
Intermediate Thermodynamics  
 
The Second Law 
 
 
Clausius postulate 
 
 “Heat cannot pass spontaneously (unaided) from a region of lower temperature to a 
region of higher temperature” 
 
 
Kelvin-Plank postulate 
 
 “It is impossible to construct a heat engine which produces no other effect than the 
extraction of heat from a single source and the production of an equivalent amount of 
work” 
 
 
Reversibility 
 
 A process is said to be reversible if at any time during the process both the system 
and the environment can be returned to their initial states. 
 
 Reversibility is an ideal situation. Dissipative and finite temperature difference 
(non-cuasistatic) effects are unavoidable. However, many processes are close to reversible 
and the reversible efficiency of the process is of interest because it establishes an upper 
limit in performance. 
 
 
Cycles with Two Heat Reservoirs 
 
 The Kelvin-Plank statement implies that for a single reservoir: 
 

 0≥δ∫ closedW         (1) 

 
because the system cannot develop work from a single reservoir. From conservation of 
energy, Eq. (1) is equivalent to: 
 

 0≤δ∫ closedQ         (2) 

 
 In Eqs. (1) and (2) the equality applies for the case of reversible processes.  
 



 When applying the Kelvin-Plank statement to a system in contact with two thermal 
reservoirs, it can be easily proved the following: 
 

1. If the work is negative (i.e., power cycles, the system produces useful work), the 
heat will flow from the higher temperature to the system and from the system to the 
lower temperature reservoir. 

 
2. The opposite occurs when the work is positive (refrigeration and heat pump cycles). 

 
3. The thermal efficiency if any heat engine is defined as:  
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4. In addition, the maximum attainable efficiency is the efficiency of a reversible 

cycle:  
 

revthth ,η≤η         (4) 
 
 

Carnot’s Principle and the Thermodynamic Temperature Scale 
 
 Three important corollaries to the Second Law statements, known as Carnot’s 
principle, are summarized: 
 

1. Eq. (4), which states that the thermal efficiency of any heat engine is always less 
than that of a reversible engine operating between the same two heat reservoirs. 

 
2. Any two reversible engines operating between the same thermal reservoirs have the 

same efficiency. 
 
3. An absolute temperature can be defined which is independent of the nature of the 

measuring substance. 
 
 The third corollary follows from the second. If the thermal efficiencies are the same 
regardless of the design of the heat engine, then the only variable is the type of heat 
reservoir, which is characterized only by its temperature. Accordingly, using three 
independent heat engines operating between the same two heat reservoirs it can be proved 
that: 
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where any monotonic function can be used to define the thermodynamic temperature. The 
Kelvin scale is defined using ( ) TTf = , and was adopted by the International General 



Conference on Weights and Measures as the standard scale. The absolute zero then 
corresponds to the case in which unit efficiency can be achieved: 
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 A reference point is necessary and was set as 273.16 K at the triple point of water, 
thus: 
 

 
tpQ
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 Different fixed points have been selected to calibrate instruments along the 
temperature scale. 
 
 Finally, a Carnot engine can be used to transfer energy across finite temperature 
differences in a reversible form.  
 
 
Entropy Function 
 
 Consider a system in contact with a single reservoir as shown in the Fig. 1.  
 

 
Figure 1: a thermal reservoir connected to a cyclic system through a Carnot engine. 

 
 
 As the system composed by the reversible engine and the cyclic system is connected 
to a single reservoir,  
 

 0≤δ∫ RQ          (8) 

 
  The definition of thermodynamic temperature allows us to write at the inlet and exit 
of the reversible engine: 
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and replacing into Eq. (8) we obtain: 
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 Eq. (10) is known as the Clausius inequality. In the case of a internally reversible 
process the equality holds, so: 
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 The quantity inside the integral is a property, because its value depends only on the 
state of the substance. This property is denominated entropy and is denoted by S. The 
definition is: 
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 For general processes, we can write: 
 

 ∫ δ≥∆
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 Eq. (13) is usually written in compact form as an equality as: 
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where σ is the entropy production term due to irreversibilities, which is a function of the 
path of the process, and can be defined using Eqs. (13) and (14) as: 
 

 ∫ δ−−≡σ
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 A simple extension of Eq. (14) can be made for the case of N boundaries of the 
system at different temperatures in a transient heat transfer case: 
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 Notice that the entropy change or the entropy transfer can be either positive or 
negative, while the entropy production will be always positive (or zero). 
 
 
Work and Heat Entropy Generation 
 
 Combining Eq. (12) with the first law for a reversible process we obtain the first 
TdS equation: 
 
 revWdUdST δ−=         (17) 
 
and using the first law for actual processes (reversible or irreversible) we get: 
 
 actrevact WWQdST δ+δ−δ=       (18) 
 
and replacing into Eq. (14) we have: 
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which represents the entropy generation due to irreversible work interactions (for instance 
in a friction process). That means that the actual work into a process is always larger than 
the reversible work, and the work out of a process is always smaller than the reversible 
work.  
 
 The entropy generation in a heat transfer process is related to temperature gradients. 
Temperature gradients mean irreversible heat transfer associated to non-equilibrium 
processes. Integrating Eq. (16) we can write: 
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 Consider now heat transfer between two heat reservoirs at temperatures 21 TT > , as 
shown in Fig. 2. In this case the properties are constant in the dashed system where the 
temperature gradient is present (a heat reservoir has constant temperature and is internally 
reversible). In addition, no work interactions are present, so the entropy generation is 
entirely due to heat transfer. Under these conditions, Eq. (20) reduces to: 
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 Applying Eq. (21) to our system, we obtain: 
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 Eq. (22) represents the entropy generation due to irreversible heat transfer between 
ANY two constant temperature systems. In a general system (not a heat reservoir) the heat 
transfer will cause a change in the system temperature, so Eq. (22) will be valid 
instantaneously. 
 
 
 
 
 
 
 
 

Figure 2: two heat reservoirs exchanging heat. 
 
 
Entropy Balance in a Control Volume 
 
 Starting from Eq. (16), and using an analysis similar to that used for energy balance, 
it is possible to write an entropy balance equation for a control volume. On a time rate 
basis, the equation reads: 
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where the entropy transfer is calculated as the sum over the different surfaces at constant 
temperature. In a steady-state system, with only one input (1) and one output (2), we write: 
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which shows that a) the entropy change from inlet to exit can be either positive, zero or 
negative, b) the entropy at the device can be reduced only if the entropy transfer due to heat 
transfer is larger than the entropy generation inside the CV, c) an adiabatic device with 
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irreversibilities can only increase the entropy and d) the case with no irreversibilities and 
adiabatic results in isentropic flow.  
 
 The evaluation of the entropy transfer accompanying heat can be difficult, since the 
heat flux and the temperature might not be known at every point of the interface. We can, 
however, use a control volume that includes our system plus the heat reservoirs exchanging 
heat with the system. Recalling Eq. (22), and if we assume that we have a thermal reservoir 
at TR and the environment at T0, the entropy generation at the interface will be: 
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where we have N surfaces interacting with the heat reservoir and M surfaces interacting 
with the environment. Now, TR and T0 are constants, and the total heat transfer with those 
constant temperature reservoirs is the sum over all the interfaces at different temperatures. 
Thus: 
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and replacing into Eq. (23) and rearranging we obtain: 
 

 0
0

0 ≥−−+−=σ+σ=σ ∑∑∑
j

j

j

outin

CV
QCVtot T

Q
T
Q

smsm
dt

dS
 (27) 

 
where we generalized for the case of j heat reservoirs plus the environment. In the simplest 
case of a steady-state process with only one inlet and one exit in contact with one reservoir: 
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Entropy Production in Cyclic Systems 
 
 From Eq. (20), we can write for a cyclic heat engine ( 0=∆S ) connected to a hot 
reservoir at TH and a cold reservoir at TC: 
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where it was assumed that the engine and the reservoir are at the same temperature at the 
interface. If the heat engine connects with the hot reservoir at a temperature T1 and with the 
colder reservoir with a surface temperature T2, i.e. there are finite temperature differences at 
the interfaces, additional entropy production terms appear: 
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 Though several terms in Eq. (30) will cancel out, this form is useful because 
identifies the local terms of entropy production. The entire entropy production reduces to 
Eq. (29) if we draw a CV enclosing the heat transfer boundaries. 
 
 
First Law Efficiencies 
 
 First law efficiencies are defined for isentropic processes. The second T ds equation 
and the entropy generation equation read: 
 
 δσ+δ=−= TqdsTdPvdhdsT act,      (31) 
 
Also, the energy balance for a steady-state, one inlet and one exit CV yields: 
 
 pedkeddhwq actact ++=δ+δ       (32) 
 
 Introducing dh from Eqs. (31) after canceling the T ds terms into Eq. (32) we obtain 
a relationship similar to that shown in Eq. (19) for a closed system: 
 
 revact wTpedkeddPvTw δ+δσ=+++δσ=δ     (33) 
 
 For a turbine, the local efficiency is defined in terms of the delivered work as: 
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that can be well approximated neglecting kinetic and potential energy changes as: 
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which shows how internal irreversibilities reduce efficiency since dP is negative in a 
turbine. This can also be seen in a h-s diagram.  
 
 Application of Eq. (33) to the fully developed flow in an insulated pipe, where no 
external work or heat transfer exists,  yields: 



 
 ( )20 2VddPvT ++δσ=        (36) 
 
that can be compared with the classical equation for the pressure loss equation in a pipe: 
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which shows directly that the entropy generation is directly the friction loss: 
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 In the case of flow of an ideal gas, Eq. (28) reduces to  ( ) CVssm σ=− 12 . The 
energy equation reduces to 21 hh = , which implies in an ideal gas that T1=T2 and therefore 

1212 ln PPRss −=− . Replacing we get: 
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where the last approximate equality applies in the case of ∆P<<P1. Similarly, in an 
incompressible fluid 1212 ln TTcss =−  and PvTc ∆−=∆ , therefore: 
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where the approximation is valid if 1TcPv <<∆ . 
 
 
Homework 
 
Wark 2.14. Air flows isothermally at 60 oC through a constant area duct such that the 
entropy increase due to internal irreversibilities is 0.0544 kJ/kg K. Determine a) the heat 
added if the initial and final pressures are 400 and 320 kPa, respectively, and b) the inlet 
and exit velocities. 
 
 


