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Intermediate Thermodynamics  
 
Homogeneous Mixtures 
 
 
Property relationship for system of variable composition 
 
 Let’s start with the fundamental relation in energy representation, which expresses 
that in a simple system the state of a system is fixed by n+2 variables, where n is the 
number of components: 
 
 ( )nNNNVSUU ,,,,, 21 …=        (1) 
 
where Ni is the number of moles of the chemical species i in a system in equilibrium. 
Notice that all the variables are extensive. The total differential of U is given by: 
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The first Tds equation states that duPdvTds =− , so at constant composition 

(dNi=0) we can write: 
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for the third term on the RHS of Eq. (2) we define the chemical potential µi, first 
introduced by J. W. Gibbs as: 
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The chemical potential is interpreted as the internal energy change that occurs when we 
change the number of moles of component i in one unit. Using Eqs. (3) and (4), we can 
write Eq. (2) as: 
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 Similarly with what was done for Eq. (1), we may propose a fundamental relation in 
terms of the Gibbs function in an entirely equivalent manner: 
 
  ( )nNNNTPGG ,,,,, 21 …=        (6) 
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that has the advantage of being a function only of measurable quantities. The differential 
results: 
 

 ∑
≠
∂
∂

+
∂
∂

+
∂
∂

=

iji

i
NTPiNPNT

dN
N
GdT

T
GdP

P
GdG

j, ,,,,
   (7) 

 
and using the fourth Gibbsian equation dTsdPvdg −=  we can write: 
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If we note that STVPUSTHG −+=−= , using Eqs. (5) and (8) we can conclude that: 
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which implies that the chemical potential is: 
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 Expressions of the chemical potential can be derived also in terms of the enthalpy or 
the Helmoltz function: 
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and the corresponding differentials: 
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Partial Molar Properties 
 
 As in the case of the Gibbs function, Eq. (7), changes in any extensive property can 
be expressed in terms of changes in pressure, temperature and composition: 
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where we define the partial molar property, sometimes called partial molal property, as: 
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therefore, a change in the extensive property Y can be written as: 
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 Let’s apply the Euler theorem on homogeneous functions to the partial molar 
properties. An extensive property can be expressed as: 
 
 ( )iNNNTPYY ,,,,, 21 …=         (18) 
 
Because of spatial composition homogeneity, we can write: 
 
 ( ) ( )ii NkNkNkTPYNNNTPYk ,,,,,,,,,, 2121 …… =    (19) 
 
which means that we get k times the original property Y if we have k times more mass of 
each component. Mathematically, Y is a homogeneous function of first degree in Ni. 
Differentiating respect to k we obtain: 
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In particular, for unit k we get: 
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if the function is the internal energy in terms of the composition, total entropy and volume 
we can write: 
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Using Eqs. (3) and (4) we obtain: 
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which is known as the Euler equation. Eq. (21) introduces a form to calculate mixture 
(extensive) properties in terms of the partial molar (or molal) properties, defined by Eq. 
(16). For example, if Y is the volume we write: 
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Eq. (24) is in general applicable to any extensive property. In terms of intensive properties, 
we can write: 
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where ym is the specific molar property or proper molal property and xi is the mole fraction 
of component i. Molar fractions are defined as: 
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 It is then implied that for a single component substance: 
 
 ii yy =          (27) 
 
 The change in an extensive property due to mixing can be evaluated from the 
difference between the total property before and after mixing: 
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frequently ii yy ≠ , thus there is a change of total property due to mixing. For example, the 
volume and the enthalpy change due to mixing, defined as: 
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are in general non-zero. H∆  is the enthalpy or heat of mixing, either positive or negative. 
The entropy of mixing is defined as:  
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must be always positive since mixing is an irreversible process. 
 
Example: the partial molar volumes of ethyl alcohol and water in a 59 % ethyl alcohol mixture in weight are 
57.3 and 17.15 cm3/gmol at 25 oC. Determine the volume of 100 g of mixture and the change due to mixing. 
 
We have  
 

Ethyl alcohol:  gmol
gmolg

g 282.1
/07.46

59
=  

 

Water:   gmol
gmolg

g 275.2
/02.18
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From tables, the specific volumes of ethyl alcohol and water are 1.27377 and 1.00293 cm3/g, respectively. 
Thus: 
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  The application of Eq. (21) to the Gibbs function yields: 
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Differentiation at constant pressure and temperature of Eq. (32) results in: 
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where the partial molar gibbs function and the chemical potential are related using Eq. (21) 
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Using Eq. (9) we then can write: 
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thus, comparing Eqs. (33) and (35) we obtain the Gibbs-Duhem equation: 
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 Applying the test of exactness to Eq. (9) we obtain two important relations: 
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 Note that the total differential of iµ  is: 
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then, using Eqs. (37) and (38) we get: 
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 Consider a binary mixture with molar fractions x1=x and x2=1-x. Applying Eq. (17) 
at constant pressure and temperature we can write: 
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and dividing by the total number of moles N: 
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In addition, using Eq. (25) and dividing by N we can write: 
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that we can solve for 1x  and 2x  to get: 
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 Fig. 1 shows a plot of the proper molal property mx  at constant pressure and 
temperature as a function of the concentration. The curve shows Eq. (44) under different 
concentrations. At a given state M the tangent line with slope ( ) PTm xx ,∂∂  is shown. It is 
easy to see from Eqs. (45) and (46) that the intersections of the tangent with the vertical 
axis at x=0 and x=1 give the values of the partial molar quantities 2x  and 1x , respectively. 
This method can be used to determine the partial molar quantities with better precision than 
directly from the definition, Eq. (16), since the numerical differentiation of experimental 
data can be very noisy. 
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Figure 1: proper molal and partial molar properties for a binary mixture. 
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