
Intermediate Thermodynamics 
 
Lecture 5: Equations of State 
 
PVT behavior 
 
 The calculation of the properties, such as enthalpy, entropy, internal energy, etc., for 
different substances requires knowledge of the PVT (pressure-volume-temperature) 
behavior of the substance. This can be given in the form of a table, graphs, or analytically. 
An analytical expression to express PVT behavior is called an equation of state. 
 
 An example of equation of state is the ideal gas EOS. If the pressure is much lower 
than the critical pressure, and the temperature much higher than the critical temperature, 
then the compressibility factor Z is approximately 1 and we can write: 
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 For a general substance, however, we will have a much more complex behavior. 
Fig. 1 shows a pressure-specific volume plot for argon, in terms of the reduced pressure, 
volume and temperature: 
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 We note that an accurate analytical representation of the function of the figure will 
be difficult to achieve. In general, to develop an EOS we have to decide what is the 
precision we desire, the range of interest and the amount of data that we will need to 
determine the adjustable parameters in the equation. 
 
 Every EOS must fulfill some criteria common for most substances. At the critical 
state, the critical isotherm has zero slope and curvature: 
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 Another characteristic is that in a p-T diagram, the isometric curves are almost 
straight lines, see Fig. 2. In particular, the critical isometric has the slope of the pressure 
curve (locus of saturation states) at the critical point. This is an additional criterion to 
follow when developing EOS’s.  



 
 

Figure 1: experimental pr – vr graph for argon (from Wark). 
 

 
 

Figure 2: typical phase diagram (from Moran & Shapiro). 
 

 
 The shape of the vapor-pressure curve is nearly a straight line in a plot 
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r TP 1log10 − , as shown in Fig. 3. The slope can be calculated as: 
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Figure 3: generalized vapor pressure plot (from Wark). 
 
 

 Other characteristics that EOS’s should exhibit are: 
 
1.- The Z factor approaches to 1 as the pressure approaches zero 
 
2.- As the pressure approaches zero, the residual volume (difference between actual specific 
volume and ideal gas specific volume) approaches a constant value that’s only a function of 
temperature. 
 
3.- As the pressure increases, the critical isotherm becomes vertical, with a specific volume 
approximately equal to 0.26 vc as the pressure goes to infinity. 
 
4.- The critical Z factor is in the range of 0.22 - 0.30. 
 
5.- As the critical isometric is straight, this results in the requirement for the superheat 
region: 
 

Simple fluids 
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Two-parameter EOS’s 
 
 Van der Waals proposed in 1873 a correction for the ideal gas model based on two 
simple ideas. First, van der Waals realized that attractive forces among particles, known as 
van der Waals forces, would reduce the gas pressure compared to the ideal gas model: 
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 On the other hand, if particle size is finite, the volume available for particle motion 
reduces, thus for clustered particles we have: 
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that is the van der Waals equation of state. The constants can be evaluated from suitable 
PVT data, and are constants for each substance.  
 
 If no data is available but the most rudimentary, as the pressure, temperature and 
volume at the critical point, then we can use the criteria described earlier to find the 
constants. The application of Eqs. (5) to Eq. (9) leads to the following conditions: 
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which gives two equations to calculate the two parameters a and b: 
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 Using a and b in Eq. (9) at the critical state, we can calculate the critical pressure: 
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 Notice that any two of Pc, Tc and vc can be used to calculate the parameters a and b, 
and the third variable of the critical state is predicted. The Z factor at the critical state is 
also a predicted quantity in a van der Waals gas and its value is: 
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which is larger than the typical 0.22~0.30 range. As a consequence, if we use the critical 
pressure and the temperature to calculate the parameters, the critical volume will be roughly 
30 % overpredicted by the van der Waals equation. 
 
 Van der Waals EOS is qualitatively right, though may have quantitative errors if the 
pressure is high. In reference to Fig. 4, we see that the predicted isotherms have three roots 
of volume for a given pressure. For temperatures above the critical, only one root is real 
(and physically significant). At the critical temperature, the three roots are real and 
coincident, which results in an inflection point. Below the critical point two roots are real 
and one is complex. If the saturation pressure is known, the two-phase region can be 
predicted. In terms of the compressibility factor, the van der Waals EOS is written as: 
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Figure 4: Isotherms predicted by a cubic EOS (from Wark). 



 An improvement to the van der Waals EOS was proposed 76 years later by Redlich 
and Kwong (RK), and has the form: 
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 Eq. (16) does a much better job than the original van der Waals EOS, but still 
predicts a slightly high compressibility factor at the critical state of Z=1/3. 
 
 
The corresponding states principle 
 
 The two-parameter EOS’s previously described can be written in the form: 
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The prediction of this unique relationship between Z and the reduced pressure and 
temperature is known as the van der Waals corresponding states principle. It states that any 
gas at the same reduced temperature and pressure should have the same compressibility 
factor. Fig. 5 shows Z as a function of Pr for 10 substances with Tr as the parameter. 
Excellent quantitative agreement is achieved. 
 

 
 

Figure 5: Experimental data and generalized Z chart (from Moran & Shapiro). 
 
 



 Notice that using Eqs. (4) and Eq. (1) we get: 
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which implies that the reduced specific volume will not correlate well since the above 
described EOS’s cannot predict accurately Zc. The quantity vrZc will however correlate 
well. Thus a pseudorreduced specific volume is defined as: 
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 The two-parameter corresponding states principle fails when applied to complex 
gases, in particular, molecules with strong dipolar moments and/or non-spherical force 
fields. In these cases a three parameter corresponding principles performs considerably 
better than the two-parameter one. Two approaches have been followed to choose the third 
parameter. In the first, the critical compressibility factor has been added, so  
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 This approach provides significant improvement in accuracy, since now the critical 
compressibility factor can be accurately adjusted in a three-parameter EOS. 
 
 Other approach, with a more physical basis, is to include the acentric factor, which 
gives an indication of the deviation from spherical symmetry in a molecule. In simple 
fluids, in which the molecules have spherical symmetry, the acentric factor is zero. In a 
general fluid, we define the acentric factor in reference to Fig. 3. If the two-parameter 
corresponding principle was accurate, all the gases should have the same slope. This is 
obviously not true. It is observed that in simple fluids we have 1log10 −=sat

rP  at 

7.0=sat
rT  (see Fig. 3 with m=5.4). Using this reference point, the acentric factor ω is: 
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and the corresponding states principle is stated as: 
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with a general expression for the compressibility factor of the form: 
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where Zi are functions of the reduced pressure and temperature only. 
 



Three-parameter cubic equations of state 
 
 Cubic EOS’s including the acentric factor have been developed for diverse fluids. A 
widely used equation is the Redlich-Kwong-Soave EOS, which is an extension of the RK 
EOS and is expressed as: 
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where we notice that in the original RK EOS we had cT1=α . A similar EOS with about 
the same accuracy than the RKS EOS equation of state was developed by Peng & 
Robinson. 
 
 In general, most cubic equations of state can be written in the format: 
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with γ  a function of the temperature and b, c and d constants. In terms of the reduced 
pressure, temperature and pseudoreduced specific volume we have: 
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where A, B, C and D are written in terms of the critical pressure and temperature and the 
other parameters present in Eq. (27). 
 
 
Other EOS’s 
 
 Other important EOS include the virial equation, derived from statistical mechanics, 
in which the compressibility factor is expressed in terms of a series in v/1 : 
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where the virial coefficients Ci are only a function of the temperature for a given gas. Eq. 
(29) is then explicit in pressure. An alternate form explicit in specific volume is: 
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where the virial coefficients in Eq. (30) are related to those in Eq. (29). The evaluation of 
the virial coefficients usually requires empirical data, since theoretical results are scarce 
and only for the first two or three coefficients. An important EOS derived from virial 
equations is the Benedict-Webb-Rubin equation, that has 8 empirical constants to adjust: 
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 Though Eq. (31) is quite accurate, but today’s applications usually require more 
accuracy, which in practice means more parameters to adjust. A widely used model is the 
modified Benedict-Webb-Rubin equation, which is written as: 
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with the coefficients ai function of the temperature and i and j constants. These complex 
EOS’s are mostly used to adjust important fluids such reservoir hydrocarbons (natural gas 
and oil) and refrigerants. 
 
 
Problems 
 

1. find expressions for A, B, C and D in Eq  (28) in terms of the constants in Eq. (27). 
2. Given nitrogen at 100 bar and 200 K, find the specific volume by using 

a) The ideal gas equation of state. 

b) The truncated virial equation PbTRvP +=  with 2
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c) Tabular data. 
d) Compare the errors. 

 


