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Figure 7.1: The molar Gibbs free energy (@ of a stable binary mixture as a function of the mole

fraction of component 2 (solid line). The dashed line is the tangent line to G at the composition

To = T5.
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frat:tmn ‘of component 2 (solid line). The dashed line is the tangent line to G at the

An ideal solution is never unstable and will always remain as a single phase mixture. To prove t
we need to demonstrate that 9G4/ O3 is always positive. For a binary mixture, the molar Gibbs

free energy of an ideal solution is given by

G'¢ = zypug + wops + RT'z1Inxy + RT'xo In z9
— (1 — x9)p§ + zops + RT(1 — x2) In(1 — 1r9) + RTzaIn 9 (1.2}

Taking the derivative of this. we find
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Figure 7.2: Variation of the molar Gibbs free energy G of a binary mixture as a function of the mole
fraction of component 2 (solid line). The long-dashed line is the Gibbs free energy for a system
of two unmixed pure compounds. The short-dashed line is the tangent line to G at the coexistence

compositions g = r and xy = I}




12 'Var ation of the molar Gibbs free energy G of a binary mixture as a flmcuon_
of component 2 (solid line). The long-dashed line is the Gibbs free energy for a .

*of two unmixed pule compounds. The short-dashed line is the tangent line to G at the coex

compositions g = x4 and z9 = ).

To model a mixture that phase separates into two coexisting liquid phase, we need to add non-ideal

terms (activity coefficients) to the ideal solution model. As an example of this. we examine the

stability of the two-suffix Margules model. which has a molar Gibbs free energy of

G = z1pu] + vopg + RT'x1 Inx1v1 + RTxo In x99

= (1 mo)uy +zopg + RT(1 — z9)In(1 — z9) + RTz9Inz9 + RTA(T — T4l (7.49)
The derivatives of the molar Gibbs free energy are:

* é)G o) o g f / . ¢
L i R + o — RT In(1 — z2) + RT' In 9 + RT'A(1 — 2x3)

i Rl nr

e - — 2RTA

O l—x9 o

RT
) SR Y - (1.5)




k0 “”“’U'““' —
T

|
HH\ W

il lf I i

ble. it separates into two coexisting liquid phases. We label one

When a hqlud mixture becomes un*sta
" The criterion for phase equilibrium is

of the phases with a’ and the other phase with a

WL
Ho = Pa

ad4 I el = 2 o Bl il

Rillnz 4L = RT Inzi 9,
" (1}

.’ ,’ ML
LaVa = LaVa
Given a model for the activity coefficients, Eq. (7.7) yields a set of constraints that can be solved for

the compositions of each liquid phase.

given the composition of the coexisting liquid phases. Eq. (7.7) can also be used to fit an

Conversely.
fargules model for a binary mixture,

activity coefficient model. For example. using the twoksuffix M
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8.2 Phase behavior

To demonstrate the general freezing behavior of a binary mixture, we present the solid-liqui
diagram for systems of ethanol and water at 1 atm in Fig. 8.1. The solid line with the fillec s
is the freezing curve of water in the mixture. Above the curve the solution is completely
below the curve, it is a liquid mixture coexists with solid water (i.e.. ice). At this pressure, pma
freezes at 273.15 K. As ethanol is added to the solution. the temperature at which ice begins to

in gradually decreases.

The dotted line with the open symbols on the right side of the diagram is the freezing
* ethanol in the mixture. As one passes downward through thif curve, solid ethanol precipita

the solution. Note that the temperature at which ethanol begins to freeze decreases as {
water in the solution increases. Therefore. we see that the add1t1on of nnpuntle ‘




this section. we derive the equation that governs the shape of the freezing curve. Let’s ¢
 freezing of a species in a general multicomponent mixture. We make the assumption that th
phase consists of pure component cv. At equilibrium, the chemical potential of the solid phase
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ure 8.1: Solid-liquid phase diagram for mixtures of ethanol and water at 1 atm. Data taken from

‘“‘“ir_krl,J Chem. Soc. 63. 998 (1893).
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jdu?tgrmn for mixtures of ethanol and water at 1 atm. Data tak
 Soc. 63, 998 (1893).

same as that in the liquid phase:

u® = 4

poO(T,p) + RT Inzoye = p2® (T, p)
RT In zove = p3® (T, p) — uoO(T, p)

I mihe — AG;?(CZ?’ P) (8.1)

tentials of the solid and liquid phases (i.¢.. AGL(T,p) =

where AG,, is the difference in the chemical po
and the function

pg’(s) IT.p) — 7 ( ) (T, p)). If we knew the composition of the mixture (ie.Za)l 0

AG,. then we could use Eq. (8.1) to predict the freezing temperature T of the mixture.

" One method to approximate the function AG,, is by using a Taylor series expansion around the

mperature T, the melting temperature of pure v at plessure p. T
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Chemical Thermodynamics

molar Gibbs free energy of the pure liquid phase. That 1s
AC.""(\!(Y’IH* }“) =0

Therefore. the first term of the Taylor series expansion in Eq. (8.2) vanishes.

the fundamental equation of thermodynamics, we arrive at
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)(T,p) + RT ln 2y = n3® (T, p)
RT Inzove = p3®(T,p)  LVIEERE
‘ AG.(T, p)
RT 5

ln s, —

where AG|, is the difference in the chemical potentials of the solid and liquid phases (i.e.. Al
p;’;(s) (T, p) — pf_-’,’(l) (T, p)). If we knew the composition of the mixture (i.e.. T4). Y. and the {‘
AG,. then we could use Eq. (8.1) to predict the freezing temperature T' of the mixture. .

One method fo approximate the function AG,, is by using a Taylor series expansion around th

temperature 7,,,. the melting temperature of pure « at pressure p. This yields

6AGQ (7—‘7‘11 3 p)

JT (T e Tm) W

Bl p) = NG p) o
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Finally, we find: |
Ll Al"[w(,lvma p) L
- sl I?TTm (T I T’T’» ) ‘ ““j
e AH, (Tm ,P) T | [ ‘ J
I el = RT. (1 - —T—) (8.7)

This equation allows the prediction of the freezing curve of a mixture. It requires from knowledge of
the freezing temperature and enthalpy of melting of the pure component c. as well as a model of the
activity coefficients of the liquid mixture. In the absence of information for the activity coefficients.

the ideal solution model can be used (i.e.. v, = 1): Eq. (8.7) then reduces to the van't Hoff equation.
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