I ntermediate Thermodynamics

Multiphase-M ulticomponent Systems

Equilibrium

We want to develop expressons that will lead to criteriafor equilibrium. A system
that isnot in equilibrium will undergo a process toward equilibrium, and it is of interest
aso to be able to understand how that process will develop.

If we have a closed system, congsting of different phases and components, that is
not in equilibrium, processes of mass and hest transfer and chemical reactions will tend to
bring the system to equilibrium. Let’s consider such a closed system in an isothermal
condition with uniform pressure, in therma and mechanica equilibrium with the
surroundings, in such away that heat and work interactions with the surroundings are
reversble.

In addition, the system and the surroundings form an isolated system, so the second
law of thermodynamics requires.

dSg 2 0 @

and astheisolated system isformed by the closed system plus the surroundings we can
write:

dSCS +dSsurr *0 )

where Scsisthetota entropy of al the phases and components within the closed system.
The entropy change on the surroundings is due to the heet transfer to or from the system:

dSgyy = —2L =- —= ©)

where T =Tg,,, becausetheinteraction isreversble, and dQ = - dQg,, . Egs. (2) and (3)
imply thet:
dQ £ T dS:s (4

Energy conservation for a smple compressible system with reversible work interactions on
the boundary states that:

dUcs =dQ- pdVcs )



so combining Egs. (4) and (5) we obtain:
dUcs + pdVes - TdScs £0 (6)
Noticethat dl variablesin Eq. (6) are only functions of the Sate of the closed
system, and therefore Eq. (6) can be applied to any changes within the sysem: the
hypotheses of mechanical and thermd reversibility are not necessary to derive the
expression as long as pressure and temperature are uniform. The directions of the processes
that will leed the system to equilibrium are given by the inequdity. Particular forms of Eq,
(6) are of importance when analyzing equilibrium.

For asystem held a congtant total volume and entropy we obtain:

dUcslg, £0 )

thus the internal energy decreases as a system with congtant total entropy and volume
proceeds to equilibrium, and a equilibrium the internd energy will be minimum.

Example atank contains 50 % water at 10 °C and 50 % water at 30 °C, separated by an
adiabatic wall. At t=0 the separation is raised and the system evolves toward equilibrium at
constant volume and entropy. What was the initial internal energy? What will be the final
temperature and internal energy? What will be the heat transfer?

Ans: u; =83.89kJ/kg, Ty =1983°C, us =8324kJ/kg, DQ=-0.712 kJ/kg
Smilarly, in acongant interna energy and volume system the entropy changes will
sidy:
TdScg 3 0 ®

that states an isolated system must dways increase its entropy, which we aready knew,
sance an isolated system is a congtant volume and internd energy system.

If the system under consideration is constrained to a constant pressure and
temperature process we can rewrite Eg. (6) as:

dUcsl; p +d(PVes)y p - d(TScs)y p £0 (©)
and since the Gibbs functionis Gog = Hg - T Scg We obtain:

dGesl; p £0 (10)



which meansthat in an isobaric and isotherma process the Gibbs function must dways
decrease until equilibrium isreached. At equilibrium, dG is zero. Eg. (10) isvery

important, since phase changes and many chemical reactions occur at constant pressure and
temperature.

If the process develops at constant volume and temperature, Eq. (6) leads to:
dU gy - d(TSes)yy £0 (11)
and using the definition of the Helmholtz freeenergy (A =U - TS) we obtain:

dAcs|, £0 (12)

Phase equilibrium

Two or more phases hot in equilibrium will experience mass trandfer among them.
As an example, subcooled vapor will condense transferring mass from the vapor phase to
the liquid phase. Once equilibrium is attained, the mass transfer process stops.

Let’'s consder two phasesa and b containing C component eech. The sysem is
under isothermal and isobaric conditions (constant P and T). The evolution process towards

eqilibrium will be such that inequality (10), dGcs|; , £ 0, is satisfied. Recall that the

total differentia of the Giblbs function for each phase of a multicomponent sysem isgiven
by (Eg. 9 in Homogeneous Mixtures):

o
dG =VdP- SdT+ Q] mdN; (13)

wherei coversal the components. Substituting into (10) we obtain:

o O
a nfdN? + g nf NP £0 (14)

Also, aswe don't have chemica reactions, the number of moles of each component must
be conserved on phase change, thus:

dN@ +dNP =0 (15)

thus, combining Egs. (14) and (15) we obtain:



é (o - mpJonz £0 (16)

where the equality applies under equilibrium conditions. Since the quantities dN are non-
zero and independent of each other, then the condition for equilibrium is.

nf =nf (17)
independently for each of the C components. Generdizing for P phases we can write:
m=nf==nf (18)

for each of the C components. That means that the chemica potentia must be the same for
al the phasesin equilibrium for the same component. The chemica potentials of each of
the components can in principle be different.

In terms of the fugecities, the chemica potentid is (see Eq. (47) in Fugacity):

dm =RTdIn f; (19)
where f; ispartid fugacity of each component. Integrating we obtain:

m =RTIn f-i +Ci (20)

where the congtant of integration can be defined using an arbitrary reference state. Using
the same state for al the components we obtain an aternative expression for Eg. (18):

fl=f2=..=fF (21)
This criterion of identical fugecities for each phaseis dso ussful.

Let’s andyze the case of mass transfer between phases, that is when the system is
not in equilibrium. In that case, the inequdity appliesin Eq. (16). If adifferential amount of
mass of component i istransferred from phase b to a, then dN? is positive. Thus, Eq. (16)
resultsin:

(ot - )z £ 0 p b >nf 2

which implies that mass trandfer occurs from regions of higher to lower chemical potentid.
The chemica potentid is the driving force for mass transfer, in the same way as
temperature is the driving force for heet transfer. Diffusion of chemicd speciesin asystem
Is due to gradientsin chemical potentias.



Gibbs Phase Rule

In sngle-component systems composed of smple compressible fluids at
equilibrium, we know that any state can be fixed knowing any two intensve propertiesiif
one phase exigts. If the system consists of two phases (for instance liquid and vapor), we
have an additiona congtraint on the system (the saturation curve, or that at the Sate
pressure and temperature are linked) and only one variable is necessary to fix the state.

In agenera system we may have C components and P phasesin equilibrium. The
Gibbs rule (Gibbs, 1875) gives information on the number of independent properties
necessary to fix the intengve Sate of agenerd system.

Consder asingle- phase system with C components. The composition is specified
o
with the molar fractions, such that a X; =1. This means that the composition can be

|
defined with C - 1 molar fractions. Thusthe date is fixed with 2 + C - 1 intensve varigbles,
or C + 1. Thisworksfinewith C = 1 with the familiar result of 2 independent intensive
variables.

In a system with more than one phase we will need the same number of intensive
variables or each phase, that is P (C + 1). However, we have an additional set of restrictions
that provide equations that alow areduction of the number of variables needed to fix the
state. These are:

- If the phasesarein thermd equilibrium, then the temperature isthe same for al

phases T =T = ... =TP.
- If the phases are in mechanica eqilibrium, then the pressure is uniform throughout
thesystem, thus P2 = PP = ... =pP,

- Also, phase equilibrium requires the chemica potentials to be equa within each
component, nf' :n‘F = ... :nf_

These redrictions provide (P - 1)(C + 2) equations that reduce the number of
vaiablesto fix the state. Thus the total number of intensive properties to fix the sate of a
generd sysem congsting of C componentswith P phasesis.

F=P(C+1)- (P-1)(C+2)=C- P+2 (23)

where F isthe number of intensive properties necessary to fix the intensve sate of the
ample compressible system, usudly caled the degrees of freedom of the system.

In athree-phase system, single component, the Sate is fixed by the triple point. We
don't have any degree of freedom, since if we vary any intensve variable we depart from
the triple point and a three- phase system no longer exists. A three-phase, two-component



system has only one degree of freedom: the composition of the system. Other examples are
sraightforward.

Note that the derivation implied that al the components are present in dl the phases.
Thisisnot a necessary conditions, Since the absence of one component in one phase
requires the remova of one phase of the conditions of chemical, mechanicd and thermal
equilibrium. Thus the phase rule has generd vdidity.

Vapor-liquid equilibrium

The compogtion of the different phases are obvioudy dl the same for asingle-
component system. However, in amulticomponent system the compositions are different
for the different phases. This can be analyzed in an easer way if we redtrict to a two-phase
system.

The phase rule gates that a two-phase sysem will have:
F=C-P+2=C (24)

degrees of freedom. The unknowns are usudly the pressure and temperature and the
compositions of the vapor and gaseous phases, that we will represent with the liquid molar
fractions x; and gas molar fractionsy;. Thisresultsin 2 C unknowns, sSnce one of the molar

o] o]
fractionsin both liquid and gas can be determined from a x; =1 and a y; = 1.

| |
The condition of two phases in equilibrium requires that the chemical potentids on
the same components must be the same for each phase, and the temperatures and pressures
must be the same aso. In addition, the fugacities must be the same within each component,
0

f‘iV = fi L (25)

From the definition of the fugacity coefficients for each component in a
multicomponent mixture, we have that:

vV L
i T s _f (26)
y;P x P

and using Eq. (25) we have:
iy =Tl (27)

Eq. (27) rdates the compositions and fugacities on each phase. In principle Eq. (27)
isdl we need to evauate the compositions of the vapor and liquid phases. However, the



fugacity coefficients depend on the compaositions as well as the temperature and pressure,
and are therefore implicit and difficult to evduate.

One gpproximation that alows to overcome these difficulties is to assume thet the
mixture behaves as an ided solution. In this case we can use the Lewis-Randdl rule that

statesthat f; = x; f; p, EQ. (81) in notes Fugecity, where P isthe total pressure, used to
evauate the fugacities. Thus EQ. (25) for an idedl solution can be written as:

yifi'e =% fi'p (28)

which isexplicit in the molar fractions since the fugacities are only afunction of pressure
and temperature. In addition, the liquid fugacity is gpproximately equd to the saturation
liquid fugacity, which in turn is equd to the vapor saturation fugecity. Thus

y fi'p = % fiY = (29)

which requires the evauation of the fugacity of each component at the saturation Sate at
the temperature in consideration and at the pressure P and the temperature T. Therefore, the
equilibrium composition can be eva uated.

An additional smplification is possible if the pressure is low enough such thet the
vapor phase behave as an ided gas. In this case we have:

yiP = %R (30)
andsince p; = y;P inanided gas mixture, we have:

pi = %P¥ (31)

Egs. (30) and (31) are statements of the Raoult’s Law, derived for ided solutionsin
which the vapor phase behaves as an idedl gas. Eq. (29) is used when redl-gas, ided
solutions are under consideration. Methods to eval uate redl- solution, real substances are
available and are not on the scope of this course.

Example Five grams of sucrose (C;12H2,0;1) are added to 100 g of water at 50 °C. Estimate the vapor
pressure of the solution.

From tables, the vapor pressure of pure water at 50 °C is0.1235 bar. Asthe partial pressure of water vapor at
saturation is small, the Raoult’ slaw applies. The mole fraction of water on the mixtureis
(Mp,0 =1802, Mg, =342.3).

My,0 /M u,0
mHZO/NI H,0 + Mgy /M

XHZO = =0.99738



and neglecting the vapor pressure of the sucrose, the vapor pressureis:

Ph,0 =0.997380.1235= 0.1232bar

I deal binary solutions
Let’s consder an ided solution composed by two-phases formed with components 1
and 2, and with pressure low enough so Raoult’s Law holds. In this system we will have six
unknowns. P, T, X1, X2, Y1, Y. Liquid and vapor composition require:
Xl + X2 =1 (32)

y1ty, =1 (39)

and the Raoult law for each component States:
yiP =% pi (34)

Y2P =%, p* (35)

We have then 4 equations and 6 unknowns. According to the phase rule, with 2
phases and 2 components, we have F = 2 — 2 + 2 = 2 degrees of freedom. Usually the
temperature or the pressure is one of the selected variables, and the concentration of one of
the components in the liquid or gas phase is the other.

Pressure-concentration plot

Let’'s consder the case of a pressure-concentration plot. The totd pressure can be
found from:

P=py+p,=x p +(1- x)p (36)

which meansthat the totd pressure varies linearly with the compostion between the two
vapor pressures. From Eq. (30) we can aso write:

sat
Yi_Pi (37)
X P

Eq. (37) meansthat, if pf*t > p?‘ ,then y; 3 X, theegud will hold for x; =0 or

t

% =1. The physica explanation of this behavior issmple: since pi > p3*, then



component 1 is more volatile than component 2. Thus component 1 will evaporate first and
the vapor will have alarger compaosition of 1 than the liquid.

sat
Let b= pl—sm thus b isonly afunction of temperature. Replacing Eq. (34) into Eq.
P2
(36) we obtain:
X P sat sat ___xb
=X +(1- x p = 38
v, o it +(L- % )p3 Y1 Trx(b-10) (38)
or, rearranging,

Ty b1

Egs. (38) and (39) show that the compositions of the vapor and liquid phases will
only be the same if the vapor pressures of both components are the same. Combining Egs.
(34) and (39) we obtain for the total pressure:

sat

- Py

" b 3,67 “
Thecurves P- x; and P- vy, asexpressed by Egs. (36) and (40) are shown in Fg.

1. Notice that Eqg. (40) resultsin anonlinear reation for the tota pressure as afunction of
the composition of vapor. The curve P - x; shows the compostion of liquid & the given
total pressure. Therefore it marks the lower limit for liquid composition and is the saturated
liquid line; above that pressure we have compressed liquid with composition x; . Smilarly,
the curve P - y; describes the composition as afunction of pressure of pure vapor, and
therefore defines the upper pressure at which we will have vapor. Below that pressure, we
have superheated vapor at the composition y; .

Decreasing the pressure from a compressed liquid state

Let’sevauate quditatively the behavior of a binary mixture as we decrease the
pressure from point a in Fig. 1 (b). Point a isin compressed liquid with acompostion X1,
thus the solution will remain liquid with the same compodtion until we reach point b,
which marks the minimum pressure at which composition we will have liquid with
composition X;. A further decrease in pressure will result in the formation of gas bubbles,
and thus point b marks the bubble point for composition x1. The compostion of the bubble
vapor will bey; foundin c. Further decrease of the pressure will cause larger vapor
formation with compositions between ¢ and g, while the liquid will change the compaosition



adong the P- X, line (the bubble point line). At point g al the liquid has turned into vapor,
and the composition is again the origind of the compressed liquid.
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Figure 1: constant-temperature pressure-composition diagrams following Raoult’s Law (from Wark)

Increasing the pressure from a superheated vapor state

In this case we start the pressure rise from point d in Fg. 1. Thefirgt drop of liquid
will appear a point ¢, and therefore is called the dew point. Higher pressures, but below
point e, will result in vapor compositions between points ¢ and f, and liquid compaositions
between b and e. Once the pressure reaches the corresponding vaue with point e, we arein
100 % liquid with the same composition as the origina vapor.

Example A liquid-vapor mixture containsn-hexane and n-heptane at 27 °C. Assuming ideal solutions,

estimate the composition of the liquid and vapor phases as afunction of the total pressure. Take 1 for hexane

and 2 for heptane, and use the following vapor pressure correlations (T in Kelvin, P in millibars):

In P, = 18.057 - 383T7'4 , inp, =18.217 - 22L0

At 300 K, the pure vapor pressures of hexane and heptane are 193.6 and 61.2 millibars. Asthese
values are well below atmospheric pressure, we can expect that the Raoult’ s law will be valid if the solution
behaves asideal. Thusthetotal pressure asafunction of liquid composition will be:

P=p,+p, =%193.6+(1- % )61.2

To obtain the variation of composition against the vapor composition, we use Raoult’ s law, which
implies:

10



193.6
p

Yy1=X%

Theresults are plotted in the P-x-y diagramin Fig. 2.
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Figure 2: P-x-y diagram for the example (from Wark).

Temperature-concentration plot

EQ. (36) can be rewritten in terms of the total pressure (known and fixed) and
composition as.

P- p3*

X] = ——5—
st st
Pi - P2

(41)

where the temperature appears implicitly in the saturation pressures of the pure
components. At agiven temperature, the saturation pressure of component 2 may equd the
total pressure. In this case x; = 0 and we have pure component 2, and the corresponding

temperatureis T, . Smilaly, if pf = P then x; = 1 and the mixture is 100 % component
1 and the temperature is T, . So the temperature-composition plot will go from T, to
Tf" . Thevaues of y; can then be caculated using Raoult’ s law, Eq. (34).

11



Fig. 3 shows a T-x-y plot in which the component 1 is more volatile than component

2 (because T, issmdller than T,2, 1 will tend to evaporate more than 2). Notice that the

none of the curvesislinear, snce the vapor pressureis anonlinear function of the
temperature.
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Figure 3: constant-pressure temperature-composition diagram following Raoult’ s Law (from Wark)

Increasing the temperature from a subcooled liquid state

Risng the temperature from point a to point b, the mixture will reech the liquid
saturation temperature at the given composition and pressure. The corresponding curveis
the liquid saturation curve or bubble curve. At this point b the vapor has a compostion c,
richer in component 1 since 1 ismore voldtile that 2. Further increase of the temperature
will leed to point d on the diagram, where the saturated vapor curve is met. Immediately
below that point, the liquid drops have composition g and the vapor composition d,
coincident with composition a and b. Higher temperatures will result in 100 % vapor with
compoasition d.

Decreasing the temperature from a superheated vapor state

Starting from point e, a reduction in temperature at constant pressure will take us to
point f, where incipient condensation occurs. The first drops will have acompostion h,
richer in component 2. At point g the mixture reaches the saturated liquid point, in which
the compostion isthe same asin e but 100 % liquid. Lower temperatures will lead to a
compressed liquid state with the same composition. A temperature immediately above point
g will have bubbles of vapor with composition d.



Example A mixture of hexane and heptaneisat 2 bar. Plot a T-x-y diagram using the information on the
previous example.

Using the saturation pressure curves of the previous example, the saturation temperatures at 2 bar
(2000 millibar) are 367 and 399 K for hexane and heptane. Combining Eq. (41) with the vapor pressure
relations given on the previous example we obtain:

18217, 42310
2000 - e T

18057-38374 18217—42310

e -e

X1 =

that evaluated on therange 367 K £T £399 K leadsto the T-x; curve. Then applying Eq. (34) we get the T-y;
curve:

38374

1= 00

Theresults are shownin Fig. 4.
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Figure 4: T-x-y diagram for the example (from Wark).

Notice that the determination of the bubble or dew pointsis going to beimplicit in
temperature at constant pressure. To obtain the bubble point Eq. (36) applies.
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P=x pi(T)+(1- x;) pS(T) (42)

whichisimplicitin T and can be solved with any method to solve implicit equations. The
dew point is caculated from EQ. (42) and the Raoult law, namély:

X
P:xlpfm(T)+(1- Xl)p?t(T)1 ylelplgt P
43)

_ p (T) 3 (T)
y; P (T) +(1- yp) pP(T)

which again isanimplicit equation.

Example a mixture of 60 % hexane and 40 % heptaneis at 2 bar. Find the bubble point temperature and
vapor composition if theinitial temperatureis 350 K. Find the dew point temperature and the liquid
composition if theinitial temperatureis 420 K.

We can find the bubbl e point temperature by solving for T the following equation:

18217 42310

2000 - e
18057-283%4  1g517. 42310
e T -e T

0.6=

which resultsin a bubble point temperature of 376.6 K.

The vapor composition can be found from Raoult’ s law. The hexane saturation pressure at the bubble point is
p;2 = 2614 millibar , thus the vapor composition at the bubble point is:

y, =24 06=0784
2000

The dew point temperature can be calculated from Eq. (43), whichin this caseis:

18.057- 38314 18.217 42310

e T e
18217. 22310 18057- 8374
0.6e T +04e

whose solution is 383.12 K. The hexane saturation pressure is at this temperature 3104.9 millibar. Thus, the
liquid composition at the dew point will be:

x, =220 _06=0.38
3104 9

These results are marked on Fig. 4.
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Elevation of the boiling point and depression of the freezing point

If we add a non-volétile solute to a pure solvent, the vapor pressure of the solvent
will decrease, asindicated by Raoult’s law. Therefore, the boiling temperature of the
mixture will increase at the same pressure as compared to the solvent boiling point.

Figure 5 shows the P-T diagram for the pure solvent and for the solution on the
baoiling curve. A thetota pressure P, the pure solvent has a boiling saturation temperature
Thwo found by the intersection of the congtant P line and the boiling saturation curve, point
W. Asthe addition of a solute will decrease the vapor pressure, the new intersection will lie
a atemperature Tp.
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Figure5: Change of the boiling point due to the addition of a non-volatile solute in a solvent (from Wark).

Let’s andyze the eevation of the boiling point using the ided solution modd. In
generd thismodd will not be adequate for thistype of problem. However, for very dilute
concentrations the solution will behave asided.

In this case, asthe solute is non-volaile, the total pressure will be:
P=xp¥ (44)

wherex and p™ are the molar fraction and the saturation pressure of the solvent. The
equilibrium condition between the liquid and the vapor on the solvent is the equdity of the
chemicd potentids. Asthe temperature is constant during a phase change, we can write:

15



rr1iq mvap
T

= (45)

If we add asmall amount of solute to the solvent, both the chemicd potentia and
the temperature will change. However, on the new state, Eq. (45) will till bevaid,
therefore:

iq 9 vap ¢
o110 B
ET 3 €T 5
We condder aprocess at congtant pressure. In this case, the differentia on the liquid
phase is afunction of the composition and temperature. On the vapor phaseis afunction of

the temperature only, since only the solvent is present on the vapor phase. Then the
differentid is

A7) g, 290 dx = Tt /1) (@)
1T T 1% 1T

(46)

The different termsin Eq. (47) are evauated as follows. Assuming ided solution we
havethat ¥ = m + RT In x; , and thus

1! _R

T X 9

The other differentid is evauated using the relaion introduced in “Homogeneous

iq lig
Mixtures’, ﬂ(nj"T/T) = h .Also, inanided solution h; = h; Then Eq. (47) can be

-|-2
rewritten as.
lig vap
i h—ZdT Rk =- N gr (49)
T % T?
thet rearranging resultsin:
: vap _ liq R :
& __ [ L Jar - oL gt (50)
X RT RT

The heet of vgporization of the volatile component i in the mixtureisin principle
different from the hegt of vaporization of the pure component, hyg. As an approximation, for
very dilute solutions, we can take both vaues as coincident. In addition, the boiling

16



temperature change due to the addition of the solute will be smal, so we can agpproximate
htg s congtant. This dlows asto integrate Eq. (50) to obtain:

omx = fg'dT b

(51)

Two further smplifications are possible under the hypotheses stated. As Ty, » Tyg in

kelvins, thus T, Tpy @T5. Also, In X = IN(1- Xgyue ) @ Xgyute fOr small concentrations of
the solute, and then Eq. (51) reduces to:

TbO @ bﬁxﬁ)l ute (52)
fg

Eq. (52) dates that the eevation of the boiling point in an idedl solution under the
hypotheses stated in this section is only a function of the concentration of the solute and not
of the solute itsdlf, ie, the type of solute does not redly matters aslong asit isnon volatile
and the solution behaves asided. A property that varies with the quantity and not with the
identity of a substanceis cdled colligative
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Figure 6: Change of the freezing point due to the addition of anon-volatile solute in a solvent (from Wark).



A damilar effect on the freezing point is obtained if we add a nonvoldtile substance
to avolatile pure substance, see Fig. 6. In this case the freezing temperature decreases. For
ingtance, we add ethylene glycol to the water on the radiator of a car to lower the freezing
point below the lowest expected temperature.

It is quite obvious that the analysiswill be the same to that already performed for a
liquid-vapor system. In our present case, the solid phase can be only composed of the
solvent, so we can write Eg. (50) as.

dx hisolid _ Wlia
);ﬁz_( erh )dT (53)

In the case of solidification, the only gpproximations that we can make are that of
molar enthapy of solidification equa to the pure component enthapy of solidification, and
that this phase change enthalpy is congtant over the temperature range of interest. Thus, Eq.
(53) can be integrated to yield:

he [T; -T
In X; :_M (54)
RTT¢o

and in terms of the find freezing temperature we can write;

h: T
Tf - if 'fo (55)
ht +RT¢gIn X%

Problems

1.- Solid zinc oxide is reduced by solid carbon at high temperature. The system isin
equilibrium and found to contain the following oecies

Zn0(s), C(s), Zn(g), CO(g), CO2(q)
Find the degrees of freedom of the system.

2.- Solid solutions consigting of GaAs and InAs can be produced by equilibrating a gas
mixture composed of Hy, HCI, InCl, GaCl and As4. The compostion of the solid solution is
determined by the thermodynamic conditions of the system. In order to produce GaAs-InAs
solid solution with a particular compaosition, how many intensive thermodynamic variables
need to be fixed?
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