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Abstract

The electric traction system used in trains is the most energy efficient trac-
tion system in the transportation sector. Moreover, it has the least NO, and
C O, emissions in comparison to other transportation systems (e.g. busses,
passenger cars, airplanes, etc.). On the other hand, they are extremely expen-
sive, mainly due to high installation and maintenance cost of the catenary sys-
tem, including e.g. overhead lines and substations. Consequently, the share of
electrified lines is only slightly higher than non-electrified lines. For instance
in Europe, 60% of the railway networks are electrified, and the percentage is
much lower in other continents. Battery driven trains are a new generation of
electric trains that can overcome such high costs while keeping C'O5 emissions
and energy consumption low. At the moment, there are only two battery driven
electric trains developed and both of the trains are passenger electric multiple
units (EMUs). An EMU is an electric train with a traction system in more than
one wagon, in contrast to loco-haul electric trains which have a traction system
in one wagon only. Energy management during the operation of battery driven
trains is a crucial task, as energy optimal operation of trains considering the
optimal use of batteries can increase both the operating time and the lifetime of
batteries. Energy efficient train operation is realized using driver advisory sys-
tems (DAS) that instructs drivers on how to drive trains for minimum energy
consumption. The aim of this research is to propose an algorithm for speed
profile optimization of both EMUs and battery driven EMUs. The desired al-
gorithm should be suitable as a core component for an online DAS with short
response time. Several approaches are proposed in the literature for speed pro-
file optimization of electric trains, and a few of these have been proposed for
speed profile optimization of battery driven electric trains. The trains modeled
in almost all of the approaches are trains using a notch system for controlling
tractive effort. The proposed solution in this research project is to use discrete
dynamic programming (DP) to find the optimum speed profile. The application
of DP is studied for speed profile optimization of EMUs with a notch system
as well as EMUs with a smooth gliding handle for controlling tractive effort.
The problem is solved for both normal EMUs and battery driven EMUs. The
results of this research show that DP can provide accurate results in a reason-
ably short time. Moreover, the proposed algorithm can be used as a base for a
DAS with fast response time (real-time).



Sammanfattning

Elektriska traktionssystem i tag dr det mest energieffektiva alternativet inom
transportsektorn, och dessutom har det ligst N O,.- och COz-utsldpp i jamforelse
med andra transportsystem (exempelvis bussar, personbilar, flygplan, etc.). an-
dra sidan dr de relativt dyra, framst pa grund av hoga installations- och un-
derhallskostnader for kontaktledningssystem, inklusive t.ex. luftledningar och
transformatorstationer. Foljaktligen #r andelen elektrifierade linjer nagot hogre
an andelen icke-elektrifierade linjer. I Europa ér endast 60 % av jarnvigsniten
elektrifierade, och andelen &r till och med mycket lagre i andra vérldsdelar.
Batteridrivna tag representerar en ny generation av eltdg som kan na rimliga
kostnader samtidigt med laga CO2-utslédpp och 1ag energiforbrukning. For
nérvarande finns det bara tva batteridrivna elektriska tag utvecklade och bada
tagen dr passagerartdg med elektriska multipla enheter (EMUs). En EMU
ar ett elektriskt tdg med drivsystem i mer 4n en vagn, i motsats till lokomo-
tiveltdg som har framdrivningssystemet centrerat till en enda vagn. Energi-
hantering under driften av batteridrivna tag dr en viktig uppgift, och vid en
energioptimal drift av taget tillsammans med en optimerad anvéndning av bat-
terier okar bade driftstiden och livscykeln for batterierna. Energioptimal drift
tilldimpas i tagdrift med hjilp av ett system som kallas forarradgivning (eng.
Driver Advisory Support, DAS). DAS ir ett system som instruerar tagforaren
om hur man kor taget med minimal energiforbrukning. Syftet med denna
forskning dr att foresla en algoritm for hastighetsprofilsoptimering av bade van-
liga EMU:er samt motsvarande batteridrivna. Den 6nskade algoritmen skall
vara limpad att anvidndas som en bas fr ett online-DAS med kort svarstid.
Olika metoder foreslas i litteraturen fr hastighetsprofilsoptimering av eltag, och
nagra dven for hastighetsprofilsoptimering av batteridrivna elektriska tag. De
tagmodeller som anvénds har oftast ett sa kallat notch-system fr kontrollering
av dragkraft. Den foreslagna 16sningen i detta forskningsprojekt r att anviinda
diskret dynamisk programmering (DP) for att hitta den optimala hastighetspro-
filen. Tillimpning av DP studeras fr hastighetsprofilsoptimering av EMU:er
bade med notch-system samt EMU:er med ett kontinuerligt glidhandtag for
styrning av dragkraft. Problemet 16ses fr bide normala EMU:er och batteridrivna
EMU:er. Resultaten av denna forskning visar att DP kan ge korrekta resultat
inom rimlig tid. Vidare kan den foreslagna algoritmen anvidndas som en bas
for en DAS med snabb svarstid (realtid).
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Chapter 1

Introduction

Railway transportation is one of the most energy efficient and environmentally
friendly means of transportation. According to a report by International En-
ergy Agency and International Union of Railways [1], 23.1% of global CO2
emissions are produced by transport sector, out of which 3.6% is produced by
railways transportation. This is considering the fact that since 1990 global CO2
emissions has increased by 50%, while the share of railway transportation has
been dropping [1].

Railway transportation is also ahead of other transportation means in terms
of energy consumption. A typical loco-hauled electric train or high speed train
with 40% load factor consumes 0.1 kWh/passenger — km, while a long dis-
tance bus for instance consumes 0.2 kWh/passenger — km and a turboprop
aircraft with 60% load factor consumes 0.6 kWh/passenger — km [2].

Considering emissions and energy consumption figures, together with the
fact that railway has 8% share of total transportation (goods and passengers),
implies that railway is one of most green transportation systems [1].

The electric traction system and the trend of railway electrification are re-
sponsible for most of the decrease in CO2 emissions and reduction of energy
consumption [3]. In total around 30% of all railway lines in the world are elec-
trified. In Europe, however, 60% of railway lines are electrified [1]. Nonethe-
less, the global trend shows that railway industry is moving towards the electric
traction system rather than fuel based motors as the main traction system [1].
As aresult there is an increasing need to improve efficiency of such systems.
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1.1 Background and motivation

The electric traction system is the most energy efficient system in the railway
industry. This is mainly due to low running resistance, high efficiency and the
regenerative brake system, which converts kinetic energy to electrical energy.
At the same time electric trains consume huge amounts of energy. Railway
sector consumed a total of 2200 PJ in 2012 [1].

There is still a need for improvement as new environmental and energy
efficiency regulations (e.g. EU 2020 goals) are calling for more CO2 reduc-
tion and increases in energy efficiency. Improvement in railway sector can be
achieved in two categories: more energy efficient train unit and energy efficient
train unit operation. This thesis considers energy efficient train unit operation,
with the focus on energy efficient speed profile optimization and development
of a driver advisory system. The issue is studied for both normal electric trains,
as well as a relatively new concept called battery driven trains.

One of the major challenges when dealing with electric traction system for
trains is high setup and maintenance cost of infrastructure needed for electric
trains. According to Baumgartner[4], investment capital needed for installation
of an AC catenary system with a maximum speed limitation of 300 km h~1 is
0.2 x10°EUR/km. Added to this figure will be investment cost for substa-
tions (around 0.3 x 10 EUR/MVA) and investment cost for signaling which is
around 0.05 x 10°EUR /km for lines with low utilization and 0.1 x 10°EUR /km
for lines with high utilization. There is also a maintenance cost which is 2%
and 4% of yearly investment for catenary and signaling system respectively.
Due to these high costs, electrification is not always a financially feasible alter-
native. Moreover, due to spacial limitations and safety issues, catenary system
and overhead lines can not be installed everywhere (e.g. harbors and some
residential areas). In these cases battery driven trains can be used. Energy
management of such trains can improve the performance of batteries and also
increase the operation time.

1.2 Objectives and Problem Description

Objective of this thesis is to find an energy optimum speed profile for a certain
electric train configuration on a specific track section with a specific travel
time. In other words, travel time and distance are constant. The electric train
addressed in this thesis has a gliding handle for controlling tractive effort, much
like the accelerator pedal in cars, in contrast to notch system, which allows the
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driver to choose between a certain number of discrete levels on the throttle
controller to control the applied tractive effort (usually 8 levels or notches).
The results from speed profile optimization will be used later on as a base for
a driver advisory system (DAS). This means that it should be possible to give
instructions to the driver in a relatively short time during a trip to minimize
total energy consumption.

The same problem will be addressed for catenary-free operation of battery
driven electric trains, where there are limitations both on the amount of energy
that can be consumed and on the amount of energy restored using the regener-
ative brake system.

1.3 Delimitations

The focus of the research described in this thesis is on electric multiple units
(EMU), which are electric trains with more than one propulsion system in dif-
ferent wagons. These type of trains are equipped with regenerative brakes,
that generate electrical energy from kinetic energy. Mechanical brakes are also
available in these trains, but they are not used except in emergencies or at low
speed. Moreover the EMUs modeled in this thesis are used as passenger trains
for intercity applications, although it is possible to adjust the solution for other
purposes as long as the train model stays the same.

Propulsion system in trains consist of different components, each having
a certain efficiency in terms of energy consumption. In real application loss
of each component is a function of velocity and tractive effort, however in
the train modeled in this thesis, the efficiency of the whole propulsion system
is represented by an overall coefficient. More specifically, the coefficient ac-
counts for all the losses from the DC link to wheels, including losses in the
motor converter module (MCM), auxiliary converter module (ACM), motor
and gear box.

The problem is solved for a single train operation, meaning that interaction
between two trains or more is not considered in this thesis. When considering
the regenerative brake system, it is assumed that there is always enough ca-
pacity on grid to receive energy input from the regenerative brake system. In
other words, there is always another train accelerating elsewhere that can use
the surplus of energy generated from the braking train, or there are stationary
energy storage devices connected to the grid that can store the energy surplus
for future use.

The problem is solved for a single energy source, which is either the over-
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head line or an energy storage device (i.e. a battery). The problem can also be
formulated for multiple energy sources as there are trains that use a secondary
energy storage device (mostly a supercapacitor) to increase efficiency of the
regenerative brake system ([5] and [6]). This is however, not in the scope of
this research project.

1.4 Outline of thesis

This thesis consists of 7 chapters and the outline will be as follows:

Chapter 2 will focus on the literature review of current solutions and a
study on the available driver advisory systems in the markets. Included is also
a study on application of energy storage devices in trains and the need for
battery driven trains. As the result of the literature review, current knowledge
gaps are found.

Based on the current knowledge gaps introduced in chapter 2, research
questions are defined in chapter 3, followed by the methodology used to an-
swer each question. The methodology also includes the configuration of the
EMU which is used as case study in this thesis together with its mathematical
modeling. Moreover, a short introduction to the optimization technique and its
application to this specific problem is discussed.

An overview of included papers is presented in chapter 4 together with the
relation between research questions and papers.

Results and discussions are presented in chapter 5. The results are divided
into the two subsections of results for normal EMUs and battery driven EMUs.
Chapter 5 concludes with the contribution of the thesis based on the results.

The over all conclusion of the thesis is presented in chapter 6. Finally, the
thesis concludes with future work in chapter 7



Chapter 2

Literature Review

The problem of energy efficient train operation has been studied for many
decades, and different solutions have been offered for different train config-
urations. In terms of application, suggested solutions can be divided in three
categories of single train operation, operation with energy storage device and
multiple train operation. As the focus of this thesis is on electric multiple units,
the literature review only addresses previous research in the three mentioned
categories for electric multiple units. Generally speaking, the problem for each
category can be solved with two main approaches: solving the problem as a dy-
namic optimization problem, and as a coast control problem. In coast control,
the problem is to find the optimum coasting speed(s) for the whole trip or dif-
ferent line sections. Each speed profile consists of 3 main driving modes which
are acceleration, constant speed, coasting and braking. Coasting is the mode
in which no tractive effort is taken from the propulsion system, meaning that
the only source of energy consumption is auxiliary systems. The result of coast
control problem consists of full acceleration sections, coasting sections and full
braking sections. In dynamic optimization however, the optimum speed profile
is sought for the whole trip, regardless of driving mode. In spite of this, the
result still includes coasting mode, as in coasting mode, the train consumes no
energy and moves as a result of its current kinetic energy.
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2.1 Single Train Operation

In single train operation the problem is solved for one train only and interaction
between the train and other trains in network or substations are not considered.
The very first work in this field was done by Ichikawa [7], who saw the prob-
lem as an optimal control problem. The main approaches used to solve the
problem for a single train are dynamic programming (see e.g. [8]), sequen-
tial quadratic programming, maximum principle (see e.g. [9, 10, 11, 12]) and
gradient method.

The problem has also been solved as a coast control problem. Genetic algo-
rithm and evolutionary algorithm based solutions are the most used approaches
to solve the coast control problem (see e.g. [13, 14, 15, 16]). Other techniques
such as artificial neural networks ([17]), heuristic searching methods([18]) and
ant colony optimization are also proposed in the literature ([19]).

2.2 Operation with Energy Storage Device

One of the main advantages of electric trains is the use of a regenerative brake
system which converts kinetic energy to electrical energy. In other words, elec-
tric trains can generate electricity while braking. In an ideal situation, regen-
erated energy can be sent back to the line to be used by other trains which are
accelerating at the exact same moment. However, this might not happen in
real applications, as planning trains to synchronise like this would be a very
complex problem. Moreover, it is desirable to use regenerated energy on the
same train as transmitting energy to another train using the grid would result
in increased losses. Thus, to get the best use out of the regenerative brake sys-
tem, many modern electric train are equipped with an on-board energy storage
device such as batteries or super capacitors to store the regenerated energy for
use in acceleration mode.

Energy storage devices are also used as the sole energy source for some
electric trains. High installation and maintenance cost of the catenary sys-
tem makes it economically unfeasible to have standard electric trains on routes
with low utilization. Battery driven trains make it possible to get maximise
use of braking energy while avoiding the high costs of overhead lines. Such
trains need high capacity batteries that can also provide high peak power. Cur-
rently two battery driven electric multiple units have been developed, both us-
ing lithium-ion batteries. As trains have such high energy consumption (peak
power can be in the order of megawatts), energy management of battery driven
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trains is of high importance to get the best use out of batteries.

An on-board energy storage device adds a new constraint to the problem of
speed profile optimization, as there will be a limited secondary energy source
outside the catenary system. Four main approaches are mentioned in the liter-
ature to tackle the new problem: sequential quadratic programming, dynamic
programming and gradient-based methods for dynamic optimization and par-
ticle swarm optimization for coast control. Miyatake found the optimal speed
profile for electric trains with an on-board energy storage device (a supercapac-
itor in this case) using sequential quadratic programming ([6, 20]). Application
of dynamic programming was also studied by Miyatake for speed profile opti-
mization of catenary free operation of electric trains with an on-board energy
storage device ([21, 22]). The gradient method has also been studied for oper-
ation of an EMU under a DC feeding circuit, i.e. a supercapacitor ([23]).

The coast control problem has also been presented and solved using particle
swarm optimization for catenary-free operation of EMUs with an on-board
energy storage device [24].

2.3 Multiple Train Operation

As previously mentioned, one way to use regenerated energy from the regener-
ative brake system is to send it back to the line for use by another train. In the
multiple train operation problem, the objective is minimization of the total en-
ergy consumption of multiple trains. Alternatively the problem can be framed
as minimizing the total energy consumption of a substation. The coast control
problem can also be defined for multiple train operation. Genetic algorithm,
artificial neural network and simulation technique have been used to solve the
coast control problem for multiple train operation [25, 26].

In addition, dynamic programming [27] and a gradient based method have
been used to solve the problem as a dynamic optimization problem. Miyatake
and Ko used the gradient method to propose a solution for a problem with
multiple train operation and solved the problem for two trains. Dynamic pro-
gramming is also proposed to be used for solving the problem for two trains
[27].

2.4 Driver Advisory System

In order to use the results of speed profile optimization on a real train, it should
be implemented in the form of a driver advisory system (DAS). DAS is a sys-
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tem which instructs drivers on how to drive a train. The goal of a DAS can
be minimizing energy consumption or time managing. Many DAS systems are
available on the market, but little is known regarding the mathematical basis
behind the systems. The most comprehensive study of available DAS systems
in the market is presented by Panou et al [28].

2.5 Khnowledge Gaps

In summary a list of optimization techniques used for both coast control and
speed profile optimization is shown in figure 2.1.
A review of related works identifies the following gaps in the literature:

e Continuous Tractive Effort

Almost all the trains modeled in the literature are equipped with a num-
ber of notches to control tractive effort. However some trains are equipped
with a smooth gliding handle for the control of tractive effort. The only
exception is presented by Howlett for diesel-electric trains [29].

e Battery Driven Trains

Although much work has been performed on speed profile optimiza-
tion of electric trains with on-board energy storage devices, there has
not been much work on electric trains with only batteries as the energy
source. The most significant work in this field is done by Miyatake for
battery driven trains with tractive effort as control variable.

e Driver Advisory System

Many driver advisory systems have been developed and are available on
the market. However little has been published on the mathematical basis
of the systems. The most comprehensively described driver advisory
system is called Freightmeiser and Energymeiser (see [29, 30, 31, 32,
33



(b)

Figure 2.1: Approaches used for speed profile optimization (a) and coast con-
trol of electric trains (b)






Chapter 3

Research Framework

Research framework of the thesis is presented in this chapter, starting with
defining the research questions. The research questions are defined based on
the current knowledge gaps found in chapter 2 and the scope of the project
presented in chapter 1. Following the research questions, the methodology
to answer each research question is presented. The methodology section also
includes the train configuration and model, together with an introduction to the
optimization technique used in this thesis.

3.1 Research Questions

The problem of speed profile optimization of electric trains and in a more gen-
eral context, trains, has been studied for several decades. Almost all of the
solutions suggested are designed for trains with a certain number of levels for
controlling tractive effort (i.e. notch system); the proposed approaches mostly
use tractive effort as the decision variable. The same problem can also be stud-
ied for battery driven EMU’s. Based on the current knowledge gaps, following
research questions are set for this research:

¢ RQ1 What is the status of application of energy storage devices in trains
and what are the existing approaches for speed profile optimization of
electric trains and battery driven electric trains?

o RQ2 How efficient is dynamic programming when used for designing a
DAS for EMU’s with continuous tractive effort?

13
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e RQ3 How efficient is dynamic programming when used for designing a
DAS for battery driven EMU’s with continuous tractive effort?

3.2 Methodology

The work done in this thesis is applied and focuses on electric multiple units
designed by Bombardier Transportation in Visteras. The research started with
a literature review on the current existing approaches for speed profile opti-
mization and application of energy storage devices in the railway industry to
answer research question 1.

The second and third research questions are answered by further develop-
ing a mathematical model for normal EMU and developing a model for battery
driven EMU based on real train and battery data acquired from Bombardier
Transportation through meetings and documents. The optimization technique
used is dynamic programming (DP) which is proved to be a global optimiza-
tion technique suitable for optimization problems with low number of design
variables [34]. Train models are validated regarding energy calculations using
an in house software developed by Bombardier Transportation. In addition, the
accuracy of the final results is evaluated using statistical error analysis of the
results from a number of simulations.

The problem of speed profile optimization of electric trains can be seen
as a cross section between energy engineering, operation research and power
engineering. Therefore, data was gathered on electric trains and structure of
train propulsion system through regular meetings with power engineers from
Bombardier Transportation.

The research done in this thesis is based on the work previously presented
by Gkortzas[35].

3.2.1 Train Configuration

Electric Multiple Units (EMU) are addressed in this thesis. Such trains, in con-
trast to trains with locomotives, have traction motors in more than one wagon.
EMUs are mostly used as passenger trains and are relatively small compared to
freight trains. The Electrostar EMU developed by Bombardier Transportation
is a train modeled and used as case study in this thesis. Figure 3.1 represents a
technical drawing of wagon from an Electrostar train'.

Isource: ”http://www.bombardier.com/en/transportation/projects/project.electrostar-uk.html”,

retrieved on 28-04-2016
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Figure 3.1: Technical drawing of a wagon from an Electrostar EMU operated
in United Kingdom

There are usually 4 of such wagons (see figure 3.1) in an Electrostar EMU,
from which 3 are equipped with a traction motor and the other one is a trailer
wagon with no traction motor. Figures 3.2 and 3.3 represent a simple draw-
ing of traction system in Electrostar EMUs and the same EMU equipped with
batteries respectively. LCM, MCM and ACM blocks are line converter mod-
ule(LCM), motor converter module(MCM) and auxiliary converter module(ACM)
respectively. The first LCM and MCM blocks are for the motor and the second
LCM block is intended for charging the batteries (Figure 3.3). Both LCMs are
basically AC/DC converters and MCM is a DC/AC converter, as the train is
equipped with an asynchronous three phase AC motor. The ACM consists of
a DC/AC converter and also an AC/DC converter to provide auxiliary systems
with both AC and DC power.

During operation under overhead lines, connections C'1 and C'2 are con-
nected while C'3 is disconnected (Figure 3.3), allowing batteries to be charged
while simultaneously using electricity from overhead lines for driving the train.
During catenary-free operation however, both C'1 and C?2 are disconnected and
C3 is connected. Note that figures 3.2 and 3.3 are just schematic drawings to
show the circuits. In real applications the order and layout of components is
not the same. For instance, there is only one main transformer for all three
traction systems in a four wagon EMU.

The length of a typical 4 wagon Electrostar EMU is around 20m long,
weighs around 184 000 kg and can seat around 250 passengers.

A common way to control electric trains or trains in general, is through a
notch system. In a notch system, the driver controls the train using a throttle
controller with a number of levels on it. Each level corresponds to a certain
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Figure 3.3: Electrostar EMU traction system equipped with batteries
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percentage of tractive effort, meaning that the driver has access to discrete
values of tractive effort. The number of throttle levels vary from train to train;
a common number of levels is 8 (4 for acceleration, one for coasting and 3
for braking). The other way to control trains is using a gliding handle. In this
system driver can apply any value of tractive effort from the traction system. In
other words, the driver has access to continuous values of tractive effort. The
focus in thesis is on trains with continuous tractive effort. Figure 3.4 shows
values of tractive effort available at each velocity for the train modeled in this
thesis, while figure 3.5 represents the same for the trains with a notch system
for controlling tractive effort.

Max Tractive Effort[kN]
Max Tractive Effort[kN]

0 oL . . . . . . .
0 10 2 3 40 5 60 70 8 90 0O 10 20 3 40 5 60 70 8 90
Velocitylkm/h] Velocitylkm/h]

Figure 3.4: Amount of tractive effort Figure 3.5: Amount of tractive effort
available for the trains without notch available for the trains with notch sys-
system. All of the values are applica- tem. Only the values on the lines are
ble. applicable.

Both the EMU and the battery driven EMU addressed in thesis use contin-
uous tractive effort instead of the notch system.

3.2.2 Train Model
As the length of the train studied here is relatively short, it is modelled as a

single mass point. The forces affecting the train, according to Ostlund [2], are
as follows:

e Rolling resistance

e Aerodynamic resistance
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e Curve resistance
e Gradient resistance

e Tractive effort

Curve resistance is assumed to be zero in this model. Rolling resistance
and aerodynamic resistance (referred to collectively as running resistance, F..)
are calculated using the Davis formula (equation 3.1) [36]. A, B and C are
constants dependent on track and train and v is the speed of the train. The
quadratic term in the Davis formula represents the aerodynamic force.

F.,=A+Bxv+C xv? 3.1

Gradient resistance (F}) is calculated using equation 3.2, in which g is earth
gravitational constant(9.8 m s~2), m is train mass in kg, « is angle of slope and
k is change in elevation for every 1000 m distance.

gy =m X g xsin(a) =m x g x (£/1000) (3.2)

Denoting tractive effort (force from traction motor during both acceleration
and braking) by F}, the relationship between the forces is shown by equation
3.3, in which a is the acceleration rate of the train.

mXxa=F,+ F.. +F, 3.3)

The coefficient(n) is assumed to take into account losses from the DC link
to wheels (see figures 3.3 and 3.2), which can be applied to both normal EMU
and battery driven EMU. Considering that only regenerative brakes are used
(except at low speeds), power consumption can be calculated using equation
3.4, in which P represents the total power consumption and FP,,, is power
consumption of auxiliary systems. The Electrostar EMU modelled in this the-
sis has a constant auxiliary power consumption of 80 kW.

(3.4)

P Fi xv/n+ Py, ifF >0,
n X Fy X v+ Py, otherwise.

The power calculated in equation 3.4 is a mechanical power based on equa-
tions of motion which can also be interpreted as electrical power in the DC link,
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presented in equation 3.5. V' represents voltage and [ represents current in DC
link.

P=VxI (3.5)

3.2.3 Introduction to Dynamic Programming

Dynamic programming is a technique used for speed profile optimization of
both EMUs and battery driven EMUs.

Dynamic programming is an optimization technique that can be applied to
a multistage decision problem. The result will be an optimum function rather
than a point. According to Bertsekas[34], a discrete-time dynamic system can
be formulated as follows:

Lh+1 = fk(xk7uk7wk), k= 0, 17 ,N — 1, (36)

in which N is the number of stages in the horizon, z, is the state of system at
stage k, uy, is the decision or control variable and wjy, represents random distur-
bances that may affect the system from outside. As there are no disturbances
in the systems modelled in this thesis, wy, is ignored and hence the equation
3.6 can be rewritten as follows:

Th+1 :fk(xkauk)v k:O,].,...,N*]., (37)

Assuming 7 is a series of decision variables (i.e. @ = ug,..,un—1 ), the
aim is to find 7*, which is the optimum series of control variables resulting in
the minimum cost for the whole horizon. The cost denoted by gx(k, uy) is
cost at each stage when applying control variable uy, to state x;. Considering
equation 3.7, g (2, uy) is also called transition cost which is the cost at stage
1. Cost-to-go for state x; when applying the series of control variables 7 is
defined using equation 3.8, in which gy (zx) is cost of the final state in the
horizon. It can be interpreted as cost of getting from state xj, to final state xn
when applying 7. The objective is to find 7* which minimizes J (see equation
3.9).

N-1

Tr(x) = Y gilwi,w) + gn(zn) (3.8)
i=k
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N-1

() = min Y gi(wi, ui) + g (@) 3.9)
i=k

Assuming that optimum cost-to-go for the last state in the horizon is known
(J% = gn(zn)), by backward iteration in the horizon and using equation 3.10,
optimum decision variable (i.e. u}) for all the states in all steps in the horizon
can be found.

J*(LL']C) :rrzing(mk,uk)—i—J*(m’kJrl) (310)

Using results from backward iteration (i.e. u;, for each state) and by for-
ward simulation in the horizon from state xj, using equation 3.7, the optimum
series of decision variables (i.e. 7*), as well as the optimum series of states
can be found. For more information on dynamic programming, see [34].

In the rest of the thesis, backward iteration is called offline calculation and
forward simulation is called online calculation.

3.2.4 Application of DP

To apply DP to the problem of speed profile optimization of EMUs certain
variables will be defined according to the description in section 3.2.3.

e Horizon (V)

Horizon is assumed to be travel time (7).

e state variable (zj)

is defined using two variables of distance (s; in number of distance
steps) and velocity (vg in number of velocity steps), and therefore xj, =
(Sk,vr). In case of battery driven EMU, a third state variable of bat-
tery level or state of charge (b; in number of battery level steps) is
added. Considering the definition of state variable here, we can say that
the train starts the trip from state 2o = (0,0) for normal EMUs and
xo = (0,0,0) for battery driven EMUs. The last state in the trip is de-
fined as xn = (Smaz,0) for normal EMUs and zn = (Smaz, 0, b) for
battery driven EMUs. s,,,4, represents the maximum number of distance
steps and b can be any value from zero to b,,,, which is the maximum
number of battery level steps or state of charge.
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e decision variable (uy)

is assumed to be velocity in the next stage or change in velocity. This is
in contrast to other approaches that take notch number or tractive effort
as the control variable.

e transition cost (gx (xg, ux))

is defined as the amount of energy needed to drive the train in one time
step, and can be calculated using equation 3.4.

e Cost-to-go (J(zx))

is the amount of energy needed for driving the train from state x, to the
destination (z ).

* gn(zn)
Considering the definition of cost-to-go for and transition cost, in this
problem, gy (zy) is zero.

As presented in chapter 3.2.3, the optimum decision for all the states can
be found by backward iteration in time (i.e. offline calculation). The total
number of states for the problem with EMUS iS t,,42 X Smaz X Umaz, €ach
representing the maximum number of discretization steps for time, distance
and velocity respectively. The total number of states for battery driven EMUs
however, is equal t0 t;402 X Smaz X Umaz X Dmazs Where by, is the total
number of discretization steps for battery level. The optimum speed profile
for the whole trip can be found by going forward in time from state zy using
equation 3.7 and results from offline calculation (i.e. forward simulation or
online calculation, see section 3.2.3). The same method can be used to find the
optimum speed profile for any state during the trip (i.e. ;).






Chapter 4

Overview of the Included
Papers

In this chapter an overview of each included paper is presented. Furthermore,
my contribution in each paper is also explained. The chapter ends with ex-
plaining the connections between all the papers.

e Paper A: Optimal Control of an EMU Using Dynamic Programming.
Nima Ghaviha, Markus Bohlin, Fredrik Wallin, Erik Dahlquist

The application of DP with velocity as control variable for speed pro-
file optimization of EMUs was first presented by Gkortzas [35] for level
tracks with no local speed limits. In paper A the model is further devel-
oped by adding gradient force, local speed limits and power consump-
tion of auxiliary systems. Moreover the model is validated regarding the
energy calculations. Validation is done against an in-house energy calcu-
lation software developed and being used at Bombardier Transportation
called TEP. Furthermore, the application of the approach for an online
DAS is studied. This is done in three areas of response time, accuracy
of the results and the effects of discretization on coasting mode. The
accuracy is studied by introducing an error resulting from discretization.
Moreover, this paper discusses the effect of increasing trip time on re-
duction of energy consumption.

The results of this paper show that the application of DP with velocity
as the control variable is suitable for development of an online DAS for
EMUs with continuous tractive effort.

23
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Chapter 4. Overview of the Included Papers

I was the main author of this paper and performed the validations and all
the experiments and simulations as well as studies on the accuracy, with
the help and under supervision of my supervisors.

Paper B: Optimal Control of an EMU Using Dynamic Programming and
Tractive Effort as the Control Variable. Nima Ghaviha, Markus Bohlin,
Fredrik Wallin, Erik Dahlquist

DP has been used in literature for speed profile optimization of trains.
As mentioned in the literature review, in most of the applications, trac-
tive effort was used as control variable and trains modeled are mostly
equipped with a throttle controller which has a number of levels for con-
trolling tractive effort. In this paper, the two DP approaches of velocity
and tractive effort as control variable were compared to find the better
approach for the speed profile optimization of EMUs with no levels on
throttle for controlling the tractive effort (Continuous tractive effort). For
this purpose a same train model is used in both approaches in the same
condition (i.e. same train and track data and also the same number of
control and state variables) and the same accuracy presented in paper A
is studied for both approaches. The results of this paper show that for
speed profile optimization of EMUs with continuous tractive effort, DP
with velocity as control variable performs better compared to DP with
tractive effort as control variable.

I was the main author of this paper and performed all the simulations and
experiments, as well as studies on the accuracy, with the help and under
supervision of my supervisors.

Paper C: Flow batteries use potential in heavy vehicles., Javier Campillo,
Nima Ghaviha, Nathan Zimmerman, Erik Dahlquist

This paper discusses the application of flow batteries in heavy vehicles
including electric trains. The paper includes a feasibility study of flow
batteries for construction equipment using energy consumption profiles
of different operation tasks. I was the second author in this paper and my
contribution in this paper was the whole section on railway transporta-
tion. It includes the statues of application of energy storage devices in
trains and battery driven EMUs. In addition, my contribution also in-
cludes a short discussion on challenges regarding the application of en-
ergy storage devices as the sole energy source in EMUs. The discussion
on challenges regarding the application of energy storage devices and
also the status of application of battery driven EMUs was done based
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on the literature review of the related works. In addition, based on the
discussion on the challenges, the possibilities of using flow batteries for
different applications in railway sector is discussed.

e Paper D: Speed Profile Optimization of an Electric Trains with On-
board Energy Storage and Continuous Tractive Effort, Nima Ghaviha,
Markus Bohlin, Erik Dahlquist

This paper starts with a study on state of application of catenary-free op-
eration of battery driven EMUs together with a comprehensive literature
review on speed profile optimization of such trains. The paper continues
afterwards with a solution to the problem of speed profile optimization
of battery driven EMU with continuous tractive effort. This is done with
the help of the same train model presented in previous papers. Having
batteries as the sole energy source adds new constraints to the optimiza-
tion problem. The new constraints regarding the batteries (e.g. state of
charge) are handled with the introduction of a new state variable of bat-
tery level. This variable has different discrete values for different states
of charge. Furthermore, the application of the solution for an online DAS
is evaluated regarding the response time and the accuracy of the results.
Accuracy is studied using the same kind of error introduced in paper A,
as well as a new error on the new state variable. The two aspects of accu-
racy and response time are later on evaluated for a trip, using real EMU
(Electrostar EMU) and track data (a line section in UK). Moreover, elec-
trical equations needed to apply some of the constraints regarding the
batteries are also added in this paper. This paper also includes a study
on environmental effects of using battery driven EMUs instead of diesel
multiple units.

Results of this paper show that DP with velocity as control can be used
for developing an online DAS for battery driven EMUs with short re-
sponse time.

I was the main author of this paper and performed all the experiments,
modeling, simulations as well as studies on the accuracy, with the help
and under supervision of my supervisors (except the study on environ-
mental impacts of battery driven EMUs).

In summary, the papers and the corresponding research questions are listed
in table 4.1

The publications presented in this thesis can also be categorized in three
categories based on the targeted publisher. The problem of optimal operation
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Paper | Research Question
Paper A RQI1 &2
Paper B RQI1 &2
Paper C RQ 1
Paper D RQ1 &3

Table 4.1: Research questions answered in each paper

of electric trains has three aspects: Modeling and Optimization, Energy Man-
agement, and Power Engineering. Based on these three categories, three type
of publishers have been targeted. SIMS conference (paper B) cover the model-
ing and optimization aspect, whereas IEEE conferences (papers C and D) cover
the electrical engineering aspect and the ICAE conference (paper A) covers the
energy side of the problem.



Chapter 5

Results and Discussion

The focus of this thesis is on speed profile optimization and energy optimal op-
eration of EMUs and battery driven EMUs. Therefore, results can be divided
into two sections, for EMUs and for battery driven EMUs. The chapter con-
cludes with the contribution of this thesis, which is in the form of the answers
to each research question based on the presented results.

5.1 Speed Profile Optimization and Energy Opti-
mal Operation of EMUs

Papers A and B deal with the problem for normal EMUSs. The problem of speed
profile optimization of EMUSs with continuous tractive effort can be solved in
two ways when using dynamic programming. The most common way is the
same as the approach used for solving such problems for trains with the notch
system. In the cases with trains with notch system, throttle level or tractive
effort is usually used as the control variable (u;). The other way, which is the
main focus in this thesis, is to use velocity or change in velocity as the control
variable. As presented in chapter 3.2.3, different variables in the problem must
be discretized in order to solve the problem using dynamic programming. The
discretization of variables however causes an error in the variable representing
distance (i.e. s).

27
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x = (5K, Vi), (5.1
Th+1 = f(xk,uk) (52)

Considering equation 5.2 and the fact that the control variable (i.e. velocity
or change in velocity) is always chosen from the same discritization grid as ve-
locity, it can be concluded that vy, will always fall on the discretization grid
of velocity. This is not case for distance, as it is calculated based on equations
of motion presented in chapter 3.2.2. The error in each state is defined as the
difference between the calculated value and the closest point on the discretiza-
tion grid. For a trip of around 3kmh~! and 188 sec, the total error is equal
to 1.55m and the root mean square error in all stages in horizon is equal to
0.15m. In this example the time, distance and velocity are divided into 40,
5000 and 40 stages respectively.

Another issue with discretization is the problem with coasting mode. Coast-
ing is a mode in which the driver applies zero tractive effort. Due to the fact
that change in velocity is assumed to be the control variable, the proposed algo-
rithm can not select coasting mode directly, instead coasting mode is selected
by selecting the corresponding control variable (i.e. velocity). Thus, depending
on discretization of variables (i.e. length of discretization steps), the solution
from the algorithm presented here may not include coasting mode. On the
other hand, since change in velocity is assumed to be the control variable, the
results include speed holding mode, which may not be the case for algorithms
with notch number or tractive effort as control variable.

The algorithm presented consists of two main sets of calculation: offline
and online calculation. Offline calculation (i.e. backward iteration within hori-
zon to find optimum decision at each state, see chapter 3.2.3) is done only once
for each set of train and track data. Results from the offline calculation can be
used on the train for an online DAS. A simulation study shows that although
offline calculation can be an extremely time consuming procedure (can be up to
1 hour depending on problem size), online calculation or the calculation done
on trains and during operations is extremely fast (less than 0.002 sec). The
results from offline calculation are saved and should be stored on the train or
on a server to be used for online calculation. In our study the results of offline
calculation are saved in a form of a binary file up to 3 GB in size (depending on
the number of stages in the horizon and also discretization of state and control
variables). It should be noted that the simulations are done using MATLAB on
a consumer laptop PC (Intel Core i-5 CPU @ 1.60 GHz and 8GB RAM).
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As mentioned in chapter 2, previously presented approaches in the litera-
ture use notch number or throttle level as control variable. This approach can
also be applied to trains with continuous tractive effort. Paper B discusses the
application using tractive effort as control variable for the problem of speed
profile optimization of EMUs with continuous tractive effort. The results show
that aside from the error in the distance variable, there is also an error in the
velocity variable. This is due to the fact that both s, and v are calculated
based on the control variable (i.e. tractive effort) and it is most likely that sg1
and v do not fall on the discretization grid, and hence they both have to be
rounded to the closest point on the grid. Both approaches are tested for speed
profile optimization of an EMU with a gliding handle for controlling tractive
effort on two 2km experimental tracks with different track profiles (i.e. dif-
ferent local speed limits and different slopes). For the sake of comparison, the
same number of discretization steps is used for each state variable and hori-
zon in both approaches. Moreover, both approaches have the same number of
control variables. In the approach with velocity as the control variable, there
are 120 steps for velocity and in the approach with tractive effort as control
variable, there are also 120 steps for the tractive effort. This should ensure that
the number of calculations done in backward iteration is the same in both ap-
proaches; as a result, the time needed for offline calculation will be almost the
same in both of the approaches. The results show almost the same root mean
square error on distance for both approaches (around 2 m ). However, there is
also a root mean square error of around 0.3 km h~! on velocity in the approach
with tractive effort as the control variable.

5.2 Speed Profile Optimization and Energy Opti-
mal Operation of Battery Driven EMUs

Energy storage devices have been used in the railway industry for decades in
the form of stationary and on-board energy storage devices. Stationary energy
storage devices are installed at certain points on the track, while on-board stor-
age devices are installed on trains. The main purpose of using storage devices is
to increase efficiency of regenerative brake systems. Although energy storage
devices have been used in railway section before, EMU’s with batteries as the
sole energy source have been introduced recently - there have been some bat-
tery driven locomotives and trains in the past but the concept of battery driven
multiple units is more recent. There are currently two modern battery driven
EMUs tested in market. One is developed by East Japan Railway and is in ser-
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vice, and the other one is developed and tested by Bombardier Transportation.
Both battery driven EMUs are hybrid battery/catenary EMUs that can be used
both under overhead lines and on non-electrified routes.

Paper D deals with speed profile optimization of battery driven EMUSs. As
presented before in chapter 3.2.4, dynamic programming is applied to this
problem with the introduction of state of charge or battery level as the new
state variable. As in the problem with normal EMUs, there is an error in the
distance variable. Furthermore, there is also an error in battery level (b;). This
is due to the fact that both the distance variable and the battery level variable are
calculated based on equations of motion and should be rounded to the closest
point on the discretization grid. Simulation results of application of dynamic
programming on speed profile optimization of a battery driven EMU running
on a track section in the UK (see figures 5.1 and 5.2, results from paper D),
shows a root mean square error of 5.42m and 0.02kWh in distance and bat-
tery level respectively. The average distance traveled in one time step is equal
to 111.78 m and the average energy consumption during one time step is equal
to 0.78 kWh.

Experiments with different line sections imply that calculation time of back-
ward iteration can be up to 10 hours, but the forward simulation which is to be
done on the train still takes less than a second (in the order of milliseconds).
The size of the solution of the backward iteration can be up to 10 GB.

Distance / Velocity
100 T T

T
Velocity[km/h]
Speed Limits[km/h]
— — — Elevation[%]

Velocity[km/h] / Elevations

I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000 9000
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Figure 5.1: Optimum speed profile of a battery driven EMU (Paper D)

The line section used for the simulation experiment with battery driven
EMU is an electrified line section in which the real prototype battery driven
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Figure 5.2: Optimum energy profile of a battery driven EMU (Paper D)

EMU was tested. A study on NO, and CO- emissions of a typical diesel
multiple unit used in the UK shows that in the case of the battery driven EMU
on the same line section, the NO, and C'O5 emissions are reduced by more
than 7 and 27 times respectively. The emission calculations exclude emissions
created by the power generation.

5.3 Thesis Contribution

Research questions are answered in this section. The answers are in the form
of detailed conclusion drawn from the results presented in sections 5.1 and 5.2,
and the literature review presented in chapter 2.

1. Research Question 1: What is the status of application of energy stor-
age devices in trains and what are the existing approaches for speed
profile optimization of electric trains and battery driven electric trains?

Many approaches are presented for speed profile optimization of electric
trains. In general they can be divided into three categories of single train
operation, multiple train operation and operation with an energy storage
devices.

Compared with multiple train operation which is a relatively new prob-
lem, the problem for single train operation has been studied for several
decades, including operation with a secondary energy source other than
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overhead lines; i.e. an energy storage device. In contrast, the problem
for EMUs with an energy storage device as the sole energy source has
not been studied much. This is mainly because of the concept of a bat-
tery driven electric trains has been introduced relatively recently. Energy
storage devices have been used in the railway industry for a long time in
the form of stationary (batteries, supercapacitors and flywheels) and on-
board (mostly supercapacitors) energy storage devices. In contrast to
energy storage devices as secondary energy source, to the best of our
knowledge there are only two battery driven passenger EMUs available,
both using Li-ion batteries. Consequently, there are no DAS systems
available for battery driven EMUs.

. Research Question 2: How efficient is dynamic programming when

used for designing a DAS for EMU'’s with continuous tractive effort?

Discrete dynamic programming is used in this thesis to design a DAS for
EMUs and battery driven EMUs. It is assumed that the train modeled in
this thesis can be controlled by applying an infinite number of values for
tractive effort (i.e. continuous tractive effort), unlike the trains with a
limited number of levels on a notched throttle controller(discrete tractive
effort). Two approaches are studied when using dynamic programming
for the problem with normal EMUs: using velocity as control variable
and using tractive effort as control variable. The results show that for
the EMUs with continuous values for tractive effort, the approach with
velocity as control variable works better as it has a higher accuracy. This
is due to the fact that in the approach with tractive effort as control vari-
able, there’s an error on two state variables (both distance and velocity).
However in the approach with velocity as the control variable, there’s an
error on only one state variable (i.e. velocity). For the trains with notch
system, it is more appropriate to use the tractive effort or throttle level as
the control variable. This is because when using velocity as the control
variable, there is another error in calculating the tractive effort. The error
in the problem with normal EMU s is on calculation of the distance trav-
eled. In a simulation, the total error is about 1.51 m, which is relatively
small, considering the train length (20 m) and trip length (3 km).

Both approaches can be used for an online DAS as they are both able
to find the optimum decision on-board the train in less than a second
(around 0.002 sec). Moreover, each trip/train combination needs an ini-
tial solution obtained by offline calculation. The offline calculation can
take a long time but this is not an issue as it only needs to be done once
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for each combination of trip and train configuration. The solution from
the offline calculation should be mounted on the train to be used in DAS.
The size of such a solution can be up to 3 GB which is small enough to be
mounted on a train computer. Considering the calculation time needed
on the train and the error, it can be concluded that discrete dynamic pro-
gramming with velocity as control variable can be used for speed profile
optimization and development of an online DAS for EMUs with continu-
ous tractive effort. However, in case of EMUSs with discrete levels on the
throttle controller, the approach with tractive effort as control variable
performs better.

. Research Question 3: How efficient is dynamic programming when
used for designing a DAS for battery driven EMU’s with continuous trac-
tive effort?

Dynamic programming with velocity as the control variable is also ap-
plied for speed profile optimization of battery driven EMUs. In this case,
aside from the error on distance variable, there is also an error on bat-
tery level variable. Simulation results show that root mean square error
on battery level variable for a certain experiment is equal to 0.02kWh,
which is equal to around 2.6% of the average energy consumption (charge
and discharge) in each time step. The time needed for offline calcula-
tion is increased substantially in the problem with battery driven EMUs.
Nonetheless, it is still manageable as the offline calculation only needs
to be done once for each combination of trip and train configuration. Be-
sides, the time needed on the train to find the optimum decision and the
speed profile for the rest of the trip is still around a few milliseconds.
Same as the problem with the normal EMUs, the results from offline
calculations should be stored on the train to be used as an online DAS.
The size of the file containing the results of offline calculations is also
increased for the problem with battery driven EMUs, to up to 10 GB,
which is still small enough to be mounted on a modern train computer.
Considering the calculation time needed on the train and the error, it can
be concluded that discrete dynamic programming with velocity as con-
trol variable can be used for speed profile optimization and development
of an online DAS for battery driven EMUs with continuous tractive ef-
fort.






Chapter 6

Conclusion

Dynamic programming is used in this research project for speed profile opti-
mization of EMUs and battery driven EMUs with continuous tractive effort.
The first two papers (papers A and B) presented in this thesis are focused on
normal electric multiple units. Paper A solves the problem for normal EMUs
using dynamic programming and velocity as the control variable. The ap-
proaches is subsequently compared to the common application of DP in the
literature, which proposes the use of tractive effort as the control variable (pa-
per B). The same train model in the same condition is used in both approaches
to enable a fair understanding of the differences between the two approaches.
The last two papers (papers C and D) are focused on battery driven electric
multiple units. Paper C studies the status of current battery driven trains in
the market and their battery types, while paper D discusses the importance of
optimal operation of battery driven trains. Paper D focuses mainly on solving
the problem of speed profile optimization of battery driven electric trains with
continuous tractive effort using discrete dynamic programming. It should be
noted that the same basic train model is used for both normal EMU and battery
driven EMU. However, it is developed throughout the research and during the
publications. The last model presented in paper D is the most complete model.
In conclusion, when solving the problem with dynamic programming, the
selection of velocity as the control variable increases the accuracy of results in
comparison to the same approach with the tractive effort as the control variable.
Dynamic programming is suitable for the development of an online DAS as the
time needed on the train to find the best decision is in the order of milliseconds.
In addition, the errors caused by discretization of variables are relatively small
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considering the train length, trips’ distances and size of the batteries. However,
there is still a need for more improvement in order to use the algorithm for an
online DAS.



Chapter 7

Future Work

The future work can be divided into three categories which are as follows:

e Further Development in Train Model

The main concern about the current train model is energy loss in dif-
ferent components. Currently (presented in paper D) it is assumed that
energy efficiency of the whole propulsion system in the modeled EMU
is constant. In reality however, the efficiency and more precisely, energy
loss varies at different velocities and tractive efforts. Adding a dynamic
energy loss instead of a constant coefficient will add to the accuracy of
the model.

Furthermore, it is assumed that voltage in the DC link is constant, which
is not the case in reality, especially in the battery driven EMU. DC link
voltage (as can be see in figure 3.3) is the same as voltage of batteries.
Experience from test runs of battery driven trains shows that battery volt-
age drops with decrease in state of charge, potentially affecting power
calculations (see equations 3.4 and 3.5). There are no models currently
of the pattern of voltage drop in relation to decrease in state of charge
for our specific case.

Additionally, there is a need for sensitivity analysis of the current results.

e Validation

There’s a need for validation of the method against real experimental
data. The validation should be done both for energy calculations as well
as minimization of energy consumption.
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e Application on a Real EMU

The final aim of this project is to create a driver advisory system. The
plan is to have the solution presented here in a form of an application for
smartphones and tablets and to test the results on a real train. A major
challenge in testing the results on a real train is to study drivers’ behavior
and to provide suitable instructions that take the findings into account.

e Improving Performance of Dynamic Programming

There is still room for improvement in the use of discrete dynamic pro-
gramming. Offline calculation time can still be reduced and accuracy can
be increased. One of the possibilities is to work with parallel computing.

e Other Approaches

Other optimization techniques aside from dynamic programming will
also be tested. An ongoing work in this field is using a dynamic opti-
mization package in OpenModelica and comparing the results with the
current results.
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