
Thermodynamic Property Relations 
Reading Material: Moran & Shapiro, Chapter 11, Bejan, pp 171-188.  

 
Introduction 
• In Thermodynamics I & II, we discussed the meaning of various fluid properties and 

how to use them in solving thermodynamics problems. Some properties (T, P, V, m) 
can be measured directly, but others (u, h, s) must be derived. The purpose of this 
chapter is to develop the tools necessary to derive the unknown quantities from the 
measureable ones—i.e. thermodynamic property relations.  

Mathematical Representation 
• The states of simple compressible substances are normally specified by two 

independent variables, and other properties are written as a function of those two. In 
other words, for three properties x, y, and z, we can write  

  ),( yxfz =  

• From calculus, we know that we can write a change in the variable z as 
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 where the subscripts denote variables held constant, or  
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represent properties of the substance which can be measured or derived.   

 

• If we are evaluating a process where x=constant, then  

  dyNdz =  

• For example, if we choose to express pressure as ),( vTPP =  then we have  
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 and if we evaluate the change in pressure during a constant temperature process, then 
we have  
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EXAMPLE:  Internal Energy 

• Let z=u, x=s, and y=v. With these choices, we have  
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 which gives changes in internal energy with changes 
in entropy (heat transfer), and changes in volume 
(work).  

•   Note that if we compare this to the equation  

  dvPdsTdu −=  

 we can observe that  
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• These relations will prove to be useful later when we 
need to condense expressions involving derivatives to 
known properties.   

We can represent the 
relationship between 
properties ),( yxfz =  
graphically as well as 
mathematically. If we choose 

),( vTPP = , for example, 
then we have a diagram as 
shown. In this figure, 
the ),( vTPP = surface has 
been "cut" by several constant 
P, T, and v planes. The 
property derivatives are 
represented by the slopes of 
the surface in various 
directions. For example, the 
curve abc represents an 
isotherm, and at the point ’b’, 
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Some Mathematical Theorems 

• If we write NdyMdxdz += , then the following important relations can be derived (see 
homework problem): 
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• The two relations above were based on ),( yxfz = , which represents a dependence of 
one variable on two others. We can also derive some useful relations among groups of 
four variables, with two still being independent (e.g. P, v, T, and s). Let w, x, y, and z be 
our variables, and start with the relations ),( ywfx = , and ),( zwfy = .  

Writing the differentials, we have  
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Now, substitute dy from the second equation into the first,  
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Compare this to the the differential for ),( zwfx = :  
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Equating the coefficients on dw yields: 
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and equating the coefficients on dz gives 
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 Now we have four general equations relating derivatives of thermodynamic properties: 
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EXAMPLE: Sound Speed 

• By definition, 
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2 . Let’s write it in terms of 

P, ρ, and u instead. Using equation 2.3.3 above and 
letting x=P, w=ρ , z=s, and y=u, we have  
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 Also,  
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• Using the relation P
v
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Special Case: Ideal Gas  

• For an ideal gas, RTP ρ= .  If the specific heats are 
constant, then we also have  du = Cv dT . With these 
relations, we have  
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Maxwell’s Relations 

• Pressure, volume, temperature, and entropy could be considered the four most basic 
thermodynamic state parameters, in the sense that work interactions are related to 
pressure and volume ( )Pdvwrev =δ , and heat interactions are related to temperature 
and entropy ( )Tdsqrev =δ .  Also, all four can be fixed experimentally. Using a set of 
isobars, isochors, isotherms and adiabats on a Pv diagram, James Clerk Maxwell 
(1831-1879) derived a set of equations relating derivatives of these four properties. 
Among other things, these useful relations can be used to relate changes in entropy to 
measurable properties.  

• Maxwell’s relations can be derived using calculus and the four energy functions 
internal energy )(u , enthalpy )( Pvuh +≡ , Helmholtz free energy )( Tsuf −≡ , and 
Gibbs free energy )( Tshg −≡ , as follows:  

Æ An energy balance for a simple, compressible substance can be written 

  PdvTdsdu −=  

  Combining this equation with the definitions of h, f, and g, yields:  
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 Now we have four equations in the form of  NdyMdxdz += , and we can use 2.3.1 to 
relate derivatives of M and N:  
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Keypoints: 

•  P, T, and v can be measured, and s can be derived from the Maxwell Relations.    

• The LHS of #3 and #4 come directly from measurements, and could also be 
calculated given an equation of state.   

 
EXAMPLE:  Evaluation of Entropy   

• Let’s take a closer look at how the Maxwell Relations 
help in the evaluation of entropy. In other words, 
let’s express changes in entropy in terms of the 
measurable properties P, v, and T. (We will also need 
CP and CV.) We have three possible pairs of 
independent variables to choose from: (P,v), (P,T), 
and (v,T). Each pair has two partial derivatives of s 
associated with it, for a total of six:  
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• If we can express each of these derivatives in terms 
of P, v, T, and other measurable properties, we will 
have complete information on the entropy of a pure 
substance.  

• The 3rd and 5th come directly from MR #4 and MR #3:  
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• The 6th and 4th can be evaluated using 2.2.3 and 
2.2.4:  
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 Similarly, using enthalpy,  
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• The two remaining derivatives can be evaluated using 
the previous two relations:  
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Keypoints:    

• All partial derivatives of entropy have been 
expressed in terms of P, T, v, and C P , C V .   

 
EXAMPLE:  Derivation of Joule’s Law  

• Previously, we discussed Joule’s free-expansion 
experiment, concluding for an ideal gas:  
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• Now let’s use what we have developed about 
thermodynamic properties to show this is true from a 
more fundamental approach. To do this, let’s express 
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in terms of P, v, and T. Since we know an 

equation of state for ideal gasses (Pv=RT), we can 
also use derivatives among P, v, and T.  

• Using 2.3.3 and selecting (v,T) as independent 
variables, and (u,s) as dependent, we have  
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• We can express the partials on the RHS as  
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• Substituting these equations into the RHS,  
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Measurable Derivatives 
• By conducting experiments in which some property is fixed (e.g. use a constant 

volume vessel, or an insulated container), and measuring the change in some other 
property (P, T, or v) as heat is added or work is 
done, one obtains values for certain derivatives. 
These properties, like Maxwell’s relations, can be 
used to relate unknown properties to known 
properties.  

• In the following, recall that we are taking all 
processes to be reversible. Also note that there is a 
summary of derivatives on page 24. 

Constant Volume Heating (no work) 
 
• Measure  δQ and dT, and define  
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 Since there is no work, dU =  δQ. The definition of entropy gives  δQrev=T dS , and 
we have  
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 Special cases:  
 Often, CV= CV(T)  (e.g. ideal gas, incompressible substance), or CV=constant. (perfect gas) 
 

EXAMPLE:  C V for an Ideal Gas  

• In general, for any pure substance, we can write u as 

a function of two independent properties, such as  
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 and it follows that  
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• In general, we must realize that ),( vTfCV = . However, 

in the case of an ideal gas, we know from Joule’s 

free expansion experiment that 0=
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• Since u is a function only of temperature for an 

ideal gas, it follows that CV also must be a function 

of temperature for an ideal gas:  
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Constant Pressure Heating 
 
 
 
 
 
 
 
 
 Similar to CV analysis, measure  δQ and dT. Since a change in enthalpy at constant 
pressure is equal to the heat addition, we have, in an analogous manner to the CV  
analysis,  
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• In addition, since the fluid in now also expanding, this configuration yields the 
"volumetric expansivity", or "coefficient of thermal expansion", which is important in 
bouyancy-induced convection: 
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 Special cases:  
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=β  Ideal gas  

  β = 0  Incompressible substance 
Adiabatic Volume Change (no heat transfer) 
 
 
 
 
 
 
 
 
• The "isentropic expansion coefficient" k relates pressure and volume during an 

adiabatic (and reversible) expansion, and is defined as  
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 This gives the fractional change in pressure for a fractional change in volume during 
an isentropic process, and is unitless. 

• Note that we can use k to express the P-v path along an isentrope as follows:  
• Let ),( vPss = and write  
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• ds =0, and Maxwell’s relations can be used to convert the derivatives  
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• Rearranging,  
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v
dvk

P
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• In general, k=k(T,P), but if we consider a region where k can be considered locally 
constant, then we have  

δWrev

dP

system
(m,n) 

dV



  kPv =constant 
• In Thermo I, we discussed a relation similar to this for isentropic processes of an ideal 

gas, where we used 
V

P
C
Ck = .  Now we see that the relationship is true in general for 

isentropic processes if k is the isentropic expansion coefficient.  Furthermore, we can 
write (see homework problem):  
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 which is simply CP/CV for an ideal gas, showing that the more general case reduces to 
what we already know for an ideal gas.  

• The following sketch shows values of k for steam in the liquid, vapor, and 
supercritical regions. Notice that in the ideal gas region (low pressures), k becomes a 
function only of temperature.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 Special cases:  

  
V

P

C
Ck =  Ideal gas 

  k=∞ Incompressible substance 

 

EXAMPLE: Sound Velocity in H2O  

• By definition, 
s

Pc
ρ∂

∂
=2  

• We can rewrite this as 

0.1 1 10 100 

Pressure (MPa) 

1200 

1000 

800 

600 

300 

100 

0 

Temperature (°C) 

1.22 

1.24 

1.26 

1.28 

1.30 

50 

10
20

2 

1.30 

saturation line



  

sss

sssss

v
P

v
Pv

v
PPc













ρ∂
ρ∂

ρ
−

∂
∂

=

ρ∂
ρ∂

∂
∂

=
ρ∂

∂
∂
∂

=
ρ∂

∂
=

2

2

1)1(

)/1(

 

   

 or 
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• We can write this strictly in terms of properties as 

  
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
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
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∂
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P
P
vvP
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s
vvBvPkc
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 where 
  k = isentropic expansion coefficient 
  Bs = adiabatic bulk modulus 

  βs = isentropic compressibility 
 

• consider H 2O at 35°C: 

• estimate βs from steam table data… 

 First look up saturated liquid data at 35°C: 
  P=5.628kPa 
  sf=0.5053 kJ/kg-K 

• 

• 5000 

5.628 

1.004 
1.006 

v (cc/g) 

P (kPa) 

slope ~ c2

s=0.5053 kJ/kg-K 



  vf=0.001006 m3/kg 
 Now look up compressed liquid at 5 MPa at the same 

entropy: 
  v=0.001004 
 Thus 

 13 )(10398.011 −−=
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∂
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−=β MPax
P
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• Finally 

  smvc
s

/1588≈β=  

 

EXAMPLE: Sound Velocity in Ideal Gas  

• Previously, we showed 

  vPk
v
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 where 
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• For an ideal gas, 

  γ≡=
v

p

C
C

k  

• Therefore, for an ideal gas, 

  γ= vPc2  

 or 

  RTc γ=2
 

 
Isothermal Volume Change 

 

 

 

 

 

 

 

 

• By measuring  ∆P associated with  ∆v, we can define the isothermal compressibility:  

δWrev 

dP

δQrev constant 
temperature 
reservoir 
(T) 
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• Like other properties, in general, ),( TPΚ=Κ  

• Notice the relationship between K and 
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
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=
PT

v
v
1β . Both measure slopes of the 

v=v(P,T) surface, K measuring along an isotherm, and β along an isobar:  

 

 

 

 

 

 

 

 

 

 

 

 

 Special cases: 

  K=1/P Ideal gas 

  K=0 Incompressible substance 

 

• Now let’s return to Maxwell’s Relations and express the derivatives as properties:  

 MR # 3: 
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 Keypoint: 

 • Entropy relations are now written in terms of easy to measure properties of the fluid.  

 

EXAMPLE: Compression of Solid  

• A 1kg block of copper is compressed in a reversible 
manner from 0.1 to 100 MPa while the temperature is 
held constant at 15°C.  Determine the work done, 
entropy change, and heat transfer. 

 
 
 
 
 

• Solution: 

• Over the range of pressure considered here, 

 volume expansivity 151051 −−=
∂
∂

=β Kx
T
v

v P
 

 isothermal comp. 112106.81 −−=
∂
∂−

= Pax
P
v

v
K

T
 

 specific volume v ≅ 1.14x10-4 m3/kg 

• Work during isothermal expansion: 

  ∫=
2

1
PdvW  

 Rewriting isothermal compressibility, 

  TT dvdPvK −=  (note 
TT dP

dv
P
v

=
∂
∂

) 

 Thus 

  ∫−=
2

1 TdPPvKW  

 Since K and v are nearly constant, 

  ( )2
1

2
22

PPvKW −
−

=  

Q1-2 W1-2Copper 
at 15°C



  kgJW /9.4−=  (i.e. “on system”) 

 

• Entropy Change 

• Start with Maxwell relation 
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 and introduce the definition of volume expansivity to 
get 
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• Since our process is at constant temperature, 
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P
s

TT
 

 or 

  TT dPvds β−=  

• Assuming v and β are nearly constant, 

  ( )1212 PPvss −β−=−  

 Î KkgJss −−=− /5694.012  

• Heat Transfer 

• Since the process is reversible and isothermal, 

  ( )12 ssTq −=  

 Î kgJq /1.164−=  (i.e. “out of system) 

 

• As we did for isentropic processes, we can also express the P-v path of an isothermal 
process using thermodynamic properties. To do this, let  T=T(P,v) :  
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 Rearranging, we have  
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 as the isothermal expansion coefficient.  



 Special Cases: 

  kT = 1    (Ideal gas),      kT = ∞     (Incompressible substance) 

• In general,  kT=kT(P,T) , but for a small departure from a given state,  kT ≈constant , 
and the equation above can be integrated to give 

  constantPv Tk =  

• Also, after some manipulation,      
P

kT Κ
=

1  

• It can also be shown that    
V

P

T C
C

k
k

=  

Constant Enthalpy Expansion 
 

 

 

 

 

 

• One additional experimental configuration, important in refrigeration, is flow through 
a porous plug. This can be used to measure the Joule-Thompson Coefficient: 
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• If µJ>0, then the fluid cools as it passes through the plug (i.e. ∆P<0 and ∆T<0), and it 
may be used as a refrigerant.  If µJ<0, then the fluid heats up as it passes through the 
plug and is unsuitable for refrigeration.  In general, µJ varies with pressure and 
temperature, and the dividing line between the region where µJ>0 and µJ<0 is called 
the “inversion line”. 

• Consider the figure below.  The expansion process proceeds from the right to the left. 
To the right of the inversion line (e.g. a → b) the temperature increases during the 
expansion, and the fluid is not a candidate for a refrigerant in this region. To the left 
of the inversion line (e.g. b → c), the temperature decreases during the expansion, and 
the fluid can be used for refrigeration. Above the inversion line (e.g. d → e) 
expansion produces an increase in temperature regardless of how low the pressure 
drops.  

 
 

Very slow 
flow (T,P)

Porous
Plug

T+dT 
P+dP 



 
 
 
 
 
 
 
 
 
 
 
 
 
• How does this look on an ordinary phase diagram? For a typical simple substance, 

(compare to the data for Helium and Nitrogen shown below) 
 
 
 
 
 
 
 
 
 
• This is not universally true, however.  For example, Thermodynamics:  Foundations 

and Applications, Gyftopoulos and Beretta, 1991, gives a figure such as this:  (Note 
to future editor:  I believe this figure is wrong and should be removed.)(Compare to 
Miller relation.) 
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• Notice that the inversion line passes through the points of maximum 
temperature on every h-line.   Also, at low pressures (e.g. atmospheric) 
the inversion line approaches a maximum temperature, above which 
the fluid is entirely unusable.  Some typical values of Tmax are: 

 

• Plots of the inversion curve for two common cryogenic refrigerants are 
shown below: 

 

   Helium-4 

   (Tc = 5.2 K) 

   (Pc = 2.3 bar) 

 

 

 

   Nitrogen 

   (Tc = 126 K) 

   (Pc = 33.9 bar) 

 

 

 

 

 

 Keypoint: 

 •  Joule-Thompson coefficient is a property that depends on the state (i.e. P, T) 

 
EXAMPLE: Joule-Thompson coefficient related to PvT data 

• By definition, 
hP

T
∂
∂

=µ  

• To evaluate this, let T=T(h,P) and write 
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• Now, from the Tds relationship for enthalpy, we have 

  vdPTdsdh +=  

• Let s=s(P,T), write 
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and substitute into the expression for dh to give 
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• We can substitute this into (a) to yield 
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 or, since the second coefficient must equal zero, 
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• From MR #4, we can write 
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• Also, from the definition of CP,  
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• Thus we have 
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Keypoints: 

• function of Cp, T, v, P 

• if Pv=RT, µ=0 

 

• Note that the expression above can be used to measure 
CP (indirectly) at high P. 



• Required:1) measure µ with valve expansion process 
  2) measure P,v,T data 

  3) compute 
PT

v
∂
∂

 

  4) compute CP  
 

EXAMPLE: Joule-Thompson coefficient for steam  

• Consider steam expanding from 6 MPa, 400°C, to 2 MPa 

• Steam is SHV, since Tsat(6MPa)=275°C 

• If we assume ideal gas, then µ=0, ∆T=0.  Otherwise, we 
can approximate 

  
hh P

T
P
T

∆
∆

≈
∂
∂

=µ  

• At P=6 MPa and T=400°C, h=3177.2 kJ/kg 

• At P=7 MPa and h=3177.2, T=407.4 

• At P=5 MPa and h=3177.2, T=392.7 

• Thus 

  
2.317757

7.3924.407

=−
−

=µ
hMPaMPa

CC
 

  MPa
C35.7=µ  

• Thus T drops approximately 29°C in going from 6 MPa to 
2 MPa 

 
 

Summary of Measurable Thermodynamic Derivatives 

 

• It is possible to express any arbitrary derivative as a function of (P,v,T) and these 

measurable parameters: 

CV Specific heat at constant volume 
CP Specific heat at constant pressure 
β Coefficient of thermal expansion 
k Isentropic expansion coefficient 
Κ Isothermal compressibility 
kT Isothermal expansion coefficient 
µJ Joule-Thompson coefficient 
 
 
 

 

  



Property Ideal Gas Limit Incompressible Limit 
),( TvPP =  RTPv =  =v constant 
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Bridgman Jacobian 

• In 1914, P. W. Bridgman expressed all partial derivatives of the most frequently used 
properties (P, T, v, s, u, h, f, and g) in terms of the measurable P-v-T relationship and 
the three easy to measure derivatives (CP,  β , and K). Using the shorthand notation 
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  he summarized 336 possibilites in a 28 line table: 

 

 

 

 

 



 [P] (∂T)P = -(∂P)T = 1 

 (∂v)P = -(∂P)v = βv 

 (∂s)P = -(∂P)s = CP/T 

 (∂u)P = -(∂P)u = CP - βPv 

 (∂h)P = -(∂P)h = CP 

 (∂f)P = -(∂P)f = -s - βPv 

 (∂g)P = -(∂P)g = -s 

[T] (∂v)T = -(∂T)v = κv 

 (∂s)T = -(∂T)s = βv 

 (∂u)T = -(∂T)u = βTv - κPv 

 (∂h)T = -(∂T)h = -v + βTv 

 (∂f)T = -(∂T)f = -κPv 

 (∂g)T = -(∂T)g = -v 

[v] (∂s)v = -(∂v)s = β2v2 - κvCP/T 

 (∂u)v = -(∂v)u = Tβ2v2 - κvCP 

 (∂h)v = -(∂v)h = Tβ2v2 - κvCP - βv2 

 (∂f)v = -(∂v)f = κvs 

 (∂g)v = -(∂v)g = κvs - βv2 

[s] (∂u)s = -(∂s)u = β2v2P - κvCPP/T 

 (∂h)s = -(∂s)h = -vCP/T 

 (∂f)s = -(∂s)f = βvs + β2v2P - κvCPP/T 

 (∂g)s = -(∂s)g = βvs - vCP/T 
 

EXAMPLE: Sound Velocity  
 By definition, 
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• Now, from Bridgman table, 
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Ideal Gas Limit: 
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EXAMPLES: Bridgman Table 
 

Derivative Derivative in 
terms of 
properties 

Derivative evaluated by the 
Bridgman table 
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Clapeyron Equation 

 

• Relates saturation properties 

 

 

 

 

• Start with MR #3: 

• Critical Point 
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• During phase change, T=constant 

• In general, during phase change  0=
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• MR #3 thus becomes (after evaluating across phase change) 
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• Since vdPdhTds −=  and dP=0, 
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• In general, we can replace ‘f’ and ‘g’ with any phase change (e.g. solid to liquid): 
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Keypoints: Clapeyron Equation 

1 Important since it relates 3 measurable properties 

0 



i) slope of Psat-Tsat line 

ii) latent heat of phase transformation (h”-h’) from phase (‘) to phase (“) 

iii) volume change during phase transformation 

2 Can be used to calculate one of 3 properties from other 2 

3 If phase (“) is vapor, at low pressure the equation can be simplified by assuming 

i) v” >> v’ 

ii) v” = RT/P   (ideal gas) 

yielding 
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 where we have assumed hg-h’ is constant between states 1 and 2. 
 

Kinetic Theory of Gases--State Equations and Specific Heats 
 
 

• The ideal gas equation of state can be derived from the kinetic theory of gases 

• It should be noted that such a derivation has no bearing on classical thermodynamics. 

• Recall, classical thermodynamics 

1) does not depend on microscopic structure of matter 

2) does not predict anything about microscopic features 

• Why study kinetic theory in a course that focuses more on classical thermodynamics? 

1) gives good physical understanding to concepts presented in classical 
thermodynamics (i.e. ideal gas assumption, definition of CP). 

2) helps one understand why real gases behave differently from ideal gases. 



 

• Analysis:  Let’s consider a monatomic gas and make the following assumptions: 

1) The gas consists of an enormous number of molecules.  All of the molecules are 
identical (assuming a pure gas). 

2) The molecules are very small relative to the average distance between them.  The 
volume occupied by the molecules themselves is a tiny fraction of the volume of 
the container. 

3) The molecules fly about randomly in all directions—there is no preferred 
direction. 

4) The molecules do not interact except when they collide. 

5) Collisions of the molecules with each other and with the walls of the container are 
perfectly elastic. 

6) The laws of macroscopic mechanics (Newton’s laws) apply to individual 
molecules. 

 

• According to kinetic theory, the pressure exerted by an ideal gas on the walls of a 
container results from the action of a great number of molecules striking and 
rebounding. 

 

 

 

• Let’s first look at one molecule in a box, with mass m and velocity components Vx, 
Vy, and Vz. 

 

 

 

 

 

 

x

y

z

•

L

V
Vx



 

• Consider a molecule striking the wall at x=L.  When it rebounds, there is no change in 
Vy and Vz, but Vx changes to –Vx. 

• The corresponding x-component of momentum changes from mVx to –mVx.  Thus, 
the magnitude of momentum change is 2mVx. 

• Also, the molecule travels the distance L in time L/Vx.  Thus it could cross the 
chamber and return in time ∆t=2L/Vx.  The number of collisions per unit time 
(collision frequency) is 
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• Now, the change in x-momentum per unit time is the product of the change per 
collision and the frequency of collision, 
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• Thus, the force on the wall is 
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• The force of all molecules is 
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 or, since m and L are constant, 
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• Define the average V2 of n molecules as 
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• The pressure is thus 
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• If it is assumed that the pressure is the same in all directions, and that all directions of 
velocity are equally probable, 
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  222 VVV zyx ==  (d) 

• Also, since Vx, Vy, and Vz are components of V, 

  2222 VVVV zyx ++=  

 and it can be shown that 

  2222 VVVV zyx ++=  (e) 

 where 2V is the average of the squared velocity magnitudes for all molecules. 

• Combining (d) and (e), 
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 and (c) becomes 
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• If we assume the temperature of an ideal gas is proportional to the kinetic energy of 
the molecules, 
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• Combining (f) and (g) gives 
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 where n/N is Avogadro’s number (#molecules/mole). 

• The term (2n/3DN) is a constant, call it R , the universal gas constant. 

Æ  TRNvolP =)(  “ideal gas” 

• Following (f), we assumed that T was proportional to kinetic energy of molecules. 

• Conversely, we could have just compared (f) with the experimentally derived ideal 
gas law…. 

  2
3
1 V)( nmvolP =   …equation (f) 

  TRNvolP =)(   …from experiment 

 or, equating RHS, 
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• Using the physical constant n
RNk ≡  (Boltzmann’s constant), we could write 

  
2
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2
3 mkT =  (i) 

Keypoint: Equation (i) 

• Average kinetic energy at a given T is the same for any gas. 

• Thus, heavier gas molecules have lower mean speeds than lighter molecules at the 
same T. 

• Now let’s look at Cp and Cv under the kinetic theory. 

Proportionality 
constant 



• Internal energy of an ideal gas is sum of molecular kinetic and potential energies 

• Since ideal gas is very dilute, molecules are far apart, and gravitational forces 
between them are small. 

• If we change the volume (i.e. density), the distance between the molecules changes, 
and the potential energy changes.  However, since this change is extremely small for 
an ideal gas, this change does not have an effect on internal energy. 

• Thus, for ideal gas, internal energy is only dependent on kinetic energy of molecules. 
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 where u = specific internal energy (J/kg) 

  M = molar mass  (kg/kmol) 

  N = # moles  (kmol) 

  U = internal energy  (J) 

 

 

• The molar internal energy Muu =  
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 where we have used (g) from above, and finally, 
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• Now, what about a diatomic gas? 

• Monatomic gas has 3 degrees of freedom (i.e. one must specify 3 independent 
quantities to determine the energy, in this case Vx, Vy, and Vz) 

• Equipartition of Energy Principle: 

 “Total energy of molecules is divided equally among all degrees of freedom.” 



• Thus, monatomic gas has 3 degrees of freedom, each with TR2
1  of energy, for a total 

energy of 

  TR2
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• Each additional degree of freedom must contribute TR2
1  to total energy.  Thus, the 

molar internal energy is 
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• Diatomic gases have 

 

  3 degrees of freedom in translation 

  2 degrees of freedom in rotation 

  2 degrees of freedom in vibration along axis connecting them (z axis) 
   Note:  vibration usually only occurs at high T 
 
  7 total (at high T) 
  5 total (at intermediate T) 
  3 total (at low T) 

 

Æ  At low temperatures: RCv 2
3=  RC p 2

5=  3
5=k  

  At intermediate temperatures: RCv 2
5=  RC p 2

7=  5
7=k  

  At high temperatures: RCv 2
7=  RC p 2

9=  7
9=k  
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(rotation about z is not a degree of freedom) 
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 Experimental Values at 1atm, 0° C From Kinetic Theory (no 
vibration) 

Gas vC  pC  vC  pC  
Ar 12.5 20.8 12.5 20.8 
He 12.7 21.0 12.5 20.8 
Air 20.8 29.1 20.8 29.1 
CO 20.8 29.1 20.8 29.1 
N2 20.8 29.1 20.8 29.1 
O2 21.0 29.3 20.8 29.1 

Specific Heat Relations 

• Let’s look more closely at specific heats, considering first some mathematical 
relations, and also some data for specific substances. 

• Although for an ideal gas specific heats are a function only of temperature, in general 
CP=CP(T,P), and CV=CV(T,P).  Let’s consider three important concepts:  

 1.  Variation of  CP with P at constant T  

 2.  Variation of  CV with v at constant T  

 3.  Relation between CP and CV.  

 

Variation of CP with P at constant T 

• Look at the differential form of the entropy equation from before.  
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Variation of CV with v at constant T 

• Another form of the entropy equation is  
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 Keypoints: 

 •  Both variations can be calculated given the PvT surface.     

 •  Both = 0 for an ideal gas (Pv=RT).  

 

Relation between CP and CV 

• We have used two forms for the ds equation, one involving  CP and the other  CV. 
Let’s equate them: 
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 Compare this to the differential we obtain from writing  T=T(v,P)  directly,  
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Keypoints: 

 1.  VP CC ≥  since  0
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 2.  In the ideal gas limit, Cp-Cv =R   

 3.  For solids and liquids, 
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 4.  In the incompressible limit,  
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∂ =0  and  Cp=Cv exactly. This is true for water 

at 4°C, where the density is maximum.  

Cp Data for Ideal Gases 

• Data for some common ideal gases at low pressures (e.g. atmospheric) are shown in 
the sketch below: 

 
 
 

 60 

50 

CO2

H2O



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall, kinetic theory gives 
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Specific Heat Data for Solids 

• Specific heat data for some common solids are sketched below: 
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• Notice some trends: 

 ∗  At low temperatures, Cp and Cv are nearly identical. 

 *   At high temperatures, Cp and Cv diverge, with Cv approaching a nearly constant 
value of  

  KkmolkJRCV ⋅≅≅ /253  

 This is known as the Dulong and Petit value, after the scientists who first noticed this 
trend. 

 *   Curves for different materials show a similar shape, suggesting that all curves 
might be made to fit the same functional form (the law of corresponding states). 

• Peter Debye, using quantum statistical mechanics, developed the formula 
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 where ΘD is a characteristic temperature of the substance in question, known as the 
“Debye Temperature”, and f is a universal function of the dimensionless temperature 
ratio T/ΘD. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

• Debye temperatures for some common substances are: 
 

Substance ΘD(K) ΘD(°R) 
Aluminum 428 770 
Cadmium 209 376 
Calcium 230 414 
Copper 343 617 
Diamond 2230 4014 
Graphite 420 756 
Iron 467 841 
Lead 105 189 
Mercury 72 130 
Silver 225 405 
Sodium 158 284 
Zinc 327 589 

• The complete expression for the Debye formula is: 

CV/3R 

0 

0.5

Dulong and Petit 

T/θ
2.01.00 

1.0

T3 law 



  












−

Θ
−

−







Θ

= ∫
Θ

Θ
T

T
D

x
D

V
D

De
T

dx
e

xTRTC
0 /

33

1
/3

1
123)(  

 For high temperatures (T/ΘD>>1), this is approximated by  
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 For low temperatures (T/ΘD<<1), this is approximated by 
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 This is known as the “Debye T3 Law” and is accurate to <1% for (T/ΘD)<0.1 for 
isotropic nonmetals. 

Keypoints:  Debye formula 

 •  ΘD is the “Debye temperature”. 

 •  f(T/ΘD) is the same function for all substances. 

 •  At high temperatures, f→1, and KkmolkJRCV ⋅≅≅ /253  

 •  At low temperatures, Cv∝T3 

 •  The Debye formula is a good approximation, but is not always correct.  For 
example: 

  H2O:       RCV 5.4=  

  Barium:  RCV 7.4=  

• Regarding the divergence of CP and CV, recall that the difference can be calculated as 

  
Κ
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Calculated Property Relations 

• Now that we have developed some mathematical tools and defined some measurable 
properties, let’s go about calculating some non-measurable properties (u, h, and s).  



Enthalpy Relations 
 

• Start by writing differential form of h=h(T,P).  
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 By definition, the first derivative is CP.  Use the Bridgman table to express the 
second:  
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 Special cases:  

 Ideal Gas:  v-β Tv=0 ,  CP=CP(T)   
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 Incompressible Substance: v=constant,  β=0 ,  CP=C(T)   
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• Now let’s examine  h2-h1  in more detail.  

 Along an isobar, P=constant, dP=0, and  
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 Along an isotherm, T=constant, dT=0, and  
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 Since h is a point function (path independent), the integral ( 12 hh − ) can be evaluated 
along any convenient path. For example, consider T-s space:  

 

 

 

 

 

 

 

 

 The quantity ( 12 hh − ) can be evaluated along either 1→x→2, or 1→y→2. Along the 
former path, we have  
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 Keypoints: 

 • Enthalpy can be evaluated at any state given  CP(T)  data at any reasonable 
reference pressure, and an equation of state.  

 • Many numerical codes and standard handbooks give  CP(T)  as a polynomial fit at a 
reference pressure of 1 atm.  
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 • Since  CP  represents a partial derivative of two properties 
PT

h
∂
∂

, it alone is 

sufficient to completely define other properties. 

Energy Relations 

• We can use the same procedure as for enthalpy to express internal energy in terms of 
measurable properties.  
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 The first derivative is CV by definition, the second can be transformed by the 
BridgmanTable, 
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 Special cases:  

 Ideal Gas:  P
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 Incompressible Substance: v=constant, dv=0,  CV=C(T)   
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Entropy Relations 

• Following previous derivations for  ∆h  and  ∆u , write  
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 This yields  
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• For some equations of state, 
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EXAMPLE: Energy, Enthalpy, and Entropy for the Van der 

Waals Equation of State   

The P=P(v,T) equation of state for a van der Waals gas is 

  2v
a

bv
RTP −
−

=  

in which R, a, and b are constants. 

(a) Prove that if CV is also constant, the “caloric” 

equation of state ),( vTuu = of the same gas is 
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where ),( ooo vTuu =  

(b) Derive the expression for the entropy function 

),( vTss = , which is valid under the same conditions. 

(c) Combining this last result with vdPTdsdh += , derive 

the corresponding expression for enthalpy, ),( vThh = . 

 

Solution: 

(a) Energy 

Writing the differential of ),( vTuu = , we have 
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For the P(v,T) equation of state given above, 
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 Thus 
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 Since ouu −  is independent of path, we can choose any 

convenient path to integrate from (To,vo) to (T,v).  

If we choose two segments, one along an isochor from 

(To,vo) to (T,vo), and one along an isotherm from 

(T,vo) to (T,v), we obtain 
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(b) Entropy 

The same procedure can be used for deriving the function 

s(T,v): 
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Integrating as before from (To,vo) to (T,v) we obtain 
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(c) Enthalpy 

 Starting from vdPTdsdh +=  and substituting ds from 

above and dP from the equation of state, we have: 

  vdPTdsdh +=  
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 Integrating as before from (To,vo) to (T,v) we obtain 
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Summary of Energy, Enthalpy, and Entropy Calculations 
 

 



Closed Symple System Ideal Gas Limit Incompressible Limit 

dvPT
K

dTcdu v 





 −

β
+=  

dTcdu v=  cdTdu =  

( )vdPTdTcdh P β−+= 1  dTcdh P=  vdPcdTdh +=  

vdPdT
T
cds P β−=  

dv
K

dT
T
cds V β

+=  

dP
T

Kc
dv

Tv
c

ds VP
ββ

+=  

dP
P
RdT

T
cds P −=  

dv
v
RdT

T
c

ds V +=  

dP
P
cdv

v
cds VP +=  

dT
T
cds =  

 
 
 

Generating Thermodynamic Data Tables 

• Let’s assume the following data are known for a pure substance.  

 

 #1)  Vapor-Pressure data (i.e. Psat over a wide range of Tsat). 

 #2)  PvT data in the vapor region (e.g. from measurements of P and T in a closed 

fixed vessel). 

 #3)  Density of saturated liquid ( vf(Tsat) ). 

 #4)  Critical pressure and temperature.  (Pc,Tc). 

 #5)  )(TCP at low pressure (1 bar or less). 

 

• From these data, a complete set of thermodynamic tables for saturated liquid, 
saturated vapor, and superheated vapor can be generated.  

 Step 1: 

 •  Determine P=P(v,T) equation of state for vapor region from #2.  (Can piece 
together several equations of state if needed.) 

 Step 2: 

 •  Fit saturation data to Psat=Psat(Tsat).  One common fit is 

  satsat
sat

sat DTTC
T

BAP +++= )ln()ln(  



 Step 3: 

 •  Complete Psat using above equation (i.e. fill in between data points). 

 Step 4: 

 •  Use step 1 to fill in between PTv data points in the vapor region. 

 •  Use steps 1 and 2 to find vsat along vapor side of vapor dome. 

 

 

 

 

 

 

 

 

 

  

Step 5: 

 •  Pick a reference state (“1” in the figure above) and define hf=0, sf=0 at that state.  
Calculate hfg from the Clapeyron equation: 
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 •  vf is known (#3) 

 •  T is independent 
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 •  Thus h2 can be calculated: 

  fgfg hhhh =+= 12  

 Step 6: 

 •  Calculate s2 as follows: 

 •  Since Ths fgfg = , 

  Thsss fgfg =+= 12  

 Step 7: 

 •  Proceed along isotherm to P=P3 (superheated vapor) 

 •  v3 is known from E.O.S. 

 •  Calculate h3 and s3: 
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 •  Repeat for state 4, where P4 is low enough to assume ideal gas. 

 Step 8: 

 •  Proceed up P=P4 (ideal gas) to elevated temperature T5. 

 •  Calculate h5 and s5: 
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 Step 9: 

 •  Etc. 
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