a particle, acceleration will 1esult as govemcd by Newton’s second law of motion, Wthh states
the rate of change of momentum of a body 1s proportional to the unbalanced force acting on it an
takes place in the direction of the force. It is useful to consider the forces that a fluid particle can

experience. These include:

body forces such as gravity and electromagnetism;
forces due to pressure;
forces due to viscous action;
forces due to rotation.
I
Assuming that the shear rate in a fluid is linearly related to shear stress, and that the fluid flow 1s
laminar. Navier (1823) derived the equations of motion for a v iscous fluid from molecular
considerations. Stokes (1845) also derived the equations of motion for a viscous fluid in a slightly

different form and the basic equations that govern fluid flow are now generally known as the Navier

Stokes equatlons of motion. The Navier-Stokes equations can also be used for tmbulent flow, w1th |
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equations to reduce the numerical solution costs.

w1l Compressible flow

The flow governing equations are the continuity equation, momentum equation (Navier-Stokes) and

energy equation:
The continuity equation:

5,0 (pu) { (’v(fn‘) + (“({m‘) (2.5)
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Basic Equations of Fluid Fl

The Navier Stokes Equation:

j ; A2 2 2
B Oun  Ou ou op Cu 0u O
Ve, +u—+v—+w = = e (2.6)
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& i i Sy . " Body force terms
Y Pressure gradient ! By
Inertial terms Viscous terms
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The energy equation
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where @ is the dissipation function given by:
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1.2 Incompressible flow

The above system of equation can be simplified if the density is constant. If the temperature 1s also 18

assumed constant, the system reduces to (for simplicity, body forces are also neglected, but they can

be retained if needed):

ou 8v ow
= . — (2.10)
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equatlon need to be solved to obtain
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For incompressible flows with temperature v ariation. the energy
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the 1880’s, Osborne Reynolds carried out his historic visualisation studies of ow

* observed that well-ordered laminar flow degenerated into a chaotic motion when the veﬂm
pipe reached a certain value. This was linked to a non-dimensional quantity called the flow E

where U is the average velocity in the pipe and D 1s the diameter.

number Re =
7

The Reynolds number represents the ratio between inertia forces and viscous forces. If this number
low. the flow is orderly with parallel streamlines. If it 1s increased., at some point, this structure of
laminar flow loses its identity, giving rise to a flow structure characterised by large-scale eddies.

Generally speaking, viscous effects, and consequently turbulence, prevail in a region close to solid
boundaries called the boundary layer. In pipe flows, the boundary layer grows as flow from, say, a

plenum until it covers the whole pipe. N

For external flows. such as flow over a wing or a car, the boundary layer 1s confined to a narrow

region close to the wall. Away from the wall viscous effects are negligible and the flow is termed

mviscid.
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Figure 2.5 Instantaneous and average velocity in turbulent flow




" In a number of engineering flows, particularly high speed flows, the boundary layer is confined to
very thin region near the wall. Outside that region viscous effects are negligible. This can be also
restated as the viscous terms are very small compared to the time derivative and the advection terms in
the momentum equations. In this case, it 1s possible to get a good description of the flow field by

removing the viscous terms from the equations. This results in the inviscid flow model.

For example, for incompressible flow, the momentum equations 2.11-2.13 take the form:

ou ol ou ou op

=T (2.25)
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You should be able to notice here that turbulence does not play a role and there is no need to perform
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tis p0551b1e to sunphfy the flow equations in the boundary layer by making and order of mag
analysis of the different terms in the momentum equations and neglecting the terms that are Very |
relative to other terms. The resulting terms apply only in the boundary layer and provide a simpler
form of the equations which can be solved easily even sometimes using an analytical approach.

The basic boundary layer assumption, usually used, is that the thickness of the boundary layer is much
smaller than the extent that the flow travels in the stream-wise direction. For a flat plate boundary
layer where the flow is along the x-axis and the boundary layer thickness is in the y-direction, for

example, the two dimensional boundary layer equations are:

B N (2.28)
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