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Preface

Programming is an essential engineering skill. To almost any engineer, it is
as important as circuit design to an electrical engineer, as statistics to a civil
engineer, and as heat transfer to a chemical engineer. The engineer has to
program in high-level languages to solve problems. He or she also should
be able to read assembly-language programs to understand what a high-level
language does. Finally, he or she should understand the capabilities of a
microcontroller because they are components in many systems designed,
marketed, and maintained by engineers. The first goal of this book then is to
teach engineers how a computer executes instructions. The second goal is to
teach the engineer how a high-level language statement converts to assem-
bler language. A final goal is to teach the engineer what can be done on a
small computer and how the microcomputer is interfaced to the outside
world. Even the nonprogramming engineer should understand these issues.
Although this book is written for engineers, it will serve equally well for
anyone, even hobbyists, interested in these goals.

The reader is taught the principles of assembly-language programming
by being shown how to program a particular microcomputer, the Motorola
6812. The important thing about the 6812 is that it has a straightforward and
clean, yet powerful, instruction set, midway between smaller and more
powerful microcontrollers. From it the reader can adjust to these smaller or
more powerful microcontrollers. The best way to learn these principles is to
write a lot of programs, debug them, and see them work on a real micro-
controller. This hands-on experience can be inexpensively obtained on the
6812. A recently introduced target board, the M68DKIT812C32, costs only
about $25 (see the front cover). Of course, this price doesn’t include the per-
sonal computer that hosts the 6812 target system.

This book is designed for a sophomore course that teaches how a micro-
controller works from the “bottom up.” The reader learns how the binary
adder is used in the add instruction and in index addressing, and then how
instructions and addressing modes can be efficiently used to implement
assembler language programs. This leads to a functional and practical under-
standing of how to compile a C or C++ program by hand to generate effi-
cient assembler language programs. It also leads to a thorough understanding
of how microcontrollers can be programmed to interact with the outside

Xi
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world. Students who have taken the course using this textbook have testified
to my department chairman, several years after graduation, that they have
learned more about microcontrollers, and more about engineering design,
from this course than from any of the other courses they took at our highly
rated University! “Bottom-up” really works.

The following discussion outlines the book and explains several deci-
sions that were made when we wrote the book. Optional chapters are avail-
able for readers having various interests. The main skills taught in each
chapter are summarized.

Chapters 1 to 3 discuss programming using hand-translated machine code
and the implementation of machine instructions in a simplified microcon-
troller. The assembler is not introduced until Chapter 4. This gives the engi-
neering student a fine feeling for the machine and how it works and helps
him or her resolve problems encountered later with timing in input/output
programming or with the use of addressing modes in managing data struc-
tures. It removes the “magic” from computer programming. Chapter 1
explains how a microprocessor interacts with the memory and how it exe-
cutes the instruction cycle. The explanation focuses on a microcomputer and
is simplified to provide just enough background for the remainder of the text.
Simple instructions and elementary programs are introduced next. Pointing
out that there is no best program to solve a problem, Chapter 1 observes what
makes a good program and encourages the reader to appreciate good pro-
gramming style. A discussion of the available organizations of 6812 micro-
controllers concludes this chapter.

In Chapter 2, the main concept is the alternative forms of the same kind
of instruction on the 6812. Rather than listing the instructions alphabetically,
as is desirable in a reference book, we group together instructions that
perform the same type of function. Our groups are the classic ones, namely,
the move, arithmetic, logical, edit, control, and input/output groups.
Although other groupings are also useful, this one seems to encourage the
student to try alternative instructions as a way of looking for the best instruc-
tion for his or her purpose. The 6812 has an extensive set of addressing
modes that can be used with most instructions; these are covered in Chapter
3. The different addressing modes are introduced with a goal of explaining
why these modes are useful as well as how they work. Examples at the end
of the chapter illustrate the use of these modes with the instructions intro-
duced in Chapter 2.

The end of Chapter 3 shows the use of program-relative addressing
for position independence and the use of stack addressing for recursion and
reentrancy.

Chapters 4 to 6 show how a program can be more easily written in assem-
bler and the high-level C language and translated into machine code by an
assembler. Chapter 4 introduces the assembler, explains assembler directives
and symbolic addresses, and introduces limitations of forward referencing in
a two-pass assembler. It actually explains a primitive assembler program,
which helps the student understand how a symbol table works, as well as
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how character strings are manipulated in any microcontroller program.
Chapter 5, which may be omitted if the reader is not going to write assem-
bler language programs, provides insights needed by programmers who write
large assembler language programs. A general discussion of related pro-
grams, including macro, conditional, and relocatable assemblers and linkers,
is given.

Chapter 6 develops assembler language subroutines. It illustrates tech-
niques used in assembler language at an implementation level (such as
storing local variables on the stack, or passing arguments in registers or on
the stack). The trap instruction, a kind of subroutine, is discussed, which
serves to introduce hardware interrupts in Chapter 11.

Chapter 7 covers arithmetic routines. An implementation is shown for
unsigned and signed multiplication and division. This is important back-
ground for our later course on Computer Architecture. It also gives the stu-
dents some taste for what is done when programming digital signal
processors. Conversion between different bases is discussed and examples
are given illustrating conversion from ASCII decimal to binary and vice
versa. Stack operation and Polish notation are shown to be useful in realiz-
ing arithmetic routines of any complexity. Multiple-precision integer arith-
metic is discussed by means of examples of 32-bit operations including
multiplication and division. Floating-point representations are introduced,
and the mechanics of common floating-point operations are discussed.
Finally, a 6812-oriented introduction of fuzzy logic is presented.

Chapter 8, which may be omitted if the reader is already familiar with
C, discusses compilers and interpreters and briefly introduces C program-
ming to provide a background for later chapters.

Chapter 9 introduces the implementation of C procedures. Several con-
structs in C, such as switch statements, are shown implemented in assembler
language. The techniques C uses to hold local variables and to pass argu-
ments to a subroutine on the stack are shown implemented in assembler lan-
guage. This chapter really brings home the meaning of C expressions and
statements and helps the student understand what he or she is doing in any
machine, not just a microcontroller, including programming of servers, work-
stations, and parallel computers. It also makes less magical programming in
other languages than C or C++. In my opinion, it is for this reason that this
course has become required of all Electrical and Computer Engineering stu-
dents in our department, not just those who intend to design embedded
systems.

Chapter 10 covers elementary data structures. The simplest, including the
character string used in earlier chapters, and the more involved deque and
linked list structures are related to the addressing modes available in the
6812. The main theme of this chapter is that the correct storage of data can
significantly improve the efficiency of a program. This chapter also provides
essential background for the discussion of interpreters in Appendix 2.

Chapter 11 introduces input/output programming. Input and output
devices are characterized. Then the 6812’s parallel ports are described. Input
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and output software is illustrated with some examples. We then show 6812
synchronization hardware, to introduce gadfly and interrupt synchronization.
Finally we show how D-to-A and A-to-D conversion is done, and how the
6812 uses the SCI to send and receive serial data.

Chapter 12 shows how the assembly language of a different microcon-
troller might be learned once that of the 6812 has been learned. Although we
would like to discuss other popular microcontrollers, we believe that we
could fill another book doing that. To illustrate the idea, we look at the near
relatives less costly than the 6812, in particular, the 6805, 6808, and 6811.
We also discuss briefly more powerful microcontrollers such as the 683xx,
coldfire, 500, and M'CORE series. The main theme is that once you under-
stand the instruction set of one microcontroller, you can quickly learn to
program efficiently on other microcontrollers.

Appendix 1 gives background in number systems that should be covered
by prerequisite courses. Appendix 2 covers sequential machine and other
interpreters. It is needed in our curriculum, and there is no better place to
cover it than in the course that uses this textbook, but it might not be suit-
able for other programs. Thus it is included as an appendix that can be
skipped if it is not needed. Appendix 3 covers techniques that can be used
with the Metrowerks software on the enclosed CD-ROM.

This book systematically develops the concepts of programming of a
microcontroller in high-level language and assembly language. It also covers
the principles of good programming practice through top-down design and
the use of data structures. It is suitable as an introductory text for a core
course in an engineering curriculum on assembly language programming or
as the first course on microcomputers that demonstrates what a small com-
puter can do. It may also be used by those who want to delve more deeply
into assembly language principles and practices. You should find, as we have,
that programming is a skill that magnifies the knowledge and control of the
programmer, and you should find that programming, though very much an
important engineering skill, is fun and challenging. This book is dedicated
to showing you that.

Problems are a major part of a good textbook. We have developed more
than twenty problems for each chapter, and for each topic we generally have
at least two problems, one that can be assigned for homework, while the
other can be used in a quiz or exam. Some of these problems are “brain
teasers” that are designed to teach the student that even simple programs
should be tested, generally at their extreme values, to be sure they work.
Often the obvious and simple solutions succumb to truncation or overflow
errors. Also, problems in Chapter 11, including the keyless entry design and
the experiment that plays “The Eyes of Texas” on a pair of earphones, are
absolutely great motivators for sophomores who get them to work on a real
microcontroller board. They help students see how exciting computer engi-
neering is. This has a good effect on retention. An instructor’s manual, avail-
able from the publisher, includes solutions to all the problems given at the
end of each chapter. We also provide worksheets that really drill the students
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on the topic of hand-compiling C or C++ into efficient assembler language
programs. These can be passed out in class and their problems solved as the
examples in Chapter 9 are discussed. The instructor presents an example
from the textbook, the students work the associated problem in the work-
sheet, and the solutions are discussed. After we introduced this teaching tech-
nique, the student’s exam grades shot up 15%! Homework problems, lab
exercises, and worksheet problems force students to teach themselves. Once
the student learns how to teach himself or herself, he or she is prepared to
tackle any new technology that might appear in the course of his or her pro-
fessional life with assurance that he or she can handle it. This book does a
lot to develop those essential skills that will make the student a successful
Computer Engineer.

The introduction of the very inexpensive M68DKIT812C32 development
board raises some challenges to the development of this second edition of
the textbook. On one hand, we clearly see the advantages of this board. Stu-
dents can buy it and work at home, where they get a much better apprecia-
tion of embedded systems than they do in the laboratory. We plan to use this
board in a series of four courses to make it attractive to students. On the
other hand, we have tons of Adapt812 development boards, and over a
hundred M6S8HC12B32EVB development boards on our inventory that we
have a hard time discarding because of state laws. We suspect that other Uni-
versities and Colleges have exactly the same problem. So this book in
general, and Chapter 11 and Appendix 2 in particular, are written to be used
primarily with the M68DKIT812C32 development board, but have sufficient
details to adapt the examples to Adapt812 and M68HC12B32EVB develop-
ment boards. These details can be easily skipped over by students who use
the new M68DKIT812C32 development board.

This book was developed largely from a book by the author and T. J.
Wagner on the 6809. The author expresses his gratitude for the contributions
made by Dr. Wagner through his writing of much of the earlier book.
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CHAPTER

Basic Computer
Structure and the
6812

Computers, and microcomputers in particular, are among the most useful
tools that humans have developed. They are not the news media’s mysteri-
ous half-human forces implied by “The computer will decide . . .” or “It was
a computer error!” No, computers are actually like levers; as a lever ampli-
fies what the human arm can do, so the computer amplifies what the human
brain can do. Good commands are amplified, and the computer is a great
tool, but bad commands are likewise amplified, and good commands incor-
rectly programmed are also amplified. “To err is human, but to really foul
things up, you need a computer.” You have to study and exercise this tool to
make it useful; that is the purpose of this book. The computer also has to be
used with insight and consideration for its effects on society, but that will
not be studied in this book.

We shall study the computer as an engineer studies any tool—we begin
by finding out just how it ticks. We make our discussion concrete using the
superior Motorola 6812 microcomputer designed by Motorola, as a means
of teaching the operations of computers in general. In this chapter we intro-
duce basic computer structure. We discuss memory, how memory words are
read to tell the microcomputer what to do, and how these words are written
and read to save the microcomputer’s data. Finally, we describe a small but
useful subset of 6812 instructions to show how a computer reads and carries
out an instruction and a program, to introduce the idea of programming.

After reading this chapter, you should be able to approach a typical
instruction, to be introduced in the next two chapters, with an understanding
about what the mnemonic, the machine code, and a sequence of memory
reads and writes may mean for that instruction. This chapter then provides
background for the discussion of instructions that we will present in the next
two chapters.

Basic Computer Structure

What is a microcomputer, and how does it execute the instructions that a
programmer writes for it? This question is explored now at a level of abstrac-
tion that will be adequate for this text. We do know that many readers will
object to one aspect of the following discussion, and we want to answer that
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objection a priori, so that those readers will not miss the point. We will
introduce a seemingly large number of terms. Don’t miss the objective: We
are really introducing concepts. The reader should think about the concepts
rather than memorize definitions. Like your physics text, this text has to use
terms in a fairly precise way to avoid ambiguity. Your physics text, you may
recall, used the word “work™ in a very precise way, as the product of force
times distance, which is a bit different from the conversational use of the
word “work” as used in the expression, “He’s doing a lot of work.” We will
use terms such as “read” and “fetch” in a similar way. When defined, they
will be written in italics and will be listed in the index. We ask you to learn
the term and its meaning even though you do not have to memorize the
wording of the definition. But take heart, because although we do have a few
concepts that have to be learned, and we have to learn the terms for those
concepts, we do not have many formulas or equations to deal with. Accept
our challenge to understand these terms; then you will enjoy the latter
discussions even more than if you muddle through this section without
thinking about the terminology.

You probably know what microcomputers and computers are, to some
degree, but let us discuss the term “computer” so that if you get into an
argument about whether a hand calculator is a computer, you can respond
knowledgeably.

A microcomputer is a kind of computer or, more accurately, a kind of
von Neumann computer, named after the scientific giant of our century who
invented it. All von Neumann computers have four components: memory,
controller, data operator (sometimes called an arithmetic-logic unit), and
input-output (I/0), which are connected by an address and data bus. A sim-
plified diagram of a computer is shown in Figure 1.1. Briefly, the memory
stores both the data and the program, and the input-output provides the com-
munication with the outside world. In a conventional personal computer
system input-output is done through peripherals such as CRTs, keyboards,
scanners, printers, modems, and so on. In typical microcontroller applica-
tions the input-output system provides the necessary connections, or inter-
facing, to the device, of which the microcontroller is a component, such as
an automobile, kitchen appliance, toy, or laboratory instrument. The data
operator performs arithmetic and logical operations on data, such as addi-
tion, ANDing, and so on. The controller controls the flow of information
between the components by means of control lines (which are not shown in
Figure 1.1), directing what computation is to be done. The input/output, con-

Controller Data Operator

Address & Data Bus|
| 1

Memory I/0

FIGURE 1.1. Simplified Computer Structure
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troller, and data operator may themselves contain a small amount of memory
in registers.

A microcomputer is a computer that is implemented using low-cost inte-
grated circuits (ICs) and is therefore cheap enough to be used in an incred-
ible range of applications for which a large computer would be infeasible.
For the purposes of this book, if the data operator and the controller are
together on a single IC, but other ICs are needed to complete the computer,
that IC is called a microprocessor,; the computer that uses a microprocessor
is called a microcomputer; and, if a complete computer is on a single inte-
grated circuit, that integrated circuit is called a single-chip microcontroller.

Some aspects of microcomputers apply to all computers. We will often
discuss an aspect of the computer and, of course, that aspect applies to
microcontrollers, on which we are concentrating. The microcomputer’s, or
microcontroller’s, controller and data operator is abbreviated MPU
(microprocessor unit). The abbreviation CPU (central processor unit) is often
used to denote the controller and data operator, but that term leads subtly to
the idea that the CPU is central and most important, but this is misleading,
especially when a computer system has many MPUs, none of which is
“central.”

We now look more closely at the memory and the MPU. We can think
of the memory as a large number of cells, each able to store a 0 or a 1—that
is, a binary digit or 1 bit of memory. The bits are grouped together in units
called bytes, which consist of 8 bits. Within a particular byte the bits are
labeled B7, . .., B0 as shown.

B, Bg Bg B, B, B, By By

Byte

The right-hand bits are called lower-order or least significant, and the
left-hand bits are called higher-order or most significant. There is nothing
sacred about this labeling, and, in fact, many computer manufacturers reverse
it. A word in memory is the number of bits that are typically read or written
as a whole. In small microcomputers, a word is 1 byte, so that the terms
“word” and “byte” are often used interchangeably. In this text, the 6812 can
read an 8-bit or a 16-bit word, which is 2 bytes. In a 16-bit word, bits are
numbered from 15 (on the left) to 0 (on the right). In the memory, each byte
has an address between 0 and 2" — 1, where N is the total number of address
bits. In the 6812, N is essentially 16, so each address between 0 and 65,535
is described by its 16-bit binary representation (see Appendix 1), although
some 6812 versions can extend this range.

The MPU controls the memory by means of a clock and a read/write
line and communicates to it by an address bus and a data bus, shown in
Figure 1.1. A line or wire carries 1 bit of information at each instance of time
by the level of voltage on it. Each line can carry a true (1) or a false (0)
value. A bus is a collection of lines that can move a word or an address in
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parallel, so that 1 bit of a word or address is on one line of the bus. The data
bus moves an 8-bit or 16-bit word to or from memory and from or to the
MPU, and the address bus moves a 16-bit address from the MPU to the
memory. A clock is a signal that is alternately a 0 and 1 (a square wave). A
clock cycle is the time interval from when the clock just becomes 0 until the
next time it just becomes 0, and the clock rate, or clock frequency, is the
reciprocal of the clock cycle time. Contemporary 6812 microcontrollers
essentially use a 24 MHz clock.

In one clock cycle, the MPU can read a word from the memory by putting
an address on the address bus and making the read/write line 1 for the cycle
and then picking up the word on the data bus at the end of the cycle. It can
also write a word into the memory in one clock cycle by putting the address
on the address bus and putting the word on the data bus and making the
read/write line 0 for the cycle. A read or a write to memory is also called an
access to memory.

We can enlarge our description of how the memory works. Assume that
we want to get the contents of a particular word or byte from memory, that
is, read a word from memory. The MPU first puts a 1 for read on the
read/write line and then puts the address of the desired word or byte on the
address bus throughout the duration of a clock cycle. The memory is
designed so that, at the end of the clock cycle, the desired word is put on the
data bus. The MPU then places a copy of the contents of the word or byte
on the data bus into some register inside the MPU as required by the instruc-
tion that it is executing. This is done without changing the contents in
memory of the word or byte addressed.

To write a word into memory, the address of the word is put on the
address bus, the word is put on the data bus, and the read/write line has 0
(to indicate a write) for a full clock cycle. The memory is designed to store
the word at that address at the end of the clock cycle. After the word is stored
at the given address, the MPU may still retain in one of its registers a copy
of the word that has just been written.

The MPU can read or write an 8-bit or a 16-bit word in memory in
one clock cycle. Such a memory is usually called random access memory
(RAM) because each byte is equally accessible or can be selected at random
without changing the time of the access. With microcomputer applications,
it is not unusual to have part of the memory bytes in read only memory
(ROM). A ROM is capable of a read operation but not a write operation; its
words are written when it is made at the factory and are retained even when
the power is turned off. If the data in a RAM are lost when power is turned
off, the RAM is termed volatile; otherwise, it is termed nonvolatilee. RAM
memories are essentially volatile. The term RAM is also used almost uni-
versally to imply memories that you can read and write in, even though ROM
memories can be randomly accessed with a read operation. The part of
memory that is in ROM is typically used to store a program for a micro-
computer that only executes one program. For example, the microcontroller
used in an automobile would be running the same program every time it is



Section 1.2 The Instruction 5

used, so that the part of the memory that is used for storing the program is
in ROM.

The Instruction

We now examine the notion of an instruction, which is an indivisible oper-
ation performed by the MPU. It can be described statically as a collection of
bits stored in memory or as a line of a program, or dynamically as a sequence
of actions by the controller. In this discussion we begin with a simplified
dynamic view of the instruction and then develop a static view. Examples
are offered to combine these views to explain the static aspects of the oper-
ation code, addressing mode, machine code, and mnemonics. We conclude
with an expanded view of the dynamic aspects of the instruction cycle.
The controller will send commands to memory to read or write and will
send commands to all other parts of the computer to effectively carry out the
intentions of the programmer. The specification of what the control unit is
to do is contained in a program, a sequence of instructions stored, for the
most part, in consecutive bytes of memory. To execute the program, the MPU
controller repeatedly executes the instruction cycle (or fetch/execute cycle):

1. Fetch (read) the next instruction from memory.

2. Execute the instruction.

As we shall see with the 6812 MPU, reading an instruction from memory
will require that 1 or more bytes be read from memory. To execute the
instruction, some bytes may also be read or written. These two activities,
read and execute, seem to be read or write operations with the memory but
are quite different to the MPU, and we use different terms for them. To fetch
means to read a word from memory to be used as an instruction in the
controller. The first step in the cycle shown previously is the fetch phase. To
recall means to read a word into the MPU that is not part of the instruction.
The recall and write operations are done in the second step of the instruc-
tion, which is called the execute phase. Thus, when we talk about fetching
a word, you can be sure that we are talking about reading the instruction or
part of the instruction.

The 6812’s registers are shown in Figure 1.2, where the top five regis-
ters hold 16 bits and the condition code register holds 8 bits. The 16-bit D
register is composed of two 8-bit registers A and B; D, A, and B are called
accumulators because arithmetic operations can be done with their contents
with the results placed back in the registers to accumulate the result. This
accumulating aspect of registers D, A, and B will be assumed to be under-
stood so that we often refer to (register) “D,” “A,” or “B” rather than “accu-
mulator D,” “accumulator A,” or “accumulator B.” The registers A and B are
always the left and right halves of register D; if you put $12 in register A
and $34 in register B then read register D, it has $1234. Similarly, if you put
$5678 in register D, then reading register A gives $56 and reading register
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| X Index Register |
| Y Index Register |
|  sp stack pointer | (16 bits)
| pc program counter |
| D Accumulator |
(8 bits)

I Condition Code Registerl

a. The Machine State
(8 bits) (8 bits)

Accumulator A Accumulator B = (16 bits)

Accumulator D

b. Breakdown of the D Register

FIGURE 1.2. Registers in the 6812

B gives $78. Registers X and Y are index registers, and SP is a stack pointer;
they are used in address calculations. The program counter, PC, is used to
fetch the instruction. It is called a counter because it normally increments
each time it is used. The condition code register (CC) has bits that are used
to indicate results of tests that can be used in conditional branch instructions.

At the beginning of the instruction cycle it is assumed that the program
counter contains the address of the first byte of the instruction. As each byte
of the instruction is fetched, the PC is incremented by 1, so that the PC
always has the address of the next byte of the instruction to be read from
memory. When the instruction cycle is completed, the PC then automatically
contains the address of the first byte of the next instruction.

We now look at the instruction statically as 1 or more memory bytes or
as a line of a program. This discussion will introduce new concepts, but we
have tried to keep the number down so that the examples can be discussed
without your having too many terms to deal with. The examples will help to
clarify the concepts that we introduce below.

Each instruction in a microcomputer carries out an operation. The types
of operations provided by a von Neumann computer can be categorized as
follows:

1. Move.
2. Arithmetic.
3. Logical.
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4. Edit.
5. Control.
6. Input/output.

At this time, we are interested in how instructions are stored in memory as
part of a program and how they are executed by the 6812.

After the instruction is fetched, the execute phase of the fetch/execute
cycle will often use an address in memory for the input data of the opera-
tion or for the location of the result of the operation. This location is called
the effective address. The 6812, like most microcomputers, is a one-address
computer because each instruction can specify at most one effective address
in memory. For instance, if an instruction were to move a word from
location 100 in memory into register A, then 100 is the effective address.
This effective address is generally determined by some bits in the instruc-
tion. The addressing mode specifies how the effective address is to be deter-
mined, and there are binary numbers in the instruction that are used to
determine the address. The effective address is calculated at the beginning
of the execute phase, just after the instruction is fetched and before any of
the operations to execute the instruction actually take place.

An instruction in the 6812 is stored in memory as 1 or more bytes. The
first, and possibly only, byte of the instruction is generally the operation code
byte. The operation code byte contains the operation code (opcode, for
short), which specifies the operation to be carried out and the specification
of the addressing mode. The remaining bytes of the instruction, if any,
specify the effective address according to the given addressing mode. The
bytes representing the instruction can be represented as a sequence of ones
and zeros, that is, a binary number. The trouble with this is that it is hard to
remember and to check an 8-bit or longer string of ones and zeros. To make
it easier, we can represent the bit pattern as a hexadecimal number. A hexa-
decimal number will be prefixed by a dollar sign ($) to distinguish it from a
decimal number. (For example, 193 = $C1. If you are unfamiliar with hexa-
decimal numbers, see Appendix 1.) When the opcode, addressing modes, and
constants used to determine the address are represented either as binary or
hexadecimal numbers, we call this representation the machine code because
it is the actual format used to store the instruction in the machine (micro-
computer), and this format is used by the machine to determine what is to
be done.

Machine code is quite useful for making small changes in a program that
is being run and corrected or debugged. However, writing even a moderately
long program in machine code is a punishment that should be reserved for
the fifth level of Dante’s inferno. In Chapter 4, we discuss how text produced
by an editor is converted by an assembler to the machine code stored in the
computer’s memory. The text input to the assembler is called source code.
In a line of source code, to make remembering the instructions easier, a three-
to five-character mnemonic is used to describe the operation, and its address-
ing information may be given as a hexadecimal or a decimal number. A line



Chapter 1 Basic Computer Structure and the 6812

of source code, consisting of mnemonics and addressing information, can be
converted by hand into the hexadecimal machine code equivalents using
Motorola’s CPUI12 Reference Guide (you can order it from Motorola by
using reference number CPU12RG/D). In the first three chapters, we want
to avoid using the assembler, so we can see clearly just how the computer
ticks. We will hand-convert mnemonics and addressing information to hexa-
decimal machine code and work with hexadecimal machine code.

We now look at a load immediate instruction in detail, to introduce
concepts about instructions in general. The load instruction will move a byte
into an accumulator, either A or B. Its simplest addressing mode is called
immediate. For instance, to put a specific number, say $2F, in accumulator
A, execute the instruction whose source code line is

LDAA #$2F

where the symbol “#” denotes immediate addressing and the symbol “$” is
used to indicate that the number that follows is in hexadecimal. This instruc-
tion is stored in memory as the 2 consecutive bytes:

$86
S2F

(Look in CPUI2 Reference Guide, Instruction Set Summary, for the
mnemonic LDAA, and, under it, find $86 under the Machine Coding column,
in the row beginning LDAA #opr8i, which also has the addressing mode
IMM for 8-bit immediate addressing.)

Looking dynamically at an instruction, an operation (e.g., add, subtract,
load, clear, etc.) may be carried out with inputs (or operands) and may
produce a result. The instruction is executed in the instruction cycle as
follows.

Fetch the first byte of the instruction from memory.
Increment the PC by one.

Decode the opcode that was fetched in step 1.

Repeat steps 1 and 2 to fetch all bytes of the instruction.
Calculate the effective address to access memory, if needed.
Recall the operand from memory, if needed.

NS R =

Execute the instruction, which may include writing the result into
memory.

The controller fetches the first byte, $86. The program counter is incre-
mented. The controller decodes $86. The controller fetches the second byte,
$2F, putting it into accumulator A. The program counter is incremented. After
this instruction is executed, another instruction is fetched and executed.
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A Few Instructions and Some Simple Programs

Now that we have examined the instruction from static and dynamic points
of view, we will look at some simple programs. The machine code for these
programs will be described explicitly so that you can try out these programs
on a real 6812 and see how they work or at least so that you can clearly visu-
alize this experience. The art of determining which instructions have to be
put where is introduced together with a discussion of the bits in the condi-
tion code register. We will discuss what we consider to be a good program
versus a bad program, and we will discuss what information is going to be
covered in Chapters 2 and 3. We will also introduce an alternative to the
immediate addressing mode using the load instruction. Then we bring in
the store, add, software interrupt, and add with carry instructions to make
the programs more interesting as we explain the notions of programming in
general.

We first consider some variations of the load instruction to illustrate dif-
ferent addressing modes and representations of instructions. We may want
to put another number into register A. Had we wanted to put $3E into A
rather than $2F, only the second byte of the instruction would be changed,
with $3E replacing $2F. The same instruction as

LDAA #S$S3E

could also be written using a decimal number as the immediate operand: for
example,

LDAA #62

Either line of source code would be converted to machine code as follows:

$86
$S3E

We can load register B using a different opcode byte. Had we wanted to
put $2F into accumulator B, the first byte would be changed from $86 to
$C6 and the instruction mnemonic would be written as

LDAB #S$2F

We now introduce the direct addressing mode. Although the immediate
mode is useful for initializing registers when a program is started, the imme-
diate mode would not be able to do much work by itself. We would like to
load words that are at a known location but whose actual value is not known
at the time the program is written. One could load accumulator B with
the contents of memory location $3840. This is called direct addressing, as
opposed to immediate addressing. The addressing mode, direct, uses no
pound sign “#” and a 2-byte address value as the effective address; it loads
the word at this address into the accumulator. The instruction mnemonic for
this is
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LDAA $3840

and the instruction appears in memory as the 3 consecutive bytes.

$B6
$38
$40

Notice that the “#” is missing in this mnemonic because we are using direct
addressing instead of immediate addressing. Also, the second 2 bytes of the
instruction give the address of the operand, with the high byte of the address
first.

The store instruction is like the load instruction described earlier except
that it works in the reverse manner (and a STAA or STAB with the immedi-
ate addressing mode is neither sensible nor available). It moves a word from
aregister in the MPU to a memory location specified by the effective address.
The mnemonic, for store from A, is STAA; the instruction

STAA 14378

will store the byte in A into location 14378 (decimal). Its machine code is

STA
$38
S2A

where the number 14378 is stored in hexadecimal as $382A. With direct
addressing, 2 bytes are always used to specify the address even though the
first byte may be zero.

Figure 1.3 illustrates the implementation of the load and store instruction
in a simplified computer, which has two accumulators and four words of

Data Operator Memory
] Word O
Accumulator A
L
== =
| Data Word 1
| Accumulator B Bus
| Word 2
- DecoderJ |
Controller Address I L_| word 3
Bus

FIGURE 1.3. Registers and Memory
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memory. The data operator has accumulators A and B, and a memory has
four words and a decoder. For the instruction LDAA 2, which loads accu-
mulator A with the contents of memory word 2, the controller sends the
address 2 on the address bus to the memory decoder; this decoder enables
word 2 to be read onto the data bus, and the controller asserts a control signal
to accumulator A to store the data on the data bus. The data in word 2 are
not lost or destroyed. For the instruction STAB 1, which stores accumula-
tor B into the memory word 1, the controller asserts a control signal to accu-
mulator B to output its data on the data bus, and the controller sends the
address 1 on the address bus to the memory decoder; this decoder enables
word 1 to store the data on the data bus. The data in accumulator B are not
lost or destroyed.

The ADD instruction is used to add a number from memory to the number
in an accumulator, putting the result into the same accumulator. To add the
contents of memory location SOBAC to accumulator A, the instruction

ADDA $3BAC

appears in memory as

SBB
S3B
SAC

The addition of a number on the bus to an accumulator such as accumu-
lator A is illustrated by a simplified computer having a data bus and an accu-
mulator (Figure 1.4). The data operator performs arithmetic operations using
an adder (see Figure 1.4). Each 1-bit adder, shown as a square in Figure 1.4b,
implements the truth table shown in Figure 1.4a. Registers A, B, and S may
be any of the registers shown in Figure 1.2 or instead may be data from a
bus. The two words to be added are put in registers A and B, Cin is 0, and
the adder computes the sum, which is stored in register S. Figure 1.4c shows
the symbol for an adder. Figure 1.4d illustrates the addition of a memory
word to accumulator A. The word from accumulator A is input to the adder
while the word on the data bus is fed into the other input. The adder’s output
is written into accumulator A.

When executing a program, we need an instruction to end it. When
using the true-time debugger with state-of-the-art hardware, background
(mnemonic: BGND) halts the microcontroller, when using the debugger
DBUG_12 or MonitorHCS12 with less-expensive hardware, software
interrupt (mnemonic: SWI) serves as a halt instruction. In either case, the
BRA instruction discussed in the next chapter can be used to stop. When
you see the instruction BRA *, which means “branch to yourself,” in a
program, think “halt the program.” This last instruction will be explained
in Chapter 2.

Figure 1.5 shows four instructions in locations $380D through $3817, to
be executed in the simulator only (see Appendix 3); it adds two numbers in
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ABcl| g cn | output register S |
000 00
001] 10 S S S
010] 10 Cout_jcv c'f ..._Jcm cijcr C' a5y
01 1 01
100 10 A B A B A B
101]| 01 | | |
110 01 | input register A |
111 11 I I
| input register B |
a. Truth Table b. Parallel Adder
input input Data Operator Data Bus
= -
|
Accumulator A
Parallel
output | = Adder
¢. Symbol for an Adder d. Adder in a Data Operator

FIGURE 1.4. Data Operator Arithmetic

locations $3840 and $3841, putting the result into location $3842, and stops
with a “branch-to-yourself.”

We will now look at condition code bits in general and the carry bit in
particular. The carry bit is really rather obvious. When you add by hand, you
may write the carry bits above the bits that you are adding so that you will
remember to add it to the next bit. When the microcomputer has to add more
than 8 bits, it has to save the carry output from one byte to the next, which
is Cout in Figure 1.4b, just as you remembered the carry bits in adding by
hand. This carry bit is stored in bit C of the condition code register shown
in Figure 1.6. The microcomputer can input this bit into the next addition as
Cin in Figure 1.4b. For example, when adding the 2-byte numbers $349E

380D B6 LDAA $3840 ; get 1st operand
380E 38

380F 40

3810 BB ADDA $3841 ; add 2nd operand
3811 38

3812 41

3813 7A STAA $3842 ; store sum

3814 38

3815 42

3816 20 BRA * ; stop

3817 FE

FIGURE 1.5. Program for 8-Bit Addition
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S X H I N Z \Y% C

half-carry * sign * * carry
zero bit * * overflow

FIGURE 1.6. Bits in the Condition Code Register

<- C
($3810) ($3811)
($3812) ($3813)
($3814) ($3815)

FIGURE 1.7. Addition of 2-Byte Numbers

and $2570, we can add $9E and $70 to get $OE, the low byte of the result,
and then add $34, $25, and the carry bit to get $5A, the high byte of the
result (Figure 1.7). In this figure, C is the carry bit obtained from adding the
contents of locations $3811 and $3813; (m) is used to denote the contents of
memory location m, where m may be $3811, etc. The carry bit (or carry for
short) in the condition code register (Figure 1.6) is used in exactly this way.

The carry bit is also an error indicator after the addition of the most sig-
nificant bytes is completed. As such, it may be tested by conditional branch
instructions, to be introduced later. Other characteristics of the result are
similarly saved in the controller’s condition code register. These are, in addi-
tion to the carry bit C, N (negative or sign bit), Z (zero bit), V (two’s-
complement overflow bit or signed overflow bit), and H (half-carry bit) (see
Figure 1.6). How 6812 instructions affect each of these bits is shown in the
CPUI12 Reference Guide, Instruction Set Summary, in the rightmost columns.

We now look at a simple example that uses the carry bit C. Figures 1.8
and 1.9 list two equally good programs to show that there is no way to have
exactly one correct answer to a programming problem. After the example,
we consider some ways to know if one program is better than another.
Suppose that we want to add the two 16-bit numbers in locations $3810,
$3811 and $3812, $3813, putting the sum in locations $3814, $3815. For all
numbers, the higher-order byte will be in the smaller-numbered location. One
possibility for doing this is the instruction sequence in Figure 1.8 that can

3820 Fe6 08 11 LDAB $3811 ; get low byte of 1st
3823 B6 38 10 LDAA $3810 ; get high byte of 1st
3826 FB 38 13 ADDB $3813 ; add low byte of 2nd
3829 B9 38 12 ADCA $3812 ; add high byte of 2nd
382C 7B 38 15 STAB $3815 ; store low sum byte
382F 7A 38 14 STAA $3814 ; store high sum byte
3832 20 FE BRA * ; halt

FIGURE 1.8. Program for 16-Bit Addition

13
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3820 Be6 38 11 LDAA $3811 ; get low byte of 1st
3823 BB 38 13 ADDA $3813 ; add low byte of 2nd
3826 7A 38 15 STAA $3815 ; store low sum byte
3829 B6 38 10 LDAA $3810 ; get high byte of 1st
382C B9 38 12 ADCA $3812 ; add high byte of 2nd
382F 7A 38 14 STAA $3814 ; store high sum byte
3832 20 FE BRA * ; halt

FIGURE 1.9. Alternative Program for 16-Bit Addition

be executed in the simulator, where, for compactness, we give only the
memory location of the first byte of the instruction.

In the program segment in Figure 1.8, which runs on the simulator, the
instruction ADCA $3812 adds the contents of A with the contents of loca-
tion $3812 and the C condition code bit, putting the result in A. At that point
in the sequence, this instruction adds the two higher-order bytes of the two
numbers together with the carry generated from adding the two lower-order
bytes previously. This is, of course, exactly what we would do, as seen in
Figure 1.7. Note that we can put this sequence in any 19 consecutive bytes
of memory as long as the 19 bytes do not overlap with data locations $3810
through $3815.

We could also have used just one accumulator with the instruction
sequence shown in Figure 1.9, which executes in the simulator. In this new
sequence, the load and store instructions do not affect the carry bit C. (See
the CPU12 Reference Guide, Instruction Set Summary. We will understand
why instructions do not affect C as we look at more examples.) Thus, when
the instruction ADCA $3812 is performed, C has been determined by the
ADDB $3813 instruction.

The two programs in Figures 1.8 and 1.9 were equally acceptable.
However, we want to discuss guidelines to writing good programs early in
the book, so that you can be aware of them to know what we are expecting
for answers to problems and so that you can develop a good programming
style. A good program is shorter and faster and is generally clearer than a
bad program that solves the same problem. Unfortunately, the fastest
program is almost never the shortest or the clearest. The measure of a
program has to be made on one of the qualities or on one of the qualities
based on reasonable limits on the other qualities, according to the applica-
tion. Also, the quality of clarity is difficult to measure but is often the most
important quality of a good program. Nevertheless, we discuss the shortness,
speed, and clarity of programs to help you develop good programming style.

The number of bytes in a program (its length) and its execution time are
something we can measure. A short program is desired in applications for
which program size affects the cost of the end product. Consider two man-
ufacturers of computer games. These products feature high sales volume and
low cost, of which the microcomputer and its memory are a significant part.
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If one company uses the shorter program, its product may need fewer ROMs
to store the program, may be substantially cheaper, and so may sell in larger
volume. A good program in this environment is a short program. Among all
programs doing a specific computation will be one that is the shortest. The
quality of one of these programs is the ratio of the number of bytes of the
shortest program to the number of bytes in the particular program. Although
we never compute this static efficiency of a program, we will say that one
program is more statically efficient than another to emphasize that it takes
fewer bytes than the other program.

The CPU12 Reference Guide, Instruction Set Summary, gives the length
of each instruction by showing its format. For instance, the LDAA #S2F
instruction is shown alphabetically under LDAA in the line IMM. The pattern
86 ii, means that the opcode is $86 and there is a 1-byte immediate operand
i1, so the instruction is 2 bytes long.

The speed or execution time of a program is prized in applications for
which the microcomputer has to keep up with a fast environment, such as in
some communication switching systems, or for which income is related to
how much computing can be done. A faster computer can do more comput-
ing and thus make more money. However, speed is often overemphasized:
“My computer is faster than your computer.” To show you that this may be
irrelevant, we like to tell this story about a computer manufacturer. This is
a true story, but we will not use the manufacturer’s real name for obvious
reasons. How do you make a faster version of a computer that executes the
same instruction? The proper answer is that you run a lot of programs and
find instructions that are used most often. Then you find ways to speed up
the execution of those often-used instructions. Our company did just that. It
found one instruction that was used very, very often and then found a way
to really speed up that instruction. The machine should have been quite a bit
faster, but it was not! The most common instruction was used in a routine
that waited for input-output devices to finish their work. The new machine
just waited faster than the old machine that it was to replace. The moral of
the story is that many computers spend a lot of time waiting for input-output
work to be done. A faster computer will just wait more. Sometimes speed is
not as much a measure of quality as it is thought to be, but then in other
environments, it is the most realistic measure of a program. As we shall see
in later chapters, the speed of a particular program can depend on the input
data to the program. Among all the programs doing the same computation
with specific input data, there will be a program that takes the fewest number
of clock cycles. The ratio of this number of clock cycles to the number of
clock cycles in any other program doing the same computation with the same
input data is called the dynamic efficiency of that program. Notice that
dynamic efficiency does depend on the input data but not on the clock rate
of the microprocessor. Although we never calculate dynamic efficiency
explicitly, we do say that one program is more dynamically efficient than
another to indicate that the first program performs the same computation
more quickly than the other one over some range of input data.
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3820 FC 38 10 LDD $3810 ; get 1lst 16-bit word
3823 F3 38 12 ADDD $3812 ; add 2nd 16-bit word
3826 7C 38 14 STD $3814 ; store 16-bit word
3832 20 FE BRA * ; halt

FIGURE 1.10. Most Efficient Program for 16-Bit Addition

The CPUI2 Reference Guide, Instruction Set Summary, gives the instruc-
tion timing. For instance, the LDAA #S$2F instruction is shown alphabeti-
cally under LDAA for the mode IMM. The Access Detail column indicates
that this instruction takes one memory cycle of type p, which is a program
word fetch. Generally, a memory cycle is 5 Us.

The clarity of a program is hard to evaluate but has the greatest signifi-
cance in large programs that have to be written by many programmers and
that have to be corrected and maintained for a long period. Clarity is
improved if you use good documentation techniques, such as comments on
each instruction that explain what you want it to do, and flowcharts and
precise definitions of the inputs, outputs, and the state of each program, as
explained in texts on software engineering. Some of these issues are dis-
cussed in Chapter 5. Clarity is also improved if you know the instruction set
thoroughly and use the correct instruction, as developed in the next two
chapters.

Although there are often two or more equally good programs, the instruc-
tion set may provide significantly better ways to execute the same operation,
as illustrated by Figure 1.10. The 6812 has an instruction LDD to load accu-
mulator D, an instruction ADDD to add to accumulator D, and an instruction
STD to store accumulator D, which for accumulator D are analogous to the
instructions LDAA, ADDA, and STAA for accumulator A. The program in
Figure 1.10 performs the same operations as the programs given earlier but
is much more dynamically and statically efficient and is clearer.

If you wish to write programs in assembly language, full knowledge of
the computer’s instruction set is needed to write the most efficient, or the
clearest, program. The normal way to introduce an instruction set is to
discuss operations first and then addressing modes. We will devote Chapter
2 to the discussion of instructions and Chapter 3 to the survey of addressing
modes.

In summary, you should aim to write good programs. As we saw with
the examples, there are equally good programs, and generally there are no
best programs. Short, fast, clear programs are better than the opposite kind.
However, the shortest program is rarely the fastest or the clearest. The deci-
sion as to which quality to optimize depends on the application. Whichever
quality you choose, you should have as a goal the writing of clear, efficient
programs. You should avoid the tendency to write sloppy programs that just
barely work or that work for one combination of inputs but fail for others.
Therefore, we will arbitrarily pick one of these qualities to optimize in the
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problems at the end of the chapters. We want you to optimize static efficiency
in your solutions, unless we state otherwise in the problem. Learning to work
toward a goal should help you write better programs for any application when
you train yourself to try to understand what goal you are working toward.

» 1.4 6812 Microcontroller Organizations

The 6812 is currently available in about two dozen implementations. Three
of these are designated the MC68HC812A4 (abbreviated the ’A4), the
MC68HC912B32 (abbreviated the ’B32), and the MC9S12C32 (abbreviated
the *C32). These are discussed herein.

The A4 can operate in the single-chip mode or the expanded bus mode.
In the single-chip mode, the *A4 can be the only chip in a system, for it is
self-sufficient. The processor, memory, controller, and I/O are all in the chip
(Figure 1.11). The memory consists of 1K words of RAM and 4K words of
electrically erasable programmable memory (EEPROM). The 1/O devices
include a dozen parallel I/O ports, a serial peripheral interface (SPI), a serial
communication interface (SCI), a timer, and an A/D converter.

The ’A4’s expanded bus mode removes three or four of the parallel ports,
using their pins to send the address and data buses to other chips. RAM,
ROM, erasable programmable read-only memory (EPROM), and program-
mable read-only memory (PROM) can be added to an expanded bus. In a
narrow expanded mode, ports A and B are removed for address lines, and
port C is an 8-bit data bus. Port D is available for parallel 1/0. In a wide
expanded mode (Figure 1.12), port D is also unavailable for parallel I/O. In
both modes, ports E, F, and G are available for bus control, chip selects, and
memory control, or else for parallel 1/0. Each parallel port, A, B, etc., is

MC68HC812A4
1K bytes of RAM CONTROLLER
and
DATA OPERATOR SPI A/D
4K bytes of -
EEPRON SCI TIMER

|
| | |
PORT C[| [PORT E|| |PORT G|||[PORT J
PORT B|f |PORT D|fl [PORT F[fj |PORT H|j [PORT

|
|
PORT T
S| [PORT AD

FIGURE 1.11. Single-Chip Mode of the MC68HC812A4
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MC68HC812A4

1K bytes of RAM CONTROLLER
and

DATA OPERATOR

A/D

4K bytes of —
EEPROM SCI TIMER

|
|
PORT E|| |PORT G|||PORT J
PORT F|(§ [PORT H|f [PORT S

EXTERNAL EPROM || EXTERNAL I/O

PORT AD

EXTERNAL RAM EXTERNAL ROM

FIGURE 1.12. Expanded Wide Multiplexed Bus Mode of the
MC68HC812A4

essentially able to either input or output a byte, except port AD, which is
only able to input a byte.

Advantageously, the A4 can be used in either single-chip mode, when
the chip has enough memory and I/O for the application or narrow or wide
expanded multiplexed bus mode, when more memory or additional I/O are
needed.

The ’B32 can also operate in the single-chip mode or the expanded bus
mode, but in the latter mode, address and data are time-multiplexed on the
same pins. In the ’B32 single-chip mode, processor, memory, controller, and
I/O are all inside the chip (Figure 1.13). The memory consists of 1K words
of RAM, 768 bytes of EEPROM, and 32K words of flash memory, which is
like EEPROM. The I/O devices include eight parallel I/O registers, a serial
peripheral interface (SPI), a serial communication interface (SCI), a timer, a
pulse-width modulator (PWM), a Byte Data Link Communication Module
(BDLC), and an A/D converter. Although B32’s expanded mode permits
connections to external memory and peripherals, we note that members of
the 6812 family other than the ’B32 are more suited to using external
memory and peripherals.

The MC9S12C32 is a more recent member of the 6812 family. The letter
“S” in this microcontroller’s name indicates that it is derived from a soft-
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MC68HCO912B32
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FIGURE 1.13. Single-Chip Mode of the MC68HC912B32

ware description rather than a photographic mask definition. This technique
allows the software description to be easily implemented with technologies
that will come in the future, which have higher speeds. The *C32 runs at 24
MHz and future versions of “S” microcontrollers should be able to run even
faster. The older members of the 6812 family, such as the MC68HC812A4
and MC68HC912B32, are defined by mask sets and will remain limited to
8 MHz clock rates, even if faster technologies become available. Figure 1.14
shows the block diagram of the MC9S12C32 in single-chip mode. A
Motorola Scalable Controller Access Network (MSCAN) is on this chip in
place of the BDLC in the ’B32. A version of the C32 can also operate in

MC9S12C32 (QFP package)

2K Bytes of RAM
CONTROLLER
and A/D
DATA OPERATOR
32K bytes of -
flash memory m—— apT SCT TR
1
| 1 |
PORT A PORT E MSCAN PWM PORT T
DPORT B PORT M PORT P | [PORT S|| [PORT AD

FIGURE 1.14. Single-Chip Mode of the MC9S12C32
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0 0 0
1/0 S1ff 1/0 S3Ef I/0
S1ff $800 ] $3800
$800 Sbff RAM $3fff RAM
RAM $d00
Sbff $4000
— SEFE EEPROM Flash
— STEEE
$£000 $8000 | $c000
Flash Flash
seeff [ BEPROM SEEEE SEFEE

a. the MC68HC812A4  b. the MC68HC912B32  c. the MC9S12C32
FIGURE 1.15. Memory Maps for the 6812

the expanded bus mode, but other members of the 6812 family are more
suited to using external memory and peripherals. Unlike the *A4 and ’B32,
the *C32 can input or output a byte through PortAD.

A memory map shows what range of addresses is used to access each part
of memory or each I/O device. Figure 1.15a presents a memory map for the
’A4. T/O is at the lowest address, from 0 to $1ff, RAM is at $800 to $bff,
and EEPROM is at $f000. Figure 1.15b presents a similar memory map for
the *B32. I/O is at the lowest address, from 0 to $1ff, RAM is at $800 to
$bff, EEPROM is at $d00 to $fff, and flash memory is at $8000 to Sffff.
Usually, in the A4 and *B32, your data are put in RAM, and your program
may be put in RAM, EEPROM, or flash memory. However, to facilitate
debugging, the B32’s flash at $8000 or ’A4’s EEPROM at $F000 usually
has a monitor such as DBUGI12. If this monitor program resides in flash
memory and you try to put your program in the same flash memory, you can
lose the ability to debug your program, because to rewrite a single word, all
of the flash memory must be erased. Figure 1.15¢ presents a memory map
for the *C32 running the debugger called the Motorola Serial Monitor. 1/O
is at the lowest address, from 0 to $3ff, RAM is at $3800 to $3fff, and flash
memory is between $4000 and $f7ff and between $c000 and $ffff. You can
put both data and instructions in the RAM between locations $3800 and
$3fff. The aforementioned *C32 debugger resides between $f800 and S$ffff;
writing in flash memory locations, between $4000 and $7fff and between
$c000 and $f7ff, does not delete this monitor, so you can write in it to hold
instructions in your program.

In this chapter, we have used addresses in the simulator that happen to
be in static RAM in the C32. In remaining chapters, we continue to use
addresses in this range. If you are using an *A4 or a ’'B32, you need to remap
all such memory addresses to $800 to $bff.
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Variable Word Width

We have glibly stated that a 6812 can have either 8-bit or 16-bit word widths.
The fastidious reader might wonder how this takes place. This optional
section provides details on how a 6812’s word widths can be either 8 bits or
16 bits wide, as discussed.

The word width is a function of the instruction and of the bus mode
discussed in the last section. As noted in the last section, external memory
can utilize a narrow or a wide data bus. We first consider an external memory
using the wide data bus and comment on such a memory using a narrow
bus at the end of our discussion. Figure 1.16 illustrates a 6812 *C32 system
with an internal memory at locations $3800 to $3fff and an external memory
at locations $7000 to $7fff, each composed of two 8-bit-wide memory
“banks.”

Each internal 8-bit wide memory bank’s decoder can decode addresses
on different buses, whereas both external 8-bit wide memory banks’ decoders
decode the same address that is on the single bus that connects through the
microcontroller’s pins. The even memory bank stores even bytes, such as 0,
2, 4, ... whereas the odd memory bank stores odd bytes, such as 1, 3, 5,
... The effective address computed by the instruction is generally shifted 1
bit right to derive the address that is presented to the memories (memory
address). The original effective address’s least significant bit indicates which
8-bit memory is accessed.

We will first consider reading or writing using an 8-bit external (narrow)
bus, and then for a 16-bit bus, we consider reading an 8-bit word first.

Microcontroller Chip

Accumulator A _|:¥

¥
Accumulator B |
. Address
Locations Bsses Locations  External
53800 to S$3Eff G $7000 to $7fff Chips
| | ] ]
Decoder Decoder Decoder Decoder
I I | |
Even Byte O0dd Byte Even Byte | Odd Byte
Memory Memory Memory Memory
| | J

Data BussesI

FIGURE 1.16. Variable Word Width Implementation

21



Chapter 1 Basic Computer Structure and the 6812

Then we discuss writing an 8-bit word, reading a 16-bit word, and writing a
16-bit word.

Each access to read or write a byte through an 8-bit narrow bus takes one
memory cycle. Each access to read or write a 16-bit word through an 8-bit
narrow bus uses two memory cycles.

Consider reading an 8-bit word into accumulator A. A whole 16-bit word
can be read from both banks of either the internal memory at locations $3800
to $3ftf or external memory at locations $7000 to $7fff, using the same
memory address; and the switches to the right of accumulator A can feed the
byte from an even or odd memory bank to it, depending on whether the byte
address is even or odd. Writing accumulator A into memory can be effected
by putting that register’s data on both even and odd byte data buses and
giving the command to write to an even or odd bank depending on whether
the effective address is even or odd. The bank that does not get the command
to write will see the same byte on its data input but will not write that byte
into its memory.

Consider reading a 16-bit word into accumulator D, which is accumu-
lator A concatenated with accumulator B. If the address is even, then a
16-bit word is simply read from both banks, using the same memory
address, through both data buses and written into both accumulators A
and B. Reading a 16-bit word from an odd effective address in the internal
memory can be done in one memory cycle; the even-byte memory bank
can decode a memory address one above the memory address of the odd
bank, and the switches next to the accumulators can reroute the bytes
into the correct accumulators. However, reading a 16-bit word from an
odd address in the external memory is done in two memory cycles; the
byte at the lower address is read first, as discussed in the previous paragraph,
then the byte at the higher address is read. This is called a mis-aligned
access.

The internal flash memory of the ’B32 and *C32 has only one address
decoder, so neither can read bytes at different 16-bit word addresses in one
memory cycle. If the address is odd, reading 2 bytes from flash memory
similarly takes two memory cycles.

Consider writing a 16-bit word from accumulator D. If the address is
even, a byte is simply written from both accumulators A and B through both
data buses into both banks. If the address is odd, writing 16 bits is easily
done in the internal memory; each byte is written, but at different addresses
in the even and odd byte memory banks. However, if the address is odd,
using mis-aligned access, writing 16 bits into the external memory is done
by writing the lower addressed byte first in one memory cycle and then
writing the other byte in the next cycle.

Cycle counts in the CPUI2 Reference Guide, Instruction Set Summary,
are for instructions and data read and written in internal RAM. The number
of cycles is determined by counting the number of letters in the column
“Access Detail” for the HCS12. These counts may be higher when instruc-
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tions and data are read from or written into external RAM or read from inter-
nal flash memory.

At the beginning of this chapter, we proposed that we would show you
how an instruction is executed in a microcontroller. However, from this dis-
cussion of 6812 memory operations, you see that a simple operation becomes
significantly more complex when it is implemented in a state-of-the-art
microcontroller. Just reading a 16-bit word from memory might be done
several ways depending on where the word is located, inside or outside the
microcontrolleror using an even or an odd address. From the point of view
of how an instruction is executed in the 6812, however, a simple model that
explains the concept fully is better than the fully accurate model that accounts
for all the techniques used to implement the operation; we simply state that
a 16-bit word is read from memory. The reader should understand how
instructions are executed, but from now on in this book, we will use a sim-
plified model of the hardware to explain how an instruction is actually imple-
mented in hardware (in an idealized microcontroller, rather than the real
6812).

Summary and Further Reading

In this chapter we examined the computer and instructions in some detail.
You should be prepared to study each of the 6812 instructions and address-
ing modes in the following two chapters. We will expand the ideas of pro-
gramming, introduced at the end of this chapter, as we progress through the
book. Many questions may remain unanswered, though, after reading this
chapter. We want you to continue reading the following chapters as we
discuss the way to use this marvelous tool.

In this book, we use Motorola’s CPUI2 Reference Guide, to provide
essential information needed to write and read machine code for the 6812
in compact and neat form. This manual is a summary of key tables and
figures in the CPUI2 Reference Guide, which contains complete informa-
tion on the execution of each instruction. Additionally, there is a manual
for the "B32 (reference number M68HC912B32TS/D) and a manual for the
A4 (reference number M68HC812A4TS/D), which describe their 1/O
systems. The *C32 has a folder of pdf files describing its parts. Motorola is
generous with these manuals and maintains them on the Web better than
we can in an appendix in this book, so we recommend that you order or
download the manuals from Motorola that you need to accompany this
book. Finally, if you are already an accomplished assembly language pro-
grammer for another computer or microcomputer, you might find this book
too simple and spread out. We might offer Chapter 1 of the text Single- and
Multiple-Chip Microcontroller Interfacing (by G. J. Lipovski, Academic
Press, San Diego, 1999), as a condensed summary of much of the material
in this text.
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Basic Computer Structure and the 6812

Do You Know These Terms?

This is a list of all italicized words in this chapter. You should check these
terms to be sure that you recognize their meaning before going on to the next
chapter. These terms also appear in the index, with page numbers for refer-
ence, so you can look up those that you do not understand.

von Neumann
computer

memory

controller

data operator

input-output (1/0)

register

microprocessor

microcomputer

single-chip
microcontroller

MPU

byte

word

line

wire

bus

clock

clock cycle

clock rate

clock frequency

read

read/write line

write

access

random access memory
(RAM)

read only memory
(ROM)

volatile

» PROBLEMS

nonvolatile

program

instruction

instruction cycle

fetch/execute cycle

fetch

fetch phase

recall

execute phase

accumulator

effective address

one-address computer

addressing mode

operation code byte

operation code
(opcode)

hexadecimal number

machine code

machine

debug

assembler

source code

mnemonic

immediate addressing

operand

direct addressing

carry bit (carry)

condition code register

half-carry

static efficiency

dynamic efficiency

clarity

single-chip mode

electrically erasable
programmable
memory (EEPROM)

serial peripheral
interface (SPI)
serial communication
interface (SCI)
timer

A/D converter

erasable programmable
read-only memory
(EPROM)

programmable read-
only memory
(PROM)

flash memory

pulse-width modulator
(PWM)

Byte Data Link
Communication
Module (BDLC)

Motorola Scalable
Controller Access
Network (MSCAN)

memory map

mis-aligned access

1. Is a Hewlett-Packard handheld calculator, model 21 (or any program-
mable calculator that you may select), a (von Neumann) computer, and

why?
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2. What do the following terms mean: memory, controller, data operator,
input/output?

3. What are a microcomputer, a microprocessor, and a single-chip
microcontroller?

4. Describe the terms clock, data bus, address bus, and read/write line.
Discuss the operation of reading a word from memory using these
terms.

5. How many memory read cycles are needed for the following instruc-
tions, using the CPUI2 Reference Guide? How many are fetch opera-
tions, and how many are recall operations? How many memorize cycles
are used?

(a) LDAA #19

(b) LDAB #18

(c) ADDA $3FB2

(d) ADDA 23 (Use 16-bit direct addressing)
() STAA 199 (Use 16-bit direct addressing)

6. While executing a particular program, (PC) = 2088, (A) =7, and (B) =
213 before the following sequence is executed:

LDAA #10 Location Contents

ADDA 2142 2139 8

STAA 2139 2140 7
2141 16
2142 251
2143 19

If the contents of memory locations 2139 through 2143 are as shown on
the right before the sequence is executed, what will the contents of A,
B, and PC be after the sequence is executed? (Location is the memory
location, or address, and Contents is the memory contents. All numbers
given are in decimal.) What will the C bit be equal to after the sequence
is executed?

7. Write a program to add two 3-byte numbers in the same manner as
Figures 1.8 through 1.10.

8. Select goals for good programs in the following applications, and give
a reason for the goals. The goals should be static or dynamic efficiency
or clarity.

(a) A 75,000-instruction program

(b) A program for guidance of a space satellite
(c) A controller for a drill press

(d) An automobile engine controller

(e) Programs for sale to a large number of users (such as a Basic
interpreter)
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Chapter 1 Basic Computer Structure and the 6812

What is the effective address in the following instructions, assuming the
opcode byte is at $3802?

(a) LDAA 122

(b) LDAA #122
(c) ADDA $3452
(d) ADDA #125

Rewrite Figure 1.5 to subtract the 8-bit number in location $3840 from
the 8-bit number in location $3841, putting the result into location
$3842. Use SUBA.

How many clock cycles does it take to execute the program in Figure
1.5? (See the operation code bytes table in the CPUI2 Reference Guide,
Instruction Set Summary.) If a memory clock cycle is 5; us, how long
does this program take in real time?

Rewrite Figure 1.8 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBB and SBCA.

Rewrite Figure 1.9 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBA and SBCA.

How many clock cycles does it take to execute the program in Figure
1.8 and the program in Figure 1.9? (See the operation code bytes table
in the CPUI2 Reference Guide.) If a memory clock cycle is - ls, how
long does this program take in real time?

Rewrite Figure 1.10 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBD.

How many clock cycles does it take to execute the program in Figure
1.10? (See the operation code bytes table in the CPUI2 Reference
Guide.) If a memory clock cycle is 5 [ts, how long does this program
take to execute in real time?

How many parallel ports of the narrow expanded mode of the
MC68HC812A4, which are already on the microcontroller chip, can be
used? How many parallel ports of the wide expanded mode of the
MC68HC812A4, which are already on the microcontroller chip, can be
used? In the latter case, how many can be used for output?

Answer the following questions. (a) How many parallel ports of the
single-chip MC68HC912B32 can be used for input? (b) How many can
be used for output? How many parallel ports of the single-chip (80-pin
quad flat pack QFP) MC9S12C32 can be used for input? How many can
be used for output?

In Figure 1.16, an external wide-bus memory is 16 bits wide, but most
static random access memories (SRAMs) are 8 bits wide. If a 16 kbyte
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external memory is to be used as shown in this figure, what kind of
SRAM chips should be ordered? How should the microcontroller
address bus be attached to the SRAM chip address pins?

20. In Figure 1.11, an *A4’s internal memory is 16 bits wide, whereas the
older 6811 microcontroller’s internal memory is 8 bits wide. A word of
EEPROM can be programmed each 10 ms in either case. How long does
it take to write a 1-kbyte program in EEPROM in each microcontroller?
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CHAPTER

The Instruction Seft

In our study of how the computer ticks, we think that you will be motivated
to read this chapter because it will describe the actions the computer can do.
It will supply a key ingredient that you need to write programs, so that the
computer can magnify your ideas as a lever can magnify your physical capa-
bilities. The next chapter completes the study of the instruction set by
describing the addressing modes used with these instructions.

To learn the possible actions or operations that a computer may execute,
you need to keep a perspective. There is a lot of detail. You do need to learn
these details to be able to program the 6812. However, learning about that
microcomputer must be viewed as a means to an end, that is, to understand
the operations of any computer in general. While you learn the details about
programming the 6812, get the feel of programming by constantly relating
one detail to another and questioning the reason for each instruction. When
you do this, you will learn much more than the instruction set of a particu-
lar computer—you will learn about computing.

We have organized this chapter to facilitate your endeavor to compare
and to associate details about different instructions and to offer some answers
to questions that you might raise about these instructions. This is done by
grouping similar instructions together and studying the groups one at a time,
as opposed to listing instructions alphabetically or by presenting a series of
examples and introducing new instructions as needed by each example as
we did in Chapter 1. We group similar instructions together into a class and
present each class one at a time. As mentioned in Chapter 1, the instructions
for the 6812, as well as those for any other computer, may be classified as
follows:

Move instructions.
Arithmetic instructions.
Logic instructions.
Edit instructions.
Control instructions.

Input output instructions.

NSk LD =

Special instructions.
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We have added, as a separate section, the special instructions that are gen-
erally arithmetic instructions usually not used by compilers but that provide
the 6812 with some unique capabilities. We now examine each instruction
class for the 6812. This discussion of classes, with sections for examples and
remarks, is this chapter’s outline.

At the conclusion of the chapter, you will have all the tools needed to
write useful programs for the 6812, in machine code. You should be able to
write programs on the order of 20 instructions long, and you should be able
to write the machine code for these programs. If you have a laboratory par-
allel to a course that uses this book, you should be able to enter these pro-
grams, execute them, debug them, and, using this hands-on experience, you
should begin to understand computing.

Move Instructions

Behold the humble move instructions, for they labor to carry the data for the
most elegant instructions. You might get excited when you find that this com-
puter has a fairly fancy instruction like multiply, or you might be dis-
appointed that it does not have floating-point instructions like the ones most
big machines have. Studies have shown that, depending on the kind of appli-
cation program examined, between 25% and 40% of the instructions were
move instructions, whereas only 0.1% of the instructions were multiplies. As
you begin to understand computing, you will learn to highly regard these
humble move instructions and to use them well.

Move instructions essentially move 1 or 2 bytes from memory to a
register (or vice versa) or between registers or memory locations. The two
aspects of these instructions that give most readers some problems are the
setting of condition codes and the allowable addressing modes. We shall take
some care with the setting of condition codes in this chapter and the allow-
able addressing modes in the next chapter.

The two simplest instructions from the move class are the load and store
instructions. These have already been examined for accumulators A, B, and
D; they also may be used with index registers like X. For example, in the
load instruction

LDX 14337

the high byte of X is taken from location 14337 whereas the low byte of X
is taken from location 14338. An exactly parallel situation holds for the store
instruction

STX 14337

where the high byte of X is put into location 14337 whereas the low byte of
X is put into location 14338. In addition to X, there are load and store instruc-
tions for index register Y and stack pointer S. They work exactly as described
for D.
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3820 86 00 LDAA #0 ; generate constant 0
3822 7A 38 2A STAA 14378 ; move to $382A

FIGURE 2.1. A Program Segment to Clear a Byte

The TST and CLR instructions are two more examples in the move class
of instructions of the 6812. The clear instruction CLR is used to initialize the
accumulators or memory locations with the value zero. As such, CLRA can
replace instructions such as LDAA #0 in the sequence in Figure 2.1. Further,
the two instructions in Figure 2.1 can be replaced by the single instruction
CLR 14378.

Notice that although CLRA and LDAA #0 make the same move, CLRA
clears C, whereas LDAA #0 does not affect C. Your program may need
to use C later. The test instruction TST, sometimes called a “half a load”
instruction, adjusts the N and Z bits in the condition code register exactly
as a load instruction does but without actually loading the byte into an
accumulator. The versatile “load effective address” instructions, LEAX,
LEAY, and LEAS, load one of the index registers or stack pointer with the
effective address computed in an index address calculation, which will be
discussed in Chapter 3. These instructions do not affect the condition
code register bits.

Table 2.1 lists the move instructions that use addressing modes. The
expressions such as (E) — A accurately describe the instruction’s principal
effect. E is the effective address, (E) is the word in memory at location E, A
is accumulator A, and — is a data transfer, so (E) — A means that the word
in memory at the location determined by the instruction’s effective address
is put into accumulator A. The CPUI2 Reference Guide, Instruction Set
Summary, further gives the opcode bytes, allowable addressing modes for
each instruction, and condition code modifications that result from execut-
ing these instructions. These same conventions are used with the tables that
follow in this chapter.

Table 2.2 lists move instructions that push on or pull from the stack. The
stack pointed to by register SP is called the hardware stack. A program can
have other stacks as well. A stack is an abstraction of a stack of letters on
your desk. Received letters are put on top of the stack; when read, they are
removed from the top of the stack.

In the computer, letters become bytes and the memory that stores the
stack becomes a buffer with a stack pointer as follows. One decides to put
this buffer, say, from $3f80 to $3fff (Figure 2.2). The amount of storage allo-
cated to the buffer should be the worst case number of bytes saved on the
stack. Usually, we allow a little extra to prevent a stack overflow. SP points
to the top byte that is on the stack. The SP register is generally initialized
once to the high end of the buffer at the beginning of the program and is
thereafter adjusted only by push and pull instructions and, perhaps, the LEAS
instruction to move it. For example, at the beginning of the program, the
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Table 2.1 Move Instructions Using an Effective Address

LDAA opr (E) — A; Load Accumulator A
LDAB opr (E) — B; Load Accumulator B
LDD opr (E): (E+1) — D; Load Accumulator D
LDS opr (E) : (E+1) — SP; Load Stack Pointer
LDX opr (E) : (E+1) — X; Load Index Register X
LDY opr (E) : (E+1) — Y; Load Index Register Y
STAA opr A — (E); Store Accumulator A to Memory
STAB opr B — (E); Store Accumulator B to Memory
STD opr D — (E):(E+1l); Store Accumulator D
STS opr SP — (E):(E+1l); Store Stack Pointer
STX opr X — (E):(E+1); Store Index Register X
STY opr Y — (E):(E+1); Store Index Register Y
CLR opr, 0 - (E); Clear Memory, or A or B
CLRA,
CLRB
TST opr, (E) — 0; Test Memory, or A or B
TSTA,
TSTB
LEAS opr E — SP; Load Effective Address into
SP
LEAX opr E — X; Load Effective Address into X
LEAY opr E — Y; Load Effective Address into Y

instruction LDS #$4000 initializes the stack so that the first byte pushed
is into location $3fff.

If a byte is pushed onto the stack, SP is decremented by 1, and a byte,
from one of the 8-bit registers, is put into location (SP). If 1 byte is removed
or pulled from the stack, the byte is transferred to one of the 8-bit registers,
and SP is incremented by 1. If 2 bytes are pushed onto the stack, SP is decre-
mented by 2, and 2 bytes, from one of the 16-bit registers, are put into loca-
tion (SP) and (SP + 1). If 2 bytes are pulled from the stack, 2 bytes from
location (SP) and (SP + 1) are put into one of the 16-bit registers, and SP is
incremented by 2. Any of the registers, except SP, may be pushed or pulled
from the stack for which SP is the stack pointer. PSHB will push B onto the

$3f80->
SpP-> buffer
stack
S3fff-> 4

FIGURE 2.2. A Stack
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Table 2.2 Stack Move Instructions

PSHA SP — 1 — SP; A — (SP); Push Accumulator A
onto Stack

PSHB SP — 1 —» SP; B — (SP); Push Accumulator B
onto Stack

PSHC SP — 1 — SP; (CCR) — (SP); Push CCR onto
Stack

PSHD SP — 2 —> SP; D — (SP):(SP+1); Push
Accumulator D

PSHX SP — 2 — SP; X — (SP):(SP+1); Push Index
Register X

PSHY SP — 2 — SP; Y — (SP):(SP+1); Push Index
Register Y

PULA (SP) —» A; SP + 1 — SP; Pull Accumulator A
from Stack

PULB (SP) —» B; SP + 1 — SP; Pull Accumulator B
from Stack

PULC (SP) — CCR; SP + 1 — SP; Pull CCR from
Stack

PULD (SP) : (SP+1) — D; SP + 2 — SP; Pull D from
Stack

PULX (SP) : (SP+1) — X; SP + 2 — SP; Pull Index
Register X

PULY (SP) : (SP+1) — Y; SP + 2 — SP; Pull Index

Register Y

stack, PULD will pull two words from the stack, putting the combined word
in accumulator D. The order for 16-bit words is always that the low byte is
pushed before the high byte, and the high byte is pulled before the low byte.

The stack will later be used for saving and restoring the program counter
when executing a subroutine and saving and restoring all the registers when
executing an interrupt. It will later also be used to store procedure arguments
and local variables.

The hardware stack and the stack pointer SP must be used with some care
in computers like the 6812. There may be a temptation to use it as an index
register, to move it around to different data locations. This is very danger-
ous. Interrupts, which may occur randomly, save data on the hardware stack,
and programs used to aid in the testing and debugging of your program gen-
erally use interrupts. Such a program may be very difficult to test and debug
because some data in your program may be overwritten in your attempt to
test and debug it. On the other hand, this same stack is the best place to save
data used by a subroutine, which is not used by other subroutines, as we
explain later. Incidentally, the word “pop” is used instead of “pull” in many
textbooks.
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Table 2.3  Special Move Instructions

EXG rl,r2 rl < r2; 8-bit or 16-bit Register
Exchange

TFR rl,r2 8-bit or 16-bit Register to Register
Transfer

SEX rl,r2 Alternate for some TFR rl,r2
instructions

TAB A — B; Transfer A to B

TBA B — A; Transfer B to A

TAP A — CCR; Translates to TFR A,CCR

TPA CCR — A; Translates to TFR CCR,A

TSX SP — X; Translates to TFR SP,X

TSY SP — Y; Translates to TFR SP,X

TXS X — SP; Translates to TFR X, SP

TYS Y — SP; Translates to TFR Y,SP

XGDX Translates to EXG D,X

XGDY Translates to EXG D,Y

MOVB oprl, (E) — (e); 8-bit Memory to Memory Move

opr2
MOVW oprl, (E) : (E+1) — (e):(e+l); 16-bit Move
opr2

The transfer and exchange instructions in Table 2.3, TFR and EXG, allow
the transfer of register rl to r2 or the exchange of r1 and r2, respectively,
where rl and r2 are any pair of 8- or 16-bit registers. You can move data
from an 8-bit register to a 16-bit one or vice versa. As an example, the
instruction TFR D, Y puts the contents of D into Y, and EXG D, X exchanges
the contents of accumulator D and index register X.

The TFR or EXG machine code consists of an operation code byte and a
post byte. The opcode byte is obtained from the CPUI2 Reference Guide,
Instruction Set Summary, and the post byte (see Table 3 therein) can be
obtained as follows: The source is the left nibble and the destination is the
right nibble; their values are as follows: 0, accumulator A; 1, accumulator
B; 2, condition code register; 4, accumulator D; 5, index register X; 6, index
register Y; and 7, stack pointer SP. As an example, the instruction TFR D, Y
is stored in memory as the two bytes:

$B7
$46

The post byte’s left 4 bits indicate the source of the transfer, which is D, and
the right 4 bits indicate the destination of the transfer, which is Y. When a
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FIGURE 2.3. Transfers Between Registers

transfer from an 8-bit to a 16-bit register occurs, the sign bit is extended so
that positive numbers remain positive and negative numbers remain nega-
tive; the sign extend mnemonic SEX can be used as an alternative to the TFR
mnemonic in these cases. Figure 2.3a illustrates sign extension when the data
are transferred from an 8-bit register, such as A, shown on the top, into a 16-
bit register such as X, shown on the bottom. The low-order byte is moved
bit-by-bit from the flip-flops in the 8-bit to the flip-flops in the 16-bit regis-
ter. The high-order byte’s flip-flops are loaded with the low-order byte’s sign
bit. The EXG instruction similarly permits exchanging the contents of two
registers, and the post byte coding is the same, but when moving from an 8-
bit to a 16-bit register, instead of extending the sign, it merely fills the high
byte with zeros (Figure 2.3b). Exchanges are accomplished by means of a
hidden register (Figure 2.3c). The instruction EXG A, B first copies regis-
ter B into the hidden register. Then it copies A into B. Finally, it copies the
hidden register into A. Such hidden registers are not in the description of the
6812’s register set (Figure 1.2) but are additional registers within the data
operator.

The MOVB and MOVW instructions implement a constant-to-memory or a
memory-to-memory move. The instruction below puts the constant $04 into
location $3803.

MOVB #4,5$3803

This instruction is coded as shown below; the prefix byte $18 precedes the
opcode byte $0B (see the CPUI2 Reference Guide). In effect, the opcode is
a 16-bit opcode $180B. The prefix byte $18 is used in the 6812 to encode a
number of instructions. It is as if, when the 6812 fetches the prefix $18, it
thinks: Oh, this is one of the 2-byte opcodes, so fetch another byte to get the

35
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complete opcode. The third byte is the immediate operand $04, and the last
two bytes are the direct address $3803.

$18
$SO0B
$04
$38
$03

This move instruction moves the immediate operand $04 into a hidden
register and then moves the data from the hidden register into location $3803.
From the CPUI2 Reference Guide, we observe that its execution takes four
memory cycles. The alternative to this instruction is the program segment:

LDAA #4
STAA $3803

which is encoded as follows:

$86
$04
S7A
$38
$03

This pair of instructions takes the same number of bytes as the MOVB
instruction. Further, the LDAA instruction executes in one memory cycle, and
the STAA instruction executes in three memory cycles. The MOVB instruc-
tion is neither statically nor dynamically more efficient than the pair of
instructions, LDAA and STAA. However, it is clearer. We recommend using
the MOVB instruction to write a constant into memory.

However, if the same constant is written into two places in memory,
as in

LDAA #4
STAA $3803
STAA $3807

then a program sequence using the MOVB instruction is less efficient:

MOVB #4,$3803
MOVB #4,$3807

This program sequence takes 10 bytes and executes in eight memory cycles,
whereas the program sequence above it takes 8 bytes and executes in seven
memory cycles.

The MOVB instruction also moves data from any memory location to
any other memory location. MOVB $3801, $3803 moves a byte from loca-
tion $3801 to location $3803. The MOVW instruction similarly moves 16 bits
of data.
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3820 86 03 LDAA #3 ; generate constant 3
3822 B7 02 TFR A,CCR ; move to cc register

FIGURE 2.4. Program Segment to Initialize the Condition Code Register

Missing move instructions can often be implemented by combinations of
other move instructions. Because there is no instruction to “load” the con-
dition code register, it can be loaded through accumulator A or B with the
TFR instruction. For example, to put 3 into the condition code, execute the
code shown in Figure 2.4.

Arithmetic Instructions

The computer is often used to compute numerical data, as the name implies,
or to keep books or control machinery. These operations need arithmetic
instructions, which we now study. However, you must recall that computers
are designed and programs are written to enhance static or dynamic efficiency.
Rather than have the four basic arithmetic instructions that you learned
in grade school—add, subtract, multiply, and divide—computers have the
instructions that occur most often in programs. Rather than having the sophis-
ticated square root as an instruction, for instance, we will see the often-used
increment instruction in a computer. Let us look at them (Table 2.4).

We have already discussed the add instructions: ADCA, ADCB, ADDA,
ADDB, and ADDD. The corresponding subtraction instructions, SBCA, SBCB,
SUBA, SUBB, and SUBD, are the obvious counterparts of add instructions,
where the carry condition code bit holds the borrow. However, 16-bit add and
subtract instructions with carry, ADCD and SBCD, are missing; multiple-byte
arithmetic must be done 1 byte at a time rather than 2 bytes at a time. Compar-
isons are normally made by subtracting two numbers and checking if the
result is zero, negative, positive, or a combination of these. However, using
the subtract instruction to compare a fixed number against many numbers
requires that the fixed number has to be reloaded in the register each time the
subtraction is performed. To streamline this process, compare instructions are
included that do not change the contents of the register used. These compare
instructions are used to compare the contents of registers A, B, D, X, Y, and SP
with the contents of memory locations to give values to the condition code bits
C, V, N, and Z. Finally, note that DEC, INC, and NEG are provided for often-
used special cases of add and subtract instructions to improve efficiency.

Figure 2.5 illustrates a simple example of an arithmetic operation: adding
a 4-byte number at $3850 to a 4-byte number at $3854. ADDD can be used
to add the two low-order bytes, but ADCB and ADCA are needed to add the
high-order bytes.

Arithmetic instructions are really very simple and intuitively obvious,
except for the condition code bits. Addition or subtraction uses the same
instruction for unsigned as for two’s-complement numbers, but the test for



38

Chapter 2 The Instruction Set

Table 2.4 Add Instructions Using an Effective Address

ADCA

ADCB

ADDA

ADDB

ADDD

CMPA

CMPB

CPD

CPS

CPX

CPY

SBCA

SBCB

SUBA

SUBB

SUBD
DEC

INC

NEG

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr

opr
opr,

DECA,
DECB

opr,

INCA,
INCB

opr,

NEGA,
NECB

E) + C - A Add with Carry to A
E) + C - B Add with Carry to B
E) — A Add without Carry to A
E) — B Add without Carry to B
E):(E+1) — D; ADD to D without

Uw>»wp

A — (E); Compare Accumulator A with
Memory

B — (E); Compare Accumulator B with
Memory

D — (E):(E+1l); Compare D to Memory
(16-Bit)

SP — (E): (E+1); Compare SP to Memory
(16-Bit)

X — (E: E+1); Compare X to Memory
(16-Bit)

Y — (E: E+1); Compare Y to Memory
(16-Bit)

A —-— (E) — C > A; Subtract with Borrow
from A

B - (E) — C > B; Subtract with Borrow

; Subtract from Accumulator A
Subtract from Accumulator B

) — D; Subtract from Acc, D
E) ; Decrement Memory Byte/

(E) + 1 — (E); Increment Memory Byte/

0 - (E) = (E); two’s Complement Negate

overflow is different (see Appendix 1). The programmer has to use the correct
condition code test after instruction completion; for example, SUBA $3876
sets C = 1 if, and only if, there has been an unsigned overflow; that is, A —
($3876) produces a borrow or, when each number is treated as an unsigned
number, A < ($3876). [Here A and ($3876) denote the contents of A and the
contents of location $3876.] Similarly, V = 1 if, and only if, a two’s-
complement (signed) overflow occurs, when A and ($3876) are treated
as two’s-complement numbers; that is, A — ($3876) is not in the 8-bit
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3800 FC 38 52 LDD $3852; get two low bytes of first
3803 F3 38 56 ADDD $3856; add two low bytes of second
3806 7C 38 56 STD $3856; save two low bytes of second
3809 FC 38 50 LDD $3850; get two high bytes of first
380CF9 38 55 ADCB $3855; add third byte of second
380F B9 38 54 ADCA $3854; add high byte of second

3812 7C 38 54 STD $3854 ; save two high bytes of scnd.

FIGURE 2.5. Program Segment for 32-Bit Addition

two’s-complement range. Note again that subtraction is performed with the
same instruction, such as SUBA, regardless of whether the numbers are
two’s- complement or unsigned numbers.

Table 2.5 shows special instructions used to improve efficiency for com-
monly used operations. ABX, ABY, ABA, CBA, and SBA use accumulator B,
and DES, DEX, DEY, INS, INX, and INY increment or decrement index
registers and the stack pointer.

Multiply instructions MUL and EMUL multiply unsigned numbers in spe-
cific registers. EMULS similarly multiplies signed numbers. One may also
multiply a signed or unsigned number by two with the arithmetic shift-left
instructions discussed with the edit class, such as ASLA, ASLB, ASLD, and
ASL 527. Divide instructions IDIV, FDIV, and EDIV divide unsigned
numbers in specific registers. IDIVS similarly divides signed numbers. One
may divide a two’s-complement number by two with corresponding arith-
metic shift-right instructions, for example, ASRA, ASRB, and ASR 327.

Multiplication can be done by addition and shifting almost as multipli-
cation is done by hand, but to save hardware, the product is shifted rather
than the multiplier to be added to it. Figure 2.6 shows multiplication of a 4-
bit unsigned number 0110 by another 4-bit number 1010 to get an 8-bit
product. First, because the most significant bit of the multiplier 1010 is 1,
add the number 0110 into the initial product 0, then shift the product 1 bit
left, twice, and then add the number 0110 into the product, and shift the
product 1 bit left. The answer is 0111100.

Actually, modern microcontrollers execute several shift-and-add opera-
tions in one clock cycle. Thus, EMUL, which multiplies a 16-bit signed
number by a 16-bit unsigned number, takes only three clock cycles. Signed
multiplication sign extends its multiplier rather than filling with zeros, and
it treats the sign bit differently. Therefore, use the EMULS instruction for
signed numbers. These remarks apply analogously to the division instruc-
tions EDIV and EDIVS. The other instructions, EDIV, EDIVS, EMULS,
FDIV, IDIV, IDIVS, and MUL, are similarly used. Note that after division,
the remainder is in accumulator D, and the quotient is in an index register.
As an example of a multiplication of two 16-bit unsigned numbers at $3852
and $3854 to get a 16-bit product into $3856, see Figure 2.7.

The special instruction DAA (decimal adjust accumulator A) adds binary-
coded decimal numbers. Briefly, two decimal digits per byte are represented
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Table 2.5 Arithmetic Instructions That Do Not Use an

Effective Address

ABX B + X —» X; Translates to LEAX B,Y

ABY B + Y — Y; Translates to LEAY B,Y

ABA A + B —> A; Add Accumulators A and B

CBA A — B; Compare 8-Bit Accumulator

DAA Adjust Sum to BCD; Decimal Adjust
Accumulator A

DES SP - 1 — SP; Translates to LEAS -1,SP

DEX X — 1 = X; Decrement Index Register X

DEY Y — 1 = Y; Decrement Index Register Y

EDIV Y:D / X = Y; Divide (unsigned), Remainder
= D

EDIVS Y:D / X — Y; Divide (signed), Remainder —
D;

EMUL D * Y — Y:D; 16 X 16 to 32-bit Multiply
(unsigned)

EMULS D * Y - Y:D; 16 X 16 to 32-bit Multiply
(signed)

FDIV D/ X - X; r > D; 16 X 16 Fractional
Divide (unsigned)

IDIV D/ X > X; r > D; 16 X 16 Integer Divide
(unsigned)

IDIVS D/ X - X; r > D; 16 X 16 Integer Divide
(signed)

INS SP + 1 — SP; Translates to LEAS 1, SP

INX X + 1 — X; Increment Index Register X

INY Y + 1 > Y; Increment Index Register Y

MUL A * B — D; 8 Xx 8 to 16-bit Multiply
(unsigned)

SBA A — B — A; Subtract B from A

with a binary-coded decimal, the most significant 4 bits for the most signif-
icant decimal digit and the least significant 4 bits for the least significant
decimal digit. Each decimal digit is represented by its usual 4-bit binary code,
so the 4-bit sequences representing 10 through 15 are not used. To see how
the decimal adjust works, consider adding a 4-digit binary coded decimal

0110 0110 0110 0110

1010 1010 1010 1010

0110 01100 011110 0111100

add top shift it shift left, shift left
number to 0 left add top

FIGURE 2.6. Multiplication
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3840 FC 38 52 LDD $3852 ; load first number
3843 FD 38 54 LDY $3854 ; load second number
3846 13 EMUL ; multiply

3847 7C 38 56 STD $3856 ; save result

FIGURE 2.7. Program Segment for 16-Bit Unsigned Multiplication

number in the two bytes at $3873 to a similar number at $3862, as shown
in Figure 2.8. DAA “corrects” ADDA’s result. The DAA instruction may be
used after ADDA or ADCA but cannot be used with any other instructions
such as ADDB, DECA, or SUBA.

Our next example illustrates the use of arithmetic instructions, with a
move instruction to put the desired intermediate result in the correct regis-
ter for the next operation. This example involves conversion of temperature
from Celsius to Fahrenheit. If temperature T is measured in degrees Celsius,
then the temperature in Fahrenheit is (T * 9 / 5) + 32. Suppose T, a signed
16-bit number representing degrees Celsius, is in accumulator D. The
program in Figure 2.9 evaluates the formula and leaves the temperature, in
Fahrenheit, in accumulator D.

Logic Instructions

Logic instructions (Table 2.6) are used to set and clear individual bits in
A, B, and CCR. They are used by compilers, programs that translate high-
level languages to machine code, to manipulate bits to generate machine

3830 B6 38 74 LDAA $3874 ; get low byte of 1st
3833 BB 38 63 ADDA $3863 ; add low byte of 2nd
3836 18 07 DAA ; correct for decimal
3838 7A 38 63 STAA $3863 ; store low sum byte
383B B6 38 73 LDAA $3873 ; get 1°° high byte
383E B9 38 62 ADCA $3862 ; add 2™ high byte 3841
18 07 DAA ; correct for decimal
3843 7A 38 62 STAA $3862 ; store high sum byte

FIGURE 2.8. Program Segment for BCD Addition

3812 CD 00 09 LDY #9 get multiplier

3815 18 13 EMULS ; multiply by D

3817 CE 00 05 LDX #5 ; get divisor

381A 18 14 EDIVS ; divide to convert to F
381C B7 64 TFR Y,D ; move quotient to D

381E C3 00 20 ADDD #32 correct for freeze point

FIGURE 2.9. Program Segment for Conversion from Celsius to Fahrenheit

4
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Table 2.6 Logic Instructions

ANDA opr

ANDB opr
BITA
BITB
EORA

opr
opr
opr
EORB opr
ORAA opr
Memory
ORAB opr
Memory
BCLR

opr, msk
BSET

opr, msk
COM opr

ANDCC opr

CLC
CLI

CLV
ORCC opr

SEC
SEI

SEV
COMA
COMB

A AND (E) — A;
Memory

B AND (E) — B;
Memory

A AND (E); Logical

B AND (E); Logical

A XOR (E) — A;
Memory

B XOR (E) — B;
Memory

A OR (E) — A;

B OR (E) — Bj;

(E) AND ~ mask —
Memory

(E) OR mask — (E);
Memory

~ (E) — (E);
- (E)

CCR AND (E) — CCR;
with Memory

0 —- C; Is same as

0 —- I; Is same as
int.)

0 — V; Is same as

CCR OR (E) — CCR;
Memory

1 - C; Is same as

1 > I; Is same as
int.)

1 - V;

l

B — B;

Is same as ORCC #2
~ A — A; Complement Accumulator A
Complement Accumulator B

Logical And A with

Logical And B with

Exclusive-OR A with

Exclusive-OR B with

Logical OR A with

Logical OR B with

(E) ;

Equivalent to SFF -—

And A with Memory
And B with Memory

Clear Bit(s) in

Set Bit(s) in

(E)

Logical And CCR

ANDCC #SFE
ANDCC #SEF (enables
ANDCC #SFD

Logical OR CCR with

ORCC #1

ORCC #S$10 (inhibits

code. They are used by controllers of machinery because bits are used to
turn things on and off. They are used by operating systems to control I/O
devices and to control the allocation of time and memory on a computer.
Logic instructions are missing in calculators. That makes it hard to write
compilers and operating systems for calculators, no matter how much
memory they have. Returning to a problem at the end of Chapter 1, we now
say that a programmable calculator is not a von Neumann computer because
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R YY

a.AANDB b. AORB c.AXORB

FIGURE 2.10. Common Logic Operations

it does not have logic instructions or any efficient replacements for these
instructions with combinations of other instructions. (This differentiation
may be pedagogically satisfying, but unfortunately, von Neumann’s original
computer is not a von Neumann computer by this definition. Because we are
engineers and not historians, we say that programmable calculators and von
Neumann’s original computer are not von Neumann computers in the
strictest sense because they cannot support compilers and operating systems
efficiently.)

Consider now the logic instructions that make a computer a computer
and not a calculator. The most important logic instructions carry out bit-by-
bit logic operations on accumulators A or B with a memory location or an
immediate value. (See Figure 2.10 for a summary of the common logic oper-
ations.) For example, the instruction ANDB $3817 carries out a bit-by-bit AND
with the contents of B and the contents of location $3817, putting the result
in B (see Figure 2.11b). The ANDing is implemented by AND gates in the
MPU, shown in Figure 2.11a. Compare this figure with Figure 1.4d. The OR
and AND instructions are used, among other things, to set or clear control
bits in registers used in input-output operations.

The two instructions ANDA and ANDCC do the same thing as ANDB except
that ANDCC uses only immediate addressing and the condition code register

Register A "ALU"

data flow - > <- data flow

| Data Bus

0 - 584

<- data flow

a. Hardware Implementation

10110101 <- contents of $3817
AND 0 0 01 11 00 <- initial value of B
00010100 <- final value of B

b. Logical Operation
FIGURE 2.11. Bit-by-Bit AND
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CCR. As an example, ANDCC #SFE clears the carry bit in the condition
code register, that is, puts C = 0, leaving the other bits unchanged. This
instruction is used only to clear condition code bits and is not used to modify
other data bits. The same remarks hold for the OR instructions, ORAA, ORAB,
and ORCC, and for the exclusive-OR instructions, EORA and EORB (see
Figure 2.11a again: exchange the AND gates with OR or exclusive-OR
gates). The mnemonics CLC, CLI, SEC, SEI, SEV, and CLV are merely
special cases of the ANDCC and ORCC instructions; they are given these
special mnemonic names to permit assembly-language programs written for
the 6811 to be used without modification in the 6812. While the ANDCC
instruction is used to clear bits in the CCR register, the ORCC instruction is
used to set bits in that register. There is no EORCC instruction. Consider this
example. Suppose that we need to clear bits 0 and 4; set bits 5, 6, and 7; and
leave bits 1, 2, and 3 unmodified in accumulator A. The following instruc-
tions carry out these modifications:

ORAA #SEO Set bits 5, 6, and 7, leaving others unchanged
ANDA #S$SEE Clear bits 0 and 4, leaving others unchanged

The complement instruction COM takes the complement of the bit-by-bit con-
tents of A, B, or a memory location, putting the result in the same place.
Finally, the BIT instruction, for bit test, determines the bits as though the
AND instruction had been performed with A or B and the contents of a byte
from memory. With the BIT instruction, however, the contents of A and B
are unchanged. It is to the AND instruction what the CMP instruction is to the
SUB instruction; it is used to avert the need to reload the register after the
condition code bits are set as in the AND instruction.

Logic instructions are used primarily to set and clear and to test and
change (logically invert) bits in a word. These instructions are used to build
operating systems, compilers, and other programs that control resources and
format data and are the instructions that make a computer so much more
useful than a programmable calculator.

Edit Instructions

Edit instructions (Table 2.7) rearrange bits of data without generating new
bits as an ADD does. Large machines have complex edit instructions, but
microcomputers have simple ones. For example, the arithmetic shift-left
instructions shift all the bits left, putting the most significant bit into the carry
bit of the condition code register and putting a zero in on the right (the same
as LSLA) (Figure 2.12a). This, except for overflow, doubles the unsigned or
signed number contained in A. The ASR instruction keeps the sign bit
unchanged and shifts all other bits to the right, putting the least significant
bit into the carry bit (Figure 2.12c). As mentioned in the discussion of the
arithmetic class of instructions, ASR divides the original two’s-complement
number contained in an accumulator or memory location by 2 (rounding
down).
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Table 2.7 Edit Instructions

ASL opr Arithmetic Shift Left

ASR opr Arithmetic Shift Right

LSL opr Logical Shift Left; same as ASL

LSR opr Logical Shift Right

ROL opr Rotate Memory Left through Carry

ROR opr Rotate Memory Right through Carry
ASLA Arithmetic Shift Left Accumulator A
ASLB Arithmetic Shift Left Accumulator B
ASLD Arithmetic Shift Left Accumulator D
ASRA Arithmetic Shift Right Accumulator A
ASRB Arithmetic Shift Right Accumulator B
LSLA Logical Shift Accumulator A to Left
LSLB Logical Shift Accumulator B to Left
LSLD Same as ASLD

LSRA Logical Shift Accumulator A to Right
LSRB Logical Shift Accumulator B to Right
LSRD Logical Shift Right Accumulator D
ROLA Rotate A Left through Carry

ROLB Rotate B Left through Carry

RORA Rotate A Right through Carry

RORB Rotate B Right through Carry

The shift operation is generally done in the MPU and is shown in Figure
2.13 for LSRA. The MPU shifts the data because these data paths follow the
same data paths as addition and logical operations (see Figures 1.4d and
2.11a). Each flip-flop’s output feeds through the multiplexer in the MPU to
the input of the next bit to the right; a zero is fed into the leftmost flip-flop
and the rightmost flip-flop’s output is put in the carry C.

The remaining shifts and rotates (i.e., LSR, LSL, ROR, and ROL) are
easily understood by looking at Figure 2.12. The rotate instructions are used

b7 b6 b5 b4 b3 b2 bl bo|<_ 0 b7 b6 bS b4 b3 b2 bl bo}<_‘

a. Logical Left Shift ol

0 _>|b7 b6 b5 b4 b3 b2 bl bO d. Rotate Left

b. Logical Right Shift r{m b6 b5 b4 b3 b2 bl bo!j
[cl
L

q‘m b6 D5 b4 b3 b2 bl bo

c. Arithmetic Right Shift e. Rotate Right

FIGURE 2.12. Shifts and Rotates
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llALUll

<- data flow

FIGURE 2.13. Shift Hardware

with multiple-byte arithmetic operations such as division and multiplication.
Edit instructions are generally used to rearrange bits. For example, Figure
2.14 shows swapping of the nibbles in accumulator A.

In a slightly more interesting problem, we insert the three low-order bits
of the byte in $3854 into bits 9 to 7 of the 16-bit word at location $3856.
This program in Figure 2.15 illustrates the use of logical instructions to
remove unwanted bits and to combine bits and edit instructions to move bits
into the desired bit positions. A program segment like this is used in

3823 18 OE TAB

3825 58 LSLB
3826 58 LSLB
3827 58 LSLB
3828 58 LSLB
3829 44 LSRA
382A 44 LSRA
382B 44 LSRA
382C 44 LSRA
382D 18 06 ABA

; copy byte

; shift left byte
; shift left byte
; shift left byte
; shift left byte
; shift right byte
; shift right byte
; shift right byte
; shift right byte
; combine nibbles

FIGURE 2.14.

Program Segment to Swap Nibbles

3812 FC 38 56 LDD
3815 84 FC ANDA
3817 C4 7F ANDB
3819 7C 38 56 STD
381C B6 38 54 LDAA

381F C7 CLRB
3820 49 LSRD
3821 84 33 ANDA

3823 BA 38 56 ORAA
3826 FA 38 57 ORAB
3829 7C 38 56 STD

$3856 ; get bits to be inserted
#SFC ; remove bits to be inserted
#$7F ; in both bytes

$3856 ; temporarily save value

$3854 ; get bits to be inserted
; AND low byte with all 0’s
shift 16-bit data right

#3 remove extraneous bits

$3856 ; combine first part with
$3857 ; second part, in both bytes
$3856 ; save the result

FIGURE 2.15. Program Segment for Insertion of Some Bits
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Cstructs using bit fields and is commonly used in inserting bits into I/O
ports that do not line up with whole bytes or whole 16-bit words.

In this example, observe that all logical and many edit instructions are
performed on 8-bit operands in each instruction. However, instructions are
so designed that pairs of instructions on accumulator A and accumulator B
effectively work on accumulator D.

Control Instructions

The next class of instructions, the control instructions, are those that affect
the program counter PC. After the MOVE class, this class comprises the
most-often-used instructions. Control instructions are divided into condi-
tional branching instructions and other control instructions. We discuss con-
ditional branching first and then the others.

The BRA instruction loads the PC with a new value, using relative
addressing discussed in §3.3.* It adds the last byte of its instruction, called
the offset, to the PC. Branch statements have “long” branch counterparts
where each mnemonic is prefaced with an L, such as LBRA, and the offset
is two bytes, enabling the programmer to add larger values to the PC, to
branch to locations further from the instruction.

Conditional branch instructions test the condition code bits. As noted
earlier, these bits have to be carefully watched, for they make a program look
so correct that you want to believe that the hardware is at fault. The hard-
ware is rarely at fault. The condition code bits are often the source of the
fault because the programmer mistakes where they are set and which ones
to test in a conditional branch. The instructions should now be reviewed with
regard to how they affect the condition code bits. See the right columns of
the CPUI2 Reference Guide, Instruction Set Summary. Note that move
instructions generally either change the N and Z bits or change no bits, arith-
metic instructions generally change all bits, logic instructions change the N
and Z bits, and edit instructions change all bits. However, there are many
exceptions, and these exceptions are precisely the ones that cause mystify-
ing errors. There is sound rationale for which bits are set and the way they
are set. Some of that is discussed in this chapter. But most of it is simply
learned by experience. We conclude by reminding you that when your
program does not work and you have checked every angle, carefully examine
the setting and testing of the condition code bits. Now we look at the testing
of these bits in detail.

Eight simple branching instructions test only a single condition code reg-
ister bit: BNE, BEQ, BPL, BMI, BVC, BVS, BCC, and BCS. The letters S and
C are used for “set” and “clear” (to 1 and 0, respectively) in branching
instruction mnemonics.

Frequently, two numbers are compared, as in a compare instruction or
a subtraction. One would like to make a branch based on whether the

*The symbol § means Section.
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Table 2.8 Conditional Branch Instructions

(L) BcC rel | (Long) Branch if Carry Clear (if C = 0)

(L) BCS rel | (Long) Branch if Carry Set (if C = 1)

(L) BEQ rel | (Long) Branch if Equal (if Z =1)

(L) BGE rel | (Long) Branch if Signed Greater Than or Equal
(L) BGT rel | (Long) Branch if Signed Greater Than

(L) BHI rel | (Long) Branch if Unsigned Higher

(L) BHS rel | (Long) Branch if Higher or Same; same as BCC
(L) BLE rel | (Long) Branch if Signed Less Than or Equal
(L) BLO rel | (Long) Branch if Lower; same as BCS

(L) BLS rel | (Long) Branch if Unsigned Lower or Same

(L) BLT rel | (Long) Branch if Signed Less Than

(L) BMI rel | (Long) Branch if Minus (if N = 1)

(L) BNE rel | (Long) Branch if Not Equal (if Z = 0)

(L) BPL rel | (Long) Branch if Plus (if N = 0)

(L) BRA rel | (Long) Branch Always

(L) BRN rel | (Long) Branch Never

(L) EVS rel | (Long) Branch if Overflow Bit Set (if V = 1)
(L) BvVC rel | (Long) Branch if Overflow Bit Clear (if V = 0)

result is positive, negative, and so forth. Table 2.8 shows the test and the
branching statement to make depending on whether the numbers are inter-
preted as signed numbers or unsigned numbers. The branch mnemonics for
the two’s-complement numbers, or signed numbers, are the ones usually
described in mathematical “greater or less” prose, for example, BLT for
“branch if less than,” BLE for “branch if less than or equal to,” and so forth.
The mnemonics for unsigned numbers are described in mathematical “high
or low” prose, offbeat enough to keep you from confusing them with the
signed ones, for example, BLO for “branch if lower,” BLS for “branch if
lower or the same,” BHI for “branch if higher,” and BHS for “branch if higher
or the same.” Notice that BLO is the same instruction as BCS, and BHS is
the same instruction as BCC. Here then is an example of two different
mnemonics describing the same instruction, something that is sometimes
warranted when the programmer will be using the same instruction with two
distinct meanings.

Figure 2.16 illustrates a flow chart of several tests that form a decision
tree. In Figure 2.17 and subsequent figures, labels are written left justified
and end in a colon. Upon entry at label L0, location $3801 is tested. If it is
positive, go to L1. Then if location 3802’s unsigned value is greater than
$32, go to L2; otherwise go to L3. If location $3801 is negative, go to L4 if
location $3801 bit 2 is zero; otherwise go to L5. The program segment in
Figure 2.17 implements this decision tree.

Do not be concerned about calculating the relative branch offsets; this
calculation will be discussed in §3.3. One should consult Table 2.8 at first to
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signed

. yes
Li: ($3801) >= 0

no

unsigned
($3802) > s$32

yes

($3801) bit 2 =

FIGURE 2.16. Decision Tree

make sure that the correct branch is being chosen. For example, to test a reg-
ister value greater than or equal to a memory value, you might be tempted
to use the simple branch BPL for signed numbers instead of BGE. The
problem is that you want the branch test to work even when subtraction or
comparison generates a signed overflow. However, this is just exactly when
the sign is incorrect; then BPL cannot be used to replace BGE. Thus, after a
compare or subtract between signed numbers, use BGE rather than BPL. You
might also be tempted to use BPL for the unsigned test. However, if accu-
mulator A has $80 and the immediate operand is $32, then N = 0 after per-
forming the test. Thus, BPL takes the branch, even though it should not
because $32 is not higher than $80. Thus, after an unsigned number com-
parison or subtraction, use BHS rather than BPL.

A rather amusing instruction, BRN L, which “branches never” regard-
less of the location L, is the opposite to the “branch always” instruction. It
is useful because any branching instruction can be changed to a BRA or BRN
instruction just by changing an opcode byte. This allows a programmer to
choose manually whether a particular branch is taken while he or she is
debugging a program.

We now consider the control instructions other than conditional branches.
See Table 2.9. Some instructions combine a logical or arithmetic test with a
conditional branch and do not modify condition codes. BRCLR branches if
all “1” bits in the mask are “0” in the word read from memory. Similarly,
BRSET branches if all masks “1” bits are “1” in the word read from memory.

382AB6 38 01 LO: LDAA $3801 ; get byte, set N & Z
382D 2A 06 BPL L1l ; 1f N is zero, goto L1l
382F 85 04 BITA #4 ; check bit 2

3831 27 0D BEQ L4 ; 1f zero, go to L4
3833 20 0D BRA L5 ; otherwise go to L5
3835 B6 38 02 Ll1l: LDAA $3802 ; get byte

3838 81 32 CMPA #$32 ; compare to $32

383A 22 02 BHI L2 ; 1f higher, go to L2
383C 20 06 BRA L3 ; otherwise go to L3

FIGURE 2.17. Program Segment for a Decision Tree
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Table 2.9 Other Control Instructions

BRCLR opr,msk,rel Branch if (E) AND (msk) = 0

BRSET opr,msk,rel Branch if (E)” AND (msk) = 0

DBEQ cntr,rel cntr-1 — cntr; if cntr = 0,
Branch.

DBNE cntr,rel cntr-1 — cntr; if cntr != 0,
Branch.

IBBQ cntr,rel cntr+l — cntr; If cntr = 0;
Branch.

IBNE cntr,rel cntr+l — cntr; If cntr != 0,
Branch.

TBEQ cntr,rel If cntr = 0 then Branch.

TBNE cntr,rel If cntr != 0 then Branch.

JMP opr Jump; Address — PC

JSR opr Jump to Subroutine

BSR rel Branch to Subroutine

RTS Return from Subroutine.

CALL opr,page Call subroutine n extended
memory

RTC Return from Call

BGND Place CPU in Background Mode

NOP No Operation

RTI Return from Interrupt

WAT WAIT for interrupt

STOP STOP All Clocks

SWI Software Interrupt

TRAP Unimplemented opcode trap

These bits can be set and cleared using BSET and BCLR listed in Table 2.6.
Figure 2.18 illustrates such setting, clearing, and testing of individual bits in
memory. If this program segment is entered from location L1 ($3820), then
bit 6 of location $3802 is set there, and the instruction at L3 ($382A) branches
to location L4 ($3831). However, if this program segment is entered from
location L2 ($3826), then bit 6 of location $3802 is cleared there, and the
instruction at L3 ($382A) does not branch but falls through to location $382F.

3820 1C 38 02 40 Ll: BSET $3802,#64 ; set bit 6
3824 20 04 BRA L3 ; go to common
3826 1D 38 02 40 L2: BCLR $3802,#64 ; clr bit 6
382A 1E 38 02 40 02 L3: BRSET $3802,#64,L4; test b 6
382F 20 FE BRA * ; if b6 =0
3831 20 FE L4: BRA * ; 1if b 6 = 1

FIGURE 2.18. Program Segment for Setting, Clearing, and Testing of a Bit
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3810 CC 00 05 LDD #5 ; put number 5 in D
3813 04 34 FD L: DBNE D,L ; decrement D until 0
3816 20 FE BRA * ; halt

FIGURE 2.19. Program Segment for a Wait Loop

DBEQ, DBNE, IBEQ, and IBNE, which have a post byte and a relative
offset, decrement or increment a counter, which may be A, B, D, X, Y, or
SP, and branch if the result in the counter is zero or nonzero, as indicated by
the mnemonic and coded in the post byte. TBEQ and TBNE similarly test a
register without incrementing or decrementing it and branch if the result is
zero or nonzero. The low-order post byte bits indicate which register is used
as a counter or test register (0, A; 1, B; 4, D; 5, X; 6, Y; and 7, SP) and the
high-order 3 bits indicate the operation (000, DBEQ; 001, DBNE; 010, TBEQ;
011, TBNE; 100, IBEQ; 101, IBNE). Post byte bit 4 is appended as a high
bit to the instruction’s third byte to give a 9-bit offset.

The program segment in Figure 2.19 wastes time while an I/O operation
takes place. (Calculation of the last byte, the offset $FD, will be discussed
in §3.3.) The DBNE instruction takes three clock cycles, where each clock
cycle is5; Us. This instruction loops to itself five times in a delay loop, which
wastes 0.625 s.

The simple jump instruction is the simplest control instruction; the effec-
tive address is put into the program counter. JMP $3899 puts $3899 into
the program counter, and the next opcode byte is fetched from $3899. It
simply “jumps to location $3899.”

You commonly encounter in programs a repeated program segment. Such
a segment can be made into a subroutine so it can be stored just once but
executed many times. Special instructions are used to branch to and return
from such a subroutine. For example, if the subroutine begins at location
$3812, the instruction JSR $3812 (for jump to subroutine) causes the PC
to be loaded with $3812 and the address immediately after the JSR instruc-
tion (say it is $3807) to be pushed onto the hardware stack, low byte first.
Figure 2.20a shows this return address, saved on the stack. BSR (for branch
to subroutine) similarly pushes the program counter but locates the subrou-
tine using relative addressing (§3.3). At the end of the subroutine, the 1-byte
instruction RTS (for return from subroutine) pulls the top two bytes of the
hardware stack into the PC, high byte first. ISR, SUB, and RTS, efficiently
call and return from the subroutine.

Figure 2.20 illustrates the use of the stack for holding temporary results
as discussed in §2.1, with subroutine return addresses as illustrated in §2.5.
We suggest that you step through this program using the simulator or debug-
ger and watch the stack expand and compress. A constant in X, 1, is pushed
on the stack before the subroutine and restored by pulling X after the
subroutine is executed and has returned. This is commonly done when the
calling routine needs the saved value later. The subroutine return address is

51
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calling sp->|ccr
routine B
JSR $3812 SP -> 38 A
$38O7_>(next inst.) 07 X H
X L
Y H
stack |y 1,
return H
return L
$3812 SUB LDAA
#1 RTS subroutine
a. Subroutine Addresses b. Subroutine stack c. Handler stack

FIGURE 2.20. Subroutine and Handler Addresses

saved on the stack by the BSR instruction and restored by the RTS instruc-
tion at the end of the subroutine. Inside the subroutine, the X and Y regis-
ters are saved and restored to exchange them. Pushing and pulling is often
done to hold intermediary results.

A special CALL instruction saves a page register along with the program
counter, and a special RTC instruction loads the page register when the
program counter is loaded to return from a subroutine called by a CALL
instruction. The CALL and RTC instructions extend the program address to
up to 24 bits in some 6812s.

As noted earlier, the stack pointer is to be initialized at the beginning of
a program, with an instruction such as LDS #$4000. It must be initialized
before any instruction, such as JSR or CALL, uses the stack pointer. If it is
not, the RTS or RTC does not work because the return address is “saved” in
a location that is not RAM and is lost.

The (hardware or (I/O) interrupt is very important to I/O interfacing.
Basically, it is evoked when an I/O device needs service, either to move some
more data into or out of the device or to detect an error condition. Handling
an interrupt stops the program that is running, causes another program to be
executed to service the interrupt, and then resumes the main program exactly
where it left off. The program that services the interrupt (called an interrupt
handler or device handler) is very much like a subroutine, and an interrupt
can be thought of as an I/O device tricking the computer into executing a sub-
routine. An ordinary subroutine called from an interrupt handler is called an
interrupt service routine. However, a handler or an interrupt service routine
should not disturb the current program in any way. The interrupted program
should get the same result no matter whether or when the interrupt occurs.

I/0 devices may request an interrupt in any memory cycle. However, the
data operator usually has bits and pieces of information scattered around in
hidden registers. It is not prepared to stop the current instruction because it
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does not know the values of these registers. Therefore, interrupts are always
recognized at the end of the current instruction, when all the data are organ-
ized into accumulators and other registers that can be safely saved and
restored. The time from when an I/O device requests an interrupt until data
that it wants moved are moved or the error condition is reported or fixed is
called the latency time. Fast I/0O devices require low latency interrupt service.
The lowest latency that can be guaranteed must exceed the duration of the
longest instruction because the 1/O device could request an interrupt at the
beginning of such an instruction’s execution.

The SWI instruction is essentially like an interrupt. It saves all the reg-
isters as shown in Figure 2.20c and puts the contents of $fff6, ${ff7 into the
program counter, to begin an SWI handler at that address. All TRAP instruc-
tions (there are over 200 of them) save all the registers as the SWI instruc-
tion does and put the contents of $fff8, $fff9 into the program counter to
begin a trap handler at that address. RTI pulls the contents of the registers
saved on the stack and fetches the next opcode at the address that is the
returned program counter. WAT stacks all the registers and waits for an inter-
rupt to occur. STOP stacks the registers and stops all the 6812 clocks to con-
serve power. A system reset or an interrupt will cause the computer to resume
after these instructions. Two interrupt inhibit bits (also called an interrupt
mask bit) 1 and X are kept in the condition code; when they are set, inter-
rupts are not permitted. A stop disable bit S is used to prevent execution of
the STOP instruction. BGND places the MPU in a background mode to permit
the background debug module to examine memory and registers and possi-
bly modify some of them. If background debugging is not enabled, BGND
can be made to act exactly like an SWI instruction.

The condition code register, accumulators, program counter, and other
registers in the controller and data operator are collectively called the
machine state and are saved whenever an interrupt occurs as shown below,
resulting in the stack in Figure 2.20c.

SP — 2 —> SP; PC — (SP):(SP + 1); SP — 2 — SP;
Y > (SP):(SP + 1);

SP — 2 —> SP; X — (SP):(SP + 1); SP — 2 — Sp;
B > (SP); A — (SP + 1);

SP — 1 — SP; CCR — (SP);

After completion of a handler entered by a hardware interrupt or similar
instruction, the last instruction executed is return from interrupt (RTI). All
handlers end in an RTI instruction. RTI pulls the top nine words from the
stack, replacing them in the registers the interrupt took them from. The RTI
instruction executes the operations:

(SP) — CCR; SP + 1 — SP (SP) — B; (SP + 1)
— A; SP + 2 — SP

(SP):(SP + 1) — X; SP + 2 — SP (SP):(SpP + 1)
— Y; SP + 2 — SP

(SP): (SP + 1) — PC;SP + 2 — SP
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3800 CF 04 00 LDS #$4000 ; init to top of SRAM
3803 CE 00 01 LDX #1 ; put some constant in X
3806 34 PSHX ; save it on the stack

3807 07 03 BSR SUB ; call the subroutine

3809 30 PULX ; restore the saved X

380A 20 FE BRA *,; wait until user stops

380C 34 SUB: PSHX ; push constant on stack

380D 35 PSHY ; push another wvalue

380E 30 PULX ; pull other value in X

380F 31 PULY ; pull constant into Y

3810 3D RTS ; return to callER

’

FIGURE 2.21. Program Segment for Swap Subroutine

You can modify the program in Figure 2.21 to see how the trap instruction
saves and restores the machine state. Replace the BSR instruction at location
$3807 with an SWI instruction whose opcode is $3F (and a NOP, $A7) and
the RTS instruction at location $3810 with RTI whose opcode is $0B; put
the address $380C into locations $FFF6 and $FFF7; and rerun this program.
You should see that changing the registers inside the trap handler has no
effect on the returned values of the registers, because they are saved on the
stack and restored by the RTT instruction.

We have covered both the conditional and unconditional branch instruc-
tions. We have also covered the jump and related instructions together with
subroutine branch and jump instructions. Control instructions provide the
means to alter the pattern of fetching instructions and are the second most
common type of instruction. If you use them wisely, they will considerably
enhance static and dynamic efficiency.

Input/Output Instructions

The last class of instructions for the 6812, the input-output or I/O class, is
easy to describe because there are none! With the 6812 a byte is transferred
between an accumulator and a register in an I/O device through a memory
location chosen by hardware. The LDAA instruction with that location then
inputs a byte from the register of the I/O device to accumulator A, while the
STAA instruction with that location does the corresponding output of a byte.
Other instructions, such as MOVB, MOVM, ROL, ROR, DEC, INC, and CLR,
may be used as I/O instructions, depending on the particular device. We look
more closely at all of these issues in Chapter 11.

Special Instructions

Table 2.10 lists the 6812°s special instructions, which are arithmetic instruc-
tions of primary interest in fuzzy logic. They use index addressing, which is
discussed in the next chapter. Fuzzy logic uses minimum and maximum func-
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Table 2.10  Special Instructions

EMAXD opr MAX (D, (E):(E+1)) — D; MAX Unsigned
16-Bit

EMAXM opr | MAX(D, (E):(E+1)) — (E): (E+1); MAX
Unsigned 16-Bit

EMIND opr MIN (D, (E):(E +1)) — D; MIN Unsigned
16-Bits

EMINM opr MIN (D, (E):(E+1)) — (E):(E+1); MIN
Unsigned 16-Bits

MAXA opr MAX (A, (E)) — A

MAXM opr MAX (A, (E)) — (E)

MINA opr MIN (A, (E)) — A; MIN Unsigned 8-Bit

MINM opr MIN (A, (E)) — (E); MIN Unsigned 8-Bit

ETBL opr 16-Bit Table Lookup and Interpolate

TBL opr 8-Bit Table Lookup and Interpolate

EMACS opr (X) : (X+1) * (Y):(Y+1) + (E):(E+1): (E+2):
(E+3) — (E): (E+1): (E+2) : (E+3);

16x16 Bit — 32 Bit; Multiply and
Accumulate (signed) .

MEM u (grade) — (Y); X + 4 - X; Y + 1 —>
Y; A unchanged

REV, REVW MIN-MAX rule evaluation

WAV, wavr Weights for Weighted Average Calculation

tions to logically AND and OR fuzzy variables. See §7.8. The 6812 has
instructions MAXA, MAXM, MINA, MINM, EMAXD, EMAXM, EMIND, and
EMINM to determine the maximum or minimum of an 8-bit or a 16-bit pair
of unsigned numbers, one of which is in a register (A or D) and the other of
which is one or two bytes at the effective address, and to put the maximum
or minimum in either the register or the memory at the effective address.
EMACS is a multiply-and-accumulate instruction similar to such instructions
used in digital signal processors (DSPs).

The following examples use pointer addressing, in which the effec-
tive address is the contents of an index register, without adding any other
value to it.

We are about to output the contents of accumulator D to an output device,
but the output must be limited to be at least V,,;,, and at most V... Suppose
that location $3803 has the address of V... and location $3805 has the
address of V,,;,. Pointer addressing (§3.2) is one of the modes usable with
the EMAXD and EMIND instructions. Figure 2.22 shows programming to limit
the value of accumulator D to be V,,;, £ D < V.

Figure 2.23 illustrates the use of index registers in the multiply-and-
accumulate instruction to evaluate the expression A = A + (B * C), where A
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382A CE 38 03 LDX #$3803 ; get address of Vmax
382D 18 1B 00 EMIND 0,X ; obtain minimum
3830 CD 38 05 LDY #$3805 ; get address of Vmin
3833 18 1A 40 EMAXD 0,Y ; obtain maximum

FIGURE 2.22. Program Segment for Ensuring a Value is Between Limits

is a signed 32-bit number at $3910, B is a signed 16-bit number at $3914,
and C is a signed 16-bit number at $3916. Pointer addressing is the only
mode that can be used with the EMACS instruction. From Table 2.10, the
EMACS instruction executes the expression (X):(X + 1) = (Y):(Y + 1) + (E):
(E+ 1):(E+2):(E+3)— (E):(E + 1):(E + 2):(E + 3); from the CPUI2 Ref-
erence Guide, it executes this operation in 13 clock cycles, a little over
T Hs.

The TBL and ETBL instructions perform 8-bit and 16-bit table lookup
and interpolation. TBL puts into accumulator A the value (E) + (B * ((E +
1) — E)) where E is the effective address, which can be the pointer address
as in EMAXD, and B is accumulator B, considered as an unsigned fraction.
A list of values, which are in increasing order, can be searched for the nearest
value just below the value we are evaluating, and B and TBL can interpo-
late between that value and the next higher value. ETBL is similar but is for
16-bit unsigned number interpolation: It puts into accumulator D the value
(E)(E+ 1)+ (B * ((E + 2):(E + 2) — E:(E + 1))).

The instructions MEM, REVW, REV, and WAV are used for fuzzy logic rule
evaluations, which are developed in §7.8 in Chapter 7. These highly specific
and efficient operations make the 6812 singularly well suited to fuzzy logic
control applications.

The fuzzy logic membership instruction MEM uses accumulator A as the
current input, and X points to a 4-byte data structure that describes a trape-
zoidal membership function (P1, P2, S1, S2). The instruction puts the func-
tion value into the byte pointed to by Y and then adds 4 to X and 1 to Y to
access the next trapezoid and output value. If A < P1 or A > P2, then the
output function value is 0, or else the output function value is MIN((A — P1)
x* S1, (P2 — A) * S2, $FF).

REV and REVW perform MIN-MAX rule evaluation for 8-bit and 16-bit
unsigned numbers. For REV, each rule input is an 8-bit offset from the base
address in Y. Each rule output is an 8-bit offset from the base address in Y.
$FE separates rule inputs from rule outputs, and $FF terminates the rule list.
REV may be interrupted. For REVW, each rule input is the 16-bit address of

3830 CE 39 14 LDX #$3914 ; get address of 1st
3833 CD 39 16 LDY #$3916 ; get address of 2nd
3836 18 12 39 10 EMACS $3910 ; multiply and accum.

FIGURE 2.23. Program Segment for a Multiply and Add Operation
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a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The
value $FFFE separates rule inputs from rule outputs, and $FFFF terminates
the rule list. REV and REVW use this MIN-MAX rule: Find the smallest rule
input (MIN) and store to rule outputs unless fuzzy output is already larger
(MAX).

WAV calculates the sum-of-products and sum-of-weights for a list of
8-bit unsigned elements. Accumulator B is the number of elements in both
lists, X points to the first list, and Y points to the second list. The sum-of-
products is put in registers Y (high-order 16 bits) and D (low-order 16 bits),
and the sum of weights, pointed to by Y, is put into register X. The instruc-
tion WAVR resumes the execution of the WAV instruction if it is interrupted
in the middle of its execution.

Remarks

One might wonder why some move instructions, such as LDAA, TSTA, and
STAA, always put V = 0 rather than leaving V unchanged as they do C. The
reason is that doing so allows all of the signed branches to work after these
instructions as well as after the arithmetic type of instruction. For example,
suppose that one wants to look at the contents of some memory location, say
$3811, and branch to location L if the contents of location $3811, treated as
a signed number, are greater than 0. The sequence

TST $3811
BGT L

does exactly this. If the TST instruction had left V unaffected, we would
have had to use the longer sequence:

ILDAA $3811
CMPA #0
BGT L

A little more experience will show that the designer’s choice here is quite
reasonable, because we will find a more frequent use of signed branches for
load instructions than for checking for signed overflow, as we will do in the
next chapter.

Do You Know These Terms?
See the end of Chapter 1 for instructions.

push hidden register return address

pull prefix byte branch to subroutine
stack offset return from subroutine
hardware stack delay loop hardware interrupt
buffer subroutine I/O interrupt

post byte jump to subroutine handling
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interrupt handler latency time machine state
device handler interrupt inhibit return from interrupt
interrupt service interrupt mask (RTI)

routine stop disable
PROBLEMS

When a program (ending in BGND, SWI, or BRA * ) or program segment
is asked for in the problems below, use the format that is used for the exam-
ples in the text.

1.

Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish exactly the
same effect as this missing instruction. That is, this program segment
must give the same results in all the registers, including the condition
code register.

(a) XGDX (or EXG X,D)

(b) TFR X,Y

(c) PSHD

Assume MOVB is missing from the 6812 instruction set. Show the short-
est program segment that accomplishes exactly the same effect as MOVB
$3803,$3822.

Show the shortest program segment that will push the following 32-bit
constant on the stack. The most significant byte must be at the lowest
address.

(@) 0

(b) 1

(c) -1

Write a shortest program to evaluate a quadratic polynomial. Let a be at
$3810, b be at $3812, ¢ be at $3814, x be at $3816; the program is to
put a x> + bx + ¢ into $3818. All numbers, including the result, are 16-
bit two’s-complement numbers.

Write a shortest program to execute an inner product. Let x[0] be at
$3810, x[1] be at $3812, y[0] be at $3814, y[1] be at $3816; the program
is to put x[0] y[0] +x[1] y[1] into $3818. All numbers are 16-bit unsigned
numbers.

6. Write a shortest program to compute the resistance of a pair of resis-

tors connected in parallel. Let rl be at $3810 and r2 be at $3812; the
program is to put rl || r2 into $3814. All values are 16-bit unsigned
numbers.
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7.

10.

11.

12.

13.

14.

If a count C is obtained, the frequency is 8,000,000/C. Write a shortest
program to compute the 16-bit frequency corresponding to the 16-bit
count C in location $381a, putting the result into $381c. Show this
program, beginning at $381e, in hexadecimal.

Why does DAA not work after an INC, DEC, or ASR instruction?

Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish exactly the
same effect as the missing instruction. For part (c) assume that locations
$3813 and $3814 are able to be used as scratch bytes. (Scratch means
the location is available for storing temporary results.)

(a) BSET $3810,#%aa

(b) BCLR $3811,#$f

(c) EORA $3812
ASCII characters are defined by Table 4.1. Write a single instruction for
the following:

(a) Accumulator A is an upper- or lower-case character. Convert it to
lower case.

(b) Accumulator A is an upper- or lower-case character. Convert it to
upper case.

(c) Accumulator A is a single BCD number. Convert it to an ASCII
character.

(d) Accumulator A is an ASCII character. Convert it to a BCD number.
Write a fastest program segment to put the following property, of a
number in Accumulator A, into accumulator B (do not use branch

instructions). For part (c), assume that location $3822 is a scratch
byte.

(a) the count of the number of 1’s

(b) the parity

(c) the number of leading zeros

A 32-bit number is in accumulator D (low-order) and index register Y

(high-order). Write a shortest program segment to execute the following
on these same registers.

(a) logical shift left 1 bit

(b) logical shift right 1 bit

(c) arithmetic shift right 1 bit

[lustrate the differences between BLT and BMI with an example that

branches to location L if accumulator A is less than the contents of the
byte at $3869.

Will a signed branch work after a DEC or INC instruction? Explain.
What about unsigned branches?
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15.

16.

17.

18.

19.

20.

21.

22.

23.

Chapter 2 The Instruction Set

Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish the same
effect as the missing instruction, except that the condition codes will be
changed.

(a) BRCLR $3811,#S$f,L
(b) BRSET $3810,#Saa,L
(c) DBNE A, L

The 6812 does not have an LBSR instruction. Compare the static effi-
ciency of JSR, using program counter relative addressing, to an LBSR,
which will be coded like LBRA.

Figure 2.19 shows a delay loop for up to about 8.19 ms. Write a
shortest delay loop for up to 8.9 min. You do not need to compute two
constants used in this loop.

Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish the same
effect as the missing instruction, except that the condition codes will be
changed differently. For part (c), assume that index registers X and Y
can be modified.

(a) MINM 0, X
(b) EMAXD 0,Y
(c) EMACS $3810

Write a shortest program to execute an inner product using EMACS and
EMULS. Let x[0] be at $3810, x[1] be at $3812, y[0] be at $3814, y[1]
be at $3816; the program is to put x[0] y[0] + x[1] y[1] into $381a, and
$3818 and $3819 are scratch bytes. All numbers are 16-bit signed
numbers.

Write a shortest program segment to extract the three bits that were
inserted by the program in Figure 2.15, leaving the extracted bits right-
justified in accumulator B.

Write a shortest program segment to convert temperature from Fahren-
heit (£300°), in accumulator D, to Celsius. The output value is left in
accumulator D. You may preload constants into registers to shorten your
machine code, but show their values.

The 32-bit binary number at location $3822 is the number of ticks, where
a tick time is g s, and zero represents Saturday midnight. Write a short-
est program to put the day-of-week in location $3826, (military time)
hour in $3827, minute in $3828, seconds in $3829, and tick-within-a-
second in $382a.

Write a shortest program to write problem 22’s 32-bit binary number
tick count into location $3822, for input values written in its day-of-
week, hour, minute, seconds, and tick-within-a-second memory words
(locations $3826 to $382a). $382b to $3832 is scratch.
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24.

25.

Write a shortest assembly language subroutine in which a number i is
passed in accumulator D and which leaves the Gray code number i in D
(i.e., it encodes the Gray code from binary). See the discussion below
for useful information about Gray codes.

Write a shortest assembly language subroutine in which a Gray code for
a number 7 is passed in accumulator D and which leaves the binary
number 7 in D (i.e., it decodes the Gray code into binary). See the dis-
cussion below for useful information about Gray codes.

A Gray code is a binary numeric code with the property that the code
of each number differs from the code of the next consecutive number in
exactly 1 bit position. It is used in shaft encoders, which output a digital
value indicative of the angle of rotation of a shaft, to avoid the possi-
bility that a false code will be read. For instance, in a 4-bit conventional
binary code, as the shaft rotates from output 7 to output 8, the binary
number changes from 0111 to 1000. As it does, the binary code 0101
might appear as the bits change at different times due to the imperfect
alignment of the shaft encoder. In a Gray code, only the code for 7 or
the code for 8 would appear if the shaft is not aligned, and no codes for
other numbers would appear, even temporarily.

There are a large number of Gray codes. Suppose G(i) is a function
that outputs the Gray code of a binary number i. Then for an n-bit code,
for any j, G((i +j) mod 2n) is also an n-bit Gray code of i. A Gray code,
in which the number 0 is represented by 0 . .. 00 and in which the less
significant bit changes more often than the next more significant bit as
the value is incremented, is what we will call “the” Gray code.

In our problem we will consider the most commonly used Gray code.
“The” Gray code can be generated by the following function. A Gray
code of a binary number bn, bn — 1, ... b0 is a binary encoding gn, gn
— 1, ... g0 in which the ith bit gi is, for the most significant bit n, gn =
bn and for all other bits it is the exclusive-OR (denoted ") of the same
bit of the binary number bit, and the bit to its left, gi = bi * bi + 1. For
instance for a 4-bit number b3, b2, bl, b0, the Gray code bit g3 is b3,
g21isb3 " b2, gl is b2 " bl, g0 is bl * b0. Generally, a Gray code is read
from a shaft encoder, and the binary code is needed as an input to the
application software. Given a “Gray code” gn, gn — 1, . . . g0 the binary
number bn, bn — 1, . .. b0 is such that for the most significant bit, bn =
gn and for all other bits the ith bit bi is the exclusive-OR of the higher-
order bits of the Gray code bits, from bit » up to and including bit i: bi
=gn " gn — 1"...gi. For instance, for a 4-bit Gray code gn, gn — 1,
... g0, the binary number bit b3 is g3, b2 is g3 ~ g2, bl is g3 * g2 " g1,
and b0 is g3 * g2 " gl * g0.
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CHAPTER

Addressing Modes

In the past two chapters, we have introduced the instruction cycle and the
instruction set. We have used a few addressing modes to understand those
ideas. However, we did not attempt to convey the principles of addressing
modes. We now complete our understanding of the instruction by describing
the addressing modes used in the 6812.

Recall from Chapter 1 that an instruction generally consists of an oper-
ation with one address in memory for an operand and/or result. How that
address is determined is called addressing, and the different ways that the
address is determined are called addressing modes. The data are accessed in
a program that is read or written by an instruction with the addressing modes
available in the computer. These modes correspond to the data structures that
can be easily managed in that computer. If you want to handle a particular
structure, such as a string of characters, an addressing mode such as postin-
crement is very useful, as we discuss in more detail in Chapter 10. This
chapter introduces the 6812’s addressing modes, which provide the tools that
make handling the most useful data structures so easy on this machine.
Learning the rich set of addressing modes here will also make it easier later
to learn about the common data structures.

In this chapter we introduce the following general aspects of address-
ing. We first discuss addressing modes that are determined by bits in the
operation code byte, which is generally the first byte of the instruction.
Indexing modes use a post byte and are discussed next. Relative modes
are then discussed to show the important concept of position independence.
We give examples that rework the addition program of Chapter 1 to illus-
trate data structure ideas and position independence using these addressing
modes. Finally, we consider some architectural thoughts about addressing
such as multiple address instructions and the effective address computa-
tion in the fetch/execute cycle. We also discuss the level of addressing
that indicates how many times an address must be read from memory to
get the actual or effective address of the operand or result used with the
instruction.

Upon completion of this chapter, you should be able to use the address-
ing modes described here with any instruction that has been introduced in
Chapter 2. You should be able to determine what has been done to compute
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the effective address, what that effective address will be, and what side
effects are generated where some modes are used. This will prepare you to
use good data structures in your programs and thus to write shorter, faster,
and clearer programs as you progress through this material.

> 31 Opcode Byte Addressing Modes

In this section we discuss addressing that is selected in the opcode byte,
which is generally the first byte of the instruction. We have already intro-
duced this idea in an ad hoc manner in Chapter 1 when we discussed implied,
immediate, and direct addressing. Now we add page zero addressing and
explain when each address mode should be used.

Some instructions do not involve any address from memory for an
operand or a result. One way to avoid going to memory is to use only reg-
isters for all the operands. The DEC instruction decrements (subtracts one
from) the value in an accumulator so that DECA and DECB are really the
same operation, with the registers A and B serving as the addresses for the
operand and result. Motorola considers DECA and DECB to be different
instructions, whereas other manufacturers would call them the same instruc-
tion with a register address that indicates which register is used. Either case
has some merits, but we will use Motorola’s convention.

There is also an instruction

DEC 100

that recalls the word at location 100, decrements that word, and writes the
result in location 100. That instruction uses direct addressing (as discussed
in Chapter 1), whereas DECA does not use direct addressing. Because the
instruction mnemonic for instructions such as DECA makes it clear which
registers are being used, at least for simple instructions, Motorola calls this
type of addressing inherent or implied. 1t is a zero-level mode. For instance,
CLRA clears accumulator A (puts its contents to zero) and uses inherent
addressing, whereas

CLR 1000

clears the word at location 1000 and uses direct addressing. Several other
instructions, such as SWI and BGND, which we are using as a halt instruc-
tion, have been included in the inherent category because the operation code
byte of the instruction contains all of the addressing information necessary
for the execution of the instruction.

We have used the immediate addressing mode in Chapter 1, where the
value of the operand is part of the instruction, as in

LDAA #67

which puts the number 67 into accumulator A. We use the adjective “imme-
diate” because when the instruction is being fetched from memory the
program counter contains the address of the operand, and no further memory
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reads beyond those required for the instruction bytes are necessary to get its
value.

You should use inherent addressing wherever it will shorten the program
storage or speed up its execution, for example, by keeping the most fre-
quently used data in registers as long as possible. Their use will involve only
inherent addressing. Immediate addressing should be used to initialize reg-
isters with constants or provide constants for other instructions, such as
ADDA.

Other modes allow the data to be variable, as opposed to the fixed data.
The 6812 has two such modes, direct and page zero, to allow for accessing
any word in memory, but they allow accessing the most common words more
efficiently.

We introduced the direct mode in Chapter 1, and we merely review it
here. It is really the only mode required for any program that we would write
if we were not concerned about efficiency and if we permitted the program
to modify one of its own instructions. This is called self-modifying code.
Indeed, that was the way the first computer was programmed. However, if
one examines a program that changes its instructions, it is very unclear. To
avoid self-modifying code and to improve efficiency, other addressing modes
will be introduced. In the direct mode, the address of the operand or result
is supplied with the instruction. For example, as discussed before,

LDAA $3803

puts the contents of location $3803 into accumulator A. The opcode for this
instruction is $B6, and the instruction is stored in memory as the sequence:

$B6
$38
$03

In the direct mode, a full 16 bits are always used to describe the address even
though the first byte may consist of all zeros. Unfortunately, when the
MC6800, a predecessor of the 6812, was first developed, its designers called
page zero addressing “direct addressing,” most likely because they envi-
sioned only a 256-byte RAM. The designers called direct addressing
“extended addressing.” In the 6812, up to 32 Mbytes can be addressed using
page registers, and this is properly called “extended addressing.” This non-
standard use of the term has continued through Motorola’s 8-bit and 16-bit
microcontrollers and confuses everyone who uses or studies a variety of
machines, including other Motorola microprocessors. Because we intend to
teach general principles, using the 6812 as an example rather than teaching
the 6812 only, we will stick to the traditional term. However, when you read
Motorola’s literature, remember to translate their “extended addressing” into
“direct addressing.” Do not confuse Motorola’s “direct addressing” with our
use of the term “direct addressing.”
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Experience has shown that most of the accesses to data are to a rather
small number of frequently used data words. To improve both static and
dynamic efficiency, the 6812 has a compact and fast version of one-level
addressing to be used with the most commonly accessed data words. The
page zero mode is an addressing mode that forms the effective address by
forcing the high-order byte to be 0 while the lower-order byte is supplied by
the 8 bits in the instruction. For example,

LDAA $67

will put the contents of location $0067 into accumulator A. This instruction
is stored in memory as

$96
$67

Clearly, page zero addressing uses fewer instruction bits, and thus the
instruction can be fetched faster than with direct addressing. In the 6812, the
I/O registers occupy page zero (unless the address map is changed). There-
fore I/O instructions use page zero addressing, and your programs cannot use
page zero addressing for anything else.

The symbol “<” can be used in several addressing modes. It will gener-
ally mean that a short 8- or 9-bit number in the instruction is used in the cal-
culation of the effective address. It will be used here for page zero addressing.
The symbol “>” can be used for direct addressing. It will generally denote
that a 16-bit number in the instruction is used in the calculation of the effec-
tive address. In Chapter 4 we will find that these symbols can usually be
dropped when the instruction mnemonics are automatically translated into
machine code, because the computer that does the translation can figure out
whether an 8-bit or a 16-bit value must be put in the instruction. Until then,
to enhance your understanding of how the machine works and to simplify
hand translation of mnemonics into machine code, we will use the symbol
“<” to designate forced 8-bit direct address values and the symbol “>” to
designate forced 16-bit direct address values.

Coding of the opcode byte for almost half of the 6812 instructions follows
a simple pattern (Figure 3.1). In instructions in which the most significant
bit is 1, the opcode is generally SUB, SBC, AND, BIT, LDAA, EOR, ADC,
OR, ADD, or a compare opcode. For these instructions, the next most signif-
icant bit generally indicates the accumulator register used. For instance
(using immediate addressing), SUBA is $80, whereas SUBB is $C0. The next
2 bits indicate the addressing mode: 00 is immediate, 01 is page zero, 11 is
direct, and 10 is index (using a post byte to distinguish among different index
modes as discussed in the next section). For instance, SUBA # is $80, SUBA
<0 is $90, SUBA >0 is $B0, and its index addressing modes use the opcode
$A0. The four least significant bits are the opcode. Many of the other 6812
instructions similarly encode their opcode bytes to systematically derive the
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1 reg. address mode opcode

FIGURE 3.1. Opcode Byte Coding

opcode and addressing mode from bits in the opcode byte. However, do not
attempt to memorize these decoding rules. The best way to encode an instruc-
tion is to look up its coding in the CPUI2 Reference Guide.

In this section we introduced some of the simpler addressing modes:
inherent, direct, and page zero. We saw that inherent addressing should be
used when data are kept in registers, typically for the most frequently used
data. Page zero addressing, where data are kept on page zero, should be used
for the rest of the frequently used data and is used for I/O registers in the
6812. We now turn to the next group, which is based on decoding the post
byte and the use of other registers in the addressing mode.

Post Byte Index Addressing Modes

In this section we introduce a collection of addressing modes that are
encoded in a post byte and that use index registers in the address calcula-
tion. To improve efficiency, the controller is often provided with a few reg-
isters that could be used to obtain the effective address. These registers are
called pointer registers or index registers. Obtaining an address from such
an index register would be faster because the number of bits needed to
specify one of a few registers is much less than the number of bits needed
to specify any word in memory that holds the address. Moreover, index
addressing is the most efficient mode to handle many data structures, such
as character strings, vectors, and many others, as we discuss later. With this
potential, index registers have been used in a number of similar modes, called
collectively index addressing modes, which are introduced below.

Before we get into the modes of index addressing we have to discuss the
idea of a post byte. As noted earlier, the 6812 is the immediate successor of
the 6811 (the 6800 evolved into the 6801, which evolved into the 6811,
which finally evolved into the 6812). The 6811 had only the modes inher-
ent, immediate, page zero, direct, and one form of index addressing discussed
in the following. To keep the customers who had 6811s happy with the newer
machine, its designers opted to make the 6812 as similar as possible to its
predecessors. However, to introduce more addressing modes, they needed
more room in the instruction. The 6812 is as similar to its predecessors as
possible, using the same opcodes in many cases. The extra addressing modes
were provided by including an extra byte, right after the opcode byte, for
addressing information only and then only for variations of index address-
ing that are used on the 6812. This byte is the post byte.

The 6812 uses index addressing with two index registers X and Y, the
stack pointer SP, and program counter PC. Although these have equivalent
addressing capabilities, the SP register and program counter have special
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uses that are discussed in later sections of this chapter. Generally, all the
addressing modes described for X below also apply to the other registers.
First, there are load instructions that can load these registers. For example,
the instruction

LDX #53843

will load the 16-bit X register with $3843. It is machine coded very much
like the LDAA immediate instruction. (See the CPUI2 Reference Guide.) In
the following examples, assume that X is $3843.

SCE
$38
$43

The other registers can be loaded using similar instructions, and other
addressing modes can be used to get the 2 bytes to be put in the index reg-
ister. In all cases, the effective address determined by the instruction is used
to get the first byte to be put into the high byte of the index register. The
effective address plus one is used to get the second byte to be put into the
low byte of the index register.

Coding of the post byte is shown in Figure 3.2. You can read the tree
shown therein from left to right to decode a post byte or from right to left to
encode an index mode into a post byte. To decode a post byte, start at the
tree root, and proceed right if bit 5 is zero; otherwise go down. Then check
the bit(s) indicated at the next branching point, to determine where to go
next, and so on. To encode an index mode into a post byte, locate the index
mode on the right, then follow the tree from there to the root, noting the set-
tings of the bits along the way that constitute the post byte code. This infor-
mation is also shown in the CPUI2 Reference Guide in Table 1 and Table
2, using other formats.

Index addressing uses a signed offset in the post byte or the post byte and
1 or 2 bytes following it. When executed, the offset is added to the index
register, say X, to get the effective address of the operand or result in
memory. See Figure 3.4.

Effective addresses are frequently within 216 locations of the index reg-
ister address, and many others are within £256 locations. Thus, for greater
efficiency, a shortest 5-bit or a 9-bit option is used for some cases, but a full
16-bit index option is also available for cases that do not fall in the range of
1256 locations. The 5-bit offset is entirely contained in the post byte. The 9-
bit offset’s sign bit is in the post byte, and the remaining 8 bits are in the fol-
lowing byte. The 16-bit offset is in the 2 bytes following the post byte.

The shortest mode with a 5-bit offset will always be used when the offset
is between —16 and +15. Suppose X is $3843, as discussed above. The
instruction LDAA 1, X loads the number contained in location 1 + $3843 into
accumulator A. The post byte for this 5-bit offset mode (see Figure 3.2) has
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5-bit offset

5 bits 7, 6 are index register*
bits 4 to 0 are a 5-bit offset

in
bits 7, 6 inc/dec

ot 11 bits 7, 6 are index register**
bit 4 is pre(0) /post (1)
bits 3 to 0 are delta

9-bit offset

bit 2 bit 1

bits 4, 3 are index register*
bit 0, next byte is offset

16-bit offset

bits 4, 3 are index register*
next 2 bytes are offset

16-bit offset indirect

bits 4, 3 are index register*

Note: * registers
next 2 bytes are offset

are :X, Y, SP, PC
** registers

are :X, Y, SP

and t accumulators
are: A, B,D

D accumulator index indirect
accumulator index

bits 4, 3 are index register*
bits 1, 0 are accumulatort

FIGURE 3.2. Post Byte Coding

a zero in bit 5, the index register in bits 7 and 6 (00 is X, 01 is Y, 10 is SP,
and 11 is PC), and the offset in bits 4 to 0. LDAA 1, X’s machine code is

SA6
$01

$A6 is the opcode byte for any LDAA index mode, and $01 is the post byte. The
saved offset is sign extended and added to the index register (see Figure 3.4).

The program segment in Figure 3.3 adds the word at $3844 to the word
at $3845, putting the sum in $3846. The contents of X is not changed after
it is loaded.

The 9-bit option will be used when the offset is between —256 and +255
or when the offset is between —16 and +15 and a “<” symbol, as it is used
in the page zero mode, is written preceding the offset. The instruction

3820 CE 38 43 LDX #$3843 ; get address
3823 A6 01 LDAA  1,X ; get 1st byte
3825 AB 02 ADDA 2,X ; add 2nd byte
3827 6A 03 STAA 3,X ; store in 3rd byte

FIGURE 3.3. Program Segment to Add 2 Bytes Using Vector Indexing
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LDAA <$11,X

loads the number contained in location $11 + $3843 = $3854 into accumu-
lator A. The post byte for this 9-bit offset mode (see Figure 3.2) has ones in
bits 7 to 5, the index register in bits 4 and 3 (00 is X, 01 is Y, 10 is SP, and
11 is PC), a zero in bits 1 and 2, and the sign bit of the offset in bit 0. Like
the 5-bit offset case, the saved offset is sign extended and added to the index
register to get the effective address, as illustrated by Figure 3.4. The machine
code is

SA6
SEO
$11

where $A6 is the opcode byte for any index option with LDAA, $SEO is the
post byte, and bit 0 of the post byte and the next byte $11 are the offset.

When a larger offset is needed, the full 16-bit offset option can be used.
The 16-bit option will be used when the offset is outside the range —256 and
+255 or when the offset is in this range and a “>” symbol, as it is used in
the direct mode, precedes the offset. The instruction

LDAA >$3012,X

loads the number contained in location $3012 + $3843 = $6855 into accu-
mulator A. The post byte for this 16-bit offset mode (see Figure 3.2) has ones
in bits 7 to 5, the index register in bits 4 and 3 (00 is X, 01 is Y, 10 is SP,
and 11 is PC), and 010 in bits 2 to 0. The machine code is given by

SA6
SE2
$30
$12

where $A6 is the opcode byte for any index option with LDAA, $SE2 is the
post byte, and $3012 is the 16-bit two’s-complement offset. The saved offset
is added to the index register to get the effective address, as illustrated by
Figure 3.4.

Controller

Sign [J] Hidden <1
Extender| [Register Data Bus
Index Register] Address Bus
=

FIGURE 3.4. Offset Calculation
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In short, addresses required in several accesses are kept in index regis-
ters, if possible, and utilize the more efficient index addressing. Shorter
offsets produce more efficient programs and can be used if the index regis-
ter value is close to the effective addresses that will be used. However,
although negative offsets can be used as well as positive offsets to further
improve efficiency, positive offsets are often preferred for clarity.

The 5-, 9-, and 16-bit offset index addressing modes are useful for
reading data out of a vector. Suppose a 10-element vector of 8-bit items has
element 0 at $3843, element 1 at $3844, element 2 at $3845, and so on. Then
if X has $3843,

LDAA 2, X

puts element 2 into accumulator A. Suppose now that a 10-element vector
of 8-bit items has element 0 at $3872, element 1 at $3873, element 2 at
$3874, and so on. Then if X has $3872, this instruction still gets element 2
out of the vector. This instruction uses the efficient 5-bit offset mode. The
following instruction gets element i from the vector beginning at $3843 into
accumulator A, where the vector index 7 is in index register X:

LDAA $3843,X

This instruction uses the less efficient 16-bit offset mode, but it lets the vari-
able index be in the X index register.

Index registers can be either autoincremented or autodecremented before
or after being used in effective address calculations. This addressing mode
is denoted by a delta value between 1 and 8, a comma, and the register name
with a “+” or “~” symbol. If “+” appears, the index register is incremented
by the delta value, and if “— appears, the index register is decremented by
the delta value; if this symbol appears before the register name, increment-
ing or decrementing is done before effective address calculation, and if the
symbol appears after the register, incrementing or decrementing is done after
the calculation. Consider an example of postincrementing by 1; if X had
$3843,

LDAA 1,X+

loads the contents from location $3843 into A and then increments the con-
tents of X by 1 to make it $3844. For an example of preincrementing by 1,
if X had the value $3843,

LDAA 1,+X

increments the contents of X by 1, and then loads the contents from location
$3844 into A. For an example of postincrementing by 2, if X had the value
$3843,

LDD 2, X+

loads the contents from locations $3843 and $3844 into D and then
increments the contents of X by 2 to make it $3845. For an example of
predecrementing, if X had the value $3843,



72

Chapter 3 Addressing Modes

Controller

I_’__I — Sign ] Hidden =
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FIGURE 3.5. Autoincrement Address Calculation

LDAA 1,-X

decrements the contents of X by 1 to make it $3842 and then loads the con-
tents from location $3842 into A. Delta can be as high as 8.

These addressing modes are encoded in the post byte as follows (see
Figure 3.2): Bits 7 and 6 identify the register (00 is X, 01 is Y, and 10 is SP,
but 11 is not used for this mode), bit 5 is 1, bit 4 is 0 if the index value
changes before address calculation and 1 if after, and bit 3 is 1 if decre-
menting and 0 if incrementing. For incrementing, bits 2 to 0 are the value of
delta minus 1 (or equivalently, delta is the low-order 3 bits plus 1). For decre-
menting, bits 2 to 0 are the value of delta, as a negative two’s-complement
number, to be added to the index register. For example, for LDAA 1, X+ the
post byte is $30, for LDAA 1, +X the post byte is $20, for LDD 2, X+ the
post byte is $31, for LDAA 1, —X the post byte is $2F, and for LDAA 2, -X
the post byte is $2E, and so on.

Figure 3.5 illustrates how the delta value fetched from memory can be
added to the index register. The index value before or after modification can
be used as the effective address by appropriately setting the switch that deter-
mines the effective address.

Consider addition again. To add the word at location $3843 to the word
at location $3844, putting the result at location $3845, execute the code in
Figure 3.6.

Note that these increment and decrement modes produce a side effect.
They not only compute the effective address, they also change the value in
the index register used to get the address. No other addressing mode has such
a side effect. We will see how useful these options are when we look at some
examples later in this chapter.

Sometimes, the effective address is the sum of two variable numbers. The
index register can be used to hold one of the variables and an accumulator,

3820 CE 38 43 LDX #$3843 ; get address
3823 A6 30 LDAA 1,X+ ; get 1st byte
3825 AB 30 ADDA 1,X+ ; add 2nd byte
3827 6A 30 STAA 1,X+ ; store in 3rd byte

FIGURE 3.6. Program Segment to Add 2 Bytes Using Autoincrementing
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Controller
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Index Register
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FIGURE 3.7. Accumulator Index Address Calculation

A, B, or D, can hold the other number, as in LDAB A, X. The zero-extended
accumulator (A) is added to the index register (X) to provide the effective
address. The effective address can be obtained as in Figure 3.7. This is called
accumulator indexed addressing.

The contents of the registers A and B are treated as 8-bit unsigned
numbers in these instructions whereas the contents of D may be treated as a
16-bit two’s-complement number or as an unsigned 16-bit number, because
the sum of the contents of D and the contents of any 16-bit index register,
truncated to 16 bits, is the same unsigned 16-bit number in either case. The
post byte for accumulator index addressing is as follows: Bits 7 to 5 and bit
2 are 1, the index register is encoded in bits 4 and 3 (00 is X, 01 is Y, 10 is
SP, and 11 is PC), and the accumulator is encoded in bits 1 and 0 (00, A; 01,
B; and 10, D). The instruction LDAB A, X is encoded as follows:

SE6
$E4

Accumulator index addressing modes are useful for reading data out of
a vector where the location of the vector in memory and the vector index are
determined at run time. Suppose a 10-element vector of 8-bit items has
element 0 at $3843, element 1 at $3844, element 2 at $3845, and so on. Then
if X has $3843, and accumulator A is 2, then

LDAA A, X

puts element 2 into accumulator A. Suppose now that a 10-element vector
of 8-bit items has element 0 at $3872, element 1 at $3873, element 2 at
$3874, and so on. Then if X has $3872, and accumulator A is 2, then this
instruction still gets vector element 2.

Finally, indirect addressing can be combined with accumulator D and 16-
bit offset forms of index addressing discussed above. Indirect addressing
goes to memory to get the address of the operand, as we describe with exam-
ples below. In the 6812, indirect addressing may only be used with these two
forms of index addressing. The instruction

LDAA [D, X]
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will use the sum of accumulator D and the index register X as an effective
address to read 2 bytes and then use these 2 bytes as another effective address
to load accumulator A with the word at the latter address. For instance, if D
is clear, X contains the value $3843, location $3843 contains $08, and loca-
tion $3844 contains $67, LDAA [D,X] will load the word at $3867 into
accumulator A. The post byte for indirect D accumulator index addressing
has ones in bits 7 to 5 and 2 to 0, and the index register is specified in bits
4 and 3 (00 is X, 01 is Y, 10 is SP, and 11 is PC). The post byte for the
instruction LDAA [D, X] is $E7. The instruction

LDAA [$12,X]

will use the sum of the 16-bit offset $0012 and the index register X as an
address to read 2 bytes, use these 2 bytes as another address, and load accu-
mulator A with the word at the latter address. Note that even though the offset
of this instruction is an 8-bit number, only 16-bit index addressing is per-
mitted when indirect addressing uses an offset. For instance, if X contains
the value $3843, location $3855 contains $08, and location $3856 contains
$23, LDAA [$12,X] will load the word at $3823 into accumulator A. The
post byte for indirect 16-bit offset index addressing has ones in bits 7 to 5
and 1 and 0, a zero in bit 2, and the index register is specified in bits 4 and
3(00is X, 011isY, 10 is SP, and 11 is PC). The post byte for the instruction
LDAA [$12,X] is $E3.

The LEAX, LEAY, and LEAS instructions can use only index addressing
modes, but not index indirect modes. These instructions can be used like
a transfer instruction; LEAX 0,Y will transfer Y to X. More generally,
they can be used to add a signed number constant or variable to an index
register and possibly put the result in a different register. The instruction
LEAX —3, X subtracts 3 from index register X, whereas LEAY A, X adds
accumulator A to the value of X and puts the result in Y. These instruc-
tions are alternatives to arithmetic instructions such as ADDD or SUBD and
are especially useful when the result will eventually be put in an index
register.

The idea of using a register to form the effective address is very power-
ful. Several addressing modes that use this idea were introduced. The index
mode does not modify the contents of the register, but can add a 5-, 9-, or
16-bit offset to get the effective address. The most common change to an
address is to increment or decrement it. The instruction can automatically
increment the value in the index register before or after it is used, by 1 to 8.
This will be quite common in some data structures that we see later. A mode
that adds the values of an accumulator to the value of an index register
permits one to compute addresses that are derived from two variable values,
rather than from a variable and a fixed value. Finally, these modes may be
combined with indirect addressing for some special applications. With these
modes of addressing, the 6812 is a very powerful microprocessor. With this
power, we can show you how to use data structures intelligently to make
your programs shorter, faster, and clearer.
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Relative Addressing and Position
Independence

The microcomputer is very much like any other computer; however, the use
of ROMs in microcomputers raises an interesting problem that is met by the
last mode of addressing that we discuss. The problem is that a program may
be put in a ROM such that the program starts at location $1000 and ends at
$2000. Suppose that someone buys this ROM, but his’her microcomputer
has another program in a ROM that starts at location $1000 and ends at
$2000. We would like to be able to use this new ROM so that the new
program would start at location $4000 and end at location $5000, for
instance, or wherever there is room in the address space of the microcom-
puter. However, because the program is in a ROM, it cannot be changed by
the buyer. Similarly, a compiler or assembler that downloads a particular
program into different parts of memory will not have to change addresses if
the program is position independent. A program that works the same way,
wherever it is loaded in memory, is said to be position independent. Posi-
tion-independent programs can be written by an assembler or compiler to
run anywhere in memory without modification. Programs we have seen so
far are position independent when the location of the data is fixed, and, in
fact, most program segments that do not use JMP or JSR instructions using
direct addressing are position independent.

Program counter relative addressing, or simply relative addressing, adds
a two’s-complement number, called a relative offset, to the value of the
program counter to get the effective address of the operand. Figure 3.8 illus-
trates a simplified implementation of a controller. The top switch can add
“1,” or the sign-extended data bus, to the program counter. The former is
used to increment the program counter each time an instruction byte is
fetched, and the latter is used for relative branches. The bottom switch
permits the adder’s output or the data bus value to be put into the program
counter. The bottom switch selects the latter when a JMP, JSR, RTS, or RTI
instruction or interrupt loads the program counter. The adder’s output can
also be used as an effective address.

The relative addressing mode is used to implement position independ-
ence. If the program segment at $1000 to $2000 was in a ROM and that
ROM was installed so that the instruction following the BNE was at $4000,

Controller "1 -
Sign
[ 1 Extender] Data BUS
Program Counter Hidden
Register Address
o - Bus

FIGURE 3.8. Simplified Control Hardware for Relative Addressing
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3830 86 03 LDAA #3 ; put number 3 in A
3832 20 02 BRA L ; skip to store

3834 86 04 LDAA #4 ; put number 4 in A
3836 7A 38 43 L: STAA $3843; store number in A

FIGURE 3.9. Program Segment Using Bra, Illustrating Position
Independence

the BNE instruction would still have the relative offset $20. If Z is 0 when
the instruction is executed, the program counter would be changed to $4020.
That would be the address of the instruction that had the label L. The program
would execute the same way whether it was stored at location $1000 or
$4000. This makes the program position independent.

Branching instructions all use relative addressing. For example, the
instruction BRA L for “branch always” to location L will cause the program
counter to be loaded with the address L. An example of a branch is illus-
trated in Figure 3.9. Observe that label L is 2 bytes below the end of the BRA
L instruction. The program counter PC has the address $3834 of the next
instruction, LDAA #4, when it is executing the BRA L instruction. The second
byte of the BRA L instruction, the offset, 2, is added to the program counter,
to make it $3836, and then the next byte is fetched.

The example in Figure 3.10 constantly flips bits in location 1. It might
be used in Chapter 11; location 1 is an output port, and this program segment
outputs a square wave on all the bits. The two’s-complement offset is nega-
tive because the branch is backwards. Observe that after BRA L is fetched,
the program counter is on location $3816; the offset $FB is —5, so the
program counter becomes $3811 after it is executed.

Many programmers have difficulty with relative branch instructions that
branch backwards. We recommend using sixteen s complement arithmetic to
determine the negative branch instruction displacement. The sixteen’s com-
plement is to hexadecimal numbers as the two’s complement is to binary
numbers. To illustrate this technique, the displacement used in the branch
instruction, the last instruction in the program in Figure 3.10, can be deter-
mined as follows. When the branch is executed, the program counter has the
value $3816, and we want to jump back to location $3811. The difference,
$3816 — $3811, is $05, so the displacement should be —$05. A safe way to
calculate the displacement is to convert to binary, negate, and then convert
to hexadecimal. Because $5 is 00000101, the two’s complement negative is
11111011. In hexadecimal, this is $FB. That is not hard to see, but binary

3810 87 CLRA ; clear A

3811 41 L: COMA ; invert bits

3812 5A 01 STAA $1 ; output to a port
3814 20 FB BRA L ; repeat forever

FIGURE 3.10. Program Segment to Put a Square Wave on an Output Port
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arithmetic gets rather tedious. A faster way takes the sixteen’s complement
of the hexadecimal number. Just subtract each digit from $F (15), digit by
digit, then add 1 to the whole thing. Then —$05 is ($F — 0),(8F = 5) + 1 or
$FA + 1, which is $FB. That is pretty easy!

If the relative offset is outside the 8-bit range, one uses the long branch
equivalent, LBRA L, which uses a 16-bit two’s-complement relative offset.

Program counter relative addressing can be used to read (constant)
data that should be stored with the program. Relative addressing can be
implemented using a 5-, 9-, or 16-bit signed relative offset. Nine-bit offset
relative addressing is denoted by the “<” before and ““, PCR” after the offset
and 16-bit offset by “>" symbol before and “, PCR” after the offset. (This
mode’s machine code uses a post byte because it is an index option.) For
example,

LDAA <L, PCR

can load any word into A that can be reached by adding a 9-bit signed number
to the program counter. (Recall that the PC is pointing to the next instruc-
tion just below the LDAA instruction when the effective address L is calcu-
lated.) The instruction

LDAA >L, PCR

can be used to access words that are farther away than —256 to +255 loca-
tions from the address of the next instruction; it adds a 16-bit offset to the
current value of the program counter to get the effective address. Although
the machine coding of relative addressed instructions is the same as that of
index addressed instructions, do not dwell too much on that similarity
because the offset put in the machine code is determined differently.

Program counter relative indirect addressing can be used to access loca-
tions such as I/O ports as in

LDAA [L, PCR]

Assuming that L is 18 bytes below this instruction, the machine code is
given by

SA6
SFB
$00
$12

where $A6 is the opcode byte for any LDAA index mode; the post byte $FB
indicates indirect index addressing with 16-bit offset, but with the program
counter used as the “index register” and the last 2 bytes are added to the
program counter. The indirect address ($12 in the example above) is in a
location relative to the program. If the program is loaded into a different
location, the offset $12 is still used to get the indirect address. Such use of
relative and indirect relative addressing lets the program have one location
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and only one location where a value is stored, so that a downloaded file can
insert the value in one place to run the program anywhere it is stored.

Branch and long branch instructions do not need the *“, PCR” symbol in
the instruction because they only use relative addressing with 16-bit relative
offsets. However, the BSR L, having an 8-bit offset, does not have a corre-
sponding long branch to subroutine. But JSR L, PCR is a 16-bit position
independent subroutine call that has the same effect as the missing LBSR L.

A 16-bit position independent indirect subroutine call, JSR [L, PCR],
can jump to a subroutine whose address is in a “jump table,” as discussed in
a problem at the end of this chapter. Such jump tables make it possible to
write parts of a long program in pieces called sections and compile and write
each section in EEPROM at different times. Jumps to subroutine in a dif-
ferent section can be made to go through a jump table rather than going
directly to the subroutine. Then when a section is rewritten and its subrou-
tines appear in different places, only that section’s jump table needs to be
rewritten, not all the code that jumps to subroutines in that section. The jump
table can be in EEPROM at the beginning of the section, or in RAM, to be
loaded at run time.

A program is not position independent if any instruction in it causes it to
do something different when the program is moved, intact, to a different loca-
tion. The only real test for a program’s position independence is to show that
it can be moved without changing its operation. One necessary condition,
however, is that all changes to the program counter be position independent,
and the use of branch instructions in place of jump instructions, or JMP and
JSR instructions with program counter relative addressing, will generally
make that possible. The relative addressing mode is generally used with data
that move with the program, such as constants that are on the same ROM as
the program, and with instructions that compute the address to jump to in a
manner to be introduced later. Listed with other instructions, then, the rela-
tive mode allows programs to be position independent and that may be very
important in a microcomputer that uses a lot of ROMs.

Stack Index Addressing, Reentrancy,
and Recursion

The stack pointer may be used with all the index addressing modes, but its
uses have special meaning. These uses correspond to pushing and pulling,
and they support reentrancy and recursion. Also, the index registers X and
Y may be used as auxiliary stack pointers. In this section we show these
variations of index addressing.

The instruction LDAA 1, SP+ is essentially the same as PULA because
both pull a byte from the (hardware) stack into accumulator A. Similarly, the
instruction LDD 2, SP+ is essentially the same as PULD; the instruction
STAA 1,-SP is essentially the same as PSHA; and the instruction STD 2,
—SP is essentially the same as PSHD. The differences between these pairs of
instructions are in their length and execution time and in the effect they have
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on condition codes. The instructions PULA, PSHA, PULD, and PSHD are
usually preferred because they are faster and shorter, but the instructions
LDAA 1,SP+, STD 2,—SP, and so on may be used if pulling or pushing
needs to set the condition codes for a future conditional branch instruction.

Moreover, autoincrement addressing can be used with other instructions
to pull a byte or 16-bit word and simultaneously use the pulled data in an
instruction. The sequence

PSHB
ADDA 1, SP+

is often used in code generated by C and C++ compilers to add accumula-
tor B to accumulator A (equivalent to the simpler instruction ABA). However,
this push-and-pull-into-an-instruction technique can be used with other
instructions like ANDA and ADDD. The sequence

PSHX
ADDD 2, SP+

is often used in code generated by C and C++ compilers to add index regis-
ter X to accumulator D.

The hardware stack, pointed to by SP, is useful for holding a subroutine’s
arguments and local variables. This will be discussed at the end of this
section. However, because return addresses are saved on and restored from
the hardware stack, we sometimes need a stack that is not the same as that
hardware stack. For instance, we may push data in a subroutine, then return
to the calling routine to pull the data. If we use the hardware stack, data
pushed in the subroutine need to be pulled before the subroutine is exited,
or those data will be pulled by the RTS instruction, rather than by the sub-
routine’s return address. A second stack can be implemented using an index
register such as Y. If index register Y is also needed for other purposes in
the program, this second stack pointer can be saved and restored to make it
available only when the second stack is being accessed.

Figure 3.11 illustrates that a second auxiliary stack may use the same
buffer as the hardware stack. The hardware stack pointer SP is initially loaded

$4000
hardware stack
SP ->
push
+ * pull
* * pull
push
Y ->
auxiliary stack
$3F7F

FIGURE 3.11. A Stack Buffer for Two Stacks
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3803 04 44 09 FACT: TBEQ D,FAC1 ; 1f in zero, out 1
3806 3B PSHD ; save parameter on stack
3807 83 00 01 SUBD #1 ; reduce by one

380A 07 F7 BSR FACT ; compute (n-1)!

380C 31 PULY ; restore parameter on stack
380D 13 EMUL ; multiply n * (n-1)!
380E 3D RTS ; return to caller

380F CC 00 01 FAC1l: LDD #1 ; generate 1, which is 0!
3812 3D RTS ; return to caller

FIGURE 3.12. Subroutine to Compute n! Recursively

with the address of (one past) the high address of the buffer, while the second
auxiliary stack pointer (Y) is loaded with one less than the address of the
low end of the same stack buffer. The second stack pointer is initialized as
LDY #$3F7F. Accumulator A can be pushed using STAA 1, +Y. A byte can
be pulled into accumulator A using LDAA 1, Y—. A 16-bit word in D can be
pushed using STD 2, +Y and pulled using LDD 2, Y—. Observe that autoin-
crementing and autodecrementing are reversed compared to pushing and
pulling on the hardware stack, because, as seen in Figure 3.11, their direc-
tions of building the stack are reversed.

The advantage of having the second stack in the same buffer area as the
hardware stack is that when one stack utilizes little of the buffer area, the
other stack can use more of the buffer and vice versa. You only have to allo-
cate enough buffer storage for the worst-case sum of the stack sizes, whereas
if each stack had a separate buffer, each buffer would have to be larger than
the worst case size of its own stack.

A recursive subroutine is one that calls itself. The procedure to calculate
n factorial, denoted #n!, is recursive; for any positive nonzero integer #, if n
is one, n! is 1; otherwise n! is (n — 1)! [*] n. The subroutine in Figure 3.12
calculates »!; upon entry, n is in accumulator D, and upon exit, #! is in accu-
mulator D.

Although recursive subroutines implement a scientist’s induction mech-
anism, they are not always useful. Consider the alternative in Figure 3.13
that uses a loop. The alternative is significantly more efficient. The recursive
solution uses the hardware stack as a counter, pushing a 2-byte return address

3803 B7 45 FACT: TFR D,X ; put number in D, X
3805 20 03 BRA FAC2 ; go to end of loop

3807 B7 56 FAC1l: TFR X,Y ; copy iteration #

3809 13 EMUL ; multiply

380A 04 35 FA FAC2: DBNE X,FAC1l ; repeat until count = 0
380D 3D RTS ; return to caller

FIGURE 3.13. Subroutine to Compute #! in a Loop
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3803 86 05 CLEAR: LDAA #5 ; put number 5 in A
3805 7A 38 22 STAA $3822 ; store in fixed loc
3808 CE 38 24 LDX #53824; set pointer

380B 69 30 CLR1: CLR 1,X+ ; clear byte

380D 73 38 22 DEC $3822 ; decrement location
3810 26 F9 BNE CLR1 ; until it = zero
3812 3D RTS ; return to caller

FIGURE 3.14. Nonreentrant Subroutine to Clear Memory

and 2-byte saved parameter value each time it calls itself to reduce its param-
eter by 1. If n is 5, this subroutine uses up 20 bytes of stack storage. This is
not efficient. However, there are efficient recursive subroutines, especially
for following linked list data structures, as we will see in Chapter 10.

A subroutine is reentrant if it can be stopped, for instance, because of an
interrupt and then resumed, and it will get the same result as if it were not
stopped, even though the interrupt handler might call this subroutine during
its execution. Also, a time-sharing computer uses interrupts to switch
between tasks or threads that share a computer. Reentrant subroutines can be
used by each task or thread, without concern that, when a thread or task is
stopped during execution of the subroutine, another thread will execute the
subroutine. The subroutine in Figure 3.14 is nonreentrant and following it is
a reentrant subroutine; both clear 5 bytes beginning at location $3824.

This program fails to work correctly if it is interrupted after the STAA
instruction is executed and before the RTS instruction is executed and the
interrupt handler calls this subroutine. The second call to this subroutine will
wipe out the counter at location $3822 because the second call will also use
this same location and will leave it cleared when the first call to this subrou-
tine resumes execution. The first call to this subroutine will not work the same
way if the interrupt occurs as it does if the interrupt does not occur. However,
the subroutine in Figure 3.15 will work correctly if it is similarly interrupted.

The key idea behind both recursion and reentrancy is to keep data on the
stack. The stack provides new storage locations for each instantiation of the
subroutine to keep its variables separate from the variables of other instan-
tiations, so they are not destroyed.

3803 86 05 CLEAR: LDAA #5 ; put number 5 in A
3805 36 PSHA ; save on the hdwr stack

3806 CE 38 24 LDX #$3824; set pointer to begin
3809 69 30 CLR1: CLR 1,X+ ; clear byte pointed to
380A 63 80 DEC 0,SP ; decrement byte on stack
380C 26 FA BNE CLR1 ; until it becomes zero
380E 1B 81 LEAS 1,SP ; remove item on stack
3810 3D RTS ; return to caller

FIGURE 3.15. Reentrant Subroutine to Clear Memory
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Note that the decrement instruction accesses the counter on the stack
without pulling the byte. If three 1-byte items were pushed on the stack, the
instruction LDAA 2, SP will read into accumulator A the first byte pushed
without removing it from the stack. In general, items can be pushed on the
stack at the beginning of a procedure and pulled off at the end of the proce-
dure. Within the procedure the items can be read and written using offsets
from the stack pointer.

The concept of storing data on the stack leads to nested allocation, access,
and deallocation of local variables. Nested segments are commonly used in
C and C++ programs to call procedures; the outer segment holds parameters
passed to the procedure, and the inner segment stores some of the local vari-
ables of a procedure. Further, C and C++ programs nest segments within a
procedure to hold temporary variables needed to evaluate a C statement. This
concept is fully explained in terms of a program trace, which is introduced
first. Then we consider a simple trace, and then a nested trace.

One can record a program’s instructions in the exact order in which they
are executed to obtain a trace. Simple program segments without branching
statements are the same as their traces. If a program has a loop that is executed
five times, the trace has five copies of the instruction sequence in the loop.

In a program trace, one can allocate local variables by pushing items on
the stack, and one can deallocate them by pulling them from the stack, as
already illustrated in this section. Once allocated, the data on the stack can
be accessed by reading or writing the contents as discussed above. More-
over, one can allocate several bytes in one instruction, using the LEAS
instruction. For instance, to allocate 5 bytes, execute LEAS -5, SP. By
moving the stack pointer SP five locations toward lower memory, 5 bytes of
data can be stored in these bytes that were skipped over. The LEAS instruc-
tion can deallocate several words at a time. To deallocate 5 bytes, execute
the instruction LEAS 5, SP. A stack is said to be balanced in a simple trace,
which has no alternative branches in it; thus, it is linear if the number of allo-
cated bytes equals the number of deallocated bytes and at no step in the trace,
between allocation and deallocation, are more bytes deallocated than were
allocated. If, because of conditional branches, there are several possible
simple traces to take from when space has been allocated to a given point in
the program, the stack is balanced at that point if it is balanced in every pos-
sible simple trace to that point. To balance the stack means to deallocate all
the bytes that have been allocated, so that it becomes balanced. We usually
allocate space for variables at the beginning of a subroutine and deallocate
the space just before we exit the subroutine to balance the stack, but we can
have program segments that are not subroutines in which space is allocated
at the beginning of the program segment and deallocated at the end of that
program segment.

It is possible for a program to have a segment that has space allocated at
its beginning and deallocated at its end and to have within it another segment
that has space allocated at its beginning and deallocated at its end. This is
called a nested allocated segment. Figure 3.16a illustrates a program that has
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low address
LEAS -3,SP allocate 3 bytes
co SP-> A
LDAA #5 generate constant 5
STAA 0,SP store in allocated inner
o segment
LEAS -2,SP allocate 2 bytes
ILDAA 2,SP read out the byte 5
e SP-> Stack
LEAS -4,SP allocate 4 bytes middle
tee segment
ILDAA 6,SP read out the byte 5
ce SP-> |data byte
LEAS 4,SP deallocate 4 bytes I
‘.. outer
LEAS 2,SP deallocate 2 bytes segment
LEAS 3,SP deallocate 3 bytes

high address

a. Program Segment b. Stack allocation

FIGURE 3.16. A Stack Buffer for Nested Segments

a nested segment in which the outer segment allocates 3 bytes, an inner
segment allocates 2 bytes, and an inner segment of it allocates another 4
bytes. The outer segment writes the number 5 in its lowest addressed byte,
the next inner segment reads this byte into accumulator A, and the innermost
segment reads this byte into accumulator A. Note that different offsets are
used with the stack pointer to access the same byte of data, because of inter-
vening allocations, but the outer data are available to each inner program
segment, even though they are nested.

We now tie together some of the ideas that were introduced above using
some examples. These examples give you some experience with addressing
modes and loops.

One of the most common operations is to clear a block of memory. The
program segment in Figure 3.17 clears 39 bytes starting at location $3910.
This example can be sped up by using STD 2, X+ instead of CLR 1, X+,
assuming accumulator D is zero. Another common operation is to move a
block of data from one area to another. The program segment in Figure 3.18

3820 CC 00 27 LDD #39 ; put number count in D
3823 CE 39 10 LDX #$3910 ; put start address in X
3826 69 30 Ll: CLR 1,X+ ; clear byte, autoinc.
3828 04 34 FB DBNE D, L1 ; count down and loop

FIGURE 3.17. Program Segment to Clear a Block of Memory
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3840 CC 00 OF LDD #15 ; put count in D

3843 CE 39 30 LDX #$3930; put source address in X
3846 CD 39 21 LDY #$3921; put dest. address in Y
3849 18 OA 30 70 L: MOVB 1,X+,1,Y+ ; move byte, autoinc.
384D 04 34 F9 DBNE D,L ; count down and loop

FIGURE 3.18. Program Segment to Move a Block of Memory

moves 15 bytes from a block starting at location $3930 to a block starting
at location $3921. Alternatively, MOVW moves data twice as fast as MOVB.

We now extend an example started in Chapter 1. Suppose that we want
to add N 1-byte numbers that are stored consecutively beginning in location
$3843. The value of N is stored in location $3841, and the result is to be
placed in location $3842. The program segment in Figure 3.19 does this for
either unsigned or signed (two’s-complement) numbers. If the numbers are
unsigned, the result will be correct as long as there is no unsigned overflow;,
that is, the sum can be expressed with an 8-bit unsigned number. If the
numbers are signed, the result will likewise be correct as long as there is no
signed overflow; that is, the result can be expressed with an 8-bit two’s-
complement number. Note that accumulator B is initially loaded with the
number of times that the loop is to be executed. This loop counter (accu-
mulator B in this case) is decremented by DBNE, which branches back to the
location L if accumulator B is greater than zero after it is decremented. The
loop from location L to the DBNE instruction is repeated N times, where N
is the initial value in accumulator B.

In the program in Figure 3.19, register A is used to accumulate the result,
register B holds the number of remaining bytes to be added, and the index
register X contains the address that points to the next byte to be added.

We extend the multiply-and-accumulate example of §2.7 in Chapter 2 to
evaluate the expression, X (B;*C;, where a vector of five signed 16-bit
numbers B;are at $3914, and a vector of five signed 16-bit numbers C;is at
$391E. This expression is called the inner product of the vectors B and C.
The two vectors B and C can have as many elements as you want, but the
two vectors have the same number of elements. This expression is widely
used in signal processing and data compression (Figure 3.20). Note that
EMACS only uses pointer addressing, so the index registers X and Y must be
moved using LEA instructions to pick up the elements B; and C;. This pro-

3820 CE 38 43 ILDX #$3843 ; point to first number
3823 F6 38 41 LDAB $3841 ; get count

3825 87 CLRA ; initialize sum

3826 AB 30 L: ADDA 1,X+ ; add 2nd byte

3829 04 31 FB DBNE B, L ; count down and loop
382B 7A 38 42 STAA $3842 ; store result

FIGURE 3.19. Program Segment to Add Vector Elements
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3820 CC 00 05 LDD #5 ; get number of elements
3823 CE 39 14 LDX #$3914; get address of 1st

3826 CD 39 1E LDY #$391e; get address of 2nd

3829 18 12 39 10 L: EMACS $3910; multiply and accumulate
382D 1A 02 LEAX 2,X ; move pointer

382F 19 42 LEAY 2,Y ; move pointer

3831 04 34 F5 DBNE D,L ; count down, loop til 0

FIGURE 3.20. Program Segment to Compute an Inner Product

cedure is very similar to the WAV instruction but is for 16-bit elements
whereas WAV is for 8-bit elements.

This section illustrates several examples of the great value of the syner-
getic combination of autoincrement index addressing and counting using the
DBNE instruction. The combination of accumulator index addressing and
counting using the DBNE instruction, whose counter register is the accumu-
lator used with the index, is also widely used. We seem to run into such a
combination in every other program that we write.

Architectural Notions of Addressing

The particular computer that we are studying, the 6812, is a one-address com-
puter. Have you thought, perhaps, that a computer that has instructions with
two addresses may be better than a one-address computer? In some cases, it
would be, and a three-address computer would be even better, but in other
cases, it would not. We will compare the static efficiency of one-address and
three-address computers to help you look beyond the particular machine that
we are studying to understand the general principle of addressing and at the
same time to reassure you that the 6812 is a good machine for most appli-
cations. Next, we will review the detailed fetch/execute cycle to expose some
possible ambiguities in the addressing operation of the 6812. This may help
you to understand some very useful addressing techniques. Although this dis-
cussion does not show you how to apply specific addressing modes as the
previous section did, it will further your general understanding of address-
ing and programming.

We might want to add the contents of location 511 to the contents of 512
and put the result into 513. In the 6812, we would execute the program
segment

LDAA 511
ADDA 512
STAA 513

The same effect could be obtained in a different computer that had a three-
address instruction. The instruction

ADD 511,512,513

would add the contents of location 511 to that of 512, putting the result into
513. The 6812 program segment used 9 bytes, whereas this three-address
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machine might use only 7 bytes. The three-address machine is more efficient
for this example. However, if we want to add the numbers in locations 511
through 515 and put the result in 516, the three-address machine must use
something like

ADD 511,512,516
ADD 513,516,516
ADD 514,516,516
ADD 515,516,516

whereas the one-address 6812 uses

LDAA 511
ADDA 512
ADDA 513
ADDA 514
ADD 515

STAA 516

A comparison now shows that the three-address machine takes 28 bytes
while the one-address 6812 takes 18. Of course, this computation is very
inefficient for the three-address machine, but it may represent a more typical
computation than the one that the particular instruction directly handles.

In §12.5, we will see a three-address architecture in the fast and power-
ful 500 series of Motorola microcomputers. The three-address architecture
is actually the method of choice for these powerful microcomputers because
this architecture permits several instructions to be executed in parallel if the
instructions’ registers are mutually distinct. Nevertheless, there are applica-
tions in which the three-address architecture is justifiable based on static or
dynamic efficiency.

You may have already seen confusing addressing modes. If you have not
had this experience yet, we would like to offer the following discussion to
help you when you do. Consider the instruction

LDX 0, X

that loads a register using an address calculated using the same register. Is
this like a definition of a term that uses the term to define itself? No, it is not.
It is quite legal and very useful in handling data structures such as linked lists,
which you will study in Chapter 10. Let us review the fetch/execute cycle
again, with this particular instruction as an example. First, the opcode and
then the post byte are fetched. The opcode is decoded, and then the address
is calculated. Predecrementing, if needed, is done at this point. Finally, the
operation is carried out. Note that the address is calculated using the o/d value
in the index register X. Then the two words recalled from that address are put
into the index register to become the new value of the register. For example,
if X contained 100, location 100 contained 0, and location 101 contained 45,
then, after the instruction is executed, the X register contains 45.
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There are some further ambiguities with the last load instruction and the
corresponding store instruction when postincrementing is used. For example,
with the instruction

LDX 2, X+

it is not clear whether the load is executed before the + or after the + . Note that
if the latter is true, the + would have no effect on the instruction. Indeed, in the
6812, the + is carried out before the operation; in this case a load, so that

LDX 2, X+
is the same as
LDX 2, X—

For any load instruction involving the same index register for the location of
the operand and the location of the result, the general rule is that postincre-
menting has no effect on the instruction. However, the fact that the postincre-
menting is carried out before the operation produces an unexpected result in
the store counterpart of the load instruction just discussed. For example, with

STX 2, X+

suppose that X initially contains 373. After the instruction is executed, one
will find that X becomes 375, and 375 has been stored in locations 373 and
374. We conclude this discussion by noting that predecrementing has none
of these ambiguities. For example, if X initially contains 373 before the
instruction

STX 2,-X

is executed, then 371 will be stored in locations 371 and 372.

There is often considerable confusion about LDX (direct), LDX #, and
LEAX. Consider the following examples, assuming location $3820 stores
$1234.

LDX $3820

will load $1234 into X. Direct addressing loads the data located at the instruc-
tion’s address. However, immediate addressing loads part of the instruction
into the register, as

LDX #$3820

will load $3820 into X. Sometimes, immediate addressing is used to load an
address into memory so that pointer addressing (index addressing with zero
offset) can access the data:

LDX #$3820
LDX 0,X

will eventually load $1234 into X. Also, the LEAX instruction loads the effec-
tive address into an index register. When it is used with program counter rel-
ative addressing, it has the same effect as LDX # but is position independent.
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LEAX $3820, PCR
LDX 0,X

will eventually load $1234 into X. Howver, LEAX can be used with other
addressing modes for other effects; for instance, LEAX 5, X adds 5 to X, and
LEAX D, X adds D to X.

Summary

In this chapter we looked at the addressing modes in the 6812. We saw four
general themes: the use of page zero, the use of index registers, the use of
relative addressing for position independence, and the use of stack address-
ing for reentrancy and recursion.

With the first theme, we saw that inherent and page zero addressing are
useful for improving static and dynamic efficiency over direct addressing.
Put the most commonly accessed variables in registers, using inherent
addressing to access them, and put the next most common variables in page
zero, using page zero addressing to access them.

For the second theme, we saw that index registers may be used efficiently
to handle addresses that require several accesses and that index registers may
be useful for data structure accesses. Index addressing is the fastest and short-
est index addressing option and index addressing using 5-bit offsets is avail-
able for locations close to that pointed to by the register, whereas 16-bit
offsets are available for all accesses. We also saw that the accumulators may
be used, in lieu of an offset, to combine a variable in an index register with
a variable in an accumulator to get the effective address. Index registers and
their addressing modes provide a lot of power, which we explore further
throughout this book.

With the third theme, the program counter is used as a kind of index reg-
ister and the same steps used to carry out index addressing are used to carry
out relative addressing using the program counter in place of an index reg-
ister. Although the mechanics are the same, the effect is quite different, and
the representation of the address is different. In particular, the address in the
instruction using relative addressing is the effective address, not an offset,
whereas the machine code for the instruction uses a relative offset, which is
the amount that must be added to the program counter to get the effective
address. This mode is useful in making programs position independent, so
that they may be mass produced in ROMs and many different systems can
use the same ROM.

The last theme showed how the stack pointer can be used with an offset
to access local variables and parameters passed on the stack. The reentrancy
and recursion techniques are shown to be easily implemented using stack
pointer addressing.

In this chapter we covered the rich collection of addressing modes in the
6812. These correspond to the modes in most other microcomputers and to
most of the useful modes in any computer. Now that you know them, you
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should be prepared to use them with any instruction in the 6812 (where they
are permitted) as we discuss these instructions in the next chapter. You should
know which mode to use, based on our study of the themes above so that
you can produce shorter, faster, and clearer programs.

Do You Know These Terms?
See the end of Chapter I for instructions.

addressing post byte recursive subroutine
addressing modes offset reentrant subroutine
accessed autoincrement nested allocation
inherent autodecrement unsigned overflow
implied indirect addressing signed overflow
self-modifying code position independent inner product
page registers program counter three-address
page zero mode relative instruction
pointer register relative jump vector
index register relative offset
index addressing sixteen’s-complement

» PROBLEMS

1. Identify all instructions that have a direct mode of addressing but do not
have a page zero mode of addressing.

2. Identify all instructions that have both direct and page zero addressing,
in which the direct addressing opcode byte is the page zero addressing
opcode byte plus $20. Which instructions have both direct and page zero
addressing, in which the direct addressing opcode byte is not the page
zero addressing opcode byte plus $20?

3. We often write a constant to an output port, which is a byte on page zero.
Compare the static and dynamic efficiency, and clarity, of the MOVB
#$12,30034 instruction to the instruction sequence LDAA #S12
STAA $34. When should you use the MOVB instruction, and when
should you use the LDAA — STAA sequence?

4. Suppose that we have a vector of I-byte signed numbers whose first
byte is at location $3840 and whose length is at location $383f and is
less than 32 bytes. Write a shortest program to search through the vector,
using autoincrement addressing, putting all those numbers that are
negative and even into a vector beginning at location $3860, keeping
the order of the numbers in the second vector the same as that in the
original vector, and putting the length of the new vector in location
$385f.
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Suppose that we have N 16-bit two’s-complement numbers stored begin-
ning at location $3850. The 2 bytes of each number are stored consec-
utively, high byte first. Write a shortest program, using autoincrement
addressing, that puts the maximum number in locations $384e and
$384f, high byte first. Do not use “special” instructions. The variable N
is stored in location $384d. How would your program change if the
numbers were unsigned?

Write a shortest program that adds a 3-byte number at locations $3832
through $3834 to a 3-byte number at $3835 through $3837, putting the
sum in $3838 through $383a. Each number is stored high byte first and
other bytes at higher addresses. When the program finishes, condition
code bits Z, N, V, and C should be set correctly. Hint: Use just one index
register to read in a byte from each number and also write out a byte,
and obtain the final condition code Z by ANDing Z bits obtained after
each add.

A 10-element 16-bit per element vector at location $3844 is initially
clear. Write a shortest program segment that increments the vector
element whose index is in accumulator B and that is a positive integer
less than 10. After the program segment is executed several times, each
vector element has a “frequency-of-occurrence” of the index. This vector
is called a histogram.

Write a shortest program segment that sets a bit in a bit vector having
256 bits. Location $3856 and the following 7 bytes contain $80, $40,
$20, $10, 8, 4, 2, and 1. Index register X points to the byte that contains
the leftmost (lowest-numbered) bit of the bit vector. Bits are numbered
consecutively from 0, the sign bit of the byte pointed to by X, toward
less significant bits in that byte, and then toward bytes at consecutively
higher addresses. If accumulator A is a bit number n, this program
segment sets bit » in the bit vector pointed to by X.

Write a shortest program segment, which is to be executed only once,
that adds a 24-bit number at locations $3811 to $3813 to a 24-bit number
at $3814 to $3816 to get a 24-bit result at $3817 to $3819 but that does
not use any index registers; it uses only self-modifying code. Each
address’s low byte is decremented after each time it is used.

Write a shortest program segment that adds a 24-bit number to a 24-bit
number to get a 24-bit result but that does not use any index register,
only indirect addressing. Use locations $3811 and $3812 to hold the
pointer to the first 3-byte number (which is the address of its least sig-
nificant byte), locations $3813 and $3814 to hold the pointer to the
second number (which is the address of its least significant byte), and
locations $3815 and $3816 to hold the pointer to the result (which is
the address of its least significant byte). Assume that no byte of any of
the 24-bit numbers spans a page discontinuity, where the low byte of the
address is zero. This program segment need be executed only once.
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11.

12.

13.

14.

15.

16.

Suppose that Y = 613 and X = 918 before each of the following instruc-
tions is executed. Give the contents of the registers X and Y after each
is executed, in decimal. Then explain what is stored where if STY 2, —
Y is executed with Y = 613.

(a) LEAX 2,-Y
(b) LEAX 2,-X
(c) LEAX 2, Y+

Give the shortest 6812 instruction sequences that carry out the same
operation as the following nonexistent 6812 instructions. Condition
codes need not be correctly set.

(a) ARX
(b) ADX
(c) LSLX

A section is a collection of 7 subroutines that are assembled together and
written together in a PROM, EPROM, or EEPROM. The first 2 n bytes
of storage for each section contain the direct address of each subroutine
in the section, in a jump vector. The first 2 bytes are the address of the
first subroutine, and so on. Suppose section 1 begins at $F000, so sub-
routine 3’s address would be in $F006. In another section, a call to sub-
routine m in section 1, puts the 16-bit number from location 2 m + $f000
into the program counter. Show the machine code for parts (a) and (b).

(a) Write a single instruction at location $d402 to call subroutine 3.

(b) How do we fill the “jump table” at location $FO00 with addresses
of subroutines at run time (assuming the jump table is in RAM)? In
particular, if the subroutine at location f is a label at the beginning
of the third subroutine whose address is at location $F006, write a
program sequence to generate and write this address in the vector.

(c) How does this capability simplify the debugging of large programs?

The jump vector of problem 13 is to be made position independent. Each
element is a relative offset to the subroutine. Repeat parts (a), (b), and
(c) of problem 15 for this jump vector. Write parts (a) and (b) as a
program segment, where X points to the jump table’s beginning.

Write a shortest program segment beginning at $3866 to call subroutine
PRINT at $3852 with the address of the character string to be printed in
index register X, first for a string stored at location $3876 and then for
one at $3893. However, the calling program segment, the subroutines,
and the strings may be in a single ROM that can be installed anywhere
in memory. They are in locations fixed relatively with respect to each
other (position independence). Show your machine code.

Write a shortest program segment to put square waves on each output
port bit at location 0 so bit i’s square wave’s period is 2’ times the period
of bit 0’s square wave.

91
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17.

18.

19.

20.

21.

22.

23.

24.
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Write a shortest program segment to add index register X to accumula-
tor D, transferring the data on the auxiliary stack pointed to by Y, as
shown in Figure 3.11.

Write a shortest program segment to exclusive-OR accumulator A into
accumulator B, transferring the data on the auxiliary stack pointed to by
Y, as shown in Figure 3.11.

The Fibbonacci number of 0, F(0) is 1, and F(1) is 1; otherwise F(i) is
Fi — 1) + Fi - 2) for any positive integer i. Write a subroutine FIB
that computes the Fibbonacci number; the input 7 is in index register X
and the result F (i) is left in accumulator D.

(a) Write a recursive subroutine.
(b) Write a nonrecursive (loop) subroutine.

Write a subroutine POWER, with input signed number # in accumulator
D and unsigned number m in index register X that computes #n” leaving
the result in accumulator D.

(a) Write a recursive subroutine.
(b) Write a nonrecursive (loop) subroutine.

In Figure 3.16a, the instruction MOVW #$18bc, 1, SP writes to a local
variable on the stack in the outer loop. Write an instruction to load this
value into index register X, which is just inside the next inner loop,
where the instruction LDAA 2, SP is. Write an instruction to load this
value into index register X, which is just inside the innermost loop,
where the instruction LDAA 6, SP is.

Assume that an overflow error can occur in an ADD instruction in
the innermost loop in Figure 3.16a, just after the instruction LDAA
6, SP. The following instruction BVS L, after the ADD instruction, will
branch to location L. Write an instruction at this location L to deallocate
stacked local variables such that the stack pointer will be exactly where
it was before the first instruction of this figure, LEAS —3, SP, was
executed.

Write a shortest subroutine that compares two n-character null (0) ter-
minated ASCII character strings, s1 and s2, which returns a one in accu-
mulator B if the strings are the same and zero otherwise. Initially, X
points to the first member of s1 (having the lowest address), Y points to
the first member of s2, and » is in accumulator A.

A palindrome is a sequence of letters that is identical to the reverse-order
sequence. Another way of saying this, the word is spelled the same as
it is when spelled backwards. For instance ABBA is a palindrome, and
so is ABCDCBA, but ABCABC is not. Evidently, palindromes are very
important in genome studies in microbiology because palindromes of
nucleonic acids are what attract certain chemical substances and cause
them to combine to form new material for the cell. Assume that X points
to the first letter of the sequence and D contains the number of charac-
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SS Number Age Sex Phone Number
653931754 19 M 555-1000
546539317 18 F 555-8720
<- 32 bits ->
Qmmmmmmmmm i mm 8 bytes------------------- >

FIGURE 3.21. A Table

ters in the sequence. Write a subroutine that returns with a “1” in the
carry condition code bit if the sequence is a palindrome, and with a “0”
if it is not.

Figure 3.21 shows a table where the first column is a 32-bit Social Secu-
rity number, other columns contain information such as age, and each
row, representing a person, is 8 bytes wide. Data for a row are stored in
consecutive bytes. Write a shortest program segment to search this table
for a particular Social Security number whose high 16 bits are in index
register Y, whose low 16 bits are in accumulator D, and for which X
contains the address of the first row minus 8. Assume that a matching
Social Security number will be found. Return with X pointing to the
beginning of its row.
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The HCS12 die. Since the MC9S12C32 is created from a Verilog (software)
description, the MPU logic is not organized in well-defined blocks, as the
MC68HC812A4 and MC68HC912B32 were (see end of Chapter 1 and end
of Chapter 2), but rather is diffused. The Verilog compiler puts MPU logic
(located in the center and bottom left) wherever it finds some space for it,
rather than in a well-defined rectangle.



CHAPTER

Assembly-
Language
Programming

In the examples presented so far, you have probably noticed some real pro-
gramming inconveniences, such as finding the operation code bytes, com-
puting the addresses (particularly relative addresses), and associating the
variable names with their memory locations. Furthermore, if you change the
program, much of this routine work may have to be done again. What we
have been doing is sometimes called hand assembly, in that we generate all
of the machine code ourselves. Certainly, hand assembly is appropriate to
the understanding of computer fundamentals. Beyond this we need to know
hand assembly to remove the errors without reassembly. In this chapter
we study the assembler and the skill of assembling programs using the
computer.

Before general use of C and C++ compilers in microcontrollers, most
programs for them were written in assembly language. More knowledge of
assembly language was needed than is needed now. But now the program-
mer needs only to know how to read an assembly-language listing of code
written by a compiler and how to insert critical assembly-language state-
ments in a C or C++ program. This chapter discusses critical assembler con-
cepts that a programmer writing in C and C++ must know. The next chapter
will delve deeper into assembly-language concepts that enable the program-
mer to write large assembly-language programs.

An assembler is a program someone else has written that will help us
write our own programs. We describe this program by how it handles a line
of input data. The assembler is given a sequence of ASCII characters. (Table
4.1 is the table of ASCII characters.) The sequence of characters, from one
carriage return to the next, is a line of assembly-language code or an
assembly-language statement. For example,

(space) LDAA (space) #$10 (carriage return) (1)

would be stored as source code in memory for the assembler as

95
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$20
$4C
$44
$41
$41
$20
$23
$24
$31
$30
S0D

The assembler outputs the machine code for each line of assembly-language
code. For example, for line (1), the assembler would output the bytes $86
and $10, the opcode byte and immediate operand of (1), and their locations.
The machine code output by the assembler for an assembly-language
program is frequently called the object code. The assembler also outputs a
listing of the program, which prints each assembly-language statement and
the hexadecimal machine code that it generates. The assembler listing also
indicates any errors that it can detect (assembly errors). This listing of errors
is a great benefit, because the assembler program tells you exactly what is
wrong, and you do not have to run the program to detect these errors one at
a time as you do with more subtle bugs. If you input an assembly-language
program to an assembler, the assembler will output the hexadecimal machine

Table 4.1 ASCII Codes

00 10 20 30 40 50 60 70

0 0’ v 0 @ P = o)
1 ! 1 A Q a q
2 ” 2 B R b r
3 # 3 ¢ S @ s
4 $ 4 D T d t
5 % 5 E v) e u
6 & 6 F v f v
7 ! 7 G W g w
8 ( 8 H X h x
9 ) 9 I Y i vy
A V\m * J Z j 7
B 4F 8 K [ k {
¢ "\ £’ , < L \ 1 |
D Y\ — = M ] m }
E 5 > N A n =
F / ? ¢) _ o
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code, or object code, that you would have generated by hand. An assembler
is a great tool to help you write your programs, and you will use it most of
the time from now on.

In this chapter you will look at an example to see how an assembly-
language program and assembler listing are organized. Then you will look
at assembler directives, which provide the assembler with information about
the data structure and the location of the instruction sequence but do not gen-
erate instructions for the computer in machine code. You will see some exam-
ples that show the power of these directives. The main discussion will focus
on the free demo Metrowerks assembler provided with this book.

At the end of this chapter, you should be prepared to write programs on
the order of 100 assembly-language lines. You should be able to use an
assembler to translate any program into machine code, and you should under-
stand how the assembler works. Although you may not be able to understand
how to write an assembler, you will be prepared from now on to use an
assembler as a tool to help you write your programs.

Introductory Example and Assembler Printout

We now consider a simple example to introduce you to assembly-language
programs. Consider a program that obtains the maximum of a sequence of
numbers. We will assume that this sequence consists of 16-bit unsigned
numbers stored consecutively in memory, high byte first for each number.
This data structure is called a vector or (one-dimensional) array. The name
of the vector will be the location of the first byte of the vector, so that the
high byte of the ith number in the vector (1 =0, 1, 2,...) can be found by
adding 2#i to the vector name. Suppose then that Z is a vector of four 16-
bit two’s-complement numbers beginning in location $386a with N stored in
location $3868. The ith number will be denoted Z(i) for i = 0 through N —
1. We want a program that finds the maximum of these numbers, putting it
in locations $3868 and $3869.

One possible program for this, following the style of previous examples,
is shown in Figure 4.1. We have arbitrarily started the program at address
$389C.

Looking at the preceding program, we certainly would like to use just
the mnemonics column with the variable addresses and the labels for the

389C CE 38 6A LDX #$386A ;point X to the vector Z
389F CD 00 03 LDY #3 ; set count

38A2 EC 31 LDD 2, X+ ; get first element

38A4 18 1A 31 L: EMAXD 2,X+ ;get max with next element
38A7 04 36 FA DBNE Y, L ; decrement, loop

38AA 7C 38 68 STD $3868 ; store answer in result
38AD 20 FE BRA * ; halt

FIGURE 4.1. Program MAX
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ORG $3868
N: EQU 3
RESULT: DS.B 2
Z: DS.B 50
*
LDX #Z ; Point X to the vector Z
LDY #N ; get count
LDD 2, X+ ; Z(0) into D
LOOP: EMAXD 2,X+ ; D-Z(1)
DBNE Y,LOOP ;Another number?
STD RESULT ; Store result
BRA * ; Halt

FIGURE 4.2. Assembler Source Code for the Program MAX

branches and let the assembler generate the other two columns; that is, do
what we have been doing by hand. We would also like to be able to use
labels, also called symbolic addresses (or just symbols) for the memory loca-
tions that hold the values of variables. The meaning of symbolic addresses
is explored in greater detail in the next chapter. We use them in this section
to get the main idea (they are used before dissecting them carefully). The
use of symbolic addresses allows program segment (2) to be replaced by
program segment (3).

LDX #$386A

STD $3868 @)
LDX #Z
STD RESULT (3)

Program segment (3) is clearer than program segment (2). An assembly-
language source code for the program in Figure 4.1 is shown in Figure 4.2.

Putting this assembly-language program into the assembler yields the
output listing shown in Figure 4.3. Although some new mnemonics have
crept in, we can nevertheless see that we do not have to refer to actual
addresses, only labels. We can see that we have not had to calculate relative
offsets for the branching instructions, and we have not had to find memory
locations or machine code. We now look into some of the details.

1 1 0000 ORG  $3868

2 2 3868 0000 0003 N: EQU 3

3 3 3868 RESULT: DS.B 2

4 4 386A Z: DS.B 50

5 5 389C CE386A LDX #Z ; Point X to Z
6 6 389F CD0003 LDY #N ; get count

7 7 38A2 EC31 LDD  2,X+ ; Z(0) into D
8 8 38A4 181A31 LOOP: EMAXD 2,X+ ;D-Z(i)

9 9 38A7 0436FA DBNE Y,LOOP ; Another number?
10 10 38AA 7C3868 STD  RESULT ; Store result
11 11 38AD 00 BRA * ; Halt

FIGURE 4.3. Assembler Listing for the Program MAX
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An assembly-language source statement takes the following form, where
the fields, which are groups of consecutive characters, are separated by one
or more one spaces:

Label Field Operation Field Operand Field Comment

The label field and the comment field may be empty and, depending on the
operation, the operand field may be empty.

Label Field

A label (or symbolic address), if present, must have a letter as the first char-
acter and continue with letters, numbers, periods, or underscores. If a line’s
first character is an asterisk (*) or semicolon (;), the whole line is treated as
a comment. Finally, labels that are identical to register names are not allowed
(e.g., A, B, CC, X, Y, S, SP, PC, D, and PCR). The label ends in a colon (:).
In some assemblers the colon is mandatory after a label, in some assemblers
it cannot be used, and in other assemblers it is optional.

Operation Field

Except for comment lines, the operation field must consist of an instruction
mnemonic or assembler directive (more about these later). The mnemonic
must be written with no spaces: CLRA, TSTB, ADDD, and so on.

Operand Field

The operand field contains the addressing information for the instruction.
Although numbers can be used to specify addresses, you will find that sym-
bolic addresses are generally much easier to use in the operand field. For
example, using the symbolic address or label ALPHA, the addressing modes
in Table 4.2 can now all use symbolic addresses in place of numbers in the
previous examples.

The assembler understands the use of addition, multiplication, and the
like, using symbolic addresses in expressions. If ALPHA is location 100 and
the operand field contains ALPHA+1, the assembler will put in the value 101.
In simplest terms, an expression is just the usual algebraic combination of
labels, numbers, and C language operations +, —, *, /, %, «, », &, |, ~, !, <,
>, <=, >=. |=, and =. Pascal operators = and <> are also recognized. Paren-
theses are allowed, and precedence and evaluation are exactly as they are in
C. Some examples of expressions are

JUMP JUMP* (8 + TAB) ((RATE - 2)*17)-TEMP

Comment Field

In the comment field, the programmer can insert short comments stating the
purpose of each instruction. The comment must begin with a semicolon (;).
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Mode Example Notes

Inherent No Operands

Immediate #<expression>

Page 0 <expressions> 1

Direct <expression> 2

Relative <label>

Indexed <expression>, X 3

Preincrement <expression>, +X 4

Predecrement <expression>, —X 4

Postincrement <expression>, X+ 4

Postdecrement <expression>, X-— 4

Double indexed A, X 3, 5

Indirect indexed [<expression>, X] 3

Indirect double [D, X] 3
indexed

Notes: 1: Prefix “<” or postfix .B forces Page 0. 2:

Prefix “>” or postfix .W forces Direct. 3: Can

or PC for X. 4: Can substitute Y

Can substitute B or D for A

substitute Y, SP,
or SP for X. 5:

In other assemblers, the comments begin one or more blanks after the
operand field and are printed in the assembler listing but are otherwise
ignored by the assembler.

In summary, writing an assembly-language program is a lot easier than
writing machine code by hand. You can use symbolic addresses, letting the
assembler determine where to put them and letting the assembler make sure
that the instructions have the right operand values. You do have to conform
to the rules of the language, however, and you have to spell the mnemonics
exactly the way the assembler wants to recognize them. Although it would
be nice to be able to just talk to the computer and tell it what you want it to
do using conversational English, an assembler can barely understand the
mnemonics for the instructions if you write them correctly and carefully.
Nevertheless, writing assembly-language programs is easier than writing
hexadecimal machine code.

The listing, shown in Figure 4.3, generally mirrors the source code but
includes machine code and storage information. The listing line begins with
a pair of line numbers. The first number is an absolute line number used
for error messages, and the second is a relative line number used for include
files and macro expansions discussed in the next chapter. The hexadecimal
location of the instruction is given next; then the hexadecimal machine code
is displayed. Finally, the source code line is shown.
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Assembler Directives

Before looking more closely at how the assembler works, we describe the
simplest assembler directives. These are instructions to the assembler that do
not result in any actual executable machine coded instructions but are, nev-
ertheless, essential to providing information to the assembler. A number of
these will be introduced in this section and are listed in Table 4.3 for your
convenience.

If we go back to the example at the beginning of the chapter, we recall
that what we wanted was to just write down the mnemonics column and let
the assembler generate the memory locations and their contents. There must
be some additional information given to the assembler; in particular, you
have to tell the assembler where to start putting the program or store the vari-
ables. This is the purpose of the ORG (for ORiGin) directive. The mnemonic
ORG appears in the operation column, and a number (or expression) appears

Table 4.3 Assembler Directives

Mnemonic Example Explanation

DS

DC

ORG ORG $100 Puts the next byte in

location $100

ABSENTRY ABSENTRY ALPHA Initializes PC to ALPHA

in debugger

EQU ALPHA: EQU $10 Makes the symbol ALPHA

have wvalue $10

ALPHA: DS 10 Define Space

Increments location
counter by 10

DCB ALPHA: DCB 3, 55 Define Constant Block

Fills 3 bytes with
constant 55
Define Constant
ALPHA: DC.B $20, $34 Initializes the current
location to $20 and the
next location to $34
ALPHA: DC.B ‘ABC’ Initializes the word at
this location to the
ASCII letter A the next
location to the ASCII
letter B, and the next

ALPHA: DC.W Initializes the current
$1234 location to $12 and the
next location to $34
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in the operand column. The number in the operand column tells the assem-
bler where to start putting the instruction bytes, or to allocate bytes for vari-
ables, that follow. For example, if the assembler puts the three bytes for LDX
#123 in locations 100, 101, and 102, the bytes for the instructions that
follow are put consecutively in locations 103, 104, . . . The operand can be
described in decimal, hexadecimal, or binary, following Motorola’s usual
conventions. Thus we could use the ORG directive

ORG 256

If there is no ORG directive at the beginning of your program, the assembler
will start at memory location 0. There can be more than one ORG directive
in a program. ABSENTRY sets the entry point, the initial value of the PC, in
the true-time debugger, when a program is loaded, so you don’ have to enter
the PC each time you load it.

In all of our examples, we have set aside memory locations for variables.
In the last example, we set aside bytes for N, RESULT, and Z. The way we
tell the assembler to do this is with the DS (define space) directive. An
optional postfix .B indicates bytes are allocated. Here DS appears in the
operation field and the number » in the operand field tells the assembler that
n bytes are being allocated. If no postfix is used, .B is assumed by default.
Alternatively, a postfix of . W indicates that words are allocated so the number
of bytes is 2n, and a postfix of . L indicates that long words are allocated so
the number of bytes is 4n. The label in the DS directive is the variable name
that the allocated space is given. The label is given the value of the address
of its first, and perhaps only, byte. In the program of Figure 4.3, RESULT is
given the value $3868 and Z the value $386A.

The symbolic address, such as N, which was introduced in §4.1, appears
to have a split personality, especially for data. The symbol N is being used
in two different ways here, as an address and as the value of a variable. The
way to understand this is by analogy to a glass of water. When you say “drink
this glass,” the glass is the container, but you mean to drink the contents of
the container. You do not expect the listener to be confused because he or
she would never think of drinking the container. So too, the symbolic address
N stands for the container, variable N’s location, whereas the contents of the
container, the word at the address, is variable N’s value. If you think hard
enough, it is generally clear which is meant. In the instructions LDX #L or
LEAX L, PCR, the symbolic address L is the address of the variable, which
is the container. In the instruction LDAA L, the symbolic address represents
the contents, in that it is the contents of location L that goes into A. But if
you are confused about what is meant, look to see if the symbolic address is
being used to represent the container or its contents.

The DS assembler directive assigns a number to the symbolic address or
container. In the preceding example, N’s container has the value $3868
because $3868 is the address of N. However, the contents of N are not
assigned a value, in contrast to a directive DC discussed later. The contents
of N are undefined; they are the data that happen to be at location $3868 at
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the time the program is started. The DS directive does not do anything to the
value of a variable. We say the memory is allocated but is not initialized.

We have covered everything in the program of Figure 4.2 except the label
LOOP, which appears in the label field for a machine instruction, not assem-
bler directives. When a label is used with a machine instruction, it is given
the value of the address of the first byte of that instruction. Notice that the
value of LOOP in Figure 4.3 is $38A4. This value is also the address of
the opcode byte of the EMAXD instruction. Thus the container LOOP is the
address $38A4, while the contents of LOOP are the bits of the opcode byte
for the EMAXD instruction.

Looking at other common assembler directives, the EQU directive (for
EQUate) assigns a specific value to a label. In Figure 4.2, the label N is given
the value 3 by the EQU directive. Generally, equates can be used to assign
values to containers. Used this way, they are like DS directives, where the pro-
grammer assigns an address to the container rather than letting the assembler
choose the value automatically. The EQU directive enables you to control
where variables are stored, as in hand coding, but allows symbolic addresses to
be used, as in assembly-language coding to improve readability. We will find
EQU directives useful in fixing addresses in monitor programs and in fixing the
addresses of I/O devices. These directives are often used to replace constants,
to improve readability, and to simplify the modification of programs. For
example, the instruction LDY #3 has been replaced in Figure 4.2 by the lines

N: EQU 3

LDY #N

where the EQU directive is put near the top of the program. Using EQU direc-
tives makes the program more readable and self-documenting, to an extent.
It also makes it easier to modify the program if a different count N is used.
The value of the count is in the EQU directive near the beginning of the
program. If all changeable parts are kept in this area, it is fairly easy to modify
the program for different applications by rewriting the EQU statements in this
area. With an EQU directive, the label field cannot be empty, and the operand
field can be an expression as well as a number. As we shall see later, there is
a small restriction on the labels used in an expression of an EQU directive.

The DC (define constant) directive puts the values in the operand field
into successive memory locations starting with the next available memory
location. DC. B (define constant byte) allocates and initializes an 8-bit word
for each item in the list in its operand field. The suffix . B is the default; DC
is the same as DC. B. A label, if used, is assigned the address of the first value
in the operand field. As an example

TABLE: DC.B 14,17,19,30 4)

appearing in a program generates four consecutive bytes whose values are
14,17, 19, and 30 and whose locations are at TABLE, TABLE+1, TABLE+2,
and TABLE+3, as shown.
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TABLE — $0E
TABLE+1 — $11
TABLE+2 — $13
TABLE+3 — $1E

The actual value of the container TABLE will depend on where it is
placed in the program. Note that, in contrast to the DS directive, this direc-
tive initializes or assigns values to the container (the address) as well as allo-
cating room for its contents (the word at that address). Beware, however, that
the contents are given this value only when the program is loaded into
memory. If the program is rerun without being loaded again, the value of the
contents is what was left there as a result of running the program the last
time. When rerunning the program, you should check these values and pos-
sibly rewrite them before you assume they are the contents specified by the
program.

The DC.W (define constant word) directive does exactly the same thing
as DC.B in (4) except that now two bytes are used for each value in the
operand field, where, as usual, the high byte is first. For example, the
directive

TABLE: DC.W 14,17,19,30 (5)

puts the values in memory as shown.

SO000E
$0011
$0013
SO001E

The DC. L directive allocates and initializes a 32-bit memory block for
each item in the directive’s operand list. Its mechanism is essentially like that
for DC.W in (5).

The DC.B directive can have a sequence of ASCII characters in the
operand field. (See Table 4.1 for a table of ASCII characters and their rep-
resentations.) The ASCII codes for the characters are now put in the suc-
cessive memory locations. The most convenient form is

LIST: DC.B “ABC”

where quotes enclose all the ASCII characters to be stored, namely, A, B, and
C. Single quotes can be used instead of these quotes, especially where a char-
acter in the sequence is a quote.

The define constant block DCB. B directive has a number # and a value
v in the operand field; n copies of v are now put in the successive memory
locations. Suffixes .B, .W, and .L can be used in an obvious way, and .B
is the default.

To see how these directives might be used, suppose that we wanted to
store a table of squares for the numbers between 0 and 9. The program, whose
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1 0000 ORG  $3868

2 3868 * this program squares the number N between 0 and 15

3 3868 0001 N: EQU 1

4 3868 NSQ: DS.B 1

5 3869 00010409 TABLE: DC.B 0,1,4,9,16,25,36,49,64,81
386D 10192431
3871 4051

6 3873 CE3869 LDX  #TABLE ; Point X to table

7 3876 C601 LDAB #N ; Put N into B

8 3878 AGES LDAA B,X ; Put N**2 into A

9 387A 7A3868 STAA NSQ ; Store result

12 387D 20FE BRA  *

FIGURE 4.4. Assembler Listing for the Program Square

assembler listing is shown in Figure 4.4, uses this table to square the number
N, returning it as NSQ. With the given data structure, the location of N* equals
the location TABLE plus N. Thus if X contains the location TABLE and B
contains the value of N, the effective address in the instruction LDAA B, X
is the location of N°.

Mechanics of a Two-Pass Assembler

Some questions will soon arise about how symbolic addresses can be used
without error. These questions have to be answered in terms of forward ref-
erences, and their answers have to be understood in terms of how an assem-
bler generates its output in two passes. We want you to get a feeling for how
it works so that you can understand how forward references are limited by
what a two-pass assembler can do.

How does an assembler work? We begin by reading down through the
instructions, called a pass. The first pass builds a symbol table, a list of all
the symbolic addresses for labels and their values. The second pass will gen-
erate both the listing that shows the effects of each assembler line and the
object code that is used to run the program.

We have earlier used the symbol “*” for the location counter. The loca-
tion counter keeps track of the address where the assembler is when it is
reading the current assembly-language statement, somewhat like the program
counter does when the program runs. The location counter symbol “*” is
always the address of the first byte of the instruction. In both passes, the loca-
tion counter advances as code is generated.

The assembly-language program of Figure 4.5 finds all the odd, nega-
tive, 1-byte integers in the array COLUMN and puts them into the array ODD.
On the first pass, the ORG statement sets the location counter to $3800. Thus,
the label N has the value $3800, the label M has the value $3801, the label
COLUMN has the value $3802, and the label ODD has the value $3834. The
instruction CLR M will take three bytes (and we know what they are), the
instruction LDAB N will take three bytes (and we know what they are), and
so forth. Similarly, we see that the first byte of instruction

105
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* This program searches the array COLUMN looking for odd, negative,
* one-byte numbers which then are stored in array ODD. The length of
* COLUMN is N and the length of ODD is M, which the program calculates.
*
0 $3800
N: DS 1
M: DS 1
COLUMN: DC i, -3, =5, =2, 7
ODD: DS 50
*
CLR M ; initialize M
LDAB N ; PutNinto B
LDX #COLUMN ; Point X to COLUMN
LDY #ODD ; Point Y to ODD
LOOP: LDAA 1,X+ ; Next number of COLUMN into A
BPL JUMP ; Go to next number if positive
BITA #1 ; Z=1if, and only if, A is even
BEQ JUMP ;  Go to next number if even
STAA 1,Y+ ; Store odd, negative number
INC M ; Increment length of ODD
JUMP: DBNE B, LOOP ;  Decrement counter; loop if not done
BRA  * ; Halt

FIGURE 4.5. Program to Select Negative Odd Numbers

LOOP: LDAA 1,X+

will be at location $3872. Thus the symbolic address (the container) LOOP
has the value $3872. Continuing in this way, we come to

BPL JUMP

which takes 2 bytes in the program. We do not know the second byte of this
instruction because we do not know the value of the address JUMP yet. (This
is called a forward reference, using a label whose value is not yet known.)
However, we can leave this second byte undetermined and proceed until we
see that the machine code for DBNE is put into location $387f, thus giving
JUMP the value $387f. As we continue our first pass downward, we allocate
3 bytes for DBNE B, LOOP. We do not find this instruction’s offset yet, even
though we already know the value of LOOP.

Scanning through the program again, which is the second pass, we can
fill in all the bytes, including those not determined the first time through, for
the instructions BPL, JUMP, BEQ JUMP, and DBNE B, LOOP. At this time,
all object code can be generated, and the listing can be printed to show what
was generated.

What we have described is a two-pass assembler. On the first pass it gen-
erates the symbol table for the program, and on the second pass it generates
the machine code and listing for the program.

We have been using the prefix “<” in instructions like LDAA <N or a
postfix “.B” such as in LDAA N.B to indicate an 8- or 9-bit addressing
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mode. If the prefix “<” or postfix “.B” is omitted, the assembler will still
try to use 8-bit or 9-bit addressing when possible. Specifically, on the first
pass, if the assembler knows the value of N when the instruction LDAA N
is encountered, it will automatically use page zero addressing if N is on page
zero. If it does not know the value of N yet, or if N is known but is not on
page zero, it will then use 16-bit direct addressing.

We have also been using the inequality symbols with index addressing
to indicate whether the constant offset is to be described with 8 or 16 bits.
The 6812 actually has another choice for the offset that we have not dis-
cussed before now because there is no special symbol for it. This is the 5-
bit offset option. In this case, one can actually squeeze the offset into the
post byte as described in the instruction set summary of the CPU12RG/D
manual. The assembler chooses between the three offset options in exactly
the same way that it chooses between page zero and direct addressing. On
the first pass, if it knows the values in all the labels used in an expression
for the offset, it will choose the shortest possible offset option, or, if the
expression is zero, it will take the zero offset option, which is pointer address-
ing. If it does not know some of the labels used in the expression for the
offset, the assembler will default to the 16-bit offset option, determining
these bytes on the second pass. From now on, we will drop the use of inequal-
ity signs in all addressing modes, except where it is needed in the relative
mode to designate a short forward reference. Generally, it is best to let the
assembler choose the appropriate option.

We sometimes observe an error message ‘“‘phasing error” or “labels
changed values on second pass.” Such an error occurs when an instruction’s
length or assembler directive’s length is computed on the first pass but is
computed to have a different value on the second pass. Following such an
instruction, successive labels will have a different value on the second pass
than they had on the first pass. To fix such an error, read backward from the
first instruction with the line that has such an error until you see an instruc-
tion whose length changes in the second pass, due to its using a different
addressing mode. Put a prefix or suffix on its operand to force the instruc-
tion’s first-pass length to its second-pass length.

As we have discussed earlier, an assembler does several things for us. It
allows us to use instruction mnemonics, labels for variable locations, and
labels for instruction locations while still providing the machine code for our
program. As Figure 4.6 shows, however, we must be careful with forward
references when using assembler directives.

The assembler reads the assembly-language program in Figure 4.6 twice.
In pass one, the symbol table is generated, and, in pass two, the symbol table,
the instruction set, and assembler directive tables are used to produce the
machine code and assembly listing. On each pass, each line of assembly lan-
guage is processed before going to the next line so that some undetermined
labels may be determined on the second pass. For example, in the program
in Figure 4.6 the assembler will not determine the length of M on the first
pass because the DS directive makes a forward reference to M, that is, uses
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ORG $3800
K: DS M
M: EQU 2
*
LDD K
ADDD #3
STD K
BRA *

FIGURE 4.6. Program with Illegal Forward Reference

a symbol in the expression for K that has not been determined yet. Suppose
now that we change the program a little bit (Figure 4.7).

When the line K: DS M is assembled, the value of M is known. Usually,
it is easy to see which programs with forward referencing are assembled cor-
rectly just by examining how the assembler works with that particular
program. An “undefined symbol” error occurs when K: DS M is assem-
bled and M is not yet defined.

By now it should be obvious that, for correct assembly, a label can appear
only once in the label field. Multiple occurrences generate errors. (However,
the Metrowerks assembler has a SET directive which is like EQU, but its
labels can be redefined.)

Looking at the instructions

BNE JUMP

JUMP: ADDA M

in a particular program, one might wonder what happens if the location JUMP
is more than 127 bytes below the BNE instruction. Does the assembler still
proceed, not knowing location JUMP, and then give an error message when
it finds that JUMP is beyond the 127-byte range on the second pass? Or does
it immediately put in the long branch equivalent

LBNE JUMP

and determine the correct 2-byte relative address on the second pass? It might
seem reasonable to expect the latter, but the first possibility is chosen because
the latter choice would force all forward branches to be long branches. In
other words, the assembler leaves the burden of picking the shortest branch-

ORG $3800
M: EQU 2
K: DS M
*
LDD K
ADDD #3
STD K
BRA *

FIGURE 4.7. Program without Forward Reference
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ing instruction to the programmer. For exactly the same reason, the pro-
grammer will want to use the inequality sign “<” with forward references
for relative addressing used with other instructions. As an example, you
should use LDAA <L, PCR instead of LDAA L, PCR when the effective
address L is a forward reference which is within 256 bytes of the next byte
after LDAA. Otherwise, the assembler uses the 2-byte relative offset option.

Character String Operations

Before we look into an assembler, we will study some operations that copy,
search, and manipulate character strings. This study makes it easier to under-
stand the operation of an assembler, which we cover in the next section. This
section provides further examples of how assembly-language source code is
written. From now on, to significantly reduce your programming effort, we
will not write machine code, but we will write (ASCII) source code and input
it to the assembler to let it generate the machine code.

The first three examples illustrate character string processing. The first
example prints out a character string. The second transfers a character string
from one location to another. The third compares two strings, returning 1 if
they match. These examples are similar to PUT, STRCPY, and STRCMP sub-
routines used in C.

Figure 4.8b’s program prints a string of characters using a subroutine
PUT, like problem 3.15. Such strings often end in a NULL (0) character. The
program reads characters from the string using LDAA 1, X+, and calls

ORG $3800
K: Dc.b “ALPHA”, 0 ; a NULL-terminated character string for part (b).
OUTPUT: Ds.b 10 ; storage buffer for output characters for part (c).
OUTPTR: Dc.w OUTPUT ; pointer to the above buffer
a. Data

PRINT: LDX #K ; get address of string
NEXT: LDAA 1,X+ ; get a character of string, move pointer

BEQ END ;if it is NULL, exit

BSR PUT ; otherwise print the character in A

BRA NEXT ; repeat the loop
END: BRA * ; halt

b. Calling PUT

PUT: PSHX ; save
LDX OUTPTR ; get pointer to output string
STAA 1,X+ ; save character, move pointer
STX OUTPTR ; save pointer
PULX ; restore
RTS ; return

¢. Stub subroutine

FIGURE 4.8. Print Program
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Src: Dc.b “ALPHA”, 0; initialization of the source string (downloaded)
Dst: Ds.Db 16 ; allocation of the destination string
COPY: LDX #Src ; get address of source string
LDY #Dst ; get address of destination string
NEXT: LDAA 1, X+ ; get a character of string, move pointer
STAA 1,Y+ ; store it in the destination
BNE NEXT ; if it is not NULL, reexecute the loop

FIGURE 4.9. Character Move Program Segment and Data

PUT to print the character in A. This also sets the condition code Z bit if the
byte that was loaded was NULL, which terminates execution of the loop. An
analogous program inputs data from a keyboard using the subroutine GET
and fills a vector with the received characters until a carriage return is
received. These programs can be generalized. Any subroutine that uses char-
acters from a null-terminated character string can be used in place of PUT,
and any subroutine that puts characters into a string can be used instead of
GET.

PUT and GET are actually I/O procedures shown in §11.8, which require
some understanding of I/O hardware. We don’t want to pursue the actual
PUT and GET subroutines quite yet. Instead, we replace the actual PUT and
GET subroutines with a stub subroutine (Figure 4.8c). After stopping the
computer, examine the string OUTPUT to see what would be output. Simi-
larly, a stub subroutine can be used instead of GET, to “input” characters.
The sequence of input characters is preloaded into a string.

Our second example (Figure 4.9) copies a null-terminated character
string from one location to another. The original string is generated by the
assembler and downloaded into memory, using Src Dc.b. The program
copies it to another part of memory at Dst Ds.b. Note that the NULL is
also copied to the destination string.

Our third example (Figure 4.10) compares one null-terminated character
string with another. Both strings are downloaded into memory starting at
label Src and Cmprd. We examine several cases of execution right after
this program listing.

We examine several cases with this comparison program. Consider the
case where Src is “BETA.” The first time after label NEXT, the CMPA
instruction clears the Z condition code bit, and the program goes to BAD to
clear A and exit. Consider the case where Src is “ALPH.” The fifth time at
label NEXT, the LDAA instruction sets the Z condition code bit, and the
program goes to EXIT where it tests the byte pointed to by Y, which is the
ASCII letter A, so it goes to BAD to again clear A and exit. Consider the case
where Src is “ALPHAS.” The sixth time after label NEXT, the CMPA instruc-
tion clears the Z condition code bit, and the program goes to BAD to clear A
and exit. Finally, consider the case where Src is “ALPHA.” The fifth time
at label NEXT, the LDAA instruction sets the Z condition code bit, and the
program goes to EXIT where it tests the byte pointed to by Y, and because
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Src: Dc.b “ALPHA”, 0 ;source string (downloaded)

Cmprd: Dc.b “ALPHA”, 0 ; comparand string (downloaded)

CMPR: LDX #Src ; get address of source string
LDY #Cmprd ; get address of comparand string

NEXT: LDAA1,X+ ; get a character of source string, move pointer
BEQ EXIT ; if it is NULL, exit the loop
CMPA 1,Y+ ; compare it to comparand character, move pointer
BEQ NEXT ; if it is the same, reexecute the loop

BAD: CLRA ; otherwise exit; A is cleared to indicate mismatch
BRA * ; return to the debugger

EXIT: TST 0,Y ; see if compare character is also NULL
BNE BAD ; if it is not NULL, terminate indicating failure
LDAA #1 ; it must be identical - end with A set to 1

FIGURE 4.10. Character String Compare Program Segment and Data

it is zero, the program sets A to 1 and exits. If the two strings are identical,
the program ends with 1 in A; otherwise it ends with 0 in A.

We now examine subroutines and program segments that operate on char-
acters in the assembler in §4.5. The next example GETOPCD illustrates a
comparison of a letter provided in accumulator B, to find a match among a
collection of three letters L, A, and S, assuming it may not be any other letter
(Figure 4.11). The number left in accumulator A is 0 if the letter is L, $40 if
A, $80 if S, and $CO if D. This will be used in the assembler in §4.5 to
convert from a mnemonic to a machine opcode.

We show a pair of program segments that will build and search a dic-
tionary (of letters). Figure 4.11°s program segment is executed in pass 1 of
§4.5’s assembler each time a letter in accumulator A is inserted into the dic-
tionary. Register X is initialized with the address of LABELS. The letter has
a numerical “value” associated with it, in LCNTR. The letter and the value
are inserted into a row in the symbol table by this program segment. In §4.5’s
assembler’s pass 2, FINDLBL (Figure 4.12) searches the dictionary. On

* Get an Opcode

* entry: B is mnemonic opcode character

* exit: A is opcode

* X is unchanged

%

GETOPCD: CLRA ; if exit next, return zero as machine opcode
CMPB #'L’ ; Load
BEQ GO1

LDAA #3540 ; if exit next, return $40 as machine opcode
CMPB #'‘A’ ; Add
BEQ @Go1 ;ifitisn’tD, L, or A, it must be S, for Store
LDAA #3580 ; return $80 as machine opcode

GO1: RTS

FIGURE 4.11. Program Segment to Insert an Entry into the Symbol Table
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ORG $3800

LABELS: Ds.b 32 ; storage for the dictionary
LCNTR : Dc.b 0 ; location counter, to be entered into the dictionary
INSRT: STAA 1,X+ ; store letter that is in A into 1st column of row

MOVB LCNTR,1,X+; move LCNTR’s value to 2nd col. of the row

FIGURE 4.12. Subroutine to Insert a Label as an Operand from the Symbol
Table

entry, a letter is put in B. The “value” of the letter is read from the diction-
ary and ORed with the opcode that was found in Figure 4.13, when the
segment is completed, which will form a machine code byte.

These simple search programs can be fairly easily expanded for search-
ing for longer strings of characters or counting characters, rather than testing
for a NULL, to determine when to terminate the search. Variations can handle
the case where the comparand is not found. However, these are all linear
searches in which the time to search for an item in the dictionary is linearly
related to the number of elements in the dictionary. For large dictionaries,
linear searches are entirely too slow; linked lists (§10.4) are much faster.
However, simple linear searches are adequate for the simple assembler dis-
cussed in §4.5.

GETHEX (Figure 4.14) calls an internal subroutine GH1 to translate an
ASCII character to a hexadecimal value. GH1 uses the fact that ASCII letters
“0” to “9” are translated into hexadecimal numbers by subtracting the char-
acter value of “0” from them, and the remaining ASCII characters “A” to
“F” are translated into hexadecimal by further subtracting 7 from the result
(because there are 7 letters between “9” and “A” in the ASCII code). The
first value obtained from the first letter is shifted to the high nibble and
pushed on the stack. When the second value is obtained from the second
letter, it is combined with the value pulled from the stack.

A Simplified Two-Pass Assembler

An assembler is really a simple program. To illustrate how it works and to
gain valuable experience in assembly-language techniques, we write parts of
a “Simple Assembler” SA1 for a simple computer, with the overall specifi-

* Find Label
* entry: label character in B, OP code byte (from GETOPCD) in A

* exit: ORs symbol’s value into A
&

FINDLBL: LDY #LABELS ;y->first symbol table row

F1: CMPB 2,y+ ; compare char in B, move to next sym table entry
BNE F1 ; if mismatch, try next (assume there fill be a match)
ORAA -1,y ; OR previous row’s value into the OP code in A
RTS ; return to caller

FIGURE 4.13. Subroutine to get the Opcode
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* Get hexadecimal value

* entry: X->first character of hex number
* exit: A:value, X->next character after hex number
*
GETHEX : BSR GH1 ; convert ASCII character to a nibble
LSLA ; move to high nibble
LSLA
LSLA
LSLA
PSHA ; save on stack

BSR GH1 ; convert ASCII character to a nibble
ORAA 1, sp+ ; pop and combine
RTS
GH1: LDAA 1,x+ ; getnext symbol
CMPA #'9’
BLS GH2
SUBA #7
GH2: SUBA #'0' ; subtract ASCII 0
RTS

FIGURE 4.14. Converting ASCII Hex String to a Binary Number

cations shown in Figure 4.15. Figure 4.16a shows SA1’s machine code for
a program to add two numbers (like Figure 1.5), and Figure 4.16b shows
how its source code might appear in a text editor window.

The first instruction, which will be stored in location 0, loads the con-
tents of location 3. The left two bits, the opcode, are 00, and the address of
location 3 is 000011, so the machine code is 03 in hexadecimal. The next
instruction’s opcode is 01 for add; its effective address is 000100. The last
instruction’s opcode is 10 for store; its effective address is 000101. The
source code shown in Figure 4.16b includes directives to initialize location
3 to $12, location 4 to $34, and location 5 to 0.

The assembler is written as two subroutines called PASS1 and PASS2
(Figure 4.17). This program segment illustrates the usefulness of subroutines
for breaking up a large program into smaller subroutines that are easier to
understand and easier to debug.

Assembler directives define the data at the beginning of the program
(Figure 4.18). The first directive allocates a byte to hold the object pointer
(which is the location counter). The second directive allocates and initializes
the ASCII source code to be assembled. The next two lines allocate two 8-
element vectors, which will store the machine code and symbol table.

PASS1 (Figure 4.19) simply reads the characters from the source listing
and inserts labels and their values into the symbol table. As is typical of many
programs, an initial program segment initializes the variables needed in the
rest of the subroutine, which is a loop. This loop processes one line of
assembly-language source code. If the line begins with a label, it inserts the
label and the current location counter into the symbol table (§4.4). If the line
begins with a space, it skips the character. It then scans the characters until
it runs into the end of the line, indicated by a carriage return. Then it repeats
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1. The target computer has only one 8-bit accumulator and

64 bytes of memory.

2. The target computer’s opcodes will be L (binary 00), A (01),
and S (10), coded as bits 7 and 6 of the opcode byte, which
have a 6-bit direct address coded in the low-order 6 bits of
the opcode byte. The assembler has a directive D, for “define
constant byte,” that has one two-digit hexadecimal number
operand.

3. A source code line can have (1) a label and one space or
else (2) two spaces. Then it has an opcode or assembler
directive. Then it has a space and an operand, ending in

a carriage return.

4. The assembler is to be run on the 6812 host. Assume the
source code does not have errors. The source code will be
stored in a constant ASCII string SOURCE, which is null
terminated; and the object code, stored in 8-byte vector
OBJECT, is indexed using an 8-bit variable LCNTR. No listing
is produced.

5. All labels will be exactly one character long. The symbol
table, stored in the 8-byte vector LABELS, consists of four
2-byte rows for each symbol, each row comprising a character
followed by a one-byte address.

FIGURE 4.15. Simple Computer and Assembler SA1 Specifications

: ; L A
Location Contents Mnemonics
A B
0 03 L 3 s C
1 44 A 4 A D12
2 85 S 5 B D 34
C D 00
a. Machine code b. Source code
FIGURE 4.16. Machine and Source Code
ORG $3800
JSR PASS1
JSR PASS2
BRA *
FIGURE 4.17. Assembler Main Program
LCNTR: Ds.b 1 ; OBJECT index, which is the location counter

SOURCE: Dc.b" L A",$d," AB",$d," SC",$d,"A D 12",$d,"B D 34".$d,"C D
00",8d,0;

OBJECT : Ds.b 8 ; machine code

LABELS: Ds.b 8 ; symbol table

FIGURE 4.18. Assembler Directives
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PASS1: CLR

LDX
LDY

P11: LDAB

BEQ
CMPB
BEQ
STAB
MOVB

P13: LDAB

CMPB
BNE
INC
BRA

P1l4: RTS

LCNTR ; clear index to object code vector
#SOURCE ; begin source scan: x-> first letter in source string
#LABELS ; y-> first symbol in symbol table

1, x+ ; get the line’s first char. to B and move x to next character
P14 ;exit when a null character is encountered

#' ’ ;if Bisaspace

P13 ; get opcode by going to P13

1, v+ ; move character to symbol table

LCNTR, 1, y+ ; put label value into symbol table

1, x+ ; load B with character, move pointer

#5d ; compare to carriage return which ends a line

P13 ; until one is found. Note that x-> next character after this.
LCNTR ; increment location counter (for the next line)

P11 ;goto P11 to process the next line

FIGURE 4.19. Assembler Pass 1

the loop. When a NULL character is encountered where a line should begin,

it exits.

pPASS2 (Figure 4.20) simply reads again the characters from the source
listing and generates machine code, which is put into the object 