yields for k ̸= r,

n∑
i=1

air cof (A)ik det(A)−1 = 0

because there are two equal columns by Corollary 3.3.9. Summarizing,

n∑
i=1

air cof (A)ik det (A)
−1

= δrk.

Using the other formula in Theorem 3.3.17, and similar reasoning,

n∑
j=1

arj cof (A)kj det (A)
−1

= δrk
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This proves that if det (A) ̸= 0, then A−1 exists with A−1 =
(
a−1
ij

)
, where

a−1
ij = cof (A)ji det (A)

−1
.

Now suppose A−1 exists. Then by Theorem 3.3.13,

1 = det (I) = det
(
AA−1

)
= det (A) det

(
A−1

)

so det (A) ̸= 0. �
The next corollary points out that if an n×n matrix A has a right or a left inverse, then

it has an inverse.

Corollary 3.3.19 Let A be an n × n matrix and suppose there exists an n × n matrix B
such that BA = I. Then A−1 exists and A−1 = B. Also, if there exists C an n× n matrix
such that AC = I, then A−1 exists and A−1 = C.

Proof: Since BA = I, Theorem 3.3.13 implies

detB detA = 1

and so detA ̸= 0. Therefore from Theorem 3.3.18, A−1 exists. Therefore,

A−1 = (BA)A−1 = B
(
AA−1

)
= BI = B.

Designed for high-achieving graduates across all disciplines, London Business School’s Masters 
in Management provides specific and tangible foundations for a successful career in business. 

This 12-month, full-time programme is a business qualification with impact. In 2010, our MiM 
employment rate was 95% within 3 months of graduation*; the majority of graduates choosing to 
work in consulting or financial services. 

As well as a renowned qualification from a world-class business school, you also gain access 
to the School’s network of more than 34,000 global alumni – a community that offers support and 
opportunities throughout your career.

For more information visit www.london.edu/mm, email mim@london.edu or 
give us a call on +44 (0)20 7000 7573.

Masters in Management

The next step for  
top-performing  
graduates

*  Figures taken from London Business School’s Masters in Management 2010 employment report
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The case where CA = I is handled similarly. �
The conclusion of this corollary is that left inverses, right inverses and inverses are all

the same in the context of n× n matrices.
Theorem 3.3.18 says that to find the inverse, take the transpose of the cofactor matrix

and divide by the determinant. The transpose of the cofactor matrix is called the adjugate
or sometimes the classical adjoint of the matrix A. It is an abomination to call it the adjoint
although you do sometimes see it referred to in this way. In words, A−1 is equal to one over
the determinant of A times the adjugate matrix of A.

In case you are solving a system of equations, Ax = y for x, it follows that if A−1 exists,

x =
(
A−1A

)
x = A−1 (Ax) = A−1y

thus solving the system. Now in the case that A−1 exists, there is a formula for A−1 given
above. Using this formula,

xi =
n∑

j=1

a−1
ij yj =

n∑
j=1

1

det (A)
cof (A)ji yj .
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By the formula for the expansion of a determinant along a column,

xi =
1

det (A)
det




∗ · · · y1 · · · ∗
...

...
...

∗ · · · yn · · · ∗


 ,

where here the ith column of A is replaced with the column vector, (y1 · · · ·, yn)T , and the
determinant of this modified matrix is taken and divided by det (A). This formula is known
as Cramer’s rule.

Definition 3.3.20 A matrix M , is upper triangular if Mij = 0 whenever i > j. Thus such
a matrix equals zero below the main diagonal, the entries of the form Mii as shown.




∗ ∗ · · · ∗

0 ∗
. . .

...
...

. . .
. . . ∗

0 · · · 0 ∗




A lower triangular matrix is defined similarly as a matrix for which all entries above the
main diagonal are equal to zero.

With this definition, here is a simple corollary of Theorem 3.3.17.

Corollary 3.3.21 Let M be an upper (lower) triangular matrix. Then det (M) is obtained
by taking the product of the entries on the main diagonal.

3.3.7 Rank Of A Matrix

Definition 3.3.22 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.

Theorem 3.3.23 If A, an m×n matrix has determinant rank r, then there exist r rows of
the matrix such that every other row is a linear combination of these r rows.

Proof: Suppose the determinant rank of A = (aij) equals r. Thus some r×r submatrix
has non zero determinant and there is no larger square submatrix which has non zero
determinant. Suppose such a submatrix is determined by the r columns whose indices are

j1 < · · · < jr

and the r rows whose indices are
i1 < · · · < ir

I want to show that every row is a linear combination of these rows. Consider the lth row
and let p be an index between 1 and n. Form the following (r + 1)× (r + 1) matrix




ai1j1 · · · ai1jr ai1p
...

...
...

airj1 · · · airjr airp
alj1 · · · aljr alp



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Of course you can assume l /∈ {i1, · · · , ir} because there is nothing to prove if the lth

row is one of the chosen ones. The above matrix has determinant 0. This is because if
p /∈ {j1, · · · , jr} then the above would be a submatrix of A which is too large to have non
zero determinant. On the other hand, if p ∈ {j1, · · · , jr} then the above matrix has two
columns which are equal so its determinant is still 0.

Expand the determinant of the above matrix along the last column. Let Ck denote the
cofactor associated with the entry aikp. This is not dependent on the choice of p. Remember,
you delete the column and the row the entry is in and take the determinant of what is left
and multiply by −1 raised to an appropriate power. Let C denote the cofactor associated
with alp. This is given to be nonzero, it being the determinant of the matrix




ai1j1 · · · ai1jr
...

...
airj1 · · · airjr




Thus

0 = alpC +

r∑
k=1

Ckaikp

which implies

alp =
r∑

k=1

−Ck

C
aikp ≡

r∑
k=1

mkaikp

Since this is true for every p and since mk does not depend on p, this has shown the lth row
is a linear combination of the i1, i2, · · · , ir rows. �

Corollary 3.3.24 The determinant rank equals the row rank.

Proof: From Theorem 3.3.23, every row is in the span of r rows where r is the deter-
minant rank. Therefore, the row rank (dimension of the span of the rows) is no larger than
the determinant rank. Could the row rank be smaller than the determinant rank? If so,
it follows from Theorem 3.3.23 that there exist p rows for p < r ≡ determinant rank, such
that the span of these p rows equals the row space. But then you could consider the r × r
sub matrix which determines the determinant rank and it would follow that each of these
rows would be in the span of the restrictions of the p rows just mentioned. By Theorem
2.4.4, the exchange theorem, the rows of this sub matrix would not be linearly independent
and so some row is a linear combination of the others. By Corollary 3.3.11 the determinant
would be 0, a contradiction. �

Corollary 3.3.25 If A has determinant rank r, then there exist r columns of the matrix
such that every other column is a linear combination of these r columns. Also the column
rank equals the determinant rank.

Proof: This follows from the above by considering AT . The rows of AT are the columns
of A and the determinant rank of AT and A are the same. Therefore, from Corollary 3.3.24,
column rank of A = row rank of AT = determinant rank of AT = determinant rank of A.

The following theorem is of fundamental importance and ties together many of the ideas
presented above.

Theorem 3.3.26 Let A be an n× n matrix. Then the following are equivalent.

1. det (A) = 0.

http://bookboon.com/


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

124 

Derterminants

2. A,AT are not one to one.

3. A is not onto.

Proof: Suppose det (A) = 0. Then the determinant rank of A = r < n. Therefore,
there exist r columns such that every other column is a linear combination of these columns
by Theorem 3.3.23. In particular, it follows that for some m, the mth column is a linear
combination of all the others. Thus letting A =

(
a1 · · · am · · · an

)
where the

columns are denoted by ai, there exists scalars αi such that

am =
∑
k ̸=m

αkak.

Now consider the column vector, x ≡
(
α1 · · · −1 · · · αn

)T
. Then

Ax = −am +
∑
k ̸=m

αkak = 0.

Since also A0 = 0, it follows A is not one to one. Similarly, AT is not one to one by the
same argument applied to AT . This verifies that 1.) implies 2.).

Now suppose 2.). Then since AT is not one to one, it follows there exists x ̸= 0 such that

ATx = 0.

Taking the transpose of both sides yields

xTA = 0T

where the 0T is a 1× n matrix or row vector. Now if Ay = x, then

|x|2 = xT (Ay) =
(
xTA

)
y = 0y = 0

contrary to x ̸= 0. Consequently there can be no y such that Ay = x and so A is not onto.
This shows that 2.) implies 3.).

Finally, suppose 3.). If 1.) does not hold, then det (A) ̸= 0 but then from Theorem 3.3.18
A−1 exists and so for every y ∈ Fn there exists a unique x ∈ Fn such that Ax = y. In fact
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x = A−1y. Thus A would be onto contrary to 3.). This shows 3.) implies 1.). �

Corollary 3.3.27 Let A be an n× n matrix. Then the following are equivalent.

1. det(A) ̸= 0.

2. A and AT are one to one.

3. A is onto.

Proof: This follows immediately from the above theorem.

3.3.8 Summary Of Determinants

In all the following A,B are n× n matrices

1. det (A) is a number.

2. det (A) is linear in each row and in each column.

Destination MMU
MMU is proud to be one of the most popular universities in the UK. 
Some 34,000 students from all parts of the globe select from its 
curricula of over 1,000 courses and qualifications. 

We are based in the dynamic yet conveniently compact city of Manchester, 
located at the heart of a sophisticated transport network including a major 
international airport on the outskirts. Parts of the campus are acclaimed for 
their architectural style and date back over 150 years, in direct contrast to 
our teaching style which is thoroughly  modern, innovative and 
forward-thinking. 

MMU offers undergraduate and postgraduate courses in 
the following subject areas: 

• Art, Design & Performance 
• Computing, Engineering & Technology 
• Business & Management 
• Science, Environmental Studies & Geography 
• Law, Education & Psychology 
• Food, Hospitality, Tourism & Leisure Studies 
• Humanities & Social Science 

For more details or an application form
please contact MMU International.
email: international@mmu.ac.uk
telephone: +44 (0)161 247 1022
www.mmu.ac.uk/international
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3. If you switch two rows or two columns, the determinant of the resulting matrix is −1
times the determinant of the unswitched matrix. (This and the previous one say

(a1 · · · an) → det (a1 · · · an)

is an alternating multilinear function or alternating tensor.

4. det (e1, · · · , en) = 1.

5. det (AB) = det (A) det (B)

6. det (A) can be expanded along any row or any column and the same result is obtained.

7. det (A) = det
(
AT

)

8. A−1 exists if and only if det (A) ̸= 0 and in this case

(
A−1

)
ij
=

1

det (A)
cof (A)ji (3.16)

9. Determinant rank, row rank and column rank are all the same number for any m× n
matrix.

3.4 The Cayley Hamilton Theorem

Definition 3.4.1 Let A be an n× n matrix. The characteristic polynomial is defined as

pA (t) ≡ det (tI −A)

and the solutions to pA (t) = 0 are called eigenvalues. For A a matrix and p (t) = tn +
an−1t

n−1 + · · ·+ a1t+ a0, denote by p (A) the matrix defined by

p (A) ≡ An + an−1A
n−1 + · · ·+ a1A+ a0I.

The explanation for the last term is that A0 is interpreted as I, the identity matrix.

The Cayley Hamilton theorem states that every matrix satisfies its characteristic equa-
tion, that equation defined by pA (t) = 0. It is one of the most important theorems in linear
algebra1. The following lemma will help with its proof.

Lemma 3.4.2 Suppose for all |λ| large enough,

A0 +A1λ+ · · ·+Amλm = 0,

where the Ai are n× n matrices. Then each Ai = 0.

Proof: Multiply by λ−m to obtain

A0λ
−m +A1λ

−m+1 + · · ·+Am−1λ
−1 +Am = 0.

Now let |λ| → ∞ to obtain Am = 0. With this, multiply by λ to obtain

A0λ
−m+1 +A1λ

−m+2 + · · ·+Am−1 = 0.

Now let |λ| → ∞ to obtain Am−1 = 0. Continue multiplying by λ and letting λ → ∞ to
obtain that all the Ai = 0. �

With the lemma, here is a simple corollary.

1A special case was first proved by Hamilton in 1853. The general case was announced by Cayley some
time later and a proof was given by Frobenius in 1878.
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Corollary 3.4.3 Let Ai and Bi be n× n matrices and suppose

A0 +A1λ+ · · ·+Amλm = B0 +B1λ+ · · ·+Bmλm

for all |λ| large enough. Then Ai = Bi for all i. Consequently if λ is replaced by any n× n
matrix, the two sides will be equal. That is, for C any n× n matrix,

A0 +A1C + · · ·+AmCm = B0 +B1C + · · ·+BmCm.

Proof: Subtract and use the result of the lemma. �
With this preparation, here is a relatively easy proof of the Cayley Hamilton theorem.

Theorem 3.4.4 Let A be an n×n matrix and let p (λ) ≡ det (λI −A) be the characteristic
polynomial. Then p (A) = 0.

Proof: Let C (λ) equal the transpose of the cofactor matrix of (λI −A) for |λ| large.
(If |λ| is large enough, then λ cannot be in the finite list of eigenvalues of A and so for such

λ, (λI −A)
−1

exists.) Therefore, by Theorem 3.3.18

C (λ) = p (λ) (λI −A)
−1

.

Note that each entry in C (λ) is a polynomial in λ having degree no more than n − 1.
Therefore, collecting the terms,

C (λ) = C0 + C1λ+ · · ·+ Cn−1λ
n−1

for Cj some n× n matrix. It follows that for all |λ| large enough,

(λI −A)
(
C0 + C1λ+ · · ·+ Cn−1λ

n−1
)
= p (λ) I

and so Corollary 3.4.3 may be used. It follows the matrix coefficients corresponding to equal
powers of λ are equal on both sides of this equation. Therefore, if λ is replaced with A, the
two sides will be equal. Thus

0 = (A−A)
(
C0 + C1A+ · · ·+ Cn−1A

n−1
)
= p (A) I = p (A) .�

3.5 Block Multiplication Of Matrices

Consider the following problem
(

A B
C D

)(
E F
G H

)

You know how to do this. You get
(

AE +BG AF +BH
CE +DG CF +DH

)
.

Now what if instead of numbers, the entries, A,B,C,D,E, F,G are matrices of a size such
that the multiplications and additions needed in the above formula all make sense. Would
the formula be true in this case? I will show below that this is true.

Suppose A is a matrix of the form

A =




A11 · · · A1m

...
. . .

...
Ar1 · · · Arm


 (3.17)
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where Aij is a si × pj matrix where si is constant for j = 1, · · · ,m for each i = 1, · · · , r.
Such a matrix is called a block matrix, also a partitioned matrix. How do you get the
block Aij? Here is how for A an m× n matrix:

si×m� �� �(
0 Isi×si 0

)
A

n×pj� �� �


0
Ipj×pj

0


. (3.18)

In the block column matrix on the right, you need to have cj − 1 rows of zeros above the
small pj × pj identity matrix where the columns of A involved in Aij are cj , · · · , cj + pj − 1
and in the block row matrix on the left, you need to have ri − 1 columns of zeros to the left
of the si × si identity matrix where the rows of A involved in Aij are ri, · · · , ri + si. An
important observation to make is that the matrix on the right specifies columns to use in
the block and the one on the left specifies the rows used. Thus the block Aij in this case
is a matrix of size si × pj . There is no overlap between the blocks of A. Thus the identity
n× n identity matrix corresponding to multiplication on the right of A is of the form




Ip1×p1 0
. . .

0 Ipm×pm




where these little identity matrices don’t overlap. A similar conclusion follows from consid-
eration of the matrices Isi×si . Note that in 3.18 the matrix on the right is a block column
matrix for the above block diagonal matrix and the matrix on the left in 3.18 is a block row
matrix taken from a similar block diagonal matrix consisting of the Isi×si .

Next consider the question of multiplication of two block matrices. Let B be a block
matrix of the form 


B11 · · · B1p

...
. . .

...
Br1 · · · Brp


 (3.19)

and A is a block matrix of the form



A11 · · · A1m

...
. . .

...
Ap1 · · · Apm


 (3.20)

and that for all i, j, it makes sense to multiply BisAsj for all s ∈ {1, · · · , p}. (That is the
two matrices, Bis and Asj are conformable.) and that for fixed ij, it follows BisAsj is the
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same size for each s so that it makes sense to write
∑

s BisAsj .
The following theorem says essentially that when you take the product of two matrices,

you can do it two ways. One way is to simply multiply them forming BA. The other way
is to partition both matrices, formally multiply the blocks to get another block matrix and
this one will be BA partitioned. Before presenting this theorem, here is a simple lemma
which is really a special case of the theorem.

Lemma 3.5.1 Consider the following product.




0
I
0


(

0 I 0
)

where the first is n×r and the second is r×n. The small identity matrix I is an r×r matrix
and there are l zero rows above I and l zero columns to the left of I in the right matrix.

Get Internationally Connected 
at the University of Surrey 
MA Intercultural Communication with International Business
MA Communication and International Marketing
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socio-cultural contexts by combining linguistic, cultural/media studies and 
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the international business environment.
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Then the product of these matrices is a block matrix of the form



0 0 0
0 I 0
0 0 0




Proof: From the definition of the way you multiply matrices, the product is






0
I
0


0 · · ·




0
I
0


0




0
I
0


 e1 · · ·




0
I
0


 er




0
I
0


0 · · ·




0
I
0


0




which yields the claimed result. In the formula ej refers to the column vector of length r
which has a 1 in the jth position. �

Theorem 3.5.2 Let B be a q× p block matrix as in 3.19 and let A be a p× n block matrix
as in 3.20 such that Bis is conformable with Asj and each product, BisAsj for s = 1, · · · , p
is of the same size so they can be added. Then BA can be obtained as a block matrix such
that the ijth block is of the form ∑

s

BisAsj . (3.21)

Proof: From 3.18

BisAsj =
(
0 Iri×ri 0

)
B




0
Ips×ps

0


(

0 Ips×ps 0
)
A




0
Iqj×qj

0




where here it is assumed Bis is ri × ps and Asj is ps × qj . The product involves the sth

block in the ith row of blocks for B and the sth block in the jth column of A. Thus there
are the same number of rows above the Ips×ps as there are columns to the left of Ips×ps in
those two inside matrices. Then from Lemma 3.5.1


0

Ips×ps

0


(

0 Ips×ps 0
)
=




0 0 0
0 Ips×ps 0
0 0 0




Since the blocks of small identity matrices do not overlap,

∑
s




0 0 0
0 Ips×ps 0
0 0 0


 =




Ip1×p1 0
. . .

0 Ipp×pp


 = I

and so

∑
s

BisAsj =
∑
s

(
0 Iri×ri 0

)
B




0
Ips×ps

0


(

0 Ips×ps 0
)
A




0
Iqj×qj

0




=
(
0 Iri×ri 0

)
B
∑
s




0
Ips×ps

0


(

0 Ips×ps 0
)
A




0
Iqj×qj

0




=
(
0 Iri×ri 0

)
BIA




0
Iqj×qj

0


 =

(
0 Iri×ri 0

)
BA




0
Iqj×qj

0




which equals the ijth block of BA. Hence the ijth block of BA equals the formal multipli-
cation according to matrix multiplication,

∑
s BisAsj . �
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Example 3.5.3 Let an n×n matrix have the form A =

(
a b
c P

)
where P is n−1×n−1.

Multiply it by B =

(
p q
r Q

)
where B is also an n× n matrix and Q is n− 1× n− 1.

You use block multiplication

(
a b
c P

)(
p q
r Q

)
=

(
ap+ br aq+ bQ
pc+ Pr cq+ PQ

)

Note that this all makes sense. For example, b = 1 × n − 1 and r = n − 1 × 1 so br is a
1× 1. Similar considerations apply to the other blocks.

Here is an interesting and significant application of block multiplication. In this theorem,
pM (t) denotes the characteristic polynomial, det (tI −M) . The zeros of this polynomial will
be shown later to be eigenvalues of the matrix M . First note that from block multiplication,
for the following block matrices consisting of square blocks of an appropriate size,

(
A 0
B C

)
=

(
A 0
B I

)(
I 0
0 C

)
so

det

(
A 0
B C

)
= det

(
A 0
B I

)
det

(
I 0
0 C

)
= det (A) det (C)

Theorem 3.5.4 Let A be an m×n matrix and let B be an n×m matrix for m ≤ n. Then

pBA (t) = tn−mpAB (t) ,

so the eigenvalues of BA and AB are the same including multiplicities except that BA has
n−m extra zero eigenvalues. Here pA (t) denotes the characteristic polynomial of the matrix
A.

Proof: Use block multiplication to write

(
AB 0
B 0

)(
I A
0 I

)
=

(
AB ABA
B BA

)

(
I A
0 I

)(
0 0
B BA

)
=

(
AB ABA
B BA

)
.

Therefore, (
I A
0 I

)−1 (
AB 0
B 0

)(
I A
0 I

)
=

(
0 0
B BA

)

Since the two matrices above are similar, it follows that

(
0 0
B BA

)
and

(
AB 0
B 0

)

have the same characteristic polynomials. See Problem 8 on Page 106. Therefore, noting
that BA is an n× n matrix and AB is an m×m matrix,

tm det (tI −BA) = tn det (tI −AB)

and so det (tI −BA) = pBA (t) = tn−m det (tI −AB) = tn−mpAB (t) . �
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3.6 Exercises

1. Let m < n and let A be an m × n matrix. Show that A is not one to one. Hint:
Consider the n× n matrix A1 which is of the form

A1 ≡
(

A
0

)

where the 0 denotes an (n−m) × n matrix of zeros. Thus detA1 = 0 and so A1 is
not one to one. Now observe that A1x is the vector,

A1x =

(
Ax
0

)

which equals zero if and only if Ax = 0.

2. Let v1, · · · ,vn be vectors in Fn and let M (v1, · · · ,vn) denote the matrix whose ith

column equals vi. Define

d (v1, · · · ,vn) ≡ det (M (v1, · · · ,vn)) .

Prove that d is linear in each variable, (multilinear), that

d (v1, · · · ,vi, · · · ,vj , · · · ,vn) = −d (v1, · · · ,vj , · · · ,vi, · · · ,vn) , (3.22)

and
d (e1, · · · , en) = 1 (3.23)

where here ej is the vector in Fn which has a zero in every position except the jth

STEP INTO A WORLD 
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position in which it has a one.

3. Suppose f : Fn × · · · × Fn → F satisfies 3.22 and 3.23 and is linear in each variable.
Show that f = d.

4. Show that if you replace a row (column) of an n × n matrix A with itself added to
some multiple of another row (column) then the new matrix has the same determinant
as the original one.

5. Use the result of Problem 4 to evaluate by hand the determinant

det




1 2 3 2
−6 3 2 3
5 2 2 3
3 4 6 4


 .
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6. Find the inverse if it exists of the matrix



et cos t sin t
et − sin t cos t
et − cos t − sin t


 .

7. Let Ly = y(n) + an−1 (x) y
(n−1) + · · · + a1 (x) y

′ + a0 (x) y where the ai are given
continuous functions defined on an interval, (a, b) and y is some function which has n
derivatives so it makes sense to write Ly. Suppose Lyk = 0 for k = 1, 2, · · · , n. The
Wronskian of these functions, yi is defined as

W (y1, · · · , yn) (x) ≡ det




y1 (x) · · · yn (x)
y′1 (x) · · · y′n (x)

...
...

y
(n−1)
1 (x) · · · y

(n−1)
n (x)




Show that for W (x) = W (y1, · · · , yn) (x) to save space,

W ′ (x) = det




y1 (x) · · · yn (x)
... · · ·

...

y
(n−2)
1 (x) y

(n−2)
n (x)

y
(n)
1 (x) · · · y

(n)
n (x)


 .

Now use the differential equation, Ly = 0 which is satisfied by each of these functions,
yi and properties of determinants presented above to verify that W ′+an−1 (x)W = 0.
Give an explicit solution of this linear differential equation, Abel’s formula, and use
your answer to verify that the Wronskian of these solutions to the equation, Ly = 0
either vanishes identically on (a, b) or never.

8. Two n × n matrices, A and B, are similar if B = S−1AS for some invertible n × n
matrix S. Show that if two matrices are similar, they have the same characteristic
polynomials. The characteristic polynomial of A is det (λI −A) .

9. Suppose the characteristic polynomial of an n× n matrix A is of the form

tn + an−1t
n−1 + · · ·+ a1t+ a0

and that a0 ̸= 0. Find a formula A−1 in terms of powers of the matrix A. Show that
A−1 exists if and only if a0 ̸= 0. In fact, show that a0 = (−1)

n
det (A) .

10. ↑Letting p (t) denote the characteristic polynomial of A, show that pε (t) ≡ p (t− ε)
is the characteristic polynomial of A + εI. Then show that if det (A) = 0, it follows
that det (A+ εI) ̸= 0 whenever |ε| is sufficiently small.

11. In constitutive modeling of the stress and strain tensors, one sometimes considers sums
of the form

∑∞
k=0 akA

k where A is a 3×3 matrix. Show using the Cayley Hamilton
theorem that if such a thing makes any sense, you can always obtain it as a finite sum
having no more than n terms.

12. Recall you can find the determinant from expanding along the jth column.

det (A) =
∑
i

Aij (cof (A))ij
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Think of det (A) as a function of the entries, Aij . Explain why the ijth cofactor is
really just

∂ det (A)

∂Aij
.

13. Let U be an open set in Rn and let g :U → Rn be such that all the first partial
derivatives of all components of g exist and are continuous. Under these conditions
form the matrix Dg (x) given by

Dg (x)ij ≡
∂gi (x)

∂xj
≡ gi,j (x)

The best kept secret in calculus courses is that the linear transformation determined
by this matrix Dg (x) is called the derivative of g and is the correct generalization
of the concept of derivative of a function of one variable. Suppose the second partial
derivatives also exist and are continuous. Then show that

∑
j

(cof (Dg))ij,j = 0.

Hint: First explain why
∑

i gi,k cof (Dg)ij = δjk det (Dg) . Next differentiate with
respect to xj and sum on j using the equality of mixed partial derivatives. Assume
det (Dg) ̸= 0 to prove the identity in this special case. Then explain using Problem 10
why there exists a sequence εk → 0 such that for gεk (x) ≡ g (x)+εkx, det (Dgεk) ̸= 0
and so the identity holds for gεk . Then take a limit to get the desired result in general.
This is an extremely important identity which has surprising implications. One can
build degree theory on it for example. It also leads to simple proofs of the Brouwer
fixed point theorem from topology.

14. A determinant of the form
�������������

1 1 · · · 1
a0 a1 · · · an
a20 a21 · · · a2n
...

...
...

an−1
0 an−1

1 · · · an−1
n

an0 an1 · · · ann

�������������

is called a Vandermonde determinant. Show this determinant equals

∏
0≤i<j≤n

(aj − ai)

By this is meant to take the product of all terms of the form (aj − ai) such that j > i.
Hint: Show it works if n = 1 so you are looking at

����
1 1
a0 a1

����

Then suppose it holds for n − 1 and consider the case n. Consider the polynomial in
t, p (t) which is obtained from the above by replacing the last column with the column

(
1 t · · · tn

)T
.
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Explain why p (aj) = 0 for i = 0, · · · , n− 1. Explain why

p (t) = c
n−1∏
i=0

(t− ai) .

Of course c is the coefficient of tn. Find this coefficient from the above description of
p (t) and the induction hypothesis. Then plug in t = an and observe you have the
formula valid for n.
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4.1 Elementary Matrices

The elementary matrices result from doing a row operation to the identity matrix.

Definition 4.1.1 The row operations consist of the following

1. Switch two rows.

2. Multiply a row by a nonzero number.

3. Replace a row by a multiple of another row added to it.

The elementary matrices are given in the following definition.

Definition 4.1.2 The elementary matrices consist of those matrices which result by apply-
ing a row operation to an identity matrix. Those which involve switching rows of the identity
are called permutation matrices. More generally, if (i1, i2, · · · , in) is a permutation, a ma-
trix which has a 1 in the ik position in row k and zero in every other position of that row is
called a permutation matrix. Thus each permutation corresponds to a unique permutation
matrix.

As an example of why these elementary matrices are interesting, consider the following.



0 1 0
1 0 0
0 0 1







a b c d
x y z w
f g h i


 =




x y z w
a b c d
f g h i




A 3×4 matrix was multiplied on the left by an elementary matrix which was obtained from
row operation 1 applied to the identity matrix. This resulted in applying the operation 1
to the given matrix. This is what happens in general.

Now consider what these elementary matrices look like. First consider the one which
involves switching row i and row j where i < j. This matrix is of the form




1 0
. . .

0 · · · 1
...

...
1 · · · 0

. . .

0 1



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The two exceptional rows are shown. The ith row was the jth and the jth row was the ith

in the identity matrix. Now consider what this does to a column vector.




1 0
. . .

0 · · · 1
...

...
1 · · · 0

. . .

0 1







v1
...
vi
...
vj
...
vn




=




v1
...
vj
...
vi
...
vn




Now denote by P ij the elementary matrix which comes from the identity from switching
rows i and j. From what was just explained consider multiplication on the left by this
elementary matrix.

P ij




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj1 aj2 · · · ajp
...

...
...

an1 an2 · · · anp




From the way you multiply matrices this is a matrix which has the indicated columns.




P ij




a11
...
ai1
...

aj1
...

an1




, P ij




a12
...
ai2
...

aj2
...

an2




, · · · , P ij




a1p
...
aip
...

ajp
...

anp







=







a11
...

aj1
...
ai1
...

an1




,




a12
...

aj2
...
ai2
...

an2




, · · · ,




a1p
...

ajp
...
aip
...

anp






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=




a11 a12 · · · a1p
...

...
...

aj1 aj2 · · · ajp
...

...
...

ai1 ai2 · · · aip
...

...
...

an1 an2 · · · anp




This has established the following lemma.

Lemma 4.1.3 Let P ij denote the elementary matrix which involves switching the ith and
the jth rows. Then

P ijA = B

where B is obtained from A by switching the ith and the jth rows.

As a consequence of the above lemma, if you have any permutation (i1, · · · , in), it
follows from Lemma 3.3.2 that the corresponding permutation matrix can be obtained by
multiplying finitely many permutation matrices, each of which switch only two rows. Now
every such permutation matrix in which only two rows are switched has determinant −1.
Therefore, the determinant of the permutation matrix for (i1, · · · , in) equals (−1)

p
where

the given permutation can be obtained by making p switches. Now p is not unique. There
are many ways to make switches and end up with a given permutation, but what this shows
is that the total number of switches is either always odd or always even. That is, you could
not obtain a given permutation by making 2m switches and 2k+1 switches. A permutation
is said to be even if p is even and odd if p is odd. This is an interesting result in abstract
algebra which is obtained very easily from a consideration of elementary matrices and of
course the theory of the determinant. Also, this shows that the composition of permutations
corresponds to the product of the corresponding permutation matrices.

To see permutations considered more directly in the context of group theory, you should
see a good abstract algebra book such as [17] or [13].

Next consider the row operation which involves multiplying the ith row by a nonzero
constant, c. The elementary matrix which results from applying this operation to the ith

row of the identity matrix is of the form




1 0
. . .

c
. . .

0 1




Now consider what this does to a column vector.



1 0
. . .

c
. . .

0 1







v1
...
vi
...
vn




=




v1
...
cvi
...
vn



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Denote by E (c, i) this elementary matrix which multiplies the ith row of the identity by the
nonzero constant, c. Then from what was just discussed and the way matrices are multiplied,

E (c, i)




a11 a12 · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · aip
...

...
...

an1 an2 · · · · · · anp



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equals a matrix having the columns indicated below.

=



E (c, i)




a11
...
ai1
...

an1




, E (c, i)




a12
...
ai2
...

an2




, · · · , E (c, i)




a1p
...
aip
...

anp







=




a11 a12 · · · · · · a1p
...

...
...

cai1 cai2 · · · · · · caip
...

...
...

an1 an2 · · · · · · anp




This proves the following lemma.

Lemma 4.1.4 Let E (c, i) denote the elementary matrix corresponding to the row opera-
tion in which the ith row is multiplied by the nonzero constant, c. Thus E (c, i) involves
multiplying the ith row of the identity matrix by c. Then

E (c, i)A = B

where B is obtained from A by multiplying the ith row of A by c.

Finally consider the third of these row operations. Denote byE (c× i+ j) the elementary
matrix which replaces the jth row with itself added to c times the ith row added to it. In
case i < j this will be of the form




1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1




Now consider what this does to a column vector.



1 0
. . .

1
...

. . .

c · · · 1
. . .

0 1







v1
...
vi
...
vj
...
vn




=




v1
...
vi
...

cvi + vj
...
vn



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Now from this and the way matrices are multiplied,

E (c× i+ j)




a11 a12 · · · · · · · · · · · · a1p
...

...
...

ai1 ai2 · · · · · · · · · · · · aip
...

...
...

aj2 aj2 · · · · · · · · · · · · ajp
...

...
...

an1 an2 · · · · · · · · · · · · anp




equals a matrix of the following form having the indicated columns.




E (c× i+ j)




a11
...
ai1
...

aj2
...

an1




, E (c× i+ j)




a12
...
ai2
...

aj2
...

an2




, · · ·E (c× i+ j)




a1p
...
aip
...

ajp
...

anp







=




a11 a12 · · · a1p
...

...
...

ai1 ai2 · · · aip
...

...
...

aj2 + cai1 aj2 + cai2 · · · ajp + caip
...

...
...

an1 an2 · · · anp




The case where i > j is handled similarly. This proves the following lemma.

Lemma 4.1.5 Let E (c× i+ j) denote the elementary matrix obtained from I by replacing
the jth row with c times the ith row added to it. Then

E (c× i+ j)A = B

where B is obtained from A by replacing the jth row of A with itself added to c times the
ith row of A.

The next theorem is the main result.

Theorem 4.1.6 To perform any of the three row operations on a matrix A it suffices to do
the row operation on the identity matrix obtaining an elementary matrix E and then take
the product, EA. Furthermore, each elementary matrix is invertible and its inverse is an
elementary matrix.

Proof: The first part of this theorem has been proved in Lemmas 4.1.3 - 4.1.5. It
only remains to verify the claim about the inverses. Consider first the elementary matrices
corresponding to row operation of type three.

E (−c× i+ j)E (c× i+ j) = I
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This follows because the first matrix takes c times row i in the identity and adds it to row j.
When multiplied on the left by E (−c× i+ j) it follows from the first part of this theorem
that you take the ith row of E (c× i+ j) which coincides with the ith row of I since that
row was not changed, multiply it by −c and add to the jth row of E (c× i+ j) which was
the jth row of I added to c times the ith row of I. Thus E (−c× i+ j) multiplied on the
left, undoes the row operation which resulted in E (c× i+ j). The same argument applied
to the product

E (c× i+ j)E (−c× i+ j)

replacing c with −c in the argument yields that this product is also equal to I. Therefore,
E (c× i+ j)

−1
= E (−c× i+ j) .

Similar reasoning shows that for E (c, i) the elementary matrix which comes from mul-
tiplying the ith row by the nonzero constant, c,

E (c, i)
−1

= E
(
c−1, i

)
.

Finally, consider P ij which involves switching the ith and the jth rows.

P ijP ij = I

because by the first part of this theorem, multiplying on the left by P ij switches the ith

and jth rows of P ij which was obtained from switching the ith and jth rows of the identity.
First you switch them to get P ij and then you multiply on the left by P ij which switches

these rows again and restores the identity matrix. Thus
(
P ij

)−1
= P ij . �

STUDY. PLAY.
The stuff you'll need to make a good living The stuff that makes life worth living

NORWAY. 
YOUR IDEAL STUDY DESTINATION.

WWW.STUDYINNORWAY.NO
FACEBOOK.COM/STUDYINNORWAY

http://bookboon.com/
http://bookboon.com/count/advert/96187bc1-08b7-494f-9730-9fec00d3acd8


Download free ebooks at bookboon.com

Linear Algebra I Matrices and Row operations

144 

Row Operations

4.2 The Rank Of A Matrix

Recall the following definition of rank of a matrix.

Definition 4.2.1 A submatrix of a matrix A is the rectangular array of numbers obtained
by deleting some rows and columns of A. Let A be an m × n matrix. The determinant
rank of the matrix equals r where r is the largest number such that some r × r submatrix
of A has a non zero determinant. The row rank is defined to be the dimension of the span
of the rows. The column rank is defined to be the dimension of the span of the columns.
The rank of A is denoted as rank (A).

The following theorem is proved in the section on the theory of the determinant and is
restated here for convenience.
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Theorem 4.2.2 Let A be an m× n matrix. Then the row rank, column rank and determi-
nant rank are all the same.

So how do you find the rank? It turns out that row operations are the key to the practical
computation of the rank of a matrix.

In rough terms, the following lemma states that linear relationships between columns
in a matrix are preserved by row operations.

Lemma 4.2.3 Let B and A be two m × n matrices and suppose B results from a row
operation applied to A. Then the kth column of B is a linear combination of the i1, · · · , ir
columns of B if and only if the kth column of A is a linear combination of the i1, · · · , ir
columns of A. Furthermore, the scalars in the linear combination are the same. (The linear
relationship between the kth column of A and the i1, · · · , ir columns of A is the same as the
linear relationship between the kth column of B and the i1, · · · , ir columns of B.)

Proof: Let A equal the following matrix in which the ak are the columns

(
a1 a2 · · · an

)

and let B equal the following matrix in which the columns are given by the bk

(
b1 b2 · · · bn

)

Then by Theorem 4.1.6 on Page 142 bk = Eak where E is an elementary matrix. Suppose
then that one of the columns of A is a linear combination of some other columns of A. Say

ak =
∑
r∈S

crar.

Then multiplying by E,

bk = Eak =
∑
r∈S

crEar =
∑
r∈S

crbr.�

Corollary 4.2.4 Let A and B be two m× n matrices such that B is obtained by applying
a row operation to A. Then the two matrices have the same rank.

Proof: Lemma 4.2.3 says the linear relationships are the same between the columns of
A and those of B. Therefore, the column rank of the two matrices is the same. �

This suggests that to find the rank of a matrix, one should do row operations until a
matrix is obtained in which its rank is obvious.

Example 4.2.5 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2
1 3 6 0 2
3 7 8 6 6


 (4.1)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the third. This yields




1 2 1 3 2
0 1 5 −3 0
0 1 5 −3 0



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By the above corollary, this matrix has the same rank as the first matrix. Now take (−1)
times the second row and add to the third row yielding




1 2 1 3 2
0 1 5 −3 0
0 0 0 0 0




At this point it is clear the rank is 2. This is because every column is in the span of the
first two and these first two columns are linearly independent.

Example 4.2.6 Find the rank of the following matrix and identify columns whose linear
combinations yield all the other columns.




1 2 1 3 2
1 2 6 0 2
3 6 8 6 6


 (4.2)

Take (−1) times the first row and add to the second and then take (−3) times the first
row and add to the last row. This yields




1 2 1 3 2
0 0 5 −3 0
0 0 5 −3 0




Now multiply the second row by 1/5 and add 5 times it to the last row.



1 2 1 3 2
0 0 1 −3/5 0
0 0 0 0 0




Add (−1) times the second row to the first.



1 2 0 18
5 2

0 0 1 −3/5 0
0 0 0 0 0


 (4.3)

It is now clear the rank of this matrix is 2 because the first and third columns form a
basis for the column space.

The matrix 4.3 is the row reduced echelon form for the matrix 4.2.

4.3 The Row Reduced Echelon Form

The following definition is for the row reduced echelon form of a matrix.

Definition 4.3.1 Let ei denote the column vector which has all zero entries except for the
ith slot which is one. An m×n matrix is said to be in row reduced echelon form if, in viewing
successive columns from left to right, the first nonzero column encountered is e1 and if you
have encountered e1, e2, · · · , ek, the next column is either ek+1 or is a linear combination
of the vectors, e1, e2, · · · , ek.

For example, here are some matrices which are in row reduced echelon form.



0 1 3 0 3
0 0 0 1 5
0 0 0 0 0


 ,




1 0 3 −11 0
0 1 4 4 0
0 0 0 0 1


 .
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Theorem 4.3.2 Let A be an m × n matrix. Then A has a row reduced echelon form
determined by a simple process.

Proof: Viewing the columns of A from left to right take the first nonzero column. Pick
a nonzero entry in this column and switch the row containing this entry with the top row of
A. Now divide this new top row by the value of this nonzero entry to get a 1 in this position
and then use row operations to make all entries below this entry equal to zero. Thus the
first nonzero column is now e1. Denote the resulting matrix by A1. Consider the submatrix
of A1 to the right of this column and below the first row. Do exactly the same thing for it
that was done for A. This time the e1 will refer to Fm−1. Use this 1 and row operations
to zero out every entry above it in the rows of A1. Call the resulting matrix A2. Thus A2

satisfies the conditions of the above definition up to the column just encountered. Continue
this way till every column has been dealt with and the result must be in row reduced echelon
form. �

The following diagram illustrates the above procedure. Say the matrix looked something
like the following. 



0 ∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 ∗ ∗ ∗ ∗ ∗ ∗




First step would yield something like




0 1 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 ∗ ∗ ∗ ∗ ∗




For the second step you look at the lower right corner as described,




∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗




and if the first column consists of all zeros but the next one is not all zeros, you would get
something like this. 


0 1 ∗ ∗ ∗
...

...
...

...
...

0 0 ∗ ∗ ∗




Thus, after zeroing out the term in the top row above the 1, you get the following for the
next step in the computation of the row reduced echelon form for the original matrix.




0 1 ∗ 0 ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 0 0 ∗ ∗ ∗


 .
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Next you look at the lower right matrix below the top two rows and to the right of the first

four columns and repeat the process.

Definition 4.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which is not a linear combination of the columns to
its left. The third pivot column is the next column after this which is not a linear combination
of those columns to its left, and so forth. Thus by Lemma 4.2.3 if a pivot column occurs
as the jth column from the left, it follows that in the row reduced echelon form there will be
one of the ek as the jth column.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 4.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.

Next you look at the lower right matrix below the top two rows and to the right of the first

four columns and repeat the process.

Definition 4.3.3 The first pivot column of A is the first nonzero column of A. The next
pivot column is the first column after this which is not a linear combination of the columns to
its left. The third pivot column is the next column after this which is not a linear combination
of those columns to its left, and so forth. Thus by Lemma 4.2.3 if a pivot column occurs
as the jth column from the left, it follows that in the row reduced echelon form there will be
one of the ek as the jth column.

There are three choices for row operations at each step in the above theorem. A natural
question is whether the same row reduced echelon matrix always results in the end from
following the above algorithm applied in any way. The next corollary says this is the case.

Definition 4.3.4 Two matrices are said to be row equivalent if one can be obtained from
the other by a sequence of row operations.
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Since every row operation can be obtained by multiplication on the left by an elementary
matrix and since each of these elementary matrices has an inverse which is also an elementary
matrix, it follows that row equivalence is a similarity relation. Thus one can classify matrices
according to which similarity class they are in. Later in the book, another more profound
way of classifying matrices will be presented.

It has been shown above that every matrix is row equivalent to one which is in row
reduced echelon form. Note




x1

...
xn


 = x1e1 + · · ·+ xnen

so to say two column vectors are equal is to say they are the same linear combination of the
special vectors ej .

Corollary 4.3.5 The row reduced echelon form is unique. That is if B,C are two matrices
in row reduced echelon form and both are row equivalent to A, then B = C.

Proof: Suppose B and C are both row reduced echelon forms for the matrix A. Then
they clearly have the same zero columns since row operations leave zero columns unchanged.
If B has the sequence e1, e2, · · · , er occurring for the first time in the positions, i1, i2, · · · , ir,
the description of the row reduced echelon form means that each of these columns is not a
linear combination of the preceding columns. Therefore, by Lemma 4.2.3, the same is true of
the columns in positions i1, i2, · · · , ir for C. It follows from the description of the row reduced
echelon form, that e1, · · · , er occur respectively for the first time in columns i1, i2, · · · , ir
for C. Thus B,C have the same columns in these positions. By Lemma 4.2.3, the other
columns in the two matrices are linear combinations, involving the same scalars, of the
columns in the i1, · · · , ik position. Thus each column of B is identical to the corresponding
column in C. �

The above corollary shows that you can determine whether two matrices are row equiv-
alent by simply checking their row reduced echelon forms. The matrices are row equivalent
if and only if they have the same row reduced echelon form.

The following corollary follows.

Corollary 4.3.6 Let A be an m× n matrix and let R denote the row reduced echelon form
obtained from A by row operations. Then there exists a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = R.

Proof: This follows from the fact that row operations are equivalent to multiplication
on the left by an elementary matrix. �

Corollary 4.3.7 Let A be an invertible n × n matrix. Then A equals a finite product of
elementary matrices.

Proof: Since A−1 is given to exist, it follows A must have rank n because by Theorem
3.3.18 det(A) ̸= 0 which says the determinant rank and hence the column rank of A is n
and so the row reduced echelon form of A is I because the columns of A form a linearly
independent set. Therefore, by Corollary 4.3.6 there is a sequence of elementary matrices,
E1, · · · , Ep such that

(EpEp−1 · · ·E1)A = I.
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But now multiply on the left on both sides by E−1
p then by E−1

p−1 and then by E−1
p−2 etc.

until you get
A = E−1

1 E−1
2 · · ·E−1

p−1E
−1
p

and by Theorem 4.1.6 each of these in this product is an elementary matrix.

Corollary 4.3.8 The rank of a matrix equals the number of nonzero pivot columns. Fur-
thermore, every column is contained in the span of the pivot columns.

Proof: Write the row reduced echelon form for the matrix. From Corollary 4.2.4 this
row reduced matrix has the same rank as the original matrix. Deleting all the zero rows
and all the columns in the row reduced echelon form which do not correspond to a pivot
column, yields an r× r identity submatrix in which r is the number of pivot columns. Thus
the rank is at least r.

From Lemma 4.2.3 every column of A is a linear combination of the pivot columns since
this is true by definition for the row reduced echelon form. Therefore, the rank is no more
than r. �

Here is a fundamental observation related to the above.

Corollary 4.3.9 Suppose A is an m×n matrix and that m < n. That is, the number of rows
is less than the number of columns. Then one of the columns of A is a linear combination
of the preceding columns of A.

Proof: Since m < n, not all the columns of A can be pivot columns. That is, in the
row reduced echelon form say ei occurs for the first time at ri where r1 < r2 < · · · < rp
where p ≤ m. It follows since m < n, there exists some column in the row reduced echelon
form which is a linear combination of the preceding columns. By Lemma 4.2.3 the same is
true of the columns of A. �

Definition 4.3.10 Let A be an m×n matrix having rank, r. Then the nullity of A is defined
to be n− r. Also define ker (A) ≡ {x ∈ Fn : Ax = 0} . This is also denoted as N (A) .

Observation 4.3.11 Note that ker (A) is a subspace because if a, b are scalars and x,y are
vectors in ker (A), then

A (ax+ by) = aAx+ bAy = 0+ 0 = 0

Recall that the dimension of the column space of a matrix equals its rank and since the
column space is just A (Fn) , the rank is just the dimension of A (Fn). The next theorem
shows that the nullity equals the dimension of ker (A).

Theorem 4.3.12 Let A be an m× n matrix. Then rank (A) + dim (ker (A)) = n..

Proof: Since ker (A) is a subspace, there exists a basis for ker (A) , {x1, · · · ,xk} . Also
let {Ay1, · · · , Ayl} be a basis for A (Fn). Let u ∈ Fn. Then there exist unique scalars ci
such that

Au =

l∑
i=1

ciAyi

It follows that

A

(
u−

l∑
i=1

ciyi

)
= 0
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and so the vector in parenthesis is in ker (A). Thus there exist unique bj such that

u =
l∑

i=1

ciyi +
k∑

j=1

bjxj

Since u was arbitrary, this shows {x1, · · · ,xk,y1, · · · ,yl} spans Fn. If these vectors are
independent, then they will form a basis and the claimed equation will be obtained. Suppose
then that

l∑
i=1

ciyi +

k∑
j=1

bjxj = 0

Apply A to both sides. This yields

l∑
i=1

ciAyi = 0

and so each ci = 0. Then the independence of the xj imply each bj = 0. �

4.4 Rank And Existence Of Solutions To Linear Sys-
tems

Consider the linear system of equations,

Ax = b (4.4)
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where A is an m× n matrix, x is a n× 1 column vector, and b is an m× 1 column vector.
Suppose

A =
(
a1 · · · an

)

where the ak denote the columns of A. Then x = (x1, · · · , xn)
T
is a solution of the system

4.4, if and only if
x1a1 + · · ·+ xnan = b

which says that b is a vector in span (a1, · · · ,an) . This shows that there exists a solution
to the system, 4.4 if and only if b is contained in span (a1, · · · , an) . In words, there is a
solution to 4.4 if and only if b is in the column space of A. In terms of rank, the following
proposition describes the situation.

Proposition 4.4.1 Let A be an m× n matrix and let b be an m× 1 column vector. Then
there exists a solution to 4.4 if and only if

rank
(
A | b

)
= rank (A) . (4.5)
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Proof: Place
(
A | b

)
and A in row reduced echelon form, respectively B and C. If

the above condition on rank is true, then both B and C have the same number of nonzero
rows. In particular, you cannot have a row of the form

(
0 · · · 0 ⋆

)

where ⋆ ̸= 0 in B. Therefore, there will exist a solution to the system 4.4.
Conversely, suppose there exists a solution. This means there cannot be such a row in

B described above. Therefore, B and C must have the same number of zero rows and so
they have the same number of nonzero rows. Therefore, the rank of the two matrices in 4.5
is the same. �

4.5 Fredholm Alternative

There is a very useful version of Proposition 4.4.1 known as the Fredholm alternative.
I will only present this for the case of real matrices here. Later a much more elegant and
general approach is presented which allows for the general case of complex matrices.

The following definition is used to state the Fredholm alternative.

Definition 4.5.1 Let S ⊆ Rm. Then S⊥ ≡ {z ∈ Rm : z · s = 0 for every s ∈ S} . The funny
exponent, ⊥ is called “perp”.

Now note

ker
(
AT

)
≡

{
z : AT z = 0

}
=

{
z :

m∑
k=1

zkak = 0

}

Lemma 4.5.2 Let A be a real m× n matrix, let x ∈ Rn and y ∈ Rm. Then

(Ax · y) =
(
x·ATy

)

Proof: This follows right away from the definition of the inner product and matrix
multiplication.

(Ax · y) =
∑
k,l

Aklxlyk =
∑
k,l

(
AT

)
lk
xlyk =

(
x ·ATy

)
. �

Now it is time to state the Fredholm alternative. The first version of this is the following
theorem.

Theorem 4.5.3 Let A be a real m× n matrix and let b ∈ Rm. There exists a solution, x

to the equation Ax = b if and only if b ∈ ker
(
AT

)⊥
.

Proof: First suppose b ∈ ker
(
AT

)⊥
. Then this says that if ATx = 0, it follows that

b · x = 0. In other words, taking the transpose, if

xTA = 0, then xTb = 0.

Thus, if P is a product of elementary matrices such that PA is in row reduced echelon form,
then if PA has a row of zeros, in the kth position, then there is also a zero in the kth position
of Pb. Thus rank

(
A | b

)
= rank (A) .By Proposition 4.4.1, there exists a solution, x

to the system Ax = b. It remains to go the other direction.
Let z ∈ ker

(
AT

)
and suppose Ax = b. I need to verify b · z = 0. By Lemma 4.5.2,

b · z = Ax · z = x ·AT z = x · 0 = 0 �

This implies the following corollary which is also called the Fredholm alternative. The
“alternative” becomes more clear in this corollary.
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Corollary 4.5.4 Let A be an m× n matrix. Then A maps Rn onto Rm if and only if the
only solution to ATx = 0 is x = 0.

Proof: If the only solution toATx = 0 is x = 0, then ker
(
AT

)
= {0} and so ker

(
AT

)⊥
=

Rm because every b ∈ Rm has the property that b · 0 = 0. Therefore, Ax = b has a solu-

tion for any b ∈ Rm because the b for which there is a solution are those in ker
(
AT

)⊥
by

Theorem 4.5.3. In other words, A maps Rn onto Rm.

Conversely if A is onto, then by Theorem 4.5.3 every b ∈ Rm is in ker
(
AT

)⊥
and so if

ATx = 0, then b · x = 0 for every b. In particular, this holds for b = x. Hence if ATx = 0,
then x = 0. �

Here is an amusing example.

Example 4.5.5 Let A be an m× n matrix in which m > n. Then A cannot map onto Rm.

The reason for this is that AT is an n×m where m > n and so in the augmented matrix
(
AT |0

)

there must be some free variables. Thus there exists a nonzero vector x such that ATx = 0.

4.6 Exercises

1. Let {u1, · · · ,un} be vectors in Rn. The parallelepiped determined by these vectors
P (u1, · · · ,un) is defined as

P (u1, · · · ,un) ≡

{
n∑

k=1

tkuk : tk ∈ [0, 1] for all k

}
.

Now let A be an n× n matrix. Show that

{Ax : x ∈ P (u1, · · · ,un)}

is also a parallelepiped.

2. In the context of Problem 1, draw P (e1, e2) where e1, e2 are the standard basis vectors
for R2. Thus e1 = (1, 0) , e2 = (0, 1) . Now suppose

E =

(
1 1
0 1

)

where E is the elementary matrix which takes the third row and adds to the first.
Draw

{Ex : x ∈ P (e1, e2)} .
In other words, draw the result of doing E to the vectors in P (e1, e2). Next draw the
results of doing the other elementary matrices to P (e1, e2).

3. In the context of Problem 1, either draw or describe the result of doing elementary
matrices to P (e1, e2, e3). Describe geometrically the conclusion of Corollary 4.3.7.

4. Consider a permutation of {1, 2, · · · , n}. This is an ordered list of numbers taken from
this list with no repeats, {i1, i2, · · · , in}. Define the permutation matrix P (i1, i2, · · · , in)
as the matrix which is obtained from the identity matrix by placing the jth column
of I as the ithj column of P (i1, i2, · · · , in) . Thus the 1 in the ithj column of this per-

mutation matrix occurs in the jth slot. What does this permutation matrix do to the
column vector (1, 2, · · · , n)T ?
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5. ↑Consider the 3 × 3 permutation matrices. List all of them and then determine the
dimension of their span. Recall that you can consider an m× n matrix as something
in Fnm.

6. Determine which matrices are in row reduced echelon form.

(a)

(
1 2 0
0 1 7

)

(b)




1 0 0 0
0 0 1 2
0 0 0 0




(c)




1 1 0 0 0 5
0 0 1 2 0 4
0 0 0 0 1 3




7. Row reduce the following matrices to obtain the row reduced echelon form. List the
pivot columns in the original matrix.

(a)




1 2 0 3
2 1 2 2
1 1 0 3




(b)




1 2 3
2 1 −2
3 0 0
3 2 1




(c)




1 2 1 3
−3 2 1 0
3 2 1 1




8. Find the rank and nullity of the following matrices. If the rank is r, identify r columns
in the original matrix which have the property that every other column may be
written as a linear combination of these.

(a)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(b)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2




(c)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




9. Find the rank of the following matrices. If the rank is r, identify r columns in the
original matrix which have the property that every other column may be written
as a linear combination of these. Also find a basis for the row and column spaces of
the matrices.
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(a)




1 2 0
3 2 1
2 1 0
0 2 1




(b)




1 0 0
4 1 1
2 1 0
0 2 0




(c)




0 1 0 2 1 2 2
0 3 2 12 1 6 8
0 1 1 5 0 2 3
0 2 1 7 0 3 4




(d)




0 1 0 2 0 1 0
0 3 2 6 0 5 4
0 1 1 2 0 2 2
0 2 1 4 0 3 2




(e)




0 1 0 2 1 1 2
0 3 2 6 1 5 1
0 1 1 2 0 2 1
0 2 1 4 0 3 1




10. Suppose A is an m × n matrix. Explain why the rank of A is always no larger than
min (m,n) .

11. Suppose A is an m×n matrix in which m ≤ n. Suppose also that the rank of A equals
m. Show that A maps Fn onto Fm. Hint: The vectors e1, · · · , em occur as columns
in the row reduced echelon form for A.

12. Suppose A is an m × n matrix and that m > n. Show there exists b ∈ Fm such that
there is no solution to the equation

Ax = b.

13. Suppose A is an m × n matrix in which m ≥ n. Suppose also that the rank of A
equals n. Show that A is one to one. Hint: If not, there exists a vector, x ̸= 0 such
that Ax = 0, and this implies at least one column of A is a linear combination of the
others. Show this would require the column rank to be less than n.

14. Explain why an n× n matrix A is both one to one and onto if and only if its rank is
n.

15. Suppose A is an m × n matrix and {w1, · · · ,wk} is a linearly independent set of
vectors in A (Fn) ⊆ Fm. Suppose also that Azi = wi. Show that {z1, · · · , zk} is also
linearly independent.

16. Show rank (A+B) ≤ rank (A) + rank (B).

17. Suppose A is an m × n matrix, m ≥ n and the columns of A are independent. Sup-
pose also that {z1, · · · , zk} is a linearly independent set of vectors in Fn. Show that
{Az1, · · · , Azk} is linearly independent.
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18. Suppose A is an m× n matrix and B is an n× p matrix. Show that

dim (ker (AB)) ≤ dim (ker (A)) + dim (ker (B)) .

Hint: Consider the subspace, B (Fp) ∩ ker (A) and suppose a basis for this subspace
is {w1, · · · ,wk} . Now suppose {u1, · · · ,ur} is a basis for ker (B) . Let {z1, · · · , zk}
be such that Bzi = wi and argue that

ker (AB) ⊆ span (u1, · · · ,ur, z1, · · · , zk) .

19. Let m < n and let A be an m× n matrix. Show that A is not one to one.

20. Let A be an m× n real matrix and let b ∈ Rm. Show there exists a solution, x to the
system

ATAx = ATb

Next show that if x,x1 are two solutions, then Ax = Ax1. Hint: First show that(
ATA

)T
= ATA. Next show if x ∈ ker

(
ATA

)
, then Ax = 0. Finally apply the Fred-

holm alternative. Show ATb ∈ ker(ATA)⊥. This will give existence of a solution.

21. Show that in the context of Problem 20 that if x is the solution there, then |b−Ax| ≤
|b−Ay| for every y. Thus Ax is the point of A (Rn) which is closest to b of every
point in A (Rn). This is a solution to the least squares problem.

22. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point in span







1
0
2
3


 ,




0
1
3
2





 which

is closest to the given point.

23. ↑Here is a point in R4 : (1, 2, 3, 4)
T
. Find the point on the plane described by x+2y−

4z + 4w = 0 which is closest to the given point.

24. Suppose A,B are two invertible n× n matrices. Show there exists a sequence of row
operations which when done to A yield B. Hint: Recall that every invertible matrix
is a product of elementary matrices.

25. If A is invertible and n× n and B is n× p, show that AB has the same null space as
B and also the same rank as B.

26. Here are two matrices in row reduced echelon form

A =




1 0 1
0 1 1
0 0 0


 , B =




1 0 0
0 1 1
0 0 0




Does there exist a sequence of row operations which when done to A will yield B?
Explain.

27. Is it true that an upper triagular matrix has rank equal to the number of nonzero
entries down the main diagonal?

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Linear Algebra I Matrices and Row operations

158 

Row Operations

28. Let {v1, · · · ,vn−1} be vectors in Fn. Describe a systematic way to obtain a vector vn

which is perpendicular to each of these vectors. Hint: You might consider something
like this

det




e1 e2 · · · en
v11 v12 · · · v1n
...

...
...

v(n−1)1 v(n−1)2 · · · v(n−1)n




where vij is the jth entry of the vector vi. This is a lot like the cross product.

29. Let A be an m × n matrix. Then ker (A) is a subspace of Fn. Is it true that every
subspace of Fn is the kernel or null space of some matrix? Prove or disprove.

30. Let A be an n×n matrix and let P ij be the permutation matrix which switches the ith

and jth rows of the identity. Show that P ijAP ij produces a matrix which is similar
to A which switches the ith and jth entries on the main diagonal.

31. Recall the procedure for finding the inverse of a matrix on Page 62. It was shown that
the procedure, when it works, finds the inverse of the matrix. Show that whenever
the matrix has an inverse, the procedure works.
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5.1 LU Factorization

An LU factorization of a matrix involves writing the given matrix as the product of a
lower triangular matrix which has the main diagonal consisting entirely of ones, L, and an
upper triangular matrix U in the indicated order. The L goes with “lower” and the U with
“upper”. It turns out many matrices can be written in this way and when this is possible,
people get excited about slick ways of solving the system of equations, Ax = y. The method
lacks generality but is of interest just the same.

Example 5.1.1 Can you write

(
0 1
1 0

)
in the form LU as just described?

To do so you would need
(

1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb+ c

)
=

(
0 1
1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and
have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU factorization.
This is what I mean above by saying the method lacks generality.

Which matrices have an LU factorization? It turns out it is those whose row reduced
echelon form can be achieved without switching rows and which only involve row operations
of type 3 in which row j is replaced with a multiple of row i added to row j for i < j.

5.2 Finding An LU Factorization

There is a convenient procedure for finding an LU factorization. It turns out that it is
only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples and is called the
multiplier method. It is due to Dolittle.

Example 5.2.1 Find an LU factorization for A =




1 2 3
2 1 −4
1 5 2




Write the matrix next to the identity matrix as shown.



1 0 0
0 1 0
0 0 1







1 2 3
2 1 −4
1 5 2


 .
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5.1 LU Factorization

An LU factorization of a matrix involves writing the given matrix as the product of a
lower triangular matrix which has the main diagonal consisting entirely of ones, L, and an
upper triangular matrix U in the indicated order. The L goes with “lower” and the U with
“upper”. It turns out many matrices can be written in this way and when this is possible,
people get excited about slick ways of solving the system of equations, Ax = y. The method
lacks generality but is of interest just the same.

Example 5.1.1 Can you write

(
0 1
1 0

)
in the form LU as just described?

To do so you would need
(

1 0
x 1

)(
a b
0 c

)
=

(
a b
xa xb+ c

)
=

(
0 1
1 0

)
.

Therefore, b = 1 and a = 0. Also, from the bottom rows, xa = 1 which can’t happen and
have a = 0. Therefore, you can’t write this matrix in the form LU. It has no LU factorization.
This is what I mean above by saying the method lacks generality.

Which matrices have an LU factorization? It turns out it is those whose row reduced
echelon form can be achieved without switching rows and which only involve row operations
of type 3 in which row j is replaced with a multiple of row i added to row j for i < j.

5.2 Finding An LU Factorization

There is a convenient procedure for finding an LU factorization. It turns out that it is
only necessary to keep track of the multipliers which are used to row reduce to upper
triangular form. This procedure is described in the following examples and is called the
multiplier method. It is due to Dolittle.

Example 5.2.1 Find an LU factorization for A =




1 2 3
2 1 −4
1 5 2




Write the matrix next to the identity matrix as shown.



1 0 0
0 1 0
0 0 1







1 2 3
2 1 −4
1 5 2


 .
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The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0
2 1 0
0 0 1







1 2 3
0 −3 −10
1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0
2 1 0
1 0 1







1 2 3
0 −3 −10
0 3 −1




Finally, add the second row to the bottom row and make the following changes



1 0 0
2 1 0
1 −1 1







1 2 3
0 −3 −10
0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
second added to the last.




1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method. ��

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
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The process involves doing row operations to the matrix on the right while simultaneously
updating successive columns of the matrix on the left. First take −2 times the first row and
add to the second in the matrix on the right.




1 0 0
2 1 0
0 0 1







1 2 3
0 −3 −10
1 5 2




Note the method for updating the matrix on the left. The 2 in the second entry of the first
column is there because −2 times the first row of A added to the second row of A produced
a 0. Now replace the third row in the matrix on the right by −1 times the first row added
to the third. Thus the next step is




1 0 0
2 1 0
1 0 1







1 2 3
0 −3 −10
0 3 −1




Finally, add the second row to the bottom row and make the following changes



1 0 0
2 1 0
1 −1 1







1 2 3
0 −3 −10
0 0 −11


 .

At this point, stop because the matrix on the right is upper triangular. An LU factorization
is the above.

The justification for this gimmick will be given later.

Example 5.2.2 Find an LU factorization for A =




1 2 1 2 1
2 0 2 1 1
2 3 1 3 2
1 0 1 1 2


 .

This time everything is done at once for a whole column. This saves trouble. First
multiply the first row by (−1) and then add to the last row. Next take (−2) times the first
and add to the second and then (−2) times the first and add to the third.




1 0 0 0
2 1 0 0
2 0 1 0
1 0 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 −1 −1 −1 0
0 −2 0 −1 1


 .

This finishes the first column of L and the first column of U. Now take − (1/4) times the
second row in the matrix on the right and add to the third followed by − (1/2) times the
second added to the last.




1 0 0 0
2 1 0 0
2 1/4 1 0
1 1/2 0 1







1 2 1 2 1
0 −4 0 −3 −1
0 0 −1 −1/4 1/4
0 0 0 1/2 3/2




This finishes the second column of L as well as the second column of U . Since the matrix
on the right is upper triangular, stop. The LU factorization has now been obtained. This
technique is called Dolittle’s method. ��

This process is entirely typical of the general case. The matrix U is just the first upper
triangular matrix you come to in your quest for the row reduced echelon form using only
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the row operation which involves replacing a row by itself added to a multiple of another
row. The matrix L is what you get by updating the identity matrix as illustrated above.

You should note that for a square matrix, the number of row operations necessary to
reduce to LU form is about half the number needed to place the matrix in row reduced
echelon form. This is why an LU factorization is of interest in solving systems of equations.

5.3 Solving Linear Systems Using An LU Factorization

The reason people care about the LU factorization is it allows the quick solution of systems
of equations. Here is an example.

Example 5.3.1 Suppose you want to find the solutions to




1 2 3 2
4 3 1 1
1 2 3 0







x
y
z
w


 =




1
2
3


 .

Of course one way is to write the augmented matrix and grind away. However, this
involves more row operations than the computation of an LU factorization and it turns out
that an LU factorization can give the solution quickly. Here is how. The following is an LU
factorization for the matrix.




1 2 3 2
4 3 1 1
1 2 3 0


 =




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .

Let Ux = y and consider Ly = b where in this case, b =(1, 2, 3)T . Thus




1 0 0
4 1 0
1 0 1







y1
y2
y3


 =




1
2
3




which yields very quickly that y =




1
−2
2


 . Now you can find x by solving Ux = y. Thus

in this case,



1 2 3 2
0 −5 −11 −7
0 0 0 −2







x
y
z
w


 =




1
−2
2




which yields

x =




− 3
5 + 7

5 t
9
5 − 11

5 t
t
−1


 , t ∈ R.

Work this out by hand and you will see the advantage of working only with triangular
matrices.
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It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a

difference for large systems.

5.4 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2
1 2 3 0
4 3 1 1


 (5.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 5.4.1 Find a PLU factorization for the above matrix in 5.1.

It may seem like a trivial thing but it is used because it cuts down on the number of
operations involved in finding a solution to a system of equations enough that it makes a

difference for large systems.

5.4 The PLU Factorization

As indicated above, some matrices don’t have an LU factorization. Here is an example.

M =




1 2 3 2
1 2 3 0
4 3 1 1


 (5.1)

In this case, there is another factorization which is useful called a PLU factorization. Here
P is a permutation matrix.

Example 5.4.1 Find a PLU factorization for the above matrix in 5.1.
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Proceed as before trying to find the row echelon form of the matrix. First add −1 times
the first row to the second row and then add −4 times the first to the third. This yields




1 0 0
1 1 0
4 0 1







1 2 3 2
0 0 0 −2
0 −5 −11 −7




There is no way to do only row operations involving replacing a row with itself added to a
multiple of another row to the second matrix in such a way as to obtain an upper triangular
matrix. Therefore, consider M with the bottom two rows switched.

M ′ =




1 2 3 2
4 3 1 1
1 2 3 0


 .

Now try again with this matrix. First take −1 times the first row and add to the bottom
row and then take −4 times the first row and add to the second row. This yields




1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2




The second matrix is upper triangular and so the LU factorization of the matrix M ′ is



1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2


 .

Thus M ′ = PM = LU where L and U are given above. Therefore, M = P 2M = PLU and
so 


1 2 3 2
1 2 3 0
4 3 1 1


 =




1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







1 2 3 2
0 −5 −11 −7
0 0 0 −2




This process can always be followed and so there always exists a PLU factorization of a
given matrix even though there isn’t always an LU factorization.

Example 5.4.2 Use a PLU factorization of M ≡




1 2 3 2
1 2 3 0
4 3 1 1


 to solve the system

Mx = b where b =(1, 2, 3)T .

Let Ux = y and consider PLy = b. In other words, solve,



1 0 0
0 0 1
0 1 0







1 0 0
4 1 0
1 0 1







y1
y2
y3


 =




1
2
3


 .

Then multiplying both sides by P gives



1 0 0
4 1 0
1 0 1







y1
y2
y3


 =




1
3
2




and so

y =




y1
y2
y3


 =




1
−1
1


 .
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Now Ux = y and so it only remains to solve




1 2 3 2
0 −5 −11 −7
0 0 0 −2







x1

x2

x3

x4


 =




1
−1
1




which yields 


x1

x2

x3

x4


 =




1
5 + 7

5 t
9
10 − 11

5 t
t

− 1
2


 : t ∈ R.

5.5 Justification For The Multiplier Method

Why does the multiplier method work for finding an LU factorization? Suppose A is a
matrix which has the property that the row reduced echelon form for A may be achieved
using only the row operations which involve replacing a row with itself added to a multiple
of another row. It is not ever necessary to switch rows. Thus every row which is replaced
using this row operation in obtaining the echelon form may be modified by using a row
which is above it. Furthermore, in the multiplier method for finding the LU factorization,
we zero out the elements below the pivot entry in first column and then the next and so on
when scanning from the left. In terms of elementary matrices, this means the row operations
used to reduce A to upper triangular form correspond to multiplication on the left by lower
triangular matrices having all ones down the main diagonal and the sequence of elementary
matrices which row reduces A has the property that in scanning the list of elementary
matrices from the right to the left, this list consists of several matrices which involve only
changes from the identity in the first column, then several which involve only changes from
the identity in the second column and so forth. More precisely, Ep · · ·E1A = U where U
is upper triangular, each Ei is a lower triangular elementary matrix having all ones down
the main diagonal, for some ri, each of Er1 · · ·E1 differs from the identity only in the first
column, each of Er2 · · ·Er1+1 differs from the identity only in the second column and so

forth. Therefore, A =

Will be L� �� �
E−1

1 · · ·E−1
p−1E

−1
p U. You multiply the inverses in the reverse order.

Now each of the E−1
i is also lower triangular with 1 down the main diagonal. Therefore

their product has this property. Recall also that if Ei equals the identity matrix except
for having an a in the jth column somewhere below the main diagonal, E−1

i is obtained by
replacing the a in Ei with −a, thus explaining why we replace with −1 times the multiplier
in computing L. In the case where A is a 3×m matrix, E−1

1 · · ·E−1
p−1E

−1
p is of the form




1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
b 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1


 .

Note that scanning from left to right, the first two in the product involve changes in the
identity only in the first column while in the third matrix, the change is only in the second.
If the entries in the first column had been zeroed out in a different order, the following
would have resulted.




1 0 0
0 1 0
b 0 1







1 0 0
a 1 0
0 0 1







1 0 0
0 1 0
0 c 1


 =




1 0 0
a 1 0
b c 1




http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Linear Algebra I Matrices and Row operations

167 

Some Factorizations

However, it is important to be working from the left to the right, one column at a time.
A similar observation holds in any dimension. Multiplying the elementary matrices which

involve a change only in the jth column you obtain A equal to an upper triangular, n×m
matrix U which is multiplied by a sequence of lower triangular matrices on its left which is
of the following form, in which the aij are negatives of multipliers used in row reducing to
an upper triangular matrix.




1 0 · · · 0

a11 1
...

...
. . . 0

a1,n−1 0 · · · 1







1 0 · · · 0

0 1
...

...
...

. . . 0
0 a2,n−2 · · · 1




· · ·




1 0 · · · 0

0 1
...

...
. . . 0

0 · · · an,n−1 1




From the matrix multiplication, this product equals




1
a11 1
...

. . .

a1,n−1 · · · an,n−1 1



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Notice how the end result of the matrix multiplication made no change in the aij . It just
filled in the empty spaces with the aij which occurred in one of the matrices in the product.
This is why, in computing L, it is sufficient to begin with the left column and work column
by column toward the right, replacing entries with the negative of the multiplier used in the
row operation which produces a zero in that entry.

5.6 Existence For The PLU Factorization

Here I will consider an invertible n × n matrix and show that such a matrix always has
a PLU factorization. More general matrices could also be considered but this is all I will
present.

Let A be such an invertible matrix and consider the first column of A. If A11 ̸= 0, use
this to zero out everything below it. The entry A11 is called the pivot. Thus in this case
there is a lower triangular matrix L1 which has all ones on the diagonal such that

L1P1A =

(
∗ ∗
0 A1

)
(5.2)
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Here P1 = I. In case A11 = 0, let r be such that Ar1 ̸= 0 and r is the first entry for which
this happens. In this case, let P1 be the permutation matrix which switches the first row
and the rth row. Then as before, there exists a lower triangular matrix L1 which has all
ones on the diagonal such that 5.2 holds in this case also. In the first column, this L1 has
zeros between the first row and the rth row.

Go to A1. Following the same procedure as above, there exists a lower triangular matrix
and permutation matrix L′

2, P
′
2 such that

L′
2P

′
2A1 =

(
∗ ∗
0 A2

)

Let

L2 =

(
1 0
0 L′

2

)
, P2 =

(
1 0
0 P ′

2

)

Then using block multiplication, Theorem 3.5.2,

(
1 0
0 L′

2

)(
1 0
0 P ′

2

)(
∗ ∗
0 A1

)
=

=

(
1 0
0 L′

2

)(
∗ ∗
0 P ′

2A1

)
=

(
∗ ∗
0 L′

2P
′
2A1

)




∗ · · · ∗
0 ∗ ∗
0 0 A2


 = L2P2L1P1A

and L2 has all the subdiagonal entries equal to 0 except possibly some nonzero entries in
the second column starting with position r2 where P2 switches rows r2 and 2. Continuing
this way, it follows there are lower triangular matrices Lj having all ones down the diagonal
and permutation matrices Pi which switch only two rows such that

Ln−1Pn−1Ln−2Pn−2Ln−3 · · ·L2P2L1P1A = U (5.3)

where U is upper triangular. The matrix Lj has all zeros below the main diagonal except
for the jth column and even in this column it has zeros between position j and rj where Pj

switches rows j and rj . Of course in the case where no switching is necessary, you could get
all nonzero entries below the main diagonal in the jth column for Lj .

The fact that Lj is the identity except for the jth column means that each Pk for k > j
almost commutes with Lj . Say Pk switches the kth and the qth rows for q ≥ k > j. When
you place Pk on the right of Lj it just switches the kth and the qth columns and leaves the
jth column unchanged. Therefore, the same result as placing Pk on the left of Lj can be
obtained by placing Pk on the right of Lj and modifying Lj by switching the kth and the qth

entries in the jth column. (Note this could possibly interchange a 0 for something nonzero.)
It follows from 5.3 there exists P, the product of permutation matrices, P = Pn−1 · · ·P1

each of which switches two rows, and L a lower triangular matrix having all ones on the
main diagonal, L = L′

n−1 · · ·L′
2L

′
1, where the L

′
j are obtained as just described by moving a

succession of Pk from the left to the right of Lj and modifying the jth column as indicated,
such that

LPA = U.

Then
A = PTL−1U
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It is customary to write this more simply as

A = PLU

where L is an upper triangular matrix having all ones on the diagonal and P is a permutation
matrix consisting of P1 · · ·Pn−1 as described above. This proves the following theorem.

Theorem 5.6.1 Let A be any invertible n × n matrix. Then there exists a permutation
matrix P and a lower triangular matrix L having all ones on the main diagonal and an
upper triangular matrix U such that

A = PLU

5.7 The QR Factorization

As pointed out above, the LU factorization is not a mathematically respectable thing be-
cause it does not always exist. There is another factorization which does always exist.
Much more can be said about it than I will say here. At this time, I will only deal with real
matrices and so the inner product will be the usual real dot product.

Definition 5.7.1 An n× n real matrix Q is called an orthogonal matrix if

QQT = QTQ = I.

Thus an orthogonal matrix is one whose inverse is equal to its transpose.

First note that if a matrix is orthogonal this says

∑
j

QT
ijQjk =

∑
j

QjiQjk = δik

Thus

|Qx|2 =
∑
i


∑

j

Qijxj




2

=
∑
i

∑
r

∑
s

QisxsQirxr

=
∑
i

∑
r

∑
s

QisQirxsxr =
∑
r

∑
s

∑
i

QisQirxsxr

=
∑
r

∑
s

δsrxsxr =
∑
r

x2
r = |x|2

This shows that orthogonal transformations preserve distances. You can show that if you
have a matrix which does preserve distances, then it must be orthogonal also.

Example 5.7.2 One of the most important examples of an orthogonal matrix is the so
called Householder matrix. You have v a unit vector and you form the matrix

I − 2vvT

This is an orthogonal matrix which is also symmetric. To see this, you use the rules of
matrix operations.

(
I − 2vvT

)T
= IT −

(
2vvT

)T

= I − 2vvT
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so it is symmetric. Now to show it is orthogonal,

(
I − 2vvT

) (
I − 2vvT

)
= I − 2vvT − 2vvT + 4vvTvvT

= I − 4vvT + 4vvT = I

because vTv = v · v = |v|2 = 1. Therefore, this is an example of an orthogonal matrix.

Consider the following problem.

Problem 5.7.3 Given two vectors x,y such that |x| = |y| ̸= 0 but x ̸= y and you want an
orthogonal matrix Q such that Qx = y and Qy = x. The thing which works is the House-
holder matrix

Q ≡ I − 2
x− y

|x− y|2
(x− y)

T

Here is why this works.

Q (x− y) = (x− y)− 2
x− y

|x− y|2
(x− y)

T
(x− y)

= (x− y)− 2
x− y

|x− y|2
|x− y|2 = y − x

Q (x+ y) = (x+ y)− 2
x− y

|x− y|2
(x− y)

T
(x+ y)

= (x+ y)− 2
x− y

|x− y|2
((x− y) · (x+ y))

= (x+ y)− 2
x− y

|x− y|2
(
|x|2 − |y|2

)
= x+ y

Hence

Qx+Qy = x+ y

Qx−Qy = y − x

Adding these equations, 2Qx = 2y and subtracting them yields 2Qy = 2x.
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A picture of the geometric significance follows.

x

y

The orthogonal matrix Q reflects across the dotted line taking x to y and y to x.

Definition 5.7.4 Let A be an m×n matrix. Then a QR factorization of A consists of two
matrices, Q orthogonal and R upper triangular (right triangular) having all the entries on
the main diagonal nonnegative such that A = QR.
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With the solution to this simple problem, here is how to obtain a QR factorization for
any matrix A. Let

A = (a1, a2, · · · ,an)

where the ai are the columns. If a1 = 0, let Q1 = I. If a1 ̸= 0, let

b ≡




|a1|
0
...
0




and form the Householder matrix

Q1 ≡ I − 2
(a1 − b)

|a1 − b|2
(a1 − b)

T

As in the above problem Q1a1 = b and so

Q1A =

(
|a1| ∗
0 A2

)

where A2 is a m−1×n−1 matrix. Now find in the same way as was just done a m−1×m−1
matrix �Q2 such that

�Q2A2 =

(
∗ ∗
0 A3

)

Let

Q2 ≡
(

1 0

0 �Q2

)
.

Then

Q2Q1A =

(
1 0

0 �Q2

)(
|a1| ∗
0 A2

)

=




|a1| ∗ ∗
... ∗ ∗
0 0 A3




Continuing this way until the result is upper triangular, you get a sequence of orthogonal
matrices QpQp−1 · · ·Q1 such that

QpQp−1 · · ·Q1A = R (5.4)

where R is upper triangular.
Now if Q1 and Q2 are orthogonal, then from properties of matrix multiplication,

Q1Q2 (Q1Q2)
T
= Q1Q2Q

T
2 Q

T
1 = Q1IQ

T
1 = I

and similarly
(Q1Q2)

T
Q1Q2 = I.

Thus the product of orthogonal matrices is orthogonal. Also the transpose of an orthogonal
matrix is orthogonal directly from the definition. Therefore, from 5.4

A = (QpQp−1 · · ·Q1)
T
R ≡ QR.

This proves the following theorem.
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Theorem 5.7.5 Let A be any real m × n matrix. Then there exists an orthogonal matrix
Q and an upper triangular matrix R having nonnegative entries on the main diagonal such
that

A = QR

and this factorization can be accomplished in a systematic manner.

� �

5.8 Exercises

1. Find a LU factorization of




1 2 0
2 1 3
1 2 3


 .

2. Find a LU factorization of




1 2 3 2
1 3 2 1
5 0 1 3


 .

3. Find a PLU factorization of




1 2 1
1 2 2
2 1 1


 .

4. Find a PLU factorization of




1 2 1 2 1
2 4 2 4 1
1 2 1 3 2


 .

5. Find a PLU factorization of




1 2 1
1 2 2
2 4 1
3 2 1


 .

6. Is there only one LU factorization for a given matrix? Hint: Consider the equation

(
0 1
0 1

)
=

(
1 0
1 1

)(
0 1
0 0

)
.

7. Here is a matrix and an LU factorization of it.

A =




1 2 5 0
1 1 4 9
0 1 2 5


 =




1 0 0
1 1 0
0 −1 1







1 2 5 0
0 −1 −1 9
0 0 1 14




Use this factorization to solve the system of equations

Ax =




1
2
3




8. Find a QR factorization for the matrix




1 2 1
3 −2 1
1 0 2



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9. Find a QR factorization for the matrix



1 2 1 0
3 0 1 1
1 0 2 1




10. If you had a QR factorization, A = QR, describe how you could use it to solve the
equation Ax = b.

11. If Q is an orthogonal matrix, show the columns are an orthonormal set. That is show
that for

Q =
(
q1 · · · qn

)

it follows that qi · qj = δij . Also show that any orthonormal set of vectors is linearly
independent.

12. Show you can’t expect uniqueness for QR factorizations. Consider



0 0 0
0 0 1
0 0 1




and verify this equals




0 1 0
1
2

√
2 0 1

2

√
2

1
2

√
2 0 − 1

2

√
2







0 0
√
2

0 0 0
0 0 0




and also 


1 0 0
0 1 0
0 0 1







0 0 0
0 0 1
0 0 1


 .

Using Definition 5.7.4, can it be concluded that if A is an invertible matrix it will
follow there is only one QR factorization?

13. Suppose {a1, · · · , an} are linearly independent vectors in Rn and let

A =
(
a1 · · · an

)

Form a QR factorization for A.

(
a1 · · · an

)
=

(
q1 · · · qn

)



r11 r12 · · · r1n
0 r22 · · · r2n
...

. . .

0 0 · · · rnn




Show that for each k ≤ n,

span (a1, · · · , ak) = span (q1, · · · ,qk)

Prove that every subspace of Rn has an orthonormal basis. The procedure just de-
scribed is similar to the Gram Schmidt procedure which will be presented later.

14. Suppose QnRn converges to an orthogonal matrix Q where Qn is orthogonal and Rn

is upper triangular having all positive entries on the diagonal. Show that then Qn

converges to Q and Rn converges to the identity.
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Linear Programming

6.1 Simple Geometric Considerations

One of the most important uses of row operations is in solving linear program problems
which involve maximizing a linear function subject to inequality constraints determined
from linear equations. Here is an example. A certain hamburger store has 9000 hamburger
patties to use in one week and a limitless supply of special sauce, lettuce, tomatoes, onions,
and buns. They sell two types of hamburgers, the big stack and the basic burger. It has also
been determined that the employees cannot prepare more than 9000 of either type in one
week. The big stack, popular with the teenagers from the local high school, involves two
patties, lots of delicious sauce, condiments galore, and a divider between the two patties.
The basic burger, very popular with children, involves only one patty and some pickles
and ketchup. Demand for the basic burger is twice what it is for the big stack. What
is the maximum number of hamburgers which could be sold in one week given the above
limitations?

Let x be the number of basic burgers and y the number of big stacks which could be sold
in a week. Thus it is desired to maximize z = x+ y subject to the above constraints. The
total number of patties is 9000 and so the number of patty used is x+2y. This number must
satisfy x+2y ≤ 9000 because there are only 9000 patty available. Because of the limitation
on the number the employees can prepare and the demand, it follows 2x + y ≤ 9000.
You never sell a negative number of hamburgers and so x, y ≥ 0. In simpler terms the
problem reduces to maximizing z = x+ y subject to the two constraints, x+2y ≤ 9000 and
2x + y ≤ 9000. This problem is pretty easy to solve geometrically. Consider the following
picture in which R labels the region described by the above inequalities and the line z = x+y
is shown for a particular value of z.

x+ 2y = 4

2x+ y = 4

R

x+ y = z

As you make z larger this line moves away from the origin, always having the same slope
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6.1 Simple Geometric Considerations

One of the most important uses of row operations is in solving linear program problems
which involve maximizing a linear function subject to inequality constraints determined
from linear equations. Here is an example. A certain hamburger store has 9000 hamburger
patties to use in one week and a limitless supply of special sauce, lettuce, tomatoes, onions,
and buns. They sell two types of hamburgers, the big stack and the basic burger. It has also
been determined that the employees cannot prepare more than 9000 of either type in one
week. The big stack, popular with the teenagers from the local high school, involves two
patties, lots of delicious sauce, condiments galore, and a divider between the two patties.
The basic burger, very popular with children, involves only one patty and some pickles
and ketchup. Demand for the basic burger is twice what it is for the big stack. What
is the maximum number of hamburgers which could be sold in one week given the above
limitations?

Let x be the number of basic burgers and y the number of big stacks which could be sold
in a week. Thus it is desired to maximize z = x+ y subject to the above constraints. The
total number of patties is 9000 and so the number of patty used is x+2y. This number must
satisfy x+2y ≤ 9000 because there are only 9000 patty available. Because of the limitation
on the number the employees can prepare and the demand, it follows 2x + y ≤ 9000.
You never sell a negative number of hamburgers and so x, y ≥ 0. In simpler terms the
problem reduces to maximizing z = x+ y subject to the two constraints, x+2y ≤ 9000 and
2x + y ≤ 9000. This problem is pretty easy to solve geometrically. Consider the following
picture in which R labels the region described by the above inequalities and the line z = x+y
is shown for a particular value of z.

x+ 2y = 4

2x+ y = 4

R

x+ y = z

As you make z larger this line moves away from the origin, always having the same slope
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and the desired solution would consist of a point in the region, R which makes z as large as
possible or equivalently one for which the line is as far as possible from the origin. Clearly
this point is the point of intersection of the two lines, (3000, 3000) and so the maximum
value of the given function is 6000. Of course this type of procedure is fine for a situation in
which there are only two variables but what about a similar problem in which there are very
many variables. In reality, this hamburger store makes many more types of burgers than
those two and there are many considerations other than demand and available patty. Each
will likely give you a constraint which must be considered in order to solve a more realistic
problem and the end result will likely be a problem in many dimensions, probably many
more than three so your ability to draw a picture will get you nowhere for such a problem.
Another method is needed. This method is the topic of this section. I will illustrate with
this particular problem. Let x1 = x and y = x2. Also let x3 and x4 be nonnegative variables
such that

x1 + 2x2 + x3 = 9000, 2x1 + x2 + x4 = 9000.

To say that x3 and x4 are nonnegative is the same as saying x1+2x2 ≤ 9000 and 2x1+x2 ≤
9000 and these variables are called slack variables at this point. They are called this because
they “take up the slack”. I will discuss these more later. First a general situation is
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considered.

6.2 The Simplex Tableau

Here is some notation.

Definition 6.2.1 Let x,y be vectors in Rq. Then x ≤ y means for each i, xi ≤ yi.

The problem is as follows:
Let A be an m × (m+ n) real matrix of rank m. It is desired to find x ∈ Rn+m such

that x satisfies the constraints,
x ≥ 0, Ax = b (6.1)

and out of all such x,

z ≡
m+n∑
i=1

cixi
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is as large (or small) as possible. This is usually referred to as maximizing or minimizing z
subject to the above constraints. First I will consider the constraints.

Let A =
(
a1 · · · an+m

)
. First you find a vector, x0≥ 0, Ax0= b such that n of

the components of this vector equal 0. Letting i1, · · · , in be the positions of x0 for which
x0
i = 0, suppose also that {aj1 , · · · , ajm} is linearly independent for ji the other positions

of x0. Geometrically, this means that x0 is a corner of the feasible region, those x which
satisfy the constraints. This is called a basic feasible solution. Also define

cB ≡ (cj1 . · · · , cjm) , cF ≡ (ci1 , · · · , cin)
xB ≡ (xj1 , · · · , xjm) , xF ≡ (xi1 , · · · , xin) .

and

z0 ≡ z
(
x0

)
=

(
cB cF

)( x0
B

x0
F

)
= cBx

0
B

since x0
F = 0. The variables which are the components of the vector xB are called the basic

variables and the variables which are the entries of xF are called the free variables. You

set xF = 0. Now
(
x0, z0

)T
is a solution to

(
A 0
−c 1

)(
x
z

)
=

(
b
0

)

along with the constraints x ≥ 0. Writing the above in augmented matrix form yields

(
A 0 b
−c 1 0

)
(6.2)

Permute the columns and variables on the left if necessary to write the above in the form

(
B F 0

−cB −cF 1

)


xB

xF

z


 =

(
b
0

)
(6.3)

or equivalently in the augmented matrix form keeping track of the variables on the bottom
as 


B F 0 b

−cB −cF 1 0
xB xF 0 0


 . (6.4)

Here B pertains to the variables xi1 , · · · , xjm and is an m × m matrix with linearly inde-
pendent columns, {aj1 , · · · , ajm} , and F is an m× n matrix. Now it is assumed that

(
B F

)( x0
B

x0
F

)
=

(
B F

)( x0
B

0

)
= Bx0

B = b

and since B is assumed to have rank m, it follows

x0
B = B−1b ≥ 0. (6.5)

This is very important to observe. B−1b ≥ 0! This is by the assumption that x0 ≥ 0.
Do row operations on the top part of the matrix

(
B F 0 b

−cB −cF 1 0

)
(6.6)
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and obtain its row reduced echelon form. Then after these row operations the above becomes
(

I B−1F 0 B−1b
−cB −cF 1 0

)
. (6.7)

where B−1b ≥ 0. Next do another row operation in order to get a 0 where you see a −cB .
Thus (

I B−1F 0 B−1b
0 cBB

−1F ′ − cF 1 cBB
−1b

)
(6.8)

=

(
I B−1F 0 B−1b
0 cBB

−1F ′ − cF 1 cBx
0
B

)

=

(
I B−1F 0 B−1b
0 cBB

−1F − cF 1 z0

)
(6.9)

The reason there is a z0 on the bottom right corner is that xF = 0 and
(
x0
B ,x

0
F , z

0
)T

is a
solution of the system of equations represented by the above augmented matrix because it is
a solution to the system of equations corresponding to the system of equations represented
by 6.6 and row operations leave solution sets unchanged. Note how attractive this is. The z0
is the value of z at the point x0. The augmented matrix of 6.9 is called the simplex tableau
and it is the beginning point for the simplex algorithm to be described a little later. It is
very convenient to express the simplex tableau in the above form in which the variables are

possibly permuted in order to have

(
I
0

)
on the left side. However, as far as the simplex

algorithm is concerned it is not necessary to be permuting the variables in this manner.
Starting with 6.9 you could permute the variables and columns to obtain an augmented
matrix in which the variables are in their original order. What is really required for the
simplex tableau?

It is an augmented m + 1 × m + n + 2 matrix which represents a system of equations
which has the same set of solutions, (x,z)T as the system whose augmented matrix is

(
A 0 b
−c 1 0

)

(Possibly the variables for x are taken in another order.) There are m linearly independent
columns in the first m+ n columns for which there is only one nonzero entry, a 1 in one of
the first m rows, the “simple columns”, the other first m+n columns being the “nonsimple
columns”. As in the above, the variables corresponding to the simple columns are xB ,
the basic variables and those corresponding to the nonsimple columns are xF , the free
variables. Also, the top m entries of the last column on the right are nonnegative. This is
the description of a simplex tableau.

In a simplex tableau it is easy to spot a basic feasible solution. You can see one quickly
by setting the variables, xF corresponding to the nonsimple columns equal to zero. Then
the other variables, corresponding to the simple columns are each equal to a nonnegative
entry in the far right column. Lets call this an “obvious basic feasible solution”. If a
solution is obtained by setting the variables corresponding to the nonsimple columns equal
to zero and the variables corresponding to the simple columns equal to zero this will be
referred to as an “obvious” solution. Lets also call the first m + n entries in the bottom
row the “bottom left row”. In a simplex tableau, the entry in the bottom right corner gives
the value of the variable being maximized or minimized when the obvious basic feasible
solution is chosen.

The following is a special case of the general theory presented above and shows how such
a special case can be fit into the above framework. The following example is rather typical
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of the sorts of problems considered. It involves inequality constraints instead of Ax = b.
This is handled by adding in “slack variables” as explained below.

The idea is to obtain an augmented matrix for the constraints such that obvious solutions
are also feasible. Then there is an algorithm, to be presented later, which takes you from
one obvious feasible solution to another until you obtain the maximum.

Example 6.2.2 Consider z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau for a problem of the form x ≥ 0,Ax = b
which is equivalent to the above problem.

You add in slack variables. These are positive variables, one for each of the first three con-
straints, which change the first three inequalities into equations. Thus the first three inequal-
ities become x1+2x2+x3 = 10, x1+2x2−x4 = 2, and 2x1+x2+x5 = 6, x1, x2, x3, x4, x5 ≥ 0.
Now it is necessary to find a basic feasible solution. You mainly need to find a positive so-
lution to the equations,

x1 + 2x2 + x3 = 10
x1 + 2x2 − x4 = 2
2x1 + x2 + x5 = 6
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If you too share a passion for discovery and innovation we will give you the tools and 
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the solution set for the above system is given by

x2 =
2

3
x4 −

2

3
+

1

3
x5, x1 = −1

3
x4 +

10

3
− 2

3
x5, x3 = −x4 + 8.

An easy way to get a basic feasible solution is to let x4 = 8 and x5 = 1. Then a feasible
solution is

(x1, x2, x3, x4, x5) = (0, 5, 0, 8, 1) .

It follows z0 = −5 and the matrix 6.2,

(
A 0 b
−c 1 0

)
with the variables kept track of on

the bottom is 


1 2 1 0 0 0 10
1 2 0 −1 0 0 2
2 1 0 0 1 0 6
−1 1 0 0 0 1 0
x1 x2 x3 x4 x5 0 0



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and the first thing to do is to permute the columns so that the list of variables on the bottom
will have x1 and x3 at the end.




2 0 0 1 1 0 10
2 −1 0 1 0 0 2
1 0 1 2 0 0 6
1 0 0 −1 0 1 0
x2 x4 x5 x1 x3 0 0




Next, as described above, take the row reduced echelon form of the top three lines of the
above matrix. This yields




1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1


 .

Now do row operations to



1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

1 0 0 −1 0 1 0




to finally obtain 


1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




and this is a simplex tableau. The variables are x2, x4, x5, x1, x3, z.
It isn’t as hard as it may appear from the above. Lets not permute the variables and

simply find an acceptable simplex tableau as described above.

Example 6.2.3 Consider z = x1−x2 subject to the constraints, x1+2x2 ≤ 10, x1+2x2 ≥ 2,
and 2x1 + x2 ≤ 6, xi ≥ 0. Find a simplex tableau.

Adding in slack variables, an augmented matrix which is descriptive of the constraints
is 


1 2 1 0 0 10
1 2 0 −1 0 6
2 1 0 0 1 6




The obvious solution is not feasible because of that -1 in the fourth column. When you let
x1, x2 = 0, you end up having x4 = −6 which is negative. Consider the second column and
select the 2 as a pivot to zero out that which is above and below the 2.




0 0 1 1 0 4
1
2 1 0 − 1

2 0 3
3
2 0 0 1

2 1 3




This one is good. When you let x1 = x4 = 0, you find that x2 = 3, x3 = 4, x5 = 3. The
obvious solution is now feasible. You can now assemble the simplex tableau. The first step
is to include a column and row for z. This yields




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 1 0 0 1 0



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Now you need to get zeros in the right places so the simple columns will be preserved as
simple columns in this larger matrix. This means you need to zero out the 1 in the third
column on the bottom. A simplex tableau is now




0 0 1 1 0 0 4
1
2 1 0 − 1

2 0 0 3
3
2 0 0 1

2 1 0 3
−1 0 0 −1 0 1 −4


 .

Note it is not the same one obtained earlier. There is no reason a simplex tableau should
be unique. In fact, it follows from the above general description that you have one for each
basic feasible point of the region determined by the constraints.

6.3 The Simplex Algorithm

6.3.1 Maximums

The simplex algorithm takes you from one basic feasible solution to another while maxi-
mizing or minimizing the function you are trying to maximize or minimize. Algebraically,
it takes you from one simplex tableau to another in which the lower right corner either
increases in the case of maximization or decreases in the case of minimization.

I will continue writing the simplex tableau in such a way that the simple columns having
only one entry nonzero are on the left. As explained above, this amounts to permuting the
variables. I will do this because it is possible to describe what is going on without onerous
notation. However, in the examples, I won’t worry so much about it. Thus, from a basic
feasible solution, a simplex tableau of the following form has been obtained in which the
columns for the basic variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(6.10)

Let x0
i = bi for i = 1, · · · ,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution.

If ci < 0 for some i, and if Fji ≤ 0 so that a whole column of

(
F
c

)
is ≤ 0 with the

bottom entry < 0, then letting xi be the variable corresponding to that column, you could
leave all the other entries of xF equal to zero but change xi to be positive. Let the new
vector be denoted by x′

F and letting x′
B = b− Fx′

F it follows

(x′
B)k = bk −

∑
j

Fkj (xF )j

= bk − Fkixi ≥ 0

Now this shows (x′
B ,x

′
F ) is feasible whenever xi > 0 and so you could let xi become

arbitrarily large and positive and conclude there is no maximum for z because

z = (−ci)xi + z0 (6.11)

If this happens in a simplex tableau, you can say there is no maximum and stop.
What if c ≥ 0? Then z = z0 − cxF and to satisfy the constraints, you need xF ≥ 0.

Therefore, in this case, z0 is the largest possible value of z and so the maximum has been
found. You stop when this occurs. Next I explain what to do if neither of the above stopping
conditions hold.
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The only case which remains is that some ci < 0 and some Fji > 0. You pick a column

in

(
F
c

)
in which ci < 0, usually the one for which ci is the largest in absolute value.

You pick Fji > 0 as a pivot element, divide the jth row by Fji and then use to obtain
zeros above Fji and below Fji, thus obtaining a new simple column. This row operation
also makes exactly one of the other simple columns into a nonsimple column. (In terms of
variables, it is said that a free variable becomes a basic variable and a basic variable becomes
a free variable.) Now permuting the columns and variables, yields

(
I F ′ 0 b′

0 c′ 1 z0′

)

where z0′ ≥ z0 because z0′ = z0 − ci

(
bj
Fji

)
and ci < 0. If b′ ≥ 0, you are in the same

position you were at the beginning but now z0 is larger. Now here is the important thing.
You don’t pick just any Fji when you do these row operations. You pick the positive one
for which the row operation results in b′ ≥ 0. Otherwise the obvious basic feasible
solution obtained by letting x′

F = 0 will fail to satisfy the constraint that x ≥ 0.
How is this done? You need

b′k ≡ bk − Fkibj
Fji

≥ 0 (6.12)

for each k = 1, · · · ,m or equivalently,

bk ≥ Fkibj
Fji

. (6.13)

Now if Fki ≤ 0 the above holds. Therefore, you only need to check Fpi for Fpi > 0. The
pivot, Fji is the one which makes the quotients of the form

bp
Fpi
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for all positive Fpi the smallest. This will work because for Fki > 0,

bp
Fpi

≤ bk
Fki

⇒ bk ≥ Fkibp
Fpi

Having gotten a new simplex tableau, you do the same thing to it which was just done
and continue. As long as b > 0, so you don’t encounter the degenerate case, the values
for z associated with setting xF = 0 keep getting strictly larger every time the process is
repeated. You keep going until you find c ≥ 0. Then you stop. You are at a maximum.
Problems can occur in the process in the so called degenerate case when at some stage of
the process some bj = 0. In this case you can cycle through different values for x with no
improvement in z. This case will not be discussed here.

Example 6.3.1 Maximize 2x1 + 3x2 subject to the constraints x1 + x2 ≥ 1, 2x1 + x2 ≤
6, x1 + 2x2 ≤ 6, x1, x2 ≥ 0.
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The constraints are of the form

x1 + x2 − x3 = 1

2x1 + x2 + x4 = 6

x1 + 2x2 + x5 = 6

where the x3, x4, x5 are the slack variables. An augmented matrix for these equations is of
the form 


1 1 −1 0 0 1
2 1 0 1 0 6
1 2 0 0 1 6




Obviously the obvious solution is not feasible. It results in x3 < 0. We need to exchange
basic variables. Lets just try something.




1 1 −1 0 0 1
0 −1 2 1 0 4
0 1 1 0 1 5




Now this one is all right because the obvious solution is feasible. Letting x2 = x3 = 0,
it follows that the obvious solution is feasible. Now we add in the objective function as
described above. 


1 1 −1 0 0 0 1
0 −1 2 1 0 0 4
0 1 1 0 1 0 5
−2 −3 0 0 0 1 0




Then do row operations to leave the simple columns the same. Then




1 1 −1 0 0 0 1
0 −1 2 1 0 0 4
0 1 1 0 1 0 5
0 −1 −2 0 0 1 2




Now there are negative numbers on the bottom row to the left of the 1. Lets pick the first.
(It would be more sensible to pick the second.) The ratios to look at are 5/1, 1/1 so pick for
the pivot the 1 in the second column and first row. This will leave the right column above
the lower right corner nonnegative. Thus the next tableau is




1 1 −1 0 0 0 1
1 0 1 1 0 0 5
−1 0 2 0 1 0 4
1 0 −3 0 0 1 3




There is still a negative number there to the left of the 1 in the bottom row. The new ratios
are 4/2, 5/1 so the new pivot is the 2 in the third column. Thus the next tableau is




1
2 1 0 0 1

2 0 3
3
2 0 0 1 − 1

2 0 3
−1 0 2 0 1 0 4
− 1

2 0 0 0 3
2 1 9




Still, there is a negative number in the bottom row to the left of the 1 so the process does
not stop yet. The ratios are 3/ (3/2) and 3/ (1/2) and so the new pivot is that 3/2 in the
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first column. Thus the new tableau is



0 1 0 − 1
3

2
3 0 2

3
2 0 0 1 − 1

2 0 3
0 0 2 2

3
2
3 0 6

0 0 0 1
3

4
3 1 10




Now stop. The maximum value is 10. This is an easy enough problem to do geometrically
and so you can easily verify that this is the right answer. It occurs when x4 = x5 = 0, x1 =
2, x2 = 2, x3 = 3.

6.3.2 Minimums

How does it differ if you are finding a minimum? From a basic feasible solution, a simplex
tableau of the following form has been obtained in which the simple columns for the basic
variables, xB are listed first and b ≥ 0.

(
I F 0 b
0 c 1 z0

)
(6.14)

Let x0
i = bi for i = 1, · · · ,m and x0

i = 0 for i > m. Then
(
x0, z0

)
is a solution to the above

system and since b ≥ 0, it follows
(
x0, z0

)
is a basic feasible solution. So far, there is no

change.
Suppose first that some ci > 0 and Fji ≤ 0 for each j. Then let x′

F consist of changing xi

by making it positive but leaving the other entries of xF equal to 0. Then from the bottom
row,

z = −cixi + z0

and you let x′
B = b − Fx′

F ≥ 0. Thus the constraints continue to hold when xi is made
increasingly positive and it follows from the above equation that there is no minimum for
z. You stop when this happens.

Next suppose c ≤ 0. Then in this case, z = z0 − cxF and from the constraints, xF ≥ 0
and so −cxF ≥ 0 and so z0 is the minimum value and you stop since this is what you are
looking for.

What do you do in the case where some ci > 0 and some Fji > 0? In this case, you use
the simplex algorithm as in the case of maximums to obtain a new simplex tableau in which
z0′ is smaller. You choose Fji the same way to be the positive entry of the ith column such
that bp/Fpi ≥ bj/Fji for all positive entries, Fpi and do the same row operations. Now this
time,

z0′ = z0 − ci

(
bj
Fji

)
< z0

As in the case of maximums no problem can occur and the process will converge unless
you have the degenerate case in which some bj = 0. As in the earlier case, this is most
unfortunate when it occurs. You see what happens of course. z0 does not change and the
algorithm just delivers different values of the variables forever with no improvement.

To summarize the geometrical significance of the simplex algorithm, it takes you from one
corner of the feasible region to another. You go in one direction to find the maximum and
in another to find the minimum. For the maximum you try to get rid of negative entries of c
and for minimums you try to eliminate positive entries of c, where the method of elimination
involves the auspicious use of an appropriate pivot element and row operations.

Now return to Example 6.2.2. It will be modified to be a maximization problem.
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Example 6.3.2 Maximize z = x1 − x2 subject to the constraints,

x1 + 2x2 ≤ 10, x1 + 2x2 ≥ 2,

and 2x1 + x2 ≤ 6, xi ≥ 0.

Recall this is the same as maximizing z = x1 − x2 subject to




1 2 1 0 0
1 2 0 −1 0
2 1 0 0 1







x1

x2

x3

x4

x5




=




10
2
6


 ,x ≥ 0,

the variables, x3, x4, x5 being slack variables. Recall the simplex tableau was




1 0 0 1
2

1
2 0 5

0 1 0 0 1 0 8
0 0 1 3

2 − 1
2 0 1

0 0 0 − 3
2 − 1

2 1 −5




with the variables ordered as x2, x4, x5, x1, x3 and so xB = (x2, x4, x5) and

xF = (x1, x3) .

Apply the simplex algorithm to the fourth column because − 3
2 < 0 and this is the most

negative entry in the bottom row. The pivot is 3/2 because 1/(3/2) = 2/3 < 5/ (1/2) .
Dividing this row by 3/2 and then using this to zero out the other elements in that column,
the new simplex tableau is




1 0 − 1
3 0 2

3 0 14
3

0 1 0 0 1 0 8
0 0 2

3 1 − 1
3 0 2

3
0 0 1 0 −1 1 −4


 .

Now there is still a negative number in the bottom left row. Therefore, the process should
be continued. This time the pivot is the 2/3 in the top of the column. Dividing the top row
by 2/3 and then using this to zero out the entries below it,




3
2 0 − 1

2 0 1 0 7
− 3

2 1 1
2 0 0 0 1

1
2 0 1

2 1 0 0 3
3
2 0 1

2 0 0 1 3


 .

http://bookboon.com/


Download free ebooks at bookboon.com

P
le

as
e 

cl
ic

k 
th

e 
ad

ve
rt

Linear Algebra I Matrices and Row operations

191 

Linear Programming

Now all the numbers on the bottom left row are nonnegative so the process stops. Now
recall the variables and columns were ordered as x2, x4, x5, x1, x3. The solution in terms of
x1 and x2 is x2 = 0 and x1 = 3 and z = 3. Note that in the above, I did not worry about
permuting the columns to keep those which go with the basic variables on the left.

Here is a bucolic example.

Example 6.3.3 Consider the following table.

F1 F2 F3 F4

iron 1 2 1 3
protein 5 3 2 1
folic acid 1 2 2 1
copper 2 1 1 1
calcium 1 1 1 1

This information is available to a pig farmer and Fi denotes a particular feed. The numbers
in the table contain the number of units of a particular nutrient contained in one pound of
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the given feed. Thus F2 has 2 units of iron in one pound. Now suppose the cost of each feed
in cents per pound is given in the following table.

F1 F2 F3 F4

2 3 2 3

A typical pig needs 5 units of iron, 8 of protein, 6 of folic acid, 7 of copper and 4 of calcium.
(The units may change from nutrient to nutrient.) How many pounds of each feed per pig
should the pig farmer use in order to minimize his cost?

His problem is to minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0. Add in the slack variables,

x1 + 2x2 + x3 + 3x4 − x5 = 5

5x1 + 3x2 + 2x3 + x4 − x6 = 8

x1 + 2x2 + 2x3 + x4 − x7 = 6

2x1 + x2 + x3 + x4 − x8 = 7

x1 + x2 + x3 + x4 − x9 = 4

The augmented matrix for this system is



1 2 1 3 −1 0 0 0 0 5
5 3 2 1 0 −1 0 0 0 8
1 2 2 1 0 0 −1 0 0 6
2 1 1 1 0 0 0 −1 0 7
1 1 1 1 0 0 0 0 −1 4




How in the world can you find a basic feasible solution? Remember the simplex algorithm
is designed to keep the entries in the right column nonnegative so you use this algorithm a
few times till the obvious solution is a basic feasible solution.

Consider the first column. The pivot is the 5. Using the row operations described in the
algorithm, you get




0 7
5

3
5

14
5 −1 1

5 0 0 0 17
5

1 3
5

2
5

1
5 0 − 1

5 0 0 0 8
5

0 7
5

8
5

4
5 0 1

5 −1 0 0 22
5

0 − 1
5

1
5

3
5 0 2

5 0 −1 0 19
5

0 2
5

3
5

4
5 0 1

5 0 0 −1 12
5




Now go to the second column. The pivot in this column is the 7/5. This is in a different
row than the pivot in the first column so I will use it to zero out everything below it. This
will get rid of the zeros in the fifth column and introduce zeros in the second. This yields




0 1 3
7 2 − 5

7
1
7 0 0 0 17

7
1 0 1

7 −1 3
7 − 2

7 0 0 0 1
7

0 0 1 −2 1 0 −1 0 0 1
0 0 2

7 1 − 1
7

3
7 0 −1 0 30

7
0 0 3

7 0 2
7

1
7 0 0 −1 10

7



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Now consider another column, this time the fourth. I will pick this one because it has
some negative numbers in it so there are fewer entries to check in looking for a pivot.
Unfortunately, the pivot is the top 2 and I don’t want to pivot on this because it would
destroy the zeros in the second column. Consider the fifth column. It is also not a good
choice because the pivot is the second element from the top and this would destroy the zeros
in the first column. Consider the sixth column. I can use either of the two bottom entries
as the pivot. The matrix is



0 1 0 2 −1 0 0 0 1 1
1 0 1 −1 1 0 0 0 −2 3
0 0 1 −2 1 0 −1 0 0 1
0 0 −1 1 −1 0 0 −1 3 0
0 0 3 0 2 1 0 0 −7 10




Next consider the third column. The pivot is the 1 in the third row. This yields


0 1 0 2 −1 0 0 0 1 1
1 0 0 1 0 0 1 0 −2 2
0 0 1 −2 1 0 −1 0 0 1
0 0 0 −1 0 0 −1 −1 3 1
0 0 0 6 −1 1 3 0 −7 7




.

There are still 5 columns which consist entirely of zeros except for one entry. Four of them
have that entry equal to 1 but one still has a -1 in it, the -1 being in the fourth column.
I need to do the row operations on a nonsimple column which has the pivot in the fourth
row. Such a column is the second to the last. The pivot is the 3. The new matrix is



0 1 0 7
3 −1 0 1

3
1
3 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 8
3

0 0 1 −2 1 0 −1 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 28

3




. (6.15)

Now the obvious basic solution is feasible. You let x4 = 0 = x5 = x7 = x8 and x1 =
8/3, x2 = 2/3, x3 = 1, and x6 = 28/3. You don’t need to worry too much about this. It is
the above matrix which is desired. Now you can assemble the simplex tableau and begin
the algorithm. Remember C ≡ 2x1 +3x2 +2x3 +3x4. First add the row and column which
deal with C. This yields



0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
−2 −3 −2 −3 0 0 0 0 0 1 0




(6.16)

Now you do row operations to keep the simple columns of 6.15 simple in 6.16. Of course
you could permute the columns if you wanted but this is not necessary.

This yields the following for a simplex tableau. Now it is a matter of getting rid of the
positive entries in the bottom row because you are trying to minimize.



0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3



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The most positive of them is the 2/3 and so I will apply the algorithm to this one first. The
pivot is the 7/3. After doing the row operation the next tableau is




0 3
7 0 1 − 3

7 0 1
7

1
7 0 0 2

7
1 − 1

7 0 0 1
7 0 2

7 − 5
7 0 0 18

7
0 6

7 1 0 1
7 0 − 5

7
2
7 0 0 11

7
0 1

7 0 0 − 1
7 0 − 2

7 − 2
7 1 0 3

7
0 − 11

7 0 0 4
7 1 1

7 − 20
7 0 0 58

7
0 − 2

7 0 0 − 5
7 0 − 3

7 − 3
7 0 1 64

7




and you see that all the entries are negative and so the minimum is 64/7 and it occurs when
x1 = 18/7, x2 = 0, x3 = 11/7, x4 = 2/7.

There is no maximum for the above problem. However, I will pretend I don’t know this
and attempt to use the simplex algorithm. You set up the simiplex tableau the same way.
Recall it is 



0 1 0 7
3 −1 0 1

3
1
3 0 0 2

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 0 11
3 −1 1 2

3 − 7
3 0 0 28

3
0 0 0 2

3 −1 0 − 1
3 − 1

3 0 1 28
3



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Now to maximize, you try to get rid of the negative entries in the bottom left row. The
most negative entry is the -1 in the fifth column. The pivot is the 1 in the third row of this
column. The new tableau is




0 1 1 1
3 0 0 − 2

3
1
3 0 0 5

3
1 0 0 1

3 0 0 1
3 − 2

3 0 0 8
3

0 0 1 −2 1 0 −1 0 0 0 1
0 0 0 − 1

3 0 0 − 1
3 − 1

3 1 0 1
3

0 0 1 5
3 0 1 − 1

3 − 7
3 0 0 31

3
0 0 1 − 4

3 0 0 − 4
3 − 1

3 0 1 31
3




.
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Consider the fourth column. The pivot is the top 1/3. The new tableau is




0 3 3 1 0 0 −2 1 0 0 5
1 −1 −1 0 0 0 1 −1 0 0 1
0 6 7 0 1 0 −5 2 0 0 11
0 1 1 0 0 0 −1 0 1 0 2
0 −5 −4 0 0 1 3 −4 0 0 2
0 4 5 0 0 0 −4 1 0 1 17




There is still a negative in the bottom, the -4. The pivot in that column is the 3. The
algorithm yields




0 −1
3

1
3 1 0 2

3 0 − 5
3 0 0 19

3
1 2

3
1
3 0 0 − 1

3 0 1
3 0 0 1

3
0 − 7

3
1
3 0 1 5

3 0 − 14
3 0 0 43

3
0 − 2

3 − 1
3 0 0 1

3 0 − 4
3 1 0 8

3
0 − 5

3 − 4
3 0 0 1

3 1 − 4
3 0 0 2

3
0 − 8

3 − 1
3 0 0 4

3 0 − 13
3 0 1 59

3




Note how z keeps getting larger. Consider the column having the −13/3 in it. The pivot is
the single positive entry, 1/3. The next tableau is




5 3 2 1 0 −1 0 0 0 0 8
3 2 1 0 0 −1 0 1 0 0 1
14 7 5 0 1 −3 0 0 0 0 19
4 2 1 0 0 −1 0 0 1 0 4
4 1 0 0 0 −1 1 0 0 0 2
13 6 4 0 0 −3 0 0 0 1 24




.

There is a column consisting of all negative entries. There is therefore, no maximum. Note
also how there is no way to pick the pivot in that column.

Example 6.3.4 Minimize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1+x2+x3 ≥ 2, x1+x2+3x3 ≤ 8 and x1+2x2+x3 ≤ 7 with all variables nonnegative.

There exists an answer because the region defined by the constraints is closed and
bounded. Adding in slack variables you get the following augmented matrix corresponding
to the constraints. 


1 1 1 1 0 0 0 10
1 1 1 0 −1 0 0 2
1 1 3 0 0 1 0 8
1 2 1 0 0 0 1 7




Of course there is a problem with the obvious solution obtained by setting to zero all
variables corresponding to a nonsimple column because of the simple column which has the
−1 in it. Therefore, I will use the simplex algorithm to make this column non simple. The
third column has the 1 in the second row as the pivot so I will use this column. This yields




0 0 0 1 1 0 0 8
1 1 1 0 −1 0 0 2
−2 −2 0 0 3 1 0 2
0 1 0 0 1 0 1 5


 (6.17)
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and the obvious solution is feasible. Now it is time to assemble the simplex tableau. First
add in the bottom row and second to last column corresponding to the equation for z. This
yields 



0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
−1 3 −1 0 0 0 0 1 0




Next you need to zero out the entries in the bottom row which are below one of the simple
columns in 6.17. This yields the simplex tableau




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2




.

The desire is to minimize this so you need to get rid of the positive entries in the left bottom
row. There is only one such entry, the 4. In that column the pivot is the 1 in the second
row of this column. Thus the next tableau is




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
0 0 2 0 1 1 0 0 6
−1 0 −1 0 2 0 1 0 3
−4 0 −4 0 3 0 0 1 −6




There is still a positive number there, the 3. The pivot in this column is the 2. Apply the
algorithm again. This yields




1
2 0 1

2 1 0 0 − 1
2 0 13

2
1
2 1 1

2 0 0 0 1
2 0 7

2
1
2 0 5

2 0 0 1 − 1
2 0 9

2
− 1

2 0 − 1
2 0 1 0 1

2 0 3
2

− 5
2 0 − 5

2 0 0 0 − 3
2 1 − 21

2




.

Now all the entries in the left bottom row are nonpositive so the process has stopped. The
minimum is −21/2. It occurs when x1 = 0, x2 = 7/2, x3 = 0.

Now consider the same problem but change the word, minimize to the word, maximize.

Example 6.3.5 Maximize z = x1 − 3x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1+x2+x3 ≥ 2, x1+x2+3x3 ≤ 8 and x1+2x2+x3 ≤ 7 with all variables nonnegative.

The first part of it is the same. You wind up with the same simplex tableau,




0 0 0 1 1 0 0 0 8
1 1 1 0 −1 0 0 0 2
−2 −2 0 0 3 1 0 0 2
0 1 0 0 1 0 1 0 5
0 4 0 0 −1 0 0 1 2



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but this time, you apply the algorithm to get rid of the negative entries in the left bottom
row. There is a −1. Use this column. The pivot is the 3. The next tableau is




2
3

2
3 0 1 0 − 1

3 0 0 22
3

1
3

1
3 1 0 0 1

3 0 0 8
3

− 2
3 − 2

3 0 0 1 1
3 0 0 2

3
2
3

5
3 0 0 0 − 1

3 1 0 13
3

− 2
3

10
3 0 0 0 1

3 0 1 8
3




There is still a negative entry, the −2/3. This will be the new pivot column. The pivot is
the 2/3 on the fourth row. This yields




0 −1 0 1 0 0 −1 0 3
0 − 1

2 1 0 0 1
2 − 1

2 0 1
2

0 1 0 0 1 0 1 0 5
1 5

2 0 0 0 − 1
2

3
2 0 13

2
0 5 0 0 0 0 1 1 7




and the process stops. The maximum for z is 7 and it occurs when x1 = 13/2, x2 = 0, x3 =
1/2.

6.4 Finding A Basic Feasible Solution

By now it should be fairly clear that finding a basic feasible solution can create considerable
difficulty. Indeed, given a system of linear inequalities along with the requirement that each
variable be nonnegative, do there even exist points satisfying all these inequalities? If you
have many variables, you can’t answer this by drawing a picture. Is there some other way
to do this which is more systematic than what was presented above? The answer is yes. It
is called the method of artificial variables. I will illustrate this method with an example.

Example 6.4.1 Find a basic feasible solution to the system 2x1+x2−x3 ≥ 3, x1+x2+x3 ≥
2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

If you write the appropriate augmented matrix with the slack variables,




2 1 −1 −1 0 0 3
1 1 1 0 −1 0 2
1 1 1 0 0 1 7


 (6.18)

The obvious solution is not feasible. This is why it would be hard to get started with
the simplex method. What is the problem? It is those −1 entries in the fourth and fifth
columns. To get around this, you add in artificial variables to get an augmented matrix of
the form 


2 1 −1 −1 0 0 1 0 3
1 1 1 0 −1 0 0 1 2
1 1 1 0 0 1 0 0 7


 (6.19)
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Thus the variables are x1, x2, x3, x4, x5, x6, x7, x8. Suppose you can find a feasible solution
to the system of equations represented by the above augmented matrix. Thus all variables
are nonnegative. Suppose also that it can be done in such a way that x8 and x7 happen to
be 0. Then it will follow that x1, · · · , x6 is a feasible solution for 6.18. Conversely, if you can
find a feasible solution for 6.18, then letting x7 and x8 both equal zero, you have obtained a
feasible solution to 6.19. Since all variables are nonnegative, x7 and x8 both equalling zero
is equivalent to saying the minimum of z = x7+x8 subject to the constraints represented by
the above augmented matrix equals zero. This has proved the following simple observation.

Observation 6.4.2 There exists a feasible solution to the constraints represented by the
augmented matrix of 6.18 and x ≥ 0 if and only if the minimum of x7 + x8 subject to the
constraints of 6.19 and x ≥ 0 exists and equals 0.

Of course a similar observation would hold in other similar situations. Now the point of
all this is that it is trivial to see a feasible solution to 6.19, namely x6 = 7, x7 = 3, x8 = 2
and all the other variables may be set to equal zero. Therefore, it is easy to find an initial
simplex tableau for the minimization problem just described. First add the column and row
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for z 


2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
0 0 0 0 0 0 −1 −1 1 0




Next it is necessary to make the last two columns on the bottom left row into simple columns.
Performing the row operation, this yields an initial simplex tableau,




2 1 −1 −1 0 0 1 0 0 3
1 1 1 0 −1 0 0 1 0 2
1 1 1 0 0 1 0 0 0 7
3 2 0 −1 −1 0 0 0 1 5




Now the algorithm involves getting rid of the positive entries on the left bottom row. Begin
with the first column. The pivot is the 2. An application of the simplex algorithm yields
the new tableau 


1 1

2 − 1
2 − 1

2 0 0 1
2 0 0 3

2
0 1

2
3
2

1
2 −1 0 − 1

2 1 0 1
2

0 1
2

3
2

1
2 0 1 − 1

2 0 0 11
2

0 1
2

3
2

1
2 −1 0 − 3

2 0 1 1
2




Now go to the third column. The pivot is the 3/2 in the second row. An application of the
simplex algorithm yields




1 2
3 0 − 1

3 − 1
3 0 1

3
1
3 0 5

3
0 1

3 1 1
3 − 2

3 0 − 1
3

2
3 0 1

3
0 0 0 0 1 1 0 −1 0 5
0 0 0 0 0 0 −1 −1 1 0


 (6.20)

and you see there are only nonpositive numbers on the bottom left column so the process
stops and yields 0 for the minimum of z = x7+x8. As for the other variables, x1 = 5/3, x2 =
0, x3 = 1/3, x4 = 0, x5 = 0, x6 = 5. Now as explained in the above observation, this is a
basic feasible solution for the original system 6.18.

Now consider a maximization problem associated with the above constraints.

Example 6.4.3 Maximize x1 − x2 +2x3 subject to the constraints, 2x1 + x2 − x3 ≥ 3, x1 +
x2 + x3 ≥ 2, x1 + x2 + x3 ≤ 7 and x ≥ 0.

From 6.20 you can immediately assemble an initial simplex tableau. You begin with the
first 6 columns and top 3 rows in 6.20. Then add in the column and row for z. This yields




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
−1 1 −2 0 0 0 1 0




and you first do row operations to make the first and third columns simple columns. Thus
the next simplex tableau is




1 2
3 0 − 1

3 − 1
3 0 0 5

3
0 1

3 1 1
3 − 2

3 0 0 1
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 − 5

3 0 1 7
3



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You are trying to get rid of negative entries in the bottom left row. There is only one, the
−5/3. The pivot is the 1. The next simplex tableau is then




1 2
3 0 − 1

3 0 1
3 0 10

3
0 1

3 1 1
3 0 2

3 0 11
3

0 0 0 0 1 1 0 5
0 7

3 0 1
3 0 5

3 1 32
3




and so the maximum value of z is 32/3 and it occurs when x1 = 10/3, x2 = 0 and x3 = 11/3.

6.5 Duality

You can solve minimization problems by solving maximization problems. You can also go
the other direction and solve maximization problems by minimization problems. Sometimes
this makes things much easier. To be more specific, the two problems to be considered are

A.) Minimize z = cx subject to x ≥ 0 and Ax ≥ b and
B.) Maximize w = yb such that y ≥ 0 and yA ≤ c,

(
equivalently ATyT ≥ cT and w = bTyT

)
.

In these problems it is assumed A is an m× p matrix.
I will show how a solution of the first yields a solution of the second and then show how

a solution of the second yields a solution of the first. The problems, A.) and B.) are called
dual problems.

Lemma 6.5.1 Let x be a solution of the inequalities of A.) and let y be a solution of the
inequalities of B.). Then

cx ≥ yb.

and if equality holds in the above, then x is the solution to A.) and y is a solution to B.).

Proof: This follows immediately. Since c ≥ yA, cx ≥ yAx ≥ yb.
It follows from this lemma that if y satisfies the inequalities of B.) and x satisfies the

inequalities of A.) then if equality holds in the above lemma, it must be that x is a solution
of A.) and y is a solution of B.). �

Now recall that to solve either of these problems using the simplex method, you first
add in slack variables. Denote by x′ and y′ the enlarged list of variables. Thus x′ has at
least m entries and so does y′ and the inequalities involving A were replaced by equalities
whose augmented matrices were of the form

(
A −I b

)
, and

(
AT I cT

)

Then you included the row and column for z and w to obtain
(

A −I 0 b
−c 0 1 0

)
and

(
AT I 0 cT

−bT 0 1 0

)
. (6.21)

Then the problems have basic feasible solutions if it is possible to permute the first p +m
columns in the above two matrices and obtain matrices of the form

(
B F 0 b

−cB −cF 1 0

)
and

(
B1 F1 0 cT

−bT
B1

−bT
F1

1 0

)
(6.22)

where B,B1 are invertible m×m and p× p matrices and denoting the variables associated
with these columns by xB ,yB and those variables associated with F or F1 by xF and yF ,
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it follows that letting BxB = b and xF = 0, the resulting vector, x′ is a solution to x′ ≥ 0
and

(
A −I

)
x′ = b with similar constraints holding for y′. In other words, it is possible

to obtain simplex tableaus,

(
I B−1F 0 B−1b
0 cBB

−1F − cF 1 cBB
−1b

)
,

(
I B−1

1 F1 0 B−1
1 cT

0 bT
B1

B−1
1 F − bT

F1
1 bT

B1
B−1

1 cT

)
(6.23)

Similar considerations apply to the second problem. Thus as just described, a basic feasible
solution is one which determines a simplex tableau like the above in which you get a feasible
solution by setting all but the first m variables equal to zero. The simplex algorithm takes
you from one basic feasible solution to another till eventually, if there is no degeneracy, you
obtain a basic feasible solution which yields the solution of the problem of interest.

Theorem 6.5.2 Suppose there exists a solution x to A.) where x is a basic feasible solution
of the inequalities of A.). Then there exists a solution y to B.) and cx = by. It is also
possible to find y from x using a simple formula.

Proof: Since the solution to A.) is basic and feasible, there exists a simplex tableau like
6.23 such that x′ can be split into xB and xF such that xF = 0 and xB = B−1b. Now since
it is a minimizer, it follows cBB

−1F − cF ≤ 0 and the minimum value for cx is cBB
−1b.

Stating this again, cx = cBB
−1b. Is it possible you can take y = cBB

−1? From Lemma 6.5.1
this will be so if cBB

−1 solves the constraints of problem B.). Is cBB
−1 ≥ 0? Is cBB

−1A ≤
c? These two conditions are satisfied if and only if cBB

−1
(
A −I

)
≤

(
c 0

)
. Referring

to the process of permuting the columns of the first augmented matrix of 6.21 to get 6.22
and doing the same permutations on the columns of

(
A −I

)
and

(
c 0

)
, the desired

inequality holds if and only if cBB
−1

(
B F

)
≤

(
cB cF

)
which is equivalent to saying(

cB cBB
−1F

)
≤

(
cB cF

)
and this is true because cBB

−1F − cF ≤ 0 due to the
assumption that x is a minimizer. The simple formula is just y = cBB

−1. �
The proof of the following corollary is similar.

Corollary 6.5.3 Suppose there exists a solution, y to B.) where y is a basic feasible solution
of the inequalities of B.). Then there exists a solution, x to A.) and cx = by. It is also
possible to find x from y using a simple formula. In this case, and referring to 6.23, the
simple formula is x = B−T

1 bB1 .
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As an example, consider the pig farmers problem. The main difficulty in this problem
was finding an initial simplex tableau. Now consider the following example and marvel at
how all the difficulties disappear.

Example 6.5.4 minimize C ≡ 2x1 + 3x2 + 2x3 + 3x4 subject to the constraints

x1 + 2x2 + x3 + 3x4 ≥ 5,

5x1 + 3x2 + 2x3 + x4 ≥ 8,

x1 + 2x2 + 2x3 + x4 ≥ 6,

2x1 + x2 + x3 + x4 ≥ 7,

x1 + x2 + x3 + x4 ≥ 4.

where each xi ≥ 0.

Here the dual problem is to maximize w = 5y1 + 8y2 + 6y3 + 7y4 + 4y5 subject to the
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constraints 


1 5 1 2 1
2 3 2 1 1
1 2 2 1 1
3 1 1 1 1







y1
y2
y3
y4
y5




≤




2
3
2
3


 .

Adding in slack variables, these inequalities are equivalent to the system of equations whose
augmented matrix is 


1 5 1 2 1 1 0 0 0 2
2 3 2 1 1 0 1 0 0 3
1 2 2 1 1 0 0 1 0 2
3 1 1 1 1 0 0 0 1 3




Now the obvious solution is feasible so there is no hunting for an initial obvious feasible
solution required. Now add in the row and column for w. This yields




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.

It is a maximization problem so you want to eliminate the negatives in the bottom left row.
Pick the column having the one which is most negative, the −8. The pivot is the top 5.
Then apply the simplex algorithm to obtain




1
5 1 1

5
2
5

1
5

1
5 0 0 0 0 2

5
7
5 0 7

5 − 1
5

2
5 − 3

5 1 0 0 0 9
5

3
5 0 8

5
1
5

3
5 − 2

5 0 1 0 0 6
5

14
5 0 4

5
3
5

4
5 − 1

5 0 0 1 0 13
5

− 17
5 0 − 22

5 − 19
5 − 12

5
8
5 0 0 0 1 16

5




.

There are still negative entries in the bottom left row. Do the simplex algorithm to the
column which has the − 22

5 . The pivot is the 8
5 . This yields




1
8 1 0 3

8
1
8

1
4 0 − 1

8 0 0 1
4

7
8 0 0 − 3

8 − 1
8 − 1

4 1 − 7
8 0 0 3

4
3
8 0 1 1

8
3
8 − 1

4 0 5
8 0 0 3

4
5
2 0 0 1

2
1
2 0 0 − 1

2 1 0 2
− 7

4 0 0 − 13
4 − 3

4
1
2 0 11

4 0 1 13
2




and there are still negative numbers. Pick the column which has the −13/4. The pivot is
the 3/8 in the top. This yields




1
3

8
3 0 1 1

3
2
3 0 − 1

3 0 0 2
3

1 1 0 0 0 0 1 −1 0 0 1
1
3 − 1

3 1 0 1
3 − 1

3 0 2
3 0 0 2

3
7
3 − 4

3 0 0 1
3 − 1

3 0 − 1
3 1 0 5

3
− 2

3
26
3 0 0 1

3
8
3 0 5

3 0 1 26
3




which has only one negative entry on the bottom left. The pivot for this first column is the
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7
3 . The next tableau is




0 20
7 0 1 2

7
5
7 0 − 2

7 − 1
7 0 3

7
0 11

7 0 0 − 1
7

1
7 1 − 6

7 − 3
7 0 2

7
0 − 1

7 1 0 2
7 − 2

7 0 5
7 − 1

7 0 3
7

1 − 4
7 0 0 1

7 − 1
7 0 − 1

7
3
7 0 5

7
0 58

7 0 0 3
7

18
7 0 11

7
2
7 1 64

7




and all the entries in the left bottom row are nonnegative so the answer is 64/7. This is
the same as obtained before. So what values for x are needed? Here the basic variables are
y1, y3, y4, y7. Consider the original augmented matrix, one step before the simplex tableau.




1 5 1 2 1 1 0 0 0 0 2
2 3 2 1 1 0 1 0 0 0 3
1 2 2 1 1 0 0 1 0 0 2
3 1 1 1 1 0 0 0 1 0 3
−5 −8 −6 −7 −4 0 0 0 0 1 0




.

Permute the columns to put the columns associated with these basic variables first. Thus



1 1 2 0 5 1 1 0 0 0 2
2 2 1 1 3 1 0 0 0 0 3
1 2 1 0 2 1 0 1 0 0 2
3 1 1 0 1 1 0 0 1 0 3
−5 −6 −7 0 −8 −4 0 0 0 1 0




The matrix B is 


1 1 2 0
2 2 1 1
1 2 1 0
3 1 1 0




and so B−T equals 


− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7




Also bT
B =

(
5 6 7 0

)
and so from Corollary 6.5.3,

x =




− 1
7 − 2

7
5
7

1
7

0 0 0 1
− 1

7
5
7 − 2

7 − 6
7

3
7 − 1

7 − 1
7 − 3

7







5
6
7
0


 =




18
7
0
11
7
2
7




which agrees with the original way of doing the problem.
Two good books which give more discussion of linear programming are Strang [25] and

Nobel and Daniels [20]. Also listed in these books are other references which may prove
useful if you are interested in seeing more on these topics. There is a great deal more which
can be said about linear programming.

6.6 Exercises

1. Maximize and minimize z = x1 − 2x2 + x3 subject to the constraints x1 + x2 + x3 ≤
10, x1 + x2 + x3 ≥ 2, and x1 +2x2 + x3 ≤ 7 if possible. All variables are nonnegative.
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2. Maximize and minimize the following if possible. All variables are nonnegative.

(a) z = x1 − 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(b) z = x1−2x2−3x3 subject to the constraints x1+x2+x3 ≤ 8, x1+x2+3x3 ≥ 1,
and x1 + x2 + x3 ≤ 7

(c) z = 2x1 + x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(d) z = x1 +2x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.
You know these two contradict but show they contradict using the simplex algorithm.

4. Find a solution to the following inequalities for x, y ≥ 0 if it is possible to do so. If it
is not possible, prove it is not possible.

(a)
6x+ 3y ≥ 4
8x+ 4y ≤ 5

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

(d)
x1 − x2 + x3 ≤ 2
x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change
to a maximization problem and solve as follows: Let yi = M − xi. Formulate in terms
of y1, y2.
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2. Maximize and minimize the following if possible. All variables are nonnegative.

(a) z = x1 − 2x2 subject to the constraints x1 + x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(b) z = x1−2x2−3x3 subject to the constraints x1+x2+x3 ≤ 8, x1+x2+3x3 ≥ 1,
and x1 + x2 + x3 ≤ 7

(c) z = 2x1 + x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

(d) z = x1 +2x2 subject to the constraints x1 − x2 + x3 ≤ 10, x1 + x2 + x3 ≥ 1, and
x1 + 2x2 + x3 ≤ 7

3. Consider contradictory constraints, x1 + x2 ≥ 12 and x1 + 2x2 ≤ 5, x1 ≥ 0, x2 ≥ 0.
You know these two contradict but show they contradict using the simplex algorithm.

4. Find a solution to the following inequalities for x, y ≥ 0 if it is possible to do so. If it
is not possible, prove it is not possible.

(a)
6x+ 3y ≥ 4
8x+ 4y ≤ 5

(b)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 8
6x1 + 6x2 + 5x3 ≤ 11

(c)
6x1 + 4x3 ≤ 11

5x1 + 4x2 + 4x3 ≥ 9
6x1 + 6x2 + 5x3 ≤ 9

(d)
x1 − x2 + x3 ≤ 2
x1 + 2x2 ≥ 4
3x1 + 2x3 ≤ 7

(e)
5x1 − 2x2 + 4x3 ≤ 1
6x1 − 3x2 + 5x3 ≥ 2
5x1 − 2x2 + 4x3 ≤ 5

5. Minimize z = x1 + x2 subject to x1 + x2 ≥ 2, x1 + 3x2 ≤ 20, x1 + x2 ≤ 18. Change
to a maximization problem and solve as follows: Let yi = M − xi. Formulate in terms
of y1, y2.
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