
Intermediate Thermodynamics  
 
Definitions and the First Law 
 
 
 
Definitions: 
 
 We will refresh some basic definitions that are used through the course. 
 
System is a region in space bounded by an arbitrary surface defining a boundary.  
 
The environment or surroundings is the physical space outside the system. 
 
A closed system cannot exchange mass with the surroundings. For analysis purposes, a 
control volume (CV) containing the system may be defined and in that case a control 
surface is used to define the boundary of the control volume. 
 
The properties describe the condition of a system. The properties can be classified in a) 
directly measurable (pressure, temperature), b) defined by laws of thermodynamics 
(entropy) and c) defined as combination of other properties (Gibbs function). With a subset 
of independent properties we can describe the condition or state of a system. All other 
properties can be calculated from this subset. The properties can be defined when a system 
is in equilibrium. 
 
A transformation of a system from one equilibrium state to another is a process. Several 
different processes can lead to the same end states. The initial ad final conditions of a 
system are the end states. The series of states between end states define the path of the 
process. Processes that are infinitesimally close to equilibrium at all times are called 
quasistatic. 
 
A simple system is one in which there is only one way to alter the energy by work. 
Examples are simple compressible systems, simple elastic systems or simple electric 
systems.  
 
The change in the properties when a system undergoes a process between two end states is 
independent of the path. Thus, the value of a property is independent of the process and 
depends only on the state of the system. Quantities that depend on the nature of the process 
are not properties. Some important quantities that are not properties are heat, work, entropy 
production.  
 
An extensive property is one that is dependent on the size of a system, such as energy and 
volume. An intensive property can be defined locally and therefore is independent of the 
size of the system. Examples are temperature and pressure. Extensive properties are 
converted into intensive properties by dividing by the mass, leading to specific properties 
(per unit mass).  



 
Intrinsic properties depend on the nature of the substance composing the system, such 
temperature and pressure. Those properties independent of the nature of the substance of 
the system are extrinsic, such as velocity, electric field, etc. 
 
The phase of a system describes a quantity of matter that is homogeneous in chemical 
composition and physical structure. Phases are separated by phase boundaries. Single-
phase systems are formed by a single physical structure (solid, liquid or gas) and a single 
chemical composition. Examples are ice, liquid water or vapor, a water/alcohol mixture, 
etc. Multiphase systems involve two or more phases either in physical structure or 
chemical composition. Some examples are water/vapor and water/oil mixtures. 
 
 
Energy conservation: 
 
 The energy conservation for a closed system can be stated as: 
 

EWQ ∆=+          (1) 
 
with Q and W the heat and work interactions (positive if acting into the system) and E is the 
energy inside the system. The energy usually comprises internal energy, potential energy 
and kinetic energy: 
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The energy balance on a control volume results in: 
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with vpuh +=  the specific enthalpy. 
 
 
Entropy: 
 
 The fundamental relation between entropy and the heat exchange on a boundary at 
constant temperature T is: 
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where 0≥σ  is the entropy generation due to internally irreversible processes. Thus, in an 
internally reversible process we have: 
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 For a heat reservoir, which is defined as a reversible and constant temperature 
closed system, we have TQS /=∆ . Eq. (5) implies that in an isolated or adiabatic system 
we will have: 
 

 0≥dS          (6) 
 
 
Uncoupled and coupled systems: 
 
 In an uncoupled system the different types of work interactions are independent, 
and also independent of the heat interactions. In the of a closed system case we can write: 
 
 ...... 2121 +∆+∆+∆=+++ EEUWWQ      (7) 
 
A simple example is an incompressible mass that changes from state ( )111 ,, TVz  to state 
( )222 ,, TVz  without any dissipative interaction, 
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 In a conservative uncoupled system the work processes are irreversible, resulting in 
the condition: 
 

 0;0 =δ=δ ∫∫ QW        (9) 

 
 Real systems are non-conservative, since necessary dissipative effects are present.  
 
 A coupled system is one in which one or more of the energy storage modes are 
affected by more than one work and heat interactions. Especially important is the case in 
which the internal energy can be affected by work and heat interactions. All energy 
conversion systems work as coupled systems. For these applications (heat engines), we 
want a fluid with mechanical and thermal properties as strongly coupled as possible. This is 
the reason why gases are used as working fluids in gas turbines, spark ignition and 
compression ignition engines. 
 
 In terms of intrinsic and extrinsic energies, we can write: 
 
 intint dEdEWWQ extext +=δ+δ+δ      (10) 



 
 Note that heat transfer affects only the intrinsic state of a substance. The kinetic 
energy can be calculated as the sum of the translational and rotational energy of the system 
respect to the center of mass plus the internal kinetic energy of the particles comprising the 
system: 
 
 int

KE
ext
rot

ext
trans

KE
tot UEEE ++=        (11) 

 
which has been divided into extrinsic and intrinsic contributions accordingly with the 
definitions stated before. The potential energy can be written as: 
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where the extrinsic terms include gravitational, static and dynamic charge forces, and the 
intrinsic term includes the potential energy of the particles within the system. Using Eqs. 
(10), (11) and (12) we can write: 
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where the internal energy covers all the intrinsic terms. Dropping the extrinsic (uncoupled 
terms) we get: 
 
 dUWQ =δ+δ int         (14) 
 
which states that the change in internal energy is caused by heat interactions and coupled 
work interactions. 
 
 
Energy conservation in a control volume 
 
 The conservation of energy in a control volume can be derived considering a system 
with inlets and exits through which mass can flow. 
 
 Consider the control volume shown in Fig. 1. At time t the control mass in 
consideration is the mass inside the control volume plus a small amount of mass min shown 
as A on the figure, and entering the CV through the control surface 1. At time t+dt the mass 
min is completely into the control volume and a mass mout initially inside the CV has exited 
through the opening 2.  
 

Since the time change dt is small we can write: 
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and dividing by dt we get: 
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Figure 1: control volume used to derive the energy equation. 
 
 

 In Eq. (16) we calculate the rate of energy entering the CV as ininin emdtdE =/ , 
with a similar expression for the energy leaving. In addition, the work can be divided into 
shaft work, CV deformation work and the flow work. The two first terms are lumped 
together into the net work netW , and the third term is calculated as the work of the inflow 
and the outflow, or dtmvPW flow =δ . Inserting the definitions in Eq. (16) we obtain: 
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 In most applications the total energy can be well approximated with the internal, 
kinetic and gravitational energies only. In this case Eq. (17) reduces to:  
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with the enthalpy already introduced in Eq. (3). A similar derivation leads to the mass 
conservation or continuity equation: 
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 In steady state all the time derivatives vanish, so the mass in must equal the mass 
out of the CV. This allows us to rewrite Eq. (18) as: 
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A further simplification is possible when there is only one inlet and one exit: 
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 Other expression of interest is obtained multiplying Eq. (18) by dt and integrating in 
time to obtain 
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which relates the change in internal energy between the initial and final states of a transient 
process. 
 
 
Homework 
 
Wark 1.32. A pressurized tank contains 0.1 kg of water vapor at 40 bar and 280 oC. Mass is 
allowed to flow out of the tank while heat is added, such that the temperature is maintained 
constant until the pressure reaches 10 bar. Determine the heat added in KJ, using a) 
constant enthalpy and b) approximating the data with a function and integrating. 
 
 
 
 
 
 
 
 
 
 


