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CHAPTER 12 
FREE ENERGY 

 
 

12.1 Review of Internal Energy and Enthalpy 
 
We are by now familiar with the equations 
 

,and VdPTdSdHPdVTdSdU +=−=  
 
and with the ideas that the increase in the internal energy is the heat added at constant 
volume and the increase in enthalpy is the heat added at constant pressure, and that U is 
constant in an adiabatic isochoric process and H is constant in an adiabatic isobaric 
process.  I am now going to examine these equations and statements a bit more critically.  
In particular I am going to consider that there may be several types of configuration work 
involved in addition to just PdV work of compression or expansion. 
 
The First Law of thermodynamics is .dWdQdU +=  
 
The work done on a system may comprise an irreversible component IdW  (such as 
stirring with a paddle, or forcing an electric current through a resistor) plus some 
reversible components RdW .   The irreversible component is dissipated as heat and is 
tantamount to adding heat to the system.  The heat and the irreversible work contribute to 
the increase in entropy of the system, according to ./)( TdWdQdS I+=   Thus we have 

.IdWTdSdQ −=  
 
The reversible component of the work may consist of work done in compressing the 
system, ,PdV−  but there may also be other kinds of work, such as the work required to 
create new area, σΓd , or the work required to twist a rod, ,θτd  or the work required to 
charge a battery, Edq, or the work required to magnetize a specimen, BdM, and perhaps 
others.  In general the expression for each of these forms of reversible work is of the form 

,XdY where X is an intensive state variable and Y is an extensive state variable.   All of 
these forms of nondissipative work can collectively be called configuration work. 
 
The total work done on the system is therefore of the form 
 
    ∑+−= .XdYPdVdWdW I    12.1.1 
 
The first law therefore takes the form 
 
   ∑+−+= .XdYPdVdWdQdU I    12.1.2 
 
If the system is held at constant volume (e.g. in a pressure cooker or in an autoclave), 
then no PdV  work of expansion or compression is done.  And if no other sort of work is 
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done either (either non-PdV reversible work or irreversible work dWI) then the increase in 
internal energy of the system is just equal to the heat added to it. 
 
 
 
Enthalpy is defined as H   =  U  +  PV,  so that .VdPPdVdUdH ++=   From this, 
we obtain 
 
    .∑+++= XdYVdPdWdQdH I    12.1.3 
 
If heat is added to a system at constant pressure, then the system expands and does 
external work.  However, provided that the pressure is held constant and if no other sort 
of work is done either (either non-PdV reversible work or irreversible work dWI) then the 
increase in the enthalpy of the system is just equal to the heat added to it. 
 
 
In summary, the well-known equations VdPTdSdHPdVTdSdU +=−= and  
are valid for reversible and for irreversible processes, provided that the only 
nondissipative work is PdV work; but in general, if there are other types of work being 
done (e.g. Γdσ, or τdθ, etc.), the required relations are 
 

∑+−= XdYPdVTdSdU     12.1.4 
 

and   ∑++= .XdYVdPTdSdH     12.1.5 
 
 
12.2   Free Energy 
 
We shall be learning that there are two sorts of free energy. 
 
There is the Helmholtz free energy.  Commonly used symbols for this are A (from the 
German die Arbeit – work) or F. 
 
And there is the Gibbs free energy.  Commonly used symbols for this are G  −  or F ! 
 
It is unfortunate that some writers will use simply the term "free energy”, using the 
symbol F, without specifying which, or even giving evidence that they are aware of the 
difference.  I have seen the symbol F used about equally often for Helmholtz, Gibbs or 
unspecified free energies. 
 
In these notes I shall use the symbol A for the Helmholtz free energy and G for the Gibbs 
free energy, and I shall avoid the symbol F. 
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12.3  Sorry – there is no Section 12.3 
  
I don’t want to re-number the subsequent sections, in case I have referred to them by 
number in future chapters.  So let’s just leave this one blank. 
 
 
12.4   Helmholtz Free Energy 
 
The Helmholtz free energy A is defined as 
  
    .TSUA −=      12.4.1 
 
As when we first defined enthalpy, this doesn't seem to mean much until we write it in 
differential form:   
 
            .SdTTdSdUdA −−=     12.4.2 
 
On substitution from equation 12.1.6 ),( ∑+−= XdYPdVTdSdU this becomes 
 
   .∑+−−= XdYPdVSdTdA     12.4.3 
 
This tells us that in an isothermal process (in which dT  =  0), the increase in the 
Helmholtz function of a system is equal to all the reversible work ( ∑+− XdYPdV ) 
done on it.  Conversely, if a machine does any reversible work at constant temperature, 
the Helmholtz function decreases, and the decrease in the Helmholtz function is equal (if 
the temperature is held constant) to the reversible work (of all types) done by the 
machine.  It is in this sense that the Helmholtz function is called the “free energy”.  It is 
the energy, so to speak, that is free for the performance of external reversible (i.e. useful) 
work. 
 
 
12.5   Gibbs Free Energy 
 
The Gibbs free energy G is defined as 
  
    G H TS= −       12.5.1 
 
or, what amounts to the same thing, 
 
    .PVAG +=      12.5.2 
 
As when we first defined enthalpy, this doesn't seem to mean much until we write it in 
differential form:   
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    dG dH TdS SdT= − −     12.5.3 
 
or    .VdPPdVdAdG ++=     12.5.4 
 
Then, either from equations 12.1.5 ( ∑++= XdYVdPTdSdH ) and 12.5.3 or from 

equation 12.4.3 ( ∑+−−= XdYPdVSdTdA ) and 12.5.4, we obtain 
 
    .∑++−= XdYVdPSdTdG    12.5.5 

 
That is to say that, if the temperature and pressure are constant, the increase in the Gibbs 
function of a system is equal to the reversible work (other than PdV work of 
compression) done on it.  Conversely, if the temperature and pressure are held constant, 
and a machine is used to do external work (which may include but is not limited to PdV 
work of expansion), the Gibbs function decreases by the amount of reversible (i.e.useful) 
work done by the machine other than the PdV work of expansion. 
 
 
12.6    Miscellaneous Relations, the Maxwell Relations, and the Gibbs-Helmholtz 
Relations 
 

∑+−= XdYPdVTdSdU     12.6.1 

   ∑++= XdYVdPTdSdH     12.6.2 

   ∑+−−= XdYPdVSdTdA                     12.6.3   

   ∑++−= XdYVdPSdTdG     12.6.4 
 

If the only reversible work done on or by a system is PdV work of expansion or 
compression, we have the more familiar forms 
 

PdVTdSdU −=       12.6.5 
   VdPTdSdH +=      12.6.6 
   PdVSdTdA −−=                           12.6.7   
   VdPSdTdG +−=                12.6.8 
 
All four thermodynamic functions are functions of state (and hence their differentials are 
exact differentials) and therefore 
 

   P
V
UT

S
U

SV

−=







∂
∂

=







∂
∂             12.6.9a,b 

 

   V
P
HT

S
H

SP

=







∂
∂

=







∂
∂                      12.6.10a,b 
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   P
V
AS

T
A

TV

−=







∂
∂

−=







∂
∂                      12.6.11a,b 

 

   V
P
GS

T
G

TP

=







∂
∂

−=







∂
∂                           12.6.12a,b 

 
 
Further, by equating the mixed second derivatives, we obtain the four Maxwell 
Thermodynamic Relations: 
 

   
VS S

P
V
T









∂
∂

−=







∂
∂             12.6.13 

 

   
PS S

V
P
T









∂
∂

=







∂
∂              12.6.14 

 

   
VT T

P
V
S









∂
∂

=







∂
∂             12.6.15 

 

   .
PT T

V
P
S









∂
∂

−=







∂
∂             12.6.16 

 
 
 
The Gibbs-Helmholtz Relations are trivially found from 

TSHGTSUA −=−= and  together with equations 12.6.11a and 12.6.12a.  They 
are 
 

   
VT

ATAU 







∂
∂

−=             12.6.17 

 

   .
PT

GTGH 







∂
∂

−=             12.6.18 

 
 
12.7    The Joule and Joule-Thomson Coefficients 
 
In Chapter 10, we studied the Joule and Joule-Thomson experiments and we calculated 
the Joule and Joule-Thomson coefficients.  Now that we are familiar with the Helmholtz 
and Gibbs functions, and, in particular, with two Maxwell relations that can be derived 
from them, we can obtain alternative derivations for these two coefficients.  These may 
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be easier than the derivations we gave in Chapter 10.  I am indebted to Dr Greg Trayling 
for the derivation of the Joule coefficient; the derivation of the Joule-Thomson coefficient 
follows a parallel argument. 
 
Let us start with the Joule coefficient.  Here we are interested in how the temperature 
changes with volume in an experiment in which the internal energy is constant.  That is, 
we want to derive the Joule coefficient, .)/( UVT ∂∂=η  
 
Now entropy is a function of state – i.e. of the intensive state variables P, V and T.  (V = 
molar volume.)  But the intensive state variables for a particular substance are related by 
an equation of state, so we need express the entropy as a function of only two of P, V or 
T, and, since we are seeking a relation between V and T, let us choose to express S as a 
function of V and T, so that 
 

   .dT
T
SdV

V
SdS

VT








∂
∂

+







∂
∂

=     12.7.1 

 
Let us look at these three terms in turn.   
 
First, dS.  In the Joule experiment, the internal energy of the gas is constant, so that 
 
    .0=− PdVTdS      12.7.2 
 

That is,    .
T

PdVdS =       12.7.3 

 
For the first term on the right hand side of equation 12.7.1, we make use of the Maxwell 
relation, equation 12.6.15, which we derived from the Helmholtz function: 
 

    .
VT T

P
V
S









∂
∂

=







∂
∂      12.7.4 

 
For the second term on the right hand side we obtain 
 

                    ./ T
C

S
U

T
U

T
U

U
S

T
S V

VVVVV
=








∂
∂









∂
∂

=







∂
∂









∂
∂

=







∂
∂   12.7.5 

     
 

Thus, equation 12.7.1 becomes 
 

   .
T
dTCdV

T
P

T
PdV V

V

+







∂
∂

=     12.7.6 
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Multiply through by T, and divide by dV, taking the infinitesimal limit as dV → 0, 
recalling that we are dealing with an experiment in which the internal energy is constant, 
and we arrive at 
 

   ,
U

V
V V

TC
T
PTP 








∂
∂

+







∂
∂

=      12.7.7 

 
from which we immediately obtain 
 

   ,1
















∂
∂

−=







∂
∂

VVU T
PTP

CV
T     12.7.8 

 
quod erat demonstrandum. 
 
 
Let us now consider the Joule-Thomson coefficient.  Here we are interested in how the 
temperature changes with pressure in an experiment in which the enthalpy is constant.  
That is, we want to derive the Joule-Thomson coefficient, .)/( HPT ∂∂=µ  
 
Now entropy is a function of state – i.e. of the intensive state variables P, V and T.  (V = 
molar volume.)  But the intensive state variables for a particular substance are related by 
an equation of state, so we need express the entropy as a function of only two of P, V or 
T, and, since we are seeking a relation between P and T, let us choose to express S as a 
function of P and T, so that 
 

   .dT
T
SdP

P
SdS

PT








∂
∂

+







∂
∂

=     12.7.9 

 
Let us look at these three terms in turn.   
 
First, dS.  In the Joule-Thomson experiment, the enthalpy of the gas is constant, so that 
 
    .0=+ VdPTdS      12.7.10 
 

That is,    .
T

VdPdS −=      12.7.11 

 
For the first term on the right hand side of equation 12.7.9, we make use of the Maxwell 
relation, equation 12.6.16, which we derived from the Gibbs function: 
 

    .
PT T

V
P
S









∂
∂

−=







∂
∂      12.7.12 
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For the second term on the right hand side we obtain 
 

                    ./ T
C

S
H

T
H

T
H

H
S

T
S P

PPPPP
=








∂
∂









∂
∂

=







∂
∂









∂
∂

=







∂
∂   12.7.5  

 
Thus, equation 12.7.9 becomes 
 

   .
T
dTCdP

T
V

T
VdP P

P

+







∂
∂

−=−     12.7.14 

 
Multiply through by T, and divide by dP, taking the infinitesimal limit as dP → 0, 
recalling that we are dealing with an experiment in which the enthalpy is constant, and 
we arrive at 
 

   ,
H

P
P P

TC
T
VTV 








∂
∂

+







∂
∂

−=−     12.7.15 

 
from which we immediately obtain 
 

   ,1








−








∂
∂

=







∂
∂ V

T
VT

CP
T

PPH
    12.7.16 

 
quod erat demonstrandum. 
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12.8    The Thermodynamic Functions for an Ideal Gas 
 
In this section I tabulate the changes in the thermodynamic functions for an ideal gas 
taken from one state to another. 
 
One mole of an ideal gas going isothermally and reversibly from PlV1T  to P2V2T  or 

adiabatically and reversibly from PlV1T1 to P2V2T2. 
 

        Isothermal      Adiabatic 
 

Work done by gas     *)/ln( 12 VVRT          )(
1

)(
1 21

212211 TTCTTRVPVP
V −=

−γ
−

=
−γ
−   

 

U2  −  U1                   0         )(
1

)(
1 21

212211 TTCTTRVPVP
V −−=

−γ
−

−=
−γ
−

−  

 
Heat absorbed by gas       )/ln( 12 VVRT               0 
 
S2  −  S1              )/ln( 12 VVR         0 
 

H2  −  H1                 0    )(
/11

)(
/11 21

212211 TTCTTRVPVP
P −−=

γ−
−

−=
γ−

−
−  

A2  −  A1       )/ln( 12 VVRT−   1122
21

1
)( STSTTTR

+−
−γ
−

−  

G2  −  G1                  )/ln( 12 VVRT−                  1122
21

/11
)( STSTTTR

+−
γ−

−
−  

 
*Note that for isothermal processes on an ideal gas, we can write )./()/( 2112 PPVV =  
 
A difficulty will be noted in the entries for the increase in the Helmholtz and Gibbs 
functions for an adiabatic process, in that, in order to calculate ∆A or ∆G, it is apparently 
necessary to know S1 and S2, and not merely their difference.  For the time being this is a 
difficulty to note on one’s shirt-cuff, and perhaps return to it later.   
 
 
12.9   The Thermodynamic Functions for Other Substances 
 

Calculation of the change in the thermodynamic functions of any substance going 
reversibly from PlV1T1 to P2V2T2. 

 
The first comforting thing to note is that SUHAG are all state functions, and therefore the 
change in their values is route-independent. 
 



 10

Entropy.  
 
  Entropy is a function of state (i.e. of PVT), but since PVT are related through the 
equation of state, it is necessary to specify only two of these quantities.  Thus, for 
example if we express S as a function of T and P, infinitesimal increases in these will 
give rise to an infinitesimal increase in S given by 
 

   dP
P
SdT

T
SdS

TP








∂
∂

+







∂
∂

=      12.9.1 

 

Now 
PT

S








∂
∂ is  (for a reversible process) 

T
CP (see equation 12.7.5),  and 

TP
S









∂
∂ is (by a 

Maxwell relation) equal to .
PT

V








∂
∂

−    If we know CP as a function of temperature, and, 

if we know the equation of state, we can now calculate 
 

  .2

1

2

1
12 dP

T
V

T
dTCSS

P

P

P

T

T P ∫∫ 







∂
∂

−=−      12.9.2 

 
This will enable us to calculate the change in entropy of a substance provided that we 
know how the heat capacity varies with temperature and provided that we know the 
equation of state. 
 

For an ideal gas ,/ PR
T
V

P
=








∂
∂   and so we obtain, for an ideal gas 

 

  )./ln( 1212
2

1

PPR
T
dTCSS

T

T P −=− ∫     12.9.3 

 
 
If we want to express the increase of entropy in terms of the change in temperature and 
volume, and of CV, we can use PV = RT and CP  =  CV  +  R to obtain 
 

  )./ln( 1212
2

1

VVR
T
dTCSS

T

T V +=− ∫     12.9.4 

 
This agrees with what we had in the previous section for an isothermal expansion. 
 
Here’s another way or arriving at equation 12.9.4.   We want to find the change in 
entropy of a mole of an ideal gas in going from ),,( 111 TVP  to ).,,( 222 TVP   Since the 
change in entropy is route-independent, we can choose any simple route for which the 
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calculation is easy.  Let’s go at constant volume from ),,( 111 TVP  to ),,( 213 TVP and then 
at constant temperature from ),,( 213 TVP  to ),,( 222 TVP . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To go from ),,( 111 TVP  to ),,( 213 TVP , the gas has to absorb an amount of heat dTC
T

T V∫
2

1

, 

and so its entropy increases by .2

1 T
dTC

T

T V∫    To go from ),,( 213 TVP  to ),,( 222 TVP . The 

gas does work )/ln( 122 VVRT  without any change in internal energy (because the internal 
energy of an ideal gas at constant temperature is independent of its volume), and 
therefore it absorbs this amount of heat.  Therefore its entropy increases by )/ln( 12 VVR .   
Thus we arrive again at equation 12.9.4. 
 
 
Example:  If the substance is an ideal monatomic gas, then .2

5 RCP =  From this we 
calculate 
 

 .lnlnln
2

1
2/5

1

2

1

2

1

2
2
5

12



















=








−








=−

P
P

T
TR

P
PR

T
TRSS    12.9.5 

 
   
Exercise:    Go through the same analysis, but starting from ).,( VTSS =   Show that the 
result you get for an ideal gas is the same as above.  It will also, of course, necessarily be 
the same for any substance, though the equality of the expression you get with equation 
12.9.2 may not be immediately apparent. 
 
Exercise:    The pressure and volume of an ideal monatomic gas are both doubled.  What 
is the ratio of the new temperature to the old?  What is the increase in the molar entropy?  

),,( 111 TVP

V 

P 

),,( 222 TVP

),,( 213 TVP
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(I make the answer 2.31  ×  104  J kmole−1 K−1.)    Now try the same problem with an ideal 
diatomic gas.  (I make the answer 3.46  ×  104  J kmole−1 K−1.)     
 
 
 
Internal Energy and Enthalpy 
 
These can be calculated if we know how CV and CP vary with temperature, because, by 
definition, VV TUC )/( ∂∂=  and  .)/( PP THC ∂∂=  
 

Therefore   dTCUU
T

T V∫=− 2

1
12     12.9.6 

 

and    .2

1
12 dTCHH

T

T P∫=−     12.9.7 

 
 
 
Helmholtz and Gibbs Functions 
 
Since A  =  U  −  TS, we have 
 
  ).()( 1211221212 TTSSSTUUAA −−−−−=−    12.9.8 
 
 
In the special case of an ideal gas, we obtain 
 

 ).()/ln( 121122212
2

1

2

1

TTSVVRT
T
dTCTdTCAA

T

T
VT

T V −−−−=− ∫∫  12.9.9 

 
Since G  =  H  −  TS, we have 
 
  ).()( 1211221212 TTSSSTHHGG −−−−−=−    12.9.10 
 
In the special case of an ideal gas, we obtain 
 

 ).()/ln( 121212212
2

1

2

1

TTSPPRT
T
dTCTdTCGG

T

T
PT

T P −−−−=− ∫∫  12.9.11 

 
There is, however, a serious difficulty with equations 12.9.9 and 12.9.11, in that, in order 
to calculate the change in the Helmholtz and Gibbs functions, we need to know the initial 
absolute entropy S1. 
 
 
12.10    Absolute Entropy 
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We can, of course, calculate the molar entropy of a substance at some temperature 
provided that we define the entropy at a temperature of absolute zero to be zero. By way 
of example, assuming that the molar entropy of hydrogen at 0 K is zero, calculate the 
absolute entropy of a kmole of H2 gas at a temperature of 25oC  (298.15 K) and a 
pressure of one atmosphere. 
 
We can do this in five stages, as follows.   You will find it helpful to sketch these stages 
on a drawing similar to figure VI.5. 
 
  1.   Heat the solid hydrogen from 0 K to 13.95 K at a pressure of 7173 Pa.  (That’s the 
triple point.)  The increase in entropy is ).(lnTdCP∫    Assuming that we know CP as a 

function of temperature in this range, that comes to 2080 J K−1 kmole−1. 
 
2. Liquefy it at the same temperature and pressure.  The molar latent heat of fusion is 
117000 J kmole−1.   Increase in entropy = 117000/13.95  =  8400 J K−1 kmole−1. 
 
3.  Vaporize it at the same temperature and pressure.  The molar latent heat of 
vaporization is 911000 kmole−1.  Increase in entropy = 911000/13.95  = 65300 J K−1 
kmole−1. 
 
4.   Increase temperature to 298.15 K at constant pressure.  See equation 12.8.3.  The 
increase in entropy is ).(lnTdCP∫   Assuming that we know CP as a function of 

temperature in this range, that comes to 70000 J K−1 kmole−1. 
  

5.   Increase pressure to 1 atmos  =  1.013 × 105 Pa at constant temperature.  See equation 
12.8.3, from which we see that there is a decrease of entropy equal to 

22000)7173/10103.1ln(8314)/ln( 5
12 =×=PPR  J K−1 kmole−1. 

 
  Hence, taking the entropy to be zero at 0 K, the required entropy is 124000 J K−1 kmole−1. 
 
 
Now that we have calculated the absolute entropy at a given temperature and pressure, we 
can calculate the increase in the Helmholtz and Gibbs functions from equations 12.9.9 and 
12.9.11. But this leaves us in a rather uncomfortable position.  After all, all we have done 
in this example is to calculate the increase in entropy as we took the sample up to 25 oC 
and 1 atmosphere – we haven’t really calculated the absolute entropy.  The entropy 
appearing in equations 12.9.9 and 12.9.11 is surely the absolute entropy, and we cannot 
calculate this unless we know the entropy at T = 0 K.  This slight puzzle will remain with 
us until Chapter 16, when we meet Nernst’s Heat Theorem and the Third Law of 
Thermodynamics.   
 
 
Many of the examples of thermodynamical calculations have hitherto involved PdV work 
in a system in which the working substance has been an ideal gas.  Let us now look at two 
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entirely different situations, both involving non-PdV work.  Let us look at charging a 
battery, and creating new surface by distorting a spherical drop of liquid. 
 
 
 

12.11   Charging a Battery 
 
The concept of “non-PdV work” sometimes causes difficulty, so am going to illustrate it 
in this section by using the charging of a battery as an example, and in the next section by 
a discussion of surface tension.  This section will also give us an opportunity of using a 
Gibbs-Helmholtz relation. 
 
Suppose that we force a charge q into an electric cell whose electromotive force (EMF) is 
E, at constant temperature and pressure.  What is the increase in the Gibbs function of the 
cell?   And what is the increase in its enthalpy?   
 
The answer to the first question is easy.  It is just qE.   The increase in the enthalpy is 
given by 
 
    ,STGH ∆+∆=∆  
 
and, by a Maxwell relation (equation 12.6.18), this is 
 

    ,
PT

GTGH 







∂
∂

∆−∆=∆     12.11.1 

 
which is one of the Gibbs-Helmholtz relations.  But since ∆G =  qE, this becomes 
 

  .















∂
∂

−=







∂
∂

−=∆
PP T

Tq
T

TqqH EEEE    12.11.2 

 
Thus we can calculate the increase in enthalpy from a measurement of how the EMF of 
the cell changes with temperature. 
 
 
12.12   Surface Energy 
 
For a second example of non-PdV work we shall consider the phenomenon of “surface 
tension”. 
 
It is well known that a liquid tends to contract to a shape that minimizes its surface area.  
In the absence of other forces, this means that it will become spherical.  The effect is 
often conveniently described in terms of “surface tension”.  We describe the tendency of 
a surface to contract by drawing an imaginary line in the surface, and we say that the 
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surface to one side of the line pulls the surface of the other, and we call the force per unit 
length perpendicular to the line the surface tension.  It is expressed in dynes per cm or 
newtons per metre.  In this section I shall use the following symbols: 
 
   Surface tension: Γ 
   Area:   σ 
 
However, from the point of view of thermodynamics, it is easier to think of surface 
energy.  How much work is needed to increase the surface area?  And how is this related 
to what we have described as “surface tension”?  It may be noted in passing that energy 
per unit area (J m−2) is dimensionally similar to force per unit length (N m−1).  
 
A non-spherical blob of liquid will, under the action of surface tension, contract into a 
spherical blob – i.e. a blob of least surface area for a given volume.  It should not come as 
a surprise to learn that, at least in principle, as the blob adjusts (in an adiabatic process) to 
its spherical shape of least surface area, it becomes warmer.  Molecules near the surface 
have a high potential energy.  As many of them fall beneath the surface as the surface 
area is decreased, this potential energy is converted to kinetic energy.  Conversely, if a 
spherical drop is distorted from its spherical shape, it becomes cooler. 
 
We have already pointed out that the surface tension can be regarded as the work 
required to create new area. Increasing the area will result in a fall in temperature, so, if 
the temperature is kept constant, some heat must be absorbed from the surroundings, and 
hence the increase in the internal energy is a little more than the surface tension. It may at 
first seem surprising that doing work on a liquid, in order to create new surface, results in 
a fall of temperature, but the work is being used not to increase the kinetic energy of the 
molecules, but rather to increase their potential energy by pulling them to the surface.  
 
One way in which we can imagine work being done on a liquid to increase its surface 
area is simply to imagine distorting a spherical drop into a nonspherical shape. Another 
way, which might lend itself more easily to the sort of thermodynamical analysis we are 
accustomed to in discussing gases, is to imagine a film of soapy water held in a wire 
frame, constructed of a fixed U-shaped portion A (see figure XII.1), and a bridge B which  
 
 
 
 
 
 
 
 
 
 
 
 
 

A  “cylinder” 

B  “piston” 

FIGURE XII.1 

a 

dx 
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we can move in and out, allowing us to do work on the liquid by pulling it to the right, or 
the liquid to do work by pulling the bridge to the left.  We could even refer to these two 
parts as the “cylinder” A and the “piston” B.  A difference between this picture and that 
of a gas inside a real cylinder is that when we pull the “piston” out, we are doing work on 
the liquid.  Nevertheless, as explained above, the temperature of the liquid then drops.  If 
we allow the film to contract and to pull the “piston” to the left, the temperature will rise. 
 
If the width of the “cylinder” is a, the surface tension force with which the liquid is 
pulling on the “piston” is 2aΓ, where Γ is the surface tension.  The factor 2 arises because 
there are two surfaces, above and below.  If we pull the piston to the right through a 
distance dx, the work we do on the liquid is 2aΓdx. If we do this adiabatically (quickly), 
the liquid cools.  If we do it isothermally (slowly), the liquid has to absorb some heat 
from its surroundings. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us now take the liquid around a Carnot cycle, as shown in figure XII.2.   Notice that, 
as we move the “piston” to the right, provided that the temperature remains constant the 
surface tension force between the “piston” and the liquid does not change; thus the 
isotherms are horizontal lines, with the warmer isotherms lying lower than the cooler 
isotherms. 

Isotherm for temperature T1 
Surface tension = Γ1 

x→ 

Fo
rc

e 
 =

  2
aΓ

  →
 

Isotherm for temperature T2 
Surface tension = Γ2 

A B 

C D 

FIGURE XII.2 

Q2 

Q1 

T 
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Let us start by moving the piston to the right, isothermally at a temperature T1, through a 
distance ∆x, being the portion AB of figure XII.2.  The work done on the liquid is 

,2 1 xa ∆Γ  where Γ1 is the surface tension at temperature T1.  In order that the process 
should be isothermal, the liquid has to absorb an amount of heat Q1 from its 
surroundings.  The internal energy increases by .2 11 Qxa +∆Γ  
 
Now expand the liquid further, but this time adiabatically, from B to C.  Work is being 
done on the liquid, but no heat is being absorbed.  The temperature drops to T2.  The new 
surface tension is Γ2, which is greater than Γ1, because surface tension generally 
decreases at warmer temperatures. 
 
Now allow the liquid to contract isothermally at temperature T2, from C to D. The liquid 
does an amount of work ,2 2 xa ∆Γ  and it must lose an amount of heat Q2 (which, as we 
shall see, is less than Q1) to its surroundings.  The internal energy decreases by 

.2 22 Qxa +∆Γ  
 
Finally, return the liquid to its original state A along the adiabatic path DA.  As many 
molecules on the surface fall back beneath the surface, the temperature rises to its 
original valueT1.  Work is being done by the liquid; the work done by the liquid along DA 
is equal to the work done on it along BC. 
 
The net work done by the liquid around the complete cycle is ,)(2 12 xa ∆Γ−Γ  and the 
net heat absorbed by the liquid around the cycle is .21 QQ −   Since there is no change in 
the internal energy around the cycle (because U is a function of state), these two are 
equal.  Also, there is no change in entropy around the cycle (because S is a function of 
state), and therefore .// 1122 TQTQ =   (This justifies our earlier assertion that .12 QQ < ) 
 
From these two equations we obtain 
 

   .)(2)( 1221
1

1 xaTT
T
Q

∆Γ−Γ=−     12.12.1 

   
Go to the infinitesimal limit and drop the subscripts, and this becomes 
 

   .2 xa
dT
dTQ ∆×

Γ
−=      12.12.2 

 

The right hand side is a positive quantity, because 
dT
d Γ  is negative.  We have seen that, in 

order to create new surface isothermally, heat must be absorbed.  What equation 12.12.2 
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says is that the heat absorbed to create the new area  ∆σ  =  2a∆x created is equal to  

.σ∆×
Γ

−=
dT
dTQ  

 
Now the work required to create the new area is .σ∆×Γ  
 
Thus the increase in internal energy when new area dσ is created at constant temperature 
is 

    .σ∆





 Γ

−Γ=∆
dT
dTU      12.12.3 

 

This will remind you of equation 12.11.1, ,
PT

GTGH 







∂
∂

∆−∆=∆ for the increase in 

enthalpy of a battery when we add charge to it at constant pressure.  This time we are 
adding new area to a liquid at constant volume. 
 
Here is another way at arriving at the same result: It will remind you of the way in 
which, in this Chapter, we derived the expression for the Joule coefficient. 
 
The increase in internal energy and Helmholtz functions of a system when we add heat to 
it and do work on it is given by the familiar equations 
 
   ∑+−= XdYPdVTdSdU     12.12.4 
 
and   .∑+−−= XdYPdVSdTdA     12.12.5 
 
We are most familiar with them when the term ∑ XdY is zero, but in this case we are 
dealing with a liquid at constant volume, and the one XdY term is Γdσ, so that the 
equations become 
 
    σΓ+= dTdSdU      12.12.6 
 
and    .σΓ+−= dSdTdA      12.12.7 
 
Divide equation 12.12.6 by dσ at constant temperature: 
 

    .Γ+







σ∂
∂

=







σ∂
∂

TT

STU     12.12.8 

 
From equation 12.12.7 obtain a Maxwell relation: 
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    ,
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except that Γ is in any case independent of σ,  so the right hand term is actually a total 
derivative, ./ dTdΓ  
 
Substitute this into equation 12.12.8 and we have the same result as in our previous 
argument: 
 

    .
dT
dTU

T

Γ
−Γ=








σ∂
∂              12.12.10 

 
In summary, the increase in internal energy in creating dσ of new surface at constant 

temperature is the sum of the work required, σΓd , and the heat absorbed, .σ
Γ

− d
dT
dT  

 
Here’s yet another way of getting there!  It will remind you of the way in which we 
derived the expression for the Joule coefficient in Chapter 10. In general the internal 
energy of a drop of liquid depends on its volume, temperature and surface area: 
 
    .),,( σ= TVUU               12.12.11 
 
However, let us ignore the very small change in energy resulting from the very small 
amount of PdV work that the drop would do if it expands a tiny bit as a result of 
temperature increase.  We shall be concerned only with internal energy as a function of 
temperature and of surface tension (which may vary with temperature.)  Thus, we’ll 
assume 
 
   .),( σ= TUU      12.12.12 
 
For infinitesimal increases in temperature and surface tension, the corresponding increase 
in the internal energy is 
 

       .σ
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    12.12.13 

 
 
The internal energy could increase by the addition of heat to the drop, dQ, plus work 
done on it, dW.  The former is TdS, and the latter is +Γdσ.  Thus 
 
   .σΓ+= dTdSdU      12.12.14 
 
 
From these we obtain 
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Since entropy is a function of state, dS is an exact differential, and therefore 
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Therefore  .
σ









∂
Γ∂

−Γ=







σ∂
∂

T
TU

T

    12.12.18 

 
Again, we point out that Γ cannot in any case depend on σ, so that last derivative is really 
a total derivative, so that 
 

   .
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Surface tension generally decreases with temperature, so this equation shows that the 
increase of internal energy at constant temperature per unit new area is a little greater 
than the surface tension, as expected. 
 
Can we calculate the fall in temperature if new area is created adiabatically and reversibly 
(i.e. isentropically)?  Yes, because equation 12.12.15 (with dS = 0)  tells us that then  
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On making use of equation 12.12.19, we obtain 
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We are assuming that the volume is constant so that ,VC
T
U

=

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increase in temperature with area is 
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   12.12.22 

Since 
dT
dΓ is generally negative, this means that the temperature falls as the area is 

increased, as expected.  In this equation, if dσ means the increase in area of a sample, in 
m2, then CV means the heat capacity of that sample, in J K−1.  
 
Measurement of the surface tension of a liquid is very sensitive to how clean the surface 
is, but, for the record, the following figures for the surface tension of clean water in 
contact with air are taken from the Website http://www.engineeringtoolbox.com/water-
surface-tension-d_597.html 
Temperature 
- t - 
(oC) 

Surface Tension in contact with air 
- Γ - 
(N/m) 

0 0.0756 
5 0.0749 
10 0.0742 
20 0.0728 
30 0.0712 
40 0.0696 
50 0.0679 
60 0.0662 
70 0.0644 
80 0.0626 
90 0.0608 
100 0.0589 
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Exercise:    A drop of water 1 mm in diameter at 45 °C is broken up into two equal 
droplets, each half the volume of the original drop.  Calculate the change in temperature, 
and say whether it is cooler or warmer. 
 
 
12.13   Fugacity 
 
Problem:  The pressure of a mole of an ideal gas is increased isothermally from P0 to P.  
What is the increase 0GG −  in its Gibbs free energy? 

Solution:    By integration of equation 12.6.12b, V
P
G

T

=







∂
∂ , or by use of 

VdPSdTdG +−= , we have 
 

   ∫=−
P

P
VdPGG

0

.0      12.13.1 

 
For a mole of an ideal gas, V  =  RT/P, and hence 
 
   ),/ln( 00 PPRTGG =−     12.13.2 
which agrees with equation 12.9.11. 
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Equation 12.13.1 enables us to calculate the change in the Gibbs free energy of a 
substance while its pressure is increased at constant temperature.  Equation12.13.2 gives 
the result for a mole of an ideal gas.  If the substance is not an ideal gas, then we need to 
know the equation of state, V = V(P , T) in order to integrate equation 12.13.1.  For 
example, the equation of state for a van der Waals gas is ,))(/( 2 RTbVVaP =−+  
where V is the molar volume, or .0)( 23 =−++− abaVVRTbPPV  Good luck in 
your attempt to integrate equation 12.13.1. 
 
The fugacity f of a substance is defined in such a manner that, if the molar Gibbs free 
energy increases from G0  to G, the ratio of the new fugacity to the initial fugacity, f/f0, is 
given by 
 
   )./ln( 00 ffRTGG =−     12.13.3 
 
In other words, for a real substance, we can use all (or at least most!) of the equations that 
we know for an ideal gas as long as we substitute fugacity for pressure. 
 

That is,  .exp/ 0
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As for internal energy, only the difference between the Gibbs free energies of two states 
can be defined; likewise, only the ratio of the fugacities of two states is defined.   
 
Combining equations 12.13.4 and 12.13.1 we obtain 
 

   ∫=
P

P
VdP

RT
ff

0

,1)/ln( 0     12.13.5 

 
which should enable us to find the relation between pressure and fugacity if we know the 
equation of state. 
 
We note also that at very low pressures, a real gas behaves more and more like an ideal 
gas, and we can define the fugacity in units of pressure (pascal) in such a manner that, in 
the limit, as the pressure approaches zero, the fugacity equals the pressure.  Indeed, we 
can then define the ratio of the fugacity to the pressure as the activity coefficient, which 
has the value unity at zero pressure.   
 
Problem:   Show that for a substance having the equation of state P(V  −  b)  =  RT   (V = 
molar volume), as the pressure increases from P0 to P, the ratio of the final to initial 
fugacities is 
      

  .)()/ln()/ln( 0
00 RT

PPbPPff −
+=    12.13.6 
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That is, .)(lnlnlnln 0
00 RT

PPbPPff −
+−=−    12.13.7 

 
Now suppose that P0 is very small, and in the limit, as P0 → 0,  f0 →  P0.  We now find 
that the fugacity at temperature T and pressure P is given by 
 

         .lnln
RT
bPPf +=      12.13.8 

 
This can be written 
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The ratio f/P is called the activity coefficient.  You can see that Pf ≈  if P is small, or if 
b is small, as expected. 
 
 


