

Software Architecture

Oliver Vogel ¢ Ingo Arnold ¢ Arif Chughtai
Timo Kehrer

Software Architecture

A Comprehensive Framework and Guide
for Practitioners

@ Springer

All Authors Arif Chughtai

authors @software-architecture-book.org arif.chughtai @software-architecture-
book.org

Oliver Vogel

oliver.vogel @software-architecture-book. ~ Timo Kehrer

org timo.kehrer @software-architecture-book.
org

Ingo Arnold

ingo.arnold @software-architecture-book.

org

Translator

Tracey Duffy

TSD Translations

TraceyDuffy @tsdtranslations.org

Copyright © 2009 by Spektrum Akademischer Verlag, Heidelberg, Germany.

Title of the German original: Software-Architektur. Grundlagen - Konzepte - Praxis
ISBN: 978-3-8274-1933-0

All rights reserved.

ISBN 978-3-642-19735-2 e-ISBN 978-3-642-19736-9
DOI 10.1007/978-3-642-19736-9
Springer New York Dordrecht Heidelberg London

ACM Codes: D.2, K.6
Library of Congress Control Number: 2011933921

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Cover Design Editor: KiinkelLopka GmbH
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

“The architect should be equipped with knowledge of many branches of study
and varied kinds of learning, for it is by his judgement that all work done by the
other arts is put to test.” Thus opens Chapter | in Marcus Vitruvius Pollio’s semi-
nal text, “The Ten Books on Architecture” [1]. Readers unfamiliar with Vitruvius’
work may find it surprising to learn that it was published in the first century B.C.,
long before anyone even dreamt of such a thing as software. It is, in fact, the
oldest known engineering text. Yet, this nugget of wisdom from a two thousand-
year-old text resonates fully today, spanning the full continuum of technological
evolution and the growth of engineering knowledge up to our modern world of
software.

Vitruvius goes on: “This knowledge is the child of practice and theory” and, yet
further, “[i]t follows, therefore, that architects who have aimed at acquiring manu-
al skill without scholarship have never been able to reach a position of authority
to correspond to their pains, while those who relied only upon theories and schol-
arship were obviously hunting the shadow, not the substance.”

| cannot think of more apt set of quotations for introducing this book on soft-
ware architecture. Architects, as Vitruvius tells us, must possess not only the
requisite technical knowledge of their domain (i.e., the theory), but they must
understand it, and, true understanding comes only with direct experience (i.e.,
practice). Moreover, architects must take a broad perspective that encompasses
many varied facets of the systems they are designing: more than just the techni-
cal issues and solutions, but also the social, economic, and even psychological
factors that are at play. It has been my experience in close to forty years of
industrial software development that the primary difference between a compe-
tent software architect and a skilled software developer is that architects see
beyond the technology. Architects perceive a software system not as a Java or
C program or even as software, but as an integral part of a greater system that
serves a particular business or technical purpose. Consequently, good software
architects are individuals who care deeply about the system and recognize the
value that it provides, which means that in the process of design they must learn
to become domain experts, but ones distinguished by a deep understanding of
computing technology and its capabilities.

The authors of this book are fully cognisant of what makes a true software ar-
chitect—based on their long-term experience as practitioners. They teach us not
only about the fundamental technical tricks of the trade (WITH WHAT) but also

\

the equally important aspects (WHAT, WHERE, WHY, and WHO) and, last but
not least, HOW all of these can be combined to produce a software design that
hits the sweet spot. In this, the book distinguishes itself from numerous other
books on software architecture—it covers the full spectrum of concerns facing
an architect.

| think that we are fortunate to finally have such a comprehensive treatment
of the topic at our disposal. For practicing architects, this book can serve as a
handy reference—a convenient reminder and check list. For aspiring software
architects, it will expose and demystify some of the less well-known but crucial
aspects involved in the architectural practice and, perhaps, help identify the gaps
they may need to fill to become bona fide heirs of Vitruvius’ long-standing legacy
of engineering excellence.

Bran Selic
Malina Software Corp., Ottawa, Canada

Reference

[1] Vitruvius, “The Ten Books on Architecture,” (translated by Morris Hicky Mor-
gan), Dover Publications, Inc., New York, 1960.

| Foreword

Foreword

For many years now | have been leading the IT Architect Profession program at
IBM in Europe. It is my job to support the development of IT architects and to en-
sure that they keep their knowledge up-to-date. Increasing numbers of custom-
ers and competitors are interested in building up their own architecture skills. The
Open Group, a technology-independent and provider-independent consortium,
has been offering the Open Group Information Technology Architect Certification
Program since 2006. Many of our customers and competitors already use it to
evaluate the qualifications of their employees.

In this context | am excited about the new edition of this book. It describes and
explains very clearly and in a well-structured way what architects of IT systems
do and what IT or software architecture is all about. The book therefore offers a
good basis for familiarizing yourself with the topic and improving your architec-
ture skills. It fits perfectly with the current trend that | see both in The Open Group
and with our customers and competitors. It reflects the way of thinking that we
have been promoting and demanding for many years at IBM.

It is a very good time for IT architects. The trends in IT and technology are de-
veloping ever further and ever faster. A software architecture as the basis for the
development of IT systems has become increasingly important in dealing with
these rapid changes. Not least the whole discussion around the topic of service-
oriented architecture (SOA) has made that more than clear.

| can therefore highly recommend this book for anyone who has recognized the
necessity of dealing with the topic of software architecture. It provides a compre-
hensive starting point for conscious architectural thinking.

Karin Diirmeyer
IBM Distinguished Engineer
IBM IOT Northeast IT Architect Profession Leader

Architecture skills
are becoming
increasingly
important

This book helps
you to build up and
expand these skills

The time is ripe to
get into this exciting
topic...

...and develop
an architectural
awareness

Preface

In everyday IT work, the term “software architecture,” or “architecture” in general,
has become ever-present, and due to its enormous relevance for project suc-
cess, can no longer be ignored. Business cards show job titles such as Security
Architect, Data Architect, System Architect, or even Enterprise Architect. We cre-
ate documents with the title “Solution architecture” for customers, for example,
or customers themselves request architecture from suppliers. Although the term
“architecture” is used so frequently, on closer inspection, it is clear that architects,
project leaders, developers, and other stakeholders do not share a common un-
derstanding of the term.

For some of us, “architecture” is the selection and use of a technology; for others,
“architecture” is a process; for many, “the architecture” is a folder with drawings
containing geometrical figures connected to one another; for others again, “archi-
tecture” may be everything that “the architect” produces—whatever this may be.
In its practical use, the term “architecture” covers quite a broad scope—that is,
it is not defined or understood uniformly. This often makes it difficult for several
people to work together and communicate efficiently in the architecture domain
and in daily working life.

When we decided to write a book about software architecture some years ago,
we started our project by initially taking stock. We quickly learned that even with-
in a strictly limited group of experienced software architects, it was not as easy to
clearly define software architecture itself as we had expected. We realized that,
even though we all had years of experience in designing, describing, or verifying
software architectures, we did not have a uniform, precise understanding of the
architecture domain.

We became more and more aware of how important it was to develop a com-
mon understanding and vocabulary. An architecture framework that establishes
a common, uniform terminology would allow us to look at and explain the archi-
tecture topic discriminatingly. This type of holistic framework was something we
had always been looking for in our professional careers.

We looked back to the time when we ourselves were primarily software develop-
ers and were confronted with the term “software architecture” for the first time.
At this point in time, “software architecture” was a very abstract term for us,
and it was difficult for us to really grasp what it meant. There was no intuitive
architecture framework available that would have enabled us to understand this

As a term,
architecture is ever-
present ...

... and interpreted in
lots of different ways

... initially even
within the team of
authors

Our desire for
an architecture
framework ...

... and orientation

Our architectural
thinking developed
over time

Our book vision

Our challenges

important field of topics. Theory and practice concentrated primarily on individual
aspects of architecture and did not allow a holistic understanding. We therefore
tried to find order amongst the architecture chaos ourselves. For a long time,
we had all been subconsciously or intuitively looking for a framework that cov-
ers the important dimensions of the architecture domain. At the beginning of our
journey through the IT world, we needed a lot of technical and detailed knowl-
edge. We therefore concentrated on acquiring knowledge about techniques and
technologies, process models, methods, and organizations. In the course of our
professional life and thus throughout our educational journey, each one of us,
constantly and partly without being aware of it, derived his understanding of the
architecture domain from this collection of isolated individual insights. With this
book project, we had finally arrived at the point where we could reconcile our
individual understandings, bring them together to formulate a common under-
standing, and make this the core of our book.

We all knew that there is no one architecture examination that gives the one ar-
chitecture certificate that you can pass or acquire in order to then be able to call
yourself a certified architect. In the course of our lives as computer scientists, we
had all already worked in lots of roles. As analysts, software developers, testers,
project leaders, designers, or enterprise architects, we knew that architecture
has many faces and that the architecture aspect is decisively important for many
roles—not solely for the role of the architect. Our experience was also that, in
addition to further technical education, we first had to gather sufficient practical
experience before we could start to think “architecturally.”

The primary goal of our book is to give readers orientation in the architecture
domain. In our view, many books about architecture focus too heavily on the
topic of technology. Other books concentrate on architecture documentation and
nomenclatures and their related techniques. Some other books look at solution
patterns for architecture problems. And finally, relevant computer magazines
regularly cover reports on project experiences in which the architecture aspect of
a solution presented is very often the factor that gives the article its substance.
However, in our opinion at least, hardly any of these works attempt to give the
reader a comprehensive orientation in the topic of architecture. Most of the books
we know concentrate only on selected sub-areas of architecture. And the few
books that cover architecture more broadly still lack more or less a thorough
structure that provides orientation, or rather, a book architecture.

We thus faced two great challenges. The first challenge was to design a book
structure that addressed the aspects of orientation, theory, and practice—for us,
all of these aspects are equally important. Our second challenge was to develop
and describe a software architecture model that then allowed us to work through

| Preface

the multi-dimensional nature of this topic appropriately and to use it as a stable

core for our book. The result of this initial and fundamental work was the archi-

tecture of the book itself. We describe this in detail in Chap. 2 and it is structured

as follows:

> Explanation of the architecture dimensions (e.g., requirements in the con-
text of architecture) based on a holistic architecture framework.

> Presentation of the parts of the individual architecture dimensions relevant
in practice.

> Practical application of the architecture contents covered in the book.

This book is thus the result of our desire for a work that structures the topics
around architecture sensibly, is based on practice, and that conveys correspond-
ing practical experience. In particular, the book is independent of any specific
technology and is timeless. For us therefore, this book belongs to that group of
fundamental works that provides you with a stable and future-proof reference
system that goes beyond current technological trends. The task that we set our-
selves with writing this book was not easy—it required all of the authors to look
at the topic of architecture intensively and in great depth beyond the otherwise
usual level of considering different aspects in isolation. In the time in which we
produced this book, we learned a lot. We discussed and debated with one an-
other. As a result of working together on this book, we gained a lot of new and
valuable knowledge and a common understanding of architecture.

You now hold our understanding of architecture in your hands. We hope that our
claim of arranging and explaining the topic of architecture for you, and anchoring
it in practical examples, will help you in your dealings with this interesting and
important area of your working life or your studies.

The first edition of this book appeared on the German-speaking market in autumn
2005. In our view, the great success that the first edition enjoyed was connected
to the fact that at this time, conceptual, planning, educational, or organizational
contributions in IT had gained importance to the extent that specialized technical
knowledge was outsourced to countries with pay structures and an expert basis
that further encouraged this trend. From then on, the role of the architect, with its
holistic and integrative view of the IT challenges, formed the spearhead of a new
generation of training profiles within computer science and neighboring domains.
This had a corresponding positive effect on the sales of our fundamental work.

The high demand for the first edition of our book meant that we were able to of-

fer our German-speaking readers a revised and updated second edition of the
book in 2008.

| Preface

Our book

History of the book
and the English
version

Our thanks

Xl

In the meantime, we received numerous requests from non-German-speaking
colleagues to provide an English translation of our book. All of the authors work
in an international, primarily English-speaking environment, and, thanks to pre-
sentations at IT conferences or university contacts, have regular exchanges with
English-speaking colleagues. We therefore quickly agreed when we received a
request from Springer for a further revised version of our book—this time in Eng-
lish. We used the opportunity of producing an English translation to improve the
contents further based on reader feedback, our practical experience, and current
IT developments, such as cloud computing.

Although the translation and the repeated revision of this third edition cost our
translator and us as authors many hours of our free time, we are all happy that
we took advantage of this opportunity. In particular, we are delighted to finally be
able to offer our book to a global audience.

At this point we would like to thank everyone who gave us the freedom to work
on this project and who supported us. This includes our partners and children,
our friends and colleagues, our employers and superiors. We would like to thank
all of those who gave up their time for us and constantly gave us new strength.

Our sincere thanks also go to our translator, Tracey Duffy. With her extremely
professional and team-oriented approach and her great talent for technical trans-
lation, she provided us with continuous support in realizing this translation proj-
ect. Her assistance enabled us to meet our high quality standards, and to do so
highly efficiently and right on schedule.

Finally, we would like to thank Ralf Gerstner at Springer, who provided us with

continuous and professional support in producing this third edition of our book,
and who did so with great patience.

| Foreword

Contents

1| INErOAUCHION ..ottt s s e s s s s s s s s snans 1
1.1 Starting Position and Aims of the BoOK..........cccccooveeiiiiiiniiee e 2
1.2 What is Software ArchiteCture?ccceviiiiiiiiiiic e 7
1.3 REAET GUIAE.......ooiuiiiiiiiie it 10

1.3.1 BOOK STIUCIUIEcoiiiiiiiiiiieiie e 10
1.3.2 Target AUGIENCEcouviiiiie e 12
1.3.3 Chapter OVEIVIEWcocviiiiiiiiiii e 13
1.3.4 Chapters in Detail............coooiiiiiiiiiii e 17
L S U g o =T Y2 USSR 19
Further Reading ..o 20

2| Architecture Orientation FrameWOrkuceueerereesrersesserssessessesnns 23
2.1 MOEIVALION ... e 24
2.2 Overview of the Frameworkcccvviiiiiiiiiiieniene e 26
2.3 Architectures and Architecture Disciplines (WHAT)ccooeiiiivieeenieen. 29
2.4 Architecture Perspectives (WHERE).........cccooiiiiiiiiiiiicc e 30
2.5 Architecture Requirements (WHY)oooiiiiiiiiie e 31
2.6 Architecture Means (WITH WHAT)ooiiiiieeeeee e 32
2.7 Organizations and Individuals (WHO)...........ooooiiiiiiiie e 34
2.8 Architecture Method (HOW)........cueiiiiiiieiee e 35
2.9 SUMIMAIY ..ttt e e e et e st e e e nee e e smee e e s teeeeaneeeesnneeeenneeeenn 36
Further Readingcoooiiiiiiii e 36

3| Architectures and Architecture Disciplines (WHAT)ccceceeureeereeennn. 39
3.1 Classic Architecture as Starting Point ... 40
3.2 From Classic Architecture to Software Architecture.............cccccovies 43
3.3 Architecture and the System Concept..........ccceviiiiiiiiiiii e 53
3.4 Architecture and the Building Blocks of a System..........ccccceviveeiiiennnns 57
35 SUMMANY .ot e e e e e nanee s 62
Further Readingooooiiiiiiii e 63

4| Architecture Perspectives (WHERE)...........cceceueeueteesseesssenssssssssssssssnans 65
4.1 ArchiteCture LEVEIS........cocuiiiiiiiiiiieii e 66

4.1.1 Organizational Level ... 72
4.1.2 SYStEM LEVEL....oeiiiiiiiii e 73
4.1.3 Building BIOCK LEVEIc.ueiiiiiiiiiiii e 74
4.2 ArChiteCture VIBWS.......ccoiiiiiiiiii et 76
4.2.1 Zachman Frameworkcccviiiiiiiiiieeiiee e 86
4.2.2 Reference Model for Open Distributed Processing 88
4.2.3 441 VIEW MOUEL.......cccuiiiiiiiiiiic ittt 90
4.2.4 The Open Group Architecture Frameworkcccccoeevveeeeeennne 91
I B U 4010 0 =1 YRR 92

Further Readingcoouiiiiiii e 93

5| Architecture Requirements (WHY)........c.ccocoeureeeureneurenesreeesesesssecssessesenns 97

5.1 Requirements Characteristics and Typescccceviiiieiieiiicieeee e 98
5.2 Organizational RequIrementscccceeiiiieriie i 104
5.3 System ReqUIrEMENTS.......ccccuuiiiiiiiiiiieeeee e 105
5.4 Building Block RequiremMents ..o 106
5.5 Qualities and CoNStraintS..........oocueiiiiieeiii e 107
5.6 Requirements in the Context of Architecturec.cccoviiiiiiinen, 110
5.7 SUMMAIY ...t e et e e e e e e e e e e 113
Further Readingcooooiiiiiiii e 114
6 | Architecture Means (WITH WHAT)...........ccooueemrreerrenessensssesssssssassessesesans 115
6.1 Architecture PrinCIpIescccccciiiiiiiiiieeeee e 118
6.1.1 Principle of Lo0S€ COUPIINGcocvviiiiiiiiiiieeiiiee e 120
6.1.2 Principle of High Cohesion...........cccceeiiiiieeniieieee e 123
6.1.3 Principle of Design for Changecccecveiiieinieeiee e 125
6.1.4 Separation of Concerns Principle.........ccccceeeviiieieceicciieee e, 127
6.1.5 Information Hiding PrinCipleccocceviiiiiii e 129
6.1.6 Abstraction PrinCiples...........cccoiiiiiiiiiiiie e 131
6.1.7 Modularity PrinCIpIeeoiiiiiiiieeee e 133
6.1.8 Principle of Traceabilityccccoeriiiriiieee e 136
6.1.9 Self-Documentation Principle.........ccccoooiviiiiiiicieeeeceee e, 137
6.1.10 Incrementality PrinCiplecccccoeeiiiiiiiieiieeee e 137
6.1.11 Further Architecture PrinCiplescccccvieiiiieeiie e 138
SUMIMEAIY ..ttt st e e et e s e e 139
6.2 Basic Architecture CONCePLSeeeviiieiiiiiieiie e 140
6.2.1 Procedural Approaches...........ccoooieiieciciiiiiiiiiieeeeeeeeee e e 141
6.2.2 Object Orientationccooiiiiiiiie e 143
6.2.3 Component Orientationcccceeiieiiiiiiic e, 148
6.2.4 Metaprogrammingcceeiiuueeinieeeiiiee e 150
6.2.5 Generative Creation of System Building Blocks............c..cccc...... 152
6.2.6 Model-Driven Software Developmentcccoceeiiiieiiinennee. 156
6.2.7 Aspect Orientation.............c.cooieiiiiiii e 163
6.2.8 Scripting Languages and Dynamic Languages............ccccccceenn.... 167
6.2.8 SUMMAIY ...oviiiieiiiiieie ettt e e e et e e e s araeeas 170
6.3 Architecture Tactics, Styles, and Patterns...............occooeeeiiiiieeeecies 171
6.3.1 Requirement Patterns ... 172
6.3.2 Architecture TactiCsc..eeiiiiii e 174
6.3.3 Architecture Stylesccoeiiiiiiiiie e 176
6.3.4 Architecture Patterns..........cccooiiiiii 179
6.3.5 Pattern Languages........cc.uevveeiiiiiiiiee e 186
6.3.6 SUMMAIY ...ttt 190
6.4 BasiC ArchiteCturesccoocuiiiiiii e 190
6.4.1 Layered ArchiteCturesccooveiiiiiieiiiic e 193
6.4.2 Dataflow ArchiteCturesooceeeeiiiieeiie e 194
6.4.3 REPOSITOMES ...vvveieiiiiiiieieee e e e e 194
6.4.4 Client/Server ArchiteCtureccoceeiiii i 195
6.4.5 n-Tier ArchiteCture ..o 196
6.4.6 Rich Client versus Thin Client............cccooiiiiiinieeiec e, 198

XV | Contents

7

6.4.7 Peer-To-Peer Architecture............cceeeeeiiiiiiiiiceeeeee e, 199

6.4.8 Publish/Subscribe Architecture ... 200
6.4.9 MIdAIEWArE......ccoiiiiiii e 200
6.4.10 Component Platformscccccveeiiiiiiiiiiee e 204
6.4.11 Service-Oriented ArchiteCtures............ccoeveeiieiiieee e 206
6.4.12 Security ArchiteCturescoovueviiiieiiii e 212
6.4.13 Cloud Computing Architectures..........ccccovvrveeiiiieiiiiec e 220
6.4.14 SUMMAIYeeiiiiiiiiiee ettt et a e e e e ee e e e e e nneeas 230
6.5 Reference ArchiteCtures...........oovceeriiiieicee e 231
6.5.1 Definition and Elementscccceiiieiiiii e 232
6.5.2 Use and Advantages of Reference Architectures........................ 233
6.5.3 Requirements Placed on Reference Architectures 234
6.5.4 Types of Reference Architecturesccccoociiniiciiiciiic e, 234
6.5.5 Example of a Reference Architecture..........cccceevevveveieienennnnnn. 235
6.5.6 SUMMAIY ...t e e e eneeas 239
6.6 Architecture Modeling Means............oooiiiiiiiiiiiiiie e 240
6.6.1 Basic Concepts of Modeling.........cccooveeiiiiiiiiiiiiinieeeee e 240
6.6.2 Unified Modeling Languageccccveviieeiiiiienieee e 243
6.6.3 Domain-Specific Languagescccoceeeviiiiiiiieeinieeecsee e 252
6.6.4 Architecture Description Languagesccccocooveeiiiiiiieeeenieeee. 253
6.6.5 Unified Method Architecturecccoviiiiiiii i
6.6.6 SUMMAIY ..t
6.7 Architecturally Relevant Technologies
6.7.1 Middleware SyStemsScooveviiiiiiiiiee e
6.7.2 Databases and Persistence of Business Objectsc.c...... 269
6.7.3 XML and Other X Standardsc.ccceevrieiinieeeniiee e 272
6.7.4 Dynamic Web Pages and Web Application Servers.................... 274
6.7.5 Component Platformsccccooiiiiiiiiiii e 275
6.7.6 WED SErviCES ... 278
B.7.7 SUMMAIY ..ottt ee et eare e s e e e s e ennes 279
Further REAAINGcooiiiiiiiiiii e 280
Further Reading: 6.1 Architecture Principles............cc.ccocovieieeiiiinnnnn.n. 280
Further Reading: 6.2 Basic Architecture Conceptsccccoceeeenieene 282
Further Reading: 6.3 Architecture Tactics, Styles, and Patterns........... 282
Further Reading: 6.4 Basic Architectures............cccccociiniiiiiiiiinee 283
Further Reading: 6.5 Reference Architectures..........ccccoeccviiiieeneens 285
Further Reading: 6.6 Architecture Modeling Means............cccccoccuueee.. 285
Further Reading: 6.7 Architecturally Relevant Technologies................ 286
| Organizations and Individuals (WHO)ceceeeeuerrerercensereeessessseessenns 287
71 GENEIAL ..t e e 288
7.2 OrganizationSocueeeiiieeiiiie e 291
7.3 INAIVIAUALS ..o e e e a e 295
7.4 Individuals and GrOUPSccoecuuriieeieiiiiiee et eeeiree e e e e 297
7.5 Architect as Central ROlcccoiiiiiiiee e 301
7.6 SUMIMAIYoviiiieieiitiie e e ettt e e e e et e e e e e st aae e e e et e eeeeeeessnsaeeeeeannsbeeeaasaanns 306
Further REAdiNGueiiiiiiiiii e 308
| Contents

XV

XVI

8 | Architecture Method (HOW)...........cceuecuercuerreeseeeseesseessseesssessssessesesans 311

8.1 Architecture and Development Processesccccceeeeiiiiiiccccccnnnnns 312
8.2 Overview of the Architecture Methodccooceeiiiiiniiicee 319
8.3 Creating the System Vision.........ccccooiiiiiiiin e 326
8.4 Understanding the Requirementscccooviiiiiiniii e, 336
8.5 Designing the ArchiteCturecoooeeviiiiiiiii e 346
8.6 Implementing the Architecturecccooiiiiiiiiiie e 372
8.7 Communicating the Architectureccccooiii e 378
8.8 Maintaining the Architecture...........ccccoo i, 392
8.9 SUMMAIY ...t st e et s e e e naeee s 395
FUurther REAdINGcccoo i 400
SumMmarizing Figures........cccoiiininie e 405
LT oL T | 409
List of Abbreviationscccccirninnn 433
Bibliography ..o 439
INAEX..cuiiiiiiiir i 463
| Contents

About the Authors

Oliver Vogel is a certified Enterprise and IT Architect with IBM Switzerland. He
leads, coaches, and acts as consultant for international projects in architecture
topics such as architectural design, implementation, evaluation, and governance.
He is also the worldwide IBM Enterprise Architecture Education leader.

Ingo Arnold is a Global Enterprise Architect with Novartis, Switzerland. In addi-
tion to his role at Novartis, Ingo is an Associate Professor at the Universities of
Basel, Switzerland, and Lérrach, Germany. He is also a well-known speaker at IT
conferences, where he holds presentations on topics such as SOA, IT Security,
and IT Governance for international audiences.

Arif Chughtai has been a successful freelance IT consultant and IT trainer for
more than 10 years. His specialist fields include software architecture, service-
oriented architectures, object-oriented software development, and model-driven
software development. He regularly shares his expert knowledge in lectures,
presentations, and technical articles.

Timo Kehrer is a scientific employee at the Software Engineering Group of the
University of Siegen, Germany. He is currently researching model-based soft-
ware development, model comparison, model version management, and model
evolution.

1 | Introduction

This chapter positions the topic of software architecture and provides important
basic information. Firstly we will explain the relevance of architecture for devel-
oping IT systems. This is fundamental information for the following chapters. We
will then show what the concept “architecture” covers in IT. The chapter closes
with an overview of the structure of the book, the intended target audience, and
the contents of the book. After reading this chapter you will know what architec-
ture means and comprises in IT. You will also know the main aims of our book
and how to use it.

Overview

1.1 Starting Position and Aims of the Book 2
1.2 What is Software Architecture? 7
1.3 Reader Guide 10
1.4 Summary 19

Further Reading 20

Software is complex
and becoming even
more so

Software architecture
has a key position

Evolution of software
development

Our motivation I:
Give orientation for
architecture

1.1 Starting Position and Aims of the Book

The desire to implement increasingly complex requirements faster and more
cost-effectively, whilst maintaining the same level of software quality, and the
complexity of maintaining (global) widely ramified, interlinked IT systems, have
put the topic of software architecture increasingly into the spotlight for some
years now. This applies not only to commercial business software but also to
all other IT domains, for example, embedded systems, mobile communication,
or social networks. However, due to the unstructured way in which software is
still frequently developed even today, it is difficult to deal with the complexity of
software appropriately. You can only successfully overcome the challenge this
complexity presents by applying a systematic process that provides structure.
Architecture is a deciding factor in this process.

Architecture has taken up a key position in the successful development of soft-
ware. The way software is developed is currently changing. In the past, the cen-
tral element of a developer’s role was manual programming. Now, the ability to
deal with architectures and to create them is becoming an increasingly important
aspect of a developer’s job. This aspect is also evident from the different options
that now exist for obtaining certification as an architect (see Chapter 7).

You can trace these changes in software development if you look at its evolu-
tion. During the course of this evolution, a developer first worked at the level
of bits and bytes, for example. The developer’s activity then shifted to increas-
ingly abstract levels (assembler, procedural programming languages, object-
oriented programming languages, etc.). These allowed the developer to perform
increasingly complex tasks and implement increasingly complex requirements.
As a consequence, the current evolution steps in software development contain
model-based and highly architecture-centric concepts such as model-driven soft-
ware development (MDSD) (see Section 6.2.6), service-oriented architectures
(SOA) (see Section 6.4.11), business process modeling (BPM), and the very
latest topic, cloud computing (see Section 6.4.13). The awareness for technical
quality and the desire to measure it are also increasing. Modern software devel-
opment tools increasingly take this desire into account and offer corresponding
functionality. You can use metrics (e.g., number of dependencies between sys-
tem building blocks) to check whether developers are considering architecturally
significant aspects sufficiently.

The motivation to write a book about software architecture arose from the chal-
lenges and problems in software development that we, the authors, have been
encountering in our professional lives for some years. Two issues are particularly
important: firstly, what exactly does architecture cover? We often see a lack of
orientation when architecture is a topic on the agenda for projects. Everyone

1| Introduction

knows that architecture is a very important topic and should therefore be “done.”
However, people often do not know what it means exactly, or there is no clear
consensus. When people involved in the project talk about architecture, it is often
the case that each person understands something different. For some, architec-
ture is the schematic diagrams (box and line diagrams) shown on presentation
slides. For others, architecture means defining the signatures of methods and
functions. The lack of orientation is often expressed in the following questions:
> How can you assess whether a supposed architecture presented to you is
actually architecture?

How can you determine the quality of an architecture?

How do you create an architecture?

How does the thing “architecture,” that you have to deliver, manifest itself?
What do you use to create an architecture?

What is architecture?

What is expected of you as an architect or developer when you are asked to
create an architecture?

When and where does architecture take place?

> Who is responsible for architecture?

> Why do you need to create an architecture?

V V.V V V V

v

With our book, we want to give people active in the IT field orientation in the topic
of architecture. This is because we have observed that many developers and
architects are preoccupied with the questions listed above. Also, we have not
yet been able to find a book about architecture that offers a clearly structured,
comprehensive, and focused introduction to the topic—at least, not in the way
that we have often wished.

The second important issue is the poor technical quality of software, which is the
result of not considering architecture (for example, when you have to rewrite a
large part of the source code to take account of new customer requirements).

Every IT system has an architecture. But is this an architecture that has been
deliberately planned, or has it arisen more or less unconsciously and randomly?
The aim should be to achieve a workable architecture. However, a workable
architecture does not just “happen”—it has to be developed deliberately [Brede-
meyer 2002]. Due to the great importance of architecture for the software quality
and the project success, it is very important to have architecture firmly fixed in
thought and to thus develop an understanding for it. Helping you to establish ar-
chitectural thinking and conveying the understanding required to do this are the
central aims of our book.

1.1 Starting Position and Aims of the Book

Our motivation Il:
Improve software
quality

Our book conveys
understanding for
architectural thinking

At the beginning
there is a “wish list”

... followed by a
“concept” ...

... changes are sud-
denly necessary ...

... the project has
to deviate from the
concept ...

.... the inevitable
result: a big ball of
mud!

Why did the software
have to end as a big
ball of mud?

How do architects, developers, and other people involved in projects frequently
experience the process of a software development project? We are sure that the
following scenario will not be completely new to you. A project generally begins
with recording the customer’s requirements as quickly as possible in the form
of a “wish list”. The aim is then to convert this wish list into source code equally
fast. There is not a lot of time for questioning the wish list. The focus is on a user
interface that satisfies the customer’s requirements and is outwardly effective
(but not necessarily user-friendly). This gives the customer something tangible
quickly, and you can show the customer that you are in control of the situation.

Before the points on the wish list can be distributed to the individual developers
for processing, the “lead developer” creates a more or less technical and ac-
cepted “concept” for the software to be developed based on the wish list. The
developers use this concept as instructions.

During realization—at the latest when requirements change or new requirements
suddenly arise—the first shortcomings of the concept appear.

In the source code, the developers now have to deviate from the concept and
take matters into their own hands. What they do is not documented in the con-
cept because there, of course, nothing is changed “officially”. This is because
you have already “sold” the concept to the customer in perfectly designed pre-
sentations with convincing diagrams. There is also no time to change the con-
cept and the customer would not understand or accept this.

The original concept and the actual source code become increasingly different.
The documentation of the concept soon becomes just a pretty cover. Systematic
structures that the software once contained are now covered in patchwork. Over
the course of time, the software mushrooms into an unfathomable creation along
the lines of the big ball of mud pattern [Foote and Yoder 1999], also known as
“kludge” [Bredemeyer 2002]:

At some point, you reach the situation where nobody knows exactly why and
how the system works. You are just happy that it does work. Maintenance and
implementation of new requirements become a bigger nightmare with every ver-
sion of the software and cost a lot of time and nerves. How did things get so far?
After all, you had a concept! Is the wish list to blame? Is there something wrong
with the concept? How can you prevent a software becoming a big ball of mud?
We asked ourselves these and many other questions and searched for answers.
Many of the answers that we present in our book resulted from the fact that,
often, insufficient attention is given to architecture when IT systems are created.

1| Introduction

L 5

Figure 1.1-1: Software structures out of control (big ball of mud)

The project scenario above is not an exaggeration—it is a widespread reality.
There are also other scenarios, and they all end in a big ball of mud. Most IT proj-
ects fail to some extent. Only around 30% of these projects can claim to conclude
successfully [Standish 2009] despite increasingly progressive technologies (e.g.,
Java EE) and concepts (e.g., SOA). The failure of a project is evident from the
project exceeding the time or budget limits, or the customer being unhappy with
the product delivered. Projects may even be canceled [Yourdon 2004]. Since the
1960s, this situation has been known as the “software crisis” [Dijkstra 1972]. It
first became evident through the immense progress of hardware infrastructure
and the related, almost infinite possibilities that opened up for software develop-
ment. There are many reasons for the software crisis. They include inadequate
architectures.

In building construction, it is a well-known fact that sooner or later, if you do not
have a well-planned architecture, you will encounter problems. If you were to

1.1 Starting Position and Aims of the Book

Many IT projects fail

A well-known fact in
building construction

Symptoms of poor
architectures

build a house without first defining the architecture, you would quickly encounter
problems with statics, stability, integration in the communal infrastructure (e.g.,
electricity and water), etc. To stay with the building construction analogy: often,
when you “construct” an IT system, you start by defining the approximate overall
dimensions, and then, if at all, think quickly about the allocation of rooms and the
number of floors. Everything else (e.g., statics and infrastructure for power and
water) is supposed to somehow just happen “during construction”. The “advance
planning” is documented on a scrap of paper and then “off you go”. You dig out
the space for the foundations, make the molds for the concrete blocks, mix the
concrete, and so on. Over time, fundamental errors gradually appear and you
have difficulty correcting them or you cannot correct them at all. For example,
you realize that the space for the foundations is the wrong size for the concrete
blocks you have made. A counterproductive operational hectic follows, in which
the situation usually just gets worse.

Unfortunately, the consequences of poor architecture in IT often only appear

after a considerable delay. Serious problems may only arise when you go live

with a system for the first time, or when it is already in use and you have to adapt

it for new requirements. An architecture that arises without being planned—i.e.,

that simply develops over time—leads to considerable problems in the creation,

delivery, and operation of a system. The following selection of symptoms can

potentially indicate a poor architecture:

Results of the analysis are not deliberately considered.

Overview is missing.

Complexity runs out of control.

Planning becomes more difficult.

Early recognition of risk factors is barely possible.

Reuse of knowledge and system building blocks becomes more difficult.

Flexibility is restricted.

Maintainability becomes more difficult.

Problems with integration.

Performance is bad.

Architecture documentation is insufficient.

Learning curve for understanding the architecture is too high.

Functionality is redundant.

Development cycles (e.g., translation times) are too long.

System building blocks (e.g., classes) have numerous, unnecessary depen-

dencies to one another.

> System building blocks that cover many different responsibilities and are
therefore difficult to maintain or reuse (“monster building blocks”).

> System building blocks whose implementation details are known in the en-
tire system.

> Numerous system building blocks have to be adapted when there is a
change anywhere in the system (e.g., database or user interface).

V VV V V V V VYV YV V V V VYV

1| Introduction

Even if you have worked out an architecture thoroughly, this is no guarantee
that none of the problems listed above will occur. On one hand, this is because
poor architecture is only one of many factors for the software crisis (others are,
for example, users’ lack of awareness for quality or an unsatisfactory IT strategy
in the enterprise). On the other hand, successfully creating architectures is no
easy challenge due to the inherent complexity of IT systems; on the contrary,
as well as having a broad technical knowledge and well-founded experience,
those responsible have to take a whole series of other aspects into account (e.g.,
stakeholders and requirements).

To introduce and “sell” the main features of an architecture to a non-technical au-
dience (e.g., managers and even lead architects) in an early stage of an IT proj-
ect, it is often very helpful to work with so-called marchitectures (marketing archi-
tectures). These architectures usually take the form of presentation slides with a
series of graphical diagrams and keywords. However, all of the other (technical)
elements that make up a real architecture are missing. Marchitectures become
a problem if you use them in place of a real architecture later on in the project,
thus diverting the term “architecture” from its intended use. This is because the
primary aim of a marchitecture is to sell something—it does not contain any de-
finable technical “nutritional value” for software developers. You cannot use it as
an adequate explanatory model for a system you are developing and the devel-
opers will therefore not accept it. In this case, during the software development,
an architecture develops more or less unplanned and unconsciously depending
on the abilities of the developers.

1.2 What is Software Architecture?

In the context of software, architecture is a relatively new discipline. Conscious
architectural thinking in software development has only been around for a few
decades [Shaw and Garlan 1996]. This is why there are still contradictory opin-
ions on what exactly architecture means. Furthermore, in contrast to physical ob-
jects such as buildings, rooms, or even hardware, where it is obvious that these
need and contain an architecture, this is not immediately evident for software
systems. The result is that in the context of software, architecture is difficult to
comprehend. In spite of this, people involved in software development projects
are confronted with architecture on a daily basis even though they do not notice
it. Architecture is implicitly always an aspect of software and you cannot eliminate
it or ignore it—doing so leads to the negative consequences described in the
previous section.

Faced with this knowledge, the reasons why architecture has to be in a conflict-

ing relationship with the business side become clearer. If there are numerous
questions and uncertainties about architecture on the IT side, this situation is

1.2 What is Software Architecture?

Inherent complexity

Marchitectures

Architecture
is difficult to
comprehend

Architecture and the
business side

even more strongly defined on the business side. It is often difficult to convey to
the business that there is such a thing as architecture for software. In addition,
it is difficult for the business to imagine what direct (financial) benefits an archi-
tecture would provide, since investments in architecture only pay off or can only
be written off in the medium to long-term. This implies that architecture generally
does not bring any benefits until the medium or long-term (e.g., better maintain-
ability), and is therefore only useful for projects with a corresponding long-term
time horizon for the system life cycle, corresponding complex requirements, and
corresponding high risks with regard to resources, project size, etc. (see Fig-
ure 1.2-1). The business is therefore often not prepared to bear the extra costs
connected to architecture (often for political reasons, for example, the creation
or maintenance of artificial costs in software development). Unfortunately there
is no universal solution for overcoming this challenge. Essentially, the issue is
making the return on investment (ROI) of architecture tangible for the business.
One option is to point out the higher financial costs (for example, due to an in-
creased maintenance effort) caused by neglecting architecture, and which can
be avoided in the medium-term, to the business at an early stage. In addition to
ROI, as a result of globalization, compliance is now also at the top of the agenda
for the business. Here you have to show the connection between architecture
and the fulfillment of requirements with reference to IT compliance (for example,
the implementation of security aspects with regard to data protection laws).

large
Low to high High
architecture benefits architecture benefits
w
-
K]
>
3
@
[=%
E
=]
(&)
No Low to high
architecture benefits architecture benefits
low
short Time horizon long

Figure 1.2-1: Criteria for evaluating the benefits of architecture

Focus on people Architecture is not a purely technological issue. It also has numerous social and
organizational aspects (see Chapter 7) that can influence the success of an ar-

1| Introduction

chitecture and thus an entire project considerably. Therefore, in our perception of
architecture, which is the basis of this book, the focus is on the people involved,
and in particular, the architect (see Chapter 2).

It is not easy to define architecture as strictly as facts from mathematics or eco-
nomics, for example. Our definition of architecture, as we present it in Section 3.2,
should be understood as an intuitive clarification of the term “architecture” based
on our experiences and impressions of architecture in our daily project work.
Your project reality may well produce a definition that is different to ours in parts.
There are numerous definitions of the term “architecture” in IT [SEI 2010]. This
shows that it is a challenge to find one definition that is recognized universally. If
you bear in mind that architecture is an important topic in many computer science
disciplines (e.g., software architecture, data architecture, security architecture,
etc., see Chapter 3) and comes into play at different levels of abstraction (see
Chapter 4), it becomes clear why it is difficult to find a universally valid definition
that does not overflow. The following sections prepare the way for our definition
of architecture.

Regardless of the type of IT system you are developing, in order to define the
fundamental parts (and thus the supporting pillars), the architecture always con-
siders the requirements the system must satisfy (see Chapter 5). The architec-
ture does not define the details of the system to be developed [Buschmann et al.
1996]. With regard to a system, an architecture answers the following questions:
> Which requirements are the structuring and decisions based on?

Which are the major logical and physical system building blocks?

How are the system building blocks related to one another?

What responsibilities do the system building blocks have?

What interfaces do the system building blocks have?

How are the system building blocks grouped or layered?

What are the specifications and criteria used to divide the system into build-
ing blocks?

V V.V V VvV V

Architecture thus contains all fundamental specifications and agreements trig-
gered by requirements.

Architecture stretches from the analysis of the problem domain of a system right
up to the realization of the system (see Chapter 8). It is not present at the level
of abstraction of fine-grained structures such as classes or algorithms; instead,
it is present at the level of systems, that is, coarse-grained structures, such as
components or subsystems (see Chapter 4). Nevertheless, there is not always a
strict separation between the aspects of fine-grained and coarse-grained struc-
tures. This means that the border is sometimes blurred.

1.2 What is Software Architecture?

Numerous definitions

Architecture defines
the supporting pillars
and not the details

Where does
architecture stop?

Architecture makes
complexity easier to
understand

Decisions with

system-wide
consequences

Architecture in the
context of IT

Architecture is an
extensive topic

Structuring the topic
“architecture”

10

An important characteristic of architecture is that it makes complexity easier to
control. It does this by showing only the main aspects of a system and not going
into detail. This enables you to get an overview of a system quickly.

The definition of what makes up the fundamental parts of the system and what
the details are is subjective or context-specific [Fowler 2005]. The fundamental
parts are the things that you cannot subsequently change without great effort.
These are structures and decisions that play a decisive role for the development
of a system over time [Fowler 2005]. Examples are the specification of how sys-
tem building blocks exchange data with one another or the selection of the tech-
nology platform (e.g., JEE or .NET). Architecturally significant specifications of
this kind have an effect across the entire system starting from the respective ar-
chitecture level (see Chapter 4). This is in contrast to architecturally insignificant
specifications (for example, specific implementation of a function or method) that
only have a local effect on a system [Bredemeyer and Malan 2010]. The architec-
turally significant structures and decisions, as well as the procedures needed to
determine these specifications, are some of the main topics of this book.

Our book covers architecture that stretches across the creation, delivery, and
operation of software of every kind. This means that the architecture we discuss
has points in common with other architecture disciplines, for example, data archi-
tecture. We do not cover these in detail in our book; we look at them only to the
extent of the points they have in common with software architecture. When we
refer to IT in the book, we are not restricting ourselves exclusively to software;
we also mean implicitly the whole spectrum of IT, in which software is only one
part, even though it is a very important part. Chapter 3 discusses the term “archi-
tecture” in more detail. It answers the questions raised above, and develops the
definition or perception of architecture that we use in our book.

1.3 Reader Guide
1.3.1 Book Structure

Within information technology, architecture is not a clearly delineated or struc-
tured topic in the way that, for example, formal languages or data structures are.
It is a topic that affects various domains of information technology. Architecture
uses well-known information technology concepts (e.g., interfaces) and raises
new, separate concepts (e.g., architecture patterns). These new concepts take
up, use, and connect the already well-known information technology concepts.

One of our first challenges in writing this book was to create the fundamental

structure (i.e., the architecture) for the book. To do this, we had to structure the
topic “architecture” such that you can use our book as an orientation aid that al-

1| Introduction

lows you to acquire the knowledge you require efficiently, without getting lost in
this big topic.

The clear and thorough structuring of the topic “architecture” and the focus on
this topic in its entire breadth, without slipping into areas that are not (immedi-
ately) connected to architecture, distinguishes our book from various other books
on this topic. This clear direction is a priceless advantage for you in dealing with
this extensive topic.

In our book, we structure the topic of architecture using a so-called orientation

framework. Based on simple questions (WHAT, WHERE, WHY, etc.), the frame-

work classifies architecture knowledge into domains. In Chapter 2, we establish

and describe the (architecture) orientation framework. The resulting book archi-

tecture (see Figure 1.3-1) leads to the following basic structuring of our book:

> Part I—Architecture overview and orientation: Gives a first overview of ar-
chitecture and describes the framework that defines the architecture for the
second part of the book.

> Part lI—Architecture knowledge: Describes in detail what architecture con-
tains and conveys theoretical knowledge of architecture.

> Part lll—Appendix: Contains the glossary, list of abbreviations, bibliography,
and the index.

Part I:
Architecture overview and description Architecture overview
of orientation framework and orientation
(orientation)

Architectures and architecture disciplines

Architecture method

|

|

|

| (WHAT)

|

|

: Architecture Architecture

I perspectives means

| (WHERE) (WITH

| WHAT) Part II:
| "
| Architecture Organizations (knowledge) - "map
' requirements Architect and

: (WHY) individuals

[(WHO)

|

l j

|

|

|

|

I
I
I
I
I
I
I
I
I
I
|
: ¢~ Architecture knowledge
|
|
I
I
I
I
I
I
I
I
I

(HOW)
b o e e e e e e e e e — — — — — — — —————— ————————— A
Part llI:
Appendix
Appendix (Glossary, list of

abbreviations, bibliography,
index)

Figure 1.3-1: Book architecture

1.3 Reader Guide

Unique properties of

our book

Book architecture

11

Chapter architecture

IT students, software
developers, IT
architects and IT
manager

12

The part of the book architecture labeled “map” in Figure 1.3-1 (Part Il) is the
architecture orientation framework and your orientation aid for the second part
of the book.

In our book each chapter follows the structure shown in Figure 1.3-2. Each chap-
ter in the second part begins with this map. The area of the map covered in the
respective chapter is highlighted in dark gray. The map is followed by a concept
map (except Chapter 1), giving an overview of the main concepts that the chap-
ter or section covers in detail in context. In Chapters 6 and 8, each individual
section has its own concept map. Each chapter closes with a summary and a
bibliography (in Chapters 6 and 8 at the end of the individual sections). In addi-
tion, Chapter 8 also contains checklists for the various activities of an architect at
the end of each section and before the bibliography.

Map
(except Chapter 1 and 2)

Concept map
(except Chapter 1)

Body

Checklists
(only Chapter 8)

Bibliography

Summary

Figure 1.3-2: Chapter architecture

1.3.2 Target Audience

Our book offers IT students, software developers, and IT architects a holistic
and consistent orientation across all relevant topics in IT architecture generally
as well as in software architecture in particular. IT students can use the book as
a starting point for the topic of architecture alongside corresponding courses of
study. Software developers and IT architects (e.g., software architects, system
architects, or enterprise architects) can use the book to expand their knowledge.

1| Introduction

IT managers (e.g., IT project leads, CIOs, or CTOs) can use our book as a refer-
ence work for specific topics to acquire a basic understanding of architecture.

1.3.3 Chapter Overview

Table 1.3-1 gives an overview of the contents of the individual chapters. They are
described in more detail in Section 1.3.4.

Table 1.3-1: Chapter overview

Part

|

Architecture
overview and
orientation

Il
Architecture
knowledge

11l
Appendix

Chapter
1 Introduction

2 Architecture Orientation
Framework

3 Architectures and Architec-
ture Disciplines (WHAT)

4 Architecture Perspectives
(WHERE)

5 Architecture Requirements
(WHY)

6 Architecture Means (WITH
WHAT)

7 Organizations and Indi-
viduals (WHO)

8 Architecture Method
(HOW)

Contents
Motivation and introduction
Book architecture

Architecture definition
Architecture models
Architecture and requirements

Architecturally significant tech-
niques and technologies

Social and organizational aspects
of architecture and architect roles

Architecture in the development
process and architecture knowl-
edge applied in a case study

Glossary, bibliography, list of ab-
breviations, and index

Chapter 2 is a must for all readers. It describes and defines the architecture of
our book and is therefore the prerequisite for the basic understanding of our
book.

The chapters in the second part of the book do not strictly build on one another.
You can read them in any order.

If architecture is more or less a new topic for you, we recommend that in addition

to Chapters 1 and 2, you read the following chapters in this order: Chapters 3, 4,
5, and finally in no specific order, Chapters 6, 7, and 8 (see Figure 1.3-3).

1.3 Reader Guide

Part I: Chapter 2 is a

must

Part ll: Read in any
order

IT students:
Recommended
chapters

13

Software developers:
Recommended
chapters

14

Architecture overview and description
of orientation framework

- T T T T T T T T T T LA
:) |
I Architectures and architecture disciplines :
| (WHAT) |
' FE X X X |
! s |
: Architecture Architecture |
| perspectives means |
| (WHERE) (WITH :
: ? WHAT) !

1
I Architectu Organizgtions |
: requirements Architect |
| (WHY) oS- !
I 9 I
! I
! 1
! 1
! 1
| 1
! |

Figure 1.3-3: Recommended reading order for IT students

As a software developer you should focus on the non-technology aspects of
architecture. Therefore, we recommend that in addition to Chapters 1 and 2,
you read the following chapters in this order: Chapters 3 and 8 and finally in no
specific order, Chapters 4, 5, 6 and 7 (see Figure 1.3-4).

Architecture overview and description
of orientation framework —
-

r-—fF" """ T T T T T T LA
| [I
I Architectures and architecture disciplines !
i (WHAT) |
: y |
I - ¢ !
| Architecture Archigecture 1
| perspectives Jeans 1
| (WHERE) &2 (WITH I
| s g WHAT) {
i I
I Architecture rgani |
I requirements Architect |% ang 1
: (WHY) s . Sndiviguals I
I o WWHD) !
| o . R — |
' s [) N S 4 :
l Architecture meth® gow) \‘ 1
|

| L L 1
| — !

Figure 1.3-4: Recommended reading order for software developers

1| Introduction

We have observed that IT architects often need to supplement their knowledge
with information about social and organizational aspects. Therefore, we recom-
mend that in addition to Chapters 1 and 2, you read Chapters 7 and 8 and option-
ally in no specific order, Chapters 3, 4, 5, and 6 (see Figure 1.3-5).

of orientation framework

Architecture overview and dascrim% y

(WHAT)

' 4
Architectures and architecture dissiﬁnes
‘ ",

Architecture
perspectives
(WHERE)

Architecture
' means
o (WITH j
y \WHA‘I'}
7 . ; T

Architecture
requirements
(WHY) .

LY
Architect

OrganiZig
' _and
individuals
WHO)

-)
Architecture methad (HOW) y

Figure 1.3-5: Recommended reading order for IT architects

As an IT manager, it is important that you know that architecture is important in
the organizational context too and that you have an overview of the most impor-
tant aspects of software architecture. Therefore, we recommend that in addition
to Chapters 1 and 2, you read the following chapters in this order: Chapters 3
and 4 and in no specific order, Chapters 5, 7, 8, and optionally Chapter 6 (see

Figure 1.3-6).

1.3 Reader Guide

IT Architects:
Recommended
chapters

IT managers:
Recommended
chapters

15

Unified Modeling
Language (UML) is
used

Basics of software
development are not
presented

Basic orientation for
architecture

Disclaimer

16

Architecture overview and description
of orientation framework -
Architectures and architecture disciplines
(WHAT)
- - . e e
- Architecture
o2’ meais
(WITH
- WHAT}
=
Architectur ‘ Organlﬂl
requirements Architect and
(WHY) ividuals,
‘dUHOJ

Architecture method (HOW)

Architecture
perspectives
(WHERE)

Figure 1.3-6: Recommended reading order for IT managers

In many of the diagrams in this book we use Unified Modeling Language (UML)
version 2 (UML2). Readers should therefore be familiar with UML. We do not
introduce UML in detail in this book. If you are interested and would like further
information, see [Booch et al. 2005].

We do not cover basic concepts of software development and technologies men-
tioned in connection with architecture in detail—we look only at their architectural
aspects. The bibliography at the end of the individual chapters (in Chapters 6
and 8 at the end of the individual sections) and in the Appendix provide details of
further sources of information.

You will not find solutions or a collection of guides for technology-specific archi-
tecture problems, such as the separation of business logic and persistence logic
in the context of Java EE in our book. A range of recommended works are al-
ready available for these topics. The primary aim of our book is to give you basic
orientation in architecture. This orientation is the unconditional prerequisite for
enabling you to solve (technology-) specific architecture problems.

In our book, whenever the masculine gender is used, both men and women are
included.

1| Introduction

1.3.4 Chapters in Detail

The first part of the book provides a first overview of the topic “architecture” and
establishes the architecture orientation framework that defines the architecture
for the second part of the book.

This chapter delivers the motivation and basics for the topic “software architec-
ture”. Firstly we explain the relevance of architecture for developing IT systems.
This is fundamental information for the following chapters in the book. We then
show what the concept “architecture” covers in the context of IT. The chapter
closes with an overview of the structure of the book, the intended target audi-
ence, and the contents of the book. After reading this chapter you will know what
architecture means and what it comprises in the context of IT. You will also know
why we wrote this book and what the main aims of our book are. And of course,
you will know how to use the book.

In Chapter 2 we present an architecture framework. It provides orientation by
positioning the significant elements of architecture in an architecture orientation
framework using simple question words. The focal point of the orientation frame-
work is the role of the architect. We also use the framework to convey knowledge
and experience throughout the rest of the book. It enables you to think about
architecture in a structured way and provides you with orientation.

The second part of the book covers essential architecture knowledge. We struc-
ture and convey this knowledge based on the architecture orientation framework
previously introduced.

The third chapter covers the WHAT dimension of the architecture orientation
framework. It conveys a basic understanding of architecture. We also present
the significant building blocks that make up a system and their relationships to
one another. Since the nature of systems and systems thinking are essential for
your work as an architect, we also position these concepts in the context of archi-
tecture. After reading this chapter, you will be able to explain the general nature
of architecture, differentiate between individual architecture disciplines and the
most important building blocks of systems, as well as describe their relationships
with one another.

Chapter 4 looks at the WHERE dimension of the architecture orientation frame-
work. It explains the levels of abstraction at which you are active as an architect
and how architecture is demonstrated at these levels. We also present archi-
tecture views that you can use at these levels of abstraction to make it easier to
manage the different aspects and the resulting complexity of an architecture. Af-
ter reading this chapter, you will be able to differentiate between the relevant ar-

1.3 Reader Guide

Part I: Architecture
overview and
orientation

Chapter 1—
Introduction

Chapter 2—
Architecture
orientation
framework

Part ll: Architecture
knowledge

Chapter 3—
Architectures

and Architecture
Disciplines (WHAT)

Chapter 4—
Architecture
Perspectives
(WHERE)

17

Chapter 5—
Architecture
Requirements (WHY)

Chapter 6—
Architecture Means
(WITH WHAT)

Chapter 7—
Organizations and
Individuals (WHO)

Chapter 8—
Architecture Method
(HOW)

Part lll: Appendix

More information
at www.software-
architecture-book.org

18

chitectural levels of abstraction and use them. Using architecture views, you will
also be able to consider and process specific different aspects of an architecture.

Chapter 5 covers the WHY dimension of the architecture orientation framework.
In the center of this dimension are requirements. They define the IT system to
be created and restrict your creative scope as an architect. There are different
types of requirements at different architecture levels. In order to be able to use
your creative scope, you have to know the different types of requirements and
their relationships to one another and the architecture levels—these topics are
covered in this chapter. After reading this chapter, you will be able to name the
most important types of requirements, understand their relationships, and place
them in the context of architecture.

Chapter 6 looks at the WITH WHAT dimension of the architecture orientation
framework and presents basic concepts and technologies that belong to a soft-
ware architect’s toolbox. After reading this chapter, you will have an idea of the
means you can use to assess, describe, create, and develop architectures.

Chapter 7 looks at the WHO dimension of the architecture orientation framework
more closely. We show organizational and social influencing factors that affect
the architecture of a system and that can influence the work of an architect. We
also provide basic knowledge about groups and their dynamics. In addition, we
define the role of the architect. Applying the knowledge contained within this
dimension enables you to understand the relevance of the influencing factors
mentioned, describe the role of an architect, consider the processes of group
dynamics, and act accordingly.

Chapter 8 concentrates on the HOW dimension of the architecture orientation
framework. Firstly we present knowledge about development processes that is
relevant for you as an architect, before describing your individual activities dur-
ing the creation of a system at a general level. We then make this more concrete
using a real world example. This approach connects the orientation framework to
the contents of the previous chapters. It enables you to understand how to apply
the information presented in the other chapters to a concrete problem.

The Appendix contains supplementary information and aids for using the book in
the form of a glossary, list of abbreviations, bibliography, and index.

At www.software-architecture-book.org, you can find more information about
the book and in the future, various additional contributions on the topic of soft-
ware architecture. We welcome any contribution you would like to make. You can
send us these contributions and your opinion (hints, criticisms, praise, etc.) of our

1| Introduction

book by sending an e-mail to authors@software-architecture-book.org. We
look forward to hearing from you.

1.4 Summary
> Complexity (IT systems and requirements) is the main reason for software Summary:
architecture becoming so important over the past years. Introduction

> The way software is developed is currently changing. The ability to deal
with architectures and to create them is becoming an increasingly impor-
tant aspect of a developer’s job.

> The current evolution steps in software development contain model-based
and highly architecture-centric concepts.

> We often see a lack of orientation when architecture is a topic on the agen-
da for projects.

> With our book, we want to give people active in the IT field orientation on
the topic of architecture.
Every IT system has an architecture.

> A workable architecture does not just “happen’—it has to be developed
deliberately [Bredemeyer 2002].

> Most IT projects fail to some extent. Only around 30% of these projects can
claim to conclude successfully [Standish 2009].

> Unfortunately, the consequences of poor architecture in IT often only ap-
pear after a considerable delay.

> In the context of software, architecture is a relatively new discipline.

> Architecture is only useful for projects with a long-term time horizon, com-
plex requirements, and corresponding high risks.

> Architecture is not a purely technological issue. It also has numerous so-
cial and organizational aspects (see Chapter 7).

> An architecture always defines the fundamental parts and thus the support-
ing pillars but not the details of the system to be developed [Buschmann
et al. 1996].

> In our book, we structure the topic of architecture using a so-called orienta-
tion framework.

> Our book offers IT students, software developers, IT architects, and IT
managers a holistic and consistent orientation across all relevant topics in
IT architecture generally as well as in software architecture in particular.

> Chapter 2 of our book is a must for all readers. It describes and defines
the architecture of our book and is therefore the prerequisite for the basic
understanding of our book.

Further reading: Soft-
ware architecture

Further reading:
Software architecture
means

Further reading: IT
projects, develop-
ment processes and
methods

20

Further Reading

[Bredemeyer 2002]
Bredemeyer, Dana, Introduction to Software Architecture, http://www.brede-
meyer.com/papers.htm, 2002

[Bredemeyer and Malan 2010]
Bredemeyer, Dana; Malan, Ruth, Visual Architecting Action Guide Book, http://
www.ruthmalan.com/, 2010

[Shaw and Garlan 1996]
Shaw, Mary; Garlan, David, Software Architecture - Perspectives on an Emerg-
ing Discipline, Prentice Hall, Upper Saddle River, N. J., 1996

[SEI 2010]

Carnegie Mellon University Software Engineering Institute, Community Soft-
ware Architecture Definitions
http://www.sei.cmu.edu/architecture/start/community.cfm, 2010

[Booch et al. 2005]
Booch, Grady; Rumbaugh James; Jacobson, The Unified Modeling Language,
Addison-Wesley, Amsterdam, 2005

[Buschmann et al. 1996]

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal,
Michael, Pattern-Oriented Software Architecture Vol. 1, A System of Patterns,
John Wiley & Sons, New York, 1996

[Dijkstra 1972]
Dijkstra, Edsger W., The Humble Programmer, Communications of the ACM,
1972

[Fowler 2005]
Fowler, Martin, The New Methodology, http://www.martinfowler.com/articles/
newMethodology.html, 2005

[Foote and Yoder 1999]
Foot, Brian; Yoder, Joseph, Big Ball of Mud, http://www.laputan.org/mud/mud.
html, 1999

1| Introduction

[Standish 2009]
The Standish Group International Inc., The CHAOS Summary 2009, http://www.

standishgroup.com/newsroom/chaos_2009.php, 2009

[Yourdon 2004]
Yourdon, Edward, Death March, Prentice Hall, New York, 2004d

Further Reading

21

2 Architecture Orientation Framework

In this chapter we present an explanatory model for dealing with architecture.
This model provides orientation by positioning the significant elements of archi-
tecture in an architecture orientation framework using simple question words.
The focal point of this framework is the role of the architect. We also use the
framework to convey knowledge and experience throughout the rest of the book.
It enables you to think about architecture in a structured way and to orient your-
self.

Overview

21 Motivation 24
2.2 Overview of the Framework 26
2.3 Architectures and Architecture Disciplines (WHAT) 29
2.4 Architecture Perspectives (WHERE) 30
2.5 Architecture Requirements (WHY) 31
2.6 Architecture Means (WITH WHAT) 32
2.7 Organizations and Individuals (WHO) 34
2.8 Architecture Method (HOW) 35
29 Summary 36

Further Reading 36

Basic concepts of
the architecture
orientation
framework

Varied and dynamic
environment

Develop architectural
awareness

24

Figure 2-1 shows the basic concepts covered in this chapter and visualizes how
they relate to each other.

Common

Architectural vocabulary Architecture
awareness 4 domains
structures

structures

creates

metaphor for Architecture focuses on
Type case orientation
framework

structured by

Architecture
dimension

. is an is an
is an

Architectures and
architecture disciplines
(WHAT)

Architecture

Architecture
means
(WITH WHAT)

is an

Architecture
perspectives
(WHERE)

method
(HOW)

Architecture
requirements
(WHY)

Organizations

and individuals
(WHO)

Figure 2-1: Basic concepts of the orientation framework

2.1 Motivation

Architects work in a very varied and dynamic environment. New technologies
are flooding onto the market, new tools promise increases in efficiency and pro-
ductivity, lean methodologies promise risk-free project management, and new
architecture concepts, such as service orientation and cloud computing, claim to
reduce the inherent complexity of IT systems. As an architect, you must be able
to understand, classify, and finally assess all of these developments and new
features in order to select a suitable solution for your specific problem. You must
therefore arrange and classify such new topics accordingly and compare them
with your existing knowledge. In addition to mastering this flood of information,
your tasks include making architectural decisions, defining guidelines, and man-
aging your team professionally. You must also take on board customer require-
ments, analyze them, and design viable architectures. The selection of suitable
products, and therefore the communication with suppliers, is also an important
part of your role.

To be successful in this environment, you must be aware of these varied as-
pects—you must develop an architectural awareness that enables you to clas-

sify, evaluate, and put all aspects into an overarching and holistic architectural
context. Every architect develops such a way of thinking about architecture over
the course of his or her career. It reflects your understanding of architecture
and enables you to structure your daily work. The quality of this