
Intermediate Thermodynamics  
 
Exergy or Availability 
 
 
Definitions 
 
 The first law treats all energy forms in the same way. There are, however, certain 
types of energy that are more valuable than others. As an example, it takes 4. 1013 J 
(equivalent to 12 GW.hr) to raise the temperature of a piece of the ocean 1 km2 by 10 m in 
depth in 1 oC. That kind of temperature gradients are frequently found in the ocean, so they 
present an opportunity for energy generation. However, the expected thermal efficiency of 
such a process to produce useful work (for example to move the shaft of a electric 
generator) is in the order of 0.3 %. That type of energy is simply useless to produce work. 
On the other hand, the same amount of energy can be obtained operating for 5 days a 
hydroelectric plant with 100 m waterfall and a flow rate of 100 m3/hr. In this last example 
the efficiency to produce shaft work is close to 90 %, though the amount of energy is the 
same. Thus, we define the quality of the energy as the potential to produce useful work. 
 
 The potential of the energy is the maximum useful work that can be obtained from 
that energy in a given environment. As a consequence of the second law, the potential to 
produce useful energy constantly degrades. 
 
 The dead state of a system is the state in which it is in equilibrium with the 
environment. That means same temperature and pressure, no relative motion and same 
altitude.  
 
 The work potential of a system, relative to the dead state, is called exergy or 
availability. 
 
 
Useful and Reversible Work 
 
 Consider a system in which there are a number of openings with a fluid flowing in 
or out, and connected to a number of N heat reservoirs and to the atmosphere at P0 and T0. 
Accordingly to Eq. (1:18) for the energy conservation on a CV, we have: 
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where uW  is the useful work. A convenient expression of the entropy balance for our 
analysis is given by Eq. (2:27): 
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 Eliminating Q0 in Eqs. (1) and (2) we get: 
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  (3) 

 
which gives an expression of the actual useful work in a CV in contact with N heat 
reservoirs at temperature Tj and the environment. An equivalent expression is obtained for a 
CV as a function of the temperatures at the interfaces with the heat reservoirs: 
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 In Eqs. (3) and (4), the maximum possible work is obtained for a reversible process, 
in which σ  is 0. This, the irreversibility is defined as: 
 
 ( )QCVtotrevacttot TTWWI σ+σ=σ=−= 00      (5) 
 
where Qσ  applies if the heat reservoirs are included in the system. 
 
 The Second-Law efficiency or Effectiveness is defined taking into account the 
useful work that has been lost in a process. The definition is not completely unique since 
the useful work remaining after the process must be carefully accounted for. In general: 
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Availability Transfer Associated with Heat Transfer 
 
 We analyze next the transfer (and loss) of available work in a heat transfer process. 
Let us consider a steady-state system with boundary temperature Ti in contact with a heat 
engine that rejects heat to a reservoir at T0, as shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

Figure 1: two heat reservoirs exchanging heat. 
 
 
 The exergy of the system is the reversible work obtainable as the system evolves to 
the dead state. The first law states for the reversible engine: 
 
 0QQW irev δ−δ−=δ         (7) 
 
and the second law requires that: 
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 Combining Eqs. (7) and (8) yields and writing for a finite heat transfer we get: 
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where iQ,Φ  is the availability or exergy transfer associated with the heat transfer Qi. Notice 
that ( )iTT /1 0−  is the efficiency of a power cycle at Ti rejecting at T0. On a rate basis, and 
for a number of reservoirs we write: 
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 We can calculate the irreversibility from Eq. (4) assuming no work interactions and 
steady state: 
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 If we are transferring heat from a reservoir at TH to a reservoir at TC we get: 
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with the T-S diagram shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: graphical representation of the irreversibility in a heat transfer process from a hot to a cold 
reservoir. 

 
 
 
 In a general case where there is a change on the boundary temperature, we calculate 
the availability as the integral of Eq. (9): 
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with PdVdUQ +=δ .  
 
 Let’s analyze the case of a high temperature combustion heat source used for a 
lower temperature process in steady state and with no work exerted. The energy 
conservation states: 
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and the availability, Eq. (4), is rewritten as: 
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with the subscripts S, U and i stand for source, useful and heat loss to a reservoir at 
temperature Ti. Thus, the availability can be symbolically written as: 
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 We define the effectiveness of this process as the useful availability divided by the 
input availability: 
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Example 
 A high temperature source at 1000 K is used for three processes: a) heating at 
TU=313 K, b) Steam generation at TU=473 K and c) Furnace operation at TU=693 K. Find 
the efficiency and the effectiveness of these processes if the heat transfer rate is 100 kW and 
the heat loss to the atmosphere is 10 kW. Take the athmospheric temperature and the dead 
state at 300 K.   
 

 The first law efficiency is 90 % for the three cases, since only 10 % of the energy is lost in the 
process. As the loss occurs to the dead state, there is no availability left associated with that 
loss. The availabilities remaining are: 
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this means that the heating process has an effectiveness of 5.3 %, the steam generation process 
an effectiveness of 47 % and the furnace operation an effectiveness of 72.8 %. 

 
 
Closed System Availability 
 
 Eq. (4) for a closed system reduces to: 
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where Ti is the temperature at the boundary of the system. The same equation applies for a 
system including j thermal reservoirs, but the entropy generation term must include the 
transfer of heat between the process and the reservoirs (see Eq. 4). For the case of an 
internally reversible process we can write: 
 
 Qurev STVPEW Φ−∆−∆+∆= 00,       (19) 
 

We define the closed system availability as: 
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so the actual useful work can be calculated as: 
 
 CMQuact IW +Φ−Φ−Φ= 12,       (21) 
 
 The total irreversibility is: 
 
 urevuacttot WWI ,, −=         (22) 
 
replacing the corresponding terms we get: 
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using the first law ( ∑−−=−=∆− jtotact QQQUW 0, ) and dropping the terms that cancel 

out we get: 
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where the heat interactions are jjj STQ ∆= . Replacing we get the final expression: 
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Some Examples 
 

Oxygen initially at 300 K and 100 kPa is contained in a rigid tank. Two processes are 
considered to increase its temperature to 500 K: a) the gas receives energy by a paddle wheel 
adiabatically and b) by means of an external heat reservoir at 600 K, with a system boundary 
temperature taken as the gas temperature. Determine 1) the availability change, 2) the 
irreversibility (kJ/kmol) and 3) the effectiveness of the process. Take T0=300 K. 
 
(a) (1) The availability change is obtained using Eq. (20) in specific form for the initial and 

final states.  
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A reversible process (∆s=0) would give kmolkJu /4372=∆=φ∆ , since all the internal 
energy is provided by the paddle wheel. 
 
(2) from Eq. (21) in specific form, the irreversibility change is: 
 
 kmolkJwI QuactCM /333901033437212, =+−=φ+φ+φ−=  
 
that equals sT ∆0 , in accordance to Eq. (25). 
 
(3) the effectiveness is: 
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(b) (1) Being a function of the state, the change in availability is the same as in the previous 

case. The change (loss) in availability of the heat reservoir is: 
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(2) The total irreversibility is expressed as: 
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(3) The effectiveness, as defined before, is: 
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CO2 is adiabatically compressed from 10 bar, 300 K to 50 bar, 450 K. Determine 1) the 
availability change, 2) the irreversibility and 3) the effectiveness for (a) ideal gas and (b) real 
gas. 
 
(a) For the ideal gas we have: 
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(1) substitution of the ideal gas data for CO2 (R=8.3145 kJ/kmol K, molar mass 44.02 kg/kmol) 
gives: 
 kgkJkmolkJ /53.85/37648641754803 ==−−=φ∆  
(2) The irreversibility can be calculated using Eq. (22), where the actual useful work is given by 

( )12012 vvPuu −+− . Therefore: 

 kgkJwwI urevuactCM /63.1953.8502.44/)1754803(,, =−−=−=  
(3) The effectiveness is calculated as exergy change/input work, thus: 
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(b) Using real gas data, we obtain (1) kgkJ /9.80=φ∆ , (2) kgkJICM /06.15=  and 

(3) 81.076.99/92.80 ==ε  
 
 
 
Availability in a Steady-State Control Volume 
 
 In a steady-state process, Eq. (3) for a CV in contact with j heat reservoirs gives: 
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 Eq. (26) can be written in compact form as: 
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where sTpekehb 0+++= . For the very important case of a reversible process with only 
one input and one output, in specific form we write: 
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It is then natural to define the stream or flow availability as the maximum work that can be 
obtained as the fluid is changed reversible to the dead state while exchanging heat solely 
with the environment. Thus the stream availability is: 
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Notice that Eq. (29) express the thermomecanical effects only, excluding chemical mass, 
energy and entropy transfers. For an ideal gas, Eq. (29) can be written as: 
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 We can now rewrite Eq. (4) as a general availability balance in a CV: 
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or in symbols, for a steady-state process with only one input and one exit we get: 
 
 CVactQ IWm −+ψ∆−Φ=0        (32) 
 
 In Eq. (31) we have that the closed system exergy change within the CV is due to 
exergy transfer due to heat transfer, convective influx or outflow of exergy, external work 
and work against the atmosphere at P0, minus the losses due to irreversibilities within the 
CV.  
 
 The irreversibility follows from Eq. (3.51). In steady flow: 
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 Finally, the case of a steady-state, one inlet (1)-one exit (2) system satisfies: 
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Turbines 
 
 For a steady state gas turbine, the first law states: 
 
 ieio kekehhwq −+−=+        (35) 
 
 The case of a isentropic turbine implies adiabatic expansion, which means that the 
work is expressed as (q=0, negligible kinetic energy): 
 
 ios hhw −=          (36) 
 
where hos stands for the enthalpy at the exit assuming isentropic flow. A T-s graph is shown 
in Fig. 3. The shaded area below line Pi between states i and A equals ios hh − . Since the 
process is at constant pressure, dhdPvdhdsT =−=  (second Tds equation). In an actual 
process, the end point 2a will be attained with the corresponding change in entropy. Using 
similar derivations, the area shaded in mid-dark gray represents the work done by frictional 
forces and that results in a loss of availability. However, this frictional work is mostly 
converted to heat (frictional heating) and some converted to turbulence. If the temperature 
remains above T0, then part of the frictional heating can be converted back to work using a 
Carnot engine, thus resulting in an increment of exergy. This additional theoretical work is 
shown by the area between os and oa and above T0. The corresponding part below T0 is the 
irreversibility, T0(soa-si). 
 The turbine effectiveness is calculated as: 
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Figure 3: graphical representation of an adiabatic turbine. 
 

 
 
Example 

 
Steam enters a turbine at 40 bar, 500 oC and 140 m/s, and leaves as saturated vapor at 100 oC 
and 80 m/s. The work output is 746 kJ/kg. The average temperature at the surface is taken as the 
average between the inlet and the outlet temperature. Potential energy change is negligible. 
Determine (a) (1) the specific availability change, (2) the specific irreversibility and (3) the 
effectiveness of the process. (b) Enlarge the CV to include the environment at 25 oC and find 
the specific availability change and the irreversibility in the new situation. 
 
(a) (1) The inlet state and the outlet state are fixed from the information of the problem. The 

change in stream exergy is: 
kgkJkesTh /7.8546.62648.02982.7690 −=−−−=∆+∆−∆=ψ∆  

which is the maximum possible work output for the given input and output states and 
environment temperature. 
 
(2) The heat loss can be calculated from an energy balance: 
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The specific irreversibility can be calculated from Eq. (34) as: 
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(3) The effectiveness is defined as the actual output divided the maximum possible work output, 
or outcome/input. Thus: 

 873.0=
ψ∆

=ε actw
 

(b) The change in stream availability is the same as the case before. The irreversibility can be 
calculated using T0 instead of Tb which gives 108.7 kJ/kg. The difference with the previous case 
is the irreversibility due to heat transfer, or the exergy associated to heat transfer. 
 
 

 
Compressors and Pumps 
 
 The same type of analysis done for the turbines can be applied for a compressor or 
pump. The effectiveness is now defined as: 
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Example 
 

Water at 0.1 MPa undergoes a pressure rise of 1.0 MPa in a pump with a first law efficiency of 
70 %. Determine the irreversibility of the process and the second-law efficiency. Use an inlet 
temperature of 50 0C and T0=20 0C. 
 
The properties can be calculated from a steam table for the inlet condition and the isentropic 
exit condition. For the inlet condition: 

gcmvkgkJKkgkJskgkJh /0121.1,/0.6,/7038.0,/4.209 3
1111 ==ψ⋅==  

at the exit: 
gcmvKkgkJskgkJhCT ss /0117.1,/7038.0,/4.210,04.50 3

2222 =⋅===  
The actual exit enthalpy can be calculated from the definition of first law efficiency: 
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And using this enthalpy and the exit pressure we get: 
gcmvKkgkJskgkJCT aaa /0117.1,/7052.0,/062.7,15.50 3

2222 =⋅==ψ=  
The irreversibility is then: 

kgkJsTi /410.00 =∆=  
The second-law efficiency is then: 
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