Intermediate Thermodynamics

Cycles

Heat-Engine Cycle

A heat engine produces work receiving heat from a reservoir at 7 and rejecting
heat to a reservoir at 7¢. The first law requires that:
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since the change in energy within a cycle is zero. The second states that:
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where the change in entropy is zero in a cycle and 7}, and T are the engine surface
temperatures at which heat is received and rejected, respectively. The irreversibility can be
calculated from Eq. (3:23) for a control mass:
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The effectiveness of a heat engine is defined as:
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where the last equality can be proved using Egs. (1-3) for the reversible case.

In the case of irreversible heat transfer with the heat reservoirs, the irreversibility
within the engine is:
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and the irreversibilities associated to the heat transfers from the hot and to the cold
reservoir are:
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Refrigeration and Heat Pump Cyvcles

A refrigeration cycle uses work to take heat from a reservoir at 7¢ while rejecting
heat to a reservoir at 7p.. First and second law requirements are the same as Egs. (1) and
(2). The coefficient of performance (COP) is defined as:
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and the effectiveness is defined as:
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A heat pump cycle works like a refrigeration cycle but the objective is to reject heat
to be used in a process or in building heating. The COP and the effectiveness are thus
defined as:
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Gas-Turbine Cycle

A schematic of a gas-turbine is shown in Fig. 1. Notice that the cycle is open.
Assuming adiabatic compression and expansion, the first law states:

We = h2a - hl > qcomb = h3 - h2a > We = h4a - h3 (10)
The efficiency of the compression and turbine processes are:
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Availability balances are written as:
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and the cycle effectiveness is:
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Figure 1: Gas-turbine open cycle.

Figure 2: T-s diagram.



It is frequent to use a regenerator to take advantage of the high temperature gases on
the output of the turbine to preheat the air at the entrance of the combustor. This is called a
regenerative turbine cycle. The schematics are shown in Fig. 3.
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Figure 3: Regenerative gas-turbine open cycle.

The energy balance on the regenerator, assuming adiabatic behavior is:
h,—hy = hs—hy (16)

and the effectiveness is defined as:
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The availability balance for the regenerative cycle can be written in input=output
format as:
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where all the irreversibilities have been neglected with the exception of that of the
compressor, turbine and regenerator units.



Steam Power Cycle

A simple Rankine cycle is shown in Fig. 4. The Rankine cycle is extensively used in
steam power stations, typically nuclear and coal fueled.
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Figure 4: Rankine cycle.

Neglecting kinetic and potential energy, the steady-state energy balances on the
components of the cycle are (assuming adiabatic turbine and pump):

in = h3 _h27 Wy = h4 _h3s eond = hl _h47 Wp = h2 _hl (19)
and the turbine and pump efficiencies are:
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The exergy balances are:
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and the effectiveness is given by Eq. (15).

Refrigeration Cycle

A vapor-compression refrigeration cycle is shown in Fig. 5. Under the same
assumptions as in the previous section we can write:
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Figure 5: Vapor compression refrigeration cycle.

Neglecting kinetic and potential energy, the steady-state energy balances on the
e TWe = h2a _hla Qcond = h3 _h2a’ h3 _h4: Qevap = hl _h4 (25)
where heat losses on the compressor have been included. Availability balances result in:
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and the effectiveness is defined in this case as:
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Homework

1.- An irreversible gas turbine operates between pressures of 1.0 and 6.4 bar with
compressor and turbine inlet temperatures of 22 and 807 °C. Determine the compressor and
turbine work, the change in availability across each device, and the irreversibility of all
three devices, in kJ/kg of air. Consider then the case in which a regenerator is added to
preheat the inlet of the compressor with the output of the turbine. Assume a 75 %
effectiveness for the regenerator and repeat the previous analysis.

2.- A steam power cycle operates with superheated vapor at 140 bar, 560 °C, and condenses
steam at 0.06 bar. The cooling water on the cold side of the condenser rises from 18 to 28
°C. The first-law efficiencies of the turbine and the pump are 85 % and 70 % respectively.
Perform an energy and exergy analysis of the cycle.



