


Introduction To Microcontrollers

Second Edition



.This Page Intentionally Left Blank



Second Edition

G. J. Lipovski
Department of Electrical and Computer Engineering
University of Texas
Austin, Texas

Introduction to
Microcontrollers 
Architecture,
Programming, and
Interfacing for the
Motorola 6812

Introduction to
Microcontrollers 
Architecture,
Programming, and
Interfacing for the
Motorola 6812

Amsterdam • Boston • Heidelberg • London • New York • Oxford • Paris • San Diego •

San Francisco • Singapore • Sydney • Tokyo



Elsevier Academic Press
200 Wheeler Road, 6th Floor, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright © 2004, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage and retrieval
system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail:
permissions@elsevier.com.uk. You may also complete your request on-line via the Elsevier
homepage (http://elsevier.com), by selecting “Customer Support” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data
Lipovski, G. Jack.

Introduction to microcontrollers : architecture, programming and interfacing of the
Motorola 6812 / G.J. Lipovski.

p. cm.
Includes index.
ISBN 0-12-451838-9 (alk. paper)
1. Programmable controllers. 2. Microprocessors. I. Title.

TJ223.P76L58 2004
629.8¢95—dc22

2004052840

British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library

ISBN: 0-12-451838-9

For all information on all Academic Press publications
visit our Web site at www.academicpress.com

Printed in the United States of America
04 05 06 07 08 09 9 8 7 6 5 4 3 2 1



Dedicated to my father
Joseph Lipovski



.This Page Intentionally Left Blank



Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix
About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi

Chapter 1 Basic Computer Structure and the 6812 . . . . . . . . . . . . 1
1.1 Basic Computer Structure . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 A Few Instructions and Some Simple Programs . . . . . . 9
1.4 6812 Microcontroller Organizations . . . . . . . . . . . . . . 17
1.5 Variable Word Width . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6 Summary and Further Reading . . . . . . . . . . . . . . . . . . 23

Chapter 2 The Instruction Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1 Move Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Arithmetic Instructions. . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Logic Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Edit Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Input/Output Instructions . . . . . . . . . . . . . . . . . . . . . . 54
2.7 Special Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter 3 Addressing Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 Opcode Byte Addressing Modes. . . . . . . . . . . . . . . . . 64
3.2 Post Byte Index Addressing Modes. . . . . . . . . . . . . . . 67
3.3 Relative Addressing and Position Independence . . . . . 75
3.4 Stack Index Addressing, Reentrancy, and Recursion . . 78
3.5 Architectural Notions of Addressing . . . . . . . . . . . . . . 85
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 4 Assembly Language Programming. . . . . . . . . . . . . . . . 95
4.1 Introductory Example and Assembler Printout. . . . . . . 97

ContentsContents

vii



4.2 Assembler Directives . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Mechanics of a Two-Pass Assembler. . . . . . . . . . . . . 105
4.4 Character String Operations . . . . . . . . . . . . . . . . . . . 109
4.5 A Simplified Two-Pass Assembler. . . . . . . . . . . . . . . 112
4.6 Debugging Source Code Programs . . . . . . . . . . . . . . 116
4.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 5 Advanced Assemblers, Linkers, and Loaders . . . . . . . 129
5.1 Cross-Assemblers and Downloaders . . . . . . . . . . . . . 129
5.2 Relocatable Assemblers and Loaders. . . . . . . . . . . . . 133
5.3 Conditional Assemblers . . . . . . . . . . . . . . . . . . . . . . 136
5.4 Macro Assemblers . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.5 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 6 Assembly-Language Subroutines . . . . . . . . . . . . . . . . 149
6.1 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2 Passing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.3 Passing Arguments by Value, Reference, and 

Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.4 Calling and Returning Mechanisms. . . . . . . . . . . . . . 176
6.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Chapter 7 Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . 193
7.1 Multiplication and Division . . . . . . . . . . . . . . . . . . . 194
7.2 Integer Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.3 From Formulas to Macro Programs . . . . . . . . . . . . . 203
7.4 Simple Macro Expansions . . . . . . . . . . . . . . . . . . . . 208
7.5 Long Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . 211
7.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.7 Floating-Point Arithmetic and Conversion. . . . . . . . . 216
7.8 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.9 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Chapter 8 Programming in C and C++. . . . . . . . . . . . . . . . . . . . . 239
8.1 Compilers and Interpreters . . . . . . . . . . . . . . . . . . . . 239
8.2 Operators and Assignment Statements. . . . . . . . . . . . 242
8.3 Conditional and Loop Statements . . . . . . . . . . . . . . . 244
8.4 Constants and Variables . . . . . . . . . . . . . . . . . . . . . . 247
8.5 Procedures and Their Arguments . . . . . . . . . . . . . . . 250
8.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.7 Object-Oriented Programming in C++. . . . . . . . . . . . 256
8.8 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

viii Contents



Chapter 9 Implementation of C Procedures . . . . . . . . . . . . . . . . 275
9.1 Global and Local Variables. . . . . . . . . . . . . . . . . . . . 276
9.2 Expressions and Assignment Statements . . . . . . . . . . 279
9.3 Conditional Statements. . . . . . . . . . . . . . . . . . . . . . . 287
9.4 Loop Statements, Arrays, and Structs . . . . . . . . . . . . 295
9.5 Procedure Calls and Arguments . . . . . . . . . . . . . . . . 300
9.6 Examples from Character String Procedures . . . . . . . 304
9.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Chapter 10 Elementary Data Structures . . . . . . . . . . . . . . . . . . . 313
10.1 What a Data Structure Is . . . . . . . . . . . . . . . . . . . . . 313
10.2 Indexable Data Structures. . . . . . . . . . . . . . . . . . . . . 315
10.3 Sequential Data Structures . . . . . . . . . . . . . . . . . . . . 321
10.4 Linked List Structures . . . . . . . . . . . . . . . . . . . . . . . 327
10.5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Chapter 11 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
11.1 Input and Output Devices. . . . . . . . . . . . . . . . . . . . . 341
11.2 Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
11.3 Input and Output Software . . . . . . . . . . . . . . . . . . . . 348
11.4 Synchronization Hardware . . . . . . . . . . . . . . . . . . . . 352
11.5 Gadfly Synchronization . . . . . . . . . . . . . . . . . . . . . . 353
11.6 Interrupt Synchronization . . . . . . . . . . . . . . . . . . . . . 356
11.7 Analog-to-Digital and Digital-to-Analog 

Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.8 UART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.9 Summary and Further Reading . . . . . . . . . . . . . . . . . 369

Chapter 12 Other Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . 379
12.1 The 6811. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
12.2 The 6808. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
12.3 The 6805. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
12.4 The 68300 Series and ColdFire. . . . . . . . . . . . . . . . . 388
12.5 The 500 Series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
12.6 The M·CORE Series . . . . . . . . . . . . . . . . . . . . . . . . 403
12.7 Selecting a Microcontroller for an Application . . . . . 407

Appendix 1 Number Representations and Binary Arithmetic . . . 415
A1.1 Number Representations . . . . . . . . . . . . . . . . . . . . . 415
A1.2 Binary Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 416
A1.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Appendix 2 Sequential Machine Interpreters . . . . . . . . . . . . . . . 421
A2.1 Logic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Contents ix



A2.2 Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
A2.2.1 A Two-Dimensional Array Cycle Interpreter . . . . . . . 422
A2.2.2 A Table Cycle Interpreter . . . . . . . . . . . . . . . . . . . . . 423
A2.3 Logic-Timer Control . . . . . . . . . . . . . . . . . . . . . . . . 424
A2.3.1 Mealy Model Sequential Machines . . . . . . . . . . . . . . 424
A2.3.2 Three-D Array Sequential Machine Interpreter . . . . . 425
A2.3.3 Linked List Sequential Machine Interpreter . . . . . . . . 426
A2.4 A Moore Model Interpreter. . . . . . . . . . . . . . . . . . . . 428
A2.5 Synchronized Sequential Machines . . . . . . . . . . . . . . 429
A2.5.1 Graphical and Tabular Models . . . . . . . . . . . . . . . . . 429
A2.5.2 A Linked List Interpreter . . . . . . . . . . . . . . . . . . . . . 430
A2.6 An Interrupt-Based Synchronized Sequential 

Machine Interpreter . . . . . . . . . . . . . . . . . . . . . . 433
A2.7 Choice of an Interpreter . . . . . . . . . . . . . . . . . . . . . . 434

Appendix 3 Using Metrowerks Code Warrior . . . . . . . . . . . . . . 441
A3.1 Loading Metrowerks Code Warrior Software. . . . . . . 441
A3.2 Opening Code Warrior for the Assembler Project. . . . 441
A3.3 Running Examples for Chapters 1 through 3 . . . . . . . 442
A3.4 Running Examples for Chapters 4 through 11 . . . . . . 443
A3.5 Downloading to a Target Board . . . . . . . . . . . . . . . . 444
A3.6 POD Mode or P&E Microcomputer Interface . . . . . . 445
A3.7 Running Multiple Metrowerks Applications . . . . . . . 446

x Contents



Programming is an essential engineering skill. To almost any engineer, it is
as important as circuit design to an electrical engineer, as statistics to a civil
engineer, and as heat transfer to a chemical engineer. The engineer has to
program in high-level languages to solve problems. He or she also should
be able to read assembly-language programs to understand what a high-level
language does. Finally, he or she should understand the capabilities of a
microcontroller because they are components in many systems designed,
marketed, and maintained by engineers. The first goal of this book then is to
teach engineers how a computer executes instructions. The second goal is to
teach the engineer how a high-level language statement converts to assem-
bler language. A final goal is to teach the engineer what can be done on a
small computer and how the microcomputer is interfaced to the outside
world. Even the nonprogramming engineer should understand these issues.
Although this book is written for engineers, it will serve equally well for
anyone, even hobbyists, interested in these goals.

The reader is taught the principles of assembly-language programming
by being shown how to program a particular microcomputer, the Motorola
6812. The important thing about the 6812 is that it has a straightforward and
clean, yet powerful, instruction set, midway between smaller and more 
powerful microcontrollers. From it the reader can adjust to these smaller or
more powerful microcontrollers. The best way to learn these principles is to
write a lot of programs, debug them, and see them work on a real micro-
controller. This hands-on experience can be inexpensively obtained on the
6812. A recently introduced target board, the M68DKIT812C32, costs only
about $25 (see the front cover). Of course, this price doesn’t include the per-
sonal computer that hosts the 6812 target system.

This book is designed for a sophomore course that teaches how a micro-
controller works from the “bottom up.” The reader learns how the binary
adder is used in the add instruction and in index addressing, and then how
instructions and addressing modes can be efficiently used to implement
assembler language programs. This leads to a functional and practical under-
standing of how to compile a C or C++ program by hand to generate effi-
cient assembler language programs. It also leads to a thorough understanding
of how microcontrollers can be programmed to interact with the outside

xi
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world. Students who have taken the course using this textbook have testified
to my department chairman, several years after graduation, that they have
learned more about microcontrollers, and more about engineering design,
from this course than from any of the other courses they took at our highly
rated University! “Bottom-up” really works.

The following discussion outlines the book and explains several deci-
sions that were made when we wrote the book. Optional chapters are avail-
able for readers having various interests. The main skills taught in each
chapter are summarized.

Chapters 1 to 3 discuss programming using hand-translated machine code
and the implementation of machine instructions in a simplified microcon-
troller. The assembler is not introduced until Chapter 4. This gives the engi-
neering student a fine feeling for the machine and how it works and helps
him or her resolve problems encountered later with timing in input/output
programming or with the use of addressing modes in managing data struc-
tures. It removes the “magic” from computer programming. Chapter 1
explains how a microprocessor interacts with the memory and how it exe-
cutes the instruction cycle. The explanation focuses on a microcomputer and
is simplified to provide just enough background for the remainder of the text.
Simple instructions and elementary programs are introduced next. Pointing
out that there is no best program to solve a problem, Chapter 1 observes what
makes a good program and encourages the reader to appreciate good pro-
gramming style. A discussion of the available organizations of 6812 micro-
controllers concludes this chapter.

In Chapter 2, the main concept is the alternative forms of the same kind
of instruction on the 6812. Rather than listing the instructions alphabetically,
as is desirable in a reference book, we group together instructions that
perform the same type of function. Our groups are the classic ones, namely,
the move, arithmetic, logical, edit, control, and input/output groups.
Although other groupings are also useful, this one seems to encourage the
student to try alternative instructions as a way of looking for the best instruc-
tion for his or her purpose. The 6812 has an extensive set of addressing
modes that can be used with most instructions; these are covered in Chapter
3. The different addressing modes are introduced with a goal of explaining
why these modes are useful as well as how they work. Examples at the end
of the chapter illustrate the use of these modes with the instructions intro-
duced in Chapter 2.

The end of Chapter 3 shows the use of program-relative addressing 
for position independence and the use of stack addressing for recursion and
reentrancy.

Chapters 4 to 6 show how a program can be more easily written in assem-
bler and the high-level C language and translated into machine code by an
assembler. Chapter 4 introduces the assembler, explains assembler directives
and symbolic addresses, and introduces limitations of forward referencing in
a two-pass assembler. It actually explains a primitive assembler program,
which helps the student understand how a symbol table works, as well as
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how character strings are manipulated in any microcontroller program.
Chapter 5, which may be omitted if the reader is not going to write assem-
bler language programs, provides insights needed by programmers who write
large assembler language programs. A general discussion of related pro-
grams, including macro, conditional, and relocatable assemblers and linkers,
is given.

Chapter 6 develops assembler language subroutines. It illustrates tech-
niques used in assembler language at an implementation level (such as
storing local variables on the stack, or passing arguments in registers or on
the stack). The trap instruction, a kind of subroutine, is discussed, which
serves to introduce hardware interrupts in Chapter 11.

Chapter 7 covers arithmetic routines. An implementation is shown for
unsigned and signed multiplication and division. This is important back-
ground for our later course on Computer Architecture. It also gives the stu-
dents some taste for what is done when programming digital signal
processors. Conversion between different bases is discussed and examples
are given illustrating conversion from ASCII decimal to binary and vice
versa. Stack operation and Polish notation are shown to be useful in realiz-
ing arithmetic routines of any complexity. Multiple-precision integer arith-
metic is discussed by means of examples of 32-bit operations including
multiplication and division. Floating-point representations are introduced,
and the mechanics of common floating-point operations are discussed.
Finally, a 6812-oriented introduction of fuzzy logic is presented.

Chapter 8, which may be omitted if the reader is already familiar with
C, discusses compilers and interpreters and briefly introduces C program-
ming to provide a background for later chapters.

Chapter 9 introduces the implementation of C procedures. Several con-
structs in C, such as switch statements, are shown implemented in assembler
language. The techniques C uses to hold local variables and to pass argu-
ments to a subroutine on the stack are shown implemented in assembler lan-
guage. This chapter really brings home the meaning of C expressions and
statements and helps the student understand what he or she is doing in any
machine, not just a microcontroller, including programming of servers, work-
stations, and parallel computers. It also makes less magical programming in
other languages than C or C++. In my opinion, it is for this reason that this
course has become required of all Electrical and Computer Engineering stu-
dents in our department, not just those who intend to design embedded
systems.

Chapter 10 covers elementary data structures. The simplest, including the
character string used in earlier chapters, and the more involved deque and
linked list structures are related to the addressing modes available in the
6812. The main theme of this chapter is that the correct storage of data can
significantly improve the efficiency of a program. This chapter also provides
essential background for the discussion of interpreters in Appendix 2.

Chapter 11 introduces input/output programming. Input and output
devices are characterized. Then the 6812’s parallel ports are described. Input
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and output software is illustrated with some examples. We then show 6812
synchronization hardware, to introduce gadfly and interrupt synchronization.
Finally we show how D-to-A and A-to-D conversion is done, and how the
6812 uses the SCI to send and receive serial data.

Chapter 12 shows how the assembly language of a different microcon-
troller might be learned once that of the 6812 has been learned. Although we
would like to discuss other popular microcontrollers, we believe that we
could fill another book doing that. To illustrate the idea, we look at the near
relatives less costly than the 6812, in particular, the 6805, 6808, and 6811.
We also discuss briefly more powerful microcontrollers such as the 683xx,
coldfire, 500, and M.CORE series. The main theme is that once you under-
stand the instruction set of one microcontroller, you can quickly learn to
program efficiently on other microcontrollers.

Appendix 1 gives background in number systems that should be covered
by prerequisite courses. Appendix 2 covers sequential machine and other
interpreters. It is needed in our curriculum, and there is no better place to
cover it than in the course that uses this textbook, but it might not be suit-
able for other programs. Thus it is included as an appendix that can be
skipped if it is not needed. Appendix 3 covers techniques that can be used
with the Metrowerks software on the enclosed CD-ROM.

This book systematically develops the concepts of programming of a
microcontroller in high-level language and assembly language. It also covers
the principles of good programming practice through top-down design and
the use of data structures. It is suitable as an introductory text for a core
course in an engineering curriculum on assembly language programming or
as the first course on microcomputers that demonstrates what a small com-
puter can do. It may also be used by those who want to delve more deeply
into assembly language principles and practices. You should find, as we have,
that programming is a skill that magnifies the knowledge and control of the
programmer, and you should find that programming, though very much an
important engineering skill, is fun and challenging. This book is dedicated
to showing you that.

Problems are a major part of a good textbook. We have developed more
than twenty problems for each chapter, and for each topic we generally have
at least two problems, one that can be assigned for homework, while the
other can be used in a quiz or exam. Some of these problems are “brain
teasers” that are designed to teach the student that even simple programs
should be tested, generally at their extreme values, to be sure they work.
Often the obvious and simple solutions succumb to truncation or overflow
errors. Also, problems in Chapter 11, including the keyless entry design and
the experiment that plays “The Eyes of Texas” on a pair of earphones, are
absolutely great motivators for sophomores who get them to work on a real
microcontroller board. They help students see how exciting computer engi-
neering is. This has a good effect on retention. An instructor’s manual, avail-
able from the publisher, includes solutions to all the problems given at the
end of each chapter. We also provide worksheets that really drill the students
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on the topic of hand-compiling C or C++ into efficient assembler language
programs. These can be passed out in class and their problems solved as the
examples in Chapter 9 are discussed. The instructor presents an example
from the textbook, the students work the associated problem in the work-
sheet, and the solutions are discussed. After we introduced this teaching tech-
nique, the student’s exam grades shot up 15%! Homework problems, lab
exercises, and worksheet problems force students to teach themselves. Once
the student learns how to teach himself or herself, he or she is prepared to
tackle any new technology that might appear in the course of his or her pro-
fessional life with assurance that he or she can handle it. This book does a
lot to develop those essential skills that will make the student a successful
Computer Engineer.

The introduction of the very inexpensive M68DKIT812C32 development
board raises some challenges to the development of this second edition of
the textbook. On one hand, we clearly see the advantages of this board. Stu-
dents can buy it and work at home, where they get a much better apprecia-
tion of embedded systems than they do in the laboratory. We plan to use this
board in a series of four courses to make it attractive to students. On the
other hand, we have tons of Adapt812 development boards, and over a
hundred M68HC12B32EVB development boards on our inventory that we
have a hard time discarding because of state laws. We suspect that other Uni-
versities and Colleges have exactly the same problem. So this book in
general, and Chapter 11 and Appendix 2 in particular, are written to be used
primarily with the M68DKIT812C32 development board, but have sufficient
details to adapt the examples to Adapt812 and M68HC12B32EVB develop-
ment boards. These details can be easily skipped over by students who use
the new M68DKIT812C32 development board.

This book was developed largely from a book by the author and T. J.
Wagner on the 6809. The author expresses his gratitude for the contributions
made by Dr. Wagner through his writing of much of the earlier book.
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Computers, and microcomputers in particular, are among the most useful
tools that humans have developed. They are not the news media’s mysteri-
ous half-human forces implied by “The computer will decide . . .” or “It was
a computer error!” No, computers are actually like levers; as a lever ampli-
fies what the human arm can do, so the computer amplifies what the human
brain can do. Good commands are amplified, and the computer is a great
tool, but bad commands are likewise amplified, and good commands incor-
rectly programmed are also amplified. “To err is human, but to really foul
things up, you need a computer.” You have to study and exercise this tool to
make it useful; that is the purpose of this book. The computer also has to be
used with insight and consideration for its effects on society, but that will
not be studied in this book.

We shall study the computer as an engineer studies any tool—we begin
by finding out just how it ticks. We make our discussion concrete using the
superior Motorola 6812 microcomputer designed by Motorola, as a means
of teaching the operations of computers in general. In this chapter we intro-
duce basic computer structure. We discuss memory, how memory words are
read to tell the microcomputer what to do, and how these words are written
and read to save the microcomputer’s data. Finally, we describe a small but
useful subset of 6812 instructions to show how a computer reads and carries
out an instruction and a program, to introduce the idea of programming.

After reading this chapter, you should be able to approach a typical
instruction, to be introduced in the next two chapters, with an understanding
about what the mnemonic, the machine code, and a sequence of memory
reads and writes may mean for that instruction. This chapter then provides
background for the discussion of instructions that we will present in the next
two chapters.

Basic Computer Structure
What is a microcomputer, and how does it execute the instructions that a
programmer writes for it? This question is explored now at a level of abstrac-
tion that will be adequate for this text. We do know that many readers will
object to one aspect of the following discussion, and we want to answer that
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objection a priori, so that those readers will not miss the point. We will 
introduce a seemingly large number of terms. Don’t miss the objective: We
are really introducing concepts. The reader should think about the concepts
rather than memorize definitions. Like your physics text, this text has to use
terms in a fairly precise way to avoid ambiguity. Your physics text, you may
recall, used the word “work” in a very precise way, as the product of force
times distance, which is a bit different from the conversational use of the
word “work” as used in the expression, “He’s doing a lot of work.” We will
use terms such as “read” and “fetch” in a similar way. When defined, they
will be written in italics and will be listed in the index. We ask you to learn
the term and its meaning even though you do not have to memorize the
wording of the definition. But take heart, because although we do have a few
concepts that have to be learned, and we have to learn the terms for those
concepts, we do not have many formulas or equations to deal with. Accept
our challenge to understand these terms; then you will enjoy the latter 
discussions even more than if you muddle through this section without 
thinking about the terminology.

You probably know what microcomputers and computers are, to some
degree, but let us discuss the term “computer” so that if you get into an 
argument about whether a hand calculator is a computer, you can respond
knowledgeably.

A microcomputer is a kind of computer or, more accurately, a kind of
von Neumann computer, named after the scientific giant of our century who
invented it. All von Neumann computers have four components: memory,
controller, data operator (sometimes called an arithmetic-logic unit), and
input-output (I/O), which are connected by an address and data bus. A sim-
plified diagram of a computer is shown in Figure 1.1. Briefly, the memory
stores both the data and the program, and the input-output provides the com-
munication with the outside world. In a conventional personal computer
system input-output is done through peripherals such as CRTs, keyboards,
scanners, printers, modems, and so on. In typical microcontroller applica-
tions the input-output system provides the necessary connections, or inter-
facing, to the device, of which the microcontroller is a component, such as
an automobile, kitchen appliance, toy, or laboratory instrument. The data
operator performs arithmetic and logical operations on data, such as addi-
tion, ANDing, and so on. The controller controls the flow of information
between the components by means of control lines (which are not shown in
Figure 1.1), directing what computation is to be done. The input/output, con-
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troller, and data operator may themselves contain a small amount of memory
in registers.

A microcomputer is a computer that is implemented using low-cost inte-
grated circuits (ICs) and is therefore cheap enough to be used in an incred-
ible range of applications for which a large computer would be infeasible.
For the purposes of this book, if the data operator and the controller are
together on a single IC, but other ICs are needed to complete the computer,
that IC is called a microprocessor; the computer that uses a microprocessor
is called a microcomputer; and, if a complete computer is on a single inte-
grated circuit, that integrated circuit is called a single-chip microcontroller.

Some aspects of microcomputers apply to all computers. We will often
discuss an aspect of the computer and, of course, that aspect applies to 
microcontrollers, on which we are concentrating. The microcomputer’s, or
microcontroller’s, controller and data operator is abbreviated MPU
(microprocessor unit). The abbreviation CPU (central processor unit) is often
used to denote the controller and data operator, but that term leads subtly to
the idea that the CPU is central and most important, but this is misleading,
especially when a computer system has many MPUs, none of which is
“central.”

We now look more closely at the memory and the MPU. We can think
of the memory as a large number of cells, each able to store a 0 or a 1—that
is, a binary digit or 1 bit of memory. The bits are grouped together in units
called bytes, which consist of 8 bits. Within a particular byte the bits are
labeled B7, . . . , B0 as shown.
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Byte

B7 B6 B5 B4 B3 B2 B1 B0

The right-hand bits are called lower-order or least significant, and the
left-hand bits are called higher-order or most significant. There is nothing
sacred about this labeling, and, in fact, many computer manufacturers reverse
it. A word in memory is the number of bits that are typically read or written
as a whole. In small microcomputers, a word is 1 byte, so that the terms
“word” and “byte” are often used interchangeably. In this text, the 6812 can
read an 8-bit or a 16-bit word, which is 2 bytes. In a 16-bit word, bits are
numbered from 15 (on the left) to 0 (on the right). In the memory, each byte
has an address between 0 and 2N - 1, where N is the total number of address
bits. In the 6812, N is essentially 16, so each address between 0 and 65,535
is described by its 16-bit binary representation (see Appendix 1), although
some 6812 versions can extend this range.

The MPU controls the memory by means of a clock and a read/write 
line and communicates to it by an address bus and a data bus, shown in
Figure 1.1. A line or wire carries 1 bit of information at each instance of time
by the level of voltage on it. Each line can carry a true (1) or a false (0)
value. A bus is a collection of lines that can move a word or an address in



parallel, so that 1 bit of a word or address is on one line of the bus. The data
bus moves an 8-bit or 16-bit word to or from memory and from or to the
MPU, and the address bus moves a 16-bit address from the MPU to the
memory. A clock is a signal that is alternately a 0 and 1 (a square wave). A
clock cycle is the time interval from when the clock just becomes 0 until the
next time it just becomes 0, and the clock rate, or clock frequency, is the
reciprocal of the clock cycle time. Contemporary 6812 microcontrollers
essentially use a 24 MHz clock.

In one clock cycle, the MPU can read a word from the memory by putting
an address on the address bus and making the read/write line 1 for the cycle
and then picking up the word on the data bus at the end of the cycle. It can
also write a word into the memory in one clock cycle by putting the address
on the address bus and putting the word on the data bus and making the
read/write line 0 for the cycle. A read or a write to memory is also called an
access to memory.

We can enlarge our description of how the memory works. Assume that
we want to get the contents of a particular word or byte from memory, that
is, read a word from memory. The MPU first puts a 1 for read on the
read/write line and then puts the address of the desired word or byte on the
address bus throughout the duration of a clock cycle. The memory is
designed so that, at the end of the clock cycle, the desired word is put on the
data bus. The MPU then places a copy of the contents of the word or byte
on the data bus into some register inside the MPU as required by the instruc-
tion that it is executing. This is done without changing the contents in
memory of the word or byte addressed.

To write a word into memory, the address of the word is put on the
address bus, the word is put on the data bus, and the read/write line has 0
(to indicate a write) for a full clock cycle. The memory is designed to store
the word at that address at the end of the clock cycle. After the word is stored
at the given address, the MPU may still retain in one of its registers a copy
of the word that has just been written.

The MPU can read or write an 8-bit or a 16-bit word in memory in 
one clock cycle. Such a memory is usually called random access memory
(RAM) because each byte is equally accessible or can be selected at random
without changing the time of the access. With microcomputer applications,
it is not unusual to have part of the memory bytes in read only memory
(ROM). A ROM is capable of a read operation but not a write operation; its
words are written when it is made at the factory and are retained even when
the power is turned off. If the data in a RAM are lost when power is turned
off, the RAM is termed volatile; otherwise, it is termed nonvolatile. RAM
memories are essentially volatile. The term RAM is also used almost uni-
versally to imply memories that you can read and write in, even though ROM
memories can be randomly accessed with a read operation. The part of
memory that is in ROM is typically used to store a program for a micro-
computer that only executes one program. For example, the microcontroller
used in an automobile would be running the same program every time it is
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used, so that the part of the memory that is used for storing the program is
in ROM.

The Instruction
We now examine the notion of an instruction, which is an indivisible oper-
ation performed by the MPU. It can be described statically as a collection of
bits stored in memory or as a line of a program, or dynamically as a sequence
of actions by the controller. In this discussion we begin with a simplified
dynamic view of the instruction and then develop a static view. Examples
are offered to combine these views to explain the static aspects of the oper-
ation code, addressing mode, machine code, and mnemonics. We conclude
with an expanded view of the dynamic aspects of the instruction cycle.

The controller will send commands to memory to read or write and will
send commands to all other parts of the computer to effectively carry out the
intentions of the programmer. The specification of what the control unit is
to do is contained in a program, a sequence of instructions stored, for the
most part, in consecutive bytes of memory. To execute the program, the MPU
controller repeatedly executes the instruction cycle (or fetch/execute cycle):

1. Fetch (read) the next instruction from memory.

2. Execute the instruction.

As we shall see with the 6812 MPU, reading an instruction from memory
will require that 1 or more bytes be read from memory. To execute the
instruction, some bytes may also be read or written. These two activities,
read and execute, seem to be read or write operations with the memory but
are quite different to the MPU, and we use different terms for them. To fetch
means to read a word from memory to be used as an instruction in the 
controller. The first step in the cycle shown previously is the fetch phase. To
recall means to read a word into the MPU that is not part of the instruction.
The recall and write operations are done in the second step of the instruc-
tion, which is called the execute phase. Thus, when we talk about fetching
a word, you can be sure that we are talking about reading the instruction or
part of the instruction.

The 6812’s registers are shown in Figure 1.2, where the top five regis-
ters hold 16 bits and the condition code register holds 8 bits. The 16-bit D
register is composed of two 8-bit registers A and B; D, A, and B are called
accumulators because arithmetic operations can be done with their contents
with the results placed back in the registers to accumulate the result. This
accumulating aspect of registers D, A, and B will be assumed to be under-
stood so that we often refer to (register) “D,” “A,” or “B” rather than “accu-
mulator D,” “accumulator A,” or “accumulator B.” The registers A and B are
always the left and right halves of register D; if you put $12 in register A
and $34 in register B then read register D, it has $1234. Similarly, if you put
$5678 in register D, then reading register A gives $56 and reading register
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B gives $78. Registers X and Y are index registers, and SP is a stack pointer;
they are used in address calculations. The program counter, PC, is used to
fetch the instruction. It is called a counter because it normally increments
each time it is used. The condition code register (CC) has bits that are used
to indicate results of tests that can be used in conditional branch instructions.

At the beginning of the instruction cycle it is assumed that the program
counter contains the address of the first byte of the instruction. As each byte
of the instruction is fetched, the PC is incremented by 1, so that the PC
always has the address of the next byte of the instruction to be read from
memory. When the instruction cycle is completed, the PC then automatically
contains the address of the first byte of the next instruction.

We now look at the instruction statically as 1 or more memory bytes or
as a line of a program. This discussion will introduce new concepts, but we
have tried to keep the number down so that the examples can be discussed
without your having too many terms to deal with. The examples will help to
clarify the concepts that we introduce below.

Each instruction in a microcomputer carries out an operation. The types
of operations provided by a von Neumann computer can be categorized as
follows:

1. Move.

2. Arithmetic.

3. Logical.
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4. Edit.

5. Control.

6. Input/output.

At this time, we are interested in how instructions are stored in memory as
part of a program and how they are executed by the 6812.

After the instruction is fetched, the execute phase of the fetch/execute
cycle will often use an address in memory for the input data of the opera-
tion or for the location of the result of the operation. This location is called
the effective address. The 6812, like most microcomputers, is a one-address
computer because each instruction can specify at most one effective address
in memory. For instance, if an instruction were to move a word from 
location 100 in memory into register A, then 100 is the effective address.
This effective address is generally determined by some bits in the instruc-
tion. The addressing mode specifies how the effective address is to be deter-
mined, and there are binary numbers in the instruction that are used to
determine the address. The effective address is calculated at the beginning
of the execute phase, just after the instruction is fetched and before any of
the operations to execute the instruction actually take place.

An instruction in the 6812 is stored in memory as 1 or more bytes. The
first, and possibly only, byte of the instruction is generally the operation code
byte. The operation code byte contains the operation code (opcode, for
short), which specifies the operation to be carried out and the specification
of the addressing mode. The remaining bytes of the instruction, if any,
specify the effective address according to the given addressing mode. The
bytes representing the instruction can be represented as a sequence of ones
and zeros, that is, a binary number. The trouble with this is that it is hard to
remember and to check an 8-bit or longer string of ones and zeros. To make
it easier, we can represent the bit pattern as a hexadecimal number. A hexa-
decimal number will be prefixed by a dollar sign ($) to distinguish it from a
decimal number. (For example, 193 = $C1. If you are unfamiliar with hexa-
decimal numbers, see Appendix 1.) When the opcode, addressing modes, and
constants used to determine the address are represented either as binary or
hexadecimal numbers, we call this representation the machine code because
it is the actual format used to store the instruction in the machine (micro-
computer), and this format is used by the machine to determine what is to
be done.

Machine code is quite useful for making small changes in a program that
is being run and corrected or debugged. However, writing even a moderately
long program in machine code is a punishment that should be reserved for
the fifth level of Dante’s inferno. In Chapter 4, we discuss how text produced
by an editor is converted by an assembler to the machine code stored in the
computer’s memory. The text input to the assembler is called source code.
In a line of source code, to make remembering the instructions easier, a three-
to five-character mnemonic is used to describe the operation, and its address-
ing information may be given as a hexadecimal or a decimal number. A line
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of source code, consisting of mnemonics and addressing information, can be
converted by hand into the hexadecimal machine code equivalents using
Motorola’s CPU12 Reference Guide (you can order it from Motorola by
using reference number CPU12RG/D). In the first three chapters, we want
to avoid using the assembler, so we can see clearly just how the computer
ticks. We will hand-convert mnemonics and addressing information to hexa-
decimal machine code and work with hexadecimal machine code.

We now look at a load immediate instruction in detail, to introduce 
concepts about instructions in general. The load instruction will move a byte
into an accumulator, either A or B. Its simplest addressing mode is called
immediate. For instance, to put a specific number, say $2F, in accumulator
A, execute the instruction whose source code line is

LDAA #$2F

where the symbol “#” denotes immediate addressing and the symbol “$” is
used to indicate that the number that follows is in hexadecimal. This instruc-
tion is stored in memory as the 2 consecutive bytes:
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$86
$2F

(Look in CPU12 Reference Guide, Instruction Set Summary, for the
mnemonic LDAA, and, under it, find $86 under the Machine Coding column,
in the row beginning LDAA #opr8i, which also has the addressing mode
IMM for 8-bit immediate addressing.)

Looking dynamically at an instruction, an operation (e.g., add, subtract,
load, clear, etc.) may be carried out with inputs (or operands) and may
produce a result. The instruction is executed in the instruction cycle as
follows.

1. Fetch the first byte of the instruction from memory.

2. Increment the PC by one.

3. Decode the opcode that was fetched in step 1.

4. Repeat steps 1 and 2 to fetch all bytes of the instruction.

5. Calculate the effective address to access memory, if needed.

6. Recall the operand from memory, if needed.

7. Execute the instruction, which may include writing the result into
memory.

The controller fetches the first byte, $86. The program counter is incre-
mented. The controller decodes $86. The controller fetches the second byte,
$2F, putting it into accumulator A. The program counter is incremented. After
this instruction is executed, another instruction is fetched and executed.



A Few Instructions and Some Simple Programs
Now that we have examined the instruction from static and dynamic points
of view, we will look at some simple programs. The machine code for these
programs will be described explicitly so that you can try out these programs
on a real 6812 and see how they work or at least so that you can clearly visu-
alize this experience. The art of determining which instructions have to be
put where is introduced together with a discussion of the bits in the condi-
tion code register. We will discuss what we consider to be a good program
versus a bad program, and we will discuss what information is going to be
covered in Chapters 2 and 3. We will also introduce an alternative to the
immediate addressing mode using the load instruction. Then we bring in 
the store, add, software interrupt, and add with carry instructions to make
the programs more interesting as we explain the notions of programming in
general.

We first consider some variations of the load instruction to illustrate dif-
ferent addressing modes and representations of instructions. We may want
to put another number into register A. Had we wanted to put $3E into A
rather than $2F, only the second byte of the instruction would be changed,
with $3E replacing $2F. The same instruction as

LDAA #$3E

could also be written using a decimal number as the immediate operand: for
example,

LDAA #62

Either line of source code would be converted to machine code as follows:
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$86
$3E

We can load register B using a different opcode byte. Had we wanted to
put $2F into accumulator B, the first byte would be changed from $86 to
$C6 and the instruction mnemonic would be written as

LDAB #$2F

We now introduce the direct addressing mode. Although the immediate 
mode is useful for initializing registers when a program is started, the imme-
diate mode would not be able to do much work by itself. We would like to
load words that are at a known location but whose actual value is not known
at the time the program is written. One could load accumulator B with 
the contents of memory location $3840. This is called direct addressing, as
opposed to immediate addressing. The addressing mode, direct, uses no
pound sign “#” and a 2-byte address value as the effective address; it loads
the word at this address into the accumulator. The instruction mnemonic for
this is

� 1.3
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Accumulator A

Accumulator B

Word 0

Word 1

Word 2

Word 3
Decoder

Controller

Data
Bus

Address
Bus

MemoryData Operator 

FIGURE 1.3. Registers and Memory

Notice that the “#” is missing in this mnemonic because we are using direct
addressing instead of immediate addressing. Also, the second 2 bytes of the
instruction give the address of the operand, with the high byte of the address
first.

The store instruction is like the load instruction described earlier except
that it works in the reverse manner (and a STAA or STAB with the immedi-
ate addressing mode is neither sensible nor available). It moves a word from
a register in the MPU to a memory location specified by the effective address.
The mnemonic, for store from A, is STAA; the instruction

STAA 14378

will store the byte in A into location 14378 (decimal). Its machine code is

$B6
$38
$40
  

$7A
$38
$2A
  

where the number 14378 is stored in hexadecimal as $382A. With direct
addressing, 2 bytes are always used to specify the address even though the
first byte may be zero.

Figure 1.3 illustrates the implementation of the load and store instruction
in a simplified computer, which has two accumulators and four words of

LDAA $3840

and the instruction appears in memory as the 3 consecutive bytes.



The addition of a number on the bus to an accumulator such as accumu-
lator A is illustrated by a simplified computer having a data bus and an accu-
mulator (Figure 1.4). The data operator performs arithmetic operations using
an adder (see Figure 1.4). Each 1-bit adder, shown as a square in Figure 1.4b,
implements the truth table shown in Figure 1.4a. Registers A, B, and S may
be any of the registers shown in Figure 1.2 or instead may be data from a
bus. The two words to be added are put in registers A and B, Cin is 0, and
the adder computes the sum, which is stored in register S. Figure 1.4c shows
the symbol for an adder. Figure 1.4d illustrates the addition of a memory
word to accumulator A. The word from accumulator A is input to the adder
while the word on the data bus is fed into the other input. The adder’s output
is written into accumulator A.

When executing a program, we need an instruction to end it. When 
using the true-time debugger with state-of-the-art hardware, background
(mnemonic: BGND) halts the microcontroller, when using the debugger
DBUG_12 or MonitorHCS12 with less-expensive hardware, software
interrupt (mnemonic: SWI) serves as a halt instruction. In either case, the
BRA instruction discussed in the next chapter can be used to stop. When 
you see the instruction BRA *, which means “branch to yourself,” in a
program, think “halt the program.” This last instruction will be explained 
in Chapter 2.

Figure 1.5 shows four instructions in locations $380D through $3817, to
be executed in the simulator only (see Appendix 3); it adds two numbers in
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memory. The data operator has accumulators A and B, and a memory has
four words and a decoder. For the instruction LDAA 2, which loads accu-
mulator A with the contents of memory word 2, the controller sends the
address 2 on the address bus to the memory decoder; this decoder enables
word 2 to be read onto the data bus, and the controller asserts a control signal
to accumulator A to store the data on the data bus. The data in word 2 are
not lost or destroyed. For the instruction STAB 1, which stores accumula-
tor B into the memory word 1, the controller asserts a control signal to accu-
mulator B to output its data on the data bus, and the controller sends the
address 1 on the address bus to the memory decoder; this decoder enables
word 1 to store the data on the data bus. The data in accumulator B are not
lost or destroyed.

The ADD instruction is used to add a number from memory to the number
in an accumulator, putting the result into the same accumulator. To add the
contents of memory location $0BAC to accumulator A, the instruction

ADDA $3BAC

appears in memory as

$BB
$3B
$AC



locations $3840 and $3841, putting the result into location $3842, and stops
with a “branch-to-yourself.”

We will now look at condition code bits in general and the carry bit in
particular. The carry bit is really rather obvious. When you add by hand, you
may write the carry bits above the bits that you are adding so that you will
remember to add it to the next bit. When the microcomputer has to add more
than 8 bits, it has to save the carry output from one byte to the next, which
is Cout in Figure 1.4b, just as you remembered the carry bits in adding by
hand. This carry bit is stored in bit C of the condition code register shown
in Figure 1.6. The microcomputer can input this bit into the next addition as
Cin in Figure 1.4b. For example, when adding the 2-byte numbers $349E
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380D B6 LDAA $3840 ; get 1st operand 
380E 38   
380F 40   
3810 BB ADDA $3841 ; add 2nd operand 
3811 38   
3812 41   
3813 7A STAA $3842 ; store sum 
3814 38   
3815 42   
3816 20 BRA *  ; stop  
3817 FE 

FIGURE 1.5. Program for 8-Bit Addition

A B C'  S C" 

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1 
1 1 1 1 1

input register A

input register B

output register S 

... CinCout
  S 
C"  C'
A   B 

 S 
C"  C'
A   B 

 S 
C"  C'
A   B 

a. Truth Table b. Parallel Adder 

Data Operator 

Accumulator A 
Parallel
Adder

Data Bus input input

output

c. Symbol for an Adder d. Adder in a Data Operator

FIGURE 1.4. Data Operator Arithmetic



and $2570, we can add $9E and $70 to get $0E, the low byte of the result,
and then add $34, $25, and the carry bit to get $5A, the high byte of the
result (Figure 1.7). In this figure, C is the carry bit obtained from adding the
contents of locations $3811 and $3813; (m) is used to denote the contents of
memory location m, where m may be $3811, etc. The carry bit (or carry for
short) in the condition code register (Figure 1.6) is used in exactly this way.

The carry bit is also an error indicator after the addition of the most sig-
nificant bytes is completed. As such, it may be tested by conditional branch
instructions, to be introduced later. Other characteristics of the result are 
similarly saved in the controller’s condition code register. These are, in addi-
tion to the carry bit C, N (negative or sign bit), Z (zero bit), V (two’s-
complement overflow bit or signed overflow bit), and H (half-carry bit) (see
Figure 1.6). How 6812 instructions affect each of these bits is shown in the
CPU12 Reference Guide, Instruction Set Summary, in the rightmost columns.

We now look at a simple example that uses the carry bit C. Figures 1.8
and 1.9 list two equally good programs to show that there is no way to have
exactly one correct answer to a programming problem. After the example,
we consider some ways to know if one program is better than another.
Suppose that we want to add the two 16-bit numbers in locations $3810,
$3811 and $3812, $3813, putting the sum in locations $3814, $3815. For all
numbers, the higher-order byte will be in the smaller-numbered location. One
possibility for doing this is the instruction sequence in Figure 1.8 that can
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     half-carry ^      sign ^               ^ carry
                         zero bit ^   ^ overflow 

S X H I N Z V C

FIGURE 1.6. Bits in the Condition Code Register

<- C 
($3810) ($3811)
($3812) ($3813)
($3814) ($3815)

FIGURE 1.7. Addition of 2-Byte Numbers

3820 F6 08 11 LDAB $3811 ; get low byte of 1st 
3823 B6 38 10 LDAA $3810 ; get high byte of 1st 
3826 FB 38 13 ADDB $3813 ; add low byte of 2nd 
3829 B9 38 12 ADCA $3812 ; add high byte of 2nd 
382C 7B 38 15 STAB $3815 ; store low sum byte 
382F 7A 38 14 STAA $3814 ; store high sum byte 
3832 20 FE       BRA *  ; halt

FIGURE 1.8. Program for 16-Bit Addition



be executed in the simulator, where, for compactness, we give only the
memory location of the first byte of the instruction.

In the program segment in Figure 1.8, which runs on the simulator, the
instruction ADCA $3812 adds the contents of A with the contents of loca-
tion $3812 and the C condition code bit, putting the result in A. At that point
in the sequence, this instruction adds the two higher-order bytes of the two
numbers together with the carry generated from adding the two lower-order
bytes previously. This is, of course, exactly what we would do, as seen in
Figure 1.7. Note that we can put this sequence in any 19 consecutive bytes
of memory as long as the 19 bytes do not overlap with data locations $3810
through $3815.

We could also have used just one accumulator with the instruction
sequence shown in Figure 1.9, which executes in the simulator. In this new
sequence, the load and store instructions do not affect the carry bit C. (See
the CPU12 Reference Guide, Instruction Set Summary. We will understand
why instructions do not affect C as we look at more examples.) Thus, when
the instruction ADCA $3812 is performed, C has been determined by the
ADDB $3813 instruction.

The two programs in Figures 1.8 and 1.9 were equally acceptable.
However, we want to discuss guidelines to writing good programs early in
the book, so that you can be aware of them to know what we are expecting
for answers to problems and so that you can develop a good programming
style. A good program is shorter and faster and is generally clearer than a
bad program that solves the same problem. Unfortunately, the fastest
program is almost never the shortest or the clearest. The measure of a
program has to be made on one of the qualities or on one of the qualities
based on reasonable limits on the other qualities, according to the applica-
tion. Also, the quality of clarity is difficult to measure but is often the most
important quality of a good program. Nevertheless, we discuss the shortness,
speed, and clarity of programs to help you develop good programming style.

The number of bytes in a program (its length) and its execution time are
something we can measure. A short program is desired in applications for
which program size affects the cost of the end product. Consider two man-
ufacturers of computer games. These products feature high sales volume and
low cost, of which the microcomputer and its memory are a significant part.
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3820 B6 38 11 LDAA  $3811 ; get low byte of 1st 
3823 BB 38 13 ADDA  $3813 ; add low byte of 2nd 
3826 7A 38 15 STAA  $3815 ; store low sum byte 
3829 B6 38 10 LDAA  $3810 ; get high byte of 1st 
382C B9 38 12 ADCA  $3812 ; add high byte of 2nd 
382F 7A 38 14 STAA  $3814 ; store high sum byte 
3832 20 FE       BRA *   ; halt  

FIGURE 1.9. Alternative Program for 16-Bit Addition



If one company uses the shorter program, its product may need fewer ROMs
to store the program, may be substantially cheaper, and so may sell in larger
volume. A good program in this environment is a short program. Among all
programs doing a specific computation will be one that is the shortest. The
quality of one of these programs is the ratio of the number of bytes of the
shortest program to the number of bytes in the particular program. Although
we never compute this static efficiency of a program, we will say that one
program is more statically efficient than another to emphasize that it takes
fewer bytes than the other program.

The CPU12 Reference Guide, Instruction Set Summary, gives the length
of each instruction by showing its format. For instance, the LDAA #$2F
instruction is shown alphabetically under LDAA in the line IMM. The pattern
86 ii, means that the opcode is $86 and there is a 1-byte immediate operand
ii, so the instruction is 2 bytes long.

The speed or execution time of a program is prized in applications for
which the microcomputer has to keep up with a fast environment, such as in
some communication switching systems, or for which income is related to
how much computing can be done. A faster computer can do more comput-
ing and thus make more money. However, speed is often overemphasized:
“My computer is faster than your computer.” To show you that this may be
irrelevant, we like to tell this story about a computer manufacturer. This is
a true story, but we will not use the manufacturer’s real name for obvious
reasons. How do you make a faster version of a computer that executes the
same instruction? The proper answer is that you run a lot of programs and
find instructions that are used most often. Then you find ways to speed up
the execution of those often-used instructions. Our company did just that. It
found one instruction that was used very, very often and then found a way
to really speed up that instruction. The machine should have been quite a bit
faster, but it was not! The most common instruction was used in a routine
that waited for input-output devices to finish their work. The new machine
just waited faster than the old machine that it was to replace. The moral of
the story is that many computers spend a lot of time waiting for input-output
work to be done. A faster computer will just wait more. Sometimes speed is
not as much a measure of quality as it is thought to be, but then in other
environments, it is the most realistic measure of a program. As we shall see
in later chapters, the speed of a particular program can depend on the input
data to the program. Among all the programs doing the same computation
with specific input data, there will be a program that takes the fewest number
of clock cycles. The ratio of this number of clock cycles to the number of
clock cycles in any other program doing the same computation with the same
input data is called the dynamic efficiency of that program. Notice that
dynamic efficiency does depend on the input data but not on the clock rate
of the microprocessor. Although we never calculate dynamic efficiency
explicitly, we do say that one program is more dynamically efficient than
another to indicate that the first program performs the same computation
more quickly than the other one over some range of input data.
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The CPU12 Reference Guide, Instruction Set Summary, gives the instruc-
tion timing. For instance, the LDAA #$2F instruction is shown alphabeti-
cally under LDAA for the mode IMM. The Access Detail column indicates
that this instruction takes one memory cycle of type p, which is a program
word fetch. Generally, a memory cycle is 1–24 ms.

The clarity of a program is hard to evaluate but has the greatest signifi-
cance in large programs that have to be written by many programmers and
that have to be corrected and maintained for a long period. Clarity is
improved if you use good documentation techniques, such as comments on
each instruction that explain what you want it to do, and flowcharts and
precise definitions of the inputs, outputs, and the state of each program, as
explained in texts on software engineering. Some of these issues are dis-
cussed in Chapter 5. Clarity is also improved if you know the instruction set
thoroughly and use the correct instruction, as developed in the next two 
chapters.

Although there are often two or more equally good programs, the instruc-
tion set may provide significantly better ways to execute the same operation,
as illustrated by Figure 1.10. The 6812 has an instruction LDD to load accu-
mulator D, an instruction ADDD to add to accumulator D, and an instruction
STD to store accumulator D, which for accumulator D are analogous to the
instructions LDAA, ADDA, and STAA for accumulator A. The program in
Figure 1.10 performs the same operations as the programs given earlier but
is much more dynamically and statically efficient and is clearer.

If you wish to write programs in assembly language, full knowledge of
the computer’s instruction set is needed to write the most efficient, or the
clearest, program. The normal way to introduce an instruction set is to
discuss operations first and then addressing modes. We will devote Chapter
2 to the discussion of instructions and Chapter 3 to the survey of addressing
modes.

In summary, you should aim to write good programs. As we saw with
the examples, there are equally good programs, and generally there are no
best programs. Short, fast, clear programs are better than the opposite kind.
However, the shortest program is rarely the fastest or the clearest. The deci-
sion as to which quality to optimize depends on the application. Whichever
quality you choose, you should have as a goal the writing of clear, efficient
programs. You should avoid the tendency to write sloppy programs that just
barely work or that work for one combination of inputs but fail for others.
Therefore, we will arbitrarily pick one of these qualities to optimize in the

16 Chapter 1 Basic Computer Structure and the 6812

3820 FC 38 10 LDD $3810 ; get 1st 16-bit word 
3823 F3 38 12 ADDD $3812 ; add 2nd 16-bit word 
3826 7C 38 14 STD $3814 ; store 16-bit word 
3832 20 FE       BRA *  ; halt 

FIGURE 1.10. Most Efficient Program for 16-Bit Addition



problems at the end of the chapters. We want you to optimize static efficiency
in your solutions, unless we state otherwise in the problem. Learning to work
toward a goal should help you write better programs for any application when
you train yourself to try to understand what goal you are working toward.

6812 Microcontroller Organizations
The 6812 is currently available in about two dozen implementations. Three
of these are designated the MC68HC812A4 (abbreviated the ’A4), the
MC68HC912B32 (abbreviated the ’B32), and the MC9S12C32 (abbreviated
the ’C32). These are discussed herein.

The ’A4 can operate in the single-chip mode or the expanded bus mode.
In the single-chip mode, the ’A4 can be the only chip in a system, for it is
self-sufficient. The processor, memory, controller, and I/O are all in the chip
(Figure 1.11). The memory consists of 1K words of RAM and 4K words of
electrically erasable programmable memory (EEPROM). The I/O devices
include a dozen parallel I/O ports, a serial peripheral interface (SPI), a serial
communication interface (SCI), a timer, and an A/D converter.

The ’A4’s expanded bus mode removes three or four of the parallel ports,
using their pins to send the address and data buses to other chips. RAM,
ROM, erasable programmable read-only memory (EPROM), and program-
mable read-only memory (PROM) can be added to an expanded bus. In a
narrow expanded mode, ports A and B are removed for address lines, and
port C is an 8-bit data bus. Port D is available for parallel I/O. In a wide
expanded mode (Figure 1.12), port D is also unavailable for parallel I/O. In
both modes, ports E, F, and G are available for bus control, chip selects, and
memory control, or else for parallel I/O. Each parallel port, A, B, etc., is
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CONTROLLER
and
DATA OPERATOR 

PORT A PORT J PORT GPORT EPORT C  PORT T 

PORT B PORT S PORT HPORT FPORT D  PORT AD

1K bytes of RAM 

MC68HC812A4

4K bytes of
EEPROM SCI

SPI

TIMER
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FIGURE 1.11. Single-Chip Mode of the MC68HC812A4

� 1.4



18 Chapter 1 Basic Computer Structure and the 6812

¸
EXTERNAL I/O

EXTERNAL ROMEXTERNAL RAM

EXTERNAL EPROM

CONTROLLER
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1K bytes of RAM 
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EEPROM SCI
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TIMER

A/D

MC68HC812A4

FIGURE 1.12. Expanded Wide Multiplexed Bus Mode of the
MC68HC812A4

essentially able to either input or output a byte, except port AD, which is
only able to input a byte.

Advantageously, the ’A4 can be used in either single-chip mode, when
the chip has enough memory and I/O for the application or narrow or wide
expanded multiplexed bus mode, when more memory or additional I/O are
needed.

The ’B32 can also operate in the single-chip mode or the expanded bus
mode, but in the latter mode, address and data are time-multiplexed on the
same pins. In the ’B32 single-chip mode, processor, memory, controller, and
I/O are all inside the chip (Figure 1.13). The memory consists of 1K words
of RAM, 768 bytes of EEPROM, and 32K words of flash memory, which is
like EEPROM. The I/O devices include eight parallel I/O registers, a serial
peripheral interface (SPI), a serial communication interface (SCI), a timer, a
pulse-width modulator (PWM), a Byte Data Link Communication Module
(BDLC), and an A/D converter. Although ’B32’s expanded mode permits
connections to external memory and peripherals, we note that members of
the 6812 family other than the ’B32 are more suited to using external
memory and peripherals.

The MC9S12C32 is a more recent member of the 6812 family. The letter
“S” in this microcontroller’s name indicates that it is derived from a soft-



ware description rather than a photographic mask definition. This technique
allows the software description to be easily implemented with technologies
that will come in the future, which have higher speeds. The ’C32 runs at 24
MHz and future versions of “S” microcontrollers should be able to run even
faster. The older members of the 6812 family, such as the MC68HC812A4
and MC68HC912B32, are defined by mask sets and will remain limited to
8 MHz clock rates, even if faster technologies become available. Figure 1.14
shows the block diagram of the MC9S12C32 in single-chip mode. A
Motorola Scalable Controller Access Network (MSCAN) is on this chip in
place of the BDLC in the ’B32. A version of the ’C32 can also operate in

Section 1.4 6812 Microcontroller Organizations 19

CONTROLLER
and
DATA OPERATOR 

1K Bytes of RAM 

MC68HC912B32

32K bytes of
flash memory

TIMER

PWM

 PORT AD PORT P 

SPI

SCI

 PORT S 

 PORT T 

 PORT DLC 

PORT E BDLC

A/D

PORT A

PORT B

768 bytes of
EEPROM

FIGURE 1.13. Single-Chip Mode of the MC68HC912B32
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the expanded bus mode, but other members of the 6812 family are more
suited to using external memory and peripherals. Unlike the ’A4 and ’B32,
the ’C32 can input or output a byte through PortAD.

A memory map shows what range of addresses is used to access each part
of memory or each I/O device. Figure 1.15a presents a memory map for the
’A4. I/O is at the lowest address, from 0 to $1ff, RAM is at $800 to $bff,
and EEPROM is at $f000. Figure 1.15b presents a similar memory map for
the ’B32. I/O is at the lowest address, from 0 to $1ff, RAM is at $800 to
$bff, EEPROM is at $d00 to $fff, and flash memory is at $8000 to $ffff.
Usually, in the ’A4 and ’B32, your data are put in RAM, and your program
may be put in RAM, EEPROM, or flash memory. However, to facilitate
debugging, the ’B32’s flash at $8000 or ’A4’s EEPROM at $F000 usually
has a monitor such as DBUG12. If this monitor program resides in flash
memory and you try to put your program in the same flash memory, you can
lose the ability to debug your program, because to rewrite a single word, all
of the flash memory must be erased. Figure 1.15c presents a memory map
for the ’C32 running the debugger called the Motorola Serial Monitor. I/O
is at the lowest address, from 0 to $3ff, RAM is at $3800 to $3fff, and flash
memory is between $4000 and $f7ff and between $c000 and $ffff. You can
put both data and instructions in the RAM between locations $3800 and
$3fff. The aforementioned ’C32 debugger resides between $f800 and $ffff;
writing in flash memory locations, between $4000 and $7fff and between
$c000 and $f7ff, does not delete this monitor, so you can write in it to hold
instructions in your program.

In this chapter, we have used addresses in the simulator that happen to
be in static RAM in the ’C32. In remaining chapters, we continue to use
addresses in this range. If you are using an ’A4 or a ’B32, you need to remap
all such memory addresses to $800 to $bff.
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Variable Word Width
We have glibly stated that a 6812 can have either 8-bit or 16-bit word widths.
The fastidious reader might wonder how this takes place. This optional
section provides details on how a 6812’s word widths can be either 8 bits or
16 bits wide, as discussed.

The word width is a function of the instruction and of the bus mode 
discussed in the last section. As noted in the last section, external memory
can utilize a narrow or a wide data bus. We first consider an external memory
using the wide data bus and comment on such a memory using a narrow 
bus at the end of our discussion. Figure 1.16 illustrates a 6812 ’C32 system
with an internal memory at locations $3800 to $3fff and an external memory
at locations $7000 to $7fff, each composed of two 8-bit-wide memory
“banks.”

Each internal 8-bit wide memory bank’s decoder can decode addresses
on different buses, whereas both external 8-bit wide memory banks’ decoders
decode the same address that is on the single bus that connects through the
microcontroller’s pins. The even memory bank stores even bytes, such as 0,
2, 4, . . . whereas the odd memory bank stores odd bytes, such as 1, 3, 5,
. . . The effective address computed by the instruction is generally shifted 1
bit right to derive the address that is presented to the memories (memory
address). The original effective address’s least significant bit indicates which
8-bit memory is accessed.

We will first consider reading or writing using an 8-bit external (narrow)
bus, and then for a 16-bit bus, we consider reading an 8-bit word first.
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Then we discuss writing an 8-bit word, reading a 16-bit word, and writing a
16-bit word.

Each access to read or write a byte through an 8-bit narrow bus takes one
memory cycle. Each access to read or write a 16-bit word through an 8-bit
narrow bus uses two memory cycles.

Consider reading an 8-bit word into accumulator A. A whole 16-bit word
can be read from both banks of either the internal memory at locations $3800
to $3fff or external memory at locations $7000 to $7fff, using the same
memory address; and the switches to the right of accumulator A can feed the
byte from an even or odd memory bank to it, depending on whether the byte
address is even or odd. Writing accumulator A into memory can be effected
by putting that register’s data on both even and odd byte data buses and
giving the command to write to an even or odd bank depending on whether
the effective address is even or odd. The bank that does not get the command
to write will see the same byte on its data input but will not write that byte
into its memory.

Consider reading a 16-bit word into accumulator D, which is accumu-
lator A concatenated with accumulator B. If the address is even, then a 
16-bit word is simply read from both banks, using the same memory 
address, through both data buses and written into both accumulators A
and B. Reading a 16-bit word from an odd effective address in the internal
memory can be done in one memory cycle; the even-byte memory bank 
can decode a memory address one above the memory address of the odd
bank, and the switches next to the accumulators can reroute the bytes 
into the correct accumulators. However, reading a 16-bit word from an 
odd address in the external memory is done in two memory cycles; the 
byte at the lower address is read first, as discussed in the previous paragraph,
then the byte at the higher address is read. This is called a mis-aligned
access.

The internal flash memory of the ’B32 and ’C32 has only one address
decoder, so neither can read bytes at different 16-bit word addresses in one
memory cycle. If the address is odd, reading 2 bytes from flash memory 
similarly takes two memory cycles.

Consider writing a 16-bit word from accumulator D. If the address is
even, a byte is simply written from both accumulators A and B through both
data buses into both banks. If the address is odd, writing 16 bits is easily
done in the internal memory; each byte is written, but at different addresses
in the even and odd byte memory banks. However, if the address is odd,
using mis-aligned access, writing 16 bits into the external memory is done
by writing the lower addressed byte first in one memory cycle and then
writing the other byte in the next cycle.

Cycle counts in the CPU12 Reference Guide, Instruction Set Summary,
are for instructions and data read and written in internal RAM. The number
of cycles is determined by counting the number of letters in the column
“Access Detail” for the HCS12. These counts may be higher when instruc-
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tions and data are read from or written into external RAM or read from inter-
nal flash memory.

At the beginning of this chapter, we proposed that we would show you
how an instruction is executed in a microcontroller. However, from this dis-
cussion of 6812 memory operations, you see that a simple operation becomes
significantly more complex when it is implemented in a state-of-the-art
microcontroller. Just reading a 16-bit word from memory might be done
several ways depending on where the word is located, inside or outside the
microcontrolleror using an even or an odd address. From the point of view
of how an instruction is executed in the 6812, however, a simple model that
explains the concept fully is better than the fully accurate model that accounts
for all the techniques used to implement the operation; we simply state that
a 16-bit word is read from memory. The reader should understand how
instructions are executed, but from now on in this book, we will use a sim-
plified model of the hardware to explain how an instruction is actually imple-
mented in hardware (in an idealized microcontroller, rather than the real
6812).

Summary and Further Reading
In this chapter we examined the computer and instructions in some detail.
You should be prepared to study each of the 6812 instructions and address-
ing modes in the following two chapters. We will expand the ideas of pro-
gramming, introduced at the end of this chapter, as we progress through the
book. Many questions may remain unanswered, though, after reading this
chapter. We want you to continue reading the following chapters as we
discuss the way to use this marvelous tool.

In this book, we use Motorola’s CPU12 Reference Guide, to provide
essential information needed to write and read machine code for the 6812 
in compact and neat form. This manual is a summary of key tables and
figures in the CPU12 Reference Guide, which contains complete informa-
tion on the execution of each instruction. Additionally, there is a manual 
for the ’B32 (reference number M68HC912B32TS/D) and a manual for the
’A4 (reference number M68HC812A4TS/D), which describe their I/O
systems. The ’C32 has a folder of pdf files describing its parts. Motorola is
generous with these manuals and maintains them on the Web better than 
we can in an appendix in this book, so we recommend that you order or
download the manuals from Motorola that you need to accompany this 
book. Finally, if you are already an accomplished assembly language pro-
grammer for another computer or microcomputer, you might find this book
too simple and spread out. We might offer Chapter 1 of the text Single- and
Multiple-Chip Microcontroller Interfacing (by G. J. Lipovski, Academic
Press, San Diego, 1999), as a condensed summary of much of the material
in this text.
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PROBLEMS

1. Is a Hewlett-Packard handheld calculator, model 21 (or any program-
mable calculator that you may select), a (von Neumann) computer, and
why?
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Do You Know These Terms?
This is a list of all italicized words in this chapter. You should check these
terms to be sure that you recognize their meaning before going on to the next
chapter. These terms also appear in the index, with page numbers for refer-
ence, so you can look up those that you do not understand.

von Neumann
computer

memory
controller
data operator
input-output (I/O)
register
microprocessor
microcomputer
single-chip

microcontroller
MPU
byte
word
line
wire
bus
clock
clock cycle
clock rate
clock frequency
read
read/write line
write
access
random access memory

(RAM)
read only memory

(ROM)
volatile

nonvolatile
program
instruction
instruction cycle
fetch/execute cycle
fetch
fetch phase
recall
execute phase
accumulator
effective address
one-address computer
addressing mode
operation code byte
operation code

(opcode)
hexadecimal number
machine code
machine
debug
assembler
source code
mnemonic
immediate addressing
operand
direct addressing
carry bit (carry)
condition code register
half-carry
static efficiency

dynamic efficiency
clarity
single-chip mode
electrically erasable

programmable
memory (EEPROM)

serial peripheral
interface (SPI)

serial communication
interface (SCI)

timer
A/D converter
erasable programmable

read-only memory
(EPROM)

programmable read-
only memory
(PROM)

flash memory
pulse-width modulator

(PWM)
Byte Data Link

Communication
Module (BDLC)

Motorola Scalable
Controller Access
Network (MSCAN)

memory map
mis-aligned access



2. What do the following terms mean: memory, controller, data operator,
input/output?

3. What are a microcomputer, a microprocessor, and a single-chip 
microcontroller?

4. Describe the terms clock, data bus, address bus, and read/write line.
Discuss the operation of reading a word from memory using these 
terms.

5. How many memory read cycles are needed for the following instruc-
tions, using the CPU12 Reference Guide? How many are fetch opera-
tions, and how many are recall operations? How many memorize cycles
are used?

(a) LDAA #19

(b) LDAB #18

(c) ADDA $3FB2

(d) ADDA 23 (Use 16-bit direct addressing)

(e) STAA 199 (Use 16-bit direct addressing)

6. While executing a particular program, (PC) = 2088, (A) = 7, and (B) =
213 before the following sequence is executed:

LDAA #10 Location Contents
ADDA 2142 2139 8
STAA 2139 2140 7

2141 16
2142 251
2143 19

If the contents of memory locations 2139 through 2143 are as shown on
the right before the sequence is executed, what will the contents of A,
B, and PC be after the sequence is executed? (Location is the memory
location, or address, and Contents is the memory contents. All numbers
given are in decimal.) What will the C bit be equal to after the sequence
is executed?

7. Write a program to add two 3-byte numbers in the same manner as
Figures 1.8 through 1.10.

8. Select goals for good programs in the following applications, and give
a reason for the goals. The goals should be static or dynamic efficiency
or clarity.

(a) A 75,000-instruction program

(b) A program for guidance of a space satellite

(c) A controller for a drill press

(d) An automobile engine controller

(e) Programs for sale to a large number of users (such as a Basic 
interpreter)
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9. What is the effective address in the following instructions, assuming the
opcode byte is at $3802?

(a) LDAA 122

(b) LDAA #122

(c) ADDA $3452

(d) ADDA #125

10. Rewrite Figure 1.5 to subtract the 8-bit number in location $3840 from
the 8-bit number in location $3841, putting the result into location
$3842. Use SUBA.

11. How many clock cycles does it take to execute the program in Figure
1.5? (See the operation code bytes table in the CPU12 Reference Guide,
Instruction Set Summary.) If a memory clock cycle is 1–24 ms, how long
does this program take in real time?

12. Rewrite Figure 1.8 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBB and SBCA.

13. Rewrite Figure 1.9 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBA and SBCA.

14. How many clock cycles does it take to execute the program in Figure
1.8 and the program in Figure 1.9? (See the operation code bytes table
in the CPU12 Reference Guide.) If a memory clock cycle is 1–24 ms, how
long does this program take in real time?

15. Rewrite Figure 1.10 to subtract the 16-bit number in location $3812 from
the 16-bit number in location $3810, putting the result into location
$3814. Use SUBD.

16. How many clock cycles does it take to execute the program in Figure
1.10? (See the operation code bytes table in the CPU12 Reference
Guide.) If a memory clock cycle is 1–24 ms, how long does this program
take to execute in real time?

17. How many parallel ports of the narrow expanded mode of the
MC68HC812A4, which are already on the microcontroller chip, can be
used? How many parallel ports of the wide expanded mode of the
MC68HC812A4, which are already on the microcontroller chip, can be
used? In the latter case, how many can be used for output?

18. Answer the following questions. (a) How many parallel ports of the
single-chip MC68HC912B32 can be used for input? (b) How many can
be used for output? How many parallel ports of the single-chip (80-pin
quad flat pack QFP) MC9S12C32 can be used for input? How many can
be used for output?

19. In Figure 1.16, an external wide-bus memory is 16 bits wide, but most
static random access memories (SRAMs) are 8 bits wide. If a 16 kbyte
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external memory is to be used as shown in this figure, what kind of
SRAM chips should be ordered? How should the microcontroller
address bus be attached to the SRAM chip address pins?

20. In Figure 1.11, an ’A4’s internal memory is 16 bits wide, whereas the
older 6811 microcontroller’s internal memory is 8 bits wide. A word of
EEPROM can be programmed each 10 ms in either case. How long does
it take to write a 1-kbyte program in EEPROM in each microcontroller?
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In our study of how the computer ticks, we think that you will be motivated
to read this chapter because it will describe the actions the computer can do.
It will supply a key ingredient that you need to write programs, so that the
computer can magnify your ideas as a lever can magnify your physical capa-
bilities. The next chapter completes the study of the instruction set by
describing the addressing modes used with these instructions.

To learn the possible actions or operations that a computer may execute,
you need to keep a perspective. There is a lot of detail. You do need to learn
these details to be able to program the 6812. However, learning about that
microcomputer must be viewed as a means to an end, that is, to understand
the operations of any computer in general. While you learn the details about
programming the 6812, get the feel of programming by constantly relating
one detail to another and questioning the reason for each instruction. When
you do this, you will learn much more than the instruction set of a particu-
lar computer—you will learn about computing.

We have organized this chapter to facilitate your endeavor to compare
and to associate details about different instructions and to offer some answers
to questions that you might raise about these instructions. This is done by
grouping similar instructions together and studying the groups one at a time,
as opposed to listing instructions alphabetically or by presenting a series of
examples and introducing new instructions as needed by each example as
we did in Chapter 1. We group similar instructions together into a class and
present each class one at a time. As mentioned in Chapter 1, the instructions
for the 6812, as well as those for any other computer, may be classified as
follows:

1. Move instructions.

2. Arithmetic instructions.

3. Logic instructions.

4. Edit instructions.

5. Control instructions.

6. Input output instructions.

7. Special instructions.

The Instruction Set

C H A P T E R
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We have added, as a separate section, the special instructions that are gen-
erally arithmetic instructions usually not used by compilers but that provide
the 6812 with some unique capabilities. We now examine each instruction
class for the 6812. This discussion of classes, with sections for examples and
remarks, is this chapter’s outline.

At the conclusion of the chapter, you will have all the tools needed to
write useful programs for the 6812, in machine code. You should be able to
write programs on the order of 20 instructions long, and you should be able
to write the machine code for these programs. If you have a laboratory par-
allel to a course that uses this book, you should be able to enter these pro-
grams, execute them, debug them, and, using this hands-on experience, you
should begin to understand computing.

Move Instructions
Behold the humble move instructions, for they labor to carry the data for the
most elegant instructions. You might get excited when you find that this com-
puter has a fairly fancy instruction like multiply, or you might be dis-
appointed that it does not have floating-point instructions like the ones most
big machines have. Studies have shown that, depending on the kind of appli-
cation program examined, between 25% and 40% of the instructions were
move instructions, whereas only 0.1% of the instructions were multiplies. As
you begin to understand computing, you will learn to highly regard these
humble move instructions and to use them well.

Move instructions essentially move 1 or 2 bytes from memory to a 
register (or vice versa) or between registers or memory locations. The two
aspects of these instructions that give most readers some problems are the
setting of condition codes and the allowable addressing modes. We shall take
some care with the setting of condition codes in this chapter and the allow-
able addressing modes in the next chapter.

The two simplest instructions from the move class are the load and store
instructions. These have already been examined for accumulators A, B, and
D; they also may be used with index registers like X. For example, in the
load instruction

LDX 14337

the high byte of X is taken from location 14337 whereas the low byte of X
is taken from location 14338. An exactly parallel situation holds for the store
instruction

STX 14337

where the high byte of X is put into location 14337 whereas the low byte of
X is put into location 14338. In addition to X, there are load and store instruc-
tions for index register Y and stack pointer S. They work exactly as described
for D.
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The TST and CLR instructions are two more examples in the move class
of instructions of the 6812. The clear instruction CLR is used to initialize the
accumulators or memory locations with the value zero. As such, CLRA can
replace instructions such as LDAA #0 in the sequence in Figure 2.1. Further,
the two instructions in Figure 2.1 can be replaced by the single instruction
CLR 14378.

Notice that although CLRA and LDAA #0 make the same move, CLRA
clears C, whereas LDAA #0 does not affect C. Your program may need 
to use C later. The test instruction TST, sometimes called a “half a load”
instruction, adjusts the N and Z bits in the condition code register exactly 
as a load instruction does but without actually loading the byte into an 
accumulator. The versatile “load effective address” instructions, LEAX,
LEAY, and LEAS, load one of the index registers or stack pointer with the
effective address computed in an index address calculation, which will be
discussed in Chapter 3. These instructions do not affect the condition 
code register bits.

Table 2.1 lists the move instructions that use addressing modes. The
expressions such as (E) Æ A accurately describe the instruction’s principal
effect. E is the effective address, (E) is the word in memory at location E, A
is accumulator A, and Æ is a data transfer, so (E) Æ A means that the word
in memory at the location determined by the instruction’s effective address
is put into accumulator A. The CPU12 Reference Guide, Instruction Set
Summary, further gives the opcode bytes, allowable addressing modes for
each instruction, and condition code modifications that result from execut-
ing these instructions. These same conventions are used with the tables that
follow in this chapter.

Table 2.2 lists move instructions that push on or pull from the stack. The
stack pointed to by register SP is called the hardware stack. A program can
have other stacks as well. A stack is an abstraction of a stack of letters on
your desk. Received letters are put on top of the stack; when read, they are
removed from the top of the stack.

In the computer, letters become bytes and the memory that stores the
stack becomes a buffer with a stack pointer as follows. One decides to put
this buffer, say, from $3f80 to $3fff (Figure 2.2). The amount of storage allo-
cated to the buffer should be the worst case number of bytes saved on the
stack. Usually, we allow a little extra to prevent a stack overflow. SP points
to the top byte that is on the stack. The SP register is generally initialized
once to the high end of the buffer at the beginning of the program and is
thereafter adjusted only by push and pull instructions and, perhaps, the LEAS
instruction to move it. For example, at the beginning of the program, the
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3820 86 00    LDAA   #0      ; generate constant 0 
3822 7A 38 2A STAA   14378 ; move to $382A 

FIGURE 2.1. A Program Segment to Clear a Byte



instruction LDS #$4000 initializes the stack so that the first byte pushed
is into location $3fff.

If a byte is pushed onto the stack, SP is decremented by 1, and a byte,
from one of the 8-bit registers, is put into location (SP). If 1 byte is removed
or pulled from the stack, the byte is transferred to one of the 8-bit registers,
and SP is incremented by 1. If 2 bytes are pushed onto the stack, SP is decre-
mented by 2, and 2 bytes, from one of the 16-bit registers, are put into loca-
tion (SP) and (SP + 1). If 2 bytes are pulled from the stack, 2 bytes from
location (SP) and (SP + 1) are put into one of the 16-bit registers, and SP is
incremented by 2. Any of the registers, except SP, may be pushed or pulled
from the stack for which SP is the stack pointer. PSHB will push B onto the
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LDAA opr (E) Æ A; Load Accumulator A
LDAB opr (E) Æ B; Load Accumulator B
LDD opr (E):(E+1) Æ D; Load Accumulator D
LDS opr (E):(E+1) Æ SP; Load Stack Pointer
LDX opr (E):(E+1) Æ X; Load Index Register X
LDY opr (E):(E+1) Æ Y; Load Index Register Y
STAA opr A Æ (E); Store Accumulator A to Memory
STAB opr B Æ (E); Store Accumulator B to Memory
STD opr D Æ (E):(E+1); Store Accumulator D
STS opr SP Æ (E):(E+1); Store Stack Pointer
STX opr X Æ (E):(E+1); Store Index Register X
STY opr Y Æ (E):(E+1); Store Index Register Y
CLR opr, 0 Æ (E); Clear Memory, or A or B
CLRA,
CLRB

TST opr, (E) Æ 0; Test Memory, or A or B
TSTA,
TSTB

LEAS opr E Æ SP; Load Effective Address into 
SP

LEAX opr E Æ X; Load Effective Address into X
LEAY opr E Æ Y; Load Effective Address into Y

$3f80->  

$3fff->  

SP->  buffer
stack

FIGURE 2.2. A Stack

Table 2.1 Move Instructions Using an Effective Address



stack, PULD will pull two words from the stack, putting the combined word
in accumulator D. The order for 16-bit words is always that the low byte is
pushed before the high byte, and the high byte is pulled before the low byte.

The stack will later be used for saving and restoring the program counter
when executing a subroutine and saving and restoring all the registers when
executing an interrupt. It will later also be used to store procedure arguments
and local variables.

The hardware stack and the stack pointer SP must be used with some care
in computers like the 6812. There may be a temptation to use it as an index
register, to move it around to different data locations. This is very danger-
ous. Interrupts, which may occur randomly, save data on the hardware stack,
and programs used to aid in the testing and debugging of your program gen-
erally use interrupts. Such a program may be very difficult to test and debug
because some data in your program may be overwritten in your attempt to
test and debug it. On the other hand, this same stack is the best place to save
data used by a subroutine, which is not used by other subroutines, as we
explain later. Incidentally, the word “pop” is used instead of “pull” in many
textbooks.
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PSHA SP - 1 Æ SP; A Æ (SP); Push Accumulator A 
onto Stack

PSHB SP - 1 Æ SP; B Æ (SP); Push Accumulator B 
onto Stack

PSHC SP - 1 Æ SP; (CCR) Æ (SP); Push CCR onto 
Stack

PSHD SP - 2 Æ SP; D Æ (SP):(SP+1); Push 
Accumulator D

PSHX SP - 2 Æ SP; X Æ (SP):(SP+1); Push Index 
Register X

PSHY SP - 2 Æ SP; Y Æ (SP):(SP+1); Push Index 
Register Y

PULA (SP) Æ A; SP + 1 Æ SP; Pull Accumulator A 
from Stack

PULB (SP) Æ B; SP + 1 Æ SP; Pull Accumulator B 
from Stack

PULC (SP) Æ CCR; SP + 1 Æ SP; Pull CCR from 
Stack

PULD (SP):(SP+1) Æ D; SP + 2 Æ SP; Pull D from 
Stack

PULX (SP):(SP+1) Æ X; SP + 2 Æ SP; Pull Index 
Register X

PULY (SP):(SP+1) Æ Y; SP + 2 Æ SP; Pull Index 
Register Y

Table 2.2 Stack Move Instructions



The transfer and exchange instructions in Table 2.3, TFR and EXG, allow
the transfer of register r1 to r2 or the exchange of r1 and r2, respectively,
where r1 and r2 are any pair of 8- or 16-bit registers. You can move data
from an 8-bit register to a 16-bit one or vice versa. As an example, the
instruction TFR D,Y puts the contents of D into Y, and EXG D,X exchanges
the contents of accumulator D and index register X.

The TFR or EXG machine code consists of an operation code byte and a
post byte. The opcode byte is obtained from the CPU12 Reference Guide,
Instruction Set Summary, and the post byte (see Table 3 therein) can be
obtained as follows: The source is the left nibble and the destination is the
right nibble; their values are as follows: 0, accumulator A; 1, accumulator
B; 2, condition code register; 4, accumulator D; 5, index register X; 6, index
register Y; and 7, stack pointer SP. As an example, the instruction TFR D,Y
is stored in memory as the two bytes:
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EXG r1,r2 r1 ´ r2; 8-bit or 16-bit Register 
Exchange

TFR r1,r2 8-bit or 16-bit Register to Register 
Transfer

SEX r1,r2 Alternate for some TFR r1,r2 
instructions

TAB A Æ B; Transfer A to B
TBA B Æ A; Transfer B to A
TAP A Æ CCR; Translates to TFR A,CCR
TPA CCR Æ A; Translates to TFR CCR,A
TSX SP Æ X; Translates to TFR SP,X
TSY SP Æ Y; Translates to TFR SP,X
TXS X Æ SP; Translates to TFR X,SP
TYS Y Æ SP; Translates to TFR Y,SP
XGDX Translates to EXG D,X
XGDY Translates to EXG D,Y
MOVB opr1, (E) Æ (e); 8-bit Memory to Memory Move
opr2

MOVW opr1, (E):(E+1) Æ (e):(e+1); 16-bit Move
opr2

$B7
$46

Table 2.3 Special Move Instructions

The post byte’s left 4 bits indicate the source of the transfer, which is D, and
the right 4 bits indicate the destination of the transfer, which is Y. When a



transfer from an 8-bit to a 16-bit register occurs, the sign bit is extended so
that positive numbers remain positive and negative numbers remain nega-
tive; the sign extend mnemonic SEX can be used as an alternative to the TFR
mnemonic in these cases. Figure 2.3a illustrates sign extension when the data
are transferred from an 8-bit register, such as A, shown on the top, into a 16-
bit register such as X, shown on the bottom. The low-order byte is moved
bit-by-bit from the flip-flops in the 8-bit to the flip-flops in the 16-bit regis-
ter. The high-order byte’s flip-flops are loaded with the low-order byte’s sign
bit. The EXG instruction similarly permits exchanging the contents of two
registers, and the post byte coding is the same, but when moving from an 8-
bit to a 16-bit register, instead of extending the sign, it merely fills the high
byte with zeros (Figure 2.3b). Exchanges are accomplished by means of a
hidden register (Figure 2.3c). The instruction EXG A,B first copies regis-
ter B into the hidden register. Then it copies A into B. Finally, it copies the
hidden register into A. Such hidden registers are not in the description of the
6812’s register set (Figure 1.2) but are additional registers within the data
operator.

The MOVB and MOVW instructions implement a constant-to-memory or a
memory-to-memory move. The instruction below puts the constant $04 into
location $3803.

MOVB #4,$3803

This instruction is coded as shown below; the prefix byte $18 precedes the
opcode byte $0B (see the CPU12 Reference Guide). In effect, the opcode is
a 16-bit opcode $180B. The prefix byte $18 is used in the 6812 to encode a
number of instructions. It is as if, when the 6812 fetches the prefix $18, it
thinks: Oh, this is one of the 2-byte opcodes, so fetch another byte to get the
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a. Sign extension

'0' '0''0' '0''0' '0''0' '0'

b. Zero extension 

Register A

Register B

Hidden Register 

c. Hidden Register Exchange 

FIGURE 2.3. Transfers Between Registers



This move instruction moves the immediate operand $04 into a hidden
register and then moves the data from the hidden register into location $3803.
From the CPU12 Reference Guide, we observe that its execution takes four
memory cycles. The alternative to this instruction is the program segment:

LDAA #4
STAA $3803

which is encoded as follows:
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complete opcode. The third byte is the immediate operand $04, and the last
two bytes are the direct address $3803.

$18
$0B
$04
$38
$03

$86
$04
$7A
$38
$03

This pair of instructions takes the same number of bytes as the MOVB
instruction. Further, the LDAA instruction executes in one memory cycle, and
the STAA instruction executes in three memory cycles. The MOVB instruc-
tion is neither statically nor dynamically more efficient than the pair of
instructions, LDAA and STAA. However, it is clearer. We recommend using
the MOVB instruction to write a constant into memory.

However, if the same constant is written into two places in memory, 
as in

LDAA #4
STAA $3803
STAA $3807

then a program sequence using the MOVB instruction is less efficient:

MOVB #4,$3803
MOVB #4,$3807

This program sequence takes 10 bytes and executes in eight memory cycles,
whereas the program sequence above it takes 8 bytes and executes in seven
memory cycles.

The MOVB instruction also moves data from any memory location to 
any other memory location. MOVB $3801,$3803 moves a byte from loca-
tion $3801 to location $3803. The MOVW instruction similarly moves 16 bits 
of data.



Missing move instructions can often be implemented by combinations of
other move instructions. Because there is no instruction to “load” the con-
dition code register, it can be loaded through accumulator A or B with the
TFR instruction. For example, to put 3 into the condition code, execute the
code shown in Figure 2.4.

Arithmetic Instructions
The computer is often used to compute numerical data, as the name implies,
or to keep books or control machinery. These operations need arithmetic
instructions, which we now study. However, you must recall that computers
are designed and programs are written to enhance static or dynamic efficiency.
Rather than have the four basic arithmetic instructions that you learned 
in grade school—add, subtract, multiply, and divide—computers have the
instructions that occur most often in programs. Rather than having the sophis-
ticated square root as an instruction, for instance, we will see the often-used
increment instruction in a computer. Let us look at them (Table 2.4).

We have already discussed the add instructions: ADCA, ADCB, ADDA,
ADDB, and ADDD. The corresponding subtraction instructions, SBCA, SBCB,
SUBA, SUBB, and SUBD, are the obvious counterparts of add instructions,
where the carry condition code bit holds the borrow. However, 16-bit add and
subtract instructions with carry, ADCD and SBCD, are missing; multiple-byte
arithmetic must be done 1 byte at a time rather than 2 bytes at a time. Compar-
isons are normally made by subtracting two numbers and checking if the
result is zero, negative, positive, or a combination of these. However, using
the subtract instruction to compare a fixed number against many numbers
requires that the fixed number has to be reloaded in the register each time the
subtraction is performed. To streamline this process, compare instructions are
included that do not change the contents of the register used. These compare
instructions are used to compare the contents of registers A, B, D, X, Y, and SP
with the contents of memory locations to give values to the condition code bits
C, V, N, and Z. Finally, note that DEC, INC, and NEG are provided for often-
used special cases of add and subtract instructions to improve efficiency.

Figure 2.5 illustrates a simple example of an arithmetic operation: adding
a 4-byte number at $3850 to a 4-byte number at $3854. ADDD can be used
to add the two low-order bytes, but ADCB and ADCA are needed to add the
high-order bytes.

Arithmetic instructions are really very simple and intuitively obvious,
except for the condition code bits. Addition or subtraction uses the same
instruction for unsigned as for two’s-complement numbers, but the test for
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3820 86 03 LDAA  #3   ; generate constant 3 
3822 B7 02 TFR A,CCR ; move to cc register 

FIGURE 2.4. Program Segment to Initialize the Condition Code Register

� 2.2
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ADCA opr A + (E) + C Æ A Add with Carry to A
ADCB opr B + (E) + C Æ B Add with Carry to B
ADDA opr A + (E) Æ A Add without Carry to A
ADDB opr B + (E) Æ B Add without Carry to B
ADDD opr D + (E):(E+1) Æ D; ADD to D without 

Carry
CMPA opr A - (E); Compare Accumulator A with 

Memory
CMPB opr B - (E); Compare Accumulator B with 

Memory
CPD opr D - (E):(E+1); Compare D to Memory 

(16-Bit)
CPS opr SP - (E):(E+1); Compare SP to Memory 

(16-Bit)
CPX opr X - (E: E+1); Compare X to Memory 

(16-Bit)
CPY opr Y - (E: E+1); Compare Y to Memory 

(16-Bit)
SBCA opr A - (E) - C Æ A; Subtract with Borrow 

from A
SBCB opr B - (E) - C Æ B; Subtract with Borrow 

from B
SUBA opr A - (E) Æ A; Subtract from Accumulator A
SUBB opr B - (E) Æ B; Subtract from Accumulator B
SUBD opr D - (E):(E+1) Æ D; Subtract from Acc, D
DEC opr, (E) - 1 Æ (E); Decrement Memory Byte/
DECA, Reg.
DECB

INC opr, (E) + 1 - (E); Increment Memory Byte/
INCA, Reg.
INCB

NEG opr, 0 - (E) Æ (E); two’s Complement Negate
NEGA,
NECB

Table 2.4 Add Instructions Using an Effective Address

overflow is different (see Appendix 1). The programmer has to use the correct
condition code test after instruction completion; for example, SUBA $3876
sets C = 1 if, and only if, there has been an unsigned overflow; that is, A -
($3876) produces a borrow or, when each number is treated as an unsigned
number, A < ($3876). [Here A and ($3876) denote the contents of A and the
contents of location $3876.] Similarly, V = 1 if, and only if, a two’s-
complement (signed) overflow occurs, when A and ($3876) are treated 
as two’s-complement numbers; that is, A - ($3876) is not in the 8-bit 



two’s-complement range. Note again that subtraction is performed with the
same instruction, such as SUBA, regardless of whether the numbers are
two’s- complement or unsigned numbers.

Table 2.5 shows special instructions used to improve efficiency for com-
monly used operations. ABX, ABY, ABA, CBA, and SBA use accumulator B,
and DES, DEX, DEY, INS, INX, and INY increment or decrement index 
registers and the stack pointer.

Multiply instructions MUL and EMUL multiply unsigned numbers in spe-
cific registers. EMULS similarly multiplies signed numbers. One may also
multiply a signed or unsigned number by two with the arithmetic shift-left
instructions discussed with the edit class, such as ASLA, ASLB, ASLD, and
ASL 527. Divide instructions IDIV, FDIV, and EDIV divide unsigned
numbers in specific registers. IDIVS similarly divides signed numbers. One
may divide a two’s-complement number by two with corresponding arith-
metic shift-right instructions, for example, ASRA, ASRB, and ASR 327.

Multiplication can be done by addition and shifting almost as multipli-
cation is done by hand, but to save hardware, the product is shifted rather
than the multiplier to be added to it. Figure 2.6 shows multiplication of a 4-
bit unsigned number 0110 by another 4-bit number 1010 to get an 8-bit
product. First, because the most significant bit of the multiplier 1010 is 1,
add the number 0110 into the initial product 0, then shift the product 1 bit
left, twice, and then add the number 0110 into the product, and shift the
product 1 bit left. The answer is 0111100.

Actually, modern microcontrollers execute several shift-and-add opera-
tions in one clock cycle. Thus, EMUL, which multiplies a 16-bit signed
number by a 16-bit unsigned number, takes only three clock cycles. Signed
multiplication sign extends its multiplier rather than filling with zeros, and
it treats the sign bit differently. Therefore, use the EMULS instruction for
signed numbers. These remarks apply analogously to the division instruc-
tions EDIV and EDIVS. The other instructions, EDIV, EDIVS, EMULS,
FDIV, IDIV, IDIVS, and MUL, are similarly used. Note that after division,
the remainder is in accumulator D, and the quotient is in an index register.
As an example of a multiplication of two 16-bit unsigned numbers at $3852
and $3854 to get a 16-bit product into $3856, see Figure 2.7.

The special instruction DAA (decimal adjust accumulator A) adds binary-
coded decimal numbers. Briefly, two decimal digits per byte are represented
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3800 FC 38 52 LDD   $3852 ; get two low bytes of first 
3803 F3 38 56 ADDD  $3856 ; add two low bytes of second 
3806 7C 38 56 STD   $3856 ; save two low bytes of second 
3809 FC 38 50 LDD   $3850 ; get two high bytes of first 
380C F9 38 55 ADCB  $3855 ; add third byte of second 
380F B9 38 54 ADCA  $3854 ; add high byte of second 
3812 7C 38 54 STD   $3854 ; save two high bytes of scnd.

FIGURE 2.5. Program Segment for 32-Bit Addition
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    0110     0110     0110     0110 
   1010     1010     1010     1010
   0110    01100   011110  0111100 

shift leftadd top
number to 0

shift left,
add top

shift it
left

FIGURE 2.6. Multiplication

ABX B + X Æ X; Translates to LEAX B,Y
ABY B + Y Æ Y; Translates to LEAY B,Y
ABA A + B Æ A; Add Accumulators A and B
CBA A - B; Compare 8-Bit Accumulator
DAA Adjust Sum to BCD; Decimal Adjust 

Accumulator A
DES SP - 1 Æ SP; Translates to LEAS -1,SP
DEX X - 1 Æ X; Decrement Index Register X
DEY Y - 1 Æ Y; Decrement Index Register Y
EDIV Y:D / X Æ Y; Divide (unsigned), Remainder 

Æ D;
EDIVS Y:D / X Æ Y; Divide (signed), Remainder Æ

D;
EMUL D * Y Æ Y:D; 16 ¥ 16 to 32-bit Multiply 

(unsigned)
EMULS D * Y Æ Y:D; 16 ¥ 16 to 32-bit Multiply 

(signed)
FDIV D / X Æ X; r Æ D; 16 ¥ 16 Fractional 

Divide (unsigned)
IDIV D / X Æ X; r Æ D; 16 ¥ 16 Integer Divide 

(unsigned)
IDIVS D / X Æ X; r Æ D; 16 ¥ 16 Integer Divide 

(signed)
INS SP + 1 Æ SP; Translates to LEAS 1, SP
INX X + 1 Æ X; Increment Index Register X
INY Y + 1 Æ Y; Increment Index Register Y
MUL A * B Æ D; 8 ¥ 8 to 16-bit Multiply 

(unsigned)
SBA A - B Æ A; Subtract B from A

Table 2.5 Arithmetic Instructions That Do Not Use an 
Effective Address

with a binary-coded decimal, the most significant 4 bits for the most signif-
icant decimal digit and the least significant 4 bits for the least significant
decimal digit. Each decimal digit is represented by its usual 4-bit binary code,
so the 4-bit sequences representing 10 through 15 are not used. To see how
the decimal adjust works, consider adding a 4-digit binary coded decimal



number in the two bytes at $3873 to a similar number at $3862, as shown
in Figure 2.8. DAA “corrects” ADDA’s result. The DAA instruction may be
used after ADDA or ADCA but cannot be used with any other instructions
such as ADDB, DECA, or SUBA.

Our next example illustrates the use of arithmetic instructions, with a
move instruction to put the desired intermediate result in the correct regis-
ter for the next operation. This example involves conversion of temperature
from Celsius to Fahrenheit. If temperature T is measured in degrees Celsius,
then the temperature in Fahrenheit is (T * 9 / 5) + 32. Suppose T, a signed
16-bit number representing degrees Celsius, is in accumulator D. The
program in Figure 2.9 evaluates the formula and leaves the temperature, in
Fahrenheit, in accumulator D.

Logic Instructions
Logic instructions (Table 2.6) are used to set and clear individual bits in 
A, B, and CCR. They are used by compilers, programs that translate high-
level languages to machine code, to manipulate bits to generate machine
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3840 FC 38 52 LDD   $3852 ; load first number 
3843  FD 38 54 LDY   $3854 ; load second number
3846 13  EMUL  ; multiply 
3847 7C 38 56 STD   $3856 ; save result 

FIGURE 2.7. Program Segment for 16-Bit Unsigned Multiplication

3830 B6 38 74 LDAA  $3874 ; get low byte of 1st 
3833 BB 38 63 ADDA $3863 ; add low byte of 2nd 
3836 18 07    DAA       ; correct for decimal 
3838 7A 38 63 STAA  $3863 ; store low sum byte  
383B B6 38 73 LDAA  $3873 ; get 1st high byte 
383E B9 38 62 ADCA $3862 ; add 2nd high byte 3841
 18 07    DAA       ; correct for decimal 
3843 7A 38 62 STAA  $3862 ; store high sum byte

FIGURE 2.8. Program Segment for BCD Addition

� 2.3

3812 CD 00 09   LDY  #9   ; get multiplier 
3815 18 13      EMULS ; multiply by D 
3817 CE 00 05   LDX #5    ; get divisor 
381A 18 14      EDIVS ; divide to convert to F 
381C B7 64      TFR Y,D ; move quotient to D 
381E C3 00 20   ADDD #32 ; correct for freeze point

FIGURE 2.9. Program Segment for Conversion from Celsius to Fahrenheit
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ANDA opr A AND (E) Æ A; Logical And A with 
Memory

ANDB opr B AND (E) Æ B; Logical And B with 
Memory

BITA opr A AND (E); Logical And A with Memory
BITB opr B AND (E); Logical And B with Memory
EORA opr A XOR (E) Æ A; Exclusive-OR A with 

Memory
EORB opr B XOR (E) Æ B; Exclusive-OR B with 

Memory
ORAA opr A OR (E) Æ A; Logical OR A with
Memory
ORAB opr B OR (E) Æ B; Logical OR B with
Memory
BCLR (E) AND ~ mask Æ (E); Clear Bit(s) in 
opr,msk Memory

BSET (E) OR mask Æ (E); Set Bit(s) in 
opr,msk Memory

COM opr ~ (E) Æ (E); Equivalent to SFF - (E)
Æ (E)

ANDCC opr CCR AND (E) Æ CCR; Logical And CCR 
with Memory

CLC 0 Æ C; Is same as ANDCC #SFE
CLI 0 Æ I; Is same as ANDCC #SEF (enables 

int.)
CLV 0 Æ V; Is same as ANDCC #SFD
ORCC opr CCR OR (E) Æ CCR; Logical OR CCR with 

Memory
SEC 1 Æ C; Is same as ORCC #1
SEI 1 Æ I; Is same as ORCC #$10 (inhibits 

int.)
SEV 1 Æ V; Is same as ORCC #2
COMA ~ A Æ A; Complement Accumulator A
COMB ~ B Æ B; Complement Accumulator B

Table 2.6 Logic Instructions

code. They are used by controllers of machinery because bits are used to 
turn things on and off. They are used by operating systems to control I/O
devices and to control the allocation of time and memory on a computer.
Logic instructions are missing in calculators. That makes it hard to write
compilers and operating systems for calculators, no matter how much
memory they have. Returning to a problem at the end of Chapter 1, we now
say that a programmable calculator is not a von Neumann computer because



it does not have logic instructions or any efficient replacements for these
instructions with combinations of other instructions. (This differentiation
may be pedagogically satisfying, but unfortunately, von Neumann’s original
computer is not a von Neumann computer by this definition. Because we are
engineers and not historians, we say that programmable calculators and von
Neumann’s original computer are not von Neumann computers in the
strictest sense because they cannot support compilers and operating systems
efficiently.)

Consider now the logic instructions that make a computer a computer
and not a calculator. The most important logic instructions carry out bit-by-
bit logic operations on accumulators A or B with a memory location or an
immediate value. (See Figure 2.10 for a summary of the common logic oper-
ations.) For example, the instruction ANDB $3817 carries out a bit-by-bit AND
with the contents of B and the contents of location $3817, putting the result
in B (see Figure 2.11b). The ANDing is implemented by AND gates in the
MPU, shown in Figure 2.11a. Compare this figure with Figure 1.4d. The OR
and AND instructions are used, among other things, to set or clear control
bits in registers used in input-output operations.

The two instructions ANDA and ANDCC do the same thing as ANDB except
that ANDCC uses only immediate addressing and the condition code register
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   A
     0  1 
B
  0  0  0 
  1  0  1 

   A
     0  1 
B
  0  0  1 
  1  1  1 

   A
     0  1 
B
  0  0  1 
  1  1  0 

   A
     0  1 

     1  0 

a. A AND B b. A OR B  c. A XOR B d. A’

FIGURE 2.10. Common Logic Operations

... ...

...

...

Register A "ALU" 

Data Bus

<- data flow

data flow - > <- data flow

a. Hardware Implementation 

    1 0 1 1 0 1 0 1  <- contents of $3817
AND 0 0 0 1 1 1 0 0  <- initial value of B 
    0 0 0 1 0 1 0 0  <- final value of B 

b. Logical Operation 

FIGURE 2.11. Bit-by-Bit AND



CCR. As an example, ANDCC #$FE clears the carry bit in the condition
code register, that is, puts C = 0, leaving the other bits unchanged. This
instruction is used only to clear condition code bits and is not used to modify
other data bits. The same remarks hold for the OR instructions, ORAA, ORAB,
and ORCC, and for the exclusive-OR instructions, EORA and EORB (see
Figure 2.11a again: exchange the AND gates with OR or exclusive-OR
gates). The mnemonics CLC, CLI, SEC, SEI, SEV, and CLV are merely
special cases of the ANDCC and ORCC instructions; they are given these
special mnemonic names to permit assembly-language programs written for
the 6811 to be used without modification in the 6812. While the ANDCC
instruction is used to clear bits in the CCR register, the ORCC instruction is
used to set bits in that register. There is no EORCC instruction. Consider this
example. Suppose that we need to clear bits 0 and 4; set bits 5, 6, and 7; and
leave bits 1, 2, and 3 unmodified in accumulator A. The following instruc-
tions carry out these modifications:

ORAA #$E0 Set bits 5, 6, and 7, leaving others unchanged
ANDA #$EE Clear bits 0 and 4, leaving others unchanged

The complement instruction COM takes the complement of the bit-by-bit con-
tents of A, B, or a memory location, putting the result in the same place.
Finally, the BIT instruction, for bit test, determines the bits as though the
AND instruction had been performed with A or B and the contents of a byte
from memory. With the BIT instruction, however, the contents of A and B
are unchanged. It is to the AND instruction what the CMP instruction is to the
SUB instruction; it is used to avert the need to reload the register after the
condition code bits are set as in the AND instruction.

Logic instructions are used primarily to set and clear and to test and
change (logically invert) bits in a word. These instructions are used to build
operating systems, compilers, and other programs that control resources and
format data and are the instructions that make a computer so much more
useful than a programmable calculator.

Edit Instructions
Edit instructions (Table 2.7) rearrange bits of data without generating new
bits as an ADD does. Large machines have complex edit instructions, but
microcomputers have simple ones. For example, the arithmetic shift-left
instructions shift all the bits left, putting the most significant bit into the carry
bit of the condition code register and putting a zero in on the right (the same
as LSLA) (Figure 2.12a). This, except for overflow, doubles the unsigned or
signed number contained in A. The ASR instruction keeps the sign bit
unchanged and shifts all other bits to the right, putting the least significant
bit into the carry bit (Figure 2.12c). As mentioned in the discussion of the
arithmetic class of instructions, ASR divides the original two’s-complement
number contained in an accumulator or memory location by 2 (rounding
down).
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C b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 

b7 b6 b5 b4 b3 b2 b1 b0 0

b7 b6 b5 b4 b3 b2 b1 b0 

C

Cb7 b6 b5 b4 b3 b2 b1 b0 

C

C

a. Logical Left Shift 

b. Logical Right Shift

c. Arithmetic Right Shift 

d. Rotate Left

e. Rotate Right 

0

FIGURE 2.12. Shifts and Rotates

The shift operation is generally done in the MPU and is shown in Figure
2.13 for LSRA. The MPU shifts the data because these data paths follow the
same data paths as addition and logical operations (see Figures 1.4d and
2.11a). Each flip-flop’s output feeds through the multiplexer in the MPU to
the input of the next bit to the right; a zero is fed into the leftmost flip-flop
and the rightmost flip-flop’s output is put in the carry C.

The remaining shifts and rotates (i.e., LSR, LSL, ROR, and ROL) are
easily understood by looking at Figure 2.12. The rotate instructions are used
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ASL opr Arithmetic Shift Left
ASR opr Arithmetic Shift Right
LSL opr Logical Shift Left; same as ASL
LSR opr Logical Shift Right
ROL opr Rotate Memory Left through Carry
ROR opr Rotate Memory Right through Carry
ASLA Arithmetic Shift Left Accumulator A
ASLB Arithmetic Shift Left Accumulator B
ASLD Arithmetic Shift Left Accumulator D
ASRA Arithmetic Shift Right Accumulator A
ASRB Arithmetic Shift Right Accumulator B
LSLA Logical Shift Accumulator A to Left
LSLB Logical Shift Accumulator B to Left
LSLD Same as ASLD
LSRA Logical Shift Accumulator A to Right
LSRB Logical Shift Accumulator B to Right
LSRD Logical Shift Right Accumulator D
ROLA Rotate A Left through Carry
ROLB Rotate B Left through Carry
RORA Rotate A Right through Carry
RORB Rotate B Right through Carry

Table 2.7 Edit Instructions



with multiple-byte arithmetic operations such as division and multiplication.
Edit instructions are generally used to rearrange bits. For example, Figure
2.14 shows swapping of the nibbles in accumulator A.

In a slightly more interesting problem, we insert the three low-order bits
of the byte in $3854 into bits 9 to 7 of the 16-bit word at location $3856.
This program in Figure 2.15 illustrates the use of logical instructions to
remove unwanted bits and to combine bits and edit instructions to move bits
into the desired bit positions. A program segment like this is used in
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<- data flow

data flow - > 

'0' C

Accumulator A "ALU"

FIGURE 2.13. Shift Hardware

3823 18 0E TAB ; copy byte 
3825 58    LSLB ; shift left byte 
3826 58    LSLB ; shift left byte 
3827 58    LSLB ; shift left byte 
3828 58    LSLB ; shift left byte 
3829 44    LSRA ; shift right byte 
382A 44    LSRA ; shift right byte 
382B 44    LSRA ; shift right byte 
382C 44    LSRA ; shift right byte 
382D 18 06 ABA ; combine nibbles

FIGURE 2.14. Program Segment to Swap Nibbles

3812 FC 38 56 LDD $3856 ; get bits to be inserted 
3815 84 FC ANDA #$FC ; remove bits to be inserted 
3817 C4 7F ANDB #$7F ; in both bytes 
3819 7C 38 56 STD $3856 ; temporarily save value 
381C B6 38 54 LDAA $3854 ; get bits to be inserted  
381F C7 CLRB  ; AND low byte with all 0’s
3820 49 LSRD  ; shift 16-bit data right 
3821 84 33 ANDA #3 ; remove extraneous bits 
3823 BA 38 56 ORAA $3856 ; combine first part with 
3826 FA 38 57 ORAB $3857 ; second part, in both bytes 
3829 7C 38 56 STD $3856 ; save the result 

FIGURE 2.15. Program Segment for Insertion of Some Bits



Cstructs using bit fields and is commonly used in inserting bits into I/O
ports that do not line up with whole bytes or whole 16-bit words.

In this example, observe that all logical and many edit instructions are
performed on 8-bit operands in each instruction. However, instructions are
so designed that pairs of instructions on accumulator A and accumulator B
effectively work on accumulator D.

Control Instructions
The next class of instructions, the control instructions, are those that affect
the program counter PC. After the MOVE class, this class comprises the
most-often-used instructions. Control instructions are divided into condi-
tional branching instructions and other control instructions. We discuss con-
ditional branching first and then the others.

The BRA instruction loads the PC with a new value, using relative
addressing discussed in §3.3.* It adds the last byte of its instruction, called
the offset, to the PC. Branch statements have “long” branch counterparts
where each mnemonic is prefaced with an L, such as LBRA, and the offset
is two bytes, enabling the programmer to add larger values to the PC, to
branch to locations further from the instruction.

Conditional branch instructions test the condition code bits. As noted
earlier, these bits have to be carefully watched, for they make a program look
so correct that you want to believe that the hardware is at fault. The hard-
ware is rarely at fault. The condition code bits are often the source of the
fault because the programmer mistakes where they are set and which ones
to test in a conditional branch. The instructions should now be reviewed with
regard to how they affect the condition code bits. See the right columns of
the CPU12 Reference Guide, Instruction Set Summary. Note that move
instructions generally either change the N and Z bits or change no bits, arith-
metic instructions generally change all bits, logic instructions change the N
and Z bits, and edit instructions change all bits. However, there are many
exceptions, and these exceptions are precisely the ones that cause mystify-
ing errors. There is sound rationale for which bits are set and the way they
are set. Some of that is discussed in this chapter. But most of it is simply
learned by experience. We conclude by reminding you that when your
program does not work and you have checked every angle, carefully examine
the setting and testing of the condition code bits. Now we look at the testing
of these bits in detail.

Eight simple branching instructions test only a single condition code reg-
ister bit: BNE, BEQ, BPL, BMI, BVC, BVS, BCC, and BCS. The letters S and
C are used for “set” and “clear” (to 1 and 0, respectively) in branching
instruction mnemonics.

Frequently, two numbers are compared, as in a compare instruction or 
a subtraction. One would like to make a branch based on whether the 
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*The symbol § means Section.
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result is positive, negative, and so forth. Table 2.8 shows the test and the
branching statement to make depending on whether the numbers are inter-
preted as signed numbers or unsigned numbers. The branch mnemonics for
the two’s-complement numbers, or signed numbers, are the ones usually
described in mathematical “greater or less” prose, for example, BLT for
“branch if less than,” BLE for “branch if less than or equal to,” and so forth.
The mnemonics for unsigned numbers are described in mathematical “high
or low” prose, offbeat enough to keep you from confusing them with the
signed ones, for example, BLO for “branch if lower,” BLS for “branch if
lower or the same,” BHI for “branch if higher,” and BHS for “branch if higher
or the same.” Notice that BLO is the same instruction as BCS, and BHS is
the same instruction as BCC. Here then is an example of two different
mnemonics describing the same instruction, something that is sometimes
warranted when the programmer will be using the same instruction with two
distinct meanings.

Figure 2.16 illustrates a flow chart of several tests that form a decision
tree. In Figure 2.17 and subsequent figures, labels are written left justified
and end in a colon. Upon entry at label L0, location $3801 is tested. If it is
positive, go to L1. Then if location 3802’s unsigned value is greater than
$32, go to L2; otherwise go to L3. If location $3801 is negative, go to L4 if
location $3801 bit 2 is zero; otherwise go to L5. The program segment in
Figure 2.17 implements this decision tree.

Do not be concerned about calculating the relative branch offsets; this
calculation will be discussed in §3.3. One should consult Table 2.8 at first to
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(L) BCC rel (Long) Branch if Carry Clear (if C = 0)
(L) BCS rel (Long) Branch if Carry Set (if C = 1)
(L) BEQ rel (Long) Branch if Equal (if Z = 1)
(L) BGE rel (Long) Branch if Signed Greater Than or Equal
(L) BGT rel (Long) Branch if Signed Greater Than
(L) BHI rel (Long) Branch if Unsigned Higher
(L) BHS rel (Long) Branch if Higher or Same; same as BCC
(L) BLE rel (Long) Branch if Signed Less Than or Equal
(L) BLO rel (Long) Branch if Lower; same as BCS
(L) BLS rel (Long) Branch if Unsigned Lower or Same
(L) BLT rel (Long) Branch if Signed Less Than
(L) BMI rel (Long) Branch if Minus (if N = 1)
(L) BNE rel (Long) Branch if Not Equal (if Z = 0)
(L) BPL rel (Long) Branch if Plus (if N = 0)
(L) BRA rel (Long) Branch Always
(L) BRN rel (Long) Branch Never
(L) EVS rel (Long) Branch if Overflow Bit Set (if V = 1)
(L) BVC rel (Long) Branch if Overflow Bit Clear (if V = 0)

Table 2.8 Conditional Branch Instructions



make sure that the correct branch is being chosen. For example, to test a reg-
ister value greater than or equal to a memory value, you might be tempted
to use the simple branch BPL for signed numbers instead of BGE. The
problem is that you want the branch test to work even when subtraction or
comparison generates a signed overflow. However, this is just exactly when
the sign is incorrect; then BPL cannot be used to replace BGE. Thus, after a
compare or subtract between signed numbers, use BGE rather than BPL. You
might also be tempted to use BPL for the unsigned test. However, if accu-
mulator A has $80 and the immediate operand is $32, then N = 0 after per-
forming the test. Thus, BPL takes the branch, even though it should not
because $32 is not higher than $80. Thus, after an unsigned number com-
parison or subtraction, use BHS rather than BPL.

A rather amusing instruction, BRN L, which “branches never” regard-
less of the location L, is the opposite to the “branch always” instruction. It
is useful because any branching instruction can be changed to a BRA or BRN
instruction just by changing an opcode byte. This allows a programmer to
choose manually whether a particular branch is taken while he or she is
debugging a program.

We now consider the control instructions other than conditional branches.
See Table 2.9. Some instructions combine a logical or arithmetic test with a
conditional branch and do not modify condition codes. BRCLR branches if
all “1” bits in the mask are “0” in the word read from memory. Similarly,
BRSET branches if all masks “1” bits are “1” in the word read from memory.
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yes

yes yes

signed
($3801) >= 0

unsigned
($3802) > $32 ($3801) bit 2 = 0

no

no no

L1:

L2 L3 L4 L5

L0

FIGURE 2.16. Decision Tree

382A B6 38 01 L0: LDAA $3801 ; get byte, set N & Z 
382D 2A 06        BPL   L1  ; if N is zero, goto L1 
382F 85 04     BITA  #4 ; check bit 2 
3831 27 0D       BEQ   L4   ; if zero, go to L4 
3833 20 0D     BRA   L5  ; otherwise go to L5 
3835 B6 38 02 L1: LDAA  $3802 ; get byte 
3838 81 32     CMPA  #$32   ; compare to $32  
383A 22 02     BHI   L2  ; if higher, go to L2 
383C 20 06     BRA   L3 ; otherwise go to L3 

FIGURE 2.17. Program Segment for a Decision Tree



These bits can be set and cleared using BSET and BCLR listed in Table 2.6.
Figure 2.18 illustrates such setting, clearing, and testing of individual bits in
memory. If this program segment is entered from location L1 ($3820), then
bit 6 of location $3802 is set there, and the instruction at L3 ($382A) branches
to location L4 ($3831). However, if this program segment is entered from
location L2 ($3826), then bit 6 of location $3802 is cleared there, and the
instruction at L3 ($382A) does not branch but falls through to location $382F.
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BRCLR opr,msk,rel Branch if (E) AND (msk) = 0
BRSET opr,msk,rel Branch if (E)¢ AND (msk) = 0
DBEQ cntr,rel cntr-1 Æ cntr; if cntr = 0,

Branch.
DBNE cntr,rel cntr-1 Æ cntr; if cntr != 0,

Branch.
IBBQ cntr,rel cntr+1 Æ cntr; If cntr = 0;

Branch.
IBNE cntr,rel cntr+1 Æ cntr; If cntr != 0,

Branch.
TBEQ cntr,rel If cntr = 0 then Branch.
TBNE cntr,rel If cntr != 0 then Branch.
JMP opr Jump; Address Æ PC
JSR opr Jump to Subroutine
BSR rel Branch to Subroutine
RTS Return from Subroutine.
CALL opr,page Call subroutine n extended 

memory
RTC Return from Call
BGND Place CPU in Background Mode
NOP No Operation
RTI Return from Interrupt
WAI WAIT for interrupt
STOP STOP All Clocks
SWI Software Interrupt
TRAP Unimplemented opcode trap

3820 1C 38 02 40  ; set bit 6 
3824 20 04      BRA    
3826 1D 38 02 40 L2: BCLR  $3802,#64 ; clr bit 6 
382A 1E 38 02 40 02 L3: BRSET $3802,#64,L4  ; test b 6 
382F 20 FE     BRA   * ; if b 6 = 0 
3831 20 FE  L4: BRA   *  ; if b 6 = 1 

; go to common
$3802,#64L1: BSET

L3

FIGURE 2.18. Program Segment for Setting, Clearing, and Testing of a Bit

Table 2.9 Other Control Instructions



DBEQ, DBNE, IBEQ, and IBNE, which have a post byte and a relative
offset, decrement or increment a counter, which may be A, B, D, X, Y, or
SP, and branch if the result in the counter is zero or nonzero, as indicated by
the mnemonic and coded in the post byte. TBEQ and TBNE similarly test a
register without incrementing or decrementing it and branch if the result is
zero or nonzero. The low-order post byte bits indicate which register is used
as a counter or test register (0, A; 1, B; 4, D; 5, X; 6, Y; and 7, SP) and the
high-order 3 bits indicate the operation (000, DBEQ; 001, DBNE; 010, TBEQ;
011, TBNE; 100, IBEQ; 101, IBNE). Post byte bit 4 is appended as a high
bit to the instruction’s third byte to give a 9-bit offset.

The program segment in Figure 2.19 wastes time while an I/O operation
takes place. (Calculation of the last byte, the offset $FD, will be discussed
in §3.3.) The DBNE instruction takes three clock cycles, where each clock
cycle is 1–24 ms. This instruction loops to itself five times in a delay loop, which
wastes 0.625 ms.

The simple jump instruction is the simplest control instruction; the effec-
tive address is put into the program counter. JMP $3899 puts $3899 into
the program counter, and the next opcode byte is fetched from $3899. It
simply “jumps to location $3899.”

You commonly encounter in programs a repeated program segment. Such
a segment can be made into a subroutine so it can be stored just once but
executed many times. Special instructions are used to branch to and return
from such a subroutine. For example, if the subroutine begins at location
$3812, the instruction JSR $3812 (for jump to subroutine) causes the PC
to be loaded with $3812 and the address immediately after the JSR instruc-
tion (say it is $3807) to be pushed onto the hardware stack, low byte first.
Figure 2.20a shows this return address, saved on the stack. BSR (for branch
to subroutine) similarly pushes the program counter but locates the subrou-
tine using relative addressing (§3.3). At the end of the subroutine, the l-byte
instruction RTS (for return from subroutine) pulls the top two bytes of the
hardware stack into the PC, high byte first. JSR, SUB, and RTS, efficiently
call and return from the subroutine.

Figure 2.20 illustrates the use of the stack for holding temporary results
as discussed in §2.1, with subroutine return addresses as illustrated in §2.5.
We suggest that you step through this program using the simulator or debug-
ger and watch the stack expand and compress. A constant in X, 1, is pushed
on the stack before the subroutine and restored by pulling X after the 
subroutine is executed and has returned. This is commonly done when the
calling routine needs the saved value later. The subroutine return address is
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3810 CC 00 05     LDD  #5 ; put number 5 in D 
3813 04 34 FD  L: DBNE D,L   ; decrement D until 0 
3816 20 FE        BRA *   ; halt  

FIGURE 2.19. Program Segment for a Wait Loop



saved on the stack by the BSR instruction and restored by the RTS instruc-
tion at the end of the subroutine. Inside the subroutine, the X and Y regis-
ters are saved and restored to exchange them. Pushing and pulling is often
done to hold intermediary results.

A special CALL instruction saves a page register along with the program
counter, and a special RTC instruction loads the page register when the
program counter is loaded to return from a subroutine called by a CALL
instruction. The CALL and RTC instructions extend the program address to
up to 24 bits in some 6812s.

As noted earlier, the stack pointer is to be initialized at the beginning of
a program, with an instruction such as LDS #$4000. It must be initialized
before any instruction, such as JSR or CALL, uses the stack pointer. If it is
not, the RTS or RTC does not work because the return address is “saved” in
a location that is not RAM and is lost.

The (hardware or (I/O) interrupt is very important to I/O interfacing.
Basically, it is evoked when an I/O device needs service, either to move some
more data into or out of the device or to detect an error condition. Handling
an interrupt stops the program that is running, causes another program to be
executed to service the interrupt, and then resumes the main program exactly
where it left off. The program that services the interrupt (called an interrupt
handler or device handler) is very much like a subroutine, and an interrupt
can be thought of as an I/O device tricking the computer into executing a sub-
routine. An ordinary subroutine called from an interrupt handler is called an
interrupt service routine. However, a handler or an interrupt service routine
should not disturb the current program in any way. The interrupted program
should get the same result no matter whether or when the interrupt occurs.

I/O devices may request an interrupt in any memory cycle. However, the
data operator usually has bits and pieces of information scattered around in
hidden registers. It is not prepared to stop the current instruction because it
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JSR $3812
(next inst.)

SUB LDAA
#1 RTS

38
07

SP -> 

CCR
B
A
X H
X L
Y H 
Y L 
return H
return L

SP ->  

stack

subroutine

calling
routine  

$3812

$3807

a. Subroutine Addresses b. Subroutine stack c. Handler stack

FIGURE 2.20. Subroutine and Handler Addresses



does not know the values of these registers. Therefore, interrupts are always
recognized at the end of the current instruction, when all the data are organ-
ized into accumulators and other registers that can be safely saved and
restored. The time from when an I/O device requests an interrupt until data
that it wants moved are moved or the error condition is reported or fixed is
called the latency time. Fast I/O devices require low latency interrupt service.
The lowest latency that can be guaranteed must exceed the duration of the
longest instruction because the I/O device could request an interrupt at the
beginning of such an instruction’s execution.

The SWI instruction is essentially like an interrupt. It saves all the reg-
isters as shown in Figure 2.20c and puts the contents of $fff6, $fff7 into the
program counter, to begin an SWI handler at that address. All TRAP instruc-
tions (there are over 200 of them) save all the registers as the SWI instruc-
tion does and put the contents of $fff8, $fff9 into the program counter to
begin a trap handler at that address. RTI pulls the contents of the registers
saved on the stack and fetches the next opcode at the address that is the
returned program counter. WAI stacks all the registers and waits for an inter-
rupt to occur. STOP stacks the registers and stops all the 6812 clocks to con-
serve power. A system reset or an interrupt will cause the computer to resume
after these instructions. Two interrupt inhibit bits (also called an interrupt
mask bit) I and X are kept in the condition code; when they are set, inter-
rupts are not permitted. A stop disable bit S is used to prevent execution of
the STOP instruction. BGND places the MPU in a background mode to permit
the background debug module to examine memory and registers and possi-
bly modify some of them. If background debugging is not enabled, BGND
can be made to act exactly like an SWI instruction.

The condition code register, accumulators, program counter, and other
registers in the controller and data operator are collectively called the
machine state and are saved whenever an interrupt occurs as shown below,
resulting in the stack in Figure 2.20c.

SP - 2 Æ SP; PC Æ (SP):(SP + 1); SP - 2 Æ SP;
Y Æ (SP):(SP + 1);
SP - 2 Æ SP; X Æ (SP):(SP + 1); SP - 2 Æ SP;
B Æ (SP); A Æ (SP + 1);
SP - 1 Æ SP; CCR Æ (SP);

After completion of a handler entered by a hardware interrupt or similar
instruction, the last instruction executed is return from interrupt (RTI). All
handlers end in an RTI instruction. RTI pulls the top nine words from the
stack, replacing them in the registers the interrupt took them from. The RTI
instruction executes the operations:

(SP) Æ CCR; SP + 1 Æ SP (SP) Æ B; (SP + 1)
Æ A; SP + 2 Æ SP
(SP):(SP + 1) Æ X; SP + 2 Æ SP (SP):(SP + 1)
Æ Y; SP + 2 Æ SP
(SP):(SP + 1) Æ PC;SP + 2 Æ SP
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You can modify the program in Figure 2.21 to see how the trap instruction
saves and restores the machine state. Replace the BSR instruction at location
$3807 with an SWI instruction whose opcode is $3F (and a NOP, $A7) and
the RTS instruction at location $3810 with RTI whose opcode is $0B; put
the address $380C into locations $FFF6 and $FFF7; and rerun this program.
You should see that changing the registers inside the trap handler has no
effect on the returned values of the registers, because they are saved on the
stack and restored by the RTI instruction.

We have covered both the conditional and unconditional branch instruc-
tions. We have also covered the jump and related instructions together with
subroutine branch and jump instructions. Control instructions provide the
means to alter the pattern of fetching instructions and are the second most
common type of instruction. If you use them wisely, they will considerably
enhance static and dynamic efficiency.

Input/Output Instructions
The last class of instructions for the 6812, the input-output or I/O class, is
easy to describe because there are none! With the 6812 a byte is transferred
between an accumulator and a register in an I/O device through a memory
location chosen by hardware. The LDAA instruction with that location then
inputs a byte from the register of the I/O device to accumulator A, while the
STAA instruction with that location does the corresponding output of a byte.
Other instructions, such as MOVB, MOVM, ROL, ROR, DEC, INC, and CLR,
may be used as I/O instructions, depending on the particular device. We look
more closely at all of these issues in Chapter 11.

Special Instructions
Table 2.10 lists the 6812’s special instructions, which are arithmetic instruc-
tions of primary interest in fuzzy logic. They use index addressing, which is
discussed in the next chapter. Fuzzy logic uses minimum and maximum func-
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3800 CF 04 00      LDS   #$4000 ; init to top of SRAM
3803 CE 00 01      LDX   #1 ; put some constant in X
3806 34      PSHX  ; save it on the stack
3807 07 03      BSR   SUB ; call the subroutine
3809 30      PULX  ; restore the saved X
380A 20 FE      BRA   *; wait until user stops
380C 34 SUB: PSHX  ; push constant on stack
380D 35      PSHY  ; push another value
380E 30      PULX  ; pull other value in X
380F 31      PULY  ; pull constant into Y
3810 3D      RTS ; return to callER

FIGURE 2.21. Program Segment for Swap Subroutine

� 2.6

� 2.7



tions to logically AND and OR fuzzy variables. See §7.8. The 6812 has
instructions MAXA, MAXM, MINA, MINM, EMAXD, EMAXM, EMIND, and
EMINM to determine the maximum or minimum of an 8-bit or a 16-bit pair
of unsigned numbers, one of which is in a register (A or D) and the other of
which is one or two bytes at the effective address, and to put the maximum
or minimum in either the register or the memory at the effective address.
EMACS is a multiply-and-accumulate instruction similar to such instructions
used in digital signal processors (DSPs).

The following examples use pointer addressing, in which the effec-
tive address is the contents of an index register, without adding any other
value to it.

We are about to output the contents of accumulator D to an output device,
but the output must be limited to be at least Vmin, and at most Vmax. Suppose
that location $3803 has the address of Vmax and location $3805 has the
address of Vmin. Pointer addressing (§3.2) is one of the modes usable with
the EMAXD and EMIND instructions. Figure 2.22 shows programming to limit
the value of accumulator D to be Vmin £ D £ Vmax.

Figure 2.23 illustrates the use of index registers in the multiply-and-
accumulate instruction to evaluate the expression A = A + (B * C), where A
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EMAXD opr MAX(D, (E):(E+1)) Æ D; MAX Unsigned 
16-Bit

EMAXM opr MAX(D, (E):(E+1)) Æ (E):(E+1); MAX 
Unsigned 16-Bit

EMIND opr MIN(D, (E):(E +1)) Æ D; MIN Unsigned 
16-Bits

EMINM opr MIN(D, (E):(E+1)) Æ (E):(E+1); MIN 
Unsigned 16-Bits

MAXA opr MAX(A, (E)) Æ A
MAXM opr MAX(A, (E)) Æ (E)
MINA opr MIN(A, (E)) Æ A; MIN Unsigned 8-Bit
MINM opr MIN(A, (E)) Æ (E); MIN Unsigned 8-Bit
ETBL opr 16-Bit Table Lookup and Interpolate
TBL opr 8-Bit Table Lookup and Interpolate
EMACS opr (X):(X+1) * (Y):(Y+1) + (E):(E+1):(E+2):

(E+3) Æ (E): (E+1):(E+2):(E+3);
16¥16 Bit Æ 32 Bit; Multiply and 
Accumulate (signed).

MEM u (grade) Æ (Y); X + 4 Æ X; Y + 1 Æ
Y; A unchanged

REV, REVW MIN-MAX rule evaluation
WAV, wavr Weights for Weighted Average Calculation

Table 2.10 Special Instructions



is a signed 32-bit number at $3910, B is a signed 16-bit number at $3914,
and C is a signed 16-bit number at $3916. Pointer addressing is the only
mode that can be used with the EMACS instruction. From Table 2.10, the
EMACS instruction executes the expression (X):(X + 1) * (Y):(Y + 1) + (E):
(E + 1):(E + 2):(E + 3) Æ (E):(E + 1):(E + 2):(E + 3); from the CPU12 Ref-
erence Guide, it executes this operation in 13 clock cycles, a little over 
1–2 ms.

The TBL and ETBL instructions perform 8-bit and 16-bit table lookup
and interpolation. TBL puts into accumulator A the value (E) + (B * ((E +
1) - E)) where E is the effective address, which can be the pointer address
as in EMAXD, and B is accumulator B, considered as an unsigned fraction.
A list of values, which are in increasing order, can be searched for the nearest
value just below the value we are evaluating, and B and TBL can interpo-
late between that value and the next higher value. ETBL is similar but is for
16-bit unsigned number interpolation: It puts into accumulator D the value
(E):(E + 1) + (B * ((E + 2):(E + 2) - E:(E + 1))).

The instructions MEM, REVW, REV, and WAV are used for fuzzy logic rule
evaluations, which are developed in §7.8 in Chapter 7. These highly specific
and efficient operations make the 6812 singularly well suited to fuzzy logic
control applications.

The fuzzy logic membership instruction MEM uses accumulator A as the
current input, and X points to a 4-byte data structure that describes a trape-
zoidal membership function (P1, P2, S1, S2). The instruction puts the func-
tion value into the byte pointed to by Y and then adds 4 to X and 1 to Y to
access the next trapezoid and output value. If A < P1 or A > P2, then the
output function value is 0, or else the output function value is MIN((A - P1)
* S1, (P2 - A) * S2, $FF).

REV and REVW perform MIN-MAX rule evaluation for 8-bit and 16-bit
unsigned numbers. For REV, each rule input is an 8-bit offset from the base
address in Y. Each rule output is an 8-bit offset from the base address in Y.
$FE separates rule inputs from rule outputs, and $FF terminates the rule list.
REV may be interrupted. For REVW, each rule input is the 16-bit address of
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382A CE 38 03  LDX #$3803 ; get address of Vmax 
382D 18 1B 00  EMIND 0,X ; obtain minimum 
3830 CD 38 05 LDY #$3805 ; get address of Vmin 
3833 18 1A 40  EMAXD 0,Y ; obtain maximum 

FIGURE 2.22. Program Segment for Ensuring a Value is Between Limits

3830 CE 39 14   LDX #$3914 ; get address of 1st 
3833 CD 39 16   LDY #$3916 ; get address of 2nd 
3836 18 12 39 10 EMACS $3910 ; multiply and accum. 

FIGURE 2.23. Program Segment for a Multiply and Add Operation



a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The
value $FFFE separates rule inputs from rule outputs, and $FFFF terminates
the rule list. REV and REVW use this MIN-MAX rule: Find the smallest rule
input (MIN) and store to rule outputs unless fuzzy output is already larger
(MAX).

WAV calculates the sum-of-products and sum-of-weights for a list of 
8-bit unsigned elements. Accumulator B is the number of elements in both
lists, X points to the first list, and Y points to the second list. The sum-of-
products is put in registers Y (high-order 16 bits) and D (low-order 16 bits),
and the sum of weights, pointed to by Y, is put into register X. The instruc-
tion WAVR resumes the execution of the WAV instruction if it is interrupted
in the middle of its execution.

Remarks
One might wonder why some move instructions, such as LDAA, TSTA, and
STAA, always put V = 0 rather than leaving V unchanged as they do C. The
reason is that doing so allows all of the signed branches to work after these
instructions as well as after the arithmetic type of instruction. For example,
suppose that one wants to look at the contents of some memory location, say
$3811, and branch to location L if the contents of location $3811, treated as
a signed number, are greater than 0. The sequence

TST $3811
BGT L

does exactly this. If the TST instruction had left V unaffected, we would
have had to use the longer sequence:

LDAA $3811
CMPA #0
BGT L

A little more experience will show that the designer’s choice here is quite
reasonable, because we will find a more frequent use of signed branches for
load instructions than for checking for signed overflow, as we will do in the
next chapter.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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push
pull
stack
hardware stack
buffer
post byte

hidden register
prefix byte
offset
delay loop
subroutine
jump to subroutine

return address
branch to subroutine
return from subroutine
hardware interrupt
I/O interrupt
handling
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interrupt handler
device handler
interrupt service

routine

latency time
interrupt inhibit
interrupt mask
stop disable

machine state
return from interrupt

(RTI)

PROBLEMS

When a program (ending in BGND, SWI, or BRA * ) or program segment
is asked for in the problems below, use the format that is used for the exam-
ples in the text.

1. Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish exactly the
same effect as this missing instruction. That is, this program segment
must give the same results in all the registers, including the condition
code register.

(a) XGDX (or EXG X,D)

(b) TFR X,Y

(c) PSHD

2. Assume MOVB is missing from the 6812 instruction set. Show the short-
est program segment that accomplishes exactly the same effect as MOVB
$3803,$3822.

3. Show the shortest program segment that will push the following 32-bit
constant on the stack. The most significant byte must be at the lowest
address.

(a) 0

(b) 1

(c) -1

4. Write a shortest program to evaluate a quadratic polynomial. Let a be at
$3810, b be at $3812, c be at $3814, x be at $3816; the program is to
put a x2 + bx + c into $3818. All numbers, including the result, are 16-
bit two’s-complement numbers.

5. Write a shortest program to execute an inner product. Let x[0] be at
$3810, x[1] be at $3812, y[0] be at $3814, y[1] be at $3816; the program
is to put x[0] y[0] + x[1] y[1] into $3818. All numbers are 16-bit unsigned
numbers.

6. Write a shortest program to compute the resistance of a pair of resis-
tors connected in parallel. Let r1 be at $3810 and r2 be at $3812; the
program is to put r1 || r2 into $3814. All values are 16-bit unsigned
numbers.

�



7. If a count C is obtained, the frequency is 8,000,000/C. Write a shortest
program to compute the 16-bit frequency corresponding to the 16-bit
count C in location $381a, putting the result into $381c. Show this
program, beginning at $381e, in hexadecimal.

8. Why does DAA not work after an INC, DEC, or ASR instruction?

9. Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish exactly the
same effect as the missing instruction. For part (c) assume that locations
$3813 and $3814 are able to be used as scratch bytes. (Scratch means
the location is available for storing temporary results.)

(a) BSET $3810,#$aa

(b) BCLR $3811,#$f

(c) EORA $3812

10. ASCII characters are defined by Table 4.1. Write a single instruction for
the following:

(a) Accumulator A is an upper- or lower-case character. Convert it to
lower case.

(b) Accumulator A is an upper- or lower-case character. Convert it to
upper case.

(c) Accumulator A is a single BCD number. Convert it to an ASCII 
character.

(d) Accumulator A is an ASCII character. Convert it to a BCD number.

11. Write a fastest program segment to put the following property, of a
number in Accumulator A, into accumulator B (do not use branch
instructions). For part (c), assume that location $3822 is a scratch 
byte.

(a) the count of the number of 1’s

(b) the parity

(c) the number of leading zeros

12. A 32-bit number is in accumulator D (low-order) and index register Y
(high-order). Write a shortest program segment to execute the following
on these same registers.

(a) logical shift left 1 bit

(b) logical shift right 1 bit

(c) arithmetic shift right 1 bit

13. Illustrate the differences between BLT and BMI with an example that
branches to location L if accumulator A is less than the contents of the
byte at $3869.

14. Will a signed branch work after a DEC or INC instruction? Explain.
What about unsigned branches?
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15. Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish the same
effect as the missing instruction, except that the condition codes will be
changed.

(a) BRCLR $3811,#$f,L

(b) BRSET $3810,#$aa,L

(c) DBNE A,L

16. The 6812 does not have an LBSR instruction. Compare the static effi-
ciency of JSR, using program counter relative addressing, to an LBSR,
which will be coded like LBRA.

17. Figure 2.19 shows a delay loop for up to about 8.19 ms. Write a 
shortest delay loop for up to 8.9 min. You do not need to compute two
constants used in this loop.

18. Assume the following instruction is missing from the 6812 instruction
set. Show the shortest program segment that will accomplish the same
effect as the missing instruction, except that the condition codes will be
changed differently. For part (c), assume that index registers X and Y
can be modified.

(a) MINM 0,X

(b) EMAXD 0,Y

(c) EMACS $3810

19. Write a shortest program to execute an inner product using EMACS and
EMULS. Let x[0] be at $3810, x[1] be at $3812, y[0] be at $3814, y[1]
be at $3816; the program is to put x[0] y[0] + x[1] y[1] into $381a, and
$3818 and $3819 are scratch bytes. All numbers are 16-bit signed
numbers.

20. Write a shortest program segment to extract the three bits that were
inserted by the program in Figure 2.15, leaving the extracted bits right-
justified in accumulator B.

21. Write a shortest program segment to convert temperature from Fahren-
heit (±300°), in accumulator D, to Celsius. The output value is left in
accumulator D. You may preload constants into registers to shorten your
machine code, but show their values.

22. The 32-bit binary number at location $3822 is the number of ticks, where
a tick time is 1–60 s, and zero represents Saturday midnight. Write a short-
est program to put the day-of-week in location $3826, (military time)
hour in $3827, minute in $3828, seconds in $3829, and tick-within-a-
second in $382a.

23. Write a shortest program to write problem 22’s 32-bit binary number
tick count into location $3822, for input values written in its day-of-
week, hour, minute, seconds, and tick-within-a-second memory words
(locations $3826 to $382a). $382b to $3832 is scratch.
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24. Write a shortest assembly language subroutine in which a number i is
passed in accumulator D and which leaves the Gray code number i in D
(i.e., it encodes the Gray code from binary). See the discussion below
for useful information about Gray codes.

25. Write a shortest assembly language subroutine in which a Gray code for
a number i is passed in accumulator D and which leaves the binary
number i in D (i.e., it decodes the Gray code into binary). See the dis-
cussion below for useful information about Gray codes.

A Gray code is a binary numeric code with the property that the code
of each number differs from the code of the next consecutive number in
exactly 1 bit position. It is used in shaft encoders, which output a digital
value indicative of the angle of rotation of a shaft, to avoid the possi-
bility that a false code will be read. For instance, in a 4-bit conventional
binary code, as the shaft rotates from output 7 to output 8, the binary
number changes from 0111 to 1000. As it does, the binary code 0101
might appear as the bits change at different times due to the imperfect
alignment of the shaft encoder. In a Gray code, only the code for 7 or
the code for 8 would appear if the shaft is not aligned, and no codes for
other numbers would appear, even temporarily.

There are a large number of Gray codes. Suppose G(i) is a function
that outputs the Gray code of a binary number i. Then for an n-bit code,
for any j, G((i + j) mod 2n) is also an n-bit Gray code of i. A Gray code,
in which the number 0 is represented by 0 . . . 00 and in which the less
significant bit changes more often than the next more significant bit as
the value is incremented, is what we will call “the” Gray code.

In our problem we will consider the most commonly used Gray code.
“The” Gray code can be generated by the following function. A Gray
code of a binary number bn, bn - 1, . . . b0 is a binary encoding gn, gn
- 1, . . . g0 in which the ith bit gi is, for the most significant bit n, gn =
bn and for all other bits it is the exclusive-OR (denoted Ÿ) of the same
bit of the binary number bit, and the bit to its left, gi = bi Ÿ bi + 1. For
instance for a 4-bit number b3, b2, b1, b0, the Gray code bit g3 is b3,
g2 is b3 Ÿ b2, g1 is b2 Ÿ b1, g0 is b1 Ÿ b0. Generally, a Gray code is read
from a shaft encoder, and the binary code is needed as an input to the
application software. Given a “Gray code” gn, gn - 1, . . . g0 the binary
number bn, bn - 1, . . . b0 is such that for the most significant bit, bn =
gn and for all other bits the ith bit bi is the exclusive-OR of the higher-
order bits of the Gray code bits, from bit n up to and including bit i: bi
= gn Ÿ gn - 1Ÿ . . . gi. For instance, for a 4-bit Gray code gn, gn - 1,
. . . g0, the binary number bit b3 is g3, b2 is g3 Ÿ g2, b1 is g3 Ÿ g2 Ÿ g1,
and b0 is g3 Ÿ g2 Ÿ g1 Ÿ g0.
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In the past two chapters, we have introduced the instruction cycle and the
instruction set. We have used a few addressing modes to understand those
ideas. However, we did not attempt to convey the principles of addressing
modes. We now complete our understanding of the instruction by describing
the addressing modes used in the 6812.

Recall from Chapter 1 that an instruction generally consists of an oper-
ation with one address in memory for an operand and/or result. How that
address is determined is called addressing, and the different ways that the
address is determined are called addressing modes. The data are accessed in
a program that is read or written by an instruction with the addressing modes
available in the computer. These modes correspond to the data structures that
can be easily managed in that computer. If you want to handle a particular
structure, such as a string of characters, an addressing mode such as postin-
crement is very useful, as we discuss in more detail in Chapter 10. This
chapter introduces the 6812’s addressing modes, which provide the tools that
make handling the most useful data structures so easy on this machine.
Learning the rich set of addressing modes here will also make it easier later
to learn about the common data structures.

In this chapter we introduce the following general aspects of address-
ing. We first discuss addressing modes that are determined by bits in the 
operation code byte, which is generally the first byte of the instruction. 
Indexing modes use a post byte and are discussed next. Relative modes 
are then discussed to show the important concept of position independence.
We give examples that rework the addition program of Chapter 1 to illus-
trate data structure ideas and position independence using these addressing
modes. Finally, we consider some architectural thoughts about addressing
such as multiple address instructions and the effective address computa-
tion in the fetch/execute cycle. We also discuss the level of addressing 
that indicates how many times an address must be read from memory to 
get the actual or effective address of the operand or result used with the
instruction.

Upon completion of this chapter, you should be able to use the address-
ing modes described here with any instruction that has been introduced in
Chapter 2. You should be able to determine what has been done to compute
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the effective address, what that effective address will be, and what side
effects are generated where some modes are used. This will prepare you to
use good data structures in your programs and thus to write shorter, faster,
and clearer programs as you progress through this material.

Opcode Byte Addressing Modes
In this section we discuss addressing that is selected in the opcode byte,
which is generally the first byte of the instruction. We have already intro-
duced this idea in an ad hoc manner in Chapter 1 when we discussed implied,
immediate, and direct addressing. Now we add page zero addressing and
explain when each address mode should be used.

Some instructions do not involve any address from memory for an
operand or a result. One way to avoid going to memory is to use only reg-
isters for all the operands. The DEC instruction decrements (subtracts one
from) the value in an accumulator so that DECA and DECB are really the
same operation, with the registers A and B serving as the addresses for the
operand and result. Motorola considers DECA and DECB to be different
instructions, whereas other manufacturers would call them the same instruc-
tion with a register address that indicates which register is used. Either case
has some merits, but we will use Motorola’s convention.

There is also an instruction

DEC 100

that recalls the word at location 100, decrements that word, and writes the
result in location 100. That instruction uses direct addressing (as discussed
in Chapter 1), whereas DECA does not use direct addressing. Because the
instruction mnemonic for instructions such as DECA makes it clear which
registers are being used, at least for simple instructions, Motorola calls this
type of addressing inherent or implied. It is a zero-level mode. For instance,
CLRA clears accumulator A (puts its contents to zero) and uses inherent
addressing, whereas

CLR 1000

clears the word at location 1000 and uses direct addressing. Several other
instructions, such as SWI and BGND, which we are using as a halt instruc-
tion, have been included in the inherent category because the operation code
byte of the instruction contains all of the addressing information necessary
for the execution of the instruction.

We have used the immediate addressing mode in Chapter 1, where the
value of the operand is part of the instruction, as in

LDAA #67

which puts the number 67 into accumulator A. We use the adjective “imme-
diate” because when the instruction is being fetched from memory the
program counter contains the address of the operand, and no further memory
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reads beyond those required for the instruction bytes are necessary to get its
value.

You should use inherent addressing wherever it will shorten the program
storage or speed up its execution, for example, by keeping the most fre-
quently used data in registers as long as possible. Their use will involve only
inherent addressing. Immediate addressing should be used to initialize reg-
isters with constants or provide constants for other instructions, such as
ADDA.

Other modes allow the data to be variable, as opposed to the fixed data.
The 6812 has two such modes, direct and page zero, to allow for accessing
any word in memory, but they allow accessing the most common words more
efficiently.

We introduced the direct mode in Chapter 1, and we merely review it
here. It is really the only mode required for any program that we would write
if we were not concerned about efficiency and if we permitted the program
to modify one of its own instructions. This is called self-modifying code.
Indeed, that was the way the first computer was programmed. However, if
one examines a program that changes its instructions, it is very unclear. To
avoid self-modifying code and to improve efficiency, other addressing modes
will be introduced. In the direct mode, the address of the operand or result
is supplied with the instruction. For example, as discussed before,

LDAA $3803

puts the contents of location $3803 into accumulator A. The opcode for this
instruction is $B6, and the instruction is stored in memory as the sequence:
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$B6
$38
$03

In the direct mode, a full 16 bits are always used to describe the address even
though the first byte may consist of all zeros. Unfortunately, when the
MC6800, a predecessor of the 6812, was first developed, its designers called
page zero addressing “direct addressing,” most likely because they envi-
sioned only a 256-byte RAM. The designers called direct addressing
“extended addressing.” In the 6812, up to 32 Mbytes can be addressed using
page registers, and this is properly called “extended addressing.” This non-
standard use of the term has continued through Motorola’s 8-bit and 16-bit
microcontrollers and confuses everyone who uses or studies a variety of
machines, including other Motorola microprocessors. Because we intend to
teach general principles, using the 6812 as an example rather than teaching
the 6812 only, we will stick to the traditional term. However, when you read
Motorola’s literature, remember to translate their “extended addressing” into
“direct addressing.” Do not confuse Motorola’s “direct addressing” with our
use of the term “direct addressing.”



Experience has shown that most of the accesses to data are to a rather
small number of frequently used data words. To improve both static and
dynamic efficiency, the 6812 has a compact and fast version of one-level
addressing to be used with the most commonly accessed data words. The
page zero mode is an addressing mode that forms the effective address by
forcing the high-order byte to be 0 while the lower-order byte is supplied by
the 8 bits in the instruction. For example,

LDAA $67

will put the contents of location $0067 into accumulator A. This instruction
is stored in memory as
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$96
$67

Clearly, page zero addressing uses fewer instruction bits, and thus the
instruction can be fetched faster than with direct addressing. In the 6812, the
I/O registers occupy page zero (unless the address map is changed). There-
fore I/O instructions use page zero addressing, and your programs cannot use
page zero addressing for anything else.

The symbol “<” can be used in several addressing modes. It will gener-
ally mean that a short 8- or 9-bit number in the instruction is used in the cal-
culation of the effective address. It will be used here for page zero addressing.
The symbol “>” can be used for direct addressing. It will generally denote
that a 16-bit number in the instruction is used in the calculation of the effec-
tive address. In Chapter 4 we will find that these symbols can usually be
dropped when the instruction mnemonics are automatically translated into
machine code, because the computer that does the translation can figure out
whether an 8-bit or a 16-bit value must be put in the instruction. Until then,
to enhance your understanding of how the machine works and to simplify
hand translation of mnemonics into machine code, we will use the symbol
“<” to designate forced 8-bit direct address values and the symbol “>” to
designate forced 16-bit direct address values.

Coding of the opcode byte for almost half of the 6812 instructions follows
a simple pattern (Figure 3.1). In instructions in which the most significant
bit is 1, the opcode is generally SUB, SBC, AND, BIT, LDAA, EOR, ADC,
OR, ADD, or a compare opcode. For these instructions, the next most signif-
icant bit generally indicates the accumulator register used. For instance
(using immediate addressing), SUBA is $80, whereas SUBB is $C0. The next
2 bits indicate the addressing mode: 00 is immediate, 01 is page zero, 11 is
direct, and 10 is index (using a post byte to distinguish among different index
modes as discussed in the next section). For instance, SUBA # is $80, SUBA
<0 is $90, SUBA >0 is $B0, and its index addressing modes use the opcode
$A0. The four least significant bits are the opcode. Many of the other 6812
instructions similarly encode their opcode bytes to systematically derive the



opcode and addressing mode from bits in the opcode byte. However, do not
attempt to memorize these decoding rules. The best way to encode an instruc-
tion is to look up its coding in the CPU12 Reference Guide.

In this section we introduced some of the simpler addressing modes:
inherent, direct, and page zero. We saw that inherent addressing should be
used when data are kept in registers, typically for the most frequently used
data. Page zero addressing, where data are kept on page zero, should be used
for the rest of the frequently used data and is used for I/O registers in the
6812. We now turn to the next group, which is based on decoding the post
byte and the use of other registers in the addressing mode.

Post Byte Index Addressing Modes
In this section we introduce a collection of addressing modes that are
encoded in a post byte and that use index registers in the address calcula-
tion. To improve efficiency, the controller is often provided with a few reg-
isters that could be used to obtain the effective address. These registers are
called pointer registers or index registers. Obtaining an address from such
an index register would be faster because the number of bits needed to
specify one of a few registers is much less than the number of bits needed
to specify any word in memory that holds the address. Moreover, index
addressing is the most efficient mode to handle many data structures, such
as character strings, vectors, and many others, as we discuss later. With this
potential, index registers have been used in a number of similar modes, called
collectively index addressing modes, which are introduced below.

Before we get into the modes of index addressing we have to discuss the
idea of a post byte. As noted earlier, the 6812 is the immediate successor of
the 6811 (the 6800 evolved into the 6801, which evolved into the 6811,
which finally evolved into the 6812). The 6811 had only the modes inher-
ent, immediate, page zero, direct, and one form of index addressing discussed
in the following. To keep the customers who had 6811s happy with the newer
machine, its designers opted to make the 6812 as similar as possible to its
predecessors. However, to introduce more addressing modes, they needed
more room in the instruction. The 6812 is as similar to its predecessors as
possible, using the same opcodes in many cases. The extra addressing modes
were provided by including an extra byte, right after the opcode byte, for
addressing information only and then only for variations of index address-
ing that are used on the 6812. This byte is the post byte.

The 6812 uses index addressing with two index registers X and Y, the
stack pointer SP, and program counter PC. Although these have equivalent
addressing capabilities, the SP register and program counter have special
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uses that are discussed in later sections of this chapter. Generally, all the
addressing modes described for X below also apply to the other registers.
First, there are load instructions that can load these registers. For example,
the instruction

LDX #$3843

will load the 16-bit X register with $3843. It is machine coded very much
like the LDAA immediate instruction. (See the CPU12 Reference Guide.) In
the following examples, assume that X is $3843.
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$CE
$38
$43

The other registers can be loaded using similar instructions, and other
addressing modes can be used to get the 2 bytes to be put in the index reg-
ister. In all cases, the effective address determined by the instruction is used
to get the first byte to be put into the high byte of the index register. The
effective address plus one is used to get the second byte to be put into the
low byte of the index register.

Coding of the post byte is shown in Figure 3.2. You can read the tree
shown therein from left to right to decode a post byte or from right to left to
encode an index mode into a post byte. To decode a post byte, start at the
tree root, and proceed right if bit 5 is zero; otherwise go down. Then check
the bit(s) indicated at the next branching point, to determine where to go
next, and so on. To encode an index mode into a post byte, locate the index
mode on the right, then follow the tree from there to the root, noting the set-
tings of the bits along the way that constitute the post byte code. This infor-
mation is also shown in the CPU12 Reference Guide in Table 1 and Table
2, using other formats.

Index addressing uses a signed offset in the post byte or the post byte and
1 or 2 bytes following it. When executed, the offset is added to the index
register, say X, to get the effective address of the operand or result in
memory. See Figure 3.4.

Effective addresses are frequently within ±16 locations of the index reg-
ister address, and many others are within ±256 locations. Thus, for greater
efficiency, a shortest 5-bit or a 9-bit option is used for some cases, but a full
16-bit index option is also available for cases that do not fall in the range of
±256 locations. The 5-bit offset is entirely contained in the post byte. The 9-
bit offset’s sign bit is in the post byte, and the remaining 8 bits are in the fol-
lowing byte. The 16-bit offset is in the 2 bytes following the post byte.

The shortest mode with a 5-bit offset will always be used when the offset
is between -16 and +15. Suppose X is $3843, as discussed above. The
instruction LDAA 1,X loads the number contained in location 1 + $3843 into
accumulator A. The post byte for this 5-bit offset mode (see Figure 3.2) has
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bit 5 

0

1
bits 7, 6 

11
not 11

bit 2 bit 1 

0
1

0
1

bits 1, 0 

not 11

Note: * registers 
are :X, Y, SP, PC 
** registers
are :X, Y, SP 
and † accumulators
are: A, B,D

bits 7, 6 are index register*
bits 4 to 0 are a 5-bit offset

5-bit offset

bits 7, 6 are index register**
bit 4 is pre(0)/post(1)
bits 3 to 0 are delta 

inc/dec

9-bit offset

bits 4, 3 are index register*
bit 0, next byte is offset

bit 0 

0
1

11
accumulator index 

bits 4, 3 are index register*
bits 1, 0 are accumulator†

16-bit offset 

bits 4, 3 are index register*
next 2 bytes are offset 

16-bit offset indirect

bits 4, 3 are index register*
next 2 bytes are offset 

D accumulator index indirect

FIGURE 3.2. Post Byte Coding

$A6
$01

a zero in bit 5, the index register in bits 7 and 6 (00 is X, 01 is Y, 10 is SP,
and 11 is PC), and the offset in bits 4 to 0. LDAA 1,X’s machine code is

3820 CE 38 43 LDX   #$3843 ; get address 
3823 A6 01    LDAA   1,X  ; get 1st byte 
3825 AB 02    ADDA   2,X  ; add 2nd byte 
3827 6A 03    STAA   3,X  ; store in 3rd byte 

FIGURE 3.3. Program Segment to Add 2 Bytes Using Vector Indexing

$A6 is the opcode byte for any LDAA index mode, and $01 is the post byte. The
saved offset is sign extended and added to the index register (see Figure 3.4).

The program segment in Figure 3.3 adds the word at $3844 to the word
at $3845, putting the sum in $3846. The contents of X is not changed after
it is loaded.

The 9-bit option will be used when the offset is between -256 and +255
or when the offset is between -16 and +15 and a “<” symbol, as it is used
in the page zero mode, is written preceding the offset. The instruction



LDAA <$11,X

loads the number contained in location $11 + $3843 = $3854 into accumu-
lator A. The post byte for this 9-bit offset mode (see Figure 3.2) has ones in
bits 7 to 5, the index register in bits 4 and 3 (00 is X, 01 is Y, 10 is SP, and
11 is PC), a zero in bits 1 and 2, and the sign bit of the offset in bit 0. Like
the 5-bit offset case, the saved offset is sign extended and added to the index
register to get the effective address, as illustrated by Figure 3.4. The machine
code is
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$A6
$E0
$11

where $A6 is the opcode byte for any index option with LDAA, $E0 is the
post byte, and bit 0 of the post byte and the next byte $11 are the offset.

When a larger offset is needed, the full 16-bit offset option can be used.
The 16-bit option will be used when the offset is outside the range -256 and
+255 or when the offset is in this range and a “>” symbol, as it is used in
the direct mode, precedes the offset. The instruction

LDAA >$3012,X

loads the number contained in location $3012 + $3843 = $6855 into accu-
mulator A. The post byte for this 16-bit offset mode (see Figure 3.2) has ones
in bits 7 to 5, the index register in bits 4 and 3 (00 is X, 01 is Y, 10 is SP,
and 11 is PC), and 010 in bits 2 to 0. The machine code is given by

$A6
$E2
$30
$12

where $A6 is the opcode byte for any index option with LDAA, $E2 is the
post byte, and $3012 is the 16-bit two’s-complement offset. The saved offset
is added to the index register to get the effective address, as illustrated by
Figure 3.4.

Controller

Index Register
Data Bus

Sign
Extender

Address Bus

Hidden
Register

FIGURE 3.4. Offset Calculation



In short, addresses required in several accesses are kept in index regis-
ters, if possible, and utilize the more efficient index addressing. Shorter
offsets produce more efficient programs and can be used if the index regis-
ter value is close to the effective addresses that will be used. However,
although negative offsets can be used as well as positive offsets to further
improve efficiency, positive offsets are often preferred for clarity.

The 5-, 9-, and 16-bit offset index addressing modes are useful for
reading data out of a vector. Suppose a 10-element vector of 8-bit items has
element 0 at $3843, element 1 at $3844, element 2 at $3845, and so on. Then
if X has $3843,

LDAA 2,X

puts element 2 into accumulator A. Suppose now that a 10-element vector
of 8-bit items has element 0 at $3872, element 1 at $3873, element 2 at
$3874, and so on. Then if X has $3872, this instruction still gets element 2
out of the vector. This instruction uses the efficient 5-bit offset mode. The
following instruction gets element i from the vector beginning at $3843 into
accumulator A, where the vector index i is in index register X:

LDAA $3843,X

This instruction uses the less efficient 16-bit offset mode, but it lets the vari-
able index be in the X index register.

Index registers can be either autoincremented or autodecremented before
or after being used in effective address calculations. This addressing mode
is denoted by a delta value between 1 and 8, a comma, and the register name
with a “+” or “-” symbol. If “+” appears, the index register is incremented
by the delta value, and if “-” appears, the index register is decremented by
the delta value; if this symbol appears before the register name, increment-
ing or decrementing is done before effective address calculation, and if the
symbol appears after the register, incrementing or decrementing is done after
the calculation. Consider an example of postincrementing by 1; if X had
$3843,

LDAA 1,X+

loads the contents from location $3843 into A and then increments the con-
tents of X by 1 to make it $3844. For an example of preincrementing by 1,
if X had the value $3843,

LDAA 1,+X

increments the contents of X by 1, and then loads the contents from location
$3844 into A. For an example of postincrementing by 2, if X had the value
$3843,

LDD 2,X+

loads the contents from locations $3843 and $3844 into D and then 
increments the contents of X by 2 to make it $3845. For an example of 
predecrementing, if X had the value $3843,
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LDAA 1,-X

decrements the contents of X by 1 to make it $3842 and then loads the con-
tents from location $3842 into A. Delta can be as high as 8.

These addressing modes are encoded in the post byte as follows (see
Figure 3.2): Bits 7 and 6 identify the register (00 is X, 01 is Y, and 10 is SP,
but 11 is not used for this mode), bit 5 is 1, bit 4 is 0 if the index value
changes before address calculation and 1 if after, and bit 3 is 1 if decre-
menting and 0 if incrementing. For incrementing, bits 2 to 0 are the value of
delta minus 1 (or equivalently, delta is the low-order 3 bits plus 1). For decre-
menting, bits 2 to 0 are the value of delta, as a negative two’s-complement
number, to be added to the index register. For example, for LDAA 1,X+ the
post byte is $30, for LDAA 1,+X the post byte is $20, for LDD 2,X+ the
post byte is $31, for LDAA 1,-X the post byte is $2F, and for LDAA 2,-X
the post byte is $2E, and so on.

Figure 3.5 illustrates how the delta value fetched from memory can be
added to the index register. The index value before or after modification can
be used as the effective address by appropriately setting the switch that deter-
mines the effective address.

Consider addition again. To add the word at location $3843 to the word
at location $3844, putting the result at location $3845, execute the code in
Figure 3.6.

Note that these increment and decrement modes produce a side effect.
They not only compute the effective address, they also change the value in
the index register used to get the address. No other addressing mode has such
a side effect. We will see how useful these options are when we look at some
examples later in this chapter.

Sometimes, the effective address is the sum of two variable numbers. The
index register can be used to hold one of the variables and an accumulator,
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FIGURE 3.5. Autoincrement Address Calculation

3820 CE 38 43 LDX   #$3843 ; get address 
3823 A6 30    LDAA   1,X+  ; get 1st byte 
3825 AB 30    ADDA   1,X+  ; add 2nd byte 
3827 6A 30    STAA   1,X+  ; store in 3rd byte 

FIGURE 3.6. Program Segment to Add 2 Bytes Using Autoincrementing



Accumulator index addressing modes are useful for reading data out of
a vector where the location of the vector in memory and the vector index are
determined at run time. Suppose a 10-element vector of 8-bit items has
element 0 at $3843, element 1 at $3844, element 2 at $3845, and so on. Then
if X has $3843, and accumulator A is 2, then

LDAA A,X

puts element 2 into accumulator A. Suppose now that a 10-element vector
of 8-bit items has element 0 at $3872, element 1 at $3873, element 2 at
$3874, and so on. Then if X has $3872, and accumulator A is 2, then this
instruction still gets vector element 2.

Finally, indirect addressing can be combined with accumulator D and 16-
bit offset forms of index addressing discussed above. Indirect addressing
goes to memory to get the address of the operand, as we describe with exam-
ples below. In the 6812, indirect addressing may only be used with these two
forms of index addressing. The instruction

LDAA [D,X]
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A, B, or D, can hold the other number, as in LDAB A,X. The zero-extended
accumulator (A) is added to the index register (X) to provide the effective
address. The effective address can be obtained as in Figure 3.7. This is called
accumulator indexed addressing.

The contents of the registers A and B are treated as 8-bit unsigned
numbers in these instructions whereas the contents of D may be treated as a
16-bit two’s-complement number or as an unsigned 16-bit number, because
the sum of the contents of D and the contents of any 16-bit index register,
truncated to 16 bits, is the same unsigned 16-bit number in either case. The
post byte for accumulator index addressing is as follows: Bits 7 to 5 and bit
2 are 1, the index register is encoded in bits 4 and 3 (00 is X, 01 is Y, 10 is
SP, and 11 is PC), and the accumulator is encoded in bits 1 and 0 (00, A; 01,
B; and 10, D). The instruction LDAB A,X is encoded as follows:

$E6
$E4

Controller

Index Register

Address Bus

AccumulatorZero
Filler

FIGURE 3.7. Accumulator Index Address Calculation



will use the sum of accumulator D and the index register X as an effective
address to read 2 bytes and then use these 2 bytes as another effective address
to load accumulator A with the word at the latter address. For instance, if D
is clear, X contains the value $3843, location $3843 contains $08, and loca-
tion $3844 contains $67, LDAA [D,X] will load the word at $3867 into
accumulator A. The post byte for indirect D accumulator index addressing
has ones in bits 7 to 5 and 2 to 0, and the index register is specified in bits
4 and 3 (00 is X, 01 is Y, 10 is SP, and 11 is PC). The post byte for the
instruction LDAA [D,X] is $E7. The instruction

LDAA [$12,X]

will use the sum of the 16-bit offset $0012 and the index register X as an
address to read 2 bytes, use these 2 bytes as another address, and load accu-
mulator A with the word at the latter address. Note that even though the offset
of this instruction is an 8-bit number, only 16-bit index addressing is per-
mitted when indirect addressing uses an offset. For instance, if X contains
the value $3843, location $3855 contains $08, and location $3856 contains
$23, LDAA [$12,X] will load the word at $3823 into accumulator A. The
post byte for indirect 16-bit offset index addressing has ones in bits 7 to 5
and 1 and 0, a zero in bit 2, and the index register is specified in bits 4 and
3 (00 is X, 01 is Y, 10 is SP, and 11 is PC). The post byte for the instruction
LDAA [$12,X] is $E3.

The LEAX, LEAY, and LEAS instructions can use only index addressing
modes, but not index indirect modes. These instructions can be used like 
a transfer instruction; LEAX 0,Y will transfer Y to X. More generally, 
they can be used to add a signed number constant or variable to an index
register and possibly put the result in a different register. The instruction
LEAX -3,X subtracts 3 from index register X, whereas LEAY A,X adds
accumulator A to the value of X and puts the result in Y. These instruc-
tions are alternatives to arithmetic instructions such as ADDD or SUBD and
are especially useful when the result will eventually be put in an index 
register.

The idea of using a register to form the effective address is very power-
ful. Several addressing modes that use this idea were introduced. The index
mode does not modify the contents of the register, but can add a 5-, 9-, or
16-bit offset to get the effective address. The most common change to an
address is to increment or decrement it. The instruction can automatically
increment the value in the index register before or after it is used, by 1 to 8.
This will be quite common in some data structures that we see later. A mode
that adds the values of an accumulator to the value of an index register
permits one to compute addresses that are derived from two variable values,
rather than from a variable and a fixed value. Finally, these modes may be
combined with indirect addressing for some special applications. With these
modes of addressing, the 6812 is a very powerful microprocessor. With this
power, we can show you how to use data structures intelligently to make
your programs shorter, faster, and clearer.
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Relative Addressing and Position
Independence
The microcomputer is very much like any other computer; however, the use
of ROMs in microcomputers raises an interesting problem that is met by the
last mode of addressing that we discuss. The problem is that a program may
be put in a ROM such that the program starts at location $1000 and ends at
$2000. Suppose that someone buys this ROM, but his/her microcomputer
has another program in a ROM that starts at location $1000 and ends at
$2000. We would like to be able to use this new ROM so that the new
program would start at location $4000 and end at location $5000, for
instance, or wherever there is room in the address space of the microcom-
puter. However, because the program is in a ROM, it cannot be changed by
the buyer. Similarly, a compiler or assembler that downloads a particular
program into different parts of memory will not have to change addresses if
the program is position independent. A program that works the same way,
wherever it is loaded in memory, is said to be position independent. Posi-
tion-independent programs can be written by an assembler or compiler to
run anywhere in memory without modification. Programs we have seen so
far are position independent when the location of the data is fixed, and, in
fact, most program segments that do not use JMP or JSR instructions using
direct addressing are position independent.

Program counter relative addressing, or simply relative addressing, adds
a two’s-complement number, called a relative offset, to the value of the
program counter to get the effective address of the operand. Figure 3.8 illus-
trates a simplified implementation of a controller. The top switch can add
“1,” or the sign-extended data bus, to the program counter. The former is
used to increment the program counter each time an instruction byte is
fetched, and the latter is used for relative branches. The bottom switch
permits the adder’s output or the data bus value to be put into the program
counter. The bottom switch selects the latter when a JMP, JSR, RTS, or RTI
instruction or interrupt loads the program counter. The adder’s output can
also be used as an effective address.

The relative addressing mode is used to implement position independ-
ence. If the program segment at $1000 to $2000 was in a ROM and that
ROM was installed so that the instruction following the BNE was at $4000,
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the BNE instruction would still have the relative offset $20. If Z is 0 when
the instruction is executed, the program counter would be changed to $4020.
That would be the address of the instruction that had the label L. The program
would execute the same way whether it was stored at location $1000 or
$4000. This makes the program position independent.

Branching instructions all use relative addressing. For example, the
instruction BRA L for “branch always” to location L will cause the program
counter to be loaded with the address L. An example of a branch is illus-
trated in Figure 3.9. Observe that label L is 2 bytes below the end of the BRA
L instruction. The program counter PC has the address $3834 of the next
instruction, LDAA #4, when it is executing the BRA L instruction. The second
byte of the BRA L instruction, the offset, 2, is added to the program counter,
to make it $3836, and then the next byte is fetched.

The example in Figure 3.10 constantly flips bits in location 1. It might
be used in Chapter 11; location 1 is an output port, and this program segment
outputs a square wave on all the bits. The two’s-complement offset is nega-
tive because the branch is backwards. Observe that after BRA L is fetched,
the program counter is on location $3816; the offset $FB is -5, so the
program counter becomes $3811 after it is executed.

Many programmers have difficulty with relative branch instructions that
branch backwards. We recommend using sixteen’s complement arithmetic to
determine the negative branch instruction displacement. The sixteen’s com-
plement is to hexadecimal numbers as the two’s complement is to binary
numbers. To illustrate this technique, the displacement used in the branch
instruction, the last instruction in the program in Figure 3.10, can be deter-
mined as follows. When the branch is executed, the program counter has the
value $3816, and we want to jump back to location $3811. The difference,
$3816 - $3811, is $05, so the displacement should be -$05. A safe way to
calculate the displacement is to convert to binary, negate, and then convert
to hexadecimal. Because $5 is 00000101, the two’s complement negative is
11111011. In hexadecimal, this is $FB. That is not hard to see, but binary
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3830 86 03       LDAA  #3   ; put number 3 in A 
3832 20 02       BRA L      ; skip to store 
3834 86 04       LDAA  #4   ; put number 4 in A 
3836 7A 38 43 L: STAA  $3843; store number in A  

FIGURE 3.9. Program Segment Using BRA, Illustrating Position 
Independence

3810 87        CLRA   ; clear A 
3811 41     L: COMA     ; invert bits 
3812 5A 01     STAA  $1  ; output to a port 
3814 20 FB     BRA L     ; repeat forever 

FIGURE 3.10. Program Segment to Put a Square Wave on an Output Port



arithmetic gets rather tedious. A faster way takes the sixteen’s complement
of the hexadecimal number. Just subtract each digit from $F (15), digit by
digit, then add 1 to the whole thing. Then -$05 is ($F - 0),($F - 5) + 1 or
$FA + 1, which is $FB. That is pretty easy!

If the relative offset is outside the 8-bit range, one uses the long branch
equivalent, LBRA L, which uses a 16-bit two’s-complement relative offset.

Program counter relative addressing can be used to read (constant) 
data that should be stored with the program. Relative addressing can be
implemented using a 5-, 9-, or 16-bit signed relative offset. Nine-bit offset
relative addressing is denoted by the “<” before and “,PCR” after the offset
and 16-bit offset by “>” symbol before and “,PCR” after the offset. (This
mode’s machine code uses a post byte because it is an index option.) For
example,

LDAA <L,PCR

can load any word into A that can be reached by adding a 9-bit signed number
to the program counter. (Recall that the PC is pointing to the next instruc-
tion just below the LDAA instruction when the effective address L is calcu-
lated.) The instruction

LDAA >L,PCR

can be used to access words that are farther away than -256 to +255 loca-
tions from the address of the next instruction; it adds a 16-bit offset to the
current value of the program counter to get the effective address. Although
the machine coding of relative addressed instructions is the same as that of
index addressed instructions, do not dwell too much on that similarity
because the offset put in the machine code is determined differently.

Program counter relative indirect addressing can be used to access loca-
tions such as I/O ports as in

LDAA [L,PCR]

Assuming that L is 18 bytes below this instruction, the machine code is 
given by
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where $A6 is the opcode byte for any LDAA index mode; the post byte $FB
indicates indirect index addressing with 16-bit offset, but with the program
counter used as the “index register” and the last 2 bytes are added to the
program counter. The indirect address ($12 in the example above) is in a
location relative to the program. If the program is loaded into a different
location, the offset $12 is still used to get the indirect address. Such use of
relative and indirect relative addressing lets the program have one location

$A6
$FB
$00
$12



and only one location where a value is stored, so that a downloaded file can
insert the value in one place to run the program anywhere it is stored.

Branch and long branch instructions do not need the “,PCR” symbol in
the instruction because they only use relative addressing with 16-bit relative
offsets. However, the BSR L, having an 8-bit offset, does not have a corre-
sponding long branch to subroutine. But JSR L,PCR is a 16-bit position
independent subroutine call that has the same effect as the missing LBSR L.

A 16-bit position independent indirect subroutine call, JSR [L,PCR],
can jump to a subroutine whose address is in a “jump table,” as discussed in
a problem at the end of this chapter. Such jump tables make it possible to
write parts of a long program in pieces called sections and compile and write
each section in EEPROM at different times. Jumps to subroutine in a dif-
ferent section can be made to go through a jump table rather than going
directly to the subroutine. Then when a section is rewritten and its subrou-
tines appear in different places, only that section’s jump table needs to be
rewritten, not all the code that jumps to subroutines in that section. The jump
table can be in EEPROM at the beginning of the section, or in RAM, to be
loaded at run time.

A program is not position independent if any instruction in it causes it to
do something different when the program is moved, intact, to a different loca-
tion. The only real test for a program’s position independence is to show that
it can be moved without changing its operation. One necessary condition,
however, is that all changes to the program counter be position independent,
and the use of branch instructions in place of jump instructions, or JMP and
JSR instructions with program counter relative addressing, will generally
make that possible. The relative addressing mode is generally used with data
that move with the program, such as constants that are on the same ROM as
the program, and with instructions that compute the address to jump to in a
manner to be introduced later. Listed with other instructions, then, the rela-
tive mode allows programs to be position independent and that may be very
important in a microcomputer that uses a lot of ROMs.

Stack Index Addressing, Reentrancy, 
and Recursion
The stack pointer may be used with all the index addressing modes, but its
uses have special meaning. These uses correspond to pushing and pulling,
and they support reentrancy and recursion. Also, the index registers X and
Y may be used as auxiliary stack pointers. In this section we show these 
variations of index addressing.

The instruction LDAA 1,SP+ is essentially the same as PULA because
both pull a byte from the (hardware) stack into accumulator A. Similarly, the
instruction LDD 2,SP+ is essentially the same as PULD; the instruction
STAA 1,-SP is essentially the same as PSHA; and the instruction STD 2,
-SP is essentially the same as PSHD. The differences between these pairs of
instructions are in their length and execution time and in the effect they have
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on condition codes. The instructions PULA, PSHA, PULD, and PSHD are
usually preferred because they are faster and shorter, but the instructions
LDAA 1,SP+, STD 2,-SP, and so on may be used if pulling or pushing
needs to set the condition codes for a future conditional branch instruction.

Moreover, autoincrement addressing can be used with other instructions
to pull a byte or 16-bit word and simultaneously use the pulled data in an
instruction. The sequence

PSHB
ADDA 1,SP+

is often used in code generated by C and C++ compilers to add accumula-
tor B to accumulator A (equivalent to the simpler instruction ABA). However,
this push-and-pull-into-an-instruction technique can be used with other
instructions like ANDA and ADDD. The sequence

PSHX
ADDD 2,SP+

is often used in code generated by C and C++ compilers to add index regis-
ter X to accumulator D.

The hardware stack, pointed to by SP, is useful for holding a subroutine’s
arguments and local variables. This will be discussed at the end of this
section. However, because return addresses are saved on and restored from
the hardware stack, we sometimes need a stack that is not the same as that
hardware stack. For instance, we may push data in a subroutine, then return
to the calling routine to pull the data. If we use the hardware stack, data
pushed in the subroutine need to be pulled before the subroutine is exited,
or those data will be pulled by the RTS instruction, rather than by the sub-
routine’s return address. A second stack can be implemented using an index
register such as Y. If index register Y is also needed for other purposes in
the program, this second stack pointer can be saved and restored to make it
available only when the second stack is being accessed.

Figure 3.11 illustrates that a second auxiliary stack may use the same
buffer as the hardware stack. The hardware stack pointer SP is initially loaded
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FIGURE 3.11. A Stack Buffer for Two Stacks



with the address of (one past) the high address of the buffer, while the second
auxiliary stack pointer (Y) is loaded with one less than the address of the
low end of the same stack buffer. The second stack pointer is initialized as
LDY #$3F7F. Accumulator A can be pushed using STAA 1,+Y. A byte can
be pulled into accumulator A using LDAA 1,Y-. A 16-bit word in D can be
pushed using STD 2,+Y and pulled using LDD 2,Y-. Observe that autoin-
crementing and autodecrementing are reversed compared to pushing and
pulling on the hardware stack, because, as seen in Figure 3.11, their direc-
tions of building the stack are reversed.

The advantage of having the second stack in the same buffer area as the
hardware stack is that when one stack utilizes little of the buffer area, the
other stack can use more of the buffer and vice versa. You only have to allo-
cate enough buffer storage for the worst-case sum of the stack sizes, whereas
if each stack had a separate buffer, each buffer would have to be larger than
the worst case size of its own stack.

A recursive subroutine is one that calls itself. The procedure to calculate
n factorial, denoted n!, is recursive; for any positive nonzero integer n, if n
is one, n! is 1; otherwise n! is (n - 1)! [*] n. The subroutine in Figure 3.12
calculates n!; upon entry, n is in accumulator D, and upon exit, n! is in accu-
mulator D.

Although recursive subroutines implement a scientist’s induction mech-
anism, they are not always useful. Consider the alternative in Figure 3.13
that uses a loop. The alternative is significantly more efficient. The recursive
solution uses the hardware stack as a counter, pushing a 2-byte return address
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3803 04 44 09 FACT: TBEQ D,FAC1 ; if in zero, out 1 
3806 3B       PSHD     ; save parameter on stack 
3807 83 00 01 SUBD  #1  ; reduce by one 
380A 07 F7    BSR   FACT ; compute (n-1)! 
380C 31       PULY ; restore parameter on stack 
380D 13       EMUL      ; multiply n * (n-1)! 
380E 3D       RTS      ; return to caller 
380F CC 00 01 FAC1: LDD   #1 ; generate 1, which is 0! 
3812 3D       RTS ; return to caller

FIGURE 3.12. Subroutine to Compute n! Recursively

3803 B7 45    FACT: TFR  D,X ; put number in D, X 
3805 20 03          BRA  FAC2   ; go to end of loop  
3807 B7 56   FAC1: TFR  X,Y ; copy iteration # 
3809 13         EMUL ; multiply  
380A 04 35 FA FAC2: DBNE X,FAC1 ; repeat until count = 0 
380D 3D         RTS ; return to caller

FIGURE 3.13. Subroutine to Compute n! in a Loop



and 2-byte saved parameter value each time it calls itself to reduce its param-
eter by 1. If n is 5, this subroutine uses up 20 bytes of stack storage. This is
not efficient. However, there are efficient recursive subroutines, especially
for following linked list data structures, as we will see in Chapter 10.

A subroutine is reentrant if it can be stopped, for instance, because of an
interrupt and then resumed, and it will get the same result as if it were not
stopped, even though the interrupt handler might call this subroutine during
its execution. Also, a time-sharing computer uses interrupts to switch
between tasks or threads that share a computer. Reentrant subroutines can be
used by each task or thread, without concern that, when a thread or task is
stopped during execution of the subroutine, another thread will execute the
subroutine. The subroutine in Figure 3.14 is nonreentrant and following it is
a reentrant subroutine; both clear 5 bytes beginning at location $3824.

This program fails to work correctly if it is interrupted after the STAA
instruction is executed and before the RTS instruction is executed and the
interrupt handler calls this subroutine. The second call to this subroutine will
wipe out the counter at location $3822 because the second call will also use
this same location and will leave it cleared when the first call to this subrou-
tine resumes execution. The first call to this subroutine will not work the same
way if the interrupt occurs as it does if the interrupt does not occur. However,
the subroutine in Figure 3.15 will work correctly if it is similarly interrupted.

The key idea behind both recursion and reentrancy is to keep data on the
stack. The stack provides new storage locations for each instantiation of the
subroutine to keep its variables separate from the variables of other instan-
tiations, so they are not destroyed.
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3803 86 05    CLEAR: LDAA  #5  ; put number 5 in A 
3805 7A 38 22           STAA  $3822 ; store in fixed loc 
3808 CE 38 24        LDX   #$3824; set pointer 
380B 69 30 CLR1:    CLR   1,X+  ; clear byte 
380D 73 38 22        DEC   $3822 ; decrement location 
3810 26 F9         BNE  CLR1   ; until it = zero 
3812 3D          RTS   ; return to caller 

FIGURE 3.14. Nonreentrant Subroutine to Clear Memory

3803 86 05  CLEAR: LDAA   #5 ; put number 5 in A 
3805 36            PSHA    ; save on the hdwr stack 
3806 CE 38 24   LDX #$3824; set pointer to begin 
3809 69 30  CLR1:  CLR 1,X+ ; clear byte pointed to 
380A 63 80         DEC 0,SP ; decrement byte on stack 
380C 26 FA    BNE CLR1  ; until it becomes zero 
380E 1B 81         LEAS 1,SP ; remove item on stack 
3810 3D         RTS       ; return to caller 

FIGURE 3.15. Reentrant Subroutine to Clear Memory



Note that the decrement instruction accesses the counter on the stack
without pulling the byte. If three 1-byte items were pushed on the stack, the
instruction LDAA 2,SP will read into accumulator A the first byte pushed
without removing it from the stack. In general, items can be pushed on the
stack at the beginning of a procedure and pulled off at the end of the proce-
dure. Within the procedure the items can be read and written using offsets
from the stack pointer.

The concept of storing data on the stack leads to nested allocation, access,
and deallocation of local variables. Nested segments are commonly used in
C and C++ programs to call procedures; the outer segment holds parameters
passed to the procedure, and the inner segment stores some of the local vari-
ables of a procedure. Further, C and C++ programs nest segments within a
procedure to hold temporary variables needed to evaluate a C statement. This
concept is fully explained in terms of a program trace, which is introduced
first. Then we consider a simple trace, and then a nested trace.

One can record a program’s instructions in the exact order in which they
are executed to obtain a trace. Simple program segments without branching
statements are the same as their traces. If a program has a loop that is executed
five times, the trace has five copies of the instruction sequence in the loop.

In a program trace, one can allocate local variables by pushing items on
the stack, and one can deallocate them by pulling them from the stack, as
already illustrated in this section. Once allocated, the data on the stack can
be accessed by reading or writing the contents as discussed above. More-
over, one can allocate several bytes in one instruction, using the LEAS
instruction. For instance, to allocate 5 bytes, execute LEAS -5,SP. By
moving the stack pointer SP five locations toward lower memory, 5 bytes of
data can be stored in these bytes that were skipped over. The LEAS instruc-
tion can deallocate several words at a time. To deallocate 5 bytes, execute
the instruction LEAS 5,SP. A stack is said to be balanced in a simple trace,
which has no alternative branches in it; thus, it is linear if the number of allo-
cated bytes equals the number of deallocated bytes and at no step in the trace,
between allocation and deallocation, are more bytes deallocated than were
allocated. If, because of conditional branches, there are several possible
simple traces to take from when space has been allocated to a given point in
the program, the stack is balanced at that point if it is balanced in every pos-
sible simple trace to that point. To balance the stack means to deallocate all
the bytes that have been allocated, so that it becomes balanced. We usually
allocate space for variables at the beginning of a subroutine and deallocate
the space just before we exit the subroutine to balance the stack, but we can
have program segments that are not subroutines in which space is allocated
at the beginning of the program segment and deallocated at the end of that
program segment.

It is possible for a program to have a segment that has space allocated at
its beginning and deallocated at its end and to have within it another segment
that has space allocated at its beginning and deallocated at its end. This is
called a nested allocated segment. Figure 3.16a illustrates a program that has
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a nested segment in which the outer segment allocates 3 bytes, an inner
segment allocates 2 bytes, and an inner segment of it allocates another 4
bytes. The outer segment writes the number 5 in its lowest addressed byte,
the next inner segment reads this byte into accumulator A, and the innermost
segment reads this byte into accumulator A. Note that different offsets are
used with the stack pointer to access the same byte of data, because of inter-
vening allocations, but the outer data are available to each inner program
segment, even though they are nested.

We now tie together some of the ideas that were introduced above using
some examples. These examples give you some experience with addressing
modes and loops.

One of the most common operations is to clear a block of memory. The
program segment in Figure 3.17 clears 39 bytes starting at location $3910.
This example can be sped up by using STD 2,X+ instead of CLR 1,X+,
assuming accumulator D is zero. Another common operation is to move a
block of data from one area to another. The program segment in Figure 3.18
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LEAS -3,SP  allocate 3 bytes
...
LDAA    #5  generate constant 5
STAA  0,SP  store in  allocated
...
LEAS -2,SP  allocate 2 bytes
...
LDAA  2,SP  read out the byte 5
...
LEAS -4,SP  allocate 4 bytes
...
LDAA  6,SP  read out the byte 5
...
LEAS  4,SP  deallocate 4 bytes
...
LEAS  2,SP  deallocate 2 bytes
...
LEAS  3,SP  deallocate 3 bytes

inner
segment

SP->

middle
segment

SP->

outer
segment

SP-> data byte

Stack

low address

high address

a. Program Segment b. Stack allocation

FIGURE 3.16. A Stack Buffer for Nested Segments

3820 CC 00 27      LDD  #39   ; put number count in D 
3823 CE 39 10    LDX  #$3910 ; put start address in X 
3826 69 30     L1: CLR  1,X+   ; clear byte, autoinc. 
3828 04 34 FB   DBNE D,L1   ; count down and loop 

FIGURE 3.17. Program Segment to Clear a Block of Memory



moves 15 bytes from a block starting at location $3930 to a block starting
at location $3921. Alternatively, MOVW moves data twice as fast as MOVB.

We now extend an example started in Chapter 1. Suppose that we want
to add N 1-byte numbers that are stored consecutively beginning in location
$3843. The value of N is stored in location $3841, and the result is to be
placed in location $3842. The program segment in Figure 3.19 does this for
either unsigned or signed (two’s-complement) numbers. If the numbers are
unsigned, the result will be correct as long as there is no unsigned overflow;
that is, the sum can be expressed with an 8-bit unsigned number. If the
numbers are signed, the result will likewise be correct as long as there is no
signed overflow; that is, the result can be expressed with an 8-bit two’s-
complement number. Note that accumulator B is initially loaded with the
number of times that the loop is to be executed. This loop counter (accu-
mulator B in this case) is decremented by DBNE, which branches back to the
location L if accumulator B is greater than zero after it is decremented. The
loop from location L to the DBNE instruction is repeated N times, where N
is the initial value in accumulator B.

In the program in Figure 3.19, register A is used to accumulate the result,
register B holds the number of remaining bytes to be added, and the index
register X contains the address that points to the next byte to be added.

We extend the multiply-and-accumulate example of §2.7 in Chapter 2 to
evaluate the expression, S4

i=0Bi*Ci, where a vector of five signed 16-bit
numbers Bi are at $3914, and a vector of five signed 16-bit numbers Ci is at
$391E. This expression is called the inner product of the vectors B and C.
The two vectors B and C can have as many elements as you want, but the
two vectors have the same number of elements. This expression is widely
used in signal processing and data compression (Figure 3.20). Note that
EMACS only uses pointer addressing, so the index registers X and Y must be
moved using LEA instructions to pick up the elements Bi and Ci. This pro-
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3840 CC 00 0F       LDD #15  ; put count in D 
3843 CE 39 30     LDX #$3930; put source address in X 
3846 CD 39 21    LDY #$3921; put dest. address in Y 
3849 18 0A 30 70 L: MOVB 1,X+,1,Y+ ; move byte, autoinc. 
384D 04 34 F9    DBNE D,L  ; count down and loop 

FIGURE 3.18. Program Segment to Move a Block of Memory

3820 CE 38 43    LDX  #$3843 ; point to first number 
3823 F6 38 41       LDAB $3841  ; get count 
3825 87          CLRA    ; initialize sum 
3826 AB 30    L: ADDA 1,X+   ; add 2nd byte 
3829 04 31 FB      DBNE B,L    ; count down and loop 
382B 7A 38 42    STAA $3842  ; store result 

FIGURE 3.19. Program Segment to Add Vector Elements



cedure is very similar to the WAV instruction but is for 16-bit elements
whereas WAV is for 8-bit elements.

This section illustrates several examples of the great value of the syner-
getic combination of autoincrement index addressing and counting using the
DBNE instruction. The combination of accumulator index addressing and
counting using the DBNE instruction, whose counter register is the accumu-
lator used with the index, is also widely used. We seem to run into such a
combination in every other program that we write.

Architectural Notions of Addressing
The particular computer that we are studying, the 6812, is a one-address com-
puter. Have you thought, perhaps, that a computer that has instructions with
two addresses may be better than a one-address computer? In some cases, it
would be, and a three-address computer would be even better, but in other
cases, it would not. We will compare the static efficiency of one-address and
three-address computers to help you look beyond the particular machine that
we are studying to understand the general principle of addressing and at the
same time to reassure you that the 6812 is a good machine for most appli-
cations. Next, we will review the detailed fetch/execute cycle to expose some
possible ambiguities in the addressing operation of the 6812. This may help
you to understand some very useful addressing techniques. Although this dis-
cussion does not show you how to apply specific addressing modes as the
previous section did, it will further your general understanding of address-
ing and programming.

We might want to add the contents of location 511 to the contents of 512
and put the result into 513. In the 6812, we would execute the program
segment

LDAA 511
ADDA 512
STAA 513

The same effect could be obtained in a different computer that had a three-
address instruction. The instruction

ADD 511,512,513

would add the contents of location 511 to that of 512, putting the result into
513. The 6812 program segment used 9 bytes, whereas this three-address
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3820 CC 00 05       LDD  #5   ; get number of elements 
3823 CE 39 14       LDX  #$3914; get address of 1st 
3826 CD 39 1E       LDY  #$391e; get address of 2nd 
3829 18 12 39 10 L: EMACS $3910; multiply and accumulate 
382D 1A 02        LEAX 2,X   ; move pointer 
382F 19 42          LEAY 2,Y   ; move pointer 
3831 04 34 F5    DBNE  D,L  ; count down, loop til 0 

FIGURE 3.20. Program Segment to Compute an Inner Product



machine might use only 7 bytes. The three-address machine is more efficient
for this example. However, if we want to add the numbers in locations 511
through 515 and put the result in 516, the three-address machine must use
something like

ADD 511,512,516
ADD 513,516,516
ADD 514,516,516
ADD 515,516,516

whereas the one-address 6812 uses

LDAA 511
ADDA 512
ADDA 513
ADDA 514
ADD 515
STAA 516

A comparison now shows that the three-address machine takes 28 bytes
while the one-address 6812 takes 18. Of course, this computation is very
inefficient for the three-address machine, but it may represent a more typical
computation than the one that the particular instruction directly handles.

In §12.5, we will see a three-address architecture in the fast and power-
ful 500 series of Motorola microcomputers. The three-address architecture
is actually the method of choice for these powerful microcomputers because
this architecture permits several instructions to be executed in parallel if the
instructions’ registers are mutually distinct. Nevertheless, there are applica-
tions in which the three-address architecture is justifiable based on static or
dynamic efficiency.

You may have already seen confusing addressing modes. If you have not
had this experience yet, we would like to offer the following discussion to
help you when you do. Consider the instruction

LDX 0,X

that loads a register using an address calculated using the same register. Is
this like a definition of a term that uses the term to define itself? No, it is not.
It is quite legal and very useful in handling data structures such as linked lists,
which you will study in Chapter 10. Let us review the fetch/execute cycle
again, with this particular instruction as an example. First, the opcode and
then the post byte are fetched. The opcode is decoded, and then the address
is calculated. Predecrementing, if needed, is done at this point. Finally, the
operation is carried out. Note that the address is calculated using the old value
in the index register X. Then the two words recalled from that address are put
into the index register to become the new value of the register. For example,
if X contained 100, location 100 contained 0, and location 101 contained 45,
then, after the instruction is executed, the X register contains 45.
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There are some further ambiguities with the last load instruction and the
corresponding store instruction when postincrementing is used. For example,
with the instruction

LDX 2,X+

it is not clear whether the load is executed before the + or after the + . Note that
if the latter is true, the + would have no effect on the instruction. Indeed, in the
6812, the + is carried out before the operation; in this case a load, so that

LDX 2,X+

is the same as

LDX 2,X-

For any load instruction involving the same index register for the location of
the operand and the location of the result, the general rule is that postincre-
menting has no effect on the instruction. However, the fact that the postincre-
menting is carried out before the operation produces an unexpected result in
the store counterpart of the load instruction just discussed. For example, with

STX 2,X+

suppose that X initially contains 373. After the instruction is executed, one
will find that X becomes 375, and 375 has been stored in locations 373 and
374. We conclude this discussion by noting that predecrementing has none
of these ambiguities. For example, if X initially contains 373 before the
instruction

STX 2,-X

is executed, then 371 will be stored in locations 371 and 372.
There is often considerable confusion about LDX (direct), LDX #, and

LEAX. Consider the following examples, assuming location $3820 stores
$1234.

LDX $3820

will load $1234 into X. Direct addressing loads the data located at the instruc-
tion’s address. However, immediate addressing loads part of the instruction
into the register, as

LDX #$3820

will load $3820 into X. Sometimes, immediate addressing is used to load an
address into memory so that pointer addressing (index addressing with zero
offset) can access the data:

LDX #$3820
LDX 0,X

will eventually load $1234 into X. Also, the LEAX instruction loads the effec-
tive address into an index register. When it is used with program counter rel-
ative addressing, it has the same effect as LDX # but is position independent.
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LEAX $3820,PCR
LDX 0,X

will eventually load $1234 into X. Howver, LEAX can be used with other
addressing modes for other effects; for instance, LEAX 5,X adds 5 to X, and
LEAX D,X adds D to X.

Summary
In this chapter we looked at the addressing modes in the 6812. We saw four
general themes: the use of page zero, the use of index registers, the use of
relative addressing for position independence, and the use of stack address-
ing for reentrancy and recursion.

With the first theme, we saw that inherent and page zero addressing are
useful for improving static and dynamic efficiency over direct addressing.
Put the most commonly accessed variables in registers, using inherent
addressing to access them, and put the next most common variables in page
zero, using page zero addressing to access them.

For the second theme, we saw that index registers may be used efficiently
to handle addresses that require several accesses and that index registers may
be useful for data structure accesses. Index addressing is the fastest and short-
est index addressing option and index addressing using 5-bit offsets is avail-
able for locations close to that pointed to by the register, whereas 16-bit
offsets are available for all accesses. We also saw that the accumulators may
be used, in lieu of an offset, to combine a variable in an index register with
a variable in an accumulator to get the effective address. Index registers and
their addressing modes provide a lot of power, which we explore further
throughout this book.

With the third theme, the program counter is used as a kind of index reg-
ister and the same steps used to carry out index addressing are used to carry
out relative addressing using the program counter in place of an index reg-
ister. Although the mechanics are the same, the effect is quite different, and
the representation of the address is different. In particular, the address in the
instruction using relative addressing is the effective address, not an offset,
whereas the machine code for the instruction uses a relative offset, which is
the amount that must be added to the program counter to get the effective
address. This mode is useful in making programs position independent, so
that they may be mass produced in ROMs and many different systems can
use the same ROM.

The last theme showed how the stack pointer can be used with an offset
to access local variables and parameters passed on the stack. The reentrancy
and recursion techniques are shown to be easily implemented using stack
pointer addressing.

In this chapter we covered the rich collection of addressing modes in the
6812. These correspond to the modes in most other microcomputers and to
most of the useful modes in any computer. Now that you know them, you
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should be prepared to use them with any instruction in the 6812 (where they
are permitted) as we discuss these instructions in the next chapter. You should
know which mode to use, based on our study of the themes above so that
you can produce shorter, faster, and clearer programs.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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addressing
addressing modes
accessed
inherent
implied
self-modifying code
page registers
page zero mode
pointer register
index register
index addressing

post byte
offset
autoincrement
autodecrement
indirect addressing
position independent
program counter

relative
relative
relative offset
sixteen’s-complement

recursive subroutine
reentrant subroutine
nested allocation
unsigned overflow
signed overflow
inner product
three-address

instruction
jump vector

PROBLEMS

1. Identify all instructions that have a direct mode of addressing but do not
have a page zero mode of addressing.

2. Identify all instructions that have both direct and page zero addressing,
in which the direct addressing opcode byte is the page zero addressing
opcode byte plus $20. Which instructions have both direct and page zero
addressing, in which the direct addressing opcode byte is not the page
zero addressing opcode byte plus $20?

3. We often write a constant to an output port, which is a byte on page zero.
Compare the static and dynamic efficiency, and clarity, of the MOVB
#$12,$0034 instruction to the instruction sequence LDAA #$12
STAA $34. When should you use the MOVB instruction, and when
should you use the LDAA - STAA sequence?

4. Suppose that we have a vector of l-byte signed numbers whose first
byte is at location $3840 and whose length is at location $383f and is
less than 32 bytes. Write a shortest program to search through the vector,
using autoincrement addressing, putting all those numbers that are 
negative and even into a vector beginning at location $3860, keeping 
the order of the numbers in the second vector the same as that in the
original vector, and putting the length of the new vector in location
$385f.

�



5. Suppose that we have N 16-bit two’s-complement numbers stored begin-
ning at location $3850. The 2 bytes of each number are stored consec-
utively, high byte first. Write a shortest program, using autoincrement
addressing, that puts the maximum number in locations $384e and
$384f, high byte first. Do not use “special” instructions. The variable N
is stored in location $384d. How would your program change if the
numbers were unsigned?

6. Write a shortest program that adds a 3-byte number at locations $3832
through $3834 to a 3-byte number at $3835 through $3837, putting the
sum in $3838 through $383a. Each number is stored high byte first and
other bytes at higher addresses. When the program finishes, condition
code bits Z, N, V, and C should be set correctly. Hint: Use just one index
register to read in a byte from each number and also write out a byte,
and obtain the final condition code Z by ANDing Z bits obtained after
each add.

7. A 10-element 16-bit per element vector at location $3844 is initially
clear. Write a shortest program segment that increments the vector
element whose index is in accumulator B and that is a positive integer
less than 10. After the program segment is executed several times, each
vector element has a “frequency-of-occurrence” of the index. This vector
is called a histogram.

8. Write a shortest program segment that sets a bit in a bit vector having
256 bits. Location $3856 and the following 7 bytes contain $80, $40,
$20, $10, 8, 4, 2, and 1. Index register X points to the byte that contains
the leftmost (lowest-numbered) bit of the bit vector. Bits are numbered
consecutively from 0, the sign bit of the byte pointed to by X, toward
less significant bits in that byte, and then toward bytes at consecutively
higher addresses. If accumulator A is a bit number n, this program
segment sets bit n in the bit vector pointed to by X.

9. Write a shortest program segment, which is to be executed only once,
that adds a 24-bit number at locations $3811 to $3813 to a 24-bit number
at $3814 to $3816 to get a 24-bit result at $3817 to $3819 but that does
not use any index registers; it uses only self-modifying code. Each
address’s low byte is decremented after each time it is used.

10. Write a shortest program segment that adds a 24-bit number to a 24-bit
number to get a 24-bit result but that does not use any index register,
only indirect addressing. Use locations $3811 and $3812 to hold the
pointer to the first 3-byte number (which is the address of its least sig-
nificant byte), locations $3813 and $3814 to hold the pointer to the
second number (which is the address of its least significant byte), and
locations $3815 and $3816 to hold the pointer to the result (which is 
the address of its least significant byte). Assume that no byte of any of
the 24-bit numbers spans a page discontinuity, where the low byte of the
address is zero. This program segment need be executed only once.
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11. Suppose that Y = 613 and X = 918 before each of the following instruc-
tions is executed. Give the contents of the registers X and Y after each
is executed, in decimal. Then explain what is stored where if STY 2,-
Y is executed with Y = 613.

(a) LEAX 2,-Y
(b) LEAX 2,-X
(c) LEAX 2,Y+

12. Give the shortest 6812 instruction sequences that carry out the same
operation as the following nonexistent 6812 instructions. Condition
codes need not be correctly set.

(a) AAX

(b) ADX

(c) LSLX

13. A section is a collection of n subroutines that are assembled together and
written together in a PROM, EPROM, or EEPROM. The first 2 n bytes
of storage for each section contain the direct address of each subroutine
in the section, in a jump vector. The first 2 bytes are the address of the
first subroutine, and so on. Suppose section 1 begins at $F000, so sub-
routine 3’s address would be in $F006. In another section, a call to sub-
routine m in section 1, puts the 16-bit number from location 2 m + $f000
into the program counter. Show the machine code for parts (a) and (b).

(a) Write a single instruction at location $d402 to call subroutine 3.

(b) How do we fill the “jump table” at location $F000 with addresses
of subroutines at run time (assuming the jump table is in RAM)? In
particular, if the subroutine at location f is a label at the beginning
of the third subroutine whose address is at location $F006, write a
program sequence to generate and write this address in the vector.

(c) How does this capability simplify the debugging of large programs?

14. The jump vector of problem 13 is to be made position independent. Each
element is a relative offset to the subroutine. Repeat parts (a), (b), and
(c) of problem 15 for this jump vector. Write parts (a) and (b) as a
program segment, where X points to the jump table’s beginning.

15. Write a shortest program segment beginning at $3866 to call subroutine
PRINT at $3852 with the address of the character string to be printed in
index register X, first for a string stored at location $3876 and then for
one at $3893. However, the calling program segment, the subroutines,
and the strings may be in a single ROM that can be installed anywhere
in memory. They are in locations fixed relatively with respect to each
other (position independence). Show your machine code.

16. Write a shortest program segment to put square waves on each output
port bit at location 0 so bit i’s square wave’s period is 2i times the period
of bit 0’s square wave.
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17. Write a shortest program segment to add index register X to accumula-
tor D, transferring the data on the auxiliary stack pointed to by Y, as
shown in Figure 3.11.

18. Write a shortest program segment to exclusive-OR accumulator A into
accumulator B, transferring the data on the auxiliary stack pointed to by
Y, as shown in Figure 3.11.

19. The Fibbonacci number of 0, F(0) is 1, and F(1) is 1; otherwise F(i) is
F(i - 1) + F(i - 2) for any positive integer i. Write a subroutine FIB
that computes the Fibbonacci number; the input i is in index register X
and the result F (i) is left in accumulator D.

(a) Write a recursive subroutine.

(b) Write a nonrecursive (loop) subroutine.

20. Write a subroutine POWER, with input signed number n in accumulator
D and unsigned number m in index register X that computes nm leaving
the result in accumulator D.

(a) Write a recursive subroutine.

(b) Write a nonrecursive (loop) subroutine.

21. In Figure 3.16a, the instruction MOVW #$18bc,1,SP writes to a local
variable on the stack in the outer loop. Write an instruction to load this
value into index register X, which is just inside the next inner loop,
where the instruction LDAA 2,SP is. Write an instruction to load this
value into index register X, which is just inside the innermost loop,
where the instruction LDAA 6,SP is.

22. Assume that an overflow error can occur in an ADD instruction in 
the innermost loop in Figure 3.16a, just after the instruction LDAA
6,SP. The following instruction BVS L, after the ADD instruction, will
branch to location L. Write an instruction at this location L to deallocate
stacked local variables such that the stack pointer will be exactly where
it was before the first instruction of this figure, LEAS -3,SP, was 
executed.

23. Write a shortest subroutine that compares two n-character null (0) ter-
minated ASCII character strings, s1 and s2, which returns a one in accu-
mulator B if the strings are the same and zero otherwise. Initially, X
points to the first member of s1 (having the lowest address), Y points to
the first member of s2, and n is in accumulator A.

24. A palindrome is a sequence of letters that is identical to the reverse-order
sequence. Another way of saying this, the word is spelled the same as
it is when spelled backwards. For instance ABBA is a palindrome, and
so is ABCDCBA, but ABCABC is not. Evidently, palindromes are very
important in genome studies in microbiology because palindromes of
nucleonic acids are what attract certain chemical substances and cause
them to combine to form new material for the cell. Assume that X points
to the first letter of the sequence and D contains the number of charac-
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ters in the sequence. Write a subroutine that returns with a “1” in the
carry condition code bit if the sequence is a palindrome, and with a “0”
if it is not.

25. Figure 3.21 shows a table where the first column is a 32-bit Social Secu-
rity number, other columns contain information such as age, and each
row, representing a person, is 8 bytes wide. Data for a row are stored in
consecutive bytes. Write a shortest program segment to search this table
for a particular Social Security number whose high 16 bits are in index
register Y, whose low 16 bits are in accumulator D, and for which X
contains the address of the first row minus 8. Assume that a matching
Social Security number will be found. Return with X pointing to the
beginning of its row.
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<-    32 bits    ->
<---------------------  8 bytes ------------------->

SS Number Age  Sex Phone Number    
653931754 19 M 555-1000 
546539317 18 F 555-8720 
...  ... ... ... 

FIGURE 3.21. A Table
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The HCS12 die. Since the MC9S12C32 is created from a Verilog (software)
description, the MPU logic is not organized in well-defined blocks, as the
MC68HC812A4 and MC68HC912B32 were (see end of Chapter 1 and end
of Chapter 2), but rather is diffused. The Verilog compiler puts MPU logic
(located in the center and bottom left) wherever it finds some space for it,
rather than in a well-defined rectangle.



In the examples presented so far, you have probably noticed some real pro-
gramming inconveniences, such as finding the operation code bytes, com-
puting the addresses (particularly relative addresses), and associating the
variable names with their memory locations. Furthermore, if you change the
program, much of this routine work may have to be done again. What we
have been doing is sometimes called hand assembly, in that we generate all
of the machine code ourselves. Certainly, hand assembly is appropriate to
the understanding of computer fundamentals. Beyond this we need to know
hand assembly to remove the errors without reassembly. In this chapter 
we study the assembler and the skill of assembling programs using the 
computer.

Before general use of C and C++ compilers in microcontrollers, most
programs for them were written in assembly language. More knowledge of
assembly language was needed than is needed now. But now the program-
mer needs only to know how to read an assembly-language listing of code
written by a compiler and how to insert critical assembly-language state-
ments in a C or C++ program. This chapter discusses critical assembler con-
cepts that a programmer writing in C and C++ must know. The next chapter
will delve deeper into assembly-language concepts that enable the program-
mer to write large assembly-language programs.

An assembler is a program someone else has written that will help us
write our own programs. We describe this program by how it handles a line
of input data. The assembler is given a sequence of ASCII characters. (Table
4.1 is the table of ASCII characters.) The sequence of characters, from one
carriage return to the next, is a line of assembly-language code or an 
assembly-language statement. For example,

(space) LDAA (space) #$l0 (carriage return) (1)

would be stored as source code in memory for the assembler as

C H A P T E R

44
C H A P T E R
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The assembler outputs the machine code for each line of assembly-language
code. For example, for line (1), the assembler would output the bytes $86
and $10, the opcode byte and immediate operand of (1), and their locations.
The machine code output by the assembler for an assembly-language
program is frequently called the object code. The assembler also outputs a
listing of the program, which prints each assembly-language statement and
the hexadecimal machine code that it generates. The assembler listing also
indicates any errors that it can detect (assembly errors). This listing of errors
is a great benefit, because the assembler program tells you exactly what is
wrong, and you do not have to run the program to detect these errors one at
a time as you do with more subtle bugs. If you input an assembly-language
program to an assembler, the assembler will output the hexadecimal machine
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$20
$4C
$44
$41
$41
$20
$23
$24
$31
$30
$0D

00 10 20 30 40 50 60 70

0 ‘0’ ‘’ 0 @ P ` p
1 ! 1 A Q a q
2 ≤ 2 B R b r
3 # 3 C S c s
4 $ 4 D T d t
5 % 5 E U e u
6 & 6 F V f v
7 ¢ 7 G W g w
8 ( 8 H X h x
9 ) 9 I Y i y
A ‘\n’ * : J Z j z
B + ; K [ k {
C ‘\f’ , < L \ l |
D ‘\r’ - = M ] m }
E . > N Ÿ n ~
F / ? O _ o

Table 4.1 ASCII Codes



code, or object code, that you would have generated by hand. An assembler
is a great tool to help you write your programs, and you will use it most of
the time from now on.

In this chapter you will look at an example to see how an assembly-
language program and assembler listing are organized. Then you will look
at assembler directives, which provide the assembler with information about
the data structure and the location of the instruction sequence but do not gen-
erate instructions for the computer in machine code. You will see some exam-
ples that show the power of these directives. The main discussion will focus
on the free demo Metrowerks assembler provided with this book.

At the end of this chapter, you should be prepared to write programs on
the order of 100 assembly-language lines. You should be able to use an
assembler to translate any program into machine code, and you should under-
stand how the assembler works. Although you may not be able to understand
how to write an assembler, you will be prepared from now on to use an
assembler as a tool to help you write your programs.

Introductory Example and Assembler Printout
We now consider a simple example to introduce you to assembly-language
programs. Consider a program that obtains the maximum of a sequence of
numbers. We will assume that this sequence consists of 16-bit unsigned
numbers stored consecutively in memory, high byte first for each number.
This data structure is called a vector or (one-dimensional) array. The name
of the vector will be the location of the first byte of the vector, so that the
high byte of the ith number in the vector (i = 0, 1, 2, . . .) can be found by
adding 2*i to the vector name. Suppose then that Z is a vector of four 16-
bit two’s-complement numbers beginning in location $386a with N stored in
location $3868. The ith number will be denoted Z(i) for i = 0 through N -
1. We want a program that finds the maximum of these numbers, putting it
in locations $3868 and $3869.

One possible program for this, following the style of previous examples,
is shown in Figure 4.1. We have arbitrarily started the program at address
$389C.

Looking at the preceding program, we certainly would like to use just
the mnemonics column with the variable addresses and the labels for the
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389C CE 38 6A  LDX #$386A ; point X to the vector Z 
389F CD 00 03  LDY #3  ; set count  
38A2 EC 31    LDD 2,X+   ; get first element  
38A4 18 1A 31 L: EMAXD 2,X+ 
38A7 04 36 FA    DBNE Y,L ; decrement, loop  
38AA 7C 38 68    STD $3868 ; store answer in result
38AD 20 FE BRA *      

; get max with next element

; halt

FIGURE 4.1. Program MAX



branches and let the assembler generate the other two columns; that is, do
what we have been doing by hand. We would also like to be able to use
labels, also called symbolic addresses (or just symbols) for the memory loca-
tions that hold the values of variables. The meaning of symbolic addresses
is explored in greater detail in the next chapter. We use them in this section
to get the main idea (they are used before dissecting them carefully). The
use of symbolic addresses allows program segment (2) to be replaced by
program segment (3).

LDX #$386A
(2)

STD $3868

LDX #Z
STD RESULT (3)

Program segment (3) is clearer than program segment (2). An assembly-
language source code for the program in Figure 4.1 is shown in Figure 4.2.

Putting this assembly-language program into the assembler yields the
output listing shown in Figure 4.3. Although some new mnemonics have
crept in, we can nevertheless see that we do not have to refer to actual
addresses, only labels. We can see that we have not had to calculate relative
offsets for the branching instructions, and we have not had to find memory
locations or machine code. We now look into some of the details.
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 ORG $3868 
N: EQU 3 
RESULT: DS.B 2 
Z: DS.B 50 
*
 LDX #Z ; Point X to the vector Z 
 LDY #N ; get count
 LDD 2,X+  ; Z(0) into D 
LOOP: EMAXD 2,X+ ; D- Z(i)  
 DBNE Y,LOOP ; Another number?
 STD RESULT ; Store result  
 BRA * ; Halt  

FIGURE 4.2. Assembler Source Code for the Program MAX

 1  1 0000           ORG   $3868 
 2  2 3868 0000 0003 N:        EQU   3 
 3  3 3868 RESULT:   DS.B 2 
 4  4 386A Z:        DS.B 50
 5  5 389C CE386A           LDX   #Z ; Point X to Z 
 6  6 389F CD0003           LDY   #N ; get count 
 7  7 38A2 EC31           LDD   2,X+ ; Z(0) into D 
 8  8 38A4 181A31 LOOP:     EMAXD 2,X+ ; D- Z(i) 
 9  9 38A7 0436FA           DBNE  Y,LOOP ; Another number? 
10 10 38AA 7C3868           STD   RESULT ; Store result 
11 11 38AD 00           BRA   * ; Halt 

FIGURE 4.3. Assembler Listing for the Program MAX



An assembly-language source statement takes the following form, where
the fields, which are groups of consecutive characters, are separated by one
or more one spaces:

Label Field Operation Field Operand Field Comment

The label field and the comment field may be empty and, depending on the
operation, the operand field may be empty.

Label Field
A label (or symbolic address), if present, must have a letter as the first char-
acter and continue with letters, numbers, periods, or underscores. If a line’s
first character is an asterisk (*) or semicolon (;), the whole line is treated as
a comment. Finally, labels that are identical to register names are not allowed
(e.g., A, B, CC, X, Y, S, SP, PC, D, and PCR). The label ends in a colon (:).
In some assemblers the colon is mandatory after a label, in some assemblers
it cannot be used, and in other assemblers it is optional.

Operation Field
Except for comment lines, the operation field must consist of an instruction
mnemonic or assembler directive (more about these later). The mnemonic
must be written with no spaces: CLRA, TSTB, ADDD, and so on.

Operand Field
The operand field contains the addressing information for the instruction.
Although numbers can be used to specify addresses, you will find that sym-
bolic addresses are generally much easier to use in the operand field. For
example, using the symbolic address or label ALPHA, the addressing modes
in Table 4.2 can now all use symbolic addresses in place of numbers in the
previous examples.

The assembler understands the use of addition, multiplication, and the
like, using symbolic addresses in expressions. If ALPHA is location 100 and
the operand field contains ALPHA+1, the assembler will put in the value 101.
In simplest terms, an expression is just the usual algebraic combination of
labels, numbers, and C language operations +, -, *, /, %, «, », &, |, ~, !, <,
>, <=, >=. !=, and ==. Pascal operators = and <> are also recognized. Paren-
theses are allowed, and precedence and evaluation are exactly as they are in
C. Some examples of expressions are

JUMP JUMP*(8 + TAB) ((RATE - 2)*17)-TEMP

Comment Field
In the comment field, the programmer can insert short comments stating the
purpose of each instruction. The comment must begin with a semicolon (;).
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In other assemblers, the comments begin one or more blanks after the
operand field and are printed in the assembler listing but are otherwise
ignored by the assembler.

In summary, writing an assembly-language program is a lot easier than
writing machine code by hand. You can use symbolic addresses, letting the
assembler determine where to put them and letting the assembler make sure
that the instructions have the right operand values. You do have to conform
to the rules of the language, however, and you have to spell the mnemonics
exactly the way the assembler wants to recognize them. Although it would
be nice to be able to just talk to the computer and tell it what you want it to
do using conversational English, an assembler can barely understand the
mnemonics for the instructions if you write them correctly and carefully.
Nevertheless, writing assembly-language programs is easier than writing
hexadecimal machine code.

The listing, shown in Figure 4.3, generally mirrors the source code but
includes machine code and storage information. The listing line begins with
a pair of line numbers. The first number is an absolute line number used 
for error messages, and the second is a relative line number used for include
files and macro expansions discussed in the next chapter. The hexadecimal
location of the instruction is given next; then the hexadecimal machine code
is displayed. Finally, the source code line is shown.
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Mode Example Notes

Inherent No Operands
Immediate #<expression>
Page 0 <expression> 1
Direct <expression> 2
Relative <label>
Indexed <expression>, X 3
Preincrement <expression>, +X 4
Predecrement <expression>, -X 4
Postincrement <expression>, X+ 4
Postdecrement <expression>, X- 4
Double indexed A, X 3, 5
Indirect indexed [<expression>, X] 3
Indirect double [D, X] 3
indexed

Notes: 1: Prefix “<” or postfix .B forces Page 0. 2:
Prefix “>” or postfix .W forces Direct. 3: Can
substitute Y, SP, or PC for X. 4: Can substitute Y
or SP for X. 5: Can substitute B or D for A

Table 4.2 Addressing Modes
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Mnemonic Example Explanation

ORG ORG $100 Puts the next byte in 
location $100

ABSENTRY ABSENTRY ALPHA Initializes PC to ALPHA 
in debugger

EQU ALPHA: EQU $10 Makes the symbol ALPHA 
have value $10

DS ALPHA: DS 10 Define Space

Increments location 
counter by 10

DCB ALPHA: DCB 3, 55 Define Constant Block

Fills 3 bytes with 
constant 55

DC Define Constant

ALPHA: DC.B $20, $34 Initializes the current 
location to $20 and the 
next location to $34

ALPHA: DC.B ‘ABC’ Initializes the word at 
this location to the 
ASCII letter A the next 
location to the ASCII 
letter B, and the next

C
ALPHA: DC.W Initializes the current 
$1234 location to $12 and the 

next location to $34

Assembler Directives
Before looking more closely at how the assembler works, we describe the
simplest assembler directives. These are instructions to the assembler that do
not result in any actual executable machine coded instructions but are, nev-
ertheless, essential to providing information to the assembler. A number of
these will be introduced in this section and are listed in Table 4.3 for your
convenience.

If we go back to the example at the beginning of the chapter, we recall
that what we wanted was to just write down the mnemonics column and let
the assembler generate the memory locations and their contents. There must
be some additional information given to the assembler; in particular, you
have to tell the assembler where to start putting the program or store the vari-
ables. This is the purpose of the ORG (for ORiGin) directive. The mnemonic
ORG appears in the operation column, and a number (or expression) appears

� 4.2
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in the operand column. The number in the operand column tells the assem-
bler where to start putting the instruction bytes, or to allocate bytes for vari-
ables, that follow. For example, if the assembler puts the three bytes for LDX
#123 in locations 100, 101, and 102, the bytes for the instructions that
follow are put consecutively in locations 103, 104, . . . The operand can be
described in decimal, hexadecimal, or binary, following Motorola’s usual
conventions. Thus we could use the ORG directive

ORG 256

If there is no ORG directive at the beginning of your program, the assembler
will start at memory location 0. There can be more than one ORG directive
in a program. ABSENTRY sets the entry point, the initial value of the PC, in
the true-time debugger, when a program is loaded, so you don’ have to enter
the PC each time you load it.

In all of our examples, we have set aside memory locations for variables.
In the last example, we set aside bytes for N, RESULT, and Z. The way we
tell the assembler to do this is with the DS (define space) directive. An
optional postfix .B indicates bytes are allocated. Here DS appears in the
operation field and the number n in the operand field tells the assembler that
n bytes are being allocated. If no postfix is used, .B is assumed by default.
Alternatively, a postfix of .W indicates that words are allocated so the number
of bytes is 2n, and a postfix of .L indicates that long words are allocated so
the number of bytes is 4n. The label in the DS directive is the variable name
that the allocated space is given. The label is given the value of the address
of its first, and perhaps only, byte. In the program of Figure 4.3, RESULT is
given the value $3868 and Z the value $386A.

The symbolic address, such as N, which was introduced in §4.1, appears
to have a split personality, especially for data. The symbol N is being used
in two different ways here, as an address and as the value of a variable. The
way to understand this is by analogy to a glass of water. When you say “drink
this glass,” the glass is the container, but you mean to drink the contents of
the container. You do not expect the listener to be confused because he or
she would never think of drinking the container. So too, the symbolic address
N stands for the container, variable N’s location, whereas the contents of the
container, the word at the address, is variable N’s value. If you think hard
enough, it is generally clear which is meant. In the instructions LDX #L or
LEAX L,PCR, the symbolic address L is the address of the variable, which
is the container. In the instruction LDAA L, the symbolic address represents
the contents, in that it is the contents of location L that goes into A. But if
you are confused about what is meant, look to see if the symbolic address is
being used to represent the container or its contents.

The DS assembler directive assigns a number to the symbolic address or
container. In the preceding example, N’s container has the value $3868
because $3868 is the address of N. However, the contents of N are not
assigned a value, in contrast to a directive DC discussed later. The contents
of N are undefined; they are the data that happen to be at location $3868 at
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the time the program is started. The DS directive does not do anything to the
value of a variable. We say the memory is allocated but is not initialized.

We have covered everything in the program of Figure 4.2 except the label
LOOP, which appears in the label field for a machine instruction, not assem-
bler directives. When a label is used with a machine instruction, it is given
the value of the address of the first byte of that instruction. Notice that the
value of LOOP in Figure 4.3 is $38A4. This value is also the address of 
the opcode byte of the EMAXD instruction. Thus the container LOOP is the
address $38A4, while the contents of LOOP are the bits of the opcode byte
for the EMAXD instruction.

Looking at other common assembler directives, the EQU directive (for
EQUate) assigns a specific value to a label. In Figure 4.2, the label N is given
the value 3 by the EQU directive. Generally, equates can be used to assign
values to containers. Used this way, they are like DS directives, where the pro-
grammer assigns an address to the container rather than letting the assembler
choose the value automatically. The EQU directive enables you to control
where variables are stored, as in hand coding, but allows symbolic addresses to
be used, as in assembly-language coding to improve readability. We will find
EQU directives useful in fixing addresses in monitor programs and in fixing the
addresses of I/O devices. These directives are often used to replace constants,
to improve readability, and to simplify the modification of programs. For
example, the instruction LDY #3 has been replaced in Figure 4.2 by the lines

N: EQU 3
. . .

LDY #N

where the EQU directive is put near the top of the program. Using EQU direc-
tives makes the program more readable and self-documenting, to an extent.
It also makes it easier to modify the program if a different count N is used.
The value of the count is in the EQU directive near the beginning of the
program. If all changeable parts are kept in this area, it is fairly easy to modify
the program for different applications by rewriting the EQU statements in this
area. With an EQU directive, the label field cannot be empty, and the operand
field can be an expression as well as a number. As we shall see later, there is
a small restriction on the labels used in an expression of an EQU directive.

The DC (define constant) directive puts the values in the operand field
into successive memory locations starting with the next available memory
location. DC.B (define constant byte) allocates and initializes an 8-bit word
for each item in the list in its operand field. The suffix .B is the default; DC
is the same as DC.B. A label, if used, is assigned the address of the first value
in the operand field. As an example

TABLE:  DC.B 14,17,19,30 (4)

appearing in a program generates four consecutive bytes whose values are
14, 17, 19, and 30 and whose locations are at TABLE, TABLE+1, TABLE+2,
and TABLE+3, as shown.
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TABLE Æ $0E
TABLE+1 Æ $11
TABLE+2 Æ $13
TABLE+3 Æ $1E

The actual value of the container TABLE will depend on where it is 
placed in the program. Note that, in contrast to the DS directive, this direc-
tive initializes or assigns values to the container (the address) as well as allo-
cating room for its contents (the word at that address). Beware, however, that
the contents are given this value only when the program is loaded into
memory. If the program is rerun without being loaded again, the value of the
contents is what was left there as a result of running the program the last
time. When rerunning the program, you should check these values and pos-
sibly rewrite them before you assume they are the contents specified by the
program.

The DC.W (define constant word) directive does exactly the same thing
as DC.B in (4) except that now two bytes are used for each value in the
operand field, where, as usual, the high byte is first. For example, the 
directive

TABLE:  DC.W 14,17,19,30 (5)

puts the values in memory as shown.

104 Chapter 4 Assembly-Language Programming

$000E
$0011
$0013
$001E

The DC.L directive allocates and initializes a 32-bit memory block for
each item in the directive’s operand list. Its mechanism is essentially like that
for DC.W in (5).

The DC.B directive can have a sequence of ASCII characters in the
operand field. (See Table 4.1 for a table of ASCII characters and their rep-
resentations.) The ASCII codes for the characters are now put in the suc-
cessive memory locations. The most convenient form is

LIST: DC.B “ABC”

where quotes enclose all the ASCII characters to be stored, namely, A, B, and
C. Single quotes can be used instead of these quotes, especially where a char-
acter in the sequence is a quote.

The define constant block DCB.B directive has a number n and a value
v in the operand field; n copies of v are now put in the successive memory
locations. Suffixes .B, .W, and .L can be used in an obvious way, and .B
is the default.

To see how these directives might be used, suppose that we wanted to
store a table of squares for the numbers between 0 and 9. The program, whose



 1  1 0000 ORG   $3868  
 2  2 3868 *  this program squares the number N between 0 and 15
 3  3 3868 0001 N:        EQU  1
 4  4 3868 NSQ:      DS.B 1 
 5  5 3869 00010409 TABLE:   DC.B   0,1,4,9,16,25,36,49,64,81 
      386D 10192431
      3871 4051
 6  6 3873 CE3869  LDX   #TABLE ; Point X to table
 7  7 3876 C601 LDAB  #N ; Put N into B
 8  8 3878 A6E5 LDAA  B,X ; Put N**2 into A
 9  9 387A 7A3868 STAA  NSQ ; Store result
12 12 387D 20FE BRA   *

assembler listing is shown in Figure 4.4, uses this table to square the number
N, returning it as NSQ. With the given data structure, the location of N2 equals
the location TABLE plus N. Thus if X contains the location TABLE and B
contains the value of N, the effective address in the instruction LDAA B,X
is the location of N2.

Mechanics of a Two-Pass Assembler
Some questions will soon arise about how symbolic addresses can be used
without error. These questions have to be answered in terms of forward ref-
erences, and their answers have to be understood in terms of how an assem-
bler generates its output in two passes. We want you to get a feeling for how
it works so that you can understand how forward references are limited by
what a two-pass assembler can do.

How does an assembler work? We begin by reading down through the
instructions, called a pass. The first pass builds a symbol table, a list of all
the symbolic addresses for labels and their values. The second pass will gen-
erate both the listing that shows the effects of each assembler line and the
object code that is used to run the program.

We have earlier used the symbol “*” for the location counter. The loca-
tion counter keeps track of the address where the assembler is when it is
reading the current assembly-language statement, somewhat like the program
counter does when the program runs. The location counter symbol “*” is
always the address of the first byte of the instruction. In both passes, the loca-
tion counter advances as code is generated.

The assembly-language program of Figure 4.5 finds all the odd, nega-
tive, 1-byte integers in the array COLUMN and puts them into the array ODD.
On the first pass, the ORG statement sets the location counter to $3800. Thus,
the label N has the value $3800, the label M has the value $3801, the label
COLUMN has the value $3802, and the label ODD has the value $3834. The
instruction CLR M will take three bytes (and we know what they are), the
instruction LDAB N will take three bytes (and we know what they are), and
so forth. Similarly, we see that the first byte of instruction
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LOOP: LDAA 1,X+

will be at location $3872. Thus the symbolic address (the container) LOOP
has the value $3872. Continuing in this way, we come to

BPL JUMP

which takes 2 bytes in the program. We do not know the second byte of this
instruction because we do not know the value of the address JUMP yet. (This
is called a forward reference, using a label whose value is not yet known.)
However, we can leave this second byte undetermined and proceed until we
see that the machine code for DBNE is put into location $387f, thus giving
JUMP the value $387f. As we continue our first pass downward, we allocate
3 bytes for DBNE B,LOOP. We do not find this instruction’s offset yet, even
though we already know the value of LOOP.

Scanning through the program again, which is the second pass, we can
fill in all the bytes, including those not determined the first time through, for
the instructions BPL JUMP, BEQ JUMP, and DBNE B,LOOP. At this time,
all object code can be generated, and the listing can be printed to show what
was generated.

What we have described is a two-pass assembler. On the first pass it gen-
erates the symbol table for the program, and on the second pass it generates
the machine code and listing for the program.

We have been using the prefix “<” in instructions like LDAA <N or a
postfix “.B” such as in LDAA N.B to indicate an 8- or 9-bit addressing
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* This program searches the array COLUMN looking for odd, negative, 
* one-byte numbers which then are stored in array ODD. The length of
* COLUMN is N and the length of ODD is M, which the program calculates.
*
ORG $3800 
N: DS 1 
M: DS 1 
COLUMN: DC 1, -3, -5, -2, 7
ODD: DS 50 
*
 CLR M ; initialize M
 LDAB N ; Put N into B
 LDX #COLUMN ; Point X to COLUMN
 LDY #ODD ; Point Y to ODD
LOOP: LDAA 1,X+ ; Next number of COLUMN into A
 BPL JUMP ; Go to next number if positive
 BITA #1 ; Z = 1 if, and only if, A is even
 BEQ JUMP ; Go to next number if even
 STAA 1,Y+ ; Store odd, negative number
 INC M ; Increment length of ODD
JUMP: DBNE B,LOOP ; Decrement counter; loop if not done
 BRA * ; Halt

FIGURE 4.5. Program to Select Negative Odd Numbers



mode. If the prefix “<” or postfix “.B” is omitted, the assembler will still
try to use 8-bit or 9-bit addressing when possible. Specifically, on the first
pass, if the assembler knows the value of N when the instruction LDAA N
is encountered, it will automatically use page zero addressing if N is on page
zero. If it does not know the value of N yet, or if N is known but is not on
page zero, it will then use 16-bit direct addressing.

We have also been using the inequality symbols with index addressing
to indicate whether the constant offset is to be described with 8 or 16 bits.
The 6812 actually has another choice for the offset that we have not dis-
cussed before now because there is no special symbol for it. This is the 5-
bit offset option. In this case, one can actually squeeze the offset into the
post byte as described in the instruction set summary of the CPU12RG/D
manual. The assembler chooses between the three offset options in exactly
the same way that it chooses between page zero and direct addressing. On
the first pass, if it knows the values in all the labels used in an expression
for the offset, it will choose the shortest possible offset option, or, if the
expression is zero, it will take the zero offset option, which is pointer address-
ing. If it does not know some of the labels used in the expression for the
offset, the assembler will default to the 16-bit offset option, determining
these bytes on the second pass. From now on, we will drop the use of inequal-
ity signs in all addressing modes, except where it is needed in the relative
mode to designate a short forward reference. Generally, it is best to let the
assembler choose the appropriate option.

We sometimes observe an error message “phasing error” or “labels
changed values on second pass.” Such an error occurs when an instruction’s
length or assembler directive’s length is computed on the first pass but is
computed to have a different value on the second pass. Following such an
instruction, successive labels will have a different value on the second pass
than they had on the first pass. To fix such an error, read backward from the
first instruction with the line that has such an error until you see an instruc-
tion whose length changes in the second pass, due to its using a different
addressing mode. Put a prefix or suffix on its operand to force the instruc-
tion’s first-pass length to its second-pass length.

As we have discussed earlier, an assembler does several things for us. It
allows us to use instruction mnemonics, labels for variable locations, and
labels for instruction locations while still providing the machine code for our
program. As Figure 4.6 shows, however, we must be careful with forward
references when using assembler directives.

The assembler reads the assembly-language program in Figure 4.6 twice.
In pass one, the symbol table is generated, and, in pass two, the symbol table,
the instruction set, and assembler directive tables are used to produce the
machine code and assembly listing. On each pass, each line of assembly lan-
guage is processed before going to the next line so that some undetermined
labels may be determined on the second pass. For example, in the program
in Figure 4.6 the assembler will not determine the length of M on the first
pass because the DS directive makes a forward reference to M, that is, uses
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a symbol in the expression for K that has not been determined yet. Suppose
now that we change the program a little bit (Figure 4.7).

When the line K: DS M is assembled, the value of M is known. Usually,
it is easy to see which programs with forward referencing are assembled cor-
rectly just by examining how the assembler works with that particular
program. An “undefined symbol” error occurs when K: DS M is assem-
bled and M is not yet defined.

By now it should be obvious that, for correct assembly, a label can appear
only once in the label field. Multiple occurrences generate errors. (However,
the Metrowerks assembler has a SET directive which is like EQU, but its
labels can be redefined.)

Looking at the instructions

BNE JUMP
. . .
JUMP: ADDA M

in a particular program, one might wonder what happens if the location JUMP
is more than 127 bytes below the BNE instruction. Does the assembler still
proceed, not knowing location JUMP, and then give an error message when
it finds that JUMP is beyond the 127-byte range on the second pass? Or does
it immediately put in the long branch equivalent

LBNE JUMP

and determine the correct 2-byte relative address on the second pass? It might
seem reasonable to expect the latter, but the first possibility is chosen because
the latter choice would force all forward branches to be long branches. In
other words, the assembler leaves the burden of picking the shortest branch-
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ORG $3800 
K: DS M 
M: EQU 2 
*

LDD K 
ADDD #3 
STD K 
BRA * 

FIGURE 4.6. Program with Illegal Forward Reference

ORG $3800 
M: EQU 2 
K: DS M 
*

LDD K 
ADDD #3 
STD K 
BRA * 

FIGURE 4.7. Program without Forward Reference



ing instruction to the programmer. For exactly the same reason, the pro-
grammer will want to use the inequality sign “<” with forward references
for relative addressing used with other instructions. As an example, you
should use LDAA <L,PCR instead of LDAA L,PCR when the effective
address L is a forward reference which is within 256 bytes of the next byte
after LDAA. Otherwise, the assembler uses the 2-byte relative offset option.

Character String Operations
Before we look into an assembler, we will study some operations that copy,
search, and manipulate character strings. This study makes it easier to under-
stand the operation of an assembler, which we cover in the next section. This
section provides further examples of how assembly-language source code is
written. From now on, to significantly reduce your programming effort, we
will not write machine code, but we will write (ASCII) source code and input
it to the assembler to let it generate the machine code.

The first three examples illustrate character string processing. The first
example prints out a character string. The second transfers a character string
from one location to another. The third compares two strings, returning 1 if
they match. These examples are similar to PUT, STRCPY, and STRCMP sub-
routines used in C.

Figure 4.8b’s program prints a string of characters using a subroutine
PUT, like problem 3.15. Such strings often end in a NULL (0) character. The
program reads characters from the string using LDAA 1,X+, and calls 
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 ORG $3800
K: Dc.b “ALPHA”,0 ; a NULL-terminated character string for part (b).
OUTPUT: Ds.b 10 ; storage buffer for output characters for part (c).
OUTPTR: Dc.w OUTPUT ; pointer to the above buffer

a. Data

b. Calling PUT

PRINT: LDX #K ; get address of string
NEXT: LDAA 1,X+ ; get a character of string, move pointer

BEQ END ; if it is NULL, exit
BSR PUT
BRA
BRAEND: *

NEXT
; otherwise print the character in A
; repeat the loop
; halt

PUT:    PSHX ; save
 LDX OUTPTR ; get pointer to output string
 STAA 1,X+ ; save character, move pointer
 STX OUTPTR ; save pointer

PULX ; restore
 RTS ; return

c. Stub subroutine

FIGURE 4.8. Print Program



PUT to print the character in A. This also sets the condition code Z bit if the
byte that was loaded was NULL, which terminates execution of the loop. An
analogous program inputs data from a keyboard using the subroutine GET
and fills a vector with the received characters until a carriage return is
received. These programs can be generalized. Any subroutine that uses char-
acters from a null-terminated character string can be used in place of PUT,
and any subroutine that puts characters into a string can be used instead of
GET.

PUT and GET are actually I/O procedures shown in §11.8, which require
some understanding of I/O hardware. We don’t want to pursue the actual
PUT and GET subroutines quite yet. Instead, we replace the actual PUT and
GET subroutines with a stub subroutine (Figure 4.8c). After stopping the
computer, examine the string OUTPUT to see what would be output. Simi-
larly, a stub subroutine can be used instead of GET, to “input” characters.
The sequence of input characters is preloaded into a string.

Our second example (Figure 4.9) copies a null-terminated character
string from one location to another. The original string is generated by the
assembler and downloaded into memory, using Src Dc.b. The program
copies it to another part of memory at Dst Ds.b. Note that the NULL is
also copied to the destination string.

Our third example (Figure 4.10) compares one null-terminated character
string with another. Both strings are downloaded into memory starting at
label Src and Cmprd. We examine several cases of execution right after
this program listing.

We examine several cases with this comparison program. Consider the
case where Src is “BETA.” The first time after label NEXT, the CMPA
instruction clears the Z condition code bit, and the program goes to BAD to
clear A and exit. Consider the case where Src is “ALPH.” The fifth time at
label NEXT, the LDAA instruction sets the Z condition code bit, and the
program goes to EXIT where it tests the byte pointed to by Y, which is the
ASCII letter A, so it goes to BAD to again clear A and exit. Consider the case
where Src is “ALPHAS.” The sixth time after label NEXT, the CMPA instruc-
tion clears the Z condition code bit, and the program goes to BAD to clear A
and exit. Finally, consider the case where Src is “ALPHA.” The fifth time
at label NEXT, the LDAA instruction sets the Z condition code bit, and the
program goes to EXIT where it tests the byte pointed to by Y, and because
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Src: Dc.b “ALPHA”,0 ; initialization of the source string (downloaded)
Dst: Ds.b 16 ; allocation of the destination string

COPY: LDX #Src ; get address of source string
 LDY #Dst ; get address of destination string
NEXT: LDAA 1,X+ ; get a character of string, move pointer
 STAA 1,Y+ ; store it in the destination
 BNE NEXT ; if it is not NULL, reexecute the loop

FIGURE 4.9. Character Move Program Segment and Data



it is zero, the program sets A to 1 and exits. If the two strings are identical,
the program ends with 1 in A; otherwise it ends with 0 in A.

We now examine subroutines and program segments that operate on char-
acters in the assembler in §4.5. The next example GETOPCD illustrates a
comparison of a letter provided in accumulator B, to find a match among a
collection of three letters L, A, and S, assuming it may not be any other letter
(Figure 4.11). The number left in accumulator A is 0 if the letter is L, $40 if
A, $80 if S, and $C0 if D. This will be used in the assembler in §4.5 to
convert from a mnemonic to a machine opcode.

We show a pair of program segments that will build and search a dic-
tionary (of letters). Figure 4.11’s program segment is executed in pass 1 of
§4.5’s assembler each time a letter in accumulator A is inserted into the dic-
tionary. Register X is initialized with the address of LABELS. The letter has
a numerical “value” associated with it, in LCNTR. The letter and the value
are inserted into a row in the symbol table by this program segment. In §4.5’s
assembler’s pass 2, FINDLBL (Figure 4.12) searches the dictionary. On
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Src: Dc.b “ALPHA”,0 ; source string (downloaded)
Cmprd: Dc.b “ALPHA”,0 ; comparand string (downloaded)

CMPR: LDX #Src ; get address of source string
LDY #Cmprd ; get address of comparand string

NEXT: LDAA 1,X+ ; get a character of source string, move pointer
BEQ EXIT ; if it is NULL, exit the loop
CMPA 1,Y+ ; compare it to comparand character, move pointer
BEQ NEXT ; if it is the same, reexecute the loop

BAD: CLRA ; otherwise exit; A is cleared to indicate mismatch
BRA  * ; return to the debugger

EXIT: TST 0,Y ; see if compare character is also NULL 
BNE BAD ; if it is not NULL, terminate indicating failure
LDAA #1 ; it must be identical - end with A set to 1

FIGURE 4.10. Character String Compare Program Segment and Data

*  Get an Opcode
* entry:  B is mnemonic opcode character
* exit: A is opcode
*                          X is unchanged 
*
GETOPCD: CLRA ; if exit next, return zero as machine opcode

CMPB #‘L’ ; Load 
BEQ GO1
LDAA #$40 ; if exit next, return $40 as machine opcode
CMPB #‘A’ ; Add 
BEQ GO1 ; if it isn’t D, L, or A, it must be S, for Store
LDAA #$80 ; return $80 as machine opcode

GO1: RTS 

FIGURE 4.11. Program Segment to Insert an Entry into the Symbol Table
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LABELS: Ds.b 32 ; storage for the dictionary
LCNTR:  Dc.b 0 ; location counter, to be entered into the dictionary

INSRT:  STAA 1,X+ ; store letter that is in A into 1st column of row 
MOVB LCNTR,1,X+; move LCNTR’s value to 2nd col. of the row 

ORG $3800

FIGURE 4.12. Subroutine to Insert a Label as an Operand from the Symbol
Table

* Find Label 
* entry: label character in B, OP code byte (from GETOPCD) in A 
* exit: ORs symbol’s value into A 
*
FINDLBL: LDY #LABELS  ; y-> first symbol table row 
F1: CMPB 2,y+         ; compare char in B, move to next sym table entry 

BNE F1 ; if mismatch, try next (assume there fill be a match)
ORAA -1,y ; OR previous row’s value into the OP code in A 
RTS ; return to caller 

FIGURE 4.13. Subroutine to get the Opcode

entry, a letter is put in B. The “value” of the letter is read from the diction-
ary and ORed with the opcode that was found in Figure 4.13, when the
segment is completed, which will form a machine code byte.

These simple search programs can be fairly easily expanded for search-
ing for longer strings of characters or counting characters, rather than testing
for a NULL, to determine when to terminate the search. Variations can handle
the case where the comparand is not found. However, these are all linear
searches in which the time to search for an item in the dictionary is linearly
related to the number of elements in the dictionary. For large dictionaries,
linear searches are entirely too slow; linked lists (§10.4) are much faster.
However, simple linear searches are adequate for the simple assembler dis-
cussed in §4.5.

GETHEX (Figure 4.14) calls an internal subroutine GH1 to translate an
ASCII character to a hexadecimal value. GH1 uses the fact that ASCII letters
“0” to “9” are translated into hexadecimal numbers by subtracting the char-
acter value of “0” from them, and the remaining ASCII characters “A” to
“F” are translated into hexadecimal by further subtracting 7 from the result
(because there are 7 letters between “9” and “A” in the ASCII code). The
first value obtained from the first letter is shifted to the high nibble and
pushed on the stack. When the second value is obtained from the second
letter, it is combined with the value pulled from the stack.

A Simplified Two-Pass Assembler
An assembler is really a simple program. To illustrate how it works and to
gain valuable experience in assembly-language techniques, we write parts of
a “Simple Assembler” SA1 for a simple computer, with the overall specifi-
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* Get hexadecimal value 
* entry: X->first character of hex number 
* exit: A:value, X->next character after hex number 
*
GETHEX: BSR GH1 ; convert ASCII character to a nibble 

LSLA ; move to high nibble 
LSLA
LSLA
LSLA
PSHA ; save on stack
BSR GH1 ; convert ASCII character to a nibble 
ORAA 1,sp+ ; pop and combine 
RTS

GH1: LDAA 1,x+ ; get next symbol
CMPA #‘9’
BLS GH2
SUBA #7

GH2: SUBA 
RTS

#‘0’ ; subtract ASCII 0 

FIGURE 4.14. Converting ASCII Hex String to a Binary Number

cations shown in Figure 4.15. Figure 4.16a shows SA1’s machine code for
a program to add two numbers (like Figure 1.5), and Figure 4.16b shows
how its source code might appear in a text editor window.

The first instruction, which will be stored in location 0, loads the con-
tents of location 3. The left two bits, the opcode, are 00, and the address of
location 3 is 000011, so the machine code is 03 in hexadecimal. The next
instruction’s opcode is 01 for add; its effective address is 000100. The last
instruction’s opcode is 10 for store; its effective address is 000101. The
source code shown in Figure 4.16b includes directives to initialize location
3 to $12, location 4 to $34, and location 5 to 0.

The assembler is written as two subroutines called PASS1 and PASS2
(Figure 4.17). This program segment illustrates the usefulness of subroutines
for breaking up a large program into smaller subroutines that are easier to
understand and easier to debug.

Assembler directives define the data at the beginning of the program
(Figure 4.18). The first directive allocates a byte to hold the object pointer
(which is the location counter). The second directive allocates and initializes
the ASCII source code to be assembled. The next two lines allocate two 8-
element vectors, which will store the machine code and symbol table.

PASS1 (Figure 4.19) simply reads the characters from the source listing
and inserts labels and their values into the symbol table. As is typical of many
programs, an initial program segment initializes the variables needed in the
rest of the subroutine, which is a loop. This loop processes one line of 
assembly-language source code. If the line begins with a label, it inserts the
label and the current location counter into the symbol table (§4.4). If the line
begins with a space, it skips the character. It then scans the characters until
it runs into the end of the line, indicated by a carriage return. Then it repeats



114 Chapter 4 Assembly-Language Programming

FIGURE 4.17. Assembler Main Program

LCNTR: Ds.b 1 ; OBJECT index, which is the location counter
SOURCE: Dc.b "  L A",$d,"  A B",$d,"  S C",$d,"A D 12",$d,"B D 34",$d,"C D 
00",$d,0; 
OBJECT: Ds.b 8 ; machine code
LABELS: Ds.b 8 ; symbol table 

FIGURE 4.18. Assembler Directives

ORG $3800
JSR PASS1
JSR PASS2
BRA *

1. The target computer has only one 8-bit accumulator and 
64 bytes of memory.
2. The target computer’s opcodes will be L (binary 00), A (01),
and S (10), coded as bits 7 and 6 of the opcode byte, which
have a 6-bit direct address coded in the low-order 6 bits of
the opcode byte. The assembler has  a directive D, for “define
constant byte,” that has one two-digit hexadecimal number
operand.
3. A source code line can have (1) a label and one space or
else (2) two spaces. Then it has an opcode or assembler
directive. Then it has a space and an operand, ending in
a carriage return.
4. The assembler is to be run on the 6812 host. Assume the
source code does not have errors. The source code will be
stored in a constant ASCII string SOURCE, which is null
terminated; and the object code, stored in 8-byte vector
OBJECT, is indexed using an 8-bit variable LCNTR. No listing
is produced.
5. All labels will be exactly one character long. The symbol
table, stored in the 8-byte vector LABELS, consists of four
2-byte rows for each symbol, each row comprising a character
followed by a one-byte address.

FIGURE 4.15. Simple Computer and Assembler SA1 Specifications

Location Contents Mnemonics 
                
   0       03       L  3
   1       44       A  4
   2       85       S  5

  L A 
  A B 
  S C 
A D 12
B D 34
C D 00

a. Machine code b. Source code

FIGURE 4.16. Machine and Source Code



the loop. When a NULL character is encountered where a line should begin,
it exits.

PASS2 (Figure 4.20) simply reads again the characters from the source
listing and generates machine code, which is put into the object code vector.
As in PASS1, an initial program segment initializes the variables needed in
the rest of the subroutine, which is a loop. This loop processes one line of
assembly-language source code. The program skips the label and space 
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PASS1: CLR LCNTR ; clear index to object code vector
LDX #SOURCE ; begin source scan: x-> first letter in source string
LDY #LABELS ; y-> first symbol in symbol table 

P11: LDAB 1,x+ ; get the line’s first char. to B and move x to next character
BEQ P14 ; exit when a null character is encountered
CMPB #‘ ’ ; if B is a space
BEQ P13 ; get opcode by going to P13 
STAB 1,y+ ; move character to symbol table 
MOVB LCNTR,1,y+ ; put label value into symbol table 

P13: LDAB 1,x+ ; load B with character, move pointer
CMPB #$d ; compare to carriage return which ends a line 
BNE P13 ; until one is found. Note that x-> next character after this. 
INC LCNTR ; increment location counter (for the next line)
BRA P11 ; go to P11 to process the next line 

P14: RTS

FIGURE 4.19. Assembler Pass 1

PASS2: CLR LCNTR ; clear location counter, which is object code index 
LDX #SOURCE ; begin source scan: x-> first letter in source string

P21: LDAB 2,+x ; move past label and space, to get opcode character
LEAX 2,X ; skip mnemonic and space after it
CMPB #‘D’ ; if mnemonic is a directive D, 
BEQ P22 ; go to get the hex value
JSR GETOPCD ; otherwise get the opcode, returns opcode in A 
LDAB 1,x+ ; get symbolic name which is instruction effective address 
JSR FINDLBL ; search labels, OR label value into opcode in A 
BRA P23  

P22: BSR GETHEX ; get hexadecimal value into A 
P23: LDAB LCNTR ; get location counter which is 8-bits, into B 

EXG b,y   ; expand B by filling with zero bits, to get 16-bit Y 
STAA OBJECT,y ; store the opcode-address or the hex value
INC LCNTR ; increment location counter
LDAB #$d ; skip to end of the current source code line 

P24: CMPB 1,x+ 
  BNE P24 
  TST 0,x ; get first character of next line; if null, exit

BNE P21 ; otherwise loop again 
RTS

FIGURE 4.20. Assembler Pass 2



characters. If the mnemonic is a D for define constant, it calls a subroutine
GETHEX (§4.4) to get the hexadecimal value; otherwise, it passes the opcode
mnemonic to a subroutine GETOPCD (§4.4) that searches the list of
mnemonic codes, returning the opcode. Because the directive D has been
previously tested, if the opcode mnemonic is not an “L,” or an “A” it must
be “S.” In the latter case, the subroutine FINDLBL (§4.4) finds the symbolic
label, ORing its value into the opcode. The machine code byte is then put
into the object code OBJECT.

The reader should observe that this subroutine, PASS2, is broken into
subroutines GETOPCD, GETHEX, and FINDLBL which have been discussed
in §4.4. Each of these subroutines is more easily understood and debugged
than a long program PASS2 that doesn’t use subroutines. Each subroutine
corresponds to an easily understood operation, which is described in the 
subroutine’s header. This renders the subroutine PASS2 much easier to 
comprehend.

The contents of the vector OBJECT will be downloaded into the target
machine and executed there. The assembler permits the programmer the
ability to think and code at a higher level, not worrying about the low-level
encoding of the machine code.

The reader should observe the following points from the above example.
First, the two-pass assembler will determine where the labels are in the first
pass. Thus, labels that are lower in the source code than the instructions that
use these labels will be known in the second pass when the instruction
machine code is generated. Second, these subroutines further provide many
examples of character string manipulation techniques.

Debugging Source Code Programs
You may have to debug an assembler language program without having an
assembler and simulator available to assist you. The following strategy seems
to work best. Mimicking a two-pass assembler, you should read the source
code in three passes.

In the first pass, check the program as the assembler would do it, looking
for improperly spelled opcodes or operands. Mnemonics may be written in
upper case, lower case, or a mixture of cases, because the assembler converts
them to upper case before comparing them to the list of mnemonics. However,
labels and operands must match in case and spelling. The mnemonics are said
to be case-insensitive, while the labels are case-sensitive.

Figure 4.21 illustrates errors in a program. In your first pass, you should
observe that the mnemonic BNZ is not a 6812 instruction mnemonic; is
should be changed to BEQ. The TEST 0,A operand is not permitted. You
should mark it and change it in a later pass when you understand the logic
of the program. The mnemonic bNE is acceptable, even though unconven-
tional, because mnemonics are case-insensitive. The label END: should have
a colon, but if it does not, the Metrowerks assembler will not flag it as an
error.
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In a second pass, check to see if the comments match the source code,
line by line. If the comments are presumed to be correct, say in an exam
question, then you should make the source code match the comments on the
same line.

In your second pass, the comment on the line TEST 0,A might be clear
enough so that you would change the instruction to TEST 0,X.

Finally, in a third pass, you should try to understand the logic of the
program, to detect missing lines or to remove unneeded lines. If you have a
simulator, that can help you discover errors of this kind.

The third pass might lead you to discover that the RTI instruction is not
appropriate because the program is not an interrupt handler that ends in RTI,
but a subroutine that ends in RTS. Neither the assembler nor the comments
would help you find this error, but if you ran the program on the simulator,
you would discover the problem and fix it.

If you have an assembler, then you can use it to find the errors in the first
pass, but that doesn’t help you in the other passes. In particular, in your debug
pass 2, you depend on well-written comments to clarify the meaning of the
source code and to restate the operation conducted by the instruction(s). This
process should indicate what you should put in a comment. Don’t simply
restate the instruction, because that does not help you to find an error, espe-
cially if the instruction is wrong and the comment merely duplicates it. Well-
written comments should help you debug the instructions, as in your debug
procedure, in pass 2.

Summary
In this chapter, we learned that an assembler can help you write much larger
programs than you would be able to write by hand coding in machine code.
Not only are the mnemonics for the instructions converted into instruction
opcode bytes, but also symbolic addresses are converted into memory
addresses. However, every new powerful tool also has some negative
aspects. To use an assembler, you have to spell the mnemonics correctly and
use the symbolic addresses exactly the same way throughout the program.
You have to be concerned about the rules of writing a line of assembly-
language code and the rules about forward references. But once these are
mastered, you can use this powerful tool to help you write larger assembly-
language programs.

The middle of this chapter explored some techniques for handling char-
acter strings to prepare you for the simple assembler. These techniques are
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Loop: CMPB 1,x+ ; get a character from the source code
BNZ END   ; if not a carriage return, exit
TEST 0,A ; get first character of next line; if null, exit
bNE LOOP ; otherwise loop again 

END RTI

FIGURE 4.21. A Program with Errors
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pervasively used in microcontrollers. The PUT subroutine and the corre-
sponding GET subroutine are used whenever we need to output or input char-
acters. While they are actually discussed in §11.8, a stub can be used in the
meantime to simulate output as shown in §4.4, and a similar stub can be used
to simulate input. The string copy subroutine can be modified to make a
string concatenate subroutine to append strings, and variations of the search
and dictionary subroutines can recognize strings of characters to respond 
to them.

We presented a simple assembler. This program is larger than those that
we found in Chapters 1 to 3. Scanning over this program, you should become
aware of the need for a tool like the assembler to write longer programs.
Consider the effort of writing such a long program manually, as we did in
Chapters 1 to 3. We will also note in Chapter 6 the need for subroutines. Our
assembler used subroutines to break up a long program into shorter subrou-
tines, which were easier to understand and to debug. Preliminary material in
§4.4 and the assembler introduced techniques in handling ASCII character
strings. You will use these techniques in most of the programs that you write
from now on.

At the end of this chapter, we discussed the problem of debugging assem-
bler language programs. This process is made easier after you have learned
how the assembler works.

The assembler is just one such tool for converting your ideas into
machine instructions. High-level languages can be used too, using compil-
ers and interpreters to convert your language into the machine’s language.
High-level languages let you write even larger programs with a similar
degree of effort, but they move you away from the machine, and it is diffi-
cult to extract the full power of the computer when you are no longer in full
control. While high-level languages are used extensively to program most
computers, especially larger computers, you will find many instances where
you will have to program small computers in assembly language in your
engineering designs.

This section has introduced the essential ideas of the assembler. The next
chapter further expands the capabilities of the conditional and macro assem-
bler and the linker. However, this chapter contains all the reader needs to
know to read the assembly-language source code that is generated by a C
compiler.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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hand assembly
assembler
ASCII character
line of assembly-

language code

assembly-language
statement

object code
listing
assembly errors

vector
labels
symbolic address
symbol
label field



PROBLEMS

1. Suppose that the ORG statement is removed from the assembler. How
can such statements be handled by other directives, and what assump-
tions have to be made to make it possible to completely replace the ORG
statement?

2. Although the assembler has an ALIGN, an EVEN, and a LONGEVEN
assembler directive, the ORG directive can align the location counter to
an integer multiple of a constant. Write such an ORG directive that aligns
the next location to the next multiple of four. Do not move the location
counter if it is already aligned (low 2 bits are zero).

3. An I/O port at location $cb is to be loaded with a constant. If bit 2 is
asserted, input hardware is activated; if bit 3 is asserted, output hard-
ware is activated; if bit 5 is asserted, input hardware can cause an inter-
rupt; and if bit 7 is asserted, output hardware can cause an interrupt.
Write EQU directives that define four constants that can be ORed
together to generate a constant to be stored into the memory location or
can be used with BSET, BCLR, BRSET, or BRCLR instructions. The con-
stant ION turns on the input, OON turns on the output, IINT enables
input interrupts, and OINT enables output interrupts. Write a MOVB
instruction that turns on the input and output hardware and enables input
interrupts. Write an instruction that subsequently enables output inter-
rupts and another that disables output interrupts, neither of which change
any other bits in location $cb except bit 7. Comment on the use of
symbols to improve clarity.

4. A two-dimensional array of 8-bit elements is to have R rows and C
columns. Write EQU statements to define R to 3 and C to 4. Write a
DS.B statement to allocate enough storage for the array for any R and
C. Write a shortest program segment that reads the byte at row i column
j into accumulator B, assuming rows and columns are numbered start-
ing with zero, and elements of a row are stored in consecutive memory
locations.

5. A vector of four 16-bit constants is to be initialized after location
RATES, each of which is calculated as 8,000,000 divided by 16 times
the desired rate. For example, to get a rate of 9600, put 52 into the
element. The first element is to have a rate of 9600; the next, of 1200;
the next, of 300; and the last, of 110. Write this DC directive.
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6. A vector of eight 8-bit constants is to be initialized after location PTRNA,
each of which is a bit pattern displayed on consecutive lines on a screen
to draw a letter A. For instance, the top row of eight bits will be $10,
the next row will be $28, and so on. Write this DC directive.

7. Write a directive to clear all bytes from the current location counter to
the location whose four low address bits are zero.

8. Write a directive to fill all bytes from the current location counter to
location $FFF6 with value $FF.

9. Figure 4.22 shows two programs that attempt to add 3 to variable K.
However, Figure 4.22a may not assemble because of an illegal forward
reference, or, if it does assemble, it produces less efficient code than you
can produce by hand. Explain why this problem might occur. Figure
4.22b illustrates a solution to the problem, by using the “<” operator.
Explain why this will assemble to produce efficient code.

10. Figure 4.23 shows three programs that attempt to add 3 to the variable
K. However, Figure 4.23a may not assemble because of an illegal
forward reference, or, if it does assemble, it produces less efficient code
than you can produce by hand. Explain why this problem might occur.
Figure 4.23b illustrates a solution to the problem by changing the
forward to a legal backward reference. Explain why this assembles cor-
rectly. Figure 4.23c illustrates another solution to the problem, by using
the “<” operator. Explain why this will assemble directly. Finally,
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ABSENTRY ENT  ABSENTRY ENT 
ORG $3800  ORG $3800 

ENT: LDD K,PCR ENT: LDD <K,PCR 
ADDD #3  ADDD #3 
STD K,PCR  STD <K,PCR 
BRA *  BRA * 

K: DS 1 K:DS 1

a. Illegal Forward Reference b. Legal Forward Reference

FIGURE 4.22. Program with Relative Address Reference

 ORG $3800  ORG 0  ORG $3800
ENT: LDD  K K: DS 1 ENT: LDD <K 
 ADDD #3 *    ADDD #3 
 STD K ENT: LDD K  STD <K 
 BRA *  ADDD #3  BRA * 
 ORG 0  STD K  ORG 0 
K: DS 1  BRA * K: DS 1

a. Illegal Forward
Reference

b. Legal Backward
Reference

c. Legal Forward
Reference

FIGURE 4.23. Program with Direct or Page Zero Reference



explain why programmers generally put their data in front of (at lower
addresses than) the program(s) that use the data.

11. Write a shortest assembly-language (source code) program that calls
subroutine GET, which inputs a character, returning it in accumulator A,
and stores these characters in the vector K as in Figure 4.8. Consecu-
tively input characters are put in consecutive bytes until a carriage return
is input; then a null (0) byte is written in K.

12. Write a shortest assembly-language (source code) subroutine that moves
characters as in Figure 4.9 but converts lower case letters to upper case
letters as it moves them.

13. Write a shortest assembly-language (source code) subroutine that 
concatenates one null-terminated string onto the end of another null-
terminated string, storing a null at the end of the expanded string.
Assume that on entry, X points to the first string, Y points to the second
string, and there is enough space after the second string to fit the first
string into this space. This program is essentially the C procedure
strcat().

14. Write a shortest assembly-language (source code) subroutine to compare
at most n characters of one null-terminated string to those of another
null-terminated string, similar to Figure 4.10. Assume X points to the
first string, and Y points to the second string, and A contains the number
n. Return carry set if and only if the strings match.

15. Write a shortest assembly-language (source code) subroutine that 
builds a symbol table as in Figure 4.11a but stores 6-letter symbolic
names and a 2-byte value in each symbol table row. Upon entry to the
subroutine, X points to the first of the 6 letters (the other letters follow
in consecutive locations), and accumulator D contains the 2-byte value
associated with this symbol. The symbol table is stored starting at label
LABELS, and the number of symbols (rows) is stored in the 1-byte vari-
able SIZE.

16. Write a shortest assembly-language (source code) subroutine that
searches a symbol table as in Figure 4.11b but searches 6-letter sym-
bolic names having a 2-byte value in each symbol table row. Upon entry
to the subroutine, X points to the first of the 6 letters (the other letters
follow in consecutive locations). The symbol table is stored starting at
label LABELS, and the number of symbols (rows) is stored in the 1-byte
variable SIZE. The subroutine returns with carry bit set if and only if a
matching symbol is found; then Y points to the beginning of the row
where the symbol is found.

17. Write a shortest assembly-language (source code) program that finds
the maximum MAX of N 4-byte signed numbers contained in array 
Z where N < 100. Your program should have in it the assembler 
directives
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N: DS 1
MAX: DS 4
Z: DS.L 100

and be position independent. How would your program change if the
numbers were unsigned?

18. Write an assembly-language program that finds the sum SUM of two 4-
byte signed magnitude numbers NUM1 and NUM2. The result should also
be in signed-magnitude form. Your program should include the assem-
bler directives

ORG $3800
N: DS 1
NUM1: DS 4
NUM2: DS 4
SUM: DS 4

19. Write an assembly-language program that adds N 2-byte signed numbers
stored in the vector Z, N < 10. Your program should sign-extend each
number as it is being added into the current sum so that the result SUM
is a 3-byte signed number. Your program should have the assembler
directives

ORG $3800
N: DS.B 1
Z: DS.W 10
SUM: DS 3

Can overflow occur in your program?

20. Write an assembly-language program to find the smallest nonzero pos-
itive number NUM in the array Z of N 2-byte signed numbers. If there
are no nonzero positive numbers, the result should be put equal to zero.
Your program should have the following assembler directives:

ORG $3800
N: DS 1
Z: DS.W 100
NUM: DS 2

21. Write an assembly-language program that finds the sum SUM of two N-
byte numbers NUM1 and NUM2 and, when the SWI is encountered, has
the condition code bits Z, N, V, and C set properly. Your program should
have the directives

N: DS 1
NUM1: DS 20
NUM2: DS 20
SUM: DS 20
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22. Correct the assembly-language program in Figure 4.24 so that each line
and the whole program would be accepted by the Motorola assembler
without an assembler error. Do not change any lines that are already
correct. The program replaces each of the N 8-bit two’s-complement
numbers with the absolute value of the number, rounded down to the
next lower even number. For example, +4 is replaced with +4, -4 with
+4, -5 with +4, +5 with +4, and so on.

23. Correct the assembly-language program in Figure 4.25 so that each line
would be accepted by the Motorola assembler without an assembler
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ORG $3800 ; Begin program
LEAX N,VECTOR ; Point X to VECTOR
LDAB N ; Length of VECTOR into B 

LDDP: LD A,X+ ; A vector element into A 
BLO Ll ; if negative.
COM A ; replace with two’s-complement

Ll: ANDA #~1 ; Make contents of A even
STAA -1,X ; Put number back
DECB ; Counter is in accumulator B 

* BCS \0
SWI ; End of program

VECTOR: DS N
N: EQU 5 ; Number of elements in VECTOR

FIGURE 4.24. Program with Errors

 ORG 0 
COUNT: DS 0 ; Number of characters changed 
STRING: DC.B "A b c . 1 ; String to be converted
BEGIN DC.B STRING ; Starting address of string
S: DC.B STRING-BEGIN ; The length of the string
*

ORG #$3800
LD A,S ; String size into A 
LEAY #COUNT ; Counter address into Y 
LDX BEGIN ; X points to STRING
CLR COUNT ; initialize counter

LOOP: LDAB 0,X ; Get next character
CMPB #‘a ; Compare character with “a”
BLOW L ; if lower, go to L 
CMPB #97 ; Compare character with “z”
BLS L ; if higher, go to L 
ANDB #~$20 ; Change by clearing bit 5 
INC 0,Y ; increment counter

L: STAB ,X+ ; Put back letter 
DEC A ; Decrement number left
BNE LOOP ; Check next character
BRA * 

FIGURE 4.25. Another Program with Errors
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1. The target computer has only one 16-bit
accumulator (A), one condition code (N), and 256
16-bit memory words. Each memory address is for a
16-bit word.
2. The target computer’s opcodes will be LD (0), AD
(1), ST (2), and BM (3)(similar to 6812 opcodes
LDAA, ADDA, STAA, and BMI). The assembler has a
directive DC, for “define constant byte,” that has
one four-digit hexadecimal number operand, and EN,
which is the end of the source code.
3. A source code line can have a 3-character label
or not (DC must have a label), one or more spaces,
an opcode or assembler directive, one or more spaces,
an operand, and optionally, one or more spaces and
comments, ending in a carriage return. Permissible
addressing modes are 8-bit direct for LD, AD, and
ST, and signed 8-bit relative addressing for BM. So
each instruction is 2 bytes.
4. The assembler is to be run on the 6812 host. The
source code can have errors, and error numbers are
printed. The source code will be stored in a constant
ASCII string SOURCE, which is null terminated, the
object code, stored in 16-byte vector OBJECT, is
indexed by an 8-bit variable LCNTR; and the listing,
stored in 80-byte vector LISTING, is pointed to by
16-bit variable LPTR. Finally, 8-bit variable LINE
is the source code line number being read. 
5. All labels will be exactly three characters long.
The symbol table, stored in 16-byte vector LABELS
consists of four 4-byte rows for each symbol, each
row comprising three characters followed by a 
one-byte address. The number of symbols currently in 
the table is in 8-bit variable SIZE.

FIGURE 4.26. Assumptions for SA2 Assembler

error. The program takes a sequence STRING of ASCII characters and
converts all of the lowercase letters in STRING to uppercase letters
while finding the number COUNT of letters that were converted. Do not
change any lines that are already correct.

For problems 24 to 30, we will write parts of a “Sample Assembler”
SA2 with the overall specifications given in Figure 4.26. A sample
program for SA2 is shown in Figure 4.27.

24. Write DS assembler directives needed to declare all storage locations for
“SA2.”

25. Correct the assembly-language program in Figure 4.28. Do not change
any lines that are already correct. The calling routine, part of pass 1 of
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Location Contents Mnemonics

   0       0003       LD  3
   1       0104       AD  4
   2       0205       ST  5

LD  ALF
AD  BET 
SS  GAM 

ALF DC 0012
BET DC 0034
GAM DC 0000

a. Machine code b. Source code

FIGURE 4.27. Machine and Source Code for SA2

       origin 3800 ; put at the beginning of SRAM
entry SOURCE ; provide entry address to Hiwave
*
LCNTR: ds.w 1 ; 8-bit location counter
SIZE: ds.b ; 8-bit number of symbols 
SOURCE: dc.b "ALF DC 7A",$d,"LB1 LD LB2",$d,"LB2 AD LB1,$d
LABELS dc.b 32 ; allocate 32-byte symbol table 
*

ldx SOURCE ; get source code string address 
bsr FINDLABEL ; look for label 
bvs FOUND ; if none found, skip. Note: y -> next symbol entry 
movb 1,x+,y+1 ; if found, copy first char from source to symbol table 
movd 2,x+,2,y+ ; then copy 2nd and 3rd characters to symbol table 
movb #LCNTR,1,y+ ; and copy location counter into symbol table 
add SIZE,1 ; increase label count

FOUND: bra * ; wait for debugger to stop program
*
FINDLBL: pshx ; save caller’s pointer on the stack

leax #LABELS ; x-> first symbol table row 
ldab 1,X+ ; get a character from source file
ldy +1,X ; get next two characters from source file
lda SIZE ; A = number of symbols 
branch F2 ; go to end at F2 (in case there are zero items) 

*
F1: cpb 4,x+ ; compare first character in B and move to next row 

bne F2 ; if mismatch, try next by going to F2
cpy 3,x ; compare second, third character in Y 
clra ; clear A and carry indicating success
ldx -4,x ; make x-> beginning of row found
bra F4 ; exit after balancing stack, putting pointer in Y 

F2: dec a ; count down accumulator A 
bpl F1 ; go to F1 to do search if more to come
setc ; set carry to indicate failure

F3: leay SOURCE ; make y-> beginning of row found
pula ; restore caller’s pointer from the stack
rts ; return to caller 

FIGURE 4.28. FINDLBL Subroutine with Errors

an assembler, checks the symbol table for a matching label and enters
the label if no match is found. The symbol table contains this label,
which is three ASCII characters, and the associated value, which is 1
byte. This program consists of a calling routine and a subroutine
FINDLBL for “SA2,” used in problems 28 and 29, to compare a string



org     3800 ; put at the beginning of SRAM
OPTR: ds.w    1 ; pointer to object code that was generated 
LINE: ds.b    1 ; line number ( line < 10 ) 
LINEBGN: ds.w    1 ; address of first character in line of source code
* listing subroutine : X points to the listing line 
LIST: ldab    #0 ; generate ASCII character "zero"
 addb    #LINE  ; add binary line number ( line < 10 ) 
 bsr     PUT ; output line number 
 ldb     #$20 ; output space
 bsr     PUT 
 ldy     Optr ; get pointer to object code
 lda     1,y+ ; y points to where next byte will be put, 
 bsr     OutHex ; output two previously stored bytes of object code

ldaa    1,y+  
 bsr     OutHex
 styr    OPTR ; save pointer to object code
 ldab    #$20 ; output space
 bsr     PUT ;
 ldy     LINEBEGIN ; get beginning of source line 
Loop: ldab    2,y+ ; get character, advance to next character
 bsr     PUT ; output character
 cpb     #d ; up to and including c.r.
 bne     LOOP 
 return ; return
*
OUTHEX: tab  ; duplicate byte to be printed 
 lsrb  ; shift right four bits
 bsr     OUTHEX1 ; output hex number that was in high nibble of A 
 tab ; fall through, output  low nibble of A 
OUTHEX1: andb   #$f0 ; clear away all but low nibble 
 cmpb    #9 ; if low nibble is a letter (A - F)
 bls     OUTHEX2 ; then adjust the output
 addb    #7 ; by adding 7 to the input
OUTHEX2: addb   #0 ; convert to ASCII character
PUT: stab    1,x ; store the character in the listing, move pointer
 rts  ; return to caller 

FIGURE 4.29. Line Print Subroutine with Errors

of assembler source code characters at SPTR against known labels in
the symbol table: if a match is found, the symbol table row number in
which it is found is returned in accumulator A with carry clear; if a match
is not found, it returns with carry set. The program must assemble in
Metrowerks CodeWarrior and run correctly in the 6812 ‘B32 chip.

26. Write a shortest subroutine GETOPCD for “SA2,” used in problem 29,
to compare a string of assembler source code characters against the per-
missible opcodes, returning the opcode or value of the defined constant
in accumulator D, with carry set if found, and returning with carry clear
if no match is found.

27. Correct the assembly-language program in Figure 4.29. Do not change
any lines that are already correct. This shortest subroutine LIST for
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“SA2” prints a line of the listing at the end of PASS2, after 2 bytes have
been put into the object code. It prints the decimal line number (<10),
the hexadecimal object code, and the source code. OUTHEX prints a
binary number n in accumulator A as 2 digits (the hexadecimal repre-
sentation of n). PUT places the ASCII character in accumulator A into a
line of the listing, which is pointed to by the X register.

28. Write a shortest subroutine PASS1 for “SA2” that will fill the symbol
table, if a symbol appears more than once; it prints the line number, the
word “error,” and the error number 1, and it terminates with carry clear;
otherwise, it terminates with carry set. The line number is to be printed
in hexadecimal using OUTHEX (problem 27). Assume the answers to
problems 24, 25, and 27 are “included” (don’t write them).

29. Write a shortest subroutine PASS2 for “SA2” that writes in the object
and listing, reporting error 2 if an illegal opcode appears and error 3 if
a symbol is not found. “Include” the answers to problems 24 to 27 (don’t
write them). A listing line consists of a hexadecimal line number, the 2-
byte hexadecimal code, and the line of source code. If an error occurs,
the next line shows “error” hexadecimal error number.

30. Write a shortest subroutine SYMLTBL for “SA2” that prints its symbol
table. Assume the answers to Problems 24 and 27 are “included,” and
use PUT to print the ASCII character in accumulator A (don’t write them,
and assume they do not change the registers used in the subroutine
SYMLTBL). Each line lists a symbolic name and its hexadecimal value
that was stored in a row of the symbol table.
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Technological Art’s Adapt812 is a modular implementation of the
68HC812A4, in single-chip mode, which includes all essential support cir-
cuitry for the microcontroller. A well designed connector scheme groups the
dedicated I/O lines on one standard 50-pin connector, while routing the dual-
purpose I/O lines to a second 50-pin connector, to form the address and data
bus for use in expanded memory modes.



This chapter discusses the advanced assembler and the linker, which are tools
needed to assemble large programs; it is written for the reader who intends
to write a lot of assembly-language programs or large assembly-language
programs. Whereas the last chapter gave sufficient detail for the reader to
understand the assembler output of a C compiler and to embed a limited
amount of assembly-language code in a C procedure, this chapter provides
additional tools and greater depth to enable you to write large assembly-
language programs using a relocatable, conditional, or macro assembler, and
to join together separately assembled programs using a linker program.

This chapter is optional. Current economics leads to writing programs in
a high-level language like C or C++ rather than in assembly language. Most
programmers will not need to write a lot of programs in assembly language
nor to write large programs in assembly language. Such readers can skip this
chapter without losing any background needed for the rest of this book.

The first section introduces the complementary ideas of cross-assembler
and downloader. The next section describes the pair of ideas of relocatable
assembler and linker program. Section 5.3 discusses how conditional assem-
bly is used. The next section shows the power of macros in assembly-
language programs. A final section recommends good documentation 
standards for programs written in assembly language.

Upon completion of this chapter, the reader should understand the tools
needed for writing a large number of assembly-language programs or large
assembly-language programs. He or she should have little difficulty writing
assembly-language programs in the order of a couple of hundred lines long.

Cross-Assemblers and Downloaders
In this section we introduce a close cousin of the assembler, the cross-
assembler, which, like the assembler, converts sequences of (ASCII) char-
acters into machine instructions. For the most part, this section’s material is
descriptive, almost philosophical, rather than precise and practical. It is
important general knowledge, and it is included here because the reader
should understand what he or she is doing when using a personal computer
to assemble a program for a microcontroller.
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The cross-assembler is a special kind of assembler. A true assembler is a
program that runs on a computer that generates machine code for that same
computer. It is common for a microcontroller to be too limited to be able to
assemble code for itself, particularly for a microcontroller that is used in a
laboratory for a university course. Such microcontrollers may not have
enough memory, or a disk capable of holding the assembler program or the
assembly language to be input to this program, or a printer capable of print-
ing the listing. It is common to have a PC available with such user-friendly
characteristics as Windows, large hard disks, and editors with which the user
is already familiar. Such a computer, called the host computer, assembles
programs for the microcontroller, which is called the target machine. The
cross-assembler is written to run on the host machine and output target
machine code.

The powerful host machine can handle the assembly-language program.
An editor is a program on the host that helps you write the program. Editors
can be used to write any kind of (ASCII) character data. The cross-
assembler is used to generate the machine code for the target machine. The
host machine’s printer is used to print the listing, and the host machine’s disk
is used to hold the (ASCII) assembly-language program, the program listing,
and the machine code output that is to be put into the target machine.

If your personal computer has a cross-assembler, it will usually also have
a downloader. The downloader is a program running on the personal com-
puter that takes the object code of the cross-assembler from the personal
computer’s disk or its primary memory and writes it into the target micro-
controller’s memory. A monitor program in the microcontroller receives data
from the downloader; it generally does not need to be loaded because it is
stored once and for all time in the microcontroller’s ROM.

In a microcontroller in which it is desired to maximize the available
RAM, one might have a small program, called a bootstrap, whose only
purpose is to load the downloader into its RAM. After the program is put in
by the loader, the memory space occupied by the downloader could be used
by the program for data storage. The bootstrap, now occupying only a small
amount of memory space, is generally in ROM.

It is also possible to connect host computers in a laboratory by means of
a high-speed link to implement a local area network. The computers in this
network are called servers. A printer attached to this network, with a com-
puter to support it, is a print server. A computer that you experiment with is
called a workstation. With each workstation connected to the print server,
each can print a listing when it needs to do so, provided that the printer is
not already in use. One printer can serve about a dozen workstations. This
setup is economical and efficient. The downloader in a workstation sends the
code generated by a cross-assembler to a target microcontroller. This kind
of distributed processing, using local area networks, is one way to use a
cross-assembler.

The program’s machine code will be broken up into several records, to
constrain the record’s length within a suitable size. For each record, the
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downloader provides a starting address for the first byte and the number of
bytes, as shown in Figure 5.1.

A byte called the checksum is usually included with each block, as 
indicated in Figure 5.1. This byte is formed by adding up all the bytes used
to describe that particular block, ignoring carries. After loading, the check-
sum is computed and compared with the one supplied by the assembler. If
any pattern of single errors in the columns has occurred, the two checksums
will always be different, and an error message can be generated by the
monitor.

S-records are generally used by Motorola and other microcontroller
vendors to store loader records, because ASCII character strings are easy to
store on disks and send through a personal computer’s communication soft-
ware to the target microcontroller. S-records are essentially character strings
made of several fields that identify the record type, record length, memory
address, code/data, and checksum. Each byte of binary data is encoded as a
2-character hexadecimal number; the first character represents the high-order
4 bits, and the second represents the low-order 4 bits of the byte. An S-
record’s fields are shown in Figure 5.2, and Table 5.1 explains the content
of each of the S-record’s fields. Each record may be terminated with a car-
riage return, line feed, or both. Additionally, an S-record may have an initial
field to accommodate other data such as line numbers generated by some
time-sharing systems. Simple downloaders use only three of eight types of
S-records: S0, S1, and S9 records. The S0 record generally contains header
information. All data before the first S1 record are ignored. Thereafter, all
code/data records must be of type S1, until the S9 record terminates data
transfer.

An S0 record, which is a header record, is ignored by the downloader,
but the cross-assembler may write in it any descriptive information identi-
fying the following block of S-records. The S0 record address field is 
normally zeroes. An S1 record contains code/data and the 2-byte starting
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starting address of block ->

number of bytes in block = N -> 

machine code, N bytes

Checksum -> 

FIGURE 5.1. Loader Record

TYPE RECORD LENGTH ADDRESS CODE/DATA CHECKSUM  

FIGURE 5.2. An S-Record



address at which the code/data is to reside. An S9 record terminates S1
records. Its address field may optionally contain the 2-byte address of the
first instruction to be executed. If an S9 record doesn’t specify an address,
the first entry point specification encountered in the object module input is
used. There is no code/data field.

A short program, whose listing is shown in Figure 5.3a, generates the 
S-record in Figure 5.3b. This simple program has only one S1 and the ter-
minal S9 records, which are explained following the figure. Generally, pro-
grams have several S1 records.

The S1 code/data record begins with the ASCII characters S1, indicating
a code/data record of length $16 bytes, to be loaded at the 2-byte address
$3820. The next 20 character pairs are the ASCII bytes of the actual
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Printable

Field Characters Contents

Type 2 S-Record type—SO, S1, etc.
Record 2 The count of the character 
length pairs in the record, 

excluding the type and 
record length.

Address 4, 6, The 2-, 3-, or 4-byte 
or 8 address at which the data 

field is to be loaded into 
memory.

Code/ 0–2n From 0 to n bytes of 
data executable code, memory-

loadable data, or 
descriptive information.

For compatibility with 
teletypewriters some
programs may limit the 
number of bytes to as few 
as 28 (56 printable 
characters in the S-
Record)

Checksum 2 The least significant byte of 
the one’s complement of 
the sum of the values 
represented by the pairs 
of characters making up 
the record length, 
address, and the code/data 
fields.

Table 5.1 S-Record Fields



program code/data. In this assembly-language example, the hexadecimal
opcodes of the program are written in sequence in the code/data fields of the
S1 records. The first byte is B6, and the second byte is 38. Compare this
S-record string in Figure 5.3b with the listing in Figure 5.3a.

The second record begins with ASCII characters S9, indicating a 
termination record. Its length is 3. It is followed by a 4-character 2-byte
address field, which is zeros, and $FC, which is the checksum of the S9
record.

Relocatable Assemblers and Loaders
The downloader described in the previous section is sometimes called an
absolute loader, because the location of the program is completely specified
by the assembler that writes S-records. There is a limitation with an absolute
loader. Suppose that you have written a program that uses a standard sub-
routine from a collection provided by Motorola or a third party. You have to
copy it physically into your program, perhaps changing the ORG so that it
does not overlap with your program, and then assemble the whole package.
What you might like to do instead is to be able to assemble your program
separately and then have the loader take your machine code, together with
the machine code of any standard subroutines already assembled, and load
them all together in consecutive RAM locations so that memory bytes would
not be wasted.

To achieve merging of programs that are assembled separately, assemble
each program segment as if it began at location zero. Each such program
segment is called a relocatable section. A linker program determines the sizes
of each section and allocates nonoverlapping areas of target memory to each.
Each section’s addresses are then adjusted by adding the section’s beginning
address to the address within the section.

Assembler directives, listed in Table 5.2, are used to name sections and
identify labels that are declared in other files or are to be made available for
use in other files (Figure 5.4). A relocatable section begins with a SECTION
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0000                     ORG   $3820             
3820 B63811              LDAA  $3811             
3823 BB3813              ADDA  $3813             
3826 7A3815              STAA  $3815             
3829 B63810              LDAA  $3810             
382C B93812              ADCA  $3812             
382F 7A3814              STAA  $3814 
3832 00                  BGND

a. Listing 

S1163820B63811BB38137A3815B63810B938127A381400FE 
S9030000FC 

b. S-record

FIGURE 5.3. A Program
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.data: SECTION 
 XDEF N,V ; Make N, V externally visible
N: DS 1 ; Declare a global variable
V: DS 50 ; Declare a global vector

a. A data section in file Program1.asm.

.text: SECTION 
 XDEF FUN ; Make FUN externally visible
*
FUN: RTS ; Should be replaced by full sub.

b. A program section in file Program2.asm 

directive. In each section, certain symbols would have to be declared in
XDEF and XREF directives.

For example, JSR FUN might occur in a section .pgm in one file, but
the code for subroutine FUN is in a different section .text in another file.
FUN is declared, in each file where it is used, in an XREF directive. In the
file where the FUN subroutine is written, label FUN would be declared in an

134 Chapter 5 Advanced Assemblers, Linkers, and Loaders

Name Example Explanation

SECTION label: SECTION Begins a section whose 
name is “label”

XDEF XDEF x, Declares x, y, z 
y, z visible in other 

sections
XREF XREF x, Declares x, y, z 

y, z variables are from 
outside

XREFB XREFB x, Declares external 
y, z variables x, y, z are 

8-bit variables, use 
Page 0 addressing

pgm: SECTION 
XDEF ENTRY ; Make externally visible
XREF FUN,N ; Use externally defined names

*
ENTRY: LDS #$BFF ; First initialize stack pointer

LDAA N ; Access external variable
JSR FUN ; Call external subroutine

c. Another program section in file Program3.asm 

FIGURE 5.4. Sections in Different Source Code Files

Table 5.2 Relocation Directives



XDEF directive. Labels used by more than one file are similarly declared
where defined (with XDEF) and where used (with XREF).

The SECTION directive’s label is the name of the section, which is used
in the parameter file that controls linking. Figure 5.5 illustrates a parameter
file that directs the linker to put certain sections in certain parts of memory.
If two or more sections have the same name, the linker appends them
together, forming a larger section that is allocated in memory as a whole. A
SECTION directive may have the word SHORT as an operand; this means
that the section is on page zero and may use page-zero addressing. The linker
requires, as a minimum, sections with names .data and .text.

The parameter file simply tells the linker what files are output from it and
input to it. This parameter file uses C syntax for comments and constants.
The parameter file declares memory segments, which are areas of memory
available for assembly-language sections, and then declares what sections
are put in which segments. Finally, parameter file statements tell where exe-
cution begins and what to put in the target’s interrupt vectors, including the
reset vector. Interrupt and reset vectors are discussed in Chapter 11.

The assembler begins program segments with either an ORG statement,
introduced in the previous chapter, or a SECTION statement, introduced
above. Another way of looking at this: SECTION is an alternative to ORG.
Sections beginning with ORG are called absolute sections; each section runs
until the next ORG, SECTION, or END directive or the end of the file. The
programmer is responsible for ensuring that absolute sections and memory
segments, declared in the parameter file, do not overlap.

The linking loader, in a manner similar to a two-pass assembler, takes
the parameter file and the list of external and entry symbols declared in XREF
and XDEF declarations; it calculates the addresses needed at load time and
inserts these into the machine code in a.o file that was generated by the
assembler. In this example, the 2-byte relative address for FUN in the instruc-
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LINK Program.abs /* the linker will write a file called prog.abs */
NAMES /* list all assembler output files input to the linker  */

Program1.o Program2.o Program3.o 
END /* several assembler files can be read: end with END */

SEGMENTS /* list all segments, read/write permission & address ranges */
ROM = READ_ONLY  0x3800 TO 0x39FF /* a memory segment */
RAM = READ_WRITE 0x3A00 TO 0x3BFF /* a memory segment */
END /* several segments can be declared: end with END */

PLACEMENT /* list all sections, in which segments they are to be put */
.text,.pgm INTO ROM /* puts these sections into segment ROM */
.data INTO RAM /* puts a section called .data  into segment RAM */
END   /* several segments can be filled with sections: end with END */

INIT ENTRY /* label of first instruction to be executed */
VECTOR ADDRESS 0xFFFE ENTRY /* puts label ENTRY at 0xFFFE */

FIGURE 5.5. A Parameter File



tion above is determined and then inserts the code for the instruction. The
linker output file, a .abs file, is ready to be downloaded into a target 
microcontroller.

Conditional Assemblers
A near cousin of the assembler, which we examined in the last chapter, is
the conditional assembler. A conditional assembler allows the use of condi-
tional directives such as IFEQ and ENDC, as listed in Table 5.3. For example,
the segment

IFEQ MODE
LDAA #1
STAA LOC1
ENDC
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Name Name Explanation

IF IF <expression> Insert if expression 
is TRUE

IFEQ IFEQ <expression> Insert if expression 
is FALSE (zero)

IFNE IFNE <expression> Insert if expression 
is TRUE (not zero)

IFGE IFGE <expression> Insert if expression 
≥ 0

IFGT IFGT <expression> Insert if expression 
> 0

IFLE IFLE <expression> Insert if expression 
£ 0

IFLT IFLT <expression> Insert if expression 
< 0

IFDEF IFDEF <symbol> Insert if symbol is 
defined

IFNDEF IFNDEF<symbol> Insert if symbol is 
not defined

IFC IFC str1 str2 Insert if string str1 
equals string str2

IFNC IFNC str1 str2 Insert if string str1 
is not = string str2

ELSE Alternative of a 
conditional block

ENDIF End of conditional 
block

Table 5.3 Conditional Directives



inserted in an assembly-language program causes the assembler to include
instructions

LDAA #1
STAA LOC1

in the program if the value of MODE is equal to zero. If the value of MODE
is not equal to zero, assembler directives in lines from the IFEQ directive
to the ENDC directive, except ENDC and ELSE, are ignored and do not gen-
erate machine code. The label MODE is usually defined, often at the begin-
ning of the program, through an EQU directive, say MODE EQU 1. There
are often several conditional directives such as IFEQ MODE throughout the
program, for a single directive such as MODE EQU 1. The single EQU direc-
tive uniformly governs all of these conditional directives. This way, a direc-
tive at the beginning of the program can control the assembly of several
program segments throughout the program.

The conditional statement argument can be a more complex expression.
There are other conditional directives—IFNE, IFGE, IFGT, IFLE, IFLT,
and IFNE—that can be used instead of IFEQ, and the ELSE statement can
cause code to be assembled if the condition is false, so code immediately
after the conditional is not generated. And conditional expressions can be
nested. For instance, the program segment

IFGT OFFSET-1
LEAX OFFSET,X
ELSE
IFEQ OFFSET-1
INX
ENDC ; matches IFEQ
ENDC ; matches IFGT

tests the predefined symbol OFFSET. If OFFSET is greater than one, a LEAX
instruction is used; if it is one, a shorter INX instruction is used, and if it is
zero, no code is generated.

The conditional IFDEF directive is often used to be sure that a symbolic
name is defined before it is used in an assembler line, such as another con-
ditional directive, to avoid generating an error message. The IFNDEF direc-
tive is particularly useful in INCLUDE files described in a later section on
documentation.

The IFC and IFNC conditional directives are able to test strings of char-
acters to see if they are exactly matching. The former assembles lines to the
ENDC or ELSE directive if the strings match; the latter assembles the lines
if the strings don’t match. It finds special use in macros, discussed in the next
section where an example is given.

One of the principal uses of conditional assembly directives is for debug-
ging programs. For example, a number of program segments following each
IFDEF MODE up to the matching ENDC can be inserted or deleted from a
program by just inserting the EQU directive defining MODE. All of these
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directives allow the programmer to uniformly control how the program is
converted to object code at assembly time.

Another significant use of conditional assembly is the maintenance of
programs for several different target microcomputers. Some code can be
conditionally assembled for certain target microcontrollers, but not for other
microcontrollers.

Macro Assemblers
A macro assembler is able to generate a program segment, which is 
defined by a macro, when the name of the macro appears as an opcode in a
program. The macro assembler is still capable of regular assembler func-
tioning, generating a machine instruction for each line of assembly-language
code, but like a compiler, it can generate many machine instructions from
one line of source code. Its instruction set can be expanded to include 
new mnemonics, which generate these program segments of machine code.
The following discussion of how a macro works will show how this can be
done.

A frequently used program segment can be written just once, in the macro
definition at the beginning of a program. For example, the macro

AAX: MACRO
EXG A,B
ABX
EXG A,B
ENDM

allows the programmer to use the single mnemonic AAX to generate the
sequence

EXG A,B
ABX
EXG A,B

The assembler will insert this sequence each time the macro AAX is written
in the assembler source code. If the mnemonic AAX is used 10 times in the
program, the three instructions above will be inserted into the program each
time the mnemonic AAX is used. The advantage is clear. The programmer
almost has a new instruction that adds the unsigned contents of A to X, and
he or she can use it like the real instruction ABX that actually exists in the
machine. The general form of a macro is

label: MACRO
instructions
ENDM

Here the symbolic name “label” that appears in the label field of the direc-
tive is the name of the macro. It must not be the same as an instruction
mnemonic or an assembler directive. The phrases MACRO and ENDM are
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assembler directives indicating the start and the end of the macro (Table 5.4).
Both appear in the operation field of the instruction.

Every time the programmer uses this macro, he or she writes

label name parameter,parameter, . . . ,parameter

where name is the name of the macro, which is placed in the operation field,
to which an optional size .B, .W, or .L may be appended. The designation
label at the beginning of the line is treated just like a label in front of a
conventional assembly line.

The parameters can be inserted into the body of the macro using the two-
character symbols in Table 5.5. As an example, the macro

MOVE: MACRO
LDD \1
STD \2
ENDM

will move the 2 bytes at parameter location \1 to parameter location \2, like
the MOVW instruction, but the macro is faster and shorter where the second
parameter is a page-zero address. When used in the program, say as
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Name Name Explanation

MACRO label: MACRO Begins a macro, whose 
name is “label”

ENDM ENDM Ends a macro
MEXIT MEXIT Exit a macro
SET label: SET Sets the label to have 

expression the value of 
expression. Label may 
be redefined.

Symbol Explanation

\0 Size parameter attached to macro name
\1 First parameter in the list
\2 Second parameter in the list
. . . (numbers and letters \3, \4, . . . \Y)
\Z Last parameter in the list (35 max)
\@ Macro invocation number

Table 5.4 Macro Directive

Table 5.5 Macro Arguments



MOVE Z+3,M (1)

the two bytes at locations Z + 3, Z + 4 will be moved to locations M, M +
1. In this example, all the usual rules for choosing between direct and page
zero addressing would apply. Additionally, if the actual parameters involve
an index mode of addressing that uses a comma, the actual parameters must
be enclosed within parentheses as in MOVE (3,X),Y for the sequence

LDD 3,X
STD Y

As implied in the example above, when a macro is used, the actual param-
eters are inserted in a one-to-one correspondence with the order in (1).

If “goto” labels are to be used within macros, then, because the macro
may be used more than once during the program, assembler-generated labels
must be used. The symbol character pair “\@” means an underbar followed
by the macro invocation number, which is initially zero and is incremented
each time a macro is called. When the first macro is expanded \@ generates
the label _00000, when the second macro is expanded, \@ generates _00001,
and so on. Throughout the first macro, \@ generates _00000 even though
this macro may call another macro expansion, whenever it is used, before or
after other macros are called and expanded. This generated symbol can be
concatenated to other letters to generate unique labels inside the macro itself.
This capability is especially useful if a macro expansion has two or more
“goto” labels in it; for without it, unambiguous labels could not be gener-
ated. Using the macro invocation number, each macro expansion generates
labels that are different from the labels generated from the same macro that
are expanded at a different time. For example, the macro in Figure 5.6, when
implemented by ADD #M,N, adds the contents of the N bytes beginning in
location M, putting the result in accumulator A.

A macro definition can use a macro defined earlier, or even itself (recur-
sively). For macro assemblers that have conditional assembly, conditional
directives within their definition can be used to control the expansion. The
actual parameters of the macro can then be tested with these directives to
determine how the macro is expanded. In particular, the IFC and IFNC
directives can be used to compare a macro parameter, considered as a string,
against any constant string. If a parameter is missing, it is a null string “\0.”
We can compare a given parameter, such as the second parameter, consid-

140 Chapter 5 Advanced Assemblers, Linkers, and Loaders

ADD: MACRO 
 LDX \1 
 LDAB \2 
 CLRA 
\@: ADDA 1,X+ 
 DBNE B,\@ 
 ENDM

FIGURE 5.6. Loop Macro to Add Consecutive Values



ADDQ: MACRO 
IFNC “\1”,””
ADDA \1 
ENDC
IFC “\2”,””
MEXIT
ENDC
ADDQ  \2,\3,\4,\5,\6,\7,\8 
ENDM

FIGURE 5.7. Recursive Macro to Add up to Eight Values

ered as a string denoted “\2,” to a null string “\0.” When the strings are equal,
the second parameter is missing, so this condition can terminate the macro
expansion.

The example in Figure 5.7 illustrates the use of recursion, conditional
assembly, and early exiting of macros using MEXIT. You might want to use
the ADDA instruction with a series of arguments, to add several bytes to
accumulator A. If you wish, you can use a text editor to make copies of the
ADDA instruction with different arguments. However, you can define a macro
whose name is ADDQ, in which the body of the macro expands into one or
more ADDA directives to implement the same effect. This ADDQ macro uses
recursion to add one parameter at a time, up to eight parameters in this simple
example, stopping when a parameter is missing (null string). When a null
(missing) parameter is encountered, the macro “exits” by executing MEXIT,
thereby not generating any more expansion or code.

Documentation
A significant part of writing large assembly-language programs is the effort
to make the program understandable to a programmer who has to debug it.
Some tools to do this are provided by state-of-the-art assemblers. Table 5.6
shows assembler directives that significantly clarify assembler listings. The
LIST and NOLIST directives can clean up a listing by not printing parts of
the program that are neither interesting nor informative. CLIST and MLIST
directives control whether conditional expressions and macros are fully
listed. Other directives, TITLE, LLEN, NOPAGE, PLEN, and TABS, control
the format of a listing, and PAGE and SPC tidy up a listing.

The INCLUDE directive permits other files to be inserted into a source
code file. The assembler saves the location after the INCLUDE directive,
opens the file that is named in the directive’s operand, reads all of that file,
and then returns to the saved location to resume reading the file in which the
INCLUDE directive appeared. Included files can include other files but
cannot eventually include themselves (the INCLUDE directive is not recur-
sive). It is common to include a file defining a program’s constants, in EQU
directives, in each file that uses these constants. However, in such files, so
that they are included only once, the contents of an INCLUDE file might be
written as follows:
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IFNDEF F1
…(an entire file, except the three statements shown here)

F1: EQU 0 ; it really doesn’t matter what F1 is set to here
ENDC

The conditional statement will include the contents of a file the first time it
is named as the parameter of an INCLUDE statement. Subsequent INCLUDE
statements will fail to assemble the contents of the file because the symbolic
name F1 will be defined after the first time it is INCLUDEd.

It should be noted that, in the relocatable assembler, the INCLUDE
directive allows breaking up a large program into smaller files that are easier
to understand, debug, and maintain. You should break up large files into
smaller ones, each of which implements a conceptually uncluttered col-
lection of operations, and put each such collection into its own section. 
Sections reused in many application programs can be saved in files collec-
tively called a library. When a later program needs the same function, it 
can INCLUDE a file from the library that has the function already debugged
and assembled. Your application program can INCLUDE prefabricated files
from a library and parts of the program now being written, which are in dif-
ferent files, to break up the larger program into smaller sections, each of
which is easier to understand, debug, and use. While further development of
tools to do this is incorporated into object-oriented programming, the basic
ideas can be incorporated into state-of-the-art assembly-language programs
as well.

We continue this section with a list of coding techniques that make your
programs or subroutines more readable.
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Name Explanation

CLIST Conditional assembly listed or not
END Stop reading source file
INCLUDE Include a file named as the argument
LIST Following statements are listed
LIEN Specifies line length
MLIST Macros listed or not
NOLIST Following statements are not listed
NOPAGE Disable paging in the listing
PAGE Insert page break
PLEN Specifies page length
SPC Insert empty line
TABS Specify tab spacing
TITLE Put directive’s operand on each page

Table 5.6 Listing Directives



CPY #1170 
BEQ L1 
BMI L2 
CMPB S1 
BEQ L3 
CMPB S2 
BEQ L4 
BRA T1

FIGURE 5.8. Example Control Sequence Program

1. Use meaningful labels that are as short as possible.

2. Try to write code so that the program flow is progressively forward
except for loops. This means that one should avoid using unnecessary
unconditional jumps or branches that break up the forward flow of the
program.

3. Keep program segments short, probably 20 instructions or less. If not
commented in some way, at least use a line beginning with “*” or “;”
to break up the code into program segments for the reader.

4. Including lucid, meaningful comments is the best way to make your
program clear. Either a comment line or a comment with an instruc-
tion is acceptable, but it is probably best to use complete lines of com-
ments sparingly. Do not make the sophomore mistake of “garbaging
up” your program with useless comments, such as repeating in the
comment what simple instructions do.

5. Make comments at the beginning of the subroutine clear enough so
that the body of the subroutine need not be read to understand how to
use it. Always give a typical calling sequence if parameters are being
passed on the stack, after the call or in a table. Indicate whether the
data themselves are passed (call-by-value) or the address of the data
is passed (call-by-name). In addition for short subroutines, indicate
whether registers remain unchanged in a subroutine. Also explain
what the labels mean if they are used as variables.

Finally, consider attaching a flowchart with each subroutine as part of the
documentation. Flowcharts are particularly useful for detailing complex
control sequences. For example, the rather impenetrable sequence in Figure
5.8 becomes more fathomable when displayed as part of the subroutine flow-
chart shown in Figure 5.9.

Summary
In this chapter, we learned that a more powerful assembler can help you 
write much larger programs than you would be able to write by hand coding
in machine code or by using a simplified assembler. Relocation, conditional
assembly, and macro expansion permit the programmer to significantly
expand his or her techniques. However, high-level languages provide 
alternative means to these and other ends, so that high-level language 
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programming has superceded the more powerful assembly-language mech-
anisms described in this chapter.

Do You Know These Terms?
See the end of Chapter 1 for instructions.

144 Chapter 5 Advanced Assemblers, Linkers, and Loaders

Y:1170
><

=

L2

T1

L1
B:S1

_

=

L3
B:S2

_

=

L4

FIGURE 5.9. Flowchart for Example Control Sequence

cross-assembler
host computer
target machine
downloader
monitor program
bootstrap
local area network
servers

print server
workstation
records
checksum
S-records
absolute loader
relocatable section
linker

parameter file
memory segment
absolute section
linking loader
conditional assembler
macro assembler
macro
library

PROBLEMS

1. Give the S1 and S9 records for the program in Figure 1.5.

2. Give the program source code (in the style of Figure 1.5) for the fol-
lowing S-record: S10D0800FC0852FD0854137C08564E.

3. Write a shortest program segment to translate an ASCII S1 record
located in a 32-character vector SRECORD, to write its data into SRAM.

4. Write a parameter file for the ’B32. Its SRAM, EEPROM, and flash
memory are to be the segments, with the same names; the sections are
.data, .text, and .prm; segment SRAM contains section .data;
segment EEPROM contains section .text; and segment flash contains
section .pgm. The starting address, named BEGIN, is to be put in
$FFFE. The input file is to be progB32.o, and the output file is to be
called progB32.abs.
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5. Write a parameter file for the ’A4. Its SRAM and EEPROM are to be
the segments, with the same names; the sections are .data and .text;
segment SRAM contains section .data; and segment EEPROM con-
tains section .text. The starting address, named START, is to be put
in $FFFE. The input file is to be progA4.o, and the output file is to be
called progA4.abs.

6. Write a parameter file for an expanded bus ’A4. Its internal SRAM,
extended memory SRAM at $7000 to $7FFF, internal EEPROM at
$4000 to $4FFF, and external ROM at $8000 to $FFFF are to be the seg-
ments with the names ISRAM, ESRAM, EEPROM, and ROM; and the
sections are .data, .edata, .text, and .pgm. Segment ISRAM
contains section .data, segment ESRAM contains section .edata,
segment EEPROM contains section .text, and segment ROM contains
section .pgm. The starting address, named .BEGIN, is to be put in
$FFFE. The input files are to be camcorder1.o, camcorder2.o, 
camcorder3.o, and camcorder4.o, and the output file is to be called 
camcorder.abs.

7. Write a relocatable assembler program that uses fuzzy logic, that has a
section .text that just calls fuzzy logic subroutines FUZZY and
ADJUST one after another without arguments, and a section .pgm that
has in it fuzzy logic subroutines FUZZY and ADJUST, which just have
RTS instructions in them. Comment on the use of a relocatable assem-
bler to break long programs into more manageable parts.

8. Write a relocatable assembler program that has a section .text that
just calls subroutines PUT, OUTS, OUTDEC, and OUTHEX one after
another. The argument in Accumulator A, for PUT, OUTDEC, and
OUTHEX, is $41. The argument for OUTS, passed in index register X, is
the address of string STRING1. A section .pgm has in it subroutines
PUT, OUTS, OUTDEC, and OUTHEX, which just have RTS instructions
in them, and the string STRING1, which is “Well done\r”. Comment on
the use of a relocatable assembler to break long programs into more
manageable parts.

9. A program is to have symbolic names A4, B32, and MACHINE. Write
the EQU directives to set A4 to 1, B32 to 2, and MACHINE to B32. Write
a program segment that will store accumulator A to location $0 if
MACHINE is B32 but will store accumulator A into location $1 if
MACHINE is A4. Comment on the use of conditional expressions to
handle programs that will be assembled to run in different environments.

10. A program is to have symbolic names LITE, FULL, and FEATURES.
Write the EQU directives to set LITE to 1, B32 to 2, and FEATURES
to FULL. Write a program segment that will execute a subroutine SUB
if FEATURES is FULL. Comment on the use of conditional expressions
to handle programs that will be assembled for different levels of features
for different-priced markets.
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11. A program is to have symbolic names TRUE, FALSE, and DEBUG.
Write the EQU directives to set TRUE to 1, FALSE to 0, and DEBUG
to TRUE. Write a program segment that will execute the 6812 back-
ground instruction if DEBUG is TRUE. Comment on the use of condi-
tional expressions in debugging.

12. Write a shortest macro BITCOUNT that computes the number of bits
equal to 1 in accumulator D, putting the number in accumulator B.

13. Write shortest macros for the following nonexistent 6812 instructions:

(a) NEGD

(b) ADX

(c) INCD

(d) ASRD

14. Write a shortest macro NEGT that replaces the number stored at location
A with its two’s complement whose size is indicated by the size param-
eter appended to the macro name NEGT. This macro should change no
registers. The call’s form should be NEGT.BA, NEGT.WA, or NEGT.L
A. Why can’t NEG be the name of this macro?

15. Write a shortest macro INCR that increments the number stored at the
address given as the macro’s parameter A, whose size is indicated by
the size parameter appended to the macro name INCR. The call’s form
should be INCR.B A, INCR.W A, or INCR.L A. No registers should
be changed by the macro. Use the macro invocation counter rather than
the location counter “*.” Why can’t we use the name INC for this
macro?

16. Write a shortest macro MOVE, as in §5.4, so that no registers are changed
except the CC register, which should be changed exactly like a load
instruction.

17. Write a shortest macro XCHG that will exchange N bytes between loca-
tions L and M. No registers should be changed by the macro. The call
should be of the form XCHG L,M,N. If N is missing, assume it is 2. A
typical use would be

XCHG L,M,N

18. Write a shortest macro for each of CLEAR, SET, and TEST that will
clear, set, and test the ith bit in the byte at location L. (Bits are labeled
right to left in each byte beginning with 0 on the right.) For example,
CLEAR L,5 will clear bit #5 in location L.

19. Write a shortest macro MARK that uses symbolic names given in Problem
11, which writes the characters in its parameter if DEBUG is TRUE.
The macro expansion should put the character string argument inside the
macro expansion and branch around it. A character is printed by calling
subroutine PUT with the character in accumulator A. Comment on the
use of both conditional expressions and macros in debugging.
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20. Write the assembly-language directives needed to print macro and con-
ditional expansions in the listing. Consult Metrowerks documentation
for the directive formats.

21. Write macros LISTON and LISTOFF that use a symbolic name
LISTLEVEL, initially zero, as a count. LISTON increments this level,
LISTOFF decrements this level, and if the level changes from 1 to 0,
the assembler listing is turned off, while if the level changes from 0 to
1, the assembler listing is turned on.
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Adapt912 is Technological Arts’ version of Motorola’s 912EVB evaluation
board for the 68HC912B32 microcontroller. Offering the dame modular
hardware design as other Adapt12 products, Adapt912 includes Motorola’s
Dbug-12 on-chip Flash. This gives it the versatility to function as a stand-
alone development system, a BDM Pod, or even a finished application (when
combined with the user’s circuitry on a companion Adapt12 PRO1 Proto-
typing card).
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Subroutines are fantastic tools that will exercise your creativity. Have you
ever wished you had an instruction that executed a floating-point multiply?
The 6812 does not have such powerful instructions, but you can write a sub-
routine to execute the floating-point multiplication operation. The instruction
that calls the subroutine now behaves pretty much like the instruction that
you wish you had. Subroutines can call other subroutines as you build larger
instructions out of simpler ones. In a sense, your final program is just a single
instruction built out of simpler instructions. This idea leads to a methodol-
ogy of writing programs called top-down design. Thus, creative new instruc-
tions are usually implemented as subroutines where the code is written only
once. In fact, macros are commonly used just to call subroutines. In this
chapter, we concentrate on the use of subroutines to implement larger instruc-
tions and to introduce programming methodologies.

To preview some of the ideas of this chapter, consider the follow-
ing simple subroutine, which adds the contents of the X register to accumu-
lator D.

SUB: PSHX       ; Push copy of X onto stack
ADDD  2,SP+ ; Add copy into D; pop copy off stack
RTS

It can be called by the instruction

BSR SUB

Recall from Chapter 2 that the BSR instruction, besides branching to loca-
tion SUB, pushes the return address onto the hardware stack, low byte first,
while the instruction RTS at the end of the subroutine pulls the top two bytes
of the stack into the program counter, high byte first (Figure 6.1). In this
figure, H:L denotes the return address and the contents of X is denoted
XH:XL. Notice particularly that the instruction

ADDD  2,SP+

in the subroutine above not only adds the copy of the contents of X into D
but also pops the copy off the stack so that the return address will be pulled
into the program counter by the RTS instruction.
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The BSR and RTS instructions are calling and returning mechanisms,
and the PSHX and ADDD instructions are the program segment in this sub-
routine. The X and D registers at the time the BSR is executed contain the
input parameters (or input arguments), and D at the time that the RTS is exe-
cuted contains the output parameter (or output arguments). We pass these
parameters into the subroutine at the beginning of its execution and out of
the subroutine at the end of its execution. The value pushed on the stack by
the PSHX instruction becomes a local variable of this subroutine, a variable
used only by this subroutine.

In this chapter, we discuss the mechanics of writing subroutines and, to
a much lesser extent, the creative issue of what should be a subroutine and
what should not. Echoing the theme of Chapter 1, we want to teach you how
to correctly implement your good ideas, so you’ll know how to use the sub-
routine as a tool to carry out these ideas.

This chapter is divided into sections that correspond to each capability
that you need to write good subroutines. We first examine the storage of local
variables. This discussion gives us an opportunity to become more familiar
with the stack, so that the later sections are easier to present. We next discuss
the passing of parameters and then consider calling by value, reference, and
name. We then discuss the techniques for writing and calling trap instruction
handlers. Finally, we present a few examples that tie together the various
concepts that have been presented in the earlier sections and present some
conclusions and recommendations for further reading.
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FIGURE 6.1. Subroutine Calling and Returning



Upon completion of this chapter, you should be able to pick the correct
methods to call a subroutine, use local variables in it, and pass parameters
to and from it. You should know how to test and document a subroutine and
test the routine that calls the subroutine. With these capabilities, you should
be ready to exercise your imagination creating your own subroutines for
larger programs.

Local Variables
In this section we offer a mechanism that will help you write much clearer
programs. The main contribution to clarity is modularization of a program
into smaller segments. Think small, and the relationships within your
program will be clearer. The problem with programs that are not so modu-
larized is that a change to correct a bug in one part of the program may cause
a bug in another part. If this propagation of errors explodes cancerously, your
program becomes useless. The way to squelch this propagation is to divide
the program into segments and to control the interaction between the seg-
ments with standard techniques. The main source of uncontrolled interaction
is the storage of data for different segments. In this section, we introduce
you to the tools to break up a program into segments and to store efficiently
the data needed by these segments.

A program segment is a sequence of instructions that are stored one after
another in memory as part of your program. An entry point of the segment
is any instruction of the segment that can be executed after some instruction
which is not in the segment. An exit point of the segment is any instruction
that can be executed just before some instruction that is not in the segment.
Figure 6.2a shows the flowchart of a program segment with multiple entry
and exit points. For simplicity, however, you may think of a segment as
having one entry point, which is the first instruction in the segment, and one
exit point, which is the last instruction in the segment (Figure 6.2b).

For the purpose of this discussion, we assume that the program segment
has information passed into it by its input parameters (or input arguments)
and that the results of its computation are passed out through its output
parameters (or output arguments). Any variables used in the segment for its
computation but not used elsewhere and which are not parameters are called
local variables. The program segment can be thought of as a box with the
parameters and variables that relate to it. Some of the parameters may be
global variables—variables that are, or can be, used by all program seg-
ments. If you have learned about sequential machines, the input parameters
are like the inputs to the sequential machine, the local variables are like the
internal states of the machine, and the output parameters are like the outputs
of the machine. As a sequential machine can describe a hardware module
without the details about how the module is built, one can think about the
input and output parameters and local variables of a program segment
without knowing how it is written in assembly language. Indeed, one can
think of them before the segment is written.
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Consider the following example. Suppose that we have two vectors V and
W, each having two l-byte elements (or components) V(1), V(2) and W(1),
W(2). We want to compute the inner product

V(1)*W(1) + V(2)*W(2) (1)

which is often used in physics. Input parameters are the components of V
and W, and the one output is the dot product result. The components of V
and W are assumed to be l-byte unsigned numbers; for instance, assume that
V1 is 1, V2 is 2, W1 is 3, and W2 is 4. The 2-byte dot product is placed in
accumulator D at the end of the segment, but it becomes clear that we will
have to store one of the products in expression (1) somewhere while we are
computing the second product in accumulator D. This 2-byte term that we
save is a local variable for the program segment we are considering. It may
also be convenient to place copies of the vectors V and W somewhere for
easy access during the calculation. These copies could also be considered
local variables. We will continue this example below to show how local vari-
ables are stored in a program segment.

We first consider the lazy practice of saving local variables as if they were
global variables, stored in memory and accessed with page zero or 16-bit
direct addressing. One technique might use the same global location over
and over again. Another technique might be to use differently named global
variables for each local variable. While both techniques are undesirable, we
will illustrate them in the examples below.
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FIGURE 6.2. Program Segment with a Plurality of Entry and Exit Points



STAA TEMP 

STAA TEMP 

LDAA TEMP 

LDAA TEMP 
(Subroutine B)

(Subroutine A)

(Program Segment)

TEMP: DS 6 ; Allocate 6 memory bytes for temporary variables
enter: MOVB #1,TEMP ; Initialize V(1)

MOVB #2,TEMP+1 ; Initialize V(2)
MOVB #3,TEMP+2 ; Initialize W(1)
MOVB #4,TEMP+3 ; Initialize W(2)
LDAA TEMP ; V(1) into A
LDAB TEMP+2 ; W(1) into B
MUL ; The value of first term is now in D
STD TEMP+4 ; Store first term in TERM
LDAA TEMP+1 ; V(2) into A
LDAB TEMP+3 ; W(2) into B 
MUL ; Calculate second term
ADDD TEMP+4 ; Add in TERM; dot product is now in D 

FIGURE 6.3. Inner Product Utilizing a Global Variable such as TEMP (a Bad
Example)

A single global variable or a small number of global variables might be
used to hold all local variables. For example, assuming that the directive
TEMP DS 2 is in the program, one could use the two locations TEMP and
TEMP+1 to store one of the 2-byte local variables for the dot product
segment. Figure 6.3 illustrates this practice. (We write the changed parts in
boldface, here and in later examples, to focus your attention on them.) Six
bytes are needed for various temporary storage. We first allocate 6 bytes
using the declaration TEMP DS 6. Then the values of these variables are
initialized by MOVB instructions. Next, these local variables are used in the
program segment that calculates the inner product. The algorithm to compute
the inner product is clearly illustrated by comments.

Using this approach can lead to the propagation of errors between seg-
ments discussed earlier. This can be seen by looking at the “coat hanger”
diagram of Figure 6.4. A horizontal line represents a program segment, and
a break in it represents a call to a subroutine. The diagonal lines represent
the subroutine call and its return. Figure 6.4 illustrates a program segment
using TEMP to store a variable to be recalled later. Before that value is
recalled, however, TEMP has been changed by subroutine B, which is called
by subroutine A, which itself is called by the program segment. This case is
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FIGURE 6.4. Changing a Global Variable before It Has Been Completely 
Used



V1: DS 1 ; Allocate a byte of memory just for V1
V2: DS 1 ; Allocate a byte of memory just for V2
W1: DS 1 ; Allocate a byte of memory just for W1
W2: DS 1 ; Allocate a byte of memory just for W2
TERM: DS.W 1 ; Allocate two bytes of memory just for TERM
enter: MOVB #1,V1 ; Initialize V(1)

MOVB #2,V2 ; Initialize V(2)
MOVB #3,W1 ; Initialize W(1)
MOVB #4,W2 ; Initialize W(2)
LDAA V1 ; V(1) into A
LDAB W1 ; W(1) into B
MUL ; The value of first term is now in D
STD TERM ; Store first term in TERM
LDAA V2 ; V(2) into A
LDAB W2 ; W(2) into B
MUL ; Calculate second term
ADDD TERM ; Add in TERM; dot product is now in D 

FIGURE 6.5. Inner Product Utilizing Different Global Variables (a Bad
Example)

difficult to debug because each subroutine will work correctly when tested
individually but will not work when one is called, either directly or indirectly
through other subroutines, from within the other. This technique also con-
fuses documentation, specifically the meaning of the local variable TEMP,
generally making the program less clear.

With the other technique, the local variables will be put in different
memory locations, having different symbolic names (Figure 6.5). This
approach is superior to the last approach, because differently named local
variables, stored in different locations, will not interfere with the data stored
in other locations. The names can be chosen to denote their meaning, reduc-
ing the need for comments. However, memory is taken up by these local
variables of various program segments, even though they are hardly ever
used. In a single-chip ’A4 or ’B32, only 1K bytes of SRAM are available.
Using all these bytes for rarely used local variables leaves less room for the
program’s truly global data.

Rather than storing a subroutine’s local variables in global variables, put
them in either registers or the hardware stack. Figure 6.6 illustrates how reg-
isters can be used to store local variables; this is basically what we did
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LDAA #1 ; V(1) into A
LDX #2 ; V(2) into low byte of X 
LDAB #3 ; W(1) into B
LDY #4 ; W(2) into low byte of Y
MUL ; First term is now in D
EXG D,Y ; Store first term in Y, get W(2) in B
EXG A,X ; V(2) into A
MUL ; Calculate second term
LEAY D,Y ; Add terms, to get result in Y 

FIGURE 6.6. Inner Product Utilizing Registers



throughout the previous chapters. Because the 6812 has few registers, the
stack holds most local variables, which will be called stacked local variables.
We review relevant stack index addressing and stack-oriented instructions
presented in Chapters 2 and 3.

Recall from Chapter 3 that index addressing using the stack pointer can
access data in the stack and can push or pull data from the stack. We will
use a general and simple rule for balancing the stack so that the segment will
be balanced. Push all the stacked local variables of the segment on the stack
at the entry point, and pull all of the local variables off the stack at the exit
point. Do not push or pull words from the stack anywhere else in the program
segment except for two- or three-line segments used to implement missing
instructions. While an experienced programmer can easily handle exceptions
to this rule, this rule is quite sound and general, so we recommend it to you.
In following sections, our program segments will be balanced unless other-
wise noted, and we will usually follow this rule, only occasionally keeping
local variables in registers.

We now look more closely at this rule to show how local variables can
be bound, allocated, deallocated, and accessed using the stack. Binding
means assigning an address (the actual address used to store the variable) to
a symbolic name for a variable. Allocation of a variable means making room
for that variable in memory, and deallocation means removing the room for
that variable. Accessing is the process of finding that variable which, for
stacked local variables, will be on the stack. An input parameter supplies a
value to be used by the program segment. While input parameters are usually
not changed by the program segment, local variables and output parameters
that are not also input parameters generally need to be initialized in the
program segment. That is, before any instruction reads a value from them, a
known value must be written in them. A stacked local variable or output
parameter is usually initialized immediately after the entry point of the
program segment.

Stacked local variables are bound in two steps. Before the program is
run, the symbolic address is converted to a number that is an offset used in
index addressing with the stack pointer. The binding is completed when the
program is running. There, the value in the stack pointer SP, at the time the
instruction is executed, is added to the offset to calculate the actual location
of the variable, completing the binding of the symbolic address to the actual
address used for the variable. This two-step binding is the key to reentrant
and recursive subroutines, as discussed in Chapter 3.

We will allocate stacked local variables in a balanced program segment
using LEAS with negative offset and instructions like PSHX, which make
room for the stacked local variables. We will deallocate the variables using
LEAS with positive offset and instructions like PULX, which remove the
room for the local variables. We will bind and access stacked local variables
in a couple of ways to illustrate some alternative techniques that you may
find useful. First, to access local variables, we use explicit offsets from the
stack pointer, reminiscent of the programming that you did in the first three
chapters. Then we use EQU, ORG, and DS directives to bind local variable
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MOVB #1,1,-SP ; Allocate and initialize V(1)
LEAS -2,SP ; Allocate room for term
LDAA 2,SP ; V(1) into A
LDAB 4,SP ; W(1) into B
MUL ; The value of first term is now in D
STD 0,SP ; Store first term in TERM
LDAA 3,SP ; V(2) into A
LDAB 5,SP ; W(2) into B
MUL ; Calculate second term
ADDD 0,SP ; Add in TERM; dot product is now in D
LEAS 6,SP ; Deallocate local variables; balance stack

enter: MOVB #4,1,-SP ; Allocate and initialize W(2)
MOVB #3,1,-SP ; Allocate and initialize W(1)
MOVB #2,1,-SP ; Allocate and initialize V(2)

names to offsets for the stack pointer. This allows symbolic names to be used
to access these local variables, taking advantage of the assembler to make
our program clearer.

Let’s now look at our dot product example in Figure 6.7, where we will
initialize the copies of V(1), V(2), W(1), and W(2) to have values 1, 2, 3 and
4, respectively. The first term of the dot product shown in formula (1), which
will also be placed on the stack, will be denoted TERM. Notice how the
simple rule for balancing the stack is used in this segment. If the stack pointer
were changed in the interior of the segment, offsets for local variables would
change, making it difficult to keep track of them. As it is now, we have to
determine the offsets from the stack pointer for each local variable. The local
variable TERM occupies the top 2 bytes, the local variables V(1) and V(2)
occupy the next two bytes, and the local variables W(1) and W(2) occupy
the next two bytes.

Figure 6.8 illustrates how the use of the stack avoids the aforementioned
problem with global variables. Because the stack pointer is moved to allo-
cate room for local variables, the temporary variables for the outermost
program are stored in memory locations different from those that store local
variables of an inner subroutine like B.
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FIGURE 6.7. Inner Product Program Segment Utilizing Local Variables on the
Stack

STAA 0,sp 

STAA 0,sp 

LDAA 0,sp 

LDAA 0,sp 
(Subroutine B)

(Subroutine A)

(Program Segment)
Move sp 

Move sp 

Move sp Restore sp

Restore sp

Restore sp

FIGURE 6.8. Nested Subroutines Using Local Variables Stored on the Stack



The advantage of using the stack can be seen when two subroutines are
called one after another, as illustrated in Figure 6.9. The first subroutine
moves the stack pointer to allocate room for the local variable, and the local
variable is stored with an offset of 0 in that room. Upon completion of this
subroutine, the stack pointer is restored, deallocating stacked local variables.
The second subroutine moves the stack pointer to allocate room for its local
variable, and the local variable is stored with an offset of 0 in that room.
Upon completion of this subroutine, the stack pointer is restored, deallocat-
ing stacked local variables. Note that the same physical memory words are
used for local variables in the first subroutine that was called as are used for
local variables in the second subroutine that was called. However, if the
second subroutine were called from within the first subroutine, as in Figure
6.8, the stack pointer would have been moved, so that the second subroutine
would not erase the data used by the first subroutine. Using the stack for
local variables conserves SRAM utilization and prevents accidental erasure
of local variables.

A problem with the stack approach is that remembering that a variable is
at 2,SP (or is it at 5,SP?) is error prone, compared to giving names to
variables (see Figure 6.7). We need to give names to the relative locations
on the stack; that is, we need to bind the variables. We discuss two ways to
bind names to locations on the stack: the EQU and DS assembler direc-
tives(Figure 6.10).

Since TERM is on top of the stack, the EQU assembler directive can bind
the value of the name TERM to the location 0,SP; then TERM,SP can access
it. Note that you bind the name of the container TERM to 0,SP and not the
contents of TERM to 0 with the EQU directive. That is, we use 0 wherever
we see TERM, and we use it in calculating the address with TERM as an
offset in index addressing with the SP register. Similarly, we can bind V1 to
2,SP and W2 to 5,SP. Also, the offsets used in the LEAS instructions to
allocate and deallocate the local variables can be set when they are defined.
Initialization is changed a bit to make NBYTES easier to use, but the effect
is the same. The program segment to calculate the dot product can now be
rewritten as in Figure 6.10. Note that each statement is quite readable without
comments. However, good comments are generally still valuable.

As described above, this technique requires the programmer to calculate
the values for the various labels and calculate the value for NBYTES. Adding
or deleting a variable requires new calculations of these values. Figure 6.11
shows how this can be avoided. With this use of the EQU directive, each new
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STAA 0,sp LDAA 0,sp 
Move sp Restore sp

STAA 0,sp LDAA 0,sp 

Move sp Restore sp

FIGURE 6.9. Local Variables Stored on the Stack, for Successive 
Subroutines



stacked local variable is defined in terms of the local variable just previously
defined plus the number of bytes for that local variable. Insertions or dele-
tions of a stacked local variable in a segment now requires changing only
two lines, a convenience if the number of local variables gets large.

Another technique, shown in Figure 6.12, uses the DS directive to play
a trick on the assembler. The technique uses the DS directive to bind the
stacked local variables partially with the stack pointer SP, using the location
counter and the ORG directive to modify the location counter. Recall that
ALPHA DS 2 will normally allocate 2 bytes for the variable ALPHA. The
location counter is used to bind addresses to labels like ALPHA as the assem-
bler generates machine code. The location counter and hence the address
bound to the label ALPHA correspond to the memory location where the word
associated with the label ALPHA is to be put. A DS statement, with a label,
binds the current value of the location counter to the label (as the name of
the container, not the contents) and adds the number in the DS statement to
the location counter. This will bind a higher address to the next label, allo-
cating the desired number of words to the label of the current directive. Note
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TERM: EQU 0 ; Stack offset for local variable TERM
V1: EQU TERM+2 ; Stack offset for copy of V(1)
V2: EQU V1+1 ; Stack offset for copy of V(2)
W1: EQU V2+1 ; Stack offset for copy of W(1)
W2: EQU W1+1 ; Stack offset for copy of W(2)
NBYTES: EQU W2+1

FIGURE 6.11. Defining Symbolic Names for Stacked Local Variables by 
Sizes

TERM: EQU 0 ; Stack offset for local variable TERM
V1: EQU 2 ; Stack offset for copy of V(1)
V2: EQU 3 ; Stack offset for copy of V(2)
W1: EQU 4 ; Stack offset for copy of W(1)
W2: EQU 5 ; Stack offset for copy of W(2)
NBYTES: EQU 6 

LEAS -NBYTES,SP ; Allocate all local variables
MOVB #1,V1,SP ; Initialize V(1)
MOVB #2,V2,SP ; Initialize V(2)
MOVB #3,W1,SP ; Initialize W(1)
MOVB #4,W2,SP ; Initialize W(2)
LDAA V1,SP ; V1 into A
LDAB W1,SP ; W1 into B
MUL ; First term is now in D
STD TERM,SP ; Store first term in TERM
LDAA V2,SP ; V2 into A
LDAB W2,SP ; W2 into B
MUL ; Calculate second term
ADDD TERM,SP ; Add in TERM; dot product in D
LEAS NBYTES,SP ; Deallocate locals; balance stack

FIGURE 6.10. Using Symbolic Names for Stacked Local Variables



that ALPHA EQU * will bind the current location counter to the label
ALPHA but not affect the location counter. Also, recall that the ORG direc-
tive can set the location counter to any value. These can be used as shown
in Figure 6.12.

You can reset the location counter to zero many times, and you should
do this before each group of DS directives that are used to define local storage
for each program segment. These DS statements should appear first in your
program segment. Each set should be preceded by a directive such as
LCSAVE: EQU * to save the location counter using LCSAVE and an ORG
0 directive to set the location counter to 0, and each set should be followed
by a directive such as ORG LCSAVE to set the origin back to the saved value
to begin generating machine code for your program segment. The last direc-
tive in Figure 6.12, ORG LCSAVE, can be replaced by DS LCSAVE-*,
which avoids the use of the ORG statement. The DS directive adds its operand
LCSAVE-* to the location counter, so this directive loads LCSAVE into the
location counter.

It is easy to insert or delete variables without making mistakes using this
technique, because the same line has the variable name and its length, as
contrasted with the last technique using the EQU directive. The number of
bytes needed to store the local variables is also automatically calculated with
this technique. You do, however, have to write three more lines of code with
this technique. You have to invent some kind of convention in naming vari-
ables to avoid this problem, but that is not too difficult to do.

In Chapter 3, we introduced nested local variables. Suppose that a
program segment B is nested in, that is, entirely contained in, a program
segment A. An instruction inside B may need to access a local variable that
is allocated and bound for all of segment A. There are two techniques that
can be used to access the variable in B that is defined for A. These are the
extended local access and stack marker access techniques described below.

The idea of the extended local access technique assumes that there is 
a way to fix the location of the desired variable over one or more alloca-
tions of stacked local variables (Figure 6.13). In this version, the outer
segment A copies vectors into the stack where the inner segment B calcu-
lates the dot product. The dot product is placed in D by segment B and left
there by A.
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LCSAVE: EQU * ; Save current location counter
ORG 0 ; Set the location counter to zero

TERM: DS 2 ; First term of dot product
V1: DS 1 ; Stack offset for copy of V(1)
V2: DS 1 ; Stack offset for copy of V(2)
W1: DS 1 ; Stack offset for copy of W(1)
W2: DS 1 ; Stack offset for copy of W(2)
NBYTES: EQU * ; Number of bytes of local variables

ORG LCSAVE ; Restore location counter

FIGURE 6.12. Declaring Symbolic Names for Local Variables Using DS
Directives
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VV: EQU 0 ; Input vector V(1),V(2)
WW: EQU 2 ; Input vector W(1),W(2)
SIZEA: EQU 4
*
STARTA: LEAS -SIZEA,SP ; Start of segment A

MOVW #$102,VV,SP ; Initialize both bytes of VV
MOVW #$304,WW,SP ; Initialize both bytes of WW

*
TERM: EQU 0
SIZEB: EQU 2 
*
STARTB: LEAS -SIZEB,SP ; Start of segment B

LDAA VV+SIZEB,SP ; V(1) into A
LDAB WW+SIZEB,SP ; W(1) into B
MUL ; First term is now in D
STD TERM,SP ; Store first term in TERM
LDAA VV+1+SIZEB,SP ; V(2) into A
LDAB WW+1+SlZEB,SP ; W(2) into B
MUL ; Calculate second term
ADDD TERM,SP ; Add in TERM; dot product in D

ENDB: LEAS SIZEB,SP ; End of segment B; balance stack
*
ENDA: LEAS SIZEA,SP ; End of segment A; balance stack

FIGURE 6.13. Declaring Symbolic Names for Extended Local Access

The stack marker technique uses an index register to provide a reference
to local variables of outer segments (Figure 6.14). Just before a program
segment allocates its variables, the old value of the stack pointer is trans-
ferred to a register. Just after the local variables are allocated, the value in
this register is put into a stacked local variable for the inner segment. It is
called a stack marker because it marks the location of the stack that was used
for the local variables of the outer program segment. It is always in a known
position on the stack (in this case, on the very top of the stack), so it is easy
to find (Figure 6.14), where the inner program segment can access the local
variables of the outer segment by loading the stack marker into any index
register and using index addressing to get the variable. Note that the stack
marker is deallocated together with the other stacked local variables at the
end of the program segment.

Either the extended local access or the stack marker access mechanisms
can be used in cases where program segments are further nested. Consider
program segment C, with SIZEC stacked local variables, which is nested in
segment B and needs to load accumulator A with the value of SA, a stacked
local variable of segment A. Using extended local access, as in the first
example, the following instruction will accomplish the access.

LDAA SIZEC+SIZEB+SA, SP

Using the stack marker of the second example, the following instructions
will access the variable.



LDX 0,SP ; Get to segment B
LDX 0,X ; Get to segment A
LDAA SA,X ; Access local variable SA

The extended local access mechanism appears to be a bit simpler for smaller
assembly-language programs because it takes fewer instructions or direc-
tives. The stack marker mechanism seems to be used in some compilers
because the compiler program has less to “remember” using this approach
than using the other, where the compiler has to keep track of the sizes of
each allocation of stacked local variables, particularly if a subroutine is called
by many program segments that have different numbers of local variables.
It is not unreasonable to expect a large program to have 20 levels of nesting.
Because the stack marker to the next outer segment is always on top of the
stack, the compiler does not have to remember where it is. In fact, the labels
for stack markers are not really necessary for access at all, their only real
use being for allocation and deallocation of the local variables. With two
good mechanisms, you will find it easy to use one of them to handle nested
program segments to many levels.

This section introduced the idea of a local variable and the techniques
for storing local variables on the 6812. We demonstrated that local variables
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MARKA: EQU 0 ; Stack mark for segment A
VV: EQU 2 ; Input vector
WW: EQU 4 ; Input vector
SIZEA: EQU 6
*
STARTA: TFR SP,X ; Start for segment A

LEAS -SIZEA,SP 
STX MARKA,SP
MOVW #$102,VV,SP ; Initialize both bytes of VV
MOVW #$304,WW,SP ; Initialize both bytes of WW

*
MARKB: EQU 0 ; Stack mark for segment B
TERM: EQU 2 
SIZEB: EQU 4 
*
STARTB: TFR SP,X

LEAS -SIZEB,SP 
STX MARKB,SP
LDAA VV,X ; V(1) into A
LDAB WW,X ; W(1) into B
MUL ; First term is now in D
STD TERM,SP ; Store first term in TERM
LDAA VV+1,X ; V(2) into A
LDAB WW+1,X ; W(2) into B
MUL ; Calculate second term
ADDD TERM,SP ; Add in TERM; dot product in D

ENDB:  LEAS SIZEB,SP ; End of segment B
*
ENDA:  LEAS SIZEA,SP ; End of segment A 

FIGURE 6.14. Accessing Stacked Local Variables Using a Stack Marker



should not be stored in global variables, whether using the same name
(TEMP) for each or giving each variable a unique name. Local variables can
be stored on the stack in any program segment. They are especially easy to
use in the 6812, because the LEAS instructions are able to allocate and deal-
locate them, the index addressing mode using the stack pointer is useful in
accessing them, and the EQU or DS directives are very useful in binding the
symbolic names to offsets to the stack pointer. These techniques can be used
within subroutines, as we discuss in the remainder of this chapter. They can
also be used with program segments that are within macros or those that are
written as part of a larger program. The nested program segments can be
readily handled too, using either the extended local access or stack marker
technique to access local variables of outer program segments.

Passing Parameters
We now examine how parameters are passed between the subroutine and the
calling routine. We do this because an assembly-language programmer will
have frequent occasions to use subroutines written by others. These subrou-
tines may come from other programmers that are part of a large program-
ming project, or they may be subroutines that are taken from already
documented software, such as assembly-language subroutines from a C
support package. They may also come from a collection of subroutines sup-
plied by the manufacturer in a user’s library. In any case, it is necessary to
understand the different ways in which parameters are passed to subroutines,
if only to be able to use the subroutines correctly in your own programs or
perhaps modify them for your own specific applications.

Before we begin, however, we reiterate that these techniques are quite
similar to those used in §6.1 to store local variables. However, these tech-
niques are used between subroutines, while the latter were used entirely
within a subroutine.

In this section we examine five methods used to pass parameters to a 
subroutine. We illustrate each method with the dot product from §6.1. We first
consider the simplest method, which is to pass parameters in registers as we
did in our earlier examples. Then the passing of parameters by global vari-
ables is discussed and discouraged. We then consider passing parameters on
the stack and after the call, which are the most common methods used by
high-level languages. Finally, we discuss the technique of passing parame-
ters using a table, which is widely used in operating system subroutines.

The first method is that of passing parameters through registers, which
is preferred when the number of parameters is small. We will also use this
method to illustrate the idea of a calling sequence (Figure 6.15). Suppose
that the calling routine, the program segment calling the subroutine, puts a
copy of the vector V into registers A and X and a copy of the vector W into
registers B and Y, where, as before, the low byte of a 16-bit register contains
the 8-bit element. Both components of each vector are 1-byte unsigned
numbers. Assuming that the dot product is returned in register Y, a subrou-
tine DOTPRD that performs the calculation is shown in Figure 6.15a. The
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instructions in the calling routine shown in Figure 6.15b cause the subrou-
tine to be executed for vector V equal to (2, 7) and vector W equal to (6, 3).
Notice that the values in A and B have been changed by the subroutine,
because an output parameter is being returned in D. The sequence of instruc-
tions in the calling routine that handles the placement of the input and output
parameters is termed the calling sequence. In our calling sequence we have,
for convenience, assumed that constant input parameters are given to
DOTPRD while the output parameter in Y is copied into the global variable
DTPD. These constants and the global variable could just as easily have been
stacked local variables for the calling routine.

To emphasize that a calling sequence is in no way unique, suppose that
the calling routine has vectors that are pairs of 8-bit local variables on the
stack, labeled LV and LW, as offsets to the stack pointer. To compute the dot
product of LV and LW, execute the calling sequence in Figure 6.15c.

We have, for simplicity, omitted the binding, allocation, and deallocation
of the local variables of the calling routine. The point of this second example
is to stress that any calling sequence for the subroutine DOTPRD must load
copies of the vectors for which it wants the dot product into X and Y and
then call DOTPRD. It must then get the dot product from D to do whatever
it needs to do with it. From a different point of view, if you were to write
your own version of DOTPRD, but one that passed parameters in exactly the
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* SUBROUTINE DOT PRODUCT 
DOTPRD: MUL ; First term is now in D

EXG D,Y ; Store first term in Y, get W(2) in B
EXG A,X ; V(2) into A
MUL ; Calculate second term
LEAY D,Y ; Add terms, to get result in Y
RTS ; Return to the calling program

a. A subroutine 

LDAA #2 ; Copy of V(1) into A
LDX #7 ; Copy of V(2) into low byte of X 
LDAB #6 ; Copy of W(1) into B
LDY #3 ; Copy of W(2) into low byte of Y
BSR  DOTPRD ; Call the subroutine
STY DTPD ; Store dot product in DTPD

b. A calling sequence 

LDAA LV,SP ; Copy of V(1) into A
LDX LV,SP ; Copy of V(2) into low byte of X
LDAB LW,SP ; Copy of W(1) into B
LDY LW,SP ; Copy of W(2) into low byte of Y
BSR DOTPRD ; Call the subroutine
STY DTPD ; Store dot product in DTPD

c. Another calling sequence 

FIGURE 6.15. A Subroutine with Parameters in Registers



same way, your version could not directly access the global variable LV used
in the calling sequence in Figure 6.15c. If it did, it would not work for the
calling sequence in Figure 6.15b.

Parameters are passed through registers for most small subroutines. The
main limitation with this method of passing parameters is that there are only
two 16-bit registers (you do not pass parameters in the stack pointer SP reg-
ister itself), two 8-bit registers, and a few condition code bits. Although this
limits the ability of the 6812 to pass parameters through registers, you will,
nevertheless, find that many, if not most, of your smaller subroutines will
use this simple technique.

The next technique we discuss is that of passing parameters through
global variables. We include it because it is used in small microcomputers
like the 6805, but we discourage you from using it in larger machines like
the 6812. It is easy to make mistakes with this technique, so much so that
most experienced programmers avoid this method of passing parameters
when other techniques are available. Figure 6.16 shows a coat hanger
diagram that illustrates how incorrect results can occur when parameters are
passed with global variables. Notice in particular how subroutine B writes
over the value of the global variable passed by the calling routine to sub-
routine A, so when subroutine A performs the load instruction, it may not
have the calling routine’s value.

In assembly language, global variables are defined through a DS direc-
tive that is usually written at the beginning of the program. These variables
are often stored on page zero on smaller microcontrollers so that direct page
addressing may be used to access them. However in the 6812, page zero is
used for I/O ports. Assuming that the directives are written somewhere in
the program, the subroutine in Figure 6.17 does the previous calculation,
passing the parameters through these locations. Note that we use local vari-
ables in this subroutine, as discussed in §6.1.

The subroutine in Figure 6.17 uses global variables V1, V2, W1, W2, and
DTPD to pass parameters to the subroutine and from it. If the calling routine
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STAA GLOBAL 

STAA GLOBAL 

LDAA GLOBAL 

(Subroutine B)

(Subroutine A)

(Calling Routine)

LDAA GLOBAL (Subroutine C)

FIGURE 6.16. Change a Global Parameter before Its Subroutine Has Used It



wants to compute the dot product of its local variables LV and LW, which
each store a pair of 2-element 1-byte vectors, putting the result in LDP, the
calling sequence in Figure 6.18 could be used. Notice that the calling
routine’s local variables are copied into global variables V1, V2, W1, and W2
before execution and copied out of the global variable DTPD after execution.
Any other calling sequence for this version of DOTPRD must also copy the
vectors of which it wants to compute the dot product, call the subroutine,
and get the dot product result from DTPD. Note also that

ADDD 2,SP+ ; Dot product into D, also deallocate local variable

rendered the last LEAS instruction of the subroutine unnecessary.
We now consider a very general and powerful method of passing param-

eters on the stack. We illustrate the main idea, interpreting it as another use
of local variables, as well as the technique that makes and erases “holes” in
the stack, and we consider variations of this technique that are useful for very
small computers and for larger microcontrollers like the 68332.

Input and output parameters can be passed as if they were local variables
of the program segment that consists of the calling sequence that allocates
and initializes. The local variables are allocated and initialized around the
subroutine call. In this mode the parameters are put on the stack before the
BSR or JSR. For our particular dot product example, the calling sequence
might look like Figure 6.19.
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MOVB LV,SP,V1 ; Copy V(1)
MOVB LV+1,SP,V2 ; Copy V(2)
MOVB LW,SP,W1 ; Copy W(1)
MOVB LW+1,SP,W2 ; Copy W(2)
BSR DOTPRD
MOVW DTPD,LDP,SP ; Place result in local variable LDP 

FIGURE 6.18. Calling a Subroutine for Figure 6.17

* SUBROUTINE DOTPD – LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
NBYTES: EQU 2 
*
DOTPRD: LEAS -NBYTES,SP ; Allocate local variables

LDAA V1 ; First component of V into A
LDAB W1 ; First component of W into B
MUL ; First term of dot product into D
STD TERM,SP ; Save first term
LDAA V2 ; Second component of V into A
LDAB W2 ; Second component of W into B
MUL ; Second term of dot product into D
ADDD 2,SP+ ; Dot product into D, Deallocate loc var
STD DTPD ; Place dot product
RTS

FIGURE 6.17. A Subroutine with Parameters in Global Variables



For simplicity, we have assumed that input parameter values come from
global variables V and W, and the output parameter is placed in the global
variable DTPD. All of these global variables could, however, just as well have
been local variables of the calling routine. The idea is exactly the same. The
stack is as shown in Figure 6.20 as execution progresses. The dot product
subroutine is now as shown in Figure 6.21.

Notice several things about the way this version of the subroutine is
written. We do not need the local variables to hold copies of vectors V and
W as we did in the earlier versions because the copies are already on the
stack as parameters where we can access them using the extended local
access technique described in §6.1. Because the number of parameters and
local variables is small and because each is equal to 2 bytes, we can easily
calculate the stack offsets ourselves, particularly if we use a dummy param-
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LOCVH
LOCVL
LOCWH
LOCWL
LOCDPH
LOCDPL

RETNH
RETNL
LOCVH
LOCVL
LOCWH
LOCWL
LOCDPH
LOCDPL

TERMH
TERML
RETNH
RETNL
LOCVH
LOCVL
LOCWH
LOCWL
LOCDPH
LOCDPL

SP-> SP-> SP->

Before BSR After BSR After Allocation

FIGURE 6.20. Location of Parameters Passed on the Hardware Stack

aLOCV: EQU 0 ; Input parameter copy of the vector V 
aLOCW: EQU 2 ; Input parameter copy of the vector W 
aLOCDP: EQU 4 ; Output parameter copy of dot product 
PSIZE:   EQU 6 ; Number of bytes for parameters
*

LEAS -PSIZE,SP ; Allocate space for parameters
MOVW V,aLOCV,SP ; Initialize parameter LOCV,SP
MOVW W,aLOCW,SP ; Initialize parameter LOCW,SP
BSR DOTPRD
MOVW aLOCDP,SP,DTPD ; Place output in global variable
LEAS PSIZE,SP ; Deallocate space for parameters

FIGURE 6.19. Calling a Subroutine with Parameters on the Stack for Figure
6.21



eter RETN for the return address. Notice particularly how we have redefined
the labels LOCV, LOCW, and LOCDP in the subroutine with the EQU direc-
tive to avoid adding an additional offset of 4 to each parameter to account
for the number of bytes in the return address and the local variables. Suppose
now that we write the subroutine as shown in Figure 6.22. When EQU is used
in this way, the additional offset of NBYTES+2 is needed to access the
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* SUBROUTINE DOTPRD – LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product
NBYTES: EQU 2
* PARAMETERS
RETN: EQU 2 ; Return address
LOCV: EQU 4
LOCW: EQU 6
LOCDP: EQU 8
DOTPRD: LEAS -NBYTES,SP ; Allocation for local variables

LDAA LOCV,SP 
LDAB LOCW,SP
MUL
STD TERM,SP ; Copy first term to local variables
LDAA LOCV+1,SP
LDAB LOCW+1,SP
MUL
ADDD TERM,SP ; Dot product into D 
STD LOCDP,SP ; Place dot product in output parameter 
LEAS NBYTES,SP ; Deallocate local variables 
RTS

FIGURE 6.21. A Subroutine with Parameters on the Stack

* SUBROUTINE DOTPRD – LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product 
NBYTES: EQU 2
* PARAMETERS
LOCV: EQU 0
LOCW: EQU 2
LOCDP: EQU 4
PSIZE: EQU 6
*
DOTPRD: LEAS -NBYTES,SP ; Allocation for local variables 

LDAA LOCV+NBYTES+2,SP
LDAB LOCW+NBYTES+2,SP
MUL
STD TERM,SP ; First term to local variables
LDAA LOCV+NBYTES+2+1,SP
LDAB LOCW+NBYTES+2+1,SP
MUL
ADDD TERM,SP ; Dot product into D 
STD LOCDP+NBYTES+2,SP ; Dot product to output parameter 
LEAS NBYTES,SP ; Deallocate local variables 
RTS

FIGURE 6.22. Revised Subroutine with Local Variables and Parameters on the
Stack



parameters to account for the local variables and the return address. No EQU
directives are needed in the calling sequence, however, because EQU is a
global definition; that is, the labels LOCV, LOCW, LOCDP, and PSIZE are
fixed, respectively, at 0, 2, 4, and 6 throughout the program. The calling
sequence for this case is shown in Figure 6.23.

Putting the additional offset of NBYTES+2 in the subroutine, which is
written only once, makes the calling sequence, which may be written many
times, more straightforward. However, keeping the EQU directives with the
subroutine as shown will force 2-byte offsets for parameter accesses in all
of the calling sequences placed before the subroutine. For this reason, the
EQU tables for subroutines might be placed at the beginning of a program to
improve the static efficiency of the calling sequences. One could also force
1-byte offsets by using “<” before the expressions that access the parame-
ters, as in LDAA <LOCW+NBYTES+2,SP. This, however, would still not
get the 5-bit offset for those local variables that would be accessed with offset
expressions in the range from 0 to 15.

The reader should recognize that in this method of passing parameters,
the calling sequence is just another instance of a balanced program segment,
with local variables that are the parameters to the subroutine. Variables are
copied from the calling routine to the parameter locations and back so that
the subroutine will have a precise place to find them. Compare this to the
earlier example where parameters were passed by global variables, and
review the discussion after that example.

There is another way to think of this technique, which some students have
found to be more concrete. You can think of “holes in the stack.” To pass an
argument out of the subroutine, such as LOCDP, you create room for it in
the calling routine. The instruction LEAS -PSIZE,SP creates a hole for
this output parameter, among other things, and the subroutine puts some data
in this hole. Conversely, the input parameters LOCV and LOCW are used up
in the subroutine and leave holes after the subroutine is completed. These
holes are removed by the instruction LEAS PSIZE,SP.

Some readers may appreciate the generality of the idea of parameters as
local variables of the calling sequence, whereas others may prefer the more
concrete technique of providing and removing holes for input and output
parameters. They are the same.
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LEAS -PSIZE,SP ; Allocate space for parameters
MOVW V,LOCV,SP ; Put copy in parameter location 
MOVW W,LOCW,SP ; Put copy in parameter location 
BSR DOTPRD 
MOVW LOCDP,SP,DTPD ; Put in global location 
LEAS PSIZE,SP ; Deallocate space for parameters

FIGURE 6.23. Calling a Subroutine with Parameters on the Stack for Figure
6.22



The reason that the stack mode of passing arguments is recommended is
that it is very general. Because registers are quite limited in number and are
useful for other functions, it is hard to pass many parameters through regis-
ters. You can pass as many arguments to or from a subroutine as you will
ever need using the stack. Compilers often use this technique. It is easier to
use a completely general method in a compiler, rather than a kludge of
special methods that are restricted to limited sizes or applications. The 
compiler has less to worry about and is smaller because less code in it is
needed to handle the different cases. This means that many subroutines that
you write for high-level languages such as C may require you to pass argu-
ments by the conventions that it uses. Moreover, if you want to use a 
subroutine already written for such a language, it will pass arguments that
way. It is a good idea to understand thoroughly the stack mode of passing
parameters.

We now consider another common method of passing arguments in which
they are put after the BRS or equivalent instruction. This way, they look
rather like addresses that are put in the instruction just after the opcode. Two
variations of this technique are discussed below.

In the first alternative, the parameters are placed after the BSR or JSR
instructions in what is called an in-line argument list. Looking at Figure 6.24,
we see that the return address, which is pushed onto the hardware stack,
points to where the parameters are located. When parameters are passed this
way, sometimes referred to as after the call, the subroutine has to add to the
return address appropriately to jump over the parameter list. If this is not
done, the MPU would, after returning from the subroutine, try to execute the
parameters as though they were instructions. For our dot product example,
assume that the parameter list appears as shown in Figure 6.24. Notice that
the subroutine must skip over the 6 bytes in the parameter list when it returns
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Parameters

RETNH:RETNL-> 

next

instruction ->

Subroutine

JMP 6,X

BSR

Offset

V[1]
V[2]
W[1]
W[2]
DPT[1]
DPT[2] Stack

RETNH 
RETNL

PULX

FIGURE 6.24. Parameters Passed after the Call



to avoid “executing the parameters.” The subroutine shown in Figure 6.25
does this.

Notice that the return address is pulled into X before the local variables
are allocated and that the labels for the parameters are now used as offsets
with X. In particular, the label PSIZE used in the JMP instruction automat-
ically allows the proper return. If we make the assumption that the global
variables V, W, and DTPD are moved to and from the parameter list, a calling
sequence would look as in Figure 6.26.

A second alternative permits the return from the subroutine to be simply
an RTS instruction without modifying the return address saved by the BSR
instruction. To account for the BRA instruction, the labels for the parameters
have to be increased by 2 so that the subroutine is now written as in Figure
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PARV: EQU 0 
PARW: EQU 2 
PARDP: EQU 4 
*

MOVW V,PARV+L,PCR ; Copy of V into parameter list 
MOVW W,PARW+L,PCR ; Copy of W into parameter list 
BSR DOTPRD 

L: DS 6
MOVW PARDP+L,PCR,DTPD ; Copy result into DTPD

FIGURE 6.26. A Subroutine Calling Sequence for Figure 6.25

* SUBROUTINE DOTPRD – LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product 
NBYTES: EQU 2
* PARAMETERS 
PARV: EQU 0 ; Copy of vector V 
PARW: EQU 2 ; Copy of vector W 
PARDP: EQU 4 ; Dot product of V and W 
PSIZE: EQU 6
*   
DOTPRD: PULX ; Return address into X 

LEAS -NBYTES,SP ; Allocation for local variables 
LDAA PARV,X
LDAB PARW,X
MUL   
STD TERM,SP ; Copy first term into local variable
LDAA PARV+1,X
LDAB PARW+1,X
MUL   
ADDD TERM,SP ; Dot product into D 
STD PARDP,X ; Place dot product in out parameter 
LEAS NBYTES,SP ; Deallocate local variables 
JMP PSIZE,X 

FIGURE 6.25. A Subroutine with Parameters after the Call, Which Pulls the
Return



* SUBROUTINE DOTPRD 
* LOCAL VARIABLES
TERM: EQU 0 ; First term of the dot product 
NBYTES: EQU 2
*    
* PARAMETERS 
*
PARV: EQU 0 ; Copy of vector V 
PARW: EQU 2 ; Copy of vector W 
PARDP: EQU 4 ; Dot product of V and W 
*    
DOTPRD: LDX 0,SP ; Return address into X 

LEAS -NBYTES,SP ; Allocation for local variables 
LDAA PARV+2,X
LDAB PARW+2,X
MUL   
STD TERM,SP ; Copy first term into local variable
LDAA PARV+1+2,X
LDAB PARW+1+2,X
MUL   
ADDD TERM,SP ; Dot product into D 
STD PARDP+2,X ; Place dot product in out parameter 
LEAS NBYTES,SP ; Deallocate local variables 
RTS

6.27. The trick is to put a BRA instruction in front of the argument list to
branch around it, as shown in Figure 6.28. One should note that this tech-
nique generally takes more bytes of code than doing the correction within
the subroutine since each call requires an additional 2 bytes.

The typical use of passing parameters after the call assumes that all of
the arguments are either constant addresses or constant values. They are often
just addresses. The addresses are not usually modified, although the data at
the addresses can be modified. In particular, one will always be modifying
the data at the addresses where output parameters are placed. Calling
sequences for this situation are particularly simple, as we show in Figure
6.30 for our dot product example in Figure 6.29.
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FIGURE 6.27. A Subroutine with Parameters after the Call, Which Uses RTS

entry: MOVW V,PARV+L,PCR ; Copy of V into parameter list 
MOVW W,PARW+L,PCR ; Copy of W into parameter list 
BSR DOTPRD
BRA L1 

*
L: DS 6
*
L1: MOVW PARDP+L,PCR,DTPD ; Copy parameter list into DTPD

FIGURE 6.28. A Subroutine Call with Parameters after the Call for Figure 
6.27



Because programs are usually in ROM in microcontroller applications,
parameters passed after the call must be constants or constant addresses. At
a place in the program, these addresses are constants. At another place, the
addresses would be different constants.

Passing parameters in an in-line argument list is often used in FORTRAN
programs. A FORTRAN compiler passes the addresses of parameters, such
as the parameters in the example above. Like the stack method, this method
is general enough for FORTRAN, and it is easy to implement in the 
compiler. In assembly-language routines, this method has the appeal that it
looks like an “instruction,” with the opcode replaced by the calling instruc-
tion and addressing modes replaced by the argument list.

Before we look at other argument passing techniques using our running
inner product subroutine example, we illustrate a common subroutine used
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* SUBROUTINE DOTPRD 
* LOCAL VARIABLES
*
TERM: EQU 0 ; First term of the dot product 
NBYTES: EQU 2
*    
* PARAMETERS 
*
PARV: EQU 0 ; Copy of vector V 
PARW: EQU 2 ; Copy of vector W 
PARDP: EQU 4 ; Dot product of V and W
*   
DOTPRD: PULX ; Return address into X 

LEAS -NBYTES,SP ; Allocation for local variables 
LDAA [PARV,X]
LDAB [PARW,X]
MUL   
STD TERM,SP ; Copy first term into local variable
LDY PARV,X
LDAA 1,Y
LDY PARW,X
LDAB 1,Y
MUL   
ADDD TERM,SP ; Dot product into D
STD [PARDP,X] ; Place dot product in out parameter
LEAS NBYTES,SP ; Deallocate local variables
JMP 6,X ; return past the argument list 

FIGURE 6.29. A Subroutine with In-Line Parameters That Are Addresses

BSR DOTPRD
DC.W PARV;  Address for V
DC.W PARW; Address for W
DC.W PARDP; Address for dot product 

FIGURE 6.30. An In-Line Argument List of Addresses for Figure 6.29



in C and C++ compilers to implement the case statement by means of an in-
line argument list of addresses. Figure 6.31 illustrates how, when a variable
between 0 and 3 is in accumulator D, the program can jump to label L0 if
the variable is 0, to L1 if the variable is 1, to L2 if the variable is 2, and to
L3 if the variable is 3. For each case, an address is put in the in-line argu-
ment list; the SWITCH subroutine reads one of these arguments into the PC,
as selected by the value in accumulator D. Note that this technique is more
efficient than a decision tree (Figure 2.14) when the same variable is tested
for numbers, which happen to be consecutive, going to a program segment
that the number indicates. However, this example is neither position inde-
pendent nor does it use 8-bit in-line arguments to further improve efficiency.
The reader might try to improve this technique to improve efficiency.

We now consider the technique of passing parameters via a table. The
argument list, which is in-line when parameters are passed after the call, can
be a table stored anywhere in memory. This technique is quite similar to
passing parameters after the call. For our example, suppose that one uses a
table whose address is passed in X and that looks like Figure 6.32, where,
as before, the suffixes H and L stand for the high and low bytes of the 2-byte
parameters PARV, PARW, and PARDP. The subroutine shown in Figure 6.33a
is called by a sequence shown in Figure 6.33b.

Passing parameters by a table is often used to control a floppy disk in a
way that is transparent to the user. The number of parameters needed to
control a disk can be very large; therefore the table can serve as a place to
keep all the parameters, so only the address of the table is sent to each sub-
routine that deals with the floppy disk.
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BSR     SWITCH 
 DC.W    L0,L1,L2,L3 
L0:       ; program segment for case 0

BRA     L4 
*
L1:            ; program segment for case 1

BRA     L4 
*
L2:        ; program segment for case 2

BRA     L4 
*
L3:        ; program segment for case 3
L4: BRA     *

a. A calling sequence with an in-line argument list of jump addresses 

SWITCH:  LSLD 
PULX
JMP [D,X]

b. The subroutine 

FIGURE 6.31. Implementation of a C or C++ Switch—Case Statement



* SUBROUTINE DOTPRD 
* PARAMETERS 
*
TABLE: DS.B 6 ; Allocate room for the table (should be in RAM)
PARV: EQU 0 ; Table offset for input parameter V
PARW: EQU 2 ; Table offset for input parameter W
PARDP: EQU 4 ; Table offset for output parameter, the dot product
*
* LOCAL VARIABLES
*
TERM: EQU  0 
NBYTES: EQU 2 
DOTPRD: LEAS -NBYTES,SP ; Allocation for local variables

LDAA PARV,X
LDAB PARW,X
MUL ; First term of DP into D
STD TERM,SP ; Store in local variable
LDAA PARV+1,X
LDAB PARW+1,X
MUL ; Second term into D
ADDD TERM,SP 

 STD PARDP,X ; Place dot product
LEAS NBYTES,SP ; Deallocate local variables
RTS

a. The subroutine 

LDX #TABLE 
MOVW V,PARV,X ; Place copy of V into parameter
MOVW W,PARW,X ; Place copy of W into parameter
BSR DOTPRD ; Call Subroutine
MOVW PARDP,X,DTPD ; Copy result into global variable

b. Calling sequence 

FIGURE 6.33. Calling Sequence for Passing Arguments in a Table

In this section, we considered ways to pass arguments to and from sub-
routines. The register technique is best for small subroutines that have just
a few arguments. The stack technique is best for larger subroutines because
it is the most general. The in-line argument list that passes parameters after
the call is used in FORTRAN subroutines, and the table technique is com-
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TABLE: DS   6 
PARV:  EQU  0 
PARW:  EQU  2 
PARDP: EQU  4

PARVH
PARVL
PARWH
PARWL
PARDPH
PARDPL

TABLE ->

a. Pictorial description b. Assembler directives

FIGURE 6.32. Parameters in a Table



monly used in operating system subroutines. The technique that passes
parameters in global variables was covered for completeness and is useful
in very simple microcontrollers such as the 6805, but it is discouraged in the
6812.

Passing Arguments by Value, Reference, 
and Name
Computer science students, as opposed to electrical engineering students,
study the passing of parameters in high-level language subroutines on a 
different level than that used in the preceding section. We include this 
section to explain that level to you. On the one hand, this level is very impor-
tant if, say, you are writing or using a subroutine that is used by a high-level
language program and that subroutine has to conform to the properties dis-
cussed below. On the other hand, the differentiation between some of the
characteristics discussed below is rather blurry in assembly-language 
programs.

The most important characteristic of a parameter is whether you pass the
value of the parameter to the subroutine or the address of the parameter to
the subroutine. In the example used throughout §6.2, values of the vectors
and the dot product usually were passed to and from the subroutine rather
than the addresses of these arguments. (The one exception was in the dis-
cussion of passing parameters after the call, where constant addresses were
passed in the argument list.) If the value of a parameter is passed, we say the
parameter is passed or called by value. Output parameters passed by value
are also said to be passed or called by result. If the address of the parame-
ter is passed, the parameter is passed by reference or by name as we describe
below.

The passing of parameters by value is completely general but could be
time consuming. Consider a simple example where the string STRING of
ASCII characters, terminated by an ASCII carriage return ($0D), is passed
1 character at a time into the subroutine, and the string is up to 100 charac-
ters long. Clearly, a lot of time would be used copying the characters into
parameter locations. Were there enough registers, we would have to load 100
bytes into registers before calling the subroutine. A hundred bytes would be
moved to global memory using the global technique, or 100 bytes would be
pushed on the stack using the stack technique. Obviously, it is more efficient
to pass an address rather than these values. For this case, the address would
be the address of the first character of the string or the label STRING itself.
The parameter is called by reference or is called by name. There is a slight
difference between call by reference and call by name, but in assembly lan-
guage, this difference is not worth splitting hairs about. We will refer to this
technique, where the address of the data is passed as an argument, as call by
name. Figures 6.29 and 6.31 are examples of subroutines that pass parame-
ters by name. The other figures in this chapter called input parameters by
value and called output parameters by result.
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Call by name is useful when the parameters themselves are subroutines
as, for example, in a subroutine that integrates the function FUN between 0
and 1. In this case, the function FUN could be supplied as an argument to an
integration subroutine, and it is reevaluated each time the subroutine calcu-
lates a new point of FUN. For example, the call to FUN may supply a start-
ing point and an increment delta. The nth call to the subroutine returns the
value of function FUN(x) at x = starting point + (n - 1) [*] delta. This con-
tinues until the calling routine changes the value of the starting point. Each
call to FUN inside the integration subroutine returns a different value for
FUN. This, then, is an example of call by name, because the address (of a
subroutine) is passed.

In this section, we have described the types of information about param-
eters that are passed. The most important distinction is whether a value is
passed (a call by value or call by result) or whether an address is passed (a
call by name or a call by reference).

Calling and Returning Mechanisms
The 6812 provides several mechanisms to call a subroutine and return from
it. The standard subroutine uses BSR, or the equivalent instruction, to call
the subroutine and RTS, or the equivalent instruction, to return from it. We
have used this mechanism in the earlier sections of this chapter. However,
there are the SWI and RTI instructions that can be used for the software
interrupt handler; the LDX #RETURN instruction can be used to call and
return from a program segment that is very much like a subroutine. Such a
calling and returning mechanism is used in the Motorola 500 series of RISC
microcomputers discussed in Chapter 12. In the spirit of showing design
alternatives, we will survey these techniques, pointing out advantages and
disadvantages of each approach.

As we proceed, we will discuss several related important topics. We will
look at hardware interrupts and at the fork and join mechanisms used in time-
sharing. These important topics are best covered in this section on calling
and returning mechanisms.

There are alternatives to the most commonly used BSR/RTS mecha-
nisms. We first discuss alternative returning mechanisms and then alterna-
tive calling mechanisms.

The alternative to the returning mechanism can be used to greatly
improve the clarity of your programs. A significant problem in many pro-
grams that call subroutines occurs when the subroutine alters the contents of
a register, but the writer of the calling routine does not think it does. The
calling routine puts some number in that register, before calling the sub-
routine, and expects to find it there after the subroutine returns to this calling
routine. It will not be there. Two simple solutions to this problem come to
mind. One is to assume all subroutines will change any register, so the calling
routine will have to save and restore any values in registers that it wants to
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SUB: TFR X,D 
 LEAY D,Y 
 RTS

FIGURE 6.34. Simple Subroutine

SUB: PSHD ; Save D
TFR X,D 

 LEAY D,Y 
 PULD ; Restore D

RTS ; Return

FIGURE 6.35. A Subroutine Saving and Restoring Registers

save. The other is to assume that the subroutine will save and restore all reg-
isters except those used for output parameters. The latter solution is gener-
ally more statically efficient because any operation done by a subroutine
requires instructions that are stored just once, where the subroutine is stored,
whereas any operation done in the calling routine requires instructions to be
stored at each place that the subroutine is called.

Suppose that a subroutine is called 10 times. Then the former solution
needs 10 pairs of program segments to save and restore the register values.
The latter solution requires only 1 pair of segments to save and restore the
registers.

Consider the simple example in Figure 6.34 to add the contents of the
register X to that of register Y without altering any register except Y. If we
use TFR X,D, followed by LEAY D,Y, accumulator D is changed.
However, as shown in Figure 6.35, if we save D first and restore it after the
addition is done by the LEAY instruction (which doesn’t affect condition
codes), we don’t affect other registers when we add X to Y. This technique
for saving registers can be used to save all the registers used in a subroutine
that do not return a result of the subroutine.

The extended local access of stacked local variables can be used with this
technique. Consider the body of the subroutine after the PSHC instruction
and before the PULC instruction as a program segment. The local variables
are allocated just after the PSHC instruction that saves registers and are deal-
located just before the PULC instruction that returns to the calling routine.
You now look at the saved register values as stacked local variables of an
outer program segment that includes the PSHD, PSHC, PULC, and PULD
instruction. Using extended local access, you can read these registers and
write into them, too. This allows you to output data in a register, even if the
data are saved.

As an example of this, look at the preceding example again, now using
saved registers as stacked local variables of an outer program segment
(Figure 6.36). This idea was expanded earlier to cover the passing of 



REGCC:  EQU 0 
REGD: EQU 1 
REGX: EQU 3 
REGY: EQU 5 
*
SUB: PSHY ; Save Y 

PSHX ; Save X 
PSHD ; Save D
PSHC ; Save CC
LDD  REGX,SP ; Get to caller’s X value
ADDD REGY,SP ; Add to caller’s Y value
STD  REGY,SP ; Result to caller’s Y value
PULC ; Restore CC
PULD ; Restore  D
PULX ; Restore  X
PULY ; Restore  Y
RTS ; Return

FIGURE 6.36. Saving and Restoring All the Registers

arguments on the stack. The basic idea is that you just have to know where
the data are, relative to the current stack pointer SP, in order to access the
data. Thus, access to the saved registers, the caller’s stacked local variables,
or the caller’s saved registers is as easy as access to local variables. You are
really using the extended local access technique regardless of the variations.

Although BSR is the most efficient instruction to call subroutines, its 8-
bit offset limits it to call subroutines within -128 to +127 locations of the
instruction after that BSR instruction. The JSR instruction with program rel-
ative addressing can be used for subroutines that are outside that range. Both
instructions are position independent. This means that if the BSR or JSR
instruction and the subroutine itself are in the same ROM, the subroutine
will be called correctly wherever the ROM is placed in memory. The JSR
instruction using direct or indirect addressing does not have this property
and, because of this, should be avoided except for one case.

The one exception is where the subroutine is in a fixed place in memory.
A monitor or debugging program is a program used to help you step through
a program to find errors in it. These programs are often in ROM at fixed
addresses in memory to allow the reset mechanism (that is executed when
power is first turned on) to work correctly. Calling a subroutine of the
monitor program from outside of the monitor program should be done with
a JSR instruction, using direct or indirect addressing, because, wherever the
calling routine is assigned in memory, the subroutine location is fixed in
absolute memory, not relative to the address of the calling routine. The
simple statement that all subroutines must be called using BSR or JSR with
program relative addressing to make the program position independent is
wrong in this case.

A variation of the calling mechanism uses computed addresses, computed
in an index register, say X, and loaded from there into the program counter
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using JSR 0,X. One place where this calling mechanism is used is to call
a subroutine with many entry points. In this situation, we need to have a stan-
dard means to call these different entry points that does not change if the
subroutine is modified. If this is not done, a subroutine modification to fix a
bug may cause a change in the calling routine because the entry point it used
to jump to is now at a different location. This is another example where fixing
an error in one part of a program can propagate to other parts of the program,
making the software very difficult to maintain. The solution is to have stan-
dard places to call that contain the appropriate jumps to the correct entry
points.

The standard places are at the beginning of the subroutine, so that their
locations will not be affected by changes in the subroutine. These places
contain LBRA instructions that jump to the proper entry point. The LBRA
instructions are always the same length regardless of whether or not the entry
point may be reached by a BRA.

When LBRA instructions are used, the standard places to jump are always
some multiple of 3 bytes from the beginning of the subroutine. An example
will make this clearer. Suppose a subroutine SUB to interface to a printer has
three entry points, SUB0, SUB1, and SUB2. We call SUB0 before we use
the printer to initialize it, we call SUB1 to output a character to it, and we
call SUB2 after we use the printer to turn it off. The layout of the subrou-
tine is shown in Figure 6.37. If one wants to call subroutine SUB at its ith
entry point, i = 0 to initialize it, i = 1 to output to it, and i = 2 to terminate
its use, then, assuming that the value of i is in accumulator B, the calling
sequence in Figure 6.38 can be used.

Notice that the machine code for the calling sequence stays the same
regardless of internal changes to subroutine SUB. That is, if SUB1 were to
increase in size due to modifications of the code, the calling program in
Figure 6.38 is not changed at all. This technique limits the interaction
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SUB: LBRA SUB0 
 LBRA SUB1 
 LBRA SUB2 
SUB0: ; perform initialization

RTS
SUB1: ; perform output

RTS
SUB2: ; perform termination

RTS

FIGURE 6.37. A Subroutine with Multiple Entry Points

ASLB
ASLB ; Multiply contents of B by 4
LDX #SUB 
JSR B,X ; Jump to ith entry point

FIGURE 6.38. Calling the ith Subroutine for Figure 6.37



between program segments so that changes in one segment do not propagate
to other segments. So if a bug is fixed in the subroutine and the calling routine
is in a different ROM or a different part of EEPROM, it won’t have to be
changed when the subroutine size changes. A variation of this technique uses
indirect addressing and addresses instead of LBRA instructions, because
fewer bytes are used with DC.Ws than LBRA instructions. However, this does
not yield a position-independent subroutine. For example, if the layout of
SUB has the LBRA instructions replaced by the program segment in Figure
6.39, then its calling sequence is that shown in Figure 6.40. Although we
described this technique and its variation as useful for a subroutine with
several entry points, either works equally well for distinct subroutines.

Now we consider some variations of subroutines. A handler is really just
a subroutine that “handles” an interrupt. The software interrupt instruction
SWI pushes all the registers onto the hardware stack, except SP, and then
loads the program counter with the contents of locations $FFF6 and $FFF7.
The sequence in Figure 6.41 produces the same effect as the SWI instruc-
tion except for minor changes in the CC and X registers. The subroutine at
the address contained in $FFF6 and $FFF7 is called the SWI handler. A
handler must end in an RTI instruction rather than an RTS instruction
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LEAS -2,SP ; Make space for return address
PSHY ; Save Y above return
PSHX ; Save X above that
PSHA ; Save accumulator A
PSHB ; Save accumulator B
PSHC ; Save condition codes
LEAX RET,PCR ; Get return address ( position independent)
STX 7,SP ; Place return address 
LDX $FFF6 ; Get SWI handler address
JMP 0,X ; Go to handler

RET: (next instruction)

FIGURE 6.41. Emulation of SWI

ASLD ; Multiply contents of D by 2
LDX #SUB 
JSR [D,X] ; Jump to ith entry point

FIGURE 6.40. Calling the ith Subroutine of a Jump Vector

SUB: DC.W SUB0 
DC.W SUB1 
DC.W  SUB2

FIGURE 6.39. A Jump Vector
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* original variables
RESULT: DS.W 1 
*
* SUBROUTINE DOTPRD 
* LOCAL VARIABLES
*
TERM: EQU 0 
NBYTES: EQU 2
* Saved registers 
*
REGCC: EQU 0+NBYTES ; saved condition code register
REGB: EQU 1+NBYTES ; saved accumulator B -- note “backwards”
REGA: EQU 2+NBYTES ; saved accumulator A -- note “backwards”
REGX: EQU 3+NBYTES ; saved index register X
REGY: EQU 5+NBYTES ; saved index register Y
*
DOTPRD: LEAS -NBYTES,SP 
 LDAA REGA,SP 
 LDAB REGB,SP 
 MUL 
 STD TERM,SP ; First term to local variables
 LDAA REGX+1,SP 
 LDAB REGY+1,SP 
 MUL 
 ADDD TERM,SP ; Dot product into D

STAA REGA,SP ; Dot product high byte to output parameter
STAB REGB,SP ; Dot product low byte to output parameter
LEAS NBYTES,SP ; Deallocate local variables
RTI

FIGURE 6.43. An SWI handler

PULC ; Restore condition codes
PULB ; Restore accumulator B
PULA ; Restore accumulator A
PULX ; Restore X 
PULY ; Restore Y
RTS ; Restore PC 

FIGURE 6.42. Emulation of RTI

because all registers are pushed onto the stack with the SWI instruction. The
RTI instruction at the end of an SWI handler does the same thing as the code
in Figure 6.42.

SWI differs from BSR in that the address of the handler is obtained indi-
rectly through the implied address $FFF6. This makes the SWI instruction
shorter, in this case 1 byte long. An SWI handler can be made to perform a
function, such as our ubiquitous dot product (Figure 6.43). The initialization
of the high-address “vector” need be done only once, before the first SWI
call is made, as shown in Figure 6.44a. Then, each time it’s called, insert the



entry: MOVW    #DOTPRD,$FFF6 ; Works only in the simulator, not the target

a. Initialization (done just once)
LDAA    #1 
LDAB    #2 
LDX     #3 
LDY     #4 
SWI
STD     RESULT ; Put in global location
BRA     *

b. Calling sequence (done each time the operation is to be performed).

FIGURE 6.44. Calling an SWI handler

SWI instruction in your calling program, as shown in Figure 6.44b. Note that
in the calling routine, we pass arguments in registers, but inside the handler,
we access these arguments using stack techniques.

When you are debugging a program, you can use a program called a
debugger or a monitor to help you debug the program that you are writing.
You may want to display the values in some of the registers or memory loca-
tions or to insert some data into some of the registers or memory locations.
As used with most debug programs, the SWI handler is a routine in the debug
program that displays a prompt character, such as “*,” on the terminal and
waits for the user to give commands to display or change the values in reg-
isters or memory locations. This can be used to display or change any amount
of data or even to modify the program. This SWI instruction is called a break-
point. A typical monitor program inserts a breakpoint at the start of an
instruction by replacing the opcode byte with an SWI instruction. The
address of the replaced opcode byte, as well as the byte itself, is kept in a
part of RAM that the monitor uses for this purpose. The program now runs
until it encounters the SWI breakpoint. Then the registers might be displayed
together with a prompt for further commands to examine or change memory
or register contents. It is indispensable that the SWI instruction be 1 byte
long to be used as a breakpoint. If you tried to put breakpoints in the program
with a JSR instruction, you would have to remove 3 bytes. If your program
had a branch in it to the second byte being removed, unfathomable things
might begin to happen! The problem in your program would be even harder
to find now. However, if the single-byte SWI instruction is used, this cannot
happen, and the SWI handler call can be used to help you debug the program.
One limitation of breakpoints is that the program being debugged must be
in RAM. It is not possible to replace an opcode in ROM or flash memory
with an SWI instruction. Programs already in flash memory or ROM are
therefore more difficult to debug.

Early in this book, we said that the SWI instruction can be used at the
end of each program. This instruction is really a breakpoint. You cannot turn
off a microcomputer at the end of a program, but you can return to the debug
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program in order to examine the results of your program. The “halt” instruc-
tion is just a return to the debug program.

The TRAP instructions do essentially the same thing as the SWI instruc-
tion except that the program counter is loaded from different consecutive
addresses ($FFF8). These instructions also happen to be two words long
rather than one and can be run in a real target machine as well as a simula-
tor. The handlers, whose addresses are put there, are used in lieu of subrou-
tines for very commonly used operations needing to save all of the registers.
For example, operating system subroutines frequently use these instructions.

A trap handler, shown in Figure 6.45, can execute the program segment
to compute the inner product, if the instruction whose opcode is $1830 
is executed; can execute the program segment to compute the quadratic
formula, if the instruction whose opcode is $1831 is executed; can execute
the program segment to compute the temperature conversion, if the instruc-
tion whose opcode is $1832 is executed; and can execute the program
segment to compute the parallel resistor calculation, if the instruction whose
opcode is $1833 is executed. Each of the program segments in the trap
handler will look like the SWI handler shown in Figure 6.43. Calling rou-
tines can generate these nonstandard opcodes using DC directives, as in
Figure 6.46. This program passes arguments in the registers for the quadratic
formula and then for the parallel resistor formula. At the end of this figure
are directives to create the linkage to the trap handler.

The TRAP instructions can be used to emulate other instructions. Emu-
lation means getting exactly the same result but perhaps taking more time.
This technique is often used in minicomputers that are sold in different
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* TRAP HANDLER 
* saved registers
REGCC: EQU 0 ; saved condition code register
REGB: EQU 1 ; saved accumulator B
REGA: EQU 2 ; saved accumulator A
REGX: EQU 3 ; saved index register X
REGY: EQU 5 ; saved index register Y
REGPC: EQU 7 ; saved PC
JUMPVECTOR: DC.W F0,F1,F2,F3 
*
TRAP: CLRA
 LDX     REGPC,SP 
 LDAB    -1,X 
 SUBB    #$30 
 LSLD 
 LDX     #JUMPVECTOR  
 JMP     [D,X] 
F0: RTI ; do inner product
F1: RTI ; do quadratic
F2: RTI ; do temperature conversion
F3: RTI ; do parallel resistor

FIGURE 6.45. A Trap Handler
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models that have different costs and speeds. The faster, more expensive
model may have an instruction such as floating point add that is implemented
on the slower, cheaper model as TRAP. The same program can be run in 
both the cheaper and more expensive models. When such an opcode is
encountered in more expensive models, it results in the execution of the
instruction. In cheaper models it results in calling a handler to emulate the
instruction. In a sense, the instruction TRAP is a wildcard instruction because
it behaves a bit like an instruction but is really a call to a software trap
handler. The 68000 family uses these types of instructions, which they call
f-line instructions, to emulate some instructions in the cheaper 68332 that
are implemented in hardware in the 68020 and 68881.

We digress for a moment to discuss hardware interrupts. These are han-
dlers that are called up by an I/O device when that device wants service. An
I/O hardware interrupt can occur at any time, and the main program will stop
as if the next instruction were a TRAP instruction. Like TRAPs, interrupt
handlers can be entered in the target microcontroller using linkage shown at
the end of Figure 6.46. When the handler has finished, the RTI instruction
is executed. This causes the main program to resume exactly where it left
off. Similar to an interrupt, a reset occurs when the reset pin on 6812 has a
low signal put on it or right after power has been applied to the microcon-
troller. The program counter is then loaded with the contents of locations
$FFFE and $FFFF. The hardware interrupt is not all that magical. It is merely
a handler that is called by I/O hardware by putting the appropriate signal on
some pin of the 6812. This hardware is outside the direct control of the
program that you are writing. Interrupts are further considered in Chapter 11.

In this section we have studied the subroutine and its alternatives. The
subroutine is most often called by the BSR or JSR instruction, but it is occa-
sionally called using the JSR instruction with direct or index addressing to
achieve position independence. The SWI and RTI instructions call and return
from handlers, which are like subroutines but are also like user-defined
machine instructions. The hardware interrupt is a handler that is initiated by
a hardware signal rather than a program call. With these tools, you are ready
to modularize your programs into subroutines or equivalent program seg-

entry:  LDAA    #1 
        LDAB    #2 
        LDX     #3 
        LDY     #4 
        DC.W    $1831 ; TRAP #$31 
        LDX     #5 
        LDY     #6 
        DC.W    $1833 ; TRAP #$33 
        bra     *
        org     $FFF8
        dc.w    TRAP

FIGURE 6.46. Calling a Trap Handler



ments, so that each subroutine is more compact and comprehensible and so
that interactions between these subroutines are carefully controlled to prevent
unnecessary error propagation.

Summary
This chapter introduced the subroutine. It was dissected into parts to show
alternative techniques for each part. Stacked local variables were studied
along with alternatives for accessing local variables of nested program seg-
ments. Calling and returning mechanisms were studied, and the principal
one, using BSR and RTS, was shown to have several alternatives, including
ones that save the registers and restore them efficiently. Alternatives such as
SWI and TRAP were studied. We then turned to the techniques that are used
to pass arguments. The register, global, stack, in-line argument list, before
the subroutine entry point, and table techniques were considered.

You should now be able to write subroutines, call them, and pass argu-
ments to them in an effective manner. You should be prepared to use them
in the following chapters to manipulate data structures, perform arithmetic,
and interface to I/O hardware. Moreover, you should know how to approach
a problem using top-down design or how to test a module with a driver. The
need for the last two techniques is not apparent to the student who writes a
lot of small programs and never faces the problem of writing a large program.
When he or she does face that problem without the tools that we have intro-
duced, inefficiencies and chaos generally will be the result. We introduced
these techniques early and suggest that you use them whenever you can do
so, even if they are not absolutely needed.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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top-down design
calling and returning

mechanism
program segment
input parameter
input argument
output parameter
output argument
pass parameters
local variable
program segment
entry point
exit point
local variable

global variable
stacked local variable
binding
allocation
deallocation
accessing
initialized
extended local access
stack marker
calling routine
calling sequence
in-line argument list
after the call
case

call by value
call by result
call by reference
call by name
handler
software interrupt
SWI handler
debugger
monitor
breakpoint
emulate
hardware interrupts
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PROBLEMS

1. Write a program segment that evaluates the quadratic function ax2 + bx
+ c, where signed 16-bit arguments a, b, c, and x are stored on the stack
and are initialized to 1, 2, 3, and 4, respectively, by pushing 4, then 3,
then 2, and then 1, in the manner of Figure 6.7, and the output is stored
on the stack in a “hole” created by a LEAS -2,SP instruction before
the segment begins. In order to demonstrate local variables, as part of
your program segment, save 16-bit value ax2 in a 16-bit local variable
on the stack.

2. Write a shortest program segment that computes the parallel resis-
tance of two resistors R1 and R2, where unsigned 16-bit arguments R1
and R2 are stored in local variables, which are both initialized to 
100, by pushing 100 and then 100, and the result is stored on the stack
in a “hole” created by a LEAS -2,SP instruction, in the manner of
Figure 6.7. In order to demonstrate local variables, as part of your
program segment, store R1 times R2 in a 32-bit local variable on the
stack.

3. Write a program segment that evaluates the quadratic function ax2 + bx
+ c, where signed 16-bit arguments a, b, c, and x are stored in local 
variables PARA, PARB, PARC, and PARX on the stack, which are ini-
tialized to 1, 2, 3, and 4, respectively, and the output is returned in local
variable RESULT on the stack, in the manner of Figure 6.10. In order
to demonstrate local variables, as part of your program segment, store
ax2 in a 16-bit local variable on the stack.

4. Write a shortest program segment that computes the parallel resistance
of two resistors R1 and R2, where unsigned 16-bit arguments are stored
in local variables named R1 and R2, which are both initialized to 100
and the output is returned in register D, in the manner of Figure 6.10.
In order to demonstrate local variables, as part of your program segment,
store R1 times R2 in a 32-bit local variable on the stack.

5. Write a program segment that evaluates the quadratic function ax2 + bx
+ c, where signed 16-bit arguments a, b, c, and x are stored in local vari-
ables PARA, PARB, PARC, and PARX on the stack as outer segment local
variables, which are initialized to 1, 2, 3, and 4, respectively, and the
output is returned in register D, in the manner of Figure 6.13. In order
to demonstrate local variables, as part of your inner program segment,
store ax2 in a 16-bit local variable on the stack.

6. Write a shortest program segment that computes the parallel resistance
of two resistors R1 and R2, where unsigned 16-bit arguments are 
stored in outer segment local variables R1 and R2, which are both ini-
tialized to 100, and the output is returned in register D, in the manner
of Figure 6.13. To demonstrate local variables, as part of your inner
program segment, store R1 times R2 in a 32-bit local variable on the
stack.
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7. Write a program segment that evaluates the quadratic function ax2 + bx
+ c, where signed 16-bit arguments a, b, c, and x are stored in local vari-
ables PARA, PARB, PARC, and PARX on the stack as outer segment 
local variables, which are initialized to 1, 2, 3, and 4, respectively, and
the output is returned in register D, using a stack marker in the manner
of Figure 6.14. In order to demonstrate local variables, as part of 
your inner program segment, store ax2 in a 16-bit local variable on the
stack.

8. Write a shortest program segment that computes the parallel resistance
of two resistors R1 and R2, where unsigned 16-bit arguments are stored
in outer segment local variables R1 and R2, which are both initialized
to 100, and the output is returned in register D, using a stack marker in
the manner of Figure 6.14. In order to demonstrate local variables, as
part of your inner program segment, store R1 times R2 in a 32-bit local
variable on the stack.

9. Write a position-independent reentrant subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 8-bit arguments a, b,
c, and x are passed in registers A, B, (low byte of) Y, and (low byte of)
X, and the output is passed in A. In order to demonstrate local variables,
as part of your subroutine, store ax2 in an 8-bit local variable on the
stack. Write a calling sequence that loads 1 into A, 2 into B, 3 into Y,
and 4 into X; calls QUAD; and stores the result in global variable
ANSWER.

10. Write a shortest position-independent reentrant subroutine PAR that
computes the parallel resistance of two resistors R1 and R1, where
unsigned 16-bit arguments R1 and R2 are passed in registers D and Y
and the output is passed in D. In order to demonstrate local variables,
as part of your subroutine, store R1 times R2 in a 32-bit local variable
on the stack. Write a calling sequence that loads 100 into D and Y, calls
PAR, and stores the result in global variable ANSWER.

11. Write a position-independent reentrant subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b,
c, and x are passed in global variables PARA, PARB, PARC, and PARX
and the output is passed in global variable RESULT. In order to demon-
strate local variables, as part of your subroutine, store ax2 in a 16-bit
local variable on the stack. Write a calling sequence that loads 1 into
PARA, 2 into PARB, 3 into PARC, and 4 into PARX; calls QUAD; and
stores the result in global variable ANSWER.

12. Write a shortest position-independent reentrant subroutine PAR that
computes the parallel resistance of two resistors R1 and R2, where
unsigned 16-bit arguments R1 and R2 are passed in global variables R1
and R2 and the output is passed in global variable RESULT. In order to
demonstrate local variables, as part of your subroutine, store R1 times
R2 in a 32-bit local variable on the stack. Write a calling sequence that
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loads 100 into R1 and R2, calls PAR, and stores the result in global vari-
able ANSWER.

13. Write a shortest reentrant, position-independent subroutine SEARCH that
returns the number of times that the integer K appears in the vector Z
of length N and each element is 1 byte. If the address of Z is in X, the
value of K is in A, the value of N is in B, and the return value NUM is
left on the stack, SEARCH is called as in Figure 6.47.

14. Write a position-independent reentrant subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b,
c, and x are passed on the stack, named PARA, PARB, PARC, and PARX,
and the output is passed on the stack, named RESULT. In order to
demonstrate local variables, as part of your subroutine, store ax2 in a 16-
bit local variable on the stack. Write a calling sequence that pushes 1,
2, 3, and 4; calls QUAD; pulls the result from the stack; and stores the
result in global variable ANSWER.

15. Write a shortest position-independent reentrant subroutine PAR that
computes the parallel resistance of two resistors R1 and R2, where
unsigned 16-bit arguments are passed on the stack and named R1 and
R2, and the output is passed on the stack, named RESULT. In order to
demonstrate local variables, as part of your subroutine, store R1 times
R2 in a 32-bit local variable on the stack. Write a calling sequence that
pushes 100 twice, calls PAR, pulls the result from the stack, and stores
the result in global variable ANSWER.

16. Do the same thing as in problem 13, assuming that the input parameters
are passed after the call in the same order, while the parameter NUM is
returned on the stack as before. Do not use a BRA instruction before the
parameter list, but follow the style of Figure 6.27. Provide an example
of a calling sequence.

17. Write a position-independent reentrant subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b,
c, and x are passed after the call, named PARA, PARB, PARC, and PARX,
and the output is passed after the call, named RESULT. In order to
demonstrate local variables, as part of your subroutine, store ax2 in a 16-
bit local variable on the stack. Do not use a BRA instruction before the
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PSHA
PSHB
PSHX
CLR 1,-SP ; Hole for NUM
BSR SEARCH 
PULA ; Put NUM into A 
LEAS 4,SP ; Balance stack 

FIGURE 6.47. Program for Problem 13



parameter list but follow the style of Figures 6.25 and 6.26. Write a
calling sequence that writes 1, 2, 3, and 4 into PARA, PARB, PARC, and
PARX; calls QUAD; and moves the result to global variable ANSWER.

18. Write a shortest position-independent reentrant subroutine PAR that
computes the parallel resistance of two resistors, where unsigned 16-bit
arguments are passed after the call and named R1 and R2 and the output
is passed after the call, named RESULT. In order to demonstrate local
variables, as part of your subroutine, store R1 times R2 in a 32-bit local
variable on the stack. Do not use a BRA instruction before the parame-
ter list, but follow the style of Figures 6.25 and 6.26. Write a calling
sequence that writes 100 into R1 and R2, calls PAR, and moves the result
to global variable ANSWER.

19. One reason for not passing output parameters after the call is that a sub-
routine that calls another subroutine and has some parameters passed
back to it after the call will not always be reentrant. Explain why this is
so. Are there similar restrictions on input parameters?

20. Give an example of passing output parameters after the call where the
program can still be stored in ROM.

21. Write a subroutine to search an N-byte vector Z until a byte is found that
has the same bits in positions 0, 3, 5, and 7 as the word MATCH. The
address of Z is passed as the first entry AZ in a table, the value of MATCH
is passed below it in the table, the value of N is passed below it in the
table, and the address of the first byte found, ADDR, is passed below it
in a table. If no byte is found in Z with a match, $FFFF should be placed
in AZ. The address of the table is in X when the subroutine is called.

22. Write a position-independent reentrant subroutine QUAD that evaluates
the quadratic function ax2 + bx + c, where signed 16-bit arguments a, b,
c, and x are passed in a table, named PARA, PARB, PARC, and PARX;
and the output is passed in the table, named RESULT. The address of
the table is in X when the subroutine is called. In order to demonstrate
local variables, as part of your subroutine, store ax2 in a 16-bit local vari-
able on the stack. Write a calling sequence that writes 1, 2, 3, and 4 into
PARA, PARB, PARC, and PARX; calls QUAD; and moves the result to
global variable ANSWER.

23. Write a shortest position-independent reentrant subroutine PAR that
computes the parallel resistance of two resistors R1 and R2, where
unsigned 16-bit arguments are passed in a table, in elements R1 and R2,
and the output is passed in the same table in an element named RESULT.
In order to demonstrate local variables, as part of your subroutine, store
R1 times R2 in a 16-bit local variable on the stack. The address of the
table is in X when the subroutine is called. Write a calling sequence that
writes 100 into R1 and R2, calls PAR, and moves the result to global
variable ANSWER.
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24. Repeat problem 14, saving and restoring all the registers that were used.

25. Repeat problem 15, saving and restoring all the registers that were used.

26. Repeat problem 22, saving and restoring all the registers that were used.

27. Repeat problem 23, saving and restoring all the registers that were used.

28. How would the calling sequence of Figure 6.40 be modified if the sub-
routine SUB in Figure 6.41 replaced the LBRA instructions with

SUB DC.W SUB0-SUB
DC.W SUB1-SUB
DC.W SUB2-SUB

What are the advantages of doing this, if any?

29. A device driver is an operating system component that interfaces to an
I/O device. It has subroutines Init, Read, Write, and Ter-
minate. Subroutine Init is called when the I/O device is being pre-
pared for use, Subroutine Read is called to read data from the I/O
device, Subroutine Write is called to output data from the I/O device,
and Subroutine Terminate is called when the I/O device is no longer
needed. Write a program segment for the beginning of a position-
independent device driver, which, for an address in index register X,
JSR 0,X always executes the Init subroutine; JSR 4,X always
executes the Read subroutine; JSR 8,X always executes the Write
subroutine; and JSR 16,X always executes the Terminate sub-
routine, regardless of where the device driver is stored.

30. Write an instruction sequence that produces the same moves as the
instruction SWI and, in addition, sets the bits in the CC register in
exactly the same way.

31. Write a shortest trap handler whose opcode is $1830, to test whether a
2-byte number N is prime. The number N should be passed by value in
D and the carry bit should be returned set if N is prime. Write a program
segment that loads 11 into D, executes $1830, and branches if carry set
to location ISPRIME.

32. Write a shortest trap handler whose opcode is $1831 that evaluates the
quadratic function ax2 + bx + c, where signed 8-bit arguments a, b, c,
and x are passed in registers A, B, Y, and X, and the 16-bit output is
passed in D. In order to demonstrate local variables, as part of your
handler, store ax2 in an 8-bit local variable on the stack. Write a program
segment that loads 1 into A, 2 into B, 3 into Y, and 4 into X; executes
$1831; and stores the result in global variable ANSWER.

33. Write a trap handler whose opcode is $1832 that computes the parallel
resistance of two resistors R1 and R2, where unsigned 16-bit arguments
R1 and R2 are passed in registers D and Y and the 16-bit output is passed
in D. In order to demonstrate local variables, as part of your handler,
store R1 times R2 in a 32-bit local variable on the stack. Write a program
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segment that loads 100 into D and Y, executes $1832, and stores the
result in global variable ANSWER.

34. Write a position-independent trap handler, whose address is in $FFF8,
which branches to address PRIME if the trap instruction is $1830, to
address QUAD if the trap instruction is $1831, and to address PAR if the
trap instruction is $1832.
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This inexpensive Axiom PB68HC12A4 board is well suited to senior design,
and other prototyping projects. Its wire-wrap pins can be reliably connected
to external wire-wrap sockets and connectors.



This chapter deals with how one number crunches, using algebraic formu-
las, and how one writes subroutines for conversion between different bases,
expression evaluation, multiple-precision integer arithmetic, floating-point
arithmetic, and fuzzy logic.

The first section describes unsigned and signed multiplication and divi-
sion. Although the subroutines developed herein are in fact equivalent to
6812 instructions, so we don’t need them, they clearly illustrate the algo-
rithms used to execute these instructions inside a typical MPU, and easily
developed variants of these subroutines are usable on other MPUs that do
not have these instructions.

In the next section, we develop ways to convert integers between number
systems, such as binary and decimal. They are needed when you input
numbers from a terminal keyboard and output numbers to a terminal display.
A full comparison of conversion to binary is made, examining two different
possibilities and selecting the best, something that you can try to do in writing
any of your own subroutines for any purpose.

Sections 7.3 to 7.7 present a technique to write program segments that
evaluate algebraic expressions. The operations in the formulas are imple-
mented with macros. Expression evaluation translates to a sequence of macro
calls. You can hand expand these macros. The actual variables used in the
formula could be 32-bit integers, floating-point numbers, or any other type
of variable that the subroutines have been written to handle.

The 6812 does not have instructions to operate entirely on 32-bit data.
Section 7.6 shows how to perform 32-bit signed and unsigned integer arith-
metic, which is useful to one who uses a microprocessor in a numerical
control application. The fifth section deals with floating-point arithmetic.
These sections will provide subroutines that enable you to perform arithmetic
using these number systems.

Section 7.6 deals with fuzzy logic, for which the 6812 has special instruc-
tions. This section will give you some background so that you can describe
a fuzzy logic system and you can write assembly-language subroutines to
execute fuzzy logic.

After reading this chapter, you should be able to write multiplication and
division subroutines to deal with any precision, convert integers from one
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base to another, or write a sequence of instructions or subroutine calls to
evaluate any algebraic expression. You should understand the principles of
floating-point arithmetic and fuzzy logic to the point that you could write
subroutines for the usual floating-point and fuzzy logic operations.

Multiplication and Division
This section illustrates basic multiplication and division algorithms using the
6812 instruction set. Because there are 6812 instructions that give the same
results, these subroutines are not useful for this machine. However, for other
instruction sets that do not have multiply and divide instructions, these sub-
routines are the only ways to perform multiplication and division on these
machines. Finally, these subroutines provide an understanding of how the
operations can be implemented in a controller and how these operations can
be extended to higher precisions where the instructions at that level of pre-
cision may be unavailable in the microcontroller’s instruction set.

We first look at multiplication. BINMUL in Figure 7.1 does exactly the
same multiplication as the MUL instruction. It follows the familiar way you
learned to multiply on paper, as shown below for 4-bit binary numbers.
However, while you moved the partial products leftward as you multiplied
by more significant bits, BINMUL moves the partial product rightward to add
the same multiplier bits to the partial product in the same location, to avoid
the need for more hardware to line up the bits.
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   1010 
   0110
   0000 
  1010 
 1010 
0000

00111100

The 6812 MUL instruction takes three clock cycles. Neglecting the 
clock cycles for the BSR and RTS instructions, BINMUL takes 87 to 95 clock
cycles to execute the multiplication. This illustrates that generally, hardware
operations are 10 to 100 times faster than the same operations done in 
software.

Turning to the division of unsigned integers, the subroutine of Figure 7.2
divides the unsigned contents of B, called the dividend, by the unsigned 
contents of A, called the divisor, returning the quotient in B and the 
remainder in A. Four-bit binary division by hand is shown below to divide
6 into 13.



*
* BINMUL multiplies the two unsigned numbers in A and B, putting 
* the product in D. Register Y is unchanged.
*
BINMUL: PSHA ; Save first multiplier 

CLRA ; Accumulator D will become the product 
LDX  #8 ; Count out 8 loops

*
LOOP: CLC ; Clear carry, if not adding first number 

BITB #1 ; If multiplier bit is 1 
BEQ SHIFT

*
ADDA 0,SP ; Add first number 

*
SHIFT: RORA ; Shift 16 bits, feeding carry back into sum 

RORB
*

DBNE X,LOOP ; Count down, repeat
*

LEAS 1,SP ; Balance stack
 RTS 
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FIGURE 7.1. An 8-Bit Unsigned Multiply Subroutine

         0010
0110 ) 0001101 
      0000 
       0011 

       0000 
        0110 
        0110 
         0001 
         0000
         0001 

Whereas the hand method shifts the remainders right, the program in Figure
7.2 shifts bits of A : B left to line up the divisor with the remainder bits. If
the divisor can be subtracted from A without a borrow, 1 is put in the right-
most bit of B and we do the subtraction; otherwise 0 is put in B. Repeat this
shift-subtract process to get the remainder in A and the quotient in B.

The shift left on D can be done with ASLD, which always puts a zero in
the rightmost bit of B. If the divisor can be subtracted from A without a carry,
one needs to execute INCB and perform the subtraction from A. The com-
plete subroutine is shown in Figure 7.2. You should be able to see how to
adapt this subroutine for, say, dividing two unsigned 16-bit numbers or an
unsigned 16-bit number by an 8-bit one. (When the dividend and the divisor
are of different lengths, one has to check if a one has been shifted out when
the state is shifted left, and if so, the divisor should be subtracted from 
the remainder part of the state. This prevents the remainder from being 
truncated.)



We now discuss briefly the multiplication and division of signed integers
with a special look at the multiplication of 8-bit signed integers. Using the
usual rule for the sign of the product of two signed numbers, we can extend
the multiplication subroutines of this section in a straightforward way to
handle signed integers. Extending the subroutines for division in this way is
also straightforward after recalling that the sign of the remainder is the same
as the sign of the dividend and that the sign of the quotient is positive if the
signs of the dividend and divisor are equal; otherwise, it is negative.

There are also algorithms to multiply n-bit signed integers directly. 
We leave the details of this to more advanced treatments of arithmetic,
because it is quite easy to modify any of the subroutines that we have pre-
sented for unsigned integers to work for signed integers. We illustrate the
technique by showing how to modify the results of the MUL instruction to
obtain an 8-bit signed multiply of A and B, which are 8-bit signed integers
located in registers A and B. Suppose A is represented as bits a7, . . . , a0 and
B is represented as b7, . . . , b0. Then the numerical value of signed number
A is

A = -a7 * 27 + a6 * 26 + [. . .] + a0 * 20

Now, by adding a7 * 28 to both sides, thereby making a7 * 28 + -a7 * 27 = a7

* 27, we get, from the previous expression

(A + a7 * 28) = a7 * 27 + a6 * 26 + [. . .] + a0 * 20

(This addition of a constant to a number is called biasing.) We recognize this
equation’s right side as an unsigned number A. It can be input to the MUL
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* DIVIDE divides the l-byte unsigned number in B (dividend or numerator) by the 
* l-byte unsigned number in A (divisor or denominator), putting the quotient in B
* and the remainder in A. Register Y is unchanged.
*
DIVIDE: PSHA ; Save divisor 

CLRA ; Expand dividend, fill with zeros
 LDX #8 ; Initialize counter
*
LOOP: ASLD ; Shift dividend and quotient left
*
 CMPA 0,SP ; Check if subtraction will leave positive rslt
 BLO JUMP ; If so
*
 SUBA 0,SP ; Subtract divisor
 INCB ; Insert 1 in quotient
*
JUMP: DBNE X,LOOP ; Decrement counter
*
 LEAS l,SP ; Balance stack

RTS ; Return with quotient in B, remainder in A 

FIGURE 7.2. An 8-Bit Unsigned Divide Subroutine
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* SGNMUL multiplies the l-byte signed number in B by the l-byte signed number in 
* A, putting the product in accumulator D. Registers X and Y are unchanged.
*
SGNMUL: PSHD ; Save two bytes to be multiplied
 MUL ; Execute unsigned multiplication
 TST 1,SP ; If first number is negative
 BPL L1 ; Then
 SUBA 0,SP ; Subtract second number
L1: TST 0,SP ; If second number is negative
 BPL L2 ; Then
 SUBA 1,SP ; Subtract first number
L2: LEAS 2,SP ; Balance stack
 RTS ; Return with product in accumulator D 

a. Using MUL 

* SGNMUL multiplies the l-byte signed number in B by the l-byte signed number in 
* A, putting the product in accumulator D. Register X is unchanged.
*
SGNMUL: SEX A,Y ; Move one multiplier to Y, sign extending it

SEX B,D ; Sign extend the other multiplier 
EMULS ; Put the low-order 16-bits in D 

 RTS ; Return with product in accumulator D 

b. Using EMULS 

instruction, which actually multiplies unsigned A times unsigned B. The
result in accumulator D is

(A + a7 * 28) * (B + b7 * 28) (1)

which, by multiplying out the terms, is

A * B + a7 * B * 28 + b7 * A * 28 + a7 * b7 * 216 (2)

The expression (2) is what MUL gives, and A * B is what we want. We see
that to get the first term A * B from (2) requires subtracting the two middle
terms of (2) from accumulator D. The rightmost term of (2), 216, does not
appear in D and can be ignored. The subroutine SGNMUL in Figure 7.3a
adjusts the product in D, where we note that 28 * B means shift B left 8 bits.
To subtract 28 * B or 28 * A from accumulator D, we subtract B or A from
accumulator A. SGNMUL multiplies the signed contents of accumulator A
with the signed contents of accumulator B, putting the signed result in D.
The Z bit is not set correctly by SGNMUL, however.

Another approach to multiplication of signed 8-bit numbers is to use
signed 16-bit multiplication available in the EMULS instruction (Figure 7.3b).
This method is far better on the 6812, because the EMULS instruction is avail-
able, but the former method is useful on other machines and shows how
signed multiplication is derived from unsigned multiplication having the

FIGURE 7.3. An 8-Bit Signed Multiply Subroutine



same precision. A modification of it is used to multiply 32-bit signed
numbers, using a procedure to multiply 32-bit unsigned numbers.

Integer Conversion
A microcomputer frequently communicates with the outside world through
ASCII characters. For example, subroutines GET and PUT allow the MPU
to communicate with a terminal, and this communication is done with ASCII
characters. When numbers are being transferred between the MPU and a ter-
minal, they are almost always decimal numbers. For example, one may input
the number 3275 from the terminal keyboard, using the subroutine GET, and
store these four ASCII decimal digits in a buffer. After the digits are input,
the contents of the buffer would be
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While each decimal digit can be converted to binary by subtracting $30
from its ASCII representation, the number 3275 still has to be converted to
binary (e.g., $0CCB) or some other representation if any numerical compu-
tation is to be done with it. One also has to convert a binary number into an
equivalent ASCII decimal sequence if this number is to be displayed on the
terminal screen. For example, suppose that the result of some arithmetic
computation is placed in accumulator D, say, $0CCB. The equivalent
decimal number, in this case 3275, must be found and each digit converted
to ASCII before the result can be displayed on the terminal screen. We focus
on the ways of doing these conversions in this section.

One possibility is to do all of the arithmetic computations with binary-
coded decimal (BCD) numbers, where two decimal digits are stored per byte.
For example, the BCD representation of 3275 in memory would be

$32
$75

$33
$32
$37
$35

� 7.2

Converting between the ASCII decimal representation of a number to or from
equivalent BCD representation is quite simple, involving only shifts and the
AND operation. With the 6812, it is a simple matter to add BCD numbers;
use ADDA or ADCA with the DDA instruction. Subtraction of BCD numbers
on the 6812 must be handled differently from the decimal adjust approach
because the subtract instructions do not correctly set the half-carry bit H in
the CC register. (See the problems at the end of the chapter.) For some appli-
cations, addition and subtraction may be all that is needed, so that one may
prefer to use just BCD addition and subtraction. There are many other situ-



ations, however, that require more complex calculations, particularly appli-
cations involving control or scientific algorithms. For these, the ASCII
decimal numbers are converted to binary because binary multiplication and
division are much more efficient than multiplication and division with BCD
numbers. Thus we convert the input ASCII decimal numbers to binary when
we are preparing to multiply and divide efficiently. However, depending on
the MPU and the application, BCD arithmetic may be adequate so that the
conversion routines below are not needed.

We consider unsigned integer conversion first, discussing the general idea
and then giving examples of conversion between decimal and binary repre-
sentations. A brief discussion of conversion of signed integers concludes this
section. The conversion of numbers with a fractional part is taken up in a
later section.

An unsigned integer N less than bm has a unique representation

N = cm-1 * bm-1 + cm-2 * bm-2 + [. . .] + c1 * b1 + c0 (3)

where 0 £ ci < b for 0 £ i < m. The sequence cm-1, . . . , c0 is called an m-
digit base-b representation of N. We are interested in going from the repre-
sentation of N in one base to its representation in another base. There are
two common schemes for this conversion that are based on multiplication
and two schemes that are based on division. Although one of the division
schemes is taught in introductory logic design courses and you are likely 
to select it because you know it well, it does not turn out to be the most 
efficient to implement in a microcomputer. We study two schemes that suit
the 6812, and then complete the programming of each to find the most 
promising one.

The two multiplication schemes simply carry out (3), doing the arithmetic
in the base that we want the answer in. There are two ways to do this. Either
evaluate expression (3) as it appears or else nest the terms as shown.

N = ([. . .](0 + cm-1) * b + cm-2) * b + [. . .] + c1) * b + c0 (4)

The other two schemes involve division. Notice from (3) that if you divide
N by b, the remainder is c0. Dividing the quotient by b again yields c1, and
so forth, until one of the quotients becomes 0. In particular, if one has a 
base-r representation of N and wants to go to a base-b representation, divi-
sion of N by b is done in base-r arithmetic. You are probably familiar with
this technique because it is easy to go from a decimal representation to any
base with it using a calculator, because the calculator does decimal arith-
metic. The other scheme using division simply divides the number N,
assumed to be less than bm, by bm-1, so that the quotient is the most signifi-
cant digit cm-1. Dividing the remainder by bm-2 produces the next most sig-
nificant digit, and so on. We will also consider these schemes below. Which
of these schemes is best for microcomputers? We now look more closely at
each for conversion between decimal and binary bases.

Consider first the multiplication scheme that evaluates formula (3)
directly. Suppose that N4, . . . , N0 represent 5 decimal digits stored in a buffer
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pointed to by X. Assume that these 5 decimal digits have been put in from
the terminal using GET so that each digit is in ASCII. Then

N4 * 104 + N3 * 103 + [. . .] + N0 * 100 (5)

is the integer that we want to convert to binary. To carry out (5) we can store
constants

K: dc.w 10000,1000,100,10,1

and then multiply N4 times (K) : (K + 1), N3 times (K + 2) : (K + 3), and so
on, summing the results in D. The subroutine shown in Figure 7.4 does just
that, indicating an overflow by returning the carry bit equal to 1. The multi-
plication scheme in Figure 7.4 takes advantage of the fact that the assembler
can convert 104 through 100 into equivalent 16-bit binary numbers using the
dc.w directive.

Looking at the second multiplication conversion scheme applied to our
present example, we rewrite the decimal expansion formula (5) as (6).

[([(0 + N4) * 10 + N3]* 10 + N2) * 10 + N1] * 10 + N0 (6)
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*
* SUBROUTINE CVDTB puts the unsigned equivalent of five ASCII decimal digits
* pointed to by X into D.
*
SCRATCH: ds.b 6 ; Scratch area for product and multiplier
K: dc.w  10000,1000,100,10,1 ; Coefficient Vector
*
CVDTB: LDAB #6 ; Clear scratch area
 LDY #SCRATCH 
C1: CLR  1,Y+ 
 DBNE B,C1 
*
 LDAB #5 ; Five terms to be evaluated
 LDY #K ; Constants in vector K, Y = multiplicand address
*
C2: LDAA 1,X+  ; Next ASCII digit into A 

PSHX ; Save pointer for next character
 SUBA #$30 ; ASCII to binary
 STAA SCRATCH+5 ; Save in last byte in scratch
 LDX #SCRATCH+4 ; Get address of multiplier 

EMACS SCRATCH ; Multiply and accumulate
LEAY 2,Y ; Next multiplicand address 
PULX ; Restore pointer for next character
DBNE B,C2 ; Count down and loop

 LDD SCRATCH+2 ; Get number
 RTS ; Return to Caller 

FIGURE 7.4. Conversion from Decimal to Binary by Multiplication by Powers
of 10



Doing our calculations iteratively from the inner pair of parentheses, we
can get the same result as before without storing any constants. A subrou-
tine that does this is shown in Figure 7.5. In this subroutine, there is only
one local variable, except for a program sequence to save the low 16 bits of
the sum, so that the binding process can be omitted. If we compare the two
subroutines, we see that the second one has the clear edge in terms of lines
of code or static efficiency, particularly if you consider the 10 bytes used by
the dc.w directive in the first subroutine. Furthermore, if one wanted to
convert a 10-digit decimal number to a 32-bit binary number, the difference
in the static efficiencies of these two multiplication techniques would become
even more pronounced. For example, a 40-byte table of constants would be
needed for the analog of the subroutine of Figure 7.4, an increase of 30 bytes
that is not needed by the corresponding analog of Figure 7.5’s subroutine.
Finally, each subroutine can take the ASCII decimal digits directly from 
the terminal, using subroutine GET, effectively accessing the digits as a 
character sequence rather than a vector. (See the problems at the end of the
chapter.)

To send an answer as an ASCII character string to a printer, display, or
modem after binary results are obtained, conversion from binary to decimal
is needed. There are six alternative approaches. Rather than illustrating again
the coding of each approach and comparison of their static efficiencies to
determine which is best, we will show only the best approach, a recursive
subroutine shown in Figure 7.6. Examination of (6) shows that if you divide
the binary number N by 10, the remainder is N0, the least significant digit,
which can be converted to an ASCII character by adding the constant $30.
The quotient can be passed to this same subroutine to get out the next least

Section 7.2 Integer Conversion 201

* CVDTB converts the five ASCII decimal digits, stored at the location 
* contained in X, into an unsigned 16-bit number stored in D. 
*
CVDTB: CLRA ; Generate 16-bit zero 
 CLRB  ; Which becomes the result
 LEAY 5,X ; Get address of end of string
 PSHY  ; Save it on stack
*
C2: LDY #10 ; Multiply previous by 10
 EMUL ; Multiply D * Y 

PSHD ; Low 16 bits of product to stack
LDAB 1,X+ ; Next ASCII digit into B 
SUBB #$30 ; ASCII to binary
CLRA ; Extend to 16 bits
ADDD 2,SP+ ; Add previous result
CPX 0,SP ; At end of ASCII string?
BNE C2 ; No, repeat
PULY ; Balance the stack
RTS ; Return to caller 

FIGURE 7.5. Conversion from Decimal to Binary by Multiplication by 10



significant digit, and this can be repeated recursively until the quotient
becomes zero. Observe that CVBTD recursively calls itself to store the char-
acters, representing the number in decimal, into a buffer. Register Y should
point to the byte just beyond the buffer, and the buffer should be preloaded
with space characters to blank out the characters not written by CVBTD.

Conversion of signed numbers is straightforward once the foregoing tech-
niques are understood. This conversion can be done strictly by the formula
that defines the signed number, as done above for unsigned numbers, or the
signed number can be expressed as a sign and a magnitude, and the magni-
tude can be converted as before because it is an unsigned number. The idea
of conversion is quite general. You can convert to base 12 or from base 12
using any of these ideas. You can convert between the time in a week
expressed in days of the week, hours, minutes, and seconds and the time of
the week in seconds represented in binary. This type of conversion is similar
to going between a binary sector number and a disk track sector number,
something that becomes important if you are involved in writing disk con-
troller programs. Conversion can be met in unexpected places, and with the
techniques of this section, you should be able to handle any integer conver-
sion problem.

An important aspect of this discussion is the manner in which a software
engineer approaches any problem in general and a numeric problem in par-
ticular. The general rule is to learn about all the algorithms that can be used
to solve the problem. In algebraically specified problems such as conversion
between number systems, the algorithms are described by different formu-
las. The software engineer researches all the formulas that have been applied
to the problem. For example, we found that formulas (3) and (4) apply to
number system conversions. Then the different programming styles, such as
storing coefficients in a table, generating the required constants by a sub-
routine, and using loops or recursion, can be attempted to derive different
programs. The shortest, fastest, or clearest program is then selected for the
application.
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* CVBTD converts unsigned binary number in D into up to five ASCII 
* decimal digits ending just below the location passed in Y, using recursion.
*
CVBTD:  LDX #10 ; Divisor

IDIV ; Unsigned D / X -> quotient to X, remainder to D
ADDB #$30 ; Convert division’s remainder to ASCII
STAB 1,-Y ; Store ASCII character in buffer
TFR X,D ; Put quotient in D
TBEQ D,L1 ; If zero, just exit
BSR CVBTD ; Convert quotient to decimal (recursively)

L1: RTS ; Return

FIGURE 7.6. Conversion from Binary to Decimal by Recursive Division 
by 10



From Formulas to Macro Programs
We now develop techniques to write 6812 instructions and subroutine calls
to carry out arithmetic operations on integer or floating-point numbers,
namely, +, -, *, and /. These could be extended to implement functions we
meet in engineering, such as sin(x), cos(x), log(x), (x)2, yz, and so on. In a
given application, we might have to write a program segment to evaluate a
complicated formula involving these operations, for example,

z = (x + 2 * y)/(sin(u) + w) (7)

This section examines a general technique to write such a program segment.
We will discuss macros, macro programs, and an abstract stack. The macro
programs could be a sequence of macros that are input as source code for
the macro assembler (§5.4). Or the macro instructions could be “expanded
by hand,” meaning that as you read the macro instructions you write the non-
macro 6812 instructions that would be produced by the assembler when it
expands the macro. The abstract stack could be implemented by the 6812
hardware stack that stores return addresses, local variables, and subroutine
parameters, although it doesn’t have to be, and in fact it will not exactly be
this hardware stack. Herein a macro represents a well-defined operation on
the abstract stack. Each macro can be expanded into 6812 instructions that
carry out that operation.

For simplicity, we will assume that all operands used in the formula are
the same type, either 8-bit, 16-bit, or 32-bit long integers or single-
precision floating-point numbers. Instructions are selected or subroutines are
written so that all the values of the operands are pushed on the stack before
the subroutine call, and the result will always be left on top of the stack after
the return. To place these parameters on the stack, a macro PUSH ADDR
will push the 1-byte, 2-byte, or 4-byte number at address ADDR onto the
stack, low byte first. Similarly, a macro PULL ADDR will pull a 1-byte, 2-
byte, or 4-byte number off the stack, high byte first, and place it at the address
ADDR.

Monadic operations have but one operand. All monadic operations will
use the top element of the abstract stack as the input operand and will replace
that top element with the result of the operation (Figure 7.7a). Dyadic oper-
ators have two operands. All dyadic operators will pop two elements from
the stack, operate on them to get a result, and will then push the result of the
operation back on the stack (Figure 7.7b).

Variables x, y, u, w, and z are at addresses X, Y, U, W, and Z, respectively,
and the constant 2 is at address K2. This can be implemented with the 
directives in (8). We can evaluate (7) with the macro program (9), where the
symbolic names of the variables are in (8). In this segment, MULT, ADD, and
DIV are dyadic macros to multiply, add, and divide floating-point numbers,
while SIN is a monadic macro to calculate the sine of a floating-point
number.
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X: DS.L 1
Y: DS.L 1
U: DS.L 1 (8)
W: DS.L 1
Z: DS.L 1
K2: DS.L 2

Figure 7.8 shows a picture of the stack after each operation is done to eval-
uate expression (7). The first three operations push the number X, the con-
stant 2 (i.e., K2), and the number Y. Then the top two elements are multiplied,
and then the top two elements are added. U is pushed, and the sine function
is executed. W is pushed, the top two elements are added, and then the top
two elements are divided. Finally the result is written into the variable Z.
These operations are described in the macro program (9).

PUSH X
PUSH K2
PUSH Y
MULT
ADD
PUSH U
SIN
PUSH W
ADD
DIV
PULL Z (9)
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Input

Before the Call  

Result

After the Call

top -> top ->

a. One Operand Operations

Input 2 

Before the Call  After the Call

Input 1 

Result

top ->

top ->

b. Two Operand Operations

FIGURE 7.7. Passing Parameters on the Stack
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PUSH X PUSH K2 PUSH Y

x x

2

x

2

y

x

2 * y 

MULT

ADD PUSH U SIN 

x + 2 * y x + 2 * y 

u

x + 2 * y 

sin(u)

w

x + 2 * y 

sin(u)

PUSH W

ADD DIV PULL Z

x + 2 * y z

sin(u) + w

FIGURE 7.8. Stack Movement When Evaluating (7)

How does one write a macro program segment (9) to evaluate formula or
expression (7)? The method comes from the work of the Polish logician Jan
Lucasiewicz, who investigated ways of writing expressions without using
parentheses. With his technique, referred to as Polish notation, one would
write (7) as

z = x 2y * + w sin(u) + / (10)

Notice that when reading (10) from left to right, each variable name gener-
ates a PUSH in (9) and each operator generates a macro to do that operation
in (9). Segments (9) and (10) are really only different formats used to
describe the same operations done on the data. We will avoid the side 
step of generating the Polish notation and generate the macro programs
directly. We soon show a simple method to write a macro program for any
expression.

The way to display a formula by parsing it into its basic operations uses
a binary tree as we will use again in §10.4. Any operation with two operands,
such as +, has a tree with two branches and nodes whose values are the
operands for the operation. For example, the result of x + y and x * y are
represented by the trees



Formula (7)’s tree is shown in Figure 7.9. The bottom line shows the
original expression. Bottom-up parsing identifies operations that can be done
first and builds a tree above them, revealing other operations that can be
done, and so on. Top-down parsing builds the tree from the top, which iden-
tifies the last operation that produces the final result, and so on. The result-
ing tree is represented by the solid lines, and the dashed lines associate the
tree nodes and the expression’s symbols they came from.

The reader is invited to draw these parsing trees for the formulas given
in the problems at the end of the chapter. Note that a parsing tree is really 
a good way to write a formula because you can see “what plugs into what”
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FIGURE 7.9. Finding a Parsing Tree for (7)
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If the operation has only one operand, the operation is displayed as a tree
with only one branch. For example, sin(y) and sqrt(x) (for “square root of
x”) have trees

If your formula is more complicated than those shown above, you just plug
in the results of one tree where the operand appears in the other tree. For
instance, if you want the tree for sqrt(x + y), just substitute the tree for x +
y into the node; for example,



better than if you write the formula in the normal way. In fact, some people
use these trees as a way to write all of their formulas, even if they are not
writing programs as you are, because it is easier to spot mistakes and to
understand the expression. Once the parsing tree is found, we can write 
the sequence of macros in the following way. Draw a string around the tree,
as shown in Figure 7.10. As we follow the string around the tree, a macro
such as ADD or PUSH is made each time we pass a node for the last time 
or, equivalently, pass the node on the right. When a node with an operand 
is passed, we execute the macro PUSH for that operand. When a node 
for an operation is passed, we execute a macro for that operation. Compil-
ers use parsing trees to generate the subroutine calls to evaluate expressions
in high-level languages. The problems at the end of the chapter give you 
an opportunity to learn how you can store parsing trees the way that a 
compiler might do it, using techniques from the end of Chapter 6, and how
you can use such a tree to write the sequence of macros the way a compiler
might.

As a second example, we consider a program evaluating the consecutive
expressions

delta = delta + c
s = s + (delta * delta)

These can be described by the trees
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The macros for these consecutive expressions are shown in (11):

PUSH DELTA
PUSH C
ADD
PULL DELTA
PUSH S
PUSH DELTA
PUSH DELTA
MULT
ADD
PULL S (11)

The example above is easy to work through once you have studied the
example for (7). Note, however, that a lot of pushing and pulling is done
between the variable locations and the stack. Seven of the ten macros merely
move data to or from the stack, and three do arithmetic operations. It might
be more efficient to use another technique for simple problems like this one.
But we will show that optimization techniques significantly improve the effi-
ciency of this technique. The stack method handles more complicated situ-
ations, which offers a completely general systematic technique for evaluating
expressions. Optimization produces efficient programs from the macro
program.

Simple Macro Expansions
The parsing tree and macro program technique described in the previous
section generates the commands to use a Hewlett-Packard calculator or 
to program a RISC computer. We discuss these implementations first. This
leads to the discussion of the way the macros should be expanded in the
6812.

In the calculator, as you circumnavigate the tree in Figure 7.10, when you
pass a node with a variable name the last time you see it, press the calcula-
tor buttons to enter the number, and as you pass a node with an operator the
last time you see it, press the calculator buttons to do that operation. You
enter X, enter 2, and enter Y, and then press the add key, the multiply key,
and enter the value of U, and so on.

In a RISC computer having data registers r0,r1,r2, . . . , each PUSH
macro would assign the next numbered register, starting with register r0.
Evaluation of (7) would begin by loading X into r0, 2 into r1, and Y into
r2. Then an add instruction, add r1,r2, would add the top two members
of the abstract stack, r1 and r2, putting the result into the lower-numbered
register r1, and freeing up the higher numbered register r2. Then the mul-
tiply instruction, MUL r0,r1, would multiply the top two members of the
abstract stack, r0 and r1, putting the result into the lower-numbered regis-
ter r0, and freeing up the higher numbered register r1. Continued valua-
tion of (7) would load U into r1, and so on.
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PSHB ; Move the top element to the second-to-top
LDAB ALPHA ; Read in the top element on the abstract stack

a. Push

STAB ALPHA ; Write out the top item on the abstract stack
PULB ; Move the second-to-top to the top element 

b. Pull

FIGURE 7.11. PUSH and PULL Macro Expansions for 8-Bit Data

Inside the calculator, a hardware counter addresses a small RAM, which
operates as a stack pointer. In the RISC computer, there is a “stack pointer”
in the programmer’s head that determines which register is to be used to hold
the next operand or operation result.

The RISC machine has a limit to how many operands can be stored in
the registers. If a formula needs to be evaluated which requires saving more
operands, a hardware stack like the 6812 stack pointed to by SP can be used
to store the excess data that won’t fit in the registers, and the macro instruc-
tion expansions can be written to take care of the movement of data between
the registers, containing the top elements in the abstract stack, and the hard-
ware stack, containing the “overflow” elements of the abstract stack that
don’t fit in the registers. This stack in memory is the overflow stack.

The idea developed in the previous paragraph can be adapted to the 6812,
but that machine can effectively store only one element, the very top element
of the abstract stack, in a register. If the stack stores 1-byte operands, the top
element is stored in accumulator B, if the stack stores 2-byte operands, the
top element is stored in accumulator D, if the stack stores 4-byte operands,
the top element is stored in register Y (high 16 bits) and accumulator D (low
16 bits). Storage of the top 32-bit element in this manner is consistent with
the way the 6812 handles 32-bit data for EMUL and similar instructions. The
remaining elements of the abstract stack are stored in memory in the hard-
ware stack pointed to be SP (the overflow stack).

Storing the top element of the abstract stack in a register produces effi-
cient programs for the 6812 because monadic and dyadic operators get one
of their operators from the top element of the abstract stack and put their
results into the top element of the abstract stack. This is suited to the 6812
instruction set, in which many instructions have one input argument in a reg-
ister and put the output in a register.

Consistent with this implementation of the abstract stack, an element is
pushed onto it by first moving its top element to the next-to-top element,
which is done by the PSHB instruction, and then moving the data from
memory to its top element, using a LDAB instruction (Figure 7.11a). Note
that the PSHB instruction seems to be in the wrong place, until it is seen as
an instruction that moves the top element to the second-to-top element, which
is the top element of the overflow stack. Pulling an item from the abstract



stack reverses the operation of pushing, as is shown in Figure 7.11b. The top
item is stored, and then the second-to-top item is moved to the top of the
abstract stack by the instruction PULB.

Macros are expanded for 8-bit arithmetic on the 6812 as shown in Figure
7.12. Figure 7.12a shows a parsing tree, Figure 7.12b shows data storage,
Figure 7.12d shows the macro program, and Figure 7.12e shows the 6812
program for unsigned 8-bit operands. Note the pairs of instructions that
expand the PUSH macro instruction, and the instructions, pairs of instruc-
tions, or subroutine calls, that result from other expansions.
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X * W

2 Y

LX:  DC.B 1 
LY:  DC.B 1 
LW:  DC.B 1 
LZ:  DC.B 1 
K2:  DS.B 2 

PUSH LX 
PUSH K2 
PUSH LY 
MULT
ADD
PUSH LW 
NEG
DIV
PULL LZ 

Z

b) Data for 8-bit 

a) Parsing tree 

d) Macro program 
e) 6812 
for 8-bit 

LX:  DC.W 1 
LY:  DC.W 1 
LW:  DC.W 1 
LZ:  DC.W 1 
K2:  DS.W 2 

PUSH LX 
PUSH K2 
PUSH LY 
MUL
ADD
PUSH LW 
NEG
DIV
PULL LZ 

c) Data for 16-bit 

d) Same Macro 
program

f) 6812 
for 16-bit operands 

-

PSHD
LDD  LX 
PSHD
LDD K2
PSHD
LDD LY
PULY
EMUL
ADDD 2,SP+
PSHD
LDD LW
BSR NEG 
BSR DIV 
STD LZ
PULD

PSHB
LDAB  LX
PSHB
LDAB K2 
PSHB
LDAB LY 
PULA
MUL
ADDB 1,SP+
PSHB
LDAB LW 
NEGB
BSR DIV 
STAB LZ 
PULB

FIGURE 7.12. Generating Code for Arithmetic on the 6812



Figure 7.12c shows data storage, and Figure 7.12f shows the implemen-
tation of the abstract stack macro expansions for 16-bit data. A push and pull
macro expansion would be similar to Figure 7.11’s expansions with D replac-
ing B, and negation would be implemented as a subroutine call because 16-
bit negation requires a couple of instructions. You generally implement more
complicated macro expansions as subroutines, so that the program just has
code to call the subroutine. Perform macro expansions in the program if the
instructions are short, but call subroutines if the expansion is long. The
advantages of an abstract stack should now be apparent. Without knowing
what hardware, a calculator, RISC computer, or 6812, and, for the latter, what
data word widths will be used, we can write the same macro programs in the
first step of evaluating the expression. Later we can expand the macros
depending on the target.

Long Integer Arithmetic
While the 6812 has many instructions for 8-bit and 16-bit data, 32-bit data
are generally manipulated in subroutines. We now develop some represen-
tative 32-bit arithmetic subroutines. We will use the stack discussed in the
last section for storage of intermediate results, to provide generally useful
subroutines. Figure 7.13 illustrates the expansion of macros for 32-bit data
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LX:  DC.L 1 
LY:  DC.L 1 
LW:  DC.L 1 
LZ:  DC.L 1 
K2:  DS.L 2 

PUSH LX 
PUSH K2 
PUSH LY 
MUL
ADD
PUSH LW 
NEG
DIV
PULL LZ 

PSHD
PSHY
LDY  LX 
LDD  LX+2 
PSHD
PSHY
LDY  LX 
LDD  LX+2 
PSHD
PSHY
LDY  LX 
LDD  LX+2 
BSR  MUL
BSR  ADD
PSHD
PSHY
LDY  LX 
LDD  LX+2 
BSR NEG 
BSR DIV 
STY LZ
STD LZ+2
PULY
PULD

b) Data Storage 

c) Macro program 

d) 6812
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FIGURE 7.13. Generating Code for 32-Bit Arithmetic on the 6812



in Y (high 16 bits) and D (low 16 bits). The pair of registers 4 and D will
be called register L, just like accumulators A and B are also known as accu-
mulator D.

Pushing and pulling can be done by loading and storing register L, in a
manner that is similar to B (Figure 7.12e). Figure 7.13d uses subroutines to
multiply, add, negate, and divide. We show these subroutines below.

A 4-byte addition subroutine is merely the program segment in Figure
2.5 adapted to this section’s abstract stack conventions (Figure 7.14). Note
that, since the abstract stack shortens when a dyadic operation is done, the
overflow stack has to shorten. Because the return address is on top of this
overflow stack, it has to be pulled, and the subroutine return is handled in a
manner similar to the subroutine in Figure 6.25.

A 32-bit negate subroutine is shown in Figure 7.15. We subtract register
L from 0, putting the result in L.

Multiplication and division develop results that have different lengths
than their input arguments. A principle of closure, common in mathematics,
is often applied to programs. In mathematics we say that “integers are closed
under addition,” meaning that if we add two integers, the result is always an
integer. Similarly, when we multiply two 32-bit numbers, the product should
be 32 bits to satisfy “closure.” Figure 7.16 illustrates that this means only
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* Subroutine ADD adds the top two 32-bit numbers on the stack
*
ADD: PULX  ; Get return address, since stack changes size

ADDD 2,SP ; Add low 16 bits of operand
XGDY ; Get high 16-bits
ADCB 1,SP ; Add next 8 bits of operand
ADCA 4,SP+ ; Add operand high byte, remove 4 bytes from stack
XGDY ; Replace high 16-bits
JMP 0,X ; Return to caller 

FIGURE 7.14. Add Subroutine for 32-Bit Numbers

* Subroutine NEG negates the 32-bit number in L.
*
NEG: PSHY ; Save high 16 bits

PSHD ; Save low 16 bits, which are used first
CLRA ; Clear accumulator D 
CLRB
SUBD 2,SP+ ; Pull low 16 bits, subtract from zero 
TFR D,Y ; Save temporarily in Y
LDD #0 ; Clear accum. D, without changing carry
SBCB 1,SP ; Subtract next-to-most-significant byte
SBCA 2,SP+ ; Subtract most-significant byte, balance stack
XGDY ; Restore low and high 16-bits
RTS ; Return with result in register L 

FIGURE 7.15. A 32-Bit Negation Subroutine
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M(hi) M(low)

N(hi) N(low)

N(low) * M(low) 

N(hi) * M(low)

N(low) * M(hi)

Product

FIGURE 7.16. Multiplication of 32-Bit Numbers

the low-order parts of the partial products are kept for the result. The oper-
ations that do not affect the result may be omitted altogether. This strategy
leads to the coding of multiplication in Figure 7.17.

Four-byte multiplication takes advantage of the EMUL instruction. The
general 32-bit by 32-bit unsigned case is illustrated in Figure 7.16 and
handled by the subroutine in Figure 7.17. A signed multiplication subroutine
can be easily written that combines Figures 7.17 and 7.3. Unsigned division
is shown in Figure 7.18. It can be modified to leave the remainder, rather
than the quotient, to compute the modulus. For signed division, recall that
the sign of the remainder is the same as the sign of the dividend and that the
sign of the quotient is positive if the signs of the dividend and divisor are
equal; otherwise, it is negative. A signed divide can be implemented with the
unsigned divide and sign modification using the above rule.

The divide subroutine may seem formidable; it is one of the longest in
this book. However, it can be derived from Figure 7.2 by a mapping. A
mapping establishes a relationship between a set of objects called the
domain, and a set of objects called the range. Elements of the domain are
mapped into elements of the range. The mapping below shows the relation-
ship of data locations in the program in Figure 7.2, in the first column, with
data locations in the program in Figure 7.18, in the second column. The sym-
bolic names of these locations is given in the third column, and the meaning
of these symbolic names is in the last column. Whatever is done to the
element of the domain, the program in Figure 7.2 should be duplicated on
the element of the range that is an image of it. For instance, in Figure 7.2
when A is cleared in the CLRA instruction, bytes 7 to 10 on the stack should
be cleared in Figure 7.18.

Accumulator A -> 7,SP - REM,SP remainder
10,SP

Accumulator B -> 11,SP - QUOT,SP quotient
14,SP

0,SP -> 3,SP - DVS,SP divisor
6,SP (denominator)

X -> 2,SP COUNT,SP loop counter



* Subroutine MULT  multiplies the unsigned next word on the stack with
*       L, and pulls the next word
*
LCSAVE: EQU * 
 ORG 0 
PROD: DS.L 1 
N: DS.L 1 
M: DS.L 1 
 ORG LCSAVE 

MULT: PULX ; pull return address
PSHD ; low part of N
PSHY ; high part of N

*
LDY     M+2-4,SP ; note: M is operand offset in sub middle
EMUL ; note - accum D is still low part of N
PSHD ; low word of product
PSHY ; high word of product

*
LDD N,SP ; get high part of N
LDY M+2,SP ; get low part of M
EMUL
ADDD PROD,SP  ; add to high word
STD  PROD,SP ; place back

*
LDD N+2,SP ; get low part of N
LDY M,SP ; get high part of M
EMUL
ADDD PROD,SP ; add to high word
TFR D,Y ; high 16 bits
LDD PROD+2,SP ; low 16 bits

*
LEAS 12,SP ; remove M, N, and PROD
JMP 0,X ; return

FIGURE 7.17. A 32-Bit by 32-Bit Unsigned Multiply Subroutine
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The reader should attempt to derive Figure 7.18 from Figure 7.2. Map-
pings can be used to convert a program handling a certain data width into a
program handling a different width with comparative ease. There remains
the problem of determining how to set up the mapping, but that problem is
made manageable with experience.

Optimization
These abstract stack operations can be optimized to produce more efficient
code. A simple optimization is the removal of Figure 7.12e’s first PSHB and
last PULB instructions. All the first PSHB and last PULB do is save and
restore the original data, but if those data are garbage, these instructions can
be removed together. Note that these instructions must both be removed
together to balance the stack. In general, optimization expands macros dif-
ferently for special cases. A nonoptimized expansion expands each macro
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the same way each time it is met, as PUSH was expanded in Figure 7.12e,
while an optimized expansion will expand the first PUSH differently than the
other PUSHes.

Another optimization can be done when a PUSH macro immediately 
precedes dyadic operator macro in the macro program. We’ll call these 
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* Subroutine DIV divides the unsigned next word on the stack into L
*
RTRN: EQU 0 ; saved return address
COUNT: EQU 2 ; loop counter
DVS: EQU 3 ; divisor (denominator)
REM: EQU 7 ; remainder
QUOT: EQU 11 ; quotient

DIV: PULX  ; unstack return address
LEAS -4,SP ; room for remainder right above dividend
PSHD ; save low 16 bits of divisor
PSHY ; save high 16 bits of divisor
MOVB #32,1,-SP ; count for 32 bits
PSHX ; put back return address
CLRA
CLRB

 STD REM,SP 
 STD REM+2,SP 

DIV1: CLC   ; divide loop
LDAA #8 ; shift remainder and quotient: shift 8 bytes
LEAX QUOT+3,SP ; pointer for bottom of quotient-remainder 

DIV2: ROL 1,X- 
 DBNE A,DIV2

LDY REM,SP ; subtract from partial product 
LDD REM+2,SP ; (note: 4 extra bytes on stack)

SUBD DVS+2,SP 
 XGDY 
 SBCB DVS+1,SP 
 SBCA DVS,SP 
 XGDY 

BLO DIV3 ; if borrow
STD REM+2,SP ; then put it back
STY REM,SP 

 INC QUOT+3,SP ; and put 1 into lsb of quotient
DIV3: DEC COUNT,SP ; counter is high byte of last operand

BNE DIV1 ; count down - 32 bits collected

PULX ; pull return
LEAS 9,SP ; balance stack - remove divisor
PULY
PULD ; pop quotient

DIVEXIT: JMP 0,X ; return to caller 

FIGURE 7.18. A 32-Bit by 32-Bit Unsigned Divide Subroutine



situations “optimizable.” The combined PUSH and dyadic operation can be
done as a monadic operation that avoids saving the PUSH macro’s data on
the stack just to pull it in the following dyadic macro expansion. Trivially, a
dyadic add, for which one operand is 1, can be converted into a monadic
increment. In Figure 7.19, instead of pushing Y and then pulling this 
value to multiply it by the number 2 that is on the top of the stack, merely
load Y into A and multiply that value by the number on the top of the stack.
(Further optimization could replace PUSH K2, PUSH Y, and MULT macros
with a PUSH Y and a monadic operation to shift the top stack element left 1
bit.) The formula tree may be rearranged using associative and commutative
laws to expose optimizable situations. Figure 7.19a is the parsing tree of
Figure 7.12a with the add operands switched. The macro program of Figure
7.19b shows optimizable situations implemented as “monadic” operations,
“multiply by Y” and “add X.” Figure 7.19c shows the 6812 program for 8-
bit data.

Floating-Point Arithmetic and Conversion
We have been concerned exclusively with integers, and, as we have noted,
all of the subroutines for arithmetic operations and conversion from one base
to another could be extended to include signs if we wish. We have not yet
considered arithmetic operations for numbers with a fractional part. For
example, the 32-bit string b31, . . . , b0 could be used to represent the number
x, where

x = b31 * 223 + [. . .] + b8 * 20 + [. . .] + b0 * 2-8 (12)

The notation b31[. . .]b8•b7[. . .]b0 is used to represent x, where the symbol
“•,” called the binary point, indicates where the negative powers of 2 start.
Addition and subtraction of two of these 32-bit numbers, with an arbitrary
placement of the binary point for each, is straightforward except that the
binary points must be aligned before addition or subtraction takes place and
the specification of the exact result may require as many as 64 bits. If these
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MULT LY 
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NEG
DIV
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LDAA LY 
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FIGURE 7.19. Optimized Implementation for 8-Bit Data
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numbers are being added and subtracted in a program (or multiplied and
divided), the programmer must keep track of the binary point and the number
of bits being used to keep the result. This process, called scaling, was used
on analog computers and early digital computers. In most applications,
scaling is so inconvenient to use that most programmers use other represen-
tations to get around it.

One technique, called a fixed-point representation, fixes the number of
bits and the position of the binary point for all numbers represented. Think-
ing only about unsigned numbers for the moment, notice that the largest and
smallest nonzero numbers that we can represent are fixed once the number
of bits and the position of the binary point are fixed. For example, if we use
32 bits for the fixed-point representation and 8 bits for the fractional part as
in (12), the largest number that is represented by (12) is about 224 and the
smallest nonzero number is 2-8. As one can see, if we want to do computa-
tions with either very large or very small numbers (or both), a large number
of bits will be required with a fixed-point representation. What we want then
is a representation that uses 32 bits but gives us a much wider range of rep-
resented numbers and, at the same time, keeps track of the position of the
binary point for us just as the fixed-point representation does. This idea leads
to the floating-point representation of numbers, which we discuss in this
section. After discussing the floating-point representation of numbers, we
examine the arithmetic of floating-point representation and the conversion
between floating-point representations with different bases.

We begin our discussion of floating-point representations by considering
just unsigned (nonnegative) numbers. Suppose that we use our 32 bits b31,
. . . , b0 to represent the number

S * 2E

where S, the significand, is of the form

b23.b22[. . .]b0

and 2E, the exponential part, has an exponent E, which is represented by the
bits b31, . . . , b24. If these bits are used as an 8-bit two’s-complement repre-
sentation of E, the range of the numbers represented with these 32 bits goes
from 2-151 to 2127, enclosing the range for the 32-bit fixed-point numbers (12)
by several orders of magnitude. (To get the smallest exponent of -151, put
all of the significand bits equal to 0, except b0 for an exponent of -128 - 23
= -151.)

This type of representation is called a floating-point representation
because the binary point is allowed to vary from one number to another even
though the total number of bits representing each number stays the same.
Although the range has increased for this method of representation, the
number of points represented per unit interval with the floating-point repre-
sentation is far less than the fixed-point representation that has the same
range. Furthermore, the density of numbers represented per unit interval gets
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smaller as the numbers get larger. In fact, in our 32-bit floating-point
example, there are 273 + 1 uniformly spaced points represented in the inter-
val from 2n to 2n+1 as n varies between -128 and 127.

Looking more closely at this same floating-point example, notice 
that some of the numbers have several representations; for instance, a signifi-
cand of 1•100[. . .]0 with an exponent of 6 also equals a significand of
0•1100[. . .]0 with an exponent of 7. Additionally, a zero significand, which
corresponds to the number zero, has 256 possible exponents. To eliminate
this multiplicity, some form of standard representation is usually adopted.
For example, with the bits b31, . . . , b0 we could standardize our representa-
tion as follows. For numbers greater than or equal to 2-127 we could always
take the representation with b23 equal to 1. For the most negative exponent,
in this case -128, we could always take b23 equal to 0 so that the number
zero is represented by a significand of all zeros and an exponent of -128.
Doing this, the bit b23 can always be determined from the exponent. It is 1
for an exponent greater than -128 and 0 for an exponent of -128. Because
of this, b23 does not have to be stored, so that, in effect, this standard repre-
sentation has given us an additional bit of precision in the significand. When
b23 is not explicitly stored in memory but is determined from the exponent
in this way, it is termed a hidden bit.

Floating-point representations can obviously be extended to handle neg-
ative numbers by putting the significand in, say, a two’s-complement repre-
sentation or a signed-magnitude representation. For that matter, the exponent
can also be represented in any of the various ways that include representa-
tion of negative numbers. Although it might seem natural to use a two’s-
complement representation for both the significand and the exponent with
the 6812, one would probably not do so, preferring instead to adopt one of
the standard floating-point representations.

We now consider the essential elements of the proposed IEEE standard
32-bit floating-point representation. The numbers represented are also called
single-precision floating-point numbers, and we shall refer to them here
simply as floating-point numbers. The format is shown below.
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s   e           f 

31 30      23 22                               0 

In the drawing, s is the sign bit for the significand, and f represents the 23-
bit fractional part of the significand magnitude with the hidden bit, as above,
to the left of the binary point. The exponent is determined from e by a bias
of 127; that is, an e of 127 represents an exponent of 0, an e of 129 repre-
sents an exponent of +2, an e of 120 represents an exponent of -7, and so
on. The hidden bit is taken to be 1 unless e has the value 0. The floating-
point numbers given by



(-1)s * 2e-127 * 1 • f for 0 < e < 256
0 for e = 0 and f = 0 (13)

are called normalized. (In the IEEE standard, an e of 255 is used to repre-
sent +infinity together with values that are not to be interpreted as numbers
but are used to signal the user that his or her calculation may no longer be
valid.) The value of 0 for e is also used to represent denormalized floating-
point numbers, namely,

(-1)s * 2e-126 * 0 • f for e = 0 • f π 0

Denormalized floating-point numbers allow the representation of small
numbers with magnitudes between 0 and 2-126. In particular, the exponent for
the denormalized floating-point numbers is taken to be -126, rather than 
-127, so that the interval between 0 and 2-126 contains 223 - 1 uniformly
spaced denormalized numbers.

Although the format above might seem a little strange, it turns out to be
convenient because a comparison between normalized floating-point
numbers is exactly the same as a comparison between 32-bit signed-
magnitude integers represented by the string s, e, and f. This means that a
computer implementing signed-magnitude integer arithmetic will not have
to have a separate 32-bit compare for integers and floating-point numbers.
In larger machines with 32-bit words, this translates into a hardware savings,
while in smaller machines, like the 6812, it means that only one subroutine
has to be written instead of two if signed-magnitude arithmetic for integers
is to be implemented.

We now look more closely at the ingredients that floating-point algo-
rithms must have for addition, subtraction, multiplication, and division. For
simplicity, we focus our attention on these operations when the inputs are
normalized floating-point numbers and the result is expressed as a normal-
ized floating-point number.

To add or subtract two floating-point numbers, one of the representations
has to be adjusted so that the exponents are equal before the significands are
added or subtracted. For accuracy, this unnormalization always is done to
the number with the smaller exponent. For example, to add the two floating-
point numbers
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24 * 1•00 . . . 0 
+ 22 * 1•00 . . . 0

we first unnormalize the number with the smaller exponent and then add as
shown.

24 * 1•000 . . . 0 
+ 24 * 0•010 . . . 0

24 * 1•010 . . . 0 
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(For this example and all those that follow, we give the value of the expo-
nent in decimal and the 24-bit magnitude of the significand in binary.) Some-
times, as in adding,

24 * 1•00 . . . 0 
+ 24 * 1•00 . . . 0

24 *10•00 . . . 0 

the sum will have to be renormalized before it is used elsewhere. In this
example

25* 1•00[. . .]0

is the renormalization step. Notice that the unnormalization process consists
of repeatedly shifting the magnitude of the significand right 1 bit and incre-
menting the exponent until the two exponents are equal. The renormaliza-
tion process after addition or subtraction may also require several steps of
shifting the magnitude of the significand left and decrementing the exponent.
For example,

24 * 1•0010 . . . 0 
–  24 * 1•0000 . . . 0

24 * 0•0010 . . . 0

requires three left shifts of the significand magnitude and three decrements
of the exponent to get the normalized result:

21 * 1•00[. . .]0

With multiplication, the exponents are added and the significands are multi-
plied to get the product. For normalized numbers, the product of the signif-
icands is always less than 4, so that one renormalization step may be
required. The step in this case consists of shifting the magnitude of the sig-
nificand right 1 bit and incrementing the exponent. With division, the sig-
nificands are divided and the exponents are subtracted. With normalized
numbers, the quotient may require one renormalization step of shifting the
magnitude of the significand left 1 bit and decrementing the exponent. This
step is required only when the magnitude of the divisor significand is larger
than the magnitude of the dividend significand. With multiplication or divi-
sion it must be remembered also that the exponents are biased by 127 so that
the sum or difference of the exponents must be rebiased to get the proper
biased representation of the resulting exponent.

In all of the preceding examples, the calculations were exact in the 
sense that the operation between two normalized floating-point numbers
yielded a normalized floating-point number. This will not always be the case,
as we can get overflow, underflow, or a result that requires some type of
rounding to get a normalized approximation to the result. For example, 
multiplying
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256  * 1•00 . . . 0 
* 2100 * 1•00 . . . 0

2156 * 1•00 . . . 0 

yields a number that is too large to be represented in the 32-bit floating-point
format. This is an example of overflow, a condition analogous to that encoun-
tered with integer arithmetic. Unlike integer arithmetic, however, underflow
can occur; that is, we can get a result that is too small to be represented as
a normalized floating-point number. For example,

 2–126 * 1•0010 . . . 0 
– 2–126 * 1•0000 . . . 0
 2–126 * 0•0010 . . . 0

yields a result that is too small to be represented as a normalized floating-
point number with the 32-bit format.

The third situation is encountered when we obtain a result that is within
the normalized floating-point range but is not exactly equal to one of the
numbers (13). Before this result can be used further, it will have to be approx-
imated by a normalized floating-point number. Consider the addition of the
following two numbers.

 22 * 1•00 . . . 00 
+ 20 * 1•00 . . . 01
 22 * 1•01 . . . 00(01) 

(in parentheses: least significant
bits of the significand)

The exact result is expressed with 25 bits in the fractional part of the sig-
nificand so that we have to decide which of the possible normalized float-
ing-point numbers will be chosen to approximate the result. Rounding toward
plus infinity always takes the approximate result to be the next larger nor-
malized number to the exact result, while rounding toward minus infinity
always takes the next smaller normalized number to approximate the exact
result. Truncation just throws away all the bits in the exact result beyond
those used in the normalized significand. Truncation rounds toward plus
infinity for negative results and rounds toward minus infinity for positive
results. For this reason, truncation is also called rounding toward zero. For
most applications, however, picking the closest normalized floating-point
number to the actual result is preferred. This is called rounding to nearest.
In the case of a tie, the normalized floating-point number with the least sig-
nificant bit of 0 is taken to be the approximate result. Rounding to nearest is
the default type of rounding for the IEEE floating-point standard. With
rounding to nearest, the magnitude of the error in the approximate result is
less than or equal to the magnitude of the exact result times 2-24.

One could also handle underflows in the same way that one handles
rounding. For example, the result of the subtraction
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 20   * 1•0000 . . . 0 
+ 2–23 * 1•1110 . . . 0

After unnormalizing the second number, we have

 20 * 1•0000 . . . 00
+ 20 * 0•0000 . . . 01(111)
 20 * 1•0000 . . . 01(111)

 2–126 * 1•0110 . . . 0 
- 2–126 * 1•0000 . . . 0
 2–126 * 0•0110 . . . 0 

could be put equal to 0, and the result of the subtraction

 2–126 * 1•1010 . . . 0 
- 2–126 * 1•0000 . . . 0
 2–126 * 0•1010 . . . 0

could be put equal to 2-126 * 1•0000. More frequently, all underflow
results are put equal to 0 regardless of the rounding method used for the other
numbers. This is termed flushing to zero. The use of denormalized floating-
point numbers appears natural here, as it allows for a gradual underflow as
opposed to, say, flushing to zero. To see the advantage of using denormal-
ized floating-point numbers, consider the computation of the expression (Y
- X) + X. If Y - X underflows, X will always be the computed result if flush-
ing to zero is used. On the other hand, the computed result will always be Y
if denormalized floating-point numbers are used. The references mentioned
at the end of the chapter contain further discussions on the merits of using
denormalized floating point numbers. Implementing all of the arithmetic
functions with normalized and denormalized floating-point numbers requires
additional care, particularly with multiplication and division, to ensure that
the computed result is the closest represented number, normalized or denor-
malized, to the exact result. It should be mentioned that the IEEE standard
requires that a warning be given to the user when a denormalized result
occurs. The motivation for this is that one is losing precision with denor-
malized floating-point numbers. For example, if during the calculation of the
expression (Y - X) * Z. If Y - X underflows, the precision of the result may
be doubtful even if (Y - X) * Z is a normalized floating-point number. Flush-
ing to zero would, of course, always produce zero for this expression when
(Y - X) underflows.

The process of rounding to nearest, hereafter just called rounding, is
straightforward after multiplication. However, it is not so apparent what to
do after addition, subtraction, or division. We consider addition/subtraction.
Suppose, then, that we add the two numbers



where g is the guard bit, r is the round bit, and s is the sticky bit. When a bit
b is shifted out of the significand in the unnormalization process,

b Æ g
g Æ r
s OR r Æ s (14)

Notice that if s ever becomes equal to 1 in the unnormalization process, it
stays equal to 1 thereafter or “sticks” to 1. With these 3 bits, rounding is
accomplished by incrementing the result by 1 if

g = 1 AND (r OR s = 1)
or g = 1 AND (r AND s = 0)

and the least significant bit of the significand is 1 (15)

If adding the significands or rounding causes an overflow in the significand
bits (only one of these can occur), a renormalization step is required. For
example,
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(The bits enclosed in parentheses are the bits beyond the 23 fractional 
bits of the significand.) The result, when rounded, yields 20 * 1•0
[. . .]010. By examining a number of cases, one can see that only 3 bits
need to be kept in the unnormalization process, namely,

g  r  s 

 20   * 1•1111 . . . 1 
+ 2–23  * 1•1110 . . . 0

becomes, after rounding, 20 * 10•0[. . .]0 Renormalization yields 21

* 1•0[. . .]0, which is the correct rounded result, and no further round-
ing is necessary.

Actually, it is just as easy to save 1 byte for rounding as it is to save 3
bits, so that one can use 6 rounding bits instead of 1, as follows.

g r sr5 0...
round byte

The appropriate generalization of (14) can be pictured as

while (15) is exactly the same as before with r replaced by r5[. . .]r0

b -> ...g r sr5 0
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The rounding process for addition of numbers with opposite signs (e.g., 
subtraction) is exactly like that above except that the round byte must be
included in the subtraction, and renormalization may be necessary after the
significands are subtracted. In this renormalization step, several shifts left of
the significand may be required where each shift requires a bit b for the least
significant bit of the significand. It may be obtained from the round byte as
shown below. (The sticky bit may also be replaced by zero in the process
pictured without altering the final result. However, at least 1 round bit is
required.) After renormalization, the rounding process is identical to (15). As
an example,

b <- ...g r sr5 0

becomes

* 1•1111 . . . 1 
– 2–23  * 1•1110 . . . 0

which, after renormalization and rounding, becomes 2-1 * 1•1
[. . .]100. Subroutines for floating-point addition and multiplication are
given in Metrowerks’ C and C++ libraries. To illustrate the principles without
an undue amount of detail, the subroutines are given only for normalized
floating-point numbers. Underflow is handled by flushing the result to 
zero and setting an underflow flag, and overflow is handled by setting an
overflow flag and returning the largest possible magnitude with the correct
sign. These subroutines conform to the IEEE standard but illustrate the basic
algorithms, including rounding. The procedure for addition is summarized
in Figure 7.20, where one should note that the significands are added as
signed-magnitude numbers.

One other issue with floating-point numbers is conversion. For example,
how does one convert the decimal floating-point number 3.45786 * 104 into
a binary floating-point number with the IEEE format? One possibility is to
have a table of binary floating-point numbers, one for each power of 10 in
the range of interest. One can then compute the expression

3 * 104 + 4 * 103 + [. . .] + 6 * 10-1

using the floating-point add and floating-point multiply subroutines. One dif-
ficulty with this approach is that accuracy is lost because of the number of
floating point multiplies and adds that are used. For example, for 8 decimal
digits in the decimal significand, there are 8 floating-point multiplies and 7

    * 1•0000 . . . 00 
- 20   * 0•0000 . . . 01(11100000)

  * 0•1111 . . . 10(00100000) 



floating-point adds used in the conversion process. To get around this, one
could write 3.45786 * 104 as .345786 * 105 and multiply the binary floating-
point equivalent of 105 (obtained again from a table) by the binary floating-
point equivalent of .345786. This, of course, would take only 1 floating-point
multiply and a conversion of the decimal fraction to a binary floating-point
number.

Converting the decimal fraction into a binary floating-point number can
be carried out in two steps.

1. Convert the decimal fraction to a binary fraction.

2. Convert the binary fraction to a binary floating-point number.

Step 2 is straightforward, so we concentrate our discussion on step 1, con-
verting a decimal fraction to a binary fraction.

Converting fractions between different bases presents a difficulty not
found when integers are converted between different bases. For example, if

f = a1 * r-1 + [. . .] + am * rm (16)

is a base-r fraction, then it can happen that when f is converted to a base-s
fraction,

f = b1 * s-1 + b2 * s-2 + [. . .] (17)

that is, bi is not equal to 0 for infinitely many values of i. (As an example of
this, expand the decimal fraction 0.1 into a binary one.) Rather than trying
to draw analogies to the conversion of integer representations, it is simpler
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1. Attach a zero round byte to each significand and 
unnormalize the number with the smaller exponent. 
2. Add significands of operands (including the round
byte).
3. If an overflow occurs in the significand bits,
shift the bits for the magnitude and round byte
right 1 bit and increment the exponent.
4. If all bits of the unrounded result are zero, put
the sign of the result equal to + and the exponent
of the result to the most negative value; otherwise,
renormalize the result, if necessary, by shifting
the bits of the magnitude and round byte left and 
decrementing the exponent for each shift.
5. If underflow occurs, flush the result to zero, and
set the underflow flag; otherwise, round the result.
6. If overflow occurs, put the magnitude equal to the
maximum value, and set the overflow flag.

FIGURE 7.20. Procedure for Floating-Point Addition



to notice that multiplying the right-hand side of (17) by s yields b1 as the
integer part of the result, multiplying the resulting fractional part by s yields
b2 as the integer part, and so forth. We illustrate the technique with an
example.

Suppose that we want to convert the decimal fraction .345786 into a
binary fraction so that

.345786 = b1 * 2-1 + b2 * 2-2 + [. . .]

Then b1 is the integer part of 2 * (•345786), b2 is the integer part of 2 times
the fractional part of the first multiplication, and so on for the remaining
binary digits. More often than not, this conversion process from a decimal
fraction to a binary one does not terminate after a fixed number of bits, so
that some type of rounding must be done. Furthermore, assuming that the
leading digit of the decimal fraction is nonzero, as many as 3 leading bits in
the binary fraction may be zero. Thus, if one is using this step to convert to
a binary floating-point number, probably 24 bits after the leading zeros
should be generated with the 24th bit rounded appropriately. Notice that the
multiplication by 2 in this conversion process is carried out in decimal so
that BCD arithmetic with the DAA instruction is appropriate here.

The conversion of a binary floating-point number to a decimal floating-
point number is a straightforward variation of the process above and is left
as an exercise.

This section covered the essentials of floating-point representations,
arithmetic operations on floating-point numbers, including rounding, over-
flow, and underflow, and the conversion between decimal floating-point
numbers and binary floating-point numbers. Metrowerks’ C and C++
libraries illustrate subroutines for adding, subtracting, and multiplying
single-precision floating-point numbers. This section and these libraries
should make it easy for you to use floating-point numbers in your assembly-
language programs whenever you need their power.

Fuzzy Logic
This section, taken from the Motorola CPU12 reference manual
(CPU12RM/D), §9, gives a general introduction to fuzzy logic concepts and
illustrates an implementation of fuzzy logic programming. There are a
number of fuzzy logic programming strategies; this discussion concentrates
on the methods that use 6812 fuzzy logic instructions.

In general, fuzzy logic provides for set definitions that have fuzzy bound-
aries rather than the crisp boundaries of Boolean logic. A Boolean variable
is either true or false, while in fuzzy logic, a linguistic variable has a value
that is a degree of confidence between 0 and 1. A value can be “0.2 (or 20%)
confident.” For a specific input value, one or more linguistic variables may
be confident to some degree at the same time, and their sum need not be 1.
As an input varies, one linguistic variable may become progressively less
confident while another becomes progressively more confident.
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� 7.8



Fuzzy logic membership functions better emulate human concepts like “I
got a B on the last quiz” than Boolean functions that are either absolutely
true or absolutely false; that is, conditions are perceived to have gradual or
fuzzy boundaries. Despite the term “fuzzy,” a specific set of input conditions
always deterministically produces the same result, just as in conventional
control systems. Fuzzy sets provide a means of using linguistic expressions
like “I got a B” in rules that can then be evaluated with numerical precision
and repeatability. We will see that fuzzy membership functions help solve
certain types of complex problems that have eluded traditional methods, as
we study how fuzzy logic could compute a student’s course grade from his
or her quiz scores.

An application expert, without any microcontroller programming expe-
rience, can generate a knowledge base. In it, membership functions express
an understanding of the system’s linguistic terms. And in it, ordinary lan-
guage statement rules describe how a human expert would solve the problem.
These are reduced to relatively simple data structures (the knowledge base)
that reside in the microcontroller memory.

A microcontroller-based fuzzy logic control system has a fuzzy infer-
ence kernel and a knowledge base (Figure 7.21). The fuzzy inference 
kernel is executed periodically to determine system outputs based on current
system inputs. The knowledge base contains membership functions and
rules.

A programmer who does not know how the application system works can
write a fuzzy inference kernel. One execution pass through the fuzzy infer-
ence kernel generates system output signals in response to current system
input conditions. As in a conventional control system, the kernel is executed
as often as needed to maintain control. If the kernel is executed too often,
processor bandwidth and power are wasted, but if too infrequently, the
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FIGURE 7.21. Fuzzy Logic Control System
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$FF

0
0  100 

Fuzzy Inputs 

Grade is "A": 0

$FF

0
0  100 

Grade is "B": $80

$FF

0
0 100

Grade is "C": $80

Score is 43  

system gets too far out of control. The steps of this kernel are fuzzification,
evaluation, and defuzzification.

During fuzzification, the current system input values are compared
against stored input membership functions, usually in a program loop struc-
ture, to determine the degree to which each linguistic variable of each system
input is true. Three membership functions are indicated in Figure 7.22; these
convert a student’s quiz test score to a letter grade. This is accomplished 
by finding the y-value for the current input value on a trapezoidal member-
ship function for each label of each system input. If a student’s test score 
is 43, his or her membership in linguistic variable “Grade is A” is zero, in
linguistic variable “Grade is B” is $80 (50%), and in linguistic variable
“Grade is C” is $80 (50%). Fuzzy logic avoids the agony of missing a “B”
by a point or two.

In our example, system inputs are each quiz’s and homework assign-
ment’s numeric grades. Linguistic variable values are the degree of confi-
dence that the student has a particular grade associated with each letter grade.
If there are two quizzes and one homework assignment, and each has three
grades, then there are nine linguistic variables.

The end result of the fuzzification step is a collection of fuzzy linguistic
variables reflecting the system. This is passed to the rule evaluation phase,
which processes a list of rules from the knowledge base using current fuzzy
input values to produce a list of fuzzy output linguistic variables. These fuzzy
outputs are considered raw suggestions for what the system output should
be in response to the current input conditions. The following is an example
of a typical rule:

***If you get an A on quiz 1, an A on quiz 2, and an A on homework
assignments, then you should get an A+ for the course.

FIGURE 7.22. Membership Functions
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The left portion of the rule is a statement of input conditions, antecedents
connected by a fuzzy AND operator, and the right portion of the rule is a
statement of output actions called consequents.

In an automotive antiskid braking system, about 600 such rules are used
to compute the brake pressure to be applied. Analogous to the Boolean sum-
of-products, rule evaluation employs a fuzzy AND operator, used to connect
antecedents within a rule, and a fuzzy OR operator, which is implied among
all rules affecting a given consequent. Each rule is evaluated sequentially,
but the rules as a group are treated as if they were all evaluated simultane-
ously. The AND operator corresponds to the mathematical minimum opera-
tion, and the fuzzy OR operation corresponds to the maximum operation.
Before evaluating any rules, all fuzzy outputs are set to zero (meaning none
are true). As each rule is evaluated, the minimum antecedent is taken to be
the overall confidence of the rule result. If two rules affect the same fuzzy
output, the rule that is most true governs the value in the fuzzy output,
because the rules are connected by an implied fuzzy OR. There is also a fuzzy
negate operator, which complements each bit.

Each antecedent expression consists of the name of a system input, fol-
lowed by “is,” followed by a label name defined by a membership function
in the knowledge base. Because “and” is the only operator allowed to connect
antecedent expressions, there is no need to include these in the encoded rule.
Each consequent expression consists of the name of a system output, fol-
lowed by “is,” followed by a label name; for example:

If quiz 1 is A, quiz 2 is A, homework assignment is A, then course is 
A+.

Rules can be weighted. The confidence value for a rule is determined as usual
by finding the smallest rule antecedent. Before applying this value to the con-
sequents for the rule, the value is multiplied by a fraction from zero (rule
disabled) to $FF (rule fully enabled). The resulting modified confidence
value is then applied to the fuzzy outputs. Equation (18) illustrates that the
output for a set of rules is the output Si for each rule times a weight Fi, divided
by the sum of the weights.

The rules can reflect nonlinear, but deterministic, relationships. For
instance, if a student gets a B on the first quiz and an A on the second quiz,
the instructor may decide that the course grade is A-, but if a student gets
an A on the first quiz and a B on the second quiz, the instructor may decide
that the course grade is B+. But if the student also did poorly in lab work,
then the course grade might be B-, to give the student some incentive to 
get to work. That is, if quiz 1 is A, quiz 2 is B, and lab is not C, then 
course is B+, but if quiz 1 is A, quiz 2 is B, and lab is C, then course is 
B-. In the limit, if there are n input variables and each input variable is 
associated with m linguistic variables, then there can be as many as nm rules
to produce each output linguistic variable, one to cover each case. That would
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be unattractive, but heuristics are used to substantially reduce this number
of rules using common sense.

But before the results can be applied, fuzzy outputs must be further
processed, or defuzzified, to produce a single output value that represents 
the combined effect of all of the fuzzy outputs. In our example, a single
output would be a numerical grade for the course. The end result of the 
rule evaluation step is a collection of suggested or “raw” fuzzy outputs. 
These values were obtained by plugging current conditions (fuzzy input
values) into the system rules in the knowledge base. The raw results 
cannot be supplied directly to the system outputs because they may be
ambiguous. For instance, one raw output can indicate that a grade should 
be B+ with a degree of confidence of 50% while, at the same time, another
indicates that the grade should be C- with a degree of confidence of 
25%. A simple “max defuzzification” technique, which outputs the maximum
of all the degrees of confidence, ignores all other degrees of confidence
and gives inferior results. A better defuzzification step resolves multiple-
degree ambiguities by combining the raw fuzzy outputs into a composite
numerical output using singletons. The singleton for a linguistic variable 
is a single value assigned to the output variable if the rules produce this 
linguistic variable with a degree of confidence of 1, and all other linguistic
variables have a degree of confidence of 0. For instance, the singleton for
A+ might be 100, the singleton for A might be 95, that for A- might be 90,
and so on. Singletons Si are weighted by fuzzy output degrees of confidence
Fi, for n such outputs, normalized to a degree of confidence of 1, in the
expression (18)

output = Sn
i=1 Si Fi/Sn

i=1 Fi (18)

Figure 7.23 shows a 6812 fuzzy inference kernel. When the fuzzification step
begins, a MEM instruction fuzzifies the inputs. The current value of the system
input is in accumulator A, index register X points to the first membership
function definition, and a index register Y points to the first fuzzy input. As
each fuzzy input is calculated by executing a MEM instruction, the result is
stored to the fuzzy input, and both X and Y are updated automatically to
point to the locations associated with the next fuzzy input. For each system
input, a DBNE instruction executes as many MEM instructions as a system
input has fuzzy input linguistic variables. Thus, MEM and DBNE handle one
system input’s fuzzification. Repeated such program segments handle each
system input.

Each trapezoidal membership function is defined by four 8-bit para-
meters, X1, X2, S1, and S2. X1 is where the trapezoid’s left slope intercepts
Y = 0, and X2 is where the trapezoid’s right slope intercepts Y = 0. S1 is 
the trapezoid’s left slope (DY/DX), and S2 is the trapezoid’s right slope 
(-DY/DX), but a slope of 0 is defined as a vertical line.

More complicated membership functions can be evaluated by the TBL
instruction, which interpolates arbitrary table functions. A 16-bit version of



TBL, ETBL, permits handling 16-bit input variables and 16-bit degrees of
confidence.

The rule evaluation step is likewise almost completely executed by the
REV instruction. Before it is executed, fuzzy outputs are cleared, index reg-
ister X points to a vector of the rules, Y points to the base address of fuzzy
inputs and outputs, and accumulator A is set for maximum ($FF). Each
antecedent expression is represented as an 8-bit relative offset from index
register Y, to read an 8-bit fuzzy input. Antecedents are separated from con-
sequents with reserved “offset” value $FE. Each consequent expression is
represented as an 8-bit relative offset from index register Y, to write an 8-bit
fuzzy output. The consequents end with a reserved value $FE, if more rules
must be evaluated, or $FF, after the last rule is evaluated. The condition code
V signifies whether antecedents are being processed (V = 0) or consequents
are being processed (V = 1).
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*
* Fuzzification step: 
*
FUZZIFY: LDX #INPUT_MFS ;Point at member function definitions  

LDY #FUZ_INS ;Point at fuzzy input vector 
LDAA CURRENT_INS ;Get first input value 
LDAB #7 ;7 fuzzy values per input 

GRAD_LOOP: MEM ;Evaluate a member function 
DBNE B,GRAD_LOOP ;For 7 labels of 1 input 
LDAA CURRENT_INS+1 ;Get second input value 
LDAB #7 ;7 fuzzy values per input 

GRAD_LOOP1: MEM ;Evaluate a member function 
DBNE B,GRAD_LOOP1 ;For 7 fuzzy values of 1 input  

* Rule Evaluation step: 
LDAB #7 ;Loop count 

RULE_EVAL: CLR 1,Y+ ;Clr a fuzzy out & inc ptr 
DBNE B,RULE_EVAL ;Loop to clr all fuzzy Outs 
LDX #RULE_START ;Point at first rule element 
LDY #FUZ_INS ;Point at fuzzy ins and outs 
LDAA #$FF ;Init A (and clears V-bit) 
REV ;Process rule list 

* Defuzzification step: 
DEFUZ: LDY #FUZ_OUT ;Point at fuzzy outputs 

LDX #SGLTN_POS ;Point at singleton positions 
LDAB #7 ;7 fuzzy outs per COG output  
WAV ;Calculate sums for weighted av 
EDIV ;Final divide for weighted av 
TFR Y,D ;Move result to accumulator D 
STAB COG_OUT ;Store system output 

FIGURE 7.23. A Fuzzy Inference Kernel



Besides REV, the more complex REVW instruction allows each rule to
have a separate weighting factor, and EMIND and EMAXD can be used to
implement 16-bit rule evaluation.

The WAV instruction calculates the numerator and denominator sums for
weighted average of the fuzzy outputs. Before executing WAV, accumulator
B must be loaded with the number of iterations, index register Y must be
pointed at the list of singleton positions in the knowledge base, and index
register X must be pointed at the list of fuzzy outputs in RAM. If the system
has more than one system output, the WAV instruction is executed once for
each system output. The final divide is performed with a separate EDIV
instruction placed immediately after the WAV instruction.

The EMACS instruction can be used to evaluate 16-bit linguistic 
variables. A separate but simple program segment must calculate the sum 
of linguistic variables, which is automatically calculated by the WAV
instruction.

The 6812 is currently the only microcontroller that has machine instruc-
tions that can be used to implement the complete fuzzy inference kernel.
These machine instructions speed up execution of the kernel by a factor of
about 10 over software evaluation that uses ordinary instructions. This
feature makes the 6812 the microcontroller of choice for time-critical appli-
cations that use fuzzy logic.

In conclusion, fuzzy logic provides fuzzy rather than crisp boundaries.
Linguistic variables indicate a degree of confidence. Combinations of vari-
ables are presumed to be true to the worst-case (minimum) degree of confi-
dence, and alternatives are presumed to be true to the best-case (maximum)
degree of confidence. Final values are weighted sums of typical values, using
degrees of confidence as weights. Such fuzzy logic systems are currently
being applied to automotive control and other rather complex control
systems.

Summary
This chapter covered the techniques you need to handle integer and floating-
point arithmetic in a microcontroller. We discussed the conversion of inte-
gers between any two bases and then discussed signed and unsigned multiple
precision arithmetic operations that had not been discussed in earlier exam-
ples. We ended with the use of the stack for holding the arguments for arith-
metic subroutines and showed how you can write a sequence of subroutine
calls to evaluate any formula. Floating-point representations of numbers with
a fractional part and the algorithms used to add and multiply floating-point
numbers were discussed together with the problems of rounding and con-
version. The IEEE standard floating-point format was used throughout these
discussions.

You should now be able to write subroutines for signed and unsigned
arithmetic operations, and you should be able to write and use such subrou-
tines that save results on the stack. You should be able to convert integers
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from one representation to another and write subroutines to do this conver-
sion. You should be able to write numbers in the IEEE floating-point repre-
sentation, and you should understand how these numbers are added or
multiplied and how errors can accumulate.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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multiplier
dividend
divisor
biasing
m-digit base-b

representation
abstract stack
Polish notation
parsing tree
overflow stack
closure
mapping
domain
range
image
fixed-point

representation
significand
exponential part

floating-point
hidden bit
single-precision

floating-point
floating-point numbers
bias
normalized number
denormalized number
unnormalization
renormalized
overflow
underflow
rounding toward plus

infinity
rounding toward

minus infinity
truncation
rounding toward zero
rounding to nearest

flushing to zero
rounding
guard bit
round bit
sticky bit
decimal floating-point

number
linguistic variable
value
membership function
rule
fuzzy inference kernel
knowledge base
antecedent
fuzzy AND
consequent
fuzzy OR
fuzzy negate
singleton

� PROBLEMS

1. How would you rewrite the subroutines of Figures 7.1 and 7.2 if you
did not want any registers changed by the subroutines except D, the
output parameter?

2. Write a shortest subroutine DIVS that divides the signed contents of B
by the signed contents of A, putting the quotient in B and the remain-
der in A.

3. Rewrite the subroutine of Figure 7.4 so that, using GET, the digits can
be input from the terminal and directly used in the subroutine without
storing them in a buffer. GET inputs a character from the keyboard,
returning it in A. A carriage return should terminate the input string so
that 0 through 5 digits can be put in. (The empty sequence should be
treated as zero.) Your subroutine should do the same thing as the one in
Figure 7.4 as long as the number of digits put in is 5 or less.



4. Expand the subroutine of Figure 7.6 so that PUT, which prints the char-
acter input in A, can be used to output 5 decimal digits to the terminal,
but the subroutine prefills the buffer with (from the left or lowest
address) four spaces and a character “0.”

5. Write a shortest subroutine CVBBTD that converts a 16-bit unsigned
binary number in D into a character string. The most significant digit is
to be put in a location pointed to by X. Use successive subtraction of
powers of 10 as long as the difference is positive, to divide by 10,
keeping count of the number of subtractions to get the digit. Your strat-
egy should be derived from manipulating formula (5).

6. Write a shortest subroutine CVBBTD that converts a 16-bit unsigned
binary number in D into a character string. The most significant digit is
to be put in a location pointed to by X. Use division by powers of 10
where the remainder in D gives the digit. Your strategy should be derived
from manipulating formula (5).

7. Write a shortest subroutine CVBBTD that converts a 16-bit unsigned
binary number in D into a character string. The most significant digit is
to be put in a location pointed to by X. Use BCD addition to double a
number in decimal following the operations given in formula (4) for
binary numbers.

8. Write a shortest subroutine CVBBTD that converts a 16-bit un-
signed binary number in D into a character string. Use the same ap-
proach as Figure 7.6 but use a loop instead of recursion to generate the
digits.

9. Give a sequence of subroutine calls for the following formula.

z = sqrt((17 + (x/y)) * (w - (2 + w/y)))

Provide a graphical parsing tree for this formula, and show assembly-
language dc directives for the storage of all the data so that the 
parsing tree of problem 10 can be done. Assume all variables are long
(32 bits).

10. Write a flow chart that will read the data structure of problem 9 (or any
similar formula tree stored in a linked list structure), and then write an
assembly-language source program (in ASCII) for the subroutine calls
needed to evaluate the formula.

11. Give the graphical parsing trees needed to efficiently evaluate the
formula

z = (4x2 + y2) + (y/2x)2ln(√x + (4x + y)2 +
11y)

Assume that you have subroutines to evaluate a square root and a natural
logarithm. To do an efficient calculation, you should evaluate the
common subexpression (e.g., x2) first.
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12. Show how the formulas

delta = delta + c s = s + (delta * delta)

can be more efficiently evaluated by passing arguments through regis-
ters instead of on the stack as was done in the text.

13. Modify the subroutine of Figure 7.15 so that the Z flag is returned cor-
rectly for a 4-byte negate.

14. Write a shortest subroutine that multiplies the 24-bit unsigned number
in A (high byte) and X with the 24-bit unsigned number in B (high byte)
and Y, returning the product in X (most-significant 16 bits), Y (middle-
significant 16 bits), and D (least-significant 16 bits).

15. Write a shortest subroutine that multiplies the 24-bit signed number in
A (high byte) and X with the 24-bit signed number in B (high byte) and
Y, returning the product in X (most-significant 16 bits), Y (middle-
significant 16 bits), and D (least-significant 16 bits).

16. Write a shortest subroutine DIVS that divides the signed contents of 
Y : D by the signed contents of the next 32-bit word on the stack, putting
the quotient in Y : D.

17. Write a shortest subroutine DIVS that divides the signed contents of 
Y : D by the signed contents of the 32-bit next word on the stack, putting
the remainder in Y : D.

18. Because the half-carry is not set correctly by the instructions SUBA and
SBCA, how do you subtract multiple byte BCD numbers? Explain.

19. Write a subroutine to convert a decimal fraction .xyz[. . .] input from the
terminal using GET, to the closest 16-bit binary fraction returned in D.
The decimal fraction can have up to 5 decimal digits terminated by a
carriage return.

20. Write a subroutine to convert a 16-bit binary fraction in D to a decimal
fraction .xyz[. . .] and output it from the terminal using PUT. The
decimal fraction can have up to 5 decimal digits terminated by a car-
riage return.

21. Write a subroutine FPOUT to convert a single-precision binary floating-
point number, which is a positive integer less than 100,000, popped from
the top of the stack to a decimal floating-point number that is displayed
on a terminal screen. Assume you have FPADD and FPDIV, and follow
the steps in Figure 7.6.

22. Write a subroutine FPIN to convert a decimal floating-point number
input on the keyboard in “scientific notation,” which is a positive integer
less than 100,000, to a single-precision binary floating-point number
pushed on the top of the stack. Assume you have a subroutine FPADD
and FPMUL. Follow the steps in Figure 7.5.

23. Give an example that shows that the round bit r cannot be eliminated;
that is, give an example that shows that it really is not superfluous.
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24. Give an example of the addition of two floating-point numbers, each
with a magnitude less than or equal to 1, that results in the biggest pos-
sible rounding error. Repeat the problem for multiplication.

25. Write a subroutine FPDIV to divide a single-precision floating-point
number on the top of the stack into the second number on the stack,
popping both numbers and pushing the remainder on the top of the stack.

26. Write a subroutine FPADD to add a single-precision floating-point
number on the top of the stack into the second number on the stack,
popping both numbers and pushing the result on the top of the stack.

27. Write a program to make your microcomputer a simple four-function
calculator, using subroutines from Metrowerks’ library, subroutine
FPDIV of problem 24, and input and output subroutines FPIN and
FPOUT of problems 20 and 21. Your calculator should use Polish nota-
tion and should only evaluate +, -, ~, and /, inputting data in the form
of up to 8 decimal digits and decimal point (e.g., 123.45, 1234567.8,
12., and so forth).

28. Write, in DC.B’s, the parameters pointed to by X when the MEM instruc-
tion is executed for each of the linguistic variables in (18), for the data
in Figure 7.22. The highest C is 50, the lowest B is 40, the highest B is
70, and the lowest A is 60.

29. Assume a function f(x) is graphed as the grade B graph in Figure 7.22.
Write a shortest assembly language subroutine F and a table T stored
using a DC.B directive, to evaluate f(x) where 40 £ x £ 70 is input in
accumulator A, which leaves the result in accumulator A. [Hint: see
Figure 9.12 in the CPU12 manual (CPU12RM/D)].
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The Motorola M68HC12A4EVB board can implement all the experiments
including those of Chapter 10. The wire-wrap area shows a shift-register that
implements the device diagrammed in Figure 10.6.
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This chapter gives background material for Chapter 9, which shows how C
or C++ statements are encoded in assembly language. Together, they illus-
trate what a programmer is doing when he or she writes high-level language
programs. However, if you have already covered this material, it can be
skipped.

The first section provides terminology and understanding of where to use
high-level language compilers and interpreters. We then begin with a descrip-
tion of C, illustrating first operators and statements and then conditional and
loop expressions. We give an example of a program that uses many of the
features we need in the next chapter and then discuss C++ and object-
oriented programming.

Compilers and Interpreters
We first discuss the difference between an assembler and a compiler. A com-
piler is a program that converts a sequence of (ASCII) characters that are
written in a high-level language into machine code or into assembly lan-
guage that can be converted into machine code. A high-level language is dif-
ferent from an assembly language in two ways. First, a line of a high-level
language statement will often generate five to a few tens of machine instruc-
tions, whereas an assembly-language statement will usually generate (at
most) one machine instruction. Second, a high-level language is designed to
be oriented to the specification of the problem that is to be solved by the
program and to the human thought process, while a program in an assembly
language is oriented to the computer instruction set and to the hardware used
to execute the program. Consider the dot product subroutine used in the pre-
vious chapter, written in C on the next page. Each line of the program gen-
erates many machine instructions or lines of assembly-language code. Each
high-level language statement is designed to express an idea used in the state-
ment of the problem and is oriented to the user rather than the machine. The
compiler could generate the assembly-language program or the machine code
produced by this program.
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int dotprod(char v[], char w[]) { int i, dprd =
0; for(i = 0; i < 2; i++) dprd += v[i] *
w[i]; return dprd;

}

Compilers are used for different purposes than are assemblers. Studies have
shown that a typical programmer can generate about 10 lines of documented,
debugged code per day, regardless of whether the program is written in a
high-level language or an assembly language. Because a high-level language
generates about an order of magnitude more machine instructions per line,
a high-level language program should be an order of magnitude shorter (in
the number of lines) and an order of magnitude cheaper to write than an
assembly-language program that does the same job.

However, a high-level language compiler usually produces inefficient
code. For example, an instruction STAA LOC1 might be immediately 
followed by the instruction LDAA LOC1 in the compiler output. As the 
compiler generates code from each line of the program, line by line, the 
last operation of one line can generate the STAA instruction, and the first
machine code generated by the next line might be the LDAA instruction
for the same variable. The compiler is usually unable to detect such an 
occurrence and to simplify the code produced by it. Such inefficient code 
is quite acceptable in a large computer where the slow execution and 
large memory space needed to store the program are traded against the 
cost of writing the program. Hardware is cheap and programmers are 
expensive, so this is a good thing. In a very small computer, which might 
be put in a refrigerator to control the cooling cycle or keep the time, 
memory space is limited because the whole computer is on just one 
chip. Inefficient code is unacceptable here because there is not much room
for code and the cost of writing the program is comparatively small. 
The company that uses high-level languages for small microcomputers 
will not be able to offer all the features that are crammed into a competitor’s
product that is programmed in efficient assembly language, or, if it offers 
the same features, its product will cost more because more memory is
needed.

Some compilers are called optimizing. They use rules to detect and elim-
inate the unnecessary operations such as the STAA and LDAA pair described
above. They can be used to generate more efficient code than that generated
by nonoptimizing compilers. But even these optimizing compilers produce
some inefficient code. You should examine the output of an optimizing com-
piler to see just how inefficient it is, and you should ignore the claims as to
how optimal the code is. Compilers are more powerful, and using them is
like driving a car with an automatic transmission, whereas using assemblers
is like driving a car with a standard transmission. An automatic transmission
is easy to drive and appeals to a wider market. A standard transmission is
more controlled and enables you to get the full capabilities out of the
machine.
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We now consider the differences between the compiler and the inter-
preter. An interpreter is rather like a compiler, being written to convert a
high-level language into machine code. However, it converts a line of code
one line at a time and executes the resulting code right after it converts it
from the high-level language program. A pure interpreter stores the high-
level language program in memory, rather than the machine code for the
program, and reads a line at a time, interprets it, and executes it. A popular
high-level language for interpreters is JAVA, and a JAVA program appears
above, doing the same job as the previous C program. By design, it has the
same syntax as C.

An interpreter reads and executes the source code expression dprd
+= v[i] * w[i] twice. A compiler interprets each source code expres-
sion just once, reading it and generating its machine code. Later the machine
executes the machine code twice. Interpreters are slow. However, it is easy
to change the program in memory and execute it again in an interpreter
without having to go through the lengthy process of compiling the code. On
the Internet, programs can be sent to different servers to be executed. Servers
on the Internet can immediately interpret a JAVA program regardless of
which server gets the code or from where it was sent. This interpretive lan-
guage has proven to be a very powerful tool for the Internet.

Some interpreters are almost compilers. The high-level language is stored
in memory almost as written, but some words are replaced by tokens. For
example, in the preceding program, the word for could be replaced by a
token $81. All the bytes in the program would be ASCII characters, whose
value would be below $7F. The original high-level language can be regen-
erated from the information in memory, because the tokens can be replaced
by their (ASCII) character string equivalents. But as the program is executed,
the interpreter can essentially use the token $81 as a command, in this case
to set up a loop. It does not have to puzzle over what the (ASCII) characters
f, o, and r are before it can decide what the line means. These interpreters
have the convenience of a pure interpreter, with respect to the ease of chang-
ing the program, but they have speeds approaching those of compilers. They
are really partly compiler, to get the tokens, and partly interpreter, to inter-
pret the tokens and the remaining characters and have some of the better fea-
tures of both.

The state-of-the-art 6812 clearly illustrates the need for programming
microcontrollers in a high-level language and in object-oriented languages.
Further, the 32K-byte flash memory of the ’B32 or the 4K-byte EEPROM
memory of the ’A4 is large enough to support high-level language programs.
Also, object-oriented features like modularity, information hiding, and inher-
itance will further simplify the task of controlling 6812-based systems.

This chapter illustrates C and C++ programming techniques. C pro-
gramming is introduced first. The use of classes in C++ will be introduced
at the end of this chapter. While this introduction is very elementary and
rather incomplete, it is adequate for the discussion of how high-level lan-
guages generate machine code in the next chapter.
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Operators and Assignment Statements
We first explain the basic form of a C procedure, the simple and the special
numeric operators, conditional expression operators, conditional statements,
loop statements, and functions. However, we do not intend to give all the
rules of C you need to write good programs. A C program has one or more
procedures, of which the first to be executed is called main, and the others
are “subroutines” or “functions” if they return a value.

All the procedures, including main, are written as follows. Carriage
returns and spaces (except in names, numbers, and quotes) are not signifi-
cant in C programs and can be used to improve readability. The periods (.)
in the example below do not appear in C programs but are meant here to
denote that one or more declaration or statement may appear. Each declara-
tion of a parameter or a variable and each statement ends in a semicolon
(;), and more than one of these can be put on the same line. Parameters and
variables used in the 6812 are usually 8-bit (char), 16-bit (int), or 32-bit
(long) signed integer types. They can be declared unsigned by putting the
word unsigned in front of char, int, or long. In this and the next
chapter we will not discuss long data. More than one variable can be put
in a declaration; the variables are separated by commas (,). A vector having
n elements is denoted by the name and square brackets around the number
of elements n, and the elements are numbered 0 to n - 1. For example, the
declaration int a,b[10]; shows two variables, a scalar variable a and a
vector b with 10 elements. Variables declared outside the procedure (e.g.,
before the line with procedure_name) are global, and those declared
within a procedure (e.g., between the curly brackets {and} after proce-
dure_name) are local. Parameters will be discussed in §8.5. A cast rede-
fines a value’s type. A cast is put in parentheses before the value. If i is an
int, (char)i is a char.

declaration of global variable;
. . .
procedure_name(parameter,. . .) {

declaration of local variable;
. . .
statement;
. . .

}

Statements may be algebraic expressions that generate assembly-
language instructions to execute the procedure’s activities. A statement may
be replaced by a sequence of statements within a pair of curly brackets
({and}). This will be useful in conditional and loop statements discussed
soon. Operators used in statements include addition, subtraction, multiplica-
tion, and division and a number of very useful operators that convert effi-
ciently to assembly-language instructions or program segments. Table 8.1
shows the conventional C operators that we will use in this book. Although
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they are not all necessary, we use a lot of parentheses so we will not have to
learn the precedence rules of C grammar. The following simple C procedure
fun has (signed) 16-bit input parameter a and 32-bit local variable b; it puts
1 into b and then puts the (a+b)th element of the 10-element unsigned
global 8-bit vector d into 8-bit unsigned global c and returns nothing (void)
as is indicated by the data type to the left of the procedure name:

unsigned char c,d[10];
void fun(int a) { long b;

b=1;
c = d[a+b];

}

Some very powerful special operators are available in C. Table 8.2 shows
the ones we use in this book. For each operator, an example is given together
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operator example equivalent to:

= a = b = c = 0; a = 0; b = 0; c = 0;
++ a ++; a = a + 1;
-- a --; a = a - 1;
+= a += 2; a = a + 2;
-= a -= 2; a = a - 2;
|= a | = 2; a = a | 2;
&= a & = 2; a = a & 2;
<<= a <<= 3 a = a << 3;
>>= a >>= 3 a = a >> 3;

= make the left side equal to the expression 
on its right

+ add
- subtract
* multiply
/ divide
% modulus (remainder after division)
& logical bit-by-bit AND
| logical bit-by-bit OR
Ÿ logical bit-by-bit exclusive-OR
~ logical bit-by-bit negation
<< shift left
>> shift right

Table 8.1 Conventional C Operators Used in Expressions

Table 8.2 Special C Operators



with its equivalent result using the simple operators of Table 8.2. The assign-
ment operator = assigns the value on its right to the variable named on its
left and returns the value it assigns so that value can be used in an expres-
sion to the left of the assignment operation: The example shows 0 is assigned
to c, and that value (0) is assigned to b, and then that value is assigned to
a. The increment operator ++ can be used without an assignment operator
(e.g., a++ just increments a). It can also be used in an expression in which
it increments its operand after the former operand value is returned to be
used in the expression. For example, b = a[i++] will use the old value
of i as an index to put a[i] into b; then it will increment i. Similarly, the
decrement operator—can be used in expressions. If the ++ or – appear in
front of the variable, then the value returned by the expression is the updated
value; a[++i] will first increment i and then use the incremented value
as an index into a. The next row shows the use of the + and = operators used
together to represent adding to a variable. The following rows show -, |, &,
and ^ appended in front of = to represent subtracting from, ORing to,
ANDing to, to exclusive-ORing to a variable. Shift << and >> can be used
in front of the = sign too. This form of a statement avoids the need to twice
write the name of and twice compute addresses for the variable being added
to or subtracted from. The last two rows of Table 8.2 show shift left and shift
right operations and their equivalents in terms of elementary shift and assign-
ment operators.

A statement can be conditional or it can involve looping to execute a
sequence of statements that are written within it many times. We will discuss
these control flow statements by giving the flow charts for them. See Figure
8.1 for conditional statements, Figure 8.2 for case statements, and Figure 8.3
for loop statements. These simple standard forms appear throughout the rest
of the book, and we will refer to them and their figures.

Conditional and Loop Statements
Simple conditional expressions of the form if then (shown in Figure 8.1a),
full conditionals of the form if then else (shown in Figure 8.1b), and extended
conditionals of the form if then else if then else if then . . . else (shown
in Figure 8.1c), use conditional expression operators (shown in Table 8.3).
In the last expression, the else if part can be repeated as many times as
needed, and the last part can be an optional else. Variables are compared
using relational operators (> and <), and these are combined using logical
operators (&&). For example, (a > 5) && (b < 7) is true if a > 5
and b < 7.

A useful alternative to the conditional statement is the case statement (see
Figure 8.2). An expression giving a numerical value is compared to each of
several possible comparison values; the matching comparison value deter-
mines which statement will be executed next. The case statement (Figure
8.2a) jumps into the statements just where the variable matches the com-
parison value and executes all the statements below it. The break statement
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a. if (expression)
statement;

statement_2

expression
= TRUE ?

no
yes

b.if (expression) statement_1;
else statement_2;

if (expression_1)
statement_1;

else if (expression_2)
statement_2;

else statement_3;

statement_1

c.

expression
= TRUE ?yes

statement
no

statement_1expression_1
= TRUE ?

no

yes

statement_2expression_2
= TRUE ?

yes

no

statement_2

FIGURE 8.1. Conditional Statements

switch(expression) { 
    case 0: statement_0; 
    case 1: statement_1; 
    case 2: statement_2;
}

expression
= 0?

no 

a. switch(expression) { 
   case 0: statement_0; break; 
   case 1: statement_1; break; 
   case 2: statement_2; break;
}

b. 

yes

expression
= 1?

expression
= 2?

no 
yes

no 

yes

 statement_1

 statement_2

expression
= 0?

statement_0

no 
yes

expression
= 1?

expression
= 2?

no 
yes

no 
yes

statement_1

statement_2

 statement_0

FIGURE 8.2. Case Statements



can be used (as shown in Figure 8.2b) to exit the whole case statement after
a statement in it is executed, rather than executing the remainder of it.

Loop statements can be used to repeat a statement until a condition is
met. A statement within the loop statement will be executed repeatedly. The
expressions in both the following loop statements are exactly like the expres-
sions of the conditional statements, using operators as shown in Table 8.3.

Figure 8.3a’s while statement tests the condition before the loop is exe-
cuted and is useful if, for example, a loop may have to be done 0 times. The
do while statement (shown in Figure 8.3b) tests the condition after the loop
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while(expression)
statement;

for(expression_1;expression_2;expression_3)statement;

do statement
while

c.

expression
= TRUE ?

yes

statement

no

a. b.

expression
= TRUE ?yes

statement

no

expression_2
= TRUE ?

yes
statement

no

expression_1

expression_3

FIGURE 8.3. Loop Statements

&& AND
|| OR
! NOT
> Greater Than
< Less Than
> = Greater than or Equal
< = Less Than or Equal
= = Equal to
! = Not Equal To

Table 8.3 Conditional Expression Operators



is executed at least once, but it tests the result of the loop’s activities. It is
very useful in I/O software. It can similarly clear alpha[10]. though
perhaps less clear, it often leads to more efficient code. The do while()
construct is generally more efficient than the while() construct because
the latter has an extra branch instruction to jump to its end.

The more general for statement (shown in Figure 8.3c) has three expres-
sions separated by semicolons (;). The first expression initializes variables
used in the loop, the second tests for completion in the same style as the
while statement, and the third updates the variables each time after the loop
is executed. Any of the expressions in the for statement may be omitted.
For example, for(i = 0; i < 10; i++) alpha[i] = 0; will
clear the array alpha as the above loops did.

The break statement will cause the for, while, or do while loop
to terminate just as in the case statement and may be used in a conditional
statement. For instance, for(;;) {i++; if(i == 30) break;}
executes the compound statement {i++; if(i  ==  30) break; }
indefinitely, but the loop is terminated when i is 30.

Constants and Variables
An important feature of C, extensively used to access I/O devices, is its
ability to describe variables and addresses of variables. If a is a variable, then
&a is the address of a. If a is a variable that contains an address of another
variable b, then *a is the contents of the word pointed to by a, which is the
contents of b. (Note that a*b is a times b but *b is the contents of the word
pointed to by b.) Whenever you see &, read it as “address of,” and when-
ever you see *, read it as “contents of thing pointed to by.” In a declaration
statement, the statement char *p; means that the thing pointed to by p is
a character, and p points to (contains the address of ) a character. In an assign-
ment statement, *p = 1; means that 1 is assigned to the value of the thing
pointed to by p, whereas p = 1; means that the pointer p is given the value
1. Similarly, a = *p; means that a is given the value of the thing pointed
to by p, while a = p; means a gets the value of the pointer p. C com-
pilers can give an error message when you assign an integer to a pointer. If
that occurs, you have to use a cast. Write p = (int *)0x4000; to tell
the compiler 0 ¥ 4000 is really a pointer value to an integer and not an integer
itself.

Constants can be defined by define or enum statements, put before any
declarations or statements, to equate names to values. The define statement
begins with the characters #define and does not end with a semicolon.

#define ALPHA 100

Thenceforth, we can use the label ALPHA throughout the program, and 100
will effectively be put in place of ALPHA just before the program is actually
compiled. This permits the program to be better documented, using mean-
ingful labels, and easier to maintain, so that if the value of a label is changed,
it is changed everywhere it occurs.
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A number of constants can be created using the enum statement. Unless
reinitialized with an “=” sign, the first member has value 0, and each next
member is one greater than the previous member. Hexadecimal values are
prefixed with zero ex (0x):

enum { BETA, GAMMA, DELTA = 0x5};

defines BETA to have value 0, GAMMA to have value 1, and DELTA to be 5.
Any scalar variable can be declared and initialized by an “=” and a value;

for instance, if we want global integers i, j and k to be initially 1, 2 and 3,
we write a global declaration:

int i=1, j=2, k=3;

C procedures access global variables using direct addressing, and such global
variables may be initialized in a procedure _startup that is executed just
before main is started. Initialized local variables of a procedure should gen-
erate machine code to initialize them just after they are allocated each time
the procedure is called. The procedure

void fun(){
int i, j, k; /* allocate local variables */
i = 1; j = 2; k = 3; /* initialize local variables */
}

is equivalent to the procedure

void fun(){
int i = 1, j = 2, k = 3; /* allocate & init. local vars. */
}

A 16-bit element, 3-element vector 31, 17, and 10, is generated by a decla-
ration int v[3] and stored in memory as (hexadecimal):

001F
0011
000A

and we can refer to the first element as v[0], which happens to be 31.
However, the same sequence of values could be put in a vector of three 
8-bit elements, generated by a declaration char u[3] and stored in
memory as:

1F
11
0A

The declaration of a global vector variable can be initialized by use of an
“=“ and a list of values, in curly brackets. For instance, the 3-element global
integer vector v can be allocated and initialized by

int v[3] = {31, 17, 10};
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The vector u can be similarly allocated and initialized by the declaration

char u[3] = {31, 17, 10};

§8.2’s procedure fun() illustrates the accessing of elements of vectors in
expressions. The expression c = d[a + b], accesses the (a + b)th
element of the 8-bit 10-element vector d. When reading assembly code 
generated by C, be wary of the implicit multiplication of the vector’s 
precision (in bytes) in calculating offset addresses of elements of the vector.
Because C does not check that indexes are within a vector, a C program 
must be able to implicitly or explicitly assure this to avoid nasty bugs, as
when a vector’s data are inadvertently stored outside memory allocated to a
vector.

The C structure mechanism can store different-sized elements. The mech-
anism is implemented by a declaration that begins with the word struct and
has a definition of the structure within angle brackets and a list of variables
of that structure type after the brackets, as in

struct { char l1; int l2; char l3;} list;

A globally defined list can be initialized as we did with vectors, as in

struct { char l1; int l2; char l3;} list =
{5,7,9};

The data in a list are identified by “dot” notation, where a dot (.) means
“element.” For instance, list.l1 is the l1 element of the list list. If P
is a pointer to a struct, then arrow notation, such as P->l1, can 
access the element l1 of the list. The typedef statement, though it can be
used to create a new data type in terms of existing data types, is often used
with structs. If typedef list struct { char l1; int l2;
char l3;} list; is written, then list is a data type, like int
or char, and can be used in declarations such as list b; that declare 
b to be an instance of type list. We will find the typedef statement
to be quite useful when a struct has to be declared many times, and 
pointers to it need to be declared as well. A structure can have bit fields,
which are unsigned integer elements having less than 16 bits. Such a 
structure as

struct {unsigned a:1, b:2, c:3;}l;

has a 1-bit field l.a, a 2-bit field l.b, and a 3-bit field l.c. A linked list
structure, a list in which some elements are addresses of (the first word in)
other lists, is flexible and powerful and is widely used in advanced software.

We normally think of an array as a two-dimensional pattern, as in

1 2 3
4 5 6
7 8 9

10 11 12
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An array is considered a vector whose elements are themselves vectors, and
C syntax reflects this philosophy. For instance, the global declaration

int ar1[4][3]={{1,2,3},{4,5,6},{7,8,9},
{10,11,12}};

allocates and initializes a row major ordered array (rows occupy consecu-
tive memory words) ar1, and a = ar1[i][j]; puts the row-i column-
j element of ar1 into a.

A table is a vector of identically formatted structs. Tables often store
characters, where either a single character or a collection of n consecutive
characters is considered an element of the structs in the table. Index
addressing is useful for accessing elements in a row of a table. If the address
register points to the first word of any row, then the displacement can be used
to access words in any desired column. Also, autoincrement addressing can
be used to select consecutive words from a row of the table.

In C, a table tbl is considered a vector whose elements are structures.
For instance, the declaration

struct {char l1;int l2;char l3;} tbl[3];

allocates a table whose rows are similar to the list list above. The dot nota-
tion with indexes can be used to access it, as in

a = tbl[2].l1;

In simple compilers, multidimensional arrays and structs are not imple-
mented. They can be reasonably simulated using one-dimensional vectors.
The user becomes responsible for generating vector index values to access
row-column elements or struct elements.

Finally a comment is anything enclosed by /* and */. These can be put
anywhere in your program, except within quotation marks. Alternatively,
everything after // on a source line is considered a comment. However, the
latter syntax is not available on all C compilers.

Procedures and Their Arguments
A procedure in C may be called by another procedure in C as a procedure.
The arguments may be the data themselves, which is call by value, or the
address of the data, which is call by name. Call by reference is not used in
C (it is often used in FORTRAN). Consider the following example: Raise-
Power computes i to the power j, returning the answer in k where i, j,
and k are integers. The variable i is passed by value, while j and k are passed
by name. The calling procedure would have RaisePower(i,&j,&k);
and the called procedure would have

void RaisePower int *k, int *j, int i){
int n;

for (*k = 1; (i--) > 0;) *k *=* j;
for (*k = 1; (i--) > 0;) *k *=* j;
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Formal parameters are listed after the procedure name in parentheses, as in
(i,j,k), and in the same order they are listed after the procedure name as
they would be for a declaration of local variables. However, they are listed
before the curly bracket ({).

Call by value, as i is passed, does not allow data to be output from a
procedure, but any number of call by value input parameters can be used in
a procedure. Actual parameters passed by name in the calling procedure have
an ampersand (&) prefixed to them to designate that the address is put in the
parameter. In the called procedure, the formal parameters generally have an
asterisk (*) prefixed to them to designate that the data at the address are
accessed. Observe that call by name formal parameters j or k used inside
the called procedure all have a prefix asterisk. A call by name parameter can
pass data into or out of a procedure, or both. Data can be input into a pro-
cedure using call by name, because the address of the result is passed into
the procedure and the procedure can read data at the given address. A result
can be returned from a procedure using call by name, because the address
of the result is passed into the procedure and the procedure can write new
data at the given address to pass data out of the procedure. Any number of
call by name I/O parameters can be used in a procedure.

A procedure may be used as a function that returns exactly one value and
can be used in the middle of algebraic expressions. The value returned by
the function is put in a return statement. For instance, the function power
can be written

int power(int i, int j) {  int k, n;
for(n = 1, k = 0; k < j; k++) n = n * i;
return n;
}

This function can be called within an algebraic expression by a statement a
= power(b,2). The output of the function named in the return statement
is passed by call by result.

In C, the address of a character string can be passed into a procedure,
which uses a pointer inside it to read the characters. For example, the string
s is passed to a procedure puts that outputs a string by outputting to the
user’s display screen one character at a time using a procedure putchar.
The procedure puts is written

void puts(s) char *s; {
while(*s != 0) putchar(*(s++));
}

It can be called in either of three ways, as shown side by side:

void main(){ void main(){      void main(){
char s[6]=”ALPHA”; char s[6]=”ALPHA” puts(“ALPHA”);
puts(&s[0]); puts(s); }

} }
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The first calling sequence, though permissible, is clumsy. The second is often
used to pass different strings to the procedure, while the third is better when
the same constant string is passed to the procedure in the statement of the
calling program.

A prototype for a procedure can be used to tell the compiler how argu-
ments are passed to and from it. At the beginning of a program we write all
prototypes, such as

extern void puts(char *);

The word extern indicates that the procedure puts() is not actually here
but is elsewhere. The procedure itself can be later in the same file or in
another file. The argument char * indicates that the procedure uses only
one argument, and it will be a pointer to a character (i.e., the argument is
called by name). In front of the procedure name a type indicates the proce-
dure’s result. The type void indicates that the procedure does not return a
result. After the prototype has been declared, any calls to the procedure will
be checked to see if the types match. For instance, a call puts(‘A’) will
cause an error message because we have to send the address of a character
(string), not a value of a character to this procedure. The prototype for
power() is

extern int power(int, int);

to indicate that it requires two arguments and returns one result, all of which
are call-by-value-and-result 16-bit signed numbers. The compiler will use
the prototype to convert arguments of other types if possible. For instance,
if x and y are 8-bit signed numbers (of type char) then a call power(x,y)
will automatically extend these 8-bit to 16-bit signed numbers before passing
them to the procedure. If a procedure has a return n statement that returns
a result, then the type statement in front of the procedure name indicates the
type of the result. If that type is declared to be void as in the puts() pro-
cedure, there may not be a return n statement that returns a result.

At the beginning of each file, prototypes for all procedures in that file
should be declared. While writing a procedure name and its arguments twice,
once in a prototype and later in the procedure itself, may appear clumsy, it
lets the compiler check for improper arguments and, where possible, instructs
it to convert types used in the calling routine to the types expected in the
called routine. We recommend the use of prototypes.

The macro is similar to a procedure but is either evaluated at compile
time or is inserted into the program wherever it is used, rather than being
stored in one place and jumped to whenever it is called. The macro in C is
implemented as a #define construct. As #defines were earlier used to
define constants, macros are also “expanded” just before the program is com-
piled. The macro has a name and arguments rather like a procedure, and the
rest of the line is the body of the macro. For instance

#define f( a, b, c) a = b * 2 + c
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is a macro with name f and arguments a, b, and c. Wherever the name
appears in the program, the macro is expanded and its arguments are sub-
stituted. If f( x, y, 3) appeared, then x = y * 2 + 3 is inserted
into the program. Macros with constant arguments are evaluated at compile
time, generating a constant used at run time.

An Example
A very nice coding scheme called the Huffman code can pack characters 
into a bit stream and achieve about a 75% reduction in storage space when
compared to storing the characters directly in an ASCII character string. It
can be used to store characters more compactly and can also be used to 
transmit them through a communications link more efficiently. As a bonus,
the encoded characters are very hard to decode without a code description,
so you get a more secure communications link using a Huffman code.
Further, Huffman coding and decoding provide a rich set of examples of C
techniques.

The code is rather like Morse code, in that frequently used characters are
coded as short strings of bits, just as the often-used letter “e” is a single dot
in Morse code. To ensure that code words are unique and to suggest a decod-
ing strategy, the code is defined by a tree having two branches at each branch-
ing point (binary tree), as shown in Figure 8.4. The letters at each end (leaf )
are represented by the pattern of 1s and 0s along the branches from the left
end (root) to the leaf. Thus, the character string MISSISSIPPI can be repre-
sented by the bit string 111100010001011011010. Note that the ASCII string
would take 88 bits of memory while the Huffman string would take 21 bits.
When you decode the bit string, start at the root, and use each successive bit
of the bit string to guide you up (if 0) or down (if 1) the next branch until
you get to a leaf. Then copy the letter, and start over at the root of the tree
with the next bit of the bit string.

A C program for Huffman coding is shown below. The original ASCII
character string is stored in the char vector strng. We will initialize it to
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the string MISSISSIPPI for convenience, although any string of M I S and
P letters could be used. The procedure converts this string into a Huffman-
coded 48-bit bit string stored in the vector code[3]. It uses the procedure
shift() to shift a bit into code. This procedure, shown after main, is
also used by the decoding procedure shown after it.

int code[3], bitlength; /* output code and its length */

char strng[12] = “MISSISSIPPI”; /* NULL terminated input code */
struct table{char letter; char charcode[4];} codetable[4]

= { ‘S’,”XX0”, ‘I’,”X10”, ‘P’,”110”,’M’,”111” };

void main(){ int row, i; char *point, letter;

for (point=strng; *point ; point++ ){

row = 0; do{

if (((*point)&0x7f)== codetable[row++].letter ){
i = 0; while(i < 3){

letter = codetable[row-1].charcode[i++];
if (letter != ‘X’)

{shift();code[2]|=(letter&1);bitlength++;}
}

}

} while(row < 4);

}

i= bitlength; while((i++)<48)shift();/*delete unchanged bits */
}

int shift() { int i;

i = (0x8000 & code[0]) == 0x8000; code[0] <<= 1;

if(code[1] & 0x8000) code[0]++; code[1] = code[1] <<1;
if(code[2] & 0x8000) code[1]++; code[2] = code[2] <<1;
return(i);

}

Huffman decoding, using the same shift(), is done as follows:

int code[3] = {0xf116, 0xd000, 0}, bitlength = 21;/*input string*/

char ary[3][2] = {{‘S’,1},{‘I’,2},{‘P’,’M’}};

char strng[20]; /* buffer for output characters */

void main(){   int row,entry; char *point;

point=strng; row =0;
while((bitlength--)>0){

if((entry = ary[row][shift()]) < 0x20)  row = entry;

else {row =0;  *(point++) = entry &0x7f; }

}

*point = ‘\0’; /* terminate C string with NULL character */

}
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We suggest that you compile these procedures and step through them using
a high-level debugger. We will discuss each of the features of this program
below.

While a for loop can be used for the encoder’s outermost, middle, and
innermost loops, we have shown the loops using the different constructs to
provide different examples. Each execution of the encoder’s outermost for
loop takes a character from strng. The next inner loop, a do while loop,
looks up the character in table, a vector of structs. When it finds a
matching character, the innermost loop, a while loop, copies the encoded
bits into the 48-bit bit vector code.

Bits are stored in the global vector code by the subroutine shift().
The leftmost 16 bits are stored in code[0], the next 16 bits are stored in
code[1], and the rightmost 16 bits are stored in code[2]. shift()
shifts the bit vector left, outputting the leftmost bit. shift() first makes
local variable i 1 if the bit vector’s most significant bit is 1; otherwise i
is 0 (i is the return value). code[0] is shifted left, clearing its least sig-
nificant bit, and then code[0] is incremented if code[1]’s most signifi-
cant bit is 1. Note that incrementing shifts the most significant bit of
code[1] into code[0]. Then code[1] is shifted, and then code[2] is
shifted, in like manner. Observe that the least significant bit of code[2] is
cleared by the last shift. The encoder procedure, after it calls shift(), ORs
a 1 into this bit if it reads an ASCII character 1 from the struct table.

The decoder program shifts a bit out of code, for bitlength
bits, using shift(). This bit is used as an index in the two-dimensional
array ary. This array stores the next node of the tree shown in Figure 8.4.
A row of the array corresponds to a node of the figure, and a column corre-
sponds to an input code bit. The element stored in this array is an ASCII
character to be put in the output buffer string if its value is above 
the ASCII code for space (0x20). If it is a character, decoding proceeds next
at the root of the tree or row zero of the array. Otherwise the value is the
node number of the tree or row number of the array where decoding 
proceeds next.

Now that we have shown how nice the Huffman code is, we must admit
a few problems with it. To efficiently store some text, the text must be 
statistically analyzed to determine which letters are most frequent, so as to
assign these the shortest codes. Note that S is most common, so we gave it
a short code word. There is a procedure for generating the best Huffman
code, which is presented in many information theory books, but you have to
get the statistics of each letter’s occurrences to get that code. Nevertheless,
though less than perfect, one can use a fixed code that is based on other sta-
tistics if the statistics are reasonably similar. Finally, although the code is
almost unbreakable without the decoding tree, if any bit in the bit string is
erroneous, your decoding routine can get completely lost. This may be a risk
you decide to avoid because the code has to be sent through a communica-
tions link that must be as error free as possible.
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Object-Oriented Programming in C++
The concept of object-oriented programming was developed to program
symbolic processes, database storage and retrieval systems, and user-friendly
graphic interfaces. However, it provides a programming and design method-
ology that simplifies the programming of microcontrollers and systems that
center on them.

Object-oriented programming began with the language SMALLTALK.
Programmers using C wanted to use object-oriented techniques. Standard C
cannot be used, but a derivative of C, called C++, has been developed to
utilize objects with a syntax similar to that of C. Although a 6812 C++ com-
piler was not available to the author when this book was written, the Metro-
werks C++ compiler was used to generate code for 68332- and 68340-based
microcontrollers to check out the ideas described below.

C++ has a few differences from C. C++ permits declarations inside
expressions, as in for (int i = 0; i < 10; i++). Parameters
can be passed by name using a PASCAL-like convention; & in front of a
formal parameter is like VAR. See the actual parameter a and corresponding
formal parameter b below:

void main(){ char a; void f(char &b) {
f(a); b = ‘1’;
} }

An object’s data are data members, and its procedures are function
members; data and function members are encapsulated together in an object.
Combining them is a good idea because the programmer becomes aware of
both together and logically separates them from other objects. As you get the
data, you automatically get the function members used on them. In the class
for a character stack shown below, observe that data members Error,
Bottom, Top, and Ptr are declared much as in a C struct, and func-
tion members push, pull, and error are declared like prototypes are in
C. Protection terms, protected, public, and virtual, will be soon
explained.

class Cstack { // definition of a class

protected: // members below aren’t available outside

char Error; // a data member to record errors

int *Bottom, *Top, *Ptr; // data members to point to the stack

public: // members below are available outside

Cstack(char); // constructor, initializes data members

virtual void push(int); // function member to push onto stack

virtual int pull(void); // function member to pull from stack

virtual char error(void); // function member to check on errors

};

A class’s function members are written rather like C procedures with the
return type and class name in front of two colons and the function member
name.
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void Cstack::push(int i)

{ if( Ptr == Top){ Error = 1; return; } *(++Ptr) = i; }

int Cstack::pull()

{if(Ptr==Bottom){ Error=1; return 0;} return *(Ptr--);}

char Cstack::error(){char i; I = Error; Error = 0; return i;

Any data member, such as Top, may be accessed inside any function
member of class Cstack, such as push(). Inside a function member, when
a name appears in an expression, the variable’s name is first searched against
local variables and function formal parameters. If the name matches, the vari-
able is local or an argument. Then the variable is matched against the object
data members and finally against the global variables. In a sense, object data
members are global among the function members. However, it is possible
that a data member and a local variable or argument have the same name
such as Error. The data member can be identified as this->Error, using
key word this to point to the object that called the function member, while
the local variable or argument is just Error.

C++ uses constructors, allocators, destructors, and deallocators. An 
allocator allocates data member storage. A constructor initializes these 
variables; it has the same function name as the class name. Declaring or
blessing an object automatically calls the allocator and constructor, as 
we will see shortly. A destructor terminates the use of an object. A destruc-
tor has the same function name as the class name but has a tilde (~) in 
front of the function member name. A deallocator recovers storage for 
data members for later allocation. We do not use a deallocator in our exper-
iments; it is easier to reset the 6812 to deallocate storage. Here’s Cstack’s
constructor:

Cstack::Cstack(int i)
{Top=(Ptr=Bottom=(char*)allocate(i))+i;Qlen=
Error=0;}

Throughout this section, a conventional C procedure allocate provides
buffer storage for an object’s data members and for an object’s additional
storage such as its stacks. The contents of global variable free are initial-
ized to the address just above the last global; storage between free and
the stack pointer is subdivided into buffers for each object by the 
allocate routine. The stack used for return addresses and local variables
builds from one end and the allocator builds from the other end of a common
RAM buffer area. allocate’s return type void * means a pointer to 
anything.

char *free=0xb80;
void *allocate(int i) {void *p=free; free += i;
return p;}

A global object of a class is declared and then used as shown below:
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Cstack S(10);
void main() { int i;

S.push(1); i = S.pull();
}

The object’s data members, Error, Bottom, Top, and Ptr, are stored in
memory just the way a global struct is stored. Suppose S is a stack object
as described above, and Sptr is a pointer to a stack object. If a data member
could be accessed in main, as in i = S.Error or i = Sptr->Error
(we see later that it can’t be accessed from main), the data member is
accessed by using a predetermined offset from the base of the object exactly
as a member of a C struct is accessed. Function members can be called
using notation similar to that used to access data in a struct; S.push(1)
calls the push function member of S to push 1 onto S’s stack. The “S.”
in front of the function member is rather like a first actual parameter, as in
push(S,1), but can be used to select the function member to be run, as
we will see later, so it appears before the function.

The class’s constructor is executed before the main procedure is executed
to initialize the data members of the object. This declaration S(10) passes
actual parameter 10 to the constructor, which uses it, as formal parameter
i, to allocate 10 bytes for the stack. The stack is stored in a buffer assigned
by the allocate routine.

Similarly a local object of a class can be declared and then used as shown
below:

void main() { int i; Cstack S(10);
S.push(1); i = S.pull();
}

The data members Error, Bottom, Top, and Ptr, are stored on the hard-
ware stack, and the constructor is called just after main is entered to ini-
tialize these data members; it then calls allocate to find room for the
stack. The function members are called the same way as in the first example
when the object was declared globally.

Alternatively, a pointer Sptr to an object can be declared globally or
locally; then an object is set up and then used as shown below.

void main() { Cstack * Sptr; int i;
Sptr = new Cstack (20);
Sptr ->push(1); i = Sptr ->pull();
}

In the first line, Sptr, a pointer to an object of class stack, is declared
here as a local variable. (Alternatively it could have been declared as a global
variable pointer.) The expression Sptr = new Cstack (20); is put
anywhere before the object is used. This is called blessing the object. The
allocator and then the constructor are both called by the operator new. The
allocator allocate automatically provides room for the data members Error,
Bottom, Top, and Ptr. The constructor explicitly calls up the allocate pro-
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cedure to obtain room for the object’s stack itself, and then initializes all the
object’s data members. After it is thus blessed, the object can be used in the
program. An alternative way to use a pointer to an object is with a #define
statement to insert the asterisk as follows:

#define S (*Sptr)
void main() { int i;

Cstack *Sptr = new Cstack(20);
S.push(1); i = S.pull();

}

Wherever the symbolic name S appears, the compiler substitutes (*Sptr)
in its place. Note that *ptr.member is the same as ptr->member. So
this makes the syntax of the use of pointers to objects match the syntax of
the use of objects most of the time. However, the blessing of the object
explicitly uses the pointer name.

A hierarchy of derived and base classes, inheritance, overriding, and fac-
toring are all related ideas. These are described below, in that order.

A class can be a derived class (also called subclass) of another class, and
a hierarchy of classes can be built up. We create derived classes to use some
of the data or function members of the base class, but we can add members
to, or replace some of the members of, the base class in the derived class.
For instance the aforementioned class Cstack can have a derived class
Istack for int variables; it declares a potentially modifiable constructor
and different function members pull and push for its stack. When defin-
ing the class Istack the base class (also called superclass) of Istack is
written after its name and a colon as : public Cstack. A class such
as Cstack, with no base class, is called a root class; it has no colon and
base class shown in its declaration. 

class Istack:public Cstack {
public: Istack(char);virtual void push(int);
virtual int pull(void);
};
Istack::Istack(char i) : Cstack(i & ~1) {}
void Istack:: push (int i) {

if(Ptr==Top) {Error=1; return;}
*(++Ptr) = i>>8;  *(++Ptr)=i;

}
int Istack:: pull () {int i;

if(Ptr==Bottom){Error=1;return 0;}
return *(Ptr–)|(*(Ptr–)<<8);

}

The notion of inheritance is that an object will have data and function
members defined in the base class(es) of its class as well as those defined in
its own class. The derived class inherits the data members or function
members of the parent that are not redefined in the derived class. If we
execute Istack::error then the function member Cstack::error is
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executed, because Istack does not declare a different error function
member. If a function member cannot be found in the class that the object
was declared or blessed for, then its base class is examined to find the func-
tion member to be executed. In a hierarchy of derived classes, if the search
fails in the class’s base class, the base class’s base class is searched, and so
on, up to the root class. Overriding is the opposite of inheritance. If we
execute Sptr->push(1);, function member Istack::push is exe-
cuted rather than Cstack::push, because the class defines an overriding
function member. Although we did not need additional variables in the
derived class, the same rules of inheritance and overriding would apply to
data members as to function members.

We notice some common parts in different routines used in a program.
Common parts can be merged into one place by factoring. Factoring is
common to many disciplines—or instance, to algebra. If you have ab + ac
you can factor out the common term a and write a (b + c), which has
fewer multiplications. Similarly, if many classes use the same function
member, such a function member could be reproduced for each. Declaring
such a function member in one place in a base class would be more stati-
cally efficient, where all derived classes would inherit it. Also, if an error
were discovered and corrected in a base class’s function member, it is auto-
matically corrected for use in all the derived classes that use the common
function member. Istack’s constructor, using the notation :Cstack(i
& ~1) just after the constructor’s name Istack::Istack(char i)
before the constructor’s body in {}, calls the base class’s constructor before
its own constructor is executed. In fact, Istack’s constructor does nothing
else, as is denoted by the empty procedure {}. All derived classes need to
declare their constructor, even if that constructor does nothing but call its
base class’s constructor. Other function members can call their base’s func-
tion members by explicitly naming the class, in front of the function call, as
in Cstack::push(i);

Consider the hypothetical situation where a program can declare classes
Cstack and Istack. Inside main, are statements Sptr->push(1);
and i = Sptr->pull();. At compile time, either of the objects can be
declared for either Cstack or Istack, using conditional compilation; for
instance, the program on the left:

void main(){ int i; void main(){ int i; Cstack
*Sptr;
#ifdef mode #ifdef mode

Cstack S(10); Sptr = new Cstack(10);
#else #else

Istack S(10); Sptr = new Istack (10);
#endif #endif

S.push(1); Sptr->push(1);
i = S.pull(); i = Sptr->pull();

} }
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declares S a class Cstack object if mode is #declared, otherwise it is
a class Istack object. Then the remainder of the program is written
unchanged. Alternatively, at compile time, a pointer to objects can be blessed
for either the Cstack or the Istack class. The program above right shows
this technique.

Moreover, a pointer can be blessed to be objects of different classes at
run time. At the very beginning of main, assume a variable called range
denotes the actual maximum data size saved in the stack:

void main(){ int i, range; Cstack *Sptr;
if(range >= 128) Sptr = new Istack(10);
else Sptr = new Cstack(10);
Sptr->push(1); i = Sptr->pull();
}

Sptr->push(1); and i = Sptr->pull(); will use the stack of 8-
bit members if the range is small enough to save space; otherwise they will
use a stack that has enough room for each element to hold the larger data,
as will be explained shortly.

Polymorphism means that any two classes can declare the same func-
tion member name and argument, especially a class and its inherited classes.
It means that simple intuitive names like push can be used for inter-
changeable function members of different classes. Polymorphism will be
used later when we substitute one object for another object; the function
member names and arguments do not have to be changed. You don’t have
to generate obscure names for functions to keep them separate from each
other. Moreover, in C++, the number and types of operands, called the func-
tion’s signature, are part of the name when determining if two functions have
the same name. For instance, push(char a) is a different function than
push(int a).

A function member that is declared virtual will be called indirectly
instead of by a BSR or equivalent instruction. The program jumps indirectly
through a list of function member entry addresses, called a vtable. The bless-
ing of the object links the calls to the object’s function members through this
vtable. If an object is blessed for a different class, another class’s vtable is
linked to the object, so that calling the object’s function members will go to
the class’s function members for which it is blessed.

When object pointers are blessed at run time and have virtual function
members, if a virtual function member appears for a class and is overridden
by function members with the same name in its derived classes, the sizes and
types of all the arguments should be the same, because the compiler does
not know how an object will be blessed at run time. If they were not, the
compiler would not know how to pass arguments to the function members.
For this reason, we defined the arguments of Cstack’s push and pull
function members to be int rather than char, so that the same function
member name can be used for the int version or a char version. This 
run-time selection of which class to assign to an object isn’t needed with
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declarations of objects, but only with blessing of object pointers, because the
run-time program can’t select at compile time which of several declarations
might be used. Also the pointer to the object must be declared an object of
a common base class if it is to be used for several class.

Information hiding limits access to data or function members. A member
can be declared public, making it available everywhere, protected, making
it available only to function members of the same class or a derived class of
it, or private, making it available only to the same class’s function members
and hiding it from other functions. These words appearing in a class decla-
ration apply to all members listed after them until another such word appears;
the default if no such words appear is private. The data member Error in
the class Cstack cannot be accessed by a pointer in main as in i
=S.Error or i =Sptr->Error because it is not public, but only
through the public function member error(). This way, the procedure
main can read (and automatically clear) the Error variable but cannot acci-
dentally or maliciously set Error, nor can it read it, forgetting to clear it.
You should protect your data members to make your program much more
bug-proof. Declare all data and function members as private if they 
are to be used only by the class’s own function members, declare them 
protected if they might be used by derived classes, and declare them
public if they are used outside the class and its derived classes.

Templates generalize object-oriented programming. A template class is
a class that is defined for an arbitrary data type, which is selected when 
the object is blessed or declared. We will define a templated class Stack.
The class declaration and the function members have a prefix like 
template <class T> to allow the user to bless or declare the object 
for a specific class having a particular data type, as in S = new
Stack<char>(10). The generalized class is defined below; you can sub-
stitute the word char for the letter T everywhere in declarations or class
function members.

The following class also exhibits another feature of C++, which is the
ability to write the function member inside the declaration of the class. 
The function is written in place of the prototype for the function. This is
especially useful when templates are used with int function members,
because otherwise the notation template <class T> and the class 
name Stack:: would have to be repeated before each function 
member.

template <class T> class Stack{
private:T *Bottom,*Top,*Ptr;char Error, Index;
public :Stack(int i) {

Top = ( Bottom = Ptr  = (T*)allocate( i ) )
+ i );

Error = 0;
}
virtual void  push (T i){
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if(Ptr==Top){Error=1; return;} *(++Ptr)=i;
}
virtual T  pull(void){if(Ptr==Bottom){

Error=1; return 0;}return *Ptr–;
}
virtual char error () { char i;

i = Error; Error = 0; return i;
}
operator T () { /* overloaded cast operator */

if(index>(Ptr-Bottom)){Error=1;return 0;}
return Ptr[-index];

}
T operator = (T data){ /* overloaded assignment operator */

if(index>(Ptr-Bottom)){Error=1;return 0;}
return Ptr[-index]=data;

}
T operator [](char data)/* index operator */

{index=data;return *this; }
};

If you declare Stack<char> S(10); or bless Sptr = new
Stack<char>(10); then a stack is implemented that stores 8-bit data,
but if you declare Stack<int> S(10) or bless Sptr = new
Stack<int>(10); then a stack is implemented that stores 16-bit data.
Templates permit us to define one generalized class that can be declared or
blessed to handle 8-bit, 16-bit, or 32-bit signed or unsigned data when the
program is compiled. This selection must be made at compile time, because
it generates different calls.

Operator overloading means that the same operator symbol generates
different effects depending on the type of the data it operates on. The C 
compiler already effectively loads its operators. The + operator generates an
ADDB instruction when adding data of type char and an ADDD instruction
when adding data of type int. What C++ does but C cannot do is to overload
operators so they do different things when an operand is an object, which
depends on the object’s definition. In effect, the programmer can provide a
new part of the compiler that generates the code for symbols, depending on
the types of data used with the symbols. For instance, the << operator used
for shift can be used for input or output if an operand is an I/O device. The
expression S << a can be defined to output the character a to the object
S, and S >> a can be defined to input a character from the object S and
put it into a. This type of operator overloading is used in I/O streams for
inputting or outputting formatted character strings. Without this feature, 
we simply have to write our function calls as a=S.Input() and
S.Output(a) rather than S<<a or S>>a. However, with overloading we
write a simpler program; for instance, we can write an I/O stream S << a
<< “ is the value of “ << b;. Overloading can also be used

Section 8.7 Object-Oriented Programming in C++ 263



to create arithmetic-looking expressions that use function members to eval-
uate them. Besides operators like + and -, C++ considers the cast to be an
operator, as well as the assignment =. In the following example, we over-
load the cast operator as shown by operator T (); and the assignment
operator as shown by T operator = (T);. T will be a cast, like char,
so operator T (); will become operator char (); whenever
the compiler has an explicit cast like (char)i, where i is an object, or for
an implicit cast, where object i appears in an expression needing a char,
the compiler calls the user-defined overloaded operator to perform the cast
function. Similarly, wherever the compiler has calculated an expression that
has a char value but the assignment statement has an object i on its left,
the compiler calls up the overloaded = operator the user specifies with T
operator = (T);.

The overloaded index operator [] illustrates another C++ feature. This
overloaded operator is called whenever the compiler sees an index [] to the
right of an object, as in S[0], whether the object and index are on the left
or right of an assignment statement =. It executes the overloaded operator
[] before it executes the overloaded cast or overloaded assignment opera-
tor. This overloaded operator simply stores what is inside the square brack-
ets, 0 in our example, in an object data member index. Then the following
overloaded cast or assignment operator can use this saved value to supply
the offset to the stack. Then S[i] reads or writes the ith element from the
stack’s top.

Now, whenever the compiler sees an object on the left side of an equal
sign when it has evaluated a number for the expression on the right side and
it would otherwise be unable to do anything correctly, the compiler executes
the code at your declaration of the overloaded assignment operator. The
expression S = 1; will do the same thing as S.push(1);, and *Sptr
= 1; will do the same thing as Sptr->push(1);. Similarly, whenever
the compiler sees an object anywhere on the right side of an equal sign when
it is trying to get a number and it would otherwise be unable to do anything
correctly, the compiler looks at your declaration of the overloaded cast oper-
ator to determine that the number will be pulled from the stack. The expres-
sion i = S; will do the same thing as i = S.pull();, and i =
*Sptr; will do the same thing as i = Sptr->pull();. Now if a stack
S returns a temperature in degrees centigrade, you can write an expression
like degreeF = (S * 9) / 5 + 32; or degreeF = (*Sptr
* 9) / 5 + 32;, and the compiler will pull an item from the stack each
time it runs into the S symbolic name. While overloading of operators isn’t
necessary, it provides a mechanism for simplifying expressions to look like
common algebraic formulas.

A derived class usually defines an overloaded assignment operator even
if its base class has defined an overloaded assignment operator in exactly the
same way, because the (Metrowerks) C++ compiler can get confused with
the “=” sign. If S1 and S2 are objects of class Cstack<char>, then S1
= S2; won’t pop an item from S2 and push it onto S1, as we would wish
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when we use overloaded assignment and cast operators, but “clones” the
object, copying S2’s contents into S1 as if the object were a struct. A
way around this is to declare a local variable such as i. Write S1 = i =
S2; to force using the overloaded cast and assignment operators.

C++ object-oriented programming offers many useful features. Encap-
sulation associates variables with procedures that use them in classes, inher-
itance permits factoring out of procedures that are common to several classes,
overriding permits the redefinition of procedures, polymorphism allows
common names to be used for procedures, virtual functions permit different
procedures to be selected at run time, information hiding protects data, tem-
plate classes generalize classes to use different data types, and operator 
overloading permits a program to be written in the format of algebraic
expressions. If the programmer doesn’t have C++ but has a minimal C com-
piler, many of the features of object-oriented programming can be simulated
by adhering to a set of conventions. For instance, in place of a C++ call
Cstack.push(), one can write instead StackPush(). Information
hiding can be enforced by only accessing variables like QptrError in
procedures like StackPush(). C++ gives us a good model for useful C
conventions.

Object-oriented programming has very useful features for designing
state-of-the-art microcomputer’s I/O device software, as proposed by Grady
Booch in his tutorial Object-Oriented Computing. Encapsulation is extended
to include not only instance variables and methods, but also the I/O device,
digital, analog, and mechanical systems used for this I/O. An object is these
parts considered as a single unit. For instance, suppose you are designing an
automobile controller. An object (call it PLUGS) might be the spark plugs,
their control hardware, and procedures. Having defined PLUGS, you call
function members (for instance, SetRate(10) to PLUGS), rather like con-
necting wires between the hardware parts of these objects. The system takes
shape in a clear intuitive way as the function members are defined. In top-
down design, you can specify the arguments and the semantics of the
methods that will be executed before you write them. In bottom-up design,
the object PLUGS can be tested by a driver as a unit before it is connected
to other objects.

An object can be replaced by another object, if the function calls are
written the same way (polymorphism). If you replace your spark plug firing
system with another, the whole old PLUGS object can be removed and a
whole new PLUGS1 object inserted. You can maintain a library of classes
to construct new products by building on large pretested modules. Having
several objects with different costs and performances, you can insert a 
customer-specified one in each unit.

In this context, protection has clear advantages. If interchangeable 
objects avoid mismatch problems, then all public function and data members
have to be defined exactly the same. Private and protected function and 
data members, by contrast, do not need to be defined exactly the same in
each of the objects because they cannot be accessed outside the object. Make
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a function or data member public only if you will maintain the member’s
appearance and meaning in all interchangeable classes. Because there is no
need to make private and protected members the same in all classes, you
have more flexibility, so you make function and data members public only
if you have to.

Virtual functions have further advantages, if an object can be blessed to
be one of a number of polymorphic classes at run time. For instance, output
from a microcontroller can be sent to a liquid crystal display or a serial
printer. The user can cause the output to be sent to either device without
reloading, or in any way modifying, the microcontroller’s program.

Classes can be used in a different way to simplify programming rather
complex 6812 I/O systems. Some basic routines, available in a library of
classes, will be needed to initialize the device, to exchange data with the
device, or to terminate a device’s use. These routines can be put into oper-
ating systems as device drivers. Alternatively, they can be implemented as
classes. Then as larger systems are implemented, such as PLUGS, that use
the device, new classes can be defined as derived classes of these existing
classes, to avoid rewriting the methods inherited from the classes in the
library.

Summary
This chapter gives some background in C and C++, so that the next chapter
can illustrate how each C or C++ expression or mechanism can be assem-
bled into 6812 assembly language, which we dwell on in the next chapter.
We will also include C or C++ programs to illustrate data structures, arith-
metic operations, and I/O operations in the remaining chapters. This chapter
has served to give you enough background to be able to fully appreciate the
points to be made in the remaining chapters.

Do You Know These Terms?
See the end of Chapter 1 for instructions.
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compiler
high-level language
optimizing compiler
interpreter
tokens
procedure
declaration of a

parameter or a
variable

cast
statement
relational operators

logical operators
case statement
break statement
while statement
do while statement
for statement
define statement
enum statement
structure
struct
linked list structure
array

row major
table
call by value
return statement
prototype
macro
Huffman code
binary tree
data member
function members
encapsulate
object
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allocator
constructor
destructor
deallocator
allocate
blessing
new
derived class
subclass

base class
superclass
root class
inheritance
overriding
factoring
polymorphism
virtual
vtable

information hiding
public
protected
private
template class
operator

overloading

PROBLEMS

Problems in this chapter and many in later chapters are C and C++ language
programming problems. We recommend the following guidelines for prob-
lems answered in C: In main() or “self-initializing procedures” each state-
ment must be limited to C operators and statements described in this chapter,
should include all initialization operations, and should have comments as
noted at the end of §8.4, and subroutines should follow the style for C pro-
cedures recommended in §8.5. Unless otherwise noted, you should write pro-
grams with the greatest static efficiency.

1. Write a shortest C procedure void main() that will find x and y if
ax + by = c and dx + ey = f. Assume that a, b, c, d, and f
are global integers that somehow are initialized with the correct param-
eters, and answers, x and y, are stored in local variables in main().
(Verify your program with a source-level debugger.)

2. Write a shortest C procedure void main() to sort five numbers in
global integer vector a[5]. Execute four passes, where each pass com-
pares each a[i], i running from 0 to 3. During each pass, a[i] is
compared to each a[j], j running from i + 1 to 4, putting the
smaller in a[i] and larger in a[j].

3. Write a C procedure void main() to generate the first five Fibonacci
numbers F(i), (F(0) = F(1) = 1 and for i > 1, F(i) = F(i - 1) + F(i - 2) )
in global integers a0,a1,a2,a3,a4 so that ai is F(i). Compute F(2),
F(3), and F(4).

4. A two-dimensional array can be simulated using one-dimensional
vectors. Write a shortest C procedure void main() to multiply 
two 3 ¥ 3 integer matrices, A and B, putting the result in C, all 
stored as one-dimensional vectors in row major order. Show the 
storage declarations/directives of the matrices, so that A and B are
initialized as

1 2 3 10 13 16
A = 4 5 6 B = 11 14 17

7 8 9 12 15 18

�



5. A long can be simulated using one-dimensional char vectors.
Suppose A is a zero-origin 5-by-7 array of 32-bit numbers, each 
number stored in consecutive bytes most significant byte first, and 
the matrix stored in row major order, in a 140-byte char vector. Write
a C procedure int get(char *a, unsigned char i,
unsigned char j, char *v), where a is the storage array, i
and j are row and column, and v is the vector result. If 0 ≤ i < 5
and 0 ≤ j < 7, this procedure puts the ith row, jth column 32-bit
value into locations v, v + 1, v + 2, and v + 3, most significant
byte first, and returns 1; otherwise it returns a 0 and does not write 
into v.

6. A struct can be simulated using one-dimensional char vectors. The
struct{long v1; unsigned int v2:4, v3:8, v4:2,
v5:1}; has, tightly packed, a 32-bit element v1, a 4-bit element v2,
an 8-bit element v3, a 2-bit element v4, a 1-bit element v5, and an
unused bit to fill out a 16-bit unsigned int. Write shortest C pro-
cedures void getV1(char *s, char *v), void getV2
(char *s, char *v), void getV3(char *s, char *v),
void getV4(char *s, char *v), void getV5(char *s,
*v), void putV1(char *s, char *v), void putV2(char
*s, char *v), void putV3(char *s, char *v), void
putV4(char *s, char *v), and void putV5(char *s,
*v), in which get . . . will copy the element from the struct to
the vector and put . . . will copy the vector into the struct; e.g.,
getV2(s, v) copies element V2 into v, and putV5(s, v) copies
v into element V5.

7. Write a shortest C procedure void main() and procedures it calls,
without any assembly language, which will first input up to 32 charac-
ters from the keyboard to the 6812 (using getchar()) and will then
jump to one of the procedures, given below, whose name is typed in (the
names can be entered in either upper or lower case, or a combination 
of both, but a space is represented as an underbar). The procedures,
void start(), void step_up(), void step_down(), void
recalibrate(), and void shut_down(), just type out a
message; for instance, start() will type out “Start Entered” on the
host monitor. The main() procedure should generate the least number
of bytes of object code possible and should run on the host. Although
you do not have to use a compiler and target machine to answer this
problem; you can use it without penalty, and it may help you get error-
free results faster.

8. Suppose a string such as “SEE THE MEAT,” “MEET A MAN,” or
“THESE NEAT TEAS MEET MATES” is stored in char
string[40];. Use one-dimensional vector rather than linked list data
structures to store the coding/decoding information:
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a. Write a C procedure encode() to convert the ASCII string to
Huffman code, as defined by the coding tree in Figure 8.5a, storing
the code as a bit string, first bit as most significant bit of first element
of int code[16];.

b. Write a C procedure decode() that decodes such a code in int
code[16], using the coding tree in Figure 8.5a, putting the ASCII
string back as it was in char string[40].

9. Repeat problem 8 for the Huffman coding tree in Figure 8.5b.

10. Write an initialization and four shortest C procedures, void
pstop(int) push to top, int pltop() pull from top,
psbot(int) push to bottom, int plbot() pull from bottom, of a
10-element 16-bit word deque. The deque’s buffer is int deque[10].
Use global int pointers, top and bottom. Use global char variables
for the size of the deque, size, and error flag, errors, which is to
remain cleared if there are no errors and is to be 1 if there are underflow
or overflow errors. Note that C always initializes global variables to zero
if not otherwise initialized. The procedures should manage the deque
correctly as long as errors is zero. Procedures pstop() and
psbot() pass by value, and procedures pltop() and plbot() pass
by result.
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11. Write a C procedure get(char *a, int i), whose body consists
entirely of embedded assembly language, which moves i bytes fol-
lowing address a into a char global vector v, assuming v has a 
dimension larger than or equal to i. To achieve speed, use the MOVB
and DBNE instructions. The call to this procedure, get(s, n), is
implemented:

ldx s
pshx
ldx n
jsr get
leas 4,sp

12. Write a shortest C procedure hexString(unsigned int n,
char *s) that runs in a target machine to convert an unsigned integer
n into printable characters in s that represent it in hexadecimal so that
s[0] is the ASCII code for the 1000’s hex digit, s[1] is the code for the
100’s hex digit, and so on. Suppress leading 0s by replacing them with
blanks.

13. Write the shortest procedure int inhex() in C to input a 4-digit
hexadecimal number from the keyboard (the letters A through F may be
upper or lower case; typing any character other than 0 . . . 9, a . . . f, 
A . . . F, or entering more than 4 hexadecimal digits terminates the input
and starts the conversion) and convert it to a binary number, returning
the converted binary number as an unsigned int. Although you do not
have to use a compiler and target machine to answer this problem, you
can use it without penalty, and it may help you get error-free results
faster.

14. Write a shortest C program int check(int base, int size,
int range) to write a checkerboard pattern in a vector of size s =
2n elements beginning at base, and then check to see that it is still there
after it is completely written. It returns 1 if the vector is written and 
read back correctly; otherwise it returns 0. A checkerboard pattern is
range r = 2k elements of 0s, followed by 2k elements of $FF, fol-
lowed by 2k elements of 0s, . . . for k < n, repeated throughout the vector.
(This pattern is used to check dynamic memories for pattern sensitivity
errors.)

15. Write a class BitQueue that is fully equivalent to the class Cstack
in §8.7, but pushes, stores, and pulls 1-bit values, and all sizes are in bits
rather than 16-bit words. The bits are stored in 16-bit int vector allo-
cated by the allocate() procedure.

16. Write a class ShiftInt that is fully equivalent to the class Cstack
in §8.3, but the constructor has an argument n, and function member j
= obj.shift(i); shifts an int value i into a shift register of n
ints and shifts out an int value to j.
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17. Write a class ShiftChar that is a derived class of the class ShiftInt
in problem 18, where function member j = shift(i); shifts a char
value i into a shift register of n chars and shifts out a char value to
j. ShiftChar uses ShiftInt’s constructor.

18. Write a class ShiftBit that is fully equivalent to the class ShiftInt
in problem 19, but shifts 1-bit values, and all sizes are in bits rather than
16-bit words. The bits are stored in 16-bit int vector allocated by the
allocate() procedure.

19. Write a templated class Deque that is a derived class of templated class
Cstack, and that implements a deque that can be pushed into and
pulled from either end. The member functions are pstop() push to
top, pltop() pull from top, psbot() push to bottom, and plbot()
pull from bottom. Use inherited data and function members wherever
possible.

20. Write a templated class IndexStack, which is a derived class of tem-
plated class Cstack (§8.7), that implements an indexable stack, in
which the ith member from the top can be read. The member functions
push() pushes, pull() pulls, read(i) reads the ith element 
from the top of the stack. Function member read(i) does not move
the stack pointer. Use inherited data and function members wherever
possible.

21. Write a templated class IndexDeque that is a derived class of 
templated class Queue, that implements an indexable deque that can 
be pushed into and pulled from either end, and in which the ith
member from the top or bottom can be read. The member functions
pstop() push to top, pltop() pull from top, psbot() push to
bottom, plbot() pull from bottom, rdtop(i) reads the ith element
from the top, and rdbot(i) reads the ith element from the bottom 
of the deque. Function members rdtop(i) and rdbot(i) do not
move the pointers. Use inherited data and function members wherever
possible.

22. Write a templated class Matrix that implements matrix addition and
multiplication for square matrixes (number of rows = number of
columns). Overloaded operator + adds two intervals resulting in an inter-
val, overloaded operator. * multiplies two matrixes resulting in a matrix,
and overloaded operators = and cast with overloaded operator []
write or read elements; for instance, if M is an object of class Matrix,
then M[i][j] = 5; will write 5 into row i, column j, of matrix M
and k = M[i][j]; will read row i, column j, of matrix M into k.
Matrix’s constructor has an argument size that is stored as a data
member size and allocates enough memory to hold a size by size
matrix of elements of the template’s data width, using a call to the 
procedure allocate.
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23. Intervals can be used to calculate worst-case possibilities, for instance,
in determining if an I/O device’s setup and hold times are satisfied. An
interval ·a,bÒ, a £ b, is a range of real numbers between a and b. If ·a,bÒ
and ·c,dÒ are intervals A and B, then the sum of A and B is the interval
·a+c, b+dÒ, and the negative of A is ·-b,-aÒ. Interval A contains interval
B if every point in A is also in B. Write a templated class Interval
having public overloaded operators + for adding two intervals resulting
in an interval, - for negating an interval resulting in an interval, and an
overloaded operator > returning a char value 1 if the left interval 
contains the right interval; otherwise it returns 0. If A, B, and C are of
class Interval, the expression A = B + C; will add intervals B
and C and put the result in A, A = - B; will put the negative of B
into A, and the expression if(A > B) i = 0; will clear i if A
entirely contains B. The template allows for the values such as a or b
to be char, int, or long. The class has a public variable error that
is initially cleared and set if an operation cannot be done or results in an
overflow.

24. Write a templated class Interval, having the operators of problem 25
and additional public overloaded operators * for multiplying two inter-
vals to get an interval and / for dividing two intervals to get an inter-
val and a procedure sqrt(Interval), which is a friend of
Interval, for taking the square root. Use the naive rule for multipli-
cation, where all four terms are multiplied, and the lowest and highest
of these terms are returned as the product interval, and assume there is
already a procedure long sqrt(long) that you can use for obtain-
ing the square root (do not write this procedure). If A, B, and C are of
class Interval, the expression A = B * C; will multiply intervals
B and C and put the result in A; A = B/C will divide B by C, putting
the result in A; and A = sqrt(B); will put the square root of B into
A. Note that a/b is a * (1/b), so the multiply operator can be used
to implement the divide operator; a - b is a + (-b), so the add
and negate operators can be used to implement the subtract operator; and
4 * a is a + a + a + a, so scalar multiplication can be done by
addition. Also Interval has a public data member error that can
be set if we invert an interval containing 0 or get the square root of an
interval containing a negative value. Finally, write a main() procedure
that will initialize intervals a to ·1,2Ò, b to ·3,4Ò, and c to ·5,6Ò, and then
evaluate the result of the expression ( -b + sqrt( b * b - 4
* a * c ) ) / (a + a).
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A memory expansion card, Adapt812 MX1, plugs onto the rear of Adapt812,
offering the user up to 512K of Flash and 512K of SRAM. A real-time
clock/calendar and battery back up for the SRAM is included, as well as a
prototyping area for the user’s own application circuitry. A versatile dual-
slot backplane/adapter couples the memory card to the micro-controller card
so that the entire assembly can be plugged into a solderless breadboard.
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This chapter is perhaps the most important chapter in this book. We 
show how the 6812 assembly language implements C expressions and state-
ments. We will use the Metrowerks C++ compiler in our examples. While
different compilers will generate different code for the same C statement,
studying one such implementation prepares you well to understand other
implementations.

We first discuss how C allocates and accesses global and local variables.
Then we consider how variables of different types are correctly coded in
expressions and assignment statements. Next we discuss the implementation
of conditional statements. We then describe how arrays and structs are
accessed and then how loops are executed. Finally we discuss procedure calls
and arguments, and we present our conclusions.

After you study this chapter, you will be able to read the assembly-
language output of a C compiler with ease. One of the incidental benefits of
this chapter is that you will see how to implement many operations in assem-
bly language, by reading a “definition” of the problem to be solved in a C
expression or statement and seeing the “solution” to the problem in assem-
bly language. You will also be able to write C code that produces more effi-
cient assembly-language code. As a further benefit, you will be able to
fine-tune a C procedure by replacing parts of it with assembly-language code
that can be embedded in the C procedure. Also, you will learn that you can
write a C procedure that you can debug on a personal computer and hand-
compile it into an assembly-language program. The C source program state-
ments can be written in assembly-language comments to document your
assembly-language program. This is one way to quickly write complex
assembly-language programs.

This is therefore a very interesting chapter to complete the earlier 
chapters. You will really understand how hardware, which we showed in
Chapters 1 to 3 implemented the 6812 instruction set, becomes a power-
ful machine that executes C and C++ procedures, in which you can 
express complex algorithms. You should be comfortable writing in a 
high-level language like C or C++, knowing what really happens, right 
down to the machine level, whenever you write an expression in your
program.
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We point out that the examples in this chapter are generated by a specific
version of the Metrowerks C++ compiler, with selected optimization options.
You can expect to get slightly different code using different compilers, ver-
sions, or optimization options.

Global and Local Variables
This section shows how a variable is allocated and accessed in C. The first
part of this section shows how to write a constant into a variable, which high-
lights the allocation mechanism and the addressing mode and instruction data
width used with each variable. The shorter second part describes what is done
before the main procedure is executed, and a short third part discusses access
to I/O ports, which are treated as global variables in C.

In the first part of this section, we will use a short procedure main as an
example that we briefly show first. The names of the variables are abbrevi-
ations of their characteristics; guc represents a global unsigned char,
and gsi represents a global signed int. The C program in Figure 9.1a,
which writes some constants into these variables, is compiled into the assem-
bly-language program in Figure 9.1b. Global variables, which are declared
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
 guc = 0; gsi = 5; lsc = 0; lui = 7; 
}

a. A C Program

    4: main(){ char lsc; unsigned int lui; 
0000095B 1B9D         LEAS  -3,SP
    5:  guc = 0; 
0000095D 793800       CLR   $3800
    6:  gsi = 5;  
00000960 C605         LDAB  #5
00000962 87           CLRA   
00000963 7C3801       STD   $3801
    7:  lsc = 0;  
00000966 6A82         STAA  2,SP
    8:  lui = 7; 
00000968 C607         LDAB  #7 
0000096A 6C80         STD   0,SP
   10: } 
0000096C 1B83         LEAS  3,SP 
0000096E 3D           RTS

b. Assembly Language Developed From Part (a) 

      ORG $3800 ; put global data at the beginning of RAM 
guc: DS.B 1 ; allocate a byte for scalar char  variable guc
gsi: DS.W 1 ; allocate two bytes for scalar int  variable gsi

c. Declarations for Part (b) 

FIGURE 9.1. A Simple Program



outside a procedure, can be allocated by the compiler by the equivalent 
of assembly-language ORG statement and DS statements. For instance, a 
possible global declaration for Figure 9.1b is shown in Figure 9.1c.

In Figure 9.1c the ORG statement’s operand is set to a RAM location,
such as $3800. char or unsigned char variables are allocated 1 byte
by DS.B directives, and int or unsigned int variables are allocated 2
bytes by DS.W directives.

Global variables, which in the 6812 are located in SRAM at $3800 
to $3fff, generate 16-bit direct addressed instructions. The global 
unsigned char variable guc can be written into by a STAB, MOVB, or
CLR instruction. The statement guc = 0; is implemented in assembly-
language code as

CLR $3800 ; clear global variable guc

Similarly, a char variable can be cleared, because signed and unsigned vari-
ables are coded as all zeros when initialized as zero. The global int vari-
able gsi can be written into by a STD, MOVW, or a pair of CLR instructions.
The statement gsi = 5; is implemented in assembly-language code as

LDAB  #5
CLRA
STD  $3801

Local variables, which are declared within, and generally at the beginning
of, a procedure are generally allocated at run time by means of a LEAS
statement. For instance, the local declaration char lsc, unsigned int
lui; requires 3 bytes on the stack, so it is allocated by the instruction

LEAS -3,SP ; allocate local variables

immediately upon entry into the procedure and deallocated by the instruction

LEAS 3,SP ; deallocate local variables

at the end of the procedure, just before RTS is executed. Local variables gen-
erate index-addressed instructions. The local char variable lsc can be
written into by a STAB, MOVB, or CLR instruction. The variable lsc is at
2,SP. Because the compiler knows that accumulator A must be clear, as a
result of the previous operation, the statement lsc = 0; is implemented
in assembly-language code as

STAA 2,SP ; clear local variable lsc

The global unsigned int variable gui can be written into by a STD,
MOVW, or a pair of CLR instructions. The variable lui is at 0,SP. Because
the compiler knows that accumulator A must be clear, the statement lui =
7; is efficiently implemented in assembly-language code as

LDAB  #7
STD   0,SP; write 7 into local variable lui
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A C program can have global variables, and it can have global constants.
Global constants are initialized by writing them into RAM when the program
is downloaded or in ROM in a stand-alone microcontroller. In the Metro-
werks compiler, storage of such constant variables is declared as const
char, and the like.

Global variables (as opposed to global constants) must be initially
cleared, unless they are indicated as being initialized to some other value,
before main() is executed. The following program segment can be used to
clear 39 bytes beginning at $3800:

LDX #$3800; initialize pointer to beginning of global storage
LDD #39 ; initialize counter to number of bytes in global storage

L: CLR 1,X+ ; clear a byte
DBNE D,L ; loop until all bytes cleared

If a global variable is declared and initialized, as in the statement

unsigned char guc = 4; int gsi = 4;

then the following assembly-language program segment should be executed
after the above-described program segment that clears all global variables,
before main is called.

LDD #4 ; generate the constant 4 for both assignments
STAB guc ; store low-order 8 bits into char variable
STD gsi ; store all 16 bits into int variable

Finally, we discuss I/O access as a variant of global addressing. The
6812’s main I/O ports are on page zero. They can be accessed as if they are
global variables, but the “@” sign shows the location that the variable is
forced to be at:

volatile unsigned char PORTA@0, PORTB@1,
DIRA@2, DIRB@3;

which are linked to a segment at location 0. This is equivalent to an assem-
bler sequence:

org 0 ; put this “global data” at the beginning of I/O (0)
PORTA: ds.B 1 ; port A is at location 0
PORTB: ds.B 1 ; port B is at location 1
DIRA: ds.B 1 ; port A direction register is at location 2
DIRB: ds.B 1 ; port B direction register is at location 3

An output statement to output 5 to port A is written PORTA = 5; which
is implemented

LDAB #5 ; generate constant 5
STAB PORTA; write it to the output port

An input statement guc = PORTA; to input port A to guc is
implemented
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LDAB PORTA ; read input data
STAB guc ; write it into global variable guc

Some input and output statements use page-zero addressing, which provides
improved static and dynamic efficiency over direct addressing. Note that the
MOVB instruction is not useful for accessing these I/O ports, because there
is no page-zero address option in MOVB. The LDAB and STAB instructions
above are more efficient than a MOVB instruction.

The assignment of I/O ports to global variable names should be written
and executed before true global variables are assigned, because the origin
will be set to the beginning of RAM (at $3800) to assign true global vari-
ables. The declaration of globally defined I/O ports is often put in an
#include file, which is inserted in a program before globals are defined
in the program.

Expressions and Assignment Statements
In this section, we illustrate how operators are used in expressions. We will
look at addition and subtraction statements that use same-width and 
different-width operands in a discussion of upcasting and downcasting. We
will then study statements that use logical and arithmetic operators. We will
carefully consider the increment and decrement operators and then look at
expressions that save temporary results on the hardware stack.

The program in Figure 9.2a has several local and global variables, some
of which are signed and others of which are unsigned, and some of which
are 8-bit and others of which are 16-bit. Figure 9.2b shows assembly lan-
guage developed from this program. Observe that each variable’s name is an
abbreviation of its characteristics; gsi is a global signed integer.

Many C statements are easily and efficiently translated into assembly lan-
guage. This is especially true when all the variables in a statement are 8-bit
char or unsigned char variables or when all the variables in a state-
ment are 16-bit int or unsigned int variables. Assume the following
statements are written in Figure 9.2a’s main. Figure 9.2’s statement gsi
= lui + 12; is easily encoded as

LDX   0,SP ; get 16-bit local variable lui
LEAX  12,X ; add 12 (note that this is shorter than add #12)
STX   $3801 ; put into 16-bit global variable gsi

and similarly the statement guc = lsc - 33; is simply encoded as

LDAB   2,SP ; get 8-bit local variable lsc
SUBB   #33 ; subtract 33
STAB   $3800 ; put into 8-bit global variable guc

If a statement gets an int variable and writes a char variable, the source
is truncated when it is read. Figure 9.2’s statement guc = lui + 9; is
encoded as
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LDAB  1,SP ; get low byte of 16-bit local variable lui
ADDB  #9 ; add 9
STAB  $3800 ; put into 8-bit global variable guc

An optimizing compiler can change the instruction ADDD #9 to ADDB #9
because the result will not be altered (reducing the precision is called down-
casting). However, without optimization, the intermediate values are gener-
ally computed using the largest precision of the variables in the expression
(extending the precision called upcasting). Although many C compilers
execute arithmetic in the largest precision, 16 bits in our case, Metrowerks
efficiently operates on numbers in the smallest precision.

If a statement gets a char variable and writes an int or unsigned
int variable, the result is sign extended when it is read. Figure 9.2’s state-
ment gsi = gsi + lsc; or equivalently gsi += lsc; is simply
encoded as
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
 gsi = lui + 12;    guc = lsc - 33;  
 guc = lui + 9; gsi = gsi + lsc; lui = guc - 17;   
}

a. C Program

    4: main(){ char lsc; unsigned int lui; 
0000095B 1B9D          LEAS  -3,SP 
    5:  gsi = lui + 12; 
0000095D EE80          LDX   0,SP 
0000095F 1A0C          LEAX  12,X 
00000961 7E3801        STX   $3801 
    6:  guc = lsc - 33;  
00000964 A682       LDAA  2,SP 
00000966 8021     SUBA  #33 
00000968 7A3800        STAA  $3800 
    7:  guc = lui + 9; 
0000096B E681  LDAB  1,SP 
0000096D CB09  ADDB  #9 
0000096F 7B3800 STAB  $3800 
    8:  gsi = gsi + lsc; 
00000972 A682  LDAA  2,SP 
00000974 B704  SEX   A,D 
00000976 F33801 ADDD  $3801 
00000979 7C3801 STD   $3801 
    9:  lui = guc - 17; 
0000097C F63800 LDAB  $3800 
0000097E 87  CLRA   
0000097F 830011 SUBD  #17 
00000983 6C80  STD   0,SP 
   10: } 
00000984 1B83  LEAS  3,SP 
00000986 3D  RTS    

b. Assembly Language Generated by Part (a) 

FIGURE 9.2. C Program with Local and Global Variables



LDAA  2,SP ; get 8-bit global variable lsc
SEX  A,D  ; upcast from char to int or unsigned int
ADDD $3801 ; add in 16-bit global variable gsi
STD  $3801 ; put into 16-bit global variable gsi

But if a statement gets an unsigned char variable and writes an int or
unsigned int variable, the high byte is cleared before the unsigned
char variable is read. Figure 9.2’s statement lui = guc - 17; is
encoded as

LDAB  $3800 ; get 8-bit global variable guc saved earlier
CLRA ; upcast unsigned char to unsigned int
SUBD  #17 ; subtract 17
STD   0,SP ; put into 16-bit local variable lui

Observe that the declaration char or int affects the instruction data length,
and char and unsigned char determine whether, on upcasting, the 8-
bit data is sign extended with an SEX instruction or filled with zeros using
a CLRA instruction.

The previous examples should indicate to the C programmer how to
decide how a variable is to be type cast. If its range of values is 0 to 127,
declare it to be an unsigned char, because upcasting is done with a
short CLRA instruction rather than a longer SEX instruction. If its range is 0
to 255, declare it to be an unsigned char, but if the range is -128 to
127, declare it a char, to save space and time. Otherwise declare it to be
int.

To discuss how common operators are handled, we use the following
main as an example; it merely ANDs, ORs, multiplies, and divides some
variables. Figure 9.3a’s program is compiled into the assembly-language
program in Figure 9.3b.

Logical bit-by-bit ANDing is illustrated in Figure 9.3 by the expression
lsc = lsc & guc; or equivalently by lsc &= guc;, which is 
realized by

LDAA  2,SP ; get local variable lsc
ANDA  $3800 ; AND with global variable guc
STAA  2,SP ; put into local variable lsc

However, if one of the operands is constant, the BCLR instruction can be
used. Figure 9.3’s expression, lsc = lsc & 0x12;, or equivalently,
lsc &= 0x12;, is realized by

BCLR  2,SP,#237 ; AND local variable lsc with inverted 
constant 0x12

Note that the complement of the constant is used in the operand of 
BCLR. Logical bit-by-bit ORing is illustrated in Figure 9.3 by the expres-
sion gsi = gsi | lui; or equivalently by gsi |= lui;, which
is realized by
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LDD   $3801 ; get global variable gsi
ORAA  0,SP ; OR with high byte of local variable lui
ORAB  1,SP ; OR with low byte of local variable lui
STD   $3801 ; put into  global variable gsi

However, if one of the operands is constant, BSET can be used. The expres-
sion gsi = gsi | 0x1234; or equivalently gsi |= 0x1234; is
realized by

BSET  $3801,#18 ; OR high byte of global variable gsi with 0x12
BSET  $3802,#52 ; OR global variable low byte gsi with 0x34
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
 lsc = lsc & guc;  lsc &= 0x12; gsi = gsi | lui;
 gsi = gsi|0x1234;  lui = lsc*guc;  lui = lui/guc; 
}

a. C program

    4: main(){ char lsc; unsigned int lui; 
0000095B 1B9D         LEAS  -3,SP 
    5:  lsc = lsc & guc; lsc &= 0x12;  
0000095D A682         LDAA  2,SP 
0000095F B43800       ANDA  $3800 
00000962 6A82         STAA  2,SP 
00000964 0D82ED       BCLR  2,SP,#237 
    6:  gsi = gsi | lui; gsi = gsi | 0x1234; 
00000967 FC3801       LDD   $3801 
0000096A EA81         ORAB  1,SP 
0000096C AA80         ORAA  0,SP 
0000096E 7C3801       STD   $3801 
00000971 1C380112     BSET  $3801,#18 
00000975 1C380234     BSET  $3802,#52 
    7:  lui = lsc * guc;  
00000979 A682         LDAA  2,SP 
0000097B B706         SEX   A,Y 
0000097D F63800       LDAB  $3800 
00000980 87           CLRA   
00000981 13           EMUL   
00000982 6C80         STD   0,SP 
    7:  lui = lui / guc; 
00000984 F63800       LDAB  $3800 
00000987 87           CLRA   
00000988 B745         TFR   D,X 
0000098A ECB1         LDD   0,SP 
0000098C 1810         IDIV   
0000098E 6E80         STX   0,SP 
    8: } 
00000990 1B83         LEAS  3,SP 
00000992 3D           RTS    

b. Assembly Language Generated by Part (a) 

FIGURE 9.3. C Program with Some Operators



One can complement accumulator D by complementing accumulator A and
then complementing accumulator B. We might want to implement NEGD in
the same way with a pair of instructions NEGA NEGB, but 1 is always added
to A whether a carry is generated by adding 1 to B or not. Because NEGB
sets C if the contents of B is nonzero, we can cancel the addition of 1 to A
by NEGA, except when the contents of B is 0, by

NEGA
NEGB
SBCA #0

Multiplication uses a multiply instruction EMUL or EMULS, depending on
whether the operation is signed; for instance, the expression in Figure 9.3,
lui = lsc * guc, is

LDAA   2,SP ; get local variable lsc
SEX    A,Y ; upcast from char to int, copy to register Y
LDAB   $3800 ; get guc
CLRA ; upcast from unsigned char to int
EMUL ; multiply unsigned
STD    0,SP ; put 16-bit result into local lui

Similarly, division can be implemented using a divide instruction IDIV,
EDIV, or EDIVS, depending on whether the operation is signed; for instance,
in Figure 9.3 the expression lui = lui / guc; (or equivalently, lui
/= guc;) is implemented

LDAB   $3800 ; get denominator guc
CLRA ; upcast unsigned char to unsigned int
TFR    D,X ; put in X for IDIV
LDD    0,SP+ ; get local variable lui
IDIV ; divide X into D, putting quotient in X
STX    0,SP ; put into local variable lui

To discuss how increment and decrement operators are handled, we use
main in Figure 9.4 as an example; it merely increments and decrements
some variables.

The simple increment and decrement instructions can be used directly
with char or unsigned char variables. The statement in Figure 9.4,
guc++;, is implemented

INC   $3800 ; increment global variable guc

and the statement lsc–; in Figure 9.4 is implemented

DEC   0,SP ; decrement local variable lsc

However, increment and decrement instructions on int or unsigned int
variables use a longer sequence. The first problem is that there is no 16-bit
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memory operand version of it, and the second problem is that the carry bit
is not affected by the 8-bit version of this operator. The statement gsi++;
in Figure 9.4 is coded as

LDX   $3801 ; get gsi
INX ; add 1
STX   $3801 ; put it back

and the statement lui–; in Figure 9.4 is implemented

LDX   1,SP ; get lui
DEX ; subtract 1
STX   1,SP ; put it back

When the increment or decrement operator appears in a larger expres-
sion, the initial or final value of the variable used in the outer expression
depends on whether the pair of “+” or “-” signs appears before or after the
variable. lsc = ++ guc; is implemented

INC    $3800 ; increment variable guc
LDAA   $3800 ; get value
STAA   0,SP ; store variable lsc
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
  guc++; lsc--;  gsi++;  lui--;  lsc = ++guc;  lsc = guc++; 
}

a. C Program

   4: main(){ char lsc; unsigned int lui;  
0000095B 1B9D         LEAS  -3,SP 
    5:  guc++; 
0000095D 723800       INC   $3800 
    6:  lsc--; 
00000960 6380         DEC   0,SP 
    7:  gsi++; 
00000962 FE3801       LDX   $3801 
00000965 08           INX    
00000966 7E3801       STX   $3801 
    8:  lui--; 
00000969 EE81         LDX   1,SP 
0000096B 09           DEX    
0000096C 6E81         STX   1,SP 
    9:  lsc = ++guc; 
0000096E 723800       INC   $3800 
00000971 B63800       LDAA  $3800 
00000974 6A80         STAA  0,SP 
   10:  lsc = guc++; 
00000976 A680         LDAA  0,SP 
00000978 723800       INC   $3800   
0000097B 6A80         STAA  0,SP 
0000097D 1B83         LEAS  3,SP 
0000097F 3D           RTS    

b. Assembly Language Generated by Part (a) 

FIGURE 9.4. C Program with Incrementing and Decrementing
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
  lui -= lsc; lui = (lui & 0xfc7f) | ((lsc << 7) & 0x380);
  lui = (lui << 3) + (lui << 1) + lsc -'0';  
}

a. C Program

    4: main(){ char lsc; unsigned int lui; lui -= lsc; 
0000095B 1B9D         LEAS  -3,SP 
0000095D A682         LDAA  2,SP 
0000095F B706         SEX   A,Y 
00000961 EC80         LDD   0,SP 
00000963 35           PSHY   
00000964 A3B1         SUBD  2,SP+ 
00000966 6C80         STD   0,SP 
    6:  lui = (lui & 0xfc7f)| ((lsc << 7) & 0x380);  
00000968 3B           PSHD   
00000969 C680         LDAB  #128 
0000096B 87           CLRA   
0000096C 35           PSHY   
0000096D 13           EMUL   
0000096E C480         ANDB  #128 
00000970 8403         ANDA  #3 
00000972 3B           PSHD   
00000973 EC84         LDD   4,SP 
00000975 C47F         ANDB  #127 
00000977 84FC         ANDA  #252 
00000979 AA81         ORAA  1,SP+ 
0000097B EA81         ORAB  1,SP+ 
0000097D 6C82         STD   2,SP 
    7:  lui = (lui << 3) + (lui << 1) + lsc -'0';  
0000097F 59           ASLD   
00000980 59           ASLD   
00000981 59           ASLD   
00000982 B745         TFR   D,X 
00000984 EC82         LDD   2,SP 
00000986 59           ASLD   
00000987 1AE6         LEAX  D,X 
00000989 B754         TFR   X,D 
0000098B E380         ADDD  0,SP 
0000098D 830030       SUBD  #48 
00000990 6C84         STD   4,SP 
00000992 1B87         LEAS  7,SP 
00000994 3D           RTS    

b. Assembly Language Generated by Part (a) 

FIGURE 9.5. C Program with ORing, ANDing, and Shifting

while lsc = ++ guc; in Figure 9.4 is implemented

LDAA   0,SP ; get value (note: 0,SP has the same value as $3800)
INC    $3800 ; increment variable guc
STAA   0,SP ; store variable lsc

To discuss how the stack is used to store temporary results, we use main in
Figure 9.5 as an example; it merely ORs, ANDs, and shifts some variables.



This C program main is compiled into the assembly-language program in
Figure 9.5b.

A statement involving several operations saves intermediate values on
the stack. If an operand of an instruction like ADD or SUB has to be zero-
filled or sign extended, then the instruction’s other operand, in accumulator
B or D, may have to be temporarily moved somewhere. It can be conve-
niently pushed on the stack and then pulled and operated on. The statement
lui = lui - lsc; in Figure 9.5, or equivalently, lui -= lsc; is
implemented by sign extending lsc and pushing the result on the stack.
Then lui is recalled into accumulator D, and the extended value of lsc is
subtracted.

LDAA  2,SP ; get local variable lsc
SEX  A,Y ; sign extend
LDD   0,SP; get local variable lui
PSHY ; save on stack
SUBD 2,SP+ ; pull from stack, subtract from accumulator D
STD  0,SP ; put into global variable lui

From Figure 9.5, we next offer an example that inserts 3 bits into a 16-bit
local int. Note that, due to pushing the 2-byte temporary variable on the
stack, the stack address to recall lui is 4,SP. The statement lui = (lui
& 0xfc7f) | ((lsc << 7) & 0x380); is compiled

PSHD ; save on stack (previous statement just computed lui)
LDAB  #128 ; we will multiply by 2**7 to shift left
CLRA ; 7 bits, so get this constant ready
PSHY ; save lsc from previous statement
EMUL ; shift it
ANDA  #3 ; mask off low 2 bits of accumulator A
ANDB  #128 ; mask off high bit of accumulator B
PSHD ; save temporary result
LDD   4,SP ; get lui (notice offset adjustment)
ANDB  #127 ; mask all low-order bits
ANDA  #252 ; mask all high-order bits
ORAA  1,SP+; combine new and old values
ORAB  1,SP+; in both bytes
STD   2,SP ; write out new value of lui

The statement lui = (lui << 3) + (lui << 1) + lsc -
’0’; in Figure 9.5 can be used to build a decimal number from ASCII char-
acters. It is compiled:

STD  0,SP ; save lui which was left in D
LSLD ; shift left three places
LSLD ; in order to
LSLD ; multiply by 8
TFR   D,X ; save this intermediate result in a register
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PULD ; get lui again
LSLD ; shift left to double it
LEAX  D,X ; add both parts
TFR   X,D ; move to D to complete the addition
ADDD 0,SP ; add lsc, which is left on the stack
SUBD #48 ; subtract the constant for ASCII ‘0’
STD  4,SP ; save result in lui: note the offset

Temporary results can be saved in registers, as we saw in the TFR X,D
instruction. The stack provides another place to temporarily save the data in
accumulator D and can save essentially any number of such values. Note
again that the stack pointer offset changes as temporary results are saved on
the stack. At the subroutine’s end, the stack pointer is adjusted, not only to
deallocate local variables but also to deallocate temporary variables, using
the instruction LEAS 7,SP. Deallocating at the end saves instructions that
should deallocate temporary variables when they are no longer needed, to
improve static efficiency, at the expense of using up more of the stack than
would be needed if temporary variables were promptly deallocated when
they were no longer needed.

Conditional Statements
A statement can be conditional, or it can control looping to execute a
sequence of statements that are written within it many times. We first present
Boolean operators that generate a 1 (true) or 0 (false) variable. We then give
assembly-language program segments for an example of several of C’s
control statements.

To illustrate Boolean operators, the expression main in Figure 9.6 com-
pares some variables. Many branch instructions such as BEQ *+5 are used
to indicate a branch that is 5 bytes ahead of the (beginning of the) BEQ
instruction. This current location counter is used to avoid generating a lot of
labels for local branching.

In Figure 9.6, the C procedure’s first expression guc = lsc > -3;
results in

LDAA  3,-SP ; allocate 3 bytes for local variables and get variable lsc
CMPA #253 ; if greater than -3 as a signed number
BGT *+4 ; then proceed to “true” program segment
CLRA   ; if false, clear guc. If true,
CPS #34305 ; then skip over operand jump to operand which is 
LDAA #1
STAA $3800 ; store the result

Note that signed numbers use branches like BGT. Unsigned number com-
parisons use branches like BHI. One of the more difficult problems of accu-
rately translating C into assembly language is that of choosing the correct
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kind of conditional branch instruction to take care of signed or unsigned 
comparisons.

In one of the more peculiar operations, CPS #34305 is used to skip a
2-byte operand, LDAA #1. Suppose the instruction is at location $3962. If
the entire instruction is executed, the only effect is that the condition codes
are set, but they are not tested in subsequent instructions. The CPS #34305
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
 guc = lsc > -3; lsc = lui > 5; lui = gsi >= 0; 
 gsi  = lui >= 0;  gsi = lsc == 0; lsc = (gsi & 4) == 0;  
}

a. C Program

   5:  guc = lsc > -3; lsc = lui > 5; 
0000095B A6AD         LDAA  3,-SP 
0000095D 81FD         CMPA  #253 
0000095F 2E02         BGT   *+4   ;abs = 0963 
00000961 87           CLRA   
00000962 8F8601       CPS   #34305 
00000965 7A3800       STAA  $3800 
00000968 EC81         LDD   1,SP 
0000096A 8C0005       CPD   #5 
0000096D 2202         BHI   *+4   ;abs = 0971 
0000096F 87           CLRA   
00000970 8F8601       CPS   #34305 
00000973 6A80         STAA  0,SP 
    7:  lui = gsi >= 0; 
00000975 FC3801       LDD   $3801 
00000978 2A02         BPL   *+4   ;abs = 097C 
0000097A C7           CLRB   
0000097B 8FC601       CPS   #50689 
0000097E 87           CLRA   
0000097F 6C81         STD   1,SP 
    8:  gsi  = lui >= 0; 
00000981 C601         LDAB  #1 
00000983 87           CLRA   
00000984 7C3801       STD   $3801 
    9:  gsi = lsc == 0; 
00000987 A680         LDAA  0,SP 
00000989 2702         BEQ   *+4   ;abs = 098D 
0000098B C7           CLRB   
0000098C 8FC601       CPS   #50689 
0000098F 87           CLRA   
00000990 7C3801       STD   $3801 
   10:  lsc = (gsi & 4) == 0; 
00000993 1F38020402   BRCLR $3802,#4,*+7   ;abs = 099A 
00000998 87           CLRA   
00000999 8F8601       CPS   #34305 
0000099C 6AB2         STAA  3,SP+ 

b. Assembly Language Generated by the body of Part (a) 

FIGURE 9.6. A Program with Boolean Operators



is a no-op. However, if a branch to $3963 is made, the constant 34305 is
executed as an opcode. This instruction is LDAA #1 and loads 1 into accu-
mulator A. The Metrowerks C compiler uses this technique to make accu-
mulator A either a 1 (T) or a 0 (F). We see several examples in the program
in Figure 9.6. It is also used in a case statement in which several of the
cases load different values into the same variable. Such a case statement
appears in Figure 9.9.

The expression lsc = lui > 5; in Figure 9.6 results in the fol-
lowing code:

LDD   1,SP ; get 16-bit variable lui
CPD   #5 ; if less than 5 as an unsigned number
BHI   *+4 ; branch to the operand of the CPS instruction CLRA ;

otherwise clear the value
CPS   #34305; skip, or else set result to 1.
STAA  0,SP ; store the result

Note that the constant 1 (T) or a 0 (F) is generated in accumulator A to reflect
the Boolean value of the test lui > 5. Signed number comparisons that
test just the sign use branches like BPL. The expression lui = gsi >=
0; in Figure 9.6 results in the following code:

LDD   $3801 ; get gsi
BPL   *+4 ; if nonnegative then
CLRB ; clear and skip
CPS   #50689; skip or set result to 1.
CLRA ; high result is always 0
STD   1,SP ; put result in lui

Note that there is no test for the expression gsi = lui >= 0;, because
unsigned numbers are always nonnegative. This is an error made by many
programmers. Be careful when you determine the data type of a variable and
when you test that variable, so that you avoid the situation where you test a
variable declared to be an unsigned number for a value less than zero or a
value greater than or equal to zero.

Comparisons for equality or inequality can often use LDAA or TST and
a branch like BEQ. The expression gsi = lsc == 0; in Figure 9.6
results in the following:

LDAA  0,SP ; test 8-bit variable lsc
BEQ   *+4 ; if nonzero then
CLRB ; clear and skip
CPS   #50689; skip or set result to 1
CLRA ; high result is always 0
STD  $3801 ; put result in gsi

Certain bit tests can often use BRSET or BRCLR branches. In Figure 9.6, the
expression lsc = (gsi & 4) == 0; results in the following code:

Section 9.3 Conditional Statements 289



BRCLR $3802,#4,*+2 ; if bit 2 is not zero then
CLRA ; clear result
CPS   #34305 ; skip, or set result to 1
STAA  3,SP+ ; put result in lsc and deallocate local

variables

The Boolean result of the test, a value of 1 (T) or a 0 (F), is actually not
usually generated but may be used to branch to a different location. For
instance, if(lui > 5) results in the following code:

LDD   1,SP ; get 16-bit variable lui. Branch around the expression
CPD   #5 ; if compared to lui as an unsigned number
BLS   L ; lui is lower or same as 5

Simple conditional expressions of the form if then, full conditionals of the
form if then else, and extended conditionals of the form if then else if then
else if then . . . else use conditional expression operators. In the last expres-
sion, the else if part can be repeated as many times as needed, and the last
part can be an optional else. Variables are compared using relational opera-
tors (> and <), and these are combined using logical operators (&&). We
give examples of common simple conditionals first.

The C program in Figure 9.7a is compiled into the assembly-language
program shown in Figure 9.7b. A statement if(! lsc) guc = 0; or
equivalently if(lsc == 0) guc = 0; is encoded as

LDAA  3,-SP ; allocate and set condition codes for variable lsc
BNE   *+5 ; if nonzero, skip over next instruction
CLR   $3800 ; otherwise, if zero, clear variable guc

Where the condition applies to a complex expression of many statements,
the branch instructions can be converted to long branch instructions. For
instance,

if(gsi < 5) { . . . /* many instructions */ }

can be implemented

LDD   $3801 ; get variable gsi
CPD   #5 ; if greater than or equal to 5 as an unsigned

number
LBGE  L1 ; then skip over next several instructions
. . . ; many instructions generated between { }

appear here
L1: EQU   * ; located after the latter } matching the if

statement’s {

A simple C compiler can always implement the conditional operation using
the long branch instructions like LBHS, but an optimizing C compiler will
get the size of the branch offset. It uses a long branch instruction when the
label cannot be reached by the corresponding shorter branch instruction.
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An operation result may be in accumulator B or D. It can be tested by
the TBEQ or TBNE instructions. Figure 9.7’s statement if(lsc + guc)
gsi = 0; becomes

LDAA  0,SP ; get value of lsc
SEX   A,D ; upcast to 16 bits
TFR   D,X ; use X as accumulator
LDAB  $3800 ; get value of guc
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unsigned char guc; int gsi; 
main(){ char lsc; unsigned int lui;  
 if(lsc == 0) guc = 0; 

if(gsi < 5) { ... /* many instructions */   } 
if(lsc + guc) gsi = 0;  
if(guc < 5) lsc = 0; else lsc = 9;  

}

a. C Program

4: main(){char lsc; unsigned int lui; if(lsc == 0)guc=0; 
0000095B A6AD         LDAA  3,-SP 
0000095D 2603         BNE   *+5   ;abs = 0962 
0000095F 793800       CLR   $3800 
    6:  if(gsi < 5) { /* many instructions */ lui = 
0;}
00000962 FC3801       LDD   $3801 
00000965 8C0005       CPD   #5 
00000968 2C04         BGE   *+6   ;abs = 096E 
0000096A C7           CLRB   
0000096B 87           CLRA   
0000096C 6C81         STD   1,SP 
    7:  if(lsc + guc) gsi = 0;  
0000096E A680         LDAA  0,SP 
00000970 B704         SEX   A,D 
00000972 B745         TFR   D,X 
00000974 F63800       LDAB  $3800 
00000977 87           CLRA   
00000978 1AE6         LEAX  D,X 
0000097A 044504       TBEQ  X,*+7   ;abs = 0981 
0000097D C7           CLRB   
0000097E 7C3801       STD   $3801 
    8:  if(guc < 5) lsc = 0; else lsc = 9; 
00000981 B63800       LDAA  $3800 
00000984 8105         CMPA  #5 
00000986 2404         BCC   *+6   ;abs = 098C 
00000988 6980         CLR   0,SP 
0000098A 2004         BRA   *+6   ;abs = 0990 
0000098C C609         LDAB  #9 
0000098E 6B80         STAB  0,SP 
    9: }  
00000990 1B83         LEAS  3,SP 
00000992 3D           RTS    

b. Assembly Language Generated by Part (a) 

FIGURE 9.7. A Program with If-Then Expressions



CLRA ; upcast to 16 bits
LEAX  D,X ; add values
TBEQ X,*+7 ; check value of sum. If zero
CLRB ; generate a 16-bit zero (A is already clear)
STD   $3801; store to clear variable gsi

In Figure 9.7, the else part of a conditional expression is easily imple-
mented by a BRA instruction. The statement if(guc < 5) lsc = 0;
else lsc = 9; encodes as

LDAA  $3800; get variable guc
CMPA  #5 ; if greater than or equal to 5 as an unsigned number
BHS   *+6 ; then skip over next two instructions (this is BCC)
CLR   0,SP ; otherwise, if zero, clear variable lsc
BRA   *+6 ; now skip over next two instructions
LDAB  #9 ; write 9 into variable lsc
STAB  0,SP

A conditional expression can be a logical OR or a logical AND of 
tests described above. The logical OR test will check each case, from left 
to right, for a true result and will execute the statement when it finds the 
first true result. The logical AND checks each case, from left to right, for a
false and bypasses the statement the first time it finds a false test. If alpha,
beta, and gamma are signed global char variables, the statement in 
Figure 9.8 if((alpha < 5) && (beta == 0)) gamma = 0;
encodes as

LDAA  $3800 ; get variable alpha
CMPA  #5 ; if less than 5 as a signed number
BGE   *+10 ; then skip over CLR instruction
LDAA  $3801 ; if beta is nonzero
BNE   *+5 ; then skip over CLR instruction
CLR   $3802 ; if you get here, clear variable gamma

and if((alpha < 5) || (beta == 0)) gamma = 0; is
encoded as

LDAA  $3800 ; get variable alpha
CMPA  #5 ; if less than 5 as a signed number
BLT   *+7 ; then skip to CLR instruction
LDAA  $3801 ; if beta is nonzero
BNE   *+5 ; then skip over CLR instruction
CLR   $3802 ; if you get here, clear variable gamma

As seen in the previous examples, the ANDing of conditions is affected by
branching around the “then” code if either condition is false, and the ORing
of conditions is affected by branching to the “then” code if either condition
is true.

Many else if expressions can be inserted between an if expression
and the final else expression. The branch instructions jump out of a state-
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ment that is executed to the statement beyond the final else statement. More-
over, the final else expression may be omitted. Obviously, one can have
more than two OR or AND tests, and one can nest OR tests within AND
tests, or one can nest AND tests within OR tests, etc.

One of the common errors in C is to confuse bit-wise logical OR with
the OR test discussed above. The expression if((alpha < 5) | (beta
== 0)) gamma = 0; encodes as
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 if((alpha < 5)&&(beta == 0)) gamma = 0; 
 if((alpha < 5)||(beta == 0)) gamma = 0; 
 if(alpha != 0) beta = 10; else if(gamma == 0) delta++; 
 else if((epsilon!=0)&&(zeta==1))beta=beta<<3;else beta=0; 
}

a. C Program

    6:  if((alpha < 5)&&(beta == 0)) gamma = 0; 
0000095B B63800       LDAA  $3800 
0000095E 8105         CMPA  #5 
00000960 2C08         BGE   *+10   ;abs = 096A 
00000962 B63801       LDAA  $3801 
00000965 2603         BNE   *+5   ;abs = 096A 
00000967 793802       CLR   $3802 
    7:  if((alpha < 5)||(beta == 0)) gamma = 0; 
0000096A B63800       LDAA  $3800 
0000096D 8105         CMPA  #5 
0000096F 2D05         BLT   *+7   ;abs = 0976 
00000971 B63801       LDAA  $3801 
00000974 2603         BNE   *+5   ;abs = 0979 
00000976 793802       CLR   $3802 
    8:  if(alpha != 0) beta = 10; 
00000979 B63800       LDAA  $3800 
0000097C 2707         BEQ   *+9   ;abs = 0985 
0000097E C60A         LDAB  #10 
00000980 7B3801       STAB  $3801 
00000983 201C         BRA   *+30   ;abs = 09A1 
    9:  else if(gamma == 0) delta++; 
00000985 B63802       LDAA  $3802 
00000988 2605         BNE   *+7   ;abs = 098F 
0000098A 723803       INC   $3803 
0000098D 2012         BRA   *+20   ;abs = 09A1 
10:else if((epsilon!=0)&&(zeta==1)) ... 
0000098F B63804       LDAA  $3804 
00000992 270A         BEQ   *+12   ;abs = 099E 
00000994 B63805       LDAA  $3805 
00000997 042004       DBNE  A,*+7   ;abs = 099E 
0000099A 0764         BSR   *+102   ;abs = 0A00 
0000099C 2003         BRA   *+5   ;abs = 09A1 
0000099E 793801       CLR   $3801 

b. Assembly Language Generated by Part (a) 

char alpha, beta , gamma, delta, epsilon, zeta;
main(){

FIGURE 9.8. Assembly Language for a Decision Tree



LDAA  alpha ; get variable alpha
CMPA  #5
BLT   L0 ; if greater than or equal to 5
LDX   #0 ; generate zero
BRA   L1 ; and skip

L0: LDX   #1 ; otherwise generate one
L1: LDAA  beta ; test variable beta

BEQ   *+4 ; if nonzero, branch to middle of CPS
CLRB ; otherwise clear B
CPS   #50689; address mode is actually LDAB #1
CLRA ; high-order byte is always zero
PSHX ; OR X into D
ORAB  1,SP ; by pushing X
ORAA  2,SP+ ; then pulling it and ORing it into D
TBEQ  D,*+6 ; if the result is nonzero
CLR   gamma ; clear variable gamma

What a difference a single character makes! Although the same answer is
obtained with the statement if((alpha < 5) || (beta == 0))
gamma = 0; as with if((alpha < 5) | (beta == 0)) gamma
= 0;, the assembly language generated by the latter is less efficient than
that generated by the former statement.

Another of the common errors in C is to confuse assignment with 
equality test. The expression if(beta == 0) gamma = 0; encodes as

TST  beta ; test variable beta
BNE   *+5 ; if the result is nonzero then
CLR  gamma; clear variable gamma

The expression if(beta = 0) gamma = 0; encodes as

CLR  beta  clear variable beta (this is an assignment statement)
BNE   *+5 ; if the result is nonzero (it isn’t) then
CLR   gamma ; clear variable gamma

From the rest of Figure 9.8, note how a string of else if (. . .)
. . .else. . .; statements cause the tests we have already discussed to
be done, and when one is successful, so its following statement is executed,
a branch is made to the end of the series of else if (. . .). . .else
. . .; statements. Incidentally, the subroutine branched to by BSR *+102
shifts the byte in beta left three places.

The case statement is a useful alternative to the conditional statement.
Consider an expression like switch(n) { case 1: i=1; break;
case 3: i=2; break; case 6: i=3;break;}. This is com-
piled into assembly language by calling a subroutine switch to evaluate
the case and providing the cases as addresses below its call, as shown in
Figure 9.9a. This technique is used when the cases are, or are nearly, con-
secutive numbers. Another technique used in some compilers is to imple-
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ment the test using a sequence of CMPA and BEQ instructions. Assembly lan-
guage in Figure 9.9b implements the same switch statement with branch
instructions. This technique is used in Metrowerks compiler when the cases
are not consecutive numbers.

Loop Statements, Arrays, and Structs
In this section, we show how statements within a loop can be repeated until 
a condition is met, governed by an expression much like the expressions of 
the conditional statements. First, we consider an accumulation of variables
incremented or decremented in the loop, in different loop constructs. Then we
discuss array elements accessed using indexes. Struct elements are accessed
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* switch(n){case 0:i=1;break;case 1:i=2;break;case 2:i=3;} 
00000867 EC81         LDD   1,SP 
00000869 072D         BSR   switch 
0000086B 03     L:    DC.B  L0-L 
0000086C 06           DC.B  L1+1-L 
0000086D 09           DC.B  L2+1-L 
    5:  case 0: i=1; break; 
0000086E C601  L0:    LDAB  #1 
   5:  case 1: i=2; break; 
00000870 8FC602 L1:   CPS   #50690 ; is SKIP2 L1:LDAB #2
    6:  case 2: i=3; 
00000873 8FC603 L2:   CPS   #50691 ; is SKIP2 L2:LDAB #3
00000876 6B80         STAB  0,SP 

 * . . . 
00000898 30   switch: PULX 
00000899 E6E6         LDAB D,X 
0000089B 05E5         JMP B,X 

a. Using a Subroutine and Argument List

*switch(n){case 1:i=1;break;case 3:i=2;break;case 6: i=3;} 
LDAA  $3800 ; get switch operand alpha
CMPA #6 ; check for last case
BHI   *+27 ; branch over the rest of the cases
CMPA #1 ; check for first case
BEQ *+12 ; if found, go to LDAB instruction
CMPA  #3 ; check second case
BEQ   *+11 ; if so go to middle of first CPS instruction
CMPA  #6 ; check last case
BEQ   *+10 ; if so go to middle of second CPS instruction
BRA   *+13 ; if not matched, skip over cases
LDAB  #1 ; this is for the case one
CPS   #50690 ; skip, or LDAB #2
CPS   #50691 ; skip, or LDAB #3
STAB  $3801 ; store result in beta

b. Using a Sequence of CMP and Conditional Branch Instruction Pairs 

FIGURE 9.9. Alternative Assembly Language for a Case Statement



using AND, OR, and shift operations. We will access a two-dimensional array
using indexes in for loops and a struct in a do while loop.

The for and while statements test the condition before the loop is exe-
cuted and are useful if, for example, a loop may have to be done 0 times.
The do while statement performs the statement once before it tests the
condition (Figure 9.10).

In Figure 9.10 a for loop has an initialization expression, shown first in
the for list of expressions; a test expression, shown in the middle; and a
loop termination expression, shown last:

* 3: for(j = k = 0; j != i; j++) k += j;
CLRB ; j in D
CLRA
TFR  D,X ; k in X
BRA  L1 ; do the test before the loop is done once

L0:  LEAX  D,X ; this is the statement that is executed in the loop
ADDD  #1 ; this is the expression done after each loop is

done
L1:  CPD  $3800; this is the loop test

BNE  L0
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int i; 
main(){ int j, k; 
 for(j = k = 0; j != i; j++) k += j; 
 while(j != 0) k += --j; 
 do k += j--; while (j != i); 
}

a. C Program

* 3:  for(j = k = 0; j != i; j++) k += j; 
00000802 C7           CLRB   
00000803 87           CLRA   
00000804 B745         TFR   D,X 
00000806 2005         BRA   *+7   ;abs = 080D 
00000808 1AE6         LEAX  D,X 
0000080A C30001       ADDD  #1 
0000080D BC3800       CPD   $3800 
00000810 26F6         BNE   *-8   ;abs = 0808 
* 4:  while(j != 0) k += --j; 
00000812 2005         BRA   *+7   ;abs = 0819 
00000814 830001       SUBD  #1 
00000817 1AE6         LEAX  D,X 
00000819 0474F8       TBNE  D,*-5   ;abs = 0814 
* 5:  do k += j--; while (j != i); 
0000081C 1AE6         LEAX  D,X 
0000081E 83 00 01     SUBD #1 
00000821 BC3800       CPD   $3800 
00000824 26F6         BNE   *-8   ;abs = 081C  
00000826 3D           RTS    

b. Assembly Language developed from Part (a) 

FIGURE 9.10. For, While, and Do While Loops



A while loop has a test expression that is executed before the loop is exe-
cuted once:

* 4: while(j != 0) k += –j;
BRA L3 ; do the test first

L2: SUBD #1 ; these are the two statements
LEAX D,X ; that are executed in the loop

L3: TBNE D,L2; this is the loop test

A do while loop has a test expression that is executed after the loop is
executed:

* 5: do k += j–; while (j != i);
L4: LEAX D,X ; these are the two statements

SUBD #1 ; that are executed in the loop
CPD $3800; this is the loop test
BNE L4

Figure 9.11 illustrates nested for loops and the two-dimensional array 
index addressing mechanism. This example shows how loop statements can
themselves be loops, in a nested loop construction, and how optimizing com-
pilers make loops more efficient. The outer for loop, for(i = sum =
0; i < 10; i++) is encoded as an initialization:

CLRA ; generate 0
CLRB ; in high and low bytes
STD $381E; store to clear sum
STAB 1,SP ; store to clear i

and by the outer loop termination:

INC 1,SP; count up
LDAA 1,SP; get the variable to be tested
CMPA #10 ; compare against 10
BCS *-40; loop as long as i is less than 10

The initialization should branch to the loop termination, but because the com-
piler determines that the first loop will satisfy the termination test, this step
is skipped to improve efficiency. The inner loop is almost identically con-
structed. Generally, the for loop is fundamentally a while loop with a
built-in initialization and a built-in stepping operation that is executed after
the statement governed by the for loop is executed and before the while
condition is tested. The general and natural for loop is the most widely used
looping mechanism in C and C++.

The more general for statement is used with instructions that access a
two-dimensional array using accumulator D index addressing. The program
in Figure 9.11 adds all the elements of a global unsigned char two-
dimensional array into a global int variable. The two-dimensional array is
declared as a[10] [3], so it is a 10-row, 3-column array. Elements in
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rows are stored in consecutively accessed locations, and whole rows are
stored in consecutive groups of these memory words (this is called row-
major order). The middle of the assembly-language code from Figure 9.12
is shown below:

LDAB 1,SP ; get row index
CLRA
LDY #3 ; number of bytes per row
EMUL ; gets the relative location of row i in array a
TFR D,X
LDAB 0,SP
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unsigned char a[10][3]; int sum; 
main() { unsigned char i, j;  
 for(i = sum = 0; i < 10; i++) 
  for(j=0; j < 3; j++) 
   sum += a[i][j];  
}

a. C Program

   4: main() { unsigned char i, j; 
0000095B 3B           PSHD   
    5:  for(i = sum = 0; i < 10; i++) 
0000095C C7           CLRB   
0000095D 87           CLRA   
0000095E 7C381E       STD   $381E 
00000961 6B81         STAB  1,SP 
    6:   for(j = 0; j < 3; j++)    sum += a[i][j];
00000963 6980         CLR   0,SP 
00000965 E681         LDAB  1,SP 
00000967 87           CLRA   
00000968 CD0003       LDY   #3 
0000096B 13           EMUL   
0000096C B745         TFR   D,X 
0000096E E680         LDAB  0,SP 
00000970 87           CLRA   
00000971 1AE6         LEAX  D,X 
00000973 E6E23800     LDAB  $3800  
00000977 F3381E       ADDD  $381E 
0000097A 7C381E       STD   $381E 
0000097D 6280         INC   0,SP 
0000097F A680         LDAA  0,SP 
00000981 8103         CMPA  #3 
00000983 25E0         BCS   *-30   ;abs = 0965 
    5:  for(i = sum = 0; i < 10; i++) 
00000985 6281         INC   1,SP 
00000987 A681         LDAA  1,SP 
00000989 810A         CMPA  #10 
0000098B 25D6         BCS   *-40   ;abs = 0963 
    7: } 
0000098D 30           PULX   
0000098E 3D           RTS    

b. Assembly Language developed from Part (a) 

FIGURE 9.11. Array Manipulation Program



CLRA
LEAX D,X ; add column number
LDAB $3800,X ; get element

It reads out element i, j, into accumulator D. Observe that the calcula-
tion of the location of the i, j th element is obtained by multiplication and
addition operations (a polynomial expression).

The do while statement can produce efficient assembly-language code
using C code that may look somewhat awkward. Figure 9.12 illustrates an
efficient way to clear a vector. Note that the loop counter is decremented,
and tested after it has been decremented, in order to use the instruction DBNE.
In order to use this loop counter as an index into a vector, 1 is subtracted
from the counter to make it the vector index. This produces the tightest loop
to clear a vector in the 6812.

The do while statement in Figure 9.13a tests the condition after the
loop is executed at least once, but it tests the result of the loop’s activities.
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char alpha[10]; 
void main() { char i = 5; do alpha[i - 1] = 0; while(--i); } 

a. C Program

00000959 8605         LDAA  #5 
0000095B B705         SEX   A,X 
0000095D 69E237FF     CLR   $37FF,X
00000961 0430F7       DBNE  A,*-6   ;abs = 095B 
00000964 3D           RTS    

b. Assembly Language developed from Part (a) 

FIGURE 9.12. Clearing a Vector with a Do While Loop

struct spiDevice { unsigned int spie:1,spe:1,swom:1,mstr:1,
  cpol:1,cpha:1,ssoe:1,lsbf:1;
} *spiPtr = (struct spiDevice *)0xd0;
#define spi (*spiPtr) 

main() { spi.spe = 1; do ; while(spi.spe); }

a. C Program

0000095B 3B           PSHD   
0000095C FE0800       LDX   spiPtr 
0000095F 6E80         STX   0,SP 
00000961 0C0040       BSET  0,X,#64 
00000964 EE80         LDX   0,SP 
00000966 0E0040FA     BRSET 0,X,#64,*-6   ;abs = 0964 
0000096A 30           PULX   
0000096B 3D           RTS    

b. Assembly Language developed from Part (a) 

FIGURE 9.13. A Program Setting and Testing a Bit



This is very useful in I/O software because it lets you get data within the
statement and test the result in the conditional expression, which is not exe-
cuted until the statement is executed at least once (Figure 9.13). The program
sets a bit of a struct and tests it repeatedly until it is cleared (by hard-
ware). It is compiled into assembly language shown in Figure 9.13b. The
struct definition shown below merely defines accesses using the pointer
spiPtr. The elements can be accessed using “arrow” notation. For instance
the bit spe can be set using spiPtr->spe = 1;. However, by declar-
ing #define spi (*spiPtr), the expression spi.spe = 1; can
be used instead. This is encoded into assembly language using the BSET
instruction:

BSET 0,X,#64 ; set bit 6 of location pointed to by X (the spi port)

The statement do ; while(spi.spe); is implemented with

BRSET 0,X,#64,*-6 ; wait while bit 6 of location 0xD0 is 1

Generally, if the bitfield is more than 1 bit, data to be inserted will have to
be shifted to the correct bit position, and masked parts of it are ORed with
masked parts of bits in other fields, to be written into the memory. This code
looks like the code for statement lui = (lui & 0xfc7f)| ((lsc
<< 7) & 0x380); that we studied in Figure 9.5. Data read from such a
bitfield will have to be shifted and masked in like manner.

Procedure Calls and Arguments
A C procedure is generally called using a JSR or BSR instruction, with 
the input arguments pushed on the stack. The return value of a function is
generally left in accumulator D. If the input argument is a vector, or an “&”
sign appears before the name, then the address is passed on the stack, using
call-by-name; otherwise the data themselves are pushed on the stack, using
call-by-value. However, the rightmost argument is passed into a function
through a register. The function might push this register value inside it, as 
a local variable. Passing one argument this way improves efficiency, 
because even if it is pushed on the stack inside the function itself, its code
therein appears just once in a program, rather than each time the subroutine
is called. As an example, the procedure power can be called by main()
in Figure 9.14a. Figure 9.14b shows the calling procedure’s assembly 
language.

Figure 9.15 shows the stack within the procedure that was called; its
assembly language is shown Figure 9.14c. The while loop requires the test
at the end of the loop and a branch at the beginning of the while loop to
that test program sequence. Observe from Figure 9.14c that call-by-value
argument j is generally in accumulator A. The test requires checking the
argument j before it is decremented, so the instruction PSHA saves j, the
DEC instruction decrements j, and the BNE instruction tests the value
obtained by the LDAB 1,SP+ instruction.

300 Chapter 9 Implementation of C Procedures

� 9.5



Section 9.5 Procedure Calls and Arguments 301

int a; 
void main() { int b; b = power(&a, 2); }
unsigned int power(unsigned int *i, unsigned char j) { 
 int n = 1; 
 while( j-- )   n = n * *i;  return n; 
}

a. C Procedure calling a Subroutine 

00000976 CC3800       LDD   #$3800
00000979 3B           PSHD   
0000097A C602         LDAB  #2 
0000097C 07DD         BSR   *-33   ;abs = 095B 
0000097E 3A           PULD   
0000097F 3D           RTS    

b. Assembly Language for the Calling Procedure in Part (a) 

0000095B CE0001       LDX   #1 
    4:  while( j-- )   n = n * *i;  
0000095E B710         TFR   B,A 
00000960 200B         BRA   *+13   ;abs = 096D 
00000962 ED82         LDY   2,SP 
00000964 36           PSHA   
00000965 EC40         LDD   0,Y 
00000967 B756         TFR   X,Y 
00000969 13           EMUL   
0000096A B745         TFR   D,X 
0000096C 32           PULA   
0000096D 36           PSHA   
0000096E 43           DECA   
0000096F E6B0         LDAB  1,SP+ 
00000971 26EF         BNE   *-15   ;abs = 0962 
    5:  return n; 
00000973 B754         TFR   X,D 
00000975 3D           RTS   

c. Assembly Language for the Called Procedure in Part (a) 

FIGURE 9.14. A Subroutine to Raise a Number to a Power

high return address 
low return address
high address of i 
low address of i

SP->
inside the 
subroutine

FIGURE 9.15. Stack for power Procedure

The EMUL instruction multiplies the value in D by the value in Y. We
passed the address of argument i to power, merely to show how call-by-
name can be handled. It was pushed on the stack. Note from Figure 9.15 that
this address is at 2,SP. The int value at that location can be read into
index register Y by LDY 2,SP LDD 0,Y and the other multiplier, a local
variable, is read into Y by the TFR X,Y. The data are multiplied and the



result stored in the local variable using TFR D,X. Note that the final returned
value is passed in accumulator D.

It is also possible to pull the return address and deallocate the procedure’s
arguments at the end of the procedure before returning to the main program.
This is similar to the passing of the rightmost argument in a register. In some
sense these optimization techniques are just minor modifications. However,
they can improve static efficiency. If a procedure is called from 10 different
places in the main program, then putting push and pull instructions within
the called procedure removes these instructions from 10 places in the calling
sequence and puts only one copy in the called procedure. Moreover, the tech-
nique of putting the first input argument in accumulator D works especially
well for small procedures with only one argument; we may not need to save
the argument on the stack at all, merely use the value in accumulator D.
However, the last technique of pulling the program counter and balancing
the stack inside the called procedure has a significant limitation. It is not pos-
sible to have a procedure with an arbitrary number of arguments when the
called procedure removes the same number of bytes from the stack when-
ever it is called. The C printf procedure allows an arbitrary number of
arguments, so it would not be able to pull the program counter and balances
the stack inside it.

C++ generally has similar operators and implements them in assembly
language in similar ways. However, C++ has a calling mechanism, where a
member function is designated virtual, that permits run-time substitutions
of one class and its function members for another class and its function
members. If we do not insert the word virtual in front of a function
member in the class declaration, then the function is directly called by a JSR
or BSR instruction, like C procedures discussed above.

If a function member is declared virtual, then to call it, we look its
address up in a vtable associated with the class, as is shown on the right side
of Figure 9.16. This table is used because generally a lot of objects of the
same class might be declared or blessed, and they might have many virtual
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Object Class  Program

Function Member   

i = S.Error

i =Sptr-
>Error;

S Cstack

Spush(10)
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>push(10);

Cstack::push(int i )

pointer to 
function
member

hidden
pointer

data
member

Jump Table 
for Cstack 

FIGURE 9.16. An Object and Its Pointers



function members. For instance, there could be stacks for input and for output
and stacks holding temporary results in the program. A single table holds the
function member addresses for all of a class’s objects in one place. Suppose
Q is a pointer to an object, and the object stores data members in the block
pointed to by Q. The hidden pointer, at location Q, points to the jump table.
Then, data members are easily accessed by the pointer Q, and virtual func-
tion members are almost as easily accessed by means of a pointer to a 
pointer.

The operator new blesses a pointer to an object. A subroutine 
allocate will return a location where the data members and the hidden
pointer can be stored in index register X. Then if Ctbl is the jump table 
for the class Cstack, the statement Sptr = new Cstack; is
implemented as

JSR allocate ; return value in accumulator D is a pointer to
object data

STX Sptr ; save address in pointer to the object
MOVW #Ctbl,0,X ; put the class Cstack jump table address in

hidden pointer

If new blesses a pointer to an object to make it an object of a different 
class, Istack, then if Itbl is the jump table for the class Istack, the
statement Sptr = new Istack; is implemented as

JSR allocate ; return value in accumulator D is a pointer to
object data

STX Sptr ; save address in pointer to the object
MOVW #tbl1,0,X ; put class CharQueue’s jump table address in

hidden pointer

If a function member is executed, as in Sptr ->pull(), the object’s
hidden pointer has the address of a table of function members; the specific
function member is jumped to by using a predetermined offset from the
hidden pointer. If we wish to call the pull member function, which might be
at location 2 in this jump table, we can execute:

LDX [Sptr,PCR] ; get the address of the jump table for the object
pointed to by Sptr

JSR [2,X]    ; call the procedure at location 2 in the jump table
(pull)

It will go to the jump table for the class for which Q was blessed by the new
operator, to get the address of the function member to pull data from the
queue.

Observe that different objects of the same class point to the same table,
but each class has its own separate table. Note that data members of differ-
ent objects of a class are different data items, but function members of dif-
ferent objects of a class are common to all the objects of the same class via
this table.
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A final technique used in C++ is the templated class such as Stack<I>.
Such a templated class can potentially generate many classes such as
Stack<char>, Stack<unsigned char>, Stack<int>, and so on.
Rather than generate, and store in the microcontroller, all possible classes
that can be obtained with different types for the template, a templated class
generates real code only when it is declared or blessed.

Examples from Character String Procedures
In order to provide additional examples of C compiled into assembly lan-
guage, we will compile some common C procedures that are used to handle
character strings.

We first show strlen, which is used to determine the number of char-
acters in a null-terminated string (Figure 9.17). Notice how the argument
str, passed in accumulator D, is saved as a local variable right after the
local variable s is pushed and is then on top of the stack.

The procedure strchr searches for a character in a null-terminated
string (Figure 9.18). The first argument specifies the string. The second argu-
ment is a character. The procedure searches the string for a matching char-
acter; if it finds the character, it returns the address of the character in the
string; otherwise it returns a null (0).

We now show strncpy, which is used to copy characters from and to
a null-terminated string (Figure 9.19). We show the calling routine for this
example to illustrate the passing of more than three arguments. The main
procedure calls the strncpy procedure with three arguments. Notice how
arguments are pushed in order of their appearance from left to right, so the
leftmost string, pushed first, is at 8,SP inside strncpy. You should step
through the while loop to see how each C statement is compiled into assem-
bly language. Note, however, that the pointers keep getting reloaded into X
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    1: int  strlen(char *str){ char *s = str; 
0000388A 3B           PSHD   
0000388B 3B           PSHD   
0000388C 6C82         STD   2,SP 
    2:   while(*str++); 
0000388E EE80         LDX   0,SP 
00003890 E630         LDAB  1,X+ 
00003892 6E80         STX   0,SP 
00003894 0471F7       TBNE  B,*-6   ;abs = 088E 
    3:   return (str - s - 1); 
00003897 B754         TFR   X,D 
00003899 A382         SUBD  2,SP 
0000389B 830001       SUBD  #1 
    4: } 
0000389E 1B84         LEAS  4,SP 
000038A0 3D           RTS    

FIGURE 9.17. The Strlen Procedure



and Y registers from their local variable storage locations. You can do a lot
better by writing the program in assembly language. But you can use this
code, produced by the Metrowerks C++ compiler, as a starting point for a
tightly coded assembly-language program.

The procedure strncmp compares two null-terminated strings, speci-
fied by the first two arguments, up to a number of characters specified in the
third argument (Figure 9.20). Observe that the while loop terminates if any
of the three conditions are false.

Summary
In this chapter, we have shown how C constructs are encoded in assembly
language. We showed how variables are allocated and accessed. We saw how
simple expressions, and then more complex expressions, are implemented.
Assembly-language implementations of conditional expressions were then
shown. Implementation of indexed and sequential structures were covered
along with implementation of looping statements. We then considered the
implementation of procedures and the passing of arguments. Finally, the
mechanism for handling a C++ virtual procedure call was considered.

This chapter provides the reader with a basic understanding of what is
being done at the machine level when a high-level language statement is
encoded. It should give the reader the understanding necessary to write effi-
cient high-level language programs.
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    3: char *strchr(char *str, int chr){ 
0000088A 3B           PSHD   
    4:   while (*str) { 
0000088B 200B         BRA   *+13   ;abs = 0898 
    5:       if(*str == chr) return (str); 
0000088D B715         SEX   B,X 
0000088F AE80         CPX   0,SP 
00000891 2711         BEQ   *+19   ;abs = 08A4 
    6:       ++str; 
00000893 EE84         LDX   4,SP 
00000895 08           INX    
00000896 6E84         STX   4,SP 
    4:   while (*str) { 
00000898 EE84         LDX   4,SP 
0000089A E600         LDAB  0,X 
0000089C 26EF         BNE   *-15   ;abs = 088D 
    8:   if(*str == chr) return str; 
0000089E B715         SEX   B,X 
000008A0 AE80         CPX   0,SP 
000008A2 2603         BNE   *+5   ;abs = 08A7 
000008A4 EC84         LDD   4,SP 
000008A6 8FC787       CPS   #51079 
   10: } 
000008A9 30           PULX   
000008AA 3D           RTS    

FIGURE 9.18. The Strchr Procedure



 char *strncpy(char *str_d,char *str_s,int count){ 
 char *sd = str_d; 
0000388A 3B           PSHD   
0000388B 3B           PSHD   
0000388C EC88         LDD   8,SP 
0000388E 6C82         STD   2,SP 
    5:   while(count--) { 
00003890 201A         BRA   *+28   ;abs = 08AC 
    6:       if(*str_s) *str_d++ = *str_s++;  
00003892 EE86         LDX   6,SP 
00003894 E600         LDAB  0,X 
00003896 270E         BEQ   *+16   ;abs = 08A6 
00003898 EE88         LDX   8,SP 
0000389A ED86         LDY   6,SP 
0000389C E670         LDAB  1,Y+ 
0000389E 6B30         STAB  1,X+ 
000038A0 6E88         STX   8,SP 
000038A2 6D86         STY   6,SP 
000038A4 2006         BRA   *+8   ;abs = 08AC 
    7:       else *str_d++ = '\0'; 
000038A6 EE88         LDX   8,SP 
000038A8 6930         CLR   1,X+ 
000038AA 6E88         STX   8,SP 
    5:   while(count--) { 
000038AC EE80         LDX   0,SP 
000038AE 191F         LEAY  -1,X 
000038B0 6D80         STY   0,SP 
000038B2 0475DD       TBNE  X,*-32   ;abs = 0892 
    9:   return (sd); 
000038B5 EC82         LDD   2,SP 
   10: } 
000038B7 1B84         LEAS  4,SP 
000038B9 3D           RTS    
   13: void main() { strncpy(s1, s2, 5); 
000038BD CC080B       LDD   #2059   ; this is s1
000038C0 3B           PSHD   
000038C1 CE0800       LDX   #2048   ; this is s2
000038C4 34           PSHX   
000038C5 C605         LDAB  #5      ; this is the rightmost argument
000038C7 87           CLRA   
000038C8 07C0         BSR   *-62   ;abs = 088A 
000038CA 1B84         LEAS  4,SP 
   15: } 
000038D2 3D           RTS    

FIGURE 9.19. The Strncpy Procedure
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Do You Know These Terms?
See the end of Chapter 1 for instructions.

downcasting
upcasting
relational operators

logical operators
row-major order

virtual
vtable



PROBLEMS

In all the following problems, assume lui, gsc, etc., are declared as they
are used throughout this chapter (see §9.1).

1. A global variable declared as long alpha; is loaded from global
variables below. Show assembly-language program segments to load
alpha from:

Section 9.7 Summary 307

    4: int strncmp(char *str1, char *str2, int count) { 
0000388A 6CAE         STD   2,-SP 
    5:   if (!count) return 0; 
0000388C 2618         BNE   *+26   ;abs = 08A6 
0000388E C7           CLRB   
0000388F 87           CLRA   
00003890 203B         BRA   *+61   ;abs = 08CD 
    7:       if (*str1 != *str2) break;  
00003892 EE86         LDX   6,SP 
00003894 E600         LDAB  0,X 
00003896 EE84         LDX   4,SP 
00003898 E100         CMPB  0,X 
0000389A 261F         BNE   *+33   ;abs = 08BB 
    8:       ++str1; ++str2; 
0000389C EE86         LDX   6,SP 
0000389E 08           INX    
0000389F 6E86         STX   6,SP 
000038A1 EE84         LDX   4,SP 
000038A3 08           INX    
000038A4 6E84         STX   4,SP 
    6:   while(count-- && *str1 && *str2 ){ 
000038A6 EE80         LDX   0,SP 
000038A8 191F         LEAY  -1,X 
000038AA 6D80         STY   0,SP 
000038AC 04450C       TBEQ  X,*+15   ;abs = 08BB 
000038AF EE86         LDX   6,SP 
000038B1 E600         LDAB  0,X 
000038B3 2706         BEQ   *+8   ;abs = 08BB 
000038B5 EE84         LDX   4,SP 
000038B7 E600         LDAB  0,X 
000038B9 26D7         BNE   *-39   ;abs = 0892 
   10:   return (*str1 - *str2); 
000038BB EE86         LDX   6,SP 
000038BD E600         LDAB  0,X 
000038BF B714         SEX   B,D 
000038C1 EE84         LDX   4,SP 
000038C3 3B           PSHD   
000038C4 E600         LDAB  0,X 
000038C6 B715         SEX   B,X 
000038C8 34           PSHX   
000038C9 EC82         LDD   2,SP 
000038CB A3B3         SUBD  4,SP+ 
   11: } 
000038CD 30           PULX   
000038CE 3D           RTS    

FIGURE 9.20. The Strncmp Procedure
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a. unsigned int gui

b. int gsi

c. unsigned char guc

d. char gsc

2. A global variable declared as long alpha; is stored into global vari-
ables below. Show assembly-language program segments to store
alpha to each variable, and indicate an assembly-language test that sets
char error to 1 if an overflow occurs.

a. unsigned int gui

b. int gsi

c. unsigned char guc

d. char gsc

3. A global variable declared as unsigned long alpha; is stored
into global variables below. Show assembly-language program segments
to store alpha to each variable, and indicate a test on the value of
alpha that will result in an error.

a. unsigned int gui

b. int gsi

c. unsigned char guc

d. char gsc

4. C local variables are not cleared. However, write a shortest program
segment that clears all N local variables of a subroutine, where N is a
constant.

5. Write a shortest program segment to execute each of the following C
statements.

a. gui=lsi+lsc;

b. lsi=gsi+lsc;

c. lsc=luc+gsc;

d. gui += lsi;

6. Write a shortest program segment to execute each of the following C
statements.

a. gui = lsi^lsc;

b. lsi/=gsi;

c. lsc= ~luc;

d. lui /= gsi;

7. Global variables are declared as long alpha, beta, v[10];.
Write a shortest program segment to execute each of the following C
statements.
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a. beta = v[alpha];

b. beta = v[++alpha];

c. beta = v[–alpha];

8. Global variables are declared as struct { unsigned int
alpha:3, beta:7, gamma:6; } s; int i;. A struct
with bit fields is packed from leftmost bit for the first field named 
on the left, through consecutive fields, toward the right. Write a 
shortest program segment to execute each of the following C 
statements.

a. i = s.alpha;

b. s.beta = i;

c. s.alpha = s.gamma;

9. Global variables are declared as struct { unsigned int
alpha:3, beta:7, gamma:6; } *p; int i;. A struct
with bit fields is packed from leftmost bit for the first field named on the
left, through consecutive fields, toward the right. Write a shortest
program segment to execute each of the following C statements.

a. i = p->alpha;

b. p->beta = i;

c. p->alpha = p->gamma;

10. Write a shortest program segment to execute each of the following C
statements.

a. gui = (gui & 0xc7ff) + ((lsc << 11) & 0x3800);

b. lui = (lui & 0xffc7) | ((gsc << 3) & 0x38);

c. lui = (lui & 0xc7c7)+((gsc<<3)&0x38)|((lsc<<
11)&0x3800);

11. Write a shortest program segment to execute each of the following C
statements.

a. guc = gui >= lsc;

b. luc = lui < gsc;

c. lui = (gui >= lsc) || (lui < gsc);

12. Write a shortest program segment to execute each of the following C
statements.

a. if( gui >= lsc ) lui++;

b. if( ! ( gui ^ lsc) ) lui *= 10;

c. if(( gui>=lsc ) && (!( (gui ^ lsc) & gsc) )
) lui^= gui;

13. Write a shortest program segment to execute each of the following C
statements.
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a. if(( gui <= lsc )||( gui >=( lsc + 7))) lui++;

b. if( ( gui > lsc) && ( gui < (lsc + 3) ) ) lui
*= 10;

c. if(( gui>=0 ) && ( lsi<0 ) && ( gui>lsi ) )
lui ^= gui;

14. Write the case statement below according to the conventions of Figure
9.9a.

switch(guc){case 2:gui=-1;break;case 4:lsc=
-1;default:lsi=-1;}

15. Repeat problem 14 according to the conventions of Figure 9.9b.

16. Rewrite Figure 9.11b’s assembly-language program for a main program,
like Figure 9.11a, in which the declaration int sum; is replaced by
int k;, and the statement sum+=a[i][j]; is replaced by if
(k>a[i][j]) k = a[i][j];.

17. Write the C program and the resulting assembly-language program that
transposes a two-dimensional matrix of size 4 by 4, following the
approach of Figure 9.11.

18. Write the C program and the resulting assembly-language program that
stays in a do while as long as both bits 7 and 6 of the byte at loca-
tion $d0 are zero, following the approach of Figure 9.13b.

19. Write the C program and the resulting assembly-language program that
calls a procedure with prototype unsigned int par(unsigned
int R1, unsigned int R2); to compute the resistance of two
parallel resistors R1 and R2, following the parameter-passing approach
of Figure 9.14, returning the result in accumulator D.

20. Write the C program and the resulting assembly-language program 
that calls a procedure with prototype unsigned int inner
(unsigned int *v, unsigned int *w); to compute the
inner product of two two-element vectors v and w, following the
approach of Figure 9.14, returning the result in accumulator D.

21. Hand-compile the C procedure strncat below. Put the 6812 instruc-
tions under each C statement that generates them. main calls
strncat, which concatenates the second argument string on the 
end of the first argument string, but copies at most the number of 
characters given in the third argument. For full credit, store all parame-
ters and local variables on the stack, even though they can be left in 
registers to make the program shorter, and do not optimize between
statements, but provide the most statically efficient assembly-language
code for each C statement. Your solution should be reentrant, but 
need not be position independent. Assume that arguments which are 
put on the stack are pushed in the order that they appear from left 
to right.
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char *strncat(char *str_d,char *str_s,int count){
char *sd=str_d;
while (*str_d++) ;
str_d--;
while (count--)

{if (!(*str_d++=*str_s++)) return sd; }
*str_d = ‘\0’; return sd;

}

22. Hand-compile the C procedure memchr below. Put the 6812 instruc-
tions under each C statement that generates them. main calls memchr,
which searches the first argument string for the second argument char-
acter, but searches at most the number of characters given in the third
argument. If it finds the second argument, it returns the address of that
character in the string. Otherwise it returns a null (0). For full credit,
store all parameters and local variables on the stack, even though they
can be left in registers to make the program shorter, and do not optimize
between statements, but provide the most statically efficient assembler
language code for each C statement. Your solution should be reentrant,
but need not be position independent. Assume that arguments which are
put on the stack are pushed in the order that they appear from left to
right.

char *memchr(char *buffer,char chr,int count){
char *ptr=buffer;
while(count--)

{ if( *ptr == chr ) return ptr; ++ptr; }
return 0;

}
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The Axiom PB68HC12A4 board is fitted with female harmonica plugs and
a prototype area for a laboratory developed for this book. Experiments can
be quickly connected pushing 22-gauge wire into the harmonica plugs and
prototyping areas.



In all the earlier chapters, we have used data structures along with our exam-
ples. While you should therefore be somewhat familiar with them, they need
to be systematically studied. There are endless alternatives to the ways that
data are stored, and so there is a potential for disorder. Before you get into
a crisis due to the general disarray of your data and then convince yourself
of the need for data structures, we want you to have the tools needed to
handle that crisis. In this chapter, we systematically cover the data structures
that are most useful in microcomputer systems.

The first section discusses what a data structure is in more detail. Index-
able structures, including the frequently used vector, are discussed in the
second section. The third section discusses sequential structures, which
include the string and the stack structures. The linked list is briefly discussed
next, only to give you an idea of what it is, while the summary ends the
chapter with recommendations for further reading on data structures.

At the end of this chapter, you should be able to use simple data struc-
tures, such as vectors and strings, with ease. You should be able to handle
deques and their derivatives, stacks and queues, and you should know a
linked list structure when you see one. This chapter should provide you with
the tools that you need to handle most of the problems that cause confusion
when storing data in your microcomputer programs.

What a Data Structure Is
In previous chapters, we described a data structure as the way data are stored
in memory. While this description was adequate for those earlier discussions,
we now want to be more precise. A data structure is more or less the way
data are stored and accessed. This section expands on this definition.

A data structure is an abstract idea that is used as a reference for storing
data. It is like a template for a drawing. For example, a vector is a data struc-
ture that we have used since Chapter 3. Several sets of data can be stored in
a vector in the same program, and the same “template” is used to store each
set. You may write or see a program that uses vectors that have five 1-byte
elements. While writing another program, you may recognize the need for a
vector that has five 1-byte elements and, by using the same template or data
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structure that you used earlier, you can quickly copy appropriate parts of the
old program to handle the vector in your new program. Moreover, another
program may need a similar structure that has 10 1-byte elements or three
2-byte elements or even a vector whose elements are themselves vectors.
Rather than having a different template around for each possible vector, you
will, with some understanding, be able to modify a program that handles a
vector with five 1-byte elements to handle these other cases, too. In a sense,
data structures are elastic templates that can be stretched to accommodate
different sizes.

We have used the analogy with a template to describe how data are 
stored in a data structure. The description of a data structure is completed
when we describe how the data of the structure can be read or written, that
is, accessed. A simple example will make this clear. A vector Z of N 1-byte
elements can be stored in consecutive bytes of a buffer created with the DS
directive:

Z: DS N

This buffer begins at location Z (Figure 10.1). By pointing X to the buffer’s
first byte, we can easily access any byte of the vector. For instance, LDX #Z
followed by LDAA 3,X, will read the fourth byte of the vector into accu-
mulator A. We can also access it by an instruction LDAA Z+3, or if accu-
mulator A has 3 and index register X has the address Z, we can access it
using the instruction LDAA A,X. Suppose, however, that our N bytes were
not stored in a buffer but were stored on a tape that, when read, moves
forward 1 byte. The constraint here is that we can access only the “current”
byte on the tape. This situation is exactly analogous to a person sitting at a
terminal typing characters to be input to a computer. To remind us of this,
the data structure of N consecutive bytes, which can be accessed only at some
“current” position, is called a string. Of course, once a string is put into
memory by storing it in consecutive bytes of a buffer, it can be accessed like
a vector. This distinction becomes important in applications. Is one access-
ing a string in memory or accessing a string from a terminal or some other
hardware device? Thus the programmer should consider what data structure
is appropriate for the application, which includes considering the constraints
placed on accessing that structure.
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The data structure, as we observed in Chapter 3, affects both static and
dynamic efficiency. Besides the compactness and speed of the program itself,
the compactness of the data may be affected by the structure used to store
it. In a small microcomputer with 1K bytes of RAM, a program may not
work at all if the data are stored in a structure that requires 2K bytes of RAM,
but it may work if the correct data structure is used and that structure requires
only 100 bytes of RAM. Using the right data structure can also improve
clarity, because the techniques to access the structure for a particular program
may be more transparent than with a less appropriate structure.

Indexable Data Structures
We have already used the vector data structure, which is the most common
example of an indexable data structure. A vector is a sequence of elements
(or components), each of which is labeled by a number called an index. The
indexes of successive elements are successive integers, and each element is
represented by the same number of bytes. The number of bytes representing
each element of the vector is termed its precision, the number of elements
in the vector is its length, and the index of the first element is its origin (or
base). For example, a vector Z with N elements would usually have its
element labeled with i denoted Z(i), where i runs between the origin 
and the (origin + N - 1). For an origin of 1, the elements are labeled Z(1),
. . .,Z(N) while, for an origin of 0, the elements are labeled Z(0),
. . .,Z(N – 1). If the origin is understood, we refer to the element 
Z(i) as the ith element.

Vectors stored in memory are stored in buffers, putting successive ele-
ments in successive memory locations. If the elements of the vector have
more than 1 byte of precision and represent integers or addresses, we have
adopted the Motorola convention that the elements are stored most signifi-
cant byte first.

In C programs, a vector data structure of any length is obviously handled
by C vector notation. Zero-origin 8-bit and 16-bit precision vectors are
directly handled; for instance, a global vector Z of N 16-bit elements is
declared as int Z[N], and an element i is accessed as Z[i]. If the origin
is changed, for instance to 1, then an element i is accessed as Z[i – 1].
If the precision is changed, unless memory space is critical, the next higher
precision, 8-bit or 16-bit precision, would be used.

In assembly language, a buffer to hold vector Z is established with 
directive

Z: DS 20 (1)

With this directive, we have a buffer that will hold a vector of up to 20 
1-byte elements, a vector of up to 10 2-byte elements, a vector of up to 5 
4-byte elements, and so on. Although the directive (1) establishes the buffer
to hold the vector, it does not specify the origin, precision, or the length of
the vector stored in the buffer. Any element of a vector can be accessed and,
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to access the ith element, the programmer must know the precision and origin
of the vector. For example, if global vector Z has origin 1 and 1-byte preci-
sion, then if i is in accumulator B, Z(i) can be loaded into A with

LDX #Z ; Point X to Z
DECB ; i - 1 into B
LDAA B,X ; Z(i) into A (2)

If the precision is 2 and the origin is 1, then if i is in accumulator B, Z(i)
can be loaded into D with

LDX #Z ; Point X to Z
DECB   ; i - 1 into B
ASLB ; 2*(i - 1) into B
LDD B,X ; Z(i) into D (3)

The origin is 1 for Z in the segments (2) and (3). It seems obvious by now
that for assembly language or C programming, an origin of 0 has a distinct
advantage because the DECB instruction can be eliminated from segments
(2) and (3) if Z has an origin of 0. Unless stated otherwise, we will assume
an origin of 0 for all of our indexable data structures. Accessing the elements
of vectors with higher precision is straightforward and left to the problems
at the end of the chapter.

A histogram is implemented with a vector data structure. In a histogram,
there are, say, 20 counters, numbered zero through nineteen. Initially all
counters are zero. A stream of numbers arrives, each between zero and nine-
teen. As each number i arrives, counter i is incremented. This vector of
counts is the histogram.

Figure 10.2 illustrates the first six counts of the histogram Z. An item “2”
arrives, so counter 2 should be incremented. In C, if the vector is Z and the
number “2” is in i, then Z[i]++; increments the counter for number “2,”
and, in assembly language, if this number “2” is in index register X, then the
instruction in (4) will increment the counter:

INC Z,X ; increment the Xth count (4)

Histograms are useful in gathering statistics. We used them to “reverse engi-
neer” a TV infrared remote control; the counts enabled us to determine how
a “1” and a “0” were encoded as pulse widths and how commands were
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encoded into 1’s and 0’s. Note that the data structure is a vector. Counts are
accessed in random order as items arrive. 

A list is similar to a vector except that each element in the list may have
a different precision. Lists are stored in memory in buffers just like vectors:
successive elements in successive memory locations. Like a vector, there is
an origin and a length, and each element of the list can be accessed. However,
you cannot access the ith element of a list by the simple arithmetic compu-
tation used for a vector. Consider the following example of a list L that con-
sists of 30 bytes for a person’s name (ASCII), followed by 4 bytes for his or
her Social Security number (in C, an unsigned long), followed by a 45-
byte address (ASCII), and another 4 bytes for the person’s telephone number
(an unsigned long). This list then has four elements, which we can label
L0, L1, L2, and L3, and whose precisions are 30, 4, 45, and 4, respectively.
In C, a list is conveniently handled by a struct. The list above can be 
represented by struct{ char name[30]; long ss; char
address[45]; long phone; } s;. The phone element of struct
s is indicated by the notation s.phone. The assembly-language imple-
mentation of lists is simple. Assuming that the label L is used for the address
of the first byte of the list, we can load the jth byte of L2 (the address) into
A with the sequence

LDX #L+34 ; Point X to L2
LDAA A,X ; jth byte of L2 into A (5)

where we have also assumed that the value of j is initially in accumulator A.
While the segment (5) seems simple enough, remember that we have had to
compute the proper offset to add to L in order to point X to L2. For simple
lists, such as this example, this is not much of a problem, and the program-
mer may elect to do it “in his (or her) head.” But the assembler can help.
For our example list, we can create labels for the offsets to avoid remem-
bering the sizes of each element.

NAME:  EQU 0      ; Name of person
SSN:   EQU NAME+30 ; Social Security number
ADDRESS: EQU SSN+4   ; Address of person
TN:    EQU ADDRESS+45; Telephone number
NBYTES: EQU TN+4    ; Number of bytes in the list (6)

In the following program segment, a telephone number is stored in accu-
mulator D (high 16 bits) and index register X (low 16 bits). If the list L’s
telephone number matches this D:X, put the Social Security number in D:X,
otherwise go to label NoMatch:

CMPD L+TN ; check high 16-bits of telephone number
BNE NoMatch
CPX L+TN+2 ; check low 16-bits of telephone number
BNE NoMatch 
LDD L+SSN  ; get high 16-bits of Social Security number
LDX L+SSN+2 ; get low 16-bits of Social Security number (7)
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Notice that with the EQU directives of (6) the program segment (7) becomes
much more self-documenting. What makes this technique work is that it is
easy to associate labels with attributes, particularly because the order of the
list elements is usually unimportant. Notice that the EQU statements (6) not
only let the programmer use labels for offsets, but also let the assembler cal-
culate the offsets for the programmer. This same example will be continued
for the description of a table, which is a vector of lists. However, we will
first discuss an array, which is a bit simpler.

A (two-dimensional) array is a vector whose elements are vectors, each
of which has the same length and precision. See Figure 10.3. For us, it suf-
fices to consider an array as the usual two-dimensional matrix pattern of ele-
ments of the same precision, where, as before with vectors and lists, it is
convenient to start indexing the rows and columns from 0. If we consider
our array to be a vector of rows, the data structure is called a row-major
array. If we consider it to be a vector of columns, the data structure is called
a column major array. In C, row major order is used by arrays; a zero origin
1-byte precision two-dimensional array is declared as char AR[5][5],
and the ith row jth column element is designated AR[i][j]. Rows are kept
together. For instance, AR[0][4] might be located in memory at location
$3833, AR[1][0] at location $3834, and AR[1][1] at location $3835. In
assembly-language programming, two-dimensional n by m arrays are
declared as a vector of n times m elements, e.g., AR DS n*m. The address
of AR(i,j) is given by

address of AR(i,j) = (i * 5) + j + address of AR(0,0) (8)

Formula (8) can easily be modified for arrays with higher-precision elements.
One uses MUL to compute array addresses. For instance, if the precision of
each element of AR is 2 bytes, as if declared in C as int AR[5][5], and if
AR is the address of the first byte of the array, and further if i and j are in
accumulators A and B, respectively, the following segment puts AR(i,j) into
accumulator D.

PSHB    ; Save j
LDAB #5 ; Number of columns into B
MUL      ; i * 5 into D
ADDB 1,SP+
ADCA #0 ; (i * 5) + j into D
ASLD    ; 2 * ((i * 5) +j) into D
XGDX    ; Put combined offset in X
LDD AR,X ; AR(i,j) into D
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FIGURE 10.3. An Array



In this segment, multiplication by two for the contents of D is done by
ASLD. Multiplication by powers of two can be done by repeating ASLD.

Consider a program that writes into ZT the transpose ZT of a 5 by 5 matrix
Z of 1-byte elements. The C procedure is shown below. 

void ZTRANS( char Z[5][5], char ZT[5][5]) {char i,j;
for(i = 0; i < 5; i++)

for(j = 0; j < 5; j++) 
ZT[i][j] = Z[j][i]; 

}

While this subroutine appears to pass its arguments by value, they are actu-
ally passed by name, because all vectors and arrays are passed by name.
Figure 10.4 shows the assembly-language program that performs the same
operation, but in an optimized way.

A table is a vector of identically structured lists. For example, one 
might have a table of lists where each list is exactly like the list example 
just discussed, one for each person in the table. In C, a table of 100 
telephone number and Social Security number lists can be represented 
by struct{ char name[30]; long ss; char address[45];

Section 10.2 Indexable Data Structures 319

*    ZTRANS  computes the transpose ZT  of a 5 by 5 matrix Z of 1-byte elements. 
* CALLING SEQUENCE:
* PSHX  Address of the transpose matrix  ZT
* PSHY  Address of the matrix Z 
* BSR ZTRANS 
* LEAS 4,SP Balance the stack
*
* PARAMETERS 
*
RA: EQU 0 ; Return address
ADDRZ: EQU RA+2 ; Address of Z
ADDRZT: EQU ADDRZ+2 ; Address of ZT

*
ZTRANS: LDX ADDRZ,SP ; First row address into X
LDY ADDRZT,SP  ; First column address into Y
LDAA #5 ; There are 5 columns in the matrix Z
*
STR1: LDAB    #5 ; There are 5 elements in a column of the matrix Z
*
STR2: MOVB 5,X+,1,Y+  ; Transfer data and move pointers to next array element
DBNE B,STR2 ; Count down number of elements in a column
*
LEAX   -24,X ; Move to next element of row 0 (back up 25 - 1)
DBNE A,STR1 ; Count down number of columns
RTS

FIGURE 10.4. Subroutine ZTRANS



long phone; } t[100];. A search for a specific Social Security
number theSS, putting the matching telephone number in theTel, is accom-
plished in the program main below:

main() { long theSS, theTel; int i; 
for(i = 0; i <100; i++)
if(theSS == t[i].ss) break;
theTel = t[i].phone; 

}

We assume it finds a matching telephone number, which is left in accumu-
lator D (low 16 bits) and index register X (high 16 bits) when we exit. In
assembly language, index addressing can be used to access any particular
list in the table and offsets can be used, as done earlier, to access any par-
ticular element of the list. For instance, the directives

NUM:  EQU 100     ; Number of lists in the table
TABLE: DS NUM*NBYTES; Allocation of table (9)

create a buffer for 100 of the lists defined by (6). The address of the first byte
of the buffer is TABLE. The following program segment searches such a
table for a certain telephone number, which is stored (in binary) in accumu-
lator D (low 16-bits) and index register X (high 16 bits). We will assume 
it finds a matching telephone number, which is left in accumulator D (low
16-bits) and index register X (high 16 bits) when we exit.

LOOP: CPX TN,Y   ; check high 16-bits of telephone number
of row Y

BNE NOMTC
CPD TN+2,Y  ; check low 16-bits of telephone number of

row Y
BEQ MTCH

NOMTC: LEAY NBYTES,Y ; skip to next list
CPY #TABLE+NUM*NBYTES ; at end of table?
BNE LOOP   ; if not, loop

MTCH: LDD SSN,Y  ; get high 16-bit Social Security number of
row Y

LDX SSN+2,Y ; get low 16-bit Social Security number of
row Y

This discussion has examined indexable data structures. Each element of 
an indexable data structure can be accessed, and, furthermore, some form 
of indexing can be used for the access. The simple, but very useful, vector
was easy to access because the address of the ith element, assuming a zero
origin, is obtained by adding i*(precision) to the address of the vector. A list
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is like a vector but has fewer restrictions, in that elements can be of any pre-
cision. Arrays and tables are just mixtures of these two structures. These
indexable structures are used often in a microcomputer like the 6812, because
they are so easy to handle with its index addressing options and multiply
instructions.

Sequential Data Structures
We now consider sequential data structures. The ubiquitous string, which you
met earlier, and various deques, including the stack, are sequential structures.
The key characteristic of sequential structures is that there is a current loca-
tion, or top or bottom, to the structure, and access to the data in this struc-
ture is limited to this location.

Strings can be variable or constant. A buffer is used to hold a variable
string, which, in particular, can have a variable length. In a program with
string manipulations, the length of a particular string can change in the
program (up to the size of its buffer) in contrast to a vector of, say, 2-byte
numbers that has a constant length throughout most programs. In C, a global
constant string is declared char s[11] = “High there”;. Most
strings in C are terminated by a null character ($0); the number of bytes allo-
cated for a string generally must include this extra null character at the end.
In assembly language, constant strings can be created in memory with assem-
bler directives like

STRING: DC.B “This is a string” (9)

In assembly language, a string’s length can be ascertained in one of three
ways: by also giving its length, either by knowing it implicitly or giving it
in a variable, by terminating it with a special character such as null, carriage
return, or $4 (end-of-text), or by setting the sign bit in the last, and only the
last, character in the string. In C, a pointer is generally used to access the
current location of a string. For instance, suppose we declare global char
*ptr; and later we initialize ptr = s;. Then the pointer ptr can be
used to access the current location. Alternatively, a numerical index can be
used, declared as in char i;, and the index i can be initialized to zero, as
in i = 0;, so that s[i] is the first character in the string s. In assembly
language, this string (9) can appear in the program area as a constant to be
displayed on a terminal or to be printed on a printer. It is often in the program
area because it may be stored in ROM together with the program. To pre-
serve position independence, the address of the string is generally put in an
index register using program counter relative addressing as in

LEAX s,PCR

With this instruction, the address of the first character of s will be put into
X regardless of where the ROM containing the program is placed in memory.
A numerical index can also be used to read elements of a string in assembly
language, as we did in C (see the problems at the end of the chapter).
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Strings can be accessed at a current location, which can be moved as the
string is accessed. In C, we can access this element and move to the next
location using *ptr++ or *ptr–. Alternatively, if we use an index to access
the elements, we can increment or decrement an index, as in the expression
s[i++] or s[i–];. In assembly language, if the current location is a
memory word whose address is in the index register X, the string can be
accessed by instructions like LDAA 0,X, LDAA 1,X+, or LDAA 1,X-.

In C, operations on a string can repeat until the null character is read at
the end of the string, as in the statement while(*ptr) f(*ptr++);.
If we are using indexes to access characters, this operation can be written as
while(s[i]) f(s[i++]);. In assembly language, if a null-terminated
string is used, the load instruction such as LDAA 1,X+ will be followed by
a branch instruction such as BEQ END, to terminate when the null charac-
ter is read. If another special character such as a carriage return is used, then
a CMPA instruction can be used to detect the end of the string. If a sign bit
indicates the end of the string, then the LDAA 1,X+ will be followed by a
branch instruction such as BMI END, to terminate when the last character
is read. The program generally has to strip off the sign bit before using the
last character.

Strings of characters are frequently input and output from a terminal
using a buffer. To discuss this, we first need to make some remarks about
how single characters are input and output between a terminal and the MPU.
In C, there is generally a procedure such as is given by the prototype char
get(); to input characters from the keyboard. It waits for a key to be
depressed at the terminal, and, when the key is depressed, the procedure
returns to the calling routine with the ASCII code of the key depressed. There
is also generally a procedure such as is given by the prototype void
put(char c); to output characters to the screen; it generally displays the
ASCII contents of the seven low-order bits of c, but control characters, such
as carriage return ($0D) and line feed ($0A), will move the screen cursor in
the usual way. (The remaining ASCII characters are used for different pur-
poses and are displayed differently on different terminals. These are usually
input from the terminal keyboard by holding down a “control” key and press-
ing one of the other keys. These characters will not be needed in this dis-
cussion.) Implicit in the subroutine PUT is a segment of code that will wait
until the previous character is displayed on the terminal before c is displayed.
In assembly language, we might use two subroutines equivalent to these pro-
cedures; to input a character, execute subroutine GET, which leaves the char-
acter in accumulator A, and to output a character, put it in accumulator A,
and execute subroutine PUT. The exact code used in GET and PUT is not
important at this point.

In C, if ptr points to the beginning of a null-terminated string s, a
statement while(*ptr) put(*ptr++); outputs the string s; if 
ptr points to the beginning of a buffer b, a statement do *ptr++ = c =
get(); while(c != ’\r’) inputs characters to the buffer b, until a car-
riage return is received (the carriage return is written at the end of the string
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that is in b). In assembly language, we can input or output strings of ASCII
characters almost as easily. For example, we could display the constant 
string (9) on the terminal beginning at the current cursor position with the
segment

LDAB #16   ; Number of characters in STRING
LDX #STRING 

LOOP: LDAA 1,X+ ; Next character of STRING; into A
JSR PUT

DBNE B,LOOP (10)

Program segment (10) assumes that the programmer will count the number
of characters in the string. This can be avoided by adding

LENGTH: EQU *-STRING

after the definition of STRING and replacing LDAB #16 with LDAB
#LENGTH in the sequence (10). We can also input a string of characters from
the terminal, terminated by an ASCII carriage return ($0D), with the program
segment below. The string is stored in a buffer labeled BUFFER established
with the directive

BUFFER: DS 100

The string is entered with the program segment (11)

LDX #BUFFER ; X -> buffer to hold the string 
AGAIN: JSR GET

STAA 1,X+   ; Place character in buffer
CMPA #$0D   ; is the character input a carriage return?
BNE AGAIN

OUT: RTS (11)

Another type of sequential data structure is the deque, which we now 
discuss. A special case of the deque is the stack, which we studied exten-
sively in Chapters 3 and 8. Our stacks have also been indexable, because the
S register can be used as an index register as well as a stack pointer. Never-
theless, when these stack pointers are used only with push and pull instruc-
tions, they become true sequential structures.

A deque is a generalization of a queue or a stack. It is a data structure
that contains elements of the same precision. There is a top element and a
bottom element, and only the top and bottom elements can be accessed.
Pushing an element onto the top (or bottom) makes the old top (or bottom)
the next-to-top (or next-to-bottom) element and the element pushed becomes
the new top (or bottom) element. Popping or pulling an element reads the
top (or bottom) element, removes it from the deque, and makes the former
next-to-top (or next-to-bottom) element the new top (or bottom) element
(Figure 10.5). You start at some point in memory and allow bytes to be
pushed or pulled from the bottom as well as the top.
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In C, two pointers can be used, as a pointer was used in the string data 
structure, or else indexes can be used to read or write on the top or bottom
of a deque, and a counter is used to detect overflow or underflow. We use
indexes in this example and invite the reader to use pointers in an exercise
at the end of the chapter. 

The deque buffer is implemented as a 50-element global vector deque,
and the indexes as global unsigned chars top and bot initialized to
the first element of the deque, as in the C declaration

unsigned char deque [50], size,error, top, bot;

As words are pulled from top or bottom, more space is made available to
push words on either the top or bottom. To take advantage of this, we think
of the buffer as a ring or loop of words, so that the next word below the
bottom of the buffer is the word on the top of the buffer (Figure 10.6). That
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FIGURE 10.5. Deque Data Structure
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FIGURE 10.6. Buffer for a Deque Wrapped on a Drum



way, as words are pulled from the top, the memory locations can become
available to store words pushed on the bottom as well as words pushed on
the top, and vice versa. Then to push or pop data into or from the top or
bottom of it, we can execute procedures:

void pstop(int item_to_push) {
if( (size++) >= 50) error = 1;if( top == 50 ) top = 0;
deque[top++] = item_to_push;
}
int pltop(){

if( (–size) < 0) error = 1; if( top == 0 ) top = 50;
return( deque[–top] );

}
void psbot(int item_to_push) {

if( (size++) >= 50) error = 1; if( bot == 0) bot = 50;
deque[–bot] = item_to_push;

}
int plbot(){

if( (–size) < 0) error = 1; if( bot == 50 ) bot = 0;
return( deque[bot++] );

}

A stack is a deque that uses only one pair of procedures that pushes or pulls
data from the same end. For instance, pstop and pltop implement a stack.
A queue is a deque that uses only one pair of procedures that pushes data
into one end and pulls data from the same end. For instance, pstop and
plbot implement a queue.

In assembly language, a deque can use registers to point to its top and
bottom elements. In our discussion, we will first assume that all of memory
is available to store the deque elements, and then we will consider the more
practical case where the deque is confined to a buffer rather than all of
memory. We use register X to point to the top and Y to point to the bottom
of the deque. If location L is where one wants the first possible push on the
top to go, one initializes the top pointer with LDX #L. A push from accu-
mulator B onto the top of the deque then corresponds to STAB 1,X+ while
a pull from the top into B corresponds to LDAB 1,-X. Just as we wrapped
around a drum as shown in Figure 10.6 in C, we need to do the same in assem-
bly language. When a byte is pushed into the bottom of the deque, it is actu-
ally put into the bottom byte of the buffer. The pointer is initialized to the top
of the buffer, but upon the first push to the bottom of the deque, the pointer
is moved to the bottom of the buffer. As an example, if we use a buffer with
50 bytes to hold the deque, we would have the directive at the start of our
program. If accumulator A contains the number of elements in the deque 
and if X and Y are the top and bottom pointers, we would initialize the deque
with
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CLRA      ; Initialize deque count to 0
LDX #DEQUE ; First push onto top into DEQUE
LDY #DEQUE ; First push onto bottom into DEQUE+49

Pushing and pulling bytes between B and the top of the deque could be done
with the subroutines PSHTP and PLTP, shown in Figure 10.7. The index
register X points to the top of the deque, while the index register Y points
to the deque’s bottom.

Similar subroutines can be written for pushing and pulling bytes between
B and the bottom of the deque. In this example, if the first byte is pushed
onto the top of the deque, it will go into location DEQUE, whereas, if pushed
onto the bottom, it will go into location DEQUE+49. Accumulator A keeps
count of the number of bytes in the deque and location ERROR is the begin-
ning of the program segment that handles underflow and overflow in the
deque.

Usually, you do not tie up two index registers and an accumulator to
implement a deque as we have done above. The pointers to the top and
bottom of the deque and the count of the number of elements in the deque
can be kept in memory together with the buffer for the deque elements. The
subroutines for this implementation are easy variations of those shown in
Figure 10.7. (See the problems at the end of the chapter.)

A queue is a deque where elements can only be pushed on one end and
pulled on the other. We can implement a queue exactly like a deque but now
only allowing, say, pushing onto the top and pulling from the bottom. The
queue is a far more common sequential structure than the deque because the
queue models requests waiting to be serviced on a first-in first-out basis.
Another very common variation of the deque, which is close to the queue
structure, is the shift register or first-in first-out buffer. The shift register is a
full deque that only takes pushes onto the top, and each push on the top is
preceded by a pull from the bottom. If the buffer for the shift register holds
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PSHTP: CMPA #50 
LBEQ ERROR ; Go to error routine 
INCA
CPX #DEQUE+50 ; Pointer on top?
BNE L1 
LDX #DEQUE ; Move to bottom

L1: STAB 1,X+ 
RTS

PLTP: DECA 
LBMI ERROR ; Go to error routine
CPX #DEQUE    ; Pointer at bottom?
BNE L2 
LDX #DEQUE+50 ; Move to top

L2: LDAB 1,-X 
RTS

FIGURE 10.7. Subroutines for Pushing and Pulling B from the Top of the
Deque



N bytes, then, after N or more pushes, the bottom byte of the shift register
is the first in among the current bytes in the shift register, the next-to-bottom
is the second in among the current bytes, and so on. If all pushes into the
shift register are from accumulator B, only one macro and one pointer are
needed to implement this data structure. (See the problems at the end of the
chapter.) Although these two sequential structures are more common than
the deque, we have focused on the deque in our discussion to illustrate the
differences between accessing these sequential structures’ top and bottom
with the 6812.

In this section we have studied the sequential structures that are com-
monly used in microcomputers: the string and the variations of the power-
ful deque, the stack, queue, and shift register. As you have seen, they are
easy to implement on the 6812.

Linked List Structures
The last structure that we discuss is the powerful linked list structure.
Because its careful definition is rather tedious and it is not as widely used in
microcomputer systems as the structures discussed in the previous sections,
we examine this structure in the context of a concrete example, a data sorting
problem. Suppose that we have a string of ASCII letters, say,

t c x u a f b (12)

where we want to print the letters of the string in alphabetical order.
We will store this string of letters in a data structure called a tree, using

a linked list data structure to implement the tree. The reason that we do not
want to store the letters in consecutive bytes of memory as, say, a vector, but
in a linked list implementation of a tree is that with letters stored as a vector,
the time to find a particular letter grows linearly with the number of letters
in the string. If the letters were files of data, searching for a particular file
could take days if the number of files is large. Organized as a linked list
implementation of a tree, the search time grows logarithmically with the
number of files so that searching for that same file could be done in seconds.
Large collections of data are typically stored in some manner to improve the
time to search them, and the linked list implementation of a tree is a common
way to do this.

We first describe how the tree is generated. The string’s first letter is put
at the root of the tree (Figure 10.8). The second letter is put at the left or
right successor node of the root, depending on whether it is alphabetically
before or after the root’s letter. Successive letters are inserted below a node
by tracing from the root node, going left or right to successor nodes in the
same way as the second letter until an empty node is found. The new letter
is placed at this empty node.

We now describe how to store the tree in memory using a linked list struc-
ture. Tree nodes are stored as elements of a vector of lists. After each letter
in the string, append 2 bytes where the first is the vector index of the letter

Section 10.4 Linked List Structures 327

� 10.4



for the left successor and the second is the index of the letter for the right
successor. The symbol 0xff indicates no successor of that type. (See Figure
10.9 for the linked list representation of the tree.) This linked list structure
contains identically structured lists, such as the first three bytes, t,1,2. The
list index of each list is identical to the index of the letter in the list so that
the list t,1,2 is the 0th list in the linked list. Each list has three elements,
a letter and two links. Although the elements within each list are the same
precision in this example (each is 1 byte), the precisions are generally dif-
ferent, from 1 bit to hundreds of bits per element. The links in this example
are equal to the indexes of the lists that contain the left and right successors.
For the top, which is the 0th element and represents the root of the tree, the
left successor of the root is the letter c, and the element that contains 
the letter c has index 1, so that the first link out of the 0th element is 1. The
root’s right successor is the letter x, and the element that contains x has index

328 Chapter 10 Elementary Data Structures

t

c

a

x

f

b

u

FIGURE 10.8. Tree Representing the String (12)

x
3

0xffc
4
5 u

0xff
0xff

t
1
2

0

1

2

3

4
5

6

a
0xff
6

f
0xff
0xff

b
0xff
0xff

FIGURE 10.9. Linked List Representation of the Tree Shown in Figure 10.8



2, so the second link of the 0th element is 2. You should verify that the other
elements, which are identical in form to the 0th element, have the same rela-
tionship to the tree that the 0th element has.

Once the linked list is formed, the tree can be scanned to print the letters
in order by an algorithm pictured in Figure 10.10. The idea behind the algo-
rithm is this. Starting at the root, wrap a cord around the outside of the tree
and print each node’s letter (except 0), as you pass under its crotch. Its crotch
is the part between the branches to its successors or, if it does not have suc-
cessors, the crotch is the part between where the successors would be con-
nected. (Try this out on Figure 10.10.) Although a human being can visualize
this easily, a computer has a hard time working with pictures. This algorithm
can be implemented in a computer using the elegantly simple rule:

1. Process the tree at the left successor node. (13)

2. Print the letter.

3. Process the tree at the right successor node.

In processing the root node, you process the tree containing nodes c, a, b,
and f first, then print the letter t, and then process the tree containing x and
u last. Before you print the letter t, you have to process the tree containing
the nodes c, a, b, and f first, and that processing will result in printing some
letters first. In processing the tree containing c, a, b, and f, you process the
tree containing a and b, then print the letter c, and then process the tree con-
taining f. Again, before you print the letter c, you have to process the tree
containing a and b first, and that will result in some printing. In processing
the tree containing a and b, you process the “null” tree for the left succes-
sor node of letter a (you do nothing), then you print the letter a, and then
you process the tree containing b. In processing the tree containing b, you
process the “null” tree, you print the letter b, and then you process the “null”
tree. After you print the letter c, you will process the tree containing f and
then process the tree containing x and u after printing the letter t. Try this
rule out on the tree, to see that it prints out the letters in alphabetical order.
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The flowchart in Figure 10.11 shows the basic idea of the rule (13). The
calling sequence sets LINK to 0 to process list 0 first. If LINK is $FF, nothing
is done; otherwise, we process the left successor, print the letter, and process
the right successor. Processing the left successor requires the subroutine to
call itself, and processing the right successor requires the subroutine to call
itself again so that this subroutine is recursive, as discussed in Chapter 5. (To
read the flowchart of Figure 10.11, RETURN means to return to the place in
the flowchart after the last execution of SCAN.)

In C, the linkage can be by means of indexes into a table, which is a
vector of structs. The following procedure is initially called as in
scan(0);

typedef struct node{char c; unsigned char l,r; } node; 
node table[10];
void scan(unsigned char i){
if( i !=0xff ){
scan(table[i].l);
put(table[i].c);
scan(table[i].r);}

}
}

A similar approach is used in assembly language, in the subroutine shown
in Figure 10.12. It simply implements the flowchart, with some modifica-
tions to improve static efficiency. First, index register X points to the 0th list,
so that LINK can be input as a parameter in accumulator B. This link value
is multiplied by three to get the address of the character of the list. That
address, with one added, gets to get the link to the left successor, and that
address, with two added, gets the link to the right successor. The subroutine
computes the value 3 * LINK and saves this value on the stack. In process-
ing the left successor, the saved value is recalled, and one is added. The
number at this location, relative to X, is put in B, and the subroutine is called.
To print the letter, the saved value is recalled, and the character at that loca-
tion is passed to the subroutine PUT, which causes the character to be printed.
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The saved value is pulled from the stack (because this is the last time it is
needed), and two is added. The number at this location relative to X is passed
in B as the subroutine is called again. A minor twist is used in the last call
to the subroutine. Rather than doing it in the obvious way, with a BSR SCAN
followed by an RTS, we simply do a BRA SCAN. The BRA will call the sub-
routine, but the return from that subroutine will return to the caller of this
subroutine. This is a technique that you can always use to improve dynamic
efficiency. You are invited, of course, to try out this little program.

The main idea of linked lists is that the list generally has an element that
is the number of another list, or it has several elements that are numbers of
other lists. The number, or link, allows the program to go from one list to a
related list, such as the list representing a node to the list representing a suc-
cessor of that node, by loading a register with the link address. The register
is used to access the list. This is contrasted to a sequential search of con-
secutive rows of a table, which is a vector of lists. In a table, one usually
accesses one list (row) after the list (row) above it was accessed. In a linked
list, one can use any link from one list to go to another list. By providing
appropriate links in the list, the programmer can easily implement an algo-
rithm that requires going from list to list in a particular order. Linked lists
generally store addresses rather than index numbers, to simplify the proce-
dure and to avoid an artificial restriction on length. The procedure in Figure
10.13 can be used to read the list stored as in Figure 10.14.

Compare the implementation of the tree structure above using a linked
list with one using a simple table where the nodes are put down successively
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* SUBROUTINE SCAN scans the linked list TREE from the left, putting out the 
* characters in alphabetical order. The calling sequence below scans TREE
*
* LDX  #TREE
* CLRB   ; Put LINK to 0 
* BSR  SCAN
*
SCAN: CMPB #$FF 

BEQ L 
LDAA #3 
MUL
PSHB ; Save 3 * B on stack
INCB ; 3 * (B) + 1 into B 
LDAB B,X ; Left successor link into B 
BSR SCAN 
LDAA 0,SP ; Recover 3 * B 
LDAA A,X 
JSR PUT ; Put out next character
PULB ; Recover 3 * B from stack, remove from stack
ADDB #2 
LDAB B,X ; Link to right successor into B 
BRA SCAN 

L: RTS

FIGURE 10.12. Subroutine SCAN Using Indexes
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FIGURE 10.14. Linked List Data Structure for SCAN

by levels. Not only are most offsets calculated to go from node to successor
node, but gaps will be left in the table where the tree has no successors, and
testing for the end of the search will be messy. Even constructing this table
from the string will be difficult. However the linked list program can be
written in a simple and logical form, using the power of the data structure
to take care of many variations. In the example above, nodes that have no
left successor or nodes that have no right successor are handled the same
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* SUBROUTINE SCAN
*
*  SCAN scans the linked list TREE from the left, putting out the characters in 
*  alphabetical order. The address of TREE is passed in X with the calling sequence 
*
* LDX  #TREE 
* BSR  SCAN
*
SCAN: CPX #0 ; If pointer is a “null” (0) 

BEQ L ; Exit without doing anything
PSHX ; Save link 
LDX 1,X ; Left successor link into X 
BSR SCAN ; Call this subroutine again 
LDAA [0,SP] ; Get character
JSR PUT ; Put out next character
PULX ; Pull pointer from stack
LDX 3,X ; Move pointer to right successor into X 
BRA SCAN ; Call this subroutine again 

L: RTS

FIGURE 10.13. Subroutine SCAN Using Address Pointers



way as nodes that have two successors. While links can simplify the program,
as we have just discussed, additional links can speed up a program by per-
mitting direct access to lists that are linked via several link list-link list. . .
-link list steps. Linked lists can simplify the program as well as speed it up,
depending on how the designer uses them.

This final section briefly introduced the linked list structures. These are
very useful in larger computers, especially in artificial intelligence applica-
tions, You might expect to see them used in microcontrollers, in robots, and
in pattern recognition.

Summary
This chapter has presented the data structures that are most commonly 
used in microcomputers. They help you to create order in a maze of possi-
ble ways to store data. They allow you to adapt previously written code to
access similarly stored data, and they allow you to save memory by using a
better structure.

To show how your knowledge of data structures can save memory in 
a small computer, consider the storage and access of a mathematical array
of 10 rows by 10 columns of 1-byte numbers, where 96 of the numbers 
are zero (this is called a sparse array). A natural way to store these data 
are in an array, but that array would take 100 memory locations, and most
would contain zeros. It is more efficient to store the 4 numbers of the 
sparse array in a table that stores the nonzero elements of the array, where
the first column of the table is the row number, the second is the column
number, and the third is the data in that row and column. This could be done
in only 12 bytes. Knowledge of data structures can enable you to make a
program work in a limited amount of memory, which may not be possible
otherwise.

This chapter only scratches the surface of this fertile area of study. If 
you study computer science, you will probably take a whole course on data
structures, as well as meeting this material in other courses on database
systems and compiler design. It is your best single course to take from the
computer science area of study. Many textbooks are available for these
courses, and you can use practically any of them to expand your compre-
hension of data structures. We suggest one of the earliest books, Funda-
mental Algorithms. Vol. 1, The Art of Computer Programming, 2nd ed. (D.
Knuth, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1973), for
your reading.

From reading this chapter, you should be able to handle any form of the
simple data structures that are likely to be met in microcomputer program-
ming, and you should be able to handle the various types of sequential struc-
tures. You should also be able to recognize the linked list structures. But most
important, you should be prepared to put some order in the way your pro-
grams handle data.
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Do You Know These Terms?
See the end of Chapter 1 for instructions.
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�

data structure
vector
element
component
index
precision
length
origin
base
histogram

list
array
row major
column major
table
string
deque
push
pop
pull

queue
shift register
first-in first-out buffer
tree
root
successor
linked list structure
crotch
link

PROBLEMS

1. What are the limitations on the precision and length of the vector Z that
are accessed by program segments (2) and (3)? How would you change
these segments for a vector Z with length 500?

2. Write a shortest subroutine READV that returns in index register Y (high
16 bits) and accumulators A and B (low 8 bits), the ith element of a zero-
origin vector. For instance, V may be allocated as in V DS M*N, where
V has precision M bytes (M £ 4) and cardinality N elements. To read V,
the parameters can be passed on the stack with the calling sequence
shown below. If M is 1, pass the result in ACCB; if 2, pass it in ACCD;
if 3, pass it in Y (msb) and ACCB (lsb); and if 4, pass it in Y (msb) and
ACCD (lsb).

MOVW #V,2,-SP
MOVB #M,1,-SP
MOVB #i,1,-SP
JSR READV
LEAS 4,SP

3. Write a shortest subroutine WRITEV that writes the M bytes (M =4) into
the ith element of a one-origin vector. For instance, the data may be in
index register Y (high 16 bits) and accumulators A and B (low 8 bits).
V may be allocated as in V DS M*N, where V has precision M bytes
(M £ 4) and cardinality N elements. To write the data into V, the param-
eters can be passed on the stack with the calling sequence as shown
below. Pass returned results as in Problem 2.



MOVW #V,2,-SP ; Vector base address
MOVB #M,1,-SP ; Vector precision
MOVB #i,1,-SP ; Desired element number
JSR WRITEV ;
LEAS 4,SP   ; Balance stack

4. Consider the zero-origin vector of 32 bytes in locations 0 through 31.
Assume that the bits in this vector are labeled 0 to 255 beginning with
the first byte in the vector and going right to left within each particular
byte. Write a subroutine SETBIT that will set the ith bit in this vector
assuming that the value of i is passed on the stack with the calling
sequence

MOVB #58,1,-SP ; Value of i into parameter
BSR SETBIT
LEAS 1,SP    ; Balance stack

5. Write a subroutine STRBIT that will store the binary-valued variable
BIT in the ith bit of the zero-origin vector in problem 4. The value of
BIT and INDEX can be passed on the stack with the calling sequence

MOVB BIT,1,-SP ; Bit to be written
MOVB INDEX,1,-SP ; Index to be written
BSR STRBIT
LEAS 2,SP      ; Balance stack

6. Assume S[100] stores a 100-character (maximum) string that is accessed
by an 8-bit index I that is initialized to zero. Write a shortest subroutine
READ to return in accumulator A the elements one at a time, beginning
with element zero.

7. Problems 4 and 5 store 8-row-by-32-column arrays of 0’s and 1’s. PUT
is a subroutine that prints the character passed to it in A. Write a sub-
routine DISPLY, using PUT, that will display the bit array in binary
format. The bits of the array must be displayed left to right, 32 consec-
utive bits per row, in 8 rows. You may assume that the address of the
vector is passed after the call with the sequence

BSR DISPLY
DC.W ARRAY

8. Give two subroutines PSHBT and PLBT, to go with those of Figure 10.7,
that will push and pull the contents of accumulator B on the bottom of
the deque.

9. One would not usually tie up two index registers and an accumulator to
implement a deque. Rewrite the two subroutines in Figure 10.7 and the
initialization sequence to push and pull bytes from B and the top of the
deque when the deque is stored in memory as
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COUNT: DS.B 1 ; Deque count
TPOINT: DS.W 1 ; Top pointer
BPOINT: DS.W 1 ; Bottom pointer
DEQUE: DS.B 50 ; Buffer for the deque

Here, COUNT contains the number of elements in the deque, and
TPOINT and BPOINT contain, respectively, the addresses of the top and
bottom of the deque. The subroutines should not change any registers
except B, which is changed only by the pull subroutine.

10. Assuming that the location of the deque and the error sequence are fixed
in memory, how would you change the subroutines of Figure 10.7 so
that the machine code generated is independent of the position of the
subroutines? How would you change these subroutines if the size of the
deque was increased to 400 bytes?

11. Do you see how you can avoid keeping a counter for the deque? For
example, can you check for an empty or full deque without a counter?
“Full” means the last element is now used up.

12. Assume that a 10-byte shift register is established in your program with

SHIFTR: DS 10 ; Buffer memory
POINT: DS 2 ; Pointer to SHIFTR

Write a subroutine SHIFT to put a byte into the shift register from B
and pull a byte out into A. 

13. Write the shortest subroutines necessary to maintain five 8-element 1-
byte element queues, where each queue is in a buffer. Your implemen-
tation should include a branch to location ERROR if an overflow of the
buffer to hold the strings occurs. The first queue is stored at label Q1;
the second, at Q2, etc. Upon entering the subroutines, the address of the
queue being used is in X and the data are passed in ACCA.

14. Write a subroutine BUILD, which is passed, by name, as a string of
ASCII lower-case letters terminated by a carriage return, to form the
linked list shown in Figure 10.9.

15. What is the limitation on the number of characters in the tree for the
subroutine of Figure 10.10? How would you change the subroutine to
allow for 350 characters?

16. Write the subroutine REVSCAN that corresponds to SCAN but that now
scans the tree from the right, printing the characters out in reverse alpha-
betical order.

17. Write a subroutine to add M 4-byte numbers that corresponds to the fol-
lowing header:

*SUBROUTINE ADD4
*
* ADD4 adds the M 4-byte numbers pointed to by Z Placing
* the result in SUM. All parameters are passed on the
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* stack with the sequence
*
* LDAB M     ; Value of M into B
* LDAX Z,PCR ; Address of Z into X
* LEAy SUM, PCR ; Address of SUM into Y
* PSHY
* PSHX
* PSHB
* BSR ADD4
* LEAS 5,SP ; Balance stack

18. Write a position-independent reentrant subroutine to go with the header:

*
* SUBROUTINE INSERT inserts the string STG into string TEXT
at the first
* occurrence of the ASCII letter SYMBOL. No insertion is made 
SYMBOL does not

* occur in TEXT. Parameters are passed on the stack with the
sequence
*
* LDAA SYMBOL     ; ASCII symbol into A
* LDAB LSTG       ; Length of STG into B
* PSHD           ; Push both parameters
* MOVW #STG,2,-SP ; Push Address of STG
* LDAB LTEXT       ; Length of TEXT into B
* PSHB           ; Push parameter
* MOVW # TEXT,2,-SP ; Push Address of TEXT
* BSR INSERT     ; Subroutine balances the stack

19. Write a shortest subroutine GET3 that puts three characters into B 
(first character) and Y (second and third character) pointed to by X,
moving X past them and a next space or carriage return. Write a short-
est subroutine CHKEND that reads three characters using subroutine
GET3, and checks for the characters “END”. Assume the calling sub-
routine has not pushed anything on stack, so if “END” is read, return by
pulling 2 bytes from the stack and executing rts, so as to terminate the
calling subroutine, otherwise return by just executing rts as usual to
return to the calling subroutine. These subroutines are to be used in
problem 21.

20. Write a shortest subroutine FIND which searches a binary tree, pointed
to by X for three letters, B:Y as returned by GET3 of problem 19. The
binary tree nodes contain a 3-byte character string, a 1-byte value, and
two 2-byte addresses, the first of which points to a left son, and the other
points to a right son. If the three letters are found, return with X point-
ing to the beginning of the node; else if the letters are lower in the dic-
tionary than the last node searched in the tree, X points to the left son
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field of the last node, but if higher, X points to the right son field of the
last node. This subroutine is to be used in problem 21.

21. Write a 6812 assembler program using linked lists, able to assemble pro-
grams having the following specifications.

(a) The operations will be encoded in the left 2 bits of a 1-byte opcode:
LDA is 00, ADD (for ADDA) is 01, STA is 10, and SWI is 11. There
will also be directives DCB and END.

(b) At most 6 labels can be used, each of which is exactly 3 uppercase
letters long. Operands will be encoded in the right 6 bits of a 1-byte
opcode.

(c) Only direct addressing can be used with instructions, which will be
coded in the right 6 bits of the instruction, and only hexadecimal
numbers, beginning with $, can be used with the DCB directive.

(d) The input line will have a fixed format: label (3 characters), space,
instruction mnemonic (3 characters), space, address (3 characters or
2-digit hexadecimal number prefixed with a $) ending in a carriage
return. There are no comments, and, if a label is missing, it is
replaced by 3 spaces.

(e) The program will have from 1 to 10 lines, ending in an END
directive.

(f) The source code has no errors (i.e., your assembler does not have
to check errors). The origin is always zero.

Your assembler will have the source code prestored as a character array
TEXT, 10 rows by 12 columns, and will generate an object code string
OBJ up to 10 bytes long. No listing will be generated. The assembler
should be able to at least assemble the following two programs, shown
on the left and shown on the right.

LDA ABB ALP DCB $01
ADD BAB GAM DCB $00
STA BBA DEL DCB $04
SWI BET DCB $03

ABB DCB $01 LDA ALP
BAB DCB $02 ADD BET
BBA DCB $00 ADD DEL

END STA GAM
SWI
END

A two-pass assembler is required, and labels and opcodes must be stored
as linked lists. Use subroutines GET3 and CHKEND (problem 19) to
input labels or opcode mnemonics and FIND (problem 20) to search
both the symbol table and the mnemonics in your assembler. Show the

338 Chapter 10 Elementary Data Structures



storage structure for your mnemonic’s binary tree (it is preloaded) fol-
lowing the graph shown in Figure 10.15. On the first pass, just get the
lengths of each instruction or directives and save the labels and their
addresses in a linked list. End pass one when END is encountered. On
pass two, put the opcodes and addresses in the string OBJ.
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add 1 sta 2 

swi 3 

FIGURE 10.15. Graph of Linked List for Problem 10.21
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The Adapt812 is connected to an M68HC12B32EVB board which is con-
figured in POD mode, which in turn connects to a PC. We used this config-
uration to download and debug using HiWare, using the ASCIIMON target
interface.



An input routine is a program segment that inputs words from the outside
world into the computer, and an output routine is a program segment 
that does the reverse. It outputs words from the computer to the outside
world. Clearly, a computer that does not have input and output routines, 
and the hardware to carry out these routines, would be useless regardless 
of its power to invert matrices or manipulate great quantities of data. Until
now, we have implied that you should avoid knowing the details of these
routines. Even though we have left the discussion of input and output until
near the end of this book, it is really simple and should pose no problem to
the reader.

In this chapter, we first describe how the basic input and output opera-
tions are implemented in hardware and executed in software, using simple
ports available in the 6812 ’A4, ’B32, and ’C32. We then discuss the use 
of buffers in input and output. To describe synchronization, we introduce 
a simplified timer interrupt mechanism, which is available in each of 
these 6812 microcontrollers. We then discuss gadfly and interrupt mecha-
nisms. Finally, we introduce digital-to-analog (D-to-A) and analog-to-digital
(A-to-D) converters and serial communications using the 6812 SCI 
device.

Upon concluding this chapter, you should understand how basic input
and output operations are performed and be able to read and write input and
output routines that use simple synchronization mechanisms.

Input and Output Devices
In this section, we introduce a simplified hardware model used to understand
input-output routines. We also discuss simple input and output ports to
provide enough background for the later sections of this chapter.

Recall from Chapter 1 that a von Neumann computer is divided into its
major components: the controller, data operator (arithmetic/logic unit),
memory, and input-output unit (Figure 11.1). Input and output instructions
use the same address and data bus as load and store instructions with
memory, but the action of input and output instructions on input-output hard-
ware is a bit different than the action of load and store instructions on
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memory. In many microcontrollers, different instructions are used for
memory reads or writes than for input or output operations, even though
essentially the same address and data bus are used for reading or writing
memory or input or output. However (Figure 11.2), in microcontrollers such
as the Motorola 6812, the load instruction, used to read data from memory
such as words 1, 2, or 3, can also be used to input data such as from word
0, and the store instruction, used to store data in memory such as words 1,
2, or 3, can also be used to output data such as to word 0.

Certain 8-bit or 16-bit memory locations are chosen to be output ports
corresponding to a hardware component called an output device, which
has output lines connected to the outside world. Certain 8-bit or 16-bit
memory locations are chosen as input ports, corresponding to a hardware
component called an input device, which has input lines coming from the
outside world.

From the point of view of the I/O device, each address, data, or control
line has a signal that is a (logical) one if the voltage is above a certain thresh-
old level and a (logical) zero if the voltage is below that level. The voltages
corresponding to a (logical) one and a (logical) zero are also termed high
signal and low signal, respectively. The clock signal is alternately low and
high repetitively in a square wave. A read/write signal commands memory
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to read or to write. The clock signal between high-to-low transitions is called
a clock cycle. In each clock cycle, the microcontroller can read a word from
an input port, such as word 0, by putting the address of the word to be read
on the address bus and putting the read/write line to high throughout the
clock cycle. At the clock cycle’s end, the device will put data on input lines
on the data bus, and the processor will copy the word on the data bus into
some internal register. The microcontroller can also write a word into an
output port, such as word 0, at a particular address in one clock cycle by
putting the address on the address bus, putting the word to be written on the
data bus, and making the signal low on the read/write line throughout the
clock cycle. At the clock cycle’s end, the microcontroller will write the word
on the data bus into the device. The written data will become available 
on the device’s output lines, until changed by another output instruction sent
to it.

For example, whenever the microcontroller writes data into location 0,
such as in the instruction STAA 0, the data written are put on the output
lines of the device. This instruction uses the short page-zero addressing mode
because the address is below 256.

For example, location 0 may be an input port, and a hardware input
device will be built to input data from that port. Whenever the microcon-
troller reads data from location 0, as in the instruction LDAA 0, the signals
on the input lines of the input device will be read into the microcontroller
just like a word read in from memory. An input operation “takes a snapshot”
of the data fed into the input device at the end of the last clock cycle of the
LDAA instruction and is insensitive to the data values before or after that
point in the last clock cycle.

In a sense, the simple input and output devices trick the microcontrollers.
The microcontroller thinks it is reading or writing a word in its memory at
some address. However, the microcontroller designer has selected that
address as an input or an output port and built hardware to input or output
data that are read from or written into that port. By means of the hardware,
the designer tricks the microcontroller into inputting data when it reads a
word at the address of an input port or into outputting data when it writes
data into the word at the address of an output port.

One of the most common faulty assumptions in port architecture is that
I/O ports are always 8 bits wide. For instance, in the 6812, the byte-wide
LDAB instructions are used in I/O programs in many texts. There are a
number of 16-bit I/O ports on I/O chips that are designed for 16-bit micro-
controllers. But neither 8 nor 16 bits is a fundamental width. In this chapter,
where we emphasize fundamentals, we avoid that assumption. Of course, if
the port is 8 bits wide, the LDAB instruction can be used and used in C by
accessing a variable of type char. There are also 16-bit ports. They can be
read by LDD instructions or as an int variable in C or C++. A port can be
1 bit wide, say in the sign bit, and if so, this 1-bit input port is read in bit 7;
reading it will set the N condition code bit, which a BMI instruction easily
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tests. Many ports read or write ASCII data. ASCII data are 7 bits wide, not
8 bits wide. If you read a 10-bit A-to-D converter’s output, you should read
a 10-bit port.

Parallel Ports
The ’A4 and ’B32 have two 8-bit parallel ports, shown in Figure 11.3. The
first subsection describes each port and their special features and program-
ming techniques.

The 6812’s parallel ports have a direction port. For each bit position, if
the direction port bit is zero, as it is after reset, the corresponding bit of the
parallel port is an input; otherwise if the direction port bit is one, the corre-
sponding port bit is an output bit. A direction port is an example of a control
port, which is an output port that controls the device but doesn’t send data
outside it.

For instance, to make PORTA at location 0 an output port, we can write
to its direction port DDRA at location 2 in assembly language:

LDAB #$FF ; generate all ones
STAB 2 ; put them in direction bits for output

Then, any time after that, to output accumulator B to PORTA we can output
accumulator B to port A by writing STAB 0. If we read the location of an
output port like PORTA, we read the data that were last written there. To
make PORTA an input port, we put zeros in direction port bits by executing
CLR 2. Then, any time after that, to input PORTA into accumulator B we
read PORTA into accumulator B by writing LDAB 0. It is possible to make
some bits, for instance, the rightmost three bits, output bits and the remain-
ing bits input bits, as follows:

LDAB #7 ; generate three ones in rightmost bits
STAB 2 ; put them in direction bits for output

The instruction STAB 0 writes accumulator B’s rightmost 3 bits into the
output port bits. The instruction LDAA 0 reads the left 5 bits as input port
bits and the right 3 bits as output bits, and the left 5 bits are what was written
there by the last instruction, such as STAB 0, that stored to location 0. A
minor feature also occurs on writing to an input port: The bits written where
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the direction is input are saved in a register in the device and appear on the
pins if later the port is made to be output.

As noted at the beginning of Chapter 9, ports can be identified by putting
the @ sign after port names, followed by their locations. These can be put in
a header file that is #included in each program:

unsigned char PORTA@0, PORTB@1, DDRA@2, DDRB@3;

The equivalent operations in C or C++ are shown below. To make PORTA
an output port, we can write

DDRA = 0xff;

Note that DDRA is declared an unsigned char variable. Then, any time
after that, to output an unsigned variable i to PORTA, put PORTA = i;.
Note that PORTA is declared an unsigned char variable. It is declared
unsigned to prevent sign extension when reading it into a 16-bit variable.
To make PORTA an input port, we can write DDRA = 0;. Then, any time
after, to input PORTA into an unsigned char variable i we write i =
PORTA;. Generally, the direction port is written into before the port is used
the first time and need not be written into again. However, the direction port
can be changed at any time.

PORTA and PORTB together, and their direction ports DDRA and DDRB
together, can each be treated as a 16-bit port because they occupy consecu-
tive locations. Therefore, they can be read from or written into using LDD
and STD instructions. To make this 16-bit port an output port, we write:

LDD #$FFFF ; generate all ones
STD 2    ; put them in direction bits for output

Then, any time after that, to output accumulator D to this 16-bit port we write
STD 0. To make this 16-bit port an input port, we write MOVW #0,2. Then,
any time after that, to input the data in this 16-bit port into accumulator D
we write LDD 0. Also, some of the 16 bits can be made input, and some
can be output.

In manner similar to how 8-bit ports are accessed in C, 16-bit ports can
be declared in a header file that is #included in each program as int
PORTAB@0, DDRAB@2;. To make PORTA and PORTB an output port, we
can write DDRAB = 0xffff;. Note that DDRAB is declared an int vari-
able. Then, any time after that, to output an int variable i, high byte to
PORTA and low byte to PORTB, we can write PORTAB = i;. The ports
A and B, or the combined port AB, can be made an input or output port and
can be easily accessed in assembly language or in C.

Why does Motorola provide flexible I/O ports, which can be input 
or output ports, and either a pair of 8-bit ports or a combined 16-bit port? 
A microcontroller like the ’A4 costs millions of dollars to design and get 
into production. But the chips sell for around $10. How can you make 
money, selling chips that cost so little? You sell a lot of them. Flexible 
chips can be designed into systems having different combinations of 8-bit or
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Port T bit  
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FIGURE 11.4. The Timer Subsystem

16-bit, input or output, ports, so you can sell more of them to recover your
design cost.

In order to use the (48-pin LQFP package) ’C32 which has neither
PORTA nor PORTB, we can use port T, designated as PTT, for ’C32 I/O in
this chapter. This minimal-cost 6812 provides the flexible PTT rather than
the simpler PORTA, so more designers would use it, in order to sell more
chips. But that flexibility, which makes the chip more popular and lower in
cost, makes the ’C32’s PTT a little harder to use than the ’A4’s or ’B32’s
PORTA. The direction port DDRT behaves the same way as the DDRA direc-
tion port, and the data port PTT behaves the same way as the PORTA data
port. The ’C32’s PTT is a little harder to use because PTT pins can also be
used for other functions, as discussed in §11.4. Because PTT is available on
’A4s, ’B32s, and ’C32s, we generally use it in this chapter’s examples. In
the ’A4 or ’B32, PTT is called PORTT. See Figure 11.4’s bottom two ports,
and observe that this port and its direction port are at different locations in
the ’A4 and ’B32, than in the ’C32, even though they work the same way in
all three microcontrollers. Figure 11.4’s locations and pin numbers in italics
are for the ’A4 and ’B32, and the locations and pin numbers in plain text are
for the ’C32. We discuss the remaining ports in this figure in §11.4. In the
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FIGURE 11.5. Simple Devices

beginning of each of the following C procedures in this chapter and Appen-
dix 2, when using the timer port in the ’C32, the declaration below will be
included:

unsigned char PTT@0x240, DDRT@0x242; // located in
mc9s12c32.h

but when using the ’A4s or ’B32s, the declarations below will be included:

unsigned char PORTT@AE, DDRT@AF; // located in the 
#included header file #define PTT PORTT // explicitly add 
this #define to your file main.c

For the ’A4, the included file is mc68hc812a4.h, and for the ’B32, it is
mc68hc912b32.h.

Figure 11.5a shows a simple example of using PTT as an input port in a
home security system. Three window switches are normally closed. When
any window opens, its switch opens, and the pull-up resistor makes PTT
bit 0’s input high; otherwise it is low. The C statement if(PTT & 1)
alarm(); will execute procedure alarm if any switch is opened. It is pro-
grammed into assembly language for the ’C32 as follows:

BRCLR $240,#1,*+6 ; branch over BSR if bit zero of PTT is low
BSR  alarm     ; otherwise call the subroutine

For the ’A4 and ’B32, it is programmed as follows:

BRCLR $AE,#1,*+6 ; branch over BSR if bit zero of PTT is low
BSR  alarm    ; otherwise call the subroutine

As a simple example of the use of c as an output port, consider the light-
emitting diode (LED) display shown in Figure 11.5b. When PTT’s bit 0
output is high, current flows through the LED, being limited by the 2KW
resistor. This just barely lights up the LED. The C program statement PTT
= 1; will cause the LED to light up. It is programmed into assembly lan-
guage for the ’C32 as follows:

LDAB #1 ; generate a one
STAB $240 ; output it to the port (use address $AE for the ’A4 and

’B32)
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� 11.3 Input and Output Software
In this section, we consider the software needed to input and output data
through a parallel port like PTT. We first look at a single switch, which may
require debouncing and deracing. Then we look at inputting and outputting
the contents of a buffer from or to a parallel port.

A switch shown in Figure 11.6a generally exhibits bouncing and racing.
The bouncing problem is that when a switch closes, metal hits metal and
bounces back. The end of the switch arm bounces like a basketball that falls
to the floor, only at a much more rapid rate. The bouncing signal input to
PTT bit 0 (Figure 11.6b) has multiple successive intervals of high and low
signals. Some applications, such as those required to count the number of
times a switch is closed, might count three closures if the switch is pressed
closed just once, because the switch bounces three times. This is often totally
unacceptable. Debouncing is rendering a program insensitive to bouncing.
Most good switches are designed to finish bouncing within 5 ms. The “wait-
and-see” debouncing process is illustrated in Figure 11.6c. This flowchart
shows that when a switch is perceived to be pressed, and therefore the voltage
across the switch seen by the input port bit is low, wait 5 ms and check it
again. If it is still low, the switch was pressed; otherwise the signal could be
something other than a good signal from the switch, such as electromagnetic
noise, and the test for the switch becoming closed should be resumed. Note
that for the next 5 ms we ignore looking at the input signal, so as to avoid
seeing the multiple closings of the switch as it bounces. We leave this
debouncing process only when the switch becomes closed, and seems to be
closed 5 ms later. Later we will see an electrical debouncing mechanism
using a capacitor that is an alternative to this software “wait-and-see”
debouncer.

The racing problem involves repeating an operation for a number of
times that the switch is held down, rather than doing it exactly once each
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char buffer[0x10];  
void main() { char i = -0x10;  
 DDRT=0xff; do PTT = buffer[i + 0x10]; while(++i);
}

a. C Program

LDD #$FFF0 LDD #$FFF0
STAA $242 STAA $AF
LDX #BUFFER+$10 LDX #BUFFER+$10

LOOP: LDAA B,X LOOP: LDAA B,X
STAA $240 STAA $AE
IBNE B,LOOP IBNE B,LOOP 

b. ’C32 Program                             c. ’A4 and ’B32 Program

FIGURE 11.7. Program to Output a Buffer

time the switch is pressed. Figure 11.6d illustrates a flowchart that prevents
racing. After the switch is perceived to be pressed closed and the switch is
debounced, another loop checks for the switch to become open, before the
switch is ever again examined to see if the switch is still closed. If the
program did not do so, the operation responsive to closing the switch might
repeat as long as the switch is pressed. This deraces the switch. Carefully
controlled racing is used, for instance, when you hold the space key down
to type multiple space characters, but racing is usually very undesirable, so
we often derace switches.

Input or output of a single word is simple, but we often need to input 
or output a string of characters, an array of numbers, or a program consist-
ing of many words. This section reviews how vectors can be used in these
situations.

The simplest and one of the most common situations occurs when one is
inputting or outputting a vector of bytes. To output a vector of bytes to PTT,
smallest indexed byte first, execute the following C procedure listed in Figure
11.7a. An efficient assembly-language program segment for the body of this
C procedure for the ’C32 is listed in Figure 11.7b and for the ’A4 and ’B32
is shown in Figure 11.7c. Note the ease of indexing a vector in a do while
loop statement. Figure 11.8 similarly illustrates inputting data from an input
port into a vector buffer.

From the two examples above, the reader should be convinced that
inputting to or outputting from a vector is a very simple operation in either
C or assembly language.

We show a simple example of an output device, a toy traffic light. We
will output patterns from a vector to it. This technique is not the best way to
control a traffic light. A better way to control a traffic light is to use an inter-
preter, as is discussed in Appendix 2. However, this application concretely
illustrates outputting patterns that are stored in a vector, which we are study-
ing at this time. We implement only the north and east faces of the traffic
light. The south and west faces can be identically implemented to mount



them in a toy traffic light for a toy train set. But each PTT bit’s current needs
to be limited to 2.5 mA; if more current is needed to make the LED brighter,
use a transistor or integrated circuit amplifier (see Figure 11.27). Each of the
six least significant bits of the output PTT controls a LED traffic light (see
Figures 11.5b and 11.9a). Making PTT bit 5 HIGH turns on the red LED,
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#define T 744000
char buffer[0x10];
void main() {

char *p = buffer; long t;
DDRT = 0x3f;
while(p != (buffer + 0x10)){

PTT = *p++
for(t = 0; t < T; t++ );

}
}

a. Port Connection

b. C Program

MOVB  #$3F,$242 MOVB #$3F,$AF
LDX   #BUFFER LDX #BUFFER

LOOP: LDAA  1,X+ LOOP: LDAA 1,X+
STAA  $240 STAA $AE
LDD   #1000 LDD #1000

WT0: LDY   #8000 WT0: LDY #2667
WT1: DBNE  Y,WT1 WT1: DBNE Y,WT1

DBNE  D,WT0 DBNE D,WT0
CPX   #BUFFER+$10 CPX #BUFFER+$10
BNE   LOOP BNE LOOP

c. ’C32 Program                  d. ’A4 and ’B32 Program

FIGURE 11.9. A Traffic Light Application

char buffer[0x10];  
void main() { char i = 0x10;  
 DDRT = 0; do  buffer[i - 1] = PTT; while(--i); 
}

a. C Program

LDD #$10 LDD #$10 
STAA $242 STAA $AF 
LDX #BUFFER-1 LDX #BUFFER-1 

LOOP: LDAA $240 LOOP: LDAA $AE
STAA B,X STAA B,X
DBNE B,LOOP DBNE B,LOOP

b. ’C32 Program                              c. ’A4 and ’B32 Program

FIGURE 11.8. Program to Input to a Buffer
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FIGURE 11.10. Flowcharts for Programmed I/O

bit 4 turns on the yellow LED, and bit 3 turns on the green LED, in north
(and south) lanes. Making PTT bit 2 HIGH turns on the red LED, bit 1 turns
on the yellow LED, and bit 0 turns on the green LED, in east (and west)
lanes. So making PTT bits 5 and 0 HIGH turns on the red north (and south)
and green east (and west) LEDs.

We will output a vector of light patterns to the LEDs, using a while
loop to output each element. The vector buffer can therefore be loaded
with appropriate constants to produce the desired sequence of lights. Figure
11.10a shows the general idea of a delay loop used to synchronize output
from a vector. This synchronization method is called real-time. Without a
delay loop, data are output much too fast for any type of useful traffic light.
But a delay can be easily added within the outer loop to display each pattern
as long as desired. To output an element every second in an ’A4 or ’B32,
which has an 8 MHz clock, use for(t = 0; t < 248000; t++).
However, the delay is different, depending on Metrowerks compiler’s option
settings for optimization. Assembly language provides more accurate
control. An assembly language program segment for the body of this C pro-
cedure is shown in Figure 11.9c. The inner loop, WT1: DBNE Y,WT1,
takes three memory cycles. Because Y is initialized to 8000, this loop takes
24,000 memory cycles, which, for a 24 MHz 6812 clock, takes 1 ms. The
outer loop, including the inner loop and LDY #8000 and DBNE D,WT0,
is executed 1000 times, delaying about 1 s. So the program segment outputs
a vector element each second. For the slower ’A4 or ’B32, we again want
the inner loop to delay 1 ms, so initialize the count to 2667, as is shown in
Figure 11.9d.



Synchronization Hardware
The previous section illustrated real-time synchronization that used a delay
loop to synchronize the output to a traffic light controller. In the next sec-
tions, we consider the use of gadfly loops and interrupts to synchronize input
and output. These use hardware to indicate when I/O is to be done. The most
commonly used hardware is an edge-triggered flip-flop that is set when an
output is needed or when an input is available. In this section, we introduce
the ’A4, ’B32, or ’C32 basic timer device to illustrate edge-triggered sensing
of I/O status signals (see Figure 11.4). Recall that port locations in italics are
for the ’A4 and ’B32, and port locations in plain text are for the ’C32. The
most significant bit of PTT is used as a synchronization flag port. The other
7 bits can be used as other synchronization flag ports or as parallel I/O (PTT
and DDRT) as already discussed in §11.2.

The timer device is very flexible, and so it has many control bits that can
be set or cleared to permit it to implement different functions. In this section,
we use just one of these functions to detect an edge of an input signal. Bits
that we set or clear are shown in light gray rectangles in Figure 11.4 and dis-
cussed below; unused bits are shown in dark gray rectangles. We therefore
merely initialize some control ports in a “fixed” way and do not discuss the
other ports in this timer device.

The timer device is enabled when TEN, bit 7 of TSCR1, is T (1). (TSCR1
is called TSCR in the ’A4 and ’B32.) We illustrate our techniques using PTT
bit 7. Bits 7 and 6 of TCTL3 determine which edges will be sensed: if that
port’s bit 7 is set, then PTT bit 7’s falling edge sets the flip-flop; if its bit 6
is set, its rising edge sets the flag flip-flop; and if both bits are set, either edge
sets the flip-flop. Other pairs of bits of TCTL3 determine the edges for timer
bits 6 to 4 and pairs of bits of TCTL4 determine the edges for Timer bits 3
to 0 in similar manner. This flag flip-flop is read as bit 7 of TFLG1. This bit
can be tested in a gadfly loop, or if bit 7 of TIE is also set, it causes an inter-
rupt vectored through 0xFFE0 and 0xFFE1. Bit 7 of TFLG1 must be cleared
before it can be sensed again; it is cleared by writing a T (1) into it. (That’s
right, writing a 1 into it clears it!)

While the discussion and figures in this chapter refer to bit 7, the same
operations can be performed using other timer bits in an analogous manner.
In fact, the examples made up for this chapter were tested using Timer bit
6, instead of bit 7.

In the beginning of each of the following C procedures in this chapter
that use the timer, when using the ’C32, we will assume that the declarations
below are included:

unsigned char TSCR1@0x46, TCTL3@0x4A, TIE@0x4C,
TFLG1@0x4E;

but when using the ’A4s or ’B32s, we will include:

unsigned char TSCR@0x86, TCTL3@0x8A, TIE@0x8C,
TFLG1@0x8E; #define TSCR1 TSCR // explicitly add this 
#define to your file main.c
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In our earlier examples we use PTT as a parallel I/O port whose direction 
is specified by the corresponding bit in DDRT. Even when a PTT bit is used
to detect an edge, PTT can also be an input port to directly read the pin’s
signal.

Gadfly Synchronization
In the gadfly synchronization technique, the program continually “asks” one
or more devices what they are doing (such as by continually testing the timer
flag bit). This technique is named after the great philosopher, Socrates, who,
in the Socratic method of teaching, kept asking the same question until he
got the answer he wanted. Socrates was called the “gadfly of Athens” because
he kept pestering the local politicians like a pesky little gadfly until they gave
him the answer he wanted (regrettably, they also gave him some poison to
drink). This bothering is usually implemented in a loop, called a gadfly loop,
in which the microcomputer continually inputs the device state of one or
more I/O systems until it detects that input is available, output is needed, or
an error condition has occurred in one of the systems. Gadfly synchroniza-
tion is often called polled synchronization. However, polling means sampling
different people with the same question—not bothering the same person with
the same question over and over again. Polling is used in interrupt handlers
discussed in the next section; in this text, we distinguish between a polling
sequence and a gadfly loop.

A gadfly loop is illustrated by the flowchart shown in Figure 11.10b. The
processor keeps testing a status port, which is set by the device when it has
data to be input, after which data can be read from the input port, or when
it needs data to be output.

Gadfly synchronization generally requires more extensive initialization
before the device can be used. The timer control ports must be set up so that
when data are to be output, a falling edge on PTT bit 7 can set a flag bit.
Attach the source of the pulses to PTT pin 7 as shown in Figure 11.11. Bit
7 of the TSCR1 needs to be set to enable any operation in the timer. Bits 7
and 6 of TCTL3 must be set to 1 and 0, respectively, to indicate that a falling
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edge sets the TFLG1 bit 7. This flag can accidentally become set before the
first output operation occurs, so to clear it just in case it is set, 1 should be
written into bit 7 of the TFLG1 port. The initialization of the timer consists
of the C statements: TSCR1 = 0x80; TCTL3 = 0x80; TFLG1 =
0x80;. It is efficiently compiled to the assembler language program
segment shown in Figure 11.12b for the ’C32 and in Figure 11.12c for the
’A4 and ’B32. In place of a delay loop, the gadfly loop is used whenever
input or output is done, as illustrated by the C statements do ;
while((TFLG1 & 0x80) == 0); TFLG1 = 0x80;. The loop
waits until an edge sets the flag bit, and the next statement clears the flag.

We illustrate the use of gadfly synchronization for counting pulses from
a Geiger counter. Each time a pulse occurs, PTT bit 7 sees a falling edge.
To count the pulses, execute the C procedure shown in Figure 11.13a, and
after a predetermined delay, check the value of i. In assembly language,
execute the program segment in Figure 11.13b (or Figure 11.13c), and after
a predetermined delay, check the value of register X.
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void main() { int i = 0;  
TSCR1 = 0x80; TCTL3 = 0x80; TFLG1 = 0x80;  
while(1)
 {while((TFLG1  & 0x80) == 0); TFLG1 = 0x80; i++; } 

}
a. C Program

LDAA #$80 LDAA #$80
STAA $46 STAA $86 
STAA $4A STAA $8A 
STAA $4E STAA $8E 
LDX #0 LDX #0 

LOOP: BRCLR $4E,#$80,LOOP LOOP: BRCLR $4E,#$80,LOOP 
STAB $4E STAB $8E 
INX INX
BRA LOOP BRA LOOP

b. ’C32 Program c. ’A4 and ’B32 Program

FIGURE 11.13. Gadfly Geiger Counter Application

LDAA #$80 LDAA #$80
STAA $46 STAA $86 
STAA $4A STAA $8A 
STAA $4E STAA $8E 

a. ’C32 Initialization   b. ’A4 and ’B32 Initialization

L: BRCLR $4E,#$80,L L: BRCLR $8E,#$80,L
 LDAB #$80   LDAB #$80 

STAB $4E    STAB $8E

c. ’C32 gadfly loop d. ’A4 and ’B32 gadfly loop

FIGURE 11.12. Gadfly Synchronization Software



Gadfly synchronization can be used to implement a variation of a traffic
light controller, as it was described in §11.3. Each time another vector
element is to be output, which is once per second, a switch is closed and
PTT bit 7 sees a falling edge (Figure 11.14). Because we use only PTT bit
7 to sense the status input, we can use PTT bits 5 to 0 for the data port.
Moving the switch to the bottom contact causes exactly one falling edge.
The capacitor holds the voltage on the port input bit when the switch is in
between the top and bottom contact, to debounce the switch electrically,
rather than using a wait-and-see process. The procedure shown in Figure
11.14a outputs the vector. Each time the for loop is executed, it waits for
the next edge to occur. The edge sets the flag, and the for loop exits. The
next statement, TFLG1 = 0x80;, clears this flag. An assembly language
program that does the same as this C procedure is illustrated in Figures
11.14b and 11.14c.

The gadfly loop waits until a hardware-generated edge occurs, while the
delay loop waits a predetermined number of instruction executions. A gadfly
loop can wait for an external (square wave) signal in order to wait for a pre-
determined time. In general, delay loops do not require as much hardware
as gadfly loops, because a gadfly loop needs a status bit in hardware and a
means to set it. However, gadfly synchronization can wait exactly as long as
an I/O device needs or an external timing signal takes, when hardware causes
the edge to occur, while a delay loop is generally timed to provide a delay
that is the worst-case delay needed for the device.
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char buffer[0x40];  
void main() { char i;  

DDRT=0x3F;  TSCR1 = 0x80; TCTLE = 0x80; TFLG1 = 0x80; 
for( i = 0; i < 0x40; i++ ){  
 PTT = buffer[i]; 
 do ; while((TFLG1 & 0x80) == 0); TFLG1 = 0x80; 
}

}
a. C Program

LDD #$403F LDD #$403F
STAA $46 STAA $86 
STAA $4A STAA $8A 
STAA $4E STAA $8E 
STAB $242 STAB $AF 
LDX #BUFFER-1 LDX #BUFFER-1 

LOOP: LDAA B,X LOOP:LDAA B,X 
STAA $240 STAA $AE 

L: BRCLR $4E,#$80,L L: BRCLR $4E,#$80,L
LDAA #$80 LDAA #$80 
STAA $4E STAA $4E 
DBNE  B,LOOP DBNE  B,LOOP

b. ’C32 Program  c. ’A4 and ’B32 Program

FIGURE 11.14. Gadfly Traffic Light Application



Interrupt Synchronization

In this section, we consider interrupt hardware and software. Interrupt soft-
ware can be tricky, so some companies actually had a policy never to use
interrupts but instead to always use the gadfly technique. At the other
extreme, some designers use interrupts just because they are readily avail-
able in microcomputers like 6812 systems. We recommend using interrupts
when necessary, but using simpler techniques whenever possible.

The hardware or I/O interrupt is very important to I/O interfacing. Basi-
cally, it is invoked when an I/O device needs service, either to move some
more data into or out of the device or to detect an error condition. Handling
an interrupt stops the program that is running, causes another program to be
executed to service the interrupt, and then resumes the main program exactly
where it left off. The program that services the interrupt (called an interrupt
handler or device handler) is very much like a subroutine, except that it ends
with a return from interrupt RTI, and an interrupt can be thought of as an
I/O device tricking the computer into executing a subroutine. An ordinary
subroutine called from an interrupt handler is called an interrupt service
routine. However, a handler or an interrupt service routine should not disturb
the current program in any way. The interrupted program should get the same
result no matter when the interrupt occurs.

I/O devices may request an interrupt in any memory cycle. However, the
data operator usually has bits and pieces of information scattered around and
is not prepared to stop the current instruction. Therefore, interrupts are
always recognized at the end of the current instruction, when all the data are
organized into accumulators and other registers (the machine state) that can
be safely saved and restored. The time from when an I/O device requests an
interrupt until data that it wants moved are moved or the error condition is
reported or fixed is called the latency time. Fast I/O devices require low
latency interrupt service. The lowest latency that can be guaranteed is limited
to the duration of the longest instruction, because the I/O device could
request an interrupt at the beginning of such an instruction’s execution.

Timer bit 7’s pin’s falling edge can request an interrupt by setting a flag
port (Figure 11.15). The six-step sequence of actions that lead to an inter-
rupt and that service it is shown in Figure 11.16.

Some points about the interrupt sequence must be stressed. As soon as it
honors an interrupt seen on a line, the 6812, like most computers, sets the I
condition code bit to prevent honoring another interrupt from the same
device. If it didn’t, the first instruction in the handler would be promptly
interrupted—an infinite loop that will fill up the stack. You do not have to
worry about returning it to its value before it was changed, because step 6
restores the program counter and the condition code register and its I bit to
the values they had before the interrupt was honored. However, a handler
can prematurely enable interrupts using a CLC instruction to permit honor-
ing interrupts while still in the handler. Note that the I/O device is generally
still asserting its interrupt request line because it doesn’t know what is going
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FIGURE 11.15. Interrupt Hardware

1. When a device determines it needs service either to move some data into it or
out of it or to report an error, it causes an edge to appear on a pin’s signal, and we
say the device requests an interrupt. In our example, this occurs when PTT bit 7
falls.

2. If the PTT bit 7 pin is an input (in DDRT bit 7) and had been assigned (in TMSK1
bit 7) to sense interrupts, we say PTT bit 7’s interrupt is enabled.

3. If the microprocessor’s condition code register’s I bit is 0 we say the
microprocessor is enabled. When I is 1, the microprocessor is masked (or the
microprocessor is disabled). If the device’s signal gets past the enable gates into
the controller, we say the microprocessor sees a request, or a request is pending,
and an interrupt will occur, as described below. (The bit I is also controlled by
hardware in the next step.) 

4. Most microcomputers cannot stop in the middle of an instruction. Therefore, if
the microprocessor sees an interrupt, it honors an interrupt at the end of the current
instruction. When the 6812 honors a timer 7 interrupt, it saves the machine state
(condition code register, accumulators, index registers, and program counter) on
the stack, sets the condition code register I bit, and loads the 16-bit word at 0xffe0
into the program counter to process this interrupt. 

5. Beginning at the address specified by 0xffe0 is a routine called the timer 7
handler. The handler is like a subroutine that performs the work requested by the
device. It may move a word between the device and a buffer, or it may report or
fix up an error. One of a handler’s critically important but easy to overlook
functions is that it must explicitly remove the cause of the interrupt (by negating
the interrupt request) unless the hardware does that for you automatically.
This is done by writing 1 into bit 7 of the TFLG1 port. 

6. When it is completed, the handler executes an RTI instruction; this restores the
machine state to resume the program where it left off. 

FIGURE 11.16. Steps in Processing an Interrupt



on inside the microprocessor. If the RTI is executed or I is otherwise cleared,
this same device will promptly interrupt the processor again and again—
hanging up the machine. Before the handler executes RTI or changes I, it
must remove the interrupt source!

To handle timer 7 interrupts, put the handler’s address in location 0xffe0.
The mechanism that puts an interrupt handler’s address where the interrupt
mechanism needs to find it is specific to each compiler. In the Metrowerks
compiler, just write interrupt 15 in front of the name of the procedure
for timer device 7 (a number different from 15 is used for other devices—see
Table 11.1). This inserts the handler’s address into 0xffe0, and further ends
the procedure with an RTI rather than RTS. For other compilers a statement
*(int *)0xffe0 = (int)handler; puts the address of the handler
in the location that the hardware will use when an interrupt occurs. However,
this location is in EEPROM in the ’A4 and flash memory in the ’B32 or ’C32,
so special programming procedures are used. The Metrowerks real-time
debugger executes these special procedures automatically, directed by your
writing interrupt 15 before the handler procedure in your C program.
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Interrupt
Vector Interrupt # Name

$FFD2,D3 22 AtoD
$FFD6,D7 20 SCI0
$FFD8,D9 19 SPI Serial Transfer Complete
$FFDA,DB 18 Pulse Accumulator input Edge
$FFDC,DD 17 Pulse Accumulator Overflow
$FFDE,DF 16 Time Overflow
$FFE0,E1 15 Timer Channel 7
$FFE2,E3 14 Timer Channel 6
$FFE4,E5 13 Timer Channel 5
$FFE6,E7 12 Timer Channel 4
$FFE8,E9 11 Timer Channel 3
$FFEA,EB 10 Timer Channel 2
$FFEC,ED 9 Timer Channel 1
$FFEE,EF 8 Timer Channel 0
$FFF0,F1 7 Real Time Interrupt
$FFF2,F3 6 IRQ
$FFF4,F5 5 XIRQ
$FFF6,F7 4 SWI
$FFF8,F9 3 Unimplemented Instruction
$FFFA,FB 2 COP Failure
$FFFC,FD 1 Clock Failure
$FFFE,FF 0 Reset

Table 11.1 Interrupt Vectors in the 6812’A4



Section 11.6 Interrupt Synchronization 359

unsigned char i; 
void interrupt 15 hndlr(void){ TFLG1=0x80; i++; } 
void main() { asm SEI  
  TSCR1=0x80; TCTL3=0x80; TIE=0x80; TFLG1=0x80; asm CLI 
 do ; while(1); 
}

a. C Program

i: DS.B 1  i: DS.B 1 
SEI    SEI
LDAA #$80 LDAA #$80

 STAA $46 STAA $86  
 STAA $4A  STAA $8A  
 STAA $4C  STAA $8C 
 STAA $4E  STAA $8E

CLI    CLI
LOOP: BRA LOOP LOOP: BRA LOOP 
HNDLR: MOVB #$80,$4E HNDLR: MOVB #$80,$8E; TFLG1

INC i   INC i
RTI
ORG#$FFEO
DC.W#HNDLR

ORG#$FFEO
DC.W#HNDLR

    RTI

b. ’C32 Program  c. ’A4 and ’B32 Program

FIGURE 11.17. Interrupt Geiger Counter Application

There are two parts of the path that an interrupt request takes. In our
example, the timer flag is set if an edge occurs on its input. A switch in series
with an input that can set this flag is called an arm; if it is closed the device
is armed, and if it is opened, the device is disarmed. Any switch between
the flag register and the 6812 controller is called an enable; if all such
switches are closed, the device is enabled, and if any are opened, the device
is disabled. Arming a device lets it record a request and makes it possible to
request an interrupt, either immediately if it is enabled or later if it is dis-
abled. You disarm a device if you do not want to honor an interrupt now or
later. But you disable an interrupt to postpone it. You disable an interrupt if
you can’t honor it now, but you may honor it later when interrupts are
enabled.

Also, for gadfly synchronization, you arm the device so the flag register
can become set when the device becomes done, but you do not enable the
interrupt because the program has to test the flag. If an interrupt did occur
and was honored properly so as not to crash the computer, the gadfly loop
wouldn’t exit because the flag would be cleared in the handler before the
gadfly loop could test it in order to exit its loop.

The Geiger counter example is reworked to illustrate interrupt synchro-
nization. Each time a pulse occurs, PTT bit 7 sees a falling edge, which
causes an interrupt. To count the pulses, execute the C procedure shown in
Figure 11.17a for a predetermined time, then look at i. The main procedure
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char buffer[0x80], i = 0x80; 
void interrupt 8 h(void){ TFLG1=0x80; PTT=buffer[--i];}
void main() { asm SEI

TSCR1 = 0x80; TCTL3 = 0x80; TIE = 0x80;
TFLG1 = 0x80; DDRT = 0x3F; asm CLI 
 do ; while( i );  TMSK1 = 0; 

}
a. C Program

SEI SEI
LDD #$803F LDD #$803F
STAA $46 STAA $86
STAA $4A STAA $8A
STAA $4C STAA $8C
STAA $4E STAA $8E
STAB $242 STAB $AF
CLI CLI

LOOP: LDAB i LOOP: LDAB i 
BNE LOOP BNE LOOP
CLR $4C CLR $8C

H: MOVB #$80,$4E H: MOVB #$80,$8E
LDX #BUFFER LDX #BUFFER
DEC i DEC i 
LDAB i LDAB i
LDAA B,X LDAA B,X
STAA $240 STAA $AE
RTI RTI

b.’C32 Program c.’A4 and ’B32 Program

FIGURE 11.18. Interrupt Traffic Light Application

initializes the control ports and loops forever. The I condition code bit is gen-
erally set before initializing the control ports to prevent premature interrupts
and cleared after that to enable interrupts to occur. A high-level language like
C generally does not have a way to disable or enable interrupts, except by
inserting embedded assembly language. The statement asm SEI inserts SEI
into the C or C++ procedure, and asm CLI inserts CLI. Each time another
vector element is to be output, a switch is closed, and PTT bit 7 sees a falling
edge. This causes an interrupt, and the handler is entered, which increments
the count. Efficient assembly-language program segments for the body of the
C procedure are shown in Figures 11.17b and 11.17c.

We further illustrate an interrupt-based traffic light controller that is
essentially the same as the gadfly-based traffic light controller example. The
main procedure initializes the control registers, waits for all elements to be
output, and then disables the interrupt.

Figure 11.18 illustrates outputting a vector using interrupts. The C
program is shown in Figure 11.18a and is quite similar to the Geiger counter
program. An efficient assembly-language program segment for the body of
the C procedure for the ’C32 is shown in Figure 11.18b and for the ’A4 and
’B32 is shown in Figure 11.18c. For it and the subsequent handler program



segment, we assume there is a global variable I that is initialized to $80, the
number of elements in the buffer, and there is an $80-element buffer. This
program is like the gadfly program in Figure 11.14. However, the loop 
do ; while( i ); in this program can be replaced by a program that
does useful work while waiting for an I/O request. Interrupts provide output
whenever the device needs it, without wasting time in a delay or gadfly loop.

This raises an often-misunderstood point about interrupts. Gadfly has
lower latency than interrupt synchronization. Gadfly does not have to save
the registers and then initialize registers used in the handler. If, when using
interrupt synchronization, you just waste time in a gadfly or wait loop, use
gadfly synchronization to reduce latency time.

The 6812 has a number of I/O devices, and most of them have their own
interrupt vector, shown in Table 11.1. The handler used in the previous
example has its vector at $FFE0 and $FFE1, for “timer channel 7.” When
an edge occurred on PTT bit 7, the contents of this vector, the 16-bit data in
$FFE0 (high byte) and $FFE1 (low byte), are put into the program counter,
and the interrupt handler is then executed starting at this address. Other inter-
rupt vectors of interest in this introductory discussion are the reset, SWI, and
TRAP vectors. The reset vector at $FFFE and $FFFF is the address of the
first instruction that is executed when a 6812 comes out of reset. Locations
$FFF6 and $FFF7 usually contain the address of the monitor program, which
is where you go when an SWI instruction is executed or a BGND instruction
is executed, but the background debug module is not set up to handle a
monitor program. Locations $FFF8 and $FFF9 usually contain the address
of the handler for illegal (trap) instructions, which in Chapter 6 we used to
emulate instructions not implemented in the 6812.

This section has introduced the interrupt and its implementation on 
the 6812. You have learned how interrupts work in hardware and how an
assembly-language program can be written to handle the interrupt from 
the timer module 7, in particular for falling or falling edges on PTT bit 7.

This section, together with the last section, has shown two commonly
used alternative methods for synchronization. Gadfly synchronization actu-
ally provides lower latency than interrupt synchronization (that is, faster
response to an edge signal), while interrupts let you do other work while
waiting for an edge from an I/O device. Upon completion of these two sec-
tions, you should find either technique easy to use.

At this point, the reader should envision a lot of systems that he or she
would like to build, using a microcontroller. A young woman told me of her
intent to design a clock around a plastic flower arrangement. Each flower
would have an LED in it, that would be lit at a certain hour, or minute, by
the microcontroller, so by looking at the arrangement, she could tell the time
of day. A young man planned to build a deer feeder, in which the micro-
controller would activate a motor to turn a screw to dole out some deer feed,
responsive to the weather and other conditions that affect the deer’s need for
food. You should have similarly interesting applications; a report recently
said that the average person interacts with 130 microcontrollers in a typical
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day, so you should envision another one or more that you don’t have, but
now you could build them. Most of these applications utilize no more than
a simple parallel port like PTT, some synchronization mechanism, such as
real-time, gadfly, or interrupt techniques, and an application program. Having
got this far, you are capable of designing such a system.

You may now wish to read Appendix 2, which uses a simple parallel 
port and synchronization mechanisms, along with various data structures
(introduced in Chapter 10), to implement sequential machine interpreters.
However, you can continue reading the remaining part of this chapter without
having read Appendix 2.

Analog-to-Digital and Digital-to-Analog
Conversion
Throughout electrical engineering, microcontrollers interface with analog
systems in which a voltage level represents a property like pressure or speed.
The digital microcontroller uses an analog-to-digital converter to convert
voltages to digital numbers that it can process, and it uses a digital-to-analog
converter to convert digital numbers that it has processed into analog volt-
ages. This section illustrates A-to-D and D-to-A devices usable with the ’A4,
’B32, and ’C32.

The ’A4, ’B32, and ’C32 have built-in A-to-D converters. They do not
have any built-in D-to-A converters, however, but this gives us an opportu-
nity to build a D-to-A converter using a parallel port in order to better explain
how it works. An A-to-D converter generally has within it a D-to-A
converter. When we use the built-in A-to-D converter, we will refer to the
D-to-A converter that we will build into a parallel port.

Figure 11.19 illustrates how an 8-bit r-2r ladder D-to-A converter can 
be implemented using PTT. The seven resistors on the bottom left of the
figure have resistance r (10 KW), and all other resistors have resistance 2r
(20 KW).

If the port bit output resistance is large compared to r (10 KW) and the
microcontroller’s supply voltage is 5.00 volts, then Vout is 5 * D/256, where
D is the binary number in PTT. The reader can verify this using analog
system analysis, which is simple enough but is outside the scope of this book.
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In reality, the microcontroller’s output port has significant resistance and
is nonlinear; the input resistance of the Vout measuring instrument loads
down this circuit, and the microcontroller’s supply voltage is not precisely
5.00 volts and has noise on it. So this is not a very good D-to-A converter.
An integrated circuit, such as a DAC-08, and an OP amp are used to imple-
ment an 8-bit r-2r ladder D-to-A converter. However, the latter does essen-
tially the same thing as the D-to-A converter in Figure 11.19.

An A-to-D converter basically consists of a D-to-A converter and an
analog comparator. The latter has two inputs and outputs a high signal only
when one input is greater than the other input. By outputting different analog
voltages and comparing these voltages to the input voltage, the input voltage
can be determined.

The ’A4 and ’B32 both have an on-board 8-bit A-to-D converter, and the
’C32 has a 10-bit A-to-D converter, connected to input port PORTAD. Figure
11.20 shows the block diagram of this subsystem. Using voltages on pin
VRH as high- and pin VRL as low-reference voltages, the analog voltage on
input PAD0 can be converted to 16-bit digital values and put into port
ATDDR0. Initially, control bit ADPU must be set to apply power to this sub-
system (20 ms are then needed for the voltages to become stable). The con-
version is begun when control port ATDCTL5 is written with a value 0. While
ATDSTAT0 bit 7 is 0, conversion is being done. Although four conversions
are done, we will only use one result, which is read as a binary fraction, left-
justified, from 16-bit port ATDDR0 at location 0x70. That is, if the input
voltage were 2.5 volts, the value read from ATDDR0 is $8000 and if the input
voltage were 1.25 volts, ATDDR0 is $4000, and so on.

In the beginning of each of the following C procedures in this section
that use the A-to-D converter, when using the ’C32, we will assume that the
declarations below are included:
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ADPU

0x82 - 0x62

0x85 - 0x65

0x86 - 0x66

0x80 - 0x70

ATDCTL2 / ATDCTL2

ATDCTL5 / ATDCTL5

ATDSTAT0/ ATDSTAT0

ATDDR0/ ADR0

SCF

'A4 Pin 94  93  92  91  90  89  88  87 
'B32 Pin 58 57 56 55 54 53 52 51 
'C32 Pin 34 33 32 31 30 29 28 27 

FIGURE 11.20. 6812 A–D Subsystem



unsigned char ATDCTL2@0x82, ATDCTL5@0x85,
ATDSTAT0@0x86;
unsigned int ATDDR0@0x90;

but when using the ’A4s or ’B32s, we will include:

unsigned char ATDCTL2@0x62, ATDCTL5@0x65,
ATDSTAT@0x66;
unsigned int ADR0H@0x70; // is in the header file
#define ATDSTAT0 ATDSTAT // insert into your main.c file
#define ATDDR0  ((int)ADR0H<<8) // insert into your 
main.c file

Assuming reference voltage VRH is 5 volts and VRL is ground, the proce-
dure shown in Figure 11.21a converts the voltage (times 256/5) on PORTAD
bit 0 into i. The initialization of the A-to-D device, which is required only
before the first time you use the device, writes a value in a device’s control
ports and waits 20 ms for voltages to stabilize (100 ms for the ’A4 or ’B32).
Each time a conversion is needed, we write a value into the control port, wait
in a gadfly loop until conversion is completed, and read the value from port
ATDDR0. Efficient assembly-language program segments for the body of the
C procedure are shown in Figures 11.21b and 11.21c. An application of 
the A-to-D conversion is data logging, wherein analog voltage values are
periodically converted to digital values and then are stored in a buffer. The
C program in Figure 11.22 will convert $10 samples and store them in
buffer, one sample being made each 30 ms. Writing an efficient assembly-
language program for this C procedure is left as an exercise for the reader.

UART Protocol
The universal asynchronous receiver-transmitter (UART) is a module (inte-
grated circuit) that supports a frame protocol to send up to 8-bit frames (char-
acters). We call this the UART protocol. The UART frame format is shown
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main() { unsigned int i; 
   ATDCTL2 = 0x80; for(i = 0; i < 50; i++);  
  ATDCTL5=0; do ; while(!(ATDSTAT0 & 0x80)) ; i=ATDDR0;
}

a. C Program

LDD #$80 LDD #$80 
STAB $82 STAB $62
LDY #160 LDY #800/3

L1: DBNE Y,L1 L1: DBNE Y,L1
 STAA $85  STAA $65
L2: BRCLR $86,#$80,L2 L2: BRCLR $66,#$80,L2

LDD $90 LDD $70 

b. ’C32 Program  c. ’A4 and ’B32 Program

FIGURE 11.21. A-to-D Conversion



in Figure 11.23. When a frame is not being sent, the signal is high. The rate
at which data bits are sent is called the baud rate. When a signal is to be
sent, a start bit, which is a low, is sent for one bit time. The frame, from 5
to 8 bits long, is then sent 1 bit per bit time, least-significant bit first. A parity
bit may then be sent and may be generated so that the parity of the whole
frame is always even (or always odd). To generate even parity, if the frame
itself had an even number of ones already, a low parity bit is sent; otherwise
a high bit is sent. Finally, one or more stop bits are sent. A stop bit is high
and is indistinguishable from the high signal that is sent when no frame is
being transmitted. In other words, if the frame has n stop bits (n = 1, 11–2, or
2), this means the next frame must wait that long after the last frame data
bit or parity bit of the previous message has been sent before it can begin
sending its start bit. However, it can wait longer than that.

It is possible to send and receive UART frames using a simple parallel
port like PTT. A bit-banging technique makes 1 bit of the port low and then
high, to follow the wave form (Figure 11.23) where the data bits correspond
to the desired data byte to be sent. However, it is difficult to both send and
receive UART frames at the same time, and nothing else can be done while
either receiving or sending data using bit-banging.

The ’A4, ’B32, and ’C32 have a UART-like device called a serial com-
munication interface (SCI). The SCI device shown in Figure 11.24 is often
used by the debugger. The pins and port addresses in italics are for the 
’A4 and ’B32; those in plain text are for the ’C32. When not used for debug-
ging, it can be available for serial communication in an experiment or project.
We describe its data, baud rate generator, and control and status ports. 
Then we will show how the SCI can be used in a gadfly synchronization
interface.
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1 to 2
stop b

start bit 5 to 8 data
bits

parity bit
...

...

FIGURE 11.23. Frame Format for UART Signals

main() { unsigned char i, buffer[0x10];  
 ATDCTL2 = 0x80; for(i=1; i!=0; i++); // Initialize A-to-D
 for(i = 0; i < 0x10; i++){ // For each element of the buffer
  ATDCTL5 = 0; // begin conversion
  do ; while(!(ATDSTAT0 & 0x80)) ; // wait for conversion done
  buffer[i] = ATDDR0 >> 8; // store most significant bits of data
 } 
}

FIGURE 11.22. Data Logging



In the beginning of the following two C procedures in this section that
use the SCI; when using the ’C32, we will assume that the declarations below
are included:

unsigned int SCIBD@0xC8;
unsigned char SCICR2@0xCB, SCISR1@0xCC,
SCIDRL@0xCF;

enum{ PE=2, PT=1, SCITIE=0x80, RIE=0x20, TE=8,
RE=4 };

enum{ TDRE = 0x80, RDRF =0x20, OR = 8, FE = 2,
PF = 1 };
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Port S

bitAlternate Function 

‘A4  Pin

7  6  5  4 3 2  1  0 

104  103  102  101 100 99 98 97 

0xc8 - 0xc0

0xcb - 0xc3

0xcd - 0xc5

0xcf - 0xc7

SCIBD/SC0BD

SCICR2/SC0CR2

SCISR2/SC0SR2

SCIDRL/SC0DRL

PF

RAF

0x248 - 0xd6

0x24A - 0xd7

PTS/PORTS

DDRS/DDRS

TxD0
RxD0

MISOSCLK MOSISS RxD0RxD1 TxD0TxD1

FENFORIDLERDRFTCTDRE

PTPEILTWAKEMRSRCWOMSLOOPS

SBKRWURETEILIERIETCIETIE

BRLDBSPLBTST

‘B32  Pin  68  67  66  65 64 63 62 61 

‘C32  Pin  39 38 

0xcc - 0xc4

SCISR1/SC0SR1

0xca - 0xc2

SCICR1/SC0CR1

FIGURE 11.24. 6812 Serial Communication Interface



Until now, we have given the modifications needed to modify the pro-
grams written for the ’C32 in this chapter so they can run on the ’A4 or ’B32.
However, the SCI port names are all different in the ’A4, ’B32, and ’C32,
which would require a lot of #defines, cluttering up the discussion. But the
reader should be able to modify programs in this section for the ’A4 or ’B32,
based on his or her experience adapting the programs for the ’C32 to the ’A4
or ’B32 for previous devices in this chapter.

Debugging programs with the MonitorHCS12 debugger using the SCI
in the ’C32 is challenging, because MonitorHCS12 uses the SCI. We used
the USB P&E multilink interface module, which connects to the 6812’s
BDM device, to debug these programs. Debugged programs using the SCI
will run on these microcontrollers, however, by switching the board to “run”
instead of “boot” mode. You can load the program using MonitorHCS12
with the ’C32 board in “boot” mode as you normally do to debug your
program, but then you reconnect the serial port to the PC’s Hyperterm
program, change the board to “run” mode, and reset it. Then you can use
Hyperterm that runs on the PC to give commands to your microcontroller
and to display messages generated by it.

The SCI has, at the same port address, a pair of data ports that are con-
nected to shift registers. The least significant 8 bits of the data written at the
’C32’s SCIDRL (0xCF) are put into the shift register and shifted out, and
the data shifted into the receive shift register can be read as the 8 least sig-
nificant bits of SCIDRL (0xCF). Observe that, though they are at the same
address, they are different ports. Reading the address reads the input port;
writing writes the output port.

The baud rate is established by the ’C32’s 12-bit SCIBD port (0xC8).
The number put in this port is the clock going to the SCI (4 MHz) divided
by 16 times the desired baud rate. For example, to get 9600 baud, put 26 into
the SCIBD port.

The ’C32’s 8-bit control port, SCICR2, at 0xCB has parity enable PE
and parity type PT to establish the parity, transmitter interrupt enable
SCITIE and receiver interrupt enable RIE to enable interrupts and trans-
mitter enable TE and receiver enable RE to enable the device. The 8-bit 
status port SCISR1 at 0xCC indicates what is happening in the SCI. TDRE
is T (1) if the transmit data register is empty; it is set when output data are
moved from the data register to the shift register, thus “emptying” the 
data register, and is cleared by a read of the status port followed by a 
write into the data port. The remaining status bits are for the receiver. RDRF
is T (1) if the receive data register is full because a frame has been received
and its data are in the receive buffer register. Receive error conditions 
are indicated by OR, set when the receiver overruns (that is, a frame is 
lost because it wasn’t moved from the input shift register before another
frame arrived); FE, set if there is a framing error (that is, a stop bit is
expected but instead the input signal line is low); and PE, set if there is a
parity error.
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We offer a C program to send and receive serial data using gadfly
synchronization in Figure 11.25; we leave the assembly-language program
as an exercise for the reader. In main, the SCI is initialized for gadfly
synchronization of transmitting and receiving 8 data bits without parity at
9600 baud. Reading status and data registers twice clears the receiver of 
any data left in it and clears all error flags from a previous use of the device
(this is called flushing the device). The procedures in Figure 11.25 are the
get and put procedures we have mentioned many times in this book. 
put gadflies on transmitter data register empty (TDRE); when it is empty,
put outputs its argument INTO SCIDRL. get gadflies on the receive 
data register full (RDRF); when the receive register is full, get returns the
data in data port SCIDRL. The program main shown here will wait for an
incoming character, then will add 1 to its ASCII code and send it back. If
the microcontroller’s serial cable is connected to a PC running Hyperterm,
when a key is pressed, the next consecutive letter appears on the screen. 
For instance, pressing the “A” key prints “B” on the screen. The previously
mysterious put and get procedures now appear to be very simple, don’t
they?

An interrupt-based C program in Figure 11.26 will send a character 
string and receive serial data into a buffer; we again leave the assembly-
language program as an exercise for the reader. In main, the SCI is initial-
ized for interrupt synchronization at 9600 baud and eight data bits without
parity. Reading status and data ports twice flushes the device. The interrupt
handler polls the receiver and transmitter interrupts (i.e., it checks each 
possible interrupt in “priority” order until it finds the highest priority device
that requested an interrupt). If the transmitter has requested an interrupt
(transmitter data register empty, TDRE, is set), the handler outputs a byte
from the character string to the SCIDRL data port. When the end of this
string is encountered, transmitter interrupts are disabled. If the receiver has
requested an interrupt (receive data register full, RDRF, is set), the handler
inputs a byte from the SCIDRL data port to the input buffer. When the input
buffer is full, receiver interrupts are disabled. The main program waits 
until the transmitter and receiver interrupts are both disabled before it 
terminates.
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void put(char d){ while( ( SCISR1 & TDRE )== 0) ; SCIDRL=d;} 

char get() { while( ( SCISR1 &RDRF )== 0) ; return SCIDRL; } 

void main() { volatile char i; 
 SCIBD = 26; /*9600 baud*/ SCICR2 = TE + RE; 
 i=SCISR1; i=SCIDRL; i=SCISR1; i=SCIDRL;// flush
 do put(get()+1); while(1) ;// echo input to output after adding 1
}

FIGURE 11.25. C Program



Summary and Further Reading
This chapter has introduced you to input-output programming, a some-
what obscure area because many texts, magazine articles, and courses define
input-output to be beyond their scope while they concentrate on some other
topic. But it is not obscure. This chapter showed that the basic notion of
input-output in a microcontroller is really a minor extension of reading 
and writing to memory. The input-output integrated circuit was studied. 
Synchronization mechanisms were discussed, and the gadfly and interrupt
techniques were detailed. You can now see how simple input-output 
programming can be. We then looked at simple examples of the use of 
the A-to-D and D-to-A converters and the SCI device used for serial I/O. We
looked at the last example to understand the way that the get and put
subroutines work, which have been mentioned many times earlier in this
book. The method of outputting several words one after another to the same
device was discussed. This method, using buffers, was seen to be very
straightforward.

If input-output programming interests you, we recommend the follow-
ing books. Of course, we recommend the accompanying textbook, Single
and Multiple Chip Microcontroller Interfacing for the Motorola 68HC12 (G.
Jack Lipovski). It emphasizes the software used to control devices, using 
the 6812 and chips in the 6800 family for concrete examples, experiments,
and problems. Two books by P. Garrett, Analog I/O Design and Analog
Systems for Microprocessors and Minicomputers (both published by Reston
Publishing Co., Inc., Reston, Va., 1981 and 1978, respectively), give excel-
lent discussions of operational amplifiers and filters used in input-output
devices and also discuss the characteristics of transducers and measurement
hardware.
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const char outString[] = "Hi there\r\n"; 
char inString[10], *in, *out; 

void main() { char i; asm SEI 
 SCIBD = 26; //9600 baud
 SCICR2 = TE+RE+RIE+SCITIE; // enable device, interrupt
 i=SCISR1; i=SCIDRL; i=SCISR1; i=SCIDRL;// flush
 in = inString; out = (char *)outString; asm CLI 
 do ; while( SCICR2 & ( SCITIE | RIE ) );  
}

void interrupt 20 hndlr(void){  
 if( SCISR1 & SCICR2 & TDRE ) // check if trans. int. (& is enabled)
  { SCIDRL = *out++; if( !*out )SCICR2 &= ~SCITIE;} 
 else if( SCISR1 & RDRF ) {// check if receiver interrupt
   *in++ = SCIDRL; 
   if( in == (inString + 10)) SCICR2 &= ~RIE;  
 } 
}

FIGURE 11.26. Interrupt SCI Program
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Do You Know These Terms?
See the end of Chapter 1 for instructions.
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input routine
output routine
output port
output device
output line
input port
input device
input line
one
zero
high
low
clock
read/write
clock cycle
direction port
control port
bounce
debounce
race
derace
delay loop
real-time

synchronization
gadfly synchronization

gadfly loop
status port
hardware interrupt
I/O interrupt
handling an interrupt
interrupt handler
device handler
return from interrupt
interrupt service

routine
latency time
device requests an

interrupt
device interrupt is

enabled
microprocessor is

enabled
microprocessor is

masked
microprocessor is

disabled
microprocessor sees a

request
request is pending
honors an interrupt

machine state
arm
armed
disarmed
enable
enabled
disabled
analog-to-digital

converter
digital-to-analog

converter
r-2r ladder
analog comparator
UART protocol
baud rate
start bit
stop bit
bit-banging
serial communication

interface
overrun
framing error
parity error
flush
poll

PROBLEMS

1. Draw a diagram similar to that shown in Figure 11.5a in which three
switches, normally open, are connected in parallel, such that PTT bit 0
is normally high, becoming low when any switch is closed. Comment
on why the circuit in Figure 11.5a is better than this circuit for a secu-
rity system. (Hint: Consider ways to thwart the alarm.)

2. The least significant bit of PTT, as shown in Figure 11.6a, inputs a signal
from a push-button switch. Write a shortest assembly-language program
segment that will call a subroutine SUB exactly once each time the
button is pressed. This testing cycle repeats indefinitely. Implement both
debouncing and deracing in your solution.

�



PTT
bit 7 
(26)

+5v
10 KW 

PTT
bit 6 
(25)

+5v
10 KW 

PTT
bit 5 
(24)

+5v
10 KW 

PTT
bit 4 
(23)

+5v
10 KW 

PTT
bit 2 
(21)

Red
LED 

2.2 KW 

PTT
bit 1 
(20)

Yellow
LED  

2.2 KW 

PTT
bit 0 
(19)

Green  
LED  

2.2 KW 
PTT
bit 3 
(22)

+5v
10 KW 

FIGURE 11.28. Parallel Input Port of the ’A4 or ’B32

3. Write a shortest program to flash the two higher current LEDs in Figure
11.27. This implementation can supply more current to the LED, to make
it brighter than the implementation shown in Figure 11.5b. Only one
LED should be lit at a time, and each LED should be lit for 1 s. Initially,
the LED connected to PTT bit 4 should be lit for 1 s. Then the LED con-
nected to PTT bit 3 should be lit for 1 s, and so on. This cycle repeats
indefinitely.

4. Write a shortest program to use the three switches in Figure 11.28 in a
game. Initially all switches are open. When the first switch is closed,
print its switch number on the terminal using the put subroutine.

5. Write a shortest program to record the sequence of pressing the five
switches in Figure 11.28 ten times. Only one switch should be pressed
at a time. When it is pressed, debounce and derace it so that only one
element is put in the 10-element, 8-bit element vector INPUTS. Each
time any switch is pressed, the number of the switch (1 on the left, 2 
in the middle, and 3 on the right) is to be put into the next vector 
element.
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PTT 
output bit 4 

+5v

LED "1" 

330W

4.7 W
2N2222

PTT 
output bit 3 

+5v

LED "2" 

330 W

4.7 K W
2N2222

FIGURE 11.27. High-Current Parallel Output Port



6. Write a keyless entry system, using the input and output port shown in
Figure 11.28. Exactly one of the LEDs lights at a time. After switches
1, 3, 4, 5, and 2 are pressed, the green LED lights; otherwise, after five
switches are pressed that are not in the sequence, the red LED lights.
While the buttons are being pressed, until all 5 buttons are pressed, the
yellow LED lights.

7. Write a shortest program to use the switches to play the first seventeen
notes of the tune, “The Eyes of Texas,” using a parallel port to output a
staircase approximation to a sine wave. The first seven notes are
CFCFCFGAFBbBbBbFFGGA. A Johnson counter is simulated in soft-
ware and output using hardware shown in Figure 11.29, using PTT bits
2 to 0. A 4-bit Johnson counter has sequence of bit values from Figure
11.30, where H is high (1) and L is low (0). The left three bits of this
bit vector are connected to output port PTT bits 2 to 0 respectively. The
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PTT
bit 7 
(26) 

+5v
10 KW 

PTT
bit 2 
(21)

2.2 KW 

PTT
bit 1 
(20)

3.3 KW 

PTT
bit 0 
(19)

2.2 KW 

PTT
bit 6 
(25)

+5v
10 KW 

PTT
bit 5 
(24) 

+5v
10 KW 

PTT
bit 4 
(23)

+5v
10 KW 

PTT
bit 3 
(22)

+5v
10 KW 

mini 
stereo
socket 

FIGURE 11.29. Parallel D-to-A Output Device

0 0 0 0 
1 0 0 0 
1 1 0 0 
1 1 1 0 
1 1 1 1 
0 1 1 1 
0 0 1 1 
0 0 0 1 

FIGURE 11.30. Johnson Counter Sequence



note C has a frequency of 523 Hz or a period of 1912 msec and is to be
played when push-button switch connected to PTT bit 3 is closed; 
the note F has a frequency of 698 Hz or a period of 1432 msec and is to
be played when push-button switch connected to PTT bit 4 is closed;
the note G has a frequency of 783 Hz or a period of 1277 msec and is to
be played when push-button switch connected to PTT bit 5 is closed;
the note A has a frequency of 880 Hz or a period of 1136 msec and is to
be played when push-button switch connected to PTT bit 6 is closed;
and the note Bb has a frequency of 933 Hz or a period of 1071 msec and
is to be played when push-button switch connected to PTT bit 7 is
closed. Write a shortest program to play the notes responsive to the
switches that are pressed. Press the switches to play the “The Eyes of
Texas.” Note that you do not need to debounce or derace your switches. 

8. Draw the staircase approximation to a 1 KHz sine wave generated by
the program in problem 7 for a period of 1 ms, showing the voltage
levels to two decimal places, assuming the port outputs 0 or 5 volts.

9. Write the contents of vector BUFFER so the model traffic light in 
Figure 11.9 will have the north-south red LED on and east-west green
LED on for 10 s, the north-south red LED on and east-west yellow 
LED on for 2 s, the north-south green LED on and east-west red LED
on for 8 s, and the north-south yellow LED on and east-west red LED
on for 2 s, using the program listed below that figure.

10. Write a shortest assembly-language program OUT to output data to 
PTT bits 5 to 0 each time PTT bit 7 rises from low to high, from a 
buffer using autoincrement addressing. Instead of using LDAA B,X
STAA $240, use LDAA 1,X+ STAA $240 to move a byte from
input to buffer. OUT outputs 10 bytes from vector BUFFER.

11. Write a shortest assembly-language program IN to input data, from 
PTT bits 5 to 0 each time PTT bit 7 rises from low to high, to a buffer using
autoincrement addressing. Instead of using LDAA $240 STAA B,X, use
LDAA $240 STAA  1,X+ to transfer a byte from the input to the buffer.
The program should store 10 such bytes in vector BUFFER and then exit.

12. In Figure 11.4, if the two most significant bits of port TCTL3, which is
the 8-bit port at $4a, are 01 instead of 10, the flag, which is the most
significant bit of TFLG1 and is the 8-bit port at $4e, is set on the rising
edge. Write a shortest assembly-language program segment to initialize
the device and a shortest program segment to gadfly until a rising edge
occurs on PTT bit 7.

13. In Figure 11.4, if the two most significant bits of port TCTL3, which is
the 8-bit port at $4a, are 11 instead of 10, the flag, which is the most
significant bit of TFLG1 and is the 8-bit port at $4e, is set on both the
rising and falling edge. Write a shortest assembly-language program
segment to initialize the device and a shortest program segment to gadfly
until an edge of either type occurs on PTT bit 7.
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14. Write a shortest assembly-language program to initialize the devices 
and input a byte from the 6 least significant bits in PTT to the 10-element
BUFFER in an interrupt handler each time a rising edge occurs on 
PTT bit 7.

15. Write a shortest assembly-language program to initialize the devices 
and input a byte from the 6 least significant bits in PTT to the 10-element
BUFFER in an interrupt handler each time a rising or a falling edge
occurs on PTT bit 7.

16. Write a shortest assembly-language program to initialize the devices 
and input a byte from the 6 least significant bits in PTT to the 10-element
BUFFER in an interrupt handler each time a rising edge occurs on 
PTT bit 6.

17. Write a shortest assembly-language program to initialize the devices and
input a byte from the 6 least significant bits in PTT to the 10-element
BUFFER in an interrupt handler each time a rising or a falling edge
occurs on PTT bit 6.

18. Explain why interrupts are useful when unexpected requests are made
from a device but are actually slower than gadfly routines when a device
makes expected requests.

19. Give two concrete examples of devices that will require each of the fol-
lowing synchronization mechanisms, so that they should only use that
mechanism and no other, and give reasons for your choice: real-time,
gadfly, and interrupt. For example, a microcontroller in an electric
stapler, that generates a pulse to engage a solenoid, should use real-time
synchronization, because the microcontroller is doing nothing else, and
this is the least costly approach, requiring minimal hardware.

20. An A-to-D converter consists of (1) a D-to-A converter that outputs data
through the 7 least significant bits of PTT in Figure 11.19, which is con-
verted to an analog voltage Vref, and (2) an analog comparator that com-
pares Vref to an input voltage Vin, inputting a high (1) in PTT bit 7 if
Vref < Vin, otherwise inputting a low (0). Write a shortest subroutine
RAMP that begins outputting Vref = 0, increments Vref until it just
exceeds Vin, and returns the byte it last output in PTT. This is called a
ramp converter.

21. An A-to-D converter is connected as in problem 18. Write the shortest
subroutine SUCCESS that begins outputting Vref = 2.5 and recursively
determines whether Vin is in the upper or lower half of the range, reduc-
ing the range by one half each time it determines which half of the range
Vin is in. SUCCESS returns the final value output on the 7 least sig-
nificant bits of PTT, using PTT bit 7 to input the voltage comparator
output. This divide-and-conquer algorithm is like binary number divi-
sion; it is called successive approximation conversion.

22. For the compiled C procedure in Figure 11.31, encircle and label the fol-
lowing C statements and assembly-language program segments: (1) dec-
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* volatile int SC1BD@0xC8;volatile char 
SC1CR@0xCB,SC1SR@0xCC,SC1DR@0xCF; 
SC1BD: EQU $C8
SC1CR: EQU $CB
SC1SR: EQU $CC
SC1DR: EQU $CF
 ORG $800  

* char j; const char str[10] = “Hi There\r”;
j: DS.B 1 
str: DC.B “Hi There\r”

* void put(char d) { while( ( SC1SR & 0x80 ) == 0) ; SC1DR = 
d; } 

put: BRCLR  SC1SR,$80,put 
 STAA   SC1DR 
 RTS    
* char get() { while( ( SC1SR & 0x20 ) == 0) ; return SC1DR; 
}

get: BRCLR  SC1SR,$20,get 
 LDAB   SC1DR 
 RTS    

* void main() { char i; 

 PSHA   

* SC1BD = 52; /*9600 baud*/ SC1CR = 0xC; /* enable Xmt, Rcv devices */
 MOVW  #52,SC1BD 
 MOVB  #$C,SC1CR 

* i = SC1SR; i = SC1DR; i = SC1SR; i = SC1DR; /* clear RDRF 
*/

LDAB  SC1SR 
LDAB  SC1DR 
LDAB  SC1SR 
LDAB  SC1DR 

* for(i = 0; i < 9; i++) put(str[i]); 

 CLR   0,SP 
 LDX #str 
l1: LDAB  B,X 
 BSR   put 
 INC   0,SP 

LDAB  0,SP 
CMPB  #9 

 BLT   l1 

* do j = get(); while( j != '\r'); 

l2: BSR   get 
 STAB  j 
 CMPB  #13 
 BNE   l2 
 PULA   
 RTS  

FIGURE 11.31. Program with Disassembly
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unsigned char hi = 0, lo = 0; 
HI: DC.B 0 
LO:  DC.B 0 

unsigned char PORTB@1,DDRB@3,ATDCTL2@0x62,  
    ATDCTL5@0x65,ATDSTAT0@0x66,ADR3@0x76; 

PORTB: EQU 1 
DDRB: EQU 3 
ATDCTL2:  EQU $62 
ATDCTL5:  EQU $65 
ATDSTAT0:  EQU $66 
ADR3: EQU $76 

void main() { unsigned char i, j, k; DDRB = 0xff; 

 ORG $850 
MAIN: LDD #$FF80   
STAA  DDRB  ;DDRB=0XFF 

  ATDCTL2 = 0x80; for(j = 1; j != 0x80; j++) ;  

 STAB ATDCTL2  ;ATDCTL2=0x80 
 LDY #$80  ;for(j=1; j!=0x80; j++) 
LOOP1:  DBNE Y, LOOP1 

 for(i = 0; i != 0xff; i++){ PORTB = i; ATDCTL5 = 3;   

  LDD #03 
LOOP2: STAA PORTB  ;PORTB = i 
 STAB ATDCTL5  ;ATDCTL5 = 3 

  do ; while(!(ATDSTAT0 & 0x80)) ; k = ADR3; 

 PSHA 
LOOP3: BRCLR ATDSTAT0, #$80, LOOP3  

;do-while(!ATDSTAT0 & 0x80) 

  k = ADR3; 

LDAB ADR3  ;k = ADR3 

if((k > i) && (( j = (k - i ) ) > hi )) hi = j;  

SUBB 0,SP  ;j=k-i 
BEQ LOOP4 
BLO LOOP5 
CMPB HI  ;j>hi? 
BLS LOOP4 
STAB HI  ;hi=j 

 BRA LOOP4 

  if((k < i) && (( j = ( i - k) ) > lo )) lo = j;  

LOOP5: NEGB   ;j=i-k 
 CMPB LO 
 BLS LOOP4  ;j>lo? 
 STAB LO 

  for(i = 0; i != 0xff; i++){ 

LOOP4: PULA 
 INCA   ;i++ 
 CMPA #$FF  ;j!=0xff 
 BNE LOOP2 
LOOP6: BRA LOOP6  ;do-while(1) 

FIGURE 11.32. Another Program with Disassembly
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laration of global variables; (2) declaration of I/O ports; (3) declaration,
allocation, and deallocation of local variables; (4) the initialization
ritual; (5) for loop control statements to output str; (6) while loop control
statements to input until a carriage return; (7) gadfly loops; (8) input
operation; and (9) output operation. Next to each circle, write the label
shown above in italics or a number enclosed in parentheses () to iden-
tify which part the code corresponds to. If one of the above appears in
two parts, circle each part.

23. For the compiled C procedure in Figure 11.32, encircle and label the fol-
lowing C and assembler program segments: (1) declaration of global
variables; (2) declaration of I/O ports; (3) declaration of local variables;
(4) the initialization ritual; (5) the loop control statements to try each
value from 0 to 255; (6) the gadfly loop; (7) the input operation; (8) the
output operation; (9) calculation and collection of results; and (10) an
infinite loop to stop the program. Next to each circle, write the label
shown above in italics or a number enclosed in parentheses () to iden-
tify which part the code corresponds to.
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This board from Axiom Manufacturing has an MC68HC912B32, 64K exter-
nal static RAM and AX-BDM-12 Debug 12 debugger. It is a full-function
platform for developing products using the MC68HC912B32.



The microcomputer is a powerful tool, as we have learned in the preceding
chapters. But the microcomputer is more than just one type of computer.
There are a wide variety of microcomputers with different capacities and fea-
tures that make them suitable for different applications. This chapter gives
you some idea of this variety and the applications for which particular micro-
computers are useful. To keep our discussion within the scope of this book,
we examine microcomputers that are related to the 6812. This is particularly
convenient for us since the 6812 is in the middle of the Motorola family of
microcomputers, so that being thoroughly familiar with the 6812 makes it
fairly easy to learn the other microcomputers in this family. This discussion
of Motorola microcomputers will also help you with microcomputers
designed by other companies.

This chapter has two themes. The first consists of a discussion of
Motorola microcomputers that are simpler than the 6812, which include the
6811, the 6808, and the 6805. The second theme is an overview of the 68300,
500, and M•CORE series, machines more powerful than the 6812. After you
read this chapter, you should be able to write simple programs for the 6811,
6808, and 6805 and their variants. You should be able to answer such ques-
tions as: Where should a 32-bit, 16-bit, or 8-bit microcomputer be used? You
should be able to approach a microcomputer designed along quite different
lines than the Motorola family, with some idea of what to look for. You
should appreciate the capacities of different microcomputers, and you should
be able to pick a microcomputer that is suitable for a given application.

Although the 6805 came first historically, we will treat the 8-bit micro-
computers in order of their similarity to the 6812. We begin with a discus-
sion of the 6811 followed by the 6808 and 6805. The final sections cover the
68300, 500, and M•CORE series and observe the suitability of each micro-
computer for different applications.

The 6811
The 6811, the immediate predecessor of the 6812, was designed for a spe-
cific application, automotive control and then was made available for other
applications. The 6812 is upward compatible to the 6811. The register set
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for the 6811 is identical to that of the 6812. The 6811 lacks some of the
instructions and many of the addressing modes of the 6812 (Table 12.1). You
will be concerned mostly with the absence of stack index addressing.

Before we examine the differences, we should emphasize the similari-
ties. The instruction sets are so similar that many of the programs in earlier
chapters can be used in the 6811. The example that follows, the subroutine
DOTPRD of Chapter 6 with the parameters passed on the stack, shows how
similar the 6811 is to the 6812.

In Figure 12.1, bold type shows differences from the 6812 example,
which are in allocating and indexing the stack. The 6811 has immediate,
page-zero, 16-bit direct, and inherent addressing, exactly as in the 6812. The
relative address mode is available only as an 8-bit relative address in BRA
type of instructions, which behave exactly like their counterparts in the 6812.
Indirect, postincrement, predecrement, and program counter relative address-
ing modes are missing in LDAA and similar instructions, and the index mode
is only available in the form where an unsigned 8-bit offset in the instruc-
tion is added to the 16-bit index register X or Y. This program had to use the
X register to access the local variables and parameters on the stack because
there is no indexing mode that uses the stack pointer SP. The stack pointer
actually points to the first free byte below the top of the stack; the TSX
instruction puts SP + 1 in X, so the top of the stack is at 0,X. The LEAS
instruction is absent from the 6811, so we allocate using PSHX, or DES, or
temporarily putting SP into accumulator D and using SUBD, and we deallo-
cate using PULX, or INS, or temporarily putting SP into accumulator D and
using ADDD. Also, instructions that read, modify, and write the same word
in memory, such as INC COUNT, may use only 16-bit direct or 8-bit
unsigned offset indexed addressing. All 6811 address arithmetic is unsigned,
so that if X contains $1000, then LDAA $FF,X loads accumulator A from
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* SUBROUTINE DOTPRD 
* LOCAL VARIABLES 
TERM: EQU 0 
* PARAMETERS 
RADDR: EQU 2 
LOCV: EQU 4 
LOCW: EQU 6 
DOTPRD: PSHX        ; Allocate locals 
TSX ; SP+1 -> X (Note: SP -> first free byte)
LDAA LOCV,X
LDAB LOCW,X
MUL
STD TERM,X ; Copy first term to local variables
LDAA LOCV+1,X
LDAB LOCW+1,X
MUL
ADDD TERM,X ; Dot product into D
PULX ; Deallocate local variables
RTS

FIGURE 12.1. A 6811 Dot Product Subroutine
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Addressing Modes Moves

Implied SWI LDAA STAA TAB PSHA CLRA
Register INCA LDAB STAB TBA PULA CLRB
Immediate LDAA #1 LDD STD TAP PSHB CLR

LDX STX TPA PULB TSTA
Page 0 LDAA ALPHA LDY STY TSX PSHX TSTB
Direct LDAA ALPHA LDS STS TXS PULX TST
Index LDAA 5, X XGDX TSY PSHY

LDAA 3, Y XGDY TYS PULY
Page BRA ALPHA
Relative

Arithmetic Instructions

ADDA, ADDB, ABA INCA, INCB, INC
ADCA, ADCB DECA, DECB, DEC
SUBA, SUBB, SBA NEGA, NEGB, NEG
SBCA, SBCB DAA, MUL, ABX, ABY
CMPA, CMPB, CBA FDIV, IDIV

Logic Instructions Edit Instructions

EORA, EORB ASLA, ASLB, ASL
ORAA, ORAB ASRA, ASRB, ASR
ANDA, ANDB LSLA, LSLB, LSL
BITA, BITB LSRA, ISRB, LSR
COMA, COMB, COM ROLA, ROLB, ROL
SEC, SEI, SEV RORA, RORB, ROR
CLC, CLI, CLV LSLD, ASLD, LSRD
BSET, BCLR

Control Instructions

JMP, BRA, BRN, NOP, JSR, ESR, RTS, RTI, SWI, STOP,
WAI

BEQ, BNE, BMI, BPL, BCS, BCC, BVS, BVC, BRSET,
BRCLR

BGT, BGE, BEQ, BLE, BLT, BHI, BHS, BEQ, BLS, BLO

Table 12.1 Instruction Set and Addressing Modes of the 6811



locations $1000 to $10FF. Programs using the 16-bit index addressing mode
of the 6812, such as LDAA $1000,X, have to be modified too, because the
6811 has only an 8-bit offset. You often have to calculate the address explic-
itly as the effective address is calculated within the 6812 instruction, put this
effective address in the X register, and use the instruction LDAA 0,X. Also,
index arithmetic can be done in accumulator D; the 6811 has the instruction
XGDX to move the result to and from X.

The 6812 LBRA and other 16-bit branch instructions, which simplify the
writing of position-independent code, are missing in the 6811. Writing posi-
tion-independent code is tedious. However, except for this capability, the
6811 can get the effect of long branch instructions. For example, the 6812
instruction LBCCL2 can be replaced by the 6811 sequence

BCS *+5
JMP L2

The 6812 extended arithmetic instructions—EMUL, EMULS, EDIV, EDIVS,
IDIVS, and EMACS—are not 6811 instructions. These have to be imple-
mented as subroutines. Other arithmetic instructions, MUL, FDIV, and 
IDIV, are quite a bit slower in the 6811. Fuzzy logic instructions MEM, REV,
REVW, WAV, and similar instructions—ETBL, MAXA, MAXM, MINA, MINM,
EMAXD, EMAXM, EMIND, and EMINM—are not 6811 instructions; they are
implemented as subroutines or macros. 6812 control instructions—CALL,
DBNE, DBEQ, IBNE, IBEQ, TBNE, and TBEQ—are not 6811 instructions,
so a modified strategy is used to control loops and effect conditional expres-
sions. Finally, the 6811 does not have the MOVB, MOVM, PSHC, PULC, and
SEX instructions and does not have the full capabilities of TFR and EXG
instructions.

With these modifications, you can rewrite a program written for the 6812.
Try a few programs. Scan through the earlier chapters, and pick programs you
have already written. Rewrite them for the 6811. It is not too hard. However,
we caution you that each computer has its strong points, and writing a good
program by adapting a program from another computer for a new computer
does not take full advantage of the strong points of the latter. You have to be
more careful in the 6811 to organize your data to use only positive offsets from
X. For instance, you may select to implement a second stack in the same direc-
tion as the hardware stack, to avoid using a negative offset to a stack that moves
in opposite direction to the hardware stack that shares its buffer space.

Your 6811 programs can be tested using the Metrowerks debugger 
TrueTime, which can be implemented for the 6811 using a PC. We strongly
recommend that you try your programs on such a system to get a feeling 
for the 6811.

The 6808
The 6808 is upward compatible from the 6805 (described in the next section),
which it is intended to replace, while having the essential capabilities that
are needed to implement code generated by a C compiler. Moreover, the 6808
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is likely to replace the 6805 in newer designs and is more similar to the 6812,
so we study it before the 6805. We will show how you might program these
microcomputers by comparing them to the 6811 and 6812.

Maintaining compatibility will be discussed after the 6805 is presented.
We focus on the differences between the 6812 and the 6808, so that you can
adapt your 6812 programs to the 6808. Registers for the 6808 are like those
in the 6811, but there is neither accumulator B nor index register Y (see
Figure 12.2, and see its condition codes in Figure 12.3).

The 6808 addressing modes, except indexed, are the same as those in the
6812. The 16-bit index register H:X is used as a pointer register without
offset, as an index register with an unsigned 8-bit offset, and as an index reg-
ister with a 16-bit offset. The stack pointer SP is used as a 16-bit register
with an unsigned 8-bit or 16-bit offset. The MOV (byte move) and CBEQ
(compare and branch if equal) can use either pointer postincrement or postin-
crement with 8-bit unsigned offset.

The instructions dealing with accumulator D in the 6811 and 6812 gen-
erally can be replaced with those dealing with the 8-bit accumulator A in the
6808, at some loss in efficiency. The index register H:X is treated as a pair
of registers, register H and register X, just as accumulator D is accumulator
A and accumulator B in the 6812. X can also be compared, incremented,
decremented, shifted, or used in MUL, like an accumulator.

The instruction set of the 6808 and its addressing modes appear in Table
12.2. New instructions, not in the 6812 or 6811, are discussed below. These
include MOV, RSP, CPX, CPHX, AIX, AIS, NSA, CBEQ, DBNZ, BHCC,
BHCS, BIH, and BIL. Also the BSET, BCLR, BRSET, and BRCLR instruc-
tions use a bit position rather than a mask.
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 (16 bits)

Index Register H:X

Stack Pointer SP 

Program Counter PC 

 Condition Code CC
(8 bits)

Accumulator

FIGURE 12.2. Registers of the 6808

FIGURE 12.3. Bits in the 6808 Condition Code Register
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Addressing Modes Moves

Implied SWI LDA TSX PSHA CLRA
Register INCA LDHX TXS PULA CLBX
Immediate LDA #1 LDX TAP FSHH CIR
Page 0 LDA ALPHA STA TPA PULB TSTA
Direct LDA ALPHA STHX TAX PSHX TSTX
Index LDA, X LDA S, STX TXA PULX TST

X LDA 
S1234, X

Page BRA ALPHA MOV RSP
Relative

Arithmetic Instructions

ADD, ADC TNCA, INCX, INC AIS, AIX, CPHX
SUB, SBC DECA, DECX, DEC
CMP, CPX, CPHX NEGA, NEGX, NEG
CBEQ DAA, MUL, DIV

Logic Instructions Edit Instructions

EOR, ORA, ANDA, BIT ASLA, ASLX, ASL
COM, COMX, COM ASRA, ASRX, ASR
SEC, SEI, CLC, CLI LSLA, LSLX, LSL
BSET, BCLR LSRA, LSRX, LSR

ROLA, ROLX, ROL
RORA, RORX, ROR, NSA

Control Instructions

JMP, BRA, BRN, NOP, JSR, BSR, RTS, RTI, SWI, STOP,
WAIT

BEQ, BNE, BMI, BPL, BCS, BCC, BHCS, BHCC, BVS, BVC,
BIH, BIL

BHI, BHS, BLS, BLO, BMC, BMS, BRSET, BRCLR, DBNZ,
DBNZA

DBNZX

Table 12.2 Instruction Set and Addressing Modes of the 6808



The 6808 MOV instruction is like the 6812 MOVB instruction but is
restricted to a source that may be immediate, page-zero, or autoincrement
addressed and a destination that is page-zero addressed or else a page zero
source and destination that is autoincrement addressed. It is especially useful
for I/O that are ports on page zero.

RSP, needed for upward compatibility to the 6805, writes $FF into reg-
ister X but leaves register H unmodified. However, TXS and TSX move the
index register H:X to and from the stack pointer SP (TSX increments and
TXS decrements the value moved), so the stack pointer can be set up in index
register H:X and transferred into SP. Because SP points to the first free word
below the stack, byte 0,SP shouldn’t be read or written.

While CPX compares only the low byte of the index register, CPHX com-
pares both bytes of register H:X. AIX adds a signed 8-bit constant to regis-
ter H:X to access vectors. AIS does the same to the SP, to allocate and
deallocate local variables.

The instruction NSA exchanges the high and low nibbles in the accumu-
lator; it can be used to edit BCD numbers. DIV divides X into H (high byte)
and A (low byte), putting the remainder in H and the quotient in A. The MUL
instruction multiplies A by X, putting the 16-bit product in X:A.

The CBEQA and CBEQX instructions compare the accumulator or the X
register to an immediate operand. The CBEQ instruction compares the accu-
mulator to a byte addressed using page-zero, autoincrement, or stack pointer
unsigned 8-bit offset index addressing. A special CBEQ instruction compares
the accumulator to a byte addressed using an unsigned 8-bit offset index
addressing with register H:X and then increments H:X. The DBNZA and
DBNZX instructions decrement the accumulator or the X register and branch
if nonzero. The DBNZ instruction decrements a byte addressed using page-
zero or unsigned 8-bit offset index addressing using the index register H:X,
the stack pointer SP, or H:X without an offset. DBNZA and DBNZX are similar
to the 6812 DBNE using accumulator A, but DBNZ using a stack-indexed
address is especially suited to using a C local variable for a loop counter. For
instance, the following program clears a 16-byte vector whose base address
is initially in H:X; although the accumulator can be better used as a loop
count, using a local variable shows this special 6808 mechanism:

LDA #$10    ; generate loop count
PSHA        ; save it on the stack

LOOP: CLR X      ; clear word pointed to by H:X (no offset)
AIX #1 ; increment pointer
DBNZ 0,SP,LOOP ; count down
PULA        ; restore the stack

The branch instructions have a means to test the half-carry condition code
bit H, which are BCHS and BHCC; a means to test the interrupt request pin
IRQ, which are BIH and BIL; and the interrupt request mask, which are
BMC and BMS. Finally, the BSET, BCLR, BRSET, and BRCLR instructions
use a binary bit number to indicate which bit is set, cleared, or tested, rather
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than the bit mask used in the 6811 and 6812. For instance, the instruction
BSET 3,$10 will set bit 3 in word $10.

Figure 12.4, the DOTPRD subroutine with stack parameters from 
Chapter 6, shows some similarity between the 6808 and the 6812. Differ-
ences, shown in bold type, are in allocating local variables and implement-
ing 16-bit arithmetic.

With these “patches,” you can refer to the Motorola CPU08 Central
Processor Unit Reference Manual (CPU08RM/AD) to learn how to program
it without much difficulty, although you might have a certain amount of 
frustration after being accustomed to the 6812.

The 6805
The very inexpensive single-chip 6805 was designed for simple control
applications that utilize bit manipulation and data structures but require
simple instructions and only a few registers. Thus, the 6805 has many
addressing modes and bit manipulation instructions, even though it has few
registers and few complex instructions.

Figure 12.5 shows the 6805 register set. Compared to the 6808, the stack
pointer and index register are only 8 bits long. Figure 12.6 shows the 6805
condition code register. Compared to the 6808, there is no V bit to indicate
a two’s-complement overflow. Finally, Table 12.3 displays the 6805 address-
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* SUBROUTINE DOTPRD 
* LOCAL VARIABLES 
TERM: EQU 1 ; Note: location 0,SP is first free byte above stack
NBYTES: EQU 2 
* PARAMETERS 
RADDR: EQU 3 ; Return address 
LOCV: EQU 5 ; Vector V passed by value
LOCW: EQU 7 ; Vector W passed by value
DOTPRD: AIS #-NBYTES ; Allocation for local variables
 LDA LOCV,SP ; Get V(0)

LDX LOCW,SP ; Get W(0)
MUL
STX TERM,SP ; High byte to local variable
STA TERM+1,SP ; Low byte to local variable
LDA LOCV+1,SP ; Get V(1)
LDX LOCW+1,SP ; Get W(1)
MUL
ADD TERM+1,SP ; Add low byte
STA TERM+1,SP ; Store low byte
TXA ; Get high byte
ADC TERM,SP ; Add high byte
TAX ; Put high byte in X 
LDA TERM+1,SP ; Get low byte
AIS #NBYTES ; Deallocate local variables
RTS

FIGURE 12.4. A 6808 Dot Product Subroutine
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ing modes and instruction set. Compared to the 6808, the main difference is
that there are no push or pull instructions or stack index addressing. The 6805
stack is designed to hold only a subroutine return address and hold the
machine state during an interrupt. There is no effective way to pass param-
eters on the stack or allocate and access local variables on the stack. Also,
because there is no V condition code bit, there are no conditional branches
for signed arithmetic, and because there is no H:X register, there are no
instructions for that register. And 6808 special instructions, DAA, MOV, NSA,
DIV, DBNZ, and CBEQ, are missing.

Figure 12.7 is a 6805 example of the subroutine DOTPRD in Chapter 6
that passes parameters as global variables, because the 6805 stack can’t effec-
tively pass parameters. Also, local variables are not allocated or deallocated,
because the stack can’t effectively hold local variables. Otherwise this sub-
routine is very similar to the 6808 DOTPRD.

Returning to the 6808, which is upward compatible to the 6805, the
assembly language as well as machine code instructions that are in both 
will execute the same, except that the 6808 V condition code is modified
as it is in the 6812. If the H register is not used, it is initialized to zero, and
index addressing is the same in both machines. In fact, the H register is 
not stacked when SWI is executed or when an interrupt occurs. An inter-
rupt handler has to save and restore H using an explicit PSHH or PULH
instruction.

We focus here on programming this microcontroller, but we are intrigued
by the 6805 hardware and spellbound by the possibilities of applying it. With
this coverage and the information in a data sheet for the 6805, you should
be able to write short programs for that very-low-cost microcomputer.
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 (up to 16 bits)

Index Register X

Stack Pointer SP

Program Counter PC

 Condition Code CC
(8 bits)

Accumulator

FIGURE 12.5. The Register Set of the 6805
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FIGURE 12.6. Bits in the 6805 Condition Code Register



The 68300 Series and ColdFire
The preceding sections covered microcomputers that are less powerful than
the 6812. We now present an overview of the 68300 series of microcom-
puters (the 68332 and 68340) and the ColdFire family to better understand
the strengths and weaknesses of these microcomputers in particular and of
similar 16-bit microcomputers in general. The next section will similarly
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Addressing Modes Moves

Implied SWI LDA TAX CLRA
Register INCA LDX TXA CLRX
Immediate LDA #1 STA RSP CLR
Page 0 LDA ALPHA STX TSTA
Direct LDA ALPHA TSTX
Index LDA X LDA 5, X TST

LDA S1234, X
Page BRA ALPHA
Relative

Arithmetic Instructions

ADD, ADC INCA, INCX, INC
SUB, SBC DECA, DECX, DEC
CMP, CPX NECA, NECX, NEC

MUL

Logic Instructions Edit Instructions

EOR, ORA, AND, BIT ASLA, ASLX, ASL
COMA COMX, COM ASRA, ASRX, ASR
SEC, SEI, CLC, CLI LSLA, LSLX, LSL
BSET, BCLR LSRA, LSRX, LSR

ROLA, ROLX, ROL
RORA, RORX, ROR

Control Instructions

JMP, BRA, BRN, NOP, JSR, BSR, RTS, RTI, SWI, STOP,
WAIT

BEQ, BNE, BMI, BPL, BCS, BCC, BHCS, BHCC, BVS, BVC,
BIH, BIL

BHI, BHS, BLS, BLO, BMC, BMS, BRSET, BRCLR

Table 12.3 Instruction Set and Addressing Modes of the 6805
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introduce the 500 and M•CORE series of RISC microcontrollers. However,
in these two sections, we will at best prepare you to write a few programs,
similar to those written for the 6812, for these microcomputers. There is
much more to these computers than we can discuss in the short section we
can allot to each computer.

The register set for the 68300 series and the integer registers of the 
ColdFire family features 17 32-bit registers, a 32-bit program counter, and
a 16-bit status register (Figure 12.8). The 8 data registers are functionally
equivalent to the accumulators in the 6812, and the 9 address registers are
similar to the index registers.

The low byte of the status register is similar to the 6812 condition code
register, having the familiar N, Z, V, and C condition code bits and a new
condition code bit X, which is very similar to the carry bit C. Bits X and C
differ in that C is changed by many instructions and is tested by conditional
branch instructions, while X is changed only by a few arithmetic instructions
and is used as the carry input to multiple-precision arithmetic operations.
Having two carry bits, X and C, avoids some dilemmas in the design of the
computer that are inherent in simpler computers such as the 6812. This
allows X to be set specifically for multiple-precision arithmetic and lets C
be set for more instructions (such as MOVE) to facilitate testing using instruc-
tions (such as BLS). The high byte of the status register contains a bit, S,
that distinguishes the mode as user or system. When it is set, the program
uses the system stack pointer whenever it uses address register 7, and when
it is clear, the program uses the user stack pointer whenever it uses address
register 7. Further, several instructions can only be executed when the
program is in the system mode (S = 1), and hardware can be built so that
some memory or I/O devices may be accessed only when the program is in
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* SUBROUTINE DOTPRD 
* GLOBAL VARIABLES USED IN SUBROUTINE AND AS PARAMETERS 
TERM: RMB 2 
LOCV: RMB 2 
LOCW RMB 2 
LOCDP: RMB 2 
*
DOTPRD: LDA LOCV 
LDX LOCW 
MUL
STA TERM+1 ; Copy first term low byte to local variables
STX TERM ; Copy first term high byte to local variables
LDA LOCV+1 
LDX LOCW+1 
MUL
ADD TERM+1 ; Add first term low byte to product
STA LDCDP+1 ; Copy first term low byte to out. param.
TXA ; Move high byte to accumulator
ADC TERM ; Add first term high byte to product
STA LDCDP ; Copy first term high byte to out. param.
RTS

FIGURE 12.7. A 6805 Dot Product Subroutine



the system mode. This permits the writing of secure operating systems that
can have multiple users in a time-sharing system, so that the users cannot
accidentally or maliciously damage each other.

The 68300 series and ColdFire family memory organization is shown in
Figure 12.9a. The 16-bit-wide memory is actually addressed as an 8-bit
memory, so that a 16-bit word (the unit of memory read or written as a whole)
is logically two consecutive locations. Instructions can read or write a byte
(the mnemonic ends in .B for byte), a 16-bit word (these end in .W for word),
or two consecutive words (these end in .L for long). If the suffix .B, .W,
or .L is omitted, it is generally assumed to be a word (.W) instruction, unless
such an option is not available. Word and long accesses must be aligned with
memory so their addresses are even numbers, byte accesses using even
addresses will read or write the high byte, and those with odd addresses will
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Long Word 

Data
Registers

31 16 15 8  7 0

D0
D1
D2
D3
D4
D5
D6
D7

Address
Registers

31 16 15 0 

A0
A1
A2
A3
A4
A5
A6

A7' - Supervisor Stack
Pointer (SSP)

Program Counter (PC)

Status Register (16 bits)TT S 0 0 III 000 X N Z V C

Vector Base Register
(VBR)

Alternate Function
(SFC)
Code Registers (DFC)

A7 - User Stack Pointer
(USP)

Word
Byte

3 Bits

FIGURE 12.8. Register Set of 68300 Series Microcomputers



access the low byte of a word. This is consistent with the 6812 convention
that puts the most significant byte at the lower-numbered address. Bits are
numbered from right (0) to left (7) in a byte exactly as the 6812. If the hard-
ware is so designed, access in the supervisor mode can access different
memory than in the user mode, and fetching instructions can be done in dif-
ferent memories than reading or writing data, as shown in Figure 12.9b. Oth-
erwise all memory can be the same regardless of whether it is accessed in
supervisor mode or user mode, fetched from program space, or memorized
or recalled from data space, as shown in Figure 12.9c.

The instruction set and the addressing modes are shown in Tables 12.4
to 12.6. You may observe the general MOVE instruction, which has variations
for moving 1 byte (MOVE.B), 1 word (MOVE.W), or 2 words (MOVE.L). The
source is always the first (left) operand, and the destination is the second
(right) operand. Any addressing mode may be used with the source or des-
tination. This general instruction is equivalent to the 6812 LDAA, LDD, LDX,
and so on, and STAA, STD, STX, and so on, as well as the TFR A,B and
TFR D,X instructions. It also includes a capability to move directly from
memory to memory without storing the moved word in a register. In fact,
there are over 12,000 different combinations of addressing modes that give
different move instructions. There are similar byte, word, and long modes
for arithmetic, logical, and edit instructions.

The addressing modes listed in Table 12.4 can be used with almost all
instructions. We will note those that are essentially the same as 6812 modes
first, and then we will examine those that are significantly different.
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a. Byte, word, and long word addressing 

User
Data

User
Program

Supervisor
Data

Supervisor
Program

User-Supervisor
Data-Program

b. Differentiated Spaces  c. Common Spaces

Byte 000000 Byte 000001 
Word 000000 

Byte 000002 Byte 000003 
Word 000002 

Byte FFFFFE Byte FFFFFF 
Word FFFFFE  

....

FIGURE 12.9. Memory Spaces in the 68300 Series



Moving a byte, or word, into a 32-bit data register will result in replac-
ing only the low byte, or word, in the register, leaving the other bits of the
register untouched. Moving a word to an address register results in filling the
high 16 bits with the sign bit of the word that was moved, and moving a byte
to or from an address register is not permitted. Immediate addressing can
provide 16- or 32-bit operands. (Long) direct addressing uses a 32-bit address
and can therefore address any word in memory. Pointer, postincrement, and
predecrement are the same as in the 6812; a postincrement read of a word
increments the pointer by 2, and a postincrement read of a long word incre-
ments the pointer by 4. Predecrement works similarly and write works simi-
larly. Your experience with the 6812 should facilitate learning these modes.

The remaining modes consistently use sign extension to expand 8- or 16-
bit instruction offsets to 32 bits before using them in address calculations.
(Short) direct addressing is somewhat like direct page addressing, requiring
a short 16-bit instruction offset, but, using sign extension, it can access loca-
tions 0 to $7FFF and $FFFF8000 to $FFFFFFFF. Similarly, index address-
ing uses sign extension, so if A0 contains $10000000, A0 index addressing
accesses locations $0FFF8000 to $10007FFFF.

In Tables 12.5 and 12.6, Dn is any data register, An or Am is an address
register, Xn is any An or Dn, nnnnnnnn is any 32-bit number, nnnn is any 16-
bit number, nn is any 8-bit number, and n is a number 0 to 7. rrrr is any 
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Mode (General) Example

Long Direct MOVE 0X123456, D1
Word Direct MOVE 0x1234, D1
Implied RTS
Register MOVE D0, D1
Immediate MOVE # 0x1234, D1
Pointer MOVE (A0), D1
Autoincrement MOVE (A0) +, D1
Autodecrement MOVE -(A0), D1
Index MOVE (0x1234, A0), D1

MOVE (0x12, A0, D0. W*2), D1
Double Indexed MOVE (0x1234, A0, D0, L*8), D1
≤ MOVE (0x12345678, A0, D0. L*8), D1
≤ BRA.S ALPHA
Short Relative BRA.W ALPHA
Word Relative BRA.L ALPHA
Long Relative MOVE 0x1234 (PC), D1
Rel. Indexed MOVE (0x12, PC, D0. L*8), D1

MOVE (0x1234, PC, D0.L*8), D1
MOVE (0x12345678, PC, D0.L*8), D1

Table 12.4 Addressing Modes for the 68300 Series
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MOVE <ea>, <ea> (see figure 1–7d) LWB
<ea>, SR/CCR or SR/CCR, <ea> W

MOVEA <ea>, An LW > L
MOVE USP, An or An, USP L
MOVEQ #<data>, Dn -128 £ data B > L

£ 127
MOVEC Xc, Xn or Xn, Xc L

MOVES Rn, <ea> or <ea>, Xn LWB
EXG Xn, Xn L
MOVEP Dn, (d16, An) LW

(d16, An), Dn LW
MOVEM list, <ea, or <ea>, list LW
LEA <ea>, An L
PEA <ea> L
CLR <ea> LWB
TST <ea> LWB
BTST Dn, <ea> or #<data>, <ea> LB
Scc <ea> B

ADD <ea>, Dn or <ea>, An or Dn, LWB
<ea> or #data, <ea>

ADDA <ea>, An LW
ADDI #<data>, <ea> LWB
ADDQ #data, <ea> 1 £ data £ 8 LWB

ADDX Dn, Dn or -(An), -(An) LWB
ABCD Dn, Dn or -(An), -(An) B
LEA d(An), Am or d(PC), Am L
SUB <ea>, Dn or <ea>, An or Dn, LWB

<ea> or #data, <ea>
SUBA <ea>, An LW
SUBI #<data>, <ea> LWB
SUBQ #data, <ea> 1 £ data £ 8 LWB

SUBX Dn, Dn or -(An), -(An) LWB
SBCD Dn, Dn or -(An), -(An) B
CMP <ea1>; Dn or <ea>, An or LWB

#<data>, <ea>
OMPA <ea>, An LW
CMPI #<data>, <ea> LWB

CMPM (An)+, (An)+ LWB
CHK <ea>, Dn LW
CHK2 <ea>, Xn LWB
CMP2 <ea>, Xn LWB
NEG <ea> LWB

Table 12.5 Move and Arithmetic Instructions for the 68300 Series
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NEGX <ea> LWB
NBCD <ea> B
DIVU/ <ea>, Dn L/W > W:W

DIVS
<ea>, Dn L/L > L
<ea>, Dn D/L > L:L

DIVSL <ea>, Dr:Dq L/L > L:L
MULU/ <ea>, Dn WxW > L

MULS
<ea>, Dr:Dq LxL > L
<ea>, Dh:D1 LxL > D

Logical

AND <ea>, Dn or Dn, <ea> LWB
ANDI #<data>, <ea> or #<data>, CCR/SR LWB

BCLR Dn, <ea> or #<data>, <ea> LB
OR <ea>, Dn or Dn, <ea> LWB
ORI #<data>, <ea> or #<data>, CCR/SR LWB

BSET Dn, <ea> or #<data>, <ea> LB
TAS <ea> B
EOR <ea>, Dn or Dn, <ea> LWB
EORI #<data>, <ea> or #<data>, CCR/SR LWB

BCHG Dn, <ea> or #<data>, <ea> LB
NOT <ea> LWB

Edit

ASL Dn, Dn or #data>, Dn LWB
<ea> W

ASR Dn, Dn or #data>, Dn LWB
<ea> W

LSL Dn, Dn or #data>, Dn LWB
<ea> W

LSR Dn, Dn or #data>, Dn LWB
<ea> W

ROL Dn, Dn or #data>, Dn LWB
<ea> W

ROR Dn, Dn or #data>, Dn LWB
<ea> W

Table 12.5 Continued

Table 12.6 Other Instructions for the 68300 Series



16-bit offset for which PC + rrrr = L1, and rr is any 8-bit offset for which PC
+ rr = L1. Rc—SFC, DFC, VBR, or USP—is a list of data and/or address reg-
isters; #<data> is an immediate operand; <ea> is an addressing mode; <label>
is a label on a program statement; and cc is a condition code and value.

The 68300 series and ColdFire family base index addressing effective
address can be the sum of a general register (which is any address or data
register), an address register, and a signed 16-bit offset.

Several special move instructions are provided. A MOVE instruction can
move data to or from the status register (although the user can only access
the low byte using MOVE.B), and the user stack pointer can be set while in
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ROXL Dn, Dn or #data>, Dn LWB
<ea> W

ROXR Dn, Dn or #data>, Dn LWB
<ea> W

SWAP Dn L
EXT Dn B > W or 

W > L
EXTB Dn B > L

Control

Conditional

2’S Conditionals Unconditional Conditional

Complement (General) & Subroutine Simple

BGT <label> Bcc <label> JMP <ea> BEQ <label>
BGE <label> DBcc Dn, BRA <label> BNE <label>

<label> BRN <label> BMI <label>
BEQ <label> TRAPV NOP BPL <label>
BLE <label> TRAPcc JSR <ea> BCS <label>
BLT <label> TRAPcc #<data> BSR <label> BCC <label>

Conditional Interrupt

RTS BVS <label>

Unsigned

RTR BVC <label>

BHT <label>
BGND

RTD #<d>

BHS <label>
BKPT #<data>

LINK An, 

BEQ <label>
TRAP #<data>

<d>

RTE
UNLK An

BLS <label>
LPSTOP #<data>

BLO <label>
RESET

Table 12.6 Continued



the system state using a special MOVE. An EXG instruction permits exchang-
ing the bits in the data or address registers. The instruction MOVEM, for move
multiple, is a generalized PSHX or PULX instruction. Registers to be pushed
or pulled are specified by separators “/,” meaning AND, and “–,” meaning
TO. The instruction MOVEM D0/D1/A0,- (A7) pushes D0, D1, and A0
onto the user’s stack (or system stack if in the system mode). However, any
address register may be used in lieu of A7, so that the user may create many
stacks or queues and use this instruction with them. MOVEA is a variation of
MOVE that moves to an address register and that does not affect the condi-
tion codes, MOVEQ is a short version of MOVE immediate using an 8-bit
signed immediate operand, and MOVEP is a MOVE that can be used to move
data to an 8-bit I/O device that might be designed for the 6812.

Other instructions from the move class include the LEA instruction,
which works just like LEAX in the 6812; PEA, which pushes this effective
address on the stack; and the familiar TST and CLR instructions. The LINK
and UNLINK instructions are designed to simplify allocation and dealloca-
tion of local variables using the stack marker, as discussed in Chapter 6. The
instruction LINK A0 will push A0 onto the stack, put the resulting stack
address into A0, and add (negative 10) to the stack pointer to allocate 10
bytes. The instruction UNLINK A0 deallocates by reversing this procedure,
copying A0 into the stack pointer, and then pulling A0 from the stack.

Arithmetic instructions are again similar to 6812 arithmetic instructions.
As with MOVE instructions, ADD, SUB, and CMP have byte, word, and long
forms, and ADDA and SUBA are similar to MOVEA. A memory-to-memory
compare CMPM uses preincrement addressing to permit efficient comparison
of strings. There are no INC or DEC instructions. Rather ADDQ can add 1 to
8 and SUBQ can subtract 1 to 8 from any register. These instructions are 
generalized INC and DEC instructions. Multiple-precision arithmetic uses
ADDX, SUBX, and NEGX in the same way that ADC is used in the 6812,
except that the Z bit is not set, only cleared if the result is nonzero and only
predecrement addressing is used. The handling of Z facilitates multiple-
precision tests for a zero number. Decimal arithmetic uses ABCD, SBCD, and
NBCD and is designed to work like multiple-precision binary arithmetic such
as ADDX. However, only bytes can be operated on in these instructions. A
special compare instruction CHK is used to check addresses. For example,
CHK D0,#$1000 will allow the program to continue if D0 is between 0
and 1000; otherwise, it will jump to an error routine much as the SWI instruc-
tion does in the 6812. Finally, this machine has multiply and divide instruc-
tions for signed and unsigned 16-bit operands that produce 32-bit results.
Logic instructions are again very familiar. We have AND, OR, and EOR as in
the 6812. As with ADD, the instructions AND and OR can operate on a data
register and memory word, putting the result in the memory word. We have
BCLR, BSET, and BTST as in the 6805 and also a BCHG instruction that
inverts a bit. Moreover, the chosen bit can be specified either by an imme-
diate operand or by the value in a data register. The S*** group of instruc-
tions copies a condition code bit, or a combination of them that can be used
in a branch instruction, into a byte in memory. For example, SEQ $100

396 Chapter 12 Other Microcontrollers



copies the Z bit into all the bits of byte $100. The test and set instruction
(TAS) is useful for some forms of multiprocessing. It sets the condition codes
as in TST, based on the initial value of a byte, and then sets the byte’s most
significant bit.

Edit instructions include the standard shifts, with some modifications. All
shifts that shift the contents of a data register can be executed many times
in one instruction. The instruction ASL.W #3,D0 will shift the low byte
of D0 three times, as in the 6812 sequence

ASLD
ASLD
ASLD

The number of shifts can be specified as an immediate operand or can be the
number in a data register. However, when shifting memory words, an instruc-
tion can shift only one bit. Also, ROL and ROR are circular shifts of the 8-,
16-, or 32-bit numbers that do not shift through the X bit; ROXL and ROXR
are 9-, 17-, or 33-bit shifts that shift through the X bit as the ROL and ROR
instructions shift through the C bit in the 6812. EXT is a sign extend instruc-
tion like the 6812 instruction SEX, and SWAP exchanges the low and high
words in the same data register.

Control instructions include the familiar conditional branch (B*** .S),
branch (BRA.S), branch to subroutine (BSR.S), long branch (BRA.L), con-
ditional long branch (B*** .L), long branch to subroutine (BSR.L), jump
(JMP), and jump to subroutine (JSR) instructions, as well as the NOP, RTS,
and RTE (equivalent to the 6812 RTI). The instruction RTR is like RTS,
which also restores the condition codes. Special instructions STOP and
RESET permit halting the processor to wait for an interrupt and resetting the
I/O devices.

The decrement and branch group of instructions permits decrementing a
counter and simultaneously checking a condition code to exit a loop when
the desired value of the condition code is met. The condition code specified
by the instruction is first tested, and if true, the next instruction below this
instruction is begun. If the condition is false, the counter is decremented,
and, if -1, the next instruction is executed; otherwise, the branch is taken.
The sequence

L1: CLR.B (A0)+
DBF D0,L1

will execute the pair of instructions n + 1 times, where n is the number in
D0. This powerful instruction allows one to construct fast program segments
to move or search a block of memory. Moreover, in the 68300 series and
such, short loops are detected, and, when they occur, the two instructions are
kept inside the MPU so that the opcodes need not be fetched after the first
time and thus these loops run very fast.

We now consider a few simple programs that illustrate the 68300 series
instruction set. The first is the familiar program that moves a block of 10
words from SRC to DST. This program shows the way to specify the byte,
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word, or long form of most instructions, and it shows the powerful 
decrement and branch instruction.

Let us now look at the overused inner product subroutine, passing the
parameters in the in-line argument list by value, in Figure 12.10. Although this
method of passing parameters is not the best for the 68300 series because it has
plenty of registers to pass parameters by registers, it illustrates the use of data
and address registers and is used by C and C++. The LINK and UNLINK
instructions are generally used to duplicate the stack pointer in another regis-
ter, commonly A6. Register A6 accesses parameters with positive offsets and
local variables with negative offsets. But, with an abundance of registers, the
68300 series can often save intermediate results in registers rather than on the
stack, as in this example. So this example doesn’t use any local variables.

Whereas we can see that the 68300 series is superior to the microcon-
trollers discussed earlier in this chapter for 16-bit and 32-bit arithmetic, this
example shows they have a little difficulty in dealing with 8-bit data. The
multiply instructions do not have an 8-bit by 8-bit multiply such as MULU.W
LOCW+1(A6),D0. Moreover, just using an instruction like MOVE.B
LOCV(A6),D0 to bring in the operand and then using MULU.W D1,D0
leaves the high-order bits of D0 unmodified. Bits 15 to 8 will be used in the
MULU.W D1,D0 instruction. So these bits must be cleared unless they are
known to be clear already. The instruction CLR.L D0 will take care of this.
We didn’t have to worry about such a case in the microcontrollers discussed
earlier in this chapter. The 68330 series, designed for 16-bit and 32-bit arith-
metic, is often no better than the 6812, 6811, 6808, and 6805 microcon-
trollers for operating on 8-bit data and may even be less efficient for some
operations than those microcontrollers are.

With this short example, some of the flavor of the 68300 series can be
seen. The machine offers a very large address space, over 16 megabytes, and
17 data and address registers. They offer superior performance for 16-bit and

* SUBROUTINE DOTPRD 
* PARAMETERS 
LOCV: EQU 4
LOCW: EQU 6
DOTPRD: LINK A6,0 ; Allocate no locals; put stack frame in A6
CLR.L D0 ; Clear out high bits of D0
CLR.L D1 ; Clear out high bits of D1
CLR.L D2 ; Clear out high bits of D2

 MOVE.B LOCV(A6),D0 ; Get V(0)
 MOVE.B LOCW(A6),D1 ; Get W(0)
 MULU.W D1,D0 ; Multiply V(0) by W(0), result in D0
 MOVE.B LOCV+1(A6),D1 ; Get V(1)
 MOVE.B LOCW+1(A6),D2 ; Get W(1)
 MULU.W D2,D1 ; Multiply V(1) by W(1)
 ADD.W D1,D0 ; Dot product into D0
UNLINK A6 ; Deallocate local variables

 RTS 

FIGURE 12.10. A 68300 Series Dot Product Subroutine



32-bit arithmetic, and a more extensive instruction set than the microcon-
trollers discussed earlier in this chapter. However, especially in handling 
8-bit data, those microcontrollers discussed earlier in this chapter may well
exhibit comparable or even superior performance.

The ColdFire family of microcontrollers is upward compatible to the
68000 microcomputer series. In addition to the integer registers and instruc-
tions, which are essentially the same as the registers and instruction set of
the 68300 series described in this section, the ColdFire family has optional
floating-point and multiply-accumulate registers and instructions that are
available in some members of the family. If the multiply-and-accumulate
instructions and registers are available, our inner product example reduces
to a three-instruction macro. This is useful in digital signal processing.

The 500 Series
The 500 series of microcomputers are reduced instruction set computers
(RISC) that differ from the complex instruction set computers (CISC) dis-
cussed heretofore. Their registers are shown in Figure 12.11, and their
instruction set is given in Table 12.7.

A RISC computer trades off control complexity for additional general
purpose registers (Figure 12.11). The 500 series has 32 32-bit registers that
can be used as address or as integer data registers are used in the 68300
series. Additionally, 32 64-bit floating-point registers each can hold a double-
precision floating-point number. Finally, there is a link register that holds a
subroutine return address, a count register that holds a loop counter, a con-
dition register that holds codes for conditional branching, a floating-point
status and control register, and an integer exception register.

The RISC architecture has very simple move instructions with limited
addressing modes. The load instruction mnemonics (Table 12.7) are parsed
as illustrated by lhau r3,10(r4): the letter “l” means load; “h” means
half-word, which is 16 bits; “u” means unsigned (fill with zero bits) to load
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32 32-bit
General-Purpose

Registers

32 64-bit
Floating-Point

Registers

Condition Register

Floating Pt. Status &
Control Register

Link Register 

Count Register
Integer Exception

Register (C & V bits)

FIGURE 12.11. User Registers for the 500 Series
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Move Arithmetic

lbz lbzx lbzu lbzux addi addis add addo addic
lhz lhzx lhzu lhzux addc addco adde addeo
lha lhax lhau lhaux addme addmeo addze addzeo
lwz lwzx lwzu lwzux subf subfo subfic subfc 
stb stbx stbu stbux subfco
sth sthx sthu sthux subfe subfeo subfme subfmeo
stw stwx stwu stwux subfze subfzeo
lhbrx lwbrx sthbrx mulli mullw mullwo mulhw 
stwbrx milhwu

lmw stmw divw divwo divwu divwuo
lswi lswx stswi stswx neg nego cmpi cmp cmpli cmpl

Logical Floating-Point Arithmetic

andi andis and andc fadd fads fsub fsubs
ori fmul fmuls fdiv fdivs

oris or orc xori xoris fmadd fmadds fmsub fmsubs
xor nand nor eqv fnmedd fnmadds fnmaub 

Edit
fnmsubs

rlwinm rlwnm rlwimi

frsp fctiw fctiwz fcmpu 

slw srw srawi sraw

fcmpo

extsb extsh

fmr fneg fabs fnabs

Control

Floating-Point Move

b ba bl bla (blr)

lfs lfsx lfsu lfsux

bc bca bcl bcla

lfd lfdx lfdu lfdux

bclr bclrl bcctr 

stfs stfsx stfsux

bcctrl

stfd stfdx stfdu

sc rfi two tw

stdux stfix

Special

cntlzw mffs mcrf mtfsfi mtfsf
crand cror crxor mtfsb0 mtfsb1
crnand crnor

crequ crandc crorc mtcrf mcrxr mfcr mfmsr
mcrf

eieic isync lwarx mtspr mfspr
stwcx sync icbi

Table 12.7 Instructions for the 500 Series



general register r3; and the effective address is the sum of the instruction’s
offset 10 and general register 4. The last general register, r4 in this example,
may be register 0, in which case the value 0 is used in place of it. This permits
a page-zero addressing mode but uses a sign-extended offset. If an “x” is
appended, the address calculation uses a second general register rather than
the offset. The instruction lhaux r3,r4,r5 loads general register 3, as
an unsigned number, with the half-word, at the effective address which is the
sum of general register 4 and general register 5. In place of “l,” “st” causes
the register to be stored; in place of “h,” “b” causes 8 bits to be moved or
“w” causes 16 bits to be moved; and in place of “u,” “a” causes the number
to be sign extended when it is loaded. The “r” in lhbrx indicates byte
reversal; a 16-bit word is loaded, but the 2 bytes in it are reversed as they
are loaded. The load multiple instruction lmw r3,10(r5) loads the reg-
isters from r3 to r31 with memory data starting from the effective address,
which is the contents of register 5 plus 10. The load string instruction lswx
similarly loads string data into registers, but with more complexity, which
we skip in this introductory treatment. There are corresponding integer store
instructions and similar load and store instructions for floating-point and for
special-purpose registers.

The RISC architecture uses three-register-address instructions for all
arithmetic, logical, and edit instructions. There are also immediate operand
arithmetic instructions, but no arithmetic instructions that access memory.
For instance, the add instruction add r3,r4,r5 puts the sum in r3 of r4
plus r5. Letters appended to the mnemonic enable other results of addition
to be recorded or used. If a “c” is appended, the carry bit in the integer excep-
tion register is loaded with the carry out of the addition; if an “o” is
appended, the overflow in the integer exception register is loaded with a
two’s-complement overflow status bit; and if a period (.) is appended, the
condition code registers are updated for conditional branching. An appended
“e” adds the previous carry bit into the sum, in the manner of the ADC
instruction, and another appended “m” adds a minus 1 to it. An appended
“i,” as in addi r5,r6,7, indicates that the sum put in r5 is source
general register, r6 plus a 16-bit signed immediate operand, 7. But if the
source register is r0, the constant 0 is used instead of the contents of the
source register; this add immediate instruction is thus used to load immedi-
ate data into a general register. Also, if an “s” is appended, as in addis,
the immediate value can be added to the high 16 bits of the destination
general purpose register rather than the low 16 bits.

There are subtract instructions analogous to the add instructions. The
letter “f” in their mnemonics, as in subf r2,r3,r4, just means subtract
r3 “from” r4, putting the result in r2. The multiply instruction can multiply
a register’s high word or low word as signed or unsigned numbers, and a
register’s word value can be divided by another register’s word value as a
signed or unsigned number. A register can be ANDed, ORed, or exclusive-
ORed with an immediate value (in the register’s left 16 bits or right 16 bits)
or another register, and source values can be complemented before being
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operated on. The edit instructions include the logical shift left instruction
slw, logical shift right instruction srw, where the amount shifted is an
immediate operand or the contents of another general purpose register, and
the sign extension instructions extsb and extsh. The novel rlwinm edit
instruction rotates the register contents left and also generates a mask that is
ANDed with the result of stripping off some of the bits. It and similar instruc-
tions can efficiently extract and insert bit fields in a struct.

The control instructions differ from the instruction sets discussed hereto-
fore in the way conditions are recorded and tested and the way a return
address is saved and restored. The conditional branches bc, bca, bcl, and
bcla test bits in the 32-bit condition register. The branch address is a signed
page-zero address (ba and bla) or a relative address (b and bl). Four bits
are typically used for each condition. Within each 4-bit set, the leftmost bit
indicates less than; the next bit indicates greater than; the next bit indicates
equal to; and the last bit indicates that the numbers are not able to be com-
puted (an overflow occurred) or compared (they are unordered). There are
eight sets of these 4-bit conditions. The leftmost set reflects integer arith-
metic condition codes, modified by an arithmetic instruction if a period is
put at the end of the opcode mnemonic. A subsequent conditional branch
instruction reacts to the arithmetic instruction’s result condition. The second
leftmost set reflects floating-point exceptions. The other six sets are updated
by compare instructions; some of its instruction bits designate which set in
the condition register is updated. In effect, the conditional branch instruction
contains a bit number for a bit in this condition register, and the branch takes
place if the selected bit is true. There are also similar unconditional branch
instructions b, ba, bl, and bla.

Branch instructions (bl, bla, bcl, and bcla) save the address of the
next instruction in the link register (Table 12.7). This link register can later
be moved into the program counter to return from the subroutine by a blr
instruction (which can also be conditional). If a subroutine is to call another
subroutine, the contents of the link register must be saved. While there is no
hardware stack on which return addresses are automatically saved, the pro-
grammer can implement a software stack, using any register as a software
stack pointer. The link register can be saved on this stack just after the sub-
routine is entered and can be restored into the link register when the sub-
routine is about to be exited by a blr instruction. It should be noted that
this overhead, of saving the return address on a stack and restoring it, is only
needed if the subroutine calls subroutines. It should be further noted that if
a subroutine is called 10 times, the code to save and restore the return address
is put just once in the subroutine, not in each occurrence where the subrou-
tine is called. Thus, even though hardware does less work in a RISC proces-
sor than in a conventional CISC processor, these tradeoffs can be justifiable.

The 500 series has a count register able to be used in decrement and count
instructions. This register can also be used like the link register to save return
addresses.

To conclude this section, in Figure 12.12 we illustrate the overused inner
product subroutine, passing the parameters in registers by value. High-
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number registers are easy to load and unload, using load multiple and store
multiple instructions. Therefore we assume that the vector elements V[0] and
V[1] are in general registers 27 and 28, the vector elements W[0] and W[1]
are in general registers 29 and 30, and the inner product result is left in 
register 31. So this example doesn’t use any local variables.

The M•CORE Series
Motorola has recently introduced the M•CORE series of RISC microcon-
trollers. Memory in an M•CORE processor is organized similarly to the
memory in the 3xx family. This processor has user and supervisor modes.
The user mode has 16 general-purpose registers, a program counter PC, and
a carry bit C. The supervisor mode has this set and an alternate set of these
general purpose registers and 13 special-purpose status and control registers
(Figure 12.13). We will mainly discuss the user mode in this overview.

The instructions are described in Table 12.8. LD.B can load any general
purpose register (GPR) with a byte from memory at an effective address that
is the sum of a GPR and a 4-bit unsigned constant multiplied by the data
size. LD.H similarly loads a 16-bit word, and LD.W loads a 32-bit word.
These load instructions load the right bits of the GPR, filling the other bits
with zeros. Similarly, ST.B, ST.H, and ST.W store a GPR into memory
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* SUBROUTINE DOTPRD 
DOTPRD: MULU r26,r27,r28 ; Multiply V(0) by W(0), result in r26
 MULU r31,r29,r30 ; Multiply V(1) by W(1), result in r31
 ADD r31,r31,r26 ; Dot product into r31
 BLR  ; Return link register to program counter

FIGURE 12.12. A 500 Series Dot Product Subroutine
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Move Arithmetic

LD.[B, H, W] ST. [B, H, W] ADDC ADDI  ADDU
MOV        MOVI         IRW RSUB RSUBI SUBC SUBI SUBU
MOVT        MOVF MULT DIVS  DIVU
LDM        STM CMPHS CMPLT CMPLTI 
LDQ        STQ CMPNE CMPNEI 
MFCR        MTCR DECF DECT  INCF INCT
MVC        MVCV DECGT DECLT DECNE
CLRF        CLRT ABS FFI IXH IXW
TSFNBZ

Logical Edit

AND  ANDI ANDN ASR ASRC ASRI
OR   XOR  NOT LSL LSR LSLC LSRC LSLI LSRI
BCLRI BSETI HTSTI BREV ROTLI XSR
BMASKI BGENI BGENR SEXTB SEXTH ZEXTB ZEXTH
TST  XTRB0 XTRB1 XTRB2 XTRB3

Control

BR BF BT JMP JMPI LOOPT
BSR JSR JSRI TRAP RIE RFI
BKPT WAIT DOZE STOP SYNC

Table 12.8 Instructions for the M·CORE Series



using the effective address discussed for LD.B. The LRW instruction can load
a GPR with a 32-bit word at an effective address that is the program counter
PC added to an 8-bit offset, MOV can move any GPR to any GPR, and MOVI
can write a 7-bit unsigned immediate number into a GPR. MTCR can move
any GPR to any special register, and MFCR can move any special register to
any GPR. LDM permits a group of GPRs, from a register number designated
by an operand, to register r15, using register R0 as a pointer, and STM stores
such a group of registers. Similarly, LDQ and STQ load and store GPR reg-
isters r4 to r7 using any GPR as a pointer.

One of the interesting features of this microcontroller is that it has only
one condition code bit, which is affected by only a few of the instructions.
Generally, the result of an operation is put in a GPR, a compare instruction
is executed to put the result of this result into C, and an instruction tests this
bit to branch to another location. Instruction MOVT (and MOVF) transfers any
GPR to any GPR if the C bit is true (false). Instruction MOVC (or MOVC)
transfers C (or C complemented) to the low-order bit of any GPR, filling the
other bits with zero. TSTNBZ sets C if none of the 4 bytes of the designated
GPR is zero; otherwise it clears C. The clear instruction clears if the C bit
is true (CLRT) or if it is false (CLRF).

M•CORE arithmetic instructions include addition (ADDU) to add a GPC
to a GPC, add immediate (ADDI), add with carry (ADDC), similar subtract
(SUBU), subtract immediate (SUBI), subtract with carry (SUBC), reverse
subtract (RSUB), and reverse subtract immediate (RSUBI), wherein the 
subtrahends are reversed.

Compare instructions set the C bit if one GPR is higher than or the same
as another (CMPHS), if one GPR is less than another (CMPLT), if a GPR is
less than an immediate operand (CMPLTI), or if a GPR is not equal to
another GPR (CMPNE) or to an immediate operand (CMPNEI). CMPLT and
CMPLTI are signed compares; the others are unsigned compares.

The arithmetic instructions include unsigned multiplication (MULT) and
division (DIVU) and signed division (DIVS). Multiplication multiplies one
GPR by another and puts the product in a 32-bit product in the first GPR.
Division always divides any GPR by r1, putting the quotient in the GPR.

The increment instruction adds one to a GPR if the C bit is true (INCT)
or if it is false (INCF), and the decrement instruction subtracts one from a
GPR if the C bit is true (DECT) or if it is false (DECF). Other decrement
instructions subtract one from a GPR and set the C bit if the result is greater
than zero (DECGT), if the result is less than zero (DECLT), or if the result is
not zero (DECNE).

M•CORE has some unusual arithmetic instructions. The ABS instruction
gets the absolute value of a GPR’s data. The FF1 instruction finds the first one
of a bit pattern in a GPR. This instruction is useful in emulating floating-point
arithmetic (alternatively a floating-point hardware accelerator can be put on
the chip to more quickly execute floating-point instructions). Index instruc-
tionsIXH andIXW add one GPR to another, multiplying one of the addends by
two or four. These are useful in calculating an address of an element of a vector.
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M•CORE logical instructions include AND to AND, a GPC to a GPC;
ANDI to AND, an immediate operand to a GPC; and ANDN to AND, the neg-
ative of a GPC to a GPC. TST sets C if the AND of two designated GPRs
is nonzero; otherwise it clears C. It has an OR instruction to OR a GPC to a
GPC, an XOR instruction to exclusive-OR a GPC to a GPC, and an instruc-
tion, NOT, to complement all bits in a GPC. Further logical instructions are
BCLRI, which clears a bit of a GPR specified by an immediate operand;
BSETI, which sets a bit of a GPR specified by an immediate operand; and
BTSTI, which puts a bit of a GPR, specified by an immediate operand, into
the C bit. The instruction BGENI sets a bit of a GPR specified by an imme-
diate operand and clears all other bits, and BGENR sets a bit of a GPR selected
by another GPR. BMASKI sets all bits of a GPR to the right of a bit selected
by an immediate operand.

M•CORE edit instructions include ASR to shift a GPR right arithmeti-
cally a number of bits specified by a GPR; ASRC to shift a GPR right arith-
metically one bit, putting the bit shifted out into C; ASRI to shift a GPR
right arithmetically a number of bits specified by an immediate operand; and
similar instructions LSL, LSR, LSRC, LSLI, LSLRI, and ROTLI. The last
instruction is a circular shift of a GPR. The BREV instruction reverses the
bits in a GPR. XSR shifts a GPR 1 bit right, putting the bit shifted out into
the C bit. SEXTB sign extends a GPR from 8 to 32 bits, SEXTH sign extends
a GPR from 16 to 32 bits, ZEXTB zero extends a GPR from 8 to 32 bits, and
ZEXTH zero extends a GPR from 16 to 32 bits. XTRB0 extracts byte 0 (the
LSbyte) of any GPR to GPR register 1. XTRB1 similarly extracts byte 1 of
any GPR, XTRB2 extracts byte 2, and XTRB3 extracts byte 3.

Addition and subtraction are unsigned, there being no V condition code
bit needed for a signed overflow check. But because data moved into a GPR
can be sign extended using SEXTB or SEXTH and addition and subtraction
are 32-bit operations, a 32-bit signed overflow is unlikely. Before a store
instruction such as ST.B or ST.H, the high bits, which are not stored, can
be checked to see if they are all zeros or all ones.

The reader should observe that the M•CORE architecture has unusually
extensive logic and edit instructions. These instructions are valuable for I/O
operations. However, there are comparatively fewer arithmetic and move
instructions in this RISC processor.

M•CORE control instructions include BR to branch to a relative address
using an 11-bit relative address, BRT to branch if C is true, and BRF to branch
if C is false. JMP copies a GPR into the PC, and JMPI jumps indirectly to
an address at a word specified by an 8-bit displacement. If the C bit is 1, the
LOOPT instruction decrements a GPR and branches backwards up to 15
instructions to implement a loop. Otherwise it decrements the GPR and 
continues to execute the instruction below it.

JSR saves the PC in GPR register 15 and copies a GPR into the PC, and
JSRI saves the PC in GPR register 15 and jumps indirectly to an address at
a word specified by an 8-bit displacement. TRAP, having a 2-bit immediate
operand, effects an exception like an interrupt, through an address stored 
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at 0x40 to 0x4f. TRAP and other exceptions and interrupts save the pro-
cessor status register (special purpose register 0) and return address in
status/control registers. The instruction RTE returns from an exception, and
RFI returns from a fast interrupt, restoring the saved PC and processor status
register.

The instruction BKPT causes a breakpoint exception. It can be used 
to stop a program so that the debugger can examine memory or registers 
and resume. WAIT causes the processor to enter low-power wait mode in
which all peripherals continue to run, and DOZE causes the processor to 
enter low-power doze mode in which some peripherals continue to run.
STOP causes the processor to enter low-power stop mode. The MMC2001,
a first implementation of the M•CORE family, uses 40 mA at 3.3 volts. Both
wait and doze modes have current drain of 3 mA, and the stop mode has
current drain of only 60 mA. SYNC causes the processor to suspend, fetch-
ing new instructions until all previously fetched instructions complete 
execution.

To conclude this section, in Figure 12.14 we illustrate the overused inner
product subroutine again, passing the parameters in registers by value. Upon
input, GPR r1 has V[0], r2 has V[1], r3 has W[0], and r4 has W[1], and upon
exit, r1 contains the result.

Selecting a Microcontroller for an Application
Suppose you are designing a product that will have a microprocessor in it.
Which one should you use? You have to look at many different alternatives,
such as the ones we looked at in this chapter and similar microcomputers
made by other companies. You should not select one with which you are very
familiar, such as the 6812, or one that you are overwhelmed with, such as
the 500 series, unless you have good reason to select it. You have to analyze
the needs of the application to pick the most suitable microcomputer. Smaller
computers are less costly, and larger computers make it easier to write large
programs. However, many of the techniques are the same as those you have
already learned: passing parameters, handling local variables, writing clear
programs, and testing them. You are prepared to learn to read the 68300
series, 500 series, or M•CORE family programs. However, the greater size
and complexity of these microcomputers requires longer to master all of their
peculiarities than smaller microcomputers to enable you to fluently read their
programs.
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* SUBROUTINE DOTPRD: a JSR/BSR instruction puts the return address into R15
*
DOTPRD: MUL r1,r3 ; Multiply V(0) by W(0), result in r1

MUL r2,r4 ; Multiply V(1) by W(1), result in r2
ADD r1,r2 ; Dot product into r1
JMP r15 ; Return R15 to program counter

FIGURE 12.14. An M•CORE Dot Product Subroutine
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Generally, the larger the microprocessor, the easier it is to write large pro-
grams. The 68300 series, 500 series, and M•CORE family have more capa-
bilities to handle high-level languages, such as C or C++, and have an
instruction set that allows assembly-language programs to be written that can
handle fairly complex operations in short fashion (such as the LINK instruc-
tion). It is easy to say that the larger the microprocessor, the better, and to
select the largest one you can get. But consider some other aspects.

The smaller microcomputers such as the 6805 are very inexpensive. A
version of this 6805 sells for only 50 cents. You can build a fully function-
ing microcomputer using just the 6805 and a couple of resistors and capac-
itors. The 68300 series requires external SRAM and ROM to make a working
computer. The cost of the integrated circuits, the printed circuit board, and
the testing needed to get the board working make the 68300 series system
more than an order of magnitude more expensive than the 6805 system. An
M•CORE microcontroller, running with a 32 MHz clock, can require more
than a two-layer printed circuit board. Multilayer boards are significantly
more expensive than one- or two-layer boards. This can make a big differ-
ence to the cost of your product, especially if you intend to make thousands
of copies of the product.

The trend toward networking should be observed. If you divide your
problem in half, each half may fit on a smaller microcomputer. We once read
a news article that claimed the Boeing 767 jet had over 1000 microcom-
puters scattered throughout the wing tip, landing gear, and cockpit to control
the plane. The distributed computer system saved wire and thus weight.
Offices are using personal computers so that each person has a microcom-
puter dedicated to his or her work rather than time-sharing a large computer.
Small jobs or small parts of a larger job should be put on small computers.

The main criterion for selecting a microprocessor (within a family such
as the Motorola family described here) is the size of the program stored in
it. The microcomputer should be able to store the programs and data, with a
little to spare to allow for correcting errors or adding features. That is, as the
program and data approach the maximum size of the microprocessor, the cost
of programming rises very sharply, because squeezing a few extra instruc-
tions in will require moving subroutines around and cause errors to propa-
gate as assumptions are forgotten and violated. The 6805 and its successor,
the 6808, are the best choices when the program size is about 4K bytes. The
6811, and its successor, the 6812, are better when the size is above that but
less than about 32K bytes. Generally the successors, the 6808 and 6812,
should be used on new designs, but the older 6805 and 6811 may be less
costly and fully adequate. The 68300 series, 500 series, and M•CORE are
the best choices when the program size exceeds 64K bytes.

Other criteria include the requirements for I/O and speed. All the micro-
controllers have some peripherals in the MPU chip. If the application needs
more than the chip has, the advantage of that chip relative to memory size
may be overshadowed by the extra cost of peripherals needed for the appli-
cation. Speed can be a factor. Especially in communication systems and



control of electronic systems, the fastest microprocessor may be needed.
However, speed is often overrated. In most systems having I/O, the micro-
processor will spend much, if not most, of its time waiting for I/O. The faster
microprocessor will spend more time waiting. If you can select faster I/O
(such as a Winchester disk in place of a floppy disk) the overall performance
of the system will be much better than if you spend a great deal more money
on the microprocessor.

A final and often overwhelming criterion is available software. Your
company may have been using the 6805 for years and may therefore have
millions of lines of code for it. This may force you to select the 6805 or the
upward compatible 6808, even though the 6811 or 6812 may be indicated
due to memory size, I/O, or speed requirements. Often, the availability of
operating systems and high-level languages selects the microprocessor. The
Z80 microprocessor from Zilog and the 8080 to 8085 microprocessors from
Intel run the popular Microsoft operating system, which will support a very
wide range of languages and other programs for business data processing.

This section has pointed to the need to consider different microproces-
sors. You should be able to select a microprocessor for an application and
defend your selection. You should extend your understanding and apprecia-
tion of microprocessors made by other manufacturers.

Summary
This chapter has examined other microcomputers related to the 6812. There
are smaller microcomputers, such as the 6805 and the 6811, that are ideal
for controlling appliances and small systems, and there are larger micro-
computers, such as the 68300 series, that are excellent for larger programs.
Moreover, having learned to program the 6812, you are well prepared to learn
the languages for the 6805 and the 68300 series. It is rather like learning a
second foreign language after you have learned the first. Although you may
err by mixing up the languages, you should find the second easier to learn
because you have been through the experience with the first language. After
learning these languages for the Motorola family, you should be prepared to
learn the languages for other microcomputers and become a multilingual 
programmer.

This text has taken you through the world of microcomputer program-
ming. You have learned how the microcomputer actually works at the level
of abstraction that lets you use it wisely. You have learned the instruction set
and addressing modes of a good microcomputer and have used them to learn
good techniques for handling subroutine parameters, local variables, data
structures, arithmetic operations, and input-output. You are prepared to
program small microcomputers such as the 6805, which will be used in nooks
and crannies all over; and you have learned a little about programming the
68300 series, which will introduce you to programming larger computers.
But that should be no problem. A computer is still a computer, whether small
or large, and programming it is essentially the same.
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Do You Know These Terms?
See the end of Chapter 1 for instructions.

reduced instruction set computer
(RISC)

complex instruction set computer
(CISC)

PROBLEMS

1. Write a 6811 subroutine DOTPRD that passes parameters after the call
as that subroutine was written in Figure 6.25. It should be reentrant, posi-
tion independent, and as short as possible.

2. Write a shortest 6811 subroutine SRCH that finds a string of ASCII char-
acters in a text. The label STRNG is the address of the first letter of the
string, STLEN is the length of the string, TXT is the address of the first
letter of the text, TXLEN is the length of the text, and the subroutine will
exit with C = 1 and the address of the first occurrence of the first letter
of the string in the text in X, if it is found, or C = 0 if it is not found.

3. Write a position-independent reentrant 6811 subroutine QUAD that eval-
uates the quadratic function ax2 + bx + c, where unsigned 8-bit argu-
ments a, b, c, and x are passed on the stack from low to high addresses,
respectively, named PARA, PARB, PARC, and PARX, and the output is
returned in register B. In order to demonstrate local variables, as part of
your subroutine, store ax2 in an 8-bit local variable on the stack. Write
a calling sequence that writes 1, 2, 3, and 4 into PARA, PARB, PARC,
and PARX, calls QUAD, and moves the result to global variable ANSWER.

4. Write a shortest position-independent reentrant 6811 subroutine PAR
that computes the parallel resistance of two resistors R1 and R2, where
unsigned 8-bit arguments are passed on the stack and named R1 and R2,
and the output is returned in register B. In order to demonstrate local
variables, as part of your subroutine, store R1 times R2 in a 16-bit local
variable on the stack. Write a calling sequence that writes 100 into R1
and R2, calls PAR, and moves the result to global variable ANSWER.

5. Write a shortest reentrant 6808 SWI interrupt handler AAX that will add
A to X.

6. Write a shortest reentrant 6808 SWI interrupt handler EMUL that will
multiply A by H:X, putting the result in H:X, exactly as the 6812 EMUL
works. Ignore CC bits.

7. Write a position-independent reentrant 6808 subroutine QUAD that eval-
uates the quadratic function ax2 + bx + c, where unsigned 8-bit argu-
ments a, b, c, and x are passed on the stack from low to high addresses,
respectively, named PARA, PARB, PARC, and PARX, and the output is
returned in register A. In order to demonstrate local variables, as part of
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your subroutine, store ax2 in an 8-bit local variable on the stack. Write
a calling sequence that writes 1, 2, 3, and 4 into PARA, PARB, PARC,
and PARX, calls QUAD, and moves the result to global variable ANSWER.

8. Write a shortest position-independent reentrant 6808 subroutine PAR
that computes the parallel resistance of two resistors R1 and R2, where
unsigned 8-bit arguments are passed on the stack, and named R1 and
R2, and the output is returned in register B. In order to demonstrate local
variables, as part of your subroutine, store R1 times R2 in an 16-bit local
variable on the stack. Write a calling sequence that writes 100 into R1
and R2, calls PAR, and moves the result to global variable ANSWER.

9. Write a shortest reentrant MC6805 SWI interrupt handler PSHX that will
push X on the stack as the 6811 instruction PSHX works. Assume the
location of SWI is at $281. This instruction must be reentrant.

10. Write a shortest 6805 subroutine MOVE that can move any number of
words from any location to any other location in memory. The calling
sequence will put the beginning address of the source in page-zero global
variable SRC, the beginning address of the destination in DST, and the
length in LEN. Use impure coding if necessary.

11. Write a position-independent reentrant 6805 subroutine QUAD that eval-
uates the quadratic function ax2 + bx + c, where unsigned 8-bit argu-
ments a, b, c, and x are passed as globals named PARA, PARB, PARC,
and PARX, and the output is returned in register A. In order to demon-
strate the absence of local variables, as part of your subroutine, store ax2

in an 8-bit global variable TEMP. Write a calling sequence that writes 1,
2, 3, and 4 into PARA, PARB, PARC, and PARX, calls QUAD, and moves
the result to global variable ANSWER.

12. Write a shortest position-independent reentrant 6805 subroutine PAR
that computes the parallel resistance of two resistors R1 and R2, where
unsigned 8-bit arguments are passed as globals named R1 and R2, and
the output is returned in register A. In order to demonstrate the absence
of local variables, as part of your subroutine, store R1 times R2 in a 16-
bit global variable TEMP. Write a calling sequence that writes 100 into
R1 and R2, calls PAR, and moves the result to global variable ANSWER.

13. Write a shortest 6805 program segment that will jump to subroutines L0
to L7 depending on the value of X. If (X) = 0, jump to subroutine L0,
if (X) = 1, jump to subroutine Ll, and so on. Assume that there is a table
JTBL as shown below:

JTBL DC.W L0, L1, L2, L3, L4, L5, L6, L7

Use self-modifying code if necessary.

14. Write a shortest 6805 subroutine to divide the unsigned number in X by
the unsigned number in A, leaving the quotient in X and the remainder
in A. Use only TEMP1 and TEMP2 to store variables needed by the 
subroutine.
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15. Write a shortest 6805 subroutine to clear bit n of a 75-bit vector similar
to problem 8 in Chapter 3. The instruction BCLR N,M clears bit N of
byte M and has opcode $11 + 2 * N followed by offset M. Use self-
modifying code.

16. Write an 6805 subroutine to transmit the bits of the 75-bit vector set by
the program segment described in problem 8 in Chapter 3, bit 0 first,
serially through the least-significant bit of output port A at location 0.
Each time a bit is sent out, the second-least-significant bit of that output
port is pulsed high and then low. The least-significant bit happens to be
connected to a serial data input, and the second-least-significant bit is
connected to a clock of a shift register that controls display lights.

17. Write a shortest 68300 series subroutine CLRREG to clear all the regis-
ters except A7. Assume that there is a block of 60 bytes of zeros, after
LOC0, that is not in part of your program (i.e., use 32-bit direct address-
ing, and do not count these bytes when calculating the length of your
subroutine). Be careful, because this one must be checked out, and the
obvious solutions do not work.

18. Write a fastest 68300 series subroutine MULT that multiplies two 32-bit
unsigned binary numbers in D0 and Dl, to produce a 64-bit product in
D0 : D1.

19. Write a position-independent, reentrant, fastest 68300 series subroutine
DOTPRD that passes parameters on the stack, in the same manner as that
subroutine in Figure 6.21.

20. Write a position-independent reentrant 68300 series subroutine QUAD
that evaluates the quadratic function ax2 + bx + c, where signed 16-bit
arguments a, b, c, and x are passed on the stack from low to high
addresses, respectively, named PARA, PARB, PARC, and PARX, and the
output is returned in register D0. In order to demonstrate local variables,
as part of your subroutine, store ax2 in a 16-bit local variable on the
stack. Write a calling sequence that writes 1, 2, 3, and 4 into PARA,
PARB, PARC, and PARX, calls QUAD, and moves the result to global
variable ANSWER.

21. Write a shortest position-independent reentrant 68300 series subroutine
PAR that computes the parallel resistance of two resistors R1 and R2,
where unsigned 16-bit arguments are passed on the stack and named R1
and R2, and the output is returned in register D0. In order to demon-
strate local variables, as part of your subroutine, store R1 times R2 in a
16-bit local variable on the stack. Write a calling sequence that writes
100 into R1 and R2, calls PAR, and moves the result to global variable
ANSWER.

22. Write a fastest position-independent, reentrant, 68300 series subroutine
CAH that converts a string of ASCII characters representing a hexadec-
imal number to an unsigned binary number in D0. The first character is
pointed to by A0, and the length is in D0.
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23. Write a position-independent reentrant 500 series subroutine QUAD that
evaluates the quadratic function ax2 + bx + c, where signed 16-bit argu-
ments a, b, c, and x are passed in registers r27, r28, r29, and r30, respec-
tively, and the output is returned in register r31. In order to demonstrate
local variables, as part of your subroutine, store ax2 in register r26. Write
a calling sequence that writes 1, 2, 3, and 4 into the four registers holding
a through x, respectively, and moves the result to global variable
ANSWER.

24. Write a shortest position-independent reentrant 500 series subroutine
PAR that computes the parallel resistance of two resistors R1 and R2,
where unsigned 16-bit arguments are passed in registers r29 and r30,
and the output is returned in register r31. In order to demonstrate local
variables, as part of your subroutine, store R1 times R2 in a 16-bit local
variable in register r28. Write a calling sequence that writes 100 into R1
and R2, calls PAR, and moves the result to global variable ANSWER.

25. Select the most suitable microprocessor or microcomputer among the
6805, 6811, 6812, or M•CORE for the following applications.

(a) A graphics terminal needing 250K bytes of programs and 100K
bytes of data

(b) A motor controller, storing a l5K program, needing to quickly eval-
uate polynomials

(c) A text editor for a “smart terminal” needing 8K for programs and
40K for data storage

(d) A keyless entry system (combination lock for a door) requiring $D0
bytes of program memory and two parallel I/O ports
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This module from Axiom Manufacturing has an MMC2001 on a small plug-
in board that can be purchased separately, and a mother board that has exter-
nal flash memory, sockets for debug software, and LCD and keypad
interfaces.
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This appendix contains material needed for the rest of the book that is usually
found in an introductory course on logic design. The two topics are the rep-
resentation of integers with different bases and binary arithmetic with
unsigned and two’s-complement numbers.

Number Representations
If b and m are positive integers, and if N is a nonnegative integer less than
bm, then N can be expressed uniquely with a finite series

N = cm–1 * bm-1 + cm–2 * bm-2 + . . . + c0 * b0 (1)

where 0 £ ci < b for 0 £ i £ m - 1. The integer b is called the base or radix
and the sequence cm–1 . . . c0 is called a base-b representation of N. If 
b = 2, the digits cm–1 . . . c0 are called bits, and the sequence cm–1 . . . c0
is called an m-bit binary representation of N. Binary, octal (base 8), and
hexadecimal (base 16) representations, as well as the ordinary decimal rep-
resentation, are the ones used when discussing computers with hexadecimal
being particularly useful with microcontrollers. When the hexadecimal rep-
resentation is used, the numbers 10 through 15 are replaced by the letters A
through F, respectively, so that hexadecimal sequences such as 112 will be
unambiguous without the use of commas (e.g., without commas, 112 could
be interpreted as 1,1,2, or 11,2, or 1,12, which are the decimal numbers 274,
178, or 28, respectively). Unless stated otherwise, all numbers will be given
in decimal and, when confusion is possible, a binary sequence will be pre-
ceded by a % and a hexadecimal sequence by a $. For example, 110 denotes
the integer one hundred ten, %110 denotes the integer six, and $110 denotes
the integer two hundred seventy-two.

To go from a base-b representation of N to its decimal representation,
one has only to use (1). To go from decimal to base b, notice that

N = c0 + c1 * b1 + . . . + cm–1 * bm-1 =
c0 + b * (c1 + b * (c2 + . . . ) . . .)
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so that dividing N by b yields a remainder c0. Dividing the quotient by b
again yields a remainder equal to c1 and so on. Although this is a fairly con-
venient method with a calculator, we shall see later that there is a more com-
putationally efficient way to do it with an 8-bit microprocessor.

To go from binary to hexadecimal or octal, one only needs to generalize
from the example:

%1101 0011 1011 = $D3B

Thus, to go from binary to hexadecimal, one first partitions the binary rep-
resentation into groups of four 0s and 1s from right to left, adding leading
0s to get an exact multiple of four 0s and 1s, and then represents each group
of four 0s and 1s by its hexadecimal equivalent. To go from hexadecimal to
binary is just the reverse of this process.

Binary Arithmetic
One can add the binary representations of unsigned numbers exactly like the
addition of decimal representations, except that a carry is generated when 2
is obtained as a sum of particular bits. For example,

1010 1100 1110
+0111 +0111 +0111
10001 10011 10101

Notice that when two 4-bit representations are added and a carry is produced
from adding the last or most significant bits, 5 bits are needed to represent
the sum.

Similarly, borrows are generated when 1 is subtracted from 0 for a par-
ticular bit. For example,

1111 1011 1000
-0101 +0100 -1001
1010 0111 (1)1111

In the last of the examples above, we had to borrow out of the most signif-
icant bit, effectively loaning the first number 24 to complete the subtraction.
We have put a “(1)” before the 4-bit result to indicate this borrow. Of course,
when a borrow occurs out of the most significant bit, the number being sub-
tracted is larger than the number that we are subtracting it from.

When handling numbers in microprocessors, one usually has instructions
that add and subtract m-bit numbers, yielding an m-bit result and a carry bit.
Labeled C, the carry bit is put equal to the carry out of the most significant
bit after an add instruction, while for subtraction, it is put equal to the borrow
out of the most significant bit. The bit C thus indicates unsigned overflow;
that is, it equals 1 when the addition of two positive m-bit numbers produces
a result that cannot be expressed with m-bits, while with subtraction, it equals
1 when a positive number is subtracted from a smaller positive number so
that the negative result cannot be expressed with equation (1).
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We can picture the m-bit result of addition and subtraction of these 
nonnegative numbers (also called unsigned numbers) using Figure A1.1,
where m is taken to be 4 bits. For example, to find the representation of M
+ N, one moves N positions clockwise from the representation of M while,
for M - N, one moves N positions counterclockwise. Mathematically speak-
ing, we are doing our addition and subtraction modulo-16 when we truncate
the result to 4 bits. In particular, we get all the usual answers as long as
unsigned overflow does not occur, but with overflow, 9 + 8 is 1, 8 - 9 is 15,
and so on.

We also want some way of representing negative numbers. If we restrict
ourselves to m binary digits cm–1, c0, then we can clearly represent 2m dif-
ferent integers. For example, with (1) we can represent all of the nonnega-
tive integers in the range 0 to 2m - 1. Of course, only nonnegative integers
are represented with (1), so that another representation is needed to assign
negative integers to some of the m-bit sequences. With the usual decimal
notation, plus and minus signs are used to distinguish between positive and
negative numbers. Restricting ourselves to binary representations, the natural
counterpart of this decimal convention is to use the first bit as a sign bit. For
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example, put cm–1 equal to 1 if N is negative, and put cm-1 equal to 0 if N is
positive or zero. The remaining binary digits cm–2 . . . , c0 are then used
to represent the magnitude of N with (1).

This particular representation, called the signed-magnitude representa-
tion, has two problems. First, carrying out addition and subtraction is clumsy,
particularly from a logic design point of view. Second, the number zero has
two representations, 10 . . . 0 and 00 . . . 0, which, at best, has a perplexing
feeling to it. The following representation, the two’s-complement represen-
tation, essentially solves both of these problems.

Looking again at Figure A1.1, notice that when we subtract the repre-
sentation of N from M, we get the same thing as adding the representation
of M to that of 24 - N because moving N positions counterclockwise is the
same thing as moving clockwise 24 - N positions. Thus, as far as modulo-
16 addition is concerned, M - 1 = M + (-1) is the same as M + 15, M - 2 =
M + (-2) is the same as M + 14, and so on. Letting -1 be represented with
the sequence for 15, -2 with the sequence for 14, and so on, we get the two’s-
complement representation shown in Figure A1.1 for m = 4.

We choose to represent the negative integers -1 through -8 in Figure
A1.1 because, with this choice, the leading bit is a sign bit, as with the signed
magnitude representation (e.g., 1 for minus, 0 for plus). Additionally, the
number zero, which is now considered positive, is represented by the single
sequence 0000. However, the nicest feature is that the two’s-complement rep-
resentation of M + N is obtained by simply adding the two’s-complement
representations of M and N and truncating to 4 bits. This works, of course,
as long as there is no signed overflow, that is, adding two m-bit two’s-
complement numbers whose sum cannot be represented with an m-bit two’s-
complement number. For addition, notice that signed overflow occurs when,
and only when, the sign of the two representations added are the same but
different from the sign of the result. A similar observation can be made for
the two’s-complement representation of M - N.

We can now summarize the facts for m-bit two’s-complement represen-
tations. With m fixed and -2m-1 £ N < 2m-1, the m-bit two’s-complement rep-
resentation of N is given by:

1. The m-bit representation of N for 0 £ N < 2m-1.

2. The m-bit representation of 2m + N for -2m-1 £ N < 0.

The first bit of the representation is a sign bit and, after a little thought, you
should be able to see that if Cm–1, . . ., C0 is the m-bit two’s-complement
representation of N, then

N = -cm–1 * 2m-1 + cm–2 * 2m-2 + . . . + c0 * 20 (2)

The difference between equations (2) and (1), of course, is that the first term
in (2) is negative. Finally, the two’s-complement representation of M + N is
obtained by adding the two’s-complement representations of M and N and
truncating to m bits. The answer is correct except when signed overflow
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occurs or, equivalently, when the signs of the two representations are the
same but different from that of the result.

If N is positive, its m-bit two’s-complement representation y is just its
ordinary m-bit representation. It is not difficult to see that the m-bit two’s-
complement representation of -N can be obtained by subtracting each bit of
y from 1 and then adding 1 to the result. This procedure, sometimes called
“taking the two’s-complement” of y, works even if N is zero or negative,
with two exceptions. If N is zero, the result needs to be truncated to m bits.
If N = -2m-1, one will just get back the two’s-complement representation of
-2m-1. To see why this works for -2m-1 < N < 2m-1, suppose that y = cm, c0
and let dj = 1 - cj, 0 £ j £ m - 1. Then it is easy to see from (2) that dm–1
. . . d0 is the m-bit two’s-complement representation of -N - 1. That the 
procedure works now follows from the fact above for the addition of two’s-
complement representations.

One situation frequently encountered when two’s-complement represen-
tations are used with microprocessors is that of finding the hexadecimal
equivalent of the 8-bit two’s-complement representation of a negative
number. For example, for a -46 you could find the 8-bit representation of
46, use the technique just mentioned, and then find its hexadecimal equiva-
lent. It would, however, usually be quicker to use a 16’s-complement
approach, that is, convert the number to hexadecimal, subtract each hexa-
decimal digit from 15, and then add 1 to get the result. For example, 46 =
$2E and the 16’s-complement of $2E is $D1 + 1 = $D2, the desired result.
You should try to understand how this works. (See the problems at the end
of this appendix.)

Remarks
The material discussed here can be found in any introductory text on logic
design. We recommend the book Fundamentals of Logic Design, 5th ed., by
C. H. Roth (Brooks/Cole Publishing Co., Belmont, CA, 2004).

PROBLEMS

1. Find the hexadecimal equivalents of the 8-bit two’s-complement repre-
sentations of -44 and -121.

2. Explain why the 16’s-complement technique works when used for calcu-
lations such as problem 1.

3. Suppose that you were going to add a 16-bit two’s-complement repre-
sentation with an 8-bit one. How would you change the 8-bit representa-
tion so that the 16-bit result would be correct? This process is sometimes
called sign extension.

4. Give a simple condition for signed overflow when two’s-complement rep-
resentations are subtracted.
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5. One textbook reason for preferring the two’s-complement representation
of integers over the signed-magnitude representation is that the logic
design of a device that adds and subtracts numbers is simpler. For
example, suppose that M and N have m-bit two’s-complement represen-
tations x and y. To subtract M from N, one can take the two’s-
complement of x and then add it to y, presumably simpler from the logic
design viewpoint than dealing with signed-magnitudes. Does this always
work? Try it with m = 8, N equal to -1, and M equal to -128. What is
the condition for overflow? Does this work when N and M are interpreted
as unsigned numbers? Interpret.

6. Suppose that we add two m-bit representations x and y, where x is the
unsigned representation of M and y is the two’s-complement representa-
tion of N. Will the answer, truncated to m bits, be correct in any sense?
Explain.
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Microcomputers are often used for logic control, timer control, and com-
bined logic-timer control using sequential machines. This appendix covers
these control techniques.

Logic Control
Microcomputers are often used for logic control, wherein one or more
outputs are Boolean functions of one or more inputs. In an instance of this
application, a light is on if switch “1” is closed, or if switch “2” is closed
but switch “3” is not closed. The output that controls the light is true if inputs
from switch “1” are true or else if the input from switch 2 is true and the
input from switch 3 is false. These Boolean functions can be implemented
in C or C++ with expressions such as Out = Switch1 | Switch2
& ! Switch3. They can be implemented in assembler language using
instructions like ANDA, ORA, EORA, and COMA. But outputs are only
dependent on inputs at the exact time the output is produced. Such simple
control, previously done by relays or logic gates, is now often more cheaply
done in inexpensive microcontrollers.

Timer Control
Microcomputers are also used for timer control. Herein, some mechanical or
electrical equipment is controlled by outputting variables to the equipment,
timed by means of delay loops; for instance, a traffic light controller flashes
light patterns on for a few seconds before the next set of lights is flashed on.
Using light-emitting diodes (LEDs) instead of traffic lights (as in Figure
11.9), this controller provides a simple and illuminating laboratory experi-
ment. Moreover, techniques used in this example extend to a broad class of
controllers based on timing and little else.

In the following example, we use the same hardware and port bits to 
run the traffic light. But in §11.3, we used a buffer to store the output
sequence, and read an element from this buffer each second. A better way to
control a traffic light is to use an interpreter because it simplifies writing the
control sequences and storing them in a small microcomputer memory. An
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interpreter is a program that reads values from a data structure such as a
vector, a bit or character string, a list, or a linked list structure to control
something, like drill presses or traffic lights, or to execute interpretive high-
level languages such as BASIC, LISP, or JAVA. You might review Chapter
10 to study data structures before looking at interpreters. Sequence and
sequential machine interpreters are particularly useful in interface applica-
tions. A sequence or cycle interpreter is described first; then a sequential
machine interpreter is introduced by modifying the cycle interpreter. Finally
we introduce synchronization mechanisms to the interpreter.

A traffic light cycle might be described by Figure A2.1. It can be stored
in a two-dimensional array data structure or a table data structure. These will
be developed in turn in the following two examples.

A Two-Dimensional Array Cycle Interpreter
The sequence or cycle can be represented as a two-dimensional (two-D) 
array and interpreted as in Figure A2.2. The data structure and the inter-
preter program are extremely simple. The array has two columns—one to
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LIGHT        TIME

TFFFFT         8 
TFFFTF         2 
FFTTFF         8
FTFTFF         2 

FIGURE A2.1. Traffic Light Sequence

unsigned char array[4][2] = 
     {{ 0x21, 8 }, { 0x22, 2 }, { 0xc, 8 }, { 0x14, 2 }};  

void delay(){asm{
 LDD   #1000 ; Execute outer loop 1000 times 
WT0: LDY   #8000 ; Loop 8000 times (use 2667 for'A4, 'B32) 
WT1: DBNE  Y,WT1 ; Inner loop takes 1 ms
 DBNE  D,WT0 ; Outer loop takes 1 second
}}

void main() { unsigned char i, j; 
  DDRT = 0x3f; // initialize direction register for output
  do   // repeat interpreting the array forever
   for(i=0; i < 4; i++){ // do four step, one for each row 
    PTT = array[i][0];     // output a light pattern 
    for(j=0; j < array[i][1]; j++) // repeat delay as needed
     delay() ;     // delay 1 second
  } 
  while(1); 
}

FIGURE A2.2. A Two-D Array Cycle Interpreter
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store the light pattern and the other to store the time the pattern is output.
Consecutive rows are read, lower indexed element to the output port and
higher indexed element to the delay loop. For a cycle controller, this
sequence repeats indefinitely, as implemented by the do; while(1);
statement.

A Table Cycle Interpreter
Alternatively, a sequence or a cycle might be described by a table, which is
a vector of identical lists (Figure A2.3). Lists are best implemented in C and
C++ as structs. Recall that in order to read or write an element e of a
list declared as struct { char e;} s;, we used s.e. If a pointer
ptr contains the address of such a struct, (*ptr).e is the element e of
the struct pointed to by the pointer ptr. Tables are implemented by writing
a vector index after the struct name, as in struct{ char e;} tbl[2];.
Element e of the ith element (row) of such a table is denoted s[i].e. If a
pointer ptr points to any list (row) in the table, (*ptr).e is the element
e of the row pointed to by the pointer ptr; or the operator -> can be used;
ptr->e is equivalent to (*ptr).e.

A table is not that much more complex than a two-D array. Note that
tables permit different sized elements; for instance, the 6-bit traffic light
element is stored in an 8-bit unsigned char data type, but the time can be
stored in an unsigned int data type, which allows time intervals 
up to 65,535 to be used for a step. Also a struct’s bit field elements 
can be used to pack values into the minimum number of bits that can 
hold them. Although the high-level language programs for the two-D array
and the table use different constructs, in assembly language, both the 
two-D array and the table similarly use an index offset to reach the light
pattern and the delay time. In Figure A2.3, if time were declared
unsigned char instead of unsigned int then the C programs in
Figures A2.2 and A2.3 compile into the same efficient machine language 
programs.
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struct{ unsigned char lights; unsigned int time;} step[4] 
 = {{0x21,8}, {0x22,2}, {0xc,8}, {0x14,2}}; // initialize tbl 

void main() { unsigned char i, j; 
 DDRT = 0x3f;  // initialize direction register for output
 do  

for(i=0; i < 4; i++){ // do four steps 
 PTT = step[i].lights; // output a light pattern 
 for(j=0; j < step[i].time; j++) // repeat delay as needed
  delay();  // use Figure A2.2’s delay() procedure to delay 1 second
}

 while(1); 
}

FIGURE A2.3. A Table Interpreter



Logic-Timer Control
While a sequence or cycle interpreter is useful for a lot of simple applica-
tions, it does not have means to change its sequence of outputs responsive
to an input. To do that, we use a sequential machine interpreter for logic-
timer control. We’ll look at Mealy model sequential machines first. Such an
interpreter can be implemented as a three-dimensional (three-D) array or a
linked list interpreter, as we illustrate in the following sections. Then we’ll
look at Moore model sequential machines in a following section.

Mealy Model Sequential Machines
Logic-timer control interpreters are described by sequential machines. A
Mealy sequential machine is a common model of such machines. While the
model, described soon, is intuitive, if you want more information, consult
almost any book on logic design, such as Fundamentals of Logic Design, 5th
ed., by C. H. Roth (Brooks/Cole Publishing Co., Belmont, CA, 2004);
Chapter 14 is especially helpful. Sequential machines are conceptually
simple and easy to implement in a microcomputer using a three-D array,
table, or linked list interpreter. Briefly, a Mealy sequential machine is a set
S of internal states, a set I of input states, and a set O of output states. At
any moment, the machine is in a present internal state p and has an input
state .ı sent to it. As a function of this pair, it provides an output state w and
a next internal state s.

The Mealy sequential machine can be shown in graphical or tabular repre-
sentation (Figure A2.4). Herein, the machine has internal states S = {A, B,
C}, input states I = {a, b}, and output states O = {0, 1}.The graph shows
internal states as nodes, and, for each input state i, an arc from a node goes to
the next internal state s. Over the arc, the pair representing the input
state/output state i/w is written. In the table, each row describes a present inter-
nal state p and each column, an input state ı; the pair signifying the next inter-
nal state/output state s/w is shown for each internal and output state. Herein, if
the machine were in state A and received input a, it would output 0 and go to
state B; if it received input b, it would output 1 and go back to state A.

Consider an example of a sequential machine operation. If the machine
starts in internal state A and the input a arrives, it goes to state B and outputs
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FIGURE A2.4. A Mealy Sequential Machine



a 0. In fact, if it starts in state A and receives the sequence abbaba of input
states, it goes from internal state A through the internal state sequence
BCABCA and generates output 000001.

To understand the sequential machine interpreter, observe that a Mealy
sequential machine is always in a transition between internal states (an arc
in the graphical and an entry in the tabular representations), and when it gets
to an internal state (node in the graphical, row in the tabular representations),
it senses the input state and enters the indicated transition (arc in the graph-
ical, entry in the tabular representations) out of the node. A sequential
machine can be interpreted so that each transition takes exactly one clock
cycle (synchronous sequential machine), or so that each transition is very
fast and takes an amount of time that is vanishingly small (asynchronous
sequential machine).

Sequential machines are sometimes referred to as finite-state sequential
machines. Beyond these finite-state sequential machines, there are infinite-
state sequential machines, which are modeled by a Turing machine. They
have an infinite number of internal states. However, these do not find much
application in microcontrollers.

Three-D Array Sequential Machine Interpreter
The tabular representation can be stored in a microcomputer in a three-
dimensional array. The interpreter (Figure A2.5) reads an input from the most
significant bit of PTT and sends the output to the least significant bit of PTT.
The input state a is the value 0x00, when read from the input port, and b is
0x80. The internal state is associated with the leftmost array index being
read. If the initial internal state is A, then the program implements this by
initializing an index i to 0 because the enum statement associates state A
with 0. The three-dimensional array is interpreted by the program in Figure
A2.5. Consider running this program in any computer that can compile and
run C or C++ programs, and verify that, for the example in the previous para-
graph, the output sequence is obtained when the input sequence is applied.
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enum{A, B, C}; 
const unsigned char array[3][2][2] = 
 {{{B,0},{A,1}}, {{A,0},{C,0}}, {{A,1},{A,0}}}; 

void main() { unsigned char i, j; 
 DDRT = 1; i = 0; // set up I/O and initial state
 while(1){     // interpret forever
  j = (PTT >> 7) & 1; // get input state 
  PTT = array [i][j][1];// output the output state 
  i = array [i][j][0]; // read out next internal state
}}

}

FIGURE A2.5. A Three-D Array Interpreter



Linked List Sequential Machine Interpreter
Alternatively, a sequential machine can be stored in a microcomputer in a
table data structure that has links as elements, which are indexes or addresses
of other rows (lists) of the table. Such data structures are called linked lists.
Links can be vector indexes or addresses. We present the use of index links
first, and then address links.

The table data structure interpreter using index links is very simple
(Figure A2.6). The present states are represented as two-D arrays whose ele-
ments are lists (structs). The first dimension of this array identifies the
present state, and the second dimension represents the input state. Each list
has elements that are the output state and the index of the next state’s
struct.

The table data structure interpreter using address links is also very simple
(Figure A2.7). Each of the three present states is represented as a vector of
the struct that implements the list, the number of elements of each present
state’s vector being the number of input states. The struct stores the next
internal and the output states for a present internal state and input state com-
bination. The next internal states are the address of the next state’s struct,
and the output state is a value to be put into PTT. These links (addresses to
memory) can be simply loaded into an index register to get to the list to
inspect next, whereas indexes used in arrays need to be multiplied and added
to get this address, so linked list interpreters are faster than array interpreters.
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enum{A, B, C}; 
struct state{char next, out;} tbl[3][2] 
 = {{{B,0},{A,1}}, {{A,0},{C,0}}, {{A,1},{A,0}}}; 

void main(){ unsigned char i, j; 
DDRT = 1; i = A;  // set up I/O and initial state 
while(1) { 

j = (PORTT >> 7) & 1; 
PORTT = tbl[i][j].out; i = tbl[i][j].next; 

}
}

FIGURE A2.6. A Linked List Interpreter Using Indexes

struct state{struct state *next; char out;} 
  *ptr,A[2],B[2],C[2];  
void main(){ 

DDRT = 1; ptr = A; 
A[0].next = B ; A[0].out = 0 ; A[1].next = A ; A[1].out = 1;
B[0].next = A ; B[0].out = 0 ; B[1].next = C ; B[1].out = 0;
C[0].next = A ; C[0].out = 1 ; C[1].next = A ; C[1].out = 0;
while(1)

{ptr+=(PTT >> 7) & 1; PTT = ptr->out; ptr = ptr->next;} 
}

FIGURE A2.7. A Linked List Interpreter Using Addresses



In the while loop, the input number is read from the input port and
added to the pointer ptr. If a “1” is read, ptr is moved from A[0] to
A[1], from B[0] to B[1], or from C[0] to C[1]. Note that increment-
ing a pointer to a data type moves the pointer to the next unit of the data
type rather than the next byte. Then the structure’s element out is output,
and the structure’s element next is put in the pointer ptr. We have to ini-
tialize the structures in the main program, not in the declaration, because
locations of structures must be declared before they are used as entries in a
structure.

A linked list data structure (§10.4) is essentially the same as a sequential
machine implemented with either indexes or pointers. The current internal
state is equivalent to the linked list block the program is “visiting” and the
next internal state is equivalent to the block being pointed to in a field of the
block being “visited.” Note the simple and direct relationship between Figure
A2.4 and Figure A2.8. This intuitive relationship can be used to describe any
linked list structure as a sequential machine, and, without much effort, the
graph can be translated into the equivalent tabular form of linked lists and
stored in the microprocessor memory.

The program using address links (Figure A2.7) is a more conven-
tional implementation of a linked list than the program using index links
(Figure A2.6), appearing in many computer science textbooks. However
index links use up less of the precious memory in a small microcontroller.
The key idea in either case is that the next row to be interpreted is not the
next lower row, but a row specified by reading an index from, or an address
from, one of the list’s elements. For example, after interpreting the row for
state A, if a b is entered, the row for A is interpreted again because the index
or the address read from a column of the table is this same row’s index or
address.
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A Moore Model Interpreter
The preceding examples followed the Mealy sequential machine model.
Another common model is the Moore model (Figure A2.9). In that model,
the internal states uniquely determine the output state, independent of the
input state.

The Moore sequential machine can be shown in graphical or tabular rep-
resentation (Figure A2.9). Like the example of the Mealy model, the machine
has internal states S = {A, B. C}, input states I = {a, b}, and
output states O = {0, 1}. The graph shows present internal states p as
nodes; the pair representing the present internal state p. and output state w is
written p /w in the node. For each input state ı, an arc from a node goes to
the next internal state s, and ı is written over the arc. In the table, each row
describes a present internal state p, each column except the rightmost, an
input state ı, and the rightmost column, an output state w. The next internal
state s is shown for each internal and input state. Herein, if the machine were
in state A it would output 0 and if it received input a, it would go to state
B; if it received input b, it would go back to state A.

The interpreter stays in an internal state (node) until the synchronization
mechanism causes it to leave the state. Then the input state causes a transi-
tion to another internal state (see Figure A2.10). Of course, this is similar to
the Mealy model. The Moore model requires a more complicated struct.
That is why the Mealy model was discussed earlier in this appendix. But you
can build a set of interpreters using the Moore model as a basis. And you
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enum{A, B, C}; 
struct state{char next[2], out;} tbl[3] 
 = { { {B, A}, 0 }, { {A, C}, 0 }, { {A, A}, 1 } }; 

void main(){ unsigned char i, j; 
 DDRT = 1; i = A;  // set up I/O and initial state
 while(1) { 
  j = (PTT >> 7) & 1; 
  PTT = tbl[i].out; i = tbl[i].next[j]; 
 } 
}

FIGURE A2.10. A Linked List Moore Model Interpreter Using Indexes

� A2.4



will find problems that have a cleaner implementation when represented as
a Moore machine than when represented as a Mealy machine.

Synchronized Sequential Machines
We have discussed synchronous and asynchronous sequential machines.
However, for further robustness in the interpreter, the sequential machine can
remain in a transition as long as a specified condition remains in effect (syn-
chronized sequential machine). Where the synchronous sequential machine
can be used rather than the synchronized sequential machine, the latter may
require fewer states, because it may directly represent termination conditions
without adding more internal states. Fundamentally, as discussed in Chapter
11, there are two synchronization mechanisms, real-time delay and gadfly
loop. The condition can be a delay that has to time out, or a level of a signal,
or a rising or falling edge that has to arrive to end the transition, or either.
Generally, checking for both a delay and an edge is useful. If a transition is
normally synchronized by a delay, the gadfly check for an edge allows for a
premature termination of a transition before the timeout occurs. If a transi-
tion is normally synchronized by a gadfly loop for an edge, real-time delay
provides a maximum wait time so that if hardware fails, the controller won’t
lock up waiting forever.

Graphical and Tabular Models
The synchronized sequential machine can be graphically and tabularly rep-
resented by adding two components to Mealy or to the Moore sequential
machine descriptions, representing the delay and a value of a premature ter-
mination signal. We will describe the extension to the Mealy model.

The delay and premature termination signal are appended to the state 
transitions. As a special case, there may be no delay condition to time out the
transition. We note that a delay of zero time is not realizable in the interpreter
so we represent the absence of a delay condition as “0.” The absence of a pre-
mature termination signal can be implemented by providing a “0” for that
entry. Figure A2.11 illustrates a synchronized version of the Mealy sequen-
tial machine shown in Figure A2.4. In Figure A2.11a, the transition out of
internal state A for input state a is the top arc in the center; it outputs state 0
as in Figure A2.4, but it waits or delays in this transition for three time units
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(where a unit of time could be any time convenient to the application, and
attainable in the interpreter). In Figure A2.11b, this is represented by the left
top entry in the table. In Figure A2.11a, the transition out of internal state A
for input state b is the top arc on the left; it outputs state 1 as in Figure A2.4,
but there is no delay (0) and exits this transition when variable i is true. In
Figure A2.11b, this is represented by the right top entry in the table. In Figure
A2.11a, the transition out of internal state B for input state a is the center arc;
it outputs state 0 as in Figure A2.4, but it waits or delays in this transition for
a delay of 5 time units or until variable i is false, whichever comes first. The
symbol “!” indicates a negation, so the transition exits when the variable i
is false. In Figure A2.11b, this is represented by the left entry in the table’s
second row. It should be noted that if the premature exit condition is for a
variable to be true and it is known that the variable is false upon entry to the
transition, this is equivalent to exiting the transition on the signal’s rising
edge, and if the premature exit condition is for a variable to be false and it is
known that the variable is true upon entry to the transition, it is equivalent to
exiting the transition on the signal’s falling edge.

To reiterate, the quadruplet i/w/d/e on a graphical represents input state
i, which must be sensed to enter the transition; output state w, which is what
the machine delivers to the outside world; delay d, which must time out to
leave the transition; and premature exit condition e, which will make the
machine leave the transition before the timeout. The quadruplet s/w/d/e in
a tabular entry represents next internal state s; output state w, which is what
the machine delivers to the outside world; delay d, which must time out to
leave the transition; and premature exit condition e, which will make the
machine leave the transition before the timeout.

A Linked List Interpreter
The synchronized sequential machine can be stored in a three-D array using
indexes or a two-D table using address links. Figure A2.12 illustrates the
address-linked list interpreter. We first describe the table, then the C program
that doesn’t use delays, and finally a C procedure written in embedded
assembler language that is used to implement the delays. We conclude with
a discussion of an important aspect of this example.

The table is similar to the table in Figure A2.7 except that, for the com-
bination of a present internal state p and an input state i, it stores the next
state s, output state w, a delay time d, and the address of a signal e whose
edge indicates premature termination of the transition. The signal e requires
three entries, which are a byte address address, a bit-in-the-byte position
bit, and a bit field complement. The latter indicates if the value is true,
a low signal, or, if the value is false, a high signal in this bit position causes
termination. Table entries are initialized in the declaration of the table, using
a typedef to define state and extern statements to predefine variables
A, B, and C of type state so as to use variable names A, B, and C in the
declaration and initialization of their values and are declared to be const.
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unsigned char i, j;  
typedef const struct state{const struct state *next;char out; 
 long delay; unsigned char *address, bit, complement:1; 
} state; 
extern const state A[2], B[2], C[2]; 
state *p; 
const state A[2] = { { B,0,3,0,0,0 }, { A,1,0,&i,0x80,0 } }, 
 B[2] = { { A,0,5,&j,0x80,1 }, { C,0,2,0,0,0 } }, 
 C[2] = { { A,1,0,&j,0x80,1 }, { A,0,1,0,0,0 } }; 

void sync(long delay, unsigned char complement, 
 unsigned char *address, unsigned char bit) { asm { 
 LDY 5,SP  ; get delay (high-order 16 bits) 
 LDX 7,SP  ; get delay (low-order 16 bits)
 BNE L1   ; special case - if low part is 0, dont adjust high part 
 TBEQ Y,L6  ; if high part is also 0 (if no delay at all) go to end of procedure 
 DC.B $81  ; is CMPA # instruction - skip next byte 
L1:INY    ; if low part is not 0, correct for first delay loop 
 TST 4,SP  ; check if parameter "complement" is true
 BNE L4   ; which results in waiting for selected bit to become 0 
*
L2: BITB  [2,SP] ; (6) check *address for condition to exit 
 BEQ L3   ; (1) premature address if selected bit is 1
 DBNE X,L2  ; (3) count down and repeat 
   DBNE Y,L2  ; count out high-order 16 bits
L3: RTS    ; exit to calling routine 
*
L4: BITB  [2,SP] ; (6) check *address for condition to exit
 BNE L5   ; (1) premature address if selected bit is 0
 DBNE  X,L4  ; (3) count down and repeat 
   DBNE Y,L4    ; count out high-order 16 bits
L5: RTS    ; exit to calling routine 
*
L6: TST 4,SP  ; check if parameter "complement" is true 
 BNE L8   ; if so, wait while selected bit is 1, otherwise wait while it is 0 
L7: BITB  [2,SP] ; check *address for condition to exit 
 BEQ L7   ; exit if selected bit is 1 
 RTS    ; exit to calling routine 
L8: BITB  [2,SP] ; check *address for condition to exit
 BNE L8   ; exit if selected bit is 0 
}}      // exit to calling routine

void main(){  DDRT = 1; p = A; 
 while(1){ 
  p += (PTT >> 7) & 1; PTT = p->out;  
  sync( p->delay, p->complement, p->address, p->bit ); 
  p = p->next; 
 } 
}

FIGURE A2.12. A Linked List Synchronized Sequential Machine Interpreter



This avoids the need to initialize the data entries at the beginning of the main
procedure, as was done in Figure A2.7, or even in the startup procedure
that calls main.

Variables i or j would normally be input ports, but can also be ordinary
global variables that are written by a different program. The argument
address of the variable used to terminate the transition can be any address
in memory such as the address of i or j, and a bit mask bit can select any
bit, in the variable at the address, for synchronization. Generally, in this mask
bit, exactly 1 bit is 1 to select one variable, but if this mask bit is 0, it
indicates the absence of any premature termination. The procedure waits as
long as the selected bit is equal to complement.

The procedure main is the same as Figure A2.7, which you have already
studied, with an additional call to the procedure syncwithin its infinite loop.
sync is passed a delay, which is in units of 5/12 ms in the ’C32 because the
clock is 24 MHz and sync’s inner loop takes 10 memory cycles. This same
procedure would have delays in units of 1.25 ms in the ’A4 and ’B32. The
delay is stored in the table field of type long, and passed as a long param-
eter, to allow for delays up to 2147 s (a little over 1–2 hour) in the ’C32. A
computation can be performed as the delay value is passed from the data
structure to the procedure sync. For instance, if the desired unit of delay
stored in the data structure is in milliseconds but sync has delays in 
units of 5/12 ms, sync’s call is written sync( p->delay * 2400, 
p->complement, p->address, p->bit );.

sync keeps checking the bit in the byte, looping as long as its value is
not the desired termination value, which generally is a bit of an input port,
while counting down the delay value. When either the bit is the desired ter-
mination value or the delay count has timed out, sync exits. If there is no
delay to account for, sync goes to label L6. It checks to see if the comple-
ment of a variable is to be tested, and if so it goes to label L8, where it waits
for the bit chosen by the argument to become 0, and then it exits. If the
uncomplemented variable is to be tested, it goes to label L7, where it waits
for the bit chosen by the argument to become 1, and then it exits. If there is
to be a delay to be timed out, sync goes to label L1, where it checks to see
if the complement of a variable is to be tested. If so, it goes to label L2,
where it waits for the bit chosen by the argument to become 0, while it counts
down the delay value until it becomes 0, and then it exits. If the uncomple-
mented variable is to be tested, it goes to label L2, where it waits for the bit
chosen by the argument to become 1, while it counts down the delay value
until it becomes 0, and then it exits.

If the premature exit occurs if a variable is true, two or more variables
can be checked to exit if either is true, provided they are in the same byte.
So up to eight variables can be checked by the sync procedure for prema-
ture termination of a transition. For this case, in the graphical and tabular
models, the symbol “|” indicates a logic OR of premature exit conditions, so
if the fourth expression is i|j the transition exits when either variable i or
j is true, and the mask bit is written to have “1” for each variable that can
terminate the transition when it is true.
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If the premature exit occurs if a variable is false, two or more variables
can be checked to exit if both are false, provided they are in the same byte.
Again, up to eight variables can be checked by the sync procedure for pre-
mature termination of a transition. For this case, in the graphical and tabular
models, the symbol “&” indicates a logic AND of premature exit conditions,
so if the fourth expression is !i&!j the transition exits when both variables
i and j are false, and the mask bit is written to have “1” for each variable
that can terminate the transition when it is false.

This program illustrates the use of mixed languages. C (or C++) easily
reads data structures and sorts out different alternatives, while assembly lan-
guage more accurately programs delays. C (or C++) structs can be defined
to keep track of all the conditions that the interpreter needs to consider in
order to control the system.

An Interrupt-Based Synchronized Sequential
Machine Interpreter
Instead of programmed I/O using delay loops and gadfly loops, interrupts
can be used to implement state transitions. The 6812 microcontroller can use
its timer module to interrupt when an edge signal appears on its pin or after
a delay time has lapsed. The interrupt handler can read the input state, select
the next internal state, output the output state, and select the next synchro-
nization criterion. This program is more complex, but provides sequential
machine interpretation while the microcontroller is doing other useful work.
The microcontroller can concurrently execute the collection of sequential
machines by implementing each state transition of each machine using inter-
rupts to synchronize to input edges or to delay times. Furthermore, several
sequential machines can be interpreted simultaneously in one microcon-
troller, as discussed below, even while an ordinary application is being exe-
cuted as the main program.

Decomposition of sequential machines leads to simpler designs and is
easy to carry out using interrupts. A serial sequential machine Ss is two
sequential machines S1 and S2 where the input state of Ss is the input state of
S1, the output state of S1 is the input state of S2, and the output state of Ss is
the output state of S2. A parallel sequential machine Sp is two or more sequen-
tial machines S1 and S2 where a state of Sp is one state of S1 and one state of
S2 so the number of states of Sp is the number of states of S1 times the number
of states of S2. For instance, if S1 has internal states {A, B, C} and S2 has
internal states {D, E}, then the product machine S1 has states {AD, AE, BD,
BE, CD, CE}. The next state and output state of S1 are a function of the
present internal state of S1 and the input state of S1. Similarly the next state
and output state of S2 are a function of the present internal state of S2 and
the input state of S2. The output state of Sp is a vector composed of the output
state S1 and output state S2. Large sequential machines can be decomposed
into parallel and series sequential machines. For instance, one sequential
machine can handle keyboard inputs while another machine outputs com-
mands to a motor. Breaking the machine into smaller machines, called
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decomposition, produces machines that are much simpler to implement, and
they can be concurrently interpreted using interrupts.

Choice of an Interpreter
The preceding examples illustrate a variation of sequential machine models
and implementation techniques. When you design an embedded system that
uses a sequential machine model, use the simplest one that provides all the
capabilities that you need. If you are designing a light flasher, you should
observe that a synchronized sequential machine capable of synchronization
based on both delays and edges would be overkill. A synchronous sequential
machine with a clock that is half the period of the light signal is adequate.

You should also be aware that the variations that we have listed are only
representative of interpreters. Using the principles of variations of data struc-
tures covered in Chapter 10, you can further evolve hybrids and extensions
of the models presented in this appendix. For instance, you can have a Moore
model machine in which the synchronization conditions are related to the
arcs as in the Mealy model machine. Don’t be timid about analyzing the
problem and fitting the appropriate interpreter to it.

PROBLEMS

1. Write the traffic light sequence (similar to Figure A2.1) for a light that
is green for 30 s, yellow for 5 s, and red for 35 s, repeatedly, and starts
with the green light just being turned on in the north lane.

2. Write the initialization of array[4][2] (similar to Figure A2.2) for
a light that is green for 30 s, yellow for 5 s, and red for 35 s, repeatedly,
and starts with the green light just being turned on in the north lane.

3. In a paragraph in good English, in less than 50 words, comment on the
skills needed for a person who adjusts the light patterns, when he or she
writes the control information in an array or table that is interpreted,
compared to when he or she writes a program that controls the lights
without being an interpreter (each output pattern would be implemented
as a unique C assignment statement, and each delay would be a differ-
ent for loop, in your program).

4. Write the data to be put into the table step[4] (similar to Figure A2.3)
for a light that is green for 30 s, yellow for 5 s, and red for 35 s, repeat-
edly, and starts with the green light just being turned on in the north lane.

5. Write the tabular representation (similar to Figure A2.4b) for the sequen-
tial machine shown in Figure A2.13.

6. Write the initialization of array[3][3][2] (similar to Figure A2.5)
for the sequential machine shown in Figure A2.13.

7. Write the initialization of tbl[3][3] (similar to Figure A2.6) for the
sequential machine shown in Figure A2.13.
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8. Write the tabular representation (similar to Figure A2.4b) for the sequen-
tial machine shown in Figure A2.14.

9. Write the initialization of array[3][3][2] (similar to Figure A2.5)
for the sequential machine shown in Figure A2.14.

10. Write the initialization of tbl[3][3] (similar to Figure A2.6) for the
sequential machine shown in Figure A2.14.

12. Write the initialization of A[3], B[3], C[3] (similar to Figure
A2.7) for the sequential machine shown in Figure A2.14.

13. Write a graphical representation of a Mealy sequential machine that
describes the keyless entry system implemented for problem 6 in
Chapter 11.

14. Write the tabular representation (similar to Figure A2.9b) for the sequen-
tial machine shown in Figure A2.15.

15. Write the initialization of tbl[3] (similar to Figure A2.10) for the
sequential machine shown in Figure A2.15.

16. Write the tabular representation (similar to Figure A2.9b) for the sequen-
tial machine shown in Figure A2.16.

17. Write the initialization of tbl[3] (similar to Figure A2.10) for the
sequential machine shown in Figure A2.16.
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18. Write the tabular representation (similar to Figure A2.11b) for the
sequential machine shown in Figure A2.17.

19. Write the initialization of tbl[3][3] (similar to Figure A2.12) for the
sequential machine shown in Figure A2.17.

20. Write the tabular representation (similar to Figure A2.11b) for the
sequential machine shown in Figure A2.18.
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21. Write the initialization of tbl[3][3] (similar to Figure A2.12) for
the sequential machine shown in Figure A2.18.

22. Write the initialization of a data structure to control a traffic light at the
intersection of two one-lane streets with traffic running north on one
street and west on the other, which changes patterns if emergency vehi-
cles approach the light, using a Moore model synchronized sequential
machine (Figure A2.19, and fill in the values between ={ } in the 
declaration beginning const state RNorth. . . . Use the hard-
ware shown in Figure A2.20. The north direction uses LEDs connected
to PTT bits 5 to 3, and the east direction uses lights connected to PTT
bits 2 to 0. Each direction’s lights should be green for 8 s, yellow for 2
s, and red for 10 s, repeatedly. In either lane, only one light should be
on at any time. The very first pattern should turn on red north and green
west lights. Use the switches connected to PTT bits 7 and 6, designated
switch 1 and switch 2, respectively, which are closed (and will read as
0), when a vehicle passes over the sensor. An emergency vehicle in the
north lane closes switch “1” and emergency vehicle in the west lane
closes switch “2.” If both inputs are simultaneously closed, assume the
signal is electromagnetic noise, and treat it as if both were open (it will
race, but don’t try to correct this synchronization problem). When an
emergency vehicle approaches, indicated by either switch “1” or switch
“2” closing, and the light in the other lane is green, the light for the other
lane goes yellow for 2 s. When an emergency vehicle approaches and
the light in the other lane is not green, this step is skipped. Thereafter,
the light in the other lane goes red, as the light in the emergency lane
then goes green. This remains so until the emergency vehicle leaves the
intersection (PTT bits 7 or 6 return to 1), or after 100 s, whichever is
first. After the emergency vehicle leaves the intersection, the light con-
troller resumes the normal loop, continuing to output the same light
pattern it was it output for the emergency vehicle, in the normal light
sequence, for 8 s. Note: the states and other data used in the declaration
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enum{ GW = 1, YW, RW = 4, GN = 8, YN = 0x10, RN = 0x20 };
typedef const struct state{const struct state *next[4]; char out;
 long delay; unsigned char *address, bit, complement:1; 
} state; 
extern const state RNorth, YWest, RWest, YNorth, EYNorth, EGNorth,
 EYWest, EGWest; 
state *p;
const state RNorth={ }, YWest={ }, RWest={ }, YNorth={ }, 
 EYWest={ }, EGNorth={ }, EYNorth={ }, EGWest={ }; 

void sync(long delay, unsigned char complement, 
 unsigned char *address, unsigned char bit) { asm {
 LDY 5,SP ; get delay (high-order 16 bits) 
 LDX 7,SP ; get delay (low-order 16 bits) 
 BNE L1   ; special case - if low part is 0, dont adjust high part 
 TBEQ Y,L6 ; if high part is also 0 (if no delay at all) go to end of procedure 
 DC.B $81 ; is CMPA # instruction - skip next byte
L1:INY    ; if low part is not 0, correct for first delay loop 
 TST 4,SP ; check if parameter "complement" is true
 BNE L4   ; which results in waiting for selected bit to become 0 
*
L2: BITB  [2,SP] ; (6) check *address for condition to exit 
 BEQ L3   ; (1) premature address if selected bit is 1 
 DBNE X,L2 ; (3) count down and repeat 
   DBNE Y,L2  ; count out high-order 16 bits
L3: RTS   ; exit to calling routine 
*
L4: BITB  [2,SP] ; (6) check *address for condition to exit
 BNE L5   ; (1) premature address if selected bit is 0
 DBNE  X,L4 ; (3) count down and repeat 
   DBNE Y,L4    ; count out high-order 16 bits
L5: RTS   ; exit to calling routine 
*
L6: TST 4,SP ; check if parameter "complement" is true
 BNE L8   ; if so, wait while selected bit is 1, otherwise wait while it is 0 
L7: BITB  [2,SP] ; check *address for condition to exit 
 BEQ L7   ; exit if selected bit is 1 
 RTS ; exit to calling routine 
L8: BITB  [2,SP] ; check *address for condition to exit 
 BNE L8   ; exit if selected bit is 0 
}}      // exit to calling routine 

void main(){  DDRT = 0x3f; p = (state *)(&RNorth); asm cli 
 while(1){  
  PTT = p->out;  
  sync( p->delay * 2400000, p->complement, p->address, p->bit );
  p = (state *)(p->next[(PTT >> 6) & 3]);  
 } 
}

FIGURE A2.19. A Moore Model Synchronized Sequential Machine 
Interpreter
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should use self-descriptive names such as WR to mean the red light in
the west lane, RNorth to mean the state where the north-facing light that
is lit is red, or EGNorth to mean the emergency sequence where the north
light is green. Use these names in your initialization of the struct.

23. Repeat problem 22, but each direction’s lights should be green for 20 s,
yellow for 5 s, and red for 15 s, repeatedly.
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FIGURE A2.20. Parallel Input and Parallel D-to-A Output Device



.This Page Intentionally Left Blank



Loading Metrowerks Code Warrior Software
Use the Metrowerks software on a Windows PC to run the programs in this
book. Use Auto-run to install your software from a CD-ROM enclosed in
the back of this book. Alternatively, presently, you can download the install
program “HC(S)12_v3_0.exe” from Motorola’s Web site. If you have
enough disk space, choose the “typical” setup. Assemble and simulate your
programs on the PC, without using any extra hardware. Then using the same
“True-Time” software, download to and debug your program in a target
microcontroller and external hardware, through a COM port.

Opening Code Warrior for the Assembler
Project
After you have installed the software as discussed in §A3.1, you can open
Metrowerks Code Warrior by clicking on the Start icon, to the Programs item,
to Metrowerks CodeWarrior, to CW12 MOT V3.0, to the CodeWarrior IDE
item. This should open the Metrowerks Integrated Development Environment
(IDE), which is an application that provides tools for developing software.
Then selecting the “File” menu’s “Open” item, search for the project folder
AsssemblerProject, open it, and click its AsssemblerProject.mcp file.

The project/folder AsssemblerProject provides examples of programs in
the book. The examples for the first three chapters of this book are in the
“bin” folder in the AsssemblerProject folder and are named according to the
figure number. For instance, the file f15.abs is the code used in Figure 1.5,
and f223.abs is the code for Figure 2.23. A file EA123.txt contains source
code, which can be used to assemble variations of the programs in Chapters
1, 2, and 3. The examples in the remaining chapters of the book use the
editor, assembler, and True-Time simulator and debugger. They are 
in folders, named after the chapter, within the “sources” folder of the 
AsssemblerProject folder. For instance, Asm4 contains all the examples for
Chapter 4 and are named again according to the figure number. For instance,
the file f43.asm is the code used in Figure 4.3, which is in Chapter 4. The
file AsmGeneric.abs holds the most recently assembled program, and will be
changed when you assemble and run programs for Chapters 4 to 11.
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Running Examples for Chapters 1 through 3

The folder “bin” has files which contain examples from this text book that
you can load and run on the True-Time application, to simulate the target
machine or download and run programs on the externally connected target
machine. The editor and other parts of this powerful IDE will be used in
assembling and running programs for Chapters 4 to 11. In the first three chap-
ters, the only reason we start the IDE is to get to the True-Time application.
To run the True-Time application, drop the IDE’s “Project” menu to the
“Debug” item, or press the F5 key.

The memory begins at location $3800 on the 6812 ’C32 board using the
monitor called MonitorHCS12. Older boards, using the 6812 ’A4 or ’B32
microcontrollers running DBUG_12, will use memory starting at $800. This
project is defined to have memory in both $800 to $a00 and $3800 to $4000,
so the True-Time simulator can simulate programs intended to be executed
later on either ’A4, ’B32, or ’C32 microcontrollers using DBUG_12 or
MonitorHCS12. To examine memory, right-click with the cursor in the
Memory window, and select the Address . . . item. When the dialog box
appears, type the address such as hexadecimal 3800, and then press Enter.
Using the control bars, you can scan up and down memory. You can view
other parts of memory in an analogous manner. Alternatively, to display the
memory around the address that is in a register such as the stack pointer SP,
drag and drop from the register’s box to the Memory window. The Memory
window should now display the memory beginning with the address in the
register’s box. The left part of the Memory window displays the memory
data, and the right part displays the same data as ASCII characters (see
Chapter 4). Note that by right-clicking on the Memory window, you can
change the memory data format to binary or decimal representation or
change the memory display’s word size to 16 bits or 32 bits. Enter data into
memory by double-clicking on the first byte in memory window that you
intend to load, and type its hexadecimal value, without a “$” or “0x” prefix.
To change several consecutive memory locations, just keep on typing the
hexadecimal values you want to enter. However, after entering the last two
characters, be sure to press the tab or enter key to actually enter them into
memory.

You can load an example which is a figure in the textbook by pulling the
Simulator menu to the Load . . . item. Open the “bin” folder. Select the file
for the example, such as f15.abs for Figure 1.5. First, for the ’C32, double-
click on the box next to “SP” in the Register window, and type a suitable
stack pointer value such as hexadecimal 4000 (just press the keys 4, 0, 0,
and 0, and Enter). For the ’A4 or ’B32, type A00. Then single-step though
the program to learn how it works. You can single-step by clicking on the
RUN menu and releasing on the Single Step item, or by using the F11 key,
or by clicking on the single step icon, which is a U-shape with an arrow into
the center of the U. Observe the changes in the registers as the program is
executed. To learn more from the example, change the data in memory after
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a program has been loaded, and rerun the program. You can also explore
alternative programs by modifying the one you read from the file. Also note
that by right-clicking with the cursor in the Register window, you can change
the register’s format to binary or decimal. Use the format most suitable for
the example.

You can enter your own program by hand to do the problems at the end
of the chapter. To write a new program into memory, load the file 
AsmGeneric.abs. Until you change it by assembling a program, this file
merely sets up the MPU registers and the user memory. It gives you a “blank”
program to fill in. Then type the machine code into the Memory window.
You can also double-click on a character in the ASCII representation of the
memory data, to enter ASCII characters into memory. You cannot type a
program into the Assembly window. But after a program is manually entered
into the Memory window, you can see the disassembled program in the
Assembly window, to verify that you got the correct machine code into
memory.

You can “run until an instruction is executed.” Right-click on the 
Assembly window on the line displaying the instruction at which you wish
to stop. Release on the Run To Cursor item. You can set breakpoints, which
are instructions that you wish to stop at, and run the program to the first
breakpoint it meets. Right-click on the Assembly window on the line dis-
playing the instruction at which you set a breakpoint and release on the Set
Breakpoint item. Then start execution by clicking on the RUN menu and
releasing on the Start/Continue item, or by using the F5 key, or by clicking
on the Start/Continue icon, which is a green arrow.

Finally, you can insert the instruction BRA *, whose opcode is $20FE,
at the end of your program. Start the program as described above. After a
moment, stop it by clicking on the Stop icon, which is a red tee. Then
examine registers and memory to verify that your program ran correctly.

Running Examples for Chapters 4 through 11
The sources folder has folders such as Asm4, which contain examples from
Chapter 4 in this textbook which have files such as f43.asm that has Figure
4.3’s code in it. While running the IDE, drop the file menu to open . . . and
browse to find the Asm4 folder and the f43.asm file in it. To include this file
in the AssemblerProject.mcp window, when its window is the top window
in the IDE, drop the Project menu to the “add f43.asm to project” item. Delete
all other files from the AssemblerProject.mcp window. Then drop the Project
menu to the debug item and proceed as in §A3.3. Your machine code to load
into the True-Time debugger application can be found in the asmGeneric.abs
file in the “bin” folder. This file is automatically loaded when you select the
debug item as above.

You can write and run your own programs using the HC(S)12 Wizard.
Drop the file menu to the “New . . .” item. Select “HC(S)12 New Project
Wizard” and type in a project/folder name, such as “HW1,” and if necessary,
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browse to where you want the project to be placed on your disk, and then
click OK. Select a target you are eventually going to use, such as
MC68HC812A4, MC68HC912B32, or MC9S12C32 and click on NEXT.
Then select Assembler, select Absolute Assembly, and, for the ’C32, select
Motorola Serial Monitor Hardware Debugging. For the ’A42 or ’B32, select
D-bug12 Target Interface. Click on the Sources folder and the main.asm file.
Replace the entire contents of this file with your own code. Pull the “Project”
menu to “Debug” to assemble and load your program into the simulator. You
may start the MonitorHCS12 or DBUG_12 debugger by accident when
you want to start the simulator. If so, click “Cancel” and OK” buttons to get
by the various warning dialogs, then switch to the simulator by dropping the
Component menu to the “Set_Target . . . item,” and selecting “Simulator”
Target Interface, and then dropping the File menu to the “Save 
Configuration” item. If your application isn’t automatically loaded,
Monitor.abs contains your object code. Drop the “Simulate” menu to the
“Load . . .” item, open the “bin” directory, and select Monitor.abs.

As you become more familiar with the True-Time debugger application,
you may want to resize your current windows or add additional Memory
windows and Data, Source, and other windows to the Simulator window. A
second Memory window can be added to see two disconnected parts of the
memory, for instance, the stack and the directly addressed variables. To
create a second memory window, drop the Component menu to the 
Open . . . item and double-click on the Memory window’s icon. You may
position this window and the other previously existing windows as you do
for any Microsoft window. You can save the new window configuration by
dropping the File menu to the “Save Configuration” item. The Data window
is useful for viewing global variables. You can identify each variable by
name, and change its value, in it. The Source window displays your original
source code that was input to the assembler, including labels and comments.
You can set breakpoints in it, and “run until an instruction is executed” in it,
as you do in the Assembly window.

Downloading to a Target Board
You can use the Metrowerks Code Warrior software to download and debug
a program in a file, such as f15.abs, on the Technological Arts/Motorola
M68DKIT912C32 board, MotorolaM68HC12B32EVB board, or the 
Technological Arts Adapt812 board as your target. Before you attempt to run
your first program on a target, you should begin by simulating the program
on the True-Time application, as in §A3.4. After you are comfortable with
the simulator’s operation, you should run it on actual hardware. First, on the
M68DKIT912C32 board, make sure the Run/Boot switch is in the Boot posi-
tion, and on the M68HC12B32EVB board, make sure that jumpers W3 and
W4 are in their 0 position to configure the board for single-board EVB mode.
Then connect the target’s DB-9 connector to the personal computer COM1
port. Apply power to the target. You should always apply power after all con-
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nections are made, and you should never change a connector while power is
applied to the ’B32 board. Pull the Component menu to the Set_Target . . .
item, which brings up a dialog box. In that box, for the M68HC12B32EVB
board and the Adapt812 board, select the DBUG_12 Target Interface in the
dialog box that appears. For the M68DKIT912C32 board, select the GDI
interface, and click OK; then browse to choose the HCS12serialmon.dll,
click OK and chose COM1. (If COM1 is not available, use another COM
port, but change True-Time debugger’s port by pulling the Monitor menu to
the Communication item, then select the port.) To direct the True-Time
debugger to download, rather than simulate, in future executions, drop the
File menu to the “Save Configuration” item.

True-Time behaves the same when used as a downloader/debugger as
when used as a simulator. Follow §A3.4’s methods and procedures to run an
example on the target microcontroller.

POD Mode or P&E Microcomputer Interface
You can run your program on an target 6812 microcontroller, utilizing 
its background debug module BDM, and run the debugger in the P&E 
Multilink Interface, or M68HC12B32EVB board (called the POD), not in
the target itself.

The P&E Multilink Interface is comparable in cost, faster (because it uses
a USB 1.1 port rather than a serial port like COM1), and more powerful than
the M68HC12B32EVB board running in the POD mode. To use it after you
run the simulator, in the “Component” menu, select “Set target . . . ,” and
choose “ICD12 Target Interface.”

To run in POD mode on the M68HC12B32EVB board, connect jumper
W3 to its 0 position and W4 to its 1 position. Plug the 6-wire cable into the
POD’s W11 connector and the target’s BDM connector, matching pin 1 at
each end. Restart True-Time. You should now be able to run your program
on the Adapt-812 or PB68HC12A4 target.

After you configure the True-Time application for the P&E Multilink
Interface or POD interface, drop True-Time’s File menu to the “Save 
Configuration” item to make it the default interface instead of the simulator.

You can accidentally erase the flash memory that holds MonitorHCS12
or DBUG_12, using the P&E Multilink Interface or the POD mode on the
M68HC12B32EVB board. To restore the simple MonitorHCS12 or
DBUG_12 debugger into the flash or EEPROM memory, get the source code
for it and reload the flash memory with it. The source code for the 
MonitorHCS12 debugger is obtainable in Motorola application note
AN2548SW2. Motorola is phasing out the DBUG_12 debugger, so it is
harder to find a source listing to reload it. I obtained the source code for the
DBUG_12 debugger by uploading it from a working ’A4 or ’B32 micro-
controller in a M68HC12B32EVB board. Then use the P&E Multilink Inter-
face or the M68HC12B32EVB board running in the POD mode to rewrite
it in the target.
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Running Multiple Metrowerks Applications
If you run several Metrowerks applications, such as for IBM PC, 6808, or
M•CORE targets, execute the regservers.bat file in the “bin” folder of that
application to set up its .dlls before running it. You do not need to run this
.bat file if the only Metrowerks application you are running is CW12 MOT
V3.0. To set these up and run the selected Code Warrior IDE in one opera-
tion, edit that file with NOTEPAD to remove the pause command, and insert
as the last line the command .\IDE.exe. The new last line actually runs the
Metrowerks IDE when the batch file is executed. To simplify execution of
this .bat file, create a shortcut to it. Always double-click on this shortcut to
start this application. In the IDE, if you want to run a project you ran recently,
drop the File menu to the Open Recent item and select its .mpc file.
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A/D converter, 17
absolute loader, 133
absolute section, 135
abstract stack, 203
access, 4
accessed, 63
accessing, 155
accumulator, 5
addressing, 63
addressing mode, 7
addressing modes, 63
after the call, 169
allocate, 103, 258
allocation, 155
allocator, 257
analog comparator, 363
analog-to-digital converter, 362
antecedent, 229
arm, 359
armed, 359
array, 250, 318
ASCII character, 95
assembler, 7, 95
assembler directive, 101
assembly errors, 96
assembly-language statement, 95
autodecrement, 71
autoincrement, 71

base, 315
base class, 259
baud rate, 365
bias, 218
biasing, 196
binary tree, 253
binding, 155
bit-banging, 365
blessing, 259
bootstrap, 130
bounce, 348

branch to subroutine, 51
break statement, 244
breakpoint, 182
buffer, 31
bus, 3
byte, 3
Byte Data Link Communication Module

(BDLC), 18

call by name, 175
call by reference, 175
call by result, 175
call by value, 175, 251
calling and returning mechanism, 150
calling routine, 162
calling sequence, 163
carry bit (carry), 13
case, 173
case statement, 244
cast, 242
checksum, 131
clarity, 16
clock, 4, 342
clock cycle, 4, 343
clock frequency, 4
clock rate, 4
closure, 212
column major, 318
comment field, 99
compiler, 239
complex instruction set computer (CISC), 399
component, 315
condition code register, 13
conditional assembler, 136
consequent, 229
constructor, 257
control port, 344
controller, 2
cross-assembler, 129
crotch, 329
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data member, 256
data operator, 2
data structure, 313
deallocation, 155
deallocator, 257
debounce, 348
debug, 7
debugger, 182
decimal floating-point number, 224
declaration of a parameter or a variable, 242
define statement, 247
delay loop, 51, 351
denormalized number, 219
deque, 323
derace, 349
derived class, 259
destructor, 257
device handler, 52, 356
device interrupt is enabled, 357
device requests an interrupt, 357
devisor, 194
digital-to-analog converter, 362
direct addressing, 9
direction port, 344
disabled, 359
disarmed, 359
dividend, 194
do while statement, 246
domain, 213
downcasting, 280
downloader, 130
dynamic efficiency, 15

effective address, 7
electrically erasable programmable memory

(EEPROM), 17
element, 315
emulate, 183
enable, 359
enabled, 359
encapsulate, 256
entry point, 151
enum statement, 247
erasable programmable read-only memory

(EPROM), 17
execute phase, 5
exit point, 151
exponential part, 217
expressions, 99
extended local access, 159

factoring, 260
fetch, 5
fetch/execute cycle, 5
fetch phase, 5
first-in first-out buffer, 326
fixed-point representation, 217
flash memory, 18
floating-point, 217
floating-point numbers, 218
flush, 368
flushing to zero, 222
for statement, 247
forward reference, 106
framing error, 367
function member, 256
fuzzy AND, 229
fuzzy inference kernel, 227
fuzzy negate, 229
fuzzy OR, 229

gadfly loop, 353
gadfly synchronization, 353
global variable, 151
guard bit, 223

half-carry, 13
hand assembly, 95
handler, 180
handling, 52
handling an interrupt, 356
hardware interrupt, 52, 356
hardware interrupts, 184
hardware stack, 31
hexadecimal number, 7
hidden bit, 218
hidden register, 35
high, 342
high-level language, 239
histogram, 316
honors an interrupt, 357
host computer, 130
Huffman code, 253

I/O interrupt, 52, 356
image, 213
immediate addressing, 8
implied, 64
in-line argument list, 169
include file, 100
index, 264, 315
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index addressing, 67
index register, 67
indirect addressing, 73
information hiding, 262
inherent, 64
inheritance, 260
initialize, 103
initialized, 155
inner product, 84
input argument, 150
input device, 342
input line, 342
input-output (I/O), 2
input parameter, 150
input port, 342
input routine, 341
instruction, 5
instruction cycle, 5
interpreter, 241
interrupt handler, 52, 356
interrupt inhibit, 53
interrupt mask, 53
interrupt service routine, 52, 356

jump to subroutine, 51

knowledge base, 227

label field, 99
labels, 98
latency time, 53, 356
length, 315
library, 142
line, 3
line of assembly-language code, 95
linguistic variable, 226
link, 331
linked list structure, 249, 327
linker, 133
linking loader, 135
list, 317
listing, 96
local area network, 130
local variable, 150–151
location counter, 105
logical operators, 244, 290
low, 342

m-digit base-b representation, 199
machine, 7

machine code, 7
machine state, 53, 357
macro, 138, 252
macro assembler, 138
mapping, 213
membership function, 227
memory, 2
memory map, 20
memory segment, 135
microcomputer, 3
microprocessor, 3
microprocessor is disabled, 357
microprocessor is enabled, 357
microprocessor is masked, 357
microprocessor sees a request, 357
mis-aligned access, 22
mnemonic, 7
monitor, 182
monitor program, 130
Motorola Scalable Controller Access Network

(MSCAN), 19
MPU, 3
multiplier, 194

nested allocation, 82
new, 259
nonvolatile, 4
normalized number, 219

object, 256
object code, 96
offset, 47, 68
one, 342
one-address computer, 7
operand, 8
operand field, 99
operation code byte, 7
operation code (opcode), 7
operation field, 99
operator overloading, 264
optimizing compiler, 240
origin, 315
output argument, 150
output device, 342
output line, 342
output parameter, 150
output port, 342
output routine, 341
overflow, 221
overflow stack, 209
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overriding, 260
overrun, 367

page registers, 65
page zero mode, 66
parameter file, 135
parity error, 367
parsing tree, 206
pass, 105
pass parameters, 150
pointer register, 67
Polish notation, 205
poll, 368
polymorphism, 261
pop, 323
position independent, 75
post byte, 34, 67
precision, 315
prefix byte, 35
print server, 130
private, 262
procedure, 242
program, 4
program counter relative, 75
program segment, 150–151
programmable read-only memory (PROM), 17
protected, 262
prototype, 252
public, 262
pull, 31, 323
pulse-width modulator (PWM), 18
push, 31, 323

queue, 326

r-2r ladder, 362
race, 348
random access memory (RAM), 4
range, 213
read, 4
read only memory (ROM), 4
read/write, 342
read/write line, 4
real-time synchronization, 351
recall, 5
records, 130
recursive subroutine, 80
reduced instruction set computer (RISC), 399
reentrant subroutine, 81
register, 3

relational operators, 244, 290
relative, 75
relative offset, 75
relocatable section, 133
request is pending, 357
reset, 184
return address, 51
return from interrupt, 356
return from interrupt (RTI), 53
return from subroutine, 51
return statement, 251
root, 327
root class, 260
round bit, 223
rounding, 222
rounding to nearest, 221
rounding toward minus infinity, 221
rounding toward plus infinity, 221
rounding toward zero, 221
row major, 250, 318
row-major order, 298
rule, 227

S-records, 131
self-modifying code, 65
Serial Communication Interface, 365
serial communication interface (SCI), 17
serial peripheral interface (SPI), 17
servers, 130
shift register, 326
signed overflow, 84
significand, 217
single-chip microcontroller, 3
single-chip mode, 17
single-precision floating-point, 218
singleton, 230
sixteen’s-complement, 76
software interrupt, 180
source code, 7
stack, 31
stack marker, 160
stacked local variable, 155
start bit, 365
statement, 242
static efficiency, 15
status port, 353
sticky bit, 223
stop bit, 365
stop disable, 53
string, 321
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struct, 249
structure, 249
stub, 110
subclass, 259
subroutine, 51
successor, 327
superclass, 259
SWI handler, 180
symbol, 98
symbol table, 105
symbolic address, 98

table, 250, 319
target machine, 130
template class, 262
three-address instruction, 85
timer, 17
tokens, 241
top-down design, 149
tree, 327
truncation, 221
two-pass assembler, 106

UART protocol, 364
undefined data, 102
underflow, 221
unnormalization, 219
unsigned overflow, 84
upcasting, 280

value, 226
vector, 97, 315
virtual, 262, 302
volatile, 4
Von Neumann computers, 2
vtable, 262, 302

while statement, 246
wire, 3
word, 3
workstation, 130
write, 4

zero, 342
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