St Clements University Certificate/ Diploma / Advanced Diploma in Electrical Engineering

Course + Credit Outlines

YEAR 1 Certificate in Electrical Engineering 15 credits

	15 Credits	
	SEMESTER (1)	<u>Credits</u>
<u>EE101</u>	DC Circuit Problems	1
<u>EE102</u>	Basic Electrical Fitting & Wiring	1
<u>EE103</u>	Basic Electrical Drafting	1
<u>EE104</u>	Electrical Equipments Safety Protection	2
<u>EE105</u>	Electrical Installation Design	1
EE106	Advanced Electrical Wiring	1
EE107	Electrical Equipments	1
EE108	Electrical Fault Finding	1
EE109	Electrical Control Circuits	1
EE110	Computer Applications	1
EE111	Electromagnetism & Basic Electrical Machines	2
EE112	Alternating Current Principle	2
		15 Credits
	Diploma in Electrical Engineering	<u>Credits</u>
	30 credits	
	SEMESTER (2)	
EE113	Electrical Fundamental	2
EE114	<u>Electrical Power Principle</u>	1
EE115	Basic Analogue & Digital Electronics	2
EE116	<u>Process Control System</u>	3
EE117	Solar Electrical System	1
<u>EE118</u>	Electrical Energy Supply System	3
EE119	Electrical Risk Assessment	1
EE120	Electrical Contracting & Specification	1
<u>EE121</u>	Electronics Power Control Device	1
		30 Credits

	Advanced Diploma in Electrical Engineering	<u>Credits</u>
	60 credits	
	SEMESTER (1)	
EE201	Engineering Mathematics	1
EE202	Electrical Circuits	1
EE203	Three Phase Power Circuits	1
EE204	Engineering Physics	1
<u>EE205</u>	<u>Electrical Power System</u>	2
<u>EE206</u>	AC Machines	2
EE207	DC Machine	1
<u>EE208</u>	Operational Amplifiers	2
<u>EE209</u>	Analogue Electronics	1

	SEMESTER (2)	
<u>EE301</u>	Advanced Electrical Drafting	1
EE302	Advanced Engineering Mathematics	2
EE303	<u>Transmission Line</u>	2
EE304	Power System Protection	2
EE305	<u>Power Transformer</u>	2
EE306	Electro-mechanical Control	2
EE307	Energy Efficient Building Design	2
EE308	Sustainability	1
<u>EE309</u>	Project Management	2
EE310	Engineering Officer Competency Report	2
		30 Credits

Bachelor of Engineering (Electrical)

YEAR 3 +4

Subjects	
BAE 401 Advanced Engineering Mathematics	
BAE 402 Calculus	
BAE 403 Engineering Mechanics	

BAE 404 Engineering Materials & Thermodynamics
BAE 405 Advanced Circuit Analysis
BAE 406 Electro-mechanics
BAE 407 Advanced Electro-magnetics Field & Materials
BAE 408 Analogue & Digital Electronics
BAE 501 Advanced Power Systems & Power Transmission Networks
BAE 502 Linear System
BAE 503 Control System
BAE 504 Power System Analysis
BAE 505 Power System Optimization
BAE 506 Power System Stability & Protection
BAE 507 Electro-mechanical Energy Conversion
BAE 508 Industrial Engineering & Industrial Management
BAE 601 Computer Programming
BAE 602 Computer Network
BAE 603 Software Engineering
BAE 604 Telecommunication Engineering
BAE 605 Engineering Management
BAE 606 Building Service Electrical & Mechanical Engineering
BAE 607 Radio Wave Propagation & Microwave Techniques
BAE 608 Professional Engineer Competency Demonstration Report

<u>Diploma + Advanced Diploma Level</u>

EE101 DC Circuit Problems

<u>Lesson 1 Lesson 2 Lesson 3</u>

Test & Assessment

http://www.filefactory.com/file/58r3nfe1qieh/n/E003 E004 Online Test 1 Question pdf

http://www.filefactory.com/file/796n6fdurdij/n/E003_E004_Online_Test_1_Answer_doc

Do the tests and send the answer sheet in soft copy by e-mail to **iqytechnicalcollege@gmail.com**

Week 1

E003+E004 Online test

Ref 1

Four resistors 1 ohm, 2 ohm , 3 ohm and 4 ohm are connected in series to 5V. Calculate the circuit current & potential difference across each resistor.

Α	1A,3V,2V,5V.7V	В	0.5A,0.5V,1V,1.5V,2V
С	3A,1V,5V,6V,7V	D	0.A,1V,2V,3V,4V
Answer			

Ref 2

A 2.2K Ω resistor is connected in series with a resistor of unknown value across 16V supply. If the current is 5 mA, calculate the value of unknown resistor.

Α	2 ΚΩ	В	3 ΚΩ
С	4 ΚΩ	D	1 ΚΩ
Answer			

Ref 3

Two resistors are connected in series to a 115V supply, one is known to have 470 Ω and voltage across it is 47V. Calculate (a) the value of second resistor (b) the circuit current.

Α	680Ω, 0.1Α	В	800Ω, 0.2Α
С	100Ω, 1Α	D	1200Ω,0.1Α
	Answer		

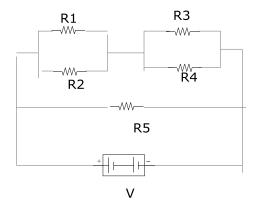
Ref 4

Resistors of 5 Ω , 10 Ω and 3 Ω are connected in parallel to 12V supply. Calculate the supply current.

Α	2A	В	3A
С	1A	D	4A
	Answer		

Resistors of 33K Ω , and 68 K Ω are connected in parallel to 50V. Calculate (a) total circuit resistance (b) total circuit current (c0 individual branch currents.

Α	44.5 K Ω, 4.5mA, 3mA,1.58mA	В	30 K Ω, 3mA, 2mA,1mA
С	22.2 K Ω, 2.25mA,1.5mA,0.79mA	D	60 K Ω, 6mA,4mA,2mA
Answer			


Ref 6

Resistors of values 12 Ω and 8 Ω are connected in parallel with R3 of unknown value across a 6V supply. When the current from the supply is 2.25A, calculate (a) the value of R3 (b) current flowing in R3.

Α	6 Ω, 1Α	В	12 Ω, 0.5Α
С	24 Ω, 0.25A	D	8 Ω, 1.25A
Answer			

Ref 7

Five resistors are connected as follows. Find (a)Rt (b) It (c) 2 Ω resistor current.

R1=2 Ω , R2=8 Ω , R3=3 Ω , R4= 6 Ω , R5=7.2 Ω . V= 6V

Α	3.6 Ω, 5A, 2.66A	В	4.8 Ω, 5A, 7A
С	2.4 Ω, 2.5A, 1.33A	D	7.2 Ω, 7.5A, 4A
Answer			

Ref 8

Resistors 1.8 K Ω and 1.2 K Ω are connected in series to 12V supply. Calculate the power dissipated in each resistor and total power.

Α	0.0288W,0.0192W,0.048W	В	0.0576W,0.0384W,0.096W
С	0.0144W,0.009W,0.024W	D	1W,0.5W,0.7W
	Answer		

Ref 9

A 1 Ω resistor is connected in series with parallel combination of 6 Ω and 3 Ω resistors to 6V supply. Calculate (a) Rt (b) Each resistor current.

Α	6 Ω, 1A, 1.32A, 2.66A	В	4 Ω, 1A, 2A, 3A
С	10 Ω, 4A, 3A, 5A	D	3 Ω, 2A, 0.66A, 1.33A
	Answer		

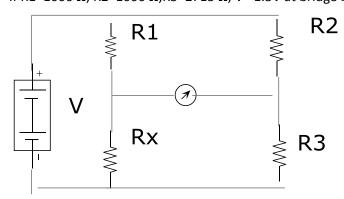
Ref 10 Resistors of 2.2K Ω and 7.88K Ω are connected in series and parallel across 3.3K Ω and 2.7K Ω series combination. They are connected to 9V supply .Calculate (a) Rt (b) It (c) Each resistor current.

Α	3.75K Ω, 2.4mA,0.9mA,1.5mA	В	7.5K Ω, 4.8mA,1.8mA,3mA
С	2K Ω, 1.2mA,0.5mA,1mA	D	10K Ω, 8mA,2mA,3mA
	Answer		

3 filament lamp indicators are each rated 12V and 0.36 w. If they are connected in series, what supply voltage should be used? Find supply voltage, the current and total power dissipated.

Α	72V,0.06A,2.16W	В	108V,0.09A,3.24W
С	36V,0.03A,108W	D	18V,0.015A,0.54W
	Answer		

Ref 12


A circuit is fed with a 9V supply but a 4V ground potential is required at the base of a transistor. If this voltage is to be derived from 12 K Ω resistor connected to ground. Calculate the value of second resistor forming potential divider.

Α	30Κ Ω	В	20Κ Ω
С	15Κ Ω	D	5Κ Ω
	Answer		

Ref 13

Find RX

If R1=1000 Ω , R2=1000 Ω ,R3=2715 Ω , V= 1.5V at bridge balanced condition.

Α	2715 Ω	В	3000 Ω
С	1000Ω	D	2000 Ω
	Answer	Α	

Ref 15

A cell has emf 1.5V and internal resistance 0.5 ohm. Calculate its terminal voltage at (a) No load (b) providing 200mA current (c) when connected to a load of 8 ohm.

Α	3V, 2.8V, 2.8V	В	1.5V, 1.4V, 1.41V
С	6V, 1.4V, 1.4V	D	3V, 1.4V, 1.41V

Answer	

A battery is made by connection 8 cells in series. Each has 1.5V and internal resistance 0.35 ohm. Calculate (a) EMF & internal resistance of battery. (b) The terminal voltage when supplying 400mA. (c) The current & terminal voltage when a load of resistance 20 ohm is connected to battery.

Α	12V, 2.8 Ω, 10.11V	В	15V, 1.4 Ω, 5.1V
С	12V, 2.8 Ω, 5.1V	D	6V, 2.8 Ω, 10.11V
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE102 Basic Electrical Fitting & Wiring

<u>Lesson 1 Lesson 2 Lesson 3</u>

Test & Assessment

 $\frac{http://www.classroomclipboard.com/503511/Home/Test/e3b8ef2c72e94d209034f9633e22c26a\#/InitializeTest.xaml}{}$

Type your name Put the following access code

CEAHU

Study EE102 & then do the following Exercises

EE102 Exercises

Q1

Ref 575

The tests to be conducted for electrical installation safety are

Earthing system test

Insulation resistance test

0	Polarity test
0	All above
Q2	
Ref 5	574
The	insulation resistance must be
0	very high
0	very low
Q3	
Ref 5	573
The	resistance of earth must be less than
0	2 ohm
0	10 ohm
0	20 ohm
Q4	
Ref 5	572
The	switch should be connected on
Q5	
Ref 5	571
The	colour of earth wire is
0	Red
0	Black

0	Green and yellow
Q6	
Ref	570
The	colour of neutral wire is
0	Black
0	White
0	Green
Q7	
Ref	569
The	colours of active wire are
The	colours of active wire are Red
0	Red
0	Red Blue
0 0 0	Red Blue Black
0 0 0 0	Red Blue Black Brown
0 0 0 0	Red Blue Black Brown
0 0 0 0	Red Blue Black Brown
0 0 0 0 0	Red Blue Black Brown First and last one
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Red Blue Black Brown First and last one

Q9		
Ref 567		
How many nails should be driven into each brick		
One One		
C _{Two}		
C Three		
Q10		
Ref 566		
Nail should not be driven into mortar joint		
C True		
C False		
Q11		
Ref 565		
To drill the hole, a pilot hole must have		
The same diameter as to the hole that you want to drill		
Smaller diameter as to the hole that you want to drill		
Bigger diameter as to the hole that you want to drill		
Q12		
Ref 564		

11 15 5	sale to remove the person who is electrocuted at 10000
0	True
0	False
Q13	
Ref t	563
To u	se the hand held electrical equipments in the workplace, the insulation must be
0	Double insulation
0	Single insulation
Q14	
Ref 8	562
It is s	safe to walk in forklift way in the factory and stand under the scaffolding
0	True
0	False
Q15	
Ref s	561
To lif	t a heavy equipments
0	Bend the kneel and lift with kneel force
0	Bend the back and simply lift it

Q16

Ref 560
Safety glass and safety hat are included in
Q19
Ref 559
Employer will not need to take any responsinility to provide the safe operational equipments in the workplace
C True
C False

EE103 Basic Electrical Drafting

ElectricalDrawing1.zip

ElectricalDrawing2.zip

ElectricalDrawing3.pdf

GeneralDrawing1.zip

GeneralDrawing2.zip

Test & Assessment

Stage_1_Electrical_workshop_practicals.pdf

Draw the diagrams from page 37 to 52 and give it to Highlight Computer Group Manager/ Teacher/ Principal, they will forward your work to the assessor

EE103 Basic Electrical Drafting

Copy & sketch the diagrams given in Page 37 to 52 of the attached PDF file Stage 1 Electrical workshop practicals for advanced diploma students Version 1.pdf.

Stage 1 Electrical workshop practicals for advanced diploma students Version 1

Stage 4 Part 22.zip

http://www.filefactory.com/file/c0cc83e/n/Stage 4 Part 22.zip

Password--- joe2013

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE104 Electrical Equipments Safety Protection

Lesson 1

Test & Assessment

Study all lessons in EE104+EE105+EE106+EE107 and EE108 and sit the test for EE106+EE108 to get the points for all those units.

Study the notes in EE104 Power Points & do the following exercises.

- Q1.Sketch RCD Connection
- Q2.Sketch earthing system and earthing arrangement.
- Q3. What is the supplementary system for earthing?
- Q4. What are the types of earthing systems?
- Q5.Sketch the connection diagram for smoke alarm.
- Q6. Why earthing system is provided?
- Q7.Sketch the arrangement of an earthing system.
- Q8. Write the formula to calculate the voltage drop.
- Q9. How will you isolate the live parts?
- Q10.What is the meaning of ELCBN

EE105 Electrical Installation Design

EE107 Electrical Equipments

<u>Lesson 1 Lesson 2 Lesson 3 Lesson 4</u>

Test & Assessment

Study all lessons in EE104+EE105+EE106+EE107 and EE108 and sit the test for EE106+EE108 to get the points for all those units.

EE105 Electrical Installation Design

EE107 Electrical Equipments

Study the powerpoints in

EE105+107 Power Point Part 1

EE105+107 Power Point Part 2

EE105+107 Power Point Part 3

EE105+107 Power Point Part 4

and do the following exercises.

EE105+107 Power Point Part 1

Q1. Describe the structure of wiring rules

Q2. Take the practice on problem in presentation 48.

EE105+107 Power Point Part 2

Q3.Determine the maximum route length of 6 mm² bare copper single phase consumer main with maximum demand of 80A and permissible voltage drop of 4.3 V.

EE105+107 Power Point Part 3

Q4.

Calculate the voltage drop in each segment of a 3 phase 400 volt non-domestic installation consisting of the followings.

Consumer main

Phase = 3 Maximum demand 45 Amp Route length = 25 m

Cable size 16 mm²

Cable configuration V90 Single core thermo plastic and sheathed copper conductor

Cable installation

The circuit is enclosed in heavy duty rigid thermoplastic conduit with no other circuits. Conduit is buried in the ground having an ambient soil temperature of 25 °C and has a top cover of 0.65 m.

Sub main

Phase = 3 Maximum demand = 35 A, Route length = 35 m Cable size = 10 mm²

Cable configuration

V90 Single core thermoplastic and sheathed copper conductors structure in trefoil formation and installed in single circuit configuration unenclosed in air

Final sub circuit

Phase = 1 Maximum demand = 20 Amp Route length = 35 m Cable size = 4 mm²

Cable configuration - V90 two cores and earthed thermoplastic and sheathed copper conductors

Cable installation - The cables are clipped to the building structure and installed in single circuit configuration, unenclosed in air.

Does this portion of the installation comply with the voltage drop requirement of AS/NZS 3000?

EE105+107 Power Point Part 4

Q5.

A final sub-circuit supplies a load consisting of a range in a domestic installation and is protected by 32A Type C circuit breaker. Determine the maximum internal fault loop impedance of final sub circuit based on 230V when supply is unavailable.

EE106 Advanced Electrical Wiring

EE108 Electrical Fault Finding

<u>Lesson 1</u> <u>Lesson 2</u> <u>Lesson 3</u> <u>Lesson 4</u>

Test & Assessment

Type your name Put the following access code

NY78T

Then do the following exercises.

1) Ref 604

A final subcircuit supplies a load consisting of 25A outlet and protected by 25A HRC fuse. Determine the maximum fault loop impedance of final subcircuit & based on 230V.

2) Ref 603

Final subcircuit supplies a load consisting of a range in domestic installation & is protected by 32A CB. Determine maximum internal fault loop impedance of final subcircuit based on 230V.

3) Ref 602

Write the formula to calculate the voltage drop in electrical cable

4) Ref 601

Describe the overview of AS 3000 Electrical wiring rule.

5) Ref 600

What are the requirements to install the switch board?

6) Ref 599

Explain the installation of switch board

7) Ref 598

Explain the operation principle of RCD with sketch

8) Ref 597

Explain the requirements of switch board in domestic electrical installation

9) Ref 596

Sketch the connection of a typical switch board

10) Ref 595

Describe the followings

- (a) Basic protection principle (b) Overload and short circuit protection
- 11) Ref 594

Explain the explosion protection techniques.

12) Ref 593

Sketch TPS wiring system

13) Ref 592

Explain underground wiring system with sketch

14) Ref 591

Explain the following equipments

(a) Water heater (b) Cooking appliances (c) Motor

15) Ref 590

Sketch earthing system and earthing arrangement

16) Ref 589

Explain electrical installation safety testing procedures

17) Ref 588

Sketch the polarity testing circuits

18) Ref 587

What are the types of RCD?

19) Ref 586

Outline the overload protection devices

20) Ref 585

(a) Explain earthing protection

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE109 Electrical Control Circuits

Lesson 1 Lesson 2

Test & Assessment

 $\underline{http://www.classroomclipboard.com/503511/Home/Test/618fafbe4aae4b6ab065df53cf9aebbb\#/InitializeTest.xaml}$

Type your name Put the following access code

U8FS3Y

And do the following exercises.

1) Ref 610

Sketch the equivalent circuit and vector diagram of

- (a) Synchronous generator (b) Synchronous motor
- 2) Ref 609

Sketch the equivalent circuit of transformer

3) Ref 608

Describe the losses in transformer

4) Ref 607

What is transformer rating?

5) Ref 606

Write the procedure to detect the fault.

6) Ref 605

Explain the operation principle of three phase induction motor

EE110 Computer Applications

The students can attend any computer course and take the training in Microsoft Word, Excel, Access, Internet E-mail application. On submission of the completed certificate, the credit for EE110 Computer Applications will be given.

Download the following e-books

WORD

http://www.filefactory.com/file/2s874qnp7jfr/n/word-2007-introduction-part-i_pdf

http://www.filefactory.com/file/7824v6tjha2v/n/word-2010-introduction_pdf

Take the practice on application of software.

Do the following assignments & submit them by e-mail.

ASSIGNMENT (1)

Follow the instruction given in e-Books, you prepare & present three evidences of documents such as Typed Letters, Table, Diagram etc.

http://www.filefactory.com/file/4lvl2i748egz/n/microsoft-office-excel_pdf

Take the practice on application of software.

Do the following assignments & submit them by e-mail.

ASSIGNMENT (2)

Follow the instruction given in e-Books, you prepare & present three evidences of documents such as Table, Diagram, inserting the formula, graphics etc.

POWERPOINT

http://www.filefactory.com/file/4vuoppxsfki3/n/powerpoint-2007-part-i pdf Take the practice on application of software.

Do the following assignments & submit them by e-mail.

ASSIGNMENT (3)

Follow the instruction given in e-Books, you prepare & present three evidences of documents of power point presentation. You can insert the typing, diagram, picture, sound, video etc.

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE111 Electromagnetism & Basic Electrical Machines

Lesson 1

Test & Assessment

http://www.filefactory.com/file/7c658zyrj9gx/n/G001_Online_Test_1_Question_pdf

http://www.filefactory.com/file/1h8minstf7ux/n/G001 Online Test 1 Answer doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Study the notes

Lesson 1

And do the following exercises.

G001 Online Test

Ref137

The flux is equal to

Α	ф = Fm / Rm	В	Φ = Fm x Rm
С	ф = Rm / Fm	D	ф = Fm + Rm
	Answer		

Ref 138

Rm is equal to

Α	lμ / A	В	L/μ A
С	Lμ A	D	μ Α/Ι
	Answer		

Ref139

Flux density is equal to

А	φА	В	Α/ φ
С	ф/А	D	Ф+А
	Answer		

Ref140

The torque produced in electric motor is equal to

Α	T = BL r	В	T = Br/ L
С	T = BL/ r	D	T + Br + L
	Answer		

20

A plunger brake electro-magnetic operates at a flux density of 12 tesla. If the CSA of the magnetic circuit is 0.04 sq-m and reluctance is 12000 amp-turn / wb, what current is required to operate the magnet if the coil has 1000 turns.

Α	0.288A	В	0.576A
С	1.3A	D	2.8A
	Answer		

Ref142

The induced voltage in conductor moving in magnetic field is

Α	E = BLV sin⊖	В	E = BLV cosΘ
С	E = BLV	D	E = BI sinΘ
	Answer		

Ref143

The voltage induced in coil of N turns is

Α	V = N φ	В	V = NI
С	$V = N \times d \phi / dt$	D	$V = N^2 \Phi$
	Answer		

Ref144

What is the velocity of a conductor 150 mm long and moving at right angle to magnetic field having a flux density of 0.4 tesla? The induced voltage is 4V.

Α	6 m/s	В	1.5 m/s
С	12 m/s	D	3.3 m/s
	Answer		

Ref145

The force between two current carrying conductors is

Α	$F = 10^{-7} I / d$	В	F = NI / d
С	$F = 2 \times 10^{-7} I / d$	D	$F = 4 \Pi 10^{-7} I / d$
	Answer		

Ref146

A transformer has 50 turns on the primary and 600 turns on secondary . If a flux of 0.25 wb is induced to zero in 10 ms, calculate the induced emf in each coil.

Α	E1 = 250V, E2 = 3000V	В	E1 = 2500V, E2 = 30000V
С	E1 = 300V, E2 = 25000V	D	E1 = E2 = 3000V
	Answer		

Ref147

If a conductor is being rotated at 2000 RPM in magnetic field and induces 400V . If it is rotated at 1000 RPM.. Find the induced emf.

Α	100V	В	200V
С	400V	D	50V
	Answer		

Ref148

A 240 V coil 5000T produces magnetizing force 4000AT/ m . The magnetic circuit is 200 mm long. CSA 500 sq-mm. Find the resistance of the coil.

Α	1500Ω	В	3000Ω
С	750Ω	D	150Ω
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE112 Alternating Current Principle

<u>Lesson 1</u> <u>Lesson 2</u>

Test & Assessment

http://www.filefactory.com/file/7ebmnciqxmf3/n/G002 Online Test 1 Question pdf

http://www.filefactory.com/file/6d3yokhjziur/n/G002_Online_Test_1_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege And do the following exercises.

G002 Online Test

Ref149

A sine wave voltage of 240V RMS is applied to a resistive circuit of 60Ω . Calculate(a) RMS value of current (b) Maximum value of current.

Α	2A, 4A	В	4A, 5.65A
С	2A, 2.8A	D	1A, 2A
	Answer		

A coil of negligible resistance draws a current of 0.2A (RMS) when connected to 240V, 50HZ. (a) Determine inductive reactance (b) Coil inductance.

Α	600Ω , 3.8 H	В	1200Ω , 1.9 H
С	1200Ω , 3.8 H	D	1800Ω , 7.6 H
	Answer		

Ref151

A 64 mH inductor is connected in series with a 300Ω resistor to a 1000HZ AC supply voltage of 10V rms. Find (a) the impedance (b) The phase angle (c) The current (d) the potential drop across resistor.

Α	500Ω ,(53.2 Deg),	В	500Ω ,(36.8 Deg),
	0.002A (-53.2Deg),		0.001A (+53.2Deg),
	6V,8V		8V,6V
С	500Ω ,(0 Deg),	D	500Ω ,(90 Deg),
	0.002A (-0 Deg),		0.002A (-90 Deg),
	6V,8V		6V,8V
	Answer		

Ref152

Find the current in the circuit when an AC voltage 10V rms at 1000HZ is applied to 2 μ F capacitor.

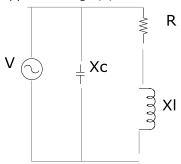
Α	0.375A	В	0.25A
С	0.125A	D	0.5A
	Answer		

Ref153

A 1 μ F capacitor is connected in series with 200 Ω resistor to 10V rms. 1600HZ supply. Find (a0 the impedance (b) The phase angle (c) The current (d) Potential drop across resistor (e) Potential drop across capacitor.

Α	111.3Ω ,(-26.5 Deg),	В	222.6Ω ,(+26.5 Deg),
	0.0224A (-26.5Deg),		0.0224A (-26.5Deg),
	4.5V,2.24V		9V ,4.48V
С	222.6Ω ,(0 Deg),	D	222.6Ω ,(-26.5 Deg),
	0.0224A (0 Deg),		0.0448A (+26.5Deg),
	9V ,4.48V		9V ,4.48V
	Answer		

Ref154


A series circuit is connected to a 10V rms AC supply. The circuit has resistance 100 Ω , inductive reactance 300 Ω , capacitive reactance 400 Ω . Find (a) Impedance (b) Current (c) Phase angle (d) Voltage drop across resistor (e) Voltage drop across inductor (f) Voltage drop across capacitor.

Ī	Α	141 Ω (Angle -45 Deg), 0.071A, 45 Deg,	В	70.7 Ω (Angle +45 Deg), 0.035A, 45 Deg,
		7.1V, 21.3V,28.4V		3.35V, 10.65V,14.2V
ĺ	С	141 Ω(Angle 45 Deg), 0.071A,-45 Deg	D	141 Ω (Angle 0 Deg),0.071A, 0 Deg,

7.1V, 28.4V, 21.3V	7.1V, 21.3V, 28.4V
Answer	

The following is a diagram of a parallel circuit with a supply voltage 100V rms at 50Hz. Determine the followings.

(a)Total circuit current (b) Total circuit impedance (c) Phase angle between circuit current and applied voltage (d) Power factor of circuit.

 $Xc = 318.5 \Omega$, $R = 100 \Omega$, $XI = 94.2 \Omega$, V = 100 V, 50Hz

	•	-	·
Α	1.8A (Angle -36.8 Deg), 206 Ω, 56.86 Deg,	В	0.97A (Angle +36.8 Deg),103 Ω, 36.8 Deg
	0.8		0.59
С	0.97A (Angle -36.8 Deg),103 Ω, 36.8 Deg	D	0.97A (Angle +53.2 Deg),206 Ω, 53.2 Deg
	0.59		0.59
	Answer		

Ref156

A capacitor draws 0.971 Amp at PF 0.34 from 100V supply. Total power is

Α	36.8W	В	100W
С	52.43W	D	70.7 W
	Answer		

Ref157

The phase voltage and current in 3 phase star connected current are 240V and 50A. Find the line voltage and line current.

Α	415V rms, 50A	В	240V rms, 50A
С	415V rms, 86.5A	D	240V rms, 86.5A
	Answer		

Ref158

A delta connected load takes a line current 40A and line voltage 415V. Find (a) Phase current (b) Phase voltage

Α	40A, 415V	В	23.1A, 415V
С	40A, 240V	D	23.1A. 240V
	Answer		

Three phase 415V, 37.3 KW, Delta connected alternator has efficiency 90% and PF 0.88 Lagging. Find (a) Line current (b) Phase current.

Α	130A, 75.6A	В	65.5 A, 75.6A
С	65.5A, 37.8A	D	130A, 37.8A
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE113 Electrical Fundamental

<u>Lesson 1</u> <u>Lesson 2</u> <u>Lesson 3</u>

Test & Assessment

http://www.filefactory.com/file/r372kwb529d/n/E029_G012_Online_Test_1_Question_pdf

http://www.filefactory.com/file/73yyxs4hpdmv/n/E029 G012 Online Test 1 Answer doc

Do the tests and send the answer sheet in soft copy by e-mail to **iqytechnicalcollege@gmail.com**

Password- iqytechnicalcollege

Study the EE113 file notes and then do the following exercises.

E029+G012 Online Test

Ref40

3 voltages , phase to neutral are measured to be 220V, 215V and 210V on nominal 415V , 50Hz. The percentage voltage imbalance is

Α	2.3%	В	6%
С	4.6%	D	10%
	Answer		

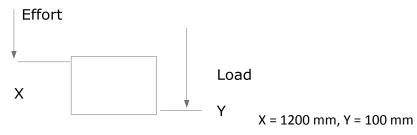
Ref41

The synchronous speed is

Α	Ns = 120f / p	В	Ns = P / 120f
С	Ns=Pf / 120	D	Ns= 120f
	Answer		

Torque is

Α	Torque α Voltage	В	Torque α 1/ voltage
С	Torque α Voltage ²	D	Torque α Voltage x Current
	Answer		


Ref43

Permissible starting current for two motors (a) 15 KW, 415 V & (b) 15 KW, 415 V are

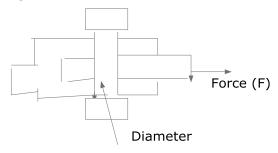
Α	102.5A & 82.3A	В	200A & 60A
С	300A & 100A	D	50A & 40A
	Answer		

Ref44

A simple machine in figure, the load is 450N, effort is 60N. the load and effort movement is 100mm and 1200 mm respectively. The mechanical advantage and velocity ratio are

Α	18, 6	В	20,10
С	10,12	D	9,12
	Answer		

Ref45


The weight of a tabular steel column 120 mm outside diameter and 100 mm inside diameter and 3 m height is

Α	1000N	В	500N
С	400N	D	793.3N
	Answer		

Ref46

A steel specimen 10 mm diameter rupture under 37KN, the ultimate strength is

Α	800N/mm ²	В	1200N/mm ²
С	471N/mm ²	D	1024N/mm ²
	Answer		

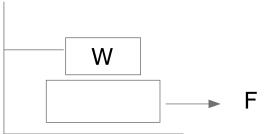
Diameter = 10 mm² Force (F) = 37 KN

The stress is

Α	1200N/mm ²	В	471N/mm ²
С	1000N/mm ²	D	200N/mm ²
	Answer		

Ref48

22 Kw , 4 poles , 415 V, full load current 38 amp, three phase induction motor Locked rotor current = 600% of I fl. Locked rotor torque = 155% Tfl Starting current and starting torque for (i) Star / delta (ii) Primary resistance starting (iii) Auto transformer starting with 55% tapping are


Α	200%, 51.7%, 600%, 46.9%	В	100%, 20%, 300%, 23%
С	50%,50%,600%,46.9%	D	100%,51.7%,300%,46.9%
	Answer		

Ref49

600 mL sulphuric acid has a mass of 1.11 Kg, The density and relative density are

Α	3000 kg/ m ³ , 3	В	4000 kg/ m ³ , 4
С	5000 kg/ m ³ , 1	D	1850 kg/ m ³ , 1.85
	Answer		

Ref50

W = 100 kg

A 100 kg block rests on a plate. The coefficient of friction between all surface is 0.2. The force required to pull the plate is

Α	100 N	В	392.4 N
С	800 N	D	700 N
	Answer		

The total stopping distance of a car for total time taken from the point where the driver sights the danger if the driver's reaction time before applying the brake is 0.9 sec with initial velocity 60 km/ hr and retardation due to brake is 7.5 m/ $\rm s^2$

Α	60m	В	33.5m
С	100m	D	150m
	Answer		

Ref52

A car starts from the rest at the rate of 1.2 m/s² for 15 sec. The velocity reached after 15 second is

Α	36 m/ s	В	54 m/ s
С	9 m/s	D	18 m/s
	Answer		

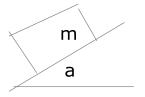
Ref53

A flywheel makes 200 revolutions. Torque is 35 N-m. The work is

Α	44000J	В	22000J
С	11000J	D	66000J
	Answer		

Ref54

The work done for force 50N that moves a block to distance 3 m is


Α	300J	В	450J
С	750J	D	150J
	Answer		

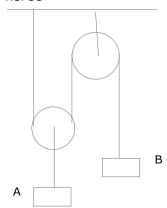
Ref55

The acceleration of a body of 25 kg mass due entirely to it's own weight is

	,	•	•
Α	9.81 m /s ²	В	16 m /s ²
С	29 m /s ²	D	4 m /s ²
	Answer		

Ref56

a = 35 degree


The acceleration of a given mass sliding down the plane is

Α	20 m /s ²	В	2 m /s ²
С	5.63m /s ²	D	3 m /s ²
	Answer		

A train of total mass 120 ton is travelling at 60 km/hr on level track. The tractive resistance is 80N/ton. Calculate the tractive effort required to accelerate the train to 100 km/hr in 35 second.

Α	108 KN	В	37 KN
С	72 KN	D	54 KN
	Answer		

Ref 58

A = 5 kg B = 2 kg

The acceleration of bodies A and B and the force tension in the cord are

Α	1.51m /s², 22.6N	В	0.75 m /s ² , 11.6N
С	3m /s², 30N	D	4m /s ² , 40N
	Answer		

Ref59

Determine the net torque required to give a flywheel with a mass moment of inertia 0.8kg-m², angular acceleration is 18 rad/s².

Α	24 N-m	В	12 N-m
С	36 N-m	D	54 N-m
	Answer		

Ref60

Determine the torque required to accelerate a turbine rotor under going a dynamic balancing test from rest to a speed of 56000 rpm in 80 sec. If the mass moment of inertia of rotor is 11.5 kg-m^2 .

Α	225.8 N-m	В	112.5 N-m
С	300 N-m	D	400 N-m
	Answer		

Ref61

Determine the centrifugal force acting on a passenger of mass 75 kg in a car travelling at 90 km/hr around a curve of 100 m radius.

Α	900 N	В	600 N
С	468.75 N	D	234 N
	Answer		

A train moving at 63 km/hr requires 40 KN of tractive effort at this speed . Determine the driving power.

Α	700 KW	В	350 KW
С	900 KW	D	1000 KW
	Answer		

Ref63

Calculate the kinetic energy of mass moment of inertia of 61 kg-m²rotating at 250 rpm.

Α	10452 J	С	20904 J
С	30000 J	D	40000 J
	Answer		

Ref64

A block of mass 2 kg is freely suspended on a string. A bullet of mass 75 g is fired horizontally into the block. If the velocity of the bullet before the impact is 415 m/s, calculate the velocity of block with the bullet embedded in it immediately after the impact.

Α	ı	30 m/s	С	45 m/s
С		60 m/s	D	15 m/s
		Answer		

Ref65

When a golf ball having a mass 50 g is struck by club. The ball and club are in intact for 0.001 sec immediately after the impact. The ball travels at 45 m/s. Determine the average force of collision.

Α	6000 N	С	3000 N
С	1500 N	D	7500 N
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE114 Electrical Power Principle

<u>Lesson 1</u> <u>Lesson 2</u> <u>Lesson 3</u>

Test & Assessment

http://www.filefactory.com/file/789ejsjf1yq1/n/G012_Online_Test_3_Question_pdf

http://www.filefactory.com/file/5hurvxj3u09r/n/G012_Online_Test_3_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

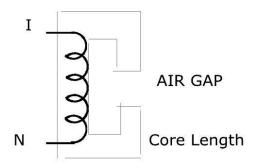
Password- iqytechnicalcollege

Study the files EE114

Do the exercises

Ref163

The measured speed of three phase , 4215V, 50HZ, 2 poles motor is 2700 rpm. . Slip and % slip are


Α	0.2, 20%	В	0.15, 15%	
С	0.3, 30%	D	0.1, 10%	
	Answer			

Ref164

The relationship between voltage, current and number of turns of a transformer is

Α	V1/ V2 = N1/N2 = I2/I1 = a	В	V1/ V2 = N2/N1 = I2/I1 = a
С	V1/ V2 = N1/N2 = I1/I2 = a	D	
	Answer		

Ref165

N = 350 Turns, Air Gap = 0.15mm, Core length = 1250mm, Flux density = 1.105 T , μ = 1800

The current I is

Α	6.2 A	В	9.3A	
С	1.26A	D	3.16A	
	Answer			

G012 Online Test

Ref160

The force produced in three phase winding of AC machine is

Α	3 Im N e ^{jwt}	В	Im N e ^{jwt}	
	2		2	
С	√3 lm N e ^{jwt}	D	√3 lm N e ^{jwt}	
	2			
	Answer			

Ref161

Three phase , 4 poles , 36 slots, 50HZ winding . The coil span is $\,$

Α	7	В	8
С	9	D	10
	Answer		

Ref162

The speed of 2 poles, 25 HZ motor is

Α	3000 rpm	В	1500 rpm
С	750 rpm	D	1000 rpm
	Answer		

Ref166

The voltage regulation of a synchronous generator is

Α	Ef-V	В	Ef
	x 100 %		x 100 %
	V		V
С	V-Ef	D	
	x 100 %		
	V		
	Answer		

Ref167

Synchronous impedance is

Α	Z s = Voc / Isc	В	Z s = Vsc / Isc
С	Z s = Voc / loc	D	
	Answer		

Ref168

The voltage equation for synchronous generator is

Α	Ef = V + I Zs	В	Ef = V – I Zs	
С	Ef = V x I Zs	D	Ef = V / I Zs	
	Answer	Α		,

Ref169

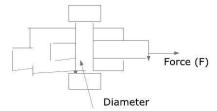
The voltage equation for synchronous motor is

Α	Ef = V + I Zs	В	Ef = V – I Zs	
С	Ef = V x I Zs	D	Ef = V / I Zs	
	Answer			

4

Ref45

The weight of a tabular steel column 120 mm outside diameter and 100 mm inside diameter and 3 m height is


Α	1000N	В	500N	
С	400N	D	793.3N	
	Answer			

Ref46

A steel specimen 10 mm diameter rupture under 37KN , the ultimate strength is

Α	800N/mm ²	В	1200N/mm ²
С	471N/mm ²	D	1024N/mm²
	Answer		

Ref47

Diameter = 10 mm² Force (F) = 37 KN

The stress is

Α	1200N/mm ²	В	471N/mm ²	
С	1000N/mm ²	D	200N/mm ²	· ·
	Answer			-

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE115 Basic Analogue & Digital Electronics

EE116 Process Control System

<u>Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 Lesson 6 Lesson 7</u>

<u>Lesson 8</u> <u>Lesson 9</u> <u>Lesson 10</u>

Test & Assessment

http://www.filefactory.com/file/46zzpcym7uqz/n/I006 H012 Online Test 1 Question pdf

http://www.filefactory.com/file/4e2chw2sf343/n/I006_H012_Online_Test_1_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

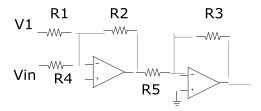
Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Study the followings

EE115+EE116 Files

And do the following exercises.


1006+ H012 Online Test

Ref501

provides the operation necessary to transform the sensor output into a form necessary to interface with other elements of process control lop.

Α	Analogue signal conditioning	В	Digital signal conditioning
С		D	
	Answer		

Ref504

Vo $_{\text{V1=5V, R1=R2=34K}\Omega, ,R3=R4=R5=10 K}\Omega,$

Vout for above circuit is

Α	Vout= 1.7 Vin + 5	В	Vout = 3.4 Vin
С	Vout = 1.7 Vin	D	Vout= 3.4 Vin +5
	Answer		

TTL 74LS 193 A CMOS 4035 ICs are used for

Α	Parallel in / Parallel out function	В	Serial in / Parallel out function
С	Parallel in / Serial out function	D	Serial in / Serial out function
	Answer		

Ref510

The number of data signal lines required for 7 segments display is

Α	7	В	8
С	9	D	10
	Answer		

Ref513

Events occur after the previous event is completed. The device is______.

Α	Combinational logic	В	Sequential logic
С	Synchronous logic	D	Asynchronous logic
	Answer		

Ref516

45₁₀=

Α	1011012	В	1001012
С	1110012	D	1010102
	Answer		

Ref519

The device in which only one input at a time is activated to produce specific code at output is

Α	Decoder	В	Encoder
С	Multiplexer	D	Demultiplexer
	Answer		

Ref522

Latch can store

Α	Only one bit of information	В	A number of bits at one time
С		D	
	Answer		

Decimal equivalence of 47H is

Α	71	В	781
С	29	D	112
	Answer		

Ref528

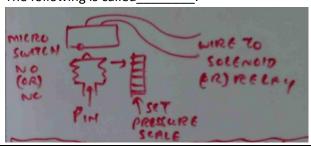
Temperature is measured by a sensor with output 0.02 V/ ° C . Determine ADC Reference & word size to measure 0 to 100 °C resolution.

Α	0.039V/ step	В	0.078V/ step
С	0.156V/ step	D	0.312V/ step
	Answer		

Ref531

What is the HEX output of a bipolar 12 bit ADC with a 5 V reference for input -0.85V

Α	54H	В	108H
С	27H	D	39Н
	Answer		


Ref534

ADC has been developed to interface with microprocessor. Data from ADC is placed on _____. When appropriate command is issued.

Α	Address bus	В	Data bus
С	Control bus	D	
	Answer		

Ref537

The following is called_____.

Α	Bellow operated on-off controller	В	On-off pressure control loop
С	Pnuematic force balance proportional	D	
	controller		
	Answer		

Ref540

Derivative mode

Α	Stabilizes the process	В	Resets the process
С	Compensates time lag in control loop	D	
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE117 Solar Electrical System

<u>Lesson 1 Lesson 2 Lesson 3 Lesson 4 Lesson 5 Lesson 6</u>

Password- iqytechnicalcollege

Test & Assessment

Read the following notes

K025_Note_1

K025_Note_2

And then

K025_Tutorials.zip

Do the exercises and give them to Highlight Computer Group Manager/ Teacher/ Principal, they will forward your work to the assessor

Study the followings EE117 Lessons

Then do the following exercises

Q1. Explain the operation principle of PV cell

Q2.Sketch the interconnection of PV modules

Q3. Write the equation for PV power conversion.

Q4. Find the output of a module operating at maximum power point giving the followings

Typical maximum power at STC = 77w, NOCT = 49 deg C Power output coefficient Υ = -0.38 % Ambient temperature = 35 Deg C Irradiance = 865 w/ m²

Q5. Describe the production procedure of standard silicon solar cell.

- Q6. Calculate daily energy output of 77W. Lead acid battery charging ambient temperature f derate = 1, V module = 14V, Irradiation = 4 wh / m^2 , maximum module power rating = 72 W, NOCT = 49 deg C.
- Q7. Calculate the daily energy output of a 100W poly crystalline module operating under the following conditions.

Maximum power point tracking regulator MPPT, Ambient day time temperature 25 Deg C , Irradiation 5.5 KWH / m^2 . Environment with annual maintenance only. The manufacturer who tests the modules to international standard guarantees the maximum modules power rating to be 95W and NOCT = 49 Deg C. Υ = 0.5%

- Q8.Describe solar radiation and shading assessment.
- Q9. Write the equation for manual calculation of irridation data.
- Q10.Sketch the followings (a) Series PV system (b) Parallel PV system (c) PV lighting system

Q11.Sketch PV water pumping system.

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE118 Electrical Energy Supply System

<u>Lesson 1</u> <u>Lesson 2</u> <u>Lesson 3</u>

Test & Assessment

http://www.filefactory.com/file/50ox6xeklufp/n/G015 G046 Online Test 1 Question pdf

http://www.filefactory.com/file/4jzmn6sa4rkd/n/G015_G046_Online_Test_1_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Then do the following exercises

G015+G046 Online Test

Ref186

The transformer supplies a group of 4 feeders which have individual maximum demands of 2.5, 2.4, 4.3 and 1.6 MVA. If the diversity factor is 1.82, determine the maximum demand on transformer

Α	5.93MVA	В	4.3MVA
С	10.8MVA	D	2.4MVA
	Answer		

Ref191

Find the insulation resistance per km of conductor diameter 1.6 cm and internal sheath diameter 5.08 cm. $\mbox{\$} = 6 \times 10^{-14} \ \Omega / \ cm.$

Α	500 M Ω	В	100 Μ Ω
С	1103 M Ω	D	2000 Μ Ω
	Answer		

Ref196

The formula to calculate voltage regulation is

Α	IR cosφr +IX sin φr	В	R cosфr +IXsin фr
	%Reg =		%Reg =
	Er		-
			Er
С	%Reg = IR cosφr +IX sin φr	D	R cosфr -IXsin фr
			%Reg =
			-
			Er
	Answer		

Ref201

Which equipments is not included in trip circuit?

Α	Sensor, potential transformer, current	В	Battery
	transformer		
С	Relay contact	D	Circuit breaker
	Answer		

Ref206

Differential relay senses

Α	Only one input	В	Three inputs
С	Two inputs	D	Four inputs
	Answer		

Ref 211.

Maximum reach and maximum reach angle are found in

Α	Over current relay	В	Differential relay
С	Directional relay	D	Distance relay
	Answer		

The operation of distance relay is based on

Α	Based on impedance	В	Based on current
С	Based on frequency	D	Based on power
	Answer		

Ref213

The characteristics curve of distance relay is

Α	Concentric circles	В	Parabola
С	Straight line	D	Hyperbola
	Answer		

Ref214.

Zone protection of distance relay is based on

Α	Zoning in accordance with voltage	В	Zoning in accordance with current
С	Zoning in accordance with power	D	Zoning in accordance with impedance
	Answer		

Ref215.

Operating & restraining voltage and current are utilized in

Α	Over current relay	В	Differential relay
С	Directional relay	D	Thermal over load relay
	Answer		

Ref216

Power line can be effectively protected by

Α	Over current relay	В	Differential relay
С	Directional relay	D	Distance relay
	Answer		

Ref217

Explain the operation of distance relay is based on .

Α	Based on impedance	В	Based on current
С	Based on frequency	D	Based on power
	Answer		

Ref218.

The shape of characteristics of over current relay is

Α	Straight line	В	Circle
С	Curve	D	Pulse
	Answer		

Ref219.

Directional relay is also called

Α	Distance relay	В	Reverse power relay
С	Differential relay	D	Over current relay
	Answer		

Ref220

Earthing transformer is utilized at

Α	Star connected winding side	В	Delta connected winding side
С	Zigzag connected winding side	D	None of above
	Answer		

Ref225

In CT, primary and secondary windings

Α	Closely linked	В	Loosely linked
С		D	
	Answer		

Ref230

The following equation

Mc $d^2\delta/dt^2$ = P_o - $P_m \sin \delta$ is utilized to determine

Α	Stability of generation	В	Power flow
С	Phase sequence	D	
	Answer		

Ref231

The suitable winding method for earthing transformer is

Α	Star/ Delta	В	Delta/Star
С	Delta/Delta	D	Zig Zag
	Answer		

Ref232

Reactors are utilized at busbar to

Α	Provide inductance	В	Limit short circuit current
С	Increase disruptive critical voltage	D	Earth leakage current flow path
	Answer		

Ref233

The best way to increase the level of disruptive critical voltage to reduce the possibility of corona is

Α	To increase conductor diameter	В	To use longer cross arm
С	To use hollow conductor that increase	D	To increase insulation resistance
	the conductor diameter		
	Answer		

Switching voltage velocity is

Α	V = 1/ VLC	В	V = VLC
С	V = L/C	D	V = 1/LC
	Answer		

Ref235

Which equipment is used in static VAR compensation system?

Α	Magnetic contactor	В	Thermal switch
С	Hall effect switch	D	Silicon Controlled Rectifier
	Answer		

Ref236

Poor power will cause

Α	Unnecessary over current flow in line	В	Smoother voltage
С	Ripple reduction	D	Wrong phase sequence
	Answer		

Ref237

Lighting strike near power transformer is protected by

Α	Arcing horn	В	Lightning arrester
С	Surge absorber	D	Arcing ring
	Answer		

Ref238

Lightning protection for power line is provided by

Α	Arcing horn	В	Lightning arrester
С	Surge absorber	D	Arcing ring
	Answer		

Ref239

Power surge protection is provided by

Α	Arcing horn	В	Lightning arrester
С	Surge absorber	D	Arcing ring
	Answer		

Ref244

In large power distribution system, reactive power control is provided by

Α	Synchronous motor	В	Capacitor bank
С	Static VAR Compensation System	D	Induction motor
	Answer		

To withstand the voltage surge due to lightning strike, the power system equipments must have

Α	High VA value	В	High voltage rating
С	High current rating	D	Appropriate base impulse insulation
			level
	Answer		

Ref254

The following formula Eg = $m\delta g_b r Ln D/r$ is utilized to calculate

Α	Sending end voltage	В	Breakdown voltage to neutral
С	Visual critical voltage	D	Disruptive critical voltage.
	Answer		

Ref208

Can over current & earth fault protections be combined?

Α	Not sure	В	No
С	Yes	D	Not applicable
	Answer		

Ref222

Buchholz relay should be utilized for

Α	Transformer protection	В	Motor protection
С	Generator protection	D	Power line protection
	Answer		

Ref224

For given CT , % composite error, secondary voltage and rated accuracy are 10P 150 F15

Α	10%, 150V, 15	В	150%, 10V, 15
С	15%, 15V, 10	D	
	Answer		

Ref226

For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

Α	2.5 Ps 1000	В	5 Ps 500
С	2.5Ps 500	D	10 Ps 250
	Answer		

EE119 Electrical Risk Assessment

Lesson 1

Test & Assessment

 $\frac{http://www.classroomclipboard.com/503511/Home/Test/eafdcf3b16cf46908aad44c6d604b55}{0\#/InitializeTest.xaml}$

Type your name Put the following access code

P2PLK

Password- iqytechnicalcollege

Study WOC Mgt 104-E071 Lessons & then do the following exercises 2) Ref 584

Explain the features of maintenance and specialist work

3) Ref 583

Explain purchasing procedures in electrical contracting

4) Ref 582

Explain pre-job planning in electrical contracting.

5) Ref 581

Brifely explain the specification for installing the high voltage cable.

6) Ref 580

What are the factors to be considered by electrical contractor before establishing the business?

7) Ref 579

Describe the job accounting system in electrical contracting

8) Ref 578

Explain the required paper works in electrical contracting

9) Ref 577

Explain insurance in electrical contracting

10) Ref 576

Explain contract bid work

EE120 Electrical Contracting & Specifications

<u>Lesson 1</u> <u>Lesson 2</u> <u>Lesson 3</u>

Test & Assessment

http://www.classroomclipboard.com/503511/Home/Test/75fe3cafbd1347eeb991b4629ad23a92#/InitializeTest.xaml

Type your name Put the following access code

5V4YBGS

Password- iqytechnicalcollege

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE121 Electronics Power Control Devices

Lesson 1 Lesson 2

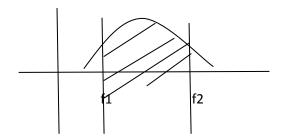
Test & Assessment

http://www.filefactory.com/file/fch86cnsrdp/n/H026 Online Test 1 Question pdf

http://www.filefactory.com/file/5wtb5ooaiizf/n/H026_Online_Test_1_Answer_doc

Do the tests and send the answer sheet in soft copy by e-mail to **iqytechnicalcollege@gmail.com**

Password- iqytechnicalcollege


Study EE121 Lessons

Then do the following exercises.

H026 Online Test

Ref473

Gain

The given characteristics curve is

Α	High pass filter	В	Low pass filter
С	Band pass filter	D	Band stop filter
Answer			

Ref478

This equation is used for

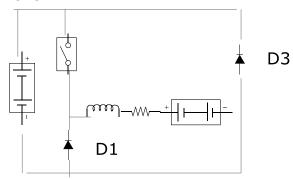
1

f_c= -----

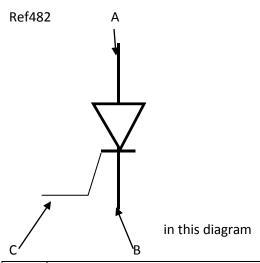
Α	First order high pass Butterworth filter	В	First order low pass Butterworth filter
С	Second order low pass Butterworth filter	D	Second order high pass Butterworth filter
	Answer		

Ref479

In 4 quadrant drive system, quadrant 4 is a function of


Α	Reversed braking	В	Forward driving
С	Reversed driving	D	Forward braking
	Answer		

Ref480

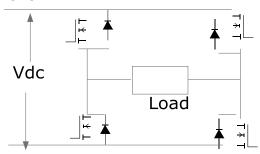

This characteristics stands for

Α	Class A chopper	В	Class B chopper
С	Class C chopper	D	Class D chopper
	Answer		

This is an equivalent circuit for

Α	Class A chopper	В	Class B chopper
С	Class C chopper	D	Class D chopper
	Answer		

Α	A-Anode, B= Cathode, C- Gate	В	A-Gate, B= Cathode, C- Anode
С	A-Cathode, B= Anode, C- Gate	D	
	Answer		

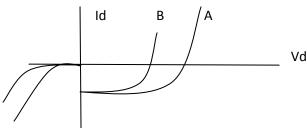

Ref483

This circuit is

Α	Single stage Darlington pair transistor	В	Two stage Darlington pair transistor
С	Three stage Darlington pair transistor	D	
	Answer		

Ref484

This circuit makes


Α	DC-DC converter	В	AC-DC converter
С	DC-AC Inverter	D	
	Answer		

Ref485

These converters are used to obtain a variable AC output voltage from a _____ and a single phase converter with a triac .

Α	Variable dc source	В	Fixed dc source
С	Variable ac source	D	Fixed ac source
	Answer		

Ref486

Curve A represents ______ & curve B represents _____.

Α	Hot carrier diode, PN Junction diode	В	PN Junction diode, Hot carrier diode
С			
	Answer		

Ref487

6 steps inverter can be used for

0 000	o stope invertor can be decayed.				
Α	Single phase AC motor	В	DC motor		
С	Three phase AC motor				
	Answer				

RMS current produced by current source inverter is

Α	I _{1 rms} = 0.5 Id	В	I _{1 rms} = 0.78 Id
С	I _{1 rms} = 0.707 Id	D	I _{1 rms} = 1.4142 ld
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

DIPLOMA IN ELECTRICAL ENGINEERING (LEVEL 2) LEARNING SYSTEM

All units in Diploma in Engineering program must be completed.

Then continue the study in the following units

EE201 Engineering Mathematics

EE201 Part 1 EE201 Part 2 EE201 Part 3 EE201 Part 4

Test & Assessment

http://www.filefactory.com/file/5ho7s6h0svhv/n/E050 Online Test 1 Answer doc

http://www.filefactory.com/file/6dqo87kdsorz/n/E050 Online Test 1 Question pdf

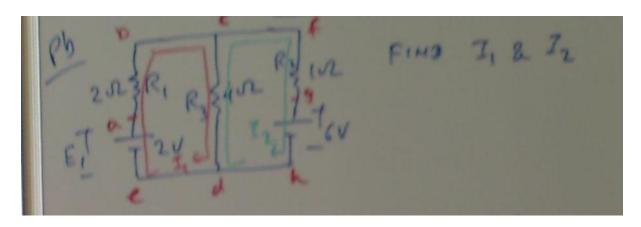
SUBMIT THE SCANNED COPY OF ANSWER to

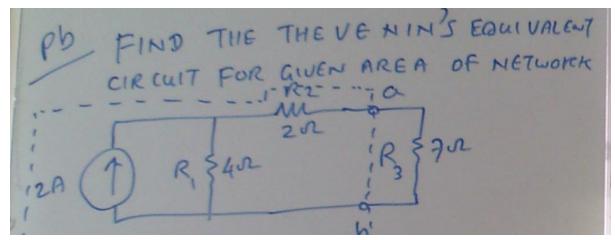
Dr Kyaw Naing

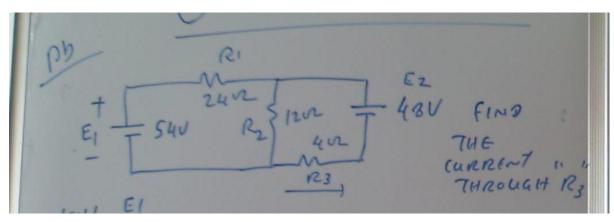
PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

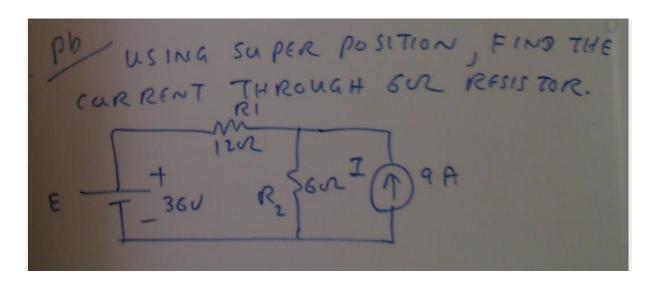
Password- iqytechnicalcollege


EE202 Electrical Circuits


EE202 Part 1 EE202 Part 2 EE202 Part 3


Test & Assessment

http://www.filefactory.com/file/52h82a0t0f3f/n/E025 Online Test 1 Question pdf


http://www.filefactory.com/file/1qw3qtvp9qd5/n/E025_Online_Test_1_Answer_doc

52

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

EE203 Three Phase Power Circuits

<u>EE203 Part 1</u> <u>EE203 Part 2</u> <u>EE203 Part 3</u>

Test & Assessment

http://www.filefactory.com/file/49ibg1gt9fgh/n/G049_Online_Test_1_Answer_doc

http://www.filefactory.com/file/5vhbs8sn20f3/n/G049_Online_Test_1_Question_pdf

Ph A 30 200V SYSTEM NEUTRAL

WIRE IS BROKEN. THE FOLLOWING LIME

CURRENTS ARE FLOWING.

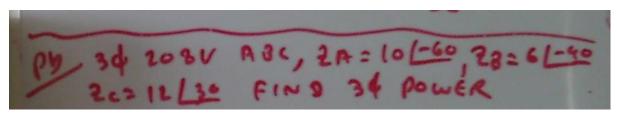
CURRENTS ARE FLOWING.

2A = SOLOW, IA = 1.55 [-8.5] AMP

23 = SOLOW, Ig = 2.47 [-176.4] AMP

23 = SOLOW, Ig = 2.47 [-176.4] AMP

26 = 158 [71.6 M, Ic = 1.03 [26.88 AMP


(1) WHAT ARE THE NEW PHASE VOLTAGES?

(1) WHAT IS THE VOLTAGE BETWEEN NEW

STAR POINT AND ORIGINAL POINT?

(11) WHICH PHASE GOT DUER VOLTAGE?

LINE WAT AGE

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

EE204 Engineering Physics

<u>EE204 Part 1</u> <u>EE204 Part 2</u> <u>EE204 Part 3</u> <u>EE204 Part 4</u> <u>EE204 Part 5</u>

EE204 Part 6

Test & Assessment

http://www.filefactory.com/file/13o82qnudgr3/n/E046 Online Test 1 Question pdf

http://www.filefactory.com/file/6o2lsbtge7tt/n/E046 Online Test 1 Answer doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

E046 Online Test

Ref66

The car is driven along a straight road for 8.4 Km at 70 Km/ hr. At which point the truck runs off the gasoline & stops. The next 30 minutes, the driver walks along the road for another 3 Km.

- (a) What is over all displacement?
- (b) What is time interval from the beginning of the drive to arrival at the station?
- (c) What is average velocity?

Α	20 km, 1 HR, 20 km/hr	В	30 km, 2 HR, 30 km /hr
С	10.4 km, 0.62 HR, 16.8 km/hr	D	50 km, 5 HR, 70 km/hr
	Answer		

Ref70

On a hot day in Las Vegas, an oil tanker loaded 37000 L of diesel fuel. It encounters cold weather on Utah where temperature was 23 Degree K lower than in Las Vegas. How many litres did it deliver? Volume expansion for diesel fuel is 9.5×10^{-4} Deg C coefficient of linear expansion is 11×10^{-6} deg c

Α	18380 L	В	36190 L
С	20000 L	D	10000 L
	Answer		

Ref73

A cylinder contains 12 L of oxygen at 20 deg C and 15 atm. The temperature is raised to 35 deg C and the volume is reduced to 8.5L. What is the final pressure of the gas in atmosphere.?

Α	22 atm	В	33 atm
С	11 atm	D	44 atm
	Answer		

Ref76

Three Carnot engines operate between reservoir temperatures of (a) 400 deg K and 500 deg K (b) 600 and 800 deg K (c) 400 and 600 deg K. rank the engineers according to thermal efficiencies. Greatest first.

Α	c, b, a	В	a, b, c
С	b, c, a	D	Equal
	Answer		

At t = 0, the displacement X(0) of the block is -8.5 cm. The block's velocity V(0) is -0.92 m/s and it's acceleration a (0) is 47 m/s².

- (a) What is the angular velocity w of this system?
- (b) What are the phase constant ϕ and amplitude Xm?

Α	22.5 rad/ s, 155 deg, 9.4 cm	В	50 rad/ s, 30 deg, 18 cm
С	100 rad/ s, 45 deg, 10 m	D	15 rad/ s, 75 deg, 4cm
	Answer		

Ref82

The following equations give the position X (t) of a particle in four situations

(a) X = 8t-4 (b) $x = -6t^3+9t^2+6$ (c) $X = 3/t^2-9/t$ (d) $X = 7t^2-4$ To which of these situations? Do the constant acceleration formulae apply?

Α	а	В	b
С	С	D	d
	Answer		

Ref85

$$a = 3I - 8j$$
 $b = -2I + 4j$ $c = -4j$

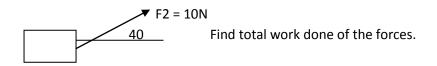
Find the resultant vector for a+b+c

Α	10i+2j	В	7i+5j
С	2.5i – 2.3 j	D	0
	Answer		

Ref88

2 kg Tin is accelerated at $3m/s^2$ in the direction shown by a over a frictionless horizontal surface. The acceleration is caused by three forces . What is the third force?

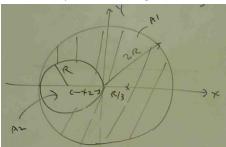
А	20N	В	10N
С	1N	D	12.5N
	Answer		


Ref91

Suppose that the coefficient of static friction $\,\mu$ between the rider's clothing and the canvas is 0.4 and the cylinder radius " R" is 2.1 m.

(a) What minimum speed (V) must the cylinder and the rider have if the rider is not to fall when the floor drops? (b) If the rider's mass is 49 Kg, what is the magnitude of centrifugal force on rider?

Α	7.2 m/s, 1200N	В	3.6 m/s, 600N
С	21 m/s, 2000N	D	30 m/s, 3000N
	Answer		


Ref94

Α	306J	В	153J
С	469J	D	73J
	Answer		

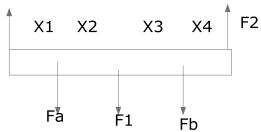
The figure shows a uniform metal plate "P" of radius "2 R" from which a disk of radius "R" has been stamped out. Using the X-Y co-ordinate system shown, locate the centre of mass of the plate.

Α	Xt = R / 4, Yt = R	В	Xt = R, Yt = R
С	Xt = R / 2, Y t = R/ 2	D	Xt = R / 3, $Y t = 0$
	Answer		

Ref100

A coach roach rides the rim of a rotating merry go around. If the angular speed is constant, does the coach roach have (a) Radial acceleration ? (b) Tangential acceleration ? What angle Θ_p should the arc subtend so that a 15. 4 kg at the point "P".

Α	50 Deg	В	30 Deg
С	111 Deg	D	200 Deg
	Answer		


Ref67

A rolling object has linear velocity 342.5 m/s radius =3 m mass =170 kg Calculate total kinetic energy.

	• •		
Α	1.5 x 10 ⁷ J	В	3 x 10 ⁷ J
С	4.5 x 10 ⁷ J	D	6 x 10 ⁷ J
	Answer		

Ref68

The figure gives over view at a uniform rod in static equilibrium , the magnitude of the forces $F1\ \&\ F2$ are

X1= 4m, X2= 2m, X3=1m, X4 = 1m, Fa = 10 N, Fb = 30N

Α	90 N, 130 N	В	22.5 N, 32.5 N
С	45 N, 65 N	D	100 N, 200 N
	Answer		

A living room has the floor dimension and height of $3.5 \, \text{m} \times 4.2 \, \text{m}$. A height of $2.4 \, \text{m}$ (a) What does the air in the room weigh when the air pressure is $1 \, \text{atm}$? (b) What is the magnitude of the atmosphere downward force on the top of your head which we take to have an area of $0.04 \, \text{m}^2$

Α	420 N, 4 x 10 ³ N	В	840 N, 8 x 10 ³ N
С	210 N, 2 x 10 ³ N	D	1640 N, 6 x 10 ³ N
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE205 Electrical Power System

<u>EE205 Part 6</u> <u>EE205 Part 7</u> <u>EE205 Part 8</u> <u>EE205 Part 9</u> <u>EE205 Part 10</u>

EE205 Part 11 EE205 Part 12 EE205 Part 13

Test & Assessment

http://www.filefactory.com/file/22ti8gb92ekf/n/G037_G038_G039_Online_Test_1_Answer_doc

http://www.G037+G038+G039 Test 1 Question,pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Study the notes in the EE205 files & do the exercise

G037+G038+G039 Online Test

Ref257

Es X Er

Er= 200V, $X = 5 \Omega$ P = 1000 watt Q = 500 VAR

The value of Es is

Α	400V	В	200V
С	213.9V	D	120V
	Answer		

Ref262

To provide physical damage to building & equipments due to direct and indirect lightning strike.

Α	Circuit protection device to be provided	В	Equalizer to be provided
С	Site earthing to be provided	D	PF must be improved.
	Answer		

Ref267

Which equipment is not included in power system equipment?

Α	Main feeder	В	Consumer main
С	Sectionalising busbar	D	Recloser
	Answer		

Ref292

The current in a system is 62.5A in which 59 amp is fundamental. Calculate total harmonic distortion . If the harmonic is combination of 3^{rd} , 5^{th} and 7^{th} and third harmonic is 15.6A, 5^{th} harmonic is 10.3A, find 7^{th} harmonic.

Α	60% 10A	В	34.9% 8.66A
---	---------	---	-------------

С	70% 3A	D	15% 2A
	Answer		

Earthing cable is to be connected to

Α	Star point of star connected winding	В	Neutral conductor
С	Circuit breaker	D	
	Answer		

Ref302

Arc lengthening, arc splitting and arc cooling functions are provided in

Α	Relay	В	Circuit breaker
С	Busbar	D	Recloser
	Answer		

Ref307

Switching transient causes

Α	Disruption of normal operation	В	Degrading of components
С	Damage to equipments	D	All above
	Answer		

Ref312

The lightning strike can directly at

Α	SPZOA	В	SPZ1
С	SPZ2	D	SPZ3
	Answer		

Ref317

The short duration reduction in the rms voltage between 0.1 and 0.9 pu caused by energizing the heavy load, single line to ground fault and load transfer from one source to remote source is

Α	Sag	В	Swell
С	Surge	D	
	Answer		

Ref322

Sinusoidal wave becomes other forms of wave is

Α	Voltage imbalance	В	Transient
С	Waveform distortion	D	Voltage reduction
	Answer		

Ref327

If the voltage is increased, the solution is to provide

Α	Use properly tuned filter	В	Use surge detector
С	Use equalizer busbar	D	Use equipotential bonding
	Answer		

The circuit consists of 100 V 60HZ and 5th harmonic 51V 300HZ in series with 24 ohm resistor & 18.6 mH inductor. Calculate total dissipated power.

Α	209 W	В	104.5W
С	418.6W	D	836W
	Answer		

Ref337

Two units of generator maintain 66KV and 60KV line at the end of an interconnector of inductive reactance per phase of 40 ohm with negligible resistance and shunt capacitance. A load of 10 MW is to be transferred from 66KV unit to the other end. Calculate the PF of the current transmitted.

Α	0.1	В	0.2
С	0.3	D	0.4
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE206 AC Machines

<u>EE206 Part 1</u> <u>EE206 Part 2</u> <u>EE206 Part 3</u>

Test & Assessment

http://www.filefactory.com/file/5stgiskbar09/n/G043 G045 Online Test 1 Answer doc

http://www.filefactory.com/file/7h9o99zngfq1/n/G043_G045_Online_Test_1_Question_pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege Study the fEE206 file notes and do the exercises

G043+G045 Online Test

Ref374

Which is correct formula

Α	T=Fxr	В	T= F x r
	P = 9.55 / NT		P = NT/ 9.55
С	T= F + r	D	T= F x r
	P = NT/ 9.55		P = 9.55 / N+T
	Answer		

Ref376

The heat taken away by blower is

Α	P = 640V (t2 - t1)	В	P = 320V (t2 – t1)
С	P = 1280V (t2 - t1)	D	P = 160V (t2 - t1)
	Answer		

Ref378

The 6 poles wound rotor induction motor is excited by three phase 60 HZ source. Calculate the rotor frequency for (a) Standstill (b) 500 rpm same direction (c) 500 rpm opposite direction.

Α	50HZ, 70 HZ, 170HZ	В	60HZ, 35 HZ, 85 HZ
С	25 HZ, 35 HZ, 40 HZ	D	15 HZ, 35 HZ, 125 HZ
	Answer		

Ref380

A three phase induction motor having synchronous speed of 1200 rpm draws 80kw from three phase feeder. Copper loss & iron loss in stator amount to 5kw. If the motor runs at 11452 rpm, calculate the efficiency of motor.

Α	45%	В	87.5%
С	75%	D	35%
	Answer		

Ref382

Locked rotor test is performed to determine.

Α	Core parameter	В	Winding parameter
С	Load parameter	D	35%
	Answer		

Ref384

A three phase 208 V induction motor having synchronous speed 1200 rpm runs at 1140 rpm. When connected to 215V, driving at constant load, calculate the speed if voltage is 240V

Α	1152 rpm	В	800 rpm
С	700 rpm	D	500 rpm
	Answer		

Ref386

The system that reverses the supply connection to the motor terminals when the stop switch is pressed is

Α	Dynamic braking	В	Plugging
С	Forward reverse	D	Time delay starter
	Answer		

Ref388

A 500HP 720 rpm synchronous motor connected to 3980V three phase line generates an excitation voltage Ef=1790V (L-N) when the dc excitation current is 25 amp. The synchronous reactance is 22Ω , torque angle between Ef & V is 30°.Calculate shaft torque.

Α	2000 N-m	В	3715 N-m
С	1500 N-m	D	750 N-m
	Answer		

Ref390

In a synchronous motor, when power factor is unity, the line current is

Α	Maximum	В	Minimum
С	Unchanged	D	
	Answer		

Ref392

Under excitation makes the power factor of a synchronous machine to become

Α	Unity	В	Leading
С	Lagging	D	
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE207 DC Machines

Test & Assessment

http://www.filefactory.com/file/2ejf6p7o0j0f/n/G044_Online_Test_1_Answer_doc

http://www.filefactory.com/file/5iyno92bji67/n/G044 Online Test 1 Question pdf

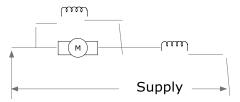
Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Study the EE207 File notes and do the exercises


G044 Online Test

Ref394

Power provided by dc generator is

Α	P = B I V	В	P = B L V I
С	P = B I L	D	P = B L V
	Answer		

Ref395

This connection is

Α	Series	В	Shunt
С	Short shunt compound	D	Long shunt compound
	Answer		

Ref396

Calculate the coil span for

(a) 36 slots, 4 poles simplex lap (b) 36 slots, 2 poles, Duplex wave

Α	1 to 10, 1 to 39 & 1 to 35	В	1 to 9, 1 to 38 & 1 to 34
С	1 to 8, 1 to 37 & 1 to 33	D	1 to 7, 1 to 36 & 1 to 32
	Answer		

Ref397

The brushes on a 0.4 m diameter commutator are rocked 0.03m circumferentially. The machine has 6 poles, simplex lap wound, 378 conductors 800 Armature current. Calculate cross magnetizing and de-magnetizing ampere turn / pole.

Α	600 AT/pole, 1500 AT /pole	В	1250 AT/pole, 3000 AT /pole
С	300 AT/pole, 750 AT /pole	D	150 AT/pole, 375 AT /pole
	Answer		

Ref398

Motor particulars $\,$ 3.75 KW, 230V, 18A, 1750 rpm Ra=0.3 $\!\Omega$, brush drop 2V on load.

Calculate final torque if field flux is reduced to 96%

Α	50.56 N-m	В	100 N-m
С	150 N-m	D	40 N-m
	Answer		

Ref399

7.5KW 230V 1750 rpm shunt motor, armature resistance 0.35 Ω , shunt field resistance 62.2 Ω If no load current is 7.7 amp, full load efficiency 86%, brush drop 3V at full load & 1 V at no load. Calculate % regulation.

A 5.7%		В	10%
--------	--	---	-----

С	12%	D	15%
	Answer		

The winding resistance of a 500V, 60KW dc shunt motor are Ra= 0.2Ω Rf= 200Ω , mechanical losses are 1.4KW.Determine the efficiency of the machine.

(a) When the line current is 102.5A (b) At full load.

Α	70%, 75%	В	90.93%, 90.9%
С	95%, 93%	D	78%, 87%
	Answer		

Ref401

The resistance of an armature winding at 25°C was found to be 0.26 Ω . After a heat run , it becomes 0.296 Ω . Calculate the temperature rise of the winding.

Α	Δt = 70 °C	В	Δt = 36 °C
С	Δt = 15 °C	D	Δt = 12 °C
	Answer		

Ref402

A 75KW 500V generator has a voltage regulation 4%, calculate

- (a) The open circuit voltage
- (b) Assuming the voltage varies uniformly between no load and full load current. Calculate the KW output of a terminal voltage 510V.

Α	500V, 20 KW	В	250V, 10 KW
С	520V, 38.25 KW	D	500V, 10 KW
	Answer		

Ref403

A 4 poles wound armature operating in a field of flux 0.01wb in wound with 360 armature conductors. Determine the expression of torque as a function of speed. If Vt=250V and Vt=250V and Vt=250V are the conductors.

Α	1000 – 1.3 N	В	2000- 2N
С	3000 – 4N	D	2860 – 1.38N
	Answer		

Ref404

The resistance of the armature of a 240V dc shunt motor is 0.5Ω . It is required that the current at starting be limited to 200% of full load current & full load current is 15A.

Determine

- (a) Total resistance of armature current at starting
- (b) The number of studs on the starter
- (c) r3.

Α	8Ω, 4, 1Ω	В	10Ω, 3, 0.5Ω
С	8Ω, 2, 1Ω	D	4Ω, 2, 1Ω

Answer	

Which is not a dc motor braking method?

Α	Plugging	В	Dynamic braking
С	Mechanical braking	D	Ward Leonard
	Answer		

Ref 406

Which equipment does not produce ripple?

Α	PWM Switching	В	Rectifier circuit
С	DC Generator	D	PV Inverter
	Answer		

EE208 Operational Amplifiers

Test & Assessment

http://www.filefactory.com/file/2a3bpimaxqx3/n/H025_H045_I006_Online_Test_1_Answer_doc

http://www.filefactory.com/file/7j320hlrk6k9/n/H025 H045 I006 Online Test 1 Question pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

Study the EE207 File notes & do the exercises

H025+H026+I006 Online Test

Ref451

Differential amplifier can ______ noise signals that are common to both inputs.

Α	accept	В	reject
С	rectify	D	reduce
Answer			

Ref453

A transducer consists of _____ & it's associated circuitry to produce an output signal

Α	Rectifier	В	Sensor
С	Regulator	D	Divider
	Answer		

The strain gauge is used for

Α	Speed measurement	В	Temperature measurement
С	Force measurement	D	Position measurement
	Answer		

Ref457

The water supply to water tank is an example of

Α	Open loop control	В	Closed loop control
		D	
	Answer		

Ref459

Reset function is

Α	Proportional control	В	Integral control
С	Derivative control	D	PID control
	Answer		

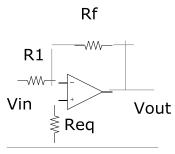
Ref461

In one shot or monostable circuit, delay time equation is

	, , ,		
Α	T = 1.1 Ra C	В	T = 2 Ra C
С	T = 3 Ra C	D	
	Answer		

Ref463

The following equation is used for


Vo = - (Rf/R1) V1 +(Rf/R2) V2 + (Rf/R3) V3

	<u> </u>	<u> </u>	
Α	Summing amplifier	В	Differential amplifier
	0 1 1:6:		-
C	Cascade amplifier	D	
	Answer		
	Allswei		

Ref465

In the following circuit, Req is

67

Α	Bias voltage offset resistor	В	Bias current offset resistor
С	Feedback resistor	D	
	Answer		

Noise gain is

Α	(Rf/R1) + 1	В	(R1/Rf)+1
С	R1/Rf	D	Rf/R1
	Answer		

Ref469

The slew rate of 741 Op is 0.5V/ μ s. Find maximum frequency for 20V p-p sine wave

	• • • • • • • • • • • • • • • • • • • •	•	• • • • • • • • • • • • • • • • • • • •
Α	3KHZ	В	10KHZ
С	7.96 KHZ	D	20 KHZ
	Answer		

Ref471

Phase shift oscillator frequency is

	, ,		
Α	f _o = 1/ 15.4 RC	В	f _o = 1/ 30 RC
С	f _o = 1/60 RC	D	f _o = 1/ 100 RC
	Answer		

Ref472

The Wien bridge amplifier frequency is

Α	f _o = 1/ 3.14 RC	В	f _o = 1/ 6.28RC
С	f _o = 6.28 RC	D	$f_o = 1/RC$
	Answer		

EE209 Analogue Electronics

<u>EE209 Part 1</u> <u>EE209 Part 2</u> <u>EE209 Part 3</u> <u>EE209 Part 4</u> <u>EE209 Part 5</u>

<u>EE209 Part 6</u> <u>EE209 Part 7</u>

Test & Assessment

http://www.filefactory.com/file/5ht8f5ih8lvr/n/H011_Online_Test_1_Answer_doc

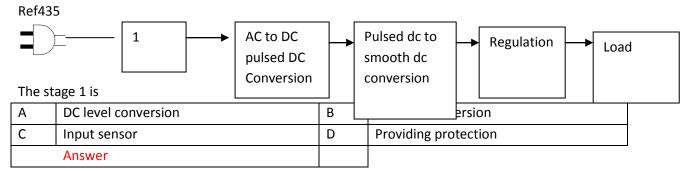
http://www.filefactory.com/file/74ma7pvjy4un/n/H011_Online_Test_1_Question_pdf

http://www.filefactory.com/file/229n33ldqwah/n/H011 Online Test 2 Answer doc

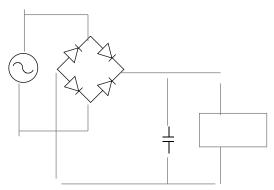
http://www.filefactory.com/file/3e54mrgli7ft/n/H011_Online_Test_2_Question_pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing


PO BOX 227

Marrickville, NSW 1475, Sydney, Australia


Password- iqytechnicalcollege

Study the EE209 file notes & do the exercises

H011 Online Test

Ref436

The name of given circuit is

Α	Single phase full wave rectifier	В	Single phase half wave rectifier
С	Three phase full wave rectifier	D	Three phase half wave rectifier
	Answer		

Ref437

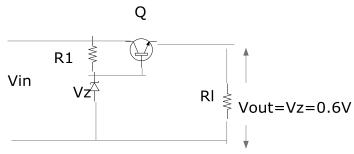
The dc output voltage produced by centre tapped transformer rectifier is

Α	Vdc= 0.5 Vmax	В	Vdc= 0.73 Vmax
С	Vdc= 0.636 Vmax	D	Vdc= 0.707 Vmax
	Answer		

Ref438

For bridge rectifier, ripple frequency is equal to

Α	Supply frequency	В	Three times supply frequency
С	Half of supply frequency	D	Two times supply frequency
	Answer		


Ref439

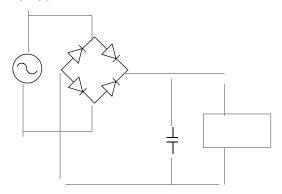
Calculate the load resistance & capacitance size of a full wave rectifier that supplies 40V dc with 3% ripple voltage at 250mA to a resistance load. The rectifier circuit is supplied with 60HZ AC. Ripple frequency 50HZ.

Α	160Ω, 31.25μF	В	320Ω, 62.5μF
С	100Ω, 10μF	D	60Ω, 15μF
	Answer		

Ref440

The following circuit is




Α	Shunt transistor regulator	В	Regulator with feedback
С	Operational amplifier	D	Series transistor regulator
	Answer		

Ref441

The regulator with feedback is constructed with the following values. R2= 1 K Ω , R3= 2 K Ω , Rsc=0.6 Ω Calculate power output Pd

A	30W	В	60W
C	90W	D	15W

The name of given circuit is

Α	Single phase half wave rectifier	В	Single phase full wave rectifier
С	Three phase full wave rectifier	D	Three phase half wave rectifier
	Answer		

Ref437

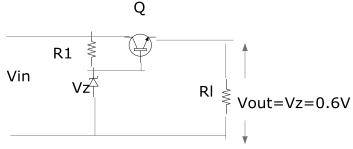
The dc output voltage produced by centre tapped transformer rectifier is

Α	Vdc= 0.5 Vmax	В	Vdc= 0.73 Vmax
С	Vdc= 0.707 Vmax	D	Vdc= 0.636 Vmax
	Answer		

Ref438

For bridge rectifier, ripple frequency is equal to

Α	Two times supply frequency	В	Three times supply frequency
С	Half of supply frequency	D	Supply frequency
	Answer		


Ref439

Calculate the load resistance & capacitance size of a full wave rectifier that supplies 40V dc with 3% ripple voltage at 250mA to a resistance load. The rectifier circuit is supplied with 60HZ AC. Ripple frequency 50HZ.

Α	60Ω, 15μF	В	320Ω, 62.5μF
С	100Ω, 10μF	D	160Ω, 31.25μF
	Answer		

Ref440

The following circuit is

Α	Shunt transistor regulator	В	Regulator with feedback
С	Series transistor regulator	D	Operational amplifier
Answer			

Ref441

The regulator with feedback is constructed with the following values. R2= 1 K Ω , R3= 2 K Ω , Rsc=0.6 Ω Calculate power output Pd

Α	90W	В	60W
С	30W	D	15W
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE210 Electrical Engineering Business Studies

Business Units Online Lesson Study Link

Test & Assessment

Business units assignments

DIPLOMA IN ELECTRICAL ENGINEERING (LEVEL 3) LEARNING SYSTEM

EE301 Advanced Electrical Drafting stage 1 Part 3.zip http://www.filefactory.com/file/c0cb8f5/n/Stage 1 Part 3.zip Stage 1 Part 4.zip http://www.filefactory.com/file/c0cc1cd/n/Stage 1 Part 4.zip Password--- joe2013 1WiringInstallationDrawing 7MachineDriveSystems 8PowerElectronicsDevices Stage 4 Part 11.zip Password--- joe2013 AutoCAD 2D 3D Lessons Stage 4 Part 1A.zip http://www.filefactory.com/file/c0cc226/n/Stage 4 Part 1A.zip Stage 4 Part 12.zip http://www.filefactory.com/file/c0cc566/n/Stage 4 Part 12.zip Password--- joe2013 Symbol A Symbol B **Symbol C** Symbol D

Symbol E

Symbol F

Symbol G

Stage 4 Part 22.zip

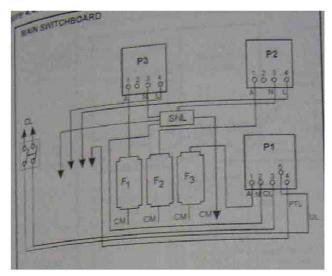
http://www.filefactory.com/file/c0cc83e/n/Stage 4 Part 22.zip

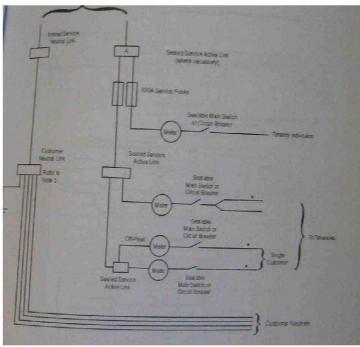
Password--- joe2013

Assessment-In class assessment

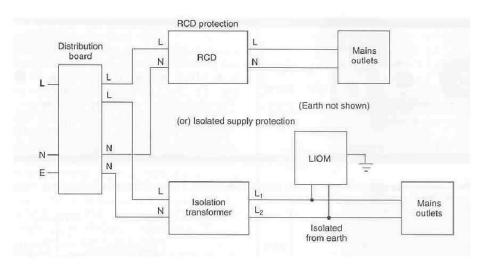
E071_MEM09004_Tutorial

E071_MEM09004_Tutorial_Mod.zip


Stage 4 Part 14.zip


http://www.filefactory.com/file/c0cc684/n/Stage 4 Part 14.zip

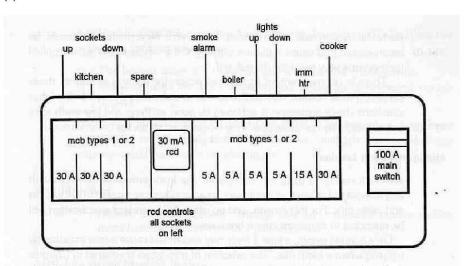
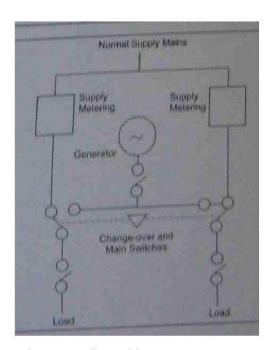
Password--- joe2013

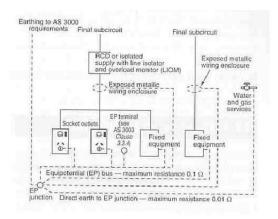

Submit the drawing tutorial assignment

(Do not copy the given diagram, it is just a reference, you need to draw your own sketch by computer)

(3) Sketch the given circuit

(4)

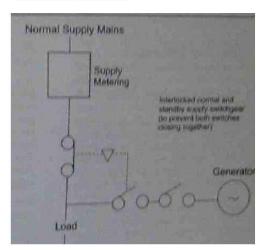

Figure 2.5 Main switch controls all circuits.

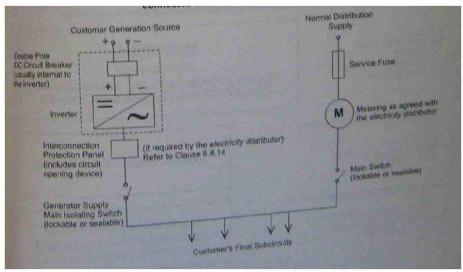
(5)

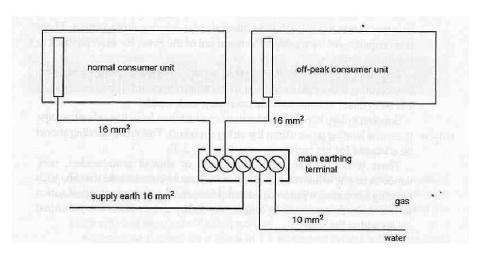
Reference: Specification (1)

- (1) Write the important aspects of the specifications for electro medical equipments
- (2)Draw the following circuits by computer

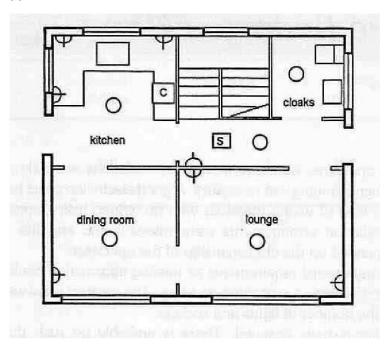
(2)Reference: Service Rule 3

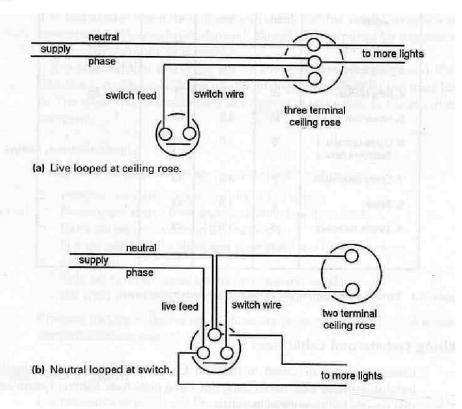

Job (3)

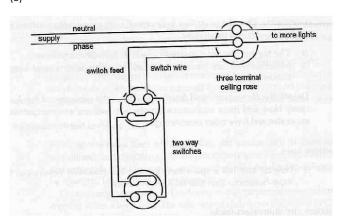

You need to install a stand by generating plan for a small factory.

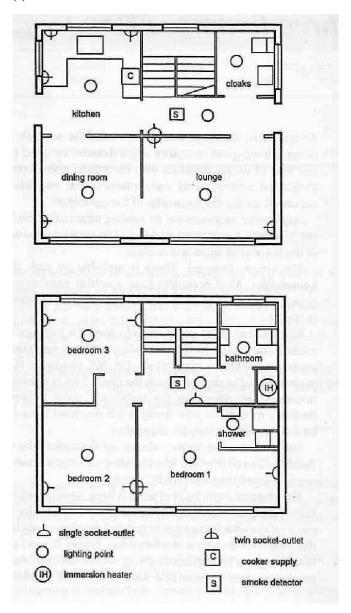

Prepare the specifications and design diagram for the following aspects

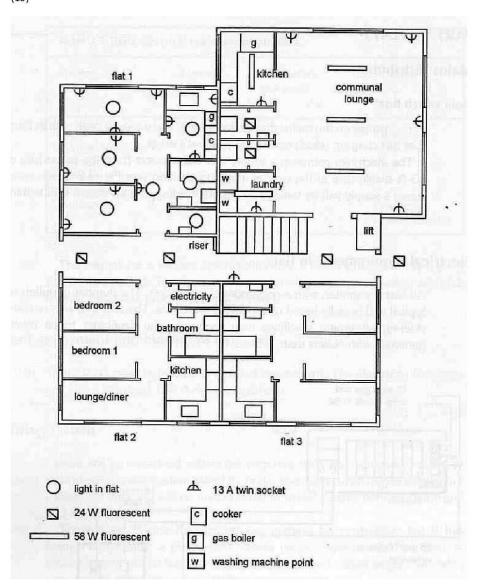
(1)Condition of use, (2)spacing for conductors, (3)change over equipments, 94)Operating procedure, (5)protection


Reference Diagram (Do not copy the given diagram, it is just a reference, you need to draw your own sketch by computer)




(6)


(7)


(8)

(9)

(10)

(11)

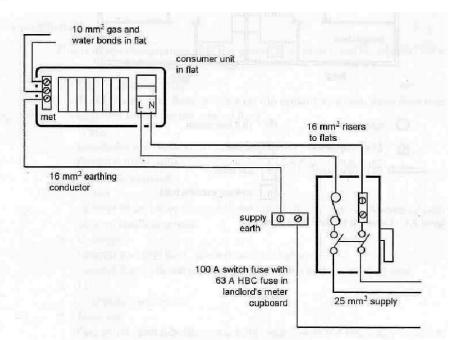


Figure 3.2 Distribution to flats.

(13)

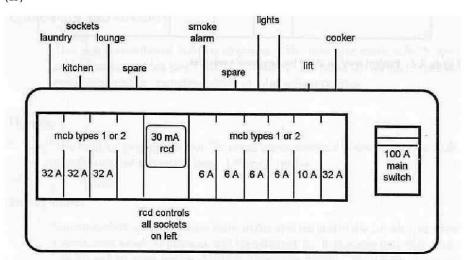


Figure 3.5 Landlord's distribution board.

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE302 Advanced Engineering Mathematics

<u>EE302 Part 1</u> <u>EE302 Part 2</u> <u>EE302 Part 3</u> <u>EE302 Part 4</u>

http://www.filefactory.com/file/5l9fpcclhjzp/n/E026 Online Test 3 Question pdf

http://www.filefactory.com/file/64ccdiiuf0ax/n/E026_Online_Test_3_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

E026 Online test

Ref 27

$$\frac{dy}{dx} = 8\alpha^2 \qquad \text{Find Y}$$

Α	X³+C	В	3X ⁴ +C	
С	1/ X³ +C	D	Ln X +C	
	Answer		9	Av.

Ref 28

Solve y'' = 3x - 2, y(0) = 2 y'(1) = -3, the generalized answer is

Α	$X^4 - X^3 - X^2 - 5/2 X + 2$	В	$X^3 - X^2 - X^2 - 5/2 X + 2$	
С	X ² -3X +2	D	X³- 3X +2	*
	Answer			,

Ref 29

Find general equation of

 $(4X+XY^{2})dX+(Y+X^{2}y)dY=0$

Α	Ln (1+ X ²) + 1/2 Ln (4+Y ²)	В	Ln (1+ X ²) + 1/3 Ln (4+Y ²)
С	1/(1+ X ²) + 1/(1+Y ²)	D	(1+ X ²) + (4+Y ²)
	Answer		

Ref 30

Evaluate the following

Γ(6)

2 Γ(3)

Α	10	В	30	
С	15	D	25	
	Answer			

Evaluate the following

 $\Gamma(5/2)$

 $\Gamma(1/2)$

Α	3/4	В	3/2
С	3	D	1/3
	Answer		

Ref 32

Find the volume of region R bounded by parabolic cylinder $Z = 4 - X^2$ & planes X = 0, Y=0, Y=6, Z=0

Α	16	В	32
С	42	D	64
	Answer		

Ref33

Laplace transform of $5 \sin 2t - 3 \cos 2t$ is

Α	10 – 3 S	В	3 S - 10	
	S ² +4		S ² +4	
С	10	D	3 S	
	S ² +4		S ² +4	
	Answer			

86

. Find

Α	3/2 sin 2t – 4 cos 2t	В	4 cos 2t – 3/2 sin 2t	
С	4 sin2t – 3/2 cos 2t	D	Sin3t – cos 4t	×.
	Answer			12

Ref 35

Find

Α	$8 t^{-1/2} - 5t$	В	5 t ²	
	√ П		√П	
С	$8 t^{-1/2} - 5t^{-1/2}$	D	8 t ² – 5	
	νп		√П	
	Answer			

. Find

1 Ł⁻¹ ------S ²+2S

Α	½ t -½ e ^{-2t}	В	t - e ^{-t}
С	½ t -½ e ^t	D	2 t - e ^{2t}
	Answer		

Ref37

The solution of the given differential equation $y' - 3y' + 2y = 2 e^{-t}$ where y(0) = 2, y'(00 = -1) by Laplace transform is

Α	7 e ^{2t} +4 e ^t + e ^{-t}	В	$3 e^{2t} + e^{t} + 3e^{-t}$
С	$-7/3 e^{-2t} + 4e^{t} + 1/3 e^{-t}$	D	$-7 e^{-2t} + e^t + 3 e^{-3t}$
	Answer		

Ref38

A resistor $\,$ R = 10 $\,$ Ω $\,$ Inductor 2H and a voltage E volt are connected in series with switch S $\,$

At t = 0, the switch is closed and I = 0.

Find I for t > 0 if E = 40V

Α	4t-4 e ^{-5t}	В	4- e ^{-t}	
С	4t	D	4	
	Answer			3

Inverse matrix of the matrix for given equations

$$3X_1 - 2X_2 + 2X_3 = 10$$

$$X_1 + 2X_2 - 2X_3 = -1$$

$$4X_1 + X_2 + 2X_3 = 3$$
 is

A	$ \begin{pmatrix} \frac{7}{35} & \frac{6}{15} & \frac{2}{35} \\ -\frac{14}{35} & \frac{-2}{35} & \frac{11}{35} \\ \frac{-7}{35} & \frac{-11}{35} & \frac{8}{35} \end{pmatrix} $	В	$\begin{pmatrix} 7 & 6 & 2 \\ 14 & -2 & 11 \\ -7 & -11 & 8 \end{pmatrix}$
С	$ \begin{pmatrix} \frac{1}{35} & \frac{6}{35} & \frac{1}{35} \\ -14 & -2 & 11 \\ -7 & -11 & -8 \end{pmatrix} $	D	$ \begin{pmatrix} 1 & 6 & 1 \\ 2 & 3 & 4 \\ 7 & 11 & 8 \end{pmatrix} $
	Answer		

E026 Online test

Ref 27

 $\frac{dy}{dx} = 8x^2 \qquad \text{Find Y}$

Α	3X ⁴ +C	В	X³+C	
С	1/ X³ +C	D	Ln X +C	*
	Answer			N

Ref 28

Solve y'' = 3x - 2, y(0) = 2 y'(1) = -3, the generalized answer is

Α	$X^4 - X^3 - X^2 - 5/2 X + 2$	В	X ³ -3X +2	
С	X ² -3X +2	D	$X^3 - X^2 - X^2 - 5/2 X + 2$	
	Answer			

Ref 29

Find general equation of

 $(4X+XY^{2})dX+(Y+X^{2}y)dY=0$

Α	$(1+X^2) + (4+Y^2)$	В	Ln (1+ X ²) + 1/3 Ln (4+Y ²)
С	1/(1+ X ²) + 1/(1+Y ²)	D	Ln (1+ X ²) + 1/2 Ln (4+Y ²)
	Answer		

Ref 30

Evaluate the following

Γ(6)

2 Γ(3)

С	30 Answer	D	25
Α	10	В	15

Ref 31
Evaluate the following
Γ(5/2)

Γ(1/2)

Α	1/3	В	3/2
С	3	D	3/4
	Answer		

Ref 32

Find the volume of region R bounded by parabolic cylinder $Z = 4 - X^2$ & planes X = 0, Y=0, Y=6, Z=0

Α	16	В	42	
С	32	D	64	3
0	Answer			X

Ref33

Laplace transform of 5 sin 2t – 3 cos 2t is

Α	3 S - 10	В	10-3 S
	S ² +4		S ² +4
С	10	D	3 \$
	S ² +4		S ² +4
	Answer		

Ref34

. Find

Α	3/2 sin 2t – 4 cos 2t	В	4 cos 2t – 3/2 sin 2t	
С	4 sin2t – 3/2 cos 2t	D	Sin3t – cos 4t	2
	Answer			

Find

S 3/2

Α	$8 t^{-1/2} - 5t$	В	5 t ²
	νП		√П
С	$8 t^2 - 5$	D	8 t ^{-1/2} – 5t ^{-1/2}
	v Π		νп
	Answer		

Ref 36

. Find

Ł-1 -----

S 2+2S

Α	½ t -½ e ^{-2t}	В	½ t -½ e ^t
С	t - e ^{-t}	D	2 t - e ^{2t}
	Answer		

The solution of the given differential equation $y' - 3y' + 2y = 2 e^{-t}$ where y(0) = 2, y'(00 = -1) by Laplace transform is

Α	-7/3 e- ^{2t} + 4e ^t + 1/3 e ^{-t}	В	$3e^{2t}+e^{t}+3e^{-t}$
С	7 e ^{2t} +4 e ^t + e ^{-t}	D	$-7 e^{-2t} + e^{t} + 3 e^{-3t}$
	Answer		

Ref38

A resistor $\,$ R = 10 $\,$ Ω $\,$ Inductor 2H and a voltage E volt are connected in series with switch S $\,$

At t = 0, the switch is closed and I = 0.

Find I for t > 0 if E = 40V

Α	4- e ^{-t}	В	4t-4 e ^{-5t}
С	4t	D	4
	Answer		

Ref39

Inverse matrix of the matrix for given equations

$$3X_1-2X_2+2X_3=10$$
 $X_1+2X_2-2X_3=-1$ $4X_1+X_2+2X_3=3$ is

Α	$ \begin{pmatrix} \frac{1}{35} & \frac{6}{35} & \frac{1}{35} \\ -14 & -2 & 11 \\ -7 & -11 & -8 \end{pmatrix} $	В	$ \begin{pmatrix} 7 & 6 & 2 \\ 14 & -2 & 11 \\ -7 & -11 & 8 \end{pmatrix} $
С	$ \begin{pmatrix} \frac{7}{35} & \frac{6}{15} & \frac{2}{35} \\ \frac{-14}{35} & \frac{-2}{35} & \frac{11}{35} \\ \frac{-7}{35} & \frac{-11}{35} & \frac{8}{35} \end{pmatrix} $	D	$ \begin{pmatrix} 1 & 6 & 1 \\ 2 & 3 & 4 \\ 7 & 11 & 8 \end{pmatrix} $
	Answer		

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

EE303 Transmission Lines

<u>EE303 Part 1</u> <u>EE303 Part 2</u> <u>EE303 Part 3</u>

Test & Assessment

http://www.filefactory.com/file/12pcsbpgbkhx/n/G042 Online Test 1 Question pdf

http://www.filefactory.com/file/36rh22df1bm7/n/G042_Online_Test_1_Answer_doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

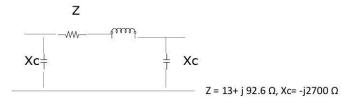
Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

G042 Online Test

Ref352

Circuit breaker is


Α	To cut off the circuit when fault occurs	В	To cool the arc after disconnecting the circuit
С	To reclose the switch	D	All above
	Answer		

Ref354

Find the input impedance and VSWR of a transmission line 4.3 λ long when Zo=100 Ω & Z2=200-j150 Ω

Α	1+j2 Ω, 0.592 λ	В	2-j1.5 Ω, 0.592 λ	
С	3+j4 Ω, 1.6 λ	D	3-j4 Ω, 3.6 λ	
	Answer			

Ref356

Find A, B, C, D constants

Α	A=1.8, B= 180, C =0.0007, D= 1.8	В	A=2, B= 360, C =0.0012, D= 2
С	A=3, B= 400, C =0.015, D= 5	D	A=0.967, B= 93.5, C =0.0007, D=0.967
	Answer		

A 50Ω transmission line is connected to a load impedance 75+j 60Ω . The forward wave voltage RMS value on line is 25V. Calculate

- (a) Power delivered to resistive part of load impedance
- (b) RMS current in impedance reflected wave voltage RMS size
- (c) Peak voltage, forward and backward waves
- (d) Voltage standing wave ratio (VSWR)
- (e) Return loss in decibel

Α	12.5W, 0.101A, 35.6V, 16.57V, 2.764,4.4dB	В	25W, 0.38A, 70V, 32V, 5.3,8.8dB
С	5W, 0.39A, 70V, 16V, 3, 4dB	D	25W, 0.38A, 40V, 32V, 2.764,4.4dB
	Answer		

Ref360

The sum of \$1000 is invested at 6% for 10 years at compound interest.

(a0 Calculate the sum at the end of 10 years (b) If instead of lump sum at the end of 10 years, te loan of \$1000 is to be paid by fixed amount each year, calculate the annual amount.

Α	\$1791, \$ 135.90	В	\$3400, \$270	
С	\$1000,\$70	D	\$500,\$35	
	Answer			

Ref362

Attenuation is related to

Α	Radiation loss	В	Di electric loss	
С	23V, 24.8V, -0.96V, -0.76V, 2V	D	All	
	Answer			

3

Ref364

Which is correct?

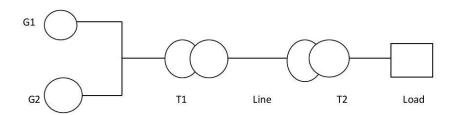
Α	λ = v/f	В	λ = f/v	
С	λ = fv	D	λ = f+v	
	Answer			

Ref366

In short transmission line,

Α	Load impedance dominates the circuit	В	Line impedance dominates the circuit
С	Load & line impedance equally influence the circuit	D	Load & line impedance do not influence the circuit
	Answer		

Ref368


Reflection coefficient is

Α	(ZI – Zo) / (ZI +Zo)	В	(ZI + Zo) / (ZI -Zo)	
С	ZI Zo / (ZI +Zo)	D	ZI Zo / (ZI -Zo)	
	Answer			

Ref 370

No magnetic field in direction of propagation is

Α	TM mode	В	TE mode
С	TEM mode	D	Hybrid mode
	Answer		

G1-1000VA 250V Z = j0.2 pu

G2-2000VA 250V Z = j0.8 pu

T1=4000VA 250/800V z=j0.1 pu

Line Z=50+j200 ohm

T2= 8000VA 800/400 V Z=j0.08 pu

Load---2500VA 400V

Calculate PU impedance referred to base 5000VA 250V Base

•

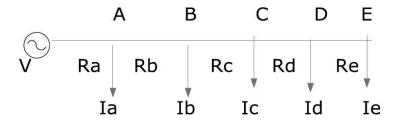
Generator= j 0.75 pu	В	Generator= j 1.5 pu
TrA = j0.125 pu, Tr B = j0.125 pu		TrA = j0.25 pu, Tr B = j0.25 pu
Line = 0.39 + j1.56 pu		Line = 0.78 + j3 pu
Load 0.5 pu		Load 1 pu
Generator= j 3 pu	D	Generator= j 3 pu
TrA = j0.5 pu, Tr B = j0.5 pu		TrA = j0.5 pu, Tr B = j1pu
Line = 1.56 + j6pu		Line = 3 + j4pu
Load 2 pu		Load 3pu
Answer		
	TrA = j0.125 pu, Tr B = j0.125 pu Line = 0.39 + j1.56 pu Load 0.5 pu Generator= j 3 pu TrA = j0.5 pu, Tr B = j0.5 pu Line = 1.56 + j6pu Load 2 pu	TrA = j0.125 pu, Tr B = j0.125 pu Line = 0.39 + j1.56 pu Load 0.5 pu Generator= j 3 pu TrA = j0.5 pu, Tr B = j0.5 pu Line = 1.56 + j6pu Load 2 pu

G042 Online Test

Ref353

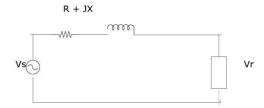
 $300 \, \text{km}$ line, the conductor diameter is $1 \, \text{cm}$, the conductor diameter is $1 \, \text{cm}$, the distance between conductor is $1 \, \text{m}$. Line inductance and line capacitance.

Α	0.276H, 0.012x 10 ⁻⁹ F/m	В	0.54H, 0.024x 10 ⁻⁹ F/m	
С	0.81H, 0.072x 10 ⁻⁹ F/m	D	01.8H, 0.014x 10 ⁻⁹ F/m	
	Answer			

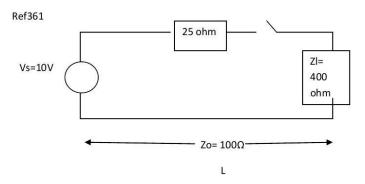

Ref355

A load of 75+j50 Ω is to be matched to a 50 Ω transmission line using a λ / 4 matching section. Determine the proper location and characteristics impedance of the matching section.

Α	120Ω, 50Ω	В	240Ω, 10Ω	
С	360Ω, 15Ω	D	480Ω, 20Ω	
	Answer			


Ref357

The following is the arrangement of 240V dc supply , calculate the efficiency.


 $Ra=0.2~\Omega,~Rb=~0.6~\Omega,~Rc=~0.4~\Omega,~Rd=~0.6~\Omega,~Re=~0.4~\Omega \quad Ia=~30A,~Ib=~20A,~Ic=~30A,~Id=~40A,~Ie=50A$

Α	50%	В	15%
С	25%	D	75%
	Answer		

In above circuit, the load consumes 1500 watt at PF 0.8 & voltage of 460V. Line impedance Z in 2+j5 ohm. Find (a) Vs for lagging PF (b) Leading PF.

Α	300V, 200V	В	150V , 100V
С	490V, 445 V	D	700V, 600V
	Answer		

A 10V dc source with internal resistance 25 ohm is connected to a transmission line of length (L) having an impedance of 100 ohm by the switch. The transmission line is terminated with 900 ohm resistor. T = amount of time required for a signal to travel the length of transmission line. Calculate V1+, V 1-, V2+, V2-, Vt

Α	8V, 6.4V, -3.84V, -3.072V, 7.488V	В	12V, 12.8V, -1.92V, -1.536V, 3.744V
С	23V, 24.8V, -0.96V, -0.76V, 2V	D	12V, 12.8V,0.96V, -0.76V, 2V
	Answer		

Below surge impedance loading, power factor is

Α	Lagging	В	Leading
С	Unity	D	
	Answer		

Ref365

Which is correct?

Α	V2/V1 = I1/I2 = e ^r	В	V2/V1 = I1/I2 = r	
С	V1/V2 = I1/I2 = e ^r	D	V2/V1 = I1/I2 = e ^{-r}	
	Answer			

Ref367

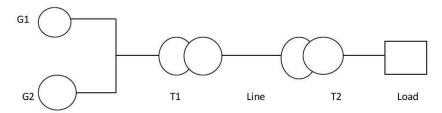
In long transmission line,

Α	Load impedance dominates the circuit	В	Line impedance dominates the circuit
С	Load & line impedance equally influence the circuit	D	Load & line impedance do not influence the circuit
	Answer		

Ref369

No electric field in direction of propagation is

Α	TM mode	В	TE mode	
С	TEM mode	D	Hybrid mode	
	Answer			


Ref371

No electric field and magnetic field in direction of propagation is

4

Α	TM mode	В	TE mode
С	TEM mode	D	Hybrid mode
	Answer		

Ref372

G1-1000VA 250V Z = j0.2 pu

G2-2000VA 250V Z = j0.8 pu

T1=4000VA 250/800V z=j0.1 pu

Line Z=50+j200 ohm

T2= 8000VA 800/400 V Z=j0.08 pu

Load---2500VA 400V

Calculate PU impedance referred to base 5000VA 250V Base

Α	Generator= j 0.75 pu	В	Generator= j 1.5 pu
	TrA = j0.125 pu, Tr B = j0.125 pu		TrA = j0.25 pu, Tr B = j0.25 pu
	Line = 0.39 + j1.56 pu		Line = 0.78 + j3 pu
	Load 0.5 pu		Load 1 pu
С	Generator= j 3 pu	D	Generator= j 3 pu
	TrA = j0.5 pu, Tr B = j0.5 pu		TrA = j0.5 pu, Tr B = j1pu
	Line = 1.56 + j6pu		Line = 3 + j4pu
	Load 2 pu		Load 3pu
	Answer		

EE304 Power System Protection

The students who complete EE 205 also complete EE304

ADDITIONAL QUESTIONS

G015+G046 Online Test

Ref186

The transformer supplies a group of 4 feeders which have individual maximum demands of 2.5, 2.4, 4.3 and 1.6 MVA. If the diversity factor is 1.82, determine the maximum demand on transformer

Α	5.93MVA	В	4.3MVA	
С	10.8MVA	D	2.4MVA	
	Answer			\$

Ref191

Find the insulation resistance per km of conductor diameter 1.6 cm and internal sheath diameter 5.08 cm. \$ = 6 x 10⁻¹⁴ Ω / cm.

Α	500 Μ Ω	В	100 Μ Ω	*
С	1103 Μ Ω	D	2000 Μ Ω	6
	Answer			

Ref196

The formula to calculate voltage regulation is

Α	IR cosφr +IX sin φr	В	R cosфr +IXsin фr
	%Reg =		%Reg =
	Er		-
			Er
С	%Reg = IR cosφr+IX sin φr	D	R cosфr -IXsin фr
			%Reg =
			8
			Er
	Answer		

Which equipments is not included in trip circuit?

Α	Sensor, potential transformer, current transformer	В	Battery
С	Relay contact	D	Circuit breaker
	Answer		

Ref206

Differential relay senses

Α	Only one input	В	Three inputs	
С	Two inputs	D	Four inputs	
	Answer			

Ref 211.

Maximum reach and maximum reach angle are found in

Α	Over current relay	В	Differential relay	
С	Directional relay	D	Distance relay	-
1	Answer	3		9

Ref212

The operation of distance relay is based on

Α	Based on impedance	В	Based on current	
С	Based on frequency	D	Based on power	
	Answer			· · · · · · · · · · · · · · · · · · ·

The characteristics curve of distance relay is

Α	Concentric circles	В	Parabola
С	Straight line	D	Hyperbola
	Answer		

Ref214.

Zone protection of distance relay is based on

Α	Zoning in accordance with voltage	В	Zoning in accordance with current
С	Zoning in accordance with power	D	Zoning in accordance with impedance
	Answer		

Ref215.

Operating & restraining voltage and current are utilized in

Α	Over current relay	В	Differential relay	
С	Directional relay	D	Thermal over load relay	
	Answer			

Ref216

Power line can be effectively protected by

Α	Over current relay	В	Differential relay	:
С	Directional relay	D	Distance relay	
	Answer			

Ref217

Explain the operation of distance relay is based on .

Α	Based on impedance	В	Based on current	
С	Based on frequency	D	Based on power	3
	Answer			

Ref218.

The shape of characteristics of over current relay is

Α	Straight line	В	Circle
С	Curve	D	Pulse
	Answer		

Ref219.

Directional relay is also called

Α	Distance relay	В	Reverse power relay	
С	Differential relay	D	Over current relay	0
	Answer)

Ref220

Earthing transformer is utilized at

Α	Star connected winding side	В	Delta connected winding side
С	Zigzag connected winding side	D	None of above
	Answer	2 1	

Ref225

In CT, primary and secondary windings

Α	Closely linked	В	Loosely linked
С		D	
	Answer		

The following equation

Mc $d^2\delta/dt^2 = P_o - P_m \sin \delta$ is utilized to determine

Α	Stability of generation	В	Power flow	
С	Phase sequence	D		
	Answer			

Ref231

The suitable winding method for earthing transformer is

Α	Star/ Delta	В	Delta/Star	
С	Delta/Delta	D	Zig Zag	
	Answer			

Ref232

Reactors are utilized at busbar to

Α	Provide inductance	В	Limit short circuit current
С	Increase disruptive critical voltage	D	Earth leakage current flow path
	Answer		

Ref233

The best way to increase the level of disruptive critical voltage to reduce the possibility of corona is

Α	To increase conductor diameter	В	To use longer cross arm
С	To use hollow conductor that increase the conductor diameter	D	To increase insulation resistance
	Answer		

Switching voltage velocity is

Α	V = 1/ VLC	В	V = VLC
С	V = L/C	D	V = 1/LC
	Answer		

Ref235

Which equipment is used in static VAR compensation system?

Α	Magnetic contactor	В	Thermal switch	ū
С	Hall effect switch	D	Silicon Controlled Rectifier	
	Answer			

Ref236

Poor power will cause

Α	Unnecessary over current flow in line	В	Smoother voltage	
С	Ripple reduction	D	Wrong phase sequence	
	Answer			

Ref237

Lighting strike near power transformer is protected by

Α	Arcing horn	В	Lightning arrester	
С	Surge absorber	D	Arcing ring	
	Answer			76

Lightning protection for power line is provided by

Α	Arcing horn	В	Lightning arrester
С	Surge absorber	D	Arcing ring
	Answer		

Ref239

Power surge protection is provided by

Α	Arcing horn	В	Lightning arrester	
С	Surge absorber	D	Arcing ring	8
	Answer			· · · · · · · · · · · · · · · · · · ·

Ref244

In large power distribution system, reactive power control is provided by

Α	Synchronous motor	В	Capacitor bank	
С	Static VAR Compensation System	D	Induction motor	
	Answer	2 1		н

Ref249

To withstand the voltage surge due to lightning strike, the power system equipments must have

Α	High VA value	В	High voltage rating
С	High current rating	D	Appropriate base impulse insulation level
	Answer		

The following formula $Eg = m\delta g_b r Ln D/r$ is utilized to calculate

Α	Sending end voltage	В	Breakdown voltage to neutral
С	Visual critical voltage	D	Disruptive critical voltage.
	Answer		

Ref208

Can over current & earth fault protections be combined?

Α	Not sure	В	No	
С	Yes	D	Not applicable	
	Answer			

Ref222

Buchholz relay should be utilized for

Α	Transformer protection	В	Motor protection	
С	Generator protection	D	Power line protection	2
	Answer			

Ref224

For given CT , % composite error, secondary voltage and rated accuracy are 10P 150 F15

Α	10%, 150V, 15	В	150%, 10V, 15	
С	15%, 15V, 10	D)
	Answer			tr de la companya de

9

Ref226

For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

Α	2.5 Ps 1000	В	5 Ps 500	9
С	2.5Ps 500	D	10 Ps 250	*
	Answer			

G015+G046 Online Test

Ref187

Calculate allowable sag of 7/3.50 hard drawn copper overhead line conductor span of 150m. The wind loading is 500 pa. Maximum tension is 60% of ultimate strength.

Ultimate strength= 26600N

Gravitational force= 5.94 N/ m

Diameter of conductor = 10.5 mm

Α	3.2 m	В	5 m
С	1.678 m	D	0.8m
	Answer		

Ref192

In above problem, if the cable is subject to 66 KV, three phase line, find the dielectric loss.

Α	3 watt	В	1.316 watt
С	7 watt	D	10 watt
	Answer		

Ref197

Which one is not a voltage control equipment?

Α	Off load tap changer	В	On load tap changer	
С	Booster transformer	D	Lightning arrester	
	Answer			

Which is not included in basic qualities of power system?

Α	Speed	В	Future forecast of load	
С	Discrimination	D	Reliability	
	Answer			

Ref207

The grading of time is

Α	Directly proportional to the grading of current	В	Inversely proportional to the grading of current
С			
	Answer		

Ref221

In given specification, 10 amp / $\,$ 150/40/200 the relay contacts close in

Α	150 cycle	В	40 cycle
С	200 cycle	D	10 cycle
	Answer		

Ref226

For 2000/1000/500/1 current transformer 10 Ps 250 is classified as

Α	2.5 Ps 1000	В	5 Ps 500	
С	2.5Ps 500	D	10 Ps 250	
	Answer			

Equal areas criterion is utilized for

Α	Calculating phase sequence	В	Calculating power flow
С	Calculating stability	D	Calculating power factor
	Answer		

Ref245

Fuel cell is a

Α	Electromechanical conversion device	В	Electromagnetic device
С	Electrohydraulic device	D	Electrochemical conversion device
	Answer		

Ref250

In parallel operation of two generators which equipment is utilized to determine to connect them?

Α	Synchroscope	В	Power meter	
С	Voltmeter	D	Frequency meter	
	Answer			

Ref255

A transmission line has 0.0125 μF capacitance 1.5 mH inductance . It is joined with a cable of 0.3 μF capacitance & 0.25 mH inductance. Calculate Maximum voltage at junction. Line to line voltage = 50KV

Α	50 KV	В	30 KV	
С	25 KV	D	92.5 KV	
	Answer			

Ref 211.

Maximum reach and maximum reach angle are found in

Α	Over current relay	В	Differential relay	
С	Directional relay	D	Distance relay	
0	Answer			

Ref212

The operation of distance relay is based on

Α	Based on impedance	В	Based on current	
С	Based on frequency	D	Based on power	
	Answer			,

Ref213

The characteristics curve of distance relay is

Α	Concentric circles	В	Parabola	
С	Straight line	D	Hyperbola	
	Answer			

Ref214.

Zone protection of distance relay is based on

Α	Zoning in accordance with voltage	В	Zoning in accordance with current
С	Zoning in accordance with power	D	Zoning in accordance with impedance
	Answer		

Ref215.

Operating & restraining voltage and current are utilized in

Α	Over current relay	В	Differential relay	
С	Directional relay	D	Thermal over load relay	
	Answer			

Ref216

Power line can be effectively protected by

Α	Over current relay	В	Differential relay	
С	Directional relay	D	Distance relay	
	Answer			9 9

Ref217

Explain the operation of distance relay is based on .

Α	Based on impedance	В	Based on current	
С	Based on frequency	D	Based on power	-
	Answer			

Ref218.

The shape of characteristics of over current relay is

Α	Straight line	В	Circle
С	Curve	D	Pulse
	Answer		

Ref219.

Directional relay is also called

Α	Distance relay	В	Reverse power relay	3
С	Differential relay	D	Over current relay	Ä
	Answer			

Ref220

Earthing transformer is utilized at

Α	Star connected winding side	В	Delta connected winding side
С	Zigzag connected winding side	D	None of above
	Answer		

Ref231

The suitable winding method for earthing transformer is

Α	Star/ Delta	В	Delta/Star	
С	Delta/Delta	D	Zig Zag	
	Answer			10

Ref232

Reactors are utilized at busbar to

Α	Provide inductance	В	Limit short circuit current
С	Increase disruptive critical voltage	D	Earth leakage current flow path
	Answer		<u>-</u>

EE305 Power Transformers

<u>EE305 Part 1</u> <u>EE305 Part 2</u> <u>EE305 Part 3</u>

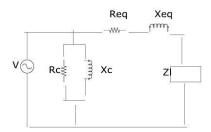
Test & Assessment

http://www.filefactory.com/file/3ve7iz9640yp/n/G040_Online_Test_1_Question_pdf

http://www.filefactory.com/file/45rptyy2854t/n/G040 Online Test 1 Answer doc

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing


PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

G040 Online Test

Ref339

Req= 0.3 Ω , Xeq= 0.4 Ω , Rc= 200 Ω , Xc= 400 Ω , V = 200 V, ZI= 2.7 + j 3.6 Ω

Find efficiency

Α	47%	В	86.4%
С	99%	D	35%
	Answer		

Ref340

200/400V Transformer

Open circuit test—Io= 0.7A, Po= 60W

Short circuit test--- Vsc= 9V, Isc= 6A, Psc = 26 w. Find Re', Xe', Rc and Xc

Α	0.12 Ω 0.4 Ω, 666.7 Ω, 317.8 Ω	В	0.06 Ω 0.2 Ω, 333.35 Ω, 156 Ω
С	1 Ω ,4 Ω, 666.7 Ω, 317.8 Ω	D	2 Ω ,8 Ω, 500 Ω, 400 Ω
	Answer		

Ref341

KVA = 500, Copper loss = 4 KW, Iron loss = 2.4 KW. Find $\frac{1}{2}$ load efficiency at 0.8 PF lagging.

Α	66%	В	98.1%	:
С	75%	D	40%	
	Answer			

%Reg = % Req cosθ+/- %Xeq sinθ

+ for

Α	Leading	В	Lagging	2
С	Unity	D		*
	Answer			×

Ref343

Dy, Yd connection is suitable for

Α	Small HV transformer	В	Large LV transformer	i.
С	Power supply transformer	D	Earthing transformer	3
	Answer			ž.

Ref344

10MVA Star/ Star connected transformer. 33KV/11KV

No load test_Line voltage = 11KV_Line current = 15A_Power = 75KW

<u>Short circuit test</u> Line voltage= 1650V L-L_Line current = rated current_Power=90KW

Find Req, Xeq, Ro', Xo'

Α	0.98Ω, 5.3 Ω, 14.5ΚΩ,2.93 ΚΩ	В	2Ω, 10 Ω, 20ΚΩ,5ΚΩ	
С	4Ω, 20 Ω, 40ΚΩ,15 ΚΩ	D	1Ω, 5 Ω, 30ΚΩ,15 ΚΩ	
	Answer			

Find the load at maximum efficiency of the following single phase transformer. KVA = 5000, Voltage ratio = 6600/440, Iron loss = 2.9 KW, Full load copper loss = 4KW, Maximum efficiency is achieved at 0.8 PF lagging. Find maximum efficiency.

Α	0.7 , 90%	В	0.851, 98.38%	
С	0.35, 75%	D	0.45, 85%	-
	Answer			1

Ref346

Find all day efficiency of the following transformer 100 KVA, single phase, Iron loss=750W Full load copper loss = 750W 24 hr load cycle.

Time	Power factor	Output
8 hr	0.8 Lag	80KW
6hr	0.9 lag	50 KVA
4hr	25KVA & 20 KW	
3hr	Energized with no load	
The rest of time	De-energized	

Calculate all day efficiency.

Α	98.1%	В	75%	
С	60%	D	50%	-
	Answer			

Ref347

To operate two transformers in parallel , it needs $% \left\{ \left(1,0\right) \right\} =\left\{ \left(1$

Α	Same voltage ratio	В	Same % impedance	,
С	Like polarity	D	All above	
	Answer			

2700KVA load PF 0.9 lagging is supplied by two transformers connected in parallel.

Tr A = 2000KVA Z = 3+J2 ohm

TrB =1000KVA X=3+j5 ohm

Find load A transformer load share, B load share.

Α	1350, 1350 KVA	В	900, 1800 KVA	
С	1000KVA, 1700KVA	D	721KVA, 2332KVA	
	Answer			

Ref349

Which winding can not take away harmonic?

Α	Star/Star without neutral	В	Star/Star with neutral	
С	Delta/Delta	D	Star/Delta	
	Answer			-

Ref350

 $400/200\,\mbox{\,V}\,$, 50VA transformer needs to supply 600/200V. Find the rating.

Α	The same rating	В	100VA
С	33.3VA	D	11VA
	Answer		

Ref351

ONAF is

Α	Oil is naturally cooled by force air	В	Forced oil is cooled by forced air
С	Oil is naturally cooled by force oil	D	Oil is naturally cooled by natural air
	Answer		

EE306 Electro-mechanical Control

The students can study Programming language

EE307 Energy Efficient Building Design

<u>EE307 Part 1</u> <u>EE307 Part 2</u> <u>EE307 Part 3</u> <u>EE307 Part 4</u>

<u>EE307 Part 5</u> <u>EE307 Part 6</u>

Test & Assessment

http://www.filefactory.com/file/5laxij9trib1/n/K041_Test_pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

K041 Test

Ref 616

What are two types of solar design?

Ref 617

Explain passive solar design

Ref 618

What is comfort?

Ref 619

Calculate U value for a pitched and vented tile roof with reflective foil laminate under the tiles.

Dixx	THIC THIC	KNESS OF THE	ASTERES TILE	REFLECT INS FIER EILING	TOLST
CAN'TY TR- PLAST RIN RESISTANCE ELEMENT SUMMER WINTER					20
			30mm	who	
Ш	4 mils	DATSIDE AIR	0.04	0.04	7A846 (6)
6	11.	RTILE	0.02	0.02	(1)
	45	RL			
P. Co	OF CAUTY ON EMITTAN	R- CAUTY	1-36	0.34	TABLE (5)
		R-PLAST	0.08	0.08	(i) .
	STILL HORIZONTAL	AIR	0.16	0.11	TABLE (6)

Calculate net gain or loss of heat through a month for north facing single glass window for January & July in Sydney. The window is 0.9 m height and 0.2 m from the bottom of the eaves which are 0.6m wide. Assume for window that 90% of it is glass. Transmittance is 0.76 and U value is 6.14.

Ref 621

Define the insulation

Ref 622

Explain how the heat is transferred in brick veneer dwelling

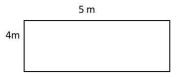
Ref 623

Explain thermal mass and storage

Ref 624

Calculate heat gain per day from the customers in a 150 m 2 gym, If the gym capacity is 50 customers and the gym is full between 6 am to 8 am and 5 pm to 8:30 pm. At all other times, it is 30% full on average.

Ref 625


A 4000 sq ft retail store near Tuson, Arizona has been calculated to have sensible heat gain of 100,000 Btuh at summer design condition. (105 DB, 66 WB for this location). Calculate heat removed and air flow rate indoor.

Ref 626

Based on above, 4000 sq ft needs 13227 cfm air .Calculate air requirement for the 44 sqft bed room. 66% of air is applied

Ref 627

Calculate total heat loss by conduction for a simple one room house in Melbourne during the months of January & July.

Roof: 15 Degree. Thickness of tile 19 mm. K= 0.81. Plaster board 13 mm, K = 0.17.

Wall Aerated concrete 200 mm thick.

Outside air (R out) 0.12 m² K/W Inside air (R in) 0.04 m² K/W

The house has $1\,\mathrm{m}^2$ window on each wall, average ceiling, no open fire space and weather stripping at the bottom of external doors. The house is $4m\,x$ 5m with 2.4 m ceiling height. The windows are single glazed. U_1 and U_2 are U_{summer} and U_{winter} respectively.

The roof is a double pitched and vented tile roof with reflective foil laminate under the tile. Floor is carpet on a concrete slab on ground.

(30) In the above problem, calculate infiltration heat loss/gain in this building. (Timber window, average ceiling, no open fire place).

 $Q_V = A_C V (T_1 - T_3) N \times 0.0286$

Ref 628

Explain the design and assessment tools

Ref 629

Explain the design for climate

Ref 630

What are the factors contributing thermal comfort inside building

Ref 631

Describe the domestic solar hot water system

Ref 632

Explain the building energy efficiency

Ref 633

What kinds of materials are used for water piping system of the building?

Ref 634

Explain the followings

(a) Automatic control for electrical heating (b) Thermostatic control (c) Water heater (d) Space heating

Ref 635

Explain the basic psychrometric chart

Ref 636

Explain the step by step approach for building electrical design system

Ref 637	
Describe the types of building construction materials	
Ref 638	
Write the steps of building construction sequence	
Ref 639	
How do you understand thermal neutrality?	
Ref 640	
Write the formula for (a) Thermodynamic second law (b) Heat radiation	o) Heat conduction (c) Heat convection (d)

EE308 Sustainability (Grid Connected PV Inverter)

<u>EE308 Part 1</u> <u>EE308 Part 2</u> <u>EE308 Part 3</u>

Test & Assessment

http://www.filefactory.com/file/59rpcqogl8ux/n/K035 Answer sheet doc

http://www.filefactory.com/file/6uye10nst3ad/n/K035_Test_pdf

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing

PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

Password- iqytechnicalcollege

K035 Tests

Ref 605

Inverter is

- (a) Electrical device that converts direct current to alternating current
- (b) Electrical device that converts alternating current to direct current
- (c) Electrical device that converts alternating current to another level of alternating current
- (d) Electrical device that converts direct current to another level of direct current

Α		В	
С		D	
	Answer		

Ref 606

By switching the DC current rapidly, it can form

- (a) Wave with higher value
- (b) Alternating wave
- (c) Nothing coming out
- (d) Constant wave

Α		В	
С		D	
	Answer		

PWM-Pulse width modulating is to provide

- (a) The regulated out put voltage
- (b) To fix the output value at constant
- (c) To regulate the width of a square wave pulse to regulate or adjust the inverter's output voltage
- (d) To amplify the voltage

Α		В	
С		D	
	Answer		

Ref 608

Which type of oscillator is utilized in sine wave inverter

- (a) Budbba oscillator
- (b) Wien bridge oscillator
- (c) Butterworth oscillator
- (d) Carrier wave oscillator

Α		В	
С		D	
	Answer		

Ref 609

Which type of switch is mostly utilized in PWM inverter driver circuit?

- (a) H Bridge MOSFET switch
- (b) Change over switch
- (c) Cascaded transistor switches
- (d) By pass switch

Α		В	
С		D	
	Answer		

Ref 610

Which order is correct to arrange the solar inverter system?

- (a) Solar array, ac filter, inverter, line
- (b) Solar array, inverter, ac filter, line
- (c) Solar array, inverter, dc regulator, line

(d) Solar array, dc regulator, line

Α		В	
С		D	
	Answer		

Ref 611

What is the correct operating of islanding protection?

- (a) Detect the position of sun and rotate the solar arrays to face the direction of sun
- (b) Detect the shadow and regulate the current flow into solar array
- (c) Detect the grid voltage when the grid voltage is zero, it switches off the inverter circuit
- (d) Detect the grid voltage, when the grid voltage is zero, it switches on the inverter circuit

Α		В	
С		D	
	Answer		

Ref 612

MOST FET driver circuit is connected to operate

- (a) MOSFET Switches
- (b) Filter
- (c) Oscillator
- (d) Voltage regulator

Α		В	
С		D	
	Answer		

Ref 613

Which operation is the one that best describes the operation of filter

- (a) In order to optimize the frequency, a switching frequency must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large
- (b) In order to optimize the voltage, a switching voltage must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large
- (c) In order to optimize the frequency, a switching frequency must be chosen which is high enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily low

(d) In order to optimize the current, a switching current must be chosen which is low enough to keep the switches in line but high enough to make sure the filter inductor is not unnecessarily large

Α		В	
С		D	
	Answer		

Ref 614

Which type of filter is suitable for inverter filter design

- (a) High pass filter
- (b) Band pass filter
- (c) Band stop filter
- (d) Square wave low pass two pole filter

Α		В	
С		D	
Answer			

Ref 615

Which is the correct arrangement of Grid connected PV inverter system?

- (a) PV Modules, Inverter, AC isolator, DC isolator, meter/outlet, power grid
- (b) PV Modules, DC isolator, inverter, ac isolator, meter/outlet, power grid
- (c) PV Modules, DC isolator, power grid
- (d) PV modules, DC Isolator, Battery charger, Inverter, AC isolator, power grid

EE309 Project Management

Test & Assessment

Submit the project work advised by the teacher

Password- iqytechnicalcollege

EE310 Engineering Officer Competency Report

Test & Assessment

Submit the project work advised by the teacher

Week 8+9-EE309 Project Management

Study the notes & submit the project. The topic will be given by the teacher.

Week 10+11+12-EE310 Engineering Officer Competency Report

The topic will be given by the teacher.

SUBMIT THE SCANNED COPY OF ANSWER to

Dr Kyaw Naing PO BOX 227

Marrickville, NSW 1475, Sydney, Australia

The students who have completed Diploma in Electrical Engineering (Level 1) with St Clements University & Level 2+3 with IQY Technical College will get Advanced Diploma in Electrical Engineering from St Clements University upon their enrolment of the advanced diploma and bachelor degree programs.

STAGE (2) ADVANCED LEARNING

Joe2013 is password for all resources below

After you have studied the basic concepts, you can download the PDF files and click the links to download the E-books, Videos, References and Online practicals.

Internet speed may be not fast enough to download them. The resources will be provided in CD & USBS

Certificate in Electrical Engineering Learning System

<u>Diploma in Electrical Engineering Learning System</u>

Advanced Diploma in Electrical Engineering Learning System

STAGE (3) Further References

EE07+EE011 Study Guide

Class lessons writing on whiteboards+ audio lessons CLICK HERE-

Self study (Online) Resources+ Reference materials & Notes

Click www.1790817794.zoomshare.com

VIDEO LESSONS

Video_Lessons.pdf

CLASS TEACHING LESSON SLIDES

PROJECT MANAGEMENT CLASS TEACHING LESSON SLIDES

Practicals

Work performance and practical instruction

Click HERE to download practicals

Online Exercises

Click HERE to download G037+G038+G039+E046 Exercises

E046+G037+G038+G039 Exercises Back up at Uploading site

Click **HERE** to download other Exercises

Business units assignments

Business Units Online Lesson Study Link

REFERENCES

Click References (Printed notes for all electrical units)

Electrical Risk Assessment

Project Specification 2

Power Project 2

Electrician Capstone unit.pdf

Electrician Capstone Unit Study Guide.zip

INTERNATIONAL PROGRAM

Certificate in Electrical Engineering

Diploma in Electrical Engineering

Advanced Diploma in Electrical Engineering

Bachelor Degree Level

WEEKLY ONLINE TUTORING

ELECTRICAL ENGINEERING LECTURES

Test Questions will be sent

BAE 401

BAE401 Week 1 Lesson All

BAE 401 Week 1 Lesson Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

BAE401 Week 2 Lesson All

BAE401 Week 3 Lesson All

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE401

BAE 402

BAE402 Week 1 Lesson

BAE 402 Week 2 Lesson

BAE 402 Week 3 Lesson

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE402

BAE 403

BAE403 Week 1 Lesson BAE403 Week 2 Lesson BAE403 Week 3 Lesson WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE403 **BAE 404** BAE404 Week 1 Lesson BAE404 Week 2 Lesson BAE404 Week 3 Lesson WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE404 **BAE 405 BAE405 Week 1 Lesson** BAE405 Week 2 Lesson BAE405 Week 3 Lesson BAE405 Week 3A Lesson WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE405 **BAE 406** BAE406 Week 1 Lesson

BAE406 Week 2 Lesson

BAE406 Week 3 Lesson

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE406

BAE 407

BAE407 Week 1 Lesson

BAE407 Week 2 Lesson

BAE407 Week 3 Lesson

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE407
BAE 408
BAE408 Week 1 Lesson
BAE408 Week 2 Lesson
BAE408 Week 3 Lesson
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE408
BAE 501
BAE501 Week 1 Lesson
BAE501 Week 2 Lesson
BAE501 Week 3 Lesson
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE501
BAE 502
BAE502 Week 1 Lesson
BAE502 Week 2 Lesson
BAE502 Week 3 Lesson
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE502
BAE 503
BAE503 Week 1 Lesson
BAE503 Week 2 Lesson
BAE503 Week 3 Lesson
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE503
<u>BAE 504</u>
BAE504 Week 1 Lesson
BAE504 Week 2 Lesson
BAF504 Week 3 Lesson

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE504
BAE 505
BAE505 Week 1 Lesson
BAE505 Week 2 Lesson
BAE505 Week 3 Lesson
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE505
BAE 506
BAE506 Wk 1
BAE506 Wk 2
BAE506 Wk 3
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE506
BAE 507
BAE507 Wk 1
BAE507 Wk 2
BAE507 Wk 3
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE507
BAE 508
BAE508 Wk 1
BAE508 Wk 2
BAE508 Wk 3
BAE508 References
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE508
BAE 601
BAE601-ICT 103+104+204 Week 1 Lesson
C++ Part 1 Lessons

<u>C++ Reference</u>				
BAE601-ICT 103+104+204 Week 2 Lesson Part 1				
BAE601-ICT 103+104+204 Week 2 Lesson Part 2				
BAE601-ICT 103+104+204 Week 2 Lesson Part 3				
JPG to PDF Conversion Program				
JPG to PDF Conversion Program 1				
BAE601+ICT103+104+204 Wk 3 Lesson Part 1				
BAE601-ICT 103+104+204 Wk 3 Lessons Part 2				
BAE601-ICT 103+104+204 Wk 3 Lessons Part 3				
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE601				
BAE 602				
BAE602-ICT202_203_Wk_1				
BAE602-ICT202 203 Wk 2				
BAE602-ICT202 203 Wk 3				
WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE602				
BAE 603				
BAE603-ICT 105 106 Wk 1				
BAE603-ICT 105 106 Wk 2				
BAE603-ICT 105 106 Wk 3 Part 1				
BAE603-ICT 105 106 Wk 3 Part 2				
BAE603-ICT 105 106 Wk 3 Part 2 Computer Hardware				

Communication System Laboratory

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE603

D	Λ	6	n	V
D	м	U	U	4

BAE604 Wk 1 Lesson

BAE604 Wk 2 Lesson

BAE604 Wk 3 Lesson

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE604

BAE 605

BAE 605 Lessons

BAE 605 Assignment

Mgt 502+Mgt 503

Mgt 504 Advanced Project Management

BAE 606

BAE606 Wk 1 CE 110

BAE606 Wk 1A HVAC

BAE606 Wk 2 CE 110

BAE606 Wk 3+CE110

BAE606 Wk 2A Structure

BAE606 Wk 3A+CE107

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE606

BAE 607

BAE607 Wk 1

BAE607 Wk 2

BAE607 Wk 3

BAE607 Wk 3A

WEEK (4) REVIEW + TEST & ASSESSMENT FOR BAE607