Governing Equations for a Control Volume
Reading Material: Van Wylen & Sonntag, 109-117

System Versus Control Volume Approach

* Consider one fluid "particle" (i.e., system) and track it with time.

* Mass does not enter or leave system with time.

system at time t;

system at time t,

Not practical in many cases involving flowing fluid because of large number of
"particles"

control volume is an imaginary volume through which fluid may flow

=" control volume

>
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* Basic conservation laws governing mass, momentum, energy are written for
system, that is, a fixed assemblage of mass.

* Here, we will first present the basic laws for a system, then express them for a
control volume.



Later, we will show how to convert between system and control volume forms of

the equations

Mathematical Description of a Continuum

extensive property

-depends on mass (S, U, E, etc.)

- will be used as a general symbol to represent extensive properties

intensive property

-independent of mass (s, u, e, etc.)

-y will be used as a general symbol to represent intensive properties

for a material that obeys the continuum postulate, define

~ lim (AT)_&P
Am — 0\ Am dm

it follows that,

Y= Iwmn

system

for example, if ¢ = v (specific volume), then ¥ = V(volume)

since p = dm/dV, then (3.2.2) can also be written as a volume integral,
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the following table summarizes the variables of interest to us

(3.2.1)

(3.2.2)

(3.2.3)
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entropy
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System - Control Volume Relationship

* For a control volume of fixed shape, it can be shown that,

where,

dA

n
surface
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=n dA (vector differential area)

= unit normal in the direction of the outward normal to the control

—

= extensive quantity (m, M , E, S)

—

= corresponding intensive quantity (1, V , e, s)

= Vii+Vyj+V,k

(3.3.1)
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Conservation of Mass

* For system, as a "particle" is tracked, mass = constant, or

Dm
Dt 0 3.4.1

* Comparing (3.4.1) with (3.3.1), we can equate ¥ = mass, and y = 1, yielding

Dt 7 ot

Dm:():J'a_pdV+_[pVodA (3.42)
y

 this is the integral form of conservation of mass (note, 1-volume integral and one
surface integral)

—

« applying the Divergence Theorem (e.g., let, B represent a vector quantity)

I(V eBdV)= JTB * dA (3.4.3)
v Y

to the conservation of mass yields the equation in differential form

a—'O+Vo(p\7) =0 (3.4.4)
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Conservation of Momentum

» Newton's 2nd Law is expressed for a "system"

F, ,=— (3.5.1)

*  Comparing (3.3.1) with (3.5.1) we can equate ¥ = M and v = V, yielding

—

F,+F,=F,, = jag%dlf + IV(pV edd) (352
v Y

This is the integral form of conservation of momentum, where,

Fb = body forces (e.g., gravity) = J.f)pdV

\4
b = body force per unit mass
F, = surfaces forces = F,, + Fj,,,,
* note, for inviscid fluid,
F,=-[Pda,
A
Fyrear =0

shear

applying the Divergence Theorem to the conservation of momentum to convert
the surface integrals into volume integrals



an odA = j—dV

l

[Vi(pV edA) = [V e (pVV)dV

+ substituting these into (3.5.2) and taking a differential sized volume yields,

8(/63?7)+V (pVV) Pb; _or
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* using the continuity equation, gives Euler's equation

DV; b_a_P
Dt PPi ox;
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or, in vector form for all 3 components,

DV
Zl —ohb-VeP
P =P

Conservation of Energy (1st Law of Thermodynamics)

» for a fluid particle (i.e., a "system"), conservation of energy states

DE
—— =060 W
Dt 0-

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

(3.6.1)



where,

DE . .
Dt change in total energy of the particle
0 Q  =rate of heat transfer to system

O W  =rate of work done by system

* comparing (3.3.1) with (3.6.1), we can equate ¥ = E and y = e, yielding for a
control volume,

5Q_5W = J'aﬁdV_Ie(pVodA) (3.6.2)
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To complete the transformation, we must express the heat transfer and work terms
in terms of parameters pertinent to the control volume.

The work term can be broken into two parts:

--Wghaft = shaft work (work done by a rotating shaft crossing the boundary)

--Wflow = flow work (work done by surface forces as a fluid crosses the control
surface)

The surface forces can be resolved into normal (pressure) and tangential (shear
stresses) components.

Here, we will lump the shear component into a term Wghear

The work done by the pressure stresses may be either work done in pushing the
mass out of the control volume (positive work), or work received when the
surroundings push mass into the control volume (negative).

The following figure shows the determination of flow work because of the normal
stresses.

Control Surface A

System

Side View of dA




» The normal force acting on the infinitesimal vector area dA is given by,
dF, = P dA (3.6.3)

where the differential force dF, is the force exerted by the fluid inside the control
volume on the surroundings, and is thus positive.

* The rate of doing work is obtained by multiplying the component of dF, in the
direction of V , by the magnitude of V .

oW, = dF, Vcos(a) = dF, eV (3.6.4)

SW, =P VedA = Pv(pV edA) (3.6.5)

* The total work done by the normal stresses is obtained by integrating SWp over
the entire control surface,

W, = Ide :J‘Pv(,oX7 edA) (3.6.6)
Y Y

* Combining flow, shear, and shaft work yields the total work,



W =Wt + Wpear + J.Pv( pV edA) (3.6.7)
Y

* combining (3.6.2) with (3.6.7), we can recast the energy equation for a control
volume as,
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A

* Note that we have combined terms from the flow work (Pv) with the energy flux
term (u) to get enthalpy flux (i.e., h=u+ Pv)

* As we did for the momentum equation, convert the surface integrals to volume

integrals by the divergence theorem and take differential sized control volume to
yield,

Dh+1V2+g) op . . .
2 ——— =30~ Wt = W ghear| (3:69)
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2nd Law

* For fluid particle (i.e., system)

(3.7.1)
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*  Comparing (3.7.1) with (3.3.1), we can equate ¥ = S and y = s, yielding

\®

[ a(gs) av +[s(pV edA)> (37.2)
A
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* As we did for the momentum and energy equations, convert the surface integrals
to volume integrals by the divergence theorem and take differential sized control
volume to yield,

P i T -

the differential form of the 2nd law.

Quantitative Definition of Heat

* QGiven a constant composition (moles), the heat flux of a system is the difference
in internal energy between initial and final states, less work done in that process.

* Good example: Farm pond

rain
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« water level is energy



- stream in/out is mechanical work, W

- rainfall in/out is heat, Q

+ Keypoints:
- pond level is analogous to energy

- at any time, one can measure level, but impossible to determine how much came
from rain vs. stream

- One can measure stream flow rates in/out, but not rain in/out
- By covering pond (adiabatic), rain is excluded
- One can then calibrate pond level from flow rate (W)

- By removing cover, rain in/out (Q) is determined

Conservation Equations for Discrete Inlets/Outlets
» The integral forms of the conservation equations (see table on page 18) are cast
for an arbitrary control volume.

* In many engineering problems, it is adequate to make certain assumptions about
the features of a control volume.

* For example, consider a control volume that surrounds a mechanical device as
shown below:

m;

ut12Vi+gz —— > m,
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In the previous figure, there are:
-a number of discrete passages for the flow to enter and leave the device
-heat transfer interactions with the control volume

-work interactions with the device

It is reasonable in many analyses to make the following assumptions about the
flow entering and leaving the device:

-flow entering/leaving the device is in a direction normal to the opening, with
uniform flow velocity and properties

-flow entering the device is characterized by uniform properties hj, Pi, vi, Vj, etc.

-flow exiting the device is characterized by properties he, Pe, ve, Ve, etc.

Example: axial flow turbine

T;,P;,hy,vi, Vi
TeJPe’heDVCJVe

This is sometimes called one-dimensional flow, and under these assumptions, the
mass flow rate crossing an inlet/outlet boundary is



m; = p;V, 4; (3.10.1a)

m, = p,V,A4, (3.10.1b)

Quite often, volumetric flow rate is given rather than mass flow rate

V. =V, 4; = niyv; (3.10.2a)

V,=V,A4, =y

e

(3.10.2b)

Another assumption made about the figure on the previous page is that the
substance inside the control volume has uniform properties defined by Pcy, Tcy,

scvs hev, ucy, ete.
That is, there are no spatial variations in properties inside the control volume

Consequently, the integral form of the conservation equations can be written in a
form that describes the differential rate of change of the control volumes
properties:

Conservation of mass:

dmCV . .
= M - D e (3.10.3)
i e
Term Description
D Time rate of change of mass (m¢y) within control volume
2) Mass flux into control volume

3) Mass flux out of control volume



Conservation of energy:

dECV . . . 2
dt :QCV—WCV'Fzml‘(hi‘l‘%Vi +ng)
I

. 1 2
>3 me(he +1V, + gze) (3.10.4)
e
Term Description
(D) Time rate of change of total energy (Ecy) within control volume
(2) Heat Flux across control volume
3) Work interactions with control volume (excluding flow work)
4 Energy flux into control volume
&) Energy flux out of control volume
Entropy equation:
ds C Q ]
v o Jj . . .
. > P D tings; =D s, + 6y (3.105)
j T i e
Term Description
@y Time rate of change of entropy within control volume
2) Entropy transfer resulting from Q at point on surface where T = Tj
3) Entropy flux into control volume
4 Entropy flux out of control volume
&) Entropy production within control volume due to internal

irreversibilities



Summary of Equations

Forms of the Governing Equations for a System (Fixed Mass)

Dm
Continuity —=0
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Example: piston-cylinder



Governing Equations for a Control Volume with Discrete

Inlets/Outlets

dm
Continuity v — Zmi —Z m,
dt i e

Energy

Entropy
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Example: turbine




Integral Forms of the Governing Equations (Arbitrary Control
Volume)

Continuity 0= IZ—?CZV + I ,OV o dA
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Differential Forms of the Governing Equations (apply at a point)

Continuity aa—/; +Ve( ,OV) =0
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