
SpringerBriefs in Computer Science

Series Editors
Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C Jain
David Padua
Xuemin Shen
Borko Furht

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Xiao Liu • Dong Yuan • Gaofeng Zhang
Wenhao Li • Dahai Cao • Qiang He
Jinjun Chen • Yun Yang

The Design of Cloud
Workflow Systems

123

Xiao Liu
Dong Yuan
Gaofeng Zhang
Wenhao Li
Dahai Cao
Qiang He
Jinjun Chen
Yun Yang
Faculty of Information and Communication

Technologies
Centre for Computing and Engineering

Software Systems
Swinburne University of Technology
Hawthorn, Melbourne, VIC 3122
Australia

Xiao Liu
e-mail: xliu@swin.edu.au

Dong Yuan
e-mail: dyuan@swin.edu.au

Gaofeng Zhang
e-mail: gzhang@swin.edu.au

Wenhao Li
e-mail: wli@swin.edu.au

Dahai Cao
e-mail: dcao@swin.edu.au

Qiang He
e-mail: heqiang@gmail.com

Yun Yang
e-mail: yyang@swin.edu.au

Jinjun Chen
Faculty of Engineering and Information
Technology
Centre for Innovation in IT Services and
Applications
University of Technology
Sydney, NSW 2007
Australia
e-mail: jinjun.chen@gmail.com

ISSN 2191-5768 e-ISSN 2191-5776
ISBN 978-1-4614-1932-7 e-ISBN 978-1-4614-1933-4
DOI 10.1007/978-1-4614-1933-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011940815

� The Author(s) 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Cloud computing is the latest computing paradigm which brings entirely new
innovations to the Information Technology (IT) industry. Gartner estimated the
demand in 2009 for cloud computing at $46 billion, rising to $150 billion by
2013.1 According to Microsoft, cloud computing can help their customers to save
up to 80% on the cost of their IT infrastructure.2

Workflow systems have been widely used as software tools to support process
automation, and also as middleware services for distributed high performance
computing infrastructures such as cluster, peer-to-peer, and grid computing. In the
upcoming few years, given the enormous market of cloud computing, there will be
a rapid growth of software as a service (SaaS), and we can envisage that cloud
workflow system can be one of the competitive software platforms to support the
design, development and running of cloud based software applications.

Cloud computing has many unique characteristics such as its organisation and
delivery of computing resources, but it also inherits and shares many aspects with
other existing computing paradigms such as grid computing, utility computing and
service computing. Therefore, to design and develop a cloud workflow system, it is
essential to investigate the system fundamentals such as the system architecture,
functionality and quality of service (QoS), while in the meantime, compare the
differences and similarities in the system requirements to determine whether
existing strategies can be adopted and/or adapted for the new scenario, or entirely
new system designs are required.

This book is written to discuss and address these timely issues. Since cloud
computing as well as cloud workflow system is evolving in a fast pace, this book
only reflects the view of the authors based on their best knowledge about the
current situation, and demonstrates the research progress and outcomes. It is
neither the only view nor the unanimous view about cloud workflow systems.
Nevertheless, after reading this book, readers are expected to have a basic idea
about what is a cloud workflow system, and what are the key factors in its design.

1 http://www.gartner.com/DisplayDocument?doc_cd=166525&ref=g_SiteLink
2 http://www.microsoft.com/presspass/presskits/cloud/docs/The-Economics-of-the-Cloud.pdf

v

http://www.gartner.com/DisplayDocument?doc_cd=166525&ref=g_SiteLink
http://www.microsoft.com/presspass/presskits/cloud/docs/The-Economics-of-the-Cloud.pdf

Acknowledgments

We are grateful for the discussions with Mr. Zhangjun Wu and his colleagues from
HuaAn Securities on the securities exchange business process, and Dr. Willem van
Straten and Ms. Lina Levin from Swinburne Centre for Astrophysics and Super-
computing for the pulsar searching scientific workflow. The authors would also
like to thank Ms. Jennifer Maurer from Springer for her help during the prepa-
ration of this book. This work is partially supported by Australian Research
Council under Linkage Project LP0990393 and Discovery Project DP110101340,
as well as State Administration of Foreign Experts Affairs of China Project
P201100001, and the National Natural Science Foundation of China under grant
No. 61170192.

vii

Contents

1 Workflow Systems in the Cloud . 1
1.1 Background: Cloud Computing . 1
1.2 Background: Workflow Systems . 3
1.3 Cloud Workflow Systems . 4
1.4 Motivating Examples . 6
1.5 Key Issues in the Design of Cloud Workflow Systems. 11

2 Cloud Workflow System Architecture . 13
2.1 General Cloud Software Architecture . 13

2.1.1 Cloud Architecture . 13
2.1.2 Example: Aneka Cloud Architecture 14

2.2 General Architecture of Cloud Workflow Systems. 16
2.2.1 Cloud Workflow System Architecture 16
2.2.2 Example: Window Workflow

Foundation Architecture. 17

3 Cloud Workflow System Functionality . 19
3.1 Classical Workflow Reference Model 19
3.2 Basic Functionalities of Cloud Workflow Systems. 22

3.2.1 Cloud Workflow System Functionality 22
3.2.2 Example: Kepler Web/Grid Service Management 24
3.2.3 Example: CloudBus Cloud Resource Management 25

4 Cloud Workflow System Quality of Service. 27
4.1 QoS of Cloud Services and Web Services 27

4.1.1 General QoS. 27
4.1.2 SLA Management . 29

4.2 QoS of Cloud/Grid Workflows . 31
4.3 A Generic QoS Framework. 33
4.4 Example 1: Time Management (on Temporal Constraints) 37

ix

http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_1#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_3
http://dx.doi.org/10.1007/978-1-4614-1933-4_3
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec6

4.5 Example 2: Cost Management (on Data Storage) 39
4.5.1 Cost Model of Datasets Storage in the Cloud 40
4.5.2 Minimum Cost Benchmarking of Datasets Storage

in the Cloud . 42
4.5.3 Cost-Effective Datasets Storage Strategies 42

4.6 Example 3: Reliability Management (on Data Replication) 44
4.6.1 Data Replication . 45
4.6.2 Data Storage Reliability Model. 46
4.6.3 Cost-Effective Incremental Replication Strategy 47

4.7 Example 4: Security Management (on Privacy) 47
4.7.1 Privacy Protection in Cloud . 48
4.7.2 Trust Based Privacy Protection 49

5 Case Study: SwinDeW-C Cloud Workflow System 51
5.1 Overview of SwinDeW-G Environment 51
5.2 SwinDeW-C System Architecture . 53

5.2.1 SwinCloud Infrastructure . 54
5.2.2 Architecture of SwinDeW-C. 54
5.2.3 Functionalities of SwinDeW-C Peers. 57

5.3 QoS Management Components in SwinDeW-C. 58
5.3.1 Performance Management in SwinDeW-C 58
5.3.2 Data Management (Storage and Replication)

in SwinDeW-C . 60
5.3.3 Security Management in SwinDeW-C 61

5.4 SwinDeW-C System Prototype . 63
5.5 Experiments . 64

5.5.1 Evaluation on Performance Management 64
5.5.2 Evaluation on Data Storage Management. 66

Appendix A: Performance Management Strategies 69

Appendix B: Data Storage Management Strategies 77

Appendix C: Replication Management Strategies 83

Appendix D: Trust-Based Noise Injection Strategy 85

Appendix E: Literature Review . 89

Bibliography . 93

x Contents

http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec15
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec16
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec17
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec18
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec19
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec20
http://dx.doi.org/10.1007/978-1-4614-1933-4_4#Sec20
http://dx.doi.org/10.1007/978-1-4614-1933-4#Sec21
http://dx.doi.org/10.1007/978-1-4614-1933-4#Sec21
http://dx.doi.org/10.1007/978-1-4614-1933-4_5
http://dx.doi.org/10.1007/978-1-4614-1933-4_5
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec7
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec8
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec9
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec10
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec11
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec12
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec13
http://dx.doi.org/10.1007/978-1-4614-1933-4_5#Sec13

About the Authors

Xiao Liu received his Ph.D. degree in Computer Science and Software Engi-
neering from the Faculty of Information and Communication Technologies at
Swinburne University of Technology, Melbourne, Australia in 2011. He received
his Master and Bachelor degree from the School of Management, Hefei University
of Technology, Hefei, China, in 2007 and 2004 respectively, all in Information
Management and Information System. He is currently a postdoctoral research
fellow in the Centre of Computing and Engineering Software System at Swinburne
University of Technology. His research interests include workflow management
systems, scientific workflow, business process management and quality of service.

Dong Yuan received the Bachelor degree in 2005 and Master degree in 2008 both
from Shandong University, Jinan, China, all in Computer Science. He is currently
a Ph.D. student in the Faculty of Information and Communication Technologies at
Swinburne University of Technology, Melbourne, Australia. His research interests
include data management in workflow systems, scheduling and resource man-
agement, grid and cloud computing.

Gaofeng Zhang received the Bachelor and Master degrees in Computer Science
from Hefei University of Technology, Hefei, China, in 2005 and 2008 respec-
tively. He is currently working toward the Ph.D. degree in Information and
Communication Technology under the supervision of A/Prof. Jinjun Chen and
Prof. Yun Yang in Faulty of Information and Communication Technologies,
Swinburne University of Technology, Melbourne, Australia. His research interests
include privacy protection strategy, risk evaluation, and security mechanism in
cloud computing.

Wenhao Li obtained his Bachelor and Master degree of Engineering from Shan
Dong University in China in 2007 and 2010 respectively. He participated in a
program funds by National Natural Science Foundation of China during his
postgraduate studies and published several papers in national and international
journals. He is currently a first-year Ph.D. candidate in Faculty of Information and
Communication Technologies, Swinburne University of Technology, supervised

xi

by Prof. Yun Yang and A/Prof. Jinjun Chen. He’s research interests include par-
allel and distributed computing, cloud and grid computing, workflow technologies
and data management in distributed computing environment.

Dahai Cao received his master degree in software engineering from Tsinghua
University, Beijing, China, 2005. He is currently a Ph.D. student in Swinburne
University Centre for Computing and Engineering Software Systems, Melbourne,
Australia. His research interests include cloud-based large-scale workflow man-
agement systems, adaptive workflow management and cloud computing.

Qiang He received his first Ph.D. degree in information and communication
technology from Swinburne University of Technology (SUT), Australia, in 2009
and his second Ph.D. degree in computer science and engineering from Huazhong
University of Science and Technology (HUST), China, in 2010. He is now a
research fellow at SUT. His research interests include services computing, cloud
computing, P2P system, workflow management and agent technologies.

Jinjun Chen received his Ph.D. degree in Computer Science and Software
Engineering from Swinburne University of Technology, Melbourne, Australia in
2007. He is currently an associate Professor in the Faculty of Engineering and
Information Technology, University of Technology, Sydney, Australia. His
research interests include Scientific workflow management and applications,
workflow management and applications in Web service or SOC environments,
workflow management and applications in grid (service)/cloud computing envi-
ronments, software verification and validation in workflow systems, QoS and
resource scheduling in distributed computing systems such as cloud computing,
service oriented computing, semantics and knowledge management, cloud
computing.

Yun Yang received a Master of Engineering degree from The University of
Science and Technology of China, Hefei, China, in 1987, and a Ph.D. degree from
The University of Queensland, Brisbane, Australia, in 1992, all in computer
science. He is currently a full Professor in the Faculty of Information and Com-
munication Technologies at Swinburne University of Technology, Melbourne,
Australia. Prior to joining Swinburne as an Associate Professor in late 1999, he
was a Lecture and Senior Lecturer at Deakin University during 1996–1999. Before
that, he was a Research Scientist at DSTC—Cooperative Research Centre for
Distributed Systems Technology during 1993–1996. He also worked at Beihang
University in China during 1987–1988. He has published more than 200 papers on
journals and refereed conferences. His research interests include software engi-
neering; p2p, grid and cloud computing; workflow systems; service-oriented
computing; Internet computing applications; and CSCW.

xii About the Authors

Introduction

Workflow systems originated from office automation which started in 1970s to
support the office information management for accomplishing simple business
tasks [2]. In the last decade, workflow systems become more oriented to the
process automation of large scale business and scientific applications. Many
workflow systems have been deployed on high performance computing infra-
structures such as cluster, peer-to-peer (p2p), and grid computing [59, 77, 85]. One
of the driving forces is the increasing demand of large scale instance intensive and
data/computation intensive workflow applications (large scale workflow applica-
tions for short) which are common in both e-business and e-science application
areas. Typical examples include such as the instance intensive securities exchange
process in a stock market, the flight booking process in a travel agency; and the
data and computation intensive pulsar searching process in Astrophysics, the
weather forecast process in Meteorology. These large scale workflow applications
normally require the support of powerful high performance computing infrastruc-
tures (e.g. advanced CPU units, large memory space and high speed network).

To meet these high resource requirements, expensive computing infrastructures
including such as supercomputers, data servers and fibre networks are purchased,
installed, and maintained by system users with huge on-going capital investment.
However, the problems of resource scalability and elasticity still exist in the
conventional computing paradigm. Since most of these resources are self-
contained and organised in a heterogeneous way, resource scalability is very low.
Due to such a problem, it incurs great cost, if not impossible, to recruit external
resources to address ‘resource insufficiency’ during peak times. Meanwhile, since
in current computing paradigms, workflow systems have to maintain their own
computing resources rather than employ them from or deliver them to third parties,
resource elasticity is very poor. Due to such a problem, most of the computing
resources during off-peak times are largely idle, and thus results in the low ROI
(return on investment) and a giant waste of energy consumption [58, 64].

In recent years, cloud computing is emerging as the latest distributed computing
paradigm and attracts increasing interests of researchers in the area of Distributed
and Parallel Computing [65], Service Oriented Computing [7] and Software

xiii

Engineering [70]. As proposed by Ian Foster in [32] and shared by many
researchers and practitioners, compared with conventional computing paradigms,
cloud computing can provide ‘‘a pool of abstracted, virtualised, dynamically-
scalable, managed computing power, storage, platforms, and services are delivered
on demand to external customers over the Internet’’. Therefore, cloud computing
can provide scalable resources on demand to system requirement. Meanwhile,
cloud computing adopts market-oriented business model where users are charged
according to the usage of cloud services such as computing, storage and network
services like conventional utilities in everyday life (e.g. water, electricity, gas and
telephony) [17]. Evidently, it is possible to utilise cloud computing to address the
problems of resource scalability and elasticity for managing large scale workflow
applications. Therefore, the investigation of workflow systems based on cloud
computing, namely cloud workflow systems, is a timely issue and worthwhile for
increasing efforts.

This book discusses the design of cloud workflow systems, and focuses on three
fundamental aspects, viz. system architecture, functionality and quality of service
(QoS management). In this book, through the investigation of the new cloud
computing paradigm and the conventional workflow systems, we emphasise on the
reuse and adaptation of existing methodologies and strategies rather than build
from the scratch.

This book consists of five chapters.
Chapter 1 presents an overview about cloud computing and workflow systems.

Two motivating examples each for an e-science and e-business application are also
illustrated.

Chapter 2 introduces the system architecture where both the general cloud
software architecture and the general cloud workflow system architecture are
presented.

Chapter 3 discusses the cloud workflow system functionality which is organised
and designed based on the classical workflow reference model.

Chapter 4 presents the QoS management in cloud workflow systems where the
basic requirements and strategies for performance management, data storage
management, data replication management and privacy protection are discussed.

Finally, Chap. 5 demonstrates a case study on our SwinDeW-C cloud workflow
system to illustrate the implementation of the system design and demonstrate some
evaluation results.

The Appendices include the detailed strategies and algorithms, and the litera-
ture review of some related studies.

This book can be used as a reference for both researchers and practitioners who
are interested in the design, development and application of cloud workflow
systems.

xiv Introduction

http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_3
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_5
http://dx.doi.org/10.1007/978-1-4614-1933-4_5

Chapter 1
Workflow Systems in the Cloud

In this chapter, we will present an overview about the background of cloud
computing and workflow systems. Specifically, Sect. 1.1 introduces the novel
cloud computing paradigm. Section 1.2 reviews the workflow systems, especially
in the distributed computing environments. Section 1.3 introduces the cloud
workflow systems. In Sect. 1.4, we demonstrate two motivating examples, one for
large-scale data and computation intensive e-science application in Astrophysics
and one for instance intensive e-business application in the stock market. Finally,
Sect. 1.5 points out the key issue in the design of cloud workflow systems.

1.1 Background: Cloud Computing

In late 2007 the concept of cloud computing was proposed [8, 16, 79]. Cloud
computing, nowadays widely considered as the ‘‘next generation’’ of Information
Technology (IT), is a new paradigm offering virtually unlimited, cheap, readily
available, ‘‘utility type’’ computing resources as services via the Internet. As very
high network bandwidth becomes available it has become possible to envisage all
the resources needed to accomplish IT functions as residing on the Internet rather
than physically existing on the users’ premises. A cloud computing platform is
made up of a—possibly widely dispersed—set of computing hardware platforms
networked together and running a number of diverse software services. With
effective facilitation of cloud computing many sophisticated software applications
can be further advanced to stretch their limits and yet with reduced running costs
and energy consumption. The advantages of cloud computing, especially its
software as a service (SaaS) and utility computing, enable entirely new innova-
tions to the design and development of software applications [1, 58]. It is generally
agreed among many researchers and practitioners that cloud applications are the
future trend for business software applications since SaaS can provide massive

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4_1,
� The Author(s) 2012

1

software services with different capabilities and utility computing can provide
unlimited on-demand computing power. Successful stories include New York
Times which turns 11 million archived articles into pdf files in only one day using
cloud software, Hadoop, and computing power on Amazon’s cloud [36]. Another
one is Animoto which employs Amazon’s cloud to deal with nearly 750,000 new
registered users in three days and 25,000 people online user at the peak time [12].

Gartner estimated the demand in 2009 for cloud computing at $46 billion, rising
to $150 billion by 2013 [34]. Compared to previous computing infrastructures,
cloud computing has attractive features such as lower cost, greater resource
sharing, more scalability and better reliability. In addition to the cost reduction on
the infrastructure, energy consumption for the infrastructures can also be signifi-
cantly reduced. International governments such as the United States, the United
Kingdom, Canada, Australian and New Zealand governments, all take cloud
services as an opportunity to improve business outcomes through eliminating
redundancy, increasing agility and providing ICT services at a potentially cheaper
cost [1, 10].

The Australian Government’s business operations are highly dependent on ICT
which estimated costs around $4.3 billion per annum according to the Financial
Management and Accountability Australian government agencies, research insti-
tutes, and enterprises have initiated investigations and strategic plans to grasp the
opportunities and understand the challenges brought by cloud computing. Cloud
computing has been included in the Australian Government ICT Sustainability
Plan 2010–2015 as an energy efficient technology for the Australian Government
Data Centre Strategy [11]. The Department of Finance and Deregulation has
drafted the Cloud Computing Strategic Direction Paper [10], in which it has
mentioned that Sir Peter Gershon (who undertook the review of Australian
Government’s use of ICT) estimated that costs of $1 billion could be avoided by
developing a data centre strategy for the next 15 years. Many Australian
government agencies such as Australian Taxation Office (ATO), Department of
Immigration and Citizenship (DIAC), West Australian Department of Treasure
and Finance (DTF), and Australian Maritime Safety Authority (AMSA), have
announced their progress in either the development stage or the proof of concept
stage for cloud applications. The Australian Academy of Technological Sciences
and Engineering (ATSE) have written a report to discuss the opportunities and
challenges for Australian government, universities and business [1]. Enterprises
such as Westpac, Telstra, MYOB, Commonwealth Bank, Australian and
New Zealand Banking Group (ANZ) and SAP have also announced their initia-
tives and investment plans to support the migration and running of their business
applications in the cloud.

Given the enormous amount of upcoming investment on cloud infrastructures,
successful design and development of cloud software applications for government
and business services are required to exhibit the benefits, reveal the difficulties, and
stimulate the fast development of the cloud market.

2 1 Workflow Systems in the Cloud

1.2 Background: Workflow Systems

The Workflow Management Coalition (WfMC) defined a workflow as ‘‘the auto-
mation of a business process, in whole or part, during which documents, information
or tasks are passed from one participant to another for action, according to a set of
procedural rules’’ [82].

A workflow system is a system that completely defines, manages and executes
‘‘workflows’’ through the execution of software whose order of execution is driven
by a computer representation of the workflow logic. In general, a workflow system
belongs to a type of information system for the management of business processes.
The history of workflow system begins in the 1970s when Ellis and others worked
at Xerox PARC on ‘‘Office Automation Systems’’ [2]. It only becomes a major tool
for business process management and Business Process Redesign (BPR) until
1990s with the popularity of network and component based software systems. One
of the most important advantages of workflow system is the separation of functions
from applications. In this way, information systems can be made component-
based, by first configuring the components and then integrating them [27, 74].
By introducing the workflow schema into an enterprise’s information system,
business agility can be greatly enhanced. The basic idea is very similar to the input
of a database schema for software systems.

In the last two decades, workflow systems have been evolved with the fast
growth of distributed computing [26]. In the earlier stage, client–server is the most
dominant architecture for workflow systems. This architecture has the advantages
such as thin clients, centralised monitoring and auditing, simple synchronisation
mechanisms, one copy of process state, and ease of design, implementation and
deployment for workflows. However, it also faces conspicuous difficulties like low
performance, reliability and scalability. Some typical client–server workflow
management systems: Exotica/FMDC [5], ADEPT (http://www.adepttech.com/
workflow.php), DartFlow [18], and METUFlow [28].

Peer-to-peer workflow management systems abandon the dominating client–
server architecture and use the peer-to-peer infrastructure to provide decentralised
workflow support. As the workflow functions are fulfilled through the direct
communication and coordination among the relevant peers, performance bottle-
necks are likely to be eliminated whilst increased resilience to failure and
enhanced scalability are likely to be achieved. Here are some typical peer-to-
peer workflow management systems are RainMan [63], Serendipity-II [37] and
SwinDeW [84].

The last decade has seen a significant development of distributed workflow
systems and scientific workflow systems with the grid computing paradigm.
The workflow enactment service of grid workflow management systems may be
built on top of the low level grid middleware (e.g. Globus toolkit (http://
www.globus.org/toolkit/), UNICORE (http://www.unicore.eu/) and Alchemi
(http://www.cloudbus.org/*alchemi/), through which the workflow management
system invokes services provided by grid resources [87]. At both the build-time

1.2 Background: Workflow Systems 3

http://www.adepttech.com/workflow.php)
http://www.adepttech.com/workflow.php)
http://www.globus.org/toolkit/
http://www.globus.org/toolkit/
http://www.unicore.eu/
http://www.cloudbus.org/~alchemi/

and runtime stages, the information about resources and applications may need to
be retrieved using grid information services. There are many grid workflow
management systems currently, and here we only list several representative grid
workflow systems which are in use recently. These systems include ASKALON
(http://www.askalon.org/), GrADS (http://www.iges.org/grads/) , GridAnt (http://
www.globus.org/cog/projects/gridant/), Gridbus (http://www.gridbus.org/), Grid-
Flow (http://gridflow.ca/), Kepler (https://kepler-project.org/), Pegasus (http://
pegasus.isi.edu/), Taverna (http://www.taverna.org.uk/) and Triana (http://
www.trianacode.org/). The details of these workflow management systems can
be found in their respective references. In [87], comparisons of several repre-
sentative Grid workflow systems are given in aspects of (1) scheduling archi-
tecture, (2) decision making, (3) planning scheme, (4) scheduling strategy, and
(5) performance estimation.

1.3 Cloud Workflow Systems

With the emerging of the latest cloud computing paradigm, the trend for distrib-
uted workflow systems is shifting to cloud computing based workflow systems,
or cloud workflow systems for short. Given the advantages of cloud computing,
cloud workflow systems can be widely used as platform softwares (or middleware
services) to facilitate the usage of cloud services. For example, cloud workflow
systems can support many complex e-science applications such as climate mod-
elling, earthquake modelling, weather forecast, Astrophysics and high energy
physics [27]. These e-science applications are typically data and computation
intensive which require MapReduce-like large scale parallel and distributed pro-
cessing in the cloud. Meanwhile, cloud workflow systems can also support many
e-business applications such as journey planning (e.g. flight and hotel bookings),
stock exchange, insurance claim, bank transactions and business to customer
(B2C) trading in e-commerce [83]. These e-business applications are typically
instance and transaction intensive during the peak hours which require easy-scale
and dynamic provision of computing resources in the cloud. The increasing
popularity of cloud workflow systems lies in the mutual benefits between workflow
systems and cloud in nature, to be more specifically:

1) Cloud brings workflow systems with a large number of easy access and
powerful software and hardware services to support their extensive applications.
The merit of a workflow system is that users can build up their applications with
visual modelling (e.g. Petri Net or DAG based modelling tools) instead of
sophisticated and time-consuming programming [2]. Workflow execution engines
can understand workflow specifications (also named as workflow templates which
may consist of task definitions, process structures and other functional or
non-functional constraints) created by users and invoke corresponding software
(e.g. remote Web services and/or local software programs) to execute workflow
tasks in an automatic and coordinated fashion. However, one of the major

4 1 Workflow Systems in the Cloud

http://www.askalon.org/
http://www.iges.org/grads/
http://www.globus.org/cog/projects/gridant/
http://www.globus.org/cog/projects/gridant/
http://www.gridbus.org/
http://gridflow.ca/
https://kepler-project.org/
http://pegasus.isi.edu/
http://pegasus.isi.edu/
http://www.taverna.org.uk/
http://www.trianacode.org/
http://www.trianacode.org/

problems that hinder the extensive application of workflow systems is the lack of
easy access of software components. Therefore, workflow systems need the cloud
to serve as an easy access of resource pool to provide a large number of powerful
software services. In fact, given the increasing demand of global economy, there
are already significant numbers of research and development on distributed
Web-service based workflow systems to support business and scientific processes
[1, 30].

2) Workflow systems bring the cloud with a type of visual-programmable
platform/middleware services to facilitate the easy use of cloud services [54]. With
the rapid growth of the cloud market, there will be increasing number of cloud
service providers. However, one of the obstacles for building software applications
in the cloud is the access and composition of cloud services. Therefore, cloud
platform/middleware services which provide programming like environments for
the access and composition of cloud services play a significant role in cloud
software development. However, most consumers in the cloud market are not IT
professionals (e.g. scientists and businesspeople in non-IT areas), and usually they
do not acquire sufficient knowledge for sophisticated programming. Workflow
systems, as a type of visual-programmable platform/middleware services, can
relieve users from traditional programming with visual modelling tools (or slight
help of scripting language in some cases) [2]. Therefore, the cloud needs workflow
systems to serve as a as a type of platform/middleware services to enhance the
usability of cloud services, which is the key to promote the benefit of the cloud
market. Furthermore, with the increasing size of the cloud market, cloud workflow
systems can become efficient tools for the development of quality software
applications in the cloud.

In cloud workflow systems, e-science and e-business processes can be modelled
or redesigned as cloud workflow specifications at build-time modelling stage
[27, 49]. Workflow specifications may contain task definitions for a large number
of workflow activities and their non-functional quality of service (QoS) require-
ments such as performance, reliability and security [87]. Then, at runtime
instantiation stage, based on the searching and negotiation capabilities of cloud
resource brokers, a set of software and hardware services in the cloud will be
selected and reserved which can satisfy the workflow specifications. Finally, at
runtime execution stage, cloud workflow instances are executed by employing the
underlying cloud software and/or infrastructure services.

Due to the relative new appearance of cloud computing, there are very few
publications thus far on cloud workflow management systems though we are aware
that many researchers are working in this area at the moment. Besides our work on
the SwinDeW-C cloud workflow system [54], the following pieces of work
involve executing workflows in the clouds. In [75], Aneka is used as a cloud
middleware on which the Gridbus workflow management system deploys and
manages job execution. Hoffa et al. explore the differences between running
scientific workflows in the cloud and running them on the grid, using
Montage (http://montage.ipac.caltech.edu/) on top of the Pegasus-WMS software
(http://pegasus.isi.edu/).

1.3 Cloud Workflow Systems 5

http://montage.ipac.caltech.edu/
http://pegasus.isi.edu/

1.4 Motivating Examples

In this section, we illustrate two motivating examples to introduce the typical
features of both data and computation intensive e-science application and instance
intensive e-business application.

A. Example Data/Computation Intensive Scientific Workflow: A Pulsar
Searching Workflow

Swinburne Astrophysics group has been conducting pulsar searching surveys
using the observation data from Parkes Radio Telescope, which is one of the most
famous radio telescopes in the world (http://www.parkes.atnf.csiro.au/). Pulsar
searching is a typical data and computation intensive scientific application.
It contains complex and time consuming activities and needs to process terabytes
of data. Figure 1.1 depicts the high level structure of a pulsar searching workflow,
which runs on Swinburne high performance supercomputing facility (http://
astronomy.swin.edu.au/supercomputing/).

There are three major steps in the pulsar searching workflow:
(1) Data recording and initial processing. In Parkes Radio Telescope, there are 13

embedding beam receivers, by which signal from the universe are received. The raw
signal data are recorded at a rate of one gigabyte per second by the ATNF (http://
www.atnf.csiro.au/) Parkes Swinburne Recorder (http://astronomy.swin.edu.au/
pulsar/?topic=apsr). Depending on different areas in the universe that the scientists
want to conduct the pulsar searching survey, the observation time is normally around
1 h. The raw observation data recorded from the telescope includes the data from
multiple beams interleaved. They are processed by a local cluster in Parkes in real
time, where different beam files are extracted from the raw data files and compressed.
The size of each beam file normally ranges from 1 to 20 GB depending on the
observation time. The beam files are archived in tapes for permanent storage and
future analysis.

(2) Data preparation for pulsar seeking. Scientists analyse the beam files to find
potentially contained pulsar signals. However, the signals are dispersed by the
interstellar medium, where scientists have to conduct a De-dispersion step to
counteract this effect. Since the potential dispersion source is unknown, a large
number of de-dispersion files need to be generated with different dispersion trials.
For one dispersion trial of one beam file, the size of de-dispersion file is 4.6 MB to
approximately 80 MB depending on the size of the input beam file. In the current
pulsar searching survey, 1,200 is the minimum number of the dispersion trials,
where the De-dispersion activity takes around 13 h to finish and generate 90 GB
of de-dispersion files. Furthermore, for binary pulsar searching, every de-disper-
sion file needs another step of processing named Accelerate. This step generates
the accelerated de-dispersion files with the similar size in the last De-dispersion
step.

(3) Pulsar seeking process. Based on the generated de-dispersion files, different
seeking algorithms can be applied to search pulsar candidates, such as FFT (Fast
Fourier Transform) Seeking, FFA (Fast Fold Algorithm) Seeking, and Single Pulse

6 1 Workflow Systems in the Cloud

http://www.parkes.atnf.csiro.au/
http://astronomy.swin.edu.au/supercomputing/
http://astronomy.swin.edu.au/supercomputing/
http://www.atnf.csiro.au/
http://www.atnf.csiro.au/
http://astronomy.swin.edu.au/pulsar/?topic=apsr
http://astronomy.swin.edu.au/pulsar/?topic=apsr

Seeking. For example, the FFT Seeking takes around 80 min to seek the 1200
de-dispersion files with the size of 90 GB. A candidate list of pulsars is generated
after the seeking step which is saved in a 1 KB text file. Furthermore, by com-
paring the candidates generated from different beam files in the same time session,
interference may be detected and some candidates may be eliminated. With the
final pulsar candidates, we need to go back to the de-dispersion files to find their
feature signals and fold them to XML files. Each candidate is saved in a separated
XML file about 25 KB in size. The Fold to XML activity takes close to one hour
depending on the number of candidates found in this searching process. At last, the
XML files are visually displayed to scientists for making decisions on whether
a pulsar is found or not.

Fig. 1.1 A pulsar searching workflow in astrophysics

1.4 Motivating Examples 7

B. Example Instance Intensive Business Workflow: A Securities
Exchange Workflow

The securities exchange workflow is a typical instance-intensive workflow
process which involves a large number of transactions and each of them is a
relatively short workflow instance with only a few steps. Some steps of the
workflow instance are executed concurrently. The example illustrated in Fig. 1.2 is
the securities exchange workflow for the Chinese Shanghai A-Share Stock Market
(http://www.sse.com.cn/sseportal/en/). There are more than one hundred securities
corporations in this market and each corporation may have more than one hundred
branches.

There are six major stages in the securities exchange workflow:

(1) The first stage is ‘‘client entrustment’’ (Step 1). Every trading day, there are
millions of clients online at the same time and everyone is a potential deal
maker. The number of transactions can reach several millions per second at the
peak time and the average is around several thousands. Entrustments are
processed concurrently in more than 4,000 branches scattered across
the country.

(2) The second stage is ‘‘fit and make deal’’ (Step 2 to Step 3). The raw
entrustment data from clients are first validated at the corporation level to
check whether the clients have enough money to make the deal and whether
the deal is feasible (Step 2). After validation, the entrustments will be sent to
the stock market where all the entrustments are fit to form the final valence and
clinch a deal according to the trading rules. The fitting results are recorded into
the database in the securities corporation and fed back to the clients (Step 3).
The trading process is completed in several minutes. However, so far, the deal
is technically completed but the share is not legally owned by the client until
the completion of the entire workflow instance.

(3) The third stage is ‘‘register shares variation and calculate capital variation’’
(Step 4 to Step 6). After 3:00 pm of the trading day, the market is closed to all
clients. At this time, all the completed deals need to be archived and to
be summed up by securities corporations for clearing. The size of the output
file is about 50G with tens of millions of transactions and the duration of the
procedure is about 1.5 h (Step 4). After that, the corresponding fees and
the credit and debit balance of every corporation are calculated. The size of the
output file is about 50 M with several hundred thousands transactions and the
duration is about 0.5 h (Step 5). Now all the trading data are transferred to
Shanghai Stock Depository and Clearing Corporation of China (http://
www.chinaclear.cn/). Registration shares variation of every client and calcu-
lation of the capital variation of every client are fulfilled at this stage.
Registration ensures that the exchange occurred during the day is legal and the
varied amount is registered on the client’s account. Calculation of the capital
variation ensures that every corporation has the legal evidence to transfer
money between firms and branches, or between branches and clients (Step 6).

8 1 Workflow Systems in the Cloud

http://www.sse.com.cn/sseportal/en/
http://www.chinaclear.cn/
http://www.chinaclear.cn/

These are the two main data flow of stock exchange, one is the shares flow,
and the other is the capital flow.

(4) The fourth stage is ‘‘settle the trades’’ (Step 7 to Step 9). The output files of the
last step are divided by corporation ID and delivered to the securities firms
concurrently (Step 7). The subsequent clearing steps are executed at the
corporation level which can be processed concurrently among all the corpo-
rations. There are three levels of clearings: the first level clearing refers to the
clearing between the Clearing Corporation and securities firms, the second
one refers to the clearing between securities firms and branches, and the third
one refers to the clearing between branches and clients. After the corporation

Fig. 1.2 A securities exchange workflow

1.4 Motivating Examples 9

receives the clearing data files, there are two copies of the trading data in the
clearing system. One comes from the database in the securities corporation
and the other is from the Clearing Corporation. First, the Pre-process should
be done to check whether there is any difference between these two files and
ensures the first level clearing is correct. If they match, the clearing procedure
can start, otherwise, the problem of causing this difference should be fixed
before the next level of clearing. The Pre-process deals with a 50 M size data
file with about 500 k transactions in roughly 10 min (Step 8). Clearing is
fulfilled in the clearing system, and it deals with a 50 M size data file with
500 k transactions in 2 h; meanwhile, it checks the balance between branches
and clients with a 5 M size data file, 50 k transactions in 3 min. There is a
check point between the second level clearing and the third level clearing. The
share and capital balance of each branch in the data file from Clearing
Corporation should agree with the sum of clients’ transactions in the recorded
database. Otherwise, manual intervention needs to be conducted after the
whole clearing process is completes (Step 9).

(5) The fifth stage is ‘‘transfer capital’’ (Step 10 to Step 12). The output of the
second and third level clearing is the money transfer details for each client
who made deals during the day. It is a 20 M size data file with 200 k
transactions and it should be sent to the designated banks. Meanwhile, this
file can also be used to produce the capital transfer details on the corpo-
ration level, i.e., which designated bank should transfer how much money
to the Clearing Corporation. This procedure lasts for around 10 min
(Step 10). The designated banks check the bills in about 30 min on both the
client level and the branch level to ensure each entity has enough money to
pay for the shares. The input data file is 20 M in size with 200 k trans-
actions. Generally speaking, clients will not be lack of money for the bills
because they have been checked before the exchanges occur (Step 11).
If the branch is lack of money, certain amount of money is transferred from
its deposit automatically. Then the capital is transferred between banks and
clients and between banks and the Clearing Corporation. The input file for
this step is a 5 M data file with 200 k transactions and it will take around
50 min to completed (Step 12).

(6) The last stage is ‘‘produce clearing files’’ (Step 13 to Step 14). Both securities
firms and designated banks should produce the clearing files for the Clearing
Corporation. This file includes the transferred details and some statistics. It is
about 2 M in size with 20 k records and takes around 10 min (Step 13). The
Clearing Corporation receives the clearing data file from the securities firms
and banks concurrently. The balance of all the capital transferred is zero at the
Clearing Corporation level. Otherwise, exception handling should be
conducted with manual intervention (Step 14). The whole securities exchange
workflow is completes afterwards.

10 1 Workflow Systems in the Cloud

1.5 Key Issues in the Design of Cloud Workflow Systems

System architecture and its functionalities are the two basic targets for a system
design. Since cloud workflow system is a type of workflow system running in the
cloud computing environment, its system architecture follows the cloud computing
paradigm and its functionalities include the general workflow system functional
components and extensions for cloud computing. Additionally, due to the dynamic
and the market-oriented nature of cloud computing, quality of service (QoS)
management plays an important role in the running of cloud workflow systems.
Therefore, quality of service is also considered as a key issue in the design of cloud
workflow systems.

1) System architecture: software system architecture design is one of the most
important initial steps in the software development process. The system
architecture decides how the system components are organised and how they
interface with each other. Meanwhile, as discussed in [31], non-functional
requirements are not only influenced by individual system components, but also
affected by the system architecture. For cloud workflow systems, the system
architecture should follow the general architecture of cloud software, but it also
needs to be adapted according to different system requirements. The details will
be provided in Chap. 3.

2) Functionality: system functionality is a set of system functional components
which are designed and developed to meet the system functional requirements.
The system functionality of cloud workflow systems can be classified to two
major groups, viz. the group of functional components which realises the basic
functionality of workflow systems, the group of functional components which
realises the management of cloud computing resources. The details will be
provided in Chap. 4.

3) Quality of service: QoS management focuses on non-functional requirements
which are the constraints on the system functionality such as performance,
reliability and security. In a dynamic system environment such as cloud
computing, QoS management is critical to ensure the usability of software
systems. If without a set of effective QoS management strategies, the customer
satisfaction will not be guaranteed, and in most serious cases, the whole system
is unusable at all. In cloud workflow systems, typical QoS management tasks
may include the performance management, cost management, reliability
management and security management. The details will be provided in Chap. 5.

1.5 Key Issues in the Design of Cloud Workflow Systems 11

http://dx.doi.org/10.1007/978-1-4614-1933-4_3
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_5

Chapter 2
Cloud Workflow System Architecture

In this chapter, we will present the general cloud workflow system architecture.
System architecture in general decides how the system components are organised
in different layers and how they communicate with each other. In Sect. 2.1, we will
first introduce the general cloud software architecture. Afterwards, Sect. 2.2 will
present the general architecture of cloud workflow system. Meanwhile, for each of
the general architecture, the concrete architecture of a commercial system is also
demonstrated.

2.1 General Cloud Software Architecture

2.1.1 Cloud Architecture

There is so far no unanimous cloud software architecture. Nevertheless, in com-
parison to the conventional five-layer grid architecture, Ian Foster et al. proposed a
representative four-layer architecture for cloud computing which has been
accepted by many researchers and practitioners (see Fig. 2.1) [32].

The fabric layer consists of the raw hardware resources, such as the basic
computing units, storage disks, and network bandwidths. Similar to grid com-
puting, at this layer, most resources are heterogenous. For example, in a cloud data
centre, the underlying physical machines can be commodity PCs, workstations,
and supercomputers.

The unified resource layer consists of heterogeneous resources which are
usually in the form of virtualised resources. In this layer, the underlying physical
machines have been abstracted/encapsulated usually by virtualisation tools so that
they can be exposed to upper layer and end users as integrated resources, for
example, a virtual computer/cluster, a logical file system, a database system, and
so on.

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4_2,
� The Author(s) 2012

13

The platform layer consists of a set of resource management tools and mid-
dleware services on top of the unified resources. The platform layer can provide a
development and/or deployment platform, for example, a Web hosting environ-
ment, a workflow modelling service, and a scheduling service, and so on.

Finally, the application layer consists of the user applications which can be any
kind of applications such as cloud workflow applications, social networking tools,
and e-commerce websites.

2.1.2 Example: Aneka Cloud Architecture

Figure 2.1 provides a high level abstract view of the general cloud software
architecture. To illustrate it further additional details, we take the Aneka cloud as
an example. Aneka project (http://www.manjrasoft.com/products.html) developed
in the Cloud Computing and Distributed Systems (CLOUDS) Lab, University of
Melbourne, is a software platform and a framework for developing distributed
applications on the cloud. Aneka has now been commercialised by Manjrasoft Pty
Ltd (http://www.manjrasoft.com/) as a technology to enable.NET-based enterprise
cloud computing. As shown in Fig. 2.2, the fabric layer of Aneka cloud can
contain the physical resources in the private cloud and virtualised resources in the
public cloud provided by such as Amazon, IBM or Microsoft. The unified resource
layer and the platform layer are represented by the Platform Abstraction Layer
(PAL) and its core is the Aneka container. The Aneka container is the building
block of the middleware and represents the runtime environment for executing
cloud applications. There are three classes of services in the container, viz.
the fabric services which provide the access to the cloud resources, the execution
services which are responsible for the scheduling and executing applications,
and the foundation services which are the core management services in charge
of metering applications, allocating resources, managing available nodes,

Fabric

Unified Resource

Platform

Application

C
lo

ud
 A

rc
hi

te
ct

ur
e

Fig. 2.1 General cloud
software architecture [32]

14 2 Cloud Workflow System Architecture

http://www.manjrasoft.com/products.html
http://www.manjrasoft.com/

and keeping the services registry updated. In the application layer, Aneka provides
a tool for managing the cloud, allowing administrators to easily start, stop, and
deploy instances of the Aneka container on new resources and then reconfigure
them dynamically to alter the behavior of the cloud. For more details about the
Aneka cloud, please refer to [17, 75].

Corresponding to the different layers, clouds in general provide services at three
different levels (IaaS, PaaS, and Saas [32]) as follows, although some providers
can choose to expose services at more than one level.

Infrastructure as a Service (IaaS) [19] provisions hardware, software, and
equipments (mostly at the unified resource layer, but can also include part of the
fabric layer) to deliver software application environments with a resource usage-
based pricing model. Infrastructure can scale up and down dynamically based on
application resource needs. Typical examples are Amazon EC2 (Elastic Cloud
Computing) Service (http://aws.amazon.com/ec2/) and S3 (Simple Storage
Service) (http://aws.amazon.com/s3/) where compute and storage infrastructures
are open to public access with a utility pricing model; Eucalyptus [61] is an open
source Cloud implementation that provides a compatible interface to Amazon’s

Fig. 2.2 Architecture of
aneka cloud [17]

2.1 General Cloud Software Architecture 15

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/

EC2, and allows people to set up a Cloud infrastructure at premise and experiment
prior to buying commercial services.

Platform as a Service (PaaS) [17, 46] offers a high-level integrated environment
to build, test, and deploy custom applications. General speaking, developers will
need to accept some restrictions on the type of software that they can write in
exchange for built-in application scalability. An example is Google’s App Engine
(http://code.google.com/appengine/), which enables users to build Web applica-
tions on the same scalable systems that power Google applications.

Software as a Service (SaaS) [58] delivers special-purpose software that is
remotely accessible by consumers through the Internet with a usage-based pricing
model. Salesforce (http://www.salesforce.com/) is an industry leader in providing
online Customer Relationship Management (CRM) services. Live Mesh (http://
explore.live.com/windows-live-mesh) from Microsoft allows files and folders to
be shared and synchronised across multiple devices.

Although clouds provide services at three different levels (IaaS, PaaS, and
Saas), standards for interfaces to these different levels still remain to be defined.
This leads to interoperability problems between today’s clouds, and there is little
business incentives for cloud providers to invest additional resources in defining
and implementing new interfaces. As clouds mature, and more sophisticated
applications and services emerge that require the use of multiple clouds, there will
be growing incentives to adopt standard interfaces that facilitate interoperability in
order to capture emerging and growing markets in a saturated cloud market.

2.2 General Architecture of Cloud Workflow Systems

2.2.1 Cloud Workflow System Architecture

In this section, we will present a general architecture of a cloud workflow system.
Obviously, as typical cloud software itself, the architecture of a cloud workflow
system should be consistent to the general cloud software architecture. Therefore,
as shown in Fig. 2.3, the general cloud workflow architecture can be a mapping of
the general cloud system architecture.

Specifically, the application layer consists of cloud workflows (workflow
applications for real-world business processes).

The platform layer is the cloud workflow system which provides a development
and running platform for cloud workflows. All the system functionalities of a cloud
workflow system such as workflow management, cloud resource management and
QoS management are included. The application layer and the platform layer are
usually self-maintained by the business organisation.1

1 A cloud workflow system can be encapsulated as a platform service, i.e. PaaS (platform as a
service). In such a case, the platform layer is maintained by external cloud service providers.

16 2 Cloud Workflow System Architecture

http://code.google.com/appengine/
http://www.salesforce.com/
http://explore.live.com/windows-live-mesh
http://explore.live.com/windows-live-mesh

The unified resource layer consists of both software services and hardware
services that are required for the running of cloud workflows. Specifically, SaaS
can provide massive number of software capabilities for processing different
business tasks, while IaaS can provision on-demand and elastic computing power
to meet the resource requirements for processing business tasks. In practice,
software and hardware services can also be integrated together and encapsulated to
be delivered as VMs (virtual machines).

The fabric layer is composed of low level hardware resources such as com-
puting, storage and network resources. The unified layer and fabric layer are
usually maintained by external cloud service providers.2

2.2.2 Example: Window Workflow Foundation Architecture

Here, as an example, we demonstrate the Windows Workflow Foundation
(WWF, http://msdn.microsoft.com/en-us/netframework/aa663328) which is part of
Microsoft.NET framework providing a foundation for developing workflow
applications. Microsoft has developed the Windows Azure to help developers
build, host and scale applications through Microsoft data centres. Windows Azure
(http://www.microsoft.com/windowsazure/) is an operating system that serves as
the development, service hosting, and service management environment for the
Windows Azure platform. The Windows Azure platform consists of an infra-
structure of hardware, software, network, and storage resources. Developers can

Application

Platform

Unified Resource

Fabric

Cloud Architecture

Cloud Workflows
(Business Processes)

Cloud Workflow System
(System Functionalities,

QoS Management)

Software Services
Hardware Services

Compute, Storage and
Network Resources

Cloud Workflow Architecture

S
elf

M
aintained

S
ervice P

roviders
M

aintained

Fig. 2.3 Cloud workflow system architecture

2 The fabric layer can also be a virtual collection of local computing infrastructure (i.e. private
cloud) and the commercial computing infrastructure (i.e. public cloud), i.e. hybrid cloud.

2.2 General Architecture of Cloud Workflow Systems 17

http://msdn.microsoft.com/en-us/netframework/aa663328
http://www.microsoft.com/windowsazure/

build and deploy applications as a hosted service for Windows Azure by using
the.NET Framework. Therefore, the Windows Azure platform is one of the ideal
hosting environment for WWF based workflow system.

Figure 2.4 depicts the architecture of a WWF based cloud workflow system.
The fabric and unified resource layers are built upon the Microsoft data centres
with Windows Azure, so that they can offer basic computing, storage and network
resource to the upper layers. The platform layer is WWF. WFF consists of three
main components, viz. base activity library, runtime engine, and runtime services.3

The base activity library contains frequently used workflow activities such as
assign, delay, invoke and so on. The runtime engine is the heart of WWF which
consists of the runtime classes and services required for the workflow execution.
The runtime services are responsible for such as scheduling activities, event
handling, exception, tracking and so on. At the application layer, the visual
designer provides customers a tool for flowchart-based workflow modelling with
activities such as if, sequence, pick, and parallel. In addition, customers can also
add custom-built activities into the customer activity library for use in the
workflow.

Fig. 2.4 Architecture of
WWF based cloud workflow
system

3 A Developer’s Introduction to Windows Workflow Foundation (WF) in.NET 4, http://
msdn.microsoft.com/en-us/library/ee342461.aspx.

18 2 Cloud Workflow System Architecture

http://msdn.microsoft.com/en-us/library/ee342461.aspx
http://msdn.microsoft.com/en-us/library/ee342461.aspx

Chapter 3
Cloud Workflow System Functionality

In this chapter, we will present the cloud workflow system functionality.
In Sect. 3.1, we will first introduce the classical workflow reference model which
defines the basic functionalities for a workflow system. In Sect. 3.2, we will then
illustrate those system functionalities which are typical for the running of work-
flows in the cloud computing environment.

3.1 Classical Workflow Reference Model

Workflow system can be implemented for different purposes such as process
management, process re-design/optimisation, system integration, achieving
flexibility, and improving maintainability, and so on. Therefore, at the early stage
of workflow systems, it is not clear what functionalities should be actually
included in a workflow system. This confusion has not been solved until Workflow
Management Coalition (WfMC) published its workflow reference model (http://
www.wfmc.org/reference-model.html) in 1995. WfMC is an organisation which is
dedicated to the standardisation of workflow management terminology and the
standards for the exchange of data between workflow systems and applications.
As shown in Fig. 3.1, the workflow reference model defines a workflow system
and the most important system interfaces which enable products to interoperate at
a variety of levels.

The workflow reference model defines 5 interfaces between the workflow
enactment services and other 5 major components, viz. the process definition tools,
the workflow client applications, the invoked applications, the other workflow
enactment services, and the administration and monitoring tools, specifically,
according to WfMC [82]:

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4_3,
� The Author(s) 2012

19

http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html

• Process Definition Tools Interface (1): definition of a standard interface between
process definition and modelling tools and the workflow engine(s).

• Workflow Client Application Interface (2): definition of APIs for client appli-
cations to request services from the workflow engine to control the progression
of processes, activities and work-items.

• Invoked Application Interface (3): a standard interface definition of APIs to
allow the workflow engine to invoke a variety of applications, through common
agent software.

• Workflow Interoperability Interface (4): definition of workflow interoperability
models and the corresponding standards to support interworking.

• Administration & Monitoring Tools Interface (5): the definition of monitoring
and control functions.

In the following, we will introduce the functionalities included in each com-
ponent briefly. For more details, please refer to [2, 82].

Workflow enactment service and workflow engines: as shown in the refer-
ence model, workflow enactment service is the heart of a workflow system.
A workflow enactment service can be a single workflow engine, or a collection
of several workflow engines for the improvement of system scalability.
A workflow engine provides those functionalities which are required for the
completion of workflow instances. Specifically, the main functionalities of a
workflow engine include: interpreting process definition models, generating new
workflow instances, allocating correct resource for workflow activities, routing
workflow instances, invoking applications, monitoring workflow execution,
handling exceptions, and generating system logs. Clearly, workflow engines are
the ‘‘core’’ of the workflow system. A workflow system may contain several
workflow engines which are homogeneous. However, in order to complete some

Fig. 3.1 WfMC’s workflow reference model (http://www.wfmc.org/reference-model.html)

20 3 Cloud Workflow System Functionality

http://www.wfmc.org/reference-model.html

cross-domain workflows, it is possible to have some collaboration between
several autonomous workflow systems which belong to different organisations.
In this situation, several workflow enactment services can be linked together
through interoperability (Interface 4).

Process definition tools: the process definitions tools are the set of components
for creating, editing, and illustrating (also verification and analysis in some sys-
tems) workflow process definitions. Process definitions tools can adopt any visual
modelling language such as Petri net [43] and Directed Acyclic Graph (DAG) [2]
as the modelling language for workflow processes, which of course, should be
interpretable by the workflow engines and support process definition import and
export (Interface 1). Specifically, the main functionalities of a process definition
tool include: generate process definitions, model the routing structures (such as
sequence, parallelism, selection and iteration) with graphic components, define
workflow activities (functional and non-functional requirements), and verify the
correctness of workflow models (detect the semantic errors such as deadlock).
Clearly, process definition tools are designed to realise most of the tasks in the
workflow build-time stage.

Workflow client applications: the workflow client applications are the interfaces
for the human resources (employees) who are involved in the workflow execution.
The major part of a workflow client application is a worklist which contains the
work items assigned to each employee by the workflow engine (Interface 2).
Specifically, the main functionalities of a worklist handler include: list the work
items assigned to a specific employee, provide necessary information about the
work items, provide necessary state information about workflow execution, and
report the progress of completing a work item (e.g. start, finish).

Invoked applications: besides human resources, execution of workflow activities
often needs software applications. These software applications are invoked by
workflow engines (Interface 3) when workflow activities are ready to start. Each
invoked application is managed by a tool agent which is in charge of the commu-
nication between the workflow engine and the invoked application. The tool agent
provides necessary activity information to the invoked application, and sends the
execution results to the workflow engine. The invoked applications can be either the
type of interactive applications which are triggered by the selection of a work item
from the worklist and require the input from the employees (such as a spreadsheet or
an electronic form), or the type of automatic applications which can be performed
without user intervention (such as data processing programs). Meanwhile, these
invoked applications can be either those software programs running in the local
machines of an employee or those Web services running in the distributed servers.

Administration and monitoring tools: the administration and monitoring tools
are in charge of the supervision and operational management of workflows
(Interface 5). Specifically, the main functionalities of the administration and
monitoring tools include: manage resource (both employees and software appli-
cations), configure system, inspect the workflow execution state, handle

3.1 Classical Workflow Reference Model 21

exceptions, record and report system performance, and many others. Clearly, the
administration and monitoring tools not only include many runtime monitoring
functionalities but also offline data analysis tasks which can be assisted by some
data mining tools.

3.2 Basic Functionalities of Cloud Workflow Systems

3.2.1 Cloud Workflow System Functionality

Generally speaking, a cloud workflow system is the combination of workflow
system and cloud services. The cloud workflow system itself can be regarded as a
type of PaaS service since it can not only execute the cloud workflows as a type of
software application but also provides the users with visual modelling tools to
create their own workflow applications. Since visual modelling is actually a type
of high level programming, a cloud workflow system can thus be regarded as a
type of platform service. A cloud workflow system can be either running in private
cloud of an organisation, or in public cloud where the underlying computing
infrastructures are provided by the third party, or in a hybrid mode. In the hybrid
mode, a cloud workflow system mainly relies on the resources in private cloud,
and only uses public cloud for the scalability purpose. Meanwhile, in many cases,
considering the security purpose, the cloud workflow system would store and
manage the confidential data, and execute workflow instances which may need to
access or produce these data in the private cloud, while execute others in public
cloud. Therefore, a cloud workflow system should be able to employ and differ-
entiate both private and public cloud services.

The workflow reference model suggested by WfMC defines the general com-
ponents and interfaces of a workflow system. Therefore, instead of building from the
scratch, we can design the basic system functionalities of a cloud workflow system
by extending the workflow reference model with typical functionalities required for
the integration of cloud services, such as cloud resource management and QoS
management. The QoS management components will be further introduced in
Chap. 4 given its critical importance in cloud workflow systems. Therefore, in this
section, we will first present an overview of the system functionality, and then focus
on the resource management components in a cloud workflow system.

As depicted in Fig. 3.2, the basic system functionalities of a cloud workflow
system can be organised in the same way as the workflow reference model. Here,
we only focus on several key components. In a cloud workflow system, the
workflow modelling tool provides the system users an efficient way to create their
workflow applications with the help of visual modelling components and/or
scripting languages. Workflow specifications created by the users normally contain
the information about the process structures, the activity definitions and the QoS
requirements. The workflow enactment service is a collection of multiple parallel

22 3 Cloud Workflow System Functionality

http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4

workflow engines which are in charge of interpreting workflow specifications and
coordinating all the management tools and necessary resources for workflow
execution, such as the administration and control tools, worklist monitoring tools,
workflow data and control flows, and software services. The workflow engines can
invoke local software applications stored in the local repository (in the private
cloud) and external cloud software services provided by the third party (in the
public cloud). The workflow engines can search for cloud software services using
the cloud resource brokers which perform the searching, reserving and auditing of
cloud resources. After successful reservation of a cloud software service, a tool
agent is created which is in charge of the communications with external cloud
service providers, and the control of cloud software services according to the
instructions received from the workflow engines.

Note that in cloud workflow systems, all the functional components are
implemented as cloud services which are separated from the workflow engines. In
such a case, the workflow engines, the functional components and other add-on
tools can be hosted by different cloud infrastructure services. Based on the system
workload, these components can be migrated or replicated to other resources,
or request the provision of additional resources. For example, the workload
(or bottleneck) on Web access for worklist or modelling tools can thus be offloaded
to a different set of resources, rather than the same as the workflow engines.
In addition, these components can work together as parts of the existing cloud
workflow system, and they can also work as standalone cloud services for other

QoS Management Tools

Modelling Tool

Workflow
Engines

Worklist
Handler

User Interface

External Cloud
Service Providers

Workflow
Data

Local Software
ApplicationsWorkflow

Enactment
Service

Interpreted by

Workflow
Specification

Generates

Administration
& Control Communicate

& Control

System
Administrator

Interact via

Components for Cloud Resource Management and QoS Management

Components defined in WFMC reference model

Invokes

generates QoS Requirement
Specification

QoS-Aware
Service Selection

QoS Consistency
Monitoring

QoS Violation
Handling

Controls

Monitors

QoS
Constraints

contains

refer to

Build time
Runtime

Invokes

Workflow
Execution

States

System User

Tool Agents &
Cloud Resource

Brokers
Cloud Software Services

Fig. 3.2 System functionalities in cloud workflow system

3.2 Basic Functionalities of Cloud Workflow Systems 23

applications or cloud workflow systems. Therefore, the cloud services based
software components also contribute to the scalability of the whole system.

As mentioned in [62], the two most fundamental changes to the cloud workflow
system compared with traditional ones are the change of the system architecture
(the migration to the cloud computing architecture and the adoption of distributed
system components), and the integration of cloud resources management tools. In
the following, we will focus on the functionalities for the cloud resource man-
agement, and we will take the Kepler and CloudBus projects as two examples.

3.2.2 Example: Kepler Web/Grid Service Management

The Kepler project (https://kepler-project.org/), as introduced on its Website, ‘is
designed to help scientists, analysts, and computer programmers create, execute,
and share models and analyses across a broad range of scientific and engineering
disciplines. Kepler can operate on data stored in a variety of formats, locally and
over the Internet, and is an effective environment for integrating disparate software
components’. Using Kepler’s graphical user interface, users simply select and then
connect pertinent analytical components and data sources to create a ‘‘scientific
workflow’’, an executable representation of the steps required to generate results.
The Kepler software helps users share and reuse data, workflows, and components
developed by the scientific community to address common needs. In Kepler, the
workflow is viewed as a composition of independent components called actors.
The communication between actors is through the interfaces called ports. Actors, or
more precisely their ports, are connected to one another via channels. Although the
actors are interconnected to each other, there are many possible execution
semantics. Kepler uses an object called director to specify the execution semantics
which defines how actors are executed and how they communicate with each other.

Kepler is designed for utilisation of Web/Grid services, not cloud services.
The purpose of introducing the Web/Grid service management in Kepler here has
two fold. First, regarding to software Web services, the management of Web
services and SaaS cloud services are very similar. Second, since cloud workflow
systems can be migrated from the existing grid workflow systems, we should take
a look at the resource management tools in the grid environment, so that we can
understand what can be inherited and what needs to be adapted.

As introduced in [55], one of the highlights of Kepler is the extension for Web
services. Web services are becoming the standard means for accessing remote
services in distributed systems. In Kepler, the WebService actor is in charge of the
instantiation of Web services. Given the URL of a Web service description,
the WebService actor can be instantiated to any particular operation specified in
the service description. After instantiation, the WebService actor can be incor-
porated into a scientific workflow as if it were a local component. In particular, the
WSDL-defined inputs and outputs of the service are made explicit via the
instantiated actor’s input and output ports. The extension to Grid services

24 3 Cloud Workflow System Functionality

https://kepler-project.org/

are realised by the Grid actors similarly to the WebService actors such as the
GridFTP actor, GlobusJob actor and GlobusProxy actor.

3.2.3 Example: CloudBus Cloud Resource Management

The CloudBus project (http://www.cloudbus.org/cloudbus/) is a cloud computing
platform for conducting fundamental research on the design and development for a
range of market-oriented cloud applications such as cloud workflow systems.
CloudBus is running in the Aneka cloud. Its ancestor is the GridBus project (http://
www.gridbus.org/middleware/). Therefore, CloudBus is a typical example project
as migration from grid to cloud. In general, the two basic ways to access cloud
resources are through the user interface (e.g. resource management console in the
form of Website or client tools) and the APIs. Aneka provides a set of APIs for the
management of cloud resources. Specifically, Aneka exposes three SOAP Web
services for service negotiation, reservation, and task submission. The negotiation
and reservation services provide interfaces for negotiating resource use and
reserving them in the Aneka cloud. The task Web service provides a SOAP
interface which allows remote clients to submit jobs, monitor their status, and
abort jobs. Cloud measurement tools are also required for the amount of data and
computing power used, so that users are charged on the pay-as-you-go basis.

A key objective for the cloud resource management is the dynamic provision of
cloud resources (scale up/down) according to real-time application requirements.
CloudBus manages dynamic provisioning of compute and storage resources in the
cloud with the help from tools and APIs provided by service providers. For
instance, CloudBus can provision large number of VMs (virtual machines), such as
the EC2 instances in the Amazon cloud, to meet the requirements for data and
computation intensive workflow activities. Beside resource provision, the cloud
workflow system also needs to implement workflow scheduling policies to
optimise the task-to-resource assignment according to the QoS requirements.
Given the cloud resource specification, and the specification for cloud workflows
(including both functional and QoS requirements), CloudBus can direct a VM
provisioning system to consolidate data centre loads by migrating VMs so that it
could make scheduling decisions based on locality of data and compute resources.
Meanwhile, for the persistent storage of workflow systems which stores and
manages the metadata such as available resources, job queues, job status, and user
data including large input and output files, CloudBus can facilitate different
storage services such as Amazon S3, Google’s BigTable, and the Windows Azure
Storage Services.

3.2 Basic Functionalities of Cloud Workflow Systems 25

http://www.cloudbus.org/cloudbus/
http://www.gridbus.org/middleware/
http://www.gridbus.org/middleware/

Chapter 4
Cloud Workflow System Quality of Service

Along with system functionality, the management of quality of service (QoS) in
cloud workflow system is attracting increasing and even more efforts [3, 31, 45,
47, 54, 73]. This is mainly because of the following two reasons. First, the cloud
computing environment is very dynamic and uncertain. Therefore, it is difficult to
achieve targeted service quality if without effective QoS management strategies;
Second, cloud computing adopts the market-oriented model and strict service
contracts. Therefore, high service quality is necessary for improving customer
satisfaction and avoiding penalty for the breach of service contracts. Therefore,
QoS management plays a significant role in cloud workflow systems, and hence
included as significant part of this book. In Sect. 4.1, we will first present an
overview about the QoS of Web and cloud services. In Sect. 4.2, we introduce the
QoS of cloud workflows. In Sect. 4.3, a generic QoS framework is presented as a
high level guideline for the design of software components to deliver lifecycle QoS
support in cloud workflow systems. Afterwards, as concrete examples, specific
strategies for performance management (on workflow response time), cost man-
agement (on data storage), reliability management (on data replication), and
security management, will be discussed and demonstrated.

4.1 QoS of Cloud Services and Web Services

4.1.1 General QoS

In general, QoS refers to those non-functional requirements for Web services such
as performance, reliability, availability and security and so on. For example, the
response time for a Web search service should be less than 1 s, the availability of a
Web file storage service should be higher than 99.99%. QoS management refers to
a set of strategies dedicated to the delivery of targeted QoS requirements. Cloud
services, as mentioned in Chap. 2, consist of three types of services, viz. SaaS,

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4_4,
� The Author(s) 2012

27

http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2

PaaS and IaaS. Specifically, IaaS services are at the bottom layer which should be
transparent to PaaS services, and PaaS services are at the middle layer which
should be transparent to SaaS services. Clearly, the failures of the cloud services at
the lower layer can lead to the failures at the higher layer(s). For example, if the
reliability of the storage services (IaaS services) failed to achieve a targeted level
(due to the failure rates of the hard disks), the cloud workflow systems (PaaS
services) which are built upon these infrastructure services may also fail to achieve
the targeted reliability, and so as the user business process applications (SaaS
services). In addition, the QoS failures at a higher layer may be produced by much
more factors than those at a lower layer. For example, the reliability failures of the
business process applications can be caused by the problems of load balancing,
version control, network, computation, and many others besides storage services.
Therefore, for the same QoS dimensions such as performance and reliability,
different measurements and corresponding strategies are required for different type
of cloud services. Clearly, it is not practical for us to discuss all of them.

In this book, we basically focus on the QoS management in the cloud workflow
systems from a platform service provider’s point of view, i.e. how to ensure the
satisfied QoS over the workflow lifecycle based on system management tools.
Therefore, we assume that correct workflow applications are built and submitted
by the users in the application layer and sufficient resources are available in the
underlying infrastructure layer.

Here, we present a brief overview of some representative QoS dimensions for
Web/Cloud services. More details can be found in [39].

• Cost: Cost, specifically referring to monetary cost here, is a very important QoS
dimension for any software systems, especially in the commercial cloud com-
puting environments where any usage of resources needs to be paid. In general,
every other QoS dimensions such as performance, reliability and security all
have a direct or indirect relationship to the cost in the sense that a significant
increase of service quality normally means a sharp increase in the cost.
Therefore, there are some researchers preferring not to include cost as a QoS
dimension but rather as a general measurement or benchmark against all the
QoS dimensions. In this book, we still treat cost as a typical QoS dimension like
most of the researchers, and we will consider the affect of cost in the discussion
with other QoS dimensions. Clearly, the trade-off between cost and other QoS
dimensions always plays a core role in the design and implementation of QoS
management strategies.

• Performance: Performance is a quality aspect of Web/Cloud service, which is
measured in terms of throughput and response time. Higher throughput and short
response time represent good performance of a Web/Cloud service. Throughput
is measured by the number of requests that can be served during a specific
period of time. Response time is the round-trip time between sending a request
and receiving the response, e.g. the duration from submitting a workflow
activity to receiving its execution result.

28 4 Cloud Workflow System Quality of Service

• Reliability: Reliability is the quality aspect of a Web/Cloud service that rep-
resents the degree of being capable of maintaining the service and service
quality. The reliability of a Web/Cloud service can be measured by the number
of failures such as service downtime and breach of service agreement over a
specific period of time.

• Security: Security is the quality aspect of the Web/Cloud service of providing
confidentiality and non-repudiation by authenticating the parties involved,
encrypting messages, and providing access control. Security has added impor-
tance because Web service invocation occurs over the public Internet. The
service provider can have different approaches and levels of providing security
depending on the service requestor.

• Availability: Availability is the quality aspect of whether the Web/Cloud service
is present or ready for immediate use. Availability can be measured by the
probability that a service is available over a specific time.

• Integrity: Integrity is the quality aspect of how the Web/Cloud service maintains
the correctness of the interaction in respect to the source. Proper execution of
Web service transactions will provide the correctness of interaction. A trans-
action refers to a sequence of activities to be treated as a single unit of work.
All the activities have to be completed to make the transaction successful. When
a transaction does not complete, all the changes made are rolled back.

• Regulatory: Regulatory is the quality aspect of the Web service in conformance
with the rules, the law, compliance with standards, and the established service
level agreement. Web services use a lot of standards such as SOAP, UDDI, and
WSDL. Strict conformance to correct versions of standards (for example, SOAP
version 1.2) by service providers is necessary for proper invocation of Web
services by service requestors.

4.1.2 SLA Management

In the cloud market, there are large numbers of similar or equivalent services
provided by different parties. In order to make sure the successful delivery of paid
services, service contract, as a formal document, is often negotiated and signed
between the users and the service providers. A standard service contract may
include many components such as the Header information (e.g. name, version,
owner, responsibility assignment, and type), functional information (e.g. func-
tional requirement, service operation, and invocation), and non-functional infor-
mation (e.g. quality of service, transactions, service level agreement, semantics,
and process) [29, 46]. Among them, SLA (service level agreement) formally
defines the targeted/minimum level of services (service quality) that should be
delivered by the service providers. In many cases, penalties may also be agreed
upon in the case of non-compliance of SLA. Clearly, SLA management plays an
important role in the fulfilment of service contracts. Specifically, the SLA lifecycle
can have the following stages [29]:

4.1 QoS of Cloud Services and Web Services 29

• Identifying the provider. This stage is for searching and selecting a set of service
providers through the use of cloud resources discovery or registry services.

• Defining the SLA. This stage is for identifying the specific terms to be included
in the SLA. These terms are related to the QoS dimensions such as performance,
reliability and security which must be monitored later on, and form the basis for
penalty clauses.

• Agreeing on the terms of the SLA. This stage is for specifying the QoS con-
straints that must be met by the service provider during service provision and
execution. Here, a negotiation process may be involved, and the penalty clauses
may be specified.

• Provisioning and execution. This stage is for the service provision based on the
agreed SLA which may include the interaction with the service provider’s
management services to setup the required resources.

• Monitoring SLA violations. This stage is for monitoring the specified SLA terms
and ensuring that they are not being violated during the resource provision
period.

• Destroying SLAs. This stage is for destroying the SLAs once the service pro-
vision has completed.

• Penalties for SLA violations. After the completion of a service provision, the
monitoring data will be used to determine whether penalties need to be imposed
on the service provider.

Clearly, in order to achieve satisfactory SLA management, a set of strategies
are required to facilitate each stage in the SLA lifecycle, especially for stages 1, 3,
4 and 5, which play critical roles in the delivery of user expected service quality.
Meanwhile, for different SLA terms (QoS dimensions), the ways for their speci-
fication, provision, and monitoring can be very different. Therefore, there are still
many open questions for the SLA management for cloud services.

Here, we take Amazon’s SLA management as an example to illustrate how it
works in the commercial environment. Specifically, we take the SLA for Amazon
EC2 (for computing) and S3 (for storage) services as representative examples.
Here, we only focus on their SLA definitions and penalties. For more details,
please refer to the respective links listed below.

EC2 SLA (http://aws.amazon.com/ec2-sla/): Amazon Elastic Compute Cloud
(Amazon EC2) is a Web service that provides resizable compute capacity in the
cloud. It is the major Amazon cloud service for provision computing resources.
The official service commitment for EC2 SLA is quoted as ‘‘AWS will use
commercially reasonable efforts to make Amazon EC2 available with an Annual
Uptime Percentage of at least 99.95% during the Service Year’’. Here, ‘‘Annual
Uptime Percentage’’ is calculated by subtracting from 100% the percentage of
5 min periods during the Service Year in which Amazon EC2 was in the state of
‘‘Region Unavailable.’’ If the Annual Uptime Percentage for a customer drops
below 99.95% for the Service Year, that customer is eligible to receive a Service
Credit equal to 10% of the bill.

30 4 Cloud Workflow System Quality of Service

http://aws.amazon.com/ec2-sla/

S3 SLA (http://aws.amazon.com/s3-sla/): Amazon Simple Storage Service
(Amazon S3) provides a simple Web services interface that can be used to store
and retrieve any amount of data, at any time, from anywhere on the web. It is the
major Amazon cloud service for provision lasting storage resources. The official
service commitment for S3 SLA is quoted as ‘‘AWS will use commercially rea-
sonable efforts to make Amazon S3 available with a Monthly Uptime Percentage
of at least 99.9% during any monthly billing cycle’’. Here, ‘‘Monthly Uptime
Percentage’’ is calculated by subtracting from 100% the average of the Error Rates
from each five minute period in the monthly billing cycle, where the error rate is
calculated as the total number of internal server errors returned by Amazon S3 as
error status ‘‘InternalError’’ or ‘‘ServiceUnavailable’’ divided by the total number
of requests during a five-minute period. If the Monthly Uptime Percentage for a
customer drops below 99.9%, that customer is eligible to receive a Service Credit
equal to 10% of the bill (if the Monthly Uptime Percentage is equal to or greater
than 99% but less than 99.9%), or 25% of the bill (if the Monthly Uptime Per-
centage is less than 99%).

4.2 QoS of Cloud/Grid Workflows

QoS management in cloud/grid workflow systems can be regarded as a repre-
sentative and special scenario for the general QoS management in Web service
based systems. It is representative for the reason that cloud/grid workflow systems
are naturally distributed and composed of Web services, and cloud/grid workflows
are modelled and built in a way of service composition. It is also special for the
reason that QoS management for cloud/grid workflows not only applies to the
service quality of individual services but also the collective quality of the work-
flow as a whole. Therefore, the measurement, monitoring and control strategies for
workflow QoS share some similarities but have many unique features compared
with their counterparts for individual services.

As summarised in [31, 39, 46, 87], the major dimensions for (grid) workflows
are time, cost, reliability and security. Specifically, time is a basic measurement of
performance, and it refers to the total time required for completing the workflow
execution in a workflow system; cost refers to the cost associated with the exe-
cution of workflows including the cost for workflow management and the charge
of the resource usage for processing workflow activities; and security refers to the
confidentiality of the workflow execution and trustworthiness of resources.
Clearly, the major workflow QoS dimensions are a subset of the general QoS
dimensions for Web services. However, as mentioned above, the most different
aspect lies in the collective behaviour of workflow applications. Here, for example,
the overall completion time of a workflow consists of the individual durations for
process every activity. But given the complex structure the software process, the
overall completion is not a simple sum of the individual durations. A common case
is that the completion time of a parallel workflow process is equal to the duration

4.1 QoS of Cloud Services and Web Services 31

http://aws.amazon.com/s3-sla/

of the longest path, not the sum of all the activity durations. For another example,
the reliability of a workflow depends on the reliability of all the service undertaken
the execution of its workflow activities. The reliability of a single service is mainly
related to the system failures which can be either caused by the hardware of
software problems. However, the reliability of a workflow is not only affected by
the system failures, but also the process failures which are caused by the business
process exceptions [68, 69].

These differences will lead to significant changes in the QoS model which
defines the QoS components and their relationships, and also the strategies for the
estimation of QoS level, the specification of QoS constraints, the monitoring of
QoS conformance, and the handling of QoS violations. Take the assignment of
QoS constraints as example, there are two different ways. The first ways is to allow
users to assign activity-level QoS constraints, and then the overall QoS can be
assessed by computing the QoS constraints of all individual activities based on the
specific QoS model. For example, a workflow reduction algorithm such as
SWR(w) algorithm [20] can be employed to calculate the deadline for the entire
workflow based on the desired execution time of individual workflow activities.
The second way is to assign QoS constraints at workflow-level where users only
define the overall workflow QoS requirements, and the workflow system will use
automatic strategies to assign local and activity-level QoS constraints to the
workflow segments and individual activities. For example, a deadline assignment
approach such as Equal Slack and Equal Flexibility [41] can be applied to
determine the expected execution time of individual activities based on the
deadline for the entire workflow.

Similar to the lifecycle of a Web service, the cloud workflow also has its
lifecycle. Here, we take a high level overview on the lifecycle of a typical
workflow instance. Generally speaking, the lifecycle of a typical workflow
instance consists of three major stages, viz. the modelling stage, the instantiation
stage and the execution stage [2].

1) At the modelling stage, real world e-business or e-science processes are
modelled or redesigned as cloud workflow specifications [27, 74] which may
contain the process structures, task definitions for a number of workflow
activities, and non-functional QoS requirements such as performance, reli-
ability and security [71]. Based on the cloud workflow specifications, cloud
workflow service providers will negotiate with their consumers to settle the
service contracts which further determines such as objectives, prices and
penalties.

2) At the instantiation stage, based on the service contracts, cloud workflow
systems will search for candidate cloud software services which satisfy both
functional and non-functional QoS requirements to fulfil the execution of
workflow activities. After all the required software services are selected and
reserved, cloud workflow instances are ready for execution.

3) At the execution stage, cloud workflow execution engines will coordinate the
data and control flows according to the workflow specifications obtained at

32 4 Cloud Workflow System Quality of Service

the modelling stage and employ the candidate software services reserved at the
instantiation stage to execute all the workflow activities. Besides, in dynamic
system environments, necessary workflow runtime management such as
monitoring and exception handling mechanisms will ensure the detection and
recovery of functional and QoS violations so that service contracts can be
successfully fulfilled.

Given the above description, it is evident that satisfactory QoS cannot be
achieved missing the efforts in any of the stages. Therefore, lifecycle QoS man-
agement is essential in cloud workflow systems.

4.3 A Generic QoS Framework

There are a number of existing studies and projects investigating the support of
specific QoS requirements in different software systems. However, due to the large
differences between these QoS dimensions by nature, conventional software sys-
tems often adopt different sets of software components for different QoS dimen-
sions. Therefore, when a new QoS dimension needs to be supported by the system,
a set of new software components need to be developed and run independently.
However, if there is no unified framework to guide the design and development
process, the system complexity as well as the software development cost can be
rapidly on the rise. Therefore, start from the design of a cloud workflow system, a
generic framework is required to integrate and manage the software components
for the support of different QoS dimensions. In this book, we do not intend to cover
the detailed strategies for all QoS dimensions, which is neither possible nor nec-
essary. Instead, our focus is a generic framework which can facilitate the support
of different QoS dimensions in cloud workflow systems. Meanwhile, in a cloud
workflow system, a workflow instance needs to undergo several stages before its
completion, specifically, the modelling stage, the instantiation stage and the exe-
cution stage. Evidently, satisfactory QoS cannot be achieved with the sole effort in
any single stage, but an effective lifecycle QoS support. To this end, the capa-
bilities of generic software components which are required to realise lifecycle QoS
support for cloud workflow applications should be identified in the first place.
After that, strategies and algorithms for specific QoS requirements can be
designed, implemented and managed by the generic framework as a vehicle for
workflow QoS management.

In this section, we present a generic QoS framework for lifecycle QoS support
in cloud workflow systems.

Our generic QoS framework is depicted in Fig. 4.1. Based on the three major
stages of a workflow instance lifecycle, the framework consists of four components
as shown in the outer cycle of Fig. 4.1, viz. QoS requirement specification, QoS-
aware service selection, QoS consistency monitoring and QoS violation handling,
which are implemented in a consecutive order to provide lifecycle QoS support for

4.2 QoS of Cloud/Grid Workflows 33

cloud workflow instances. The three inner cycles stand for the important factors
involved in the design and application of cloud workflow systems, viz. real world
applications, cloud workflows and cloud services. All the basic requirements
for cloud workflows come from real world applications (e.g. business and
scientific processes). Real world applications need to be abstracted by workflow
service consumers with the support of workflow modelling tools and then create
cloud workflow specifications. After these specifications are submitted to the cloud
workflow engines, instances of these cloud workflow specifications, or cloud
workflow instances for short, are executed with the underlying cloud services such
as software and infrastructure services, which are normally with very dynamic
service quality.

1) QoS requirement specification. The first component of our generic frame-
work is QoS requirement specification at the modelling stage. The specification of
QoS requirements is a very important part of the whole workflow specification
which may consist of process structures, task definitions, functional and non-
functional (QoS) requirements. In general, QoS requirements can be specified in
the form of either quantitative or qualitative QoS constraints.

An entire workflow instance is made of many individual workflow activities.
Accordingly, there are both workflow-level QoS constraints (coarse-grained QoS
constraints) and activity-level constraints (fine-grained QoS constraints). In prac-
tice, cloud workflow service consumers usually only prefer to assign a few coarse-
grained QoS constraints, e.g. one deadline and several milestones for the
requirement on workflow response time. However, for service selection and
monitoring purposes, fine-grained QoS constraints for individual workflow
activities are necessary. Therefore, specific approaches are required to propagate a
number of fine-grained constraints based on several consumer specified coarse-

Fig. 4.1 A generic QoS
framework

34 4 Cloud Workflow System Quality of Service

grained ones. Note that most coarse-grained constraints and fine-grained con-
straints are not in a simple linear accumulation relationship (except cost), i.e. the
sum of fine-grained constraints for a group of workflow activities is not equal to
their coarse-grained constraint. For example, the deadline for a workflow segment
only applies to the completion time of the last workflow activities in workflow
segment, while the sum of the execution time for all the workflow activities can be
much larger than the deadline, especially when there are many parallel paths in the
workflow process. Therefore, sophisticated setting approaches need to be designed
to address the propagation of fine-grained constraints for different QoS require-
ments, and ensure the consistency between the coarse-grained and fine-grained
constraints. Here, the consistency means that if every individual workflow activ-
ities can satisfy its fine-grained QoS constraint, then the whole coarse-grained QoS
constraint can be satisfied, and vice versa.

Furthermore, since at the workflow modelling stage, the execution states of
workflow instances at runtime are uncertain such as which execution path is taken
in a choice structure and which execution path takes the longest execution time in
a parallel structure. Meanwhile, the quality of the available cloud service is also
uncertain. Therefore, some probabilistic and forecasting strategies are also
required to facilitate setting of QoS constraints.

2) QoS-aware service selection. The second component of our generic
framework is the QoS-aware service selection at the instantiation stage. Given the
task definition and functional requirement for each workflow activity, cloud
workflow systems can usually search for and obtain many available software
services in the cloud. However, these software services will be further selected
based on non-functional requirements, specifically, the fine-grained QoS con-
straints assigned for each task by the first component. Clearly, only those software
services which have higher quality then the QoS constraints can be selected by this
service selection component.

Since there may be more than one QoS dimensions, the selected software
services should be able to satisfy all of them. But sometimes, if this is not possible,
some trade-off could be made but in a best-effort way to meet most of them.
Therefore, some ranking functions should be designed to evaluate and rank the
available software services. Furthermore, given some QoS requirements such as
reliability and availability, the component will probably select multiple software
services from different service providers at this stage to ensure there is some
redundancy, namely backup services, to handle the discrepancy during runtime
workflow execution. Clearly, redundancy incurs extra cost. Therefore, at this stage,
only one primary software service (e.g. the one with the highest rank) will be
selected and reserved. As for other backup services, the component will only keep
their information without actual reservation. However, some service providers
such as Amazon provide discounted prices for reserved services (e.g. Amazon EC2
Reserved Instances or Spot Instances, http://aws.amazon.com/ec2/), hence it is
also possible to book for some reserved services in advance

3) QoS consistency monitoring. The third component in our generic framework
is QoS consistency monitoring at the execution stage. QoS consistency monitoring

4.3 A Generic QoS Framework 35

http://aws.amazon.com/ec2/

starts from the very beginning of cloud workflow execution. Here, QoS consis-
tency means that the real service quality at the execution stage is consistent with
the QoS constraints assigned at the modelling stage. Due to the dynamic nature of
cloud computing, workflow execution state needs to be kept under constant
monitoring and QoS verification. Here, QoS verification is to check the workflow
execution state against QoS constraints.

The verification for the quality of a single service is very intuitive, i.e. a simple
comparison between QoS constraint and the runtime quality measurement. How-
ever, the problem becomes non-trivial for monitoring large-scale cloud workflow
instances. First, in order to monitor, i.e. conduct QoS verification at anytime of the
execution of a large-scale workflow instance, some probabilistic and forecasting
strategies are required to estimate the quality of software services for those non-
commenced workflow tasks. This is very similar to QoS constraint setting in the
first component but with the access to runtime information. Second, the most
intuitive way to conduct QoS verification is to check QoS consistency at every
workflow task, so that if every individual software service satisfies its QoS con-
straint, the quality of the entire workflow instance can be achieved. Clearly, this is
very inefficient and probably results in a rapid increase on the cost for QoS
management. However, if we have the runtime information or knowledge that
some of the software services are of very stable quality (such as produced by very
reputable service providers, or having very satisfactory records for the latest
several workflow instances), the QoS verification can usually be skipped safely.
Therefore, we can choose to conduct QoS verification only at some selected
activity points, which can be named as QoS checkpoints, to save the cost. How-
ever, different QoS dimensions will probably require different information and
have different rules for selecting QoS checkpoints. The selection results for dif-
ferent QoS dimensions will need to be compared and compromised in order to
make efficient and effective selection.

4) QoS violation handling. The last component of our generic framework is
QoS violation handling at the execution stage. When the violation of QoS con-
straint is detected by the monitoring component, some recovery actions should be
taken to handle and try to bring the workflow execution state back to consistency.
QoS violation handing is very different from the conventional exception handling
of software functional failures in traditional software systems. For example, in
traditional software systems, when functional failures happen, the system state can
be rolled back to its last checkpoint and restart the execution. Such a rollback-and-
restart process can be repeated until functional failures are solved. However, as for
non-functional QoS violations, this general strategy is often useless. For example,
if temporal violations are detected, i.e. there are some execution delays, the
rollback-and-restart strategy cannot compensate for the delays but may make
the situation even worse. Actually, the time delays can only be compensated by the
subsequent non-commenced workflow tasks. If we can reduce the execution time
of the subsequent workflow tasks by such as recruiting additional resources or
workflow rescheduling (by allocating the activities to fast resources or reducing
their queuing time). In such a case, the existing time delays can be compensated

36 4 Cloud Workflow System Quality of Service

and the workflow execution state can be brought back to consistency. Meanwhile,
for other QoS requirements such as reliability and security, if violations have been
detected at the current checkpoint, the handling process is to minimise the loss
while take proactive actions to prevent these violations from happening again in
the future.

Generally speaking, for QoS violation handing, firstly, we should try to mini-
mise the existing loss, and secondly (or actually more importantly), we should
prevent these violations in the subsequent workflow as much as possible.

Based on the generic QoS framework as a high level guideline, in the following
four sections, we will present concrete examples on the time management (on
temporal constraints), cost management (on data storage), reliability management
(on data replication), and security management (on privacy). Note that due to the
on-going research progress, not every QoS dimension except performance man-
agement has covered the four components of the generic QoS framework intro-
duced above. Therefore, the works presented next are not strictly organised
according to the sequence of the workflow lifecycle but may focus on the current
main contributions for a specific component.

4.4 Example 1: Time Management (on Temporal Constraints)

The time (or performance) framework focuses on the workflow performance, or
more specifically, it focuses on the response time of workflow applications.
By following our generic QoS framework, the performance framework consists of
four components which can provide a lifecycle support for high performance in
cloud workflow systems.

1) Temporal constraint setting. The first component is temporal constraint
setting which assigns both coarse-grained temporal constraints and fine-grained
temporal constraints in cloud workflow specifications at the modelling stage. The
setting of high quality temporal constraints is very important to the successful on-
time completion of cloud workflows.

In our performance framework, temporal constraint setting is realised through a
three-step process. The first step is a forecasting process where the workflow
activity duration intervals are predicted by a time-series forecasting strategy. The
second step is a win–win negotiation process between service consumers and
service providers to specify the coarse-grained temporal constraints. The third step
is a propagation process where fine-grained temporal constraints are set auto-
matically based on the results of the second step.

The detailed strategy and algorithms for the temporal constraint setting com-
ponent can be found in [49].

2) Temporal-aware service selection. The second component is temporal-
aware service selection which selects and reserves suitable cloud software services
for individual workflow tasks. For temporal constraints alone, the service selection
will probably only consider the processing power of the software services such as

4.3 A Generic QoS Framework 37

the speed of the CPU units and the size of the memory spaces. However, in the real
world, the service selection process often needs to consider other QoS constraints
such as reliability and security. All these QoS constraints serve as critical criteria
for the selection of cloud services and resource management in cloud workflow
systems [29].

3) Temporal consistency monitoring. The third component is temporal con-
sistency monitoring. Based on a temporal consistency model, the temporal con-
sistency states of cloud workflows should be under constant monitoring in order to
detect potential temporal violations in a timely fashion. However, as mentioned in
our generic framework, the accumulated cost for temporal verification can be huge
in large-scale cloud workflow instances. Therefore, cost-effective strategies need
to be designed to detect potential temporal violations in an efficient fashion.

In our performance framework, the function of temporal consistency state
monitoring is realised through a two-step process. The first step is temporal
checkpoint selection. Given the probability based temporal consistency model, our
minimum probability time redundancy based checkpoint selection strategy can
choose the minimal set of activity points (i.e. necessary and sufficient checkpoints)
for temporal verification. Here, necessity means that only those activity points
where real temporal inconsistency states take place are selected and sufficiency
means that there are no any omitted activity points. The second process is temporal
verification which checks the current temporal consistency states at selected
checkpoints with our probability based temporal consistency model. In our per-
formance framework, only two types of temporal consistency states (viz. recov-
erable and non-recoverable) are defined [48]. Accordingly, only one type of
temporal checkpoint and one time of temporal verification are required to deter-
mine the current temporal consistency state.

The detailed strategy and algorithms for the temporal consistency monitoring
can be found in [53]. In Appendix A, a temporal checkpoint selection and veri-
fication strategy is presented.

4) Temporal violation handling. The last component is temporal violation
handling which deals with recovery of temporal violations. Based on the results of
the previous component for monitoring temporal consistency, a necessary and
sufficient checkpoint is selected which means a potential temporal violation is
detected. When a temporal violation is detected, temporal violation handling
strategies should be executed. In our performance framework, we mainly focus on
those statistically recoverable temporal violations [51] which can be recovered by
light-weight temporal violation handling strategies. For such a purpose, repre-
sentative metaheuristics based workflow rescheduling strategies are investigated,
adapted and implemented under a novel general two-stage local workflow re-
scheduling strategy to handle temporal violations. Since our temporal violation
handling strategy is fully automatic and only utilises existing system resources
without recruiting additional ones, the cost of temporal violation handling can be
significantly reduced compared with conventional heavy-weight temporal viola-
tion handling strategies.

38 4 Cloud Workflow System Quality of Service

In our performance framework, we have defined three levels of recoverable
temporal violations, viz. level I, level, II and level III violations, and designed their
corresponding handling strategies, viz. TDA (time deficit allocation), ACOWR
(ant colony optimisation based two-stage local workflow rescheduling strategy)
and TDA ? ACOWR (the combined strategy of TDA and ACOWR). ACOWR is
the major strategy which attempts to compensate for the time deficits with the
reduced workflow execution time through optimising the workflow scheduling
plan. Here, ‘‘two-stage’’ means a two-stage searching process designed in our
strategy to strike a balance between time deficit compensation and the completion
time of other activities while ‘‘local’’ means the rescheduling of ‘‘local’’ workflow
segments with ‘‘local’’ resources. Our temporal violation handling strategy only
utilises existing resources which are currently deployed in the system instead of
recruiting additional resources. Meanwhile, unlike global rescheduling which
modifies the global task-resource list for the entire workflow instance, our strategy
only focuses on the local workflow segment and optimises the integrated task-
resource list.

The detailed strategy and algorithms for the temporal violation handling
component can be found in [51]. In Appendix A, a novel general two-stage local
workflow rescheduling strategy is presented.

4.5 Example 2: Cost Management (on Data Storage)

Cloud computing systems offer a new way for deploying large-scale data and
computation intensive applications. As IaaS (Infrastructure as a Service) is a very
popular way to deliver computing resources in the cloud [67], the heterogeneity of
computing systems [92] of one service provider can be well shielded by virtual-
isation technology. Hence, users can deploy their applications in unified resources
without any infrastructure investment, where excessive processing power and
storage can be obtained from commercial cloud service providers. With the pay-
as-you-go model, the total application cost in the cloud highly depends on the
strategy of storing the application datasets, e.g. storing all the generated applica-
tion datasets in the cloud may result in a high storage cost since some datasets may
be seldom used but large in size; in contrast, if we delete all the generated datasets
and regenerate them every time when needed, the computation cost may be very
high too.

A good strategy is to find a balance to selectively store some popular datasets
and regenerate the rest when needed [88]. However, sometimes users may have
certain preferences on storing some particular datasets due to various reasons, e.g.
guaranteeing immediate access to certain datasets. Storage of this kind of datasets
is not only dependent on their cost, and sometimes is beyond system’s control.
Furthermore, because of the scalability and the dynamic provisioning mechanism
of the cloud computing system, the application cost in the cloud would change
from time to time whenever new datasets are generated or the datasets’ usage

4.4 Example 1: Time Management (on Temporal Constraints) 39

frequencies are changed. The cloud service provider should be able to provide
benchmarking services to users, who often wish to know the minimum cost of
running their applications in the cloud.

In this section, we discuss the QoS of cost-effective datasets storage in the
cloud. Based on a Data Dependency Graph (DDG), we address the issue of
computation and storage trade-off in the cloud. In terms of constrains setting,
users’ investment budgets form the maximum constrains for the datasets storage.
In terms of QoS aware service selection, we present a minimum cost bench-
marking approach which can find the best trade-off of computation and storage in
the cloud. This minimum cost benchmark can be used to evaluate the cost-
effectiveness of different data storage services for selection. Furthermore, we
develop some cost-effective storage strategies with the pay-as-you-go model in the
cloud, which can be either delivered as services for users or substituted the old
service when cost violations occur.

4.5.1 Cost Model of Datasets Storage in the Cloud

4.5.1.1 Data Dependency Graph

Application datasets in the cloud often have dependencies, i.e. computation task
can operate on one or more datasets and generate new one(s). Data provenance is a
kind of important metadata in which the dependencies between datasets are
recorded [72]. Hence we create a Data Dependency Graph (DDG) [90] based on
data provenance, which records the generation relationship of all the datasets
(Fig. 4.2).

DDG is a directed acyclic graph (DAG). This is because DDG records the
provenances of how datasets are derived in the system as time goes on. In another
word, it depicts the generation relationships of datasets. When some of the deleted
intermediate datasets need to be reused, we do not need to regenerate them from
the original input data. With DDG, the system can find the predecessors of the
demanding dataset, so they can be regenerated from their nearest stored
predecessors.

4.5.1.2 Cost Rate of Datasets Storage in the Cloud

As indicated earlier, in a commercial cloud computing environment, if the users
want to deploy and run applications, they need to pay for the resources used. The
resources are offered by cloud service providers, who have their cost models to
charge the users. In general, there are two basic types of resources in the cloud:
storage and computation. Popular cloud services providers’ cost models are based
on these types of resources. For example, Amazon cloud services’ prices are as
follows:

40 4 Cloud Workflow System Quality of Service

$0.15 per Gigabyte per month for the storage resources;
$0.1 per CPU instance hour for the computation resources.

In this book, we define our datasets storage cost model in cloud computing
system as follows:

Cost = C + S,

where the total cost of the system, Cost, is the sum of C, which is the total cost of
computation resources used to regenerate datasets, and S, which is the total cost of
storage resources used to store the datasets.

To utilise the datasets storage cost model, we define the attributes for the
datasets which can be found in our work. Briefly, for a dataset di, it has a cost rate
(CostR), which means the average cost per time unit of dataset di in the system.
The value CostRi depends on the storage status of di, where

CostRi ¼
StorageCostRate; di ¼ stored
GenerationCost � UsageFrequency; di ¼ deleted

�

Hence, the total cost rate of storing a DDG is the sum of CostR of all the
datasets in it which is

P
di2DDG CostRi. Given a time duration, the total cost of

storing a DDG is the integral of the cost rate in this duration as a function of time t,
which is

Total Cost ¼
Z

t

X
di2DDG

CostRi

� �
� dt

We further define the storage strategy of a DDG as S, where S � DDG, which
means storing the datasets in S in the cloud and deleting the rest. We denote the
cost rate of storing a DDG with the storage strategy S as SCR, where

SCR ¼
X

di2DDG
CostRi

� �
S

Based on the definition above, the system’s cost rate highly depends on the
storage strategy of the datasets. Storing different datasets will lead to different
cost rates for the system. Our target is to find the minimum cost of datasets
storage for users as benchmark and also offering users cost-effective storage
strategies, with which users can verify and satisfy the cost constraints of their
applications.

d1 d2

d3

d8d7

d6

d4

d5

Fig. 4.2 A simple data
dependency graph (DDG)

4.5 Example 2: Cost Management (on Data Storage) 41

4.5.2 Minimum Cost Benchmarking of Datasets Storage
in the Cloud

Due to the pay-as-you-go model, cost-effectiveness becomes an extremely
important factor for the data storage strategy of scientific applications in the cloud.
As increasing number of datasets is generated and stored in the cloud, users need
to evaluate the cost effectiveness of their storage strategies. Hence the cloud
service providers should be able and need to provide benchmarking services that
can inform the minimum cost of storing the application datasets in the cloud.
As we discussed earlier, there is a trade-off between computation and storage in
the cloud. The benchmarking algorithms are to find this trade-off, which form the
minimum cost storage strategy for scientific applications in the cloud.

Finding the minimum cost storage strategy is a difficult problem because there
is a large number of datasets having complex dependencies with each other in the
cloud. To solve this problem, we present a novel CTT-SP (Cost Transitive
Tournament-Shortest Path) algorithm which has three major steps.

1) We construct a Cost Transitive Tournament (CTT) based on the DDG, where
all the paths from the start dataset to the end datasets have a one-to-one
mapping to the storage strategies of the DDG.

2) We set weights to the edges in the CTT which makes the length of the paths
equivalent to the cost rates of the corresponding storage strategies.

3) We can use the well-known Dijkstra algorithm to find the Shortest Path (SP) in
the CTT, which represents the minimum cost storage strategy of the DDG.

Figure 4.3 shows an example of the CTT-SP algorithm in a linear DDG with
three datasets and the pseudo code of the algorithm can be found in Appendix B.

For a general DDG, the CTT-SP algorithm can be extended to a recursive
algorithm which is polynomial with the worst case time complexity of O(n9) [90].
The CTT-SP algorithm can be used as an on-demand minimum cost benchmarking
approach for datasets storage in the cloud. Whenever users want to know the
minimum cost of storing the dataset, the general CTT-SP algorithm can be called
to calculate the minimum cost benchmark for users.

4.5.3 Cost-Effective Datasets Storage Strategies

In a commercial cloud computing environment, theoretically, the system can offer
unlimited storage resources. All the datasets generated by the applications can be
stored, if the users are willing to pay for the required resources. Hence, for
applications in the cloud, whether to store the datasets or not is not an easy
decision anymore. The datasets vary in size, and have different generation costs
and usage frequencies. Some of them may be used frequently whilst some others
may be not. On one hand, it is most likely not cost effective to store all these

42 4 Cloud Workflow System Quality of Service

datasets in the cloud. On the other hand, if we delete them all, regeneration of
frequently used datasets would normally impose a high computation cost. Mean-
while, the storage strategy should also consider the users’ tolerance of data
accessing delay. Based on the factors above, we develop two storage strategies as
follows which are able to satisfy the application cost constraints as well as the time
constraints of data accessing delay.

4.5.3.1 Cost Rate Based Strategy

In this strategy, we compare generation cost rate and storage cost rate for every
dataset to decide its storage status [88]. The strategy can guarantee that the stored
datasets in the system are all necessary, and can dynamically check whether the
regenerated datasets need to be stored, and if so, adjust the storage strategy
accordingly.

Furthermore, we introduce a parameter to this strategy that reflects users’ tol-
erance of data accessing delay [91]. By flexibly adjusting the parameter, datasets
with higher storage cost may be storage according to users’ preferences.

This strategy contains three algorithms dealing with the following three
situations:

1) new datasets are generated in the system;
2) the existing datasets’ usage frequencies are changed;
3) the deleted datasets are regenerated. The pseudo codes of the algorithms can be

found in Appendix B.

By only comparing generation cost rate and storage cost rate of the dataset itself
to decide its storage status, this strategy is highly efficient and scalable.

4.5.3.2 Local-Optimisation Based Strategy

In this strategy, we partially utilise the CTT-SP algorithm, which can find the
minimum cost storage strategy of a linear DDG [88]. We partition the general
DDG to small linear segments and utilise the CTT-SP algorithm to achieve the
localised optimal. Furthermore, in order to satisfy the time constraints of datasets’

d1 d2 d3 d1 d2 d3ds de

DDG CTT

Data dependency : Cost edge:

Fig. 4.3 An example of the CTT-SP Algorithm with three datasets

4.5 Example 2: Cost Management (on Data Storage) 43

regeneration, we set rules to delete the over-length cost-edges in the CTT graph,
which guarantees all the found storage strategies can satisfy users’ tolerance of
data accessing delay. The improved CTT-SP algorithm can be found in Appendix
B and the strategy contains the following rules:

1) Given a general DDG, the datasets to be stored first are the ones that users have
no tolerance of accessing delay on them. This is to guarantee the immediate
availability when these datasets are needed.

2) Then, the DDG is partitioned into separate sub DDGs by the stored datasets.
For every sub DDG, if it is a linear one, we use the improved CTT-SP algo-
rithm to find its storage strategy; otherwise, we find the datasets that have
multiple direct predecessors or successors, and use these datasets as the par-
titioning points to divide it into sub linear DDGs, as shown in Fig. 4.4. Then we
use the improved linear CTT-SP algorithm to find their storage strategies. This
is the essence of local optimisation.

3) When new datasets are generated in the system, they will be treated as a new
sub DDG and added to the old DDG. Correspondingly, its storage status will be
calculated in the same way as the old DDG.

4) When a dataset’s usage frequency is changed, we will re-calculate the storage
status of the sub linear DDG that contains this dataset.

By utilising the CTT-SP algorithm, this strategy is highly cost-effective with
reasonable runtime computation complexity.

4.6 Example 3: Reliability Management (on Data Replication)

In this section we discuss about the QoS management of data reliability in cloud
workflow systems. The data reliability management has become a very important
issue due to the development of storage services in current commercial cloud
computing systems. The goal of reliability management is to achieve the service
reliability constraints by data replication while, at the same time, the cost for
meeting this demand need to be minimised. In terms of QoS requirement speci-
fication, various data reliability requirements form the lower constraints of the data

...

...

...

...

Linear DDG1

Linear DDG3

Linear DDG2

Linear DDG4

Partitioning
point dataset

Partitioning
point dataset

Fig. 4.4 An example of DDG partitioning

44 4 Cloud Workflow System Quality of Service

reliability management. In terms of QoS-aware service selection, we present an
incremental replication approach in which the data replication services and the
time point calculating services are activated at certain time points. The consistency
monitoring of the data replicas can be achieved by proactive scanning of all the
data, and the incremental replication approach is reactivated when violation
occurs, i.e. the reliability requirement is not met.

4.6.1 Data Replication

The cloud workflow system is able to cooperate many applications and systems
in the Cloud, which include many data-intensive applications such as scientific
cloud workflow applications [40, 91] and large-scale data storage systems [14,
35, 80], etc. Therefore, the reliability management for large-scale data has
played a very important role in cloud workflow systems. This section mainly
focuses on the data replication area, which provides data reliability assurance by
creating replicas.

At the software layer, modern distributed computing systems generally use data
replication technology to prevent data loss from hardware failure for supporting
data reliability. For data reliability purposes, current cloud data storage systems
such as Amazon S3 storage service (http://aws.amazon.com/s3/), Google File
System [35] and Hadoop Distributed File System [14] store three replicas by
default. However, such typical three-replica reliability strategy may not be
applicable to workflow systems in the cloud. For example, scientific cloud
workflow applications usually contain a large number of tasks. During the exe-
cution, large volumes of intermediate data are generated and the amount of them
could be much larger than the size of the original input. However, some inter-
mediate data are only aimed for temporary use. For example, in the pulsar
searching workflow application presented in [91], all the intermediate data are
deleted after having been used, or in the future some of these intermediate data
will be stored for later use but it is uncertain for how long the data need to be
stored. For the storage of such large amount and temporarily used data, typical
three-replica reliability strategy may cause huge resource waste, which would
significantly affect the cost effectiveness of the workflow system. With the pay-as-
you-go model, it is believed that these additional costs are finally passed on to the
users.

In this section, we describe the data storage reliability model and a novel cost-
effective dynamic data replication strategy which is mainly designed for the data
reliability issue of workflow systems in the cloud. By applying the reliability
model and the replication strategy, the storage cost for intermediate data in the
workflow system can be greatly reduced, and the cost-effectiveness data replica-
tion management goal can be reached.

4.6 Example 3: Reliability Management (on Data Replication) 45

http://aws.amazon.com/s3/

4.6.2 Data Storage Reliability Model

For the data reliability issue of workflow systems in the cloud, we need to build a
reliability model first. In a cloud computing environment, all the storage and
computing processes are conducted in data centres. Data centres contain large
amount of commodity computing and storage units. These storage units all have
certain life spans, and the probability of storage hardware failure or data loss
increases according to storage duration. In classical theories [66, 86], the rela-
tionship between failure rate and storage duration follows the exponential distri-
bution with failure rate k, which equals to the expected number of failures of a
storage unit in a certain time: Reliability ¼ 1� F xð Þ ¼ e�kT , where F(x) is an
exponential cumulative distribution function. Based on this storage exponential
distribution theory, our data storage reliability model is proposed.

Assume that the number of storage units be m. Based on the storage exponential
distribution theory, the reliability assurance of all m storage units can be described
by a failure rate set FRS ¼ k1; k2; k3; . . .kmf g Assume that X be the lower bound of
the reliability requirement constraint which is requested by the user. Thus the data
storage reliability model demonstrating the relationship between the lower reli-
ability bound X, the number of replicas and the storage duration can be expressed
as the equation below:

X ¼ 1�
Yk

i¼1
1� e�kiTk
� �

ð4:1Þ

In this equation, k is the number of replicas, and TK is the longest storage
duration. The right-hand side of this equation describes the probability that no
failure happens during the storage duration of TK when k data replicas are stored in
storage units with failure rates k1; k2; k3; . . .km respectively. By using this equa-
tion, our aim is to derive TK , which indicates the storage duration that k replicas
can assure the reliability requirement X.

This reliability model can be applied to many different situations to meet
various kinds of reliability requirement constraints. However, as most modern
large-scale storage systems store three replicas by default, in this section, we only
illustrate the situation that the number of replicas is no more than 3.

We conduct simplification on Eq. (4.1) for the purpose of calculation. After the
simplification of the equation, we obtain three functions as follows:

When k = 1, F T1ð Þ ¼ e�k1T1�
X ð4:2Þ

When k ¼ 2; F T2ð Þ ¼ Xak1þk2 � a�k1 � a�k2 þ 1;where a ¼ eðT2Þ ð4:3Þ

When k ¼ 3; F T3ð Þ ¼Xbðk1þk2þk3Þ � b k1þk2ð Þ � b k1þk3ð Þ � b k2þk3ð Þ þ b k1ð Þ

þ b k2ð Þ þ b k3ð Þ � 1; where b ¼ eðT3Þ
ð4:4Þ

46 4 Cloud Workflow System Quality of Service

4.6.3 Cost-Effective Incremental Replication Strategy

Based on the reliability model and functions above, the dynamic data replication
strategy named Cost-effective Incremental Replication (CIR) is proposed.

The idea of CIR is to use the minimum number of replicas while meeting the
data reliability requirement constraint. Due to the uncertainty of the data storage
durations, it needs to decide how many replicas are sufficient to meet the reliability
requirement. Initially, the minimum data replica number is bound to 1 by default,
i.e. only the original data will be stored and no extra replicas will be made at the
beginning of a data storage instance. When time goes by, more replicas need to be
incrementally created at certain time points to maintain the reliability assurance.
Based on the reliability model in Sect. 4.6.2, by solving reliability functions (4.2),
(4.3) and (4.4) separately, the time points for replica creation can be determined,
which indicate when the current number of replicas cannot assure the data reli-
ability requirement any longer and a new replica should be created. At the
beginning of each data storage instance or when the latest replica creation time
point reaches, a process maintained by the storage system for calculating the
replica creation time points is activated.

The pseudo code of CIR is in Appendix C.

4.7 Example 4: Security Management (on Privacy)

Security plays an important role in distributed computing systems [25]. To ensure
the high QoS of cloud workflow systems, we focus on the security problems
brought by different types of components, large volume of heterogeneous data, and
unpredictable execution processes. Since some general aspects of system security
such as service quality and data security are partially included in the previous
performance and data management components, this section emphasises the trust
management which plays an important role in the security management [76] of
cloud workflow system QoS. In the large scale workflow applications, to match
high requirements of quality and scalability, an efficient and adaptive trust man-
agement is an indispensable part of the cloud workflow system platform [13, 81].
On the basis of trust management, the privacy protection could be considered to
enhance the whole security management in cloud workflow systems under the risk
of cloud environments to enhance users’ confidence. Besides, user management is
essential to guarantee system security and avoid illegal access. Facing the complex
network structures in the cloud environment, we also need encryption technology
to protect privacy, integrity, authenticity and undeniableness. Clearly, security
management in cloud workflow systems is quite broad to match different specific
instance situations. Hence, in this section, we could consider some key issues, like
trust management, privacy protection, user management and encryption manage-
ment, to ensure high QoS of cloud workflow systems. Besides, in former sections,

4.6 Example 3: Reliability Management (on Data Replication) 47

such as data replication, data storage and so on, the security issue has been also
considered from the perspective of other aspects of QoS. So, in the security
management of cloud workflow system, we focus on the following contents to
assure the key security of the whole system. In this section, we focus on privacy
protection in cloud.

Firstly, for QoS constraint setting some constraints should be set in this
beginning, such as privacy protection boundary. They are percentages to be totally
protected. Secondly, for QoS service selection, privacy protection operates the
selection process to get a reasonable security level on the basis of QoS constraint
setting. Thirdly, for QoS consistency monitoring, in dynamic changing processes
of cloud workflow instances, privacy protection constraints can be changing and
should be monitored in the entire period. Privacy protection has to adjust itself
based on trust management, and keep on considering changing data with private
information in terms of data distributions or data compositions. Lastly, for QoS
violation handling, as a consequential step of QoS consistency monitoring, this
step should focus on these areas which are changing in the whole period and may
get out of constraints in this first step—privacy protection boundary. So, in this
step, we should execute the security service and mechanism selection step again
under security constraints to turn the whole SwinDeW-C instance back into the
right line.

4.7.1 Privacy Protection in Cloud

The privacy protection module plays a key role in keeping data security in dis-
tributed systems [4]. In cloud environments [56], the feature of computing and
storing data in cloud brings more challenge to privacy protection in cloud work-
flow systems. Every user in a cloud workflow system is hardly to know every
detail about one instance for the feature of virtualisation in cloud environment. So,
we focus on an approach of privacy protection—noise obfuscation.

Although there are many service providers could protect their users’ privacy, it
cannot be ignored that a large number of ‘‘immoral’’ service providers are or will
be an inherent part of an open cloud workflow environment. So, such service
providers may and could record service information from a user and then col-
lectively induce the user’s privacy information without permissions from the user.
Facing this serious risk, users should take some measures to aid them to protect
their own privacy without cooperation from these service providers. For cloud
workflow systems, it is unavoidable to deal with this risk. Noise obfuscation
strategy belongs to these measures which can aids users to protect privacy at the
client side. It can inject ‘‘noise’’ service information into real users’ service
information so that service providers could not distinguish which requests are real
ones if their occurrence probabilities are about same. We use an example to
illustrate the noise obfuscation strategy: a user often travels to ‘‘Sydney’’, hence
checks the weather report regularly from a weather service in cloud before

48 4 Cloud Workflow System Quality of Service

departures. The frequent appearance of service requests about the weather report
for ‘‘Sydney’’ can reveal the privacy that the user usually goes to ‘‘Sydney’’. But if
one system aids the user to inject other requests like ‘‘Perth’’ or ‘‘Darwin’’ into the
‘‘Sydney’’ queue, the service provider cannot realise which ones are real and
which ones are ‘‘noise’’. It just sees a same style of service requests which should
be responded and could not reveal the location privacy of the user. So, the privacy
can be protected by the noise obfuscation strategy. For cloud workflow systems,
generally, noise obfuscation could keep privacy safe in the processes of the data
transactions between ‘‘vague’’ members in cloud workflow instances.

4.7.2 Trust Based Privacy Protection

Trust can be brought into discuss privacy protection in the ‘‘vague’’ environment
[33]. As depicted in Fig. 4.5, we can investigate noise injection architecture for
entire cooperative service processes in cloud environments. And it specialises in
various single-service processes with service roles in cloud based on a trust model.
The trust model and privacy risk are basic supporting functions to fulfil the
architecture. Based on this, we can present our trust-based noise injection strategy
for privacy protection in cloud, and it protects users’ privacy during the entire
process of services’ cooperation. In the strategy, we use ‘‘noise’’ service requests
to protect users’ privacy in a cooperative service process by not only clients, but
also other service providers. And the trust model and noise injection model are
bridges to connect clients and services as a whole for noise injection architecture.
The noise injection architecture is utilised to aid to describe cooperative service
processes. It provides a supporting environment for our trust-based noise injection
strategy. So, our strategy focuses on the procedure of cooperative service pro-
cesses and protects users’ privacy during entire cooperative service processes,
especially for cloud workflow systems.

In [33], the noise injection architecture could be utilized to support the strategy
in cloud computing environments.

In the viewpoint of control domain, we have three control domains in the whole
architecture: individual control domain, semi-control domain and public domain
which correspond to customer environment, control services environment and
public services environment, separately. In cloud, these control domains report
that who own and maintain these computing environments together. The indi-
vidual control domain and semi-control domain are under the control of customers
and some cloud managers, and our noise injection strategy for privacy protection
has deployed in these two domains to be effective. In public domain, there are total
unknown and uncontrolled in view of customers. It maybe locates in public cloud
or other clouds.

In the viewpoint of virtualisation layer, we have three layers in the whole
architecture: role layer, service layer and deploying layer which correspond to

4.7 Example 4: Security Management (on Privacy) 49

running environment, service environment and the environment to generate noise,
separately.

What we focus on is the role layer. In this layer, on the ground of these roles of
service-request initiator and service-request respondent, noise injections have
highlighted to inject interactions between these roles. To generate these noises to
protect privacy, these noise generation strategies which have been highlighted too
are the innovative point of this book. And the detailed strategy is presented in
Appendix D.

Private cloud / This Cloud
Public Cloud / Other Clouds

Customers

Control services Public servicesService users

Service-
request
initiator

Service-
request

respondent

Service-
request
initiator

Service
request

respondent

Noise
injection

Noise
injection

Noise
injection

Noise
generation

Individual control domain Semi-control domain Public domain

Deploying layer

Service layer

Role layer

Noise
generation

Trust model

Generated
Strategy

Generated
Strategy

Fig. 4.5 Noise injection architecture in the cloud [33]

50 4 Cloud Workflow System Quality of Service

Chapter 5
Case Study: SwinDeW-C Cloud Workflow
System

The previous chapters have given a general overview of cloud workflow system
architecture, functionality and quality of service. In this chapter, we will dem-
onstrate our SwinDeW-C cloud workflow system as a concrete case study to
illustrate the design and development of a cloud workflow system for running large
scale workflow applications. The literature review of some related research studies
are discussed in Appendix E. The remainder of the chapter is organised as follows.
Section 5.1 introduces our SwinDeW-G grid computing environment. Section 5.2
proposes the architecture for SwinDeW-C as well as SwinDeW-C peers.
Section 5.3 presents the new components in SwinDeW-C for managing large scale
workflow applications. Section 5.4 presents SwinDeW-C system prototype.
Finally, Sect. 5.5 demonstrates some experimental results.

5.1 Overview of SwinDeW-G Environment

Before we present SwinDeW-C, some background knowledge about SwinDeW-G
needs to be introduced. Swinburne Decentralised Workflow for Grid (SwinDeW-G)
is a peer-to-peer based scientific grid workflow system running on the SwinGrid
(Swinburne service Grid) platform [85].

An overall picture of SwinGrid is depicted in Fig. 5.1 (bottom plane). SwinGrid
contains many grid nodes distributed in different places. Each grid node contains
many computers including high performance PCs and/or supercomputers com-
posed of significant numbers of computing units. The primary hosting nodes
include the Swinburne CS3 (Centre for Complex Software Systems and Services)
Node (which is now SUCCESS, Swinburne University Centre for Computing
Engineering and Software Systems), the Swinburne ESR (Enterprise Systems
Research laboratory) Node, the Swinburne Astrophysics Supercomputer Node, and
the Beihang CROWN (China R&D environment Over Wide-area Network) Node
in China. They are running either Linux, GT4 (Globus Toolkit) or CROWN grid

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4_5,
� The Author(s) 2012

51

toolkit 2.5 where CROWN is an extension of GT4 with more middleware, and thus
is compatible with GT4. The CROWN Node is also connected to some other nodes
such as those at the Hong Kong University of Science and Technology, and at the
University of Leeds in the UK. The Swinburne Astrophysics Supercomputer Node
is cooperating with the Australian Platforms for Collaboration (PfC) and Victorian
Partnership for Advanced Computing (VPAC). Currently, SwinDeW-G is
deployed at primary hosting nodes as exemplified by the top plane of Fig. 5.1.
In SwinDeW-G, a scientific workflow is executed by different peers that may be
distributed at different grid nodes. As shown in Fig. 5.1, each grid node can have a
number of peers, and each peer can be simply viewed as a grid service. In the top
plane of Fig. 5.1, we show a sample of how a scientific workflow can be executed
in the grid computing environment.

The basic service unit in SwinDeW-G is a SwinDeW-G peer which runs as a
grid service along with other grid services. However, it communicates with other
peers via JXTA (http://www.sun.com/software/jxta/), a platform for p2p com-
munication. As Fig. 5.2 shows, a SwinDeW-G peer consists of the following
components:

The Task Component manages the workflow tasks. It has two main functions.
First, it provides necessary information to the Flow Component for scheduling and
stores received tasks to Task Repository. Second, it determines the appropriate
time to start, execute and terminate a particular task. The resources that a workflow
task instance may require are stored in the Resource Repository.

The Flow Component interacts with all other modules. First, it receives the
workflows definition and then creates the instance definition. Second, it receives
tasks from other peers or redistributes them. Third, it decides whether to pass a

Fig. 5.1 SwinDeW-G environment

52 5 Case Study: SwinDeW-C Cloud Workflow System

http://www.sun.com/software/jxta/

task to the Task Component to execute locally or distribute it to other peers. The
decision is made according to the capabilities and load of itself and other neigh-
bours. And finally, it makes sure that all executions conform to the data depen-
dency and control dependency of the process definitions which are stored in the
Process Repository and the Task Repository.

The Group Manager is the interface between the peer and JXTA. In JXTA, all
communications are conducted in terms of peer group, and the Group Manager
maintains the peer groups the peer has joined. The information of the peer groups
and the peers in them is stored in the Peer Repository. While a SwinDeW-G peer is
implemented as a grid service, all direct communications between peers are
conducted via p2p. Peers communicate to distribute information of their current
state and messages for process control such as heartbeat, process distribution,
process enactment etc.

The User component is the interface between the corresponding workflow users
and the workflow environment. In SwinDeW-G, its primary function is to allow
users to interfere with the workflow instances when exceptions occur.

Globus Toolkit serves as the grid service container of SwinDeW-G. Not only a
SwinDeW-G peer itself is a grid service located inside Globus Toolkit, the capa-
bilities which are needed to execute certain tasks are also in the forms of grid services
that the system can access. That means when a task is assigned to a peer, Globus
Toolkit will be used to provide the required capability as grid service for that task.

5.2 SwinDeW-C System Architecture

In this section, the system architecture of SwinDeW-C is introduced. Swinburne
Decentralised Workflow for Cloud (SwinDeW-C) is built on SwinCloud cloud
computing infrastructure. SwinDeW-C inherits many features of its ancestor
SwinDeW-G but with significant modifications to accommodate the novel cloud
computing paradigm for managing large scale workflow applications.

Fig. 5.2 Architecture of
SwinDeW-G peer

5.1 Overview of SwinDeW-G Environment 53

5.2.1 SwinCloud Infrastructure

SwinCloud is a cloud computing simulation environment, on which SwinDeW-C
is currently running. It is built on the computing facilities in Swinburne Uni-
versity of Technology and takes advantage of the existing SwinGrid systems.
We install VMWare (http://www.vmware.com/) on SwinGrid, so that it can
offer unified computing and storage resources. Utilising the unified resources,
we set up data centres that can host applications. In the data centres, Hadoop
(http://hadoop.apache.org/) is installed that can facilitate Map-Reduce comput-
ing paradigm and distributed data management. The architecture of SwinCloud
is depicted in Fig. 5.3.

5.2.2 Architecture of SwinDeW-C

The architecture of SwinDeW-C is depicted in Fig. 5.4. As discussed earlier in
Chap. 2, the general cloud architecture includes four basic layers from top to
bottom: application layer (user applications), platform layer (middleware cloud

Swinburne Computing Facilities

Astrophysics
Supercomputer

VMware

Cloud Simulation Environment

Data Centres with Hadoop

• GT4
• SuSE Linux

Swinburne
CS3

…...

…...

• GT4
• CentOS Linux

Swinburne
ESR

…...

…...

• GT4
• CentOS Linux

Fig. 5.3 SwinCloud infrastructure

54 5 Case Study: SwinDeW-C Cloud Workflow System

http://www.vmware.com/
http://hadoop.apache.org/
http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_2

services to facilitate the development/deployment of user applications), unified
resource layer (abstracted/encapsulated resources by virtualisation) and fabric
layer (physical hardware resources). Accordingly, the architecture of SwinDeW-C
can also be mapped to the four basic layers. Here, we present the lifecycle of an
abstract workflow application to illustrate the system architecture. Note that here
we focus on the system architecture, the introduction on the cloud management
services (e.g. brokering, pricing, accounting, and virtual machine management)
and other functional components are omitted here and will be introduced in the
subsequent sections.

Users can easily get access to SwinDeW-C Web portal (as demonstrated in
Sect. 5.4) via any electronic devices such as PC, laptop, PDA and mobile phone as
long as they are connected to the Internet. Compared with SwinDeW-G which can
only be accessed through a SwinDeW-G peer with pre-installed programs, the
SwinDeW-C Web portal has greatly improved its usability. At workflow build-
time stage, given the cloud workflow modelling tool provided by the Web portal
on the application layer, workflow applications are modelled by users as cloud
workflow specifications (consist of such as task definitions, process structures and
QoS constraints). After workflow specifications are created (static verification
tools for such as structure errors and QoS constraints may also be provided), they

Activity

Workflow Execution

UK
VPAC

Hong
Kong

Swinburne
CS3

SwinDeW-G
GT4
CentOS Linux

Beihang
CROWN

SwinDeW-G
CROWN
Linux

Swinburne
ESR
SwinDeW-G
GT4
CentOS Linux

Astrophysics
Supercomputer

SwinDeW-G
GT4
SuSE Linux

PfC

na 1na

2na

3na 4na

5na 6na Na

ma 1ma

2ma

3ma 4ma

5ma 6ma Ma

Amazon
Data Centre

Google
Data Centre

Microsoft
Data Centre

SwinDeW-G
Grid Computing
Infrastructure

Commercial
Cloud

Infrastructure

VMVMVM VM VMVMVM VMVMVMVMVM

……..

……..

……..
Application

Layer

Platform
Layer

Unified
Resource
Layer

Fabric
Layer

SwinCloud
……..

VM

SwinDeW-C Peer

SwinDeW-C Coordinator Peer

Fig. 5.4 Architecture of SwinDeW-C

5.2 SwinDeW-C System Architecture 55

will be submitted to any one of the coordinator peers on the platform layer. Here,
an ordinary SwinDeW-C peer is a cloud service node which has been equipped
with specific software services similar to a SwinDeW-G peer. However, while a
SwinDeW-G peer is deployed on a standalone physical machine with fixed
computing units and memory space, a SwinDeW-C peer is deployed on a virtual
machine of which the computing power can scale dynamically according to task
request. As for the SwinDeW-C coordinator peers, they are super nodes equipped
with additional workflow management services compared with ordinary Swin-
DeW-C peers. Details about SwinDeW-C peers will be introduced in the next
section.

At the run-time instantiation stage, the cloud workflow specification can be
submitted to any of the SwinDeW-C coordinator peers. Afterwards, the workflow
tasks will be assigned to suitable peers through peer to peer based communication
between SwinDeW-C peers. Since the peer management such as peer join, peer
leave and peer search, as well as the p2p based workflow execution mechanism, is
the same as in the SwinDeW-G system environment. Therefore, the detailed
introduction is omitted here which can be found in [85]. Before workflow exe-
cution, a coordinator peer will conduct an evaluation process on the submitted
cloud workflow instances to determine whether they can be accepted or not given
the specified non-functional QoS requirements under the current pricing model. It
is generally assumed that functional requirements can always be satisfied given the
theoretically unlimited scalability of cloud. In the case where users need to run
their own special programs, they can upload them through the Web portal and
these programs will be automatically deployed in the data centre by the resource
manager. Here, a negotiation process between the user and the cloud workflow
system may be conducted if the user submitted workflow instance is not acceptable
to the workflow system due to the unacceptable offer on budgets or deadlines. The
final negotiation result will be either the compromised QoS requirements or a
failed submission of the cloud workflow instance. If all the task instances have
been successfully allocated (i.e. acceptance messages are sent back to the coor-
dinator peer from all the allocated peers), a cloud workflow instance may be
completed with satisfaction of both functional and non-functional QoS require-
ments (if without exceptions). Hence, a cloud workflow instance is successfully
instantiated.

Finally, at run-time execution stage, each task is executed by a SwinDeW-C
peer. In cloud computing, the underlying heterogeneous resources are virtualised
as unified resources (virtual machines). Each peer utilises the computing power
provided by its virtual machine which can easily scale according to the request of
workflow tasks. As can be seen in the unified resource layer of Fig. 5.4, the
SwinCloud is built on the previous SwinGrid infrastructure at the fabric layer.
Meanwhile, some of the virtual machines can be created with external commercial
Infrastructure as Service (IaaS) cloud service providers such as Amazon, Google
and Microsoft. During cloud workflow execution, workflow management tasks
such as performance management, data management and security management are
executed by the coordinator peers in order to achieve satisfactory system

56 5 Case Study: SwinDeW-C Cloud Workflow System

performance. Users can get access to the final results as well as the running
information of their submitted workflow instances at any time through the
SwinDeW-C Web portal.

5.2.3 Functionalities of SwinDeW-C Peers

In this section we introduce the architecture of a SwinDeW-C peer. As we
described above, SwinDeW-C is developed based on SwinDeW-G, where a
SwinDeW-C peer has inherited most of the SwinDeW-G peer’s components,
including the components of task management, flow management, repositories,
and the group management. Hence a SwinDeW-G peer plays as the core of a
SwinDeW-C peer, which provides the basic workflow management components
and communication components between peers. However, some improvements are
also made for SwinDeW-C peers to accommodate the cloud computing environ-
ment. The architecture of the SwinDeW-C peers is depicted in Fig. 5.5.

Firstly, different from a SwinDeW-G peer, a SwinDeW-C peer runs on the
cloud platform. The cloud platform is composed of unified resources, which means
the computation and storage capabilities that a SwinDeW-C peer can dynamically
scale up or down based on the applications’ requirements. Unified resources are
offered by cloud service providers and managed in resource pools, hence every
SwinDeW-C peer has a provisioning component to dynamically apply and release
the cloud resources. Meanwhile, through the SwinDeW-C coordinate peer, it can
also scale out or in if necessary, i.e. to request the distribution of workflow
activities to more or fewer SwinDeW-C peers in the same group. This is mainly
realised through the APIs of VMWare management tools.

Figure 5.5 Architecture of SwinDeW-C Peers

JX
T

A

Cloud Platform

SwinDeW-G Peer

Data Management
Components

Performance Management
Components

Security Management
Components

Pricing

Provisioning

Auditing

SwinDeW-G
Peer

Provisioning

SwinDeW-G
Peer

Provisioning

SwinDeW-C Peer

SwinDeW-C Peer

SwinDeW-C Coordinator Peer

…

Cloud Development Tools: VMWare Hadoop, etc.

Fig. 5.5 Architecture of SwinDeW-C peers

5.2 SwinDeW-C System Architecture 57

Secondly, the resource pricing and auditing components are equipped in
SwinDeW-C coordinator peers. Since different cloud service providers may offer
different prices, during the instantiation stage, a coordinator peer needs to have the
pricing component to negotiate the prices with external service providers and set
its own offered prices to its clients. Meanwhile, since the cloud workflow system
needs to pay for the usage of external cloud resources, at the execution stage, an
auditing component is required to record and audit the usage of cloud resources.
These functionalities are mainly realised through the APIs of resource brokers and
the external service provider’s monitoring services such as the Amazon Cloud-
Watch (http://aws.amazon.com/cloudwatch/).

Last but not least, the coordinator peer of SwinDeW-C also has new functional
components related to cloud workflow management. As introduced in Sect. 2.2,
the system has new requirements for handling the large scale workflow applica-
tions. To meet these new requirements, components of performance management,
data management and security management are added to the SwinDeW-C coor-
dinator peer. More detailed descriptions of these components will be given in the
following section.

5.3 QoS Management Components in SwinDeW-C

In this section, we introduce the QoS management components in SwinDeW-C.
Specifically, the three QoS management components including performance
management, data management (data storage and data replication) and security
management are introduced. Note that in SwinDeW-C, since the cost management
on data storage and reliability management on data replication are both working on
the cloud datasets, they are integrated into the data management component.

5.3.1 Performance Management in SwinDeW-C

As introduced in Sect. 4.4, the performance management in SwinDeW-C includes
four basic tasks: the setting of temporal constraints, the selection of candidate
cloud services, the monitoring of workflow execution against QoS constraint
violations, and the handling of QoS constraint violations.

Temporal Constraint Setting: In SwinDeW-C QoS management component, a
probabilistic strategy is designed for setting temporal QoS constraints at workflow
build time [49]. Specifically, with a probability based temporal consistency model,
the one global or several coarse-grained temporal constraints are assigned based on
the negotiation result between clients and service providers. Afterwards, fine-
grained temporal constraints for individual workflow activities can be derived
automatically based on these coarse-grained ones.

58 5 Case Study: SwinDeW-C Cloud Workflow System

http://aws.amazon.com/cloudwatch/
http://dx.doi.org/10.1007/978-1-4614-1933-4_2
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4

Candidate Service Selection: Given the fine-grained constraints for response
time assigned in the first step, a set of candidate services which satisfy the con-
straints can be searched by the cloud resource broker from the cloud [17].
Meanwhile, since different service providers may offer different prices, and there
are often other QoS constraints such as reliability and security to be considered at
the same time, a ranking strategy is designed to determine the best candidate for
runtime execution. Furthermore, considering to the dynamic nature of cloud
computing as well as the performance and reliability requirements for managing
large numbers of business processes, a set of backup/redundant services should
also be reserved during service selection. In fact, many cloud service providers
such as Amazon provides special discount price for reserved resources.1

Checkpoint Selection and Temporal Verification: At workflow run time, a
checkpoint selection strategy and a temporal verification strategy are provided to
monitor the workflow execution against the violation of temporal constraints.
Temporal verification is to check the temporal correctness of workflow execution
states (detecting temporal violations) given a temporal consistency model.
Meanwhile, in order to save the overall QoS management cost, temporal verifi-
cation should be conducted only on selected activity points. In SwinDeW-C, a
minimum time redundancy based checkpoint selection strategy [22, 23] is
employed which can select only necessary and sufficient checkpoints (those where
temporal violations take place).

Violation Handling: After a temporal violation is detected, violation handling
strategies are required to recover the error states. Unlike functional errors which
are normally prevented by duplicated instances or handled by rollback and
re-execution, non-functional QoS errors such as temporal violations can only be
recovered by compensation, i.e. to reduce or ideally remove the current time
delays by decreasing the durations of the subsequent workflow activities. Since the
previous activities have already been finished, there is no way in the real world that
any action can reduce their running time. In SwinDeW-C, for minor temporal
violations, the time deficit allocation (TDA) strategy [21] is employed which can
remove the current time deficits by borrowing the time redundancy of the sub-
sequent activities. As for major temporal violations, the ant colony optimisation
based two stage workflow local rescheduling (ACOWR) strategy [48] is employed
which can decrease the duration of the subsequent workflow segments through ant
colony optimisation based workflow rescheduling.

In SwinDeW-C, by constant monitoring of the workflow instance and effective
handling of temporal violations along workflow execution, satisfactory temporal
QoS can be delivered with low violation rates of both global and local temporal
constraints. Similar to temporal QoS management, the management tasks for other
QoS constraints are being investigated. Meanwhile, since some of them such as
cost and security are partially addressed in the data management and security
management components, some functions will be shared among these components.

1 http://aws.amazon.com/ec2/reserved-instances/

5.3 QoS Management Components in SwinDeW-C 59

http://aws.amazon.com/ec2/reserved-instances/

5.3.2 Data Management (Storage and Replication)
in SwinDeW-C

Data management component in SwinDeW-C consists of three basic tasks: data
storage, data placement and data replication.

Data Storage: In this component, a dependency based cost-effective data storage
strategy is facilitated to store the application data [88]. The strategy utilises the data
provenance information of the workflow instances. Data provenance in workflows
is a kind of important metadata, in which the dependencies between datasets are
recorded [72]. The dependency depicts the derivation relationship between the
application datasets. In cloud workflow systems, after the execution of tasks, some
intermediate datasets may be deleted to save the storage cost, but sometimes they
have to be regenerated for either reuse or reanalysis [15]. Data provenance records
the information of how the datasets have been generated. Furthermore, regeneration
of the intermediate datasets from the input data may be very time consuming, and
therefore carry a high computation cost. With data provenance information, the
regeneration of the demanding dataset may start from some stored intermediated
datasets instead. In a cloud workflow system, data provenance is recorded during
workflow execution. Taking advantage of data provenance, we can build an Data
Dependency Graph (IDG) based on data provenance [88]. All the intermediate
datasets once generated in the system, whether stored or deleted, their references
are recorded in the DDG. Based on the DDG, we can calculate the generation cost
of every dataset in the cloud workflows. By comparing the generation cost and
storage cost, the storage strategy can automatically decide whether a dataset should
be stored or deleted in the cloud system to reduce the system cost, no matter this
dataset is a new dataset, regenerated dataset or stored dataset in the system.

Data Placement: In this component, a data placement strategy is facilitated to
place the application data that can reduce the data movement during the work-
flows’ execution. In cloud computing systems, the infrastructure is hidden from
users. Hence, for application data, the system will decide where to store them.
In the strategy, we initially adapt the k-means clustering algorithm for data
placement in cloud workflow systems based on data dependency. Cloud workflows
can be complex, one task might require many datasets for execution; furthermore,
one dataset might also be required by many tasks. If some datasets are always used
together by many tasks, we say that these datasets are dependant on each other.
In our strategy, we try to keep these datasets in one data centre, so that when tasks
were scheduled to this data centre, most, if not all, of the data needed are stored
locally. Our data placement strategy has two algorithms, one for the build-time
stage and one for the runtime stage of scientific workflows. In the build-time stage
algorithm, we construct a dependency matrix for all the application data, which
represents the dependencies between all the datasets. Then we use the BEA
algorithm [57] to cluster the matrix and partition it that datasets in every partition
are highly dependent upon each other. We distribute the partitions into k data
centres, which are initially as the partitions of the k-means algorithm at run time

60 5 Case Study: SwinDeW-C Cloud Workflow System

stage. At runtime, our clustering algorithm deals with the newly generated data
that will be needed by other tasks. For every newly generated dataset, we calculate
its dependencies with all k data centres, and move the data to the data centre that
has the highest dependency with it.

Data Replication: In this component, a dynamic data replication strategy is
facilitated to guarantee data reliability and the fast data access of the cloud
workflow systems. Keeping some replicas of the application data is essential for
data reliability in cloud storage. Static replication can guarantee the data reliability
by keeping a fixed number of replicas of the application data, but in a cloud
environment, different application data have different usage frequency, where the
strategy has to be dynamic to replicate the application data based on their usage
rates. In large scale workflow applications, many parallel tasks will simultaneously
access the same dataset on one data centre. The possible limitation of network
bandwidth in one data centre would be a bottleneck for the whole cloud workflow
system. If we have several replicas in different data centres, this bottleneck will be
eliminated. Hence the data replication will always keep a fix number of copies of
all the datasets across different data centres to guarantee reliability and dynami-
cally add new replicas for each dataset to guarantee data availability. Furthermore,
the placement of the replicas is based on data dependency, which is the same as the
data placement component, and how many replicas a dataset should have is based
on the usage rate of this dataset.

5.3.3 Security Management in SwinDeW-C

To address the security issues for the safe running of SwinDeW-C, the security
management component is designed. As a type of typical distributed computing
system, trust management for SwinDeW-C peers is very important and plays the
most important role in security management. Besides, there are some other
security issues that we should consider from such as user and data perspectives.
Specifically, there are three modules in the security management component: trust
management, user management, privacy protection and encryption management
system.

Trust Management: The goal of the trust management module is to manage the
relations between one SwinDeW-C peer and its neighbouring peers. For example,
to process a workflow instance, a SwinDeW-C peer must cooperate with its
neighbouring peers to run this instance. Due to the high QoS requirements of large
scale workflow applications, peer management in SwinDeW-C should be sup-
ported by the trust management during workflow runtime. The trust management
module acts like a consultant. This module can evaluate some tasks and give some
advices about the cooperated relation between one peer and other peers for each
instance of a specific task. Firstly, peer evaluation makes trust assessment of other
neighbouring peers. Secondly, task evaluation makes assessment of re-assignment
of the task to other peers. Then the two evaluation scores are combined by the trust

5.3 QoS Management Components in SwinDeW-C 61

evaluation to reach the conclusion whether this neighbouring peer has adequate
trust to take this task. Besides, we design a rule base. For instance, a specific task
must not be assigned to one specific neighbouring peer, and this is a simple rule.
The rule base is a complement to the previous value-based trust evaluation to fit
the real situation.

Privacy Protection: The privacy protection module is to keep customer private
information safe in the process of one SwinDeW-C instance. We can utilise trust
management module as a basis of this module to control the noise obfuscation
process [33]. So, this module can be applied in every SwinDeW-C peer, generates
and injects noise data in transactions of SwinDeW-C instances to conceal real
customer private information. For example, a high trust level means a low level of
noise utilisation, and vice versa.

User Management: The user management module is an essential piece in every
system. In cloud workflow systems, to support the function of access control [6], a
user base is a database which stores all user identity and log information to control
submitted service requests. In addition, an authority manager controls the per-
missions for users to submit some special service requests. To the designer of a
cloud workflow system, the user management may not only a user base to access
control for the whole system, but also a bunch of methods to realise the function of
pricing mechanism. Because the pay-as-you-go style of cloud is the key issue to
express the advantage of cloud. Besides, for the perspective of security, the usage
of users should be records and be analysed to find some abnormal behaviours
about users. It may be a malicious user, or an account disclosure. It is necessary to
be considered to operate it or just reserve upgrade interfaces by a designer of a
cloud workflow system to keep its security.

Encryption Management System: Given cloud workflow systems members
may be located within different geographical local networks, it is important to
ensure the data security in the process of data transfer by encryption.
In our cloud workflow systems—SwinDeW-C, we choose the PGP tool GnuPG
(http://www.gnupg.org/) to ensure secure commutation. In common applications,
current encryption components or algorithms can match the data security
requirement. But the execution of encryption function should consume a lot of
resources on computing and storage, especially in data intensive instances. So,
it is a trade-off between data security and resource cost. For the designer of a
cloud workflow system, it is necessary to design a mechanism to make the
balance flexible with the actual computing situations. Sometimes users could
take part in this process. In other words, users could decide and control the
operation of encryption in the run-time of a cloud workflow instance. For
example, for one specific step of this instance, users would decide whether to
use encryption to protect data or not, on the basis of trust management.

62 5 Case Study: SwinDeW-C Cloud Workflow System

http://www.gnupg.org/

5.4 SwinDeW-C System Prototype

Based on the design discussed above, we have built a primitive prototype of
SwinDeW-C. The prototype is developed in Java and currently running on the
SwinCloud simulation environment. In the SwinDeW-C prototype, we have
inherited most of SwinDeW-G functions, and further implemented the new
components of SwinDeW-C, so that it can adapt to the cloud computing
environment. Furthermore, we have built a Web portal for SwinDeW-C, by which
users and system administrators can access the cloud resources and manage the
applications of SwinDeW-C. As shown in Fig. 5.6, the Web portal provides many
interfaces to support both system users and administrators with the following tasks,
specifically for the system users:

1) browse the existing datasets that reside in different cloud service providers’
data centres;

2) upload their application data to and download the result data from the cloud
storage;

3) create and deploy workflows to SwinDeW-C system using the modelling tools;
4) monitor the workflows’ execution.

For system administrators:

1) coordinate the workflows’ execution by triggering the scheduling strategies;
2) manage the application datasets by triggering the data placement strategies;
3) handle the execution exceptions and QoS violations by triggering the workflow

exception handling and QoS violation handling strategies.

Fig. 5.6 SwinDeW-C web portal

5.4 SwinDeW-C System Prototype 63

5.5 Experiments

At the moment, to evaluate and improve its performance, a number of test cases
with simulated large scale instance intensive workflows are designed and being
tested in SwinDeW-C, including the securities exchange workflow and some large
scale high performance applications with instance intensive sub-processes such as
a weather forecast workflow [15] and a pulsar searching workflow in Astrophysics
[52]. Specifically, the effectiveness of the QoS management components is tested
with various sizes of cloud workflows and under different environment settings.
Here, we only demonstrate the results on the evaluation of time management (on
performance) and cost management (on data storage) as two representative QoS
management components to verify the effectiveness of the SwinDeW-C system.

5.5.1 Evaluation on Performance Management

In order to evaluate the performance of SwinDeW-C, we have simulated a large
number of workflow instances running in parallel. Each workflow instance can
have 20–50 activities, and the total number of cloud workflow activities ranges
from 500 to 20,000. The structures of the workflow instance are randomly gen-
erated according to the sub-processes of the securities exchange workflow. The
activity durations are generated based on the statistics and deliberately extended
by a mixture of representative distribution models such as normal, uniform and
exponential to reflect the performance of different virtual machines. The number of
virtual machines is increased with the number of workflow activities where the
length of the job list for each virtual machine is bounded with a random number
from 10 to 20. The process structures are specified according to the workflow
segments similar to the securities exchange business process introduced in
Sect. 1.4. For each workflow instance, an overall temporal constraint is assigned.
The strategy for setting temporal constraint is adopted from the work in [49] where
a normal percentile is used to specify temporal constraints and denotes the
expected probability for on-time completion. Here, we conduct three rounds of
independent experiments where the temporal constraints are set with different
normal percentiles of 1.00, 1.15 and 1.28 which denotes the probability of 84.1,
87.5 and 90.0% for on-time completion without any handling strategies on tem-
poral violations (denoted as COM (1.00), COM (1.15) and COM (1.28)). For the
comparison purpose, we record global violation rates under natural situations, i.e.
without any handling strategies (denoted as NIL), and compared with that of TDA
strategy [21] and our three-level handling strategy as introduced in Sect. 4.3
(denoted as Framework where the three violation handling strategies are imple-
mented automatically according to the levels of temporal violations [13]). In
TDA ? ACOWR, the maximum iteration times for ACOWR are set as 2. Each
round of experiment is executed for 100 times to get the average violation rates.

64 5 Case Study: SwinDeW-C Cloud Workflow System

http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4

The initial experimental results on system performance have shown that close
to 0% violation rates of global and local temporal constraints can be achieved in
SwinDeW-C, thanks to its structured p2p based decentralised management,
effective provision of computing resources and advanced QoS management [51,
53]. Here, we only demonstrate part of the experimental results on the global
violation rate (the violation of the final deadline) which is an overall measurement
for workflow execution. Figure 5.7 shows the results on global violation rates.
Since TDA can only delay the temporal violations without actual compensating
the time deficits, it may handle local violations but has no effect on global vio-
lations. Therefore, the global violation rates for NIL and TDA are overlapping.
The global violation rates for NIL and TDA behave very unstably but increase
roughly with the number of activities while decreasing with the value of normal
percentiles. The average global violation rates for NIL and TDA in each round are
14.6, 13.8 and 9.0% respectively. With our performance framework, the global
violation rate is kept close to zero since most local temporal violations are handled
automatically along workflow executions. The average global violation rates of
our performance framework in each round are 0.2, 0.0 and 0.3% respectively, i.e.
an overall average of 0.167%. Accordingly, the reductions in the global violation
rates are 14.4, 13.8 and 8.7% respectively, with an average of 12.3%, which is very
significant. Therefore, with the implementation of our concrete performance
framework, the global violation rates of workflow instances can be significantly
reduced, which effectively verifies its satisfactory effectiveness in the support of
temporal QoS in cloud workflow systems.

Fig. 5.7 Global temporal
violation rate

5.5 Experiments 65

To conclude, given the above results which show that most of the workflow
instances are completed in time, we can claim that our SwinDeW-C cloud
workflow system can effectively manage the execution of instance intensive
business processes.

5.5.2 Evaluation on Data Storage Management

The datasets storage strategy addressed here is generic. It can be used in any
scientific applications with different price models of cloud services. In this section,
we demonstrate the simulation results that we conduct on the SwinCloud envi-
ronment. First, we use general (random) DDG and datasets to demonstrate the
cost-effectiveness comparison of our strategies. Then we utilise our strategies to
the specific pulsar searching application described in Sect. 1.4, and use the real
world data to demonstrate how our strategies work in storing the application
datasets of the pulsar searching workflow.

In addition to store none and all datasets strategies, we compare the cost-
effectiveness of different storage strategies as follows:

1) Usage based strategy, in which we store the datasets that are most often used.
2) Generation cost based strategy, in which we store the datasets that incur the

highest generation cost.
3) Cost rate based strategy reported in [88], in which we store the datasets by

comparing their own generation cost rate and storage cost rate.
4) Local-optimisation based strategy reported in [89, 91], in which we also utilise

the CTT-SP algorithm and achieve a localised optimum for storing a
large DDG.

5.5.2.1 General Random Simulations and Results

The random simulations are conducted on randomly generated DDG with datasets
of random sizes, generation times and usage frequencies. Due to the page limit, we
only present some representative results in this section without losing generality.
We use the DDG with 50 datasets, each with a random size from 100 GB to 1 TB.
The generation time is also random, from 1 h to 10 h. The usage frequency is
again randomly from 1 day to 10 days (time between every usage). The prices of
cloud services follow the well-known Amazon’s cost model, i.e. $0.1 per CPU
instance hour for computation and $0.15 per gigabyte per month for storage.
To reflect users’ delay tolerance, we set a random time tolerance (Ti) from 10 h to
one day and a random cost parameter of delay tolerance (ki) from 0.7 to 1 to every
datasets in the DDG. All these random parameters are generated with the uniform
distribution. For other distributions, we have similar results in our experiment.

66 5 Case Study: SwinDeW-C Cloud Workflow System

http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1

To reflect the users’ preferences, we randomly select 4% of the datasets to store in
the system based on users’ preferences.

With the settings above, we ran simulations under different numbers of datasets
in the DDG. Figure 5.8 shows the increases of the daily cost rates of different
strategies as the number of datasets grows in the DDG. From Fig. 5.8, we can see
that the ‘‘store none’’ and ‘‘store all’’ strategies are very cost ineffective, since their
daily cost rates grow fast as the datasets number grows. The cost rate based
strategy has a better performance than both the generation cost based strategy and
usage based strategy. The local-optimisation based strategy is the most cost-
effective datasets storage strategy, and it reduces the total cost rate by over 20% on
average comparing to the cost rate based strategy.

5.5.2.2 Specific Pulsar Searching Simulation and Results

The random simulations demonstrate the general performance of our datasets
storage strategies. Next, we utilise it to the pulsar searching workflow introduced
in Sect. 1.4 and show how it works in this real world scientific application.

In the pulsar example, for one execution of the workflow, six datasets are
generated. Scientists may need to re-analyse these datasets, or reuse them in new
workflows and generate new datasets. The DDG of this pulsar searching workflow
is shown in Fig. 5.9, as well as the sizes and generation times of these datasets.
The generation times of the datasets are from running this workflow on Swinburne
Astrophysics Supercomputer, and for simulation, we assume that in the cloud, the
generation times of these datasets are the same. Furthermore, we again assume that
the cost of cloud services follow Amazon clouds’ price.

From Swinburne Astrophysics research group, we understand that the ‘‘De-
dispersion files’’ is the most useful dataset. Based on these files, many accelerating
and seeking methods can be used to search pulsar candidates. Based on the sce-
nario, we set the ‘‘De-dispersion files’’ to be used once every 4 days and other
datasets to be used once every 10 days. Furthermore, we assume new datasets are
generated on the 10th and 20th days, indicated as sub DDG1 and DDG2 in Fig. 5.9.
Based on this setting, we run the above mentioned simulation strategies and

Change of daily cost (4% users stored datasets)

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800 900 1000 1100

Number of Datasets in DDG
C

os
t R

at
e

(U
S

D
/D

ay
)

Store all datasets

Store none

Usage based
strategy

Generation cost
based strategy

Cost rate based
strategy

Local-optimisation
based strategy

Fig. 5.8 Cost-effectiveness
comparison of different
storage strategies

5.5 Experiments 67

http://dx.doi.org/10.1007/978-1-4614-1933-4_1
http://dx.doi.org/10.1007/978-1-4614-1933-4_1

calculate the total costs of the system for one branch of the pulsar searching
workflow of processing one piece of observation data in 30 days as shown in Fig.
5.10.

Figure 5.10 shows a consistent result with the previous general random simu-
lations, where the cost rate based strategy also has a good performance in this
pulsar searching application and the most cost-effective datasets storage strategy is
still our local-optimisation based strategy.

Total cost of 30 days - Pulsar case simulation

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Days

C
o

st
 (U

S
D

)

Store all datasets

Store none

Usage based strategy

Generation cost based
strategy

Cost rate based
strategy

Local-optimisation
based strategy

Fig. 5.10 Cost-effectiveness
of our strategy in pulsar case
DDG

Raw beam
data

Accelerated
De-

dispersion
files

De-
dispersion

files

Extracted &
compressed

beam

Seek
results

files

Candidate
list XML files

Size:
Generation time:

20 GB
245 mins

1 mins
80 mins300 mins790 mins27 mins

25 KB
1 KB

16 MB90 GB90 GB

Accelerated
De-

dispersion
files

Seek
results

files

Candidate
list XML files

Seek
results

files

Candidate
list XML files

245 mins1 mins80 mins300 mins
25 KB1 KB16 MB90 GB

245 mins1 mins80 mins
25 KB1 KB16 MB

Sub DDG1

Sub DDG2

Fig. 5.9 DDG of pulsar searching workflow

68 5 Case Study: SwinDeW-C Cloud Workflow System

Appendix A
Performance Management Strategies

A.1 Probability Range for Recoverable Temporal Violations

The detailed definition for the probability based temporal consistency state is
presented in [53] and hence omitted in this chapter. Here, we focus on the
introduction of the probability range for statistically recoverable temporal
violations. As depicted in Fig. A.1, the effective range for light-weight temporal
violation handling is defined as (0.13, 99.87%) which is represented by the
shadowed area. The reason can be explained as follows. Since the maximum
and minimum duration for each activity are defined as D(ai) = li + 3ri and
d(ai) = li - 3ri respectively, as explained in our hybrid estimation method and
proved in [50], the overall workflow execution time can be estimated with the
normal distribution model and has a statistical lower bound of l - 3r (with 0.13%
consistency) and an upper bound of l + 3r (with 99.87% consistency) where l
and r are the joint normal mean and standard deviation respectively for the
durations of all activities included. In practice, at scientific workflow runtime,
temporal violation handling is only triggered in the probability consistency range
of (0.13, h%) as shown in the area marked with upwards diagonal lines in Fig. A.1,
while the probability consistency range of (h, 99.87%) marked with downwards
diagonal lines requires no action. Here, the threshold of h% denotes the minimum
acceptable temporal consistency and it is usually specified through the negotiation
between users and service providers for setting local and global temporal
constraints [49]. In practice, h% is normally around or above 84.13%, i.e. l + r.
Therefore, if the current temporal consistency of a% (a% Consistency) is larger
than h%, including AC (Absolute Consistency), no action is required since the
contract still holds. Otherwise, temporal violation handling is triggered to
compensate the time deficit. In other words, a potential temporal violation is
deemed as detected when the current temporal consistency state is below the
threshold of h%. However, when a% is below 0.13%, i.e. AI (Absolute

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

69

Inconsistency), instead of light-weight temporal violation handling, heavy-weight
temporal violation handling strategies such as resource recruitment or workflow
restructure must be implemented since the time remaining before temporal
violation is smaller than the minimum completion time that the current scientific
workflow system could statistically achieve without an expensive temporal
violation handling process. Therefore, AI violations can be regarded as statistically
non-recoverable temporal violations.

The probability consistency range where light-weight temporal violation
handling is statistically effective is defined as (0.13, 99.87%). At scientific
workflow runtime, based on temporal QoS contracts, light-weight temporal
violation handling is only triggered when the probability of current temporal
consistency state is within the range of (0.13, h%) where h% is the bottom-line
temporal consistency state.

A.2 Minimum Probability Time Redundancy

After we have identified the effective probability consistency range for temporal
violation handling, the next issue is to determine at which activity point to check
for the temporal consistency so that a temporal violation can be detected in the first
place. Here, a necessary and sufficient checkpoint selection strategy is proposed.
First, the definitions of probability time redundancy and minimum probability time
redundancy are presented.
Definition A.1 (Probability Time Redundancy for Single Workflow Activity).
At activity point ap between ai and aj(i B j), let U(ai, aj) be of b%C with the
percentile of kb which is above the threshold of h% with the percentile of kh. Then
the probability time redundancy of U(ai, aj) at ap is defined as PTR(U(ai, aj), ap) =

uðai; ajÞ � ½Rðai; apÞ þ hðapþ1; ajÞ�: Here, hðapþ1; ajÞ ¼
P j

k¼pþ1 ðlk þ khrkÞ:

Fig. A.1 Statistically recoverable temporal violations

70 Appendix A: Performance Management Strategies

Definition A.2 (Minimum Probability Time Redundancy)
Let U1, U2, …, UN be N upper bound constraints and all of them cover ap. Then, at
ap, the minimum probability time redundancy is defined as the minimum of all
probability time redundancies of U1, U2, …, UN and is represented as
MPTRðapÞ ¼ Min PTRðUs; apÞ s ¼ 1; 2; . . .;Nj

� �
:

The purpose of defining minimum probability time redundancy is to detect the
earliest possible temporal violations. Based on Definition A.2, Theorem A.1 is
presented to locate the exact temporal constraint which has the temporal
consistency state below the h% bottom line.
Theorem A.1 At activity point ap, if R(ap) [h(ap) + MPTR(ap-1)a, then at
least one of the temporal constraints is violated and it is exactly the one whose
time redundancy at ap-1 is MPTR(ap-1).
Proof Suppose that U(ak, al) is an upper bound constraint whose probability is
above the threshold before execution of ap (k \ p \ l) and it is the one with
MPTR(ap-1). Then, according to Definition A.1, at ap-1, we have
u(ak, al) [R(ak, ap-1) + h(ap, al) and MPTR(ap-1) = u(ak, al) - R(ak, ap-1) -

h(ap, al). Now, assume that at activity ap, we have R(ap) [h(ap) + MPTR(ap-1)
which means R(ap) [h(ap) + u(ak, al) - R(ak, ap-1) - h(ap, al), and that is
u(ak, al) \ R(ap) + R(ak, ap-1) + h(ap, al) - h(ap) where the right hand side
equals R(ak, ap) + h(ap-1, al). Since R(ak, ap) + h(ap-1, al) \ R(ak, ap) +
h(ap+1, al), we have u(ak, al) \ R(ak, ap) + h(ap+1, al) and this results in a
probability of temporal consistency which is lower than that of h% where
u(ak, al) = R(ak, ap) + h(ap+1, al). Therefore, a potential temporal violation is
detected and it is exactly the one whose time redundancy at ap�1is MPTR(ap-1).
Thus, the theorem holds.

A.3 Temporal Checkpoint Selection and Temporal
Verification Process

Based on Theorem A.1, we further present Theorem A.2 which describes our
temporal checkpoint selection strategy followed by the proof of its necessity and
sufficiency.
Theorem A.2 (Necessary and Sufficient Temporal Checkpoint Selection
Strategy)
Within the consistency range of (0.13 \ a\ 99.87%), at activity ap, if R(ap) [
h(ap) + MPTR(ap-1), we select ap as a temporal checkpoint, otherwise, we do not
select ap as a checkpoint. This strategy is of necessity, i.e. all checkpoints selected
along workflow execution are necessary, and of sufficiency, i.e. there are no
omitted checkpoints.
Proof According to Theorem A.1, once we select an activity, say ap as a
checkpoint, there must be at least one temporal constraint which has potential
temporal violations detected at ap and it is exactly the one whose time redundancy

Appendix A: Performance Management Strategies 71

at ap-1 is MPTRðap�1Þ: That is to say, selecting ap as a checkpoint is necessary.
Thus, the necessity property holds.

With an activity point ap, we consider it as a checkpoint only if R(ap) [h(ap) +
MPTR(ap-1), i.e. R(ap) [h(ap) + u(ai, aj) - [R(ai, ap) + h(ap+1, aj)]. According to
Definition A.2, if we assume that u(ai, aj) is the constraint where minimum
probability time redundancy occurs, then R(ap) [u(ai, aj) - [R(ai, ap-1) +
h(ap, aj)]. According to Definition A.1, Definition A.2 and the probability
consistency range of (0.13, h%) where temporal violation handling needs to be

triggered, we do not need to select ap as a checkpoint if Rðai; apÞ� uðai; ajÞ �P j
k¼p ðlk þ khrkÞ which means the probability consistency is above h%, that is

R(ap) B u(ai, aj) - [h(ap, aj) - R(ai, ap-1)] which is R(ap) B h(ap) + MPTR
(ap-1). Therefore, no checkpoints are omitted. Thus, the sufficiency property holds.

Here, we also adopt the method of Dynamic Obtaining of Minimum Time
Redundancy (DOMTR) [23]. Based on some initial values which are set up during
the runtime instantiation stage, DOMTR can compute the minimum probability
time redundancy on the fly along scientific workflow execution with minimal
computation. Based on DOMTR, the computation of our checkpoint selection
strategy is basically one or two subtractions or comparisons at each activity
covered by one or more upper bound constraints. Therefore, as proved in [23], the
computation cost is basically negligible.
To conclude, our checkpoint selection strategy strictly ensures that a checkpoint is
selected only when current temporal consistency is below the minimum acceptable
threshold. Meanwhile, since our temporal verification strategy is aware of the
effective probability consistency range and can determine the fine-grained levels of
temporal violations, it also ensures that statistically the time deficit can be
compensated by light-weight temporal violation handling.

A.4 A Novel General Two-Stage Local Workflow Rescheduling
Strategy for Recoverable Temporal Violations

Given the two fundamental requirements of automation and cost-effectiveness, the
temporal violation handling strategies that we mainly investigate in this chapter
are metaheuristics based workflow rescheduling algorithms. With metaheuristics
based rescheduling algorithms, temporal violations are tackled by rescheduling the
current Task-to-Resource assignment. Note that in cloud computing environments,
computing resources are generally delivered as virtual machines (VMs).
Therefore, in this chapter, Task-to-Resource assignment and Task-Resource list
are interchangeable with Task-to-VM assignment or Task-VM list respectively.
For workflow rescheduling, the following two challenges need to be considered:
(1) the balance between the handling of temporal violations and the on-time
completion of other workflow instances; (2) the suitable size of the Task-Resource
list for cost-effective rescheduling. The reason why we do not consider heuristics

72 Appendix A: Performance Management Strategies

based scheduling algorithms in this scenario is mainly as follows:

1. Heuristics based scheduling algorithms can only optimise one objective at a
time. Meanwhile, it is based on local optimisation where it can choose the best
candidates at each local step for the optimisation objective. However, the
generated solution is not necessarily the best solution for the optimisation
objective in an overall sense.

2. From the viewpoint of metaheuristics based scheduling algorithms, the process
of heuristics based scheduling algorithms is to construct valid solutions. Since
metaheuristics based scheduling algorithms can use the valid solutions
generated by heuristic scheduling algorithms as the initial input solution, the
optimisation capability of metaheuristics based scheduling algorithm is
theoretically guaranteed to be better than heuristic scheduling algorithms.

To address the above two challenges, a novel general two-stage workflow local
rescheduling strategy is designed for handing temporal violations. The pseudo-
code for the general strategy is presented in Fig. A.2.

Here, ‘‘two-stage’’ means a two-stage searching process to strike a balance
between the handling of temporal violations and the on-time completion of other
workflow instances while ‘‘local’’ means the rescheduling of ‘‘local’’ workflow
segments with existing resources. To handle temporal violations, the key
optimisation objective is to maximise the compensation time, i.e. the difference
of the scheduled execution time before and after rescheduling, in order to decrease
the time deficit. After rescheduling, the activities for the violated workflow
instance will be allocated with resources of higher performance and/or given
earlier time slots in the job queue for execution. However, if we only focus on the
violated workflow instance, the execution time of other workflow instances could
be delayed and may violate temporal constraints of their own, if any. Therefore, a
balance between the handling of temporal violations and the on-time completion
of other workflow instances needs to be considered in scientific workflow systems.
Otherwise, the overall temporal QoS of scientific workflow systems will be
potentially deteriorated. As for local rescheduling, the first task is to identify the
suitable size of the Task-Resource list. Our strategy only utilises existing local
resources which are currently deployed in the system instead of recruiting
additional resources outside the system. Meanwhile, unlike global rescheduling
which modifies the global Task-Resource list for the entire workflow instance, we
only focus on the local workflow segment and optimise the integrated Task-
Resource list. Here, the local workflow segment is defined as the set of workflow
activities between the next activity of a necessary and sufficient checkpoint (the
activity point where a temporal violation occurs) [24] and the end activity of the
next local temporal constraint. As depicted in Fig. A.3, the integrated Task-
Resource list is an integrated collection of local resources and the integrated
Directed Acyclic Graph (DAG) task graph which defines the precedence
relationships of all the activities in the local workflow segment and their
co-allocated activities. Here, co-allocated activities are those which have been
allocated to the same resources.

Appendix A: Performance Management Strategies 73

For example, in Fig. A.3, local workflow segment contains activity ap+1 to ap+7

and they are allocated to four different resources R1 to R4. Each resource maintains
a local Task-List by its own scheduler given its input job queue. When temporal
violation handling is triggered, the workflow management system will acquire the
current Task-List of R1 to R4 and can automatically combine them into an
integrated DAG task graph which consists of all the tasks, for instance, a total of
n tasks, by assigning a pseudo start activity aStart and pseudo end activity aEnd.
Therefore, an integrated Task-Resource list L ai;Rj

� �
ji ¼ pþ 1; . . .; pþ n; j ¼

�

Fig. A.2 Two-stage local workflow rescheduling strategy

74 Appendix A: Performance Management Strategies

1; 2; 3; 4g is built and ready to be optimised.
As shown in Fig. A.2, the strategy has five major input parameters, viz. the time

deficit detected at the checkpoint, the integrated Task-Resource list, the DAG task
graphs which define the precedence relationships between tasks, the normal
distribution models for activity durations, and resources with their execution speed
and the cost per time unit. Besides, some additional information or parameters may
also be required for each individual metaheuristic rescheduling algorithm. The first
stage is to optimise the overall the makespan and cost for the integrated Task-
Resource list through any metaheuristics based scheduling algorithm such as GA
(detailed in [53]) and ACO (detailed in [51]). The first step is algorithm
initialisation (Line 1) where different metaheuristic algorithms have their own
initialisation process such as chromosome coding for GA and setting of initial
pheromones for ACO. After initialisation, the metaheuristic algorithms are
executed until the predefined stopping condition such as the maximum iteration
times is met (Line 2 to Line 3). During the metaheuristic algorithms based
optimisation process, a best-so-far solution can be produced in each iteration and
recorded in the solution set. The second stage is to search for the best solution from
the solution set (Line 5 to Line 7). During this searching stage, the occurred time
deficit is first compared with the compensation time of each solution in the
solution set (Line 6). Those solutions whose compensation time is smaller than the
time deficit are discarded since they cannot handle the current temporal violation.

1+pa 2+pa

3+pa

5+pa

4+pa

6+pa

7+pa

Scheduler

Task -List 1

tim
e

Job -Queue

Scheduler

Job -Queue

Task -List 2

tim
e

Scheduler

Job -Queue

Task -List 3

tim
e

Scheduler

Job -Queue

Task -List 4

tim
e

starta

1+pa 2+pa

3+pa

5+ia

4+pa

6+pa

7+pa

ja 1+ja
2+ja 1−+ kja

kja + enda

ma

1+ma

2+ma
3+ma 4+ma

5+ma

Local Workflow
Segment

Local
Resources

Integrated DAG
Task Graph

Integrated
Task-Resource

List

{ }),(ji RaL

Fig. A.3 Integrated task-resource list

Appendix A: Performance Management Strategies 75

Here, the compensation time is defined as the difference between the average
makespan before rescheduling and the one after rescheduling. For those remained
solutions, the one with the minimum cost is returned as the best solution (Line 7 to
Line 8). Finally, according to the best solution, the integrated Task-Resource list is
rescheduled and deployed on related resources (Line 9).

76 Appendix A: Performance Management Strategies

Appendix B
Data Storage Management Strategies

Fig. B.1 Linear CTT-SP algorithm

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

77

Fig. B.2 General CTT-SP algorithm

78 Appendix B: Data Storage Management Strategies

Fig. B.3 Add a newly generated dataset to the DDG algorithm

Fig. B.4 Change of a stored dataset’s usage frequency algorithm

Appendix B: Data Storage Management Strategies 79

Fig. B.5 Decide storage status of a re-generated dataset algorithm

80 Appendix B: Data Storage Management Strategies

Fig. B.6 Improved CTT-SP algorithm

Appendix B: Data Storage Management Strategies 81

Appendix C
Replication Management Strategies

Fig. C.1 Pseudo-code of CIR strategy

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

83

We take an example to illustrate how CIR works. Consider the most common
case that a set of data is newly received at time point 0 and stored using the default
mode. In the initialisation stage of the storage process (Lines 1–8), the reliability
requirement is initialised to a certain value, e.g. 99.99%, and the replica number
starts from 1. After the initialisation is finished, the process for calculating the
replica creation time points is activated (Lines 9–38) and starts to calculate the first
replica creation time point: the first replica creation time point is the positive real
root of Function (2) in Sect. 4.6.2 (Lines 12–17). Assume the storage unit u1 has a
failure rate of k1, by solving Function (2), the first replica creation time point T1

can be obtained. When the first replica creation time point is reached, the process
for calculating the second time point will start. Similarly, by solving Function (3)
in Sect. 4.6.2 (Lines 18–24), T2 can be obtained and the second round of the
algorithm should start at T1+T2. This process continues until the data has been
changed or the maximum number of replicas reached or data loss happens (Line
11). At this stage of the process, there are three replicas stored in the system. Then,
at the end, by solving Function (4) in Sect. 4.6.2 (Lines 25–31), the storage
duration of the three replica stage can be derived. In the case of data loss which is
another important part in data management area, the corresponding research is
beyond the scope of this chapter.

84 Appendix C: Replication Management Strategies

http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4
http://dx.doi.org/10.1007/978-1-4614-1933-4_4

Appendix D
Trust-Based Noise Injection Strategy

Title: Trusted-based noise injection strategy
Input: Service-request query QU

Output: Generated noise for service-request query QN and noise injected intensitye
Step 1: Evaluating the trust

relation
Input: p and q denote two roles: service-request initiator and

service-request respondent in the trust relation
Output: v denotes the trust value between pand q, in the range of

[0,1]
We have trust relations: TR = {tr1, tr2, …, tri, …, trm} and

tri = (Pi, Qi, Ci, Ti, Di, ti, vi, pi, ni).
Check all ti in tri, remove all tri with unavailable ti.
Check all i which can satisfyPi = = p andQi = = q.
If i not existed, Dijkstra Algorithm is used to find out an array
of trusts, and a new derived tr will be inserted in to TR. Then
this step will re-run.
If i existed, if i is unique, so v = vi.
if iis not unique, v = vj (which j 2 the dataset of i and
Tj = = direct)

Step 2: Evaluating privacy
in the service-request
query

Input: tri denotes the trust relation in the service-request query,
d [{serious, moderate, slight} which denotes the privacy risk
from the customer’s judgement.

Output: d0 [{serious, moderate, slight} which denotes the
privacy risk in this architecture.

Check Di from tri.
If (Di==customer-control), d0 = d.
If (Di==control–control), d0 = d.
If (Di== control-public), if (d = = slight), d0 = moderate.
if (:d! ¼ :slight), d0 = d.
From original data query to privacy, we set three levels to
classify privacy. pl = {directly privacy, distributed features,
interaction features}.
To get d 2 {serious, moderate, slight}, the user’s judgement
bases on the protection requirements for different levels of
privacy. They correspond one by one

(continued)

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

85

(continued)

Step 3: Settling down
noise injected intensity,
and generating the noise
to inject into service-
request query

Input: QU, d
0
, v

Output: QN denoted byP(QN = qi), Vi, e denotes noise injected
intensity

3.1 Settle down the noise generated strategy
If (d0 = = slight), jumping to step 3.2, and slight noise
generated strategy will be applied.
If (d0 = = moderate), jumping to step 3.3, the moderate noise
generated strategy will be applied.
If (d0 = = serious), jumping to step 3.4, the serious noise
generated strategy will be applied.
These three strategies will be discussed in next

3.2 Slight noise generated strategy (the goal of this strategy is to
confuse directly privacy)
This strategy is random noise with PðQN ¼ qiÞ ¼ 1

n ; 8i; and n is
the size of range of QN and QU.
The key of this strategy is the noise injected intensity, we set
e = 1 - v. Jump to Step 4

3.3 Moderate noise generated strategy (the goal of this strategy is
to confuse distributed features privacy)
To match the goal of this strategy, we generate noise to make
the injected result with confused distributed features by

PðQN ¼ qiÞ ¼ MaxfPðQU¼qiÞg�PðQU¼qiÞ
n�MaxfPðQU¼qiÞg�

P
i
PðQU¼qiÞ

;8i:
We set

e0 ¼ 2ð1� vÞ n�MaxfPðQU¼qiÞg�
P

i
PðQU¼qiÞ

n�MaxfPðQU¼qiÞg to match the noise can

fulfil its function
And the final e = Max{e0, 1 - v}. Jump to Step 4

3.4 Serious noise generated strategy (the goal of this strategy is to
confuse interaction features privacy)
To match the goal of this strategy, we generate noise to make
the injected result with confused interaction features by

PðQN ¼ qiÞ ¼ MaxfPðQS¼qiÞg�PðQS¼qiÞ
n�MaxfPðQS¼qiÞg�

P
i
PðQS¼qiÞ

; 8i:
We set

eðtÞ ¼ 2ð1� vÞ n�MaxfP½QSðtÞ¼qi �g�
P

i
P½QSðtÞ¼qi �

n�MaxfP½QSðtÞ¼qi �g :

The final e = Max{e(t), 1 - v} and it changes with time
t passing. Jump to Step 4.

Step 4: Evaluating the
quality of this service
process, and updating
trust relation in trust
model about this
service process

Input: e denotes the quality evaluation of this service process
from service-request initiator which is the one generating the
noise.

Output: updated tri

4.1 Get the feedback e from the service-request initiator.
4.2 Update the pi or ni in tri

If ((e [vi), pi = pi + 1
If (e \ vi), ni = ni + 1

4.3 Update vi in tri

vi = vi + e 9 (pi - ni)

86 Appendix D: Trust-Based Noise Injection Strategy

In this strategy, there are three noise generated strategies which achieve noise
generation process.

It is necessary to discuss the difference between serious noise generated strategy
and moderate noise generated strategy. In step 3.3 and 3.4 of this strategy, their

noise generated formulas are PðQN ¼ qiÞ ¼ MaxfPðQU¼qiÞg�PðQU¼qiÞ
n�MaxfPðQU¼qiÞg�

P
i
PðQU¼qiÞ

; 8i and

PðQN ¼ qiÞ ¼ MaxfPðQS¼qiÞg�PðQS¼qiÞ
n�MaxfPðQS¼qiÞg�

P
i
PðQS¼qiÞ

; 8i: The P(QU = qi) changes to

P(QS = qi). It means that serious noise generated strategy is more sensitive to
the time element, and it is the found of the goal of serious noise generated strategy
to keep interaction’s frequency.

Another issue should be clarified is e(t) and QS(t) in the noise injected intensity

formula eðtÞ ¼ ð1� vÞ n�MaxfP½QSðtÞ¼qi�g�
P

i
P½QSðtÞ¼qi�

n�MaxfP½QSðtÞ¼qi�g : It is the development of the

former issue to fulfil the goal of serious noise generated strategy by involve time
telement.

The last issue is that egeneration in these three strategies. With the risk level
rises, one noise generated strategy covers the former one. It comes from
e = v, e = Max{e0, 1 - v}, to e = Max{e(t), 1 - v}.

In summary, this strategy for privacy protection in cloud establishes on the
background of trust model and noise injection model in cloud, operates in the noise
injection architecture, and protects privacy during whole privacy transaction
process in cloud environments, especially in cloud workflow instances.

Appendix D: Trust-Based Noise Injection Strategy 87

Appendix E
Literature Review

Since the research on cloud workflow management systems is at its early stage, it
is difficult to conduct direct comparison between SwinDeW-C with others at
present. Most of the current projects are either on the general implementation of
cloud computing or focus on some specific aspects such as data management in the
cloud. There exists some research into data-intensive applications on the cloud
[60], such as early experiences like Nimbus [42] and Cumulus [78] projects.
Comparing to the distributed computing systems like cluster and grid, a cloud
computing system has a cost benefit [8]. Assunção et al. [9] demonstrate that cloud
computing can extend the capacity of clusters with a cost benefit. Using Amazon
clouds’ cost model and BOINC volunteer computing middleware, the work in [44]
analyses the cost benefit of cloud computing versus grid computing. In terms of the
cost benefit, the work by Deelman et al. [27] shows that cloud computing offers a
cost-effective solution for data-intensive applications, such as scientific workflows
[38]. The work in [38] explores the use of cloud computing for scientific
workflows, focusing on a widely used astronomy application-Montage. The
Cloudbus project (http://www.gridbus.org/cloudbus/) is working on a new gener-
alised and extensible cloud simulation framework named CloudSim [19] which
can enable seamless modelling, simulation, and experimentation of cloud com-
puting infrastructures and management services.

With the existing projects for many grid workflow systems developed in recent
years, it is agreed by many researchers and practitioners that cloud workflow systems
might be built on grid computing environments rather than from scratch. For
example, the CloudSim toolkit used in the Cloudbus project is implemented by
programmatically extending the core functionalities exposed by the GridSim used in
the Gridbus project (http://www.gridbus.org). Therefore, we review some repre-
sentative grid workflow system and focus on the related features discussed in this
paper such as workflow scheduling architecture, QoS, data and security management.
Specifically, we investigate Gridbus, Pegasus (http://pegasus.isi.edu/), Taverna
(http://www.taverna.org.uk/), GrADS (http://www.iges.org/grads/), ASKALON

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

89

http://www.gridbus.org/cloudbus/
http://www.gridbus.org
http://pegasus.isi.edu/
http://www.taverna.org.uk/
http://www.iges.org/grads/

(http://www.askalon.org/), GridAnt (http://www.globus.org/cog/projects/gridant/),
Triana (http://www.trianacode.org/), GridFlow (http://gridflow.ca/) and Kepler
(https://kepler-project.org/). For the architecture of the workflow scheduling,
Pegasus, Taverna, GrADS, and Kepler use a centralised architecture; Gridbus and
GridFlow use a hierarchical architecture; ASKALON and Triana use a decentralised
architecture. It is believed that centralised schemes produce more efficient schedules
and decentralised schemes have better scalabilities, while hierarchical schemes are
their compromises. Similar to SwinDeW-G, SwinDeW-C uses a structured decen-
tralised scheme for workflow scheduling. SwinDeW-G aims at using a performance-
driven strategy to achieve an overall load balance of the whole system via distributing
tasks to least loaded neighbours.

As far as QoS (quality of service) constraints are concerned, most grid
workflow systems mentioned above do not support this feature. Gridbus supports
QoS constraints including task deadline and cost minimisation, GrADS and
GridFlow mainly use estimated application execution time, and ASKALON
supports constrains and properties specified by users or predefined. Right now,
SwinDeW-C supports QoS constraints based on task deadlines. When it comes to
fault tolerance, at the task level, Gridbus, Taverna, ASKALON, Karajan, GridFlow
and Kepler use alternate resource; Taverna, ASKALON and Karajan use retry;
GrADS uses rescheduling. At the workflow level, rescue workflow is used by
ASKALON and Kepler; user-defined exception handling is used by Karajan and
Kepler. Pegasus, GridAnt and Triana use their particular strategies respectively. As
a comparison, SwinDeW-C uses effective temporal constraint verification for
detecting and handling temporal violations.

As for data management, Kepler has its own actor-oriented data modelling
method that for large data in the grid environment. It has two Grid actors, called
FileFetcher and FileStager, respectively. These actors make use of GridFTP to
retrieve files from, or move files to, remote locations on the Grid. Pegasus has
developed some data placement algorithms in the grid environment and uses the
RLS (Replica Location Service) system as data management at runtime. In
Pegasus, data are asynchronously moved to the tasks on demand to reduce the
waiting time of the execution and dynamically delete the data that the task no
longer needs to reduce the use of storage. In Gridbus, the workflow system has
several scheduling algorithms for the data-intensive applications in the grid
environment based on a Grid Resource Broker. The algorithms are designed based
on different theories (GA, MDP, SCP, Heuristic), to adapt to different use cases.
Taverna proposed a new process definition language, Sculf, which could model
application data in a dataflow. It considers workflow as a graph of processors, each
of which transfers a set of data inputs into a set of data outputs. ASKALON is a
workflow system designed for scheduling. It puts the computing overhead and data
transfer overhead together to get a value ‘‘weight’’. It dose not discriminate the
computing resource and data host. ASKALON also has its own process definition
language called AGWL. Triana is a workflow system which is based on a problem-
solving environment that enables the data-intensive scientific application to
execute. For the grid, it has an independent abstraction middleware layer, called

90 Appendix E: Literature Review

http://www.askalon.org/
http://www.globus.org/cog/
http://www.trianacode.org/
http://gridflow
https://kepler-project.org/

the Grid Application Prototype (GAP), enables users to advertise, discover and
communicate with Web and peer-to-peer (p2p) services. Triana also uses the RLS
to manage data at runtime. GridFlow is a workflow system which uses an agent-
based system for grid resource management. It considers data transfer to
computing resources and archive to storage resources as kinds of workflow tasks.

As for security management, Globus uses public key cryptography (also known
as asymmetric cryptography) as the basis for its security management, which
represents the main stream in the grid security area. Globus uses the certificates
encoded in the X.509 certificate format, an established standard data format. These
certificates can be shared among public key based software, including commercial
Web browsers from Microsoft and Netscape. The International Grid Trust
Federation (IGTF) (http://www.igtf.net/) is a third-party grid trust service provider
which aims to establish common policies and guidelines between its Policy
Management Authorities (PMAs) members. The IGTF does not provide identity
assertions but ensures that within the scope of the IGTF charter, the assertions
issued by accredited authorities of any of its PMAs member can meet or exceed an
authentication profile relevant to the accredited authority. The European GridTrust
project (http://www.gridtrust.eu/gridtrust/) is a novel and ambitious project, which
provides new security services at the GRID middleware layer. GridTrust is
developing a Usage Control Service to monitor resource usage in dynamic Virtual
Organisations (VO), enforce usage policies at run-time, and report usage control
policy violations. This service brings dynamic usage control to Grid security in
traditional, rigid authorisation models. Other services of the security framework
include a Grid Security Requirements editor to allow VO owners and users to
define security policies; a Secure-Aware Resource Broker Service to help create
VOs based on services with compatible security policies; and a sophisticated
Reputation Manager Service, to record past behaviour of VO owners and users as
reputation credentials.

Appendix E: Literature Review 91

http://www.igtf.net/
http://www.gridtrust.eu/gridtrust/

Bibliography

1. Australian Academy of Technology Science and Engineering, Cloud Computing:
Opportunities and Challenges for Australia. http://www.atse.org.au/component/remository/
ATSE-Reports/Information-Technology/CLOUD-COMPUTING-Opportunities-and-
Challenges-for-Australia-2010/. Accessed 1 Aug 2011

2. Aalst, W.M.P., van der Hee, K.M.V.: Workflow Management: Models, Methods and
Systems. The MIT Press, Cambridge (2002)

3. Alexandru, I.: Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Trans. Parallel Distributed Syst. 22(6), 931–945 (2011)

4. Deutsch A, Papakonstantinou Y, Privacy in database publishing. In: 10th International
Conference on Database Theory, pp. 230–245 (2005)

5. Alonso, G., Günthör, R., Kamath, M., Agrawal, D., El Abbadi, A., Mohan, C.: Exotica/
FMDC: a workflow management system for mobile and disconnected clients. Distributed
Parallel Databases 4, 229–247 (1996)

6. Pereira, A.L., Muppavarapu, V., Chung S.M.,: Role-based access control for grid database
services using the community authorization service. IEEE Trans. Dependable Secure
Comput. 3, 156–166 (2006)

7. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Softw. Eng. 33, 369–384 (2007)

8. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson,
D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a Berkeley view of cloud
computing. Technical report, UCB/EECS-2009-28, University of California, Berkeley (2009)

9. Assuncao, M.D.d., Costanzo, A.d., Buyya, R.: Evaluating the cost-benefit of using cloud
computing to extend the capacity of clusters. In: 18th ACM International Symposium on
High Performance Distributed Computing, pp. 1–10 (2009)

10. Australian Government Department of Finance and Deregulation: Cloud Computing Strategic
Direction Paper. http://www.finance.gov.au/e-government/strategy-and-governance/cloud-
computing.html. Accessed 1 Aug 2011

11. Australian Government, Department of the Environment, Water, Heritage and the Arts:
Australian Government ICT Sustainability Plan. http://www.environment.gov.au/
sustainability/government/ictplan/publications/plan/index.html. Accessed 1 Aug 2011

12. Barr J., Varia J., Wood M.: Animoto - Scaling Through Viral Growth. http://aws.typepad.
com/aws/2008/04/animoto—scali.html. Accessed 1 Aug 2011

13. Bhargav-spantzel, A., Squicciarini, A.C., Bertino, E.: Trust negotiation in identity
management. IEEE Security Privacy 5, 55–63 (2007)

X. Liu et al., The Design of Cloud Workflow Systems,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-1933-4,
� The Author(s) 2012

93

http://www.atse.org.au/component/remository/ATSE-Reports/Information-Technology/CLOUD-COMPUTING-Opportunities-and-Challenges-for-Australia-2010/
http://www.atse.org.au/component/remository/ATSE-Reports/Information-Technology/CLOUD-COMPUTING-Opportunities-and-Challenges-for-Australia-2010/
http://www.atse.org.au/component/remository/ATSE-Reports/Information-Technology/CLOUD-COMPUTING-Opportunities-and-Challenges-for-Australia-2010/
http://www.finance.gov.au/e-government/strategy-and-governance/cloud-computing.html
http://www.finance.gov.au/e-government/strategy-and-governance/cloud-computing.html
http://www.environment.gov.au/sustainability/government/ictplan/publications/plan/index.html
http://www.environment.gov.au/sustainability/government/ictplan/publications/plan/index.html
http://aws.typepad.com/aws/2008/04/animoto---scali.html
http://aws.typepad.com/aws/2008/04/animoto---scali.html

14. Borthakur, D.: The hadoop distributed file system: architecture and design. http://hadoop.
apache.org/common/docs/r0.18.3/hdfs_design.html. Accessed 1 Aug 2011

15. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: a survey. ACM Comput.
Surv. 37, 1–28 (2005)

16. Boss, G., Malladi, P., Quan, D., Legregni, L., Hall, H.: IBM cloud computing (White Paper)
(2007)

17. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Gener. Comput. Syst. 25, 599–616 (2009)

18. Cai, T., Gloor, P.A., Nog, S.: DartFlow: A Workflow Management System on the Web Using
Transportable Agents. Dartmouth College, Hanover (1996)

19. Calheiros, R.N., Ranjan, R., Rose, C.A.F.D., Buyya, R.: CloudSim: A Novel Framework for
Modeling and Simulation of Cloud Computing Infrastructures and Services. Grid Computing
and Distributed Systems (GRIDS) Laboratory, Technical report. Department of Computer
Science and Software Engineering, The University of Melbourne (2009)

20. Cardoso, J.: Stochastic workflow reduction algorithm. Technical report, LSDIS Lab,
Department of Computer Science, University of Georgia (2002)

21. Chen, J., Yang, Y.: Multiple states based temporal consistency for dynamic verification of
fixed-time constraints in grid workflow systems. Concurr. Comput.: Pract. Experience 19,
965–982 (2007)

22. Chen, J., Yang, Y.: Temporal dependency based checkpoint selection for dynamic
verification of temporal constraints in scientific workflow systems. ACM Trans. Softw.
Eng. Methodol. 20(3), article 9 (2011)

23. Chen, J., Yang, Y.: Adaptive selection of necessary and sufficient checkpoints for dynamic
verification of temporal constraints in grid workflow systems. ACM Trans. Auton. Adapt.
Syst. 2, article 6 (2007)

24. Chen, J., Yang, Y.: Temporal dependency based checkpoint selection for dynamic
verification of fixed-time constraints in grid workflow systems. In: 30th International
Conference on Software Engineering, pp. 141–150 (2008)

25. Lin, C., Varadharajan, V., Wang, Y., Pruthi, V.: Enhancing grid security with trust
management. In: 2004 IEEE International Conference on Services Computing, pp. 303–310
(2004)

26. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and Design, 4th
edn. Pearson Education Limited, Harlow (2005)

27. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-science: an overview of
workflow system features and capabilities. Future Gener. Comput. Syst. 25, 528–540 (2008)

28. Dogac, A., Gokkoca, E., Arpinar, S., Koksal, P., Cingil, I., Arpinar, B., Tatbul, N., Karagoz,
P., Halici, U., Altinel, M.: Design and implementation of a distributed workflow management
system: METUFlow. In: Doğaç, A., Kalinichenko, L., Özsu, M.T., Sheth, A. (eds.) Workflow
Management Systems and Interoperability, pp. 61–91 (1998)

29. Erl, T.: SOA: Principles of Service Design. Prentice Hall, London (2008)
30. European Commission, The Future of Cloud Computing, Opportunities for European Cloud

Computing Beyond 2010. http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf.
Accessed 1 Aug 2011

31. Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., Turrini, E.: QoS-Aware clouds. In: 3rd
IEEE International Conference on Cloud Computing, pp. 321–328 (2010)

32. Foster, I., Yong, Z., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree
compared. In: Grid Computing Environments Workshop, pp. 1–10 (2008)

33. Zhang G., Yang Y., Yuan D., Chen J.: A trust-based noise injection strategy for privacy
protection in cloud computing. Software: practice and experience, Wiley, to appear.
www.ict.swin.edu.au/personal/yyang/papers/SPE-privacy-2010.pdf. Accessed 1 Aug 2011

34. Gartner: Gartner says worldwide cloud services revenue will grow 21.3 percent in 2009.
http://www.gartner.com/it/page.jsp?id=920712. Accessed 1 Aug 2011

94 Bibliography

http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html
http://hadoop.apache.org/common/docs/r0.18.3/hdfs_design.html
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://www.ict.swin.edu.au/personal/yyang/papers/SPE-privacy-2010.pdf
http://www.gartner.com/it/page.jsp?id=920712

35. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. SIGOPS Oper. Syst. Rev.
37, 29–43 (2003)

36. Gottfrid D.: Self-service, prorated supercomputing fun. http://open.blogs.nytimes.
com/2007/11/01/self-service-prorated-super-computing-fun/. Accessed 1 Aug 2011

37. Grundy, J.C., Apperley, M.D., Hosking, J.G., Mugridge, W.B.: A decentralized architecture
for software process modeling and enactment. IEEE Internet Comput. 2, 53–62 (1998)

38. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good, J.: On the
use of cloud computing for scientific workflows. In: 4th IEEE International Conference on e-
Science, pp. 640–645 (2008)

39. IBM, Understanding quality of service for web services. http://www.ibm.com/
developerworks/library/ws-quality.html. Accessed 1 Aug 2011

40. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, P.B., Maechling, P.:
Scientific workflow applications on amazon EC2. In: Workshop on Cloud-based Services and
Applications in conjunction with 5th IEEE International Conference on e-Science, pp. 59–66
(2009)

41. Kao, B., Garcia-Molina, H.: Deadline assignment in a distributed soft real-time system. IEEE
Trans. Parallel Distributed Syst. 8, 1268–1274 (1997)

42. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science clouds: early
experiences in cloud computing for scientific applications. In: First Workshop on Cloud
Computing and its Applications, pp. 1–6 (2008)

43. Khodakaram-Salimifard, M.W.: Petri-net based modelling of workflow systems: an
overview. Eur. J. Oper. Res. 134, 664–676 (2001)

44. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit analysis of
cloud computing versus desktop grids. In: IEEE International Symposium on Parallel and
Distributed Processing, pp. 1-12 (2009)

45. Krutz, R.L., Vines, R.D.: Cloud Security: A Comprehensive Guide to Secure Cloud
Computing. Wiley, New York (2010)

46. Liangzhao, Z., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30, 311–327
(2004)

47. Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., Yang, Y.: A compromised-time-cost scheduling
algorithm in SwinDeW-C for instance-intensive cost-constrained workflows on cloud
computing platform. Int. J. High Perform. Comput. Appl. 24(4), 445–456 (2010)

48. Liu, X., Chen, J., Wu, Z., Ni, Z., Yuan, D., Yang, Y.: Handling recoverable temporal
violations in scientific workflow systems: a workflow rescheduling based strategy. In: 10th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 534–537
(2010)

49. Liu, X., Chen, J., Yang, Y.: A probabilistic strategy for setting temporal constraints in
scientific workflows. In: 6th International Conference on Business Process Management,
pp. 180–195 (2008)

50. Liu, X., Ni, Z., Chen, J., Yang, Y.: A probabilistic strategy for temporal constraint
management in scientific workflow systems. Concurr. Comput: Pract. Experience 23(16),
1893–1919 (2011)

51. Liu, X., Ni, Z., Wu, Z., Yuan, D., Chen, J., Yang, Y.: A novel general framework for
automatic and cost-effective handling of recoverable temporal violations in scientific
workflow systems. J. Syst. Softw. 84(3), 492–509 (2011a)

52. Liu, X., Ni, Z., Yuan, D., Jiang, y., Wu, Z., Chen, J., Yang, Y.: A novel statistical time-series
pattern based interval forecasting strategy for activity durations in workflow systems. J. Syst.
Softw. 84(3), 354–376 (2011b)

53. Liu, X., Yang, Y., Jiang, Y., Chen, J.: Preventing temporal violations in scientific workflows:
where and how. IEEE Trans. Softw. Eng. doi:ieeecomputersociety.org/10.1109/TSE.2010.99.
Accessed 1 Aug 2011

Bibliography 95

http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://open.blogs.nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/
http://www.ibm.com/developerworks/library/ws-quality.html
http://www.ibm.com/developerworks/library/ws-quality.html
http://dx.doi.org/ieeecomputersociety.org/10.1109/TSE.2010.99

54. Liu, X., Yuan, D., Zhang, G., Chen, J., Yang, Y.: SwinDeW-C: a peer-to-peer based cloud
workflow system. In: Furht, B., Escalante, A. (eds.) Handbook of Cloud Computing.
Springer, Heidelberg (2010b)

55. Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A.:
Scientific workflow management and the Kepler system. Concurr. Comput: Pract. Experience
18, 1039–1065 (2005)

56. Mark, D.: Ryan: cloud computing privacy concerns on our doorstep. Commun. ACM 54, 36–
38 (2011)

57. McCormick, W.T., Sehweitzer, P.J., White, T.W.: Problem decomposition and data
reorganization by a clustering technique. Oper. Res. 20, 993–1009 (1972)

58. Greer, M.B. Jr.: Software as a Service Inflection Point. iUniverse (2009)
59. Moore, M.: An accurate parallel genetic algorithm to schedule tasks on a cluster. Parallel

Comput. 30, 567–583 (2004)
60. Moretti, C., Bulosan, J., Thain, D., Flynn, P.J.: All-Pairs: an abstraction for data-intensive

cloud computing. In: IEEE International Parallel and Distributed Processing Symposium,
pp. 1–11 (2008)

61. Nurmi, D., Wolski, R., Grzegorczyk, C.: Eucalyptus : A technical report on an elastic utility
computing archietcture linking your programs to useful systems. UCSB Computer Science
Technical Report (2008)

62. Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow engine for clouds. In: Buyya, R.,
Broberg, J., Goscinski, A.M. (eds.) Cloud Computing: Principles and Paradigms. Wiley, New
York (2011)

63. Paul, S., Park, E., Chaar, J.: RainMan: a workflow system for the internet. In: USENIX
Symposium on Internet Technologies and System, pp. 15–15 (1997)

64. Poniatowski, M.: Foundations of Green IT. Prentice Hall, London (2010)
65. Raghavan, B., Vishwanath, K.V., Ramabhadran, S., Yocum, K., Snoeren. A.C.: Cloud control

with distributed rate limiting. In: Proceedings of 2007 ACM SIGCOMM, pp. 337–348 (2007)
66. Richard, E.B.: A Bayes explanation of an apparent failure rate paradox. IEEE Trans. Reliab.

34, 107–108 (1985)
67. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful services and

collaborative workflows—a lightweight approach. IEEE Internet Comput. 12, 24–31 (2008)
68. Russell, N., van der Aalst, W.M.P., Hofstede, A.H.M.t.: Exception handling patterns in

process-aware information systems. Technical Report, BPMcenter.org (2006)
69. Russell, N., van der Aalst, W.M.P., Hofstede, A.H.M.t.: Workflow exception patterns. In:

18th International Conference on Advanced Information Systems Engineering, pp. 288–302
(2006)

70. SECES: In: First International Workshop on Software Engineering for Computational
Science and Engineering, in conjuction with the 30th International Conference on Software
Engineering (2008)

71. Serhani, M.A., Dssouli, R., Hafid, A., Sahraoui, H.: A QoS broker based architecture for
efficient Web services selection. In: 2005 IEEE International Conference on Web Services,
pp. 113–120 (2005)

72. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD
Record 34, pp. 31–36 (2005)

73. Sosinsky, B.: Cloud Computing Bible. Wiley, New York (2010)
74. Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific

Workflows for Grids. Springer, Heidelberg (2007)
75. Vecchiola, C., Chu, X., Buyya, R.: Aneka: A software platform for.NET-based cloud

computing. In: 2008 High Performance Computing Workshop, pp. 267–295 (2008)
76. Wang C., Wang Q., Ren K., Lou W.: Ensuring data storage security in cloud computing. In:

17th IEEE International Workshop on Quality of Service, pp. 1–9 (2009)
77. Wang, L., Jie, W., Chen, J. (eds.): Grid Computing: Infrastructure, Service, and Applications.

CRC Press, Talyor & Francis Group, Boca Raton (2009)

96 Bibliography

78. Wang, L.H., Kunze, M., Tao, J.: Performance evaluation of virtual machine-based grid
workflow system. Concurr. Comput.: Pract. Experience 20(15), 1759–1771 (2008)

79. Weiss, A.: Computing in the cloud. ACM Networker 11, 18–25 (2007)
80. White, T.: Haddop the Definite Guide. O’Reilly Media, Sebastopol (2009)
81. Winsborough, W.H., Li, N.: Safety in automated trust negotiation. ACM Trans. Inf. Syst.

Secur. 9, 352–390 (2006)
82. Workflow Management Coalition: The Workflow Reference Model, WFMC-TC-1003 (1995)
83. Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented hierarchical scheduling

strategy in cloud workflow systems. J Supercomput. http://dx.doi.org/10.1007/
s11227-011-0578-4. Accessed 1 Aug 2011

84. Yan, J., Yang, Y., Raikundalia, G.K.: SwinDeW—a peer-to-peer based decentralized
workflow management system. IEEE Trans. Systems, Man and Cybernetics, Part A 36, 922–
935 (2006)

85. Yang, Y., Liu, K., Chen, J., Lignier, J., Jin, H.: Peer-to-peer based grid workflow runtime
environment of SwinDeW-G. In: 3rd International Conference on e-Science and Grid
Computing, pp. 51–58 (2007)

86. Young, J.W.: A first order approximation to the optimal checkpoint interval. Commun. ACM
17, 530–531 (1974)

87. Yu, J., Buyya, R.: A taxonomy of Workflow Management Systems for Grid Computing.
J. Grid Comput. 3(3–4), 171–200 (2005)

88. Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate data storage
in scientific cloud workflow systems. In: 24th IEEE International Parallel and Distributed
Processing Symposium, pp. 1–12 (2010)

89. Yuan, D., Yang, Y., Liu, X., Chen, J.: A local-optimisation based strategy for cost-effective
datasets storage of scientific applications in the cloud. In: IEEE International Conference on
Cloud Computing, pp. 179–186 (2011)

90. Yuan, D., Yang, Y., Liu, X., Chen, J.:On-demand minimum cost benchmarking for
intermediate datasets storage in scientific cloud workflow systems. J. Parallel Distrib.
Comput. 72, 316–332 (2011)

91. Yuan, D., Yang, Y., Liu, X., Zhang, G., Chen, J.: A data dependency based strategy for
intermediate data storage in scientific cloud workflow systems. Concurr. Comput.: Pract.
Experience. http://onlinelibrary.wiley.com/doi/10.1002/cpe.1636/pdf. Accessed 1 Aug 2011

92. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce
performance in heterogeneous environments. In: 8th USENIX Symposium on Operating
Systems Design and Implementation, pp. 29–42 (2008)

Bibliography 97

http://dx.doi.org/10.1007/s11227-011-0578-4
http://dx.doi.org/10.1007/s11227-011-0578-4
http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1002/cpe.1636/pdf

	001Download PDF (1.5 MB)front-matter
	The Design of Cloud Workflow Systems
	Preface
	Acknowledgments
	Contents
	About the Authors
	Introduction

	002Download PDF (1.7 MB)fulltext
	1 Workflow Systems in the Cloud
	1.1…Background: Cloud Computing
	1.2…Background: Workflow Systems
	1.3…Cloud Workflow Systems
	1.4…Motivating Examples
	1.5…Key Issues in the Design of Cloud Workflow Systems

	003Download PDF (1.7 MB)fulltext
	2 Cloud Workflow System Architecture
	2.1…General Cloud Software Architecture
	2.1.1 Cloud Architecture
	2.1.2 Example: Aneka Cloud Architecture

	2.2…General Architecture of Cloud Workflow Systems
	2.2.1 Cloud Workflow System Architecture
	2.2.2 Example: Window Workflow Foundation Architecture

	004Download PDF (1.6 MB)fulltext
	3 Cloud Workflow System Functionality
	3.1…Classical Workflow Reference Model
	3.2…Basic Functionalities of Cloud Workflow Systems
	3.2.1 Cloud Workflow System Functionality
	3.2.2 Example: Kepler Web/Grid Service Management
	3.2.3 Example: CloudBus Cloud Resource Management

	005Download PDF (2.0 MB)fulltext
	4 Cloud Workflow System Quality of Service
	4.1…QoS of Cloud Services and Web Services
	4.1.1 General QoS
	4.1.2 SLA Management

	4.2…QoS of Cloud/Grid Workflows
	4.3…A Generic QoS Framework
	4.4…Example 1: Time Management (on Temporal Constraints)
	4.5…Example 2: Cost Management (on Data Storage)
	4.5.1 Cost Model of Datasets Storage in the Cloud
	4.5.1.1 Data Dependency Graph
	4.5.1.2 Cost Rate of Datasets Storage in the Cloud

	4.5.2 Minimum Cost Benchmarking of Datasets Storage in the Cloud
	4.5.3 Cost-Effective Datasets Storage Strategies
	4.5.3.1 Cost Rate Based Strategy
	4.5.3.2 Local-Optimisation Based Strategy

	4.6…Example 3: Reliability Management (on Data Replication)
	4.6.1 Data Replication
	4.6.2 Data Storage Reliability Model
	4.6.3 Cost-Effective Incremental Replication Strategy

	4.7…Example 4: Security Management (on Privacy)
	4.7.1 Privacy Protection in Cloud
	4.7.2 Trust Based Privacy Protection

	006Download PDF (2.1 MB)fulltext
	5 Case Study: SwinDeW-C Cloud Workflow System
	5.1…Overview of SwinDeW-G Environment
	5.2…SwinDeW-C System Architecture
	5.2.1 SwinCloud Infrastructure
	5.2.2 Architecture of SwinDeW-C
	5.2.3 Functionalities of SwinDeW-C Peers

	5.3…QoS Management Components in SwinDeW-C
	5.3.1 Performance Management in SwinDeW-C
	5.3.2 Data Management (Storage and Replication) in SwinDeW-C
	5.3.3 Security Management in SwinDeW-C

	5.4…SwinDeW-C System Prototype
	5.5…Experiments
	5.5.1 Evaluation on Performance Management
	5.5.2 Evaluation on Data Storage Management
	5.5.2.1 General Random Simulations and Results
	5.5.2.2 Specific Pulsar Searching Simulation and Results

	007Download PDF (3.7 MB)back-matter
	Appendix A Performance Management Strategies
	A.1 Probability Range for Recoverable Temporal Violations
	A.2 Minimum Probability Time Redundancy
	A.3 Temporal Checkpoint Selection and TemporalVerification Process
	A.4 A Novel General Two-Stage Local Workflow ReschedulingStrategy for Recoverable Temporal Violations

	Appendix B Data Storage Management Strategies
	Appendix C Replication Management Strategies
	Appendix D Trust-Based Noise Injection Strategy
	Appendix E Literature Review
	Bibliography

