1.2 Constant acceleration formulae

Kinematics is the study of movement. The word ‘kinematics’, like the word ‘cinem
comes from the Greek word kineszs, meaning motion. The most basic formula in kin
matics 1s ‘
distance = speed X time , (1.0

which applies in the case of constant speed. From his investigations, Galileo developed
further formulae which apply in the case of constant acceleration. His concern was pri-
marily with the constant acceleration produced by gravity, but the formula are valid in
any situation, such as a rocket accelerating upwards or a car accelerating on a horizontal
road, where acceleration is constant. at least for a time.

The first of these is
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which applies in the case of constant speed. From his investigations, Galileo develop
further formula which apply in the case of constant acceleration. His concern was p“r‘l—\
marily with the constant acceleration produced by gravity, but the formuls are valid in
any situation, such as a rocket accelerating upwards or a car accelerating on a horizontal
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The first of these is
v = u+at, (1.2]

which gives the velocity v attained after accelerating from velocity u at a constant rate
a over an interval of time t. While it 1s referred to as a formula, it is more than just a
recipe for calculation. When a is the subject of the equation, we have

v — U

0 13
0= 3

which says acceleration is “change in velocity divided by the change in time”. This 1s the
very meaning of acceleration. No-one who understood this should 1hélW‘ much difficulty
m remembering Formula (1.3). ‘
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Kinematics 1s the study of movement. The word ‘kinematics",v like the
- - - . ,
comes from the Greek word kinesis, meaning motion. The most basic formula in kine-
matics 1s :
distance = speed X time , (1.1}

which applies in the case of constant speed. From his investigations, Galileo developed
further formulae which apply in the case of constant acceleration. His concern was pri-
marily with the constant acceleration produced by gravity, but the formula are valid in
any situation, such as a rocket accelerating upwards or a car accelerating on a horizontal

road. where acceleration is constant, at least for a time.

The first of these 1s
v = u+at, (1.2

which gives the velocity v attained after accelerating from velocity u at a constant rate
a over an interval of time ¢t. While it is referred to as a formula. it is more than just a

recipe for calculation. When a is the subject of the equation, we have

a0 (1.3)
{
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which says acceleration 1s “change in velocity divided by the change m time . H“_”' .1‘“' the
very meaning of acceleration. No-one who lllul(‘l'\luwl this should have much (lllil('lllf_\

in remembering Formula (1.5).
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ich gives the velocity v attained after accelerating from velocity u at a con
" a over an interval of time t. While it is referred to as a formula, it is more tha.n"
recipe for calculation. When a is the subject of the equation, we have '

v—u E
/ (1. : )7f

which says acceleration is “change 1n velocity divided by the change in time”. This is the
very meaning of acceleration. No-one who understood this should have much difficulty

in remembering Formula (1.3).

second formula tells us the total ('lis’pla,ccmcnt which has resulted by the end of

Galileo’s s
the time interval. If this displacement is denoted by s, then
(et
Ly (1.4)

9
This also is a formula which has a natural meaning. On the right hand side (u+v)/2 18
the average of the initial velocity u and the final velocity v. So Formula (1.4) 1s saymg
“displacement = average velocity x time \vain this is not difficult to remember. The

[ New updates aréavai
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term ‘displacement’ is used, rather than ‘distance’; to emphasize that the direc
movement is significant. For example, when a stone is thrown 20 metres into the
falls to earth again, the total distance travelled i1s 40 metres. But as far as displace
is concerned, the journey up cancels the journey down, so the displacement s is zero.

The two formulee, v = u+ at, and s = 5(u+v)t, are between them the source of all that

needs to be known about constant acceleration. There are other formulae, and special

ways to use them, but there is nothing actually new. Everything else is derived from
these two. For example, there is a third formula which results from substituting v from

Formula (1.3) into the right hand side of Formula (1.4). Then

X i

U+ v
s = —

u 4+ u -+ at
5 X

Simplifying, we find
s = ut + 5 at® . (1.5
le (1.3) and (1.4} 18 what for some

Formula (1.5) re-expresses the content of Formu
circumstances is a more convenient form.
iy W



1.4 Velocity-time graphs

As its name implies, a velocity-time graph plots the velocity of a moving object a.gan
time. The graph gives us another way to look at the formulae we have been using,

In the case of an object moving at constant speed, the graph 1s simply a horizontal

straight line:

velocity

A

> time

Figure 1.1: A wvelocity-time graph for an object moving at constant speed.

raph but it does illustrate a new idea. The area under the
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Figure 1.1: A wvelocity-time graph for an object moving at constant speed.

—> time

This 1s not a very exciting graph but it does illustrate a new idea. The area under the
graph forms a rectangle whose height is the constant value of the speed and whose base
1S the time-interval under consideration. The area of the rectangle is

area —

height x base
speed X time

distance .

The area under the graph thus represents the distance travelled.

In a graph representing constant acceleration, velocity is represented by a plot of constant

slope equal to the acceleration a, while the initial speed is u and the final speed 1s :
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all, travelling horizontally at 7m /s, rolls over the edge of a cliff. Where
2 seconds later?

19.6 m
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Applied Mathematics by Example: Theory

motion, it will after one second be 7 metres clear of the cliff face. Considering the vertical

motion, the distance fallen under gravity will be the same as if the ball had been dropped
from rest, so the usual constant acceleration formula applies

9
=l -l

with u — the initial speed in the downwards direction being zero. With t = 1 and, if
we take the downwards direction as positive, a = 9.8 m/s>. the downwards displacement
s s =49m.

Repeating the calculation at t = 2, the ball is 14 m bevond the cliff face and has fallen
through a vertical distance of 19.6 m. These two separate pieces of information combine
to fix the position of the ball.

N
| Wednesday, 19.




st off the Al trunk road, where he retreated from the pl
and cities in 1665 1660. ke

vton's laws of motion state the relationship between the forces and the move

vhich they produce.

1. The first law 1s:
Every body continues in its . :
unless compelled to change that state by forces impressed upon it.
Projectiles would continue their
if they were not retarded by the
force of gravity. Planets and

state of rest or of uniform motion in a straight lne

To illustrate this, Newton gives some examples.

motion. with the same speed 1 a straight hne,
resistance of the air or impelled downwards by the
comets meet with less resistance and so continue their motions for much longer

tiumes.
A\

The second law 1s:

o

~and in the same direction o

The change in motion is proportional to the motwe jorce
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The second law is: L

The change in motion is proportional to the motive force, and in the sa.
as the motiwve force.

This law is usually expressed in the form of an equation,
= e

where F' is the motive force, m is the mass of the body to which the force
applied, and a is what Newton called the change in motion, or as we would nov
say, its acceleration. Because the law is about change in motion, rather than th
motion itself. the effect of the motive force 1s superimposed on any pre—existingw

motion of the body.

Download free ebooks at bookbo

36



lenovo

3.3 Equilibrium

A body which is at rest, or travelling at constant speed in a straight line, is said to be
in equilibrium. The word implies balance. Before Newton and Galileo, we might have
presumed that Mr A sits at rest in his armchair because this happy state of quiet repose
1s simply the natural condition for a man in an armchair. But, with Newton, we now
say that this state of rest 1s only possible because the upward reaction forces on MrA
from the floor and from the seat of the chair are together exactly equal to his weight.
When Mr A sits, he compresses the cushion until the upwards reaction force is just right

to maintain the balance.

Mr A in his armchair is an example of static equilibrium, where there is no movement:
Bll'( Tll(‘ lil‘.\'f :lll(] .\(‘('ulul 1.‘1\\‘,\ .\llu\\' 1S tllzll a [N‘I‘f&‘('T lml;lllw‘ t)f f()l’('(‘h‘ ih‘ alsu (‘OllSlStent
with motion at a constant speed.

Ezample 5.3 i)

Mr B. mass 80 ke. stands in the corridor of a train to Glasgow travelling at 100 km /hr

“’]\l'lf YO fllt\ {'.4 s\ 17 My \Il ]2,



4200
newtons

340 + 60 =
400 kg

|
l 400 x 9.8
3920 newtons

Figure 3.1: The forces on the lift (left) and the forces on Mr C (right).
First, apply F' = ma to Mr C plus the lift, considered as a single composite body of mass
340 + 60 = 400 kg and weight 4009 = 3920 newtons.

I = tension — weight = ma
4200 — 3920 100a ,

giving a = 0.7m/s”. Now apply F' = ma to MrC, considered as a body on his own,

subjected to his own weight of 588 N and the reac tion forces Ry ‘unl Ry on his feet from
he floor of the lift. Since Mr C’s acceleration must be the 0.7 m/s” just calculated,

By 4 Ra - BRE = 60 O 19
The total reaction force Ry + Ry = R is therefore about 63U newtons, Since I\h(. 1

' ' . 1 e \ g SOV ? & i
considered as [.)iu‘tit']('. we do not distinguish between the separate forces Iy and Rs.



point when the drag force equals its weight. The ball is now in equilibrium, as de
Section 3.3, and no further acceleration will oceur. The speed v, at which this

1s called the terminal velocity, and can be calculated from the equation

Dl‘&g iurce — D — %C'dAp’u'_Q = mg = Weight I

Ezample §.2
Calculate the terminal velocity for the tennis ball of Example 4.1.
Substituting in the values,

0.5 x 0.3 x 7(0.032)? x 1.2 x v? = 0.058 x 9.8 ,
gives v; = 31 m/s.

Table 4.1 shows values of the terminal velocity for some other bodies of different sizes
and weights.

| Body H Radius, m ] Mass, kg ‘ Terminal velocity, m/s |
Raindrop 0.001 1.2 5 HEH 0.0
Table tennis ball 0.02 0.0027 8.4
Apple 0.03 0.10 34
Football (.11 0.43 25 Y
[ron cannonball 0.075 13.9 160
Skydiver 70 L

Table 4.1: Terminal velocities for free fall through air.
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Since the weights are at rest, this problem would be classed as an exercise in statics - ‘;
as compared with Fzamples 5.1 and 5.2 which are applications of dynamics. The only
difference is that here the value of the acceleration happens to be zero. The arguments

we use are exactly the same.

Suppose the tension in the string is 7. Then, considering the equilibrium of W,
T = W

while resolving down the slope gives the condition for the equilibrium of Wa:

T = Wycos(90° — a) = Wasina .



| ‘drmula‘ted by Archimedes, generally reckoned, along
58, ne of the three greatest mathematicians in history. Born in 287
ved in ‘of Syracuse in Sicily, and was famous both as a mathematician
and as an *ininltor of mechanical devices and engines of war. Of his work it was said, it is
not possible to find in all geometry more difficult and intricate questions, or more simple
and lucid explanations. .. no amount of investigation of yours would succeed in attaining
the proof, and yet, once seen, you immediately believe you could have discovered it.

The law of the lever says that if two masses rest in equilibrium on a beam, or ‘rigid rod’,
the product of the masses with their respective distances from the fulerum are equal. In

the diagram below, m; X 1 = ms X T9.

I i
o

This Archimedes deduced from simple arguments of symmetry. Suppose, he said, that
the masses are measured in some common unit. If the unit is m, suppose for the sake of

illustration., m; = 3m and mo = 2m. Then the total mass is 5m. and the beam will be
balanced if its length is divided into 5 equal parts with a unit mass placed at the centre

of each.




n away from the bottom of the wall. The wall is

ion f from the wall on the ladder is exactly perpendicular to th W
value of u, the coefficient of friction between the ground and the
e ladder to remain in equilibrium in this position? i

Figure 6.1: The ladder of Example 6.4 resting against a wall.

Let f be the angle the ladder makes with the horizontal. From the dimensions given,
cosf = 2.5/6.5 = 5/13, and 6 is an angle in a 5.12. 13 Pythagorean triangle withsind -
12/13, tanf = 12/5. The simplest moment balance comes from taking moments about

the base of the ladder, which will eliminate both N and F; from the resulting equatio

Assuming the centre of gravity of the ladder to be
[ L 1. 4 D Af the ladder’s weicht with the moment of the r

at its mid-point, and balancing
eaction at the w




