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CHAPTER 2 
PARTIAL DERIVATIVES 

 
 

2.1   Introduction 
 
Any text on thermodynamics is sure to be liberally sprinkled with partial derivatives on 
almost every page, so it may be helpful here to give a brief summary of some of the more 
useful formulas involving partial derivatives that we are likely to use in subsequent 
chapters. 
 
 
2.2   Partial Derivatives 
 
The equation    ),( yxzz =          2.2.1 
 
represents a two-dimensional surface in three-dimensional space.  The surface intersects 
the plane y = constant in a plane curve in which z is a function of x.  One can then easily 
imagine calculating the slope or gradient of this curve in the plane y = constant.  This 

slope is 
yx

z








∂
∂ - the partial derivative of z with respect to x,  with y being held constant.  

For example, if  
 
     ,ln xyz =          2.2.2 
 

then             ,
x
y

x
z

y
=








∂
∂          2.2.3 

 
y being treated as though it were a constant, which, in the plane y = constant, it is.  In a 
similar manner the partial derivative of z with respect to y,  with x being held constant, is 
 

             .ln x
y
z

x
=








∂
∂          2.2.4 

      
 
When you have only three variables – as in this example – it is usually obvious which of 
them is being held constant.  Thus yz ∂∂ / can hardly mean anything other than at constant 
x.  For that reason, the subscript is often omitted.  In thermodynamics, there are often 
more than three variables, and it is usually (I would say always) essential to indicate by a 
subscript which quantities are being held constant. 
 
In the matter of pronunciation, various attempts are sometimes made to give a special 
pronunciation to the symbol ∂.  (I have heard “day”, and “dye”.)  My own preference is 
just to say “partial dz by dy”. 
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Let us suppose that we have evaluated z at (x , y).  Now if you increase x by δx, what will 

the resulting increase in z be?  Obviously, to first order, it is .x
x
z

δ
∂
∂   And if y increases by 

δy, the increase in z will be .y
y
z

δ
∂
∂   And if both x and y increase, the corresponding 

increase in z, to first order, will be 
 

    .y
y
zx

x
zz δ

∂
∂

+δ
∂
∂

=δ         2.2.5 

 
No great and difficult mathematical proof is needed to “derive” this; it is just a plain 
English statement of an obvious truism.  The increase in z is equal to the rate of increase 
of z with respect to x times the increase in x plus the rate of increase of z with respect to y 
times the increase in y. 
 

Likewise if x and y are increasing with time at rates ,and
dt
dy

dt
dx  the rate of increase of z 

with respect to time is 
 

    .
dt
dy

y
z

dt
dx

x
z

dt
dz

∂
∂

+
∂
∂

=         2.2.6 

 
 
2.3  Implicit Differentiation 
 
Equation 2.2.5 can be used to solve the problem of differentiation of an implicit function.  
Consider, for example, the unlikely equation 
 
    .)ln( 32 yxxy =          2.3.1 
 
Calculate the derivative dy/dx. 
 
It would be easy if only one could write this in the form y = something; but it is difficult 
(impossible as far as I know) to write y explicitly as a function of x.  Equation 2.3.1 
implicitly relates y to x.  How are we going to calculate dy/dx? 
 
The curve f(x, y) = 0 might be considered as being the intersection of the surface 

),( yxfz =  with the plane z = 0.  Seen thus, the derivative dy/dx can be thought of as the 
limit as δx and δy approach zero of the ratio xy δδ / within the plane z = 0; that is, keeping 
z constant and hence δz equal to zero.  Thus equation 2.2.5  gives us that 
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For example, show that, for equation 2.3.1,   
 

    .
)31(
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−
−

=          2.3.3 

 
 
2.4   Product of Three Partial Derivatives 
 
Suppose x, y and z are related by some equation and that, by suitable algebraic 
manipulation, we can write any one of the variables explicitly in terms of the other two.  
That is, we can write 
 
    ,),( zyxx =           2.4.1 
 
or    ,),( xzyy =           2.4.2 
 
or    .),( yxzz =           2.4.3 
 

Then         ,z
z
xy

y
xx δ

∂
∂
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∂
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=δ          2.4.4 

 

         x
x
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∂
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∂
∂
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and            .y
y
zx

x
zz δ

∂
∂

+δ
∂
∂
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Eliminate δy from equations 2.4.4 and 2.4.5: 
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and δz from equations 2.4.4 and 2.4.6: 
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Since z and x can be varied independently, and x and y can be varied independently, the 
only way in which equations 2.4.7 and 2.4.8 can always be true is for all of the 
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expressions in parentheses to be zero.  Equating the left-hand parentheses to zero shows 
that 
 

    
x
y

y
x

∂
∂

=
∂
∂ /1           2.4.9 

 

and    .1/ x
z

z
x

∂
∂

=
∂
∂         2.4.10 

 
These results may seem to be trivial and “obvious” – and so they are, provided that the 
same quantity is being kept constant in the derivatives of both sides of each equation.  In 
thermodynamics we are often dealing with more variables than just x, y and z, and we 
must be careful to specify which quantities are being held constant.  If, for example, we 
are dealing with several variables, such as u, v, w, x, y, z, it is not in general true that  

,1/ u
y

y
u

∂
∂

=
∂
∂  unless the same variables are being held constant on both sides of the 

equation. 
 
Return now to equation 2.4.7.  The right hand parenthesis is zero, and this, together with 
equation 2.4.10, results in the important relation: 
 

   .1.. −=







∂
∂
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2.5   Second Derivatives and Exact Differentials 
 

If ,),( yxzz = we can go through the motions of calculating 
x
z

∂
∂ and ,

y
z

∂
∂  and we can 

then further calculate the second derivatives 2

2

x
z

∂
∂ , 2

2

y
z

∂
∂ ,  

yx
z

∂∂
∂2

and  
xy
z

∂∂
∂2

.  It will 

usually be found that the last two, the mixed second derivatives, are equal; that is, it 
doesn’t matter in which order we perform the differentiations.   Example:  Let z = x sin y.  

Show that 
yx
z

∂∂
∂2

=  
xy
z

∂∂
∂2

=  cos y. 

 
We examine in this section what conditions must be satisfied if the mixed derivatives are 
to be equal.  
 
Figure II.1 depicts z as a “well-behaved” function of x and y.  By “well-behaved” in this 
context I mean that z is everywhere single-valued (that is, given x and y there is just one 
value of z), finite and continuous, and that its derivatives are everywhere continuous (that 
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is, no sudden discontinuities in either the function itself or its slope).  “Good behaviour” 
in this sense is the sufficient condition that the mixed second derivatives are equal. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us calculate the difference δz in the heights of A and C.  We can go from A to C via 
B or via D, and δz is route-independent.  That is, to first order, 
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Here the superscript (A) means “evaluated at A”. 
 
Divide both sides by δx δy: 
 

C 

A 

B 

D 
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FIGURE II.1 

δx 

δy 
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If we now go to the limit as δx and δy approach zero (the equation now becomes exact 
rather than merely “to first order”), this becomes: 
 

    .
22

xy
z

yx
z

∂∂
∂

=
∂∂

∂          2.5.3 

 
A further property of a function that is well-behaved in the sense described is that if the 
differential dz can be written in the form 
 
   ,),(),( dyyxBdxyxAdz +=         2.5.4 
 
then equation 2.5.3 implies that 
 

    .
x
B

y
A

∂
∂

=
∂
∂           2.5.5 

 
A differential dz is said to be exact if the following conditions are satisfied:  The integral 
of dz between two points is route-independent, and the integral around a closed path (i.e. 
you end up where you started) is zero, and if equations 2.5.3 and 2.5.5 are satisfied. 
 
If a differential such as 2.5.4 is exact – i.e., if it is found to satisfy the conditions for 
exactness – then it should be possible to integrate it and determine ).,( yxz   Let us look at 
an example.  Suppose that  
 
   .)423()134( dyyxdxyxdz ++−+−−=     2.5.6 
 
It is readily seen that this is exact.  The problem now, therefore, is to find ).,( yxz  
 
Let    ∫ −−= dxyxu )134(     
 
So that            ).(32 2 ygxyxxu +−−=       2.5.7 
   
Note that we are treating y as constant.  The “constant” of integration depends on the 
value of y – i.e. it is an arbitrary function of y. 
 
Of course u is not the same as z – unless we can find a particular function g(y) such that u 
indeed is the same as z. 
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Now  ;dy
y
udx

x
udu

∂
∂

+
∂
∂

=   that is, 

 

   .3)134( dy
dy
dgxdxyxdu 








+−+−−=     2.5.8 

Then du  =  dz (and u  =  z plus an arbitrary constant) provided that .42 += y
dy
dg    That 

is, 
 
    .constant4)( 2 ++= yyyg      2.5.9 
 
Thus   .constant432 22 ++−+−= yxyxyxz     2.5.10 
 
The reader should verify that this satisfies equation 2.5.6.  The reader should also try 
letting 
 
    )(43 2 xfyyxy +++−=v     2.5.11 
 
(where did this come from?) and go through a similar argument to arrive again at 
equation 2.5.10. 
 
Consider another example 
 

    .ln3 dy
y
xdxydz +=      2.5.12 

 
You should immediately find that this differential is not exact, and, to emphasize that, I 
shall use the symbol đz, the special symbol đ indicating an inexact differential.  However, 
given an inexact differential đz, it is very often possible to find a function H(x , y) such 
that the differential ),( yxHdw =  đz is exact, and dw can then be integrated to find w as 
a function of x and y.  The function ),( yxH is called an integrating factor.  There may be 
more than one possible integrating factor; indeed it may be possible to find one simply of 
the form F(x) or maybe G(y).  There are several ways for finding an integrating factor.  
We’ll do a simple and straightforward one. Let us try and find an integrating factor for 
the inexact differential đz above.  Thus, let dzxFdw )(= , so that 
 

    .ln3 dy
y
FxdxyFdw +=      2.5.13 

 
For dw to be exact, we must have 
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∂
∂

=
∂
∂
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x
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y
     2.5.14 

 

That is,     .13






 +=

dx
dFxF

yy
F      2.5.15 

 
Upon integration and simplification we find that 
     ,2xF =     or any multiple thereof,   2.5.16 
 
is an integrating factor, and therefore 
 

         dy
y
xdxyxdw

3
2 ln3 +=      2.5.17 

 
is an exact differential.  The reader should confirm that this is an exact differential, and 
from there show that 
 
     .constantln3 += yxw     2.5.18 
 
     
To anticipate – what has this to do with thermodynamics?   To give an example, the state 
of many simple thermodynamical systems can be specified by giving the values of three 
intensive state variables, P, V and T, the pressure, molar volume and temperature.  That 
is, the state of the system can be represented by a point in PVT space.  Often, there will 
be a known relation (known as the equation of state) between the variables; for example, 
if the substance involved is an ideal gas, the variables will be related by PV = RT, which 
is the equation of state for an ideal gas; and the point representing the state of the system 
will then be represented by a point that is constrained to lie on the two-dimensional 
surface PV = RT in three-dimensional PVT space.  In that case it will be necessary to 
specify only two of the three variables.  On the other hand, if the equation of state of a 
particular substance is unknown, you will have to give the values of all three variables. 
 
Now there are certain quantities that one meets in thermodynamics that are functions of 
state.  Two that come to mind are entropy S and internal energy U.  By function of state it 
is meant that S and U are uniquely determined by the state (i.e. by P, V and T).  If you 
know P, V and T, you can calculate S and U or any other function of state.  In that case, 
the differentials dS and dU are exact differentials. 
 
The internal energy U of a system is defined in such a manner that when you add a 
quantity dQ of heat to a system and also do an amount of work dW on the system, the 
increase dU in the internal energy of the system is given by dU = dQ + dW.  Here dU is 
an exact differential, but dQ and dW are clearly not.  You can achieve the same increase 
in internal energy by any combination of heat and work, and the heat you add to the 
system and the work you do on it are clearly not functions of the state of the system. 
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Some authors like to use a special symbol, such as đ, to denote an inexact differential (but 
beware, I have seen this symbol used to denote an exact differential!). I shall not in 
general do this, because there are many contexts in which the distinction is not important, 
or, if it is, it is obvious from the context whether a given differential is exact or not.  If, 
however, there is some context in which the distinction is important (and there are many) 
and in which it may not be obvious which is which, I may, with advance warning, use a 
special đ for an inexact differential, and indeed I have already done so earlier in this 
section. 
 
 
2.6   Euler’s Theorem for Homogeneous Functions 
 
There is a theorem, usually credited to Euler, concerning homogenous functions that we 
might be making use of. 
 
A homogenous function of degree n of the variables x, y, z is a function in which all terms 
are of degree n.  For example, the function 
 

,),,( 222222333 JxyzIzyHzxGyxFyzExzDxyCzByAxzyxf +++++++++=  
 
is a homogeneous function of x, y, z, in which all terms are of degree three. 
 

The reader will find it easy to evaluate the partial derivatives 
x
f

x
f

x
f

∂
∂

∂
∂

∂
∂ ,,  and equally 

easy (if slightly tedious) to evaluate the expression .
z
fz

y
fy

x
fx

∂
∂

+
∂
∂

+
∂
∂   Tedious or not, 

I do urge the reader to do it.  You should find that the answer is 
  

.3333333333 222222333 JxyzIzyHzxGyxFyzExzDxyCzByAx +++++++++  
 

In other words,       .3 f
z
fz

y
fy

x
fx =

∂
∂

+
∂
∂

+
∂
∂    If you do the same thing with a 

homogenous function of degree 2, you will find that .2 f
z
fz

y
fy

x
fx =

∂
∂

+
∂
∂

+
∂
∂    And if 

you do it with a homogenous function of degree 1, such as ,CzByAx ++ you will find 

that .f
z
fz

y
fy

x
fx =

∂
∂

+
∂
∂

+
∂
∂      In general, for a homogeneous function of  x, y, z,… of 

degree n, it is always the case that 
 

.... nf
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x
fx =+

∂
∂

+
∂
∂

+
∂
∂     2.6.1  
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This is Euler’s theorem for homogeneous functions. 
 
2.7   Undetermined Multipliers 
 
Let ),,( zyxψ be some function of x, y and z.  Then if x, y and z are independent variables, 
one would ordinarily understand that, where ψ is a maximum, the derivatives are zero: 
 

.0=
∂
ψ∂

=
∂
ψ∂

=
∂
ψ∂

zyx
    2.7.1 

 
However, if x, y and z are not completely independent, but are related by some 
constraining equation such as ,0),,( =zyxf the situation is slightly less simple. (In a 
thermodynamical context, the three variables may be, for example, three “intensive state 
variables”, P, V and T, and ψ might be the entropy, which is a function of state.  However 
the intensive state variables may not be completely independent, since they are related by 
an “equation of state”, such as PV  =  RT.) 
 
If we move by infinitesimal displacements dx, dy, dz from a point where ψ is a 
maximum, the corresponding changes in ψ and f will both be zero, and therefore both of 
the following equations must be satisfied. 
 

,0=
∂
ψ∂

+
∂
ψ∂

+
∂
ψ∂

=ψ dx
z

dy
y

dx
x

d    2.7.2 

 

.0=
∂
∂

+
∂
∂

+
∂
∂

= dx
z
fdy

y
fdx

x
fdf    2.7.3 

 
Consequently any linear combination of ψ and f , such as fλ+ψ=Φ , where λ is an 
arbitrary constant, also satisfies a similar equation.   The constant λ is sometimes called 
an “undetermined multiplier” or a “Lagrangian multiplier”, although often some 
additional information in an actual problem enables the constant to be identified. 
 
In summary, the conditions that ψ is a maximum (or minimum or saddle point), if x, y 
and z are related by a functional constraint ,0),,( =zyxf  are  
 

,0,0,0 =
∂
Φ∂

=
∂
Φ∂

=
∂
Φ∂

zyx
    2.7.4 

 
where    .fλ+ψ=Φ      2.7.5 
 
Of course, if ψ is a function of many variables K321 ,, xxx , and the variables are 
subjected to several constraints, such as f  =  0,  g  =  0,  h  =  0, etc., where f, g, h,  etc., 
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are functions connecting all or some of the variables, the conditions for ψ to be a 
maximum (etc.) are 
 

KK ,3,2,1,0 ==+
∂
ψ∂

ν+
∂
ψ∂

µ+
∂
ψ∂

λ+
∂
ψ∂ i

xxxx iiii
  2.7.6 

 
 
2.8  Dee and Delta 
 
We have discussed the special meanings of the symbols ∂ and đ, but we also need to be 
clear about the meanings of the more familiar differential symbols ∆, δ and d.  It is often 
convenient to use the symbol ∆ to indicate an increment (not necessarily a particularly 
small increment) in some quantity.  We can then use the symbol δ to mean a small 
increment.  We can then say that if, for example, y = x2, and if x were to increase by a 
small amount δx, the corresponding increment in y would be given approximately by 
 
     ,2 xxy δ≅δ      2.8.1 
 

That is,    .2x
x
y

≅
δ
δ      2.8.2 

 
This doesn’t become exact until we take the limit as δx and δy approach zero.  We write 

this limit as ,
dx
dy  and then it is exactly true that  

 

     .2x
dx
dy

=      2.8.3 

 
There is a valid point of view that would argue that you cannot write dx or dy alone, since 

both are zero; you can write only the ratio .
dx
dy   It would be wrong, for example, to write 

 
     dy  =  2x dx,     2.8.4 
 
or at best it is tantamount to writing 0 = 0.   I am not going to contradict that argument, 
but, at the risk of incurring the wrath of some readers, I am often going to write equations 
such as equation 2.7.4, or, more likely, in a thermodynamical context, equations such as 

,dVPdSTdU −=  even though you may prefer me to say that, for small increments, 
.VPSTU δ−δ≅δ   I am going to argue that, in the limit of infinitesimal increments, it 

is exactly true that .dVPdSTdU −=   After all, the smaller the increments, the closer 
it becomes to being true, and, in the limit when the increments are infinitesimally small, it 
is exactly true, even if it does just mean that zero equals zero. I hope this does not cause 
too many conceptual problems. 
 


