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Preface

This monograph studies the design of robust, monotonically-convergent iter-
ative learning controllers for discrete-time systems. Iterative learning control
(ILC) is well-recognized as an efficient method that offers significant per-
formance improvement for systems that operate in an iterative or repetitive
fashion (e.g., robot arms in manufacturing or batch processes in an industrial
setting). Though the fundamentals of ILC design have been well-addressed
in the literature, two key problems have been the subject of continuing re-
search activity. First, many ILC design strategies assume nominal knowledge
of the system to be controlled. Only recently has a comprehensive approach
to robust ILC analysis and design been established to handle the situation
where the plant model is uncertain. Second, it is well-known that many ILC
algorithms do not produce monotonic convergence, though in applications
monotonic convergence can be essential. This monograph addresses these two
key problems by providing a unified analysis and design framework for robust,
monotonically-convergent ILC.

The particular approach used throughout is to consider ILC design in the
iteration domain, rather than in the time domain. Using a lifting technique,
the two-dimensional ILC system, which has dynamics in both the time and it-
eration domains, is transformed into a one-dimensional system, with dynamics
only in the iteration domain. The so-called super-vector framework resulting
from this transformation is used to analyze both robustness and monotonic
convergence for typical uncertainty models, including parametric interval un-
certainties, frequency-like uncertainty in the iteration domain, and iteration-
domain stochastic uncertainty. For each of these uncertainty models, corre-
sponding ILC design concepts are developed, including optimization-based
strategies when the system Markov matrix is subject to interval uncertainties,
an algebraic approach to iteration-domain H∞ control, and iteration-domain
Kalman filtering.

Readers of the monograph will learn how parametric interval concepts en-
able the design of less conservative ILC controllers that ensure monotonic
convergence while considering all possible interval model uncertainties. Addi-
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tionally, by considering H∞ techniques and Kalman filtering in the iteration
domain using the super-vector framework, the notion of ILC baseline error
is established analytically, leading the reader to understand the fundamental
limitations of ILC.

The monograph is organized into three different parts and an appendix
section. In Part I, we provide research motivations and an overview of the
literature. This part of the monograph gives an introduction to ILC and in-
troduces the basic robustness and monotonic convergence issues that can arise.
A brief summary of the ILC literature is given and the super-vector approach
is presented. In Part II, the concept of a parametric interval is used to reduce
the conservatism arising in testing the robust stability of traditional robust
ILC methods. In this part, Markov vertex matrices are used for analyzing the
monotonic convergence of uncertain ILC systems and, based on this analy-
sis, two different synthesis methods are developed to design ILC controllers
that provide robust stability for such systems. In addition to analysis and
synthesis of ILC laws for interval systems, it is shown how to develop suit-
able Markov interval models from state-space interval models. In Part III,
the concepts of H∞ ILC, Kalman filter-augmented ILC, iteration-varying ro-
bust ILC, and intermittent ILC are developed. In H∞ ILC, a unified robust
framework for handling model uncertainty, iteration-varying disturbances, and
stochastic noise is developed. In Kalman filter-augmented ILC, the baseline
ILC error is analytically calculated for use in the off-line design of an ILC up-
date algorithm. Next we consider ILC algorithm design for the case of plants
with iteration-varying model uncertainty, under the requirement of monotonic
convergence. We conclude this part by considering a Kalman filter-based ILC
design for the case where the system experiences data dropout. There are four
appendices, comprising a taxonomy of ILC literature published since 1998 and
three separate studies, each introducing and solving a fundamental interval
computation problem: finding the maximum singular value of an interval ma-
trix, determining the robust stability of an interval polynomial matrix, and
obtaining the power of an interval matrix. These three solutions are used as
basic tools for designing robust ILC controllers.

No work can be fully credited to its authors, as we all depend on the
support and contributions of those around us. Thus, the first author would
like to express his appreciation to his parents, Mr. Chang-Soo Ahn and Mrs.
Hak-Sun Kim, for their support while he was completing this monograph. It
is impossible to express the greatest conceivable gratitude that is owed to his
wife, Min-Hui Kim, for her sacrifice, patience, and understanding throughout
his studies and his research. Without her support and love, he could not have
completed this monograph. Likewise, the second author would like to thank
his family, Tamra, Joshua, and Julia, for allowing him to pursue an academic
career and a research lifestyle, and Professor Suguru Arimoto, for his inspiring
contributions to the field of iterative learning control. Finally, the third author
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would like to thank his family, Huifang Dou, Duyun, David, Daniel for their
patience and understanding. We would also like to thank the able team at
Springer-Verlag, especially Frank Holzwarth, a true TeX-pert who helped us
solve a number of typesetting problems, Sorina Moosdorf, who helped us with
formatting issues, and our editor Oliver Jackson, whose interest in our project
greatly contributed to its successful completion.

Gwangju, Korea Hyo-Sung Ahn
Golden, Colorado, USA Kevin L. Moore
Logan, Utah, USA YangQuan Chen

May 2007
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Introduction

1.1 General Overview of the Monograph

This monograph focuses on robust monotonically-convergent iterative learn-
ing control (MC-ILC) systems and stochastic iterative learning control sys-
tems. For robust MC-ILC design, parametric interval uncertainty models are
considered. For stochastic ILC design, norm-bounded uncertainty, external
disturbances, stochastic measurement noise, and intermittent measurements
are considered, all in the iteration domain.

The monograph is organized into three parts and an appendix section. In
the first part of the monograph, the ILC problem is described and motivated
in Chapter 1. Then Chapter 2 gives an overview of the ILC literature, covering
specifically the literature published between 1998 and 2004. In Chapter 3 the
super-vector ILC (SVILC) framework is introduced for use in Chapters 4 to
8. The second part of the monograph considers interval ILC analysis (Chap-
ter 4) and interval ILC synthesis (Chapter 5 and Chapter 6). The focus in
the second part of the monograph is on plants with parametric interval un-
certainty models. In addition to analysis and synthesis for such systems, it is
shown how to develop suitable Markov interval models from state-space in-
terval models. The third part of this monograph discusses H∞ SVILC design
(Chapter 7) and stochastic ILC (Chapter 8). The focus in the third part of the
monograph is on asymptotic stability and monotonic convergence conditions
of ILC systems under assumptions of iteration-domain model uncertainty and
stochastic disturbances and noise. In the Appendix section, a taxonomy of
the ILC literature is presented and three fundamental interval computational
problems are introduced and solved. Although these interval problems were
initially motivated for solving interval ILC problems, due to their own com-
pleteness and their potential impact on robust control research in general,
these results are carefully described in the appendices.
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1.2 Iterative Learning Control

1.2.1 What Is Iterative Learning Control?

Control systems have played an important role in the development and ad-
vancement of modern civilization and technology. Control problems arise in
practically all engineering areas and have been studied both by engineers
and by mathematicians. Industrially, control systems are found in numerous
applications: quality control in manufacturing systems, automation, network
systems, machine tool control, space engineering, military systems, computer
science, transportation systems, robotics, social systems, economic systems,
biological/medical engineering, and many others. Mathematically, control en-
gineering includes modeling, analysis, and design aspects. The key feature of
control engineering is the use of feedback for performance improvement of
a controlled dynamic system. The branches of modern control theories are
broad and include classical control, robust control, adaptive control, opti-
mal control, nonlinear control, neural networks, fuzzy logic, and intelligent
control, with each branch being distinguished from the others based on the
assumptions made about the properties of the systems to be controlled and
the performance objectives of the specific methodology under consideration.

Iterative Learning Control (ILC) is one of the more recent control theo-
ries. ILC, which can be categorized as an intelligent control methodology,1 is
an approach for improving the transient performance of systems that oper-
ate repetitively over a fixed time interval. Although control theory provides
numerous tools for improving the performance of a dynamic system, it is not
always possible to achieve a desired level of performance. This may be due
to the presence of unmodeled dynamics, parametric uncertainties, or distur-
bances and measurement noise exhibited during actual system operation. The
inability to achieve a desired performance may also be due to the lack of suit-
able design techniques [298]. In particular, when the system is nonlinear, it is
not easy to achieve perfect tracking using traditional control theory. However,
for a specific class of systems – those that operate repetitively – ILC is a de-
sign tool that can help overcome the shortcomings of traditional controllers,
making it possible to achieve perfect tracking or performance when there is
model uncertainty or when we have a “blind” system.2

1 From“Defining Intelligent Control – Report of the Task Force on Intelligent Con-
trol,” IEEE Control Systems Society, Panos Antsaklis, Chair, Dec., 1993: “In-
telligent control uses conventional control methods to solve lower level control
problems ... conventional control is included in the area of intelligent control.
Intelligent control attempts to build upon and enhance the conventional control
methodologies to solve new, challenging control problems.”

2 “Blind” means we have little or no information about the system structure and
its nonlinearities. We can only measure input/output signals such as voltage,
velocity, position, etc.
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Various definitions of ILC have been given in the literature. Some of them
are quoted here.

• “The learning control concept stands for the repeatability of operating a
given objective system and the possibility of improving the control input
on the basis of previous actual operation data.” Arimoto, Kawamura, and
Miyazaki [29].

• ILC is a “... recursive online control method that relies on less calculation
and requires less a priori knowledge about the system dynamics. The idea
is to apply a simple algorithm repetitively to an unknown plant, until
perfect tracking is achieved.” Bien and Huh [43].

• “Iterative learning control is an approach to improving the transient re-
sponse performance of a system that operates repetitively over a fixed time
interval.” Moore [298].

• “Iterative learning control considers systems that repetitively perform
the same task with a view to sequentially improving accuracy.” Amann,
Owens, and Rogers [10].

• “ILC is to utilize the system repetitions as experience to improve the sys-
tem control performance even under incomplete knowledge of the system
to be controlled.” Chen and Wen [66].

• ILC is a “... controller that learns to produce zero tracking error during
repetitions of a command, or learns to eliminate the effects of a repeating
disturbance on a control system output.” Phan, Longman, and Moore
[363].

• “The main idea behind ILC is to iteratively find an input sequence such
that the output of the system is as close as possible to a desired output.
Although ILC is directly associated with control, it is important to note
that the end result is that the system has been inverted.” Markusson [287].

All definitions about ILC will have their own emphases. However, a com-
mon feature of the definitions above is the idea of “repetition.” Learning
through a predetermined hardware repetition is the key idea of ILC. Hardware
repetition can be thought of as a physical layer on the uniformly distributed
time axis for providing experience to the mental layer of ILC. “Predeter-
mined” means that the ILC system requires some postulates that define the
learning environment of a control algorithm. A person learns about his/her
living environment by experience, where the physical layer is the daily ac-
tivity and the mental layer is the memory of strongly perceived events that
are closely related with his/her interest. These strongly perceived events of
the past provide knowledge to the human being that can be used to inform
the person’s current activity. In ILC, the current activity is a control force
and the past experience is stored data. A difference between human learning
and machine learning is in “predetermined.” For a human being, knowledge
by learning could be based on similarity and impression, whereas in a ma-
chine the initial setup, fixed time point, uniform sampling, repetitive desired
trajectory, etc. are predetermined, which then determines the future of the
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hardware machine. Thus, ILC is concerned with the problem of refining the
input to a system that operates repetitively, so that the future behavior of
the system is predetermined to improve its current operation over its past
operation through the use of past experience.

Consider a system in an initial state to which a fixed-length input signal is
applied. After the complete input has been applied, the system is returned to
its initial state and the output trajectory that resulted from the applied input
is compared to a desired trajectory. The error is used to construct a new input
signal (of the same length) to be applied the next time the system operates.
This process is then repeated. The goal of the ILC algorithm is to properly
refine the input sequence from one trial to the next trial so that as more and
more trials are executed the output will approach the desired trajectory.

The basic idea of ILC is illustrated in Figure 1.1. Standard assumptions
are that the plant has stable dynamics or satisfies some kind of Lipschitz
condition, that the system returns to the same initial conditions at the start
of each trial, that the trial lasts for a fixed time Tf , and that each trial has
the same length. A typical ILC algorithm for the architecture depicted in
Figure 1.1 has the form

uk+1(t) = uk(t) + γ
d

dt
ek(t), (1.1)

where uk(t) is the system input and ek(t) = yd(t) − yk(t) is the error on trial
k, with yk(t) the system output and yd(t) the desired response. For a large
class of systems this algorithm can be shown to converge in the sense that as
k → ∞ we have yk(t) → yd(t) for all t ∈ [0, Tf ]. Notice that this algorithm is
noncausal. To see this more clearly, note that a discrete-time version of (1.1)
can be given as

uk+1(t) = uk(t) + γek(t + 1), (1.2)

where now t is an integer. Clearly (1.2) is noncausal with respect to time.
This is a key feature of ILC. Though the algorithm actually acts only on past
data, the fact that the initial conditions are reset at the beginning of each
trial allows us to do “noncausal” processing on the errors from the previous
trial.

Based on the ILC system definition as depicted in Figure 1.1 and following
the definitions quoted above, we will propose the following definition:

ILC is an approach to improve the transient response performance of
an unknown or uncertain hardware system that operates repetitively
over a fixed time interval by eliminating the effects of a repeating
disturbance and by using the previous actual operation data.

Finally, having defined ILC, it is important to point out the focus of ILC
research, as clearly defined in the following quote:

• “We learned that ILC is about enhancing a system’s performance by means
of repetition, but we did not learn how it is done. This brings us to the
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Fig. 1.1. Basic idea of ILC

core activity in ILC research, which is the construction and subsequent
analysis of algorithms.” Verwoerd [467].

Thus, the key question of ILC is how to eliminate the periodic disturbance
and how to use the past information for the current trial. As we will see below,
if the system uncertainty and external disturbances are predetermined on the
uniformly distributed repetitive time axis, all of these effects, including the
actual plant, could be considered as a predetermined model, so that finding
an inverse of the deterministic system will be the main objective of ILC.

1.2.2 Classical ILC Update Law

As shown from the taxonomy given in Appendix A, the scope of ILC research is
so wide that it is nearly impossible to describe all the branches of ILC. Thus, in
this subsection we review only the basic ideas of classical ILC algorithms. Let
us consider the following simple SISO linear repetitive system, in continuous
time:

ẋk(t) = Axk(t) + Buk(t) (1.3)
yk(t) = Cxk(t). (1.4)

The control task is to servo the output yk(t) to track the desired output yd(t)
for all time t as the iteration k increases. In classical ILC, the following basic
postulates are required, although in recent ILC research, algorithms are sought
so that these postulations could be somewhat broken or relaxed (adopted from
page 2 of [66]):

• Every trial (pass, cycle, batch, iteration, repetition) ends in a fixed time
of duration.

• Repetition of the initial setting is satisfied. That is, the initial state xk(0)
of the objective system can be set to the same point at the beginning of
each iteration.
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• Invariance of the system dynamics is ensured throughout the repetition.
• The output yk(t) is measured in a deterministic way.

To give a flavor of ILC results, consider the learning control algorithm
proposed in 1984 by Arimoto (and hence, called an “Arimoto-type” ILC law)
[27, 28]:

uk+1(t) = uk(t) + Γ ėk(t). (1.5)

For this algorithm and the plant in (1.3–1.4), convergence is assured if

‖I − CBΓ‖i < 1. (1.6)

Arimoto also considered more general “PID-type” ILC algorithms of the form:

uk+1 = uk + Φek + Γ ėk + Ψ

∫
ekdt. (1.7)

In other types of algorithms, researchers have used gradient methods to opti-
mize the gain Gk in:

uk+1(t) = uk(t) + Gkek(t + 1). (1.8)

For ILC design purposes it is sometimes useful to specify the learning control
algorithm in the frequency domain, for example:

Uk+1(s) = L(s)[Uk(s) + aEk(s)]. (1.9)

Note that in this last case the ILC gain is actually implied to be a linear
time-invariant filter.

Many schemes in the literature can be classified with one of the algorithms
given above. As such, it is possible to generalize the analysis by introducing
an operator-theoretic notation. Let T (·) denote a general operator mapping
an input space to an output space. Then the following theorem summarizes a
number of technical convergence results for first-order3 ILC systems:

Theorem 1.1. [298] For the plant yk = Tsuk, the linear time-invariant learn-
ing control algorithm

uk+1 = Tuuk + Te(yd − yk) (1.10)

converges to a fixed point u∗(t) given by

u∗(t) = (I − Tu + TeTs)−1Teyd(t) (1.11)

with a final error
3 First-order ILC means that only data from the most recent (previous) trial is

used in the ILC update law.
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e∗(t) = lim
k→∞

(yk − yd) = (I − Ts(I − Tu + TeTs)−1Te)yd(t) (1.12)

defined on the interval (t0, tf ), if

‖Tu − TeTs‖i < 1. (1.13)

Note that if Tu = I then ‖e∗(t)‖ = 0 for all t ∈ [to, tf ]; otherwise the final
converged error will be nonzero.

To understand the nature of ILC, consider the following:

Question: Given Ts, for the general linear ILC algorithm:

uk+1(t) = Tuuk(t) + Te(yd(t) − yk(t)),

how do we pick Tu and Te to make the final error e∗(t) as “small” as
possible?

Answer: Let the solution of the following problem be T ∗
n :

min
Tn

‖(I − TsTn)yd‖.

It turns out that we can specify Tu and Te in terms of T ∗
n and the re-

sulting learning controller converges to an optimal system input given
by:

u∗(t) = T ∗
nyd(t).

This means that the essential effect of a properly designed learning controller
is to produce the output of the best possible inverse of the system in the
direction of yd [298]. This is the key characteristic of ILC.

Returning to the classic Arimoto-type ILC law (1.5), note that the basic
formula for selecting the learning gain given in (1.6) does not require infor-
mation about the system matrix A, which implies that ILC is an effective
control scheme for improving the performance of uncertain (linear or nonlin-
ear) dynamic systems. This is the main feature of ILC, as distinguished from
classical control theories.

The ILC update rule of (1.5) is properly called a “D-type” ILC rule, as
it operates on the derivative of the error. Likewise, we can consider PID-type
ILC as given in (1.7), I-type ILC , or P-type ILC. For instance a P-type update
rule (meaning no derivative and integral effects) can be written as

uk+1(t) = uk(t) + γk(t)(yd(t) − yk(t)), (1.14)

where k is the iteration trial, γk(t) is the proportional learning gain, yd(t) is
the desired output, and yk(t) is the measured output. Note that this particular
algorithm also has another feature: the gain is time-varying. This introduces
another way to categorize ILC update laws: as time-invariant or time-varying.
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As we noted above, we can also consider learning gains that are filters (e.g., the
update law in (1.9)), which leads us to also consider the distinction between
time-varying and time-invariant learning gain filters.

As we mentioned in a footnote above, ILC that only looks back at the
most recent previous iteration is called first-order ILC. It is also possible to
consider what is called higher-order ILC (HOILC), whereby data from more
than one previous iteration is used. Consider, for instance, the ILC law

uk+1(t) = uk(t) +
i=k−l∑
i=k

γi(t)(yd(t) − yi(t)) (1.15)

or the update algorithm

uk+1(t) =
i=k−l∑
i=k

λi(t)ui(t) +
i=k−l∑
i=k

γi(t)(yd(t) − yi(t)). (1.16)

Similar to (1.15) and (1.16), which are both P-type rules, I-type, PD-type,
and PID-type higher-order algorithms can be developed using the whole set
of past control input signals and output error signals. [66] formulates perhaps
the most general form of these type of algorithms, which is given as

uk+1 =
N∑

k=1

(I − Λ)Pkuk + Λuo

+
N∑

k=1

(
Φkei−k+1 + Γkėi−k+1 + Ψk

∫
ei−k+1dt

)
. (1.17)

It can be shown [66] that if
∑N

k=1 Pk = I, then by properly choosing the
learning gain matrices we can ensure that ek converges to zero asymptotically.

So far, we have considered continuous time ILC algorithms. However, prac-
tically it is desirable to use the discrete-time system state-space model given
below in (1.18–1.20), because microprocessor-based discrete, sampled-data
systems are widely used in actual applications. Furthermore, since the na-
ture of repetitive operations is finite-horizon, each iteration domain consists
of finite number of discrete-time points, which can be represented by vectors
(see (1.23–1.26) below). Thus, in the remainder of this monograph we will
restrict our attention almost exclusively to discrete-time systems.

1.2.3 The Periodicity and Repetitiveness in ILC

In the descriptions of ILC given above, it has been implied that repetition
in the system operation is with respect to time. However, more generally,
the periodicity and the repetitiveness treated in ILC could be time-, state-,
iteration-, or trajectory-dependent. Let us consider Figure 1.2(a) where the
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mobile wheel is misaligned with the robot body. In this figure, the robot body
Y axis (Yb) is not pointing in the same direction as the wheel Y axis (Yw).
This misalignment (δ) results in an eccentricity problem in the control sys-
tem, which brings about an angle-dependent periodic disturbance. Thus, the
eccentricity (fe) is a function of angle θ, i.e., fe = f(θ). Figure 1.2(b) shows
a satellite that rotates around the earth periodically. For a specified mission,
the satellite is controlled to point in a particular direction. However, the satel-
lite experiences external disturbances in the control system from the earth,
sun, magnetic field, solar radiation, etc. These disturbances would be time-
periodic, because the satellite orbit period is generally fixed. Figure 1.2(c)
shows a robot manipulator which is time-periodic and whose initial condi-
tion at the start of each new period is same. The robot manipulator works
time-periodically on a fixed trajectory (in this figure, by an angle θ), but ex-
periences iteration-varying disturbances. Thus, as shown in these figures, a
periodic system could be defined as being in one of three different classes:

• Class A: state-periodic, but not time-periodic (Figure 1.2(a)).
• Class B: time-periodic, but not state-periodic (Figure 1.2(b)).
• Class C: state (starting state)-periodic and time-periodic (Figure 1.2(c)).

In more detail, in Figure 1.2(a), the eccentricity is the function of θ with
the following relationship: fe(θ) = fe(θ ± 2nπ) where n is an integer; in Fig-
ure 1.2(b), the external disturbance fd is the function of t with the following
relationship: fd(t) = fd(t± nT ) where T is the orbit period; in Figure 1.2(c),
the external disturbance could be time-periodic but with the same initial
states. Generally, iterative learning control treats the time-periodic system
like Class C, whereas the periodic systems like Class A and Class B are stud-
ied under repetitive control (RC) and/or periodic control.4 In this monograph,
we will focus on Class C, although our framework can be easily modified to
cover Class A and Class B.

1.2.4 Advantages of Using ILC

In the previous subsections, we discussed the characteristics of ILC, introduced
basic ILC algorithms, and looked at different ways periodicity can occur.
In this subsection, we present some advantages of ILC over typical control
algorithms. These include:

• Precise trajectory tracking: If the four postulations given in Section 1.2.2
are satisfied, then a desired trajectory on a finite horizon in the time
domain can be perfectly achieved. Thus, ILC algorithms can be effec-
tively used for precise control in fields like semiconductor manufacturing

4 However, Class A and Class B also have been widely studied in ILC. More or less,
these days there is no distinction between the systems treated in ILC and the sys-
tems treated in RC. But, mathematical formulations of ILC and RC are different.
This monograph handles these periodic systems under the ILC framework.
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Fig. 1.2. (a): Eccentricity problem of a wheeled mobile robot. (b): Time-periodic
disturbance in a satellite orbit. (c): Time-periodic robot manipulator in a manufac-
turing process, with an iteration-dependent disturbance.

processes, robot arm manipulators, repetitive rotary systems, and factory
batch processes.

• Monotonic convergence: The system convergence to a desired trajectory
can be monotonic in iteration, if convergence conditions are met. Such
monotonic convergence can prevent the break-up of hardware and high
overshoots of the system trajectory.

• Controller design without accurate model information: An ILC controller
can be designed without an accurate model of the system. The uncertainty
that can be handled by ILC includes deterministic modeling error, para-
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metric uncertainty, stochastic disturbances and noise, parameter variation,
and deterministic external disturbances.

1.3 Research Motivation

The principal goal of this monograph is to investigate robustness issues in
ILC from an iteration-domain perspective, with an objective of demonstrating
analysis and design strategies that enable monotonic convergence and perfect
trajectory tracking against a variety of uncertainties. Three main motivations
for this study are provided in this section.

1.3.1 Motivation for Robust Interval Iterative Learning Control

Let us consider the following single-input, single-output (SISO), 2-dimensional
system described in the state-space:

xk(t + 1) = Axk(t) + Buk(t) (1.18)
yk(t) = Cxk(t) (1.19)
xk(0) = x0, (1.20)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are the matrices describing the
system; xk(t) ∈ Rn, uk(t) ∈ R, and yk(t) ∈ R are the state, input, and output
vectors, respectively; t represents discrete-time points along the time axis; and
the subscript k represents the iteration trial number along the iteration axis.
Notice that xk(0) = x0 for all k. This is a key assumption in the ILC process
and is called the initial reset condition (see again Section 1.2). Throughout
this monograph, it is assumed that this initial reset condition is satisfied if
there is no special indication otherwise.

For the system (1.18)–(1.20), from basic ILC theory (Theorem 1.1), a
standard result is that the system is asymptotically stable (AS) if and only if
|1 − γh1| < 1 with the ILC update law

uk+1(t) = uk(t) + γek(t + 1), (1.21)

where h1 = CB �= 0 (i.e., the system has relative degree 1) and γ is the
learning gain [302]. Thus, it is easy to design γ such that the condition |1 −
γh1| < 1 is satisfied, provided that C and B are known exactly. However,
generally it is reasonable to assume that there exist model uncertainties in C
and B. In this case, it is necessary to select γ considering all possible model
uncertainties.

In fact, this kind of ILC problem has been studied widely in the literature.
For example, refer to [522, 390, 293]. However, the existing research results
are almost all restricted to the asymptotic stability (AS) problem. In ILC, it
has been observed that AS may not be acceptable in a practical setting, be-
cause it is possible that an ILC system can experience very high overshoots of
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the mean-square error during the transient before the system converges [279].
Thus, the monotonically-convergent ILC (MC-ILC) design problem has been
considered to be a practically important issue, as claimed and demonstrated
in [415, 279].5 With regard to monotonically-convergent ILC, numerous pub-
lications are available. An approximate monotonic decay condition was given
in [417]. A monotonic convergence condition through parameter optimiza-
tion was introduced in [340]. Monotonic convergence of a Hamiltonian system
was guaranteed in [140]. A maximum singular value-based monotonic con-
vergence condition was given in [308, 331]. Following these works, in this
monograph, we are thus motivated to consider not only robust asymptotic
stability against interval perturbations in the system Markov parameters, but
also robust monotonic convergence (i.e., exponential stability in the iteration
domain).

To design a monotonically-convergent ILC algorithm, many results in the
literature require information about the A matrix [298, 363, 346, 136, 9].
Though most results have considered only the nominal plant, it is again natu-
ral to consider A to be an uncertain matrix. Thus we are motivated to consider
the design of the learning gain matrix when considering model uncertainties
in A, B, and C.

There are a number of analysis methodologies that have been used in the
ILC literature. In one such method the 2-dimensional problem of (1.18)–(1.20)
is reformulated into a 1-dimensional problem. This is called the super-vector
ILC (SVILC) framework [298] and it is in this framework that we will consider
the robust MC-ILC problem.

To describe the SVILC methodology, take z-transforms (in time) of (1.18)–
(1.20) and define the resulting plant to be G(z).6 This gives

Y (z) = G(z)U(z)
= (hmz−m + hm+1z

−(m+1) + hm+2z
−(m+2) + · · ·)U(z), (1.22)

where m is the relative degree of the system, z−1 is the delay operator in
the discrete-time domain, and the parameters hi are Markov parameters of
the impulse response system of the plant G(z). If we now define the following
vectors:7

Uk = (uk(0), uk(1), . . . , uk(N − 1)) (1.23)
Yk = (yk(m), yk(m + 1), . . . , yk(N − 1 + m)) (1.24)
Yd = (yd(m), yd(m + 1), . . . , yd(N − 1 + m)) (1.25)
Ek = Yd − Yk = (Ek(m), Ek(m + 1), . . . , Ek(N − 1 + m)), (1.26)

then the linear plant can be described by Yk = HUk, where H is a Toeplitz
matrix of rank N whose elements are the Markov parameters of the plant
5 For more precise definitions of AS and MC, see Section 3.2 and Section 4.1.
6 G(z) = C(zI − A)−1B + D.
7 The process of forming “super-vectors” Uk, Yk, Yd, and Ek is called “lifting” in

the literature [298].
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G(z), given by:

H =

⎡⎢⎢⎢⎢⎣
hm 0 0 . . . 0

hm+1 hm 0 . . . 0
hm+2 hm+1 hm . . . 0

...
...

...
. . .

...
hm+N−1 hm+N−2 hm+N−3 . . . hm

⎤⎥⎥⎥⎥⎦ . (1.27)

Throughout this monograph, this matrix is called the system Markov matrix
or simply the Markov matrix.

The monotonic convergence condition for the system (1.18)–(1.20) with
the standard Arimoto-type ILC update law (1.21) is now simply given as

‖I − HΓ‖ < 1,

where ‖ · ‖ is an operator norm and Γ is the learning gain matrix. Γ is a
diagonal matrix whose diagonal elements are the scalar learning gains γ.

In the super-vector framework we just described, the system given in
(1.18)–(1.20) is assumed to be the nominal plant, i.e., neither model uncer-
tainty nor process disturbances or measurement noises are considered. Thus,
the MC condition ‖I−HΓ‖ < 1 is not practically meaningful when taking into
account model uncertainties or external disturbances and noise. To address
this, consider instead the following 2-dimensional uncertain plant model:

xk(t + 1) = (A + ∆A)xk(t) + (B + ∆B)uk(t) + v(k, t) (1.28)
yk(t) = (C + ∆C)xk(t) + w(k, t), (1.29)

where ∆A, ∆B, and ∆C are model uncertainties, and v(k, t) and w(k, t) are
time- and iteration-dependent process disturbance and measurement noise sig-
nals, respectively. Recall that t is the discrete-time point along the time axis,
which means that t is defined in a finite interval. That is, on each iteration or
trial, t has N different discrete-time points. Meanwhile, k is defined on an infi-
nite horizon, so it increases monotonically. Thus we can consider two different
types of model uncertainties. The first type is iteration-independent model
uncertainty, while the second type is iteration-dependent model uncertainty.

We are interested in addressing the robustness and convergence properties
of systems such as (1.28)–(1.29). However, the SVILC framework requires
analysis based on the system Markov matrix. Thus, it becomes necessary
to convert the model uncertainty of (1.28)–(1.29) to uncertainty associated
with the Markov matrix (1.27). To our knowledge, this uncertainty conversion
problem has never been addressed in the existing literature except in our
own work. This problem, which we call “interval model conversion,” will be
carefully addressed in this monograph. In particular, for the interval model
conversion problem, the power of an interval matrix will need to be computed
and we will show how this can be done in a computationally efficient and
non-conservative fashion.
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Next, let us suppose that Markov matrix includes the model uncertainty
converted from the uncertain plant (1.28)–(1.29) and let us denote the uncer-
tain system Markov matrix as H = Ho +∆H, where Ho is the system Markov
matrix corresponding to the nominal plant and ∆H is the uncertain system
Markov matrix corresponding to the uncertainty of the uncertain plant. Then,
our task is to find a learning gain matrix such that the system is AS or MC
against all possible uncertain plants H . There are two issues with regard to
this robust ILC design problem. The first issue is related to the conserva-
tiveness and the computational cost of the proposed method, and the second
issue is related to the performance of the algorithm. The performance issue
is concerned with the stability types: asymptotic stability (AS) and mono-
tonic convergence (MC).8 As noted, although there are numerous results on
asymptotic and robust stability in ILC [522, 390, 183], to date there is no sys-
tematic analysis and synthesis framework addressing robust monotonically-
convergent ILC. Most existing works have focused on asymptotic stability
for plants with model uncertainty described in the state-space form given
by (1.28)–(1.29). To our knowledge, outside of our own work, no systematic
approach for handling the uncertainty in H (i.e., ∆H) has been reported.
Furthermore, though in many existing works, optimal-ILC [9, 181, 342, 341],
stochastic noise [397, 396, 395, 54], and frequency-dependent uncertainty [360]
have been considered, these techniques can give conservative results. We show,
however, that using parametric interval concepts can reduce the conservatism
connected with robustness tests and can provide tighter monotonic conver-
gence conditions.

In summary, there are three main research motivations for studying the
robust interval ILC problem. The first motivation is to solve fundamental
problems associated with the robustness of ILC designs when the plant is
subject to parametric uncertainty. Then, based on these results, the second
task is to guarantee monotonic convergence against all possible interval un-
certainties. Finally, the goal is to reduce the conservatism related to robust
stability tests.

1.3.2 Motivation for H∞ Iterative Learning Control

From the ILC literature, there is no systematic approach to handling iteration-
varying model uncertainty, iteration-varying external disturbances, or iteration-
varying stochastic noise all together [360]. Even though time-domain-based
8 Note that stability in an ILC problem refers to the boundedness of signals at

fixed points of time, considered along the iteration axis. By assumption (due
to the finite-time horizon), traditional stability along the time axis is achieved
by default (except, perhaps, in the case of a nonlinear system exhibiting finite
escape-time behaviors). Thus, by AS, we mean that the ILC system converges to
the desired trajectory as the iteration number increases. By MC, we mean that
the ILC system converges without overshoot to the desired trajectory as iteration
number increases.
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H∞ ILC schemes and 2-dimensional approaches have been suggested for mak-
ing a unified ILC framework, research to date has been limited to iteration-
independent uncertainty and disturbances. However, if we can cast the super-
vector notation as defined by (1.23)–(1.26) into a traditional discrete-time
H∞ framework (where now “time” is actually “iteration”), we can obtain a
unified robust control framework on the iteration domain. Furthermore, our
proposed unified robust H∞ ILC approach on the iteration domain provides a
way to consider and discuss frequency-domain analysis on the iteration axis.
Recall that in ILC the time axis is finite-horizon. Thus, the corresponding
frequency domain transformed from the time axis should also be finite. How-
ever, in control engineering the frequency domain is usually infinite. Thus,
the frequency-domain-based ILC analysis, transformed from the finite time
axis, is not suitable from an analytical perspective. However, in our proposed
H∞ scheme on the iteration axis, the discrete infinite iteration axis is readily
transformed into the discrete infinite frequency domain. Hence, the H∞ ILC
scheme on the iteration axis provides a unified robust control framework on
the infinite frequency domain that is analytically correct.

1.3.3 Motivation for Stochastic Iterative Learning Control

Even though the H∞ ILC scheme on the iteration domain presented in this
monograph provides a unified framework, it is not related to monotonic con-
vergence. Motivated by this observation, we can raise a question: is it possible
to design a learning gain matrix to ensure monotonic convergence when con-
sidering stochastic noise or iteration-varying model uncertainty? Further, a
related question is how to analytically estimate the steady-state error that
the ILC system can achieve under stochastic noise and model uncertainty. In
the stochastic ILC approach proposed in this monograph, we try to estimate
the ultimate baseline error of an uncertain ILC system over which monotonic
convergence is guaranteed. And, we wish to make this estimate in an off-line
manner. A related problem also arises in the area of networked-control sys-
tems (NCS), where data dropout problems have been popularly studied. In
this monograph, we try to integrate the NCS into an ILC framework so that
an overall intermittent ILC system can be developed that is robust against
extreme data dropout situations in a network.

1.4 Original Contributions of the Monograph

This monograph makes the following theoretical contributions:

• Conditions for robust stability in the iteration domain are provided for
parametric interval systems.

• Techniques for converting from time-domain interval models to Markov
interval models are given.
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• A monotonically-convergent ILC system is designed under parametric in-
terval uncertainties and/or stochastic noise considerations.

• Robust H∞ ILC is designed on the iteration domain, taking into account
three different types of uncertainties: iteration-variant/invariant model un-
certainty, external disturbances, and stochastic noise.

• The baseline error of the ILC process is analytically established, which
provides a novel idea for designing the ILC learning gain matrix in an
off-line manner.

• Solutions for three fundamental interval computational problems are of-
fered: robust stability of an interval polynomial matrix system, the power
of an interval matrix, and the maximum singular value of an interval ma-
trix.

It is the main contribution of this monograph to provide new analyti-
cal tools for designing robust ILC systems. Using the super-vector approach,
the robustness problem of ILC is discussed purely on the iteration domain.
Parametric interval uncertainty enables us to design both the monotonically-
convergent ILC process and a less conservative robust ILC system. Indeed,
this robust, monotonically-convergent ILC design method makes a significant
contribution to practical ILC applications because it avoids unacceptable over-
shoot on the iteration domain while considering all possible models the con-
troller might face. Furthermore, by casting the H∞ framework and Kalman
filtering into the SVILC framework, the monograph provides a different de-
sign perspective for stochastic and frequency-domain uncertain ILC systems
than has typically been found in the literature. Additionally, analytical solu-
tions for the three fundamental interval computational problems mentioned
above are provided. These solutions can be effectively used for solving various
types of control and systems problems. For example, robust controllability,
robust observability, multi-input multi-output robust control theory, robust
monotonically-convergent stability problems, and robust boundary calcula-
tions for the model conversion problem can all be addressed using the results
presented in the monograph.
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An Overview of the ILC Literature

Historically, the ILC idea appeared perhaps as early as 1970 in a U.S. patent,
as explained in [59]. However, in the scientific literature the first idea related to
ILC was possibly the multipass control concept, which can be traced back to
Edwards in 1974 [125], though the stability analysis was restricted to classical
control concepts and an explicit ILC formulation was not given. It is widely
accepted that the initial explicit formulation of ILC was given by Uchiyama,
in Japanese, in 1978 [461] and by Arimoto, in English, in 1984 [28].

In the published literature, major ILC surveys were performed in 1992,
1997, and 1999, in Section 2 of [307], Chapter 1 of [68], and Chapter 4.4 of
[299], respectively. The early part of Section 2 of [307] introduced Japanese
researchers who suggested LTI Arimoto-type gains, PID-type gains, and gra-
dient method-based optimization algorithms. Then, in the latter part of Sec-
tion 2 of [307], literature dealing with nonlinear ILC, robustness of ILC,
adaptive schemes in ILC, optimal ILC strategies, and neural network-based
approaches were introduced. For more detailed explanations about the early
research before 1990, see Section 2 of [307]. The first classification of ILC
research was given in Chapter 1 of [68] and a wider ILC classification was
performed in Chapter 4.4 of [299]. Notably, in [299], a literature review of
work before 1997 was performed based on two categories: theoretical works
in ILC and ILC applications. In total, 256 publications were covered in [299],
which were identified using a search on keywords “control” AND “learning”
AND “iterative.” For a more recent survey, see [47], which provides a detailed
technical survey of ILC algorithms along with new results on the design of
the so-called Q-filter.

In the remainder of this chapter, we present a summary of the ILC lit-
erature from 1998 to 2004. We begin by describing the methodology and
numerical results of a detailed literature search. We then give a number of
comments on the results of our literature search, with specific emphasis on a
special issue of the International Journal of Control and on a number of Ph.D.
dissertations on ILC. Finally, we refer the reader to Appendix A, where we
have included a taxonomy that categorizes the ILC literature between 1998
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and 2004 into two different parts, following [299]. The first part is related to
the publications that focus on ILC applications and the second part is related
to the publications that handle theoretical developments.

2.1 ILC Literature Search Methodology

Table 2.1 shows the results from searching the “Web of Science”1 and the
“IEEE Xplore”2 databases on January 4, 2005. As shown in this table, from
the keywords “control” AND “learning” AND “iterative,” we have a total
of 877 publications. Broader searches were executed using “Iterative” AND
“Learning” and “Learning” AND “Control,” from which 1910 and 20, 260
publications were found, respectively. Hence, associated with the keyword
“Learning,” a great amount of research has been published. Associated with
“Repetitive Control,” we see that 309 publications were published. It is al-
most impossible to systematically review all these publications at this point,
so in this monograph the literature review is restricted to the publications
found by searching on the exact phrase “Iterative Learning Control,” from
which 510 different publications were found. However, for a reliable taxon-
omy, conference papers and journal papers that cannot be searched in the
Web of Science and the IEEE Xplore database are also included. They are
taken from the 1999 and 2002 International Federation of Automatic Con-
trol (IFAC) World Congress (WC) papers, the 2000 and 2002 Asian Control
Conference (ASCC) papers, Asian Journal of Control (AJC) papers, the 2001
European Control Conference (ECC) papers, the 7th Mechatronics Confer-
ence papers, and a variety of miscellaneous conference papers (see Table 2.2).
Thus, our review covers IEEE conferences and journal papers, international
(SCI) journal papers, IFAC Conference papers, and Asian Control Conference
papers. Figure 2.1 shows the number of publications since 1990 in these in-
ternational conference proceedings and journals. As shown in this plot, the
number of publications grew steadily between 1990 and 1998 and then grew
very quickly through 2002. A drop off in publications is shown in 2003 and
2004. Table 2.3 shows the regional distribution of the authors of the publica-
tions that were published in IEEE Conference proceedings and SCI journals
(from Web of Science).

2.2 Comments on the ILC Literature

The first ILC monograph [298] was published in 1993. There was an edited
book [44] in 1998; subsequently there were three special issues of journals (a
special issue of the International Journal of Control [312] in 2000, a special

1 http://isi01.isiknowledge.com/portal.cgi/wos.
2 http://ieeexplore.ieee.org.
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Table 2.1. ILC-related Publications From Web of Science and IEEE Xplore

Search options Web of Science IEEE Conference Total

Iterative + Learning 793 1117 1910

Learning + Control 12, 739 7521 20, 260

Iterative + Learning + Control 367 510 877

Iterative Learning Control 241 269 510

Repetitive Control 150 159 309

Table 2.2. Miscellaneous ILC-related Publications from 1998 to 2004

IFAC 1999 WC IFAC 2002 WC 2000 ASCC 2002 ASCC AJC Others Total

12 19 20 11 14 7 83
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Fig. 2.1. Publication numbers of ILC-related literature in conference proceedings
and journals

issue of the Asian Journal of Control in 2002, and a special issue of the journal
Intelligent Automation and Soft Computing [40]); two more ILC monographs
[66, 518] appeared in 1999 and in 2003, respectively. We would note that [44]
is the outcome of several invited sessions at the 2nd Asian Control Conference
held in Seoul, Korea in July, 1997 and [312] is the outcome of a roundtable
on ILC held in conjunction with the 1998 IEEE Conference on Decision and
Control in Tampa, Florida, USA.
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Table 2.3. Regional Distribution of Authors of IEEE Conference Papers and SCI
Journal Papers

Region From “Web of Science” From “IEEE Conference” Total

China 18 55 73

Korea 60 15 75

Singapore 68 39 107

Japan 32 30 62

Taiwan 9 5 14

UK 47 29 76

Europe 42 30 72

USA 63 39 102

Canada 11 8 19

Other areas 6 6 12

It is useful to read Chapter 1 and Chapter 2 of [44]. In Chapter 1, as a
conclusion, Arimoto argued that the P-type update rule may be more natural
than D-type ILC. In Chapter 2, Xu and Bien described several key issues in
ILC research and commented on the limitations of ILC applications. Their
discussions were given in three different categories: tasks, the connection of
ILC to other control theories, and future research directions in ILC. In [66]
nonlinear higher-order ILC was developed to address robust ILC stability
and in [518] nonlinear ILC, mostly based on the idea of a composite-energy
function, was described.

Since 1998, at least 18 different Ph.D. dissertations can be found [184, 332,
467, 114, 538, 210, 159, 137, 554, 287, 540, 334, 282, 484, 416, 263, 276, 367].
These dissertations, which are enumerated by year in Table 2.4, were identified
by searching the “Digital Dissertations” web-site.3

Table 2.4. ILC-related Ph.D. Dissertations

1998 1999 2000 2001 2002 2003 2004 Total

Number 1 1 3 2 3 0 8 18

In the next two sections we present a review and comments on the special
issue on ILC of the International Journal of Control (IJC), Vol 73, No 10,
[312], which we consider to contain a nice snapshot of ILC at the turn of the
century, and we comment on the Ph.D. dissertations noted above.

3 http://wwwlib.umi.com/dissertations/gateway.
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2.3 IJC Special Issue

In [30], Arimoto discussed the equivalence between the concepts of “learnabil-
ity,” “output-dissipativity,” and “strictly positive realness.” Using Theorems
1–4 given in [30], it is possible to check if there exists an ILC controller that
ensures the input–output L2 stability of the controlled system. For instance,
in the case where D = 0 in the state-space description, learnability can be
checked by investigating if there exist two positive definite symmetric matrices
X and Q such that

AT X + XA = −Q, XB = CT . (2.1)

This approach has several potential applications in ILC research, because the
Lyapunov-like equation given in (2.1) can be used in various ways as done in
other control areas. In [136], a linear quadratic ILC scheme was modified for
practical applications. One of the main novelties of [136] is the dimensional
reduction of the super-vectors in calculating the optimal control at each trial.
Another novelty is that the unknown system model was estimated based on
conjugate basis vectors. French and Rogers [134] provided an adaptive ILC
scheme with a calculated cost for the Lp bounded disturbance. It is the main
achievement of [134] to handle the robustness issue in an adaptive control
framework. Owens and Munde [343] also provided a new adaptive approach
for ILC. They included current cycle error feedback in the adaptive control
law. This is motivated by the fact that the most recent error data reflects the
current performance most closely. Also, by including the current cycle feed-
back signal, they can stabilize unstable plants during each trial. In [522], Xu
et al. suggested a robust learning controller (RLC) for robotic manipulators to
compensate for state-independent periodic uncertainties and to suppress non-
periodic system uncertainties. As commented in the same paper, the results of
[522] can be applied to various periodically disturbed systems and uncertain
dynamic systems. In [356], the initial state error problem was addressed, but
the robustness issue was not fully answered. In [196], Hillenbrand and Pandit
provided a design scheme with reduced sampling rate. A concept called an-
ticipatory ILC was suggested by Wang in [474], whereby the ILC update rule
is given by

ui+1(t) = ui(t) + L(·)[yd(t + �) − yi(t + �)] (2.2)

with a saturation condition. It is interesting to note that the update rule
is different from D-type or P-type. In [82], Chien suggested an ILC design
method based on a fuzzy network for sampled-data systems and in [391], the
state observer and disturbance model were used in the learning controller. A
particularly valuable paper in the IJC 2000 special issue was presented by
Longman [279], who provided several important guides for actual application
of ILC and repetitive control (RC) algorithms. Longman also provided exper-
imental test results and detailed explanations about the tests for the practical
uses of ILC. In [309], Moore proved the convergence of ILC algorithms to
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achieve a desired periodic output trajectory. As extensions of the results of
[309], periodic disturbance compensation and practical applications were also
discussed. The last three papers of [312] were dedicated to ILC applications.
Specifically, [390] used an H∞ technique for wafer positioning control, [337]
applied ILC to non-holonomic systems, and [38] showed that ILC can be uti-
lized for position control of chain conveyer systems.

2.4 ILC-related Ph.D. Dissertations Since 1998

We begin this section by noting that our search for Ph.D. dissertations pub-
lished since 1998 is very limited, because “Digital Dissertations” does not in-
clude all the schools in the world and we were not able to be personally aware
of all the dissertations published everywhere on this topic. Nonetheless, we
tried to include all the Ph.D. dissertations of which we were aware. In 2004,
the number of Ph.D. dissertations in ILC significantly increased as shown
in Table 2.4. In [184], Hätönen studied the algebraic properties of a standard
ILC structure and made progress on the topic of norm-optimal ILC. Verwoerd
[467] suggested equivalent feedback controllers for causal ILC and noncausal
ILC based on an admissibility concept. Note that a similar discussion to [467]
can be found in [162, 345, 163]. Dijkstra [114] showed some exciting ILC ap-
plications. In his dissertation, lower-order ILC was applied to the different
wafer-stages. In addition, for finite-time ILC, Dijkstra provided several inter-
esting theoretical developments in Chapter 4 of [114]. In [334] Oh introduced
a local learning concept to avoid undesirable overshoot during the learning
transient. Norrlöf [332] presented a number of useful results on the theory of
ILC, including ideas about the use of models in ILC and presentation of a
successful ILC application for a robotic manipulator. Markusson [287] used
ILC to find an inversion of the system, particulary focused on noncausal and
nonminimum systems. A time–frequency adaptive Q-filter ILC was suggested
for nonsmooth-nonlinearity compensation by Zheng in [554] and the idea was
used for an injection molding machine. ILC and RC were summarized and
some new results for nonlinear, nonminimum phase systems were developed
by Ghosh in [159]. In [538], Yang studied ILC based on neural networks and in
[137], Frueh suggested a basis-function-model-reference adaptive learning con-
troller (see also [136]). The suggested method in [137] has several advantages.
One in particular is an adaptive property to account for slowly varying plant
parameters or errors from the initial model. Huang [210] introduced Fourier
series-based ILC algorithms for tracking performance improvement. In [484],
several important issues in the field of learning and repetitive control were
addressed by Wen, including indirect adaptive control ideas applied to learn-
ing control and basis-functions used to show that ILC and RC problems are
mathematically the same under certain conditions. Songchon showed, in [416]
that learning control has the ability to bypass the waterbed effect, which is a
fundamental problem in traditional feedback controls. In [263], LeVoci devel-
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oped methods for predicting the final error levels of general first-order ILC,
of higher-order ILC with current cycle learning, and of general RC, in the
presence of noise, using frequency response methods. Three main difficulties
in the area of linear discrete-time ILC were addressed by Lo in [276]: (i) The
number of output variables for which zero tracking error can be achieved is
limited by the number of input variables; (ii) every variable for which zero
tracking error is sought must be a measured variable; and (iii) in a digital en-
vironment, the inter-sample behavior may have undesirable error from ripple.
An interesting application of optimal ILC was utilized for a chemical molding
process by Yang in [540]; Ma [282] showed that an ILC algorithm can be used
for vision-based tracking systems; and in [367], Phetkong used ILC on a cam
designed and built using a polynomial profile and it was shown that eight
cycles of learning were sufficient to effectively accomplish the morphing of the
cam behavior.

2.5 Chapter Summary

In this chapter, we provided a brief overview of the ILC literature, including
comments on selected results. We also pointed the reader to a complete tax-
onomy of the literature on ILC between 1998 and 2004 that is included in
Appendix A. From this taxonomy we can understand the overall trend of ILC
research from both the application point of view and the theoretical point of
view.
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The Super-vector Approach

This chapter is devoted to a technical overview of the super-vector ILC
(SVILC) framework. The asymptotic stability and monotonic convergence of
first-order SVILC systems have been well-described in [331]. Thus, here we
focus on higher-order SVILC systems. Specifically, asymptotic stability (AS)
and monotonic convergence (MC) conditions for higher-order ILC (HOILC)
system are studied.

Throughout this chapter the discrete-time plant given in (1.18)–(1.20),
with G(z) = C(zI − A)−1B + D, is considered. It is assumed that t ∈ [0, T ].
In Chapter 1, the Markov matrix H was given in (1.27). Without loss of
generality, we take m = 1 and CB �= 0 in the expression for H . The following
HOILC update rule is considered [301]:

Uk+1 = ΛkUk + Λk−1Uk−1 + · · · + Λk−nUk−n

+Γk+1Ek+1 + ΓkEk + · · · + Γk−nEk−n, (3.1)

where k denotes the iteration trial; Λi, i = k−n, . . . , k, are fixed learning gain
matrices from the previous control input vectors; n represents the number of
the past trials used for the current control update (if n = 0, it is first-order
ILC, if n ≥ 1, it is HOILC); and Γi, i = k − n, . . . , k are fixed learning gain
matrices from the previous error vectors.

3.1 Asymptotic Stability of Higher-order SVILC

In this section, we summarize some results of [3]. From the definition Yk =
Yd −Ek, with the assumption h1 �= 0 (note: if h1 �= 0, then H is nonsingular),
and after changing Yk = HUk to Uk = H−1Yk, we substitute Uk = H−1Yk

into (3.1). Then, after several algebraic simplifications (refer to [3]), we obtain
the following relationship:

H−1Yk+1 = ΛkH−1Yk + · · · + Λk−nH−1Yk−n

+Γk+1Ek+1 + ΓkEk + · · · + Γk−nEk−n. (3.2)
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By inserting Yk = Yd − Ek into (3.2), we have

H−1(Yd − Ek+1) = ΛkH−1(Yd − Ek) + · · · + Λk−nH−1(Yd − Ek−n)
+ Γk+1Ek+1 + ΓkEk + · · · + Γk−nEk−n

= (Λk + · · · + Λk−n)H−1Yd − ΛkH−1Ek −
· · · − Λk−nH−1Ek−n + Γk+1Ek+1 +
· · · + Γk−nEk−n. (3.3)

A constraint Λk + · · · + Λk−n = IN×N is used to make the steady-state error
zero (from now on, I represents IN×N ). Then (3.3) is changed to

(Γk+1 + H−1)Ek+1 = (ΛkH−1 − Γk)Ek + · · ·
+ (Λk−nH−1 − Γk−n)Ek−n. (3.4)

For convenience, writing A := Γk+1 + H−1 and Bi := ΛiH
−1 − Γi, (3.4) can

be rewritten as
AEk+1 = BkEk + · · · + Bk−nEk−n. (3.5)

Thus, if A is nonsingular (which can always be assured by choice of Γk+1;
of particular importance below, when Γk+1 = 0 then A − H−1 is in fact
nonsingular), then

Ek+1 = A−1BkEk + · · · + A−1Bk−nEk−n. (3.6)

Now, taking the w-transform along the iteration axis,1 (3.6) is changed to

E(w)wk+1 −A−1BkE(w)wk − · · · − A−1Bk−nE(w)wk−n = 0
⇔ E(w)

(
wk+1 −A−1Bkwk − · · · − A−1Bk−nwk−n

)
= 0. (3.7)

Hence, using the notation

P (w) := wk+1I −A−1Bkwk − · · · − A−1Bk−nwk−n, (3.8)

we can say the HOILC system is AS if and only if P (w) is stable. The stability
of the polynomial matrix P (w) is defined later in Definition C.1.

Remark 3.1. Actually, it is a well-known fact [13] that the stability of P (w)
can be checked by the companion matrix form given by

CP (w) :=

⎡⎢⎢⎢⎢⎣
A−1Bk A−1Bk−1 A−1Bk−2 . . . A−1Bk−n

I 0 0 . . . 0
0 I 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎦ .

If the spectral radius of CP (w) is less than 1, then P (w) is considered stable.

1 In [301], the w-domain was defined by w−1uk(t) = uk−1(t), where k is the iteration
trial number and t is the discrete-time point. This will be described in more detail
later in the monograph.
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3.2 Monotonic Convergence of Higher-order SVILC

In the literature, analytical monotonic convergence conditions for higher-order
SVILC have not been reported. In this section, we derive such conditions. As
a conclusion, it will be shown that it is difficult to guarantee the MC of
higher-order ILC systems.

Let us first briefly consider first-order ILC (FOILC). For this case, referring
back to (3.1), we will assume that Γk+1 = 0.2 Then, the ILC process is called
monotonically-convergent (MC) if ‖Ek+1‖ < ‖Ek‖, and the ILC process is
called semi monotonically convergent (SMC) if ‖Ek+1‖ ≤ ‖Ek‖ (for the formal
definition, see Definition 4.1 in Chapter 4). From (3.4), the error evolution rule
is expressed in the FOILC case, with Γk+1 = 0, as

Ek+1 = (I − HΓk)Ek. (3.9)

Then, from the following relationship:

‖Ek+1‖ = ‖(I − HΓk)Ek‖ ≤ ‖I − HΓk‖‖Ek‖, (3.10)

the MC condition of FOILC is derived as ‖I − HΓk‖ < 1 and the SMC
condition is derived as ‖I − HΓk‖ ≤ 1.

Next, for HOILC, the following definition is suggested:

Definition 3.2. In HOILC, the ILC process is monotonically-convergent (MC)
in an appropriate norm topology if

‖Ek+1‖ < max{‖Ei‖, i = k, . . . , k − n}, (3.11)

and the ILC process is semi monotonically convergent if

‖Ek+1‖ ≤ max{‖Ei‖, i = k, . . . , k − n}. (3.12)

We may now state the following result:

Theorem 3.3. In HOILC, if A is nonsingular and σ(A) >
∑i=k

i=k−n ‖Bi‖2,
then the ILC process is MC in the l2-norm topology.

Proof. From (3.5), using the matrix 2-norm, we have

‖Ek+1‖ = ‖A−1BkEk + · · · + A−1Bk−nEk−n‖
≤ ‖A−1‖‖Bk‖‖Ek‖ + · · · + ‖A−1‖‖Bk−n‖‖Ek−n‖
= ‖A−1‖(‖Bk‖‖Ek‖ + · · · + ‖Bk−n‖‖Ek−n‖)
≤ ‖A−1‖(‖Bk‖ + · · · + ‖Bk−n‖)max{‖Ei‖}

=
1

σ(A)
(‖Bk‖ + · · · + ‖Bk−n‖)max{‖Ei‖}, (3.13)

2 Note that this means there is no current-cycle (or current-iteration) feedback
(CITE).
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where ‖ · ‖ is the matrix 2-norm. Therefore, if σ(A) >
∑i=k

i=k−n ‖Bi‖, then
‖Ek+1‖ < max{‖Ei‖, i = k, . . . , k − n}.

The previous theorem is quite general. If we let Γk+1 = 0 (i.e., there is no
current-cycle feedback), then we can give a more specific result as follows:

Theorem 3.4. If H is nonsingular and Γk+1 = 0, then a sufficient condition
for monotonic convergence is

∑i=k
i=k−n ‖HΛiH

−1 − HΓi‖ < 1.

Proof. From (3.4),

H−1Ek+1 = (ΛkH−1 − Γk)Ek + · · · + (Λk−nH−1 − Γk−n)Ek−n

⇔ Ek+1 = (HΛkH−1 − HΓk)Ek + · · · + (HΛk−nH−1 − HΓk−n)Ek−n.

(3.14)

Let us take a matrix norm on both sides to get:

‖Ek+1‖ = ‖(HΛkH−1 − HΓk)Ek + · · · + (HΛk−nH−1 − HΓk−n)Ek−n‖
≤ ‖HΛkH−1 − HΓk‖‖Ek‖ + · · · + ‖HΛk−nH−1 − HΓk−n‖‖Ek−n‖

≤
i=k∑

i=k−n

‖HΛiH
−1 − HΓi‖max{‖Ei‖}. (3.15)

Therefore, if
∑i=k

i=k−n ‖HΛiH
−1 − HΓi‖ < 1, then ‖Ek+1‖ < max{‖Ei‖, i =

k − n, . . . , k}. This completes the proof.

Unfortunately, the condition of Theorem 3.4 is quite conservative for check-
ing the monotonic convergence of the HOILC system, because it is difficult
to achieve the condition

∑i=k
i=k−n ‖HΛiH

−1 −HΓi‖ < 1. The argument is
as follows. If, for example, Λi, i = k − n, . . . , k are lower-triangular Toeplitz
matrices, then from the following relationship:

i=k∑
i=k−n

‖Λi − HΓi‖ ≥
∥∥∥∥∥

i=k∑
i=k−n

(Λi − HΓi)

∥∥∥∥∥ (3.16)

and using
∑i=k

i=k−n Λi = I, we have∥∥∥∥∥
i=k∑

i=k−n

(Λi − HΓi)

∥∥∥∥∥ =

∥∥∥∥∥I −
i=k∑

i=k−n

HΓi

∥∥∥∥∥
=

∥∥∥∥∥I − H

(
i=k∑

i=k−n

Γi

)∥∥∥∥∥ . (3.17)

Therefore, if ‖I −HΓk‖ > 1 in FOILC and Γi, i < k, have the same structure
as Γk, then

∑i=k
i=k−n ‖Λi − HΓi‖ is always bigger than 1 in the HOILC case,

because
∥∥∥I − H

(∑i=k
i=k−n Γi

)∥∥∥ > 1.
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Thus, to reduce the conservatism, let us define another monotonic convergence
concept and condition.

Definition 3.5. If max{‖Ei‖, i = k + 1, . . . , k − n + 1} < max{‖Ei‖, i = k,
. . . , k − n}, then the ILC process is called block-wise monotonically-convergent
(BMC). Similarly, if

max {‖Ei‖, i = k + 1, . . . , k − n + 1} ≤ max {‖Ei‖, i = k, . . . , k − n} , (3.18)

then the ILC process is called block-wise semi-monotonically-convergent
(BSMC).

To proceed we also need to introduce the following definition:

Definition 3.6. The l1-norm of the pth row vector of the matrix A is denoted
‖Ap‖. For example, ‖A1‖ represents the l1-norm of the first row vector of the
matrix A.

We may now state the following result:

Theorem 3.7. If Γk+1 = 0 and Λi are lower-triangular Toeplitz matrices,
then the ILC process is BSMC in the l1-norm topology if

max

{
i=k∑

i=k−n

‖(Λi − HΓi)p‖1, p = 1, . . . , N

}
< 1,

where N is the size of the square Markov matrix H.

Proof. To prove Theorem 3.7, we use the matrix companion form associated
with

Ek+1 = CkEk + · · · + Ck−nEk−n, (3.19)

where Ci := (Λi − HΓi). The companion form of (3.19) is expressed as⎡⎢⎢⎢⎢⎣
Ek+1

Ek

Ek−1

...
Ek−n+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
Ck Ck−1 Ck−2 . . . Ck−n

I 0 0 . . . 0
0 I 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Ek

Ek−1

Ek−2

...
Ek−n

⎤⎥⎥⎥⎥⎦ . (3.20)

For convenience, we denote the above equality as Ek+1 = H Ek, where H is
the companion block matrix. Taking the 1-norm of the error vectors, we have

‖Ek+1‖1 =
i=k+1∑

i=k−n+1

‖Ei‖1 (3.21)

and
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‖Ek‖1 =
i=k∑

i=k−n

‖Ei‖1. (3.22)

Also, if max
{∑i=k

i=k−n ‖(Ci)p‖1, p = 1, . . . , N
}
≥ 1, then

‖H‖1 = max

{
i=k∑
i=1

‖(Ci)p‖1, p = 1, . . . , N

}
, (3.23)

else if max
{∑i=k

i=k−n ‖(Ci)p‖1, p = 1, . . . , N
}

< 1, we then have ‖H‖1 = 1.

Therefore, if max
{∑i=k

i=k−n ‖(Ci)p‖1, p = 1, . . . , N
}

< 1, then ‖Ek+1‖1 ≤
‖Ek‖1.

Remark 3.8. Two different monotonic convergence conditions have been de-
fined depending on Γk+1. Theorem 3.3 covers the case when Γk+1 �= 0, and
Theorem 3.4 and Theorem 3.7 cover the cases when Γk+1 = 0.

Remark 3.9. In Theorem 3.3, the MC condition is defined in the l2-norm topol-
ogy, while in Theorem 3.4, the MC is defined in the general lp-norm topology.
In Theorem 3.7, the MC condition is defined in the l1-norm topology. Specif-
ically, in Theorem 3.7, the BSMC condition ‖Ek+1‖1 ≤ ‖Ek‖1 is equivalent to
‖Ek+1‖1 ≤ ‖E1‖1 (and, by the properties of matrix 1-norms and ∞-norms, the
MC condition in Theorem 3.7 can also be extended to the l∞-norm topology).

In Theorem 3.4 and Theorem 3.7, we defined two different MC conditions
for HOILC when Γk+1 = 0. Theorem 3.7 is much less conservative than The-
orem 3.4. However, it is still difficult to guarantee the MC of HOILC systems.
The following discussion shows our concern.

Let us assume that Γk+1 = 0, Λi are lower Toeplitz matrices, and Γi, i =
k−n, . . . , k−1 have the same structure as Γk. By Theorem 3.7, the BSMC con-
dition for MC of HOILC is given as max

{∑i=k
i=k−n ‖(Ci)p‖1, p = 1, . . . , N

}
<

1. Let us check each row vector of Ci. In general, we consider the hth row
vector as

i=k∑
i=k−n

‖(Ci)h‖1 = ‖(Ck)h‖1 + · · · + ‖(Ck−n)h‖1, (3.24)

where the subscript h means the hth row vector and the subscript 1 means
the l1-norm. Let us have the following relationship:

‖(Ck)h‖1 + · · · + ‖(Ck−n)h‖1 ≥ ‖(Λk + · · · + Λk−n)h

− (HΓk + · · · + HΓk−n)h‖1. (3.25)

From the condition Λk + · · · + Λk−n = I and using HΓk + · · · + HΓk−n =
H(Γk + · · ·+Γk−n), we change ‖(Λk + · · ·+Λk−n)h− (HΓk + · · ·+HΓk−n)h‖1
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as ‖Ih − (H(Γk + · · · + Γk−n))h ‖1. Here, we replace Γk + · · · + Γk−n by Γ ,
because Γi have the same structure, so Γ can represent Γk + · · ·+ Γk−n with
the same structure. Then, ‖Ih− (H(Γk + · · · + Γk−n))h ‖ is the l1-norm of the
hth row vector of I − HΓ . Therefore, since

‖I − HΓ‖1 = max
h=1,···,N

{‖Ih − (H(Γk + · · · + Γk−n))h ‖1} , (3.26)

if ‖I − HΓ‖1 > 1, then
∑i=k

i=k−n ‖(Ci)h‖1 is always bigger than 1. Thus, if
‖I −HΓ‖1 > 1, then the MC in the HOILC is not guaranteed in the l1-norm
topology.

Remark 3.10. If Γk+1 = 0 and MC is not achieved in FOILC, it is difficult
to guarantee MC in the HOILC, because, generally, Γi, i < k, have the same
structure as Γk, and Λi are designed as Toeplitz matrices. Also note that the
maximum singular value of the companion matrix H is bigger than 1 (i.e.,
σ(H) ≥ 1), because σ(A) is always bigger than max{|aij |}.

3.3 Chapter Summary

In this chapter, we provided a brief technical overview of the super-vector
approach to ILC. AS and MC conditions were derived for HOILC systems. We
noted that in general it is very difficult to find an analytical, monotonically-
convergent condition for HOILC systems. For this reason, in the following
chapters of this monograph, we mainly focus on FOILC systems if there is no
special indication otherwise.
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Robust Interval Iterative Learning Control:
Analysis

This chapter considers the stability analysis of ILC systems when the plant
Markov parameters are subject to interval uncertainties. Using the super-
vector approach to ILC, vertex Markov matrices are employed to develop
asymptotic stability (AS) and monotonic convergence (MC) conditions for the
ILC process. It is shown that Kharitonov segments between vertex matrices
are not required for checking the stability of interval SVILC systems, but
instead, checking just the vertex Markov matrices is enough.

4.1 Interval Iterative Learning Control: Definitions

The advantage of the super-vector notation is that the 2-dimensional prob-
lem of ILC is changed to a 1-dimensional multi-input, multi-output (MIMO)
problem [298, 308, 300]. Using the 1-dimensional input–output relationship
Yk = HUk and considering the discrete-time ILC update law Uk+1 =
Uk +ΓEk, the resulting “closed-loop system” in the iteration domain is given
by Ek+1 = (I −HΓ )Ek where Ek = Yd − Yk. Thus, the problem becomes the
design of the matrix Γ , given the system Markov matrix H , so that the error
signal Ek converges (AS) or converges monotonically (MC).

In the ILC literature, analogous to the classical control literature, robust
design of the learning gain matrix has been considered using standard tech-
niques such as H∞-ILC [360, 102], LQ-ILC [136], optimal-ILC [9, 348], etc.,
along the time-domain axis. However, though the classical control literature
has also considered the problem of robust control for plants subject to para-
metric interval uncertainty, to date there has been little research on the topic
of interval uncertainty in the ILC literature (that is, ILC when the system
matrix H is an interval matrix). In this section, the stability problem for
first-order ILC (FOILC) systems will be studied when the plant Markov pa-
rameters are subject to parametric interval uncertainties.

In the robust control literature, there are numerous results related to Hur-
witz stability for interval matrices [220, 362] and Schur stability [39, 388].
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Kharitonov’s theorem has also been very popular for interval matrix stability
analysis, e.g., [42, 243]. However, all these works require a significant amount
of calculation and cannot be directly applied for checking the MC of an in-
terval ILC (IILC) system. Thus, in this section, we give analytical solutions
for checking the convergence properties of the IILC system. Similar to the
Kharitonov vertex polynomial method, it will be shown that the extreme
values of the interval Markov parameters provide a monotonic convergence
condition for the interval ILC system.

Let the ILC learning gain matrix Γ be given as

Γ = [γij ], i, j = 1, . . . , n, (4.1)

where the gains γij are the elements of Γ . The gains are called Arimoto-like if
γij = 0 for i �= j and γij = γ for i = j. The gains are called causal ILC gains for
i > j, and the gains are called noncausal ILC gains for i < j. If the gain matrix
does not exhibit Toeplitz-like symmetry it is called a time-varying learning
algorithm. The learning gain matrix Γ could be fully populated or partially
populated. If a limited number of causal and noncausal “bands”1 are used,
it is called a “band-limited” gain matrix. In ILC, as described in Chapter 2,
there are two stability concepts defined on the iteration domain: AS and MC.
Note, however, these AS and MC concepts are defined iteration-wise and
should be carefully distinguished from the AS and MC of traditional control
schemes that are defined trajectory-wise in the time domain. To emphasize
the difference from the traditional definitions, the following formal definitions
are provided:

Definition 4.1. Let us assume that the desired output trajectory yd(t), t =
1, . . . , N , is given and the controlled system output trajectory yk(t), t =
1, . . . , N is measured, where k is iteration trial number. From these signals
we form the super-vectors Yd and Yk, respectively. Then, the ILC system is:

• Stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

‖Yd − Y1‖ < δ ⇒ ‖Yd − Yk‖ < ε, ∀ k > k for some k.

• Asymptotically stable (AS) if it is stable and ‖Yd − Yk‖ → 0 as k → ∞,
for all ‖Yd − Y1‖ < c, where c is a positive constant.

• Monotonically-convergent (MC) if it is stable and ‖Yd−Yk+1‖ < ‖Yd−Yk‖,
for all k.

• Semi monotonically convergent if it is stable and ‖Yd−Yk+1‖ ≤ ‖Yd−Yk‖,
for all k.

• Monotonically asymptotically stable if it is asymptotically stable and ‖Yd−
Yk+1‖ < ‖Yd − Yk‖, for all k.

1 A “band” means a triangular segment of the matrix that includes the main diag-
onal.
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In the definitions given above, if only stability or monotonic convergence is
guaranteed, the final error of the ILC process will not be guaranteed to be
zero, which leads us to define the notion of the baseline error of the ILC
process as follows:

Definition 4.2. For ILC systems that are stable or MC, but not AS, let q =
q(c) > 0, where c > 0 is the smallest possible constant such that

‖Yd − Yk‖ < c, ∀ k > q.

Then the constant c is called the baseline error of the ILC process.

Throughout the monograph, we focus on the design of monotonically-
convergent (MC) ILC systems. However, note that in interval ILC (IILC)
systems, which will be studied in this chapter, Chapter 5, and Chapter 6, we
also guarantee zero steady-state error as k → ∞ except the case of using the
so-called Q-filter as described in Section 6.4. Therefore, in IILC, we guarantee
monotonically asymptotically stable ILC systems in most cases. In Chapter 8,
we study MC conditions for stochastic ILC systems in a stochastic sense (see
Section 8.1.2). However, we also note that in Chapter 8, MC conditions will be
equivalent to monotonically asymptotically stable ILC conditions if stochastic
disturbances and noise are not counted. Thus, in this monograph, even though
we simply say MC ILC, the system will be in fact monotonically asymptot-
ically stable ILC. Thus, unless otherwise noted, throughout the monograph,
MC means monotonically asymptotically stable.

Now, based on Section 3.1 and Section 3.2, for the FOILC system the
following equivalent conditions for AS and MC can be given:

Definition 4.3. Assuming a fully populated learning gain matrix:

• A necessary and sufficient condition for AS is ρ(I − HΓ ) < 1, where ρ(·)
is the spectral radius of the matrix (·).

• A sufficient condition for MC is ‖I − HΓ‖ < 1. In particular, the MC
condition in the 1-norm topology is ‖I−HΓ‖1 < 1, in the 2-norm topology
is ‖I − HΓ‖2 < 1, and in the ∞-norm topology is ‖I − HΓ‖∞ < 1.

Remark 4.4. Clearly, ‖I − HΓ‖ < 1 is only a sufficient condition, because as
a counterexample, if Ek is in the null space of I − HΓ , then Ek+i = 0 for
all i ≥ 1. Also, it is always possible to make I − HΓ such that I − HΓ has
a null space, because I − HΓ can be a singular matrix if we select γ1 to be
γ1 = 1/h1.

We comment that if time-invariant Arimoto-like gains γi = γ are used for
designing Γ , a simplified AS condition can be given as |1−γh1| < 1 where h1 is
the first nonzero Markov parameter. This is the main reason why ILC systems
do not require information about the system matrix A, because h1 = CB does
not depend on A.
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Next, to clarify the concepts we will use for the robust stability analysis,
the following definitions are introduced:

Definition 4.5. Interval scalars, interval matrices, upper-bound, lower-bound,
and vertex matrices, and interval Markov matrices are defined as follows:

• A scalar a is called an interval parameter if it lies between two extreme
boundaries according to a ∈ [a, a], where a is the minimum value of a and
a is the maximum value of a. To represent the fuzzy characteristics of an
interval parameter, the superscript I is used to denote an interval scalar
as follows: a ∈ aI := [a, a].

• An interval matrix (AI) is defined as a set of matrices whose entries are
interval scalars:

AI =
{
A : A =

[
aij ∈ [aij , aij ]

]
, i, j = 1, · · · , n

}
, (4.2)

where aij is the maximum extreme value of the ith row and jth column
element of the interval matrix and aij is the minimum extreme value of
the ith row and jth column element of the interval plant.

• The upper bound matrix (A) is a matrix whose elements are aij . The lower
bound matrix (A) is a matrix whose elements are aij . The vertex matrices
(Av) are defined by

Av =
{
A : A =

[
aij ∈ {aij, aij}

]
, i, j = 1, · · · , n

}
. (4.3)

• If the Markov parameters of a system are interval scalars hi ∈ [hi, hi],
then we say the system is an interval plant and its interval Markov matrix
is denoted as HI , with associated upper-bound, lower-bound, and vertex
Markov matrices H, H and Hv, respectively, defined from hi ∈ {hi, hi}.

To continue we must also define arithmetic for interval parameters. The
following are standard definitions from the literature (refer to [314, 8, 215]).
For nonempty closed intervals,

• Addition of two real interval scalars xI and yI is defined and calculated
as xI ⊕ yI =

[
x + y, x + y

]
.

• Substraction is defined and calculated as xI � yI =
[
x − y, x − y

]
.

• Multiplication is defined and calculated as

xI ⊗ yI =
[
min

{
xy, xy, xy, xy

}
, max

{
xy, xy, xy, xy

}]
. (4.4)

• Division should be carefully defined, based on [215], by first defining the
inverse operator as
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1/xI = ∅ iff xI = [0, 0]
= [1/x, 1/x] iff 0 /∈ xI

= [1/x,∞) iff x = 0 and x > 0
= (−∞, 1/x] iff x < 0 and x = 0
= (−∞,∞) iff x < 0 and x > 0.

Based on the definition of the inverse operator, division of two interval
scalars is then simply defined and calculated as xI � yI = xI ⊗ 1

yI .

Using the interval arithmetic given above for scalar intervals, multiplication
and summation between interval matrices can be defined such as AI = BI⊕CI

and AI = BI ⊗ CI in the usual way.

4.2 Robust Stability of Interval Iterative Learning
Control

The interval ILC (IILC) problem is concerned with the analysis and design
of the ILC system when the system to be controlled is subject to structured
uncertainties in its Markov parameters. There are two classes of problems.
First, given an interval Markov matrix HI and a gain matrix Γ , what are the
stability and convergence properties of the closed-loop system? Second, given
an interval Markov matrix HI , design Γ so as to achieve desired stability and
convergence properties of the closed-loop system. The second problem will
be discussed in Chapters 5 and 6. In the following sections of this chapter,
the first problem is considered. We first consider conditions for AS and MC.
We then discuss a singular value approach to the stability analysis problem.
Next the robust stability of higher-order ILC (HOILC) is addressed. Finally,
we conclude with experimental results illustrating the theoretical concepts
developed in the chapter.

4.2.1 Asymptotical Stability of the Interval FOILC

To develop our test for AS of the IILC, the following two lemmas are adopted
from the literature.

Lemma 4.6. For a given interval matrix plant AI , the spectral radius of A ∈
AI is bounded by the maximum value of the spectral radii of the vertex matrices
A ∈ Av.

Proof. See [202, 177].

Let us make the following substitutions:

s1
ij := aij if i = j; s1

ij := max{|aij |, |aij |} if i �= j;
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s2
ij := aij if i = j; s2

ij := min{−|aij |,−|aij |} if i �= j,

where s1
ij is the ith row and jth column element of the matrix S1; s2

ij is an
element of the matrix S2, and aI

ij = [aij , aij ] is an element of the general
interval matrix AI .

Lemma 4.7. Let an interval matrix be given as A ≤ A ≤ A, A ∈ AI . If
β = max{ρ(S1), ρ(S2)} < 1, where ρ is the spectral radius, then the interval
matrix AI is Schur stable.

Proof. See Theorem 3.2 of [108].

Let us consider the case of a general learning gain matrix Γ that consists
of causal and noncausal gains and let us suppose that in I −HΓ the Markov
matrix is assumed to be uncertain according to H ∈ HI . Thus, the lower
boundary and the upper boundary of I−HΓ, H ∈ HI should be recalculated.
For convenience, letting T = HΓ , and using interval arithmetic, we have
T I = HI ⊗ Γ . Further defining P := I − T and P I := I − T I , the lower
and upper boundaries of P I , i.e., P and P , can be calculated easily using
the interval computation software Intlab R© [179]. Then, using the lower and
upper boundaries of P I , it can be shown from Lemma 4.6 that the maximum
spectral radius of the interval matrix P I = I − HI ⊗ Γ occurs at one of the
vertex matrices, P v, of P I . However, it is quite messy to check all the vertex
matrices. To avoid a large number of computations, Lemma 4.7 can be used,
because it requires checking only two matrices, but with a conservative result.
Hence, there is a trade-off between using Lemma 4.6 and using Lemma 4.7.
Thus, we are led to develop the following theorem, which provides a necessary
and sufficient condition for robust AS, with a greatly reduced computational
load.

Theorem 4.8. Let the first Markov parameter h1 be an interval parameter
given by h1 ∈ hI

1 =
[
h1, h1

]
and let Arimoto-like/causal ILC gains be used in

Γ . Then the first-order IILC system, Ek+1 = (I −HΓ )Ek, H ∈ HI , is AS if
and only if

max
{∣∣1 − γiih1

∣∣ , ∣∣1 − γiih1

∣∣} < 1, i = 1, . . . , n. (4.5)

Proof. Using the fact that HI is a lower-triangular Toeplitz matrix and Γ is a
lower-triangular matrix, we know that I−HΓ is a lower-triangular matrix for
all H ∈ HI . Thus, the diagonal terms of I − HΓ , given as {1 − γiih1}, h1 ∈
hI

1, i = 1, · · · , n, are the eigenvalues of I − HΓ , H ∈ HI . When i = k, the
maximum value of |1 − γkkh1| , h1 ∈ hI

1 occurs at one of the h1 ∈ hv
1 =

{h1, h1}, because |1 − γkkh1| is the absolute value of 1 − γkkh1, h1 ∈ hI
1.

Therefore, the maximum of {
∣∣1 − γiih1

∣∣ , ∣∣1 − γiih1

∣∣} occurs at one of the hv
1 ={

h1, h1

}
. Thus, if and only if max{

∣∣1 − γiih1

∣∣ , ∣∣1 − γiih1

∣∣} < 1 is satisfied, the
system is AS from Definition 4.3.
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4.2.2 Monotonic Convergence

Now we consider the MC of the IILC system. To prove our main theorems,
the following lemmas are developed first.

Lemma 4.9. Let x ∈ xI = [x, x] be an interval parameter. Then for

y = |γ11x + γ12| + |γ21x + γ22|, ∀γ11, γ12, γ21, γ22 ∈ R, (4.6)

the max{y} occurs, for all x ∈ xI , at a vertex point of xI (i.e., x ∈ xv =
{x, x}).
Proof. Figure 4.1 shows line drawings of |γ11x + γ12| and |γ21x + γ22|. Let us
check the three different regions: R1 ∈ [x, x0], R2 ∈ [x0, x0], and R3 ∈ [x0, x].
In region R1, max{y} occurs at x, because y1 + y2 > y3 + y4. Also, in region
R3, max{y} occurs at x, because y8 + y9 > y6 + y7. Now consider R2. In
region R2, y is the just summation of two linear straight lines (i.e, the line
connecting from y6 to y4 and the line connecting from y3 to y7) like y =
γ11x+γ12 +γ21x+γ22 = (γ11 +γ21)x+γ12 +γ22, which is represented by line
l1. Thus, in region R2, the value of y linearly increases or linearly decreases.
Hence, max{y} in R2 occurs at x ∈ {x0, x0}. Finally, from Figure 4.1, since
it is true that max{y1 + y2, y8 + y9} > max{y3 + y4, y6 + y7}, the proof is
completed.

1R 2R 3R

0xx
0x x

11 12x

21 22x

1y

2y

3y

4y
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6y

7y

8y

9y

1l

y

x

Fig. 4.1. Supplementary drawing for the proof of Lemma 4.9

Lemma 4.10. Let x ∈ xI = [x, x] be an interval parameter. Then for

y = |γ11x + γ12| + |γ21x + γ22| +
· · · + |γn1x + γn2|, ∀γi1, γi2 ∈ R, i = 1, . . . , n, (4.7)

the max{y} occurs, for all x ∈ xI , at one of vertex points of xI .
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Fig. 4.2. Supplementary drawing for the proof of Lemma 4.10

Proof. From Figure 4.1, consider R2 again. In region R2, the value of y (sum-
mation of two lines) is l1. Now consider Figure 4.2, where y = |γ11x + γ12| +
|γ21x + γ22| is represented by lines l1, l2, and l3. To prove Lemma 4.10, draw
a supplementary line (the dashed line in the figure) from point y10 to point
y6. Then, the line connecting y10 and y6 and the line connecting y6 and y11

can be represented by a line that we can write as y =
∣∣γ1

1x + γ1
2

∣∣+�y1, with
γ1
1 , γ1

2 ∈ R, and �y1 ∈ R+. Note that this approach does not change the
result, because the triangular area included by points y3, y6, and y10 does not
add any value to vertex point values (i.e., y10 and y11) whereas if the maxi-
mum value still occurs at a vertex point after the triangular area is added, it
is certain that the maximum value always occurs at a vertex point. Now, let
us check the following:

y = |γ11x + γ12| + |γ21x + γ22| + |γ31x + γ32|, (4.8)

which is rewritten as y =
∣∣γ1

1x + γ1
2

∣∣+ �y1 + |γ31x + γ32|. Here, ignore �y1,
because �y1 is a constant value at all x (i.e., for all x ∈ [x, x]). Then, from
Lemma 4.9, the maximum value of y occurs at a vertex of x (i.e., x ∈ {x, x}).

For the general case, we proceed by induction. Let us assume that, for
n = m, there exist γm−1

1 , γm−1
2 , and �ym−1 such that y = |γ11x + γ12| +

|γ21x+ γ22|+ · · ·+ |γm1x+ γm2| =
∣∣γm−1

1 x + γm−1
2

∣∣+�ym−1 + |γm1x+ γm2|.
Let us check the case n = m + 1. We have

y = |γ11x + γ12| + |γ21x + γ22| +
· · · + |γm1x + γm2| + |γ(m+1)1x + γ(m+1)2|

=
∣∣γm−1

1 x + γm−1
2

∣∣+ �ym−1 + |γm1x + γm2| + |γ(m+1)1x + γ(m+1)2|.
(4.9)
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Then, ignoring �ym−1 and using the same procedure as followed for (4.8), for
n = m + 1, we know that the maximum value of y occurs at a vertex of x.
This completes the proof.

The following lemma considers multiple interval parameters.

Lemma 4.11. Let xj ∈
[
xj , xj

]
, j = 1, . . . , m, be interval parameters (for

convenience we omit the superscript I and v). Then for

y =
∣∣(γ1

11x
1 + γ1

12) + · · · + (γm
11x

m + γm
12)
∣∣+

· · · +
∣∣(γ1

n1x
1 + γ1

n2) + · · · + (γm
n1x

m + γm
n2)
∣∣ ,

∀γj
i1, γ

j
i2 ∈ R, i = 1, . . . , n, j = 1, . . . , m, (4.10)

the max{y} occurs, for all xj ∈
[
xj , xj

]
, at the vertices of the m scalars xj .

Proof. Lemma 4.10 shows that, in the following equation:

y = |γ11x + γ12| + · · · + |γn1x + γn2|, (4.11)

γi2, i = 1, . . . , n, can be any real values. Thus, in (4.10), if the following
substitution is used:

γ1
i2 + · · · + (γm

i1xm + γm
i2 ) := γi2, i = 1, . . . , n,

then (4.10) has the same form as (4.7). Therefore, max{y} in (4.10) occurs
at a vertex point of x1 by Lemma 4.10, because all elements of {xj}, j =
1, . . . , m, are independent of one another. Next, let us place γj

i1x
j + γj

i2, j ∈
{1, . . . , m}, i = 1, . . . , n in the front of each absolute value term according to

y =

∣∣∣∣∣∣(γj
11x

j + γj
12) +

m∑
k=1,k �=j

(γk
11x

k + γk
12)

∣∣∣∣∣∣+
· · · +

∣∣∣∣∣∣(γj
n1x

j + γj
n2) +

m∑
k=1,k �=j

(γk
n1x

k + γk
n2)

∣∣∣∣∣∣ . (4.12)

By writing γj
l2 +

∑m
k=1,k �=j(γ

k
l1x

k + γk
l2) := ξl, where l = 1, . . . , n, the right-

hand side of above equation is changed to

y =
∣∣∣γj

11x
j + ξ1

∣∣∣+ · · · +
∣∣∣γj

n1x
j + ξn

∣∣∣ , (4.13)

where ξi, i = 1, . . . , n, could be any real values. This is the same form as
(4.7), so the maximum value of y of (4.13) occurs at a vertex point of xj

(i.e.,xj ∈ {xj , xj}) by Lemma 4.10. Here, note that the maximum value of y,
which occurs at a vertex point of xj , is just with respect to xj . Let us denote
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this maximum value as y∗
j . Now, it is required to show that the maximum

value of y with respect to all intervals (i.e.,{xj}, j = 1, . . . , m) occurs at one
of the vertex vectors given by

Xv =
[
{x1, x1}, {x2, x2}, . . . , {xm, xm}

]
. (4.14)

Denote this maximum value as y∗. Note that y∗ �= y∗
j . Thus, it is necessary to

prove that, when the maximum value of y occurs at a vertex of xj with fixed
j, other interval parameters (i.e., xk, k �= j,) should be at vertices as well (in
this case, y∗ = y∗

j ). Even though the maximum value of y occurs at a vertex
of xj , the other intervals xk, k �= j, might not be at vertex points (in this case,
y∗ �= y∗

j ). Next, let us assume that, when the maximum value of y occurs at
a vertex of xj , the other interval parameter xk, k �= j, is not at a vertex point
(i.e., xk is an element of open set xk ∈ (xk, xk)). Let us change (4.13) using
ξi := γk

i1x
k + ξ′i to be

y =
∣∣∣γk

11x
k + γj

11x
j + ξ′1

∣∣∣+ ∣∣∣γk
21x

k + γj
21x

j + ξ′2
∣∣∣+

· · · +
∣∣∣γk

n1x
k + γj

n1x
j + ξ′n

∣∣∣ , (4.15)

where ξ′i, i = 1, . . . , n, could be any real values. Because (4.15) and (4.13)
are the same equations, the maximum value of y still occurs at a vertex of
xj . Thus, max{y} = y∗

j , but max{y} �= y∗
k and max{y} �= y∗, where y∗

k is
the maximum value with respect to xk. However, by Lemma 4.10, y of (4.15)
can be maximized more with respect to xk. In other words, even though the
current maximum value of (4.15) is y∗

j , when xk is at one of vertex points, y∗
j

can be increased more. Just by comparing the following two values:

y =

⎧⎨⎩y∗
j , if xk ∈

(
xk, xk

)
, xj =

{
xj , xj

}
y∗

jk , if xk ∈
{

xk, xk
}

, xj =
{
xj , xj

} (4.16)

it is found that max{y∗
jk} ≥ max{y∗

j } by Lemma 4.10. Then, the maximum

value of y of (4.15) with respect to k and j occurs at one of
{{

xk, xk
}

,
{
xj , xj

}}
.

Finally, since k ∈ {1, · · · , m}, the following is true by induction:

max{y} = y∗
123···m, when xi =

{
xi, xi

}
, i = 1, . . . , m, (4.17)

where y∗
123···m is the maximum value with respect to all interval parameters.

Then, from the relationship y∗=y∗
123···m, the maximum value of y occurs at

one of the vertex vectors:

Xv =
[
{x1, x1}, {x2, x2}, . . . , {xm, xm}

]
.

Thus, the proof is completed.
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Next, using these lemmas, the following theorems can be proven.

Theorem 4.12. Given interval Markov parameters hi ∈ hI
i = [hi, hi], the

IILC system is MC in the l∞-norm topology if

max {‖I − HΓ‖∞, ∀H ∈ Hv} < 1, (4.18)

where Hv are vertex Markov matrices of the interval plant.

Proof. Based on Definition 4.3, the theorem can be proved by showing that
max{‖I −HΓ‖∞, ∀H ∈ HI} = max{‖I −HΓ‖∞, ∀H ∈ Hv}. Let us expand
I − HΓ as

In×n −

⎡⎢⎢⎣
h1 0 . . . 0
h2 h1 . . . 0
...

...
. . .

...
hn hn−1 . . . h1

⎤⎥⎥⎦
⎡⎢⎢⎣

γ11 γ12 . . . γ1n

γ21 γ22 . . . γ2n
...

...
. . .

...
γn1 γn2 . . . γnn

⎤⎥⎥⎦ .

The row vectors of I − HΓ are expressed as

(I − HΓ )1 = [1 − h1γ11,−h1γ12, . . . ,−h1γ1n]
(I − HΓ )2 = [−(h2γ11 + h1γ21), 1 − (h2γ12 + h1γ22), . . . ,−(h2γ1n + h1γ2n)]

...
(I − HΓ )n = [−(hnγ11 + · · · + h1γn1),−(hnγ12 + · · · + h1γn2),

. . . , 1 − (hnγ1n + · · · + h1γnn)] , (4.19)

where (I − HΓ )i is the ith row vector. Then, we know that ‖I − HΓ‖∞ is a
function of hi and γij , because the following is true:

‖I − HΓ‖∞ = max {‖(I − HΓ )1‖1, ‖(I − HΓ )2‖1, . . . , ‖(I − HΓ )n‖1} ,

(4.20)

where ‖(I − HΓ )i‖1 is the l1-norm of each row vector. Assuming fixed ILC
gains γij , ‖I − HΓ‖∞ is expressed in the general form

‖I − HΓ‖∞ = | − (hiγ11 + · · · + h1γi1)| +
· · · + |1 − (hiγ1i + · · · + h1γii)| +
· · · + | − (hiγ1n + · · · + h1γin)|, (4.21)

where i means the ith row. Thus, we know that (4.21) is the same form as (4.10)
of Lemma 4.11. Note, in Lemma 4.11, xj are intervals with ∀γj

i1, γ
j
i2 ∈ R, i =

1, . . . , n, j = 1, . . . , m, and in (4.21), hi are intervals with ∀γij ∈ R, i, j =
1, . . . , n. Therefore, from Lemma 4.11, we conclude that the maximum of
‖ I−HΓ‖∞, ∀H ∈ HI , occurs at one of vertex Markov matrices of the plant.
Finally, from this result, the following relationship is true:

max{‖I − HIΓ‖∞, ∀H ∈ HI} = max{‖I − HvΓ‖∞, ∀H ∈ Hv}.

This completes the proof.
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Theorem 4.13. Given interval Markov parameters hI
i ∈ [hi, hi], the following

equality is true:

max{‖I − HΓ‖1, ∀H ∈ HI} = max{‖I − HΓ‖1, ∀H ∈ Hv}, (4.22)

where ‖ · ‖1 is the matrix 1-norm, defined as ‖A‖1 = maxj=1,···,n
∑n

i=1 |aij |.

Proof. The proof can be completed using the same procedure as in the proof
of Theorem 4.12.

Remark 4.14. The strong point of Theorem 4.12 and Theorem 4.13 is that they
reduce the computational effort significantly. Using the notation P I = I−T I ,
it is required to check 2n2

vertex matrices of P I , while Theorem 4.12 and
Theorem 4.13 require only 2n matrices for the MC test of IILC.2

4.2.3 Singular Value Approach

In the preceding subsections 1- and ∞-norms were used for IILC robust stabil-
ity analysis. In the ILC literature, the maximum singular value, which is a 2-
norm, has been widely used as a monotonic convergence criteria. We comment
that the MC condition in the l2-norm topology can also be checked by Theo-
rem 4.12 and Theorem 4.13. That is, if ‖I−HΓ‖∞‖I−HΓ‖1 < 1, ∀H ∈ Hv,
then ‖I − HΓ‖2 < 1, ∀H ∈ Hv. This argument is supported from the fact
that:

‖A‖2
2 ≤ ‖A‖1‖A‖∞,

where A is a general matrix. Thus, by Theorem 4.12 and Theorem 4.13, the
MC property of the IILC system in the l2-norm topology can be checked. Of
course, this result could be overly conservative because it uses an inequality.
However, if it is assumed that the extreme values of I −HI ⊗Γ are calculated
by interval operations, and hence if the interval ranges of P I = I − HI ⊗ Γ
are known, then the MC condition in the 2-norm topology can be directly
checked by using the maximum singular value of an interval matrix. In this
monograph we provide an algorithm for this computation in Appendix B.
Using Algorithm B.1, it is straightforward to find the maximum singular value
(2-norm) of the IILC system. This application of the result from Appendix B
is omitted due to its simplicity.

4.2.4 Robust Stability of Higher-order Interval Iterative Learning
Control

Higher-order ILC (HOILC) has been of special interest in the ILC research
community, due to the possibility of improved convergence speed and robust-
ness, as described in [43, 74, 67, 66]. However, the robust stability property

2 Note that although the test we have presented for max{‖I − HΓ‖p, ∀H ∈ HI}
where p = 1,∞ is not overly conservative, it is only a sufficient check for MC.
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of HOILC has not been fully studied. In this subsection, we consider a ro-
bust stability condition for uncertain HOILC systems using the super-vector
framework. As described in Chapter 2, the stability problem of the interval
HOILC system is equivalent to that of the stability of a polynomial matrix
system. To consider the robust interval HOILC problem, note from (3.14) that
for the HOILC system the following error propagation rule is given as

Ek+1 = (HΛkH−1 − HΓk)Ek + · · · + (HΛk−nH−1 − HΓk−n)Ek−n. (4.23)

To force zero steady-state error we use the relationship
∑i=n

i=0 Λk−i = I and
we require each Λk−i to be a diagonal matrix, which gives

Ek+1 = (Λk − HΓk)Ek + · · · + (Λk−n − HΓk−n)Ek−n. (4.24)

Then, including interval uncertainties in H , using interval computations, and
writing AI

i := Λk−n−HI ⊗Γk−i, the robust stability condition for the HOILC
system can be resolved from the robust stability of an interval polynomial ma-
trix. For a detailed development and results for this interval polynomial ma-
trix computation, refer to Appendix C. In particular, Theorem C.9 and The-
orem C.16 can be used directly to test the robust stability of the higher-order
IILC system. This application is straightforward, and hence is also omitted.

4.3 Experimental Test

To present an experimental verification of the monotonic convergence of in-
terval ILC systems, the Quanser SRV023 rotary motion system was used. The
SRV02 is composed of a rotary servo system, geared DC motor, and poten-
tiometer for angle measurement. The power amplifier used in the test was
the UPM-15-03, whose maximum output voltage is 15 volts with a maximum
continuous current rating of 3 amps. For data acquisition and control, the
terminal board and MultiQ board4 are necessary. The terminal board is com-
posed of an A/D converter, a D/A converter, and encoder inputs. The data
acquisition board measures analog signals from sensors on the plant and con-
verts them to digital signals. Figure 4.3 shows the test setup composed of
the Quanser SRV02, power amplifier, terminal board, and Windows R©-based
WinCon software.

The Quanser SRV02 is a linear system, and for the model identification (to
find the impulse response, i.e., the Markov parameters), we used the correla-
tion analysis method, which uses a pseudo-random binary sequence (PRBS)
as an input. However, since the Quanser SRV02 is deterministic, we had to in-
clude small model disturbances in the WinCon-based MATLAB R© program.5

3 See http://www.quanser.com/english/html/challenges/fs chall rotary flash.htm.
4 See http://www.quanser.com/english/html/solutions/fs soln hardware.html.
5 We provided 10 percent uncertainties by changing the differen-

tiator constant, which is connected to the encoder output. See



50 4 Robust Interval Iterative Learning Control: Analysis

Fig. 4.3. Quanser SRV02 test setups

Thus, the test we describe is a kind of hardware-in-the-loop simulation (HILS).
From numerous experimental tests, we empirically found the interval ranges
of Markov parameters as shown in Figure 4.4.

Note from Figure 4.4 that after the 31st Markov parameter the interval
ranges are ignorable and the magnitude is very small. Thus Markov parame-
ters higher than h31 are assumed to be zero. To make max{‖I−HvΓ‖∞} < 1,
we selected the learning gains to be γij = 0.4294 when i = j; γij = −0.2145
when i = j+1; γij = 0.1393 when i = j+2; and γij = −0.0883 when i = j+3,
which makes max{‖I−HvΓ‖∞} = 0.9522. In the test, the sampling time was
0.05 seconds and we used 40 discrete-time points. Thus, one iteration trial is
executed for two seconds (0.05 × 40 = 2 seconds). Figure 4.5 represents the
desired time-periodic repetitive speed trajectory along the time axis. In this
figure, the desired speed trajectory in a trial is only for two seconds. Figure 4.5
shows that the system is stopped for a second after two seconds of the repeti-
tive trajectory to make the rotation speed go to zero before starting the next
repetition (the zero speed is required for satisfying the initial reset condition).
Thus the time-domain plots are shown lasting longer than 40 discrete-time

http://www.mathtools.net/MATLAB/Real Time and Embedded/. The WinCon
program provides program interfaces between the Simulink R©-generated C code
with the MULTIQ-3 board. The WinCon client is installed on the host computer
with the MULTIQ-3 DACB.
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Fig. 4.4. Interval ranges of Markov parameters of Quanser SRV02

points. Figure 4.6 shows one of the interval ILC system processes (that is, for
a specific plant in the interval system, we plot the output error for a number of
trials). As shown in this plot, the error (e(t)) becomes smaller along the time
axis, but also as the number of trials increases. This is reinforced by Figure 4.7,
which shows the ∞-norms on the iteration domain of several plants from the
interval ILC system. The figure shows ten different random plants within the
interval uncertainty. The system is monotonically-convergent when the mono-
tonic convergence conditions developed in this chapter are satisfied. However,
there are some fluctuations of the responses due to measurement noises and/or
looseness of hardware equipment. Likewise, notice that the steady-state error
does not go to zero. This is due to the measurement noises of the encoder
output and is also representative of the fact that all realistic ILC systems
exhibit a baseline error.

4.4 Chapter Summary

In this chapter stability analysis methods for ILC problems were developed
for the case when the plant Markov parameters are subject to interval uncer-
tainties. It was shown that checking just the vertex Markov matrices of an
interval plant is enough for determining the monotonic convergence properties
of the interval ILC system. This is a powerful result from a computational per-
spective. The results were verified through an experimental test. Also in this
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chapter, solutions for the maximum singular value of an interval matrix and
the robust stability of an interval polynomial matrix system, both detailed in
the appendices, were mentioned as methods for testing the robust stability
IILC systems. The novelty of the results of this chapter can be summarized
as follows:

• First, the existing ILC literature (e.g., [360, 102, 136, 9, 348]) studied
MC conditions without considering model uncertainty. However, in this
chapter, parametric interval concepts were used for determining a robust
MC condition for uncertain ILC systems.

• Second, it was shown that the MC condition of IILC can be checked from
vertex Markov matrices, which enables us to establish the MC property
of uncertain ILC systems without conservatism. That is, from Lemma 4.9
to Lemma 4.11, we showed that a multiparameter interval optimization
problem can be solved using only the extreme vertex points. Then, using
these lemmas, in Theorem 4.12 and Theorem 4.13, we established a novel
MC condition using the vertex Markov matrices of an uncertain interval
ILC system.

Hence, the main contribution of this chapter is to connect ILC theory to
parametric robust control theory so that one of the most important practical
issues of ILC (i.e., monotonic convergence) can be successfully handled when
controlling an uncertain plant.
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Finally, we emphasize that in this chapter we have focused on the analysis
problem for interval ILC problems. In the next chapter we turn our attention
to the synthesis problem.



5

Schur Stability Radius of Interval Iterative
Learning Control

This chapter discusses the synthesis of robust ILC controllers when the plant
is subject to interval uncertainties. We show how to use the concept of the
Schur stability radius of the IILC system to design robust iterative learning
controllers. For the case of parametric or interval perturbations in the system
Markov parameters, a discrete Lyapunov equation is used to compute the
Schur stability radius of the interval ILC system. After deriving an analytical
expression for the IILC stability radius, optimization schemes are suggested
to design the learning gain matrix. The proposed approach allows the design
of a causal/noncausal, time-varying learning gain matrix.

Of particular interest in ILC, the super-vector approach to ILC has been
used to analyze convergence in the iteration domain [308, 300, 302, 303, 311],
with AS and MC conditions investigated in [306, 62, 305] and feedback control
and quadratic optimal control methods suggested to design the super-vector
learning gain matrix in [60, 63, 61, 64]. Recently, an algebraic analysis of
the super-vector ILC framework was given in [351] that suggests the possi-
bility of applying interval robustness concepts to the ILC problem to make
the system robust against the parameter uncertainties, assuming there exist
interval uncertainties in the system Markov parameters. For such a situation,
it is desirable to design the ILC learning gain matrix such that the system is
stable for the largest possible range of interval uncertainties on the nominal
plant. Motivated by this observation, in this chapter we consider two prob-
lems. First, in Section 5.1, given a learning gain matrix Γ , we ask: what is the
largest interval uncertainty the system can tolerate before it becomes unsta-
ble? Second, in Section 5.2, given a particular nominal plant, we seek to find
the optimal Γ for which the largest uncertainty interval is as big as possible.

Before proceeding, using the interval concepts given in Chapter 4, let us
repeat the following definition for an interval Markov plant:

HI =
{

H : H = [hij ], hij ∈ hI
ij := [hij , hij ], i, j = 1, . . . , n

}
, (5.1)
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where hij is maximum extreme value of the ith row, jth column element of the
Markov matrix and hij is minimum extreme value of the ith row, jth column
element of the Markov matrix. The upper bound matrix (H) is a matrix whose
elements are hij ; and the lower bound matrix (H) is a matrix whose elements
are hij . Then, from the interval Markov matrix HI , the nominal Markov
matrix and the interval radius matrix are defined as follows.

Definition 5.1. The nominal Markov matrix is defined by the upper and
lower bound matrices as Ho = H+H

2 . The interval radius matrix is defined

as ∆Hr = H−H
2 . The maximum value of ∆Hr for which a given ILC law

has guaranteed AS for all H ∈ HI satisfying −∆Hr < HI − Ho < ∆Hr is
called the maximum Schur asymptotic stability radius and is denoted ∆Hr

a .
The maximum value of ∆Hr for which a given ILC law has guaranteed MC
for all H ∈ HI satisfying −∆Hr < HI − Ho < ∆Hr is called the maximum
Schur monotonic stability radius and is denoted ∆Hr

m.

Consider the first-order ILC (FOILC) update law, given by Uk+1 = Uk +
ΓEk. This law gives the evolution of the error vector in iteration domain as
Ek+1 = (I − HΓ )Ek, where Ek = Yd − Yk and Γ is the learning gain matrix.
As done in Chapter 4, for convenience, the symbols T and T I are used, with
T o = I − HoΓ, T = I − HΓ, H ∈ HI , and T I = I − HI ⊗ Γ . Then, the
following notation is defined:

∆T = I − HoΓ − (I − HΓ ) = (H − Ho)Γ = ∆HΓ, (5.2)

where ∆T is the interval uncertainty of the ILC system and ∆H is the interval
uncertainty of the nominal Markov matrix. Using ∆T , optimization schemes
will be suggested to maximize ‖∆H‖2 in Section 5.2. First, however, in the
next section we compute the asymptotic and monotonic stability radii for the
interval ILC (IILC) problem with a given gain matrix and nominal plant,
using the interval concepts and stability conditions given above.

5.1 Stability Radius

In this section, the Schur stability radius that satisfies sufficient stability con-
ditions is calculated using the discrete Lyapunov equation. Let us introduce
the symbol 〈·〉 to represent the bigger norm value between a matrix and its
transpose:

〈∆T 〉 ≡ max
{
‖(∆T )T‖, ‖∆T ‖

}
, (5.3)

where ‖ ·‖ denotes any kind of matrix norm. With this notation, the following
theorem can be developed:

Theorem 5.2. Given Γ designed for the nominal plant Ho, if there exists a
symmetric, positive definite matrix P (i.e., P = PT > 0) that satisfies the
constraint
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(I − HoΓ )T P (I − HoΓ ) − P = −I, (5.4)

then the maximum allowable interval uncertainty (AIU) for which (I − (Ho ±
∆H)Γ ) is guaranteed to be AS, is bigger than 〈∆H〉 that satisfies

〈∆H〉 ≡
−〈I − HoΓ 〉 +

√
〈I − HoΓ 〉2 + 1

‖P‖
〈Γ 〉 . (5.5)

Proof. Let us assume that (I − HoΓ ) is Schur stable, so T o is Schur stable.
Then there exists P = PT > 0 such that

(T o)T PT o − P = −I. (5.6)

If the following inequality is true with P = PT > 0 from (5.6):

(T )T PT − P < 0, T ∈ T I , (5.7)

then all T ∈ T I are Schur. Using T = T o − ∆T , (5.7) is changed to

(T o − ∆T )T P (T o − ∆T ) − P < 0
⇔ (T o)T PT o − (T o)T P∆T − (∆T )T PT o + (∆T )T P∆T − P < 0. (5.8)

Substituting (5.6) into (5.8), we have:

−(T o)T P∆T − (∆T )T PT o + (∆T )T P∆T − I < 0
⇔ −(T o)T P∆T − (∆T )T PT o + (∆T )T P∆T < I, (5.9)

where the left-hand side is a symmetric matrix. Therefore, if (5.9) is satisfied
with P = PT determined by (5.6), then T ∈ T I is Schur stable. Now, taking
the matrix norm of both sides of (5.9), we have

‖ − (T o)T P∆T − (∆T )T PT o + (∆T )T P∆T ‖ < 1. (5.10)

Recall that if (5.10) is true, then (5.9) is true; not vice-versa (see Remark 5.3
for more explanation). Now we change (5.10) to

‖(T o)T ‖‖P‖‖∆T ‖+ ‖(∆T )T ‖‖P‖‖T o‖ + ‖(∆T )T ‖‖P‖‖∆T ‖ < 1. (5.11)

Notice that (5.11) is a sufficient condition for (5.10). Using ∆T = ∆HΓ and
the 〈·〉 operator, the above inequality is changed to

〈T o〉‖P‖〈∆T 〉+ 〈∆T 〉‖P‖〈T o〉 + 〈∆T 〉‖P‖〈∆T 〉 < 1
⇔ [2〈∆T 〉〈T o〉 + 〈∆T 〉2]‖P‖ < 1
⇔ [2〈∆H〉〈Γ 〉〈T o〉 + 〈∆H〉2〈Γ 〉2]‖P‖ < 1. (5.12)

Also, notice that (5.12) is a sufficient condition for (5.11). Let α ≡ 〈Γ 〉2; and
β ≡ 〈Γ 〉〈T o〉; and x ≡ 〈∆H〉. Then, (5.12) is of the form:
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(2βx + αx2)‖P‖ < 1 ⇒ αx2 + 2βx < 1
‖P‖ . (5.13)

Here, since α > 0,

−β −
√

β2 + α
‖P‖

α
< x <

−β +
√

β2 + α
‖P‖

α
.

Using x > 0,

x <
−β +

√
β2 + α

‖P‖
α

.

Therefore, the following inequality is satisfied:

〈∆H〉 <
−〈Γ 〉〈T o〉 +

√
[〈Γ 〉〈T o〉]2 + 〈Γ 〉2

‖P‖
〈Γ 〉2 . (5.14)

Using 〈T 〉 = 〈I − HΓ 〉, (5.14) becomes

〈∆H〉 <
−〈I − HoΓ 〉 +

√
〈I − HoΓ 〉2 + 1

‖P‖
〈Γ 〉 . (5.15)

Finally, if there exists P = PT such that (5.6) is satisfied and inequality
(5.15) is true, then T I is Schur (but still, vice-versa is not true). Therefore,
the maximum interval uncertainty is allowed to be more than 〈∆H〉max, which
is defined as

〈∆H〉max ≡
−〈I − HoΓ 〉 +

√
〈I − HoΓ 〉2 + 1

‖P‖
〈Γ 〉 . (5.16)

Remark 5.3. Let us understand why (5.10) is a sufficient condition for (5.9).
Consider the following two inequalities for demonstration purposes: A < I
and ‖A‖ < 1, where A is a symmetric matrix. Note that A < I can be
written as 0 < I − A. Then, since I − A is a positive definite matrix, the
eigenvalues of I −A are all positive by Theorem 3.7 of [52]. However, because
λ(I − A) = 1 − λ(A) if and only if λ(A) < 1, then again we have I − A is
positive definite. Now consider ‖A‖ < 1. From the fact that A is symmetric
and ρ(A) ≤ ‖A‖, if ‖A‖ < 1, then ρ(A) < 1 ⇔ max{|λ(A)|} < 1. Therefore,
if ‖A‖ < 1 is true, then A < I. However, vice-versa is not true. Thus, (5.10)
is a sufficient condition for (5.9).

From Theorem 5.2, the following corollary is immediate:

Corollary 5.4. If Γ = (Ho)−1, the maximum AIU of the IILC is 1
‖Γ‖ =

1
‖(Ho)−1‖ .
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Proof. When Γ = (Ho)−1, I −HoΓ = 0; and from (5.6), since T is zero, P is
equal to I. Also, since ‖Γ‖ = ‖Γ T ‖, from (5.16), the maximum AIU is

‖∆H‖ =
1

‖Γ‖ =
1

‖(Ho)−1‖ . (5.17)

Now, let us consider the MC condition. For this we need the following
definitions:

Definition 5.5. The following augmented matrices are used for the MC anal-
ysis:

Ts =
[

0 (I − HΓ )T

(I − HΓ ) 0

]
, H ∈ HI

T o
s =

[
0 (I − HoΓ )T

(I − HoΓ ) 0

]
.

Also let ‖ · ‖2 be the matrix 2-norm; 〈Γ 〉k ≡ max{‖Γ‖k, ‖Γ T‖k} and
〈∆H〉k ≡ max{‖∆H‖k, ‖∆HT ‖k}. Then we have the following result.

Theorem 5.6. Given Γ designed for the nominal plant Ho, if there exists a
symmetric, positive definite matrix Ps that satisfies the constraint

(T o
s )T PsT

o
s − Ps = −I2n×2n, (5.18)

then the maximum allowable interval uncertainty (AIU) for which (I − (Ho ±
∆H)Γ ) is guaranteed to have MC, is bigger than 〈∆H〉 that satisfies

〈∆H〉k ≡
−‖T o

s ‖2 +
√
‖T o

s ‖2
2 + 1

‖Ps‖2

〈Γ 〉k
, (5.19)

where k is 1 or ∞.

Proof. The ILC system is given as

Ek+1 = (I − HΓ )Ek, H ∈ HI . (5.20)

In Theorem 5.2, the condition for guaranteeing ρ(I − HΓ ) < 1 (i.e., spectral
radius less than 1) using the discrete Lyapunov inequality was found. The
maximum singular value is defined as

σ(I − HΓ ) =
√

ρ[(I − HΓ )T (I − HΓ )]. (5.21)

Thus, the following relationship is true:

[σ(I − HΓ )]2 = λ

[
0n×n (I − HΓ )T

(I − HΓ ) 0n×n

]
= λ(Ts), (5.22)
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where λ is the maximum eigenvalue. Therefore, since the maximum eigenvalue
of the right-hand side equals the spectral radius, if ρ[(I−HΓ )T (I−HΓ )] < 1,
then σ(I −HΓ ) < 1. Thus, the singular value stability problem is changed to
an eigenvalue problem by Definition 5.5. Since the eigenvalues of (I−HΓ )T (I−
HΓ ) are equal to the eigenvalues of Ts, the discrete Lyapunov inequality can
be applied to Ts. If T o

s is Schur stable, then the following is true:

(T o
s )T PsT

o
s − Ps = −I2n×2n, (5.23)

with Ps = PT
s > 0. If Ts, Ts ∈ T I

s is stable, the following is also true:

(Ts)T PsTs − Ps < 0. (5.24)

Thus the following relationships can be derived:

T o
s − Ts = ∆Ts

=
[

0n×n (I − HoΓ − (I − HΓ ))T

(I − HoΓ − (I − HΓ )) 0n×n

]
=
[

0n×n(∆HΓ )T

(∆HΓ )0n×n

]
. (5.25)

Note, T o
s and ∆Ts are symmetric matrices. Thus, ‖T o

s ‖2 = ‖(T o
s )T ‖2 and

‖∆Ts‖2 = ‖∆T T
s ‖2.

Now, let us change (5.24) to be:

(T o
s − ∆Ts)T Ps(T o

s − ∆Ts) − Ps < 0
⇔ (T o

s )T PsT
o
s − (T o

s )T Ps∆Ts − (∆Ts)T PsT
o
s + (∆Ts)T Ps∆Ts − Ps < 0.

(5.26)

Using (5.23), the above inequality is changed to

−(T o
s )T Ps∆Ts − (∆Ts)T PsT

o
s + (∆Ts)T Ps∆Ts < I2n×2n, (5.27)

and taking the 2-norm of both sides, we get[
2‖∆Ts‖2‖T o

s ‖2 + ‖∆Ts‖2
2

]
‖Ps‖2 < 1. (5.28)

Here, it is necessary to separate ‖∆Ts‖2 into ‖∆H‖ and ‖Γ‖. For this purpose,
the following inequality is used:

‖∆Ts‖2 ≤
√
‖∆Ts‖1‖∆Ts‖∞. (5.29)

Thus, from the following relationship:

‖∆Ts‖1 =
∥∥∥∥[ 0n×n (∆HΓ )T

(∆HΓ ) 0n×n

]∥∥∥∥
1

= max{‖∆HΓ‖1, ‖(∆HΓ )T ‖1} (5.30)
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‖∆Ts‖∞ =
∥∥∥∥[ 0n×n (∆HΓ )T

(∆HΓ ) 0n×n

]∥∥∥∥
∞

= max{‖∆HΓ‖∞, ‖(∆HΓ )T ‖∞}, (5.31)

and using the 〈·〉 operator, we have

〈∆HΓ 〉 = max{‖∆HΓ‖1, ‖(∆HΓ )T ‖1} = max{‖∆HΓ‖∞, ‖(∆HΓ )T ‖∞}.
(5.32)

However, notice that in 〈∆HΓ 〉 only the 1- and ∞-norms are effective. Thus,
(5.29) is changed as

‖∆Ts‖2 ≤
√
‖∆Ts‖1‖∆Ts‖∞

=
√
〈∆HΓ 〉〈∆HΓ 〉

= 〈∆HΓ 〉
≤ 〈∆H〉〈Γ 〉. (5.33)

Now, let us substitute 〈∆H〉〈Γ 〉 into ‖∆Ts‖2 of (5.28) to obtain the following
sufficient inequality:[

2〈∆H〉〈Γ 〉‖T o
s ‖2 + (〈∆H〉〈Γ 〉)2

]
‖Ps‖2 < 1. (5.34)

Then, using the same procedure as in the proof of Theorem 5.2, we have

〈∆H〉 <
−‖T o

s ‖2 +
√
‖T o

s ‖2
2 + 1

‖Ps‖2

〈Γ 〉 .

Therefore, the maximum allowable interval uncertainty is calculated as

〈∆H〉max =
−‖T o

s ‖2 +
√
‖T o

s ‖2
2 + 1

‖Ps‖2

〈Γ 〉 , (5.35)

where 〈∆H〉max and 〈Γ 〉 are restricted to the 1- and ∞-norms.

In Theorem 5.6, the AIU, 〈∆H〉max, is calculated in 1- or ∞-norms. The
AIU can be calculated for the 2-norm, using the following relationship:

〈Γ 〉1 = max{‖Γ‖1, ‖Γ T‖1} = max{‖Γ‖∞, ‖Γ T‖∞} = 〈Γ 〉∞. (5.36)

Then we have the following corollary:

Corollary 5.7. The 2-norm-based maximum AIU is greater than:

〈∆H〉2 ≡
−‖T o

s ‖2 +
√

‖T o
s ‖2

2 + 1
‖Ps‖2

〈Γ 〉k
, (5.37)

where k = 1 or ∞. Notice that the right-hand side of (5.37) is equivalent to
the right-hand side of (5.35).
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Proof. By Theorem 5.6 and (5.36), the following is true:

〈∆H〉1 = 〈∆H〉∞.

Also, the following inequality is satisfied:

〈∆H〉2 ≤
√
〈∆H〉1〈∆H〉∞

and the following relationship is immediate:

〈∆H〉2 ≤
−‖T o

s ‖2 +
√

‖T o
s ‖2

2 + 1
‖Ps‖2

〈Γ 〉k
. (5.38)

For convenience, let us denote the right-hand side of (5.16) as ∆Hasym

and the right-hand side of (5.37) as ∆Hmono. Then, it is concluded that if the
interval uncertainty in ILC is less than ∆Hasym, the ILC system is asymptot-
ically stable and, if the interval uncertainty in ILC is less than ∆Hmono, the
ILC process is MC in the l2-norm topology of Ek.

Remark 5.8. Theorem 5.2 and Corollary 5.4 are satisfied with any kind of
norms. In Theorem 5.6, 〈∆H〉 is the 1-norm or the ∞-norm, and in Corol-
lary 5.7, 〈∆H〉 is 2-norm. In Theorem 5.6 and Corollary 5.7, ‖T o

s ‖ and ‖Ps‖
are 2-norms, and 〈Γ 〉 is the 1- or ∞-norm.

Remark 5.9. In Definition 5.1, the maximum Schur stability radius was de-
fined. ∆Hasym and ∆Hmono provide sufficient stability radii for the IILC.
“Sufficient” means that the actual maximum stability radii, ∆Hr

a and ∆Hr
m,

may be bigger than the calculated stability radius, ∆Hasym and ∆Hmono,
respectively. Thus, the following inequalities should be noted:

∆Hasym ≤ ∆Hr
a ; ∆Hmono ≤ ∆Hr

m.

Hence, ∆Hasym and ∆Hmono will be conservative compared with the actual
maximum stability radii.

So far, we have found maximum AIU bounds for both AS and MC given Γ
designed for Ho. In the next section, optimization methods are used to design
Γ in order to maximize the stability radius for a given Ho.

5.2 Optimization

In this section, two optimization schemes are suggested based on Section 5.1.
The purpose of the optimization is to maximize ∆Hasym and ∆Hmono by
designing Γ , with the constraint that the IILC system is either asymptotically
stable or monotonically-convergent. To find the optimal Γ that allows more
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interval uncertainties in terms of AS, the following optimization scheme is
suggested:

max
Γ

∆Hasym (5.39)

s.t. (I − HoΓ )T P (I − HoΓ ) − P = −I. (5.40)

The same optimization idea can be used for increasing the uncertainty interval
of the system in terms of MC:

max
Γ

∆Hmono (5.41)

s.t. (T o
s )T PsT

o
s − Ps = −I2n×2n. (5.42)

Remark 5.10. It is easy to see that the maximum interval uncertainties occur
when Γ = 0, because when Γ = 0, there could be infinity interval uncertainties
in Ho. From I−HΓ, H ∈ HI it is easy to observe that as Γ → 0, even though
H → ∞, the following is true: ‖I − HΓ‖ < 1. Thus, in the optimization
problem, the required maximum spectral radius and singular value should be
fixed. In other words, we should add one more constraint in the optimization
schemes, either ρ(I − HoΓ ) < ρmax or σ(I − HoΓ ) < σmax, where ρmax < 1
and σmax < 1.

Remark 5.11. In the above two optimization schemes, ρmax and σmax are
design parameters. If these values are near zero, the system converges quickly,
but with the trade-off that there could be a small AIU. On the other hand,
if these values are near one, the system converges slowly, but allows a large
AIU. Thus we must choose ρmax and σmax before applying the optimization
schemes.

5.3 Simulation Illustrations

Several simulation results are presented in this section to demonstrate the
ideas developed in this chapter. The following discrete system is considered:

xk+1 =

⎡⎣−0.50 0.00 0.00
1.00 1.24 −0.87
0.00 0.87 0.00

⎤⎦xk +

⎡⎣ 1.0
0.0
0.0

⎤⎦uk (5.43)

yk = [ 2.0 2.6 −2.8 ] xk. (5.44)

The system has poles at [ 0.62 + j0.62, 0.62− j0.62,−0.50 ] and zeros at
[ 0.65,−0.71 ]. The main hypothesis of this simulation test is initial reset. In
other words, it is assumed that the system starts at the same place at ev-
ery iteration. Another hypothesis is interval model uncertainty. That is, the
model uncertainty associated with the nominal Markov plant is bounded by
two extreme boundary matrices.
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5.3.1 Test Setup

The simulation test is performed with the following reference sinusoidal sig-
nal: Yd = sin(8.0j/n), where n = 10 and j = 1, . . . , n. The band size, which
is defined as the number of Arimoto-like, causal and noncausal bands used in
Γ (see Section 4.1 for the definition of “limited-band size”), is fixed at 3 (i.e.,
the Arimoto-like band, one causal band, and one noncausal band) and learn-
ing gains are determined by optimization problems described in Section 5.2.
Since the gains of each band are not fixed at the same value, the ILC algo-
rithm is considered to be linear, time-varying, and noncausal. The uniformly
distributed random number generator of MATLAB R© was used to make inter-
val uncertainties in Markov parameters according to: hi = hi + δ|hi|w, where
w ∈ [−1, 1] is a uniformly distributed random number; and δ is tuned to
limit the interval amount (in the matrix 2-norm). First the optimal learning
gain matrices are designed from the optimization problems suggested in Sec-
tion 5.2. In MATLAB R©, the nonlinear optimization command fmincon was
used to solve these problems. Then, using the resulting learning gain matrix,
an ILC experiment was performed with each of 1000 different random plants.
For each random plant, 20 iterations were carried out as shown in Table 5.1.
The design parameters ρmax and σmax were selected as 0.9. The monotonic
convergence optimization scheme was designed assuming an l2-norm topol-
ogy for Ek. Thus, if there exists an optimization solution for ∆Hmono, then
(
∑n

i=1 |Ek(i)|2)1/2 will be MC.

Table 5.1. Simulation Setup for Monte-Carlo-Type Random Test

for i = 1 : 1 : 1000

Pick a random plant

for j = 1 : 1 : 20

Repeat iterative test

end

end

5.3.2 Test Results

From the optimization problems of (5.39) and (5.41), the learning gain ma-
trices were designed using the nominal plant such that the calculated max-
imum AIUs become ∆Hasym = 0.737, and ∆Hmono = 0.6954. The physi-
cal meaning of ∆Hasym = 0.737 is that the ILC gain matrix designed from
optimization (5.39) allows interval uncertainty for the nominal Markov ma-
trix an amount ‖∆H‖2 < 0.737 while ensuring AS. The physical meaning
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of ∆Hmono = 0.6954 is that the ILC gain matrix designed from optimiza-
tion (5.41) allows interval uncertainty for the nominal Markov matrix by an
amount ‖∆H‖2 < 0.6954 while still ensuring MC.

The results are illustrated in Figure 5.1 for the AS case and Figure 5.2
for the MC case. In Figure 5.1 tests were performed using the ILC learning
gain matrix designed from optimization (5.39); the left-hand figures show the
interval amount of random plants in matrix 2-norms; the right-hand figures
show ILC performance corresponding to the left-hand figures; circle-marked
lines are the l2-norm errors vs. ILC iteration number corresponding to the
plant with the maximum matrix 2-norm and diamond-marked lines are l2-
norm errors vs. ILC iteration number corresponding to the plant with the
minimum matrix 2-norm. In Figure 5.2, tests were performed using the ILC
learning gain matrix designed from optimization (5.41); the left-hand figures
show the interval amount of random plants in matrix 2-norms; the right-hand
figures show ILC performance corresponding to the left-hand figures; circle-
marked lines are l2-norm errors vs. ILC iteration number corresponding to
the plant with the maximum matrix 2-norm and diamond marked-lines are
l2-norm errors vs. ILC iteration number corresponding to the plant with the
minimum matrix 2-norm. In both figures, the left-hand side of the figures
shows plots of the 2-norm of the various random plants used (the index of
the 1000 different plants is shown on the horizontal axis with the resulting
2-norm of the plant given on the vertical axis). The right-hand side of the
figures shows the maximum and minimum l2 norm of the super-vector error
plotted as a function of iteration.

First, let us check the validity of ∆Hasym = 0.737. To check the valid-
ity of this value, we gave random intervals to each Markov parameter, and
we selected interval plants with ‖∆H‖2 less than 0.737. The results shown
in Figure 5.1(a) meet the expectation that all these plants should converge
asymptotically. However, as commented in Remark 5.9, there could exist inter-
val plants with ‖∆H‖2 > 0.737 that are asymptotically stable with the ILC
gain matrix designed from (5.39), because the result is only sufficient. Fig-
ure 5.1(c) and Figure 5.1(d) show such a situation. But, as the perturbation
grows beyond the bound ∆Hasym eventually we encounter plants for which
the designed learning gain no longer gives AS. This is shown in Figure 5.1(e)
and Figure 5.1(f).

Similarly, we can check the validity of ∆Hmono = 0.6954. Figure 5.2(a)
and Figure 5.2(b) show the situation when ‖∆H‖2 < ∆Hmono = 0.6954. We
see that the ILC gain matrix designed from (5.41) guarantees the MC. As in
the asymptotic stability (AS) example, the remaining plots in Figure 5.2 show
the sufficiency of the condition and the final instability.
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Fig. 5.1. Asymptotic stability tests with maximized stability radius. Left-hand
figures show the interval amount of random plants in matrix 2-norms. Right-hand
figures show ILC performance corresponding to left-hand figures. Circle-marked lines
are the l2-norm errors vs. ILC iteration number corresponding to the plant with the
maximum matrix 2-norm and diamond-marked lines are l2-norm errors vs. ILC
iteration number corresponding to the plant with the minimum matrix 2-norm.
Panel (b) shows that IILC is MC with interval uncertainties given in Panel (a),
and Panel (d) shows that IILC is AS with interval uncertainties given in Panel (c).
However, Panel (f) shows that IILC is divergent with interval uncertainties given in
Panel (e).
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Fig. 5.2. Monotonic convergence tests with maximized stability radius. Left-hand
figures show the interval amount of random plants in matrix 2-norms. Right-hand
figures show ILC performance corresponding to left-hand figures. Circle-marked lines
are the l2-norm errors vs. ILC iteration number corresponding to the plant with the
maximum matrix 2-norm and diamond-marked lines are l2-norm errors vs. ILC
iteration number corresponding to the plant with the minimum matrix 2-norm.
Panel (b) shows that IILC is MC with interval uncertainties given in Panel (a),
and Panel (d) shows that IILC is AS with interval uncertainties given in Panel (c).
However, Panel (f) shows that IILC is divergent with interval uncertainties given in
Panel (e).
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5.4 Chapter Summary

In this chapter, bounds on the maximum allowable uncertainty in the plant
Markov parameters for both AS and MC were calculated. These bounds were
then used to design the ILC learning gain matrix to maximize the asymp-
totic and monotonic stability radii of the nominal plant. Simulation results
illustrated the ideas. This approach provides an effective scheme for designing
a robust ILC system under interval plant uncertainty. As a main develop-
ment of this chapter, a discrete Lyapunov equation is used to compute the
Schur stability radius of the ILC system for the case of parametric or inter-
val perturbations in the system Markov parameters. We also showed how to
design the ILC learning gain matrix such that the system can be asymptoti-
cally stable and/or monotonically-convergent for the worst case uncertainty.
The proposed approach allows design of a causal or noncausal time-varying
learning gain matrix.

The main contribution of this chapter is to introduce well-established
concepts from interval/parametric robust control theory [314] into the ILC
paradigm, with a distinct focus on the iteration domain. Specific contribu-
tions are the introduction of the idea of interval uncertainty and design tech-
niques to deal with such uncertainty. Note that while other works in the ILC
literature have considered robustness (e.g., [60, 63, 61, 64, 351]), none has
considered interval robustness and none has considered this robustness in the
iteration domain. Thus, this chapter makes unique (iteration-domain focus)
and relevant (interval uncertainty focus fills in a gap in the existing literature)
contributions to the ILC literature.



6

Iterative Learning Control Design Based on
Interval Model Conversion

Although the practical importance of the monotonic convergence issue (MC)
has been well-addressed in the ILC literature (see [279] for a nice discussion
of this problem), to date this issue has not been fully understood with respect
to model uncertainty. In this chapter we consider the problem in more detail
by presenting another ILC algorithm using causal/noncausal and Arimoto-
like band-limited, time-varying learning gains for designing a monotonically-
convergent ILC process when the plant is subject to parametric uncertainties.
Our strategy is to use use first-order perturbation theory to find bounds on
the eigenvalues and eigenvectors of the powers of A when A is an interval
matrix. These bounds are then used for calculation of the interval uncertainty
of the Markov matrix H . Next the bounds on the Markov matrix are used
to design an iterative learning controller that ensures MC for all systems in
the interval plant via the solution of an optimization problem (actually, two
optimization problems are suggested). Note the difference between the design
results in this chapter and the design results of the previous chapter. In the
previous chapter, optimization was used to find a learning gain Γ so that the
ILC system could tolerate the largest possible uncertainty. Here we assume
the uncertainty bounds are given or computed (i.e., H and H) and we seek a
Γ to ensure MC for all plants defined by those uncertainty bounds.

6.1 Interval Model Conversion in ILC

In the super-vector framework, Markov parameters are used for ILC design.
To accomplish the robust ILC design that we seek to demonstrate in this
chapter, the interval uncertainty of the nominal plant, either using state-space
or transfer function models, has to be converted into interval uncertainties in
the Markov parameters. We call this process “interval model conversion.” Let
us focus on the nominal discrete-time system model given in the following
SISO state-space form:
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x(t + 1) = Ax(t) + Bu(t); y(t) = Cx(t), (6.1)

where A, B, and C are the matrices describing the system in the state-space
and x(t), u(t), and y(t) are the state, input, and output variables, respectively.
Without loss of generality, the relative degree of the system is assumed to be
1, so CB �= 0. The Markov parameters of the plant are defined as hk =
CAk−1B. These Markov parameters can then be used to form the Markov
matrix, a lower-triangular Toeplitz matrix whose first column is the vector
[h1, h2, . . . , hN ]T and that is denoted as H (see (1.27)). Then, the interval
conversion process is to find bounds on hk from the bounds on uncertain A,
B, and C using hk = CAk−1B. To simplify the presentation, it is assumed
that model uncertainty exists in A only. It is easy to extend the approach
to uncertain B and C matrices as well. But, since the key issue in interval
model conversion is to find the power of an interval A matrix (as commented
in [244], it is NP-hard to find exact boundaries of the power of an interval
matrix system), this monograph only focuses on systems with an uncertain
A-matrix. Then, interval model conversion can be explicitly defined as the
process of finding the uncertain boundaries of hk ∈ hI

k = [hk, hk] from AI , B
and C.

To clarify the interval perturbation concepts, we introduce the following
definition.

Definition 6.1. Let A ∈ AI be a member of the interval matrix AI = Ao +
∆AI , where Ao = [ao

ij ] is the nominal plant matrix and ∆AI is the interval
perturbation matrix defined as

∆AI :=
{
∆A =

[
∆aij : ∆aij ∈ [aij − ao

ij , aij − ao
ij ]
]}

. (6.2)

Next, to proceed we make two assumptions. The first is a technical assumption
and the second is more practical, as will be described in a later remark.

Assumption 6.2. The nominal plant matrix Ao is in the interval matrix AI ,
and each uncertain fixed matrix A is an element of the interval matrix AI .
Furthermore, each uncertain matrix is diagonalizable so that it can be decom-
posed as A = XΛX−1, with Λ = diag(λi), where λi are the eigenvalues of
A.

Assumption 6.3. Every matrix A ∈ AI is Schur stable.

Using these assumptions, the following theorem is established to estimate
the boundary of the power of interval matrix.

Theorem 6.4. Let AI be an n × n interval matrix and let ΛI , XI, Y I be
n × n interval matrices such that for each A ∈ AI there exist a diagonal
matrix Λ ∈ ΛI and a matrix X ∈ XI such that A = XΛX−1 holds and
X−1 ∈ Y I . Then for each k ≥ 1 we have
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Ak : A ∈ AI

}
⊆ XI ⊗ (ΛI)k ⊗ Y I , (6.3)

where ⊗ (including the power) is the interval arithmetic multiplication oper-
ator defined in Chapter 4 (also, refer to [314, 8, 215]).

Proof. The proof is straightforward since any A ∈ AI can be written, accord-
ing to assumptions, as A = XΛX−1 for some Λ ∈ ΛI and X ∈ XI which
additionally satisfies X−1 ∈ Y −1. Then Ak = XΛkX−1 ∈ XI ⊗ (ΛI)k ⊗ Y I

due to the basic “inclusion isotony” of interval arithmetic operations (see e.g.
[215]), which proves the inclusion (6.3).

From now on, for convenience, let us use the notation

(AI)k :=
{
Ak : A ∈ AI

}
and AI

k := XI ⊗ (ΛI)k ⊗ Y I , (6.4)

which means that (AI)k ⊆ AI
k. From a computational perspective, the bound-

ary of (AI)k can be estimated by multiplying the interval matrix using interval
calculation software such as Intlab [179], but the result will be quite conser-
vative as k increases and it requires a huge amount of computation. However,
since (AI)k ⊆ AI

k, the boundary of (AI)k can be estimated by estimating
the boundary of AI

k, which is also easily done in Intlab, using the boundaries
of the three interval matrices ΛI , XI , and Y I , as explained in the following
section. Observe also that if the maximum absolute eigenvalue of A ∈ AI is
less than 1, for all Ak ∈ AI

k, Ak will converge to zero as k → ∞ because
Λk, Λ ∈ ΛI , converges to zero as k → ∞. However, if the maximum absolute
eigenvalue is bigger than 1, Ak ∈ AI

k could diverge. Then the bound on the
uncertain interval boundary of hk becomes bigger and bigger as k increases.
For this reason it was assumed that A ∈ AI is Schur stable.

In this section, it was shown that we can contain the original interval
system inside a “bigger” interval system according to: (AI)k ⊆ AI

k. Therefore,
the remaining work is to estimate the boundaries of ΛI , XI , and Y I and
from these estimates to compute bounds on Ak. The next section suggests an
analytical method to estimate the bounds of ΛI , XI , and Y I from AI using
first-order perturbation theory [291].

6.2 Interval Matrix Eigenpair Bounds

In this section, first-order perturbation theory is briefly summarized and then
two lemmas are suggested to obtain analytical solutions of the boundaries
of XI , ΛI and Y I from AI , to be used for estimating the boundary of AI

k.
Let us suppose that the n × n nominal matrix Ao has its n different nom-
inal eigenvalues λ0i, particular nominal left eigenvectors x0i, and particular
nominal right eigenvectors y0i, where i = 1, . . . , n, defined by xT

0iA
o = λi0x

T
0i

and Aoy0i = λi0y0i. Further define the nominal eigenvalue matrix, Λo, partic-
ular nominal left eigenvector matrix, Xo, and particular nominal right eigen-
vector matrix, Y o, by Λo = [λij : λij = λ0i if i = j, λij = 0 if i �= j],
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Xo = [x01, x02, . . . , x0n]T , and Y o = [y01, y02, . . . , y0n], respectively, with
(Y o)−1 = Xo. Next, assume a perturbation to Ao to form A = Ao + ∆A,
where A ∈ AI and ∆A ∈ ∆AI , based on Definition 4.5 and Definition 6.1.
Denote the eigenvalues and left and right eigenvectors associated with the
perturbation ∆A as λ1i, x1i, and y1i, respectively. In other words, when λi,
xi, and yi represent eigenvalues and eigenvectors of A ∈ AI , the following
relationships are satisfied: λi = λ0i + λ1i, xi = x0i + x1i, and yi = y0i + y1i.1

Observe that the set of λ1i, x1i, and y1i define scalar intervals. In this section,
we are interested in finding the boundaries of λ1i, x1i, and y1i, which we will
use to estimate the boundaries of λi, xi, and yi.

From [291], the following formulae are adopted for the perturbed eigenval-
ues:

λ1i = xT
0i∆Ay0i, ∀ ∆A ∈ ∆AI (6.5)

and for the perturbed eigenvectors we use:

x1i =
n∑

k=1

γikx0k; y1i =
n∑

k=1

εiky0k, (6.6)

where γik = yT
0k∆Ax0i

λ0i−λ0k
; εik = xT

0k∆Ay0i

λ0i−λ0k
, i, k = 1, . . . , n; i �= k, and γik = εik =

0, i = k, ∀ ∆A ∈ ∆AI . However, notice here that ∆A ∈ ∆AI , where ∆AI is
an interval perturbation matrix, so it is quite messy to calculate λ1i, x1i, and
y1i in (6.5) and (6.6). For reliable analytical calculation of (6.5) and (6.6),
the maximum absolute value of the real and imaginary part are considered
separately. Let us denote the maximum of λ1i on the real axis by λ1i|max

real,
which can be defined as λ1i|max

real = max{λ1i|real : λ1i|real = |Re(λ1i)|, λ1i =
xT

0i∆Ay0i, ∀ ∆A ∈ ∆AI}, and the maximum of λ1i on the imaginary axis
by λ1i|max

imag, which can be defined as λ1i|max
imag = max{λ1i|imag : λ1i|imag =

|Im(λ1i)|, λ1i = xT
0i∆Ay0i, ∀ ∆A ∈ ∆AI}, where Re means the real part and

Im means the imaginary part. Then, the following lemma is suggested.

Lemma 6.5. Considering the real part and imaginary part separately, at any
fixed i in the above definition (i.e., at a fixed eigenvalue), the following are
true:

λ1i|max
real = max

(∆A)v⊂∆AI
{Re[xT

0i(∆A)vy0i]} (6.7)

λ1i|max
imag = max

(∆A)v⊂∆AI
{Im[xT

0i(∆A)vy0i]}, (6.8)

where (∆A)v are the vertex matrices of ∆AI .
1 Note that we do not imply that the eigenvalues of the sum of two matrices are

equal to the sum of the eigenvalues of the individual matrices. Rather, the eigen-
pairs λ1i, x1i, and y1i are “perturbation” eigenpairs and represent what would
be added to the nominal values to obtain equivalent eignepairs of the perturbed
matrix. Also note, on page 103 of [291], λ1i, x1i, and y1i are called the first-order
perturbation eigensolution.
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Lemma 6.5 says we can compute the radius of the perturbed eigenvalues
using only the vertex matrices of A. The proof of this result can be carried
out using the same procedure shown below in the proof of Lemma 6.6. As
the proof of Lemma 6.6 is more comprehensive, the proof of Lemma 6.5 is
omitted.

Next, we show that the radii of the perturbed eigenvectors can also be
estimated using the finite set of vertex matrices. First, let us consider the left
eigenvectors and let us denote the jth element of x1i by (x1i)j . Then, denoting
the maximum of (x1i)j on the real axis by (x1i)j |max

real, which can be defined as

(x1i)j |max
real = max{(x1i)j |real : (x1i)j |real = |Re((x1i)j)|,

(x1i)j =
n∑

k=1

yT
0k∆Ax0i

λ0i − λ0k
(x0k)j , ∀ ∆A ∈ ∆AI}, (6.9)

and denoting the maximum of (x1i)j on the imaginary axis by (x1i)j |max
imag ,

which can be defined as

(x1i)j |max
imag = max{(x1i)j |imag : (x1i)j |imag = |Re((x1i)j)|,

(x1i)j =
n∑

k=1

yT
0k∆Ax0i

λ0i − λ0k
(x0k)j , ∀ ∆A ∈ ∆AI}, (6.10)

we provide the following lemma (the perturbed radii of right eigenvectors are
calculated in the same way).

Lemma 6.6. Considering the real part and imaginary parts separately, at any
fixed i and fixed j (i.e., at a fixed element of the fixed eigenvector), the maxi-
mum perturbation of (x1i)j can be calculated by checking the vertex matrices
of the interval perturbation matrix according to:

(x1i)j |max
real = max

(∆A)v⊂∆AI

{
Re

[
n∑

k=1

yT
0k(∆A)vx0i

λ0i − λ0k
(x0k)j

]}
(6.11)

(x1i)j |max
imag = max

(∆A)v⊂∆AI

{
Im

[
n∑

k=1

yT
0k(∆A)vx0i

λ0i − λ0k
(x0k)j

]}
, (6.12)

where (x0k)j is the jth element of the kth eigenvector x0k.

Proof. From (6.6), we have

x1i = γi1x01 + · · · + γinx0n =
yT
01∆Ax0i

λ0i − λ01
x01 + · · · + yT

0n∆Ax0i

λ0i − λ0n
x0n.(6.13)

In (6.13), since the denominators λ0i −λ01, . . . , λ0i −λ0n are scalars and y01,
. . . , y0n, x0i, x01, . . . , x0n are vectors, (6.13) is rewritten as

x1i = ξ1∆Aη1x01 + · · · + ξn∆Aηnx0n, (6.14)
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where the substitutions x0i

λ0i−λ01
= η1, . . . , x0i

λ0i−λ0n
= ηn, and yT

01 = ξ1, . . . , yT
0n =

ξn are used. Observing that ξ1∆Aη1, . . . ,, ξn∆Aηn are scalars, we consider
the jth element of the vector x1i to be

(x1i)j = ξ1∆Aη1(x01)j + · · · + ξn∆Aηn(x0n)j . (6.15)

Let us rewrite (6.15) as

(x1i)j =

{
n∑

k=1

n∑
l=1

(
(ξ1)k(∆A)kl(η1)l

)}
(x01)j +

· · · +
{

n∑
k=1

n∑
l=1

((ξn)k(∆A)kl(ηn)l)

}
(x0n)j

=
n∑

p=1

{
n∑

k=1

n∑
l=1

((ξp)k(∆A)kl(ηp)l)

}
(x0p)j

=
n∑

k=1

n∑
l=1

{
n∑

p=1

((ξp)k(ηp)l) (x0p)j

}
(∆A)kl . (6.16)

Therefore, since
∑n

p=1 ((ξp)k(ηp)l) (x0p)j is a complex number, simply by writ-
ing αkl + βkli :=

∑n
p=1 ((ξp)k(ηp)l) (x0p)j , we have

(x1i)j =
n∑

k=1

n∑
l=1

(αkl + βkli)(∆A)kl . (6.17)

Next, in order to find the maximum absolute magnitude of (x1i)j , we separate
the real part and the imaginary part. Let us first investigate the maximum
absolute value of the real part. The real part is

∑n
k=1

∑n
l=1 αkl(∆A)kl, where

αkl ∈ � and (∆A)kl are scalar intervals. Observe that
∑n

k=1

∑n
l=1 αkl(∆A)kl

is a scalar interval, defined by [δ, δ], where

δ = min
(∆A)kl∈(∆A)I

kl

{
n∑

k=1

n∑
l=1

αkl(∆A)kl

}

and δ = max
(∆A)kl∈(∆A)I

kl

{
n∑

k=1

n∑
l=1

αkl(∆A)kl

}
,

where (∆A)I
kl :=

[
aij − ao

ij , aij − ao
ij

]
. Finally, from the same argument given

in Lemma 4.9, we find that δ occurs at a vertex point of (∆A)I
kl depending

on signs of αkl. In other words, if αkl ≥ 0, then the minimum of δ occurs
at ao

ij − aij ; else if αkl < 0, then the minimum of δ occurs at aij − ao
ij . In

the same way, δ occurs at a vertex point of (∆A)kl depending on signs of
αkl. If αkl ≥ 0, then the maximum of δ occurs at aij − ao

ij ; else if αkl <
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0, then the maximum of δ occurs at ao
ij − aij . Next, the same procedure

can be repeated for the imaginary part. Thus, the maximum and minimum
boundaries of eigenvectors can be checked by investigating the vertex matrices
of the interval perturbation matrix.

Lemma 6.5 and Lemma 6.6 show how the maximum magnitude of the
perturbed eigenvalues and eigenvectors can be calculated, respectively. Thus,
since the perturbed eigenpairs are calculated by λi = λ0i +λ1i, xi = x0i +x1i

and yi = y0i + y1i, we have effectively computed the bounds on the interval
matrices ΛI , XI , and Y I .

6.3 Markov Parameter Bounds

In Section 6.1, the interval model conversion method was developed and in
Section 6.2, an analytical method for finding the maximum magnitudes of
the perturbed eigenpairs was suggested. That is, Section 6.2 showed that the
interval boundaries of Ak, where A ∈ AI , can be bounded using the inequality
(AI)k ⊆ AI

k, which provides the following relationship:

Ak ≤ Ak ≤ Ak ≤ Ak ≤ Ak (6.18)

where Ak ∈ (AI)k and Ak ∈ AI
k. Then, the interval boundaries of Markov

parameters (e.g., hk+1 = CAkB) can be estimated by hk+1 = CAkB; hk+1 =
CAkB, where C, B are constant vectors describing the system (6.1) and Ak

is a matrix which is lower-bounded and upper-bounded by Ak ≤ Ak ≤ Ak

from (6.18). Finally, Lemma 6.5 and Lemma 6.6 of Section 6.2 showed that
the analytical solution for estimating the boundaries of the interval matrix
AI

k := {M = XΛkY : Λ ∈ ΛI , X ∈ XI , Y ∈ Y I} can be obtained using the
vertex matrices of interval perturbation matrix ∆AI .

6.4 Robust ILC Design

Now, let us discuss the synthesis of interval iterative learning control (IILC)
systems, assuming we know the boundaries of H .2 For MC ILC design in
the 2-norm topology, we make use of Lemma 4.7. For the ILC update law
Uk+1 = Uk + ΓEk, the evolution of the error is given by the following error
vector update law: Ek+1 = (I −HΓ )Ek, H ∈ HI where the singular value of
T = (I − HΓ ) (with interval, T I = (I − HI ⊗ Γ )) is calculated as

2 The design we present here is applicable whenever we know the boundaries of
H , whether that knowledge was given a priori or was computed using the results
given in the previous sections of this chapter.



76 6 Iterative Learning Control Design Based on Interval Model Conversion

σ (T ) = ρ
[
(T )T T

]
=

√
ρ

[
0 (T )T

T 0

]
=
√

ρ (P)
(

def.
[

0 (T I)T

T I 0

]
= PI

)
.

(6.19)
Then, the MC property of the IILC system is checked by analyzing the Schur
stability of P ∈ PI in the 2-norm topology using Lemma 4.7.

For MC conditions in the 1- and ∞-norm topologies, Theorem 4.12 and
Theorem 4.13 are used, which is summarized in the following lemma for con-
venience.

Lemma 6.7. Given hi ∈ [hi, hi], the IILC system is monotonically-convergent
if ‖I − HvΓ‖k < 1, where k is 1 or ∞; and Hv are vertex Markov matrices
associated with the interval Markov matrix HI .

For achieving AS, as shown in Theorem 4.8, if Arimoto-like gains are
selected such that |1− γh1| < 1 and |1− γh1| < 1, the AS of the IILC system
is achieved. To increase robustness, the following scheme is recommended:

γ =
{

1/h1 if h1 ≥ 0 for all h1 ∈ hI
1

1/h1 if h1 < 0 for all h1 ∈ hI
1

. (6.20)

The reason for Eq. (6.20) is that the AS condition |1−γh1| is guaranteed with
γ = 1/h1 if h1 ≥ 0 for all h1 ∈ hI

1 and with γ = 1/h1 if h1 < 0 for all h1 ∈ hI
1.

For the MC ILC gain design in the 2-norm topology, we use (6.19). For the
learning gain matrix design, the following optimization is suggested based on
Lemma 4.7.

Suggestion 6.8. Let pI
ij be the ith row and jth column element of PI . If we

define a matrix M whose elements are given as mij = max{|pij |, |pij |}, then
we solve the following optimization problem to design Γ :

min
Γ

ρ(M) s.t. hk ∈ [hk, hk]. (6.21)

Remark 6.9. To explain why the matrix M is used in (6.21), define s1
ij (S1 =

[s1
ij ]) and s2

ij (S2 = [s2
ij ]) as

s1
ij := pij if i = j; s1

ij := max{|pij |, |pij |} if i �= j;

s2
ij := pij if i = j; s2

ij := min{−|pij |,−|pij |} if i �= j.

Then, since the matrix PI is symmetric, S1 = −S2. Hence, using the fact
that ρ(S1) = ρ(S2) and the diagonal terms of PI are all zero, we only need
to check the spectral radius of the matrix composed of the off-diagonal terms
of S1.

If Lemma 6.7 is used then a non-constrained optimization scheme is sug-
gested:
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Suggestion 6.10. If k is 1 or ∞, the following optimization is straightfor-
ward:

min
Γ

‖I − HvΓ‖k. (6.22)

The optimization in Suggestion 6.10 is to minimize ‖I−HvΓ‖k using Γ , where
Γ is a band-fixed learning gain matrix. There is a trade-off. For a small band
size, it is possible that there might not exist an optimization solution such that
‖I−HvΓ‖k < 1. In this case, the band size should be increased until the opti-
mization algorithm finds a Γ such that ‖I−HvΓ‖k < 1. However, as the band
size increases, more causal and noncausal learning gains are required. This is
practically undesirable because we need to store more data into memory for
the current control update. The optimization in Suggestion 6.8 is a nonlinear
constrained minimization problem and the optimization in Suggestion 6.10 is
a nonlinear non-constrained minimization problem. These problems can be
easily solved using the MATLAB R© Optimization Toolbox. Depending on the
IILC system, the optimization scheme suggested above may not find the op-
timization solution even with fully populated learning gain matrix. In this
case, the following control update law could be used: Uk+1 = Q(Uk + ΓEk),
where Q is a time-invariant diagonal matrix.3 Then, since the error vector is
updated by the following formula: Ek+1 = Q(I − HΓ )Ek + (I − Q)Yd, it is
easy to make ‖Q(I−HΓ )‖ < 1 by choosing Q and Γ . However, the remaining
term (I −Q)Yd will result in a nonzero steady-state error. This is a trade-off.

6.5 Simulation Illustrations

For the verification of the interval model conversion idea developed in this
chapter, we present the results of a simulation test. Let us use the following
simple discrete servo system model, whose nominal plant was identified from
the Quanser SRV02 system, as discussed in the previous chapter’s simulation
example: 4

x1(k + 1) = a11x1(k) + a12x2(k) + 2u(k) (6.23)
x2(k + 1) = a21x1(k) + a22x2(k) + 0.5u(k) (6.24)

y(k) = x1(k), (6.25)

where the interval plant parameters are bounded as −0.74 ≤ a11 ≤ −0.66,
−0.53 ≤ a12 ≤ −0.47, 0.95 ≤ a21 ≤ 1.05, and 0.19 ≤ a22 ≤ 0.21. Using the re-
sults of the foregoing sections, a simulation test is performed with the following
reference sinusoidal signal: Yd = sin(8.0j/n), where n = 20 and j = 1, . . . , n.
The band size is fixed to be 3. Figure 6.1 shows the calculated interval bound-
aries of the Markov parameters using the computations given in Sections 6.1
and 6.2. The circle-marked line represents the maximum/minimum boundaries
3 The use of the so-called Q-filter is well-known in the ILC literature. See [332], for

example.
4 http://www.quanser.com/english/html/challenges/fs chall rotary flash.htm.
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Fig. 6.1. Calculated Markov parameter interval uncertain boundaries

of the Markov parameters calculated from the Intlab software [179]; and the
∗-marked line represents the Markov parameter boundaries calculated from
the method suggested in this section. For verification of the suggested method,
a Monte-Carlo type random test was also performed as shown in the figure
(identified by “random test” in the figure). Observe that the suggested method
gives reliable bounds for the interval ranges of the Markov parameters. We see
that the suggested method gives less conservative bounds than Intlab after h6;
but, from h1 to h5, Intlab is slightly less conservative. However, we note that
we have found in other experiments that in the case of a marginally stable
system, the suggested method is less conservative than Intlab for all Markov
parameters. So the suggested method is particularly suitable for MC ILC de-
sign. We should further stress that the technique proposed in this section gives
an analytical computation of the bounds for all hk, unlike the bounds found
from Intlab. To see the convergence of the ILC process for a single plant in the
interval system, refer to Figure 6.2. The dot-marked line (called the “interval
matrix method”) is the maximum l2 norm error of the ILC process, whose
learning gain matrix was designed by (6.21); and the circle-marked line (called
the “norm-based method”) is the maximum l1 norm error when the learning
gain matrix was designed by (6.22). In the case of the interval matrix method,
there is a steady-state error, because we fixed Q = 0.9 to guarantee the MC
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as commented in Section 6.4 (when Q = 1, the optimization did not find the
optimal solution such that the norm is less than 1).

6.6 A Different Approach for Interval Model Conversion

In the preceding section, for the calculation of the power of interval matrix,
the eigen-decomposition method was used. Although this method is effective
and computational effort is relatively small, the result could be conservative,
depending on the system. In Appendix D, a new method for computing the
power of an interval matrix is developed, using the sensitivity transfer from
the nominal to the perturbed power of the interval matrix. This method pro-
vides accurate boundaries of the power of an interval matrix, but requires a
greater amount of computation. Therefore, there is a trade-off between using
the eigen-decomposition method presented above and using the sensitivity
transfer method explained in Appendix D. In this monograph, because the
power of interval matrix is a fundamental research topic under robust con-
trol, we provide this new method in a separate appendix. It is straightforward
to apply the result given in Appendix D to the IILC system and we do not
present the details here.
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Fig. 6.2. ILC convergence test results from both the interval matrix method and
the norm-based method
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6.7 Chapter Summary

In this chapter, a robust iterative learning controller was designed for the case
where the interval boundaries of the system Markov matrix are assumed to
be known. A method was given to convert interval uncertainty in the plant’s
state-space A-matrix into boundaries for the associated system Markov ma-
trix. The method only requires computations using the vertex matrices of the
interval system. Optimization schemes were also suggested based on an inter-
val matrix stability analysis method and a norm-based method. In the case of
the norm-based method, the ILC learning gain matrix guaranteed the MC of
the uncertain ILC process with zero steady-state error. However, the interval
matrix method only guaranteed MC with nonzero steady error. From these
results, it is concluded that the norm-based method is less conservative than
the interval matrix method. However, the norm-based method requires much
more computational time than the interval matrix method.
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Iteration-domain Robustness
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Robust Iterative Learning Control:
H∞ Approach

In Chapter 4, Chapter 5, and Chapter 6, robust monotonic convergence (MC)
of first-order ILC (FOILC) was studied for the case when the time-domain
plant is subject to parametric interval uncertainty. In this chapter and the next
we consider ILC design for the case when the plant is subject to iteration-
domain uncertainty.

We begin in this chapter by presenting an H∞-based design technique
for synthesis of higher-order iterative learning controllers (HOILC) for when
there are iteration-domain input/output disturbances and plant model un-
certainty. By formulating the HOILC problem as a high-dimensional MIMO
discrete-time system as in [301], it is shown how the problem of input/output
disturbances and plant model uncertainty can be cast into a standard H∞
framework. An algebraic approach for solving the problem in this framework
is used, based on [142], resulting in a sub-optimal controller that can achieve
both stability and robust performance. The key observation is that H∞ syn-
thesis can be used for HOILC design to achieve reliable performance in the
presence of iteration-varying external disturbances and model uncertainty. As
commented in Section 3.3, however, it is difficult to guarantee the monotonic
convergence of HOILC system. Hence this chapter focuses on asymptotic sta-
bility conditions.

7.1 Introduction

As we have said, iterative learning control (ILC) is a technique that attempts
to refine the performance of systems that repeat their operation over and
over from the same initial conditions. Hence ILC is fundamentally a two-
dimensional process, with evolution along both a finite time axis (i.e., finite
horizon; denoted by t) and an infinite iteration axis (i.e., infinite horizon)
(denoted by k) [301]. As shown in Chapter 2, many ILC publications have
considered robustness issues, including H∞-based ILC design from the time-
axis perspective [102, 103, 321], stochastic ILC design [395], and disturbance
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rejection [236, 58, 531, 268]. However, for the most part, existing works have
focused on ILC design for performance improvement, with the assumption
that the plant is iteration-invariant and with external disturbances treated
along the time axis. That is, the primary focus has been on robustness de-
fined and modeled along the time axis. To date, iteration-axis robustness has
not been treated in a systematic way (one exception to this, in a somewhat
different framework, is the work on multi-pass systems [387, 126]). In this
chapter, a new framework is suggested for robust ILC design, assuming both
time-varying model uncertainty and iteration-varying external disturbances.
Using the super-vector approach we can easily incorporate iteration-varying
disturbances and the system can be analyzed using discrete (iteration-axis)
frequency-domain techniques.

7.2 Problem Formulation

We will use the basic ILC dynamics (1.22–1.27) given in Chapter 1. As in [301],
we introduce a delay operator along the iteration axis, w, with the property
that w−1uk(t) = uk−1(t) (note, this delay operator was already defined in
Section 3.1). We call this the “w-transform.” It operates from trial-to-trial,
with t fixed, as opposed to the standard z-transform operator that operates
from time step-to-time step, with k fixed. Thus, Yk = HUk can be written as
Yk(w) = HUk(w).

Now consider the general form of a (higher-order) ILC algorithm:

Uk+1 = −D̄nUk − D̄n−1Uk−1 − · · · − D̄0Uk−n

+NnEk + · · · + N1Ek−n+1 + N0Ek−n. (7.1)

Here the “next input” is computed as a filtered sum of all the “past inputs”
and “past errors.” Taking the w-transform of both sides of this equation and
combining terms gives

D̄c(w)U(w) = Nc(w)E(w), (7.2)

where

D̄c(w) = wn+1 + D̄nwn + · · · + D̄1w + D̄0 (7.3)
Nc(w) = Nnwn + Nn−1w

n−1 + · · · + N1w + N0, (7.4)

which can also be written in a matrix fraction as U(w) = C̄(w)E(w) where

C̄(w) = D̄−1
c (w)Nc(w). (7.5)

Note that a common special case of (7.1) uses the general (higher-order)
ILC update law
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Uk+1 = (I − Dn−1)Uk + (Dn−1 − Dn−2)Uk−1

+ · · · + (D1 − D0)Uk−n+1 + D0Uk−n

+ NnEk + · · · + N1Ek−n+1 + N0Ek−n. (7.6)

Taking the w-transform of the update law (7.6) yields

(w − 1)Dc(w)U(w) = Nc(w)E(w), (7.7)

where

Dc(w) = Dnwn + Dn−1w
n−1 + · · · + D1w + D0 (7.8)

Nc(w) = Nnwn + Nn−1w
n−1 + · · · + N1w + N0, (7.9)

which can also be written in a matrix fraction as

U(w) =
I

(w − 1)
C(w)E(w), (7.10)

where

C(w) = D−1
c (w)Nc(w). (7.11)

Figure 7.1 depicts the set of equations we have just developed based on
(7.1), for a general ILC update law represented by C̄(w), or (7.6), for an ILC
update law represented by (w − 1)−1C(w). From this figure it is clear that
the repetition-domain closed-loop dynamics become either:

Ḡcl(w) = H [D̄c(w) + Nc(w)H ]−1Nc(w) (7.12)

for (7.1) or, for (7.6),

Gcl(w) = H [(w − 1)Dc(w) + Nc(w)H ]−1Nc(w). (7.13)

For the latter case, because we now have an integrator in the feedback loop (a
discrete integrator, in the repetition domain), applying the final value theorem
to Gcl shows that Ek → 0 as long as the ILC algorithm converges (i.e., as
long as Gcl is stable).

7.2.1 A Generalized Framework

The development given above can be extended in a number of ways, by in-
cluding:

1. Iteration-varying reference signals Yd(w).
2. Iteration-varying noise signals N(w).
3. Iteration-varying disturbance signals D(w).
4. Iteration-varying nominal plant models H(w).
5. Iteration-varying plant model uncertainty ∆H(w).
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Fig. 7.1. Standard ILC setup in the super-vector framework

6. Separation of the control action into current-cycle feedback CCITE and
ILC update CILC feedback.

Figure 7.2 depicts the complete picture. Note that in this figure we have
assumed that integrating action (in the iteration domain) is used in the control
law. Further, the diagram shows the current-cycle feedback separated from
the ILC update. Both of these effects can be absorbed into a single controller
denoted by C̄(w). In particular, note that the use of current cycle feedback
can be incorporated into our algorithm by simply adding a term Nk+1Ek+1

to both (7.1) and (7.6). This simply means that with respect to our iteration-
domain feedback system, the controller now has relative degree zero rather
than the relative degree one controller that results when only previous cycle
feedback is used.

The important point we want to stress here is that the framework depicted
in Figure 7.2 emphasizes the role of iteration-variant effects in the ILC problem
formulation. In the remainder of this chapter we consider the special case of
Figure 7.2 when there is no current-cycle feedback, the signals D(w) and
N(w) have known l2-norm bounds (in the iteration domain), and the model
uncertainty ∆H has a known H∞ system norm bound.

7.2.2 Iteration-domain H∞ Problem Formulation

Figure 7.1 depicts the general higher-order ILC problem as a MIMO control
problem with the plant H . This figure highlights the fact that the ILC pro-
cess (i) is inherently a relative degree one process; and (ii) should have an
integrator in order to converge to zero steady-state error. However, it can
also be noted that the controller C(w) has relative degree zero. This makes it
convenient to consider the reformulation shown in Figure 7.3. Here:

1. The integrator has been grouped with the plant, so that we now define a
new plant

Hp(w) = (w − 1)−1H. (7.14)
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Fig. 7.2. More general ILC framework

2. We suppose that H is subject to a perturbation such as H = H0+∆H(w)
where ∆H(w) represents iteration-varying uncertainty in the plant model.

3. The plant is disturbed by a plant input disturbance dI and a plant output
disturbance do.

These disturbances and plant perturbation models lead to a standard H∞
problem. However, before proceeding, we must first define our signal spaces
properly. To this end we introduce the following definition:

Definition 7.1. In super-vector ILC, the l2-norm should be defined along the
iteration axis (i.e., on the w-domain). To distinguish this concept from the
discrete-time domain, the iteration-domain l2-norm is written as ‖ · ‖2w and
denoted l2w . Thus, rather than writing ‖Ek‖2, we use the notation ‖Ek‖2w .
In the same way, the iteration-domain H∞ system norm is written as ‖ · ‖∞w

)(
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Fig. 7.3. ILC H∞ problem framework
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The design problem for the uncertain ILC system depicted in Figure 7.3
can now be formulated as follows:

Problem: Given Hp(w) = (w − 1)−1H and Yd(w), find C(w) in
Figure 7.3 such that ‖Ek‖2w is minimum from the l2w -bounded dis-
turbances dI and do and the closed-loop system is stable over all
H = H0 + ∆H(w), with ‖∆H(w)‖∞w < εH .

A number of remarks are in order:

Remark 7.2. Notice that the problem setup we have defined indicates that the
higher-order ILC system can be synthesized in the H∞ framework. That is,
the minimization problem of ‖E(w)‖2w is translated into the minimization
problem

‖TEW ‖∞w = sup
Wk∈l2w

‖Ek‖2w

‖Wk‖2w

, (7.15)

such that
‖TEW‖∞w < γ, (7.16)

where1

Wk = [dI , do]T (7.17)

‖Ek‖2w =
k=∞∑
k=0

ET
k Ek, (7.18)

‖Wk‖2w =
k=∞∑
k=0

WT
k Wk. (7.19)

When γ is not fixed, this is an optimal H∞ ILC problem and when γ is fixed
this a sub-optimal H∞ ILC problem. In the remainder of the chapter we design
the ILC controller C(w) with fixed γ = 1.

Remark 7.3. The minimization of TEW here means the reduction of the H∞
norm of the transfer matrices from Wk to Ek. In other words, the reference
input Yd is not counted in this performance problem. So, minimization of
TEW does not guarantee the minimization of Ek = Yd − Yk. Instead, the
sensitivities of dI and do to Ek are reduced by minimization of ‖TEW ‖∞w .
The minimization of Ek = Yd−Yk is ensured by the presence of the integrator
in the loop gain and by adequate solution of the robust stability problem.

Remark 7.4. Hp(w) has what is called a structured perturbation, because we
have

1 Note that dI and do are iteration-varying signals and thus so is W = [dI , do]
T . A

more formally correct notation for dI and do would be (dI)k and (do)k. However,
we will drop the dependence on k for convenience when the meaning is clear from
the context.
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Hp(w) = (w − 1)−1H =
I

(w − 1)
(H0 + ∆H(w)) , (7.20)

not
Hp = H0 + ∆H(w).

That is, there is no modeling uncertainty associated with the integrator, as
the integrator is actually part of the controller, not the plant.

Remark 7.5. Figure 7.3, with (7.16), defines a classic H∞ robust control prob-
lem. From this framework we can formulate and solve any of the associated
robust stability or robust performance problems with an H∞ optimality crite-
ria. Such solutions can be obtained using any number of standard techniques.
In this chapter, we apply an algebraic approach from the literature [142],
which has the advantage of providing an analytical solution. However, we
also compare the resulting solution with that obtained numerically using the
standard MATLAB R© dhinf command.

7.3 Algebraic H∞ Approach to Iterative Learning
Control

In this section, we consider the robust design problem for external distur-
bances and for model uncertainty separately.

7.3.1 Iteration-varying Disturbances

Figure 7.4 shows the block diagram of the general H∞ problem cast into the
form used to give the so-called algebraic solution, presented in [142], with the
plant written in state-space form as

xk+1 = Axk + B1wk + B2uk (7.21)
zk = C1xk + D11wk + D12uk (7.22)
yk = C2xk + D21wk + D22uk, (7.23)

where zk = [z1
k, z2

k]T is the performance output, yk is the observation output
to be used in output feedback control, and wk = [dI , do]T are the exogenous
inputs (disturbances in plant input and plant output). Generally, it is con-
venient to assume that D11 = 0 (or, D11 should be very small to hold the
existence condition) and D22 = 0. In Figure 7.4, W1 and W2 are penalty
weighting matrices, and Wi and Wo are disturbance-generating functions. In
the ILC problem, W1 and W2 are identity matrices, and Wi = Wo = αI.

For a solution K to exist in Figure 7.4, we need the following assumptions:
A1: (A, B2) is stabilizable and (C2, A) is detectable.
A2: D12 is full column rank and D21 is full row rank.

The controller existence condition such that ‖Tzw‖∞ < 1 while stabilizing the
system is given in many references, see [269], for example, and a solution can
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Fig. 7.4. Typical discrete H∞ diagram

be given directly from MATLAB R© using the dinf command. Here, however,
we will follow the approach in [142] that gives an analytical solution.

Now, we show that the HOILC problem can be cast into the standard
H∞ framework of Figure 7.4. From Figure 7.3, with ∆H(w) = 0, the HOILC
system can be written as

Uk+1 = Uk + Vk + dI (7.24)
Y = HUk + do, (7.25)

where we have defined Vk(w) = C(w)E(w).
To proceed, we will reformulate (7.24)–(7.25) into a state-space form cor-

responding to (7.21), (7.22), and (7.23), from which we can redraw Fig-
ure 7.3 into the form of Figure 7.4. The outcome of this will be Figure 7.5.
When done, in Figure 7.5, the performance outputs will be selected as
Zk = [z1

k, z2
k]T = [Ek, D12Vk]T , where Vk = C(w)Ek, so that the input plant

sensitivity matrix (from dI to Ek) becomes

SI = Hp(w)(I + C(w)Hp(w))−1 (7.26)

and the output sensitivity matrix becomes

So = (I + C(w)Hp(w))−1
. (7.27)

In this performance penalty, D12Vk is used to satisfy the full column rank
requirement and also to minimize the control effort due to the external distur-
bance. Therefore, the H∞ performance problem is to minimize two sensitivity
matrices (i.e., SI and So) and to stabilize the ILC system (robust stability
problem). These two goals define the robust ILC performance problem.

Continuing, the following state-space form of the ILC equations can be
derived:

Uk+1 = IUk + B1Wk + IVk (7.28)
Zk = [H, 0]T Uk + D11Wk + D12Vk (7.29)
Yk = HUk + D21Wk, (7.30)
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Fig. 7.5. ILC H∞ diagram with plant input and output disturbances

where H is the Markov matrix, Wk = [dI , do]T , B1 = [αI 0], Vk = C(w)Ek ,

D11 =
[

0 αI
0 0

]
, and D21 = [0, αI]T (α is used to limit the disturbance

intensity). Notice that there is a one-to-one mapping between equations (7.21–
7.23) and (7.28–7.30) and also between Figure 7.4 and Figure 7.5. Hence,
we can apply the algebraic H∞ solution given in [142] to the higher-order
SVILC description, because (A, B2)=(I, I) is stabilizable and (C2, A)=(H, I)
is detectable with any H . As in the standard H∞ problem setup, in ILC the
following state-space formula can be suggested:

A = I; B1 = [αI 0]; B2 = I; C1 = [H, 0]T ; C2 = H ;

D11 =
[

0 αI
0 0

]
; D12 = [0, I]T ; D21 = [0, αI]; D22 = 0.

With this setup, the H∞-based design of the super-vector ILC controller be-
comes a typical H∞ synthesis problem.

For an analytical solution, the following definitions are provided. Let

Θ1 :=
[

I − α2X 0
0 I − α2I

]
B̃1 := [αX, 0]T ; B̃2 := X + H ; B̃3 := [αX, αI]T

Θ2 := I + X + α2X(I − α2X)−1X +
α2

1 − α2
I

Θ3 := H + X + α2X(I − α2X)−1X

A := I + α2(I − α2X)−1X

B1 := [α(I − α2X)−
1
2 , 0]

B2 := I + α2(I − α2X)−1X

C1 := Θ
− 1

2
2 Θ3; C2 := H ; D21 :=

α√
1 − α2

I

D22 :=
α2

1 − α2
I
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Θ4 := I − C1ZC
T

1

E1 := C1ZC
T

1

E2 := C2ZA
T

+ D21B
T

1

E3 := C1ZC
T

2

Θ5 := D21D
T

21 + C2ZC
T

2 + ET
3 Θ−1

4 E3

Θ6 := E2 + ET
3 Θ−1

4 E1.

With these definitions, the following theorem is suggested.

Theorem 7.6. For the HOILC system given by (7.28), (7.29), (7.30), if there
exists X > 0 and F = −Θ−1

2 Θ3 such that Θ1 > 0 and I+α2X(I−α2X)−1X−
ΘT

3 Θ−1
2 Θ3 < 0, and also if there exists Z > 0 such that Θ4 > 0 and AZA

T −
Z + B1B

T

1 + ET
1 Θ−1

4 E1 −ΘT
6 Θ−1

5 Θ6 < 0, then the observer gain matrix L :=
−ΘT

6 Θ−1
5 and the controller given as

ξk+1 = Acξk + BcYk (7.31)
Vk = Ccξk (7.32)

where Ac := A + (B2 + LD22)F + LC2, Bc = L, and Cc = F , stabilize the
system (7.28), (7.29), (7.30) and guarantee ‖TZW ‖∞w < 1.

Proof. The proof is immediate following several algebraic simplifications after
substituting

A = I; B1 = [αI 0]; B2 = I; C1 = [H, 0]T ; C2 = H ;

D11 =
[

0 αI
0 0

]
; D12 = [0, I]T ; D21 = [0, αI]; D22 = 0

into the system given in Theorem 3.3 of [142].

Remark 7.7. In the controller defined in Theorem 7.6, the dimensions of Ac,
Bc, and Cc are the same as that of the Markov matrix H . This implies that
the controller C(w) will be of order N in iteration.

Remark 7.8. To solve for the controller matrices Ac, Bc and Cc, in Theorem
7.6, two discrete Riccati-type equations, (7.33) and (7.34), have to be solved
to find the positive definite matrices X and Z. From Remark 3.2 of [142] we
can use a recursive solution searching method to solve these Riccati equations.
The following equations can be used for this purpose:

(X)i+1 = (X)i + HT H + α2X(I − α2X)−1X + εI, (7.33)

(Z)i+1 = (Z)i + α2I + E1Θ
−1
1 E1 − ΘT

6 Θ−1
5 Θ6 + εI, (7.34)

where ε is fixed as 10−5. These equations iterate starting with (X)0 = (Z)0 =
0, under the condition that all conditions of Theorem 7.6 are satisfied. The
final outcome of the iteration is chosen as the solution of Riccati the equations.
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7.3.2 Model Uncertainty

Next, we extend the results of the previous section to include model uncer-
tainty ∆H in the system (7.28), (7.29), (7.30). Figure 7.6 shows the ILC block
diagram with model uncertainty and with the performance output given as
Zk = D12Vk + C1Uk. In this case, the input plant sensitivity matrix (from dI

to Zk) is defined as

SI = C(w)Hp(w)(I + C(w)Hp(w))−1 + (wI − I)−1 (I + C(w)Hp(w))−1

(7.35)

and the output plant sensitivity matrix (from do to Zk) is defined as

S0 = C(w)(I + C(w)Hp(w))−1 + C(w)((wI − I) (I + Hp(w)C(w)))−1.

(7.36)

Then, the purpose of H∞ synthesis is to minimize these sensitivity matrices
and to robustly stabilize the system with uncertainty ∆H . From Figure 7.6,
the ILC system can be expressed in the state-space form as

Uk+1 = IUk + B1Wk + IVk (7.37)
Zk = C1Uk + D11Wk + D12Vk (7.38)
Yk = (H + ∆H)Uk + D21Wk + D22Vk, (7.39)

where Zk = [z1
k, z2

k]T , Wk = [dI , do]T , A = I, B1 = [αI, 0], B2 = I, C1 =
[0, I]T , D11 = 02n×2n, D12 = [I, 0]T , C2 = H + ∆H , D21 = [0, αI], and
D22 = 0. In this case (I, I) is stabilizable, (H, I) is detectable, D12 is full
column rank, and D21 is full row rank. Thus all the basic assumptions for the
existence of an H∞ solution are satisfied.

Remark 7.9. In Figure 7.5, if model uncertainty is included in H , then the
system is changed to:

I H1−w

iW I
oW

++- + +)(wC
dY

H∆

Id
od

kU
kE

kY

kV

2

kz1

kz

2W1W

Fig. 7.6. ILC H∞ framework with model uncertainty
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Uk+1 = IUk + B1Wk + IVk (7.40)
Zk = (H + ∆H)Uk + D11Wk + D12Vk (7.41)
Yk = (H + ∆H)Uk + D21Wk. (7.42)

Thus, in this case, the performance output Zk depends on ∆H . But this makes
it difficult to standardize the ILC in a typical H∞ framework. To overcome
this drawback, we use Figure 7.6.

To solve the H∞ robust performance problem algebraically with model
uncertainty, an existing result can be used, which is summarized in what
follows. From [104, 548], with D22 = 0, the following uncertain system is
given:

xk+1 = (A + ∆A)xk + B1wk + (B2 + ∆B2)uk (7.43)
zk = C1xk + D11wk + D12uk (7.44)
yk = (C2 + ∆C2)xk + D21wk. (7.45)

After making an equivalent auxiliary system given in equations (7.46), (7.47),
and (7.48) below, the robust stability analysis can be performed as done above
for the system given by equations (7.28)–(7.30). Specifically, let the uncertain
system have the following form:[

∆A ∆B2

∆C2 ∆D22

]
=
[

M1

M2

]
F
[
N1 N2

]
where M1, M2, N1, and N2 are constant matrices, and FFT ≤ I. For a
parameter ε > 0, by introducing the auxiliary system

xa
k+1 = Axa

k + H1w
a
k + B2u

a
k (7.46)

za
k = E1x

a
k + D11w

a
k + E2u

a
k (7.47)

ya
k = C2x

a
k + H2w

a
k + D22u

a
k, (7.48)

where H1 = [
√

εM1, B1], H2 = [
√

εM2, D21],

E1 =
[ N1√

ε

C1

]
, and E2 =

[ N2√
ε

D12

]
,

then the original uncertain system is stabilizable with ‖Gzw‖ < 1 if and only
if the auxiliary system is stabilizable with ‖Gzawa‖∞w < 1.

Applying this result to our problem, from Figure 7.6 define[
0 0

∆H 0

]
=
[

0
∆H

]
I
[
I 0
]
,

where M1 = 0, M2 = ∆H , F = I, N1 = I, and N2 = 0. Then typical H∞
synthesis can be performed with the augmented ILC system given as
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xa
k+1 = Axa

k + B1w
a
k + B2u

a
k (7.49)

za
k = C1x

a
k + D11w

a
k + D12u

a
k (7.50)

ya
k = C2x

a
k + D21w

a
k + D22u

a
k, (7.51)

where A = I, B1 = [0, αI, 0], B2 = I, C1 = [ I√
ε
, 0, I]T , D11 = 03n×3n,

D12 = [0, I, 0]T , C2 = H , D21 = [
√

ε∆H, 0, αI], and D22 = 0. As done
in Theorem 7.6 of this section, Theorem 3.3 of [142] can be modified. This
process is quite messy, but straightforward, and is left as an exercise for the
(diligent!) reader.

7.4 Simulation Illustrations

In this section we illustrate the performance of the robust ILC controller
designed using the H∞ framework presented in this chapter. Consider the
following discrete-time system:

xk+1 =
[

0.25 0.6
0.6 0

]
xk +

[
1.0
0.0

]
uk (7.52)

yk = [1.0 − 1.3]xk, (7.53)

which has nominal time-domain eigenvalues at −0.5 and 0.75. In the time
axis, 50 discrete samples are used and in the iteration axis, 100 iteration
tests are performed. The system starts with the same initial conditions on
each iteration. For this system, after calculating the Markov matrix H , the
maximum model uncertainty is assumed to be 10 percent of the nominal H
(note, for convenience we do not pick up plants with uncertainty ∆H(w), but
rather use plants with interval uncertainty; however, this is acceptable as the
plants still satisfy a norm-bound of the form ‖∆H‖∞w < εH). The external
disturbances satisfy ‖ · ‖l2w < α = 0.1. In E1, E2, H1 and H2 of (7.46), (7.47)
and (7.48), ε is fixed at 1. Simulation tests were performed for the case of
external disturbances alone and for the case of both external disturbances
together with model uncertainty. For the latter case we used the augmented
system, which is given in (7.49), (7.50), (7.51) with Figure 7.6. The controller
was designed based on Theorem 7.6. To check the performance of the suggested
algebraic method, we also did simulations using ILC controllers designed using
the MATLAB R© dhinf command and using a FOILC learning gain matrix. For
the FOILC case, we used both Arimoto-like learning gains (tuned manually)
and simply the inverse of the nominal plant (i.e., C(w) = H−1). Simulation
tests for the case of external disturbances with no model uncertainty are shown
in Figure 7.7 and Figure 7.8. These figures show the result of simulating
the different ILC controllers with the nominal plant, for fixed l2w signals
dI(w) and do(w). Note, though these signals are iteration-varying, from the
perspective of the space l2w they are fixed over the course of a simulation
test. Figure 7.7 shows the ILC performance when C(w) is designed from the
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Fig. 7.7. H∞ ILC test results with the learning gain matrices designed from the
MATLAB R© command dhinf and H−1

MATLAB R© dhinf command and from the inverse of H along the iteration
axis. Figure 7.8 shows the results from the suggested algebraic method and
from Arimoto-like gains. From these figures, it is not clear how to compare the
performance differences between the different controller options. Note that the
error does not go to zero as the number of iterations increases. That is due to
the fact that the design goal of H∞ ILC is to minimize the gain between the
disturbances and the error. By assumption it cannot be driven to zero (though,
the error between Yd and the output is in fact going to zero). But, the error will
depend on the signals dI and do. Thus, to compare the controllers it is useful
to consider the actual gain between the disturbances and the error. These are
shown in Figure 7.9 (Arimoto-like gains), Figure 7.10 (Γ = H−1), Figure 7.11
(from the MATLAB R© dhinf) command, and Figure 7.12 (algebraic H∞) for
a number of different plants defined by the uncertainty model. Recall, the
signal norms of interest and the gain are computed over iterations. Thus, for
a given simulation (a single plant and a single set of l2w disturbance signals)
we get a single number defining the norm of the error as well as the norm
of the disturbance. Figures 7.9 to 7.12 plot these norms and their ratios for
different plants (chosen randomly from the uncertainty model). Also recall
that the algebraic H∞ controller and the MATLAB R©-based H∞ controller
were designed to achieve ‖TEW ‖∞w < 1, but the Arimoto-like gains and the
inverse of H do not guarantee ‖TEW ‖∞w < 1. Thus, in these figures, we plot
‖Ek‖2w and ‖Wk‖2w as well as their ratio for 50 plants. From Figure 7.9
and Figure 7.10 (Arimoto and H−1), we observe that the robust performance
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Fig. 7.8. H∞ ILC test results with the learning gain matrices designed from the
algebraic method and Arimoto-like gains

requirement ‖TEW ‖∞w < 1 is not achieved for many cases. However, from
Figure 7.9 and Figure 7.10 (MATLAB R© dhinf and algebraic method), we
observe that ‖TEW‖∞w < 1 is achieved for most plants (with exceptions due
to ∆H , as noted). Clearly, from these figures, it is conclusive that the ILC
system designed based on H∞ methods are more robust than the first-order
ILC systems.

7.5 Chapter Summary

In this chapter, we designed a higher-order ILC algorithm using an H∞ frame-
work in the iteration domain. Chapter 4, Chapter 5, and Chapter 6 considered
design to guarantee monotonic convergence (MC) in the iteration axis for in-
terval uncertainty in the time domain, while in this chapter we considered
the uncertainty under the H∞-norm topology in the iteration domain. The
advantage of using the methods proposed in Chapter 4, Chapter 5, and Chap-
ter 6 is that the MC of uncertain ILC systems can be achieved, whereas the
advantage of using the method proposed in this chapter is that it can con-
sider iteration-varying model uncertainty and external disturbances at the
same time. However, there is no way to guarantee MC in the proposed H∞
ILC framework. Hence, each method has own advantages and disadvantages,
which shows that the methods proposed so far in this monograph comple-
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Fig. 7.9. The summation of the plant input and output disturbances ((αI)dI and
(αI)do) and ‖ (TEW ) Wk‖2w with the learning gain matrix designed from Arimoto-
like gains
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Fig. 7.10. The summation of the plant input and output disturbances ((αI)dI and
(αI)do) and ‖ (TEW )Wk‖2w with the learning gain matrix Γ = H−1
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Fig. 7.11. The summation of the plant input and output disturbances ((αI)dI

and (αI)do) and ‖ (TEW ) Wk‖2w with the learning gain matrix designed from the
MATLAB R© dhinf command
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Fig. 7.12. The summation of the plant input and output disturbances ((αI)dI

and (αI)do) and ‖ (TEW ) Wk‖2w with the learning gain matrix designed from the
algebraic method
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ment each other. The main theoretical developments of this chapter can be
summarized as follows:

• First, we developed a new ILC framework using H∞ theory for handling
iteration-varying model uncertainty, external disturbances, and noises.
Even though H∞ ILC was already designed in [102, 103, 321] in the time-
domain, from the fact that the time domain in ILC is finite-horizon, the
results presented in these publications are restrictive from a theoretical
perspective. In other words, the frequency-domain-based analysis (trans-
formed from the finite time horizon) of [102, 103, 321] cannot consider the
whole frequency range. Thus, the main research goal of this chapter is to
overcome the drawback of traditional H∞ ILC theories. For this purpose,
in this chapter, the H∞ design was performed using the discrete frequency
domain associated with the iteration axis (not the time axis), under the
super-vector framework, which is theoretically more sound than existing
results.

• Second, for the development of a unified robust ILC framework for han-
dling all possible robustness issues, the super-vector-based input/output
relationship is cast into the traditional H∞ framework. Then, by compar-
ing the block diagram of the super-vector ILC with a block diagram of
traditional H∞ theory, we develop H∞ ILC in the iteration domain.

The main contribution of this chapter is to provide a novel and unique
iteration-domain, frequency-based robust ILC synthesis method that is math-
ematically correct. We would note that the suggested H∞ ILC approach can
be effectively used to reduce the baseline error, but to do so the filters Wi

and Wo in Figure 7.5 and Figure 7.6 should be designed properly. This is a
topic for further research. Similarly, we noted that the resulting controller,
as in any H∞-based controller design, has a very high order. Another future
research topic is the question of how to achieve controller order reduction for
this design.



8

Robust Iterative Learning Control: Stochastic
Approaches

Although the algebraic H∞ ILC approach proposed in Chapter 7 provided
a unified framework for studying robust super-vector ILC (SVILC) when the
plant is subject to iteration-domain uncertainty, monotonic convergence (MC)
could not be guaranteed and the baseline error was not analytically estab-
lished. This chapter focuses on the baseline error of robust ILC processes.
Further, in our study so far in this monograph, stochastic noise has not been
considered; hence, this chapter also studies the robustness problem of SVILC
when the system is subject to stochastic noise.

First, a Kalman filter is utilized for finding the baseline error analytically,
which enables us to design the learning gain matrix a priori. Assuming knowl-
edge of the measurement noise and process noise statistics, the suggested ILC
scheme uses a Kalman filter to estimate the error of the output measurement
and a fixed learning gain controller is used to ensure that the actual error
is less than a specified upper bound. An algebraic Riccati equation is solved
analytically to find the steady-state covariance matrix and to prove that the
system eventually converges to the baseline error.

As the second development in the chapter, iteration-varying model uncer-
tainty and stochastic measurement noise on the iteration axis are considered in
the SVILC framework. In both cases, the possibility of MC is discussed. How-
ever, it should be emphasized that in Section 8.1, an iteration-invariant learn-
ing gain matrix is used, while in Section 8.2, an iteration-variant learning gain
matrix is used. Due to the fact that the baseline error is analytically found us-
ing the SVILC framework, the suggested methods in this chapter are improve-
ments over existing stochastic ILC results [396, 395, 313, 55, 259, 257, 323],
which focus on time-domain analysis.

Finally, we consider the problem of intermittent ILC, where we assume
that on each trial some measurement data is lost (stochastically). We show
how a Kalman filter-based approach in the iteration domain can compensate
for the loss of data. This is a useful result for the problem of ILC in a networked
control system environment.
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8.1 Baseline Error Estimation in the Iteration Domain

Recently, in ILC research, the idea of a fundamental baseline error has been
pointed out [64] and an effort has been made to resolve this problem. In detail,
in [64] a model-based approach was used to reduce the baseline error of the
deterministic ILC process. However, applications of the results of [64] are
limited because the results are based on the internal model principle. In this
section, an alternate approach to reduce the baseline error of noise-driven ILC
systems is proposed using a Kalman filter. Although Kalman filter-based ILC
design methods have been suggested in the existing literature [396, 395, 313,
55, 259, 257, 323], their main stability analysis was limited to the time domain
and all result in an iteration-dependent learning gain design. For example, in
[396], stochastic ILC was proposed based on a full state model and iteration-
varying learning gains, even though the assumption of knowledge of the A
matrix was removed in [395]. Several works have proposed iteration-domain
filtering. In [259, 257] convergence was analyzed using quadratic programming
and in [323] an iteration-varying learning gain matrix was used to estimate the
output Yk. Both of these works assumed that the input–output relation matrix
H (i.e., Yk = HUk where Uk is the input and Yk is the output) is available
and they also used iteration-varying learning gain matrices. Recently, in [55],
nonlinear stochastic ILC was proposed, where the nonlinear system model was
considered to be unknown. However, they also used iteration-varying gains and
the slow convergence speed was observed as a disadvantage.

In this section, we take a different approach by focusing on estimating
the error Ek on the iteration axis with an iteration-domain Kalman filter and
using this estimate in the ILC-type update algorithm. Estimating Ek enables
us to design the fixed learning gain matrix, which need not be updated every
iteration. Due to the fact that the fixed learning gain matrix Γ is chosen to
guarantee the convergence of stochastic ILC system, the approach presented
in this section is clearly different from existing works and could be considered
more practical. However, in this monograph we still assume that the H matrix
is available and the statistics of the noise are known, as done in [396, 313, 259,
257, 323]. This kind of assumption seems to be a betrayal of the main reason
for using ILC, because ILC was initially developed to achieve the perfect
tracking for unknown model control systems [28]. However, note that the
advantage of using ILC is not only in the case of model uncertainty. For
example, ILC has been proven to be very effective in controlling non-minimum
phase systems; ILC can improve convergence speed and give perfect tracking
when a standard controller cannot, even when the model is known; and the
monotone (without overshoot) convergence can be guaranteed by ILC, which
is a practically important issue as commented in Chapter 1.

The main focus of this section is to find the baseline error analytically,
which is dependent on the designed learning gain matrix, in addition to, un-
der some conditions, guaranteeing the monotonic convergence of the stochastic
ILC system along the iteration domain. Hence, even though this section as-
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sumes the H matrix is known, as done in other ILC results, the contributions
of this section over existing works can be summarized as: (i) the steady-state
estimate of the error on the iteration axis can be computed analytically, (ii) a
fixed learning gain matrix is used and with this fixed gain matrix, the baseline
error can be significantly reduced (in a stochastic sense), and (iii) under some
conditions, the monotonic convergence of ILC system (in a stochastic sense)
can be guaranteed until it reaches a baseline error that can be calculated in
advance.

8.1.1 Modeling

In this section, it will be shown that the SVILC scheme can be well-cast into
the discrete linear Kalman filter framework.

Standard Kalman Filtering

Let us start by introducing the standard Kalman filter algorithm. The follow-
ing discrete-time stochastic system is considered [153]:

xk+1 = Axk + Gvk (8.1)
z̃k = Cxk + wk (8.2)

where vk ∼ N(0, Q) is zero-mean Gaussian process noise with covariance
Q; wk ∼ N(0, R) is zero-mean Gaussian measurement noise with covariance
R; xk ∈ Rn is the state; A ∈ Rn×n; C ∈ Rn×n; z̃k ∈ Rn is the actual
measurement; G ∈ Rn×n, and k is the discrete-time index (not, in this case,
the trial or iteration index). Then, the discrete linear Kalman filter is designed
as

• Propagation:

x̄k = Ax̂k−1 (8.3)
P̄k = AP̂k−1A

T + GQGT (8.4)

• Correction:

Kk = P̄kCT (CP̄kCT + R)−1 (8.5)
x̂k = x̄k + Kk(z̃k − Cx̄k) (8.6)
P̂k = (I − KkC)P̄k, (8.7)

where Pk is the covariance of the estimated state error, Kk is the Kalman
gain matrix, ·̄ stands for the propagated state, and ·̂ stands for the corrected
state using the Kalman gain matrix.
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Stochastic SVILC Frameworks

Now it will be shown that SVILC can be designed based on the above discrete
Kalman filter structure along the iteration axis. As explained in Section 4.1,
SVILC is updated by the following mechanism:

Uk+1 = Uk + ΓEk (8.8)
Yk = HUk, (8.9)

where Uk ∈ Rn is the control input at the kth iteration; Γ ∈ Rn×n is the
fixed learning gain matrix; Ek ∈ Rn is the error vector at the kth iteration,
which is calculated by Ek = Yd − Yk; H ∈ Rn×n is the system Markov
matrix, and Yk ∈ Rn is the measured output. Notice that in (8.1)–(8.7), k
represents the time point, but in (8.8)–(8.9), k represents the iteration axis.
As we have described, it is a standard lifting technique in ILC to transform
a system operated repetitively as per the ILC paradigm into a multivariable
system of the form (8.1)–(8.7), where the iteration index can be viewed as a
discrete-time index.

To continue, noting that Yk+1 = HUk+1 and defining ∆u
k ≡ Uk+1 − Uk,

we obtain the following relationship:

Ek+1 = Ek − H∆u
k . (8.10)

Let us suppose that the measured state at the kth iteration is Yk and during
this measurement there exists measurement noise wk with wk ∼ N(0, R). Now
introducing the measurement noise wk, we have

Ẽk = Yd − Yk − wk = Ek − wk. (8.11)

In (8.10), ∆u
k = Uk+1 − Uk and from (8.8), since the measured error is used

for control update, we obtain Uk+1 − Uk = ΓẼk. Let us suppose that during
the control law update, there is process noise v′k that is zero-mean Gaussian
process noise with covariance Q′, i.e., v′k ∼ N(0, Q′). Then, by writing Uk+1 =
Uk + ΓẼk + v′k, the control update law is found as

Uk+1 = Uk + Γ (Ek − wk) + v′k
= Uk + ΓEk − Γwk + v′k. (8.12)

Now, writing −Γwk + v′k ≡ vk, we have Uk+1 = Uk + ΓEk + vk, which yields

∆u
k = ΓEk + vk. (8.13)

Now, from E
[
(−Γwk + v′k)(−Γwk + v′k)T

]
= ΓE

[
wkwT

k

]
Γ T +E

[
v′k(v′k)T

]
=

ΓRΓ T + Q′ = Q, we simply consider vk as zero-mean Gaussian process noise
with covariance Q, i.e., vk ∼ N(0, Q). Then, inserting (8.13) into (8.10) yields

Ek+1 = Ek − H(ΓEk + vk)
= (I − HΓ )Ek − Hvk, (8.14)
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which is the same form as the typical FOILC error update rule (3.9) except
for the process and measurement noises. Now, from (8.11) and (8.14), the
noise-driven ILC system can be formulated in a state-space form along the
iteration axis as

Ek+1 = AEk + Gvk (8.15)
Ẽk = CEk + wk, (8.16)

where A = I −HΓ , G = −H , and C = I. The following technical assumption
is needed.

Assumption 8.1. In (8.11)–(8.16), it is assumed that the process and mea-
surement noises v′k and wk are zero-mean white Gaussian noises on the itera-
tion axis. Furthermore, the noise characteristics R and Q′ are assumed to be
known (so, Q is also known from Q = ΓRΓ T + Q′).

Remark 8.2. It is worthwhile to note that the measurement noise wk may
come from the initial state reset error. When xk(0) is not fixed,1 (8.9) should
be changed to

Yk = HUk + Wxk(0), (8.17)

where xk(0) is the initial state and W = [vT
1 , vT

2 , . . . , vT
n+1]

T with vi = CAi.
Then, we can write xk(0) = xk(0)+∆xk(0) where xk(0) is the nominal initial
state and ∆xk(0) is the initial state error. Then, as done in [397], assuming
zero-mean Gaussian ∆xk(0), simply we can equalize Wxk(0) = wk. Thus, the
stochastic SVILC frame proposed in this monograph can effectively handle
the initial state error problem.

Next, by comparing (8.15)–(8.16) to (8.1)–(8.2), and matching A = I −
HΓ , xk = Ek, G = −H , z̃k = Ẽk and C = I, we can derive the following
Kalman-filter-based recursive update formula for stochastic SVILC, which can
be used for the baseline error estimation:

Ēk = (I − HΓ )Êk−1 (8.18)
P̄k = P̂k−1 + HQHT (8.19)
Kk = P̄k(P̄k + R)−1 (8.20)
Êk = Ēk + Kk(z̃k − Ēk) (8.21)
P̂k = (I − Kk)P̄k, (8.22)

where z̃k = Ẽk. Observe that in the algorithm (8.18)–(8.22), the inputs are
Êk−1 and z̃k, and the output is Êk.

1 In ILC, as written in (1.20), generally it is required that the initial state is fixed
at the same place. However, in practice, it could be different each iteration.
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8.1.2 Analytical Solutions

In this section, it will be shown that from the developed algorithm the baseline
error of the SVILC system along the iteration axis can be estimated. To obtain
this result we need to show that P̂k converges as k → ∞. For this purpose,
the following lemmas are developed first.

Lemma 8.3. If the covariance matrix of the process noise vector is given as
Qii �= 0 if i = j, Qij = 0, if i �= j and CB is full rank, then HQHT is
nonsingular.

Proof. If CB is full rank, H is nonsingular and Q is positive definite. Thus,
from det(HQHT ) = detH ·detQ·detHT , since detH �= 0 and detQ �= 0, we
have det(HQHT ) �= 0. Therefore, HQHT is nonsingular.

Lemma 8.4. Under the same conditions as Lemma 8.3, if A is any covariance
matrix, then A + HQHT is positive definite (p.d.), i.e., A + HQHT > 0.

Proof. Since A+HQHT is symmetric, if xT (A+HQHT )x > 0 for all nonzero
vectors x, then A+HQHT is positive. Since any covariance matrix is positive
or at least semi-positive definite, xT Ax ≥ 0. Therefore, if xT (A+HQHT )x >
0, then A+HQHT is positive definite. Let us make the following relationship:

xT (A + HQHT )x = xT Ax + xT HQHT x = xT Ax + yT Qy,

where we used y = HT x. Here noticing Q > 0, because it is diagonal matrix
with zero off-diagonal terms, yT Qy > 0 for all nonzero y. However, the nonzero
condition y �= 0 is enforced. Now, we have to prove that y �= 0 if and only if
x �= 0. It is easy to see that the column vectors and row vectors are linearly
independent because the H matrix is nonsingular. Hence, from

HT x = p1x1 + p2x2 + · · · + pnxn,

where [p1, p2, . . . , pn] = HT and [x1, x2, . . . , xn]T = x, we know that only the
trivial solution x1 = x2 = · · · = xn = 0 makes HT x = 0. Therefore, we know
that for all nonzero y, yT Qy > 0. This completes the proof.

Now, using the lemmas given above, let us develop the following theorem.

Theorem 8.5. If there exists a solution X for the following algebraic Riccati
equation (ARE):

AX + XA − XBX + C = 0 (8.23)

with A = 1
2I, B = (HQHT )−1 and C = R, then limk→∞ P̂k = P̂ ∗ ≡ X −

HQHT .

Proof. Inserting (8.19) into (8.20) yields

Kk = (P̂k−1 + HQHT )(P̂k−1 + HQHT + R)−1. (8.24)
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Also, inserting (8.19) and (8.24) into (8.22), we obtain

P̂k =
(
I − (P̂k−1 + HQHT )(P̂k−1 + HQHT + R)−1

)
(P̂k−1 + HQHT )

= P̂k−1 + HQHT − (P̂k−1 + HQHT )(P̂k−1 + HQHT + R)−1

× (P̂k−1 + HQHT ).

Now, since P̂k = P̂k−1 is equivalent to the convergence of P̂k, if and only if

HQHT − (P̂k−1 + HQHT )(P̂k−1 + HQHT + R)−1(P̂k−1 + HQHT ) = 0,

(8.25)

then P̂k converges to limk→∞ P̂k = P̂ ∗. For convenience, by writing X ≡
P̂k−1 + HQHT , we have

HQHT − X(X + R)−1X = 0. (8.26)

From Lemma 8.4, since X is nonsingular, we can change (8.26) to:

HQHT X−1 = X(X + R)−1. (8.27)

Next, using Lemma 8.3 and taking the inverse of both sides of (8.27), we
obtain:

X(HQHT )−1 = (X + R)X−1. (8.28)

Thus, we have

X(HQHT )−1X = (X + R) ⇔ X − X(HQHT )−1X + R = 0

⇔ I

2
X + X

I

2
− X(HQHT )−1X + R = 0.

(8.29)

Now, (8.29) is a typical algebraic Riccati equation, and A = 1
2I, B =

(HQHT )−1 and C = R. Thus, if there exists X such that (8.29) is satis-
fied, then Pk = Pk−1. This completes the proof.

In the next theorem, we show that there always exists a unique solution
of the ARE of Theorem 8.5. For this proof, we use a well-known existence
condition for continuous AREs, which is summarized in the following lemma.

Lemma 8.6. [107] For the following ARE:

AT K + KA − KBBT K + Q = 0 (8.30)

with Q = CT C, if (A,B) is stabilizable and (A,C) is observable, then there
exists a unique K = KT > 0 satisfying (8.30).
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Theorem 8.7. In stochastic SVILC, if CB is full rank, then there always
exists a unique p.d solution X of (8.23).

Proof. Let us define matrices

Vii =
1√
Qii

, Vij = 0, when i �= j, Uii =
√

Qii, Uij = 0, when i �= j

A :=
1
2
I; B := (H−1)T V ; C := U.

Then, we know that there always exists a matrix K such that λ(A+BK) < 0,
because B is invertible. Also since A and C are nonzero diagonal matrices,
the pair (A, C) is observable. Therefore, by Lemma 8.6, there exists a positive
definite solution X .

Remark 8.8. From [486], in addition to the conditions of Lemma 8.6, if (A,B)
is controllable, then we always have λ(A − BBT K) < 0. Since (A, B) is also
controllable, we have

λ
(
1/2I − (HQHT )−1X

)
< 0. (8.31)

Then, using (8.31), we can find an analytical condition for X − HQHT > 0.
This work is a topic for future work.

The condition for convergence is always an important consideration in
ILC. The convergence condition of the stochastic SVILC system can be estab-
lished based on this convergence condition, the baseline error of the stochastic
SVILC can be subsequently estimated. Furthermore, under more restrictive
conditions it can be shown that as a special case the convergence could be
monotonic. In the remainder of this section we first give a theorem that pro-
vides an upper bound for the baseline error and we then give a result that
establishes conditions for MC. Before further proceeding, for the analytical
solution, we need a definition with regard to the norm of a noise vector.

Definition 8.9. The stochastic norm of the measurement noise wk, (wk ∼
N(0, R)), a zero-mean white Gaussian process, is defined as

‖wk‖ =

√√√√ n∑
i=1

Rii,

where Rii represents the diagonal term of the noise covariance matrix.2

2 In fact, it is not possible to define the norm of a Gaussian noise vector (denoted
by w), because the l2-norm or the l∞-norm could be infinity. Thus, we cannot
say that a random vector is in lp space. However, E(‖w‖) < ∞. Thus, using the
expected values of the measurement noise vector enables us to bound the norm
of a noise vector stochastically. This assumption is practically acceptable due to
Remark 8.2.
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In the following theorems, when we use the terminology in a stochastic
sense, it implies that stochastic norms are used as defined above. Also, note
that the symbol ‖ · ‖ is used to denote the l2-norm.

Theorem 8.10. Defining SP∗ ≡
√∑n

i=1(P̂ ∗)ii, if ‖I − HΓ‖ < 1, the esti-
mated baseline error converges, in a stochastic sense, within an upper bound
given by:

‖Ê∗‖ ≤ 1
1 − ‖I − HΓ‖

∥∥(I − K∗)−1K∗∥∥(SP∗
+ ‖wk‖

)
, (8.32)

where K∗ ≡ P̄ ∗(P̄ ∗ + R)−1 and P̄ ∗ = P̂ ∗ + HQHT .

Proof. From Theorem 8.5, we know there exists P̂ ∗ as k → ∞. Thus, from
(8.19)–(8.20), we obtain the steady-state values of P̄k and Kk to be P̄ ∗ =
P̂ ∗ + HQHT and K∗ = P̄ ∗(P̄ ∗ + R)−1. Now, substituting K∗ and (8.18) into
(8.21), we have:

Êk = (I − HΓ )Êk−1 + K∗(z̃k − Êk−1 + HΓÊk−1)
= (I − K∗)(I − HΓ )Êk−1 + K∗z̃k. (8.33)

From the relationships z̃k = Yd − Ỹk = Yd − Yk + wk and Yd − Yk = Ek, and
from the definition ∆Ek = Ek − Êk, we also obtain z̃k = ∆Ek + Êk + wk.
Therefore, (8.33) becomes:

Êk = (I − K∗)(I − HΓ )Êk−1 + K∗(∆Ek + Êk + wk). (8.34)

Thus, we have

Êk = (I − HΓ )Êk−1 + (I − K∗)−1K∗(∆Ek + wk) (8.35)

and hence, from the general solution of the first-order discrete-time system,
as k → ∞, if ‖I − HΓ‖ < 1, we then obtain the inequalities:

‖Ê∗‖ ≤
∥∥∥∥ 1

1 − ‖I − HΓ‖(I − K∗)−1K∗
∥∥∥∥ ‖(∆Ek + wk)‖

≤ 1
1 − ‖I − HΓ‖

∥∥(I − K∗)−1K∗∥∥ (‖∆Ek‖ + ‖wk‖) ,

where we used
∥∥∥ 1

1−‖I−HΓ‖
∥∥∥ = 1

1−‖I−HΓ‖ , because ‖I − HΓ‖ < 1. Now,

since ‖∆Ek‖ =
√∑n

i=1 ∆Ek(i)2 and P̂ ∗ = E{∆E∗
k(∆E∗

k)T } where ∆E∗
k

is an estimated steady-state error boundary, we obtain
√∑n

i=1(P̂ ∗)ii =√∑n
i=1 ∆E∗

k(i)2, because ∆E∗
k is in the steady state. Therefore,

‖Ê∗‖ ≤ 1
1 − ‖I − HΓ‖

∥∥(I − K∗)−1K∗∥∥(SP∗
+ ‖wk‖

)
. (8.36)

This completes the proof.
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Theorem 8.10 shows that as K∗ → 0, ‖Ê∗‖ → 0. This means that from
P̄ ∗ = P̂ ∗ + HQHT and K∗ = P̄ ∗(P̄ ∗ + R)−1, as P̂ ∗ → 0 and Q → 0, the
baseline error goes to zero. That is, in the noise-free measurement case it is
always possible to have ILC convergence with zero error, but in the more
practical noisy-measurement setting, ILC must always live with a nonzero
baseline error, as pointed out in [64].

Remark 8.11. Theorem 8.10 provides an upper bound for the estimated error
Êk. But, although the upper bound of the actual error Ek could be different
from the upper bound of Êk given in Theorem 8.10, since ‖P̂ ∗‖ is known and
P̂k bounds Ek − Êk, the upper bound of the actual error can be estimated by
‖Ek‖ ≤ ‖Êk‖ + SP∗

.

Next we consider conditions for monotonic convergence.

Theorem 8.12. Let us suppose that the error covariance matrix is in the
steady state, and the iteration count is at the (k − 1)th trial. If SP∗

+ ‖wk‖ <
‖Êk−1‖ and

‖I − HΓ‖ +
∥∥(I − K∗)−1K∗∥∥ < 1, (8.37)

then the estimated error vector can, in a stochastic sense, be MC, i.e., ‖Êk‖ <
‖Êk−1‖.
Proof. From (8.35), the following inequalities can easily be derived:

‖Êk‖ = ‖(I − HΓ )Êk−1 + (I − K∗)−1K∗(∆Ek + wk)‖
≤ ‖(I − HΓ )‖‖Êk−1‖ +

∥∥(I − K∗)−1K∗∥∥ (‖∆Ek‖ + ‖wk‖)
= ‖(I − HΓ )‖‖Êk−1‖ +

∥∥(I − K∗)−1K∗∥∥ (SP∗
+ ‖wk‖). (8.38)

Therefore, if SP∗
+ ‖wk‖ < ‖Êk−1‖, we then have the inequality ‖(I −

HΓ )‖‖Êk−1‖ + ‖(I − K∗)−1K∗‖ (SP∗
+ ‖wk‖) < (‖(I − HΓ )‖

+ ‖(I − K∗)−1K∗‖
)
‖Êk−1‖. Hence, if ‖I − HΓ‖ + ‖(I − K∗)−1K∗‖ < 1,

the MC condition ‖Êk‖ < ‖Êk−1‖ is guaranteed.

Remark 8.13. Theorem 8.12 also shows that as K∗ → 0, the MC condition can
be easily satisfied. Further, we see that the learning gain matrix Γ = H−1 is
the best possible gain for MC of the stochastic SVILC system, as is the case
in all first-order ILC algorithms.

Theorem 8.12 also provides an important design strategy. Let us suppose
that we have designed an ILC learning gain Γ such that

‖I − HΓ‖ +
∥∥(I − K∗)−1K∗∥∥ < 1 (8.39)

and further suppose that the system is in the steady state. Then, at the
(k − 1)th trial, although the estimation error ‖Êk−1‖ might be very big due
to unexpected noises (more than SP∗

+ ‖wk‖ = SP∗
+
√∑n

i=1 Rii ), the
estimated error is forced to decrease at the kth iteration trial in a stochastic
sense, which is also an expected result from Theorem 8.10. Thus, we have the
following remark:
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Remark 8.14. From Theorem 8.10, it was shown that ‖Êk‖ and ‖Ek‖ can be
upper-bounded, and from Theorem 8.12, when ‖Êk‖ is bigger than a specified
value (but after the first convergence to the specified value is achieved), MC
is enforced. But, both theorems are associated with the learning gain matrix
Γ . Thus, by properly designing Γ off-line, a specified design requirement can
be achieved.

We will illustrate this result in the next subsection.

8.1.3 Simulation Illustrations

In this subsection, an example is provided to illustrate the validity of the
suggested Kalman filter-augmented SVILC scheme. The following discrete-
time system, which was given in Section 5.3, is used:

xt+1 =

⎡⎣−0.50 0.00 0.00
1.00 1.24 −0.87
0.00 0.87 0.00

⎤⎦xt +

⎡⎣ 1.0
0.0
0.0

⎤⎦ut (8.40)

yt = [ 2.0 2.6 −2.8 ] xt, (8.41)

The system has poles at [ 0.62 + j0.62, 0.62− j0.62,−0.50 ] and zeros at
[ 0.65,−0.71 ]. In this test, we assume a zero initial condition on every trial
and 10 discrete-time points. The desired repetitive reference trajectory is
Yd(j) = 5 sin(8.0(j − 1)/10), j = 1, . . . , 10. The same learning gain ma-
trix Γ as used Section 5.3 is used, which was determined by an optimization
method based on Lyapunov stability analysis. For random Gaussian noise,
the MATLAB R© command randn is used, with the covariance of v′k taken as
10−4 and the covariance of wk taken as 1. That is, diag(Q′) = 10−4 and
diag(R) = 1.0, because practically it is reasonable to assume that Q′ is very
small. Figures 8.1 to 8.4 show the test results. Figure 8.1 shows the norms of
the tracking error Ek = Yd − Yk with respect to iteration number for cases
with and without a Kalman filter along the iteration axis. The solid line is
the calculated upper boundary of Ek. Figure 8.2 shows the norms of Êk and
the calculated upper boundary of Êk with respect to the iteration number. As
shown in Figure 8.1, with the Kalman filter, the baseline error is significantly
reduced. Figure 8.2 also shows the calculated upper bound of the estimated
baseline error (dash-dot line, 0.9088) from Theorem 8.10. It can be observed
that the actual baseline error is well-bounded by the previously calculated
upper-boundary values. Figure 8.3 shows the covariance matrix of the esti-
mated error vector. The top left plot is the 3-D representation of the actual
Pk (Pk is a 10 × 10 matrix). The top right plot is the 3-D representation
of the estimated Pk (P ∗

k ). The bottom left plot is the 3-D representation of
Pk − P ∗

k . The bottom right (top) plot is the norm of the covariance of the
estimated error ‖P̂k‖ with respect to iteration number and the bottom right
(bottom) plot is ‖P̂k − P ∗

k ‖. As shown in these figures, P̂k converges to the
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Fig. 8.1. Norms of tracking error Ek = Yd−Yk w.r.t. iteration number for cases with
and without KF in iteration axis. The solid line is the calculated upper boundary
of Ek.

previously calculated P ∗
k accurately. In particular, the bottom right figures

show P̂k quantitatively, because we used ‖P̂k‖. As shown in these figures,
as the iteration number increases, the error of the estimated state (in this
monograph, ∆Ek = Ek − Êk) decreases and after the 15th iteration, there is
a steady-state baseline error. As shown in the bottom figure, after the 15th

iteration, ‖P̂k −P ∗
k ‖ is almost zero. This means that the previously estimated

P ∗
k is very accurate and reliable. Figure 8.4 shows the estimated error Êk and

actual error Ek with respect to time and iteration. The top left plot is the
3-D representation of actual Ek. The top right plot is the 3-D representation
of the actual Êk. The bottom plot is the 3-D representation of Ek − Êk. As
shown in these figures, the suggested algorithm estimates Ek reliably even
though it is not perfect. The bottom difference corresponds to the difference
between Figure 8.1 and Figure 8.2.

8.1.4 Concluding Remarks

In this section, a new Kalman filter scheme for the SVILC system was devel-
oped. The new method provides an effective ILC design scheme for systems
with measurement noise with little extra implementation cost. Through a nu-
merical example, the validity of the newly proposed method was illustrated.
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Fig. 8.2. Norms of Êk and the calculated upper boundary of Êk w.r.t. iteration
number

The key idea of the new method is that the learning gain matrix can be de-
termined a priori (not iteration-varying), but the output error is estimated
on-line. As a main contribution of this section, it was shown that the baseline
error of uncertain ILC process could be significantly reduced by the suggested
stochastic ILC scheme and the upper bound of the estimated error (and ac-
tual error) can be calculated a priori, given the input and measurement noise
covariances. From the fact that the new algorithm computes the learning gain
matrix off-line, the work proposed in this section is significantly different from
the existing stochastic ILC algorithms. Furthermore, in Remark 8.2, we dis-
cussed the possibility of using the suggested scheme to handle the initial reset
problem.

Finally, we make the following remark about how to relax the requirement
of assuming knowledge of the system Markov matrix H :

Remark 8.15. Although in Theorem 8.10 the condition ‖I − HΓ‖ < 1 was
required, this condition can be relaxed to ρ(I − HΓ ) < 1, where ρ(·) is the
spectral radius. In this case, the system will be bounded-input, bounded-
output stable (BIBO stable). Note again, if we only require ρ(I − HΓ ) < 1,
then we do not need to know A matrix. That is, as proven in Theorem 8.7, if
CB is full rank, there exists a steady-state P̂k as k → ∞, and also from (8.35),
if CB is full rank, we can then satisfy the condition ρ(I − HΓ ) < 1. There-
fore, without knowing A, the suggested stochastic ILC scheme guarantees the
steady-state error and the BIBO stability. However, without A, Theorem 8.12
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Fig. 8.3. Top left: 3-D representation of actual Pk (Pk is 10 × 10 matrix). Top
right: 3-D representation of estimated Pk (P ∗

k ). Bottom left: 3-D representation of
Pk −P ∗

k ). Bottom right: (Top) Norm of covariance of the estimated error ‖P̂k‖ w.r.t.
iteration number; (Bottom) ‖P̂k − P ∗

k ‖.

is no longer valid and the baseline error can not be estimated analytically.
Hence, the suggested algorithm can be used for two purposes: (i) with knowl-
edge of A, the baseline error can be estimated and MC can be guaranteed,
but (ii) without knowledge of A, BIBO stability and steady-state error are
still achievable.

In this monograph, we assume that the Markov matrix H is known; based
on this assumption, we have developed an algorithm for estimating and re-
ducing the baseline error. Although this approach has been widely used in
ILC [396, 313, 259, 257, 323] with an exception [55], in order to conform the
main purpose of the ILC algorithm, we may have to consider uncertain (or
unknown) H matrix. In this case, as commented in [396], we need to identify
the model. For this purpose, various methods could be considered as done in
[396, 323]. In this monograph, however, we propose using the Wiener filter or
the least squares method for its simplicity. This is described in detail in the
following section.
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Fig. 8.4. Top left: 3-D representation of actual Ek. Top right: 3-D representation
of actual Êk. Bottom: 3-D representation of actual Ek − Êk.

8.2 Iteration-varying Model Uncertainty

In this section, we consider the problem of monotonic convergence for ILC
systems that face stochastic noise along the iteration axis. In most of the
existing work in the literature the model uncertainty has been considered to
be iteration-invariant. Likewise, in previous chapters, the MC property of the
ILC process has been investigated based on the Lyapunov equation, vertex
matrices of the interval Markov matrix, and norm-based methods. However,
the scope of those works was restricted to iteration-invariant model uncer-
tainties. Yet, it is quite natural to suppose that model uncertainty could be
iteration-variant and there could be non-deterministic model variation at ev-
ery iteration. This section is dedicated to this problem. In particular, we try
to guarantee MC of ILC for iteration-varying model uncertain systems un-
til the tracking error is reduced below a previously calculated baseline error
boundary.
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8.2.1 Basic Background Materials of Model Uncertain
Super-vector ILC

Let us consider the following 2-dimensional uncertain system:

xk(t + 1) = (A + ∆A
k )xk(t) + (B + ∆B

k )uk(t) + v(k, t) (8.42)
yk(t) = (C + ∆C

k )xk(t) + w(k, t) (8.43)

where ∆A
k , ∆B

k , and ∆C
k are uniformly distributed (stochastic) model uncer-

tainties varying along the iteration axis, and v(k, t) and w(k, t) are time- and
iteration-dependent process and measurement noises. As a reminder, t is the
discrete-time point along the time axis, which means that t is on a finite hori-
zon. That is, at each iteration trial, t has N different discrete-time points.
Meanwhile, k is on an infinite horizon. So it monotonically increases. Thus,
we can consider two different types of model uncertainties. The first type
is iteration-independent model uncertainty and the second type is iteration-
variant model uncertainty. In this section, we are interested in the latter.
Under this research direction, the first required task is to convert the model
uncertainty of (8.42)–(8.43) to the Markov matrix Hk according to model
uncertainty type. Let us suppose that the model uncertainty has been incor-
porated into the system Markov matrix properly (see Chapter 4) and that we
can write

Hk = Ho + ∆H
k , (8.44)

where Ho is the system Markov matrix corresponding to the nominal plant;
∆H

k is a uniformly distributed (stochastic) additive uncertain Markov matrix
corresponding to the uncertainty of the plant, which is bounded as ∆H

k ∈
∆I :=

[
∆, ∆

]
with upper boundary ∆ and lower boundary ∆. Superscript I

is used to denote the interval model uncertainty as in Chapter 4, but in this
case the variation between the boundaries is stochastic (with respect to the
iteration axis). Then, using a model uncertain set, Hk can be defined as

Hk ∈ HI :=
[
H, H

]
, (8.45)

where HI is an interval uncertain Markov plant set, H is the lower boundary
of the interval Markov plant, and H is the upper boundary of the interval
Markov plant. Next, our task is to find the learning gain matrix such that
the uncertain super-vector ILC system defined from (8.44) is asymptotically
stable or MC against all possible uncertain interval plants HI . Throughout
this section, it is assumed that ∆ = −∆ and the model uncertainty is bounded
in an operator norm topology (without special comment, ‖ · ‖ represents an
operator 2-norm) such as

‖∆H
k ‖ ≤ ∆∗, ∆H

k ∈ ∆I , k = 1, 2, . . . ,∞,

where ∆∗ is the maximum singular value of the interval matrix ∆I , which can
be calculated from the following lemma:
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Lemma 8.16. The maximum 2-norm of ∆H
k , i.e., ∆∗, is calculated from

‖∆‖ = ‖∆‖ = ∆∗.

Proof. See Theorem 3.1 of [384].

8.2.2 ILC Design for Iteration-varying Model Uncertain System

In this section, iteration-varying learning gain matrices are designed. Note
that, although it is not impossible to guarantee the MC of iteration-varying
model uncertain ILC system with fixed learning gain matrices,3 we have found
that it is quite difficult to reduce the baseline error using fixed learning gain
matrices. Thus, this section focuses on the iteration-varying learning gain
matrices. In the sequel, the main theoretical developments are briefly summa-
rized.

Let us first denote iteration-varying Markov plants by Hk ≡ Ho + ∆k.
Then, using the ILC update rule

Uk+1 = ΛkUk + ΓkEk, (8.46)

we can derive the following error propagation rule:

Ek+1 =
(
Hk+1Λk(Hk)−1 − Hk+1Γk

)
Ek +

(
I − Hk+1Λk(Hk)−1

)
Yd.

(8.47)

In (8.46), the ILC control input Uk+1 is calculated by multiplying the control-
signal proportional gain matrix Λk by Uk and by multiplying the error-signal
proportional gain matrix Γk by Ek. Here, notice that desired trajectory Yd

is fixed and tracking error Ek is assumed known because we calculate the
control signal of the (k +1)th iteration trial using the past information before
the kth iteration trial. Now, since Yd and Uk are known, if it is assumed that
Hk can be estimated at the (k + 1)th iteration, then we know that during
the calculation of the propagated (k + 1)th error signal in (8.47), only the
Markov plant matrix Hk+1 at the (k + 1)th iteration is unknown. From this
observation, we rewrite (8.47) as

Ek+1 =
(
Hk+1Λk(Ĥk)−1 − Hk+1Γk

)
Ek +

(
I − Hk+1Λk(Ĥk)−1

)
WkEk,

(8.48)

where Ĥk is an estimate of the Markov plant Hk at the (k + 1)th iteration.
Then, introducing an intermediary matrix Wk that satisfies Yd = WkEk, we
obtain the following theorem:
3 In the preceding section, we provided a scheme for reducing the baseline error with

a fixed learning gain matrix, but with iteration-independent model uncertainty.
That is, in the preceding section the iteration-varying uncertainty was due to
disturbances and noise, not model variation. In this section the uncertainty is in
the model.
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Theorem 8.17. If the learning gain matrices are given as Λk = (Ho)−1Ĥk

and Γk = (Ho)−1, then the iteration-varying ILC system is MC, i.e., ‖Ek+1‖ <
‖Ek‖ if

∆∗ <
1
α

where α = minWk

{
‖(Ho)−1Wk‖

}
and Wk is determined from Yd = WkEk.

Proof. From (8.48), the MC condition is given as

‖T ‖ < 1, (8.49)

where T := Hk+1Λk(Ĥk)−1 − Hk+1Γk +
(
I − Hk+1Λk(Ĥk)−1

)
Wk. Let us

substitute Γk = ΛkĤ−1
k into (8.49). Then we have∥∥∥(I − Hk+1Λk(Ĥk)−1

)
Wk

∥∥∥ < 1.

From the relationships:∥∥∥(I − Hk+1Λk(Ĥk)−1
)

Wk

∥∥∥ =
∥∥∥(I − (Ho + ∆k+1)Λk(Ĥk)−1

)
Wk

∥∥∥
=
∥∥(I − (Ho + ∆k+1)(Ho)−1

)
Wk

∥∥
=
∥∥∆k+1(Ho)−1Wk

∥∥
≤ ‖∆k+1‖

∥∥(Ho)−1Wk

∥∥
≤ ∆∗ ∥∥(Ho)−1Wk

∥∥ ,

if
∆∗ ∥∥(Ho)−1Wk

∥∥ < 1 ⇔ ∆∗ <
1

‖(Ho)−1Wk‖
,

then the ILC process is MC. Thus, we have Γk = (Ho)−1. However, observe
that the Wk matrix that satisfies the relationship Yd = WkEk is not unique.
Therefore, to check the MC of the ILC process at the kth iteration without
conservatism, we have to find

max
Wk

{
1

‖(Ho)−1Wk‖

}
⇔ min

Wk

{
‖(Ho)−1Wk‖

}
,

with Yd = WkEk. Consequently, at the kth iteration trial, if

∆∗ <
1
α

where α = minWk

{
‖(Ho)−1Wk‖

}
with Yd = WkEk, then ‖Ek+1‖ < ‖Ek‖.

If we can allow some conservatism, Theorem 8.17 can be relaxed. From
‖Yd‖ ≤ ‖Wk‖‖Ek‖ and from

1
‖(Ho)−1‖‖Wk‖

≤ 1
‖(Ho)−1Wk‖

,

we derive the following relaxed result.
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Corollary 8.18. With Λk = (Ho)−1Ĥk and Γk = (Ho)−1, the iteration-
varying ILC system is MC if

∆∗ <
σ(Ho)

α

where α = min{‖Wk‖} with Yd = WkEk.

Proof. Since ‖(Ho)−1‖ = 1
σ(Ho) , the proof is immediate.

Remark 8.19. In Theorem 8.17 and Corollary 8.18, the MC conditions were
derived without calculating the inverse interval matrix of (8.47). Thus, the
results will be much less conservative than a result obtained by calculating
the inverse interval matrix of (8.47). However, it is a disadvantage of Theo-
rem 8.17 and Corollary 8.18 that we must solve α = minWk

{
‖(Ho)−1Wk‖

}
and α = min{‖Wk‖} with the constraint Yd = WkEk at every iteration trial.

Theorem 8.17 and Corollary 8.18 provide MC conditions at the kth iter-
ation. Using some operator norm properties, we can also answer the reverse
question: under what condition is MC not guaranteed? The following corollary
answers this question:

Corollary 8.20. With Λk = (Ho)−1Ĥk and Γk = (Ho)−1, defining Ek = Êk�

such that ‖Êk‖ = 1, if
σ(Ho)
αmin

≤ ∆∗

where αmin = ‖Yd‖
� , then MC of the ILC process is not guaranteed.

Proof. From Corollary 8.18, α = min{‖Wk‖} with Yd = WkEk. Now, changing
this into Yd = WkĒk� where ‖Ēk‖ = 1, we find the relationship

‖Yd‖ = ‖WkĒk‖� ≤ ‖Wk‖�, (8.50)

because ‖Wk‖ = max‖x‖=1 ‖Wkx‖. Thus, α = min{‖Wk‖} ≥ ‖Yd‖
� with any

Wk if Wk satisfies the equality Yd = WkEk, because ‖Wk‖ ≥ ‖Yd‖
� . Therefore,

the following relationship is always true: σ(Ho)
α ≤ σ(Ho)

αmin
. Consequently, if

σ(Ho)
αmin

≤ ∆∗, then σ(Ho)
α ≤ ∆∗, so MC is not guaranteed.

In Theorem 8.17 and Corollary 8.18, to calculate α, an optimization scheme
can be used. However, in each iteration, it is computationally expensive to
perform the optimization. In what follows, a sub-optimal scheme is suggested
to find α. To find α = minWk

{
‖(Ho)−1Wk‖

}
, with the constraint Yd = WkEk,

let us use the equality:

(Ho)−1Yd = (Ho)−1WkEk. (8.51)

Then the sub-optimal strategy uses the inequality ‖(Ho)−1Wk‖ ≤ ‖(Ho)−1‖
‖Wk‖ ≤ ‖(Ho)−1‖

√
N‖Wk‖∞, where N is the size of the matrix Wk and

‖ · ‖∞ is the operator ∞-norm. We will minimize
∥∥(Ho)−1Wk

∥∥ by minimizing
‖Wk‖∞ because ‖(Ho)−1‖ is fixed.
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Theorem 8.21. Let us define the maximum absolute element of Ek as

β ≡ argEk(j) max
i=1,...,N

|Ek(i)|,

where Ek = [Ek(1), Ek(2), . . . , Ek(N)]T and j ∈ {1, 2, . . . , N}. Also define an
N × N matrix O, whose elements are zero except its jth column (denoted by
Oj), by

Oj ≡ [Z(1)/β, Z(2)/β, . . . , Z(N)/β]T , (8.52)

where the vector Z is given as Z ≡ (Ho)−1Yd. Then, a sub-optimal α for
Theorem 8.17 and Corollary 8.18 is calculated as α = ‖O‖.

Proof. In Theorem 8.17, we are interested in finding minWk

{
‖(Ho)−1Wk‖

}
,

subject to (Ho)−1Yd = (Ho)−1WkEk. In Yd = WkEk, Yd, and Ek are known
vectors. Observe that, as already commented, the Wk that satisfies Yd = WkEk

is not unique. Let us consider the first row vector of Wk. It is easy to see that
a vector Wk(1, i), i = 1, . . . , N that satisfies

Yd(1) = Wk(1, 1)Ek(1) + Wk(1, 2)Ek(2) + · · · + Wk(1, N)Ek(N),

where Yd(1) is the first element of vector Yd and Ek(i) are elements of Ek, can
be solutions for the first row vector (denoted W 1

k ) of Wk. We can arbitrarily
define Wk(1, i) as Wk(1, 1) = ζ1Yd(1)

Ek(1) , Wk(1, 2) = ζ2Yd(1)
Ek(2) , . . ., Wk(1, N) =

ζN Yd(1)
Ek(N) , where

∑N
i=1 ζi = 1. In this case, the 1-norm of the first row vector of

Wk is calculated as

‖W 1
k ‖1 =

N∑
i=1

|Wk(1, i)| =
N∑

i=1

∣∣∣∣ζiYd(1)
Ek(i)

∣∣∣∣ . (8.53)

Here, the following relationship is always true regardless of ζi:

N∑
i=1

∣∣∣∣ζiYd(1)
Ek(i)

∣∣∣∣ ≥ N∑
i=1

∣∣∣∣ζiYd(1)
β

∣∣∣∣ ≥ ∣∣∣∣Yd(1)
β

∣∣∣∣ . (8.54)

Hence, from (8.53) and (8.54), we choose min{‖W 1
k ‖1} as min{‖W 1

k ‖1} =∣∣∣Yd(1)
β

∣∣∣. Therefore, if index j determined from β ≡ argEk(j) maxi=1,...,N |Ek(i)|
is found, the first row vector of Wk can be determined as Wk(1, 1) =
0, . . . , Wk(1, j − 1) = 0, Wk(1, j) = 1, Wk(1, j + 1) = 0, . . . , Wk(1, N) = 0.
In the same way, the generalized minimum of the pth row vector (denoted
as W p

k ) of Wk is also determined as Wk(p, 1) = 0, . . . , Wk(p, j − 1) =
0, Wk(p, j) = 1, Wk(p, j + 1) = 0, . . . , Wk(p, N) = 0. Finally, since ‖Wk‖∞ =
max1≤i≤N

∑N
j=1 |Wk(i, j)| = max1≤i≤N ‖W i

k‖1, from (8.54), we can find
min{‖Wk‖∞} when the column vectors of Wk are zero except for the jth col-
umn vector, which is calculated as [Yd(1)/β, Yd(2)/β, . . . , Yd(N)/β]T . There-
fore, (Ho)−1Wk = O. This completes the proof.
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Now, by simple algebraic manipulation, since the following is true:

‖O‖ =
1
|β| ‖Z‖

we can obtain a simplified MC condition:

Corollary 8.22. If ∆∗ ≤ |β|
‖Z‖ , the learning gain matrices Λk = (Ho)−1Ĥk

and Γk = (Ho)−1 guarantee MC of the iteration-varying ILC system.

Corollary 8.22 provides a very simple MC checking method. Now, based
on the discussion above, we arrive at our final result for the simplified MC
condition and a baseline error boundary.

Theorem 8.23. Learning gain matrices Λk = (Ho)−1Ĥk and Γk = (Ho)−1

guarantee MC if
∆∗‖Z‖ < ‖Ek‖∞,

and the baseline error boundary E∗ is then calculated as E∗ = ∆∗‖Z‖.

Proof. From ∆∗ ≤ |β|
‖Z‖ , since ∆∗‖Z‖ ≤ |β| and |β| = ‖Ek‖∞ are true,

∆∗‖Z‖ < ‖Ek‖∞ is straightforward. Also, we know that if ‖Ek‖∞ is big-
ger than ∆∗‖Z‖, which can be calculated previously, the ILC process is then
MC. Hence, the system converges until the tracking error is reduced below
∆∗‖Z‖. Thus, the baseline error boundary in the ∞-norm topology can be
calculated as E∗ = ∆∗‖Z‖.

8.2.3 Parameter Estimation

In this section, a method is developed to estimate the Markov parameters of
the plant to find Ĥk. Let us consider the following stochastic system:

Yk = HkUk + wk (8.55)

where wk is the measurement noise. Here, we seek an optimal estimation of
the Markov matrix Hk using the known control input Uk and the measured
output Yk, but with stochastic noise wk. In this monograph, for a simple
result, we use the Wiener filter and the least squares method. Generally, in
the Wiener filter or least squares estimation, if the system is given as

u = Hv + w (8.56)

where u is the output measurement, H is the system, v is the input, and w
is stochastic noise, then it is assumed that u is measured and H is known. In
this case, the Wiener filter or least squares method can be used to estimate
the input signal v effectively. However, in our problem, it is assumed that H is
unknown, but u is measured and v is known. Thus, clearly the problem setup
of our case is different from the general Wiener filter or least squares method.
However, fortunately, due to the fact that Hk is a lower triangular Toeplitz
matrix, we can easily formulate the Wiener filter for our ILC system. The key
idea is to use the following property:
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Property 8.24. If Uk(1) �= 0, then the following commutative property is true:

HkUk = Ukhk (8.57)

where Hk is a lower triangular Toeplitz matrix, Uk is a column vector, Uk is
a Toeplitz matrix defined from Uk by:

Uk =

⎡⎢⎢⎢⎢⎣
Uk(1) 0 0 · · · 0
Uk(2) Uk(1) 0 · · · 0
Uk(3) Uk(2) Uk(1) · · · 0

...
...

...
. . .

...
Uk(N) Uk(N − 1) Uk(N − 2) · · · Uk(1)

⎤⎥⎥⎥⎥⎦
and the new Markov column vector hk is defined as

hk = [Hk(1, 1), Hk(2, 1), Hk(3, 1), . . . , Hk(N, 1)]T . (8.58)

Now, using Property 8.24, (8.55) can be rewritten as

Yk = HkUk + wk = Ukhk + wk. (8.59)

Finally, by estimating hk from the Wiener filter or the least squares method
(we do not explain the Wiener filter and least squares methods in detail; for
these methods, for example, see [214]), we can optimally estimate the Markov
matrix Hk for the (k +1)th iteration trial. From the least squares method, hk

is estimated as

ĥk = (UT
k Uk)−1UT

k Ỹk. (8.60)

Using the Wiener filter, the Markov parameters are estimated as

ĥk = GỸk, (8.61)

where the Wiener filter G is calculated by

G = [UT
k Uk + σ2

nR−1]−1UT
k , (8.62)

with
R = E[hkhT

k ], Rn = diag(σ2
n) = E[wkwT

k ].

Observe that if the least squares method is used, we do not need to know
the stochastic characteristics of the uncertain Markov matrix and measure-
ment noise, while when using the Wiener filter, we need to know these stochas-
tic characteristics. It is also necessary to pay attention to the calculation
of E[hkhT

k ] because hk is an interval vector defined as hk = ho
k + ∆hk or

hk = [hk,hk]. Here, simply by assuming uniformly distributed interval uncer-
tainty, we calculate the expectation value such E[hk] = ho

k. Thus, R is simply
calculated as
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R = E[hkhT
k ] =

⎡⎢⎢⎣
ho

1h
o
1 ho

1h
o
2 · · · ho

1h
o
N

ho
2h

o
1 ho

2h
o
2 · · · ho

2h
o
N

...
...

. . .
...

ho
Nho

1 ho
Nho

2 · · · ho
Nho

N

⎤⎥⎥⎦ . (8.63)

Remark 8.25. In the Wiener filter, for the calculation of G we need to find the
inverse of R. But, as shown in (8.63), rank(R) = 1, so the inverse of R does
not exist. To overcome this singularity, we give a bit of interval uncertainty
to each element of R.

Remark 8.26. In the parameter estimation, it is assumed that Uk(1) �= 0 in
order to avoid the singularity of Uk. Thus, during initial iteration, the first
discrete-time control input is forced to satisfy U1(1) �= 0, while U1(i) = 0 is
allowed when i = 2, 3, . . . , N .

8.2.4 Simulation Illustrations

We use the same example given in Section 5.3. To avoid the singularity
mentioned in Remark 8.26, the initial control input at the first iteration is
given as 1, i.e., U1(1) = 1, and U1(i) = 0, i = 2, 3, . . . , N and the mea-
sured noise covariance is modeled as σ2

n = 0.001. From (8.40) and (8.41), the
nominal Markov parameters are calculated as ho = [2.0000, 1.6092,−0.0235,
−1.0295,−1.3839,−0.8676, −0.0421, 0.6322, 0.8118, 0.5263]T. For the interval
model uncertainty, we allowed 10 percent interval uncertainty at each itera-
tion. For the interval uncertainty, the MATLAB R© command rand was used
and for the measured noise, the MATLAB R© command randn was used. Fig-
ure 8.5 shows the test result. In this figure, ∆∗‖Z‖ is calculated from Theo-
rem 8.23. From this result, we find that the suggested learning gain matrices
and parameter estimation method guarantee the baseline error to be below the
previously calculated value. Further, until the baseline error is reduced below
the calculated baseline boundary, the tracking error is converging monotoni-
cally.

8.2.5 Concluding Remarks

In this section, MC ILC algorithms were designed for plants with iteration-
varying model uncertainty. Using the suggested method, we calculated the
baseline error boundary and showed that the tracking error is reduced below
this baseline. Moreover, the MC property of the ILC process is enforced until
it arrives the baseline error boundary. Thus, although there exists iteration-
varying model uncertainty, the ILC approach suggested in this section provides
a satisfactory transient performance.
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Fig. 8.5. Baseline error of iteration-varying model uncertain ILC system

8.3 Intermittent Iterative Learning Control

Robustness has been studied in ILC from a number of different perspec-
tives, depending on the underlying assumptions made about the system to
be controlled. For example, in stochastic ILC, learning gain matrices are de-
signed using Kalman filters to primarily take into account measurement noise
[397, 396, 395, 54]. In H∞ ILC, external disturbances and model uncertainty
are considered on the time axis [360]. Robustness with respect to initial re-
setting has been one of the most important research topics in ILC, given that
by assumption ILC requires an initial equivalent condition at every iteration
[353, 75, 131, 431, 434]. Frequency-domain analysis and/or synthesis based
on frequency-based filtering considers noise and disturbances in the frequency
domain [377, 127, 327, 330].

In this section, we introduce a new type of uncertainty that can arise during
the implementation of an ILC system – data dropout during transmission of
measurements or control signals between a remote plant and the ILC controller
– and we provide an analytical ILC learning gain design method to ensure
convergence in the face of such uncertainty. The section is organized as follows:
In Section 8.3.1, we explain the idea of intermittent ILC in detail, including
the motivation for this study. In Section 8.3.2, we provide a synthesis method
and an analysis for convergence. Using a stochastic Kalman filtering approach,
we show the surprising result that it is possible to design a learning gain such
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that the system eventually converges to a desired trajectory as long as all the
data is not lost. Conclusions are given in Section 8.3.3.

8.3.1 Intermittent ILC

In this subsection, we provide motivations for the problem of intermittent
ILC.

Networked Control Systems

Recently, networked control systems (NCS) have become very popular, due
to the benefit of reducing the complexity of directly wiring between comput-
ers, saving the costs of maintenance of controllers at remote plants, etc. Due
to these benefits, real-time industrial networks such as DeviceNet, Profibus,
FireWire, etc., have emerged as new technologies for distributed control ap-
plications [46]. Most of these industrial networks have been used for remote
control applications and factory automation. The key feature of these indus-
trial networks is to connect sensors, actuators, and controllers as network-
wired nodes. This feature has enabled reducing the system wiring, increasing
system agility, making it easier to diagnose the system, and increasing system
reliability. Applications of computer networks include military unmanned ve-
hicles, manufacturing plants, telerobotics, telemedicine, and various kinds of
information and data signal exchanges between spatially distributed system
components. Generally, the distributed system consists of a supervisory con-
troller, a remote plant, the main controller, actuators, sensors, and a network
that connects all these components. Figure 8.6 depicts this idea.

Unfortunately, despite the benefits, in NCS applications there are also
some drawbacks. First, there is the problem of data congestion, which is
caused by lack of a universal clock between the main controller and the remote
plant, hardware-inherent data delays, and communication constraints such as
channel capacity. Furthermore, in the case of MIMO systems or multiple net-
worked plants, data congestion and other factors, such as hard-nonlinearities,
can cause time-asynchrony among the multiple remote plants or subsystems.
One of the major effects of these drawbacks is data dropout. In NCS research
there have been numerous efforts to compensate for data congestion [447, 456,
491, 46, 470, 283, 471, 231, 339], and to improve the performance of systems

Actuator SensorPlantNetworkMain controller

Network

-

Fig. 8.6. Direct closed-loop networked control system configuration
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that experience data dropout [463, 281, 273, 272, 271, 552, 411, 482, 412].
With regard to data dropout, it has been shown that there is a critical data
dropout rate [411, 482, 412] above which the networked system becomes un-
stable and therefore the desired performance is no longer achieved.

In this section, we suggest that for iterative learning control systems op-
erated over a networked control system it is possible to address, and, indeed,
to alleviate the data dropout problem. Specifically, we show that if the plant
in a networked control system is to be operated repetitively, then there is an
incredible advantage to using ILC. Our main theoretical result is that if the
control gain is updated by an ILC scheme and the remote plant operates in
a repetitive way, the resulting NCS will be stable as long as there is a part
of the data measurement, whatever amount it is, that gets through. That is,
in an extreme case, even though 99 percent of the data is dropped, if there is
1 percent data measurement, the ILC networked control system will be sta-
ble along the iteration axis. This result is surprising and cannot be true in
non-repetitive NCS problems [411, 482, 412].

What Is Intermittent ILC?

The key idea of ILC is to use information from past repetitions to compute the
current repetition’s control effort. Throughout this subsection, let us consider
the following discrete-time, 2-dimensional system:

xk(t + 1) = Axk(t) + Buk(t) (8.64)
yk(t) = Cxk(t) (8.65)

where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rl×n. We can consider two different
types of data dropouts when the ILC main controller is connected to the
remote plant via a network. The first one occurs when the control input uk(t)
is updated. For instance, in a typical ILC update law, the control input uk+1(t)
is calculated by uk+1(t) = uk(t) + γek(t + 1), where ek(t + 1) = yd(t + 1) −
yk(t+1), yd is the desired output, and yk is the actual measured output. In this
update, the stored control input information uk(t) or the error term γek(t+1)
may be missed during the data transfer in the network. From Figure 8.6, the
remote ILC controller is located in the box named “Main controller” and
the controlled-remote plant is located in the box named “Plant.” During the
control signal transmission through the network, the signal could be dropped,
which means that in the ILC control signal calculated by uk+1 = uk(t) +
γek(t + 1), the past control signal uk(t) and/or error term γek(t + 1) may
be missed. The second type of data dropout is due to measurement data loss
during the signal transfer from the sensor to the main controller. In this case,
mathematically, equation (8.65) can be changed as

yk(t) = η(t)Cxk(t) (8.66)

where η(t) could be zero or one (i.e., η(t) ∈ {0, 1}). But, this zero or one could
be random due to the stochastic characteristic of the data loss. Thus, when
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we say intermittent ILC, we have to consider the above two different data
dropout situations. However, in this monograph, for simplicity, we consider
only the second case (intermittent measurement), as was also done in existing
NCS works [463, 281, 273, 272, 271, 552, 411, 482, 412]. Note that if we use a
higher-order ILC updating scheme, we may have to consider intermittent data
dropouts from all past control signals and/or all past output measurements,
but this is beyond the scope of this monograph.

8.3.2 Optimal Learning Gain Matrix Design for Intermittent ILC

For the intermittent ILC design, we use an existing Kalman filtering ILC
approach. Our main theoretical contribution is to add the intermittent mea-
surement signal to the ILC update and then analyze the overall convergence
property of the designed intermittent ILC system. The result of this section
is influenced by [395]. Specifically, we will design the ILC learning gain Kk(t)
with stochastic noises and intermittent measurements.4

Design of an Optimal Learning Gain

Throughout this subsection, we use the following update rule:

uk+1(t) = uk(t) + Kk(t)ηek(t + 1) (8.67)

where η ∈ {0, 1}. Following standard ILC practice, use ud(t), xd(t), and yd(t)
to denote the desired input, state, and output signals, respectively. Introducing
δuk+1(t) = ud(t)−uk+1(t) and δxk(t) = xd(t)−xk(t), and following [395], we
obtain the auxiliary system:[

δuk+1(t)
δxk(t + 1)

]
=
[

I − Kk(t)ηCB −Kk(t)ηCA
B A

]
×
[

δuk(t)
δxk(t)

]
+
[

Kk(t)ηC Kk(t)
−I 0

]
×
[

wk(t)
vk(t + 1)

]
.

Now, we introduce η = η + η̃, where η is the mean of η and η̃ is a zero-
mean stochastic sequence. Following [482], we can calculate the variance of η̃
as σ2

η̃ = (1 − η)η. Now, inserting η = η + η̃ into (8.68) yields

4 In [395], there is no mathematical derivation considering intermittent measure-
ments. Thus, the contribution of this section over [395] is to introduce inter-
mittent measurements into the stochastic ILC framework. Also we note again,
the contribution of this monograph over existing intermittent Kalman filtering
[463, 281, 273, 272, 271, 552, 411, 482, 412] is to show that there is no critical
data dropout rate in the point of stability when we enhance the intermittent
Kalman filtering results with an ILC update scheme.
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δuk+1(t)

δxk(t + 1)

]
=
[

I − Kk(t)ηCB −Kk(t)ηCA
B A

] [
δuk(t)
δxk(t)

]
+
[

Kk(t)ηC Kk(t)
−I 0

] [
wk(t)

vk(t + 1)

]
+
[
−Kk(t)η̃CB −Kk(t)η̃CA

0 0

] [
δuk(t)
δxk(t)

]
+
[

Kk(t)η̃C 0
0 0

] [
wk(t)

vk(t + 1)

]
. (8.68)

For convenience, defining

Φ :=
[

I − Kk(t)ηCB −Kk(t)ηCA
B A

]

Ψ :=
[

Kk(t)ηC Kk(t)
−I 0

]
Ω :=

[
−Kk(t)CB −Kk(t)CA

0 0

]
Υ :=

[
Kk(t)C 0

0 0

]
; X+ :=

[
δuk+1(t)

δxk(t + 1)

]
X :=

[
δuk(t)
δxk(t)

]
; W :=

[
wk(t)

vk(t + 1)

]
,

we rewrite (8.68) as

X+ = ΦX + η̃ΩX + ΨW + η̃ΥW. (8.69)

Now, taking expectations on both sides of (8.69), and assuming no correlation
among state, random sequence, and random noises, we have

E[X+X+T ] = E[(ΦX + η̃ΩX + ΨW + η̃ΥW )
×(ΦX + η̃ΩX + ΨW + η̃ΥW )T ]

= ΦE[XXT ]ΦT + σ2
η̃ΩE[XXT ]ΩT

+ ΨE[WWT ]ΨT + σ2
η̃ΥE[WWT ]ΥT . (8.70)

Assuming that we have knowledge of the noise statistics and denoting them
as

P+ := E[X+X+T ]; P := E[XXT ]; Q := E[WWT ],

we have
P+ = ΦPΦT + σ2

η̃ΩPΩT + ΨQΨT + σ2
η̃ΥQΥT . (8.71)

To find an optimal learning gain matrix Kk(t), following [395], we use the
trace of P+, which is the typical process in Kalman filtering. In what follows,
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for simplicity, we omit the subscripts k and η̃, and the time index t. Now, we
compute the trace of both sides of (8.71) as:

trace(P+) = trace[ΦPΦT + σ2
η̃ΩPΩT + ΨQΨT + σ2

η̃ΥQΥT ].

Partitioning P and Q according to:

P =
[

P11 P12

P21 P22

]
; Q =

[
Q11 Q12

Q21 Q22

]
we have:

trace(P+) = trace
{
σ2KC(BP11 + AP21)BT CT KT

+ σ2KC(BP12 + AP22)AT CT KT

+ [(I − KηCB)P11 − KηCAP21] [I − KηCB]T

+ [(I − KηCB)P12 − KηCAP22] [−KηCA]T

+ (BP11 + AP21)BT + (BP12 + AP22)AT

+ (KηCQ11 + KQ21)(KηC)T

+ (KηCQ12 + KQ22)KT + Q11

+ σ2KCQ11(KC)T
}

. (8.72)

Next, substituting the following into the above equation:

V1 := (CB, CA), V2 := (B, A), V3 = (I, 0),

we can simplify the right-hand side of (8.72) to be:

trace
{
σ2KV1PV T

1 KT + η2KV1PV T
1 KT + V2PV T

2

+ V3PV T
3 − ηV3PV T

1 KT − ηKV1PV T
3

+ Q11 + K(η2CQ11C
T + σ2CQ11C

T + ηCQ12

+ Q21ηCT + Q22)KT
}

(8.73)

Therefore, we have

∂trace(P+)
∂K

= 2σ2KV1PV T
1 + 2ηKV1PV T

1 − 2ηV3PV T
1

+ 2K(η2CQ11C
T + σ2CQ11C

T + ηCQ12

+ Q21ηCT + Q22). (8.74)

Here, assuming no correlation between wk(t) and vk(t), we consider Q12 =
Q21 = 0. Now, defining

Π := (σ2 + η2)V1PV T
1 + (η2 + σ2)CQ11C

T + Q22,

when ∂trace(P+)
∂K is set equal to zero, we finally calculate the optimal learning

gain as follows:
Kk(t) = ηV3PV T

1 Π−1. (8.75)
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Analysis of Convergence

In this subsection, we analyze the convergence of the intermittent ILC system
updated by the learning gain given by (8.75). For this purpose, we need to
find a recursive update formula for P11 = E[δuk(t)δuk(t)T ]. In fact, it is easy
to show that P12 = E[δuk(t)δxk(t)T ] = 0, which can be proved using the same
method given in [395]. Then, we obtain the following expansion:

E[δuk+1(t)δuk+1(t)T ] = σ2KV1PV T
1 KT + η2KV1PV T

1 KT + V3PV T
3

− ηV3PV T
1 KT − ηKV1PV T

3 + K(η2CQ11C
T

+ σ2CQ11C
T + Q22)KT . (8.76)

Now, reformulating the right-hand side of (8.76) and inserting (8.75) into this
yields

E[δuk+1(t)δuk+1(t)T ] = V3PV T
3 − η2V3PV T

1 Π−1V1PV T
3 .

(8.77)

Further, writing E[δuk(t)δuk(t)T ] = P11,k and E[δuk+1(t)δuk+1(t)T ] = P11,k+1,
we have

P11,k+1 = (I − ηKk(t)CB)P11,k , (8.78)

which is very similar to equation (16) of [395]. Here, writing Λ := CQ11C
T +

(σ2 + η2)−1Q22 and S := CAP22(CA)T + Λ, we have

I − ηKk(t)CB = I − η2P11(CB)T (σ2 + η2)−1

×
[
CBP11(CB)T + S

]−1
CB. (8.79)

Now, since η2/(σ2 + η2) = η and, for convenience, substituting CB by N ,
then, the right-hand side becomes:

I − ηKk(t)CB = I − ηP11N
T
[
NP11N

T + S
]−1

N. (8.80)

Next, using
[
NP11N

T + S
]−1 = S−1−S−1N(NT S−1N +P−1

11 )−1NT S−1, we
obtain

I − ηKk(t)CB = I − ηP11N
T S−1N + ηP11N

T S−1N

×(NT S−1N + P−1
11 )−1NT S−1N. (8.81)

Also for convenience, writing Y := NT S−1N and W := P11Y , we finally
obtain

I − ηKk(t)CB = I − ηP11Y + ηP11Y (Y + P−1
11 )−1Y

= I − ηP11Y + ηP11Y (I + (P11Y )−1)−1

= I − ηW + ηW (I + W−1)−1

= (I − ηW )(I + W−1)(I + W−1)−1 + ηW (I + W−1)−1

= ((1 − η)I + W−1)(I + W−1)−1. (8.82)
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Now it is observed that S is a positive definite matrix. Hence, if CB is full
rank, then Y is positive definite (see page 399 of [200]). Also, it is assumed that
the covariance matrix P11 is positive definite. Generally, the multiplication of
two symmetric matrices is not symmetric. So, we cannot claim that W is
symmetric. However, for SISO systems, W is a scalar. Then, we can conclude
that ((1−η)I+W−1)(I+W−1)−1 < 1; so I−ηKk(t)CB < 1. Thus, P11,k → 0
in the manner of P11,k+1 < P11,k as k → ∞. For the MIMO case, we prove
ρ
[
((1 − η)I + W−1)(I + W−1)−1

]
< 1 in the following lemma.

Lemma 8.27. The spectral radius of ((1 − η)I + W−1)(I + W−1)−1 is less
than 1.

Proof. Clearly, W−1 has positive real eigenvalues since it is multiplied by two
positive definite matrices. Hence (1−η)I +W−1 and I +W−1 are nonsingular
matrices. Let us say that X is an eigenvector matrix of (1 − η)I + W−1 and
Σ = diag(σi) is diagonal eigenvalue matrix. Then, we can write

X [(1 − η)I + W−1]X−1 = Σ

⇔ −ηXX−1 + X(I + W−1)X−1 = Σ

⇔ X(I + W−1)X−1 = diag(η + σi). (8.83)

Therefore, we have

(1 − η)I + W−1 = X−1diag(σi)X (8.84)

and

(I + W−1) = X−1diag(η + σi)X ⇒ (I + W−1)−1

= X−1diag(η + σi)−1X. (8.85)

Now, substituting (8.84) and (8.85) into (8.82), we have

I − ηKk(t)CB = X−1diag(σi)XX−1diag(η + σi)−1X

= X−1diag (σi/(η + σi))X. (8.86)

Finally, since σi > 0, the spectral radius is less than 1.

These results are summarized in the following theorem:

Theorem 8.28. Under the intermittent measurement environment, η, with
mean η, the ILC learning gain determined by (8.75) guarantees P11,k → 0 as
k → ∞.

Proof. By Lemma 8.27, the proof is direct.

Remark 8.29. From the definition of η, we know that when η = 1, there is no
intermittent measurement, while when η = 0, all measurements are lost. From
(8.86), when η = 1, the spectral radius of I−ηKk(t)CB is the smallest. So, we
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can conclude that without intermittent measurement, the best convergence is
achieved. However, from (8.86), as far as η �= 0, still the spectral radius of
I−ηKk(t)CB is less than 1. So, in ILC, the convergence is always guaranteed
even if most of the measurements are lost (in other words, as far as there is a
part of the data measurement available, whatever amount it is).

Remark 8.30. In (8.75), Kk(t) depends on P , which is the expectation of
XXT . Actually, Kk(t) is calculated based on past information at every
iteration. Similarly to [395], we can develop an algorithm for updating
Kk(t). To avoid confusion, we provide an algorithm in this remark. Defin-
ing E[δxk(t + 1)δxk(t + 1)T ] = P22,t+1 and E[δxk(t)δxk(t)T ] = P22,t, from
(8.71), we have

P22,t+1 = BP11B
T + AP22A

T + Q11. (8.87)

Let us assume that P11, when k = 0, is available and P22, when t = 0, is also
available. Then, the following algorithm can be developed:

• From (8.87), when k = 0, we calculate P22,t+1.
• Use (8.75) for updating Kk(t).
• Calculate uk+1(t) using (8.67).
• Use (8.78) to update P11.
• Repeat the whole process (i.e., k = k + 1).

Note however, that we are not quite done, as it is necessary to analyze
the convergence of P22 as well. The following theorem provides the necessary
result:

Theorem 8.31. If there is no initial resetting error at every iteration, as the
number of iterations goes to infinity, i.e., k → ∞, then P22 = E[δxk(t)δxk(t)T ]
goes to

t−1∑
i=0

At−1−iQ11

t−1∑
i=0

(AT )t−1−i. (8.88)

Proof. From (8.68), and after some manipulations, we obtain:

δxk(t) = Atδxk(0) +
t−1∑
i=0

At−1−i[Bδuk(i) − wk(i)]. (8.89)

Since there is no initial resetting error, δxk(0) = 0, so we have

E[δxk(t)δxk(t)T ] =
t−1∑
i=0

At−1−iE [(Bδuk(i) − wk(i))

×(δuk(i)T BT − wk(i)T )
]
×

t−1∑
i=0

(AT )t−1−i
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=
t−1∑
i=0

At−1−i
[
BE(δuk(i)δuk(i)T )BT

+ E(wk(t)wk(t)T )
] t−1∑

i=0

(AT )t−1−i. (8.90)

Therefore, from Theorem 8.28, since E(δuk(i)δuk(i)T ) = 0 as k → ∞, the
proof is completed.

Remark 8.32. In Theorem 8.31, it is shown that P22 converges to a fixed value
as the number of iterations increases. It is observed that the final converged
value of P22 depends on A and Q11. If there is no noise, then P22 → 0.

When Q11 �= 0, we can write (8.88) as:

vec(P22) =
t−1∑
i=0

(Ai ⊗ Ai)vec(Q11) (8.91)

where ⊗ is the Kronecker product, vec(P22) = [(P22)T
1 , (P22)T

2 , . . . , (P22)T
n ]T ,

and vec(Q11) = [(Q11)T
1 , (Q11)T

2 , . . . , (Q11)T
n ]T , where (P22)j is the jth column

vector of matrix P22 and (Q11)j is the jth column vector of matrix Q11.
Furthermore, using the property A2 ⊗A2 = (A⊗A)(A ⊗A), we can see that
the boundedness of P22, on the time domain, depends on eigenvalues of A⊗A
(not the eigenvalues of A).

8.3.3 Concluding Remarks

In this section, we provided a synthesis method for ILC systems subject to
intermittent measurements. Although the algorithm requires using full infor-
mation about the A matrix, the result is surprising because as long as some
measurements are available, the convergence of the ILC system is guaranteed.
Our result also can be interpreted in other way, compared with existing in-
termittent estimation theories [463, 281, 273, 272, 271, 552, 411, 482, 412]. In
these works, there are critical data dropout rates, above which the system is
not stable any more. However, from our intermittent Kalman filtering scheme
enhanced by ILC, we find that there is no critical data dropout rate as far
as the control gain is updated by (8.75) on the iteration domain. Intuitively,
this surprising result can be understood in the following way: Even though
there are lots of data dropouts in the output measurements, if we update the
control signals on the repetitive iteration domain, the effect of data loss can
be compensated for eventually. Therefore, the authors believe that there is
a huge advantage to using ILC scheme when there are data dropouts in the
output measurement, assuming the system is operated repetitively. In future
work, we consider the design of the learning gain matrix without using full in-
formation of the A matrix and will also consider the problem of data dropout
in the forward control signal in an NCS system.



134 8 Robust Iterative Learning Control: Stochastic Approaches

8.4 Chapter Summary

In this chapter, we proposed an analysis method to find the baseline error for
stochastic ILC processes in the iteration domain. In Section 8.1, the baseline
error was analytically calculated using a fixed learning gain matrix, while
in Section 8.2, the baseline error was calculated using an iteration-varying
learning gain matrix, for the case of iteration-varying model uncertainty. In
Section 8.3 we considered ILC algorithms in a networked control system that
are subject to intermittent loss of measurement data. The main contributions
of this chapter can be briefly summarized as follows:

• In Section 8.1, the analytical solution of an algebraic Riccati equation was
used to establish the existence of and to compute the unique positive-
definite steady-state error covariance matrix associated with a stochastic
ILC system. Based on this result, we also established a condition for mono-
tonic convergence of the stochastic ILC process. Existing works in the lit-
erature have focused on iteration-varying gain design in the time domain.
Our contributions go beyond these results by designing a fixed learning
gain matrix in an off-line manner. Our results are practically important
since it is now possible to avoid undesirable overshoot during the transient
period of the ILC convergence.

• In Section 8.2, using interval concepts, we found a monotonic convergence
condition for iteration-varying uncertain ILC systems. Based on this anal-
ysis, in Theorem 8.17 we provided a method for designing iteration-varying
learning gain matrices. The contribution of this section over an existing
work [64], which only established the baseline error of a deterministic sys-
tem, is that our result allows us to analytically compute the baseline error
of the uncertain ILC system.

• In Section 8.3, the learning gain designed by (8.75) guaranteed the conver-
gence of the mean error of control signal, which implies that the desired
trajectory is achieved in a stochastic sense, even with intermittent mea-
surements. This result can be variously used for robust ILC system design
or robust intermittent Kalman filtering design. As a main theoretical con-
tribution, we showed that there is no critical data dropout rate when the
control gain is updated by (8.75) on the iteration domain.



9

Conclusions

In this monograph we have presented a systematic approach to the analysis
and design of iterative learning controllers (ILC) for several classes of uncer-
tain plants, with an emphasis on robustness and monotonic convergence in
the iteration domain. Throughout, we used the super-vector iterative learn-
ing control (SVILC) framework. The monograph considered robust monotonic
stability analysis and synthesis for the case of interval plants, H∞-based ILC
for iteration-domain frequency uncertainty, stochastic ILC when the distur-
bances and noise are iteration-domain dependent, and the problem of ILC
when there is intermittent data dropout. We also provided the solution to
three fundamental interval computation problems.

We began in Chapters 1 and 2 with an introduction to the ILC paradigm
and its literature, respectively, and continued in Chapter 3 with a discus-
sion of monotonic convergence for higher-order ILC (HOILC) in the SVILC
framework. Following the introduction, the next part of the monograph was
focused on systems with parametric interval uncertainties. In Chapter 4, ver-
tex Markov matrices were used for finding an exact monotonic-convergence
condition for first-order ILC systems (FOILC). We also solved a maximum sin-
gular value problem for interval matrices to find an l2 monotonic-convergence
condition for interval ILC processes. Of particular interest, it was shown that
the robust stability condition for an interval polynomial matrix can be di-
rectly used to check the robust stability of HOILC systems. In Chapter 5 and
Chapter 6, robust synthesis problems were discussed. The maximum stabil-
ity radius was found using a discrete Lyapunov inequality equation and the
interval model conversion concept was introduced to estimate the boundaries
of the Markov parameters from an interval plant. It was also shown that the
main issue in the interval model conversion problem is to find the power of
interval matrix. Thus, in Appendix D, we developed an algorithm for com-
puting such powers. The third part of the monograph considered iteration-
domain uncertainty other than parametric interval uncertainty. Chapter 7 was
dedicated to H∞ SVILC, where it was shown that iteration-varying external
disturbances, iteration-varying model uncertainties, and iteration-dependent
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stochastic noise could be accounted for together on the iteration axis, al-
though the discussion was limited to an asymptotic stability. In Chapter 8,
the baseline error of ILC systems was analytically established using a Kalman
filter and an iteration-varying learning gain matrix. For an analytical Kalman
filter convergence condition, an algebraic Riccati equation was used, and for
the iteration-varying learning gain matrix design, a Wiener filter was used.
Finally, we presented results for the problem of ILC design when there is
intermittent data dropout along the iteration axis. We point out that in ad-
dition to collecting our solutions to three fundamental interval computation
problems, the appendices also include a taxonomy of the ILC literature from
1998 to 2004.

The results presented in Chapter 4 to Chapter 8 can be summarized by
a table. Based on the 1-dimensional representation of the 2-dimensional ILC
system as depicted in Figure 9.1, Table 9.1 has been created to show the results
presented in the monograph. In Figure 9.1, the symbol H is the ILC system
plant, which we have called the Markov matrix, C is the ILC controller, which
can include current-cycle feedback and incorporates the iteration-domain up-
date, D and Do are disturbances on the iteration domain, N is measurement
noise on the iteration domain, and Yr and Y are the reference trajectory and
output trajectory, respectively. Note that in this figure, the feedback loop is
in the iteration domain, which is the basic feature of the super-vector ap-
proach. In Table 9.1, I.V. stands for iteration varying, z represents the delay
operator in the discrete-time domain, and w represents the delay operator
in the discrete-iteration domain. In this table, superscript ‡ is used to note
the results presented in this monograph, and superscript † is used to indicate
topics for future work that have not been completely studied in the existing
literature.

C H +

+

-

D

N

Y

Iteration loop

Do

Yr

Fig. 9.1. Iterative learning control block diagram in the multi-input, multi-output
super-vector framework.
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To summarize, we repeat the list of original contributions of the mono-
graph:

• Conditions for robust stability in the iteration domain were provided for
parametric interval systems.

• Techniques for converting from time-domain interval models to Markov
interval models were given.

• Methods were given to design monotonically-convergent ILC systems un-
der parametric interval uncertainties and/or stochastic noise.

• Robust H∞ ILC was designed on the iteration domain, taking into account
three different types of uncertainties: iteration-variant/invariant model un-
certainty, external disturbances, and stochastic noise.

• The baseline error of the ILC process was analytically established, which
provides a way to design the ILC learning gain matrix off-line.

• Solutions for three fundamental interval computational problems were
given: robust stability of an interval polynomial matrix system, the power
of an interval matrix, and the maximum singular value of an interval ma-
trix.

Table 9.1 suggests future research topics in the context of the SVILC
framework we have used in this monograph. We conclude by offering additional
suggestions for future research efforts that go beyond the SVILC aproach.

• Linear ILC versus nonlinear ILC. We believe both linear and nonlinear
ILC problems are interesting and important. Yet in this monograph we
have focused only on linear ILC, although there exists a significant lit-
erature related to nonlinear ILC. It is possible to justify our focus by
noting that ILC is a finite-duration, multi-pass system with resetting of
initial conditions. As such, we can use linear approximation along the
finite-time axis while treating the nonlinear effects as iteration-invariant
disturbances, which are readily rejected using the traditional linear ILC
framework, which works even for linear time-varying cases where H is not
Toeplitz. Thus, the linear framework addresses many of the key problems
found in practice, since most existing systems, although inherently non-
linear, do not have a finite escape time and can be stabilized (in iteration)
by the ILC process. However, we admit that further advances can be ob-
tained by taking a more deliberate nonlinear point of view and we expect
that nonlinear ILC research may be more important in the future, both
with respect to ILC-based control of nonlinear plants and with respect to
nonlinear ILC update laws.

• Theory and application. Linear ILC plays an important role in high tracks-
per-inch hard disk drive servo systems. Other notable and successful ap-
plications include robotic welding and run-to-run batch processing in the
chemical and semiconductor manufacturing industries. We believe ILC is
in general a matured methodology that can be routinely applied in control
engineering practice. More emphasis should be put on pursuing new ILC
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applications and the new theoretical issues that will emerge from these
new applications.

• Spatially and temporally evolving dynamic systems. Using ILC for sys-
tems governed by partial differential equations (PDEs) is not well un-
derstood. Further, in practice, for most sensors modeled by PDEs, it is
usually not possible to also have continuously distributed measurements
and control actions. Thus, we must consider the problem when the sensors
and actuators are configured for point-wise sensing/actuation, filament-
type sensing/actuation, zonal-type sensing/actuation, or boundary-type
sensing/actuation. Moreover, we can consider cases where the sensors and
actuators are collocated or non-collocated, movable or static, communi-
cating with each other or not, etc. These observations suggest numerous
new directions for ILC research.

• Integer-order versus non-integer-order dynamic systems. We believe that
ILC for fractional-order dynamic systems (polymers, piezo-materials, sili-
con gel, etc.) is an interesting new area, which involves non-integer calculus
and differential equations having non-integer-order derivatives.

• Fractional order signal-processing-enhanced ILC. Related to non-integer-
order dynamic systems, in recent years, fractional-order signal processing
(FOSP) has become a very active research area, due to the demand on
precise analysis of long-range dependence and self-similarity in time series,
such as financial data, communications networks data, traffic data, water
demand, lake volume fluctuation, heart rate variation, bio-corrosion sig-
nals, electrochemical noise, etc. We believe joint time–frequency-domain
techniques such as wavelets and time–frequency analysis (TFA) can be
used in ILC to further reduce the baseline error. Further, since the
fractional-order Fourier transform (FrFT) has a strong link with TFA,
we believe that in certain applications, FOSP will offer additional benefits
in ILC.

• ILC over networks. ILC in the network control system (NCS) setting
(telepresence, tele-training, etc.) could provide benefits for some classes
of systems, as discussed in Chapter 8. But, in the case of NCS, we face
the problem of intermittent sensing and actuation and thus intermittent
learning updating. The problem of asynchronous ILC can also arise in this
setting. Such network-induced issues in ILC suggest a variety of research
topics.

• Cooperative ILC. Recently there has been significant research activity on
the problem of over-populated or densely distributed fields of sensors and
actuators, possibly networked and possibly mobile, each with dynamic
neighbors under uncertain communication topologies. In this context one
can pose the problem of iterative learning-based consensus building for
cooperative iterative learning control. As memory and communication get
cheaper and cheaper we can envision the concept of “ubiquitous collabo-
rative iterative learning control.”
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A

Taxonomy of Iterative Learning Control
Literature

A.1 Taxonomy

In Appendix A, we categorize the ILC literature into two different parts in or-
der to highlight the overall trends in ILC research. The first part is related to
the publications that focus on ILC applications and the second part is related
to the publications that consider theoretical developments. However, it is in
fact very difficult to separate the literature into these two broad groupings,
thus the categorizations given in this appendix are based on authors’ subjec-
tive decisions. Also, note that for this categorization effort, the first author
read the abstracts of all the papers indicated. If it was possible to understand
the main approach and idea of the paper from the abstract, then the paper
was categorized on that basis. However, when the author could not under-
stand how to categorize a paper from its abstract, then other parts of the
paper were read in order to decide on the correct category for the paper. As
already commented, however, this categorization is still based on subjective
decisions and is not a technical development. Also, as mentioned in Chapter
2, the literature search for our taxonomy covers only the publications between
1998 and 2004, because the literature before 1998 was surveyed and classified
in [299].

A.2 Literature Related to ILC Applications

In [299], ILC literature dealing with applications was categorized as “robotics”
and “applications.” In “robotics,” detailed categories were given as “elastic
joints,” “flexible links,” “cartesian coordinates,” “neural networks,” “coop-
erating manipulators,” “hybrid control,” and “nonholonomic.” In applica-
tions, detailed categories were given as “vehicles,” “chemical processing,”
“mechanical/manufacturing systems,” “nuclear reactor,” “robotics demon-
strations,” and “miscellaneous.” In this section, we began by trying to fol-
low the above categories, but found it difficult to restrict all the publications
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between 1998 and 2004 into the categories given in Table 4.2 of [299]. Thus,
we made more detailed categories, including the topics “Robots,” “Rotary
systems,” “Batch/factory/chemical processes,” “Bio/artificial muscle,” “Ac-
tuators,” “Semiconductors,” “Power electronics” and “Miscellaneous,” and in
each category we provide further sub-categories.

A.2.1 Robots

In [299], robotics was the most active area of ILC application. Since 1998, this
continues to be the case. Robotic applications of ILC have included:

• General robotic applications, including rigid manipulators and flexible ma-
nipulators [109, 166, 449, 408, 175, 329, 222, 422, 448, 21, 223, 36, 213,
533, 203, 542, 541, 174, 555, 109, 225, 319, 204, 240, 95].

• Mechatronics design [462, 487].
• Robot applications with adaptive learning [423].
• Robot applications with Kalman filters [323]
• Impedance matching in robotics [316, 472, 49, 32].
• Table tennis [289].
• Underwater robots [403, 404, 234].
• Acrobat robots [535, 483].
• Cutting robots [224].
• Mobile robots [304, 71].
• Gantry robots [183].

A.2.2 Rotary Systems

Rotational motion is generally disturbed by position-dependent or time-
periodic external disturbances. Thus, control of rotary systems is a good can-
didate for ILC applications. Papers related to this area include:

• The vibration suppression of rotating machinery [266].
• Switched reluctance motors (SRM) [402, 401, 399, 400].
• Permanent-magnet synchronous motors (PMSM) [250, 500, 373, 262, 375,

249, 499, 374].
• Linear motors [441].
• (Ultrasonic) induction motors [398, 285, 284].
• AC servo motors [407].
• Electrostrictive servo motors [206].

A.2.3 Batch/Factory/Chemical process

The number of ILC applications in process control has increased significantly
since 1998. The literature includes:
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• Tracking control of product quality in agile batch manufacturing processes
[493, 256].

• Chemical reactors [294, 293, 264].
• Water heating systems [497].
• Laser cutting [459].
• Chemical processes [151, 495, 45, 189, 445].
• Batch processes [494, 496, 88].
• Industrial extruder plants [352].
• Problem of a moving liquid container [170, 383].

A.2.4 Bio/Artificial Muscle

Bioengineering and biomedical applications are not yet a popular ILC appli-
cation area, but slowly the number of applications is increasing, as evidenced
by the following:

• Biomedical applications such as dental implants [211, 212].
• FNS applications [117, 489].
• Human operators [14].
• Artificial muscle [205].
• Pneumatic systems [53].
• Biomaterial applications [469].

A.2.5 Actuators

ILC applications to non-robotic/non-motor actuators are closely related to the
mechanical hard-nonlinearity compensation problem. Related publications are
as follows:

• A proportional-valve-controlled hydraulic cylinder system [50].
• Electromechanical valves [198, 361, 199].
• The hysteresis problem of a piezoelectric actuator [280].
• Linear actuators [261, 444].

A.2.6 Semiconductor

It is quite interesting to see that ILC is widely applied in the semiconduc-
tor production process. Between 2001 and 2003, the following literature was
published in semiconductor applications of ILC: [537, 255, 94, 113, 89, 112,
87, 392, 111, 110]. For a more detailed discussion of the application of ILC to
semiconductor manufacturing processes, refer to [114].
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A.2.7 Power Electronics

Examples of ILC applications to electrical power systems can be found in the
following:

• Electronic/industrial power systems [550, 549, 551, 478].
• Inverters [2, 41].

A.2.8 Miscellaneous

Many miscellaneous applications of ILC are described in the following papers:

• Traffic [201].
• Magnetic bearings [101, 76].
• Aerospace [67, 73].
• Linear accelerators [248].
• Dynamic load simulators [477].
• Hard disk drives [512, 513].
• Temperature uniformity control [254, 292, 258].
• Visual tracking [274].
• Quantum mechanical systems [364].
• Piezoelectric tube scanners [197].
• Smart microwave tubes [1, 405].

Figure A.1 plots the number of papers focused on the use of ILC in ap-
plications. As shown in this figure, ILC has most-dominantly been applied
to the area of robotics. However, notably, ILC has also been widely used in
rotational motion control systems, in the process control industry, and for
semiconductor manufacturing processes.

We also note that to check the practical uses of ILC, we searched United
States patent abstracts using the keywords “Iterative” AND “Learning.”1

From this search, we found ILC-related patents in motor control [371], process
control [168], disk drive control [72], and network communication [230].

A.3 Literature Related to ILC Theories

Since the spectrum of the theoretical developments is so broad and individ-
ual papers often treat several different topics, assigning a given paper to a
specific category can be quite subjective. The approach in this monograph is
to try to separate papers that considered ILC as a specific topic from those
that connected ILC analysis with other control theory topics. The general
categories are defined as “General (Structure),” “General (Update Rules),”
“Typical ILC Problems,” “Robustness,” “Optimal and Optimization,” “Adap-
tive,” “Fuzzy and Neural,” “Mechanical Nonlinearity Compensation,” “ILC
1 http://patft.uspto.gov/netahtml/search-bool.html



A Taxonomy of Iterative Learning Control Literature 147

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Miscellaneous

Robots

Rotary 

systems
Process

control

Bio-applications

Actuators

Semiconductors

Power systems

Fig. A.1. Publication numbers for the application-focused ILC literature

for Other Repetitive Systems and Control Schemes,” and “Miscellaneous.”
The first three categories are related to unique ILC problems (i.e., ILC’s own
issues not related to other control theories). The next four categories (robust,
optimal, adaptive, fuzzy/neural) are for papers that combine or use results
from these specific fields to advance the theoretical developments of ILC.
The next two categories consider special cases where ILC has been applied to
develop theoretical solutions to these special problem classes (mechanical non-
linearity and repetitive control) and the final category collects miscellaneous
contributions.

A.3.1 General (Structure)

In this category, we include literature related to “ILC structure,” “convergence
analysis,” “stability analysis,” and “basic theoretical works.”

• Structure [346, 351, 363, 180, 454, 347].
• Equivalence of ILC to one-step minimum prediction control or feedback

control [302, 466, 162, 345, 163, 164, 161, 165].
• Analysis in the point of passivity (dissipativity) [31, 26, 25, 33, 315, 24].
• Analysis in the point of positivity [182, 145].
• Divergence observation [277].
• Steady-state oscillation condition and its utilization [238].
• Strongly positive system [11, 12].

A.3.2 General (Update Rules)

In this category, we include literature that discusses “ILC update rules” and
their “performance comparisons.”

• Update rules such as D-type ILC, P-type ILC, I-type ILC, PD-type ILC,
and PID-type [502, 409, 63, 536, 410, 547].
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• Fractional ILC [60].
• Using current-cycle feedback [369].
• Anticipatory ILC [473].
• Update in Hilbert space [35, 34].
• Performance guaranteed ILC, convergence speed improvement, or perfor-

mance improvement [504, 195, 515, 509, 510, 70, 492, 128, 246, 130].
• Linearization [190].
• Automated tuning [278].
• Comparison of ILC update rules [498, 503, 320, 514].
• Discussion on convergence and/or robustness [331, 251, 335, 517].

A.3.3 Typical ILC Problems

In this category, we include ILC problems such as nonminimum phase, initial
condition reset, higher-order approach, 2-D analysis, and frequency-domain
analysis. From Table 4.1 of [299], it is shown that these typical ILC prob-
lems had been popularly studied before 1997. But, we can observe that many
publications are still devoted to these topics.

• Nonminimum phase and/or noncausal filtering [158, 216, 157, 333, 218,
318, 413, 286, 414, 154, 242, 92, 219, 241, 465].

• Inverse model-based or pseudo-inverse-based ILC [156, 155, 317].
• Initial reset condition [426, 353, 75, 355, 131, 431, 429, 430, 435, 438, 434].
• Higher-order ILC [6, 74, 239, 516, 365, 328].
• 2-D approach/analysis [129, 123, 301, 99, 124, 385, 147, 348, 148, 135, 169,

145, 122].
• Frequency-domain analysis and/or synthesis based on frequency-based fil-

tering [377, 127, 327, 265, 326, 330].

A.3.4 Robustness Against Uncertainty, Time Varying, and/or
Stochastic Noise

This category includes robustness problems such as disturbance rejection,
stochastic affects, H∞ approaches, etc. Arif et al. [17] used the following up-
date rule: uk+1(t) = uk(t)+Γ1ėk(t)+Γ2ėk+1(t), where ėk+1(t) is the predicted
error, to improve the ILC convergence speed for time-varying linear systems
with unknown but bounded disturbances. In [455], time-periodic disturbances
and unstructured disturbances were compensated using a simple recursive
technique that does not use Lyapunov equation (refer to [508] for disturbance
compensation using Lyapunov functions). For general ideas about robust ILC,
refer to [296] for the linear case and see [475, 529, 77, 368, 520, 450, 452] for
the nonlinear case. Other related papers include:

• Disturbance rejection with feedback control [86].
• Disturbance rejection with an iteration-varying filter [325].
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• Nonlinear stochastic systems with unknown dynamics and unknown noise
statistics [55].

• Stochastic ILC [397, 396, 395, 54], and with error prediction [17].
• With measurement noise [313, 324].
• H∞ approach [360].
• µ-synthesis approach to ILC [115, 116].
• Model-based ILC [23, 382].
• ILC based on the backstepping idea [455].
• Polytope uncertainty approach to ILC [267].

A.3.5 Optimal, Quadratic, and/or Optimization

Optimal ILC is considered one of the main ILC theoretical areas and it has
a well-established research history. Norm-optimal ILC is due to [143] as com-
mented in [185]. Recently there have been several different quadratic cost
function-based ILC algorithms. Papers in this category include:

• Optimal ILC [9, 181, 185, 186, 187, 342, 394, 341, 458, 5].
• Optimization-based ILC [188, 171].
• Linear quadratic optimization-based method [340, 167].
• Quadratic cost function-based method [91, 237, 253].
• Numerical optimization [288].

A.3.6 Adaptive and/or Adaptive Approaches

Adaptive control-based ILC is very popular and many theoretical works in ILC
are related to Lyapunov functions and/or adaptive control concepts. In this
category, we only include the literature which focuses on purely theoretical
adaptive ILC.

• General works [424, 133, 134, 349, 539, 295, 79, 80, 96, 56, 132, 350, 322].
• Model reference [260].
• Model reference with basis functions [366, 485].
• State-periodic adaptive learning control [3].

A.3.7 Fuzzy or Neural Network ILC

In the ILC literature, it has been shown that learning gains can be determined
from neural network or fuzzy logic schemes [298]. Specific results include:

• Fuzzy ILC or fuzzy ILC for initial setting [78, 479, 85, 406, 546, 7, 370].
• Feedforward controller (LFFC) using a dilated B-spline network [65, 464].
• Artificial neural networks/neural networks, or ILC application to neural

networks [534, 446, 83, 193, 208, 221, 97, 100, 227, 226, 275, 490, 523, 442,
480, 84].
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A.3.8 ILC for Mechanical Nonlinearity Compensation

Many ILC publications show that mechanical hard nonlinearities can be com-
pensated for successfully if they have some sort of periodicity in the time,
state, or frequency-domain. The main idea of hard-nonlinearity compensation
is to analyze stability in the iteration domain as done in [424].

• ILC without a priori knowledge of the control direction, for non-Lipschitz
plants [508, 527, 229].

• ILC with input saturation [505, 519].
• Input singularity [507, 526].
• Deadzone [530, 228, 393].
• Coulomb friction [118, 119, 152, 121, 3].
• Using the Smith predictor for time delay and disturbance systems [207,

511].
• ILC for systems with delay [427, 354, 359].

A.3.9 ILC for Other Repetitive Systems and Other Control
Schemes

Though classical control theories have been used for ILC performance im-
provement, it is also possible to use ILC theory for the performance im-
provement of other control schemes. Using the general idea of ILC, the
performances of several other types of control strategies have been im-
proved, including: repetitive control, PID, optimal control, neural network,
etc. [149, 209, 48, 20, 344, 468, 93, 217]; and model-based predictive control
[252, 257].

A.3.10 Miscellaneous

Papers that we cannot separate into the categories given above include:

• Different tracking control tasks [506].
• Slowly varying trajectory and/or direct learning control (DLC) for non-

repeatable reference trajectory, or DLC for MIMO systems [15, 19, 521,
525, 524, 4].

• LMI-based ILC [144, 421, 150, 146, 386].
• Monotone ILC [62, 303, 306, 310, 308, 357, 358].
• Hamiltonian control systems [140, 138, 139, 141].
• MIMO linear time-varying systems [443].
• Observer-based ILC [450].
• Blended multiple model ILC [451].
• Composite energy function ILC [501, 524].
• Cascaded nonlinear systems [380, 378].
• Nonlinear systems with constraints [57].
• Maximum phase nonlinear systems [90].
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• Unknown relative degree [425]; and arbitrary or higher relative degree
[81, 436, 545, 22].

• Decentralized iterative learning control [488].
• Internal model-based ILC [453, 61, 64, 457, 528].
• Distributed parameter systems [379, 381].
• ILC with prescribed input–output subspace [173, 176]; with desired input

in an appropriate finite-dimensional input subspace [419, 420]; and with
bounded input [120].

• Sampled-data ILC [428, 432, 440, 439, 433, 434, 437].
• Experience/information database [16, 18, 15].
• Fourier series-based learning controller [376].
• Learning variable structure control [532].
• With weighted local symmetrical integral feedback controller [69].

Figure A.2 plots the number of papers related to theoretical developments
in ILC. As seen in this figure, ILC theory has been advanced by being con-
nected to existing control theories such as robust, adaptive, optimal and neu-
ral/fuzzy control. However, the ILC structure and update problems, which are
investigated within ILC’s own framework, dealing with ILC problems such as
the non-minimum phase systems, the initial reset problem, the higher-order
issue, 2-D analysis, and convergence/performance improvement, have been
more widely studied. Figure A.2 reveals that much research has been devoted
to ILC’s own theoretical and structural problems. It is also interesting to
point out that while other control schemes have been used to help improve
ILC, in the same way the ILC concept has been used for the performance
improvement of other control schemes.
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A.4 Discussion

In this appendix we have categorized and discussed the iterative learning con-
trol literature published between 1998 and 2004. From the categorization of
application-related literature, we have found that ILC applications have been
extended from robotics and process control to more specific semiconductor
manufacturing and bioengineering applications. However, applications remain
dominated by manipulator-based robotics, rotary systems, and process con-
trol problems, which are basically time- or state-periodic in either the desired
trajectory or the external disturbances. Although some of the publications
have shown that ILC can be used in the areas of aerospace, non-robotic actu-
ator control, biomedical applications, visual tracking, artificial muscles, and
other emerging engineering problems, successful industrial applications have
not yet been reported in these areas.

From the survey of theory-focused literature, it is seen that ILC theory
has been developed in two different areas: research on ILC’s own features and
research on ILC systems fused with other control theories. Most of the recent
theoretical work has been related to performance improvement with various
types of uncertainties and/or instabilities. However, although many recent
theoretical achievements have provided beautiful mathematical formulations
of ILC, much of the theoretical development remains far away from actual
application considerations.
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Maximum Singular Value of an Interval Matrix

In this appendix the maximum singular value of an interval matrix is cal-
culated and the effectiveness of the proposed method is illustrated through
numerical examples. Calculations are given for both square and non-square
matrices. The maximum singular value of an interval matrix can be used to
check the monotonic convergence of uncertain ILC systems.

B.1 Maximum Singular Value of a Square Interval
Matrix

To develop our algorithm we make use of Hertz’s idea for finding extreme
eigenvalues of a symmetric interval matrix [192]. Let us consider a real square
non-symmetric interval matrix given as

AI = [aI
ij ], aI

ij = [aij , aij ], i, j = 1, . . . , n, (B.1)

where aI
ij is an element of the interval matrix AI , aij is the lower boundary

of the interval aI
ij , and aij is the upper boundary of the interval aI

ij . If the
lower and the upper boundary matrices are defined as A = [aij ] and A = [aij ],
respectively, the interval matrix can then be written as A ∈ AI = [Ao−∆, Ao+
∆], where the center matrix and the radius matrix are defined, respectively,
as

Ao =
1
2
(A + A); ∆ =

1
2
(A − A). (B.2)

In fact, the upper boundary of the singular values of an interval matrix can be
found as (in descending order) σi(AI) =

√
λi((AI)T ⊗ AI) where ⊗ represents

multiplication of interval matrices (see Section 4.1), σ is the singular value,
and λ is the eigenvalue. However, as commented in [106], the results of this
method will be quite conservative. Thus, we propose an exact calculation that
will not be conservative.
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To begin, consider the following relationship between singular values and
eigenvalues:

σi(A) = Positive
(

λi

[
0 AT

A 0

])
, (B.3)

where Positive(·) considers only the positive part of (·). Define

H =
[

0 AT

A 0

]
.

Obviously, H is a symmetric matrix. Including interval uncertainties, let us
use also define the symmetric interval matrix

HI =
[

0 (AI)T

AI 0

]
.

Now, we make use of the existing result from [192] to find the maximum
singular value of AI . In what follows, the main idea and results are briefly
summarized. From [192], since H and HI are symmetric matrices, we have
the relationship:

λ = xT Hx = xT

[
0 AT

A 0

]
x, (B.4)

where x is an eigenvector corresponding to λ and xT x = 1. Let us divide x into
two parts given as xT = [yT , zT ]. Then, yi = xi, i = 1, . . . , n and zi = xn+i,
i = 1, . . . , n, and from (B.4), we obtain λ = 2

(
Σn

i=1Σ
n
j=1ajiyizj

)
. Therefore,

the value of λ depends on signs of yi and zj . That is, the maximum of λ occurs
at one of the vertex points of aij , which is given as

aij =
{

aij = aij if yizj ≥ 0,
aij = aij if yizj < 0.

(B.5)

Now, since y and z are length-n vectors, we have total number of 2n different
sign patterns for y and 2n different sign patterns for z. For example, when
n = 3, the sign patterns of y and z could be + + +, + + −, + − +, + − −,
− + +, − + −, − − +, − − −. In this case, we have a total of 23 × 23 = 64
combinations as shown in Table B.1 and Table B.2. However, Table B.1
and Table B.2 produce the same vertex matrices set for AI . Therefore, for our
purpose, it will be enough to check a total of 25 vertex matrices corresponding
to Table B.1. These vertex matrices can be found easily. For example, in
Table B.1, for the sign pattern + −− of y and for the sign pattern + − + of
z, the sign of the vertex matrix is generated from zyT as[

+
−
+

]
[ + − − ] =

[
+ − −
− + +
+ − −

]
, (B.6)
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Table B.1. 32 Sign Patterns with Sign(y1) = + for a 3 × 3 Matrix

y z y z

+ + +

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

+ − +

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

+ + −

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

+ −−

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

which means that the corresponding vertex matrix is⎡⎣ aij aij aij

aij aij aij

aij aij aij

⎤⎦ . (B.7)

In the following algorithm, based on the above discussion, for an n×n interval
matrix, a generalized method is developed.

Algorithm B.1. Algorithm for estimating the maximum singular value of an
interval matrix:

• Step 1: Produce a set of ±1 vectors with y1 = 1 of length n given by

Y = {y ∈ Rn : y1 = 1, |yj| = 1, for j = 2, . . . , n} .

• Step 2: Produce a set of ±1 vectors of length n given by

Z = {z ∈ Rn : |zj | = 1, for j = 1, . . . , n} .

• Step 3: Make an n × n diagonal matrix Ty defined by (Ty)ii = yi and
(Ty)ij = 0 for i �= j, i, j = 1, . . . , n where y ∈ Y .

• Step 4: Make an n × n diagonal matrix Tz defined by (Tz)ii = zi and
(Tz)ij = 0 for i �= j, i, j = 1, . . . , n where z ∈ Z.
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Table B.2. 32 Sign Patterns with Sign(y1) = − for a 3 × 3 Matrix

y z y z

− + +

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

−− +

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

− + −

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

−−−

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

• Step 5: Produce a matrix set

Sv := {Ayz : Ayz = Ao + Ty∆Tz, ∀ y ∈ Y and ∀ z ∈ Z} .

• Step 6: Find the maximum singular values of all elements of the finite set
Sv and select the largest one as the maximum singular value of the interval
matrix AI .

B.2 Maximum Singular Value of Non-square Interval
Matrix

The results of the preceding section can easily be extended to the general
non-square interval matrix case. Let us consider an m × n interval matrix
AI . Then, HI is an (m + n) × (m + n) interval matrix. Now, introducing
a length-n vector y and a length-m vector z, using the same procedure as
done in the square matrix case, we have σ(A) = 2

(
Σn

i=1Σ
m
j=1ajiyi, zj

)
. Then,

there are total number of 2m+n−1 possible combinations of vertex matrices
to be considered. For example, for a 3 × 2 matrix, we have a total of 23 × 21

combinations as shown in Table B.3. In Table B.3, for example, for the sign
pattern +− of y and for the sign pattern + − + of z, the sign pattern of the
vertex matrix is generated from zyT to be
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Table B.3. 16 Sign Patterns for a 3 × 2 Non-square Matrix

y z y z

++

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

+−

+ + +

+ + −
+ − +

+ −−
− + +

− + −
−− +

−−−

[
+
−
+

]
[ + − ] =

[
+ −
− +
+ −

]
, (B.8)

which means that the corresponding vertex matrix is⎡⎣ aij aij

aij aij

aij aij

⎤⎦ . (B.9)

B.3 Illustrative Examples

B.3.1 Example 1: Non-square Case

Let us test the non-square case first. For the non-square case, the following
example is adopted from [106]:

A ∈ AI =

⎡⎣ [2, 3] [1, 1]
[0, 2] [0, 1]
[0, 1] [2, 3]

⎤⎦ . (B.10)

Using the results given in Section B.2, the maximum singular value of AI

is found to be 4.54306177572459, which is quite close to the value 4.543062
given in [106]. This result shows that the suggested method in this monograph
can find the exact (without conservatism) upper boundary of the maximum
singular value of an interval matrix. Note that the suggested scheme in this
monograph does not require any assumptions.

B.3.2 Example 2: Square Case

Next, for an example with a square matrix and to represent an exception of
Deif’s method [106], the following center is used:
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Ao =

⎡⎣−3.33 −2.24 0.06
1.03 −0.34 1.09
−2.02 −1.02 2.27

⎤⎦ , (B.11)

with an associate radius matrix taken as:

∆ =

⎡⎣ 1.32 0.86 4.38
0.84 2.97 1.42
1.61 3.06 0.55

⎤⎦ . (B.12)

Using the suggested method, the maximum singular value of AI is found to
be 9.8549, but from Deif’s method, it is found to be 9.7408. For demonstra-
tion purposes, random tests are performed. Figure B.1 shows the results of a
Monte-Carlo-type random test where the maximum singular values of a large
number of matrices taken from AI were computed. In the figure the dash-
dot line is the calculated maximum singular value from the suggested method
(9.8549) and the solid line is the maximum singular value from Deif’s method.
Clearly there exist exceptions in the case of Deif’s method, while the suggested
method bounds the maximum singular values without any exception.

Fig. B.1. Maximum singular values of randomly selected matrices and the calcu-
lated maximum singular values from the suggested method (dash-dot line) and from
Deif’s method (solid line)
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B.4 Summary

In this appendix, algorithms for calculating the maximum singular value for
square and non-square interval matrices were developed. Using an existing
example from [106], whose result was developed based on perturbation theory
under some restrictive assumptions, it was verified that the proposed method
in this appendix could find the exact maximum singular value. Furthermore,
by example it was also shown that the existing method [106] does not find the
maximum singular value in some cases while the suggested method finds the
maximum singular value without any exception.



C

Robust Stability of Interval Polynomial
Matrices

In this appendix, the concept of an interval polynomial matrix system is in-
troduced and a robust stability condition for such systems is derived. This
robust stability condition can be used for testing the asymptotic stability of
uncertain (interval) higher-order ILC systems.

C.1 Interval Polynomial Matrices

As commented in [372, 270], matrix polynomials (or polynomial matrices)
[160, 13] are important in the theory of higher-order vector differential equa-
tions, multi-input, multi-output control systems [51], and n-D circuits. For
the last two decades, the robust stability problem for polynomial matri-
ces has been steadily studied [372, 243, 232, 476, 481]. In fact, for ro-
bust analysis, the interval concept has been quite popular, as shown in
[314, 37, 42, 215, 179, 178]. Interval polynomial matrices occur in discrete-
time, multivariable problems where physical constants in the plant are sub-
ject to interval uncertainty. Under the interval uncertainty concept, after
Kharitonov [235] provided an analytical solution for the stability of the con-
tinuous interval polynomial, a great amount of literature has been devoted
to the study of robustness for interval matrices and interval polynomials.
For instance, interval matrices, matrix polytopes, interval polynomial ma-
trices, and polynomial matrix polytopes have been well defined and studied
[37, 42, 220, 543, 544, 215, 476, 481]. Also, it has been well known that the
stability of continuous interval polynomial matrices or interval matrix poly-
nomials can be checked by Kharitonov polynomials [243, 232, 476, 481]. How-
ever, relatively very few research efforts have been devoted to discrete interval
polynomial matrices [243] or discrete interval matrix polynomials [233]. Two
recent results are Henrion [191], who suggested an LMI condition for the ro-
bust stability of polynomial matrix polytopes and polytope type polynomial
matrices, and Psarrakos [372], who provided a stability radius for discrete
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polynomial matrices. In Henrion’s work, an LMI condition was used for poly-
nomial matrices when coefficients of the polynomial matrix vary dependently.
In Psarrakos’s work, it was required to calculate the norm of the inverse of
the nominal polynomial matrix, which could be quite conservative. In this
appendix, a new analytic Schur stability checking method is developed, which
is algebraically simple and less conservative than the existing results. In this
newly developed approach, Markov matrices of the polynomial matrix are
exploited by using the inverse of the polynomial matrix.

To ensure the consistency of notations and definitions, based on [243, 232,
476, 191, 481], let us repeat the definitions of interval polynomial matrices.
When the (i, j)-th element of matrix P (z) is denoted by

pij(z) = aij0 + aij1z + · · · + aijmzm, i, j = 1, . . . , m, (C.1)

where m is the degree of polynomial pij(z), matrix P (z) is called a polynomial
matrix. When the coefficients of a polynomial lie in intervals like

aijk ≤ aijk ≤ aijk, k = 0, . . . , m; i, j = 1, . . . , n, (C.2)

where n is the dimension of square P (z); (·) is the maximum extreme value
of (·) and (·) is the minimum extreme value of (·), these polynomial matrices
are called interval polynomial matrices (denoted by P I(z)) [243]. Note that
polytopic polynomial matrices [37, 476] or polynomial matrix polytopes [191]
should be distinguished from interval polynomial matrices. As commented in
[191], these polynomial matrix polytopes are linear combinations of a set of
given polynomial matrices.

C.2 Definitions and Preliminaries

Let us consider a real monic polynomial matrix of the form:

P (z) = Im×mzn + A1z
n−1 + · · · + An−1z + An, (C.3)

where Im×m is the m × m identity matrix; the coefficient matrices Ai, i =
1, . . . , n are m×m real square matrices, i.e., Ai ∈ Rm×m; and z is a point in
complex plane, i.e., z ∈ C. The following definitions are then used to discuss
the stability of the polynomial matrix P (z).

Definition C.1. [243, 476, 336] The roots λ∗ of det (P (λ)) = 0 are called
eigenvalues of P (z)1. Thus, when we define a set Sλ = {λ | det(P (λ)) = 0}, if
maxλ∈Sλ

|λ| < 1, then the polynomial matrix P (z) is robust D-stable. In this
appendix, robust D-stability is also called Schur stability without notational
confusion.
1 This notation is not unusual. For a similar discussion, refer to [247, 105, 372, 194,

13].
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Definition C.2. When the elements of a matrix A are intervals such as aij ∈
[aij , aij ], this matrix is called an interval matrix AI . The modulus matrix
(|A|m) of an interval matrix is defined as

|A|m =
[
am

ij : am
ij ∈ max{|aij |, |aij |, i, j = 1, . . . , n}

]
,

where am
ij are elements of modulus matrix |A|m. For a non-interval matrix A,

we define |A|m = |A| = [|aij |], which takes the absolute value of each element
of A.

For the derivation of the Schur stability of the interval polynomial matrix
P I(z), the following lemmas are needed.

Lemma C.3. [51] If P (z) is a real polynomial matrix and det(P (z)) is not
identically zero then it is invertible (i.e., non-singular) and its inverse is a
real-rational matrix.

Lemma C.4. [98, 418] For an m×m matrix R, if ρ(R) < 1 (ρ means spectral
radius), then det(I ± R) �= 0.

Lemma C.5. If P (z) is invertible,2 then [P (z)]−1 can be expanded as
∑∞

k=0

Tkz−k (i.e., [P (z)]−1 = span{Iz−i, i = 0, . . . ,∞}).
Proof (of Lemma C.5). By Lemma C.3, there exists [P (z)]−1 whose elements
are real-rational functions of z, denoted p−1

ij (z) =
∑∞

k=0 tijk
z−k. That is, each

element of [P (z)]−1 can be expanded into its Markov parameters. Clearly
then, we can write Tk = [tijk

].

Note that Tk are called the Markov matrices of the inverse polynomial matrix
[P (z)]−1.

Lemma C.6. [338] For any square matrices, R, T , and V , if |R|m ≤ V , then
the following inequalities are true:

ρ(RT ) ≤ ρ(|R|m|T |m) ≤ ρ(V |T |m),

where the subscript m means the modulus matrix.

C.3 Stability Condition for Interval Polynomial Matrices

The key idea of the suggested method is to utilize Markov matrices in the
region |z| ≥ 1 of the complex plane. The method will be developed based on
the matrix determinant. Our results are organized into three subsections. The
first two consider the stability of polynomial matrices. The results from these
first two subsections are then used in the third subsection to develop our main
result.
2 The assumption that P (z) is invertible is practically meaningful. From [51], “all

polynomial matrices are invertible for almost all z unless the determinant of P (z)
is 0 for all z.” Thus, it is the basic assumption that P (z) is invertible.
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C.3.1 The Stability of Polynomial Matrices: Part 1

Let us begin this subsection by rewriting the polynomial matrix (C.3) as

P (z) = zn−1(zI + A1 + A2z
−1 + · · · + Anz−n+1)

= zn−1(zI + S(z)) = zn−1Q(z), (C.4)

where S(z) := A1 + A2z
−1 + A3z

−2 + · · ·+ Anz−n+1, and Q(z) := zI + S(z).
By taking the determinant of both sides of (C.4), we have:

det[P (z)] = det[zn−1I · Q(z)] = det[zn−1I] · det[Q(z)]. (C.5)

Here, observe that z = 0 is the solution such that det[zn−1I] = 0. Furthermore,
z = 0 is not defined in Q(z), because denominators become zeros. Thus, for the
polynomial Q(z), the complex plane without the origin is considered. Define
C∗ = C − {0}. Then, to determine the stability of P (z) from det[Q(z)], the
following lemmas can be developed:

Lemma C.7. In C∗, from (C.4), P (z) is stable if and only if Q(z) is stable.

Proof. In C∗, det[zn−1I] �= 0. Hence, only z such that det[zI + S(z)] = 0
makes det[P (z)] zero. Thus, from the following latent solutions:

Sz∗ = {z|det[Q(z)] = 0, z ∈ C∗}; Sz∗∗ = {z|det[P (z)] = 0, z ∈ C∗},

the following set equality is true: Sz∗ = Sz∗∗ . Hence, P (z) is stable if and only
if Q(z) is stable.

Lemma C.8. In C∗, the polynomial matrix Q(z) is stable if and only if
det[Q(z)] �= 0, for all |z| ≥ 1.

Proof. It is certain that, in the complex plane, there exists a z such that
det[Q(z)] = 0. Thus, the condition “det[Q(z)] �= 0, ∀ |z| ≥ 1” is equivalent
to the condition “there exists a z such that det[Q(z)] = 0 only in the disk of
|z| < 1.” Thus, by Definition C.1, Q(z) is stable. For the “only if” condition,
assume that Q(z) is stable. Also assume there exists any z, |z| ≥ 1 such that
det[Q(z)] �= 0. Then, from Sλ = {λ | det(P (λ)) = 0}, we have maxλ∈Sλ

|λ| ≥
1. This contradicts the fact that Q(z) is stable. Hence, det[Q(z)] �= 0, ∀ |z| ≥ 1
is the stability condition.

Therefore, based on the results of Lemma C.7 and Lemma C.8, it is con-
cluded that in C∗, P (z) is stable if and only if det[Q(z)] �= 0, for all |z| ≥ 1.
The following theorem is then suggested:

Theorem C.9. If det(An) �= 0, then P (z) is stable in z ∈ C if and only if
det[Q(z)] �= 0, for all |z| ≥ 1.
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Proof. The proof can be completed by substituting z = 0 into P (z). If z = 0 is
substituted into P (z), then P (z = 0) = An. Thus, if det(An) �= 0, then z = 0
is not a latent solution such that det[P (z)] = 0. Hence, since latent solutions
of det[P (z)] = 0 in C are equivalent to latent solutions of det[P (z)] = 0 in
C∗, the stability of P (z) in C∗ means the stability of P (z) in C.

The above theorem shows that the polynomial matrix P (z) is stable if
and only if det[Q(z)] �= 0 for all |z| ≥ 1 with det(An) �= 0. Next, given
this necessary and sufficient condition for the stability of P (z), the remaining
problem with respect to the stability of a polynomial matrix is to find an
equivalent condition for det[Q(z)] �= 0. This will be discussed in the following
subsection.

C.3.2 The Stability of Polynomial Matrices: Part 2

Now we consider the Markov matrices of polynomial matrices, as a vehicle for
discussing the stability of det[Q(z)] �= 0. Then in the next subsection, based
on the boundary condition of the sum of these Markov matrices, a robust
stability condition for interval polynomial matrices is developed.

To define the Markov matrices of a polynomial matrix, the following lemma
is needed:

Lemma C.10. If det(P (z)) is not identically zero, then the polynomial matrix
Q(z) = zI + S(z) is nonsingular and [Q(z)]−1 can be expanded using Markov
matrices in C∗ as

[Q(z)]−1 =
∞∑

k=0

Tkzn−k−1.

Proof. By multiplying z1−nI by P (z), we have:

z1−nI · P (z) = (zI + A1 + A2z
−1 + · · · + Anz−n+1) = Q(z). (C.6)

Here, since P (z) is nonsingular from Lemma C.3 and z1−nI is nonsingular in
C∗, then clearly z1−nI·P (z) is nonsingular. Also, from Lemma C.5, [P (z)]−1 =∑∞

k=0 Tkz−k. Thus, the following relationship can be established easily:

[zI + S(z)]−1 = [z1−nP (z)]−1 = zn−1[P (z)]−1 =
∞∑

k=0

Tkzn−k−1. (C.7)

This completes the proof.

For convenience, let us write
∑∞

k=0 Tkzn−k−1 as

∞∑
k=0

Tkzn−k−1 =
n−2∑
k=0

Tkzn−k−1 +
∞∑

k=n−1

Tkzn−k−1, (C.8)
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and replace the second term of the right-hand side by

∞∑
k=n−1

Tkzn−k−1 =
∞∑

i=0

Riz
−i, (C.9)

where R0 = Tn−1, R1 = Tn, R2 = Tn+1, . . . , Ri = Tn+i−1. With this notation,
the process for the calculation of the Markov matrices of Q(z) is summarized
in the following lemma:

Lemma C.11. If det(P (z)) is not identically zero, the inverse of Q(z) is ex-
pressed as [Q(z)]−1 =

∑∞
i=0 Riz

−i in which the Markov matrices are calculated
by

Rk = −
k−1∑
i=1

AiRk−i, k ≥ 2, (C.10)

with R0 = 0 and R1 = I, and Ai = 0m×m for i ≥ n + 1.

Proof. From Lemma C.10, the following relationship is given:

[Q(z)]−1 =
∞∑

k=0

Tkzn−k−1.

Also, based on Lemma C.10, in C∗, there exists an inverse of Q(z). Thus, the
following equalities are true:

Q(z)[Q(z)]−1 = Q(z) ·
∞∑

k=0

Tkzn−k−1

⇔ I = Q(z) ·
∞∑

k=0

Tkzn−k−1

=
(
zI + A1 + A2z

−1 + · · · + Anz−n+1
)( ∞∑

k=0

Tkzn−k−1

)
=
(
zI + A1 + A2z

−1 + · · · + Anz−n+1
)

×
(

n−2∑
k=0

Tkzn−k−1 +
∞∑

k=n−1

Tkzn−k−1

)
=
(
zI + A1 + A2z

−1 + · · · + Anz−n+1
)

×
(

n−2∑
k=0

Tkzn−k−1 +
∞∑

i=0

Riz
−i

)
. (C.11)

Here, using the fact that the left-hand side and right-hand side of (C.11)
should be equal for all z, after some manipulations it is easy to show that
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Tk = 0m×m, i = 0, . . . , n − 2 and the following formula is easily derived for
Rk:

Rk = −
k−1∑
i=1

AiRk−i, k ≥ 2, Ai = 0m×m at i ≥ n + 1, (C.12)

with R0 = 0 and R1 = I. Recall that Rk, k = 0, . . . ,∞, are coefficient matrices
of the right-hand side of (C.9). Therefore,

[zI + S(z)]−1 = [Q(z)]−1 =
∞∑

i=0

Riz
−i, (C.13)

where Ri are determined in (C.12).

In Lemma C.11, we provided a formula for calculation of the Markov
matrices of the inverse of a polynomial matrix. Now, based on Lemma C.11,
it is easy to see that Rk → 0 if and only if Q(z) is stable. For more detail, let
us change Rk to

Rk = −
k−1∑
i=1

AiRk−i

= −A1Rk−1 − A2Rk−2 · · · − AnRk−n. (C.14)

Then, the following relationship is obtained:⎡⎢⎢⎢⎢⎣
Rk

Rk−1

...
Rk−n+2

Rk−n+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−A1 −A2 . . . −An−1 −An

Im×m 0m×m . . . 0m×m 0m×m

0m×m Im×m . . . 0m×m 0m×m

...
...

. . .
...

...
0m×m 0m×m . . . Im×m 0m×m

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Rk−1

Rk−2

...
Rk−n+1

Rk−n

⎤⎥⎥⎥⎥⎦ .

(C.15)

Denoting the above equation as Rk = CRk−1, if ρ(C) < 1, then ‖Rk‖ → 0 as
k → ∞ which implies Rk → 0 as k → ∞. Hence Rk → 0 as k → ∞ if and only
if ρ(C) < 1, which is an equivalent condition for the stability of Q(z). Thus, if
ρ(C) < 1, we can then calculate the absolute summation of Rk (denoted ΣRk

)
according to

ΣRk
= I +

∞∑
k=2

|Rk|m (C.16)

and, using this summation, the following lemma can be adopted to bound the
modulus matrix of Q(z)−1 (i.e., |Q(z)−1|m).

Lemma C.12. [98] In |z| ≥ 1, the following inequality is satisfied |Q(z)−1|m ≤
ΣRk

.
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C.3.3 The Stability of Interval Polynomial Matrices

In the remainder of this section, a stability condition for interval polynomial
matrices is developed. For clarity of notation, from this point forward the
superscript o is used to denote the nominal value of any variable or parameter.
In particular:

Definition C.13. Ao denotes the nominal matrix of AI :

Ao =
[
ao

ij : ao
ij =

aij + aij

2

]
.

Likewise, P (z), S(z), and Q(z) defined in (C.3) and (C.4) are now denoted
by P o(z), So(z), and Qo(z), respectively.

Now, let us add interval radius matrices ∆Ai to So(z) to get the interval
polynomial matrices SI(s) as follows:

SI(z) = Ao
1 + ∆A1 + (Ao

2 + ∆A2)z−1 + · · · + (Ao
n + ∆An)z−n+1,

from which the interval coefficient matrices are defined element-wise as Ao
i −

|∆Ai|m ≤ AI
i ≤ Ao

i + |∆Ai|m. We also define:

QI(z) = zI + So(z) + ∆S(z), (C.17)

where ∆S(z) = ∆A1 + ∆A2z
−1 + · · ·+ ∆Anz−n+1 and define the summation

of the modulus interval matrices |∆Ak|m as

�M =
n∑

k=1

|∆Ak|m. (C.18)

In fact, in (C.16), it is not possible to estimate ΣRk
, but if Qo(z) is stable, then

ΣRk
is bounded from (C.15). Let us suppose that the upper boundary of ΣRk

is known as Σ∗. Then, we can find a condition for robustly stability of QI(z).
For this purpose, first, let us rewrite det[QI(z)], using QI(z) = Qo(z)+∆S(z),
to be

det [Qo(z) + ∆S(z)] = det
[
Qo(z)

(
I + (Qo(z))−1

∆S(z)
)]

= det [Qo(z)] det
[
I + (Qo(z))−1

∆S(z)
]

= det [Qo(z)] det
[
I + (Qo(z))−1

∆S(z)
]
. (C.19)

Then, based on Lemma C.8 and with the assumption of stable Qo(z), we have
det [Qo(z)] �= 0 for |z| ≥ 1. Also, if ρ

(
(Qo(z))−1

∆S(z)
)

< 1, then, from
Lemma C.4, we can say that
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det
[
I + (Qo(z))−1

∆S(z)
]
�= 0.

Thus, since det [Qo(z)] �= 0 at |z| ≥ 1, if

ρ
(
(Qo(z))−1

∆S(z)
)

< 1,

then the interval polynomial matrix, QI(z), is stable. Therefore, we can con-
clude that QI(z) is stable if ρ

(
(Qo(z))−1

∆S(z)
)

< 1. Next, let us investigate

ρ
(
(Qo(z))−1 ∆S(z)

)
< 1. Using Lemma C.6 and Lemma C.12, the following

inequalities are true:

ρ
(
(Qo(z))−1

∆S(z)
)
≤ ρ
(∣∣∣(Qo(z))−1

∣∣∣
m
|∆S(z)|m

)
≤ ρ (ΣRk

|∆S(z)|m)

≤ ρ (Σ∗ |∆S(z)|m) .

Furthermore, using |z−k+1|m ≤ 1, when |z| ≥ 1 and k ≥ 1, the following
relationships are true:

|∆S(z)|m =

∣∣∣∣∣
n∑

k=1

∆Akz−k+1

∣∣∣∣∣
m

≤
n∑

k=1

|∆Ak|m
∣∣z−k+1

∣∣
m

≤
n∑

k=1

|∆Ak|m = �M ,

where �M was defined in (C.18). Then, by Lemma C.6, the following inequal-
ity is satisfied:

ρ
(
(Qo(z))−1

∆S(z)
)
≤ ρ(Σ∗�M ).

Therefore, the following lemma can be developed.

Lemma C.14. If ρ(Σ∗�M ) < 1, then the interval polynomial matrix, QI(z),
is stable.

Using this result, the following theorem is finally developed for the robust
stability of P I(z):

Theorem C.15. If (i) Qo(z) is stable, (ii) ρ(Σ∗�M ) < 1, and (iii) det(AI
n) �=

0, then the interval polynomial matrix P I(z) is robustly stable.

Proof. From Lemma C.14, if Qo(z) is stable and ρ(Σ∗�M ) < 1, then QI(z)
is robust stable. Also, from Theorem C.9, if det(AI

n) �= 0, it is obvious that
P I(z) is robustly stable.

In the sequel, a method for analytically finding Σ∗ is provided. Without
notational confusion, | · | is the modulus matrix defined earlier. From (C.15),
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|Rn+1| + |Rn+2| + · · · + |Rn+p| = |CRn| + |CRn+1| + · · · + |CRn+p−1|
= |CRn| + |C2Rn| + · · · + |CpRn|
≤
(
|C| + |C2| + · · · + |Cp|

)
|Rn|, (C.20)

where we used the inequality |AB| ≤ |A||B|. Here, if C is diagonalizable as
C = XΛX−1, we then change (C.20) as follows:(
|C| + |C2| + · · · + |Cp|

)
|Rn| =

(
|XΛX−1| + |XΛ2X−1| + · · · + |XΛpX−1|

)
|Rn|

≤ |X |
(
|Λ| + |Λ2| + · · · + |Λp|

)
|X−1||Rn|, (C.21)

which yields the following general formula:

p∑
i=1

|Rn+i| ≤ |X |
(

p∑
i=1

|Λi|
)
|X−1||Rn|. (C.22)

Now, taking p → ∞, if Qo(z) is stable, then we have

lim
p→∞

p∑
i=1

|Rn+i| = |X | lim
p→∞

(
p∑

i=1

|Λi|
)
|X−1||Rn|

≤ |X |diag
( |λl|

1 − |λl|

)
|X−1||Rn|, (C.23)

where diag(·) is a diagonal matrix composed of diagonal terms (·). Since X , λl,
X−1, and Rn are known, we can estimate the boundary of limp→∞

∑p
i=1 |Rn+i|.

Writing T := |X |diag
(

|λl|
1−|λl|

)
|X−1| and Fn := T |Rn|, and taking the first

m rows of Fn, which is denoted as Dn (i.e., Dn := Fn(1 : m, 1 : m)), we have
the following inequality:

ΣRk
≤

n∑
i=1

|Ri| + Dn. (C.24)

Therefore, since
∑n

i=1 |Ri| and Dn are calculated, we can analytically esti-
mate the upper boundary of ΣRk

. However, (C.24) could be conservative. To
accurately estimate the upper boundary of ΣRk

, by introducing an operator
Fq := T |Rq|, where q � n, and writing Dq := Fq(1 : m, 1 : m), we have a
more accurate upper boundary of ΣRk

given as

ΣRk
≤

q∑
i=1

|Ri| + Dq := Σ∗. (C.25)

This argument about an accurate upper boundary of ΣRk
is summarized in

the following theorem:

Theorem C.16. If Qo(z) is stable, in (C.25), as q → ∞, Dq → 0; hence
Σ∗ → ΣRk

.
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Proof. Since T is fixed, from (C.15), |Rq| → 0 as q → ∞ if and only if ρ(C) < 1.
Therefore, since |Rq| = 0 if and only if Rq = 0, the proof is immediate.

Theorem C.16 shows that an accurate upper boundary of ΣRk
(i.e., Σ∗)

can be estimated by taking a very large q in (C.25).

C.4 Illustrative Examples

In this section, we test the conservatism of the suggested algorithm. From
the existing literature, however, it is difficult to find a benchmark example
for the robust stability of discrete polynomial matrices. Most examples are
continuous cases [243, 232, 476, 191, 372, 481], except examples 3.5 and 4.3 of
[372]. However, example 3.5 of [372] is a special case that allows the analytical
calculation of P (λ)−1. But, in general it is very difficult to calculate P (λ)−1

analytically. Thus, in this appendix, for comparison purposes we use example
4.3 of [372], which uses a numerical range for ‖P (λ)−1‖2.

C.4.1 Example 1

The main disadvantage of the suggested method in [372] is that it calculates
‖P (λ)−1‖2 analytically. Although [372] provides a method for this, the method
is quite complicated and the result could be very conservative (see Theorem
4.1 of [372]). In example 4.3 of [372], the stability radius of a polynomial
matrix was calculated under some conditions. Let us use the example of [372],
given as

P o(z) = Iz3 + Ao
1z

2 + Ao
2z + Ao

3, (C.26)

where the coefficient matrices are Hermitian and satisfy the conditions 0 ≤
λmin(Ao

1) ≤ λmax(Ao
1) ≤ 1/3, −1/9 ≤ λmin(Ao

2) ≤ λmax(Ao
2) ≤ 1/9, and

−1/27 ≤ λmin(Ao
3) ≤ λmax(Ao

3) ≤ 1/9. Since [372] does not provide the
coefficient matrices, we selected the following matrices, which satisfy the con-
ditions of example 4.3 of [372]:

Ao
1 =

⎡⎣ 0 0 0
0 0.05 0
0 0 0.3333

⎤⎦ ; Ao
2 =

⎡⎣−0.1111 0 0
0 0.01 0
0 0 0.1111

⎤⎦

Ao
3 =

⎡⎣−0.0370 0 0
0 0.05 0
0 0 0.1111

⎤⎦ .

In [372], the analytical perturbation radius of P o(z) is calculated as 0.0141,
i.e., ‖[03×3 ∆1 ∆2 ∆3]‖2 could be 0.0141. Thus, since ‖[03×3 ∆1 ∆2 ∆3]‖2 ≤
0.0141, the polynomial matrix system is robustly stable. Let us use our method
to compute this analytical stability radius. From the companion form C, we
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find that the nominal system is stable and has non-repeated eigenvalues. From
Theorem C.16 and (C.25), selecting q = 100, we found that

Σ∗ =
q∑

i=1

|Ri| + Dq =

⎡⎣ 1.1739 0 0
0 1.1152 0
0 0 1.5

⎤⎦ .

Also, for the uncertainty, we provided 10 percent intervals to Ao
1, Ao

2, and Ao
3,

from which ‖[03×3 ∆1 ∆2 ∆3]‖2 = 0.0369. From (C.18), we calculated

�M =

⎡⎣ 0.0148 0 0
0 0.011 0
0 0 0.0556

⎤⎦
Finally, using the calculated

∑q
i=1 |Ri|+Dq and �M , we found that ρ(Σ∗�M ) =

0.0833; hence the interval polynomial system is robustly stable with 10 percent
uncertainty, which cannot be concluded in [372].

C.4.2 Example 2

Let us first consider the following general non-symmetric polynomial matrix:

P o(z) = I2×2z
3 + Ao

1z
2 + Ao

2z + Ao
3, (C.27)

where the coefficient matrices are given as

Ao
1 =

[
0.4 −0.3
0.4 0.1

]
; Ao

2 =
[

0.3 0.3
0.4 −0.5

]

Ao
3 =

[
0.0 0.5
−0.1 0.15

]
.

From the corresponding C matrix, the eigenvalues are calculated as −0.0535+
0.8125i; − 0.0535− 0.8125i; − 0.8696; − 0.5086; 0.7612; 0.2240. Thus, the
nominal system is stable. Also, since det(AI

3) is not zero, the suggested method
can be used. It is assumed that there exists element-wise interval uncertainty
in the nominal matrices given as

∆A1 =
[

0.0432 0.0324
0.0432 0.0108

]
; ∆A2 =

[
0.0324 0.0324
0.0432 0.0540

]

∆A3 =
[

0.0 0.0540
0.0108 0.0162

]
.

To apply Theorem C.16, we selected q = 50, from which we found

Σ∗ =
50∑

i=1

|Ri| + D50 =
[

3.1502 1.8140
1.5848 4.1860

]
.
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Using these matrices, we found ρ(Σ∗�M ) = 0.9979 which shows that the
system is robustly stable (though almost marginally stable). For comparison
purposes, we used Theorem 3.1 of [372]. It is, however, difficult to find the
infimum of 1√∑

k∈J
|λ|2k‖P (λ)−1‖2

for all λ ∈ ∂Ω, which is a required computa-

tion (for notation, refer to [372]). Hence we performed random simulation tests
and found that λ = −1 is the best (this is not an analytical solution, instead
we did 2000 random tests to find the best λ). Using λ = −1, we calculated

1√∑
k∈J

|λ|2k‖P (λ)−1‖2
= 0.1175, and calculated ‖[∆0 ∆1 ∆2 ∆3]‖ = 0.1174

which is also almost marginally stable. Hence, from this test, we found that
when the exact minimum of 1√∑

k∈J
|λ|2k‖P (λ)−1‖2

of Theorem 3.1 of [372] is

found, the stability index of [372] is almost equal to the stability index of
our method. However, as commented in [372], it is tough to find the exact
minimum of 1√∑

k∈J
|λ|2k‖P (λ)−1‖2

(so they used a numerical range for the

approximation, but the result is quite conservative as shown in Example 1
above).

C.5 Summary

In this appendix, a new method for checking the Schur stability of inter-
val polynomial matrices has been suggested and illustrated. The proposed
method checks the stability in a simple manner and the derivation process
of the method has a good analytical basis. From comparison with an exist-
ing method, it was found that the suggested method is less conservative, as
demonstrated in Example 1 above, and computationally very simple. Fur-
thermore, we have found that our method provides almost the same stability
condition as [372] when the exact minimum of Theorem 3.1 of [372] is found.3

This implies that the analytical solution proposed in this appendix can be
very useful.

3 However, actually it is very tough to find this minimum. So, [372] developed
Theorem 4.1, which results in a conservative stability radius.



D

Power of an Interval Matrix

Interval computation techniques are popularly used for robust stability analy-
sis of uncertain systems described in terms of interval parameters and interval
matrices. In the past two decades, a great amount of research effort has been
devoted to the analysis of interval matrices. However, there is no available
result for determining the impulse response bounds of discrete-time, linear,
time-invariant systems with interval uncertainty in their state-space descrip-
tion. Indeed, in control engineering [245, 52] and in signal processing [297],
the impulse response plays an important role. As shown in [553], the inter-
val impulse response could be effectively used for robust controller design.
However for all these works, if there exist model uncertainties in a system’s
state-space model, the uncertain ranges of the impulse response should be
carefully estimated.

Note that if the interval uncertainty in the state-space model is known
then the key problem of determining the impulse response of such an uncer-
tain system is to find the power of an interval matrix. In this appendix we
will show how the power of an interval matrix can be computed. This result
can then be used for a number of important problems. For our purposes, for
example, it can be used for designing the learning gain matrix in ILC prob-
lems (although, the method presented here requires much more computation
compared with the eigen-decomposition method developed in Chapter 6). Be-
yond ILC, in robust control the power of an interval matrix can be effectively
used in the analysis of controllability, observability, or impulse response for
uncertain interval systems. However, very limited effort has been devoted to
calculating the boundaries of the power of an interval matrix. Some existing
results can be found in [290, 202, 460, 172] where the convergence problem
of the powers of an interval matrix was studied and it was proved that the
power of an interval matrix converges to zero if the maximum spectral radius
of the interval matrix is less than 1. However, the question of the boundaries
of the power of an interval matrix at a specified order has not been fully ad-
dressed (though, some useful analysis of the power of an interval matrix at a
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specified order can be found in [244], where it was concluded that computing
the boundaries of the power of an interval matrix is an NP-hard problem).

D.1 Sensitivity Transfer Method

In this section, a new method is developed for the calculation of the power of
an interval matrix. This method first computes the sensitivity of the pertur-
bation of the nominal A matrix and then applies this sensitivity to the power
of the matrix Ak. The set of the power of the interval matrix can be written
as

Ak = {P | P = AAA · · ·A︸ ︷︷ ︸
k

, A ∈ AI}. (D.1)

Then, from the relationship Ak = AA · · ·A︸ ︷︷ ︸
k

, we can have

∂Ak

∂aij
=

∂A

∂aij
(A · · ·A︸ ︷︷ ︸

k−1

) + A
∂A

∂aij
(A · · ·A︸ ︷︷ ︸

k−2

) + · · · + (A · · ·A︸ ︷︷ ︸
k−1

)
∂A

∂aij
. (D.2)

Here, by observing that ∂A
∂aij

= Iij where Iij is a matrix whose ith row and
jth column element is 1 and the other elements are all zeroes, we have

∂Ak

∂aij
= Iij(A · · ·A︸ ︷︷ ︸

k−1

) + AIij(A · · ·A︸ ︷︷ ︸
k−2

) + · · · + (A · · ·A︸ ︷︷ ︸
k−1

)Iij . (D.3)

Thus, we have the perturbed sensitivity (∂Ak) of Ak by the uncertain change
(∂aij) of aij such as

∂Ak = ∂aij

⎛⎝Iij(A · · ·A︸ ︷︷ ︸
k−1

) + AIij(A · · ·A︸ ︷︷ ︸
k−2

+ · · · + (A · · ·A︸ ︷︷ ︸
k−1

)Iij

⎞⎠ . (D.4)

For convenience, let us use the following notation:

∏
ij

:=

⎛⎝Iij(A · · ·A︸ ︷︷ ︸
k−1

) + AIij(A · · ·A︸ ︷︷ ︸
k−2

) + (A · · ·A︸ ︷︷ ︸
2

)Iij(A · · ·A︸ ︷︷ ︸
k−3

+ · · · + (A · · ·A︸ ︷︷ ︸
k−1

)Iij

⎞⎠
which simplifies (D.4) to ∂Ak = ∂aij

∏
ij . Hence, we find that when there

is a perturbation amount of ∂aij in aij , there is a perturbation effect on Ak

by the amount of ∂Ak that is related to the sensitivity transfer matrix
∏

ij .
Here, noticing that each element of A perturbs Ak, we develop a method for
bounding the uncertainty of Ak. Using the notation P ∈ P1 = Ak = [P , P ],
we make the following proposition:
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Proposition D.1. Given the order of power k, the upper and lower bound-
aries associated with the elements of P occur at the power of one of the vertex
matrices Av.

Proof. Let us pick arbitrary i1 and j1, and fix all apq, where p, q = 1, . . . , n,
and p �= i1 or q �= j1, to specified values apq = a∗

pq ∈ [apq, apq]. Then, from
∂Ak = ∂ai1j1

∏
i1j1

, the kth row and lth column element of ∂Ak are deter-

mined by ∂ai1j1 and
(∏

i1j1

)
kl

. Noticing that ∂ai1j1 = [−�ai1j1 ,�ai1j1 ], the

positive (negative) maximum of ∂Ak occurs at �ai1j1 (−�ai1j1) if
(∏

i1j1

)
kl

is positive. Otherwise, the positive (negative) maximum of ∂Ak occurs at
−�ai1j1 (�ai1j1). However, the sign of

(∏
i1j1

)
kl

is not determined. Hence,

for arbitrary fixed i1 and j1, we can conclude that the positive (negative)
maximum of the kth row and lth column element of ∂Ak occurs at one of
the vertex points of aI

i1j1
= [ao

i1j1
− �ai1j1 , a

o
i1j1

+ �ai1j1 ]. Now let us pick
another arbitrary i2 and j2. Then by the same reasoning given above, the
positive (negative) maximum of the kth row and lth column element of ∂Ak

occurs at one of vertex points of aI
i2j2 = [ao

i2j2 −�ai2j2 , a
o
i2j2 + �ai2j2 ], but

ai1j1 ∈ {ai1j1 , ai1j1}. Finally, since we can repeat the above discussion for all
apq, the positive (negative) maximum of the kth row and lth column element
of ∂Ak occurs at the power of one of vertex matrices.

Proposition D.1 shows that the lower and upper boundaries of the power
of an interval matrix can be found by checking all the vertex matrices. It
is important to highlight that Proposition D.1 uses the finite vertex matrix
set to find the boundary of the power of interval matrix set. However, from
∂Ak = ∂aij

∏
ij , it is required to check all the vertex matrices of AI to find

the maximal positive or negative perturbation of elements of Ak, i.e., (Ak)ij ,
∀A ∈ AI . Hence, the computational amount could be huge. That is, in order
to find the maximum and minimum of Ak, where A ∈ AI , we have to check 2n2

vertex matrices, where n is the size of the square A matrix, for each element of
Ak. Thus, the total computational amount is 2n2 ×2n = 2n2+n. In the sequel,
we will show that under some conditions, we do not need to check all the
vertex matrices. Instead, only some specified vertex matrices need to be used
for the calculation of the power of interval matrix. However, even without this
result, although the computational effort to check all the vertex matrices may
be high, because the impulse response of an LTI system is generally used for
design purposes in an off-line manner, Proposition D.1 is still useful.

To see how to reduce the computational load, let us define the center
matrix of P and radius matrix of P as P c = P+P

2 ; P r = P−P
2 . Then the

following result can be derived:

Proposition D.2. If the sign of the kth row and lth column element of the
sensitivity transfer matrix

∏
ij does not change by ∂aij, the maximum positive
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and negative perturbations of the kth row and lth column element of Ak, occur
at the power of the following vertex matrices of AI , respectively,

(Av)|+kl =
{

Av | Av = [(Ao)ij + sij
kl�aij , i, j = 1, . . . , n]

}
(D.5)

(Av)|−kl =
{

Av | Av = [(Ao)ij − sij
kl�aij , i, j = 1, . . . , n]

}
, (D.6)

where sij
kl = sign

(∏
ij

)
kl

.

Proof. From ∂Ak = ∂aij

∏
ij , the positive (negative) maximum of ∂Ak occurs

at �aij (−�aij) if
(∏

ij

)
kl

is positive. Otherwise, the positive (negative)

maximum of ∂Ak occurs at −�aij (�aij). This implies that the positive
(negative) maximum disturbance of (Ak)kl occurs at (Ao)ij+sij

kl�aij ((Ao)ij−
sij

kl�aij).

Remark D.3. Proposition D.2 was developed based on an assumption that
the signs of

∏
ij do not change. In Section D.3, some sufficient conditions

are established which can be used for checking the sign variation. However,
it should be noted that if the sufficient conditions given in the appendix
are not satisfied, Proposition D.1 should be used. Hence, Proposition D.1 and
Proposition D.2, having their own advantages and disadvantages, complement
each other. Therefore, the two procedures based on the sensitivity transfer
idea presented in this appendix are practically valuable in the interval model
conversion problem.

Remark D.4. In Proposition D.1 and Proposition D.2, we considered general
non-symmetric square interval matrices. However, we can extend these results
to symmetric interval matrices. This work is direct by repeating (D.2), (D.3),
and (D.4).

In this section, a new method called the sensitivity transfer method was
developed to overcome the conservatism of the method suggested in Chapter 6
(called eigenpair-decomposition method). However, the computational effort
of the method given in Chapter 6 is significantly less than the method devel-
oped in this appendix. Using either method, however, once the boundary of
the power of an interval matrix is found then it is straightforward to find the
boundaries of the impulse response. In other words, the boundaries of hI

k, i.e.,
[hk, hk], can be simply calculated by matrix multiplication CP k−1B, where
P k−1 ∈ Ak−1, because the upper and lower boundary matrices of Ak−1 have
been estimated. In the next section, the effectiveness of the suggested method
is illustrated through numerical examples.

D.2 Illustrative Examples

To verify the usefulness of the new method, Monte-Carlo-type random tests
are performed. The results obtained from the random tests are considered
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as the “true” range of the impulse response of the interval LTI system, for
comparison to the bounds computed by the suggested methods.

D.2.1 Example 1

Consider the following uncertain discrete-time LTI interval system:

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t), (D.7)

where B = [2, 0.5]T ; C = [1, 0] and the following two different nominal A
matrices are tested:

• Case 1 (symmetric and unstable): a11 = −1.05; a12 = 0.55; a21 =
0.55; a22 = 0.85

• Case 2 (non-symmetric and stable): a11 = 0.75; a12 = −0.40; a21 =
0.25; a22 = 0.55.

In Case 1, the nominal eigenvalues are −1.1977 and 0.9977. Thus, the nominal
system is initially unstable. In Case 2, the nominal eigenvalues are 0.6500 +
0.3000i and 0.6500 − 0.3000i. Hence, the nominal system is stable. In both
cases, it is supposed that there is 10 percent interval model uncertainty in the
A matrix parameters. Thus, in Case 1, AI is

AI =
[

[−1.155,−0.945] [0.495, 0.605]
[0.495, 0.605] [0.765, 0.935]

]
and in Case 2, AI is

AI =
[

[0.675, 0.825] [−0.44,−0.36]
[0.225, 0.275] [0.495, 0.605]

]
.

Figure D.1 shows the test result of Case 1. Since the system is unstable, the im-
pulse responses diverge as k increases. In this figure, four different test results
are shown: the ×-dot dashed lines are the upper/lower boundaries computed
from Intlab [179]; the ◦-dashed lines show the upper/lower boundaries com-
puted from the eigenpair-decomposition method; the �-solid lines represent the
upper/lower boundaries computed from the sensitivity transfer method; and
the thick solid vertical bars represent the range obtained from the random
test results. Clearly, the sensitivity transfer method accurately bounds the
upper/lower boundaries of the impulse responses, while even if the eigenpair-
decomposition method is better than Intlab, it is much more conservative
than the sensitivity transfer method. Figure D.2 shows the test results of Case
2. From this figure, it is also seen that the sensitivity transfer method accu-
rately bounds the upper/lower boundaries of the impulse responses. In the
early phase, Intlab performs better than the eigenpair-decomposition-based
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method. However, as k increases, the eigenpair-decomposition method per-
forms better than Intlab. Note that for the sensitivity transfer method, we
used Proposition D.2 based on Lemma D.5 and Lemma D.6. However, the
condition of Lemma D.6 was satisfied, for all k, l, i, j in Proposition D.2, only
for the power k = 1, . . . , 4 of Case 1 and the condition of Lemma D.5 was
satisfied, for all k, l, i, j in Proposition D.2, only for the power k = 1, . . . , 4
of Case 2.1 Hence, for the higher-order power of the interval matrix, we used
Proposition D.1. Now, from Figure D.1 and Figure D.2, it is clear that the
sensitivity transfer method suggested in this appendix very accurately bounds
the impulse responses of the uncertain interval system in both stable and un-
stable systems. However, the computational amount is huge. Thus we can say
that the eigenpair-decomposition method and the sensitivity transfer method
complement each other.

D.2.2 Example 2

For the usefulness of Proposition D.2 and Lemma D.5, let us consider the
following nominal matrix, which was created using MATLAB R© commands
rand and sign:

Ao =

⎡⎢⎢⎢⎣
1 −1 −1 −1 1
−1 1 −1 1 −1
1 −1 −1 1 −1
−1 1 1 1 1
1 −1 1 1 1

⎤⎥⎥⎥⎦
Let us suppose that there exist ±0.001 interval uncertainties in all elements,
and that we want to find exact upper and lower boundaries of A5, A ∈ AI . If
we use Proposition D.1, we need to check 252

= 225 vertex matrices. Indeed, in
this case, the computational time could be huge. However, from Lemma D.5,
we find that the signs of all elements of

∏
ij do not change for all i, j. Hence,

for the upper and lower boundary matrices of A5, it is enough to use 25 vertex
matrices. From these vertex matrices, we calculate the upper boundary and
lower boundary matrices of A5, A ∈ AI to be

P =

⎡⎢⎢⎢⎣
125.7868 −124.2167 −0.7030 −68.4220 69.5497
−130.1691 131.8351 −0.6711 91.6420 −90.3863
29.2777 −28.6957 −0.8434 −4.7393 5.2731
−62.3879 63.6182 11.2053 55.4559 −22.5556
97.7063 −96.2963 11.2414 −40.4952 73.4820

⎤⎥⎥⎥⎦
1 From numerous numerical tests, we have found that Lemma D.5 and Lemma D.6

are particularly effective for a stable system and a lower-order impulse response.
Also it is important to emphasize that Proposition D.2 does not require that
Lemma D.5 and Lemma D.6 should be satisfied for all k, l, i, j. Instead, Proposi-
tion D.2 shows that if Lemma D.5 and Lemma D.6 hold for part of k, l, i, j, the
corresponding elements of the power of an interval matrix can be estimated from
the particular intervals of AI . In such a case, the computational effort could be
further reduced.
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Fig. D.1. Impulse responses of Case 1. Plots are from Intlab, from the eigenpair-
decomposition method, and from the suggested sensitivity transfer method. The
vertical thick bars are the random test results.

P =

⎡⎢⎢⎢⎣
124.2167 −125.7868 −1.2970 −69.5800 68.4517
−131.8351 130.1691 −1.3291 90.3600 −91.6163
28.7237 −29.3057 −1.1574 −5.2613 4.7271
−63.6139 62.3842 10.7953 54.5459 −23.4456
96.2963 −97.7063 10.7594 −41.5052 72.5200

⎤⎥⎥⎥⎦ .

D.3 Condition for Proposition D.2

In this section we provide sufficient conditions for Proposition D.2. Let us
write the sensitivity transfer matrix

∏
ij as

∏
ij

=
k∑

p=1

Ap−1IijA
k−p, (D.8)

where A ∈ AI . For convenience, let us write A as A = Ao+∆ where ∆ ∈ ∆AI .
Then, using Ak = (Ao +∆)k, and writing Ok := (Ao +∆)k−(Ao)k, we obtain:

∏
ij

=
k∑

p=1

(Ao + ∆)p−1Iij(Ao + ∆)k−p
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Fig. D.2. Impulse responses of Case 2. Plots are from Intlab, from the eigenpair-
decomposition method, and from the suggested sensitivity transfer method. The
vertical thick bars are the random test results.

=
k∑

p=1

[
Op−1 + (Ao)p−1

]
Iij

[
Ok−p + (Ao)k−p

]
. (D.9)

Then, rearranging (D.9) yields

∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p =
k∑

p=1

{Op−1IijOk−p + Op−1Iij(Ao)k−p

+ (Ao)p−1IijOk−p}.
(D.10)

Defining the absolute matrix such as |A| := [|aij |], we have∣∣∣∣∣∣
∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣∣ =∣∣∣∣∣
k∑

p=1

{
Op−1IijOk−p + Op−1Iij(Ao)k−p + (Ao)p−1IijOk−p

}∣∣∣∣∣
≤

k∑
p=1

{∣∣Op−1
∣∣ Iij

∣∣Ok−p
∣∣+ ∣∣Op−1

∣∣ Iij

∣∣(Ao)k−p
∣∣+ ∣∣(Ao)p−1

∣∣ Iij

∣∣Ok−p
∣∣}
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≤
k∑

p=1

{[
(|Ao| + |∆|)p−1 − |Ao|p−1

]
Iij

[
(|Ao| + |∆|)k−p − |Ao|k−p

]
+
[
(|Ao| + |∆|)p−1 − |Ao|p−1

]
Iij

∣∣(Ao)k−p
∣∣

+
∣∣(Ao)p−1

∣∣ Iij

[
(|Ao| + |∆|)k−p − |Ao|k−p

]}
, (D.11)

where we used the inequality |Ok| ≤ [|Ao| + |∆|]k−|Ao|k, which can be derived
after several algebraic manipulations. Now, defining ∆∗ := A − Ao = Ao − A
and using inequality |∆| ≤ ∆∗, we obtain∣∣∣∣∣∣

∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣∣ ≤
k∑

p=1

{[
(|Ao| + ∆∗)p−1 − |Ao|p−1

]
Iij

[
(|Ao| + ∆∗)k−p − |Ao|k−p

]
+
[
(|Ao| + ∆∗)p−1 − |Ao|p−1

]
Iij

∣∣(Ao)k−p
∣∣

+
∣∣(Ao)p−1

∣∣ Iij

[
(|Ao| + ∆∗)k−p − |Ao|k−p

]}
. (D.12)

Finally, denoting the right-hand side of (D.12) as R∗ and writing

L :=

∣∣∣∣∣
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣ ,
we can make the following lemma.

Lemma D.5. If L ≥ R∗ element-wise, the signs of
∏

ij do not change
element-wise.

Proof. From∣∣∣∣∣∣
∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣∣ ≤ R∗ ≤ L

=

∣∣∣∣∣
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣ ,
we have the inequality:∣∣∣∣∣∣

∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣∣ ≤
∣∣∣∣∣

k∑
p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣ .
Hence element-wise, if

∑k
p=1(A

o)p−1Iij(Ao)k−p ≥ 0, then
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0 ≤
∏
ij

≤ 2

(
k∑

p=1

(Ao)p−1Iij(Ao)k−p

)
,

else if
∑k

p=1(A
o)p−1Iij(Ao)k−p < 0, then

−2

(
k∑

p=1

(Ao)p−1Iij(Ao)k−p

)
≤
∏
ij

< 0.

Therefore, the signs of
∏

ij are the same to the signs of
∑k

p=1(A
o)p−1Iij(Ao)k−p.

This completes the proof.

When the commutative property Ao∆ = ∆Ao holds, a less conservative
condition can be derived. Note the commutative property is satisfied when A
is a symmetric interval matrix, and the symmetric interval matrix system has
been an important research topic as shown in [192, 389]. For this result, we
use (Ao + ∆)m =

∑m
u=0 mCu(Ao)m−u∆u where mCu = m!

u!(m−u)! . Now, from
the following relationship:

∏
ij

=
k∑

p=1

[
p−1∑
u=0

p−1Cu(Ao)p−1−u∆u

]
Iij

[
k−p∑
v=0

k−pCv(Ao)k−p−v∆v

]

=
k∑

p=1

[
(Ao)p−1 +

p−1∑
u=1

p−1Cu(Ao)p−1−u∆u

]
Iij

×
[
(Ao)k−p +

k−p∑
v=1

k−pCv(Ao)k−p−v∆v

]
,

(D.13)

we have

∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p =
k∑

p=1

{[
(Ao)p−1

]
Iij

[
k−p∑
v=1

k−pCv(Ao)k−p−v∆v

]

+

[
p−1∑
u=1

p−1Cu(Ao)p−1−u∆u

]
Iij

[
(Ao)k−p

]
+

[
p−1∑
u=1

p−1Cu(Ao)p−1−u∆u

]
Iij

×
[

k−p∑
v=1

k−pCv(Ao)k−p−v∆v

]}

=
k∑

p=1

k−p∑
v=1

k−pCv

[
(Ao)p−1Iij(Ao)k−p−v∆v

]
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+
k∑

p=1

p−1∑
u=1

p−1Cu

[
(Ao)p−1−u∆uIij(Ao)k−p

]
+

k∑
p=1

p−1∑
u=1

k−p∑
v=1

(p−1Cu)(k−pCv)

×
[
(Ao)p−1−u∆uIij(Ao)k−p−v∆v

]
. (D.14)

Using the commutative property (notice that Iij is symmetric), we simplify
(D.14) as

∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p =
k∑

p=1

k−p∑
v=1

k−pCv

[
Iij(Ao)k−v−1∆v

]
+

k∑
p=1

p−1∑
u=1

p−1Cu

[
∆uIij(Ao)k−u−1

]
+

k∑
p=1

p−1∑
u=1

k−p∑
v=1

(p−1Cu)(k−pCv)

[
∆u+vIij(Ao)k−u−v−1

]
.

(D.15)

Hence, we obtain the following inequality:∣∣∣∣∣∣
∏
ij

−
k∑

p=1

(Ao)p−1Iij(Ao)k−p

∣∣∣∣∣∣ ≤
k∑

p=1

{
k−p∑
v=1

k−pCv

∣∣Iij(Ao)k−v−1
∣∣ (∆∗)v

+
p−1∑
u=1

p−1Cu(∆∗)u
∣∣Iij(Ao)k−u−1

∣∣
+

p−1∑
u=1

k−p∑
v=1

(p−1Cu)(k−pCv)(∆∗)u+v

×
∣∣Iij(Ao)k−u−v−1

∣∣} .

(D.16)

Now, denoting the right-hand side of (D.16) as S∗, we can state the following
lemma for the case of a symmetric interval matrix.

Lemma D.6. For a symmetric interval matrix, if L ≥ S∗ element-wise, the
signs of

∏
ij do not change.

The following remark is provided for some special cases.

• In Proposition D.2, in the case of A > 0 element-wise, for all A ∈ AI , or
A < 0 element-wise, for all A ∈ AI , the signs of

∏
ij do not change.
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• When AI is a symmetric interval matrix and it satisfies the property that,
regardless of the magnitude of the elements of AI , the sign of (AA) =
the sign of (A) for all A ∈ AI , then the signs of

∏
ij do not change.

D.4 Summary

Computing the boundaries of the power of an interval matrix is a hard prob-
lem, if not NP-hard. In this appendix, we provided a solution for computing
the bounds of the power of an interval matrix using the idea of sensitiv-
ity transfer. Through rigorous analysis, we are able to show that the exact
boundaries of the power of an interval matrix can be found from vertex ma-
trices.

Furthermore, in some special cases when the considered interval matrix has
some structural constraints, the exact boundaries of the power of an interval
matrix can be calculated from a set of selected vertex matrices. Numerical
examples were presented to illustrate the proposed algorithm.

We believe that the results of this appendix can be widely used in solving
many robust control problems such as the robust stability, robust controlla-
bility/observability, and others.
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[322] M. Norrlöf. An adaptive approach to iterative learning control with
experiments on an industrial robot. In Proceedings of the 2001 European
Control Conference, Seminário de Vilar, Porto, Portugal, Sept. 2001.
ECC.
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[326] M. Norrlöf and S. Gunnarsson. A frequency domain analysis of a second
order iterative learning control algorithm. In Proceedings of the 38th
IEEE Conference on Decision and Control, pages 1587–1592, Phoenix,
AZ, Dec. 1999.
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