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Foreword

“The architect should be equipped with knowledge of many branches of study 
and varied kinds of learning, for it is by his judgement that all work done by the 
other arts is put to test.” Thus opens Chapter I in Marcus Vitruvius Pollio’s semi-
nal text, “The Ten Books on Architecture” [1]. Readers unfamiliar with Vitruvius’ 
work may find it surprising to learn that it was published in the first century B.C., 
long before anyone even dreamt of such a thing as software. It is, in fact, the 
oldest known engineering text. Yet, this nugget of wisdom from a two thousand-
year-old text resonates fully today, spanning the full continuum of technological 
evolution and the growth of engineering knowledge up to our modern world of 
software.

Vitruvius goes on: “This knowledge is the child of practice and theory” and, yet 
further, “[i]t follows, therefore, that architects who have aimed at acquiring manu-
al skill without scholarship have never been able to reach a position of authority 
to correspond to their pains, while those who relied only upon theories and schol-
arship were obviously hunting the shadow, not the substance.”

I cannot think of more apt set of quotations for introducing this book on soft-
ware architecture. Architects, as Vitruvius tells us, must possess not only the 
requisite technical knowledge of their domain (i.e., the theory), but they must 
understand it, and, true understanding comes only with direct experience (i.e., 
practice). Moreover, architects must take a broad perspective that encompasses 
many varied facets of the systems they are designing: more than just the techni-
cal issues and solutions, but also the social, economic, and even psychological 
factors that are at play. It has been my experience in close to forty years of 
industrial software development that the primary difference between a compe-
tent software architect and a skilled software developer is that architects see 
beyond the technology. Architects perceive a software system not as a Java or 
C program or even as software, but as an integral part of a greater system that 
serves a particular business or technical purpose. Consequently, good software 
architects are individuals who care deeply about the system and recognize the 
value that it provides, which means that in the process of design they must learn 
to become domain experts, but ones distinguished by a deep understanding of 
computing technology and its capabilities.

The authors of this book are fully cognisant of what makes a true software ar-
chitect—based on their long-term experience as practitioners. They teach us not 
only about the fundamental technical tricks of the trade (WITH WHAT) but also 
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the equally important aspects (WHAT, WHERE, WHY, and WHO) and, last but 
not least, HOW all of these can be combined to produce a software design that 
hits the sweet spot. In this, the book distinguishes itself from numerous other 
books on software architecture—it covers the full spectrum of concerns facing 
an architect.

I think that we are fortunate to finally have such a comprehensive treatment 
of the topic at our disposal. For practicing architects, this book can serve as a 
handy reference—a convenient reminder and check list. For aspiring software 
architects, it will expose and demystify some of the less well-known but crucial 
aspects involved in the architectural practice and, perhaps, help identify the gaps 
they may need to fill to become bona fide heirs of Vitruvius’ long-standing legacy 
of engineering excellence.

Bran Selic
Malina Software Corp., Ottawa, Canada

Reference

[1] Vitruvius, “The Ten Books on Architecture,” (translated by Morris Hicky Mor-
gan), Dover Publications, Inc., New York, 1960.
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Foreword 

For many years now I have been leading the IT Architect Profession program at 
IBM in Europe. It is my job to support the development of IT architects and to en-
sure that they keep their knowledge up-to-date. Increasing numbers of custom-
ers and competitors are interested in building up their own architecture skills. The 
Open Group, a technology-independent and provider-independent consortium, 
has been offering the Open Group Information Technology Architect Certification 
Program since 2006. Many of our customers and competitors already use it to 
evaluate the qualifications of their employees. 

In this context I am excited about the new edition of this book. It describes and 
explains very clearly and in a well-structured way what architects of IT systems 
do and what IT or software architecture is all about. The book therefore offers a 
good basis for familiarizing yourself with the topic and improving your architec-
ture skills. It fits perfectly with the current trend that I see both in The Open Group 
and with our customers and competitors. It reflects the way of thinking that we 
have been promoting and demanding for many years at IBM. 

It is a very good time for IT architects. The trends in IT and technology are de-
veloping ever further and ever faster. A software architecture as the basis for the 
development of IT systems has become increasingly important in dealing with 
these rapid changes. Not least the whole discussion around the topic of service-
oriented architecture (SOA) has made that more than clear. 

I can therefore highly recommend this book for anyone who has recognized the 
necessity of dealing with the topic of software architecture. It provides a compre-
hensive starting point for conscious architectural thinking.

Karin Dürmeyer
IBM Distinguished Engineer  

IBM IOT Northeast IT Architect Profession Leader
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Preface 

In everyday IT work, the term “software architecture,” or “architecture” in general, 
has become ever-present, and due to its enormous relevance for project suc-
cess, can no longer be ignored. Business cards show job titles such as Security 
Architect, Data Architect, System Architect, or even Enterprise Architect. We cre-
ate documents with the title “Solution architecture” for customers, for example, 
or customers themselves request architecture from suppliers. Although the term 
“architecture” is used so frequently, on closer inspection, it is clear that architects, 
project leaders, developers, and other stakeholders do not share a common un-
derstanding of the term. 

For some of us, “architecture” is the selection and use of a technology; for others, 
“architecture” is a process; for many, “the architecture” is a folder with drawings 
containing geometrical figures connected to one another; for others again, “archi-
tecture” may be everything that “the architect” produces—whatever this may be. 
In its practical use, the term “architecture” covers quite a broad scope—that is, 
it is not defined or understood uniformly. This often makes it difficult for several 
people to work together and communicate efficiently in the architecture domain 
and in daily working life. 

When we decided to write a book about software architecture some years ago, 
we started our project by initially taking stock. We quickly learned that even with-
in a strictly limited group of experienced software architects, it was not as easy to 
clearly define software architecture itself as we had expected. We realized that, 
even though we all had years of experience in designing, describing, or verifying 
software architectures, we did not have a uniform, precise understanding of the 
architecture domain. 

We became more and more aware of how important it was to develop a com-
mon understanding and vocabulary. An architecture framework that establishes 
a common, uniform terminology would allow us to look at and explain the archi-
tecture topic discriminatingly. This type of holistic framework was something we 
had always been looking for in our professional careers. 

We looked back to the time when we ourselves were primarily software develop-
ers and were confronted with the term “software architecture” for the first time. 
At this point in time, “software architecture” was a very abstract term for us, 
and it was difficult for us to really grasp what it meant. There was no intuitive 
architecture framework available that would have enabled us to understand this 
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important field of topics. Theory and practice concentrated primarily on individual 
aspects of architecture and did not allow a holistic understanding. We therefore 
tried to find order amongst the architecture chaos ourselves. For a long time, 
we had all been subconsciously or intuitively looking for a framework that cov-
ers the important dimensions of the architecture domain. At the beginning of our 
journey through the IT world, we needed a lot of technical and detailed knowl-
edge. We therefore concentrated on acquiring knowledge about techniques and 
technologies, process models, methods, and organizations. In the course of our 
professional life and thus throughout our educational journey, each one of us, 
constantly and partly without being aware of it, derived his understanding of the 
architecture domain from this collection of isolated individual insights. With this 
book project, we had finally arrived at the point where we could reconcile our 
individual understandings, bring them together to formulate a common under-
standing, and make this the core of our book. 

We all knew that there is no one architecture examination that gives the one ar-
chitecture certificate that you can pass or acquire in order to then be able to call 
yourself a certified architect. In the course of our lives as computer scientists, we 
had all already worked in lots of roles. As analysts, software developers, testers, 
project leaders, designers, or enterprise architects, we knew that architecture 
has many faces and that the architecture aspect is decisively important for many 
roles—not solely for the role of the architect. Our experience was also that, in 
addition to further technical education, we first had to gather sufficient practical 
experience before we could start to think “architecturally.” 

The primary goal of our book is to give readers orientation in the architecture 
domain. In our view, many books about architecture focus too heavily on the 
topic of technology. Other books concentrate on architecture documentation and 
nomenclatures and their related techniques. Some other books look at solution 
patterns for architecture problems. And finally, relevant computer magazines 
regularly cover reports on project experiences in which the architecture aspect of 
a solution presented is very often the factor that gives the article its substance. 
However, in our opinion at least, hardly any of these works attempt to give the 
reader a comprehensive orientation in the topic of architecture. Most of the books 
we know concentrate only on selected sub-areas of architecture. And the few 
books that cover architecture more broadly still lack more or less a thorough 
structure that provides orientation, or rather, a book architecture. 

We thus faced two great challenges. The first challenge was to design a book 
structure that addressed the aspects of orientation, theory, and practice—for us, 
all of these aspects are equally important. Our second challenge was to develop 
and describe a software architecture model that then allowed us to work through 
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the multi-dimensional nature of this topic appropriately and to use it as a stable 
core for our book. The result of this initial and fundamental work was the archi-
tecture of the book itself. We describe this in detail in Chap. 2 and it is structured 
as follows:
>	 �Explanation of the architecture dimensions (e.g., requirements in the con-

text of architecture) based on a holistic architecture framework.
>	 �Presentation of the parts of the individual architecture dimensions relevant 

in practice.
>	 �Practical application of the architecture contents covered in the book. 

This book is thus the result of our desire for a work that structures the topics 
around architecture sensibly, is based on practice, and that conveys correspond-
ing practical experience. In particular, the book is independent of any specific 
technology and is timeless. For us therefore, this book belongs to that group of 
fundamental works that provides you with a stable and future-proof reference 
system that goes beyond current technological trends. The task that we set our-
selves with writing this book was not easy—it required all of the authors to look 
at the topic of architecture intensively and in great depth beyond the otherwise 
usual level of considering different aspects in isolation. In the time in which we 
produced this book, we learned a lot. We discussed and debated with one an-
other. As a result of working together on this book, we gained a lot of new and 
valuable knowledge and a common understanding of architecture.

You now hold our understanding of architecture in your hands. We hope that our 
claim of arranging and explaining the topic of architecture for you, and anchoring 
it in practical examples, will help you in your dealings with this interesting and 
important area of your working life or your studies.  

The first edition of this book appeared on the German-speaking market in autumn 
2005. In our view, the great success that the first edition enjoyed was connected 
to the fact that at this time, conceptual, planning, educational, or organizational 
contributions in IT had gained importance to the extent that specialized technical 
knowledge was outsourced to countries with pay structures and an expert basis 
that further encouraged this trend. From then on, the role of the architect, with its 
holistic and integrative view of the IT challenges, formed the spearhead of a new 
generation of training profiles within computer science and neighboring domains. 
This had a corresponding positive effect on the sales of our fundamental work.

The high demand for the first edition of our book meant that we were able to of-
fer our German-speaking readers a revised and updated second edition of the 
book in 2008.

Our book

History of the book 
and the English 
version

â•… Preface



XII â•… Foreword

In the meantime, we received numerous requests from non-German-speaking 
colleagues to provide an English translation of our book. All of the authors work 
in an international, primarily English-speaking environment, and, thanks to pre-
sentations at IT conferences or university contacts, have regular exchanges with 
English-speaking colleagues. We therefore quickly agreed when we received a 
request from Springer for a further revised version of our book—this time in Eng-
lish. We used the opportunity of producing an English translation to improve the 
contents further based on reader feedback, our practical experience, and current 
IT developments, such as cloud computing.

Although the translation and the repeated revision of this third edition cost our 
translator and us as authors many hours of our free time, we are all happy that 
we took advantage of this opportunity. In particular, we are delighted to finally be 
able to offer our book to a global audience. 

At this point we would like to thank everyone who gave us the freedom to work 
on this project and who supported us. This includes our partners and children, 
our friends and colleagues, our employers and superiors. We would like to thank 
all of those who gave up their time for us and constantly gave us new strength.

Our sincere thanks also go to our translator, Tracey Duffy. With her extremely 
professional and team-oriented approach and her great talent for technical trans-
lation, she provided us with continuous support in realizing this translation proj-
ect. Her assistance enabled us to meet our high quality standards, and to do so 
highly efficiently and right on schedule.

Finally, we would like to thank Ralf Gerstner at Springer, who provided us with 
continuous and professional support in producing this third edition of our book, 
and who did so with great patience.

Our thanks
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This chapter positions the topic of software architecture and provides important 
basic information. Firstly we will explain the relevance of architecture for devel-
oping IT systems. This is fundamental information for the following chapters. We 
will then show what the concept “architecture” covers in IT. The chapter closes 
with an overview of the structure of the book, the intended target audience, and 
the contents of the book. After reading this chapter you will know what architec-
ture means and comprises in IT. You will also know the main aims of our book 
and how to use it.
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2 1â•… Introduction

1.1	� Starting Position and Aims of the Book

The desire to implement increasingly complex requirements faster and more 
cost-effectively, whilst maintaining the same level of software quality, and the 
complexity of maintaining (global) widely ramified, interlinked IT systems, have 
put the topic of software architecture increasingly into the spotlight for some 
years now. This applies not only to commercial business software but also to 
all other IT domains, for example, embedded systems, mobile communication, 
or social networks. However, due to the unstructured way in which software is 
still frequently developed even today, it is difficult to deal with the complexity of 
software appropriately. You can only successfully overcome the challenge this 
complexity presents by applying a systematic process that provides structure. 
Architecture is a deciding factor in this process.

Architecture has taken up a key position in the successful development of soft-
ware. The way software is developed is currently changing. In the past, the cen-
tral element of a developer’s role was manual programming. Now, the ability to 
deal with architectures and to create them is becoming an increasingly important 
aspect of a developer’s job. This aspect is also evident from the different options 
that now exist for obtaining certification as an architect (see Chapter 7).

You can trace these changes in software development if you look at its evolu-
tion. During the course of this evolution, a developer first worked at the level 
of bits and bytes, for example. The developer’s activity then shifted to increas-
ingly abstract levels (assembler, procedural programming languages, object-
oriented programming languages, etc.). These allowed the developer to perform 
increasingly complex tasks and implement increasingly complex requirements. 
As a consequence, the current evolution steps in software development contain 
model-based and highly architecture-centric concepts such as model-driven soft-
ware development (MDSD) (see SectionÂ€6.2.6), service-oriented architectures 
(SOA) (see SectionÂ€ 6.4.11), business process modeling (BPM), and the very 
latest topic, cloud computing (see SectionÂ€6.4.13). The awareness for technical 
quality and the desire to measure it are also increasing. Modern software devel-
opment tools increasingly take this desire into account and offer corresponding 
functionality. You can use metrics (e.g., number of dependencies between sys-
tem building blocks) to check whether developers are considering architecturally 
significant aspects sufficiently.

The motivation to write a book about software architecture arose from the chal-
lenges and problems in software development that we, the authors, have been 
encountering in our professional lives for some years. Two issues are particularly 
important: firstly, what exactly does architecture cover? We often see a lack of 
orientation when architecture is a topic on the agenda for projects. Everyone 
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knows that architecture is a very important topic and should therefore be “done.” 
However, people often do not know what it means exactly, or there is no clear 
consensus. When people involved in the project talk about architecture, it is often 
the case that each person understands something different. For some, architec-
ture is the schematic diagrams (box and line diagrams) shown on presentation 
slides. For others, architecture means defining the signatures of methods and 
functions. The lack of orientation is often expressed in the following questions:
>	 �How can you assess whether a supposed architecture presented to you is 

actually architecture?
>	 �How can you determine the quality of an architecture?
>	 �How do you create an architecture?
>	 �How does the thing “architecture,” that you have to deliver, manifest itself?
>	 �What do you use to create an architecture?
>	 �What is architecture?
>	 �What is expected of you as an architect or developer when you are asked to 

create an architecture?
>	 �When and where does architecture take place?
>	 �Who is responsible for architecture?
>	 �Why do you need to create an architecture?

With our book, we want to give people active in the IT field orientation in the topic 
of architecture. This is because we have observed that many developers and 
architects are preoccupied with the questions listed above. Also, we have not 
yet been able to find a book about architecture that offers a clearly structured, 
comprehensive, and focused introduction to the topic—at least, not in the way 
that we have often wished.

The second important issue is the poor technical quality of software, which is the 
result of not considering architecture (for example, when you have to rewrite a 
large part of the source code to take account of new customer requirements).

Every IT system has an architecture. But is this an architecture that has been 
deliberately planned, or has it arisen more or less unconsciously and randomly? 
The aim should be to achieve a workable architecture. However, a workable 
architecture does not just “happen”—it has to be developed deliberately [Brede-
meyer 2002]. Due to the great importance of architecture for the software quality 
and the project success, it is very important to have architecture firmly fixed in 
thought and to thus develop an understanding for it. Helping you to establish ar-
chitectural thinking and conveying the understanding required to do this are the 
central aims of our book.

Our motivation II: 
Improve software 
quality

Our book conveys 
understanding for 
architectural thinking
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How do architects, developers, and other people involved in projects frequently 
experience the process of a software development project? We are sure that the 
following scenario will not be completely new to you. A project generally begins 
with recording the customer’s requirements as quickly as possible in the form 
of a “wish list”. The aim is then to convert this wish list into source code equally 
fast. There is not a lot of time for questioning the wish list. The focus is on a user 
interface that satisfies the customer’s requirements and is outwardly effective 
(but not necessarily user-friendly). This gives the customer something tangible 
quickly, and you can show the customer that you are in control of the situation.

Before the points on the wish list can be distributed to the individual developers 
for processing, the “lead developer” creates a more or less technical and ac-
cepted “concept” for the software to be developed based on the wish list. The 
developers use this concept as instructions.

During realization—at the latest when requirements change or new requirements 
suddenly arise—the first shortcomings of the concept appear.

In the source code, the developers now have to deviate from the concept and 
take matters into their own hands. What they do is not documented in the con-
cept because there, of course, nothing is changed “officially”. This is because 
you have already “sold” the concept to the customer in perfectly designed pre-
sentations with convincing diagrams. There is also no time to change the con-
cept and the customer would not understand or accept this.

The original concept and the actual source code become increasingly different. 
The documentation of the concept soon becomes just a pretty cover. Systematic 
structures that the software once contained are now covered in patchwork. Over 
the course of time, the software mushrooms into an unfathomable creation along 
the lines of the big ball of mud pattern [Foote and Yoder 1999], also known as 
“kludge” [Bredemeyer 2002]:

At some point, you reach the situation where nobody knows exactly why and 
how the system works. You are just happy that it does work. Maintenance and 
implementation of new requirements become a bigger nightmare with every ver-
sion of the software and cost a lot of time and nerves. How did things get so far? 
After all, you had a concept! Is the wish list to blame? Is there something wrong 
with the concept? How can you prevent a software becoming a big ball of mud? 
We asked ourselves these and many other questions and searched for answers. 
Many of the answers that we present in our book resulted from the fact that, 
often, insufficient attention is given to architecture when IT systems are created.
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The project scenario above is not an exaggeration—it is a widespread reality. 
There are also other scenarios, and they all end in a big ball of mud. Most IT proj-
ects fail to some extent. Only around 30% of these projects can claim to conclude 
successfully [Standish 2009] despite increasingly progressive technologies (e.g., 
Java EE) and concepts (e.g., SOA). The failure of a project is evident from the 
project exceeding the time or budget limits, or the customer being unhappy with 
the product delivered. Projects may even be canceled [Yourdon 2004]. Since the 
1960s, this situation has been known as the “software crisis” [Dijkstra 1972]. It 
first became evident through the immense progress of hardware infrastructure 
and the related, almost infinite possibilities that opened up for software develop-
ment. There are many reasons for the software crisis. They include inadequate 
architectures.

In building construction, it is a well-known fact that sooner or later, if you do not 
have a well-planned architecture, you will encounter problems. If you were to 

Figure 1.1-1: Software structures out of control (big ball of mud)
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build a house without first defining the architecture, you would quickly encounter 
problems with statics, stability, integration in the communal infrastructure (e.g., 
electricity and water), etc. To stay with the building construction analogy: often, 
when you “construct” an IT system, you start by defining the approximate overall 
dimensions, and then, if at all, think quickly about the allocation of rooms and the 
number of floors. Everything else (e.g., statics and infrastructure for power and 
water) is supposed to somehow just happen “during construction”. The “advance 
planning” is documented on a scrap of paper and then “off you go”. You dig out 
the space for the foundations, make the molds for the concrete blocks, mix the 
concrete, and so on. Over time, fundamental errors gradually appear and you 
have difficulty correcting them or you cannot correct them at all. For example, 
you realize that the space for the foundations is the wrong size for the concrete 
blocks you have made. A counterproductive operational hectic follows, in which 
the situation usually just gets worse.

Unfortunately, the consequences of poor architecture in IT often only appear 
after a considerable delay. Serious problems may only arise when you go live 
with a system for the first time, or when it is already in use and you have to adapt 
it for new requirements. An architecture that arises without being planned—i.e., 
that simply develops over time—leads to considerable problems in the creation, 
delivery, and operation of a system. The following selection of symptoms can 
potentially indicate a poor architecture:
>	 �Results of the analysis are not deliberately considered.
>	 �Overview is missing.
>	 �Complexity runs out of control.
>	 �Planning becomes more difficult.
>	 �Early recognition of risk factors is barely possible.
>	 �Reuse of knowledge and system building blocks becomes more difficult.
>	 �Flexibility is restricted.
>	 �Maintainability becomes more difficult.
>	 �Problems with integration.
>	 �Performance is bad.
>	 �Architecture documentation is insufficient.
>	 �Learning curve for understanding the architecture is too high.
>	 �Functionality is redundant.
>	 �Development cycles (e.g., translation times) are too long.
>	 �System building blocks (e.g., classes) have numerous, unnecessary depen-

dencies to one another.
>	 �System building blocks that cover many different responsibilities and are 

therefore difficult to maintain or reuse (“monster building blocks”).
>	 �System building blocks whose implementation details are known in the en-

tire system.
>	 �Numerous system building blocks have to be adapted when there is a 

change anywhere in the system (e.g., database or user interface).

Symptoms of poor 
architectures
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Even if you have worked out an architecture thoroughly, this is no guarantee 
that none of the problems listed above will occur. On one hand, this is because 
poor architecture is only one of many factors for the software crisis (others are, 
for example, users’ lack of awareness for quality or an unsatisfactory IT strategy 
in the enterprise). On the other hand, successfully creating architectures is no 
easy challenge due to the inherent complexity of IT systems; on the contrary, 
as well as having a broad technical knowledge and well-founded experience, 
those responsible have to take a whole series of other aspects into account (e.g., 
stakeholders and requirements).

To introduce and “sell” the main features of an architecture to a non-technical au-
dience (e.g., managers and even lead architects) in an early stage of an IT proj-
ect, it is often very helpful to work with so-called marchitectures (marketing archi-
tectures). These architectures usually take the form of presentation slides with a 
series of graphical diagrams and keywords. However, all of the other (technical) 
elements that make up a real architecture are missing. Marchitectures become 
a problem if you use them in place of a real architecture later on in the project, 
thus diverting the term “architecture” from its intended use. This is because the 
primary aim of a marchitecture is to sell something—it does not contain any de-
finable technical “nutritional value” for software developers. You cannot use it as 
an adequate explanatory model for a system you are developing and the devel-
opers will therefore not accept it. In this case, during the software development, 
an architecture develops more or less unplanned and unconsciously depending 
on the abilities of the developers.

1.2	� What is Software Architecture?

In the context of software, architecture is a relatively new discipline. Conscious 
architectural thinking in software development has only been around for a few 
decades [Shaw and Garlan 1996]. This is why there are still contradictory opin-
ions on what exactly architecture means. Furthermore, in contrast to physical ob-
jects such as buildings, rooms, or even hardware, where it is obvious that these 
need and contain an architecture, this is not immediately evident for software 
systems. The result is that in the context of software, architecture is difficult to 
comprehend. In spite of this, people involved in software development projects 
are confronted with architecture on a daily basis even though they do not notice 
it. Architecture is implicitly always an aspect of software and you cannot eliminate 
it or ignore it—doing so leads to the negative consequences described in the 
previous section.

Faced with this knowledge, the reasons why architecture has to be in a conflict-
ing relationship with the business side become clearer. If there are numerous 
questions and uncertainties about architecture on the IT side, this situation is 
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even more strongly defined on the business side. It is often difficult to convey to 
the business that there is such a thing as architecture for software. In addition, 
it is difficult for the business to imagine what direct (financial) benefits an archi-
tecture would provide, since investments in architecture only pay off or can only 
be written off in the medium to long-term. This implies that architecture generally 
does not bring any benefits until the medium or long-term (e.g., better maintain-
ability), and is therefore only useful for projects with a corresponding long-term 
time horizon for the system life cycle, corresponding complex requirements, and 
corresponding high risks with regard to resources, project size, etc. (see Fig-
ureÂ€1.2-1). The business is therefore often not prepared to bear the extra costs 
connected to architecture (often for political reasons, for example, the creation 
or maintenance of artificial costs in software development). Unfortunately there 
is no universal solution for overcoming this challenge. Essentially, the issue is 
making the return on investment (ROI) of architecture tangible for the business. 
One option is to point out the higher financial costs (for example, due to an in-
creased maintenance effort) caused by neglecting architecture, and which can 
be avoided in the medium-term, to the business at an early stage. In addition to 
ROI, as a result of globalization, compliance is now also at the top of the agenda 
for the business. Here you have to show the connection between architecture 
and the fulfillment of requirements with reference to IT compliance (for example, 
the implementation of security aspects with regard to data protection laws).

Architecture is not a purely technological issue. It also has numerous social and 
organizational aspects (see Chapter 7) that can influence the success of an ar-

Figure 1.2-1: Criteria for evaluating the benefits of architecture

Focus on people
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chitecture and thus an entire project considerably. Therefore, in our perception of 
architecture, which is the basis of this book, the focus is on the people involved, 
and in particular, the architect (see Chapter 2).

It is not easy to define architecture as strictly as facts from mathematics or eco-
nomics, for example. Our definition of architecture, as we present it in SectionÂ€3.2, 
should be understood as an intuitive clarification of the term “architecture” based 
on our experiences and impressions of architecture in our daily project work. 
Your project reality may well produce a definition that is different to ours in parts. 
There are numerous definitions of the term “architecture” in IT [SEI 2010]. This 
shows that it is a challenge to find one definition that is recognized universally. If 
you bear in mind that architecture is an important topic in many computer science 
disciplines (e.g., software architecture, data architecture, security architecture, 
etc., see Chapter 3) and comes into play at different levels of abstraction (see 
Chapter 4), it becomes clear why it is difficult to find a universally valid definition 
that does not overflow. The following sections prepare the way for our definition 
of architecture.

Regardless of the type of IT system you are developing, in order to define the 
fundamental parts (and thus the supporting pillars), the architecture always con-
siders the requirements the system must satisfy (see Chapter 5). The architec-
ture does not define the details of the system to be developed [Buschmann et al. 
1996]. With regard to a system, an architecture answers the following questions:
>	 �Which requirements are the structuring and decisions based on?
>	 �Which are the major logical and physical system building blocks?
>	 �How are the system building blocks related to one another?
>	 �What responsibilities do the system building blocks have?
>	 �What interfaces do the system building blocks have?
>	 �How are the system building blocks grouped or layered?
>	 �What are the specifications and criteria used to divide the system into build-

ing blocks?

Architecture thus contains all fundamental specifications and agreements trig-
gered by requirements.

Architecture stretches from the analysis of the problem domain of a system right 
up to the realization of the system (see Chapter 8). It is not present at the level 
of abstraction of fine-grained structures such as classes or algorithms; instead, 
it is present at the level of systems, that is, coarse-grained structures, such as 
components or subsystems (see Chapter 4). Nevertheless, there is not always a 
strict separation between the aspects of fine-grained and coarse-grained struc-
tures. This means that the border is sometimes blurred.

Numerous definitions

Architecture defines 
the supporting pillars 
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Where does 
architecture stop?
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An important characteristic of architecture is that it makes complexity easier to 
control. It does this by showing only the main aspects of a system and not going 
into detail. This enables you to get an overview of a system quickly.

The definition of what makes up the fundamental parts of the system and what 
the details are is subjective or context-specific [Fowler 2005]. The fundamental 
parts are the things that you cannot subsequently change without great effort. 
These are structures and decisions that play a decisive role for the development 
of a system over time [Fowler 2005]. Examples are the specification of how sys-
tem building blocks exchange data with one another or the selection of the tech-
nology platform (e.g., JEE or .NET). Architecturally significant specifications of 
this kind have an effect across the entire system starting from the respective ar-
chitecture level (see Chapter 4). This is in contrast to architecturally insignificant 
specifications (for example, specific implementation of a function or method) that 
only have a local effect on a system [Bredemeyer and Malan 2010]. The architec-
turally significant structures and decisions, as well as the procedures needed to 
determine these specifications, are some of the main topics of this book.

Our book covers architecture that stretches across the creation, delivery, and 
operation of software of every kind. This means that the architecture we discuss 
has points in common with other architecture disciplines, for example, data archi-
tecture. We do not cover these in detail in our book; we look at them only to the 
extent of the points they have in common with software architecture. When we 
refer to IT in the book, we are not restricting ourselves exclusively to software; 
we also mean implicitly the whole spectrum of IT, in which software is only one 
part, even though it is a very important part. Chapter 3 discusses the term “archi-
tecture” in more detail. It answers the questions raised above, and develops the 
definition or perception of architecture that we use in our book.

1.3	� Reader Guide

1.3.1	�Book Structure

Within information technology, architecture is not a clearly delineated or struc-
tured topic in the way that, for example, formal languages or data structures are. 
It is a topic that affects various domains of information technology. Architecture 
uses well-known information technology concepts (e.g., interfaces) and raises 
new, separate concepts (e.g., architecture patterns). These new concepts take 
up, use, and connect the already well-known information technology concepts.

One of our first challenges in writing this book was to create the fundamental 
structure (i.e., the architecture) for the book. To do this, we had to structure the 
topic “architecture” such that you can use our book as an orientation aid that al-
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lows you to acquire the knowledge you require efficiently, without getting lost in 
this big topic.

The clear and thorough structuring of the topic “architecture” and the focus on 
this topic in its entire breadth, without slipping into areas that are not (immedi-
ately) connected to architecture, distinguishes our book from various other books 
on this topic. This clear direction is a priceless advantage for you in dealing with 
this extensive topic.

In our book, we structure the topic of architecture using a so-called orientation 
framework. Based on simple questions (WHAT, WHERE, WHY, etc.), the frame-
work classifies architecture knowledge into domains. In Chapter 2, we establish 
and describe the (architecture) orientation framework. The resulting book archi-
tecture (see FigureÂ€1.3-1) leads to the following basic structuring of our book:
>	 �Part I—Architecture overview and orientation: Gives a first overview of ar-

chitecture and describes the framework that defines the architecture for the 
second part of the book.

>	 �Part II—Architecture knowledge: Describes in detail what architecture con-
tains and conveys theoretical knowledge of architecture.

>	 �Part III—Appendix: Contains the glossary, list of abbreviations, bibliography, 
and the index.

Figure 1.3-1: Book architecture
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The part of the book architecture labeled “map” in Figure 1.3-1 (Part II) is the 
architecture orientation framework and your orientation aid for the second part 
of the book.

In our book each chapter follows the structure shown in Figure 1.3-2. Each chap-
ter in the second part begins with this map. The area of the map covered in the 
respective chapter is highlighted in dark gray. The map is followed by a concept 
map (except Chapter 1), giving an overview of the main concepts that the chap-
ter or section covers in detail in context. In Chapters 6 and 8, each individual 
section has its own concept map. Each chapter closes with a summary and a 
bibliography (in Chapters 6 and 8 at the end of the individual sections). In addi-
tion, Chapter 8 also contains checklists for the various activities of an architect at 
the end of each section and before the bibliography. 

1.3.2	�Target Audience

Our book offers IT students, software developers, and IT architects a holistic 
and consistent orientation across all relevant topics in IT architecture generally 
as well as in software architecture in particular. IT students can use the book as 
a starting point for the topic of architecture alongside corresponding courses of 
study. Software developers and IT architects (e.g., software architects, system 
architects, or enterprise architects) can use the book to expand their knowledge. 

Figure 1.3-2: Chapter architecture
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IT managers (e.g., IT project leads, CIOs, or CTOs) can use our book as a refer-
ence work for specific topics to acquire a basic understanding of architecture.

1.3.3	�Chapter Overview

Table 1.3-1 gives an overview of the contents of the individual chapters. They are 
described in more detail in Section 1.3.4. 

Chapter 2 is a must for all readers. It describes and defines the architecture of 
our book and is therefore the prerequisite for the basic understanding of our 
book.

The chapters in the second part of the book do not strictly build on one another. 
You can read them in any order.

If architecture is more or less a new topic for you, we recommend that in addition 
to Chapters 1 and 2, you read the following chapters in this order: Chapters 3, 4, 
5, and finally in no specific order, Chapters 6, 7, and 8 (see Figure 1.3-3).

Part Chapter Contents
I
Architecture 
overview and 
orientation

1 Introduction Motivation and introduction
2 �Architecture Orientation 

Framework
Book architecture

II
Architecture 
knowledge

3 �Architectures and Architec-
ture Disciplines (WHAT)

Architecture definition

4 �Architecture Perspectives 
(WHERE)

Architecture models

5 �Architecture Requirements 
(WHY)

Architecture and requirements

6 �Architecture Means (WITH 
WHAT)

Architecturally significant tech-
niques and technologies

7 �Organizations and Indi-
viduals (WHO)

Social and organizational aspects 
of architecture and architect roles

8 �Architecture Method 
(HOW)

Architecture in the development 
process and architecture knowl-
edge applied in a case study

III
Appendix

– Glossary, bibliography, list of ab-
breviations, and index

Table 1.3-1: Chapter overview

Part I: Chapter 2 is a 
must

Part II: Read in any 
order

IT students: 
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As a software developer you should focus on the non-technology aspects of 
architecture. Therefore, we recommend that in addition to Chapters 1 and 2, 
you read the following chapters in this order: Chapters 3 and 8 and finally in no 
specific order, Chapters 4, 5, 6 and 7 (see FigureÂ€1.3-4).

Figure 1.3-3: Recommended reading order for IT students

Figure 1.3-4: Recommended reading order for software developers

Software developers: 
Recommended 
chapters
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We have observed that IT architects often need to supplement their knowledge 
with information about social and organizational aspects. Therefore, we recom-
mend that in addition to Chapters 1 and 2, you read Chapters 7 and 8 and option-
ally in no specific order, Chapters 3, 4, 5, and 6 (see Figure 1.3-5).

As an IT manager, it is important that you know that architecture is important in 
the organizational context too and that you have an overview of the most impor-
tant aspects of software architecture. Therefore, we recommend that in addition 
to Chapters 1 and 2, you read the following chapters in this order: Chapters 3 
and 4 and in no specific order, Chapters 5, 7, 8, and optionally Chapter 6 (see 
FigureÂ€1.3-6).

IT Architects: 
Recommended 
chapters

IT managers: 
Recommended 
chapters

Figure 1.3-5: Recommended reading order for IT architects
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In many of the diagrams in this book we use Unified Modeling Language (UML) 
version 2 (UML2). Readers should therefore be familiar with UML. We do not 
introduce UML in detail in this book. If you are interested and would like further 
information, see [Booch et al. 2005].

We do not cover basic concepts of software development and technologies men-
tioned in connection with architecture in detail—we look only at their architectural 
aspects. The bibliography at the end of the individual chapters (in Chapters 6 
and 8 at the end of the individual sections) and in the Appendix provide details of 
further sources of information.

You will not find solutions or a collection of guides for technology-specific archi-
tecture problems, such as the separation of business logic and persistence logic 
in the context of Java EE in our book. A range of recommended works are al-
ready available for these topics. The primary aim of our book is to give you basic 
orientation in architecture. This orientation is the unconditional prerequisite for 
enabling you to solve (technology-) specific architecture problems.

In our book, whenever the masculine gender is used, both men and women are 
included.

Figure 1.3-6: Recommended reading order for IT managers

Disclaimer

Unified Modeling 
Language (UML) is 
used

Basics of software 
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1.3.4	�Chapters in Detail

The first part of the book provides a first overview of the topic “architecture” and 
establishes the architecture orientation framework that defines the architecture 
for the second part of the book.

This chapter delivers the motivation and basics for the topic “software architec-
ture”. Firstly we explain the relevance of architecture for developing IT systems. 
This is fundamental information for the following chapters in the book. We then 
show what the concept “architecture” covers in the context of IT. The chapter 
closes with an overview of the structure of the book, the intended target audi-
ence, and the contents of the book. After reading this chapter you will know what 
architecture means and what it comprises in the context of IT. You will also know 
why we wrote this book and what the main aims of our book are. And of course, 
you will know how to use the book.

In Chapter 2 we present an architecture framework. It provides orientation by 
positioning the significant elements of architecture in an architecture orientation 
framework using simple question words. The focal point of the orientation frame-
work is the role of the architect. We also use the framework to convey knowledge 
and experience throughout the rest of the book. It enables you to think about 
architecture in a structured way and provides you with orientation.

The second part of the book covers essential architecture knowledge. We struc-
ture and convey this knowledge based on the architecture orientation framework 
previously introduced.

The third chapter covers the WHAT dimension of the architecture orientation 
framework. It conveys a basic understanding of architecture. We also present 
the significant building blocks that make up a system and their relationships to 
one another. Since the nature of systems and systems thinking are essential for 
your work as an architect, we also position these concepts in the context of archi-
tecture. After reading this chapter, you will be able to explain the general nature 
of architecture, differentiate between individual architecture disciplines and the 
most important building blocks of systems, as well as describe their relationships 
with one another.

Chapter 4 looks at the WHERE dimension of the architecture orientation frame-
work. It explains the levels of abstraction at which you are active as an architect 
and how architecture is demonstrated at these levels. We also present archi-
tecture views that you can use at these levels of abstraction to make it easier to 
manage the different aspects and the resulting complexity of an architecture. Af-
ter reading this chapter, you will be able to differentiate between the relevant ar-
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chitectural levels of abstraction and use them. Using architecture views, you will 
also be able to consider and process specific different aspects of an architecture.

Chapter 5 covers the WHY dimension of the architecture orientation framework. 
In the center of this dimension are requirements. They define the IT system to 
be created and restrict your creative scope as an architect. There are different 
types of requirements at different architecture levels. In order to be able to use 
your creative scope, you have to know the different types of requirements and 
their relationships to one another and the architecture levels—these topics are 
covered in this chapter. After reading this chapter, you will be able to name the 
most important types of requirements, understand their relationships, and place 
them in the context of architecture.

Chapter 6 looks at the WITH WHAT dimension of the architecture orientation 
framework and presents basic concepts and technologies that belong to a soft-
ware architect’s toolbox. After reading this chapter, you will have an idea of the 
means you can use to assess, describe, create, and develop architectures.

Chapter 7 looks at the WHO dimension of the architecture orientation framework 
more closely. We show organizational and social influencing factors that affect 
the architecture of a system and that can influence the work of an architect. We 
also provide basic knowledge about groups and their dynamics. In addition, we 
define the role of the architect. Applying the knowledge contained within this 
dimension enables you to understand the relevance of the influencing factors 
mentioned, describe the role of an architect, consider the processes of group 
dynamics, and act accordingly.

Chapter 8 concentrates on the HOW dimension of the architecture orientation 
framework. Firstly we present knowledge about development processes that is 
relevant for you as an architect, before describing your individual activities dur-
ing the creation of a system at a general level. We then make this more concrete 
using a real world example. This approach connects the orientation framework to 
the contents of the previous chapters. It enables you to understand how to apply 
the information presented in the other chapters to a concrete problem.

The Appendix contains supplementary information and aids for using the book in 
the form of a glossary, list of abbreviations, bibliography, and index.

At www.software-architecture-book.org, you can find more information about 
the book and in the future, various additional contributions on the topic of soft-
ware architecture. We welcome any contribution you would like to make. You can 
send us these contributions and your opinion (hints, criticisms, praise, etc.) of our 
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book by sending an e-mail to authors@software-architecture-book.org. We 
look forward to hearing from you.

1.4	� Summary

>	 �Complexity (IT systems and requirements) is the main reason for software 
architecture becoming so important over the past years.

>	 �The way software is developed is currently changing. The ability to deal 
with architectures and to create them is becoming an increasingly impor-
tant aspect of a developer’s job.

>	 �The current evolution steps in software development contain model-based 
and highly architecture-centric concepts.

>	 �We often see a lack of orientation when architecture is a topic on the agen-
da for projects.

>	 �With our book, we want to give people active in the IT field orientation on 
the topic of architecture.

>	 �Every IT system has an architecture.
>	 �A workable architecture does not just “happen”—it has to be developed 

deliberately [Bredemeyer 2002].
>	 �Most IT projects fail to some extent. Only around 30% of these projects can 

claim to conclude successfully [Standish 2009].
>	 �Unfortunately, the consequences of poor architecture in IT often only ap-

pear after a considerable delay.
>	 �In the context of software, architecture is a relatively new discipline.
>	 �Architecture is only useful for projects with a long-term time horizon, com-

plex requirements, and corresponding high risks.
>	 �Architecture is not a purely technological issue. It also has numerous so-

cial and organizational aspects (see Chapter 7).
>	 �An architecture always defines the fundamental parts and thus the support-

ing pillars but not the details of the system to be developed [Buschmann 
et al. 1996].

>	 �In our book, we structure the topic of architecture using a so-called orienta-
tion framework.

>	 �Our book offers IT students, software developers, IT architects, and IT 
managers a holistic and consistent orientation across all relevant topics in 
IT architecture generally as well as in software architecture in particular.

>	 �Chapter 2 of our book is a must for all readers. It describes and defines 
the architecture of our book and is therefore the prerequisite for the basic 
understanding of our book.

Summary: 
Introduction
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In this chapter we present an explanatory model for dealing with architecture. 
This model provides orientation by positioning the significant elements of archi-
tecture in an architecture orientation framework using simple question words. 
The focal point of this framework is the role of the architect. We also use the 
framework to convey knowledge and experience throughout the rest of the book. 
It enables you to think about architecture in a structured way and to orient your-
self.
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Figure 2-1 shows the basic concepts covered in this chapter and visualizes how 
they relate to each other.

2.1	� Motivation

Architects work in a very varied and dynamic environment. New technologies 
are flooding onto the market, new tools promise increases in efficiency and pro-
ductivity, lean methodologies promise risk-free project management, and new 
architecture concepts, such as service orientation and cloud computing, claim to 
reduce the inherent complexity of IT systems. As an architect, you must be able 
to understand, classify, and finally assess all of these developments and new 
features in order to select a suitable solution for your specific problem. You must 
therefore arrange and classify such new topics accordingly and compare them 
with your existing knowledge. In addition to mastering this flood of information, 
your tasks include making architectural decisions, defining guidelines, and man-
aging your team professionally. You must also take on board customer require-
ments, analyze them, and design viable architectures. The selection of suitable 
products, and therefore the communication with suppliers, is also an important 
part of your role.

To be successful in this environment, you must be aware of these varied as-
pects—you must develop an architectural awareness that enables you to clas-
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sify, evaluate, and put all aspects into an overarching and holistic architectural 
context. Every architect develops such a way of thinking about architecture over 
the course of his or her career. It reflects your understanding of architecture 
and enables you to structure your daily work. The quality of this awareness is 
relevant strategically and in the long term, since an architectural awareness is 
a basis for life-long learning and thus for being a successful architect. Concrete 
knowledge is of course important, but it can be learned and has a shorter life than 
an architectural awareness. Without this understanding, it is difficult to position, 
apply, and assess knowledge. During the course of your activities, you will also 
undergo experiences that you have to classify in the same way as your concrete 
knowledge. This will enable you to make better decisions in the future based on 
your wealth of experience, and to make these decisions more easily and more 
consciously.

Architectural awareness should be structured like a type case into which you can 
sort new experiences and new things learned, and retrieve them as and when 
they are required. “Learned” refers to the knowledge aspect of practicing as an 
architect. Architecture principles, styles, and patterns, but also specific platforms, 
such as JEE and .NET, fall into this category. “Experienced” covers specific ex-
periences from the real world, for example, whether one of the afore-mentioned 
platforms works in practice, or how to deal with tensions within a project team. To 
stay with our metaphor, the type case supports the orderly arrangement of parts, 
where each section is a container for elements that share certain characteris-
tics—thus a specific classification that they all have in common. This enables 
you to derive the general characteristics of new information learned and new 
experiences gained from the understanding of the characteristics of the section 
into which you have sorted them.

The structure of the architecture type case should take into account your varied 
fields of activities. It must therefore consider architecture in its entirety, and not, 
for example, restrict itself to primarily technical aspects. It is therefore important 
to place you the architect at the center of the consideration. The type case should 
also enable you to open further sections within a section, to guide your aware-
ness to further structuring paths within a section, and to develop the type case 
further over time. In addition, despite having to be comprehensive and exten-
sible, it must still be intuitive and understandable so that you can use it efficiently. 
You will only be able to act successfully in practice if you can explain the layout 
and structure of your architecture type case, and thus your holistic understanding 
of architecture, in simple words.

The type case represents a basic model for explaining the architecture domain 
and spans the framework within which you operate as an architect. Based on the 
previously defined requirements for comprehensiveness, extensibility, simplic-

Structure 
architectural 
awareness

Define architectural 
structuring 
characteristics

Derive the 
architecture 
orientation 
framework



26 2â•… Architecture Orientation Framework

ity, and understanding, the following sections present an architecture orientation 
framework that can be viewed as a type case.

2.2	� Overview of the Framework

The framework presented below has arisen from visualizing the daily life of an 
architect and considering the requirements formulated in the previous section. A 
framework should be simple. It is therefore important to restrict yourself to the 
few most important dimensions, or rather main sections in the sense of the type 
case metaphor. However, at the same time, these dimensions should be exten-
sive enough to be able to describe the varied nature of architecture. It should 
also be possible to subdivide the dimensions further in a useful way so that you 
can extend the framework. The framework must also be easy to understand and 
based on practice. So what distinguishes an architect in practice? In principle, 
you provide answers to questions and problems put to you by customers, team 
members, suppliers, or even questions you pose yourself. Therefore, an archi-
tecture orientation framework with a structure based on open question words is 
a sensible and practical approach.

The main dimensions of the framework are:

Table 2.2-1: Dimensions of the architecture orientation framework

Question word Dimension Explanation
WHAT Architectures and ar-

chitecture disciplines
The WHAT dimension contains basic prin-
ciples and definitions of architecture. It there-
fore lays the basis for working as an architect. 
It also classifies architecture according to the 
various fields of activity in which architects 
work (e.g., software architecture, data archi-
tecture, or security architecture). Fundamen-
tal knowledge and experience belong to the 
WHAT dimension.

WHERE Architecture perspec-
tives

The WHERE dimension covers the different 
levels at which architecture takes place and 
the views with which architecture can be 
described. The use of different perspectives 
enables you to concentrate on one problem 
at a time. You use this dimension to include 
different ways of looking at things.

WHY Architecture require-
ments

The WHY dimension is dedicated to the 
requirements IT systems must satisfy in gen-
eral and architectures in particular. From the 
wealth of requirements you are confronted 
with, you must be able to identify those that 
are architecturally significant and design an 
architecture that meets these requirements. 
In the WHY dimension, you can arrange the 
requirements an architecture must satisfy.

Basis of the 
architecture 
orientation 
framework

Question words as 
main dimensions
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The framework can be visualized as shown in Figure 2.2-1. This image places 
you, the architect, at the center, and we use it repeatedly throughout the book 
to place the topic in question in the context of the framework, thus providing you 
with better orientation.

A framework structured according to the question words specified enables you to 
ask basic questions and thus in practice, enables simple and systematic orienta-
tion. Architectural activity can thus take place based on an explanatory model in 

Question word Dimension Explanation
WITH WHAT Architecture means The WITH WHAT dimension structures the 

different architecture means you can use 
whilst carrying out your trade. It thus enables 
you to classify different architecture means.

WHO Organizations and 
individuals

The WHO dimension looks at the role of the 
architect and the influence of individuals and 
organizations on architecture. It examines the 
interaction between organizations, individu-
als, and architecture more closely. Consider-
ing this dimension allows you to act success-
fully. In the WHO dimension, you can include 
knowledge and experience from your social 
and organizational environment.

HOW Architecture method The HOW dimension structures the archi-
tecture method. It details the most important 
architectural activities that you perform during 
your work. Here you can store proven meth-
ods and access them again as and when 
necessary.

FigureÂ€2.2-1: Overview of the architecture orientation framework
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which you are aware of the different dimensions at any given time. In the course 
of a project, for example, during analysis, design, and implementation, you will 
continually ask yourself which means (WITH WHAT) to use in which way (HOW) 
to realize a specific requirement (WHY). For example, you document the desire 
for a distributed architecture during the analysis by holding a requirements analy-
sis workshop (HOW), document it in a requirements document (WITH WHAT), 
and you guarantee it in the architecture design by using a corresponding archi-
tecture pattern (WITH WHAT). In addition, depending on the architecture disci-
pline (WHAT), you will, for example, use different perspectives (WHERE) to con-
sider relevant aspects of the IT system for the current activity. It is not possible 
to assign all aspects uniquely to one and only one dimension, since the aspects 
themselves are multi-dimensional. Methods such as the Unified Software Devel-
opment Process (USDP) are a good example of this. They define, for example, 
a basic process on one hand, and on the other, document the means with which 
a system is realized and the perspectives from which it can be considered. In 
the sense of our architecture orientation framework, you should generally as-
sign such methods to the HOW dimension and the other process-independent 
elements of the methods to the other dimensions. For orientation purposes, it is 
important that you establish criteria that enable you to make assignments to the 
dimensions. The basic question you have to answer is: “What is the essence of 
the topic under consideration?” Once you have answered the question, you can 
make an assignment.
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The individual dimensions of the framework are related (see Figure 2.2-2). The 
WHAT dimension forms the basis for all other dimensions since it contains the 
basic architecture knowledge and important architecture definitions. All other di-
mensions detail the basic principles contained in the WHAT dimension. In an 
architecture method (HOW dimension), the elements of the other dimensions 
are also put into a methodological and time context. For example, an architecture 
method describes which architecture perspectives (WHERE dimension) have to 
be applied and which architecture means (WITH WHAT dimension) have to be 
selected to fulfill specific architecture requirements (WHY dimension). The archi-
tecture method also describes which activities are to be performed. Individuals 
(WHO dimension) base their actions on the method.

Using this framework, you can establish a common vocabulary and understand-
ing, which makes communication within the team easier. It therefore not only 
benefits individual architects in arranging their architectural thoughts, but also 
makes collaboration with others more efficient, since a common framework can 
reduce misunderstandings. The framework can therefore be a catalyst for suc-
cessful collaboration within the team. Of course, the framework merely repre-
sents one possible model for thinking about architecture and arranging your 
thoughts. In our experience, however, the model is very practical and makes 
daily work easier. The following sections give an overview of the individual di-
mensions of the architecture orientation framework.

2.3	� Architectures and Architecture Disciplines (WHAT)

The WHAT dimension is dedicated to basic architecture knowledge. The ele-
ments of this dimension enable you to explain the nature of architecture, define 
architecture, and relate architecture to other IT domains and non-IT domains, 
such as building architecture. With a good understanding of the basic terminol-
ogy outlined here, you have the basis for understanding and working with the 
other dimensions.

Designing architectures successfully is a challenge given the inherent complex-
ity of IT systems. Today, architectures must recognize the usual requirements 
such as reliability, availability, and scalability, and in addition, offer a basis for 
realizing functional requirements. You are thus faced with the challenge of con-
sidering various architectural influencing factors, such as functional and quali-
tative aspects, and balancing them out sufficiently for the specific problem at 
hand. In addition to a well-founded basic architectural knowledge, you also need 
deeper knowledge of specialist fields. For example, for the integration of IT sys-
tems, you must have a very good understanding of the integration platform to be 
implemented and possible integration approaches, such as message-based or 
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process-based integration. This need for specialist knowledge has led to the es-
tablishment of various architecture disciplines. During the course of your career, 
you will generally decide to specialize in one of these disciplines. An architecture 
is thus often created as a team effort through the collaboration of architects from 
the individual disciplines.

Therefore, in the WHAT dimension, in addition to looking at the basic principles of 
software architecture in detail, we briefly present further architecture disciplines. 
We do this in an overview in order to position the disciplines within the architec-
ture orientation framework and to separate them from one another. We will look 
at the following disciplines:
>	 �Software architecture
>	 �Data architecture
>	 �Integration architecture
>	 �Network architecture
>	 �Security architecture
>	 �System management architecture
>	 �Enterprise architecture

We will examine the contents of the WHAT dimension in more detail in Chapter 3.

2.4	� Architecture Perspectives (WHERE)

Architectural thinking and practice are complex. Psychological studies indicate 
that people can only process 7 ± 2 units of information simultaneously [Miller 
1956]. Added together, the quantity of information covered by all aspects of an 
architecture vastly exceeds this figure. It is therefore extremely difficult to grasp 
the building blocks of a system, how they are grouped, how they interact, how 
they are distributed, and their behavior at runtime all at once. To be successful 
despite the restrictions of human understanding, you have to reduce the com-
plexity by examining only one manageable part of an architecture at any one 
time.

Architecture can take place at different levels. It is therefore important to always 
be clear about the level you are dealing with. This is the only way of applying use-
ful means and disciplines for the architecture level in question. The levels pos-
sible range from organizations to systems all the way down to individual building 
blocks.

At each level, you can take different architecture views of a system. In their en-
tirety, the views give a complementary image of the architecture to be implement-
ed. Architecture view models enable you to look at architectures systematically 
and in a way that reduces their complexity for this purpose. They group relevant 
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views from which architectures are to be considered into one model, thus en-
abling them to be shown in their entirety. The 4â•›+â•›1 view from Kruchten [Kruchten 
2000] is an example of an architecture view model. Architecture frameworks, 
such as the Zachman Framework [Zachman 1987] and the Reference Model for 
Open Distributed Processing (RM-ODP) [ISO10746 1998], also contain architec-
ture view models.

Chapter 4 discusses the individual architecture levels and views. It also takes a 
closer look at the different views of the architecture models mentioned.

2.5	� Architecture Requirements (WHY)

For companies, information technology (IT) is a significant means for realizing 
their business strategies and supporting their operations. You therefore design 
IT systems and, as a consequence, architectures, not for their own purpose but 
with a specific business purpose in mind. The primary motivation for architecture 
is thus not technological elegance but the specific and long-term added value for 
the business. Of course, you can only achieve this added value if the IT system 
satisfies the functional requirements placed on it. However, an IT system that 
satisfies the functional requirements but does not appreciate the non-functional 
requirements will have no real benefit for the business. An e-commerce shop that 
satisfies all functional requirements but crashes with a high number of simultane-
ous users will not support the real business strategy and will probably not deliver 
any added value.

You must therefore ensure that the requirements placed on an IT system are 
supported by the underlying architecture of that system. It is essential that you 
know different types of requirements and their implications for architecture. In 
principle, there are functional and non-functional requirements. We can differen-
tiate between the following types of requirements:
>	 �Organizational requirements
>	 �System requirements
>	 �Building block requirements
>	 �Development time requirements
>	 �Runtime requirements
>	 �Organizational constraints

The WHY dimension identifies and explains the different types of requirements. 
You can only design IT systems “fit for purpose” when you are aware of the differ-
ent requirements and take them into account when practicing as an architect. We 
will discuss these different types of requirements in detail in Chapter 5.
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2.6	� Architecture Means (WITH WHAT)

This dimension is dedicated to the means you use to design and implement your 
solutions. Using the type case metaphor, this section contains lots of smaller 
subsections in order to structure the large number of architecture means and 
make orientation easier. During the course of your career, you will continually 
add new means to these sections and remove obsolete ones. A means becomes 
obsolete when it is no longer relevant. The spectrum of possible architecture 
means ranges from fundamental principles to concrete technologies.

There are elementary means, which, when used and considered, are extremely 
relevant in establishing successful architectures. These belong to the category of 
architecture principles. One means in this category is the separation of concerns 
principle. Its aim is to clearly separate the responsibilities of building blocks. For 
example, a building block for visualizing data should not be responsible for sav-
ing it in a database. Architecture principles are important long term and should 
accompany every architectural activity. They embody fundamental architecture 
experiences.

To ensure that architecture principles are also taken into account in an architec-
ture, you can apply basic concepts that support these principles accordingly. You 
must therefore look at the different concepts and select the appropriate ones de-
pending on the problem at hand. The architecture concepts include basic design 
and realization paradigms, such as object orientation and component orientation. 
Means that are based entirely on modeling and generation, such as model-driv-
en software development or model-driven architecture [OMG 2010c], are also 
elements of this sub-dimension.

In addition to considering elementary principles and concepts, we recommend 
having proven architecture solutions in your toolbox so that you can reuse them 
for similar problems. These solutions, which are based on architecture principles, 
belong to the family of architecture tactics, styles, and patterns. An architecture 
tactic helps you to get a first idea about a design problem. You can then de-
velop this idea further. You can also use styles and patterns, for example, as 
further means. An architecture style documents a proven and successful way 
of structuring an architecture. Every style has specific characteristics and is a 
template for the design of the actual architecture. An architecture style is also 
an efficient documentation and communication tool, since the properties of the 
style used can be understood independently of the actual purpose of the system. 
There are various options for documenting architecture styles. One proven and 
recommended form is the documentation of the style as an architecture pattern. 
An architecture pattern describes architecture styles using a general structure. 
The authors of POSA1 and POSA2 have made a considerable contribution in 
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this area [Buschmann et al. 1996; Schmidt et al. 2000]. For example, one ar-
chitecture style described in pattern form is the layers architecture pattern. It 
documents the arrangement of system building blocks at different levels. This ar-
rangement achieves a clear separation of responsibilities and avoids a monolith-
ic architecture [Buschmann et al. 1996]. The classic arrangement of presentation 
logic, business logic, and persistence logic on different layers is a well-known 
application of this pattern. Architecture styles and patterns are similar means with 
a different form of description.

A further type of means is basic architectures. Basic architectures use the previ-
ously identified architecture means in a larger context. Examples of such basic 
architectures are:
>	 �Cloud Computing Architectures
>	 �Dataflow architecture
>	 �Layered architecture
>	 �Middleware architecture
>	 �n-tier architecture
>	 �Rich client architecture
>	 �Service Oriented Architectures
>	 �Thin client architecture

Knowing these basic architectures enables you to expand your architecture 
knowledge and understanding—and thus arrive at an effective software archi-
tecture more quickly.

Architectures of complex systems have to solve several different architecture 
problems, or rather, balance them out appropriately. Therefore, several architec-
ture patterns are used in combination. Architecture patterns are also architecture 
means that do not relate to any specific problem area. That is, they do not ad-
dress, for example, specific characteristics of a call center architecture. Relying 
solely on architecture patterns to design a solution for such an architecture is 
therefore not sufficient. It is much more important to include complete architec-
ture solutions in your toolbox as references. These reference architectures de-
scribe solutions that have been designed for a specific problem domain using 
different architecture styles or architecture patterns. They therefore reflect the 
highest degree of reusability of architectural knowledge and experience.

One very important factor in the success and acceptance of an architecture is that 
everyone involved (customer, project lead, software developer, etc.) understands 
and supports it. It is therefore essential that you communicate your ideas and ap-
proaches and model the architecture according to these ideas and approaches. 
To achieve this, you have to use the correct means to express the architecture. 
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These means can vary depending on the target group. For example, for a bid 
presentation, it may be sufficient to visualize the significant building blocks of an 
architecture using graphical elements. However, you will need more expressive 
means for the architecture design in order to exclude misunderstandings and 
take account of all significant architecture aspects, such as the structure and 
dynamics of an architecture. The means used in this context are used to model 
the architecture and belong to the family of architecture modeling means. One 
example of a widespread, standardized modeling means is the Unified Modeling 
Language (UML) from the Object Management Group [OMG 2007a].

In addition to the architecture structures themselves, the selection of technolo-
gies that carry and support the architecture design in the actual implementation 
is a further important influencing factor for a successful architecture. Therefore, 
one of the trays of your toolbox should be dedicated to these basic technologies. 
Add new technologies to your toolbox frequently and remove technologies that 
have become obsolete. Databases, transaction monitors, and middleware can be 
included in this sub-dimension, for example. Furthermore, to implement an archi-
tecture successfully, it is very important that you know possible target platforms 
and consider their strengths and weaknesses when actually realizing the archi-
tecture on a concrete platform. Target platforms, such as Sun’s Java Enterprise 
Edition or Microsoft’s .NET, belong to the category of component platforms and 
are important design means for implementing architecture requirements such as 
scalability, availability, and reliability by providing elementary basic functionality.

The realization and conscious use of these means make architectural activity 
easier and contribute considerably to the success of an architecture. Chapter 
6 looks more closely at the WITH WHAT dimension, examining the individual 
architecture means in more detail. In this book, we restrict ourselves primarily 
to IT-related means. It is, however, also possible to place other means in this 
dimension, such as presentation and discussion techniques. These are useful 
for you in your communication with stakeholders.

2.7	� Organizations and Individuals (WHO)

Architectures are created by people. As an architect, you interact and commu-
nicate with many different groups of people in order to design an architecture. 
For example, you work closely with the customer and end users of the system to 
be developed in order to extract the architecturally significant requirements from 
the requirements placed on the system. You are also the first contact person for 
project leads, supporting them in the creation of project plans and effort estima-
tions. You also lead project teams from a technical point of view, and act as the 
communicator and motivator of the architecture to be implemented.
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To manage these tasks successfully, you need more than well-founded skills in 
technical and methodological topics. You must also have good social skills. Even 
the most elegant technical architecture idea cannot be realized if you cannot con-
vince your team and customer of the idea. Unfortunately, not enough importance 
is placed on social skills in the role of an architect today, even though as far back 
as 1968 Melvin Conway raised the theory that an architecture is defined to a 
considerable extent by organizational influences [Conway 1968]. It is very impor-
tant to be aware of these organizational influences and the required social skills. 
This is one of the key differentiators that make a technical specialist an architect.

The WHO dimension addresses these social skills and thus outlines the role of 
an architect in organizations and teams. On one hand it covers general topics 
such as group dynamics processes, factors for well functioning teams, and the 
interdependencies of organizations and teams. On the other hand, it presents 
topics that have arisen from concrete project experiences. These include, for 
example, organizational patterns. Organizational patterns describe successful 
options for cooperation between roles in projects [Coplien and Harrison 2004]. 
Chapter 7 looks at these topics in detail.

2.8	� Architecture Method (HOW)

As an architect, your objective is to design an architecture that can be used as 
a foundation for realizing a system. To achieve this objective, you have access 
to various architecture means, can vary their level of abstraction, and can com-
municate with different partners such as project leads, developers, and analysts. 
However, considering these options does not guarantee that you will meet your 
objective. Even if you realize a system successfully once, it does not mean that 
you will experience the same success next time. You can only be successful in 
the long term if you are able to repeat your architectural activities systematically. 
Therefore, it is very important to be aware of proven methodological approach-
es and be able to apply them repeatedly. The HOW dimension is dedicated to 
these methodological approaches, or rather the question “what do I have to do 
to design and implement an architecture?” We will therefore present a general 
architecture method.

The architecture method contains the following activities that must be executed 
when you design an architecture:
>	 �Creating the system vision
>	 �Understanding the requirements
>	 �Designing the architecture
>	 �Implementing the architecture
>	 �Communicating the architecture
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You can perform the activities several times within an iterative development pro-
cess.

Depending on which activity you are currently performing, elements of the other 
dimensions have an effect on the architecture to different degrees. For example, 
you should use different means and perspectives depending on the activity at 
hand. In understanding the requirements, for example, it is particularly impor-
tant to select the architecturally significant requirements from the requirements 
placed on the system.

We will look at this topic in more detail in Chapter 8.

2.9	� Summary

>	 �The architecture orientation framework structures architecture using the 
dimensions WHAT, WHERE, WHY, WITH WHAT, WHO, and HOW.

>	 �The WHAT dimension (architectures and architecture disciplines) contains 
basic principles and definitions of architecture. It therefore lays the basis 
for working as an architect.

>	 �The WHERE dimension (architecture perspectives) covers the different 
levels at which architecture takes place and the views that make architec-
ture tangible.

>	 �The WHY dimension (architecture requirements) is dedicated to the re-
quirements placed on IT systems in general and architectures in particular.

>	 �The WITH WHAT dimension (architecture means) structures the different 
architecture means you can use whilst practicing as an architect.

>	 �The WHO dimension (organizations and individuals) looks at the role of the 
architect and the influence of individuals and organizations on architecture.

>	 �The HOW dimension (architecture method) structures the architectural 
process. It details the most important architectural activities that you per-
form during your work.
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In this chapter we look at the WHAT dimension of the architecture orientation 
framework. It conveys a basic understanding of architecture. We also present 
the significant building blocks that make up a system and their relationships to 
one another. Since the nature of systems and systems thinking are essential for 
your work as an architect, we also position these concepts in the context of archi-
tecture. After reading this chapter, you will be able to explain the general nature 
of architecture, differentiate between individual architecture disciplines and the 
most important building blocks of systems, and describe their relationships with 
one another.

3â•…� Architectures and Architecture 
Disciplines (WHAT)

Figure 3-1: Positioning of the chapter in the orientation framework
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Figure 3-2 shows the basic concepts that we will look at in this chapter and visu-
alizes how they relate to each other.

3.1	� Classic Architecture as Starting Point

This section explains what is generally understood under the term “architecture”. 
Using this understanding as a base, later in this chapter we will discuss software 
architecture. The classic architecture of buildings and constructions is the start-
ing point for this examination. The American Heritage Dictionary offers possible 
definitions of architecture in its classic meaning:

The art and science of designing and erecting buildings
A style and method of design and construction
Orderly arrangement of parts

According to this definition, architecture is both an art and a science, dealing with 
both designing and erecting buildings. It does not concentrate solely on planning 
the building. It extends right up to the realization of the building. Furthermore, a 
key result of the architecture activity is the arranging or orderly arrangement of 

Figure 3-2: Basic concepts of the WHAT dimension
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parts of the building. Architecture thus makes important statements about the 
structure of the building. The definition states further that architecture styles and 
methods are elements of architecture. They represent architectural experience 
that you use in your work. Architecture is therefore not merely the structure of a 
building, but also the way of approaching something.

There is no unique definition of the term “architecture”. For some, “architecture” 
is the structure of a building or an IT/software system; for others, the activities 
performed by people in designing the structure. To make the differentiation be-
tween the actual architectural process and the structural aspects of architecture 
clearer, in this book we will treat the activity as an architecture discipline.

Architectures are generally created based on requirements (e.g., the desire for 
simple housing) and using available means (e.g., building materials and tools). 
Seen from an historical perspective, in classic architecture the actual design was 
based initially on the principle of trial and error, and was generally ad hoc. This 
meant that every building had its own individual structure. An orderly arrange-
ment of parts as a result of planned architecture was generally not the case. 
Architecture styles were only developed once architecture experiences were 
passed on verbally or in writing. Architecture is therefore always based on heuris-
tics, or rather, architecture means and procedures that have proven themselves 
in the past. Architecture styles are therefore means for documenting tried and 
proven solutions for architectural problems. Figure 3.1-1 illustrates the influence 
of requirements and means on architecture.

An important thought leader in classic architecture was Marcus Vitruvius Pollio, 
a Roman architect from the first century BC. He wrote the work “De architectura 
libri decem,” known today as “The Ten Books on Architecture” [Morgan 1960]. 
Vitruvius represented the theory that good architecture must satisfy the following 
requirements:
>	 �Durability (firmitas)
>	 �Usefulness (utilitas)
>	 �Elegance (venustas)

Requirement

*

affects Architecture
used

*

Means

stuctures
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Figure 3.1-1: Requirements and means as influencing factors on architecture
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These requirements are still valid today. The durability of an architecture indi-
cates whether it can satisfy future requirements and support further evolution. 
For example, a further floor can only be added to a house if such an extension 
was considered in the architectural design. The usefulness is a quality attribute 
regarding whether the architecture fulfills the specific requirements. For exam-
ple, the architecture should plan the arrangement of doors in a house such that 
the rooms can be accessed. Finally, elegance expresses how the architecture 
is structured. The arrangement of the individual elements of the architecture is 
reflected in the elegance. Different architecture alternatives can implement the 
same requirements with a different degree of elegance.

An architecture is therefore created based on different requirements and is influ-
enced by these requirements (see Figure 3.1-2).

Architectures fulfill requirements to different degrees. They are therefore always a 
compromise and the result of your considerations and decisions (see Chapter 5).

An architect communicates with different stakeholders. For example, with the 
customer he discusses the external view of a building or the arrangement of the 
rooms within the building. He discusses technical issues with other stakeholders 
involved in the construction of the building—for example, the electrical wiring. An 
architect therefore has a central role in a building project.

An architect discusses one and the same building with different stakeholders 
(e.g., customer or foreman) at different levels and from different views. He also 
applies these different perspectives when working out the architecture.

Classic architecture and software architecture have some features in common. 
We illustrate these below in a brief summary of the insights gained so far:
>	 �An architecture defines the arrangement of parts of a building or an IT sys-

tem. In classic architecture, these are the fundamental parts [Perry and Wolf 
1992]. The architecture therefore defines the fundamental parts, but not the 
details of the system to be developed [Buschmann et al. 1996].

>	 �An architect uses different views to present an architecture and his activi-
ties take place at different levels. The levels and views relevant for you as a 
software architect are presented in Chapter 4.

Figure  3.1-2: Architecture influenced by classic requirements
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>	 �Every architecture discipline must ensure balance between the architecture 
requirements. Therefore, just like a classic architect, a software architect 
must know the requirements that are relevant for the software architecture 
and take them into account in the architecture design. We will therefore dis-
cuss architecture requirements in more detail in Chapter 5.

>	 �The manner of the arrangement is based on experience and embodies an 
architecture style. Architecture means are used during the design of the ar-
chitecture. In software architecture, various means are used. We will pres-
ent these in Chapter 6.

>	 �An architect communicates and interacts with different stakeholders. He has 
a central role in the realization of a building project. This also applies for a 
software architect. Chapter 7 therefore looks at the social aspects of soft-
ware architecture.

>	 �The concrete action of arranging the parts is based on a method, and the 
architectural activity stretches from the design up to the implementation. 
The architectural process for designing a software architecture is covered 
in Chapter 8.

In the following section, we make the insights gained so far more concrete and 
apply them to software architecture.

3.2	� From Classic Architecture to Software Architecture

As explained in the previous section, the general definition of architecture can 
also be applied to software architecture. Software architecture is concerned with 
the design and implementation of IT systems. From the viewpoint of architectural 
activity, software architecture covers the steps necessary to design and imple-
ment an architecture. With regard to the structural aspect of architecture, soft-
ware architecture describes the structures of IT systems.

From this point on, the terms “IT system” and “system” are used synony-
mously provided no explicit differentiation is necessary.

Today, systems have many facets and you have to make decisions in architec-
tural areas that exceed the pure software aspect. This means that, depending 
on the type of system, you may need to know the concrete hardware used very 
early in the software architecture design process. Consequently, a system as a 
whole consists of more than just software building blocks, and you have to have 
a sufficient understanding of the other building blocks. Therefore, here we will 
introduce a system definition that considers the holistic nature of systems:
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A system is a unit that consists of integrated software and hardware build-
ing blocks and exists for the purpose of fulfilling a functional objective. To 
achieve this objective, it communicates with its environment and must take 
account of the conditions defined by the environment.

Figure 3.2-1 shows the building blocks of a system.

The functional objective is described by the functional requirements placed on 
the system (see Chapter 5). The system definition intentionally stresses software 
and hardware building blocks to emphasize that a system is more than just soft-
ware. A system’s environment is the organization in which it is embedded. The 
system communicates with parts of the organization. These can be people as 
users of the system, or also other systems the system is connected to. Whether 
human users exist depends on the type of system. For example, a system for 
controlling an engine has no direct human user. However, it will definitely com-
municate with other systems in its environment. The organization sets the frame-
work within which the system can act. For example, defined IT standards and de-
velopment guidelines can be general conditions that the system has to consider 
in the broader sense. Of course, any existing standards and guidelines have to 
be considered during the design and implementation of the system.

In Chapter 1 we illustrated that there are a number of definitions for software 
architecture. This clearly shows how wide the field of interpretation and probably 
also confusion is in this area. As a result of this broad spectrum, in our opinion it 
is not possible to give one “correct” definition. For the purpose of this book, we 
have decided to find a definition that is based on our common understanding 
and that takes the afore-mentioned classic architecture definition into account. A 
corresponding definition must therefore cover both the structure and the activity.

Figure  3.2-1: Building blocks of a system
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Software architecture describes the software building blocks of a system. To be 
more precise, we can take a look at a definition that reflects the structural char-
acter of software architecture appropriately and that is widely used in literature 
and in practice. It is the definition of software architecture according to Bass etÂ€al. 
[Bass et al. 2003]:

“The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the 
externally visible properties of those elements, and the relationships 
among them”. (Note that Bass uses the term “element” for the parts of the 
architecture, whereas in this book we use the term “building block”.)

This definition is very general. It does however contain the most important as-
pects of a software architecture:
>	 �The software structure or structures of a system
>	 �The software elements (or building blocks) of a system
>	 �The properties of the software elements (or building blocks) of a system
>	 �The relationships between the software elements (or building blocks) of a 

system

The definition states that a software architecture defines the software building 
blocks of a system. So which software building blocks does an architecture de-
fine? According to Perry and Wolf, these are the fundamental building blocks of 
a system [Perry and Wolf 1992]. In other words, the software building blocks that 
are of considerable importance for the system under construction. These can 
be key classes, interfaces, components, frameworks, subsystems, and modules 
(Chapter 6 looks at these terms in more detail). We intentionally do not specify 
them precisely here, since systems are very diverse and the specific designs of 
their software building blocks can therefore be very different. A clear differen-
tiation between software architecture and design is very difficult. Drawing the 
correct boundary often depends on the corresponding experience of the archi-
tect and the viewpoint taken (see Chapter 4). The externally visible properties 
of software building blocks are the properties that can be perceived by other 
software building blocks. These include, for example, the functionality offered, 
the interfaces, and the performance of the software building blocks. The internal 
structure and characteristics of software building blocks are generally not taken 
into consideration in an architecture view, which is in principle a holistic view of 
a system (see Section 3.3).

In addition to naming the software building blocks, a software architecture also 
describes the structures between the software building blocks and the thus im-
plied relationships. It is important to note that there is not “one” structure. De-
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pending on the perspective, different structures of a system are important and 
must be defined by an architecture. For example, a system always has a static 
and a dynamic structure. Therefore, when designing the architecture, you must 
consider different perspectives (see Chapter 4).

A further important definition of architecture comes from the IEEE:

Architecture is the fundamental organization of a system embodied in its 
components, their relationships to each other and to the environment and 
the principles guiding its design and evolution.

The IEEE introduced this definition in its standard 1471 [IEEE 2007], which cov-
ers the description of software-intensive systems. Software-intensive systems 
are systems whose character is defined to a large extent by software, but which 
do not consist solely of software.

An important aspect of this definition is the explicit consideration of the environ-
ment of the system. This is a significant point that we will look at in more depth 
in Section 3.3 and Chapter 8.

From the definition according to Bass and the definition according to the IEEE, 
we can derive the following definition of software architecture that acknowledges 
its structural character:

The software architecture of a system is the structure or structures of the 
system, which comprise software building blocks, the externally visible 
properties of those building blocks, and the relationship among them and 
with their environment.

With regard to the definition of classic architecture presented in Section 3.1, the 
previous definition of software architecture addresses only the orderly arrange-
ment of parts. According to the classic definition however, architecture is much 
more than simply an architectural description of a system. It also comprises the 
actual architecture activity (in the classic architecture definition: art and science) 
that leads to the architecture of a system. Software architecture as a discipline is 
dedicated to this aspect:

As a discipline, software architecture covers the architectural activities and 
the related decisions about the design and implementation of a software 
architecture.
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In other words, as an architecture discipline, software architecture looks primarily 
at architectural activities as part of the analysis, design, and implementation of 
individual systems. Important activities are the identification and design of soft-
ware building blocks, their interfaces, and their interactions. Usually, you break 
the system down recursively. You do this based on the requirements placed on 
the system and obtained during the analysis. The selection of principles on which 
the design and the evolution of a system are based is also an important aspect 
of this discipline. This is emphasized by the IEEE definition. In addition, your 
tasks as a software architect also include considering the underlying platform 
and selecting the distribution of the software building blocks. They also include 
selecting corresponding development methods and tools (see Chapter 8). In this 
context, Maier and Rechtin also use the term architecting to express the active 
aspect of architecture [Maier and Rechtin 2000]. 

For the purposes of this book, we have made a conscious decision to firstly sepa-
rate the aspects structure and activity in definitions. Software architecture as a 
structure can be seen as the result of software architecture as a discipline. As a 
whole, software architecture comprises software architecture as a structure and 
software architecture as an activity or discipline:

 

When we subsequently talk about software architecture in the book, on one hand 
it means the result or software structure(s) of an IT system, and on the other, 
practicing as a software architect.

The overall architecture of a system takes into account both software building 
blocks and hardware building blocks. For completeness, we will therefore intro-
duce a broader definition of system architecture:

System architecturestructure: The system architecture of a system is the 
structure or structures of the system, which comprise building blocks (soft-
ware and hardware building blocks), the externally visible properties of 
those building blocks, and the relationship among them and with their en-
vironment.

System architecturediscipline: As a discipline, system architecture covers 
the architectural activities and the related decisions about the design and 
implementation of a system architecture.
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In addition to the terms “software architecture” and “system architecture”, many 
more architecture terms are used in practice and in literature. These include 
terms such as “technical architecture”, “functional architecture”, and “platform 
architecture”. The terms are generally not clearly defined and are used indis-
criminately. We will therefore look at these terms more closely below and try to 
find definitions that fit practice. Figure 3.2-2 illustrates the different architecture 
terms and places them in relation to the building blocks of a system.

The software architecture is part of a system architecture. It structures the soft-
ware building blocks of a system. If we look more closely at the software architec-
ture, we discover that it takes into account both functional and technical aspects. 
We therefore often talk about a functional and a technical architecture.

Functional architecture arises from the domain or problem area for which the 
system is being developed. It divides the system into functional building blocks 
and is driven by the character of the domain and the functional requirements 
placed on the system. For example, in an order processing solution, we could 
identify the following functional building blocks: order entry, order management, 
and customer management. The degree of abstraction of functional architecture 
is high and its platform dependency is low. The functional architecture is based 
on the technical architecture.

In its original sense, the technical architecture is domain-independent and is ded-
icated primarily to the realization of non-functional requirements or qualities. It 
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defines technical building blocks for non-functional aspects, such as logging, au-
diting, security, reference data, persistence, and transaction management. The 
technical building blocks use services from the platform and encapsulate them 
such that they can be used in a platform-independent way by functional building 
blocks. The degree of abstraction of a technical architecture is lower than that 
of a functional architecture. Conversely, the platform dependency of a technical 
architecture is higher. Technical architectures can generally be used for software 
systems of various domains, as they are domain-independent. The technical 
architecture also defines how functional building blocks are mapped onto the 
technical architecture. A coarse-grained functional building block can be broken 
down into a set of fine-grained functional building blocks. The resulting functional 
building blocks have a lower level of abstraction. For example, the technical ar-
chitecture can be based on the model view controller pattern [Buschmann et al. 
1996]. This splits the functional building block “order management” into a model 
building block, a view building block, and a controller building block.

To understand the term “platform architecture”, we must first explain the term 
“platform” in more detail. For a detailed discussion of this term, see Section 3.4. 
At this point, it is sufficient to state that a platform is itself a system that can 
consist of software building blocks, and, where applicable, hardware building 
blocks. It is used to execute software building blocks of a system and offers ser-
vices to them. The platform architecture therefore defines the platform building 
blocks and their structure. The technical building blocks use the platform build-
ing blocks. For examples of pure software platforms, see Section 6.7.5. JEE is 
a component platform, for example, and in turn can exist on different operating 
system platforms and hardware platforms.

The explanations above are sufficient for an initial understanding of the terms 
“functional architecture”, “technical architecture”, and “platform architecture”. 
However, in practice, it is not always easy to assign an architecture to one spe-
cific category. Platforms are becoming more powerful and no longer provide only 
services of a pure infrastructure nature, such as transaction management or per-
sistence. Platforms are now being created that offer functional basic functional-
ity. For example, a portal platform will also offer personalization, syndication, 
or campaign management. The platform therefore already covers functional re-
quirements. This means that it has both a functional and a technical character. 
It is also possible to imagine that a functional platform builds on a technical plat-
form, and the actual software system in turn builds on the functional platform. 
The more useful the platform, that is, the more requirements that are already 
satisfied by the platform, the leaner the technical and functional architecture can 
be. Model-driven software development (see Section 6.2.6) and domain-specific 
modeling also contribute to this trend.

Platform architecture
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Another term used in many ways in both practice and theory is “application archi-
tecture”. For some people, the application architecture is the software architec-
ture; for others, the functional architecture. In this book, we equate application 
architecture with software architecture.

In addition to software architecture, IT contains further architecture disciplines. 
Amongst other things, this is because IT systems are becoming ever more com-
plex, making specialization in one area essential. The examples given below are 
intended to make this clearer. The focus here is on an enterprise-related IT sys-
tem. However, the problem is also transferable to other IT systems, such as em-
bedded systems. The respective architecture discipline is given in parentheses.
>	 �You can distribute different software building blocks of a system over differ-

ent hardware and connect them via a network. Thus, in designing such an 
architecture, you must also consider network aspects (architecture disci-
pline: network architecture).

>	 �In addition, systems must communicate with one another to exchange data 
or to support cross-system business processes. This means that they must 
be integrated within the enterprise and across enterprise borders. The ar-
chitecture of a system must therefore also acknowledge integrative aspects 
(architecture discipline: integration architecture).

>	 �The quality of the data exchanged is very important for the success of an 
enterprise. Systems therefore often have the task of collecting existing data 
that is spread across an enterprise and making it available. When designing 
the architecture, you must also consider how this data is represented (archi-
tecture discipline: data architecture).

>	 �The data a system exchanges and processes may contain highly sensitive 
information. You must therefore protect it against access by unauthorized 
third parties. A system must therefore guarantee this security, and you must 
provide for it in the system’s architecture (architecture discipline: security 
architecture).

>	 �It must also be possible to operate systems in a way sufficient to ensure the 
required availability and reliability. Therefore, you must also plan aspects re-
lating to system operation in the architecture (architecture discipline: system 
management architecture).

>	 �In addition, you must generally develop systems in accordance with pre-
defined standards and guidelines defined within an enterprise (architecture 
discipline: enterprise architecture).

We will explain the architecture disciplines specified above briefly below for the 
purposes of differentiation.

Network architecture is concerned with the network infrastructure of systems. 
The main tasks of this discipline are the planning and design of the functions, 
services, building blocks, and protocols of a network.

So, what was 
application 
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Integration architecture is concerned with the planning and realization of integra-
tive solutions. Its objective is connecting multiple applications or systems of one 
or more enterprises. Heterogeneous platforms, technologies, organizations, and 
data must be integrated.

Data architecture encompasses the data-oriented aspects of a system. The de-
sign of logical and physical data models, the selection of persistence mecha-
nisms (e.g., database or file system), the configuration of a database, and the 
design of a data warehouse are possible activities of this discipline.

A security architecture focuses on guaranteeing confidentiality, integrity, avail-
ability of systems or system landscapes, identity and authorization checks, and 
the verifiability and non-repudiation of security-relevant operations. Examples 
of tasks in this architecture discipline are the design and implementation of PKI 
infrastructures, the implementation of an enterprise-wide single sign-on solution, 
and the establishment of an identity management. The authentication and au-
thorization of users within an application is another aspect of this discipline. The 
execution of tests to identify security vulnerabilities should also be assigned to 
this discipline.

System management architecture primarily contains the operational aspects of 
systems. Within this discipline, your tasks are designing operating strategies 
of centralized and decentralized system landscapes and defining service level 
agreements. A system management architecture also describes, for example, 
how a system is connected to a system management environment.

Enterprise architecture is a discipline that designs an enterprise-wide IT architec-
ture taking into account business strategies, business processes, and business 
data. It comprises processes, application, data, and technologies for realizing the 
business strategy. Enterprise architecture also has the task of demonstrating and 
monitoring the transition process from the actual architecture to the planned tar-
get architecture. It therefore addresses the target architecture, the transition pro-
cess, and the governance of this process. With regard to the example previously 
introduced, enterprise architecture defines the standards and guidelines around 
which you must orient yourself when designing systems. In classic architecture, 
the enterprise architecture would define the zoning plan.

Enterprise architecture focuses not on the individual IT system but on the entirety 
of all IT systems of the enterprise or part of the enterprise under consideration 
(architecture of architectures). The questions that an enterprise architecture an-
swers therefore relate to the system as a whole. There are also specific archi-
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tecture models for enterprise architecture views. Examples are the Zachman 
Framework (see Section 4.2.1) and TOGAF(see Section 4.2.4).

Some of the challenges an enterprise architecture faces are:
>	 �Enterprise-wide motivation cannot be mapped directly onto the structural 

organization of the enterprise.
>	 �The identification of standards and guidelines that are deemed to be rel-

evant for enterprise architecture (organizational level).
>	 �Implementation and operationalization of these standards and guidelines in 

the enterprise.
>	 �Planning and management of the system portfolio of an enterprise.

The information here does not claim to be complete. However, the disciplines 
named in the WHAT dimension are considerably important in information tech-
nology—particularly in the area of enterprise-related IT systems.

In their entirety, the architecture disciplines named can contribute to a system. 
With the increasing complexity and size of the system, sound knowledge in ar-
chitecture disciplines other than software architecture is becoming ever more 
important. The tasks of the disciplines are often spread over many shoulders, 
making the architecture of a system a team effort. The main responsibility gener-
ally lies with you, the software architect. For consultation purposes and to dis-
cuss questions, you involve architects from other disciplines. The interaction of 
the architecture disciplines is shown in Figure 3.2-3.

It is not always easy to differentiate between the architecture disciplines. As a 
software architect, you will have to deal with all topics since any system to be 
realized can have aspects from the different disciplines.
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Figure 3.2-3: Interaction of architecture disciplines
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3.3	� Architecture and the System Concept

We have used the term “system” several times in the previous chapters, since 
architecture is generally concerned with systems, be they buildings, cities, land-
scapes, or IT systems. It is therefore important to understand the general prop-
erties of systems. A basic understanding of systems and thinking in systems is 
thus a prerequisite for acting successfully as a software architect. We will look at 
significant aspects of the system theory briefly in this section.

As a starting point for the explanations, we will use the following system definition 
derived from [Wikipedia 2011]:

A system is a set of elements that are related to each other and interact 
in such a way that they can be seen as one unit that separates itself in 
this regard from the surrounding environment for a specific task, sense, or 
purpose.

According to this general definition, a system is a unit that consists of mutually 
interacting parts or system building blocks. A system can consist of subsystems 
or finely grained system building blocks and be structured hierarchically. In other 
words, a system can be seen as a system building block of other systems.

A system has a system boundary that separates it from its environment (see 
Figure 3.3-1).

Figure 3.3-1: System in the context of its environment
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A system always exists to achieve an objective. For example, a football team, as 
an organizational system, exists with the objective of winning the championship. 
In the same way, a project team forms with the objective of completing a project 
successfully and thus achieving the related objective. In turn, an IT system exists 
to achieve functional objectives (see SectionÂ€3.2).

Systems can interact with their environment and exchange information in order 
to achieve their objective. The example from Figure 3.3-1 shows that system A is 
dependent on information from system B, and provides system C with informa-
tion. There is also bidirectional communication between system D and system 
A. Depending on whether a system interacts with its environment, the system 
theory differentiates between the following types of system:
>	 �Open systems are in touch with and exchange information with their envi-

ronment. The systems have to interact with their environment to be able to 
exist.

>	 �Closed systems do not exchange information with their environment. They 
do, however, have an energetic relationship with their environment.

Closed systems are very rare in practice since systems always interact with their 
environment. As an example of a system in classic architecture, a house is gen-
erally connected to the power and water supply provided by its environment. 
Furthermore, the building of a road in development planning is always embedded 
in the overall road planning of its environment or road network.

One important finding of system theory is the emergence of systems. Emergence 
states that a system has properties that differentiate it from its system building 
blocks. Accordingly, no one system building block holds these properties alone. 
They arise from the interaction of the individual system building blocks. In other 
words, as a whole, the system is more than the sum of its individual parts (sys-
tem building blocks) [Rechtin 1991]. The emergent properties of systems thus 
exist only at the level of the system, and not at the lower level of its system build-
ing blocks. With regard to architecture, this means that every architecture level 
has different emergent properties (see Chapter 4).

The formation of tornadoes is an example for the emergence of systems. In this 
context, the system building blocks are both moist, warm air masses and dry, 
cold air masses. A tornado can only be formed when these building blocks meet 
and interact. The whole system, the tornado, behaves completely differently to 
its building blocks. It has characteristics that clearly distinguish it from those of 
its system building blocks. The human brain acts in a similar way. It consists 
of many neurons, and is only capable of thinking when these neurons interact. 
Thus the behavior of systems cannot solely be explained by the behavior of its 
individual system building blocks. In IT, the emergence of systems is often dem-
onstrated in large, complex projects.
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The holistic view of systems looks at a system in its entirety. It concentrates on 
the emergent system properties that arise through the interaction of the system 
building blocks. This is the view that determines whether an architecture can be 
deemed stable, since statements about the overall behavior can only be made 
through an overall view. Figure 3.3-2 makes this approach, known as holism, 
clearer. The subsystems are seen as a black box.

In contrast to holism, in reductionism, the individual system building blocks are 
analyzed separately. With reference to Figure 3.3-2, this means, for example, 
that only subsystem A1, including its system building blocks, is explained in more 
detail (see Figure 3.3-3). This view enables a concrete analysis of the behavior 
and function of individual system building blocks. A subsystem is thus perceived 
as a white box. However, due to the inherent emergence of systems, it is not pos-
sible to determine the behavior of the whole system in this way.

Holism and reductionism should therefore be understood as complementary ap-
proaches. We can only make statements about the holistic behavior of the sys-
tem (holism) when we know which system building blocks a system consists of 
(reductionism).

Figure 3.3-3: Reductionistic system view
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Thinking in systems can be understood as architectural thinking. It looks at the 
significant building blocks of an architecture and their interaction, and makes 
statements about how the architecture can support requirements the system 
must satisfy. Furthermore, this approach reflects the use of architecture expe-
rience in the form of architecture styles. Architectural thinking is a method of 
looking at architecture based on specific objectives, with the focus on the holistic 
view.

In order to examine a system or its architecture in the sense of system theory, it is 
important to select the relevant system boundary. If you do not draw the system 
boundary appropriately, this may have a negative influence on the analysis—
either too many or too few aspects of the system are taken into consideration. 
The following example illustrates the selection of the system boundary using the 
planning of a heating system.

A heating plant is a system with the objective of achieving comfort within 
a building, for example, a house. The building to be heated represents the 
system boundary. A heating plant consists of the system building blocks 
energy supply, heat generator, heat distribution, heating areas, and regu-
lation. An individual room within the building can be seen as a subsystem 
that contains system building blocks of the whole system.

During the analysis, design, and implementation of a heating system, the 
first step involves reductionism. Each individual room is viewed as a sys-
tem in order to subsequently create the whole system based on the individ-
ual rooms. The system boundary is therefore drawn tightly at the beginning 
deliberately in order to obtain a heating system that satisfies the heating 
requirements of each individual room. In the consideration of the rooms, 
the following aspects must be clarified, for example:
>		� Room use to determine the required internal temperature (require-

ment)
>	�	 Construction with heat insulation of the room perimeter areas (bound-

aries of the subsystem)
>	�	� Assumed room temperature of the neighboring rooms (further subsys-

tems) in order to determine heat losses or gains (communication and 
energy exchange with other subsystems)

The results of these investigations are the basis for determining the dimen-
sions of the heating elements required for the rooms and the required heat 
performance.

However, examining the needs of the individual rooms and adding them 
up is not sufficient to determine the requirements placed on the heating 
system. The whole building must be seen as a system and the system 
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boundary shifted accordingly. It is therefore considered holistically. At the 
architecture level building it is important to know the location of the building 
and the related climate conditions, such as lowest external temperature 
and wind strength.

From the findings obtained through changing the system boundary, a heat-
ing system that satisfies the requirements of the entire building can be 
designed. If the system boundary is not changed, you get a heating sys-
tem that cannot provide the building with enough heat, for example, or a 
system that is oversized and therefore uneconomical with regard to energy 
consumption.

3.4	� Architecture and the Building Blocks of a System

In general, architecture is concerned with the structuring of system building 
blocks of a system. Software architecture focuses on the software building 
blocks of a system. Irrespective of the concrete architecture discipline that you 
focus on in information technology, it is important to know the basic types of sys-
tem building blocks. This supports architectural thinking since, at a higher level 
of abstraction, it illustrates the building blocks that make up a system, how these 
building blocks are related, and the importance of the individual building blocks. 
This makes systems tangible and makes it possible to make decisions specific 
to individual building blocks.

In addition, a common vocabulary is created, or rather, a common ontology that 
can be applied in all architecture disciplines of information technology. This im-
proves the collaboration of architects from the individual disciplines since they 
have a common understanding of systems.

The architecture disciplines are concerned with different aspects of a system. 
Therefore, architects from the individual disciplines focus on different build-
ing blocks or aspects of building blocks in their activities—they look at building 
blocks from different perspectives. For example, a software architect looks at a 
software building block primarily with regard to its functionality, responsibility, and 
interfaces. In contrast, a security architect analyzes whether a software building 
block satisfies the security demands and, for example, does not use passwords 
stored in plain text.

In the model shown in Figure 3.4-1, we present the most important system build-
ing blocks and their relationships to one another. The focus is on simple illustra-
tion of the system building blocks relevant for architecture.
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The central concept in Figure 3.4-1 is the system building block. It represents 
the abstract type of all concrete building blocks of a system. It can require other 
system building blocks and can have one or more interfaces or require one or 
more interfaces of other system building blocks.

A system consists of system building blocks and is itself a building block. This 
means that a system can also contain subsystems.

Subsystems encapsulate coherent functionality and are self-contained. A sub-
system therefore provides related functionality that satisfies some of the require-
ments placed on the system.

Software and hardware building blocks are specializations of system building 
blocks. A hardware building block can require another hardware building block 
and can consist of hardware building blocks. For example, as a hardware build-
ing block, a personal computer consists of a motherboard, a graphic card, a net-
work card, and many other hardware building blocks. Hardware building blocks 
also have interfaces.

We will look at the relationships between the different system building blocks 
more closely in an example below. The main focus is on the software aspects of 
systems. One example is a Management Information System (MIS) for collect-
ing and evaluating performance indicators. We will look at this example again in 
more detail in Chapter 8.

Figure 3.4-1: System building blocks and their relationships

System

requires

offers

requires

Interface

Hardware
building block

Software
building block

*

**

*

*
* *

*

*

«abstract»
System building

block

System building 
block

System

Subsystem

Software and 
hardware building 
blocks

MIS example



593.4 Architecture and the Building Blocks of a System

In the MIS, data that forms the basis for the calculation of the indicators has to be 
imported, for example, from other systems. The functionality required to do this 
can be encapsulated in an import subsystem and be used by other subsystems 
of the MIS. This example already shows that subsystems communicate with one 
another in order to fulfill the requirements of the system. In the case of the import 
subsystem, a user interfaces subsystem, which receives the user’s request to 
perform an import, could communicate with the import subsystem and initiate an 
import (see Figure 3.4-2).

In addition, system building blocks can be further structures by means of com-
position, i.e., system building blocks can consist of other system building blocks. 
We will illustrate this using the subsystems of the MIS example again. One im-
portant functionality of the MIS is the generation of performance indicator re-
ports. A report subsystem could be dedicated to this task. It may be appropriate 
to distribute reports using different publication channels, such as e-mail, HTML, 
or Adobe Portable Document Format (PDF). The logic for generating channel-
specific reports can be provided by dedicated subsystems of the report subsys-
tem (see Figure 3.4-3).

Figure 3.4-2: Subsystems require other subsystems
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Systems consist of hardware and software building blocks. These building blocks 
have implicit or explicit interfaces. An interface defines a contract between the 
system building block that offers some functionality and the system building 
blocks that use it. It also defines the operations offered by the system building 
block. An explicit interface is detached from the actual system building block. The 
concept of the explicit interface is implemented, for example, by technologies 
such as Enterprise JavaBeans or web services. In contrast, implicit interfaces 
are direct parts of the system building block. A module written in the program-
ming language C is an example of a system building block with an implicit inter-
face. The report subsystem in our example system contains a software building 
block ReportMgr, which provides an interface for generating e-mail, HTML, or 
PDF reports for performance indicators. The user interfaces subsystem can use 
this interface to trigger the creation of reports.

The relationship shown in Figure 3.4-4 clearly shows that the software building 
block UserInterfacesMgr initiates the creation of reports via the interface of the 
ReportMgr building block.

In the MIS, a PDFReportMgr is used to create PDF reports. It consists of fur-
ther software building blocks, such as a PDFReportCreatorROI for generating a 
paragraph within a report that contains information on return on investment (see 
Figure 3.4-5).

This also applies of course for hardware building blocks. However, since we are 
focusing on software building blocks in this context, we will not present a con-
crete example for hardware building blocks.

Figure 3.4-4: System building blocks use system building blocks via interfaces
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A further important concept not contained in the model presented in Figure 3.4-1 
is the arrangement of a system in layers. A system can be organized in layers 
that contain subsystems. A layer structures a system logically in hierarchy levels. 
Subsystems of a layer have common characteristics and responsibilities. They 
can only access subsystems of lower level layers. Depending on how strictly this 
convention is configured, it may even be the case that access only to the next 
lowest level is permitted. For a precise description of this principle, we refer to the 
layers architecture pattern [Buschmann et al. 1996].

Figure 3.4-6 illustrates the layers of the MIS example and the positioning of the 
subsystems depending on the task area. It is clear that the MIS is subdivided into 
a presentation logic layer, a business logic layer, and a persistence logic layer. 
The import subsystem and the report subsystem are located in the business logic 
layer. Both can be used by the user interfaces subsystem of the presentation 
logic layer.

So far we have presented the basic building blocks of a system. We will now 
extend the model introduced to include the platform aspect. This is presented in 
Figure 3.4-7.

A platform is a system that can consist of software and, if applicable, hardware 
building blocks. It is used to execute software building blocks of a system and is 
part of the holistic view of software architecture.

Figure 3.4-6: A system is organized in layers
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A platform provides execution environments in which software building blocks 
are executed. An execution environment is itself a software building block that 
provides services. For example, a JEE application server offers execution envi-
ronments for JEE components such as Java Servlets or Enterprise JavaBeans 
(see Section 6.7.5).

Services are also software building blocks. In this context, they provide basic 
functionality that is usually independent of any business functionality realized by 
the system. In other words, a service provides functionality for satisfying non-
functional requirements. The building blocks of the MIS example require a JEE 
platform, for example. This offers services such as resource management, secu-
rity, transaction control, or persistence.

3.5	� Summary 

>	 �Requirements and architecture means determine the structure of an ar-
chitecture.

>	 �A good architecture must be elegant, durable, and useful.
>	 �A system is a unit that consists of integrated software and hardware build-

ing blocks for the purpose of fulfilling a functional objective. To achieve this 
objective, it communicates with its environment and must take account of 
the conditions defined by the environment.

>	 �The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the 
externally visible properties of those elements, and the relationships 
among them.

Figure 3.4-7: Platform, execution environment, and service
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>	 �As a discipline, software architecture covers the architectural activities and 
the related decisions about the design and implementation of a software 
architecture.

>	 �Software architecturetotal = Software architecturestructure + Software archi-
tecturediscipline

>	 �Software architecture comprises the functional and technical architecture.
>	 �The functional architecture arises from the functional domain or problem 

area for which the system is being developed. It divides the system into 
functional building blocks responsible for the realization of functionality.

>	 �The technical architecture is domain-independent and is dedicated primar-
ily to the realization of non-functional requirements or qualities. It defines 
technical building blocks for non-functional aspects, such as logging, au-
diting, security, reference data, persistence, and transaction management. 
The technical architecture also defines how functional building blocks are 
mapped onto the technical architecture.

>	 �A platform is a system that can consist of software and, if applicable, hard-
ware building blocks. It is used to execute software building blocks of a 
system and is part of the holistic view of software architecture.
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4	 Architecture Perspectives (WHERE)

This chapter looks at the WHERE dimension of the architecture orientation 
framework. It explains the levels of abstraction at which you are active as an 
architect and how architecture is demonstrated at these levels. We also pres-
ent architecture views that you can use at these levels of abstraction to make 
it easier to manage the different aspects and the resulting complexity of an ar-
chitecture. After reading this chapter, you will be able to differentiate between 
the relevant architectural levels of abstraction and use them. Using architecture 
views, you will also be able to consider and process specific different aspects of 
an architecture.

Figure 4-1: Positioning of the chapter in  the architecture orientation framework
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Figure 4-2 shows the basic concepts covered in this chapter and visualizes how 
they connect.

4.1	� Architecture Levels

Imagine you are looking at a system through a telescope. You can change the 
level of detail at which you look at it using the zoom factor. Certain details of 
the system then become visible or hidden. We will use the example of city and 
building construction, as well as the transport infrastructure to make this clearer. 
If you could look at the earth from the ISS space station with a telescope and 
slowly zoom in, you could look at different architecture levels of city and building 
construction. You would move from the level of continents, through the level of 
countries, to the level of cities and districts, right down to the level of individual 
buildings and their floors. We can transpose this level scheme onto software ar-
chitecture. Which architecture levels can we generally identify? We can answer 
this question by visualizing which external and internal contexts are generally 

Figure 4-2: Basic concepts of the WHERE dimension
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present for an IT system and which degree of abstraction these contexts have 
respectively.

We will use the telescope metaphor again to develop the architecture levels. 
Imagine you want to look at an IT system through a telescope. However, before 
you can focus on a specific IT system, the telescope first shows you the external 
contexts of the IT system. First you see different organizations and how they col-
laborate in their different roles (clients, suppliers, partners, etc.). With the next 
telescope setting, you look at a specific organization more closely. You see the 
systems (employees, departments, IT systems, etc.) within the organization and 
how they are used and interact in the business processes of the organization. 
You increase the zoom factor of the telescope again and now you can look at a 
specific IT system of the organization in more detail. You see its interfaces, its 
functionality, and its users. Then you zoom inside the system. The telescope 
shows you the internal contexts of the system. You recognize the building blocks 
that make up the system (see Sections 3.3 and 3.4). You see their interfaces, 
responsibilities, and interactions. You then increase the zoom factor again and 
now you can see the internal workings of the system building blocks in detail. And 
you discover that the system building blocks are also made up of system building 
blocks. Later in this section we will explain more important facts about the inter-
nal workings of system building blocks when we discuss micro-architecture. Up 
to this point, you have been able to look at the following three basic architecture 
levels with the telescope:

>		 Organizational level:
		�  Here you can look at the organizations (e.g., departments and IT stan-

dards).

>		 System level:
		��  Here you can look at the systems of the organizations (e.g., IT systems 

and their requirements).

>		 Building block level:
	�	  Here you can look at the building blocks of the systems (e.g., inter-

faces and data access objects).

Figure 4.1-1 shows the related architecture levels model that illustrates the re-
lationships between the above-mentioned architecture levels and their context.

Architecture requirements (see Chapter 5) and decisions (see Section 3.2) at a 
specific level of abstraction from the point of view of an IT system are assigned 
to each architecture level. Along this level of abstraction, the architecture levels 
are arranged in a hierarchical order. Starting from the building block level, the 

Organizations, 
systems, and system 
building blocks

The architecture 
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level of abstraction increases. For example, the decision at the organizational 
level to integrate systems in the IT landscape of an organization using a standard 
middleware in future is located at a higher level of abstraction than the deci-
sion at system level as to how (e.g., using XML) to connect a concrete system 
to a specific middleware product (e.g., IBM WebSphere MQ). The architecture 
requirements and decisions at a lower, less abstract architecture level consider 
and detail the architectural specifications (requirements and decisions) at the 
next higher architecture level respectively. Requirements and decisions that 
apply across an organization are located at the organizational level. At system 
level, the specifications of the organizational level are taken into account in the 
requirements and decisions regarding the IT systems of an organization. Finally, 
at the lowest architecture level, the building block level, the specifications of the 
system level are the basis for requirements and decisions that affect the building 
blocks (see Section 3.4) of a system.

Using architecture levels, as an architect you are more aware of the forces that 
generally always influence architecture and the origins of these forces. At build-
ing block level, forces from the system level affect architecture, and at system 
level, forces from the organizational level. Being aware of this enables you to 
manage any problems and questions that arise when you are creating an archi-
tecture uniformly and to avoid mixing different aspects. For example, the ques-
tion of how systems should exchange their data should not be answered at the 
building block level in the design of a functional building block such as “Cus-
tomer”. Instead, it should be answered at the organizational level or system level 
uniformly for all functional building blocks. Considering architecture levels there-

Figure 4.1-1: Model of the basic architecture levels
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fore leads to an architecture that is more uniform and consistent. To summarize, 
the consideration of architecture levels leads to architectures of a much higher 
quality for the following reasons:

>		 Architecture problems and aspects are assigned to suitable levels and 
are therefore easier to handle and can be treated uniformly [Brown 
etÂ€al. 1998].

>		 Different architecture problems and aspects are not mixed but handled 
separately with the respective appropriate means.

>		 Influences on architecture exist explicitly and are therefore easier to 
understand and consider.

As an architect you have to deal with and solve specific problems at each archi-
tecture level. For example: at the organizational level, business processes; at 
the system level, system use cases; and at building block level, the creation of 
system building blocks that implement the building block use cases. At all of the 
architecture levels specified, you must take the architecture principles discussed 
in Chapter 6 into account—the principle of high cohesion (see Section 6.1), for 
example. At the organizational level, the steps within business processes should 
always be highly coherent with one another. For example, a business process 
“Enter order” should not contain any steps from the business process “Issue 
invoice.” At system level, this applies for the steps within the system use cases. 
At building block level, high cohesion is applied, for example, to system build-
ing blocks such as components or classes that realize the system use cases by 
providing coherent functionality. Disregarding these principles generally leads to 
numerous unnecessary dependencies, incorrect assignments of responsibilities, 
and redundancies in the artefacts (e.g., class diagrams or source code) assigned 
to the architecture levels. Above all, this has a negative effect on the implementa-
tion of non-functional requirements (see Chapter 5) and thus the software quality.

The levels presented thus far are the basic architecture levels. For the purposes 
of this book, this level of detail is sufficient. However, if required, each of the ar-
chitecture levels named can be divided into further architecture levels. The Soft-
ware Design Level Model (SDLM) [Brown et al. 1998] has a similar structure, but 
splits the system level, for example, into the following three architecture levels: 
systems, applications, and frameworks.

Before we can explain the architecture levels in detail, we must first discuss the 
meaning of the terms “macro-architecture” and “micro-architecture” from Figure 
4.1-1. Both terms are connected to the term “design”. This term is a central term, 
because you perform your various activities (see Chapter 8) in the context of the 
different architecture levels with the aim of working out a design for the architec-
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ture of a system. But what does “design” mean exactly? [IEEE 2010] defines the 
term “(software) design” as follows:

��Design is defined in [IEEE1990] as both “the process of defining the archi-
tecture, components, interfaces, and other characteristics of a system or 
component” and “the result of [that] process.”

According to this explanation, design generally covers the following: 
>	 �The process (see Section 8.1) of defining the architecture, building blocks, 

interfaces, and other features of a system or a system building block.
>	 �The result of this process.

A system or a system building block has numerous features and they are located 
at different levels of abstraction (levels of detail). Design should therefore take 
place at these different levels. It is not sufficient to talk about “design” only in 
general terms when designing a system; rather, you should consider the respec-
tive levels of abstraction. The following two further definitions from [IEEE 2010] 
provide a differentiated view of design:

�Software architectural design (sometimes called top-level design): describ-
ing software’s top-level structure and organization and identifying the vari-
ous components.

�Software detailed design: describing each component sufficiently to allow 
for its construction.

These explanations clearly show that design takes place at two different funda-
mental levels of abstraction. Based on [Brown et al. 1998], the architecture levels 
model therefore differentiates between:
>	 �Macro-architecture
		� (software architecture, architectural design, top-level/high-level design)
>	 �Micro-architecture
		� (detailed design)

To avoid ambiguities, you should therefore always differentiate between “design” 
in the general sense (as a generic term) and “design” in relation to levels of 
abstraction (macro-architecture or micro-architecture). Macro-architecture cor-
responds to software architecture (see Section 3.2) and therefore affects the 
architecture levels previously discussed (organizational level, system level, and 
building block level). In contrast, micro-architecture only affects part of the build-
ing block level.

Definition: Software 
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Definition: Software 
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What happens if the level of abstraction continues to decrease and the details 
increase? When does architecture cease and detailed design begin? The border 
between macro-architecture and micro-architecture is not always clear. It is also 
dependent on the view of the respective stakeholder and therefore cannot be 
defined uniquely.

Macro-architecture covers the spectrum of the architecture levels to which ar-
chitecturally relevant elements are assigned (organizational level and system 
level, as well as the part of the building block level on which fundamental system 
building blocks (see Section 3.3) are located): thus “large-scale” architecture. It 
covers aspects such as requirements, decisions, and structures at a high level of 
abstraction: for example, decisions with regard to important system interfaces. A 
concrete example is a system building block that acts as a facade for a group of 
associated system building blocks in accordance with the facade design pattern 
[Gamma et al. 1995].

In contrast, micro-architecture covers aspects with a lower level of abstraction. 
This is then the detailed design (“small-scale” architecture) closely associated 
with the source code with no fundamental influence on an architecture. That 
part of the building block level on which the non-fundamental system building 
blocks are located belongs to the field of micro-architecture. In Figure 4.1-1, this 
aspect is made clear by the fact that the building block level is on the border 
between macro-architecture and micro-architecture. Why are non-fundamental 
system building blocks assigned to the building block level at all? Fundamen-
tal system building blocks can themselves consist of fundamental system build-
ing blocks (see Section 3.3). A recursive decomposition of the system building 
blocks along this building block hierarchy leads to system building blocks whose 
level of abstraction is decreasing. At some point you reach non-fundamental sys-
tem building blocks with a low level of abstraction. This is when the changeover 
from macro-architecture to micro-architecture takes place. The example of this in 
Figure 4.1-2 shows how the fundamental system building block B is firstly broken 
down into system building blocks B1, B2, etc. at the building block level (macro-
architecture). Since these building blocks are also fundamental, we remain in 
the area of macro-architecture. The subsequent decomposition of system build-
ing block B2 leads to the system building blocks B2′, B2′′, etc. These building 
blocks are non-fundamental and to consider them, we move into the area of 
micro-architecture. A helper class for character string operations is a concrete 
example of a non-fundamental system building block. Decisions (e.g., on sig-
natures, validity ranges for variables, design patterns, etc.) with regard to non-
fundamental system building blocks are another concrete example for elements 
that are not architecturally relevant and therefore, like non-fundamental system 
building blocks, belong to the area of micro-architecture.
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4.1.1	�Organizational Level

At this architecture level we look at organizations (e.g., enterprises or institu-
tions), their zoning plans, business processes, and IT landscapes as well as their 
interactions with other organizations (organization context). Here IT systems be-
long to the actors (departments, employees, systems, etc.) involved in the busi-
ness process of an organization. The internal structure of the IT systems is of 
no interest. Treat individual IT systems as black boxes. For example, you could 
assign the description of a business process for order processing in an organiza-
tion, with all of its systems (e.g., customer department, accounting, materials or 
goods management), to the organizational level.

Furthermore, in the context of the organizational level, there are requirements an 
organization must satisfy as well as IT standards and guidelines to be used and 
complied with across the organization (see Chapter 5). One example would be 
the IT guideline to use XML for the data exchange between different systems, 
without any specification of concrete XML technologies, such as XML parsers 
etc. These specifications enable systems from different organizations or different 
systems within an organization to work together to provide integrated services.

Figure 4.1-2: Macro-architecture and micro-architecture in context
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You will have to deal with the following problems in particular at the organiza-
tional level:
>	 �IT-supported implementation of cross-organizational processes (e.g., Sup-

ply Chain Management)
>	 �Enterprise architecture (see Section 3.2)
>	 �Enterprise Application Integration (EAI)
>	 �Service-oriented architectures (see Section 6.4)

As far as these problems are concerned, architectural decisions must go beyond 
the view of an individual system and are therefore oriented across an organiza-
tion. These decisions cover, for example, the specification of IT standards to 
be used. For example, technologies such as JEE or architecture patterns such 
as Model-View-Controller (MVC) can be specified for architectures of systems 
across an organization [Fowler 2003]. Examples are: clinics with patient data 
management, health insurance billing, and medical information system, or the 
Internet with all of its IT standards and guidelines.

4.1.2	�System Level

At system level we look at (zoom in on) the IT systems of organizations. The 
internal structure of the systems is only important in as far as their subsystems 
are concerned. Treat the individual systems or their subsystems as black boxes. 
The focus is on the responsibilities, interfaces, and interactions of the systems 
with their context. The main elements at system level are:
>	 �Requirements the systems must satisfy (see Section 5.3)
>	 �System contexts of the systems (see Section 8.3)
>	 �Subsystems of the systems (see Section 3.4)

One of the artefacts you create and assign to the system level is the architecture 
vision or architecture overview (see Section 8.3). In the example from Figure 
4.1-3, we first look at the system under construction, system A, in the context of 
its peripheral systems U1, U2, and U3. We then perform a first decomposition for 
system A. This results in a series of subsystems (A1′, A2′, A1″, etc.). However, 
because these subsystems are also systems (see Section 3.3), we are still mov-
ing at system level and now assign the subsystems to the logical layers X and Y 
(see Section 6.3).
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4.1.3	�Building Block Level

At the building block level in macro-architecture we look at the internal structure 
of the individual subsystems. We zoom into the subsystems (white box) by break-
ing them down into software building blocks (see Section 3.4). We move from the 
system level to the building block level. Significant aspects you must consider at 
the building block level are the responsibilities of the system building blocks, their 
interfaces, and their interactions with one another. The example from Figure 4.1-
4 shows the decomposition for subsystem B into the fundamental building blocks 
B1, B2, etc. Since we are now looking at software building blocks, we move from 
the system level down to the building block level.

In very large systems, the system building blocks that result from the decomposi-
tion of a subsystem may also be subsystems instead of software building blocks. 
In this case, we change level: from the building block level back to the system 
level. There we treat the system building blocks as systems, starting with the sys-
tem context etc. (as described above). Therefore, at this point, the architecture 
levels model is recursive. This aspect is shown in Figure 4.1-1 by the change of 
level arrow from the building block level back to the system level. The example 

Figure 4.1-3: Relationship between system level, system context, and subsys-
tems
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from Figure 4.1-5 looks at subsystem B. The decomposition of this subsystem 
initially leads to the building block level, as is usual for subsystems (see also Fig-
ure 4.1-4). There we look at the assumed software building blocks B1, B2, etc. 
and discover that these are actually subsystems. Therefore, to look at system 
building block B2 further, we switch back to the system level.

Figure 4.1-4: Relationship between system level and building block level

Figure 4.1-5: Change of level from building block level to system level
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4.2	� Architecture Views

Understanding all aspects of complex systems (people, building constructions, 
IT systems etc.) completely at all times is not possible at least for human percep-
tion. It would also be impractical to attempt to do this, because not all aspects 
of a system are relevant all of the time. It therefore makes sense to be able to 
look at only those aspects of a system that are of interest at a given time. For IT 
systems, the concept of architecture views exists for this purpose:

>		 A view is a representation of a whole system from the perspective of a 
set of concerns [IEEE 2007].

>		� A view is a representation of a coherent set of architectural elements, 
as written by and read by system stakeholders [Bass et al. 2003].

Both definitions clearly show the most important property of architecture views: 
they are motivated by stakeholders of a system (“...a set of concerns... ” and “...
read by system stakeholders”). In this context, a set of concerns means differ-
ent questions about a specific aspect. One aspect might be, for example, the 
structures of a system. Different concerns can be connected to this aspect; for 
example, which building blocks are present, or what the interfaces look like. An 
architecture view is therefore used by specific stakeholders (see Section 8.7). 
It thus sensibly shows only those aspects of a system that are important for 
those specific stakeholders. One aspect might be, for example, requirements. 
An architecture view that covers this aspect would cover all artefacts referring to 
requirements. Section 8.4 contains examples of this. Clients or domain experts 
are examples of stakeholders who would use a requirements view.

In addition to the above-mentioned definition, with its 1471 standard [IEEE 2007] 
IEEE has laid down further fundamental principles regarding architecture views. 
This standard is concerned with the description of software-intensive systems 
and initially, was a standard only for architecture documentation (see Section 
8.7). The overview (following [IEEE 2007]) for the context of architecture views in 
Figure 4.2-1 shows important concepts related to architecture views:
>	 �Stakeholders have different concerns with regard to a system, or rather, its 

architecture. Based on their specific concerns, different stakeholders each 
adopt a specific viewpoint.

>	 �A specific architecture view (e.g., data view) is available to stakeholders 
from each respective viewpoint (different angles). It is defined by the view-
point and refers to a set of specific concerns.

>	 �Each architecture view has a reference to exactly one viewpoint.
>	 �Architecture views essentially determine the content and structure of archi-

tecture documentation (see Section 8.7).
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A concern is generally defined as follows [Oxford English Dictionary 2007]:

/noun: 6, A matter that affects or touches one; a subject that excites one’s 
interest, attention or care.

According to this definition, a concern is something that affects you and that you 
have to pay attention to. Applied to an IT system, this can be any of the following:
>	 �Requirements
		� (e.g., the system must save data automatically at specific intervals)
>	 �Worries
		� (e.g., the worry that the decision to use a specific technology platform for a 

system can lead to a dead end in an important future market)
>	 �Goals
		� (e.g., the system should increase productivity by 15%)

In the broadest sense, therefore, concerns are also requirements. However, 
concerns often do not fulfill the criteria that requirements (see Chapter 5) must 
satisfy.

Architecture views consider those concerns that correspond to the general ge-
neric questions about a system, or rather, its architecture. Examples are:
>	 �What are the requirements for the system?
>	 �Which logical building blocks does the system consist of?

Figure 4.2-1: Architecture views in context [IEEE 2007]
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>	 �What interfaces do the system building blocks have?
>	 �How do the system building blocks interact?

With regard to architecture views, there must be a differentiation between their 
specification and their concrete use as an instance of their specification. For ex-
ample, the specification for an architecture view of logical system building blocks 
can specify that specific UML diagrams (e.g., class diagram and package dia-
gram) and specific standard texts are to be used for the description of the system 
building blocks. An instance of this specification as an architecture view on a spe-
cific system would then show a series of UML diagrams and textual descriptions 
of the logical system building blocks. Specifications of architecture views can be 
more or less comprehensive (from the name up to the methodological creation 
of a view). [IEEE 2007] introduced the important concept of the viewpoint for the 
specification of architecture views:
>	 �[IEEE 2007] differentiates between an architecture view and its specification 

with regard to the terms and the concepts.
>	 �In [IEEE 2007], a viewpoint corresponds to the specification for a specific ar-

chitecture view (e.g., deployment view) independently of a specific system.
>	 �In [IEEE 2007], an architecture view corresponds to the instance of its cor-

responding specification for a specific system.

Viewpoints specify the respective architecture views for given concerns, or rath-
er, how you should create these views. For example, a viewpoint may represent 
the question “which of the system’s structures are the logical structures?” For 
the corresponding architecture views, this viewpoint can define the architecture 
modeling means (see Section 6.6) to be used and the rules to be applied.

For architecture views, viewpoints specify:
>	 �Name
>	 �Stakeholders and their concerns
>	 �What is to be documented (documentation subjects)

For the creation of architecture views, viewpoints specify:
>	 �Architecture modeling means to be used
>	 �Templates/patterns
>	 �Best practices
>	 �Methods
>	 �Guidelines

The use of viewpoints makes it easier to handle architecture views: generic as-
pects in the creation of architecture views are easier to reuse and you do not 
have to redefine them redundantly for every system. Viewpoints provide you with 
a framework or template for creating architecture views. However, creating view-
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points is not a trivial matter. For more information on viewpoints, see [Rozanski 
and Woods 2005].

Why are architecture views so important and how do you work with them? You 
need architecture views because different groups of stakeholders are involved 
with an architecture—but only with the parts (views) of an architecture that are 
interesting for them. If these views are not available, then the different stake-
holders do not understand the architecture or do not understand it correctly. 
Therefore, a specific architecture view should deliver a specific abstraction of 
the architecture of a system that the stakeholders affected can understand. For 
example, the use cases are interesting for business analysts, but not the techni-
cal details of the building blocks of the system. They will therefore work with the 
corresponding architecture view that covers the use cases. However, this only 
works if you have explicitly considered architecture views from the very begin-
ning when you created or documented (see Section 8.7) an architecture. If this 
is not the case, the business analysts would have to search for the use cases in 
the documentation “jungle”.

Architecture covers different aspects of a system, such as interfaces of system 
building blocks or the interactions of system building blocks. However, in the 
architectural activities (see Section 8.2), at any given time only some of these 
aspects are relevant—it would be unmanageable to always have to consider all 
of these aspects simultaneously. This is another reason why architecture views 
are necessary. They are a means that enable you to focus on a specific problem 
at an appropriate time or to separate different aspects of the architecture of a 
system from one another. This aspect also shows how architecture views help 
you to handle the complexity in the context of architecture. For example, in the 
architectural activity “understanding the requirements” (see Section 8.4), you can 
focus on the architecturally significant use cases without having to also consider 
how specific system building blocks realize the use cases technically. The situa-
tion described is similar to the architecture of buildings. There, architecture views 
are also required in the form of plans for the arrangement of rooms, electrical 
cabling, water cables, etc. in order to obtain a clear and usable architecture. 
Depending on the activity, only the specific plans required for the specialists 
responsible in each case are used.

In order for you to work practically with architecture views, they should be sepa-
rate. The dependencies between them determine the order in which you develop 
them. Ideally, you do this iteratively, i.e., they can evolve: you do not have to 
completely develop one architecture view before you can develop other depen-
dent architecture views. Sometimes you can also (if the dependencies permit 
this) dedicate yourself to one architecture view while other architecture views are 
already being developed further. Thus you can sometimes create architecture 
views in parallel.

Relevance of 
architecture views

Architecture views 
and the development 
process

Develop architecture 
views in a specific 
order
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An architecture view model represents the grouping of different viewpoints. In 
practice various architecture view models already exist (e.g., the architecture 
view model from the 4+1 view model). These are partially domain-specific and 
each specifies different architecture views usefully aligned with one another 
for practical use. Architecture frameworks also exist (e.g., Reference Model for 
Open Distributed Processing (RM-ODP), the Zachman Framework, or The Open 
Group Architecture Framework (TOGAF)). These comprise architecture view 
models and also standards, best practices, tool support, or even methods for 
architects. Architecture frameworks are frequently designed for enterprise archi-
tecture. However, this section focuses on architecture view models and does not 
discuss other elements of architecture frameworks.

A considerable advantage in the use of existing, standardized architecture view 
models is on one hand that you reuse viewpoints that have proven their useful-
ness time and again in practice. On the other hand, as an architect you are freed 
from the effort of having to develop your own architecture view model as well as 
specifying the architecture views, documentation, guidelines, rules, tools, etc.

Architecture view models cover all relevant architecture views and thus enable 
you to make the architecture tangible and visible. An architecture must cover 
very different aspects of a system: for example, on one hand the logical building 
blocks of the system, and on the other hand, the physical deployment of these 
building blocks. These aspects are examples of views of an architecture. Archi-
tecture view models enable you to manage the complexity of the architecture of 
a system. You create and document an architecture based on the architecture 
views of an architecture view model using the architecture modeling means pre-
sented in Section 6.6. To provide for different views for an architecture in the 
design, you have to base an architecture on an architecture view model from the 
very beginning.

For architecture view models, the quality of the specifications for each archi-
tecture view is very important. These specifications should therefore cover the 
following points [Kruchten 2000]:

>		 Context of the architecture view
>		� System building blocks that the architecture view focuses on and their 

relationships
>		 Principles for structuring an architecture view
>		 Relationships of an architecture view to other architecture views
>		 Procedure for creating an architecture view

Architecture view 
models

Reuse of proven 
viewpoints

Architecture view 
models make 
architecture tangible

The quality of the 
specifications of 
architecture views is 
important
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A good architecture distinguishes itself amongst other things by the fact that no 
architecturally relevant aspects are missing and the complexity has nonethe-
less been reduced. Using an architecture view model, you can check whether 
an architecture covers all relevant aspects of a system as required. A complete 
architecture contains all relevant architecture views and is therefore multi-dimen-
sional. If you create an architecture based on an architecture view model from 
the very beginning, then you are less likely to forget important architecturally 
relevant points and therefore not take them into account in the architecture.

Which relevant architecture views should an architecture view model specify? 
Following [Rozanski and Woods 2005], [Bredemeyer and Malan 2010], and [Lar-
man 2002], we recommend that you always plan at least the following basic 
architecture views:
>	 �Conceptual view: This architecture view describes the system building 

blocks and their relationships to one another without going into detail about, 
for example, interfaces. It is therefore suitable for conveying an architecture 
to non-technical stakeholders.

>	 �Logical view: This architecture view describes the system building blocks 
and their relationships to one another in detail. The system building blocks 
and their relationships, or communication mechanisms, are specified pre-
cisely. This is necessary for the technical realization. This architecture view 
is therefore directed towards technical stakeholders. The conceptual view 
may be part of the logical view and therefore not represented explicitly. In 
this case the logical view partially addresses non-technical stakeholders.

>	 �Execution view: This architecture view describes the physical deployment 
of the system building blocks at runtime in detail. It is also directed towards 
technical stakeholders.

The architecture views presented show static and dynamic structures of a sys-
tem. However, the basic architecture views are not sufficient for a “real” architec-
ture view model as further aspects, such as requirements, data, or the develop-
ment environment, are not specifically considered. To take these further aspects 
into account specifically, you would have to assign them to one of the three basic 
architecture views. This would have a negative effect on the coherence of the 
views (e.g., you would have to assign the aspect “development environment” 
to the logical view or execution view). Therefore, the architecture view models 
presented below add to and refine the basic views.

Before we look more closely at the three most important representatives of ar-
chitecture view models used in practice, we will present a common architecture 
view model to simplify the handling of view models. This architecture view model 
abstracts from the views of the architecture view models subsequently handled 
and covers viewpoints that specify the name, the stakeholders and their con-

Architecture view 
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Basic architecture 
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Basic architecture 
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cerns, and the important artefacts for the architecture views used. In the concrete 
architecture view models the architecture views may have different names or be 
split or grouped again. However, for your activities as an architect, it is vitally 
important that you use architecture views or an architecture view model. Which 
architecture view model you use is not so important. Figure 4.2-2 shows the 
common architecture view model that has arisen following the architecture views 
from [IEEE 2007], [Rozanski and Woods 2005], and [Kruchten 2000].

Table 4.2-1 shows the viewpoint of the requirements view by way of example.

Table 4.2-1: Viewpoint of the requirements view

Requirements view

Purpose Documentation of the architecture requirements

Stakeholders Architects, developers, customers, management, domain  
experts, testers, project lead

Concern(s) What does the business context of the system look like?

What are the essential requirements the system must satisfy?

Artefacts Business opportunities and problem description

Stakeholders

Business processes

Requirements

Guidelines

Examples of artefacts for the requirements view are Tables 8.3-1, 8.3-2, 8.4-2, 
and 8.4-3.

Figure 4.2-2: Common architecture view model

Requirements view
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Table 4.2-2 shows the viewpoint of the logical view by way of example.

Table 4.2-2: Viewpoint of the logical view

Logical view

Purpose Documentation of the architecture design

Stakeholders Architects, developers, domain experts

Concern(s) Which are the logical structures of the 
system?

Artefacts Architecture overview/vision

System context

Key abstractions (with behavior)

Functional system building blocks

Technical system building blocks

Guidelines

Examples of artefacts for the logical view are Figures 8.3-4, 8.5-4, 8.5-5, and 
8.5-11 as well as Table 8.5-2.

Table 4.2-3 shows the viewpoint of the data view by way of example.

Table 4.2-3: Viewpoint of the data view

Data view

Purpose Documentation of aspects with regard to saving, manipulat-
ing, managing, and distributing data

Stakeholders (Data) architects, developers

Concern(s) Which are the data structures and data flows of the system?

Artefacts Key abstractions (without behavior)

Data models

Data flows

Guidelines

An example of an artefact of the data view is Table 8.5-6.

Logical view

Data view
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Table 4.2-4 shows the viewpoint of the implementation view by way of example.

Table 4.2-4: Viewpoint of the implementation view

Implementation view

Purpose Documentation of the implementation structure and the 
implementation infrastructure

Stakeholders Architects, developers, configuration managers, test manag-
ers, testers

Concern(s) What do the implementation structure and the implementa-
tion infrastructure look like?

Artefacts Implementation structure

Guidelines

Table 4.2-5 shows the viewpoint of the process view by way of example.

Table 4.2-5: Viewpoint of the process view

Process view

Purpose Documentation of the control and coordination of concurrent 
building blocks

Stakeholders Architects, developers

Concern(s) Which are the concurrent building blocks of a system?

Artefacts Processes and threads

Interprocess communication

State model

Guidelines

Table 4.2-6 shows the viewpoint of the deployment view by way of example.

Table 4.2-6: Viewpoint of the deployment view

Deployment view

Purpose Documentation of the physical deployment of software 
building blocks

Stakeholders Architects, developers, operation

Concern(s) How are the software building blocks of a system deployed 
to hardware building blocks and how are they operated?

Artefacts Installation and configuration

Network topology

Network protocols

Operating environment

Guidelines

Implementation view

Process view

Deployment view
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Figure 8.5-13 shows an example of an artefact of the deployment view.

Architecture views do not build on each other sequentially in a specific order. 
Rather, the dependencies between the architecture views have many layers. 
Information from one architecture view is used in other architecture views. The 
requirements view is the central point because requirements are the starting 
point for all activities. Therefore, all architecture views are unidirectionally de-
pendent on the requirements view. There are further, transparent, unidirectional 
dependencies between the realization view and the logical or data view, as well 
as between the deployment view and the implementation view.

In a concrete case, additional architecture views can be necessary and/or cer-
tain architecture views specified by an architecture view model are not relevant. 
You can and should therefore adapt the common architecture view model and 
the concrete architecture view models presented afterwards as required. For 
example, add a security or test view.

The following architecture frameworks represent three important architecture 
view models frequently used in practice:
>	 �Zachman Framework
>	 �Reference Model for Open Distributed Processing (RM-ODP)
>	 �4+1 view model
>	 �The Open Group Architecture Framework (TOGAF)

Table 4.2-7 maps the architecture views of the common view model onto the 
architecture views of these architecture models. Analog architecture views are 
partially differentiated between the architecture view models with regard to their 
contents.

Table 4.2-7: Architecture views of the most important architecture view models

         View modelÂ€

Architecture  
view (common)

Zachman 
Framework

RM-ODP 4+1 view 
model

TOGAF

Requirements 
view

Business 
and context 
view

Enterprise 
view

Use

case

view

Business 
Architecture 
View

Logical view System view System view Logical view Software Engi-
neering View

Data view System view Information 
view

Data view Data Flow 
View

Dependencies 
between architecture 
views are not trivial

Architecture view 
models can be 
adjusted

Overview of 
important 
architecture view 
models
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4.2.1	�Zachman Framework

The Zachman Framework [Zachman 1987] is an architecture framework whose 
architecture view model can be seen as the father of the common architecture 
view models today. It was developed in 1987 by John Zachman at IBM, and was 
intended to describe the architecture of organizations (e.g., enterprises) without 
necessarily discussing IT. The Zachman Framework first describes an organi-
zation abstractly to then show the “implementation” of the organization step-
by-step. As a result of its generic structure, the Zachman Framework has also 
proven itself to be suitable for describing IT architectures across organizations.

In its current structural level, the Zachman Framework recognizes six general 
architecture views and six view aspects orthogonal to the architecture views. 
In the form of a matrix, architecture views and view aspects are the core of the 
architecture view model. With this matrix up to 36 specific architecture views are 
possible. For a concrete architecture, you should first configure the Zachman 
Framework, since it is a reference model, by making a selection according to 
relevance from the possible architecture views. 

The Zachman Framework, as a domain-independent and technology-indepen-
dent architecture framework, can be used as the basis for an architecture for 
any type of system. Due to its orientation on aspects that apply across an entire 
organization, this framework is ideal for enterprise architectures (see Section 
3.2). For more simple architectures, you would have to put in additional effort to 
reduce the complexity of its architecture view model.

The architecture view model of the Zachman Framework builds on the following 
basic principles:

         View modelÂ€

Architecture  
view (common)

Zachman 
Framework

RM-ODP 4+1 view 
model

TOGAF

Implementation 
view

Technology

view

Technology 
view

Implementa-
tion view

Not available

Process view Integration 
and runtime 
view

Construction 
view

Process view Not available

Deployment view Integration 
and runtime 
view

Construction 
view

Deployment 
view

System Engi-
neering View

Father of the 
architecture view 
models

Matrix of architecture 
views and view 
aspects

Suitable for 
enterprise 
architectures

Basic principles
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>	 �Systems can be modeled completely by describing the answers to the fol-
lowing questions: why? who? what? how? where? when? (view aspects).

>	 �Six architecture views cover all essential models for the development of a 
system.

>	 �Higher level architecture views adopt the restrictions of their lower level 
architecture views.

>	 �Columns in the matrix represent different abstractions to reduce the com-
plexity of a model.

>	 �Columns have no order.
>	 �Lines, columns, and cells are unique.
>	 �Different instances of a framework can use themselves recursively.

Figure 4.2-3 shows the six architecture views and the related six view aspects of 
the Zachman Framework.

Before we look more closely at the individual architecture views of the Zachman 
Framework, we should first explain the view aspects orthogonal to the architec-
ture views:
>	 �What (data): Describes the data. Examples are business objects, database 

tables, or field definitions.
>	 �How (functions): Describes the functionality. Examples are business pro-

cesses, application functionality, or computer functionality.
>	 �Where (network): Shows nodes and their relationships in an organizational 

network. Examples are distributed objects, memory addresses, or message 
exchange.

Figure 4.2-3: Architecture views in the Zachman Framework

View aspects
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>	 �Who (persons): Describes the persons with reference to an organization. 
Examples are stakeholders for functional requirements, roles and respon-
sibilities in business processes, or access rights to system functionalities.

>	 �When (time): Describes performance-relevant time or event dependencies 
between the resources of an organization. An example is the distribution of 
time windows for business processes.

>	 �Why (motivation): Describes the organizational objectives and their sub-
jects. Examples are business plans, standards for business processes, or 
technology standards for business rules.

We will now explain the individual architecture views in the Zachman Framework. 
The context and system views have a business focus, the other architecture 
views have a technical focus:
>	 �Context view (planning, scope): This architecture view is concerned with the 

basic requirements and is the basis for estimations with regard to the cost, 
scope, and functionality of a system.

>	 �Business view (business model): This architecture view shows all of the 
business entities and processes.

>	 �System view (system model): This view determines the data and functions 
that realize the business model. The requirements are defined in detail and 
logical models are created.

>	 �Technology view (realization, technology model): This architecture view 
is concerned with the technological implementation of a system. It covers 
technology selection and technology management, physical models, and 
the realization with concrete technologies.

>	 �Integration view (deployment, detailed representations): This architecture 
view looks at deployment aspects and the configuration management of a 
system.

>	 �Runtime view (use, functioning enterprise): This architecture view covers 
the operation of a system within an organization.

4.2.2	�Reference Model for Open Distributed Processing 

The Reference Model for Open Distributed Processing (RM-ODP) is an architec-
ture framework developed by ISO (International Organization for Standardiza-
tion) and ITU (International Telecommunication Union). RM-ODP provides an 
architecture view model that has been an international standard for architec-
ture view models in the form of a generic reference model [ISO10746 1998] 
since 1996. RM-ODP is tailored to distributed object-based systems. However, it 
also delivers a general architecture view model that can be used for other types 

Architecture views

Generic reference 
model
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of systems. This model was created in a standardization procedure that lasted 
many years.

Due to its generic view model, specific architecture view models can be instanti-
ated from RM-ODP. It is used as a metameta-architecture view model. For ex-
ample, it is applied in the 4+1 view model of the Unified Software Development 
Process (USDP) or the Object Management Architecture (OMA) from OMG 
[Malveau and Mowbray 2001]. Figure 4.2-4 shows the architecture views defined 
in RM-ODP.

The architecture views of RM-ODP each provide the complete object-oriented 
model of a system for their context. The main aim of RM-ODP is architectures 
that are independent of deployment and implementation aspects as far as pos-
sible in order to achieve systems that implement the non-functional requirements 
(see Chapter 5) optimally. The architecture views of RM-ODP are described be-
low:
>	 �Enterprise view: This architecture view looks at architecture from the view-

point of the problem domain. The core factor is the business model from 
the management and end user view. This architecture view ensures that an 
architecture considers the requirements.

>	 �Information view: This architecture view describes the structure and mean-
ing of the information to be processed as well as its processing.

>	 �System view (computational viewpoint): In this architecture view the focus 
is on the definition of the interfaces of deployable system building blocks 
(components and subsystems) of a system.

>	 �Construction view (engineering viewpoint): This architecture view looks at 
the distributed interactions between system building blocks for the purpose 
of processing information and providing functionality.

Figure 4.2-4: Architecture views in RM-ODP
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>	 �Technology view: The focus in this architecture view is on the technological 
implementation of the architecture described by the other architecture views.

4.2.3	�4+1 View Model

The 4+1 view model [Kruchten 2000] was created at the end of the 1990s in the 
USDP (Unified Software Development Process) environment. Figure 4.2-5 illus-
trates the architecture views defined in this architecture view model.

In the beginning, this architecture view model planned a total of 5 architecture 
views. The data view came later [Larman 2002]. However, the name “4+1 view 
model” was retained. The individual views of the 4+1 view model are described 
below:
>	 �Use case view: This architecture view is central in the 4+1 view model. The 

4+1 view model states that all architectural decisions must be based on the 
use cases of the system concerned. This architecture view covers the most 
important use cases and is used as the basis for the other architecture views 
and for validating them.

>	 �Logical view: This architecture view looks at the implementation of the func-
tional requirements. It covers the most important system building blocks 
(subsystems, components, classes, etc.) and their interactions.

>	 �Implementation view: This architecture view is concerned with the organiza-
tion and management of the static artefacts (source code, graphics, etc.) in 
packages, layers, etc.

>	 �Data view: This architecture view describes data models and looks at the 
mapping between system building blocks and persistent data.

>	 �Process view: The behavior and deployment of the system at runtime are 
the topics in this architecture view. The focus is on parallel processing and 
competing accesses.

Figure 4.2-5: Architecture views in the 4+1 view model

Architecture views
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>	 �Deployment view: This architecture view describes how the static artefacts 
from the implementation view are deployed physically.

4.2.4	�The Open Group Architecture Framework 

The Open Group Architecture Framework (TOGAF) was developed by The Open 
Group [Opengroup 2010] based on the Technical Architecture Framework for 
Information Management (TAFIM) of the United States Department of Defense. 
It has been available on the market since 1995. Since then, TOGAF has been 
subject to continuous further development and is now available in version 9. It 
is a comprehensive and widely used architecture framework for developing en-
terprise architectures. TOGAF comprises a method (Architecture Development 
Method (ADM)), a framework for defining the structural content of architecture 
(Architecture Content Framework (ACF)), as well as tools, reference models, 
and taxonomies. Numerous best practices, principles, guidelines, and technolo-
gies also play a part.

Through the ACF, TOGAF provides numerous recommendations, guidelines, 
procedures, and classifications for creating and using viewpoints and architec-
ture views. It adapts the ISO/IEC 42010:2007 standard [IEEE 2007] and also 
recommends this standard for creating viewpoints and architecture views. In the 
ACF, TOGAF defines different viewpoints for developing architecture views for 
enterprise architecture. It also defines architecture views for IT systems. These 
architecture views are illustrated in Figure 4.2-6 and described in an overview 
below.

Figure 4.2-6: Architecture views in TOGAF
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Since TOGAF can also be combined with other architecture view models (e.g., 
architecture view model of the Zachman Framework), the following architecture 
views for IT systems defined in TOGAF represent recommendations:
>	 �Business Architecture View: This architecture view is concerned with as-

pects of the system user. It focuses on human actors, processes, functional-
ity, business information, usability, and performance. The aim is to achieve 
a comprehensive understanding of the functional requirements.

>	 �Enterprise Security View: This architecture view covers typical questions 
regarding security (access protection, handling of threats, etc.).

>	 �Software Engineering View: This architecture view provides guidelines for 
developing software systems. Here, reference is made in particular to the 
following: development processes, modularity, reuse, portability, migration, 
interoperability, and distribution.

>	 �System Engineering View: In this architecture view the focus is on the dis-
tribution of the software building blocks to the hardware building blocks and 
on models for their interaction (e.g., client/server).

>	 �Communication Engineering View: This architecture view supports the plan-
ning and design of networks with regard to infrastructure (e.g., LAN) and 
communication (e.g., OSI).

>	 �Data Flow View: This architecture view covers aspects around modeling and 
the processing of persistent data.

>	 �Enterprise Manageability View: This architecture view is concerned with the 
aspects operation, administration, and management of IT systems.

>	 �Acquirer View: This architecture view provides requirements, guidelines, and 
procedures for acquiring commercial off-the-shelf (COTS) building blocks.

4.3	� Summary

>	 �Architecture takes place at different levels of abstraction. As an arc-hitect 
you should consider these levels of abstraction explicitly.

>	 �Taking account of levels of abstraction leads to architectures of a much 
higher quality.

>	 �Three basic levels of abstraction can be differentiated: organizational level, 
system level, and building block level.

>	 �Architecture levels are in a hierarchical sequence. From the view of a sys-
tem, the organizational level is the highest level of abstraction, followed by 
the system level and then the building block level.

>	 �At lower architecture levels requirements and decisions from higher archi-
tecture levels must be concsidered

>	 �At organizational level we look at organizations, their business processes, 
and IT landscapes as well as their interactions with other organizations. 

Architecture views 
are recommendations

Summary: 
Architecture levels
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>	 �At system level we look at the IT systems of organizations. The individual 
systems and their subsystems are treated as black boxes. The focus is on 
the interfaces and interactions of the systems with their context.

>	 �At building block level we look at the building blocks of the individual sub-
systems, their responsibilities, their interfaces, as well as their interactions. 

>	 �Macro-architecture (software architecture) covers the spectrum of the ar-
chitecture levels to which architecturally relevant ele-ments are assigned.

>	 �Micro-architecture (“small-scale” architecture) covers aspects with a lower 
level of abstraction. This is then the detailed de-sign no fundamental influ-
ence on an architecture.

>	 �If a system building block is a non-fundamental building block, at building 
block level we switch from macro-architecture to micro-architecture.

>	 �Architecture views can be used to look at specific aspects of an IT system. 
They make it easier to manage the complexity of all aspects of an IT sys-
tem.

>	 �The aspects considered in architecture views depend on the respective 
stakeholder and his or her current activity in the creation of an IT system.

>	 Architecture views are specified using viewpoints.
>	 �An architecture viewpoint is the specifica-tion of an architecture view and 

covers stakeholders and their concerns, as well as artefacts. The creation 
of an architecture view can also be specified.

>	 �Following basic architecture views exist: re-quirements view, logical view, 
data view, implementation view, process view, and deployment view.

>	 �To ensure the quality of the architecture, it is important to create or describe 
an archi-tecture on the basis of architecture views from the very beginning.

>	 �It is not necessary to define architecture viewpoints from scratch; you can 
use exist-ing architecture view models. These al-ready cover all viewpoints 
relevant for prac-tice.

>	 �The architecture view models relevant in practice include the 4+1 view 
model and the architecture view models of the architecture frameworks 
Zachman Framework, Reference Model for Open Distributed Processing 
(RM-ODP) and The Open Group Architecture Framework (TOGAF).
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This chapter looks at the WHY dimension of the architecture orientation frame-
work. In the center of this dimension are requirements. They define the IT system 
to be created and restrict your creative scope as an architect. There are different 
types of requirements at different architecture levels. In order to be able to use 
your creative scope, you have to know the different types of requirements and 
their relationships to one another and the architecture levels—these topics are 
covered in this chapter. After reading this chapter, you will be able to name the 
most important types of requirements, understand their relationships, and place 
them in the context of architecture. In Section 6.3.1, we will discuss requirement 
patterns as a methodological tool that enables you to systematically develop 
“good” requirements.

5	 Architecture Requirements (WHY)

Figure 5-1: Positioning of the chapter in the architecture orientation framework
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Figure 5-2 shows the basic concepts covered in this chapter and visualizes how 
they relate to one another.

5.1	� Requirements Characteristics and Types

If you ask an architect why he chose a particular architectural solution, in most 
cases he will reply: “The requirement was to ....” That is, the architecture is the 
result of requirements that were known at the beginning of a project or that arose 
over time (see Section 3.1). The architecture does not arise randomly. Rather, 
the different requirements represent the conditions or influences under which the 
system and the related architecture are created (see Figure 5.1-1).

Metaphorically speaking, requirements are forces that have an effect on and 
form the system. These forces have an effect in different directions, at different 
times, and to different degrees. The system must be created such that it can fulfill 
the given requirements. It is similar to a bone. In a bone, the fine bone structures 
form along the lines of influence of the external forces and balance these out. In 
the same way, the architecture defines the basic structure of the system to bal-
ance out the forces of the requirements affecting the system. For more informa-
tion about forces in the context of architecture patterns, see Section 6.3.

Figure 5-2: Basic concepts of the WHY dimension
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One definition of requirements comes from the IEEE [IEEE 1990]:

A requirement is:

(1)	� A condition or capability needed by a user to solve a problem or 
achieve an objective.

(2)	� A condition or capability that must be met or possessed by a system 
or system component to satisfy a contract, standard, specification, or 
other formally imposed document.

(3)	� A documented representation of a condition or capability as in (1) or 
(2).

This is a very broad definition of a requirement. The requirement “the system 
must be fast,” whilst corresponding to the definition, is not precise enough to 
enable you to derive an architecture from it. Therefore, requirements must also 
have the properties outlined below [Wiegers 2003]. They give requirements the 
necessary precision and you can use them as a basis for an architecture.

Every requirement must be correct. However, only a stakeholder can assess 
whether this is the case. A stakeholder can be a user, sponsor, or client, for ex-
ample. Therefore, you must include the various stakeholders in the identification 
of the requirements from the very beginning.

Figure 5.1-1: Architecture influenced by requirements
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It must be possible to realize the requirement under the given conditions and with 
the means available. To ensure this, someone with technical understanding (e.g., 
the architect) should be involved in the definition of the requirements.

A requirement must be formulated in such a way that the reader can only draw 
one conclusion from it. Simple and clear language is therefore very helpful in the 
formulation of the requirements. For example, the statement that it must be pos-
sible to manage all relevant customer data in the customer management system 
is not an unambiguous requirement. To make it more precise, there must be a 
clear definition of what constitutes “relevant customer data.”

Even the best requirement is useless if you cannot verify it reliably. Therefore, 
it is important when formulating the requirement to think about which tests can 
be used to verify it. The requirement that in 90% of cases the initial screen must 
appear within 5 seconds after a website has been accessed is a verifiable re-
quirement. You can verify it with an appropriate test tool (e.g., Apache JMeter) 
that accesses the website and causes a corresponding load on the system, for 
example.

However, a system is defined not by a single requirement but by an entire catalog 
of requirements. A requirements catalog as a whole must also have the following 
properties:

The requirements catalog should be as complete as possible in order to pro-
vide a well-rounded picture of the overall system. But what are the criteria for 
completeness? One good option is to have a third party check that the require-
ments are complete. Often, the requirement definition only covers the standard 
processes. However, the requirements must also cover error situations. What 
happens for example, if information is delivered incorrectly or an order has been 
released by mistake? The requirements should also cover these possible sce-
narios [Cockburn 2000].

The set of requirements must agree within itself and individual requirements 
must not contradict each other. If contradictions arise, only the stakeholders can 
help to remove them. However, it is your task as the architect to critically question 
the requirements placed on the architecture and to point out any inconsisten-
cies. For example, the desire for high performance from a client/server system 
(see Section 6.4.4) coupled with the wish for low network bandwidth between 
the client and the server can be contradictory. This is always the case if physical 
properties of the network prevent the achievement of the required performance. 

In order to consider requirements based on specific objectives when practicing 
as an architect, you must be able to differentiate between different types of re-
quirements.
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Figure 5.1-2 shows that requirements can generally be categorized into func-
tional and non-functional requirements. These can be directed towards organiza-
tions (organizational requirements), systems (system requirements), and build-
ing blocks (building block requirements).

Functional requirements define required functionalities. Organizations, systems, 
and building blocks can fulfill functional requirements. Table 5.1-1 gives an over-
view of the different types of functional requirements.

Table 5.1-1: Overview of types of functional requirements

Type of requirement Description

Functional organiza-
tional requirements

Functional organizational requirements represent the functional 
requirements placed on organizations by, for example, their 
customers, employees, business partners, or by authorities. 
The desire of customers to place orders with the organization 
is an example of this type of requirement. A further example is 
the desire of employees to receive their wages from the orga-
nization. Organizations can also subject themselves to require-
ments. For example, an organization can require that an IT 
system for entering orders must exist in order to support order 
entry using IT.

Functional system 
requirements

Functional system requirements express the concrete func-
tional needs of stakeholders or systems that interact with the 
system concerned. The desire of the user of a system to be 
able to enter an order in the system is an example of this type 
of requirement.

Functional building 
block requirements

Functional building block requirements represent functional 
properties that a system building block must possess for the 
system to be able to fulfill its requirements. The desire of a 
building block to be able to create PDF documents by calling 
up a service from another building block is an example of this 
type of requirement (see Section 3.4).

Figure 5.1-2: Requirements types

Functional 
requirements
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Non-functional requirements represent expectations and necessities that stake-
holders (client, user, architect, developer, etc.) consider important in addition 
to the functional requirements. Here we can also differentiate between require-
ments that have a direct effect and those that have an indirect effect. However, 
for reasons of clarity, we have not included this differentiation in Figure 5.1-2.

Direct non-functional requirements are also known as qualities or quality attri-
butes, since they reflect the qualitative nature of the functional requirements ful-
filled by organizations, IT systems, or building blocks. For example, the desire 
of customers to receive an order within 24 hours is a non-functional require-
ment that an organization must satisfy. This requirement corresponds to a quality 
desired from an order processing functionality offered by an organization. With 
regard to IT systems, non-functional requirements such as performance, exten-
sibility, and reusability express qualities. One suitable means for recording quali-
ties in a systematic manner are quality attribute scenarios, which we will briefly 
discuss in Section 6.3.1.

Indirect non-functional requirements have an effect on the way you realize the 
required functionalities and qualities. They represent specifications or facts that 
you must adhere to or take into account. In this context therefore, we often speak 
of constraints. The budget available for the implementation of an IT system and 
legal regulations are examples of constraints. The budget specifies the financial 
scope within which you can implement the IT system, and you must comply with 
legal regulations.

Non-functional requirements must be satisfied in order for the functionalities of 
an organization, system, or building block to be accepted. Despite this, insuf-
ficient attention is often paid to non-functional requirements since the focus is 
clearly placed on the functional requirements. It is your task as the architect to 
make stakeholders aware of this, since the architecture itself is significantly im-
portant in satisfying the non-functional requirements. By making the stakehold-
ers aware of this issue, you can ensure that time is planned in the early stages of 
a project for considering non-functional requirements. 

In addition to differentiating between qualities and constraints, we can break 
down the class of non-functional requirements even further. Table 5.1-2 gives an 
overview of the different types of non-functional requirements.

Non-functional 
requirements

Direct non-functional 
requirements 
(qualities)

Indirect non-
functional 
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(constraints)

Relevance of 
non-functional 
requirements
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Table 5.1-2: Overview of the types of non-functional requirements

Type of requirement Description

Development time re-
quirements

Development time requirements express qualities and 
constraints that have to be considered mainly during the 
development of a system. These include classic quality 
attributes such as extensibility, reusability, or platform in-
dependence. Specifications about technologies to be used 
are a further example of this type of requirement.

Runtime requirements Runtime requirements contain expectations with regard to 
the behavior of a system at runtime. These include re-
quirements such as availability, stability, and performance. 
They are primarily visible at runtime. Runtime require-
ments are usually direct and relate to specific quality at-
tributes.

Organizational con-
straints

Organizational constraints include specifications such 
as budget and time-to-market. Another example is the 
restrictions that the knowledge and experience within the 
development/project team place on the design of the ar-
chitecture. Organizational constraints are usually indirect 
non-functional requirements.

Building block requirements, system requirements, and organizational require-
ments build on one another (see Figure 5.1-2). You can derive system require-
ments from organizational requirements, and in turn, building block requirements 
from system requirements. Generally, organizational requirements that are to be 
supported by IT should be completely covered by system requirements. System 
requirements should equally be covered by building block requirements. By link-
ing the requirements, you can verify both the transparency and the completeness 
of the requirements.

You cannot always assign non-functional requirements to development time or 
runtime uniquely. It is important to point out when the non-functional requirement 
mainly takes effect and when it must therefore be considered. If, for example, 
you consider the non-functional requirement for extensibility at development time 
in the design of an architecture, you can add new functionality at runtime. This 
means that extensibility is visible at both development time and runtime. How-
ever, you must consider it primarily at development time.

Requirements can be described in different levels of detail. For example, the 
somewhat unspecific desire for a system for entering orders can be expressed 
by the organizational requirement “We must have a system in which employees 
can enter orders.” Using this as a basis, you can describe a system requirement 
in the form of a system use case. The use case documents in detail how users 
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time requirements 
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want to enter orders in an order entry system. The level of detail of a system to 
be realized therefore increases from the organizational requirements down to the 
building block requirements.

Requirements do not affect only the architecture—they also affect each other. 
The task of the architecture is to balance out these mutual influences and effects 
as well as possible (see Section 8.5). The knowledge that exists within a project 
team and the performance (see Section 5.5) required from the system can thus 
influence each other. High performance suggests a concurrent architecture, for 
example, but it may be the case that the people involved in the development 
project have no experience in concurrent programming. You have various op-
tions for dealing with the conflict between these two requirements. One option 
would be to integrate additional project team members with the required profile. 
A second alternative is to use architecture means such as application servers 
that simplify the use of a concurrent architecture. You have to decide which of 
the alternatives available best balances out the mutual influences between the 
individual requirements.

5.2	� Organizational Requirements

The classification scheme presented in Section 5.1 enables you to classify in-
dividual requirements and place them in relationship to one another. It enables 
you to get an overview at the start of your work. In this section, we will explain 
organizational requirements, system requirements, and building block require-
ments in more detail. We will then look more closely at the non-functional types 
of requirements. In particular, we will focus on systems. We will therefore discuss 
some requirements often met in practice in more detail. However, the information 
should not be considered exhaustive.

Organizational requirements represent requirements placed on organizations. 
They can be traced back to the environment of the organization (see Section 
7.2), which specifies functional and non-functional requirements that the organi-
zation must satisfy.

Functional organizational requirements refer to services that the organization of-
fers. The desire of customers to be able to place orders with the organization is 
an example of a functional organizational requirement.

Non-functional organizational requirements express the standard of quality that 
the environment demands in the fulfillment of the functional organizational re-
quirements. Delivery within 24 hours or a two year guarantee time are examples 
of non-functional organizational requirements.

Requirements 
and their mutual 
influences

Requirements placed 
on the organization

Functional 
organizational 
requirements

Non-functional 
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An organization can decide to use IT systems to fulfill the requirements placed 
on it. It can therefore express its own organizational requirements that reflect the 
demand on IT systems to be developed. For example, a company manufactures 
computers. The individual computers are always tailored precisely to the wishes 
of the individual customer. The employees in the order entry department are con-
stantly overwhelmed by a flood of new orders. This volume can only be handled 
by an extremely high work input. The high work input and the related stress for 
the employees has been identified as a problem. During the problem analysis, 
it becomes clear that the high work input is the result of a number of constantly 
recurring manual steps. To support the employees in the order entry department 
in fulfilling their tasks, the organization decides to implement an IT system to 
solve the problem. The system should ease the burden on the employees by 
automating as many of the manual steps as possible. The organization therefore 
formulates an organizational requirement for an IT system for order entry.

IT standards and guidelines are specifications across an organization that IT sys-
tems being developed within the organization must satisfy. These specifications 
can be functional or non-functional. The mandatory use of JEE as a component 
platform is an example of a non-functional organizational requirement that can 
be defined as an IT standard or guideline. The principles of proper accounting 
state, for example, that it must be possible to create statements of accounts. 
The ability to create statements of accounts is an example of a functional orga-
nizational requirement that can also be seen as a guideline valid for the entire 
organization. Therefore, appropriate functionality must be planned in IT systems.

5.3	� System Requirements

System requirements describe requirements placed on systems. The internal 
structure of the new system is out of scope for the consideration of the system 
requirements.

Functional system requirements are based on functional organizational require-
ments. The focus is on functionalities that a user or another system expects 
from the system. Applied to the example of the new system for entering orders, 
a functional system requirement documented in a system use case could be, for 
example, “Create a new order.” This system requirement describes the individual 
activities the user performs with the system under construction. Functional sys-
tem requirements are expressed in concrete building blocks of a system. For the 
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order entry example, this means that the order entry system contains building 
blocks such as the user dialog control, order processing, and persistence. These 
enable users to enter an order. A functional requirement is therefore always re-
flected in concrete functional behavior of the system. 

Typical non-functional system requirements are performance, availability, ex-
tensibility, and platform independence. The fulfillment of non-functional require-
ments is a further important criterion for the acceptance of a system being de-
veloped. It is very difficult and sometimes impossible to localize non-functional 
requirements in one system. For example, there is no system building block that 
is responsible for extensibility. Extensibility results from a series of principles, 
such as encapsulation, that are widely distributed over different parts of the sys-
tem (see Section 6.1). To account for the requirement for extensibility, the system 
can contain dedicated extension points that you must plan in the architecture. 
In our order entry scenario, one requirement that the order entry system must 
satisfy could be that in a next release, customers can call up the status of their 
order via the Internet. This potential extension must already be accounted for in 
the software architecture of the system. It is the non-functional system require-
ments that are often forgotten or neglected, since the client and the user focus on 
the functional system requirements. The client is therefore often unwilling to bear 
higher costs for the necessary architecture design. This is where you, the archi-
tect, are needed. You have to recognize which non-functional requirements have 
to be explicitly considered. The architecture must implement the non-functional 
requirements. This does not happen by accident—you have to take it into ac-
count in the architecture design from the very beginning.

5.4	� Building Block Requirements

Building block requirements define the functional and non-functional require-
ments that the building blocks of a system must satisfy.

Functional building block requirements define the functionalities expected of a 
building block. For example, one possible functional building block requirement 
that a data access building block of the order entry system must satisfy could be 
as follows: the data access building block allows searches for customer objects 
using the customer number and customer name.

You can also formulate general non-functional requirements for building blocks. 
For example, the data access building block may have to satisfy the following de-
velopment time requirement: building blocks from the business logic layer must 
be offered an interface in accordance with the Data Access Object pattern [Alur 
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et al. 2003]. Therefore, the data access building block must implement the Data 
Access Object pattern. This building block requirement can be traced back to a 
system requirement for independence from the database management system 
used.

5.5	� Qualities and Constraints

Qualities and constraints complement the requirement levels organization, sys-
tem, and building block. We differentiate between qualities that have an effect at 
runtime and those that affect primarily development time. In addition, constraints 
have mostly an indirect influence on the architecture. Note that quality attributes 
often cannot be clearly assigned to just one of the categories runtime, develop-
ment time, or constraints. 

Runtime requirements are non-functional requirements that the system must sat-
isfy at runtime. They therefore have a special meaning for the system and de-
scribe qualities that influence the client or user’s acceptance of the system. Typi-
cal runtime requirements are availability, performance, usability, and security.

Availability is expressed in the relationship of the downtimes to the uptimes. The 
fewer the downtimes compared to the uptimes, the higher the availability of the 
system. The architecture has two options for achieving the best possible avail-
ability. Firstly it can try to minimize the frequency of downtimes so that they occur 
as infrequently as possible. The second option relates to the length of the down-
times. If a system is not available due to an error, the architecture should enable 
the cause of the error to be located and removed as quickly as possible. Thus the 
architecture contributes to reducing the length of the downtime.

Systems must be able to cope with increasing loads. In other words, they must 
react appropriately to an increasing load in order to be able to offer their services 
to a defined level of quality. For example, a message service must not crash if 
the number of requests increases heavily due to an important new feature. There 
is a general differentiation between vertical and horizontal scalability. In the case 
of the former, for example, a server is replaced with a more powerful server. In 
the case of horizontal scalability, the load is distributed across several servers. 

A system always reacts to external events. Performance describes the capability 
of a system to do so within a certain time frame. There are two ways of express-
ing the performance of a system. It can be measured using the number of events 
a system can process within a specific period. The second option is to measure 
the average time the system needs to process an event. The performance of a 
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system is generally determined by the communication at its internal and external 
interfaces. The architecture thus makes a considerable contribution to system 
performance through the definition of the interfaces between the individual func-
tional building blocks.

The usability of a system is a measure of the extent to which the user experienc-
es the operation of the system as efficient, ergonomic, and satisfactory. You must 
select a suitable architecture in order to achieve sufficient system usability (see 
Section 6.4). A significant architecture decision here is the choice between a rich 
client architecture and a thin client architecture (see Section 6.4.6). To enable 
users with disabilities to also use the system, the architecture may be required 
to support different user interfaces (e.g., a voice-controlled user interface). There 
may also be a requirement for users to be able to work with the system in an 
offline mode. This is often the case for field employees so that they can enter 
orders on their laptop and synchronize with an order entry server at a later point 
in time. You must define this usability requirement explicitly in the architecture. A 
good architecture for the presentation logic of a system can also make it easier to 
develop a user interface with regard to extensibility, reusability, and consistency. 
The architecture can also include the basic mechanisms for error handling in a 
system. This also benefits the visual part of the error handling processes.

Security is a non-functional requirement with a pervasive nature. It expects, for 
example, a system to refuse unauthorized access but grant authenticated users 
access to system resources for which they have the relevant authorization. As-
pects we can identify in this context are: confidentiality, authentication, integrity, 
privacy, non-repudiation, and intrusion protection. Security is a very important 
topic. Security architecture is a separate architecture discipline (see Section 3.2) 
for which there are various basic architectures (see Section 6.4.12).

Development time requirements refer to the architecture means that are to be 
used. On one hand, these include the means to be used in the IT system. How-
ever, they also include the means used in the creation of the IT system. These 
requirements therefore have an effect above all during the development of the 
system. Examples of development time requirements are platform indepen-
dence, reusability, scalability, and maintainability. The specification of specific 
technologies (e.g., JEE or .NET) is also an example of this type of requirement.

A common requirement is the ability to operate a system on different platforms 
(see Section 3.4). For example, it can be possible to install a system on different 
JEE component platforms (e.g., IBM WebSphere Application Server and JBoss 
Application Server). The task of the architecture is to enable these different com-
binations by using appropriate architecture means (see Chapter 6). For example, 
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you can separate the platform-specific system building blocks from the platform-
independent building blocks using the principle of modularization. Platform inde-
pendence is also often referred to as portability.

The use of appropriate architecture means can be leveraged to achieve plat-
form independence. Furthermore, architecture means can contribute to reusing 
existing building blocks in subsequent developments or other systems in order 
to reduce the development effort. The non-functional requirement of reusability 
considers this topic. It can define that you should design building blocks so that 
they can be reused and that you should reuse existing building blocks. The topic 
of software reuse is covered extensively in [Chughtai and Vogel 2001].

The lifecycle of a system extends beyond the initial development. Once you 
have put a system into operation, errors are identified that need to be corrected, 
and new requirements arise that the current status of the system cannot cover. 
Hence, you must correct system errors and implement new requirements. The 
non-functional requirement of maintainability is concerned primarily with correct-
ing errors, whilst extensibility is concerned mainly with the implementation of 
new requirements and the replacement of system building blocks.  The easier it 
is to correct an error, the easier it is to maintain the system. An easily maintain-
able system consists of system building blocks with high cohesion. The lower 
the coupling between system building blocks, the better the extensibility of the 
system. To achieve good maintainability and good extensibility therefore, apply 
the principles of high cohesion (see Section 6.1.2) and loose coupling (see Sec-
tion 6.1.1).

At first glance, organizational constraints are the responsibility of the project lead, 
since they cover topics such as budget, deadlines, and organizational structures. 
However, they also influence architecture. If the architecture does not consider 
the influences of the organizational requirements, then an architecture may not 
be implemented at all (see Chapter 7).

The abilities and knowledge of the members of the project team always influence 
the architecture. They have experience with and knowledge of specific technolo-
gies and procedures. If an architecture does not take account of this wealth of 
experience, this can only be balanced out by additional effort. The additional ef-
fort arises either because new developers are brought into the project team, or 
the existing developers have to be trained in the new technologies. It is therefore 
important that you know which technologies have been used previously in a proj-
ect team and what the development process looks like. With this knowledge, the 
architecture can take account of these organizational constraints.
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Development projects often have tight deadlines that you can only maintain by 
using existing third party products. In this case, the architecture must integrate 
these products in the overall system. The functionalities and interfaces of these 
prefabricated building blocks thus influence the division of the overall system into 
individual building blocks.

Every development project has a budget that also influences the architecture. 
Each technology is subject to different costs. These may be procurement costs 
or expenses for training in a new technology. The architecture must take account 
of the budget available by orienting the technology selection and the implemen-
tation of the requirements around this budget.

5.6	� Requirements in the Context of Architecture

In this section, we will look at the types of requirements previously introduced 
in the context of architecture. We will place them in context to the other dimen-
sions of the architecture orientation framework. Figure 5.6-1 visualizes this archi-
tecture context. The different architecture levels from Chapter 4 are the central 
structuring schema. The important elements of the architecture dimensions are 
positioned at the different architecture levels. This enables us to consider the ele-
ments at a uniform level of abstraction. The level of abstraction decreases from 
the organizational level down to the building block level. In other words, the level 
of detail of a system to be realized, or its architecture, increases from the top to 
the bottom. Elements at the organizational level are valid across the organization 
as a whole. In contrast, elements at the system level refer directly to a system 
and elements at the building block level correspondingly to building blocks of a 
system (see Chapter 4). Figure 5.6-1 illustrates the types of requirements in the 
context of architecture.

Architecturally significant requirements are generally all requirements that have 
a considerable influence on the design of the architecture. Unfortunately, it is not 
possible to define these universally for all projects. They are different in each 
individual case. The benefit, risk, and effect of a requirement can be identification 
characteristics for architecturally significant requirements. For more information 
on this topic, see Section 8.4.

Requirements can be situated at different architecture levels. Requirements at 
one architecture level are based on requirements at the architecture level above 
it.
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Organizational requirements at the organizational level express requirements 
placed on the organization by customers, business partners, employees, or au-
thorities. These requirements can make it necessary for systems to support or 
fulfill the requirements at the organizational level. Furthermore, IT standards and 
guidelines valid across the whole organization are also situated at this level.

At system level, the focus is on systems and the functions and qualities they pro-
vide. The system requirements are based on organizational requirements. Using 
our example of the system for entering orders, at system level, the concrete 
functional requirements placed on the system can be derived from the functional 
organizational requirement that such a system should exist. Furthermore, the 
development time requirement that systems within the organization must be real-
ized based on JEE can be expressed, for example, at the organizational level. 
This means that the system has to consider JSP, Java Servlets, and EJB APIs, 
for example.

At the last level, the building block level, the building block requirements address 
the internal structure of the system by describing the requirements according to 
specific building blocks, their functionalities, and their non-functional properties. 
For the order processing example, this means that at building block level, a build-
ing block requirement describes the requirements placed on a building block to 
write and read orders in a database (functional requirements) that must be real-
ized using JDBC (non-functional requirement). Based on the JEE example intro-
duced, the non-functional building block requirements would specify that building 

Figure 5.6-1: Requirements in the context of architecture

Requirements at the 
organizational level

Requirements at 
system level

Requirements at 
building block level



112 5â•… Architecture Requirements (WHY)

blocks must be realized using JEE building blocks (e.g., JSPs, JSFs, Servlets, 
EJBs).

Various stakeholders formulate requirements. For example, organizational re-
quirements result from the wishes of customers, employees, business partners, 
or authorities. In addition, the organization itself formulates IT standards and 
guidelines at the organizational level. In turn, system requirements can be as-
signed to the actual users of the system to be developed or the systems with 
which the system interacts. Specifications from the organization also have an ef-
fect at system level. Building block requirements are based on the requirements 
of the system building blocks that collaborate with the system building block in 
question.

Depending on the architecture discipline (see Chapter 3) in which you act as an 
architect, you are confronted with different types of requirements. For example, 
if you are an enterprise architect, you will be concerned primarily with require-
ments at the organizational level. These include functional and non-functional 
requirements that are defined as part of an enterprise architecture. These re-
quirements are expressed through IT standards and guidelines laid down by the 
organization. In contrast, software architecture is concerned with the functional 
and non-functional requirements of the system and building block levels. As a 
software architect, you are responsible for designing an architecture that allows 
the building of a system that satisfies the requirements placed on it. This also in-
cludes taking into account the IT standards and guidelines specified. Your activity 
focuses on the system to be designed.

You can use various means to document requirements (see Section 6.6). Use 
cases are a good means of describing functional requirements at all architecture 
levels. You can formulate organizational requirements as business use cases, 
system requirements as system use cases, and building block requirements as 
component use cases. This classification of use cases originates from Alistair 
Cockburn [Cockburn 2000]. In this context a “component” is a system building 
block. At system and building block level, we often find quality attribute scenarios 
for describing non-functional requirements (see Section 6.3.1). In principle, you 
can of course also use quality attribute scenarios at organizational level to docu-
ment non-functional requirements placed on organizations. Requirements cata-
logs are used at all levels.

Requirements play an important role in an architecture method. Thus you are 
involved in formulating the system vision and the requirements it contains (activ-
ity: creating the system vision). You must also understand the architecturally sig-
nificant requirements placed on the system (activity: understanding the require-
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ments) in order to design a suitable architecture (activity: designing the architec-
ture). The software architecture will allow, for example, for dedicated subsystems 
or software building blocks that are responsible for fulfilling the functional require-
ments defined. The use of suitable architecture means in a software architecture 
also ensures that non-functional requirements such as extensibility and platform 
independence are guaranteed. You must also ensure the requirements are real-
ized (activity: implementing the architecture). You will also demonstrate to the 
stakeholders how the architecture satisfies the architecturally significant require-
ments (activity: communicating the architecture). The architectural activities are 
covered in more detail in Chapter 8.

5.7	� Summary

>	 �Requirements are forces that define the IT system to be created and re-
strict the creative freedom of the architect.

>	 �A requirement is a system capability that the user needs to solve a problem 
or achieve an objective. Alternatively, a requirement is a capability that the 
system must possess in order to fulfill a contract, standard, specification, 
or other formal document.

>	 �Various stakeholders formulate requirements.
>	 �Requirements must be correct, feasible, unambiguous, and verifiable.
>	 �Requirements can be categorized into functional and non-functional re-

quirements.
>	 �Functional requirements define required functionalities.
>	 �Functional organizational requirements represent the functional require-

ments placed on organizations by, for example, their customers, employ-
ees, business partners, or by authorities.

>	 �Functional system requirements express the concrete functional needs of 
stakeholders or systems that interact with the system concerned.

>	 �Functional building block requirements represent functional properties that 
a system building block must offer for the system to be able to fulfill its 
requirements.

>	 �Non-functional requirements represent expectations and necessities that 
stakeholders consider important in addition to the functional requirements.

>	 �Direct non-functional requirements are also known as qualities or quality 
attributes.

>	 �Indirect non-functional requirements represent specifications or given facts 
that you must adhere to or consider. Here we often speak of constraints.

>	 �Development time requirements express qualities and constraints that 
have to be considered mainly during the development of a system.
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>	 �Runtime requirements contain expectations with regard to the behavior of 
a system at runtime.

>	 �Organizational constraints include specifications such as budget and time-
to-market.

>	 �Architecturally significant requirements are requirements that have a con-
siderable influence on the design of the architecture.

>	 �Requirements can appear on different architecture levels (organizational 
level, system level, building block level). Requirements at one architecture 
level are based on requirements at the architecture level above it.

>	 �Depending on the architecture discipline in which you act as an architect, 
you are confronted with different types of requirements.

>	 �Requirements can be documented with different means. Use cases are a 
good means of describing functional requirements at all architecture levels.

>	 �As part of an architecture method, requirements play an important role in 
all activities of an architect.
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This chapter looks at the WITH WHAT dimension of the architecture orientation 
framework and presents basic concepts and techniques that belong to a software 
architect’s toolbox. After reading this chapter, you will have an idea of the means 
you can use to assess, describe, create, and develop architectures (FigureÂ€6-1).

6	 Architecture Means (WITH WHAT)

Figure 6-1: Positioning of the chapter in the architecture orientation framework
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and 6.7.6 are based on the work by Prof. Dr. Uwe Zdun for the German Edition 
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116 6â•… Architecture Means (WITH WHAT)

FigureÂ€6-2 gives an overview of how the topics presented in this chapter are 
related. As you can see, we will look at basic architecture means first: principles, 
concepts, patterns, styles, and tactics. We will then discuss further means that 
you can use to implement the basic means.

Principles such as loose coupling or high cohesion are very general guidelines. 
Basic concepts such as object orientation or aspect orientation make these 
principles more concrete and provide a basis for realizing the principles. Tactics 
make general principles more concrete by offering guidelines based on quality 
attributes. Patterns and styles, which are very similar concepts, have even more 
concrete and detailed guidelines. Architecture patterns and architecture styles 
offer detailed approaches to support concrete design decisions.

Figure 6-2: Basic concepts of the WITH WHAT dimension
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The architecture means named so far abstract from concrete domains, tech-
nologies, and technology approaches. The further architecture means represent 
more concrete specifications in these areas. Basic architectures, such as layered 
architectures, n-tier architectures, or architectures based on component contain-
ers are concrete guidelines that enable you to structure entire systems. Refer-
ence architectures describe general architectural approaches for concrete do-
mains, often combined with specific technology approaches. Architecture model-
ing means such as UML, domain-specific languages, or architecture description 
languages are tools for modeling and documenting architectures. And finally, we 
will discuss the current most important architecture technologies—that is, tech-
nologies such as platforms and infrastructures that are fundamentally important 
for a system’s architecture.

Different types of architecture means influence the architecture under construc-
tion in different ways. FigureÂ€6-3 makes this clear. The influence increases from 
the architecture principles (see SectionÂ€6.1) right up to the reference architec-
tures (see SectionÂ€6.5).

Architecture principles are proven guidelines that you should apply when devel-
oping or modifying an architecture. However, they say nothing about how you 
should apply these principles in concrete cases. In contrast, reference architec-
tures clearly indicate what a concrete architecture should look like. The degree 
of structuring thus increases. The degree of reuse also increases since you can 
use proven, concrete architecture knowledge. This is an advantage as it means 
you do not have to “reinvent the wheel.” However, reference architectures also 
anticipate many decisions and this reduces your freedom as an architect. As long 

Figure 6-3: Influence of architecture means
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as you can apply the reference architecture directly to the concrete problem, this 
is not an issue. For example, depending on the scope, a reference architecture 
can cover both the functional architecture and the technical architecture. How-
ever, the use of the technical aspects of a reference architecture requires that 
all constraints formulated also permit the use of the technologies defined by the 
reference architecture. If this is not the case, there is a part of the reference 
architecture that you cannot use. You must therefore find a balance between 
the specifications resulting from architecture means and the concrete problem. 
When identifying the architecture means, we recommend that you look at those 
with a high degree of reusability first. You should only use more basic means 
(architecture principles) if there are no higher value means (e.g., basic and refer-
ence architectures) available.

6.1	� Architecture Principles

As explained in the previous chapters, software architecture is primarily con-
cerned with the building blocks of a system and how they interact. These build-
ing blocks implement the functional requirements that a software system must 
satisfy. There are also many non-functional requirements, and these are also 
important: for example, performance, time to market, costs, maintainability, reus-
ability, modifiability, availability, and simplicity (see also ChapterÂ€3).

These influencing factors play a large part in determining the structure of a soft-
ware architecture. This means, however, that two software systems with the 
same technical requirements but created by two different architects in different 
organizations inevitably have different software architectures. The question is, 
how do you recognize a “good” software architecture?

It is difficult to say that an architecture itself is “good” or “bad”—it merely fulfills 
the given functional and non-functional requirements that the software system 
must satisfy more or less well. In other words: the architectures represent dif-
ferent variants of their systems’ quality attributes. For example, a highly flex-
ible and configurable server architecture may be very suitable for an application 
server. However, in some circumstances the same architecture—compared to a 
more inflexible architecture—can be highly problematic for a server in the field 
of embedded systems. On one hand the high flexibility is not really necessary in 
embedded systems, and on the other hand, the more flexible architecture is also 
clearly more complex and requires more memory, computing power, and other 
resources.

There are, however, general principles that you should consider when designing 
a software architecture. In this section we will explain some central architecture 
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principles in more detail. These principles look at different architectural questions 
and problems. There are two main problems that are important for almost all of 
the principles covered below: reducing the complexity of an architecture and 
increasing the flexibility (or modifiability) of an architecture.

FigureÂ€ 6.1-1 provides a first overview of the architecture principles. It covers 
basic principles and principles derived from these basic principles. FigureÂ€6.1-2 
shows the basic principles and their relationship to one another in detail. Fig-
ureÂ€6.1-3 gives an overview of the derived principles. The individual principles 
and their relationships are explained below.

Figure 6.1-1: Overview of the architecture principles

Figure 6.1-2: Overview of the architecture principles
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6.1.1	�Principle of Loose Coupling

An important core of the definition of software architecture is that software archi-
tectures are primarily concerned with the building blocks of a software system 
and their interaction. You can use many different constructions to realize the 
building blocks, such as modules, components, classes, procedures, etc. On 
one hand you can look at the building blocks of the software architecture inde-
pendently of one another—on the other hand they are still related to one another. 
The relationship between the building blocks of a software architecture is known 
as coupling. It is particularly important as it characterizes the interactions of the 
building blocks. These interactions are vitally important for all considerations 
from the architectural viewpoint.

The term “coupling” can be explained more clearly with some examples. A class 
is a central building block of an object-oriented system. Thus it makes sense to 
look at the coupling of the classes. In general, you can measure the coupling 
of a building block of the architecture simply by counting the relationships to 
another building block under consideration. Thus, with reference to classes, you 
can measure, for example, how strongly classes are coupled with other classes. 

Figure 6.1-3: Overview of special variants of some architecture principles

Coupling
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You do this by determining the number of other classes in a relationship with a 
given class.

This simple coupling metric gives you a first impression about the coupling in an 
architecture. However, it is also important to consider how the building blocks of 
an architecture are coupled. Please note that even though coupling is most often 
understood as two building blocks “calling”, “including”, or “knowing” each other, 
there are many other ways of how building blocks may have established strong 
mutual inter-dependencies. Different realizations of a relationship between the 
building blocks often mean dependencies of different strengths. A common type 
system, for example, may bind two building blocks together without having this 
ever interact, directly. Let us assume that two classes require common data. 
Three examples of types of coupling (there are many more types) are:
>	 �The classes can mutually access each other’s (private) data. This is a very 

strong form of coupling since you can no longer change one of the classes 
without considering the other.

>	 �A weaker coupling is present if the classes communicate via a global data 
structure. The direct dependencies between the classes are released and 
outsourced to the global data structure. Despite this, the coupling is still very 
strong: all changes that affect the global data also affect all classes that work 
with the data.

>	 �If the classes only communicate via method parameters, the coupling is 
considerably lower: the methods involved contain only essential data. 
Changes to this data coupling therefore only cause local changes to the 
relevant methods of the classes involved.

Two building blocks that work on the same level of abstraction without ever ex-
plicitly using each other, is another example. There are many more examples 
of comparably “invisible” coupling-relationships that may exist between build-
ing blocks due to some sort of shared assumptions or views of their worlds. 
Therefore call-measures may give you first indications of how loosely coupled 
two building blocks are—but this may by far not be sufficient for a final coupling-
conclusion.

Coupling metrics can also be considered for other architecture views and types 
of building blocks. Another useful view is the consideration of the object and call 
structures at runtime. Here we can say that object x has a high coupling to object 
y if it frequently calls y.

The principle of loose coupling states that the coupling between system build-
ing blocks should be kept as low as possible (see FigureÂ€6.1-4). This principle is 
concerned with the problem that, to understand and change a building block, it 
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is often necessary to understand or change other building blocks [Yourdon and 
Constantine 1978]. The assumption is that these quality attributes are positively 
influenced by loose coupling.

One aim of loose coupling is therefore to keep the complexity of structures low: 
the less strongly a building block is coupled with other building blocks, the easier 
it is to understand the building block without having to understand lots of other 
building blocks at the same time. A second aim is to increase the modifiability 
of the architecture: the less building blocks are affected by a change in another 
building block due to strong coupling, and the looser the existing relationships, 
the easier it is to change individual building blocks locally—without considering 
their environment.

As you can see, loose coupling enables design for change, a further important 
principle of software architecture. Loose coupling also leads to the principle of 
high cohesion. If you keep the external relationships “loose,” a direct conse-
quence is frequently that the building blocks are designed with stronger internal 
connections.

You can achieve loose coupling particularly by implementing the following prin-
ciples: abstraction, separation of concerns, and information hiding. The intro-
duction of interface abstractions is an important aspect here. You separate the 
concerns “interface” and “implementation” and hide implementation information 
behind the interfaces. To achieve loose coupling, you should then try to keep the 
number of interface elements as low as possible and also restrict the frequency 
of the exchange of information via interfaces. Generally, building blocks of an ar-
chitecture should only communicate via well-defined interfaces. This enables ab-
straction and also enables you to control the coupling of system building blocks.

A principle related to loose coupling is the Law of Demeter [Lieberherr and Hol-
land 1989]. It states: A system building block should only use closely related 
building blocks (“don’t talk to strangers”). This is particularly important since peo-
ple can only retain a limited amount of information in their short-term memory. 
Thus it makes sense not to overload system building blocks with too much exter-
nal information in order to increase their ability to be understood.

An important sub-principle of loose coupling is the avoidance of circular depen-
dencies between the building blocks of a system. This is because circular de-
pendencies involve a particularly high coupling of the building blocks. Circular 
dependencies are the cause of many problems in software development, for 
example, deadlocks and complicated modifiability. An important architectural 
problem here is that none of the circularly dependent building blocks can be un-
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derstood or tested without understanding or testing the entire cycle. This means 
that it is difficult to divide up the development of such building blocks.

Instead of circular dependencies, the relationships of the building blocks should 
follow the so-called Hollywood Principle: “don’t call us, we’ll call you”—that is, 
they should be loosely coupled. This is also known as Inversion of Control.

Dependency Inversion is an application of Inversion of Control or loose coupling: 
one building block defines an interface with which it works and other building 
blocks realize the interface.

Dependency Injection is a further application of the Inversion of Control. It trans-
fers the responsibility for the creation and linking of building blocks to an exter-
nally configurable framework in order to reduce the coupling to the environment 
of the building block. This makes it easier to manage dependencies.

6.1.2	�Principle of High Cohesion

Coupling is concerned with the dependencies between different building blocks 
of an architecture. However, a building block itself often consists of several parts. 
For example, a class consists of variables and methods. The dependencies with-
in a system building block are called cohesion. Ultimately, cohesion is a measure 
of how much a given building block is self-contained, semantically.

Cohesion can also be explained more clearly with examples. With reference to 
the methods of a class, you can measure the cohesion by the call relationships 
of the methods of this class among each other. In the runtime view, object x has 
a high cohesion if it frequently calls itself.

The cohesion within a system building block should be as high as possible (see 
FigureÂ€6.1-4). As with loose coupling, the issue here is the local modifiability of 
system building blocks and their ability to be understood [Yourdon and Constan-
tine 1978]. If a system building block unites all features relevant for understand-
ing and changing it in its description, you can change it without having to under-
stand or change other system building blocks. But only in case of semantically 
correct dependencies within a system building block high cohesion is given. For 
example even though the number of call relationships between methods of a 
given class may indicate high cohesion, this is by far not a proof of semantically 
correct relationships. There are often “invisible” semantic relationships that tie 
building blocks (eg., methods, classes, or modules) together even though no 
explicit call relationship exists. An example of high cohesion are two methods 
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that both operate on the same understanding of what a “customer”, or “product” 
is—but never call each other, explicitly.

Coupling and cohesion are normally interdependent. The following generally ap-
plies: the higher the cohesion of individual building blocks in an architecture, the 
lower the coupling between the building blocks. This relationship is illustrated in 
FigureÂ€6.1-4.

An architecture with loose coupling and high cohesion is suitable if you want to 
understand the entire structure of the software system quickly.

High cohesion often leads to loose coupling and vice versa—thus in many cases 
these two principles are interdependent. You can achieve high cohesion par-
ticularly by implementing the following principles: abstraction, separation of con-
cerns, and information hiding. You can also achieve it by encapsulating related 
requirements in one system building block. Specifically, this means that you ap-
ply separation of concerns and information hiding in the design. Related require-
ments tend towards a high need for communication. They should therefore be 
part of the same system building block in order to increase the cohesion of that 
building block. The building block should hide all internal details from the outside 

Figure 6.1-4: Left, an example with strong coupling and low cohesion; right, 
loose coupling and high cohesion are implemented
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world in order to keep the coupling loose. Architectures with high cohesion en-
able you to consider the individual system building blocks as black boxes that 
you can modify and exchange independently of one another.

6.1.3	�Principle of Design for Change

The principle of design for change [Parnas 1994] is a very general principle. It is 
concerned with the problem that software is constantly changing and changes 
are often difficult to foresee. However, some software architectures tend to cope 
better with changes than others. The idea behind design for change is that you 
plan foreseeable changes in advance within the architecture.

To fulfill this principle, you should first try to design the architecture such that it 
is easy to manage probable changes to a software system. For example, you 
can collect and consider more extensive requirements in advance. Ambiguities 
in requirement specifications can indicate more extensive functionality require-
ments to come, for example. These are often simply further developments that 
can be expected. For example, if a functionality has not been implemented for 
cost reasons, under certain circumstances you can expect that this functionality 
could be implemented in one of the next versions of the system.

Alternatively, when you are designing a new architecture, you can take account 
of experiences from the design of similar architectures. You can thus plan chang-
es that are often required for one system type in the development of a new, 
similar architecture. You should therefore design an architecture such that it can 
easily manage expected changes.

The changes discussed thus far can be expected—at least if the architect has 
the corresponding experience. However, there are also changes that cannot be 
expected. It is usually difficult to plan changes generally if they cannot be fore-
seen, since the design for change also entails disadvantages. A more exten-
sive design takes time and leads to a higher implementation effort, for example. 
Highly flexible architectures often have disadvantages compared to more simple 
architectures. For example, resource consumption (e.g., performance and mem-
ory) can be higher than with more inflexible architectures. You should therefore 
be careful when using a design for change in places where you are not sure that 
this change will really be required at some point.

In general you can achieve a design for change by consequently applying the 
principle of loose coupling in an architecture. Examples of known architecture 
approaches in this area are service-oriented architectures (see SectionÂ€6.4.11) 
or aspect orientation (AOP) [Kiczales et al. 1997] (see SectionÂ€6.2). In general, 
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use loosely coupled structures for quick modifiability at specific points of an ar-
chitecture without having to replicate the change at a number of other points.

Loosely coupled architectures can have disadvantages such as higher complex-
ity or increased resource consumption if they are used incorrectly. You should 
therefore use them specifically where you suspect there may be frequent chang-
es. In particular, these are places where changes often occur or where many 
different aspects of an architecture come together (so-called “hot spots” of an 
architecture [Pree 1995]).

For example, in distributed object middleware systems, such as CORBA or 
web service implementations, the evaluation of the distributed call is one such 
hot spot. Most middleware systems have a so-called broker architecture [Bus-
chmann et al. 1996], as shown in FigureÂ€6.1-5 (following [Völter et al. 2004]). 
Here you can see several call interfaces where new change requirements such 
as security concerns, logging, transactions, and many more often have to be 
implemented. These points are therefore the hot spots of the broker architecture.

If the middleware provides an abstraction that enables you to change the hot 
spots easily, you can probably also implement domain-specific changes that are 
difficult to foresee there.

As a second example for managing unexpected changes, you should consider a 
component architecture. Regardless of the actual functionality, here you can as-
sume that the configuration of the components will change often. Therefore it is a 
good idea not to “hard code” the aspect “configuration of components.” Instead, 
use an easily modifiable abstraction for configuration options, for example, a 
scripting language or XML configuration options.

Figure 6.1-5: Hot spots of a broker architecture
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In both examples loose coupling was used to increase the modifiability of the 
architecture. You can also implement the design for change through other prin-
ciples, such as abstraction, modularity, separation of concerns, and information 
hiding. These principles are also important in the implementation of loose cou-
pling.

You can also use many other principles for design for change. For example, you 
can separate the aspect “documentation of the architecture” from the system and 
automate it. This means you can “force” the developers to describe the archi-
tectural structures in the code. This leads to the implementation of the principle 
of self-documentation. It also increases the modifiability of the system since the 
architectural role of an architecture building block to be changed is clear for the 
developer during the change [Parnas 1994].

6.1.4	�Separation of Concerns Principle

The separation of concerns principle generally states that you should separate 
different aspects of a problem and deal with each of these sub-problems indi-
vidually. Separation of concerns is a general software engineering principle used 
not only in software architecture but in many other areas of software engineering. 
It can be traced back to the Roman principle of “divide and conquer”—a general 
principle used in many situations of daily life to resolve difficulties. In general, 
separation of concerns reduces the complexity of a problem and enables you to 
divide up the processing.

In software architecture, you use separation of concerns to break down a soft-
ware system into a structure of system building blocks. It can also be applied in 
a number of other software architecture areas. These include:
>	 �Breaking down the requirements placed on a software architecture.
>	 �Breaking down a complex architecture description into views of the archi-

tecture.
>	 �Breaking down the organizational responsibilities for the software architec-

ture.
>	 �Breaking down the processes for the creation of a software architecture into 

sub-processes.

We will now look at perhaps the most important use of separation of concerns in 
software architecture as an example: supporting modularization. This primarily 
means identifying parts of a software system responsible for specific concerns, 
aspects, or tasks and encapsulating them as separate system building blocks. 
The purpose of this is to break down the complex entire system into understand-
able and manageable individual parts. Breaking down the entire system into rela-
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tively independent individual parts also enables you to distribute responsibilities 
for different system parts and thus several developers can work on the software 
system in parallel. The central idea behind this is to achieve as loose a coupling 
of the building blocks of an architecture as possible by modularizing them.

The functionality requirements are often considered as criteria for the decompo-
sition of a software system. That is, every building block identified fulfills a spe-
cific functionality. However, there are other decomposition criteria. For example, 
you can identify building blocks that are reusable as far as possible and thus ap-
ply reuse as a central decomposition criterion.

A simple example could be a software system that processes orders in an enter-
prise. This system must accept the order from the processor via a user interface 
and query the database of available articles. It must then check the entries made 
by the processor and after a successful check, forward the entries to the supplier. 
During these steps it has to access the supplier database and the order must be 
archived in the order database. If we assume this system has been implemented 
with a monolithic architecture, this would throw up a whole series of problems 
such as the following:
>	 �The system would be very complex and difficult to understand.
>	 �It would not be easy to divide up different parts of the system for work pur-

poses since changes at one point would not be independent of changes at 
other points.

>	 �It would be difficult to make changes to the system. For example, to im-
plement a further user interface the complete system would have to be 
searched for user interface code.

>	 �Individual parts of the systems could not be reused.

These problems would not occur if you designed the system according to the 
separation of concerns principle. For example, you could divide the system up 
into the following building blocks: user interface, order processing, general data-
base access, database access for the articles database, database access for the 
supplier database, and database access for the order database.

In software architecture, it is difficult to consider separation of concerns one-di-
mensionally. For example, in the example above, the decomposition was based 
on the functionality, i.e., the functional parts. Other important aspects, such as 
performance, usability, resource consumption, additional services such as log-
ging and transactions etc. were not explicitly considered.

You should generally try to achieve a separation of functional and technical parts. 
This enables you to separate functional abstractions from their concrete techni-
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cal implementation. In other words, it promotes the further development of differ-
ent building blocks on an evolutionary basis.

However, you can go one step further and look at dimensions other than just the 
functional and technical aspects. For example, in modularizing the architecture, 
you can separate the main functionality of aspects such as transaction manage-
ment, security, logging, etc. You can also separate different quality attributes 
such as performance, usability, resource consumption, or flexibility from the func-
tional concerns of the system.

The explicit consideration of all of these dimensions is known as multi-dimen-
sional separation of concerns [Tarr 2004]. Multi-dimensional separation of con-
cerns is supported by various approaches. The most well-known one at the pres-
ent time is aspect orientation [Kiczales et al. 1997]. It can compose the different 
aspects, split into separate building blocks and automated, into a ready-to-run 
system (see also SectionÂ€6.2).

6.1.5	�Information Hiding Principle

Information hiding is a fundamental principle for structuring and understanding 
complex systems. The principle generally states that you only show a client that 
part of the total information that is really necessary for the client’s task and you 
hide all remaining information. Since software architectures are inherently com-
plex, this principle is enormously important in architectures being understand-
able.

In a software architecture, information hiding is applied in the modularization of 
a system, for example. Design decisions are encapsulated in a system building 
block and made known externally through well-defined interfaces. However, the 
using system building block does not know how the system building block is real-
ized. For example, object and component concepts have the concept of visibility 
of information, which is intended to support information hiding. Here there is a 
differentiation between public and private variables and operations: clients can 
only access public elements; private elements are hidden for clients.

A sub-aspect of information hiding is data hiding. This aspect is frequently imple-
mented via object orientation, for example. Objects hide data with their methods 
(that is, all data is private and, where necessary, there are public methods for 
access). You can also realize data hiding using database interfaces or query 
languages.

Multi-dimensional 
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and modularization

The idea of 
information hiding

Data hiding



130 6â•… Architecture Means (WITH WHAT)

Information hiding is not restricted to individual building blocks of a software ar-
chitecture. It is also an important structuring principle for larger structures of the 
architecture. For example, the facade design pattern [Gamma et al. 1995] is 
used in many architectures. A facade is an object that protects an entire subsys-
tem against direct access. It provides a common interface for the building blocks 
of a subsystem and this hides the subsystem that lies behind the building blocks. 
FigureÂ€6.1-6 shows an example of a facade.

A typical example of a facade object is an interpreter. This usually consists of a 
number of building blocks that the clients do not see, such as parsers, implemen-
tation of language elements, byte code compilers, etc.

From this example we can see that information hiding is also used to implement 
loose coupling. In the previous example, the introduction of the facade design 
pattern made it possible to decouple the clients from the internal building blocks 
of the subsystem. This was achieved by hiding internal details of these building 
blocks.

A layered architecture is usually structured such that each layer only sees the 
layer directly below it. This means that from the view of layer X, layer X-1 hides 
all of the layers below it. A layer should only be accessed via clear interfaces as 
far as this is possible. The using layer should not see any layer-specific objects 
or other implementation details of the lower layer being used. This then leads 
to data being exchanged between different layers via “neutral” data transfer ob-
jects, for example.

A typical example is a distributed object system such as CORBA. A CORBA 
implementation hides the underlying protocol layers, the operating system APIs, 
the network, etc. as far as possible. It is itself divided into layers, such as the ap-

Figure 6.1-6: Left, a subsystem with direct relationships; right, the same subsys-
tem with a facade

Information hiding 
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plication layer, call layer, and the request handling layer. FigureÂ€6.1-7 shows an 
example of a layer creation for a CORBA middleware.

A further form of information hiding is the black box principle. It states that the in-
ternal details of a system building block should not be visible for the clients. Only 
the interface of the building block should be visible. This means that the internal 
details can be changed without clients being affected by the changes. The black 
box principle is frequently implemented via the interface abstraction principles. 
We will discuss these in the next section.

6.1.6	�Abstraction Principles

Abstraction means focusing on aspects of a concept that are relevant for a spe-
cific purpose and neglecting unimportant details for this particular purpose. It 
thus follows that abstraction is a special case of separation of concerns: you 
separate the important details from the less important ones. Abstraction is a 
powerful concept that is applied in all possible engineering disciplines in order 
to understand and manage complex problems. It is also used in the creation of 
software: abstractions are used in programming languages, software processes, 
design methods, architecture description languages, etc.

The field of software architecture contains some special sub-principles of ab-
straction that refer to interface abstractions. The result of the application of these 

Figure 6.1-7: Example of layer creation: CORBA middleware
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abstraction principles should be a focus on the interfaces: an architecture only 
really takes effect through the relationships of the building blocks of a system 
to one another. The interfaces of the building block are important for these rela-
tionships being created and for their quality. In detail, the principles for interface 
abstractions are:
>	 �Explicit interfaces: This principle states that a system building block should 

clearly show which other building blocks it communicates with. Each build-
ing block should also explicitly say which interfaces it issues to clients. Typi-
cal examples for explicit interfaces are header files (e.g., as in C++) and 
interface description languages (IDL). A software architecture should be de-
signed based on these interfaces and they should not be bypassed.

>	 �Separation of interface and implementation: Interfaces should be described 
separately from the implementations so that the client can rely on the inter-
face without knowing the implementation details. For example, you can use 
different versions of a system building block in parallel, or use implementa-
tions from different manufacturers without having to change the client. This 
makes particular sense if the interface is standardized. Many design pat-
terns achieve flexibility by separating an abstract interface from concrete 
implementations (compare e.g., [Gamma et al. 1995]). This principle is also 
known as the Dependency Inversion principle [Martin 2000].

>	 �Liskov substitution principle [Liskov 1988]: In inheritance abstractions, cli-
ents should be able to call up inheriting classes via the interface of the inher-
iting class’ superclass. In particular, this principle ensures that a client can 
depend on all objects of a type (that is, also inherited) supporting the same 
interface. With this principle, it is important to note that many programming 
languages (including object-oriented languages) allow the principle to be vi-
olated through inheriting classes overwriting interfaces of inheriting classes’ 
superclass. This becomes a problem when inheriting classes “hide” parts of 
the interface (make public parts private) and thus change the signature of 
an interface; for example, a method suddenly does not throw up any excep-
tions any more.

>	 �Interface Segregation Principle [Martin 2000]: A client should never be 
based on an interface that it does not use. In particular, this also means 
that you should segregate complex interfaces that multiple client types are 
based on into multiple individual interfaces.

>	 �Language support for abstractions [Meyer 1997]: Architectural abstractions, 
such as components or interfaces, should have language support in both 
the design language and the programming language. If this is not the case, 
it may be possible to extend the language with appropriate abstractions. 
The purpose of this is that the architect or developer should not have to map 
the abstractions time and again by hand. A further advantage is that you 
recognize system building blocks and interfaces syntactically in the program 
source code immediately.
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>	 �Design by Contract [Meyer 1997]: An important aspect of interface abstrac-
tions is that common interface abstractions only standardize the syntax but 
say nothing about the meaning of the relationship. The protocol used or the 
semantics of the operations and data remain open, for example. It is there-
fore your responsibility as the architect to document the meaning of a rela-
tionship. Self-documentation is a way of approaching this problem. Another 
possibility is Design by Contract. Here you specify suitable preconditions 
and post-conditions for the relationships as well as invariants that character-
ize the relationship more closely.

As explained above, interface abstractions are often used to realize loose cou-
pling. You can also use other abstractions, such as aspects, components, class-
es, etc. for this goal—either directly or indirectly.

The modularity principle is also closely related to abstractions since a useful 
modularization usually requires an implicit or an explicit module abstraction.

One aspect where abstraction is closely connected to information hiding is porta-
bility. It should be possible to use an architecture or its system building blocks in 
environments other than that in which they were created. One important aspect 
here is platform independence. Typically, abstractions that provide information 
hiding for platform details are used here. Examples are virtual machines that can 
run a byte code of a programming language on multiple operating systems, and 
database access layers that support database operations on different database 
products with a uniform interface.

6.1.7	�Modularity Principle

The architecture should consist of well-defined system building blocks with 
clearly distinguishable functional responsibilities. This means that it should be 
easy to exchange the system building blocks and they should be self-contained. 
In particular, you use modularity to make the building blocks of an architecture 
modifiable, extensible, and reusable.

Originally, the modularity principle related primarily to composing individual op-
erations. However, this is not sufficient to enable modifiable, extensible, and re-
usable structures in software architectures since individual operations are not 
autonomous, self-contained system building blocks. Individual operations usu-
ally have complex dependencies to other operations and to data. In contrast, 
the modularity principle states that you should strive for self-contained system 
building blocks with simple and stable architectural relationships.

Relationship to other 
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The idea of 
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You may have noticed that we have already mentioned modularity in the descrip-
tions of some of the other principles. The modularity principle, as considered 
here in the context of software architecture, is indeed a particularly important 
combination of the principles of abstraction, separation of concerns, and infor-
mation hiding, which we have already discussed. The modularity principle takes 
effect when these three principles are combined to implement the principles of 
loose coupling and high cohesion.

There are a number of approaches that support the modularity of a software 
architecture—for example, object orientation, component approaches, layered 
architectures, n-tier architectures, and many more. We will explain these in more 
detail later in this book.

Generally speaking, each architectural modularity approach should fulfill a num-
ber of criteria that characterize modularity. Seen from this angle, modularity is not 
only dependent on a special approach—rather, primarily on the design by the ar-
chitect. For example, a procedural C system can have a highly modular architec-
ture if the developers work in a disciplined way. In contrast, a system developed 
with a component approach such as EJB may be completely non-modular if the 
developers violate important principles of modularity.

As an example for the modularization of a system we will use a heating control 
system. It is regulated by a central furnace control and must control a tempera-
ture sensor, a target temperature, the current room occupancy, and the heating 
times for every heated room. There is also an external temperature sensor for 
the entire building.

A completely non-modular design would group all of these elements in one al-
gorithm that operates on a data structure. However, this would be difficult to 
understand, and changes to individual building blocks would entail considering 
the entire algorithm and the entire data structure.

A better design would be to split the system up into individual modular system 
building blocks, as in FigureÂ€6.1-8, since each individual building block can now 
be considered independently of the others. Here, classes are used as modu-
lar system building blocks. However, this design has a big problem with regard 
to modularity: the class “heating control” is a so-called “God class”—a class in 
which all responsibilities of the system (or subsystem) are united. Even if the 
concerns are split up into modular system building blocks, their responsibilities 
are still united in the heating control. Practically every change to the system in-
volves changing the God class and thus affects several responsibilities. It is also 
difficult to understand the different abstractions that are mixed in a God class.

Example of 
modularization

Modularity 
approaches
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God classes should be broken down using appropriate decomposition. As Fig-
ureÂ€6.1-9 shows, this can be achieved in the example by introducing a “room” 
class. The heating control can now delegate the decision as to whether heating 
should be activated to the individual rooms. In turn, the rooms use their sub-
building blocks to receive the corresponding information.

Figure 6.1-8: Example design with modular system building blocks, but still with 
a God class

Figure 6.1-9: Example design with modular system building blocks, without a 
God class
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As already explained above, modularity is closely related to a series of other ar-
chitecture principles. You can apply the two principles of separation of concerns 
and information hiding to implement the principle of modularity. Modularity is also 
closely connected to abstraction. You can support the modularity of a system us-
ing suitable module and interface abstractions, such as object models or compo-
nent modules. However, it is still your task to find the correct decomposition—the 
approaches only help with the implementation of a design.

Modularity aids loose coupling and high cohesion because it enables you to en-
capsulate related concerns in one modular system building block. You reduce the 
coupling between the system building blocks by using explicit interfaces between 
the building blocks.

One important aspect of modularity is the open/closed principle [Meyer 1997]. 
This principle states that system building blocks should be open for changes but 
closed for the use of their internal details by other system building blocks. You 
can generally achieve openness by applying the “Design for change” principle; 
you can achieve closed building blocks by using abstractions for stable inter-
faces and applying the information hiding principle.

6.1.8	�Principle of Traceability

Guaranteeing the traceability of architectural structures and decisions is impor-
tant to ensure that an architecture can be understood. It should therefore be 
possible to find the actual architectural structures, as they are implemented in the 
code, in other descriptions of an architecture as well, such as a design model or 
the requirement specification. Conversely, it should also be possible to assign a 
requirement to the system building blocks that implement it. Traceability should 
also exist amongst the different descriptions at the same level. For example, it 
should be possible to map different design views of the architecture on top of 
one another.

Simple rules, such as noting architectural structures as such in the source code 
and in design documents (e.g., using comments) and consistently using the 
same names for the same building blocks can greatly improve the traceability. 
There are several approaches that offer further support for traceability. For ex-
ample, you can embed metadata that references the requirements to a system 
building block in the code and thus make the requirements easy to find.

Traceability aids loose coupling and design for change because it makes struc-
tures easier to understand and therefore more independent and modifiable.
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6.1.9	�Self-Documentation Principle

Self-documentation means that the architect or developer of a system building 
block should try to make every item of information about the system building 
block part of the system building block itself [Meyer 1997]. This supports design 
for change with regard to changing documentation and other additional informa-
tion.

In daily business, documentation is often forgotten when small changes are 
made to the software. Thus the code, documentation, architecture descriptions, 
designs, and other descriptions of the software system quickly become incon-
sistent.

However, the self-documentation principle is also related to traceability: informa-
tion that exists directly in the system building block can also be easily traced.

An important practical aspect of self-documentation is that such information can 
also be used to generate related documents that have to be created based on 
the code and other information. For example, the HTML description of an API can 
be generated automatically through a series of tools, such as JavaDoc.

6.1.10â•‡� Incrementality Principle

You should implement a first architecture design, as well as changes to an exist-
ing architecture, incrementally as far as possible. This is because software archi-
tectures are often highly complex. Thus, an attempt to design an entire system 
straight away often fails—for example, because you place too much value on 
incidental aspects or because important aspects are overlooked.

Such situations arise, for example, because architects and developers who are 
trained in technical software aspects often do not speak the same language as 
domain experts and because both sides often take some things for granted that 
are not immediately clear to a non-expert in the respective field.

To avoid this kind of misunderstanding, you should proceed incrementally and 
get frequent feedback. Resulting rules for the procedure are, for example:
>	 �Delivering first versions of a system early
>	 �Getting the opinion of real users of the system early
>	 �Introducing new functionality step-by-step

The idea of self-
documentation

The idea of 
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Incrementality therefore means applying the separation of concerns principle to 
the development steps in the development of the system.

Piecemeal growth is a more extensive variant of incrementality. It is described by 
the architect Christopher Alexander [Alexander 1977] and can also be applied to 
software architectures. The idea is to let an architecture grow step-by-step. After 
every step there is an assessment that entails a decision about what to do next. 
This means that there is little or no planning in advance. Piecemeal growth is 
used in a software architecture context in the concepts refactoring and Extreme 
Programming, for example.

A further variant of incrementality is so-called prototyping. It often makes sense 
to develop simple prototypes first before developing a product in order to get 
to know the problem better. Sometimes you can convert these prototypes into 
products; sometimes it makes more sense to throw the prototype away and start 
again from the beginning. A prototype can still be very valuable since it gives 
the architect and the developer an understanding for the real problems of the 
domain. A possible middle way is an evolutionary prototype—that is, a prototype 
that you can develop into a product incrementally.

6.1.11	� Further Architecture Principles

There are other general architecture principles that we will summarize briefly 
here:
>	 �Reference to use cases: An architecture should not be created randomly; 

rather, its design should be based on the relevant use cases. This ensures 
that an architecture does not exceed the aim of the desired system.

>	 �Avoidance of superfluous complexity: “Less is more” also applies to archi-
tecture. Unnecessarily complex architectures are prone to error and are not 
sufficiently understood.

>	 �Consistency: An architecture should follow a standard set of rules from be-
ginning to end: naming convention, communication of the system building 
blocks, structure of the interfaces, structure of the documentation, etc. This 
principle makes the development, understanding, and the implementation of 
an architecture easier.

>	 �Convention over Configuration: Useful standard assumptions are made and 
only necessary adjustments have to be configured. This generally enables a 
developer to achieve a first result quickly and this result can be adjusted to 
the separate requirements step-by-step.

Piecemeal growth

Prototyping
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�Summary

>	 �There are two main problems that are important for almost all of the archi-
tecture principles: the reduction of the complexity of an architecture and 
the increase in the flexibility (or modifiability) of an architecture.

>	 �The principles can be related to one another in a system.
>	 �The principle of loose coupling is a central principle and states that the 

coupling between system building blocks should be kept as low as pos-
sible.

>	 �Cohesion is a measurement of the dependencies within a system building 
block. The principle of high cohesion states that this cohesion should be as 
high as possible within a system building block.

>	 �The principle of design for change states that you should try to design 
the architecture such that it is easy to manage the probable changes to a 
software system.

>	 �The separation of concerns principle states that you must separate dif-
ferent aspects of a problem and deal with each individual problem part 
separately.

>	 �The information hiding principle states that you only show a client that part 
of the total information that is really necessary for the client’s task and hide 
all remaining information.

>	 �Abstraction principles apply abstractions. Abstraction means focusing on 
aspects of a concept that are relevant for a specific purpose and neglecting 
unimportant details for this particular purpose.

>	 �The modularity principle states that the architecture should consist of well-
defined system building blocks with clearly distinguishable functional re-
sponsibilities.

>	 �Guaranteeing the traceability of architectural structures and decisions 
is important to ensure that an architecture can be understood. It should 
therefore be possible to find the actual architectural structures, as they are 
implemented in the code or other artifacts.

>	 �The self-documentation principle states that the architect or developer of 
a system building block should try to make every item of information about 
the system building block part of the system building block itself.

>	 �The incrementality principle states that a first architecture design, as well 
as changes to an existing architecture, should be implemented incremen-
tally as far as possible.

>	 �There are further principles (e.g., Inversion of Control) which focus on spe-
cial aspects of the principles mentioned above.

Summary: 
Architecture 
principles
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6.2	� Basic Architecture Concepts

In this section we will discuss important concepts that architects use today to 
implement architectures. FigureÂ€6.2-1 gives an overview. The section starts with 
simple procedural approaches and then continues step-by-step to broader ap-
proaches such as aspect orientation, component orientation, and model-driven 
development. If you are already familiar with some of these areas, you can skip 
these parts. Here we will give a brief overview of the topics from the view of 
architecture to explain the terms used. For a complete introduction to the areas, 
see the further literature listed at the end of the section.

Firstly, for simplification, we will present the architecture means shown in Fig-
ureÂ€6.2-1 from the perspective in which a new system is being created.

Figure 6.2-1: Overview of the basic architecture concepts
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6.2.1	�Procedural Approaches

Procedures are a traditional and widespread means of structuring architectures. 
They allow you to break down a complex algorithm into reusable individual al-
gorithms. Procedures implement the separation of concerns principle because 
they allow you to break down a complex algorithmical problem into simpler sub-
problems.

Today, procedures are still used in systems that are based on procedural pro-
gramming languages such as C and COBOL, as well as in procedural distrib-
uted systems. Many object-oriented systems also allow procedural abstractions 
(such as static methods in Java) because sometimes, these are more suitable for 
structuring a system than objects and classes.

Note that there are many synonyms for “procedure,” such as sub-program, func-
tion, routine, or operation.

The definition of a procedure consists of several parts:
>	 �The procedure name is a designation that can be used to call the procedure 

externally.
>	 �The procedure parameters are a number of values or references that can 

be transferred to the procedure. The procedure definition consists of for-
mal parameters that each have a type and a name. When the procedure is 
called, current values are transferred for these parameters. These values 
must correspond to the types of the parameter definition. We can differen-
tiate between call-by-reference parameters and call-by-value parameters. 
Call-by-reference parameters receive a reference to the data transferred. 
This means that a change to the data in the procedure implicitly causes a 
change in the calling validity range. In contrast, call-by-value parameters 
work with a copy of the data. This means that changes in the procedure 
have no influence on the data in the calling validity range.

>	 �The procedure return type is used to return results data from the procedure 
to its clients.

>	 �The procedure body specifies the algorithm to be executed when the pro-
cedure is called. When this happens, the current parameters specified are 
used (that is, the formal parameters are replaced by the current values). The 
result of the procedure must correspond to the return type.

FigureÂ€6.2-2 illustrates these terms using the example of a procedure definition 
and FigureÂ€6.2-3 shows this procedure being called.

Overview of 
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The first three elements of the procedure definition, that is, name, return type, 
and parameter, form the interface of the procedure, also known as the procedure 
signature. Using the interface as a basis, you can reuse procedures with other 
data or in another context.

Procedures mostly share a common (often global) data area with other proce-

dures. These data areas are often used as a buffer and for communication with 
other procedures. If these data areas are addressed as global structures, proce-
dures quickly become dependent on one another and it becomes difficult to re-
use them in other contexts. Thus the principles of modularization and information 
hiding are quickly violated. This means that if you want to change one procedure, 
you have to change other procedures as well.

Procedural abstractions tend to produce architectures with large collections of 
procedures and related data structures in libraries. The interfaces are given by 
the signatures of the procedures contained in the library. Many procedural pro-

Figure 6.2-2: Example of a procedure definition

Figure 6.2-3: Example of a procedure call
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gramming languages allow you to specify procedural interfaces through so-called 
header files at source code level, and to program against these interface defini-
tions. You can use this means to implement the interface abstraction principles 
from SectionÂ€6.1, but this type of structuring of an architecture and its interfaces 
often makes it more difficult to create modifiable, extensible, and reusable struc-
tures. This is because individual procedures, linked to form a complex system, 
frequently have complex dependencies to other procedures and the data.

However, you can implement the architecture principles from SectionÂ€6.1 well 
in a procedural language. There are a number of successful systems with very 
good procedural architectures. However, there are also many examples of the 
opposite. Conclusion: it takes effort and a systematic design to implement all 
architecture principles well in a procedural programming language.

We can observe that the measures required to do this are recurring—this is de-
scribed in the Object System Layer architecture pattern [Goedicke et al. 2000], 
which shows how you can replicate an object system within a procedural archi-
tecture.

The observation that recurring abstractions lead to good procedural systems has 
led to object orientation, which makes it easier to implement the principles with 
corresponding language-supported abstractions (here, “language-supported” 
means both design languages and programming languages).

6.2.2	�Object Orientation

Object orientation is based on the idea of bundling data processed by a series 
of related procedures together with these procedures. The procedures—called 
operations or methods in object orientation—can process their data exclusively. 
Thus, object orientation tries to implement the information hiding principle and 
the modularity principle directly.

The idea is that objects should primarily map real world concepts. For example, 
an object can represent an author and store the author’s data, such as name, 
address, etc. It then also provides the operations for changing and querying this 
data.

One important aspect of object orientation is classification. As a simple example 
let us take an author who publishes books in a publishing company. Publishing 
companies (and some books) have not just one author but several. Therefore, 
classification makes sense: the class “Author” can thus be seen as an abstrac-
tion for the recurring concern “Author.” In object orientation, a class is defined 
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once and can then be instantiated multiple times. Each object has its own data, 
i.e., the values of the attributes (also known as properties) specified by the class 
for itself exclusively in a separate dataspace and namespace. The object can 
access the operations defined by its class.

A further important concept in this context is object identity. As a set of objects 
from a class can be instantiated, it must be possible to differentiate between the 
elements of this set, i.e., the objects, at runtime. Therefore, every object has a 
unique object ID that identifies it. The object ID can be used to send object mes-
sages, that is, call operations of the object.

FigureÂ€6.2-4 shows a UML class diagram with a class “Author” and two objects 
instantiated from this class in an object diagram. You can see that each of the 
derived objects has its own identity and its own values of the attributes defined 
by the class.

Object-oriented concepts generally also offer a series of relationship abstrac-
tions that you can use to specify the possible interactions between objects more 
closely:
>	 �Association: An object “knows” or “uses” another object that may be an in-

stance of the same or any other class. That is, it saves the object ID of an-
other object in its data and can thus call this object. For example, an author 
object can associate one or more books that the author has worked on.

>	 �Aggregation: An object is part of another object. There are many types of 
“is part of” relationships. Object orientation differentiates between two types 

Figure 6.2-4: Example of a class diagram (top) and a related object diagram 
(bottom)

Relationships
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of aggregation relationships: those that include the lifetime responsibility of 
the aggregating object for the aggregated objects (composition), and those 
that do not do this (aggregation). An example of an aggregation relationship 
is a “publishing company” class that aggregates the published books and 
authors. An example of a composition relationship is a “book” class that ag-
gregates chapters.

>	 �Inheritance: A class X is a specialization of another class Y. This means that 
all instances of X can also use the properties of Y. In this example, a further 
class “Editor” could be required. Like “Author,” it would also have to manage 
a name and an address. The common properties and operations of “Editor” 
and “Author” can then be outsourced to a superclass “Person,” which both 
classes inherit from.

>	 �Interfaces and abstract classes: A class can implement an interface or in-
herit from an abstract class. In object orientation, you use a relationship 
like this to make interfaces explicit and to support the abstraction principles 
introduced in SectionÂ€ 6.1. This is because client classes can rely on the 
interface, but the implementation can change.

The additions to the example are shown in FigureÂ€6.2-5 as a UML class diagram.

The concept of polymorphism in object orientation enables you to use objects 
and operations flexibly despite the fact that they are categorized into types 
through classes.

Figure 6.2-5: Example of a class diagram with some relationships

Polymorphism
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Operations are always assigned to a specific type or class. Polymorphism en-
sures that the relevant operation is executed dependent on the class of a specific 
object. This is illustrated in FigureÂ€6.2-6. Polymorphism enables you to achieve 
“connector compatibility” based on interfaces. How the connector is realized is 
irrelevant for the building blocks.

We can differentiate between:
>	 �Compile time polymorphism (”static” binding): In compile time polymor-

phism, the static type of the object determines the operation called. This 
only works with object concepts that have static typing.

>	 �Runtime polymorphism (”dynamic” or “late” binding): In contrast, runtime 
polymorphism determines the class of the object at runtime and then calls 
the operation on this class. The class found does not have to be identical 
to the static type. This means that the operation executed depends on the 
object connected. It is determined dynamically based on the object type at 
runtime. This is illustrated in FigureÂ€6.2-7.

Figure 6.2-6: “Connector compatibility” through polymorphism

Figure 6.2-7: Runtime polymorphism
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Runtime polymorphism is one of the most important parts of object orientation. 
This is easily explained with the example above. Let us assume that you want to 
access all persons employed at the publishing company. Without polymorphism, 
you would not be able to define this in a general form. Instead, you would have to 
first access the authors, then the editors, etc. Reusability would not be possible 
with such a solution and you would not be able to use the code for further exten-
sions, such as adding other person types, without changing it.

It would therefore be difficult to implement the principles of loose coupling and 
design for change with object-oriented class concepts. Runtime polymorphism 
solves this problem. You can design the architecture based on superclasses and 
interfaces and the runtime system binds the concrete object types dynamically.

From an architecture point of view, object-oriented architectures are not dis-
similar to procedural architectures. However, as a result of the additional ab-
stractions, object orientation offers better support for modularization. Important 
abstraction principles have language support (in both programming and design 
languages). Better information hiding is achieved through the encapsulation of 
data and related operations.

All of this makes it easier to implement the principles from SectionÂ€6.1. However, 
as the architect, your challenge with object orientation is to design a suitable 
object-oriented model: it is not as easy as proposing a simple equation such 
as “object-oriented architectureâ•ƒ=â•ƒgood architecture.” For example, in object-ori-
ented approaches, the important goal of reusability requires much more than 
classes and objects. In fact, object orientation only partly supports reusability. It 
is therefore important to understand object orientation correctly and to apply its 
technologies correctly.

Approaches for overcoming more complex object-oriented architectures are par-
ticularly important. One central approach in this context is the use of object-
oriented frameworks [Johnson and Foote 1988].

A framework is a partially complete software system (or subsystem) that you 
instantiate. It thus defines an architecture for a family of (sub)systems and pro-
vides the fundamental building blocks of this architecture. The framework also 
defines the points where the framework can be adapted (so-called “hot spots” 
[Pree 1995]). Frameworks rely heavily on Inversion of Control (or the Hollywood 
Principle described in SectionÂ€6.1): instead of allowing the application to control 
the control flow, the control of parts of the system is left to the framework and only 
configurable parts are adapted using hot spots.

Object orientation 
and architecture 
principles

Framework
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In object-oriented systems the framework consists of classes that you instantiate 
and abstract classes/interfaces that you make more concrete. You can map more 
specialized classes using inheritance from the classes specified. Late binding 
is particularly important for frameworks. It enables you to define the framework 
based on general types and still, for example, use derived classes through in-
heritance.

A further note: frameworks are not always object-oriented and many object-ori-
ented frameworks also have non-object-oriented parts. However, it is still correct 
to mention frameworks here in the context of object orientation since the term 
“framework” was shaped primarily in this area.

One disadvantage of the many specifications that frameworks make is that they 
restrict the architect’s or developer’s (architectural) freedom. Recently, some 
frameworks, such as Spring, have been trying to offer minimally-invasive solu-
tions, such as Dependency Injection (see also SectionÂ€6.1) to partly alleviate this 
disadvantage.

In addition to frameworks, there is a series of other approaches intended to en-
able you to manage more complex object-oriented architectures. We will discuss 
some of them in this book—for example, object-oriented design patterns in Sec-
tionÂ€6.3. Design patterns are important in the development of frameworks and 
some patterns are frequently used in frameworks, for example, the “Template 
Method” design pattern [Gamma et al. 1995].

There are a number of object-oriented abstractions or abstractions that have 
arisen from object orientation. Later on we will discuss components, meta-ob-
jects, and aspects as examples for principles beyond the pure principles of object 
orientation.

6.2.3	�Component Orientation

Components are supposed to be reusable, self-contained building blocks of an 
architecture. Component orientation arose from the problem that objects imple-
ment the modularity principle, but are often too small to be used as reusable 
units.

Furthermore, we often want more extensive features from a reusable system 
building block: for example, additional non-functional requirements, such as dif-
ferent strategies for the recognition of assets or liabilities, or the concurrent provi-

Minimally-invasive 
frameworks

Further approaches

The “component” 
concept
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sion of multiple identical component instances to increase scalability. However, 
such non-functional requirements are not part of the object-oriented approach.

Last but not least, in practice we often find units of reuse that do not correspond 
to the ideas of object orientation, for example, as a result of the existence of 
legacy systems. Here we find, for example, large procedural libraries that are 
seen as reusable units and thus have to be embedded in practical architectures 
in the design.

The concept of components is a very general concept that tries to solve this and 
similar problems. There are many definitions of components. Here we will use 
the definition of Clemens Szyperski [Szyperski 1998]:

A software component is a unit of composition with contractually specified 
interfaces and explicit context dependencies only. A software component 
can be deployed independently and is subject to composition by third par-
ties.

If we look at this definition more closely, we can see that it is very broad and 
means many things. The term “unit of composition” already states that the main 
purpose of a component is to collaborate and interact with other components. In 
order to do this, a component has one or more interfaces that act as a contract 
between the component and its environment. The interfaces of the component 
clearly define the services that the component provides. The component has 
no implicit dependencies: every element of the architecture that the component 
needs is also specified by the component—in particular, these are the other com-
ponents that a component needs.

A component is self-contained and you can therefore use it independently of a 
special environment. In particular, this means that you do not have to change 
the component to use it, and using it does not entail changes to any other com-
ponents.

An important point that these features of components enable is that a component 
is not only used by the persons that created it but also by third parties.

The definition intentionally covers many different concepts such as subsystems, 
DLLs, JavaBeans, ActiveX controls, JEE components, .NET components, COR-
BA components (CCM), component approaches of scripting languages (e.g., Tcl, 
Python, Perl), and many more. Of course, these approaches each implement the 
component concept to a different extent. In SectionÂ€6.4.10 we will take a closer 
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look at component platforms as they are implemented by EJB, .NET, and CCM—
since this basic architecture is very important in practice.

FigureÂ€6.2-8 shows an example of component modeling with UML. A component 
“course” offers an interface for a component “student” and an interface for a 
component “manager.” Both of the components need the respective interface. 
This is represented by the so-called ball and socket notation. “Manager” also has 
a relationship to the component “office” with the stereotype “uses.” This means 
that the office component is necessary for the manager component to be imple-
mented completely.

Component architectures primarily implement the principle of modularization. 
Components are often more loosely grained and/or more independent from their 
environment (that is, more loosely coupled) than objects. Another principle that 
many component architectures implement more strongly than objects is separa-
tion of concerns. The runtime environment separates technical and functional 
concerns and encapsulates them in different building blocks. The separation of 
these concerns enables you to develop them further independently of one an-
other and you can reuse the technical concerns in different systems.

6.2.4	�Metaprogramming

Many programming languages differentiate between the program as a set of 
executable instructions and the data with which the program operates. Actually, 
the programs themselves are also data. However, the program knows its data, 

Basic concept

Figure 6.2-8: Example of a UML component diagram
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but does not know itself. Metaprogramming changes this paradigm and allows 
the program access to itself.

In metaprogramming, programs are thus treated as data. Programs that use 
other programs (or themselves) as data are generally called metaprograms. Fa-
miliar examples of metaprograms are compilers, virtual machines, or interpreters 
that consider the program to be compiled or executed as data.

To enable a program to access itself, some programming languages provide 
a comfortable programming interface, also called meta-object protocol (MOP) 
[Kiczales et al. 1991]. There is a distinction between read and write access of a 
program to itself.

With read access, also called introspection or reflection, the program can que-
ry type information, information about classes (attributes and operations), and 
inheritance hierarchies, for example. Often, you can also call dynamic meth-
ods and instantiate classes. Java reflection is a well-known example of read 
metaprogramming.

If a program has write access to itself, it can change class definitions, add and 
remove classes, or change class hierarchies, for example. CLOS, Smalltalk, 
Groovy and Tcl are examples of languages that permit write access at runtime. 
This access is also sometimes known as dynamic metaprogramming.

Some languages, such as Lisp or C++, have macro or template mechanisms 
that enable changes to the program using the preprocessor or the compiler. 
Mechanisms of this kind for changing a program at compile time are also par-
tially grouped under the term “static metaprogramming.” Note that some of these 
languages also allow you to modify the definition of language elements.

The idea of metaprogramming is to achieve a higher level of flexibility and control 
in software systems by means of an additional abstraction layer. The language 
instruments available for this are generally very powerful. However, some devel-
opers see them as difficult to understand or complex, in particular because the 
changes as a result of the metaprogramming must have been understood well in 
order to understand the actual program. In other words, metaprogramming can 
bring a lot of benefits but requires a lot of discipline from the developer.

”Self-constructed” meta-architectures are also quite common—meta-architec-
tures that are not supported by a language or runtime environment. For example, 
many analysis patterns use this (see, e.g., [Fowler 1996]), in particular to simu-
late dynamic typing. The reflection pattern [Buschmann et al. 1996] generally 
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shows how you can create a meta-architecture yourself. FigureÂ€6.2-9 shows an 
example of such an architecture.  

6.2.5	�Generative Creation of System Building Blocks

Looking beyond software development, we can recognize that in other engineer-
ing disciplines, processes are always automated when certain recurring tasks 
have to be done in a similar way. The use of generative technologies in software 
development aims to adjust the degree of automation in the creation of software 
to that of other engineering disciplines. Below we will explain the use of genera-
tive technologies using an example, before continuing to discuss in simple terms 
how a generator works. We will also outline different generation technologies 
before briefly looking at the practical uses of generators.

In software development, you often have to implement variants of a software 
system that are different in only a few details. The specific details of the individual 
variants can be functionally and technically motivated. One example of a func-
tionally motivated variant creation is special customer requirements for a product 
that is being created for several customers simultaneously. A typical example of 
a technically motivated variant creation is the realization of an architecture on dif-
ferent component platforms (see SectionÂ€6.7.5). One main aim of software devel-
opment is to achieve the highest possible proportion of reusable system building 
blocks. The variant creation briefly outlined here therefore always focuses on the 
adjustment of dedicated parts of a software to special requirements or specific 
functional or technical constraints. This adjustment can take place dynamically 
at runtime or statically at compile time. Possibilities for a dynamic adjustment 
are, for example, the descriptive adjustment of the system via configuration files 

Figure 6.2-9: Example of a “self-constructed” meta-architecture following the 
reflection pattern

Motivation
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or the concept of (dynamic) metaprogramming presented in SectionÂ€6.2.4. The 
concept of generative creation of system building blocks briefly outlined below 
represents a static solution option.

The aim of the generative creation of system building blocks and generative pro-
gramming [Czarnecki and Eisenecker 2000] is to achieve a degree of automation 
comparable to that in other engineering disciplines in software development. Two 
important steps form the core of the generative approach. Firstly, the focus must 
be shifted from the design of an individual system to the design of a whole family 
of systems, or rather, from the design of an individual application building block 
to a set of similarly structured building blocks. The decisive criterion is the fac-
toring out of the common, schematic parts of the applications of such a system 
family or the similarly structured system building blocks. In a second step, suit-
able technologies must be used to create these schematic parts automatically. 
This includes selecting means for precise, machine-readable specification of the 
system parts to be generated at the highest level of abstraction possible (such as 
the use of models, see SectionÂ€6.6). It also includes using generators that read 
the abstract specifications (input) and create the system building blocks to be 
generated (output) automatically (see FigureÂ€6.2-10).

There are various generation technologies for realizing the generation of system 
building blocks from abstract specifications as described above that we will not 
discuss in detail here. If you are interested and would like further information, 
see [Czarnecki and Eisenecker 2000]. We will briefly explain the most important 
generation technologies below.

The most widespread generation technology is implemented in template-based 
generators. In this context, a template (mostly text-based) consists primarily of 
two parts: one part enables you to access the (also mostly text-based) genera-
tor input. You can use patterns to define when the template is to be applied. The 
second part consists of a series of rules that control the generator output, that is, 

Figure 6.2-10: How a generator works: Generator input, generator, and genera-
tor output
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the manipulation of the template dependent on the generator input. Prominent 
examples are the Java Emitter Templates (JET) [Popma 2004a, b], the Velocity 
Project [Apache 2010b], or the transformation language XSLT (XSL Transforma-
tions) [W3C 2006].

XSLT is part of the Extensible Stylesheet Language (XSL) and is used to trans-
form XML documents. The resulting document generally corresponds to XML 
syntax. However, you can create other text files and even binary files. An XSLT 
template has a pattern based on XPath (XML Path Language) [W3C 1999]. This 
pattern describes the nodes of the syntax tree of the XML source document it 
applies to. The template also has content that determines how the template is to 
create its part of the syntax tree of the XML target document. One application of 
the template-based generation described above is in the creation of PDF docu-
ments using XSL Formatting Objects (XSL-FO) [W3C 2006] and a suitable con-
vertor, for example, the Apache Formatting Objects Processor (FOP) [Apache 
2010a].

The iText project [iText 2010] is an alternative to the generation of PDF docu-
ments described above. It provides a Java class library for creating PDF docu-
ments. The entire structure of the document to be generated can thus be de-
scribed using an API (Application Programming Interface). These generators 
are therefore known as API-based generators. Of course, the use of API-based 
generators is not restricted to the generation of PDF documents—they are also 
used in various other scenarios.

If you shift the concept of the instantiation of classes (see SectionÂ€6.2.2) known 
from object-oriented programming from runtime to compile time, you achieve 
so-called frame technology. Frames are the counterpart of the object-oriented 
concept of the class and act as templates for source code fragments to be gen-
erated. They can be instantiated (any number of times) by the frame processor. 
Variable parts of the frames (slots) are bound to concrete values during instan-
tiation. In a further step, through the use of corresponding instructions to the 
frame processor, you can generate more concrete source code from the frame 
instances. In contrast to the simple template-based generation technology, the 
values that the slots can accept on instantiation are not just character strings but 
can also represent frame instances, which enables the creation of entire hierar-
chies of frame instances. One representative of this generation technology is the 
ANGIE frame processor [DSTG 2010].

If the regular source code contains constructions that create further source code, 
intermediate code, or machine code during compilation, this is known as inline 
generation. One example of this generation technology is instructions to the pre-
processor of a language. Examples of programming languages with a preproces-
sor are C or C++.

API-based generators

Frame technology 
and frame processors
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If the source code contains specifications and information (attributes) that a 
generator can evaluate and that go beyond the pure language elements of the 
programming language, this is known as a generation approach based on code 
attributes. A prominent example is the automatic creation of HTML documents 
using Javadoc annotations. Here, you use code attributes exclusively to gener-
ate additional artefacts such as documentation, deployment descriptors, data-
base interfaces, etc. In contrast to inline generation, the source code itself is not 
changed.

The merging of self-contained, complete, independent source code fragments is 
known as code weaving. To do this you have to define how these different parts 
can be merged. One example of this generation technology is aspect-oriented 
programming (see SectionÂ€6.2.7).

The specification of abstract models as inputs for generators that use them to 
create less abstract building blocks of a system, as mentioned above, is a well-
known concept in information technology. After all, a compiler can also be seen 
as a generator. Any differentiation between the two terms is very subtle and of-
ten not consistent in literature. In this book, a compiler is a special instance of 
a generator. It compiles programs formulated in a high-level language into less 
abstract executable code for a specific runtime environment. In contrast, the out-
put of a generator does not restrict its output to executable code targeted at a 
defined runtime environment. A generator mostly creates system building blocks. 
A compiler takes these building blocks and compiles them into executable code. 
A generator can also create artefacts without the intention of executability, for 
example, configuration files or parts of documentation.

The aim of using generative technologies is to create optimized outputs for a use 
case or problem. There are of course other ways of creating problem-specific or 
use case-specific outputs. The use of generative technologies should be pre-
ferred if, for various reasons, (for example, performance reasons or the more 
difficult maintainability of large configuration files) it is more difficult to use other 
means, such as metaprogramming or descriptive adjustment via configuration 
files. One area where generators are frequently used is in model-driven software 
development, described in SectionÂ€6.2.6.

When using code generation, it is important to estimate the effort required to cre-
ate a generator. Additional abstractions such as templates, aspects, metadata, 
etc. potentially increase the complexity of the architecture of a system: the archi-
tecture can only be understood if these abstractions are understood as well. You 
should also consider this in weighing up the benefits of a generative approach. 
It usually makes sense to use a generator if you can use it in different places.
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6.2.6	�Model-Driven Software Development

Models are used in various ways in software development. SectionÂ€6.6.1 gives 
an overview of the possible usage scenarios and an introduction to the basic 
concepts of modeling. Model-driven software development (MDSD) occurs when 
models are used not only for documentation purposes but are also central ar-
tefacts of a ready-to-run system. In contrast to traditional development, where 
application logic is formulated in a 3GL programming language (such as Java, 
C#, or C++), here application logic is specified in models. These models must 
describe the functionality to be provided by the software as precisely and as 
expressively as possible. This is only possible if the elements of the model are 
defined with semantics that define a specific behavior at runtime or a specific 
software structure uniquely. At the beginning of this section we will give an over-
view of the core concepts and basic terms of the MDSD approach. We will then 
restrict the concepts presented to the Model-Driven Architecture (MDA) of OMG 
and explain the terms function-centric MDSD and architecture-centric MDSD. 
Finally, we will briefly discuss opportunities, goals, and challenges of the MDSD 
approach at the end of the section.

The starting point for a method according to MDSD is always a restricted area 
of knowledge or interest, usually known as a domain or application domain. The 
elements of a modeling language that can be used in any context (domain)—a 
“general purpose” modeling language—would be so abstract and problem-spe-
cific that they would be comparable to a conventional 3GL language. Defining a 
modeling language is only beneficial if model elements can represent the prob-
lem more concisely than 3GL programming languages. This is possible if the 
language is developed for a special domain. Modeling languages like this are 
known as domain-specific languages or DSLs (see SectionÂ€6.6.3).

The model of the system to be developed is at the center of the MDSD approach. 
It is at the application domain level of abstraction and is typically formulated us-
ing a domain-specific language (DSL) (see SectionÂ€6.6.3). The language defines 
the meaning of the model. The DSL, or more specifically its concrete syntax, 
can be either textual or graphical. You can also use tabular or other notations. 
Domain-specific languages and basic concepts and modeling terms are covered 
in detail in SectionÂ€6.6.1. Established DSLs such as Matlab/simulink [Mathworks 
2010] or ASCET [Ascet 2005] can be found, for example, in automotive software 
engineering.

There are basically two different options for achieving an executable application 
based on the model of the system: the direct interpretation of the models or their 
transformation into less abstract, executable target languages. Both options are 
briefly explained and discussed below.
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In the case of interpretation, executable models are interpreted directly by a 
virtual machine without the compile interim step. The most prominent of these 
approaches is the OMG-driven initiative of an executable UML [Raistrick et al. 
2004]. There are also numerous interesting research approaches, for example, 
the Active Charts project [ActiveCharts 2007]. Here, the behavior of active class-
es is modeled (and thus the program flow controlled) through activity diagrams 
interpreted at runtime.

In the case of the usual generative approach in practice, the compilation of the 
model into an executable application is usually achieved using one or more 
transformations. The code generation, i.e., the direct compilation of the model 
into an executable programming language is a special case in this context. From 
a technical point of view, in this case mostly generation templates are used, 
whereas in the case of a multi-level transformation process, mostly specialized 
model transformation technologies are used. For an overview of different ap-
proaches for transforming models, see [Czarnecki and Helsen 2006].

The interpretation of executable models is often criticized with the argument that 
the power of expression of such a modeling language must correspond to that of 
a generic General Purpose Language—it therefore does not focus on a specific 
application domain and thus brings no real added value compared to existing 
3GL languages. If an application were to be specified completely using a model 
interpreted at runtime, this argument would have to be endorsed. However, you 
can use the interpretation of models to great benefit, particularly as a supplement 
to handwritten and generated source code parts and system building blocks. To 
a certain extent, we can compare a discussion of the advantages and disadvan-
tages of both approaches with that of a comparison between static, compiled 
programming languages and dynamic, interpreted scripting languages (see Sec-
tionÂ€6.2.8). One example is the higher flexibility but worse runtime performance 
of interpreted languages.

So far, we have considered the generative approach presented above from the 
view of a procedure “from abstract to concrete” (forward engineering). You use 
transformation rules to compile the models into less abstract, mostly executable 
target languages. However, in practice, a complete generation of a ready-to-
run application based on a domain-specific model is currently still restricted to 
a few application domains. Therefore, in an MDSD project, you should define 
suitable strategies for handling generated and non-generated system parts from 
the very beginning. One possible strategy is the strict separation of generated 
and non-generated system parts. A further solution strategy is the (automated) 
reduction of changes at a low level of abstraction (for example, the source code) 
to the models of the higher levels of abstraction. Round-trip engineering gener-
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ally means being able to make changes to two artefacts at different levels of ab-
straction, whereby the changes are propagated in both directions. The artefacts 
concerned are always synchronized and kept consistent. The extent to which 
round-trip engineering can be practiced usefully in the context of MDSD is in part 
heavily disputed amongst developers. It is not possible to make a general state-
ment here. In the case of template-based generation approaches, you cannot 
automatically reduce the generated source code to the model on the basis of the 
domain semantics no longer visible in the source code (unless you are working 
with source code annotations). However, a synchronization of models at different 
levels of abstraction (for example, PIM and PSM) is definitely desirable. Whether 
you can implement this technically depends on the property of the bidirectionality 
of the transformation rules that transform the models into one another [Czarnecki 
and Helsen 2006].

In addition to the models and model transformations, model-driven development 
has a further central part: the platform. An MDSD platform consists of reusable, 
domain-specific building blocks and frameworks. In the field of enterprise sys-
tems, a good platform for MDSD consists of technical middleware such as COR-
BA [OMG 2008a], Java EE [Oracle 2011c], or .NET [Microsoft 2009]. Building on 
this, the platform also contains a series of specific frameworks that provide the 
functional basic services as part of a specific domain. DSL and platform repre-
sent two sides of the same coin: the platform provides services; the DSL enables 
the simple, efficient, and correct use of these services. The rules for transform-
ing the models into less abstract models or executable target languages contain 
the knowledge about the use of the platform. FigureÂ€6.2-11 shows the typical 
structure of a platform as it is often used in connection with MDSD [Stahl and 
Völter 2006]. The contents of the individual layers vary from domain to domain, 
although the layering is identical everywhere from a practical point of view.

The application domain and the correlated domain-specific language have a key 
position in MDSD. A domain can be functionally or technically motivated. In the 
case of functionally motivated domains, we therefore refer to function-centric 
MDSD. In the context of model-driven software development, the deciding as-
pect of a technically motivated domain is mostly the architecture of the applica-
tion to be created. In the case of architecturally motivated domains, we therefore 
also refer to architecture-centric MDSD, which we will pay special attention to in 
this section.

The platform

Function-centric vs. 
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Following the explanations above, architecture-centric MDSD is therefore a spe-
cialization of MDSD with the following cornerstones:
>	 �The domain is architecturally motivated: for example, “architecture for busi-

ness software” or “component infrastructures for embedded systems.”
>	 �The metamodel of the DSL therefore contains the architecture abstractions.
>	 �There is no demand to create the entire application automatically, only an 

implementation framework that contains the architectural infrastructure 
code (skeleton). The non-generated functional implementation code is im-
plemented manually in the target language.

Note that is also useful to create an architecture metamodel without MDSD be-
cause it forces you to think about the software architecture systematically, which 
makes discovering inconsistencies in particular easier. We will discuss this as-
pect as part of architecture description languages (ADL) in SectionÂ€6.6.4.

Cornerstones of 
architecture-centric 
MDSD

Architecture 
metamodeling

Figure 6.2-11: Typical MDSD platform in the field of enterprise systems. [Stahl 
and Völter 2006]
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Software developers use various terms and acronyms in the context of model-
driven software development. The following terms used in this book are the most 
frequently used terms, but refer to all of the concepts presented in this section: 
model-driven software development (MDSD); model-driven development (MDD); 
model-driven engineering (MDE).

The model-driven architecture (MDA) [OMG 2010c] from OMG is nothing more 
than a specialization of model-driven software development as introduced in this 
section. Whereas a general MDSD approach has an open selection of the model-
ing languages used and makes no restrictions with regard to the transformations 
into ready-to-run applications, the specialization in the form of MDA expresses 
itself in the standardization of the following:
>	 �The modeling languages and modeling architecture to be used, i.e., the 

modeling means to be used for the definition of the domain-specific lan-
guages

>	 �A multi-level process and the artefacts involved to get from the model based 
on the application domain to a ready-to-run application using a series of 
transformations

>	 �The means to be used to describe the required transformation rules

The primary aims are interoperability between the tools used, and from a long-
term perspective, the standardization of modeling languages for popular applica-
tion domains. The following list gives an overview of those concepts introduced 
in this section for which MDA has more concrete views than the general MDSD 
approach [Stahl and Völter 2006].

>	 �DSL: MDA-conform DSLs are languages defined using MOF (meta-object 
facility, see SectionÂ€6.6). In practice, mostly UML profiles are used, i.e., ad-
aptations of UML using stereotypes, tagged values, and constraints. Sec-
tionÂ€6.6.2 explains the extension possibilities of UML in more detail. 

>	 �Modeling architecture: Domain-specific languages in the form of UML pro-
files are embedded in the four-layer modeling architecture of OMG. The me-
ta-object facility forms the metametamodel, that is, the uppermost instance 
of this modeling architecture. SectionÂ€6.6 covers modeling architectures in 
detail. 

>	 �Specification of models: You can use OCL (Object Constraint Language) 
and, since UML 2.0, Action Semantics to make models more precise and 
enrich them semantically or to make their behavior more specialized. Sec-
tionÂ€6.6.1 considers the aspect of static semantics from a theoretical view-
point. 

>	 �Transformations: MDA-conform transformations should build on model 
transformation languages standardized in the Query/Views/Transformation 

Diversity of 
terms in model-
driven software 
development
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MDSD
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(QVT) [OMG 2008b] specification. There is no complete implementation of 
this specification available at this time. 

>	 � PIM and PSM: A core part of MDA is the concept of vertical separation of 
concerns (see also SectionÂ€6.2.7). That is, the specification of aspects of dif-
ferent levels of abstraction through different models. Platform-independent 
aspects are specified as part of PIM (platform independent model). PIM is 
mapped on one or more platform-specific models (PSM). PSM therefore 
represents the reference to a concrete platform.

The reasons for using model-driven software development can be varied. We will 
explain some of them below. The aim of MDA is above all to execute the same 
application logic on different platforms using different transformations. However, 
there are many other reasons for MDSD. For example, in the JEE environment, 
the development of software contains many, often recurring and error-prone 
steps. These can be automated very well using MDSD.

Model-driven software development requires the creation of an infrastructure 
consisting of DSL, modeling tools, generators, platforms, etc. You must also put 
considerable effort into the domain analysis in order to achieve a useful infra-
structure. This effort is generally not worthwhile for a “one-time application”—
it is only worthwhile if you use the infrastructure multiple times. This leads to 
the design of software product lines [Pohl et al. 2005] and software factories 
[Greenfield and Short 2004] through the identification of program families [Par-
nas 1976]. The family members of such a system family are distinguished by the 
fact that they have a number of functional or technical characteristics in common. 
They often use the same technical infrastructure. This means you can reuse 
them, and not just for building blocks and frameworks but also for metamod-
els, generators, transformations, etc. It is precisely these reuse possibilities that 
make MDSD worthwhile despite the additional effort for the creation of an MDSD 
infrastructure.

The closeness of the DSL to the domain makes it much easier to integrate spe-
cialists in the development. The prerequisite for this is that the DSL represents 
the domain well. You cannot achieve a DSL like this overnight—you need well-
founded domain knowledge and experience in the definition of DSLs. An iterative 
approach is appropriate here (see SectionÂ€8.1).

With regard to software architecture, MDSD has some useful „side-effects.“ 
Model transformations map constructions of the source metamodel on elements 
of the target metamodel [Czarnecki and Helsen 2006]. In order to formulate 
this mapping concisely, these two metamodels must contain a limited number 
of defined concepts. It must be possible to use rules to clearly state what has 

PIM and PSM
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to be mapped where. In the case of the transformation to the target platform, 
this means that the platform (or its architecture) must contain a limited number 
of defined concepts. This is one of the most important characteristics of good 
architecture. MDSD thus “forces” a well-defined architecture and supports the 
developers in developing conform to this architecture. Rules for dealing with the 
architecture are coded in the transformations.

We can summarize the major advantages of an MDSD-based process concisely 
using the following key points:
>	 �Greater development efficiency
>	 �Better integration of specialists
>	 �Easier modifiability of software
>	 �Improved (implementation of) software architecture
>	 �Possibility for relatively simple porting of the business logic to other plat-

forms

Supporters of model-driven software development often present its paradigm in 
a highly idealized way. Therefore, to complete this section, we will briefly look at 
existing problems in the context of model-driven software development.

Software configuration management (SCM) is an indispensable part of high qual-
ity software development. This also applies in the context of MDSD. Here you re-
place the source code of an application that is the focus of traditional procedures 
with models to a large extent. You can reproduce source code generated from 
the models at any time and it is less important in the context of SCM. In contrast, 
version control over the different models is essential. You can only use existing 
tools such as CVS or Subversion for versioning, parallel processing of models, 
for using typical repository functions (for example, difference analysis and the 
merging of concurrent versions) to a limited extent. Existing version manage-
ment systems generally operate on the textual representation of the artefacts 
managed and you can thus use them generically. From a structural point of view, 
a text document is a sequence of text lines. The break between this simple struc-
ture and the actual structure of the artefacts managed (for example, the abstract 
syntax tree in the case of source code documents of a programming language) 
is generally reasonable and can usually be balanced out by the mental perfor-
mance of the user. This does not generally apply to models. The break between 
the external presentation of a model in the form of graph-based diagrams and the 
physical representation (for example, in XMI format) is often enormous. There-
fore, you cannot use existing SCM tools to manage models in a professional 
MDSD environment without further effort.

Problems in the 
context of MDSD

Problems with 
existing SCM tools
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Different model types are also considerably different with regard to their struc-
ture, their semantics, and/or their notation. Whereas you can use text-based 
version management systems generically to manage artefacts of different pro-
gramming languages, where management of models is concerned, in principle 
you require dedicated tools for each model type, possibly even for every diagram 
type. You have to adjust the display forms, the difference calculation [Kelter et al. 
2005], and the conflict management during merging [Schmidt et al. 2009] to the 
model type or diagram type. A further problem that often exists in connection with 
languages that are not widespread is tooling (see SectionÂ€6.2.8).

Going beyond the typical services of a configuration management system, you 
need suitable tools and methods to manage and control the evolution of different 
models. Of particular note here is the evolution of domain-specific languages. As 
already discussed, you do not create DSLs overnight—they are mostly the result 
of a high-quality iterative process. The evolution of the DSL is driven by the step-
by-step refinement of the formal domain knowledge or by external requirements 
of an instable and constantly changing environment. This evolution results in 
considerable consequences, such as the adjustment (co-evolution) of the gen-
erators and transformation rules, but in particular the models already created. 
Suitable solutions are still being researched [Van Deursen et al. 2007].

6.2.7	�Aspect Orientation

Aspect orientation [Kiczales et al. 1997] avoids so-called crosscutting concerns 
being spread across the code or the design. These are concerns that are gen-
eral or go across the application logic. Instead, solutions are encapsulated in an 
aspect and thus separated from the system affected by the aspect. An aspect 
represents a concern that can be viewed separate to the actual application logic. 
In the discussion of component orientation, we have already mentioned some of 
these concerns as technical concerns, such as logging, security, activation, or 
lifetime management of components. Separating such aspects distributed over 
the code in naive implementations is the main task of aspect orientation. This 
means that aspect orientation realizes the principle of separation of concerns for 
these crosscutting concerns.

As an example, FigureÂ€6.2-12 shows three components in which the aspects per-
sistence, logging, and synchronization are hard-coded. As shown by the dotted 
lines, these are the crosscutting concerns of the three components.

Diversity of modeling 
languages

Model evolution

The idea of aspect 
orientation
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Aspect orientation avoids the problem of implementing crosscutting concerns 
spread across the code by encapsulating the concern as an aspect. The aspect 
is automatically woven into the system so that dir

ect intervention in the actual programs is not necessary—the developers of the 
system building blocks do not have to consider the aspect at all. This means 
that aspects are “non-invasive” [Filman and Friedman 2000] from the view of the 
program that the aspect is being added to.

Being „non-invasive“ is an important feature of aspect-oriented programming. 
Aspect orientation stems from metaprogramming. Note that some metapro-
gramming constructions can be extremely complex, since they make it difficult 
to understand the system without understanding the metacontext it is currently 
situated in. One example is Lisp macros. You can only understand a given Lisp 
system if you have previously considered the macros for this system. This is 
because the macros can change the meaning of the language elements. Aspect 
orientation avoids such constructions because you can consider the aspects and 
the system relatively independently of one another.

Aspect orientation is realized through systems for aspect-oriented programming 
(AOP). Popular AOP implementations, such as AspectJ [Kiczales et al. 2001], 
Hyper/J [Tarr 2004], JBoss AOP [Burke 2004], or AspectWerkz [Bonér and Vas-
seur 2004] realize this concept in very different ways and there are many AOP 

Figure 6.2-12: Example of crosscutting concerns

Aspect 
orientation and 
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Aspect systems and 
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concepts still being developed. Internally, AOP concepts can be realized by 
metaprogramming, byte code manipulation, or generative programming. These 
realization technologies are explained in more detail in [Zdun 2004].

A well-known and now widespread example of a tool is AspectJ. AspectJ handles 
aspects at the language level of Java. To do this, it defines a series of language 
extensions that implement the above-mentioned concepts. From a purely tech-
nical point of view, the implementation works using source code or byte code 
manipulation. This means that the aspect code is statically “woven” with the core 
program (with a so-called “Aspect Weaver”—in other approaches, an “Aspect 
Composition Framework” is used to compose the aspects). AspectJ thus allows 
you to create Java byte code that contains the aspects, but the aspects and the 
core program are still separated in the source code. FigureÂ€6.2-13 shows this 
process.

All of the above-mentioned approaches have some common concepts that are 
however realized in different ways. Some cases also use different terminology. 
Here we will use the AspectJ terminology:
>	 �Join points define the points in the program where the aspect can intervene 

at runtime.
>	 �Advices define a behavior that the aspect can add to a program before, 

after, or instead of the execution of a join point.

Figure 6.2-13: How an Aspect Weaver or Aspect Composition Framework works

AspectJ
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>	 �Pointcuts represent a number of join points at which a specific advice actu-
ally intervenes. In other words, the pointcut allows the developer to specify 
the connection between join points and advices for a specific application.

>	 �Introductions represent structure changes to a program. For example, you 
can add a new interface or a new method to a class. In AspectJ, introduc-
tions are also denoted as intertype declarations.

The following account class represents a simple example:

public class Account {

 String accountNumber;

 double credit;

 public void withdraw(double amount) {

  credit = credit - amount;

 }

 public void payIn(double amount) {

  credit = credit + amount;

 }

 public void transfer (double amount,

             account targetAccount) {

  credit = credit - amount;  

  targetAccount.payIn(amount);

 }

}

Let us assume you want to extend these classes with a logging functionality at 
every method access in methods of this class. To do this, you would have to add 
a code line for logging to every method. This violates the architecture principle 
separation of concerns because the logging aspect is not encapsulated. You can 
use an aspect to remove this problem.

The example aspect below consists of an advice that starts with before, which 
means that the advice is executed before the join point. The pointcut execution(* 
Account.*(..)) determines all join points considered: this means all method ex-
ecutions on an account with any arguments. Whenever such a join point is reached 
at runtime, the advice (the subsequent block in braces) is executed. The result is 
therefore that the method access of an Account is automatically logged as well.

public aspect AccountLogger { 

 before(): execution(* Account.*(..)) {

  Logger.log(thisJoinPoint,   

    thisJoinPoint.getArgs());

 }

}

Example with 
AspectJ
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6.2.8	�Scripting Languages and Dynamic Languages

Scripting languages are originally programming languages for controlling soft-
ware systems. They typically use a two-language approach. The core system is 
implemented in a programming language other than the scripting language, and 
the scripting language only takes over the composition of the system building 
blocks in a ready-to-run system. This has the advantage that the system user 
can compose the system building blocks flexibly and thus adapt the system to his 
or her needs without having to access the core system code.

Scripting languages are therefore often languages at a higher level of abstraction 
that are interpreted or compiled at runtime. In contrast, the languages composed 
by the scripting languages are typically compiled to native machine code. Typical 
examples are modern scripting languages, such as Perl, Python, Ruby, or Tcl, 
which are themselves implemented in C and typically compose C or C++ building 
blocks. As we can see from this example, scripting languages are usually em-
bedded in the language that they compose. Apart from languages such as C or 
C++, many scripting languages today are also realized on the basis of languages 
that are executed with virtual machines, such as C# or Java.

The name scripting language comes from the fact that scripts were originally 
used in the area of batch jobs or shell scripts of the operating system. However, 
modern scripting languages are complete programming languages and entire 
systems are frequently implemented exclusively in these languages. In many 
cases, scripting languages are also used to initially create a quick prototype and 
then the prototype is migrated step-by-step in the language in which the scripting 
language is embedded.

As a result of their history, in some developer communities, scripting languages 
are seen as “hacker languages” and therefore have a bad image. The frequent 
use of such languages as independent programming languages also makes the 
term “scripting language” appear obsolete. For this reason, many of these lan-
guages position themselves today as dynamic languages. The languages are 
also partly positioned as agile languages to underline their frequent use in the 
context of agile development processes.

Dynamic languages are languages at a high level of abstraction that execute 
many tasks during runtime that other languages execute at compile time. Ex-
amples of these tasks are the parsing of the language, the addition of new code 

Scripting languages

Dynamic languages
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to the language, the extension of existing class definitions, procedure definitions, 
or data definitions, changing the type system, etc. Many dynamic languages are 
typed dynamically, but this is not a prerequisite for dynamic languages. In addi-
tion to the languages named from the scripting language environment, the dy-
namic languages also include in particular languages such as Lisp or Smalltalk 
(and their derivatives).

An important example of a dynamic language means is that variable types do not 
have to be declared—instead, they are determined automatically. For example, 
in the following Tcl code, the variable a initially receives an integer value and is 
bound to this data type internally (i.e., in the interpreter). With the subsequent 
new instruction, a receives a string value and is therefore automatically bound 
to this data type.

set a 1          	;# a is bound to the integer

set a “a b c”  	 ;# a is bound to the string

A further typical example for a dynamic language means is the possibility of using 
data specified in the language as code. We can explain this language means with 
the following Lisp example. In the example, a program fragment is transferred to 
variable a. This program fragment assigns the value 1 to variable b. Later, this 
program fragment is evaluated with the command eval. The consequence is 
that the code in variable a is executed dynamically and b receives the value 1.

setf a ’(setf b 1))

; ...

; some time later

; ...

(eval a)

Closures are a further dynamic language means that originates from the area 
of functional programming languages. They are functions that when called, pre-
serve the context in which they were defined. One example of this language 
means are Ruby blocks that preserve the context of their definition. In the fol-
lowing example, ntimes is transferred to b with the parameter 20. The dynami-
cally transferred value for m is preserved in the block contained in ntimes. 
In contrast, the variable n changes from call to call.

def ntimes(m)
return proc{ |n| m * n }

end
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b=ntimes(20)

b.call(1)  # returns 20

b.call(3)  # returns 60

Through their powerful means for language extension, dynamic languages and 
scripting languages are particularly well suited for implementing domain-specific 
languages. We have already discussed DSLs in SectionÂ€ 6.2.6 in the context 
of model-driven development. SectionÂ€6.6.3 discusses DSLs from the view of 
modeling. In dynamic languages, DSLs are not created externally but as internal 
language extensions of the existing language.

For example, no new parser is implemented for the DSL—the existing parser of 
the dynamic language is (extended and) used. DSLs are thus easy to realize with 
dynamic languages and you can use abstractions of the dynamic language in 
them. For example, it often makes sense to offer loops of the dynamic language 
in the DSL to cover cases where a code fragment is to be executed repeatedly. 
If you implement a new language (as is often the case in model-driven develop-
ment), this reuse is not possible. However, the internal DSL has the disadvan-
tage that language constructions that you do not want to provide to the domain 
experts are available. Preventing this completely requires a lot of effort in many 
dynamic languages.

Of course, you can combine both approaches. This means that you can use a 
DSL based on a dynamic language as a DSL for model-driven development. 
When executed, this type of DSL fills the model for the generator.

The article [Fowler 2005a] gives a more extensive overview of these topics.

Some of the dynamic languages, such as Ruby, Groovy, and Smalltalk are very 
popular in connection with so-called agile frameworks for web applications. Ex-
amples are Ruby on Rails, Grails, and Seaside. These frameworks use the dy-
namic language means amongst other things to accelerate the development of 
web applications and support rapid prototyping. For example, Ruby on Rails is 
primarily a series of DSLs for web applications. It is based on a framework that 
follows the model-view-controller pattern. Just like many other applications of dy-
namic languages, Ruby on Rails also follows the “Convention over Configuration 
Principle” (see SectionÂ€6.1). This means that useful standard assumptions are 
made and only necessary adjustments have to be configured. This generally en-
ables a developer to achieve a first result quickly and this result can be adjusted 
to the separate requirements step-by-step.

DSLs in dynamic 
languages

Dynamic languages 
for web applications
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The possibility of developing at a high level of abstraction in the scripting lan-
guage, DSL, or dynamic language is the central advantage of these approaches. 
One sub-aspect of this advantage is that you can adjust the language to the 
problem at hand and thus use the most suitable language for the problem. If a 
two-language approach is used, you can use the scripting language or dynamic 
language for rapid prototyping.

However, there are also some disadvantages. Firstly, many scripting languages 
or dynamic languages have worse performance than languages such as C, C++, 
C#, or Java. A multi-language approach can have a negative effect, since you 
have to maintain all of the languages you use and in the long term, you need 
experts for all of them. A general problem with languages that are not widespread 
is tooling. For example, for many enterprises it does not make sense to use a 
language that has better performance in theory if there is insufficient support 
through IDEs. In the case of DSLs, you have to calculate in the development 
costs for a suitable tooling.

6.2.8	�Summary 

>	 �Procedural approaches are a classic approach for structuring architectures 
and you use them in particular to break down a complex algorithm into 
reusable individual algorithms.

>	 �Object orientation is based on the idea of bundling data that a series of 
related methods process together with these methods. Today, object ori-
entation is a prevalent architecture concept.

>	 �Component orientation offers components as reusable, self-contained 
building blocks of an architecture.

>	 �Metaprogramming allows a program access to itself. Thus, the idea of 
metaprogramming is to achieve a higher level of flexibility and control in 
software systems by means of an additional abstraction layer.

>	 �The objective of the generative creation of system building blocks is to 
increase the level of automation in the creation of software.

>	 �Model-driven software development occurs when models are used not 
only for documentation purposes but are also central artefacts of a ready-
to-run system.

>	 �Aspect orientation avoids so-called crosscutting concerns being spread 
across the code or the design.

>	 �Scripting languages and dynamic languages are languages at a high level 
of abstraction that execute many tasks during runtime that other languages 
execute at compile time.

Advantages of 
dynamic languages 
and scripting 
languages

Disadvantages of 
dynamic languages 
and scripting 
languages
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6.3	� Architecture Tactics, Styles, and Patterns

The principles discussed in SectionÂ€6.1 explain very generally how to design and 
(further) develop a “good” software architecture. SectionÂ€ 6.2 covers concepts 
that provide more concrete guidelines. However, just like the principles, they 
refer not to specific problems you face in designing an architecture but to the 
general problem of software design. This section looks at architecture tactics, 
styles, and patterns. What these three means have in common is that they de-
scribe principle solutions for specific recurring problems in architecture design. 
They do this in a way that can be applied to a number of cases. Tactics, styles, 
and patterns abstract from design decisions that have already been taken and 
that in similar contexts in the past, have led to successful software architectures. 
They therefore enable you to reuse design decisions.

FigureÂ€6.3-1 illustrates the relationships of architecture tactics, architecture styles, 
and architecture patterns to principles and basic concepts. All three means help 
you to make principles more concrete and implement them, using the basic con-
cepts in implementation. Patterns are the most general of the three means, as 
they are used not only in architecture but also in many other domains. They also 
offer the concept of the pattern language, which combines a number of related 
patterns. From a conceptual point of view, patterns and styles are very similar 
means. To implement architecture tactics, you often use styles and patterns.

Figure 6.3-1: Overview of architecture tactics, styles, and patterns

Architecture tactics, 
styles, and patterns
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6.3.1	�Requirement Patterns

A requirement pattern is a methodological tool that enables you to systemati-
cally develop “good” requirements (see SectionÂ€5.1). Like architecture patterns, 
requirement patterns refer to visibly recurring questions for which generally ap-
plicable solution proposals can be formulated. A requirement pattern can thus 
take the form of a template for concrete requirements of a specific requirements 
category.

A project team will use a performance requirement pattern to define concrete 
requirements with regard to the performance required from a system. If there 
are also requirements for the system documentation, the team will formulate 
these very efficiently based on the corresponding documentation requirement 
pattern. Requirement patterns therefore help you to avoid having to redesign and 
reformulate frequently recurring requirements from scratch time and again. Let 
us assume that you are given the task of recording requirements that should pre-
cisely specify the security and privilege situation for a system. You will firstly look 
for requirement patterns in the security area. Examples are “user registration,” 
“authentication,” or “authorization.” Each of these requirement patterns gives you 
a range of basic considerations, help, verification questions, etc. that you can 
use as a basis for devising your concrete system requirements. This process 
also enables architects with little experience to achieve complete and consistent 
specification aims when developing and verifying requirements.

Requirement patterns…
>	 �…make the process of developing requirements very efficient and less 

prone to error since they offer you, for example, requirements that are 80% 
completely formulated

>	 �…often contain help on ideal solutions and strategies for dealing with the 
given requirement category

>	 �…indicate relationships to other requirement patterns and form pattern lan-
guages

>	 �…increase the consistency across a number of requirements since consis-
tency is already an attribute at the requirement pattern level

From an architecture view, requirement patterns are a very effective means, 
in particular for incorporating the architecturally significant requirements in the 
problem analysis phase systematically. When integrating requirement patterns 
into the corresponding enterprise processes, you can systematically record the 
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frequently underestimated non-functional requirements—the requirements that 
drive the architecture—and implement them in specifications.

With regard to the form for documenting requirement patterns, Withall [Withall 
2007] suggests using the following structure:
>	 �Basic details: Pattern abstract, domain, related patterns, pattern classifica-

tions, and pattern author.
>	 �Applicability: Contexts within which the requirement pattern can be applied 

as well those contexts in which it cannot.
>	 �Discussion: Description of all aspects to consider when writing a require-

ment of this type.
>	 �Content: Main substance of the pattern—the 80%-ready requirement de-

scription.
>	 �Template(s): A pre-defined starting point for writing a requirement of this 

type.
>	 �Example(s): One or more representative requirements using this pattern.
>	 �Extra requirements: List of additional requirements that often follow on from 

a requirement of this type.
>	 �Considerations for development: References for architects on what usual 

responses to requirements of this type look like.
>	 �Considerations for testing: Additional hints for testing this type of require-

ment.

In addition to Withall’s suggested anatomy of requirement pattern descriptions, 
use case descriptions are also a suitable form of documentation, in particular for 
functional requirements.

Although the documentation of functional requirements, for example, in the form 
of use cases, is widespread in practice, quality attributes are rarely recorded sys-
tematically. One suitable means for recording them is quality attribute scenarios 
[Bass et al. 2003], which we will now briefly explain.

Quality attribute scenarios are one possibility for analyzing the requirements as 
the basis for tactics (see SectionÂ€6.3.2). There are of course other means that 
you can use as the basis as well. A quality attribute scenario is an operational re-
quirement with respect to a quality attribute. TableÂ€6.3-1 introduces and explains 
the documentation schema for quality attribute scenarios.

Anatomy of 
requirement pattern 
descriptions 
according to Withall

Use cases 
document functional 
requirement patterns

Quality attribute 
scenarios make 
the documentation 
of non-functional 
requirements 
systematic
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TableÂ€6.3-1: Documentation schema for quality attribute scenarios

Criterion Meaning

Source System or user that generates an event or stimulus.

Stimulus Event to which the system must react.

Artefact That part of the system affected by the event.

Context Describes the context in which the event occurs. E.g.: “Sys-
tem is in normal state.”

Reaction Describes the activity that the stimulus triggers in the system. 
One possible reaction would be the rejection of the incident 
type and the writing of an entry to the operating log.

Reaction measure-
ment

Describes the measurement as well as how the success or 
failure of the reaction is to be measured.

Quality attribute scenarios can be divided into scenario types according to qual-
ity attributes. For example, we can identify the following general scenario types 
[Bass et al. 2003]:
>	 �Availability scenarios
>	 �Modifiability scenarios
>	 �Performance scenarios
>	 �Security scenarios
>	 �Testability scenarios
>	 �Usability scenarios

6.3.2	�Architecture Tactics

Architecture tactics provide guidelines for implementing the most varied quality 
attributes of the system under construction and its architecture. In principle there-
fore, an architecture tactic helps you to get a first idea about a design problem. 
You can then develop this idea further and can also use styles and patterns, for 
example, as further means.

The prerequisite for using architecture tactics is the analysis of quality attributes 
(see SectionÂ€6.3.1).

Now that we have presented the quality attribute scenarios (see SectionÂ€6.3.1) 
as one option for formulating an operational requirement with respect to a quality 
attribute, we can define the term “tactic” more precisely:

An architecture tactic is a design decision that influences the realization of 
the reaction of a quality attribute scenario.

Informal introduction 
to architecture tactics

Starting point: 
Analysis of quality 
attributes

Definition: 
Architecture tactic 
according to Bass 
et al.
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Quality attribute scenarios increase the degree of formalization of requirements 
descriptions. In addition, by measuring their reactions, you can verify the quality 
of the realization of the tactic immediately.

As a supplement to the quality attribute scenario types, Bass et al. [Bass et al. 
2003] offer a collection of general tactics for handling recurring problems for each 
scenario type. Therefore, for each scenario type, you can derive a general tactic 
that is refined by other, more concrete tactics that are alternatives to each other. 
As an example, FigureÂ€6.3-2 gives an overview of modifiability tactics that are 
derived from the modifiability scenarios.

As an architect, you use quality attribute scenarios and corresponding tactics 
to ensure that the non-functional requirements determined are complete. Fur-
thermore, it seems obvious to connect architecturally significant use cases with 
architecturally significant qualities. To do this you should look at every architec-
turally significant use case with regard to the level of quality to which it has been 
realized. The greater the number of different quality features a use case has, the 
greater its architectural character. You can create quality attribute scenarios for 
each combination.

You should then investigate how to realize the quality attribute scenarios within the 
defined constraints. It sometimes becomes clear that this is not possible. In this 
case, you must point out these contradictions and show stakeholders alternatives.

With reference to tactics, a quality attribute scenario is similar to the problem 
description and the context of a pattern. However, unlike the quality attribute 
scenarios, patterns have no analysis technology for analyzing concrete systems. 
Tactics are similar to the solution of a pattern but are generally described in much 

Figure 6.3-2: Example: Modifiability tactics according to [Bass et al. 2003]
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less detail. Like styles, however, tactics also cover only a very special applica-
tion area and are therefore a more specialized architecture means than patterns. 
Tactics refer especially to quality attributes. Patterns also refer to quality attri-
butes of the architecture but also have many other types of forces. For example, 
a pattern description can also contain forces that have no direct reference to ar-
chitecture, such as the implementation of a design decision in the design process 
or strategic management considerations that can influence a design decision.

Therefore, it makes sense to use tactics to gain clarity about a general method 
and thus analyze quality attributes in general. Patterns and styles then offer con-
crete guidelines that enable you to define the design decision in detail. The spe-
cific forces that occur, for example, in a pattern and also encompass quality at-
tributes help you in the design decision. For example, the decision for the change 
tactic “localization of the change” after further analysis of the requirements could 
lead to you introducing a layered architecture as described by the layers pattern 
or the layers style (see SectionÂ€6.4.1 for details).

6.3.3	�Architecture Styles

In this section we will discuss architecture styles. Shaw and Garlan [Shaw and 
Garlan 1996] define an architecture style as a pattern of the structural organiza-
tion of a family of systems. For them, an architecture style consists of the follow-
ing elements:
>	 �A set of building blocks that fulfill specific functions at runtime
>	 �A topological arrangement of these building blocks
>	 �A set of connectors that regulate the communication and coordination be-

tween the building blocks
>	 �A set of semantic restrictions that determine how building blocks and con-

nectors can be connected to one another

Note that both the building blocks and the connectors of a style are mostly real-
ized as independent building blocks of an architecture or a system.

An architecture style primarily reflects the fundamental structure of a software 
system and its properties. You can therefore use a style to categorize architec-
tures. Furthermore, you can use styles to understand the consequences of a 
fundamental architecture and its variants.

It is very difficult to differentiate between architecture styles and architecture pat-
terns—with the exception that they have different forms of description. The form 
of description for patterns covers many aspects that do not appear in the form 
of description for styles, such as the reasons for a design decision. Patterns 
are used not only in architecture but also in other areas, whereas styles are 

Architecture styles 
vs. architecture 
patterns

Architecture styles
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used only in this area. Many of the architecture styles documented by Shaw 
and Garlan have also been documented in the form of architecture patterns. For 
this reason, and because the concept of architecture styles is very similar to the 
concept of patterns, in the field of architecture you can use the terms “styles” and 
“patterns” synonymously.

Shaw and Garlan have cataloged some frequently used architecture styles. 
These are summarized and divided into categories in FigureÂ€6.3-3.

We will now look at the architecture style Pipes and filters as an example. The 
aim of this style is to describe a flexible architecture for the sequential processing 
of dataflows. Pipes and filters has one component type:
>	 �Filters transform flows of input data into flows of output data incrementally.

Figure 6.3-3: Overview of architecture styles

Example of an 
architecture style: 
Pipes and filters
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The style also has a connector type:
>	 �Pipes move data from a filter output to a filter input.

The topological arrangement of these components and connectors is illustrated 
in FigureÂ€6.3-4 with an example. One filter can provide several other filters with 
input data via several pipes. Processing continues (non-deterministically) until 
there is no further pipe connected to the last filter and thus the processing ends.

The style has a series of invariants:
>	 �Filters are independent processing components. External data is only en-

tered into the system via inputs and outputs.
>	 �One filter in a pipes and filters architecture does not know the identity of 

other filters.
>	 �Filters can be combined in any order using pipes.

Typical examples of pipes and filters architectures are:
>	 �UNIX Pipes, which connect UNIX programs with one another via interpro-

cess communication.
>	 �Compilers, which perform processing step-by-step and forward the result 

after each processing step respectively. Typical steps are lexical analysis, 
parsing, etc.

The advantage of a pipes and filters architecture is that it is very flexible with 
regard to the combination of pipes and filters. You can reuse filter components 
easily. It is easy to let pipes and filters work in parallel, for example, in separate 
processes or threads, since they are very independent of one another. This can 
increase the efficiency of the entire system.

However, there are also some possible disadvantages. The forwarding of the 
status between filters can involve a high effort and resource consumption. If data 
has to be transformed to be placed in the pipe, then unnecessary bidirectional 
transformations may occur. Debugging or the behavior in the case of errors can 
be more difficult than with other architectures because errors or debugging infor-
mation has to be sent through the pipes.

In the POSA book [Buschmann et al. 1996], the pipes and filters style is also 
documented as an architecture pattern.

Figure 6.3-4: Pipes and filters architecture
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6.3.4	�Architecture Patterns

Over the last years, patterns have become an important instrument for software 
developers and architects, particularly in the area of object orientation. In par-
ticular, the Gang of Four book (GoF) [Gamma et al. 1995], which is concerned 
with design patterns, and the POSA books [Buschmann et al. 1996; Schmidt et 
al. 2000], which deal with software architecture patterns, have made important 
contributions here. However, patterns also occur in many other areas of software 
development: for example, patterns for the analysis of domains [Fowler 1996], 
patterns for domain-driven design [Evans 2004], patterns for software organi-
zation [Coplien and Harrison 2004], or pedagogical patterns [Fricke and Völter 
2000].

The original pattern definition by Christopher Alexander—who originally intro-
duced the pattern concept in classic architecture—states [Alexander 1977]:

A pattern is a three-part rule which expresses the relationship between a 
certain context, a problem, and a solution.

However, Alexander goes beyond this simple definition in many points. We will 
address these points in the next paragraphs. The somewhat longer definition by 
Coplien [Coplien 2004] offers a plausible summary of these points related to a 
software system:

Each pattern is a three-part rule that expresses the relationship between a 
certain context, a certain system of forces which occurs repeatedly in that 
context, and a certain software configuration which allows these forces to 
resolve themselves.

One very important point is that patterns are, in principle, solutions for recurring 
problems. This means that they have to be formulated so generally that a pat-
tern can be applied not only for a specific problem but for a series of concrete 
problems. On the other hand, patterns are also a practical approach. This means 
that after reading the pattern, the reader should have a clear solution guideline 
for solving a concrete problem that fits the problem in the pattern description. 
However, the general solution described in the pattern must be adjusted to the 
concrete design situation.

As the architect you should know the central design and architecture patterns 
as these represent the typically recurring solutions to the recurring problems 
in software architecture in general. You should also have a good knowledge of 
the design patterns and architecture patterns of the concrete technical and non-
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Definition: Pattern 
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technical domains in which you are active. This is important as it enables you to 
solve problems of the same kind without having to “reinvent the wheel.” Patterns 
are therefore a means of passing on established knowledge.

Patterns thus give architects and developers a common vocabulary to enable 
them to name recurring architecture structures. Once you have a deep knowl-
edge of the central patterns in a domain, you will quickly see that these patterns 
frequently recur in given architectures. Therefore, patterns are also an important 
instrument for documenting and discussing software architectures. They enable 
you to recognize and name the common features in recurring architectural struc-
tures.

It is important to note that patterns do not describe new ideas but represent 
proven solutions. This results in the general requirement that a software pattern 
must always have at least three known uses in real practical systems. Such 
known uses are often portrayed as part of the pattern to illustrate the practical 
benefit of the pattern to the reader.

An important part of every pattern is a system of forces. These forces are part 
of the problem solved by the pattern. They primarily build up pressure that is re-
lieved by the solution. The solution must therefore establish a balance between 
the forces. This is illustrated in FigureÂ€ 6.3-5. Of course, the pattern can only 
describe this balance in general terms. As the architect it is your task to work out 
the balance of the forces for a concrete solution in a design situation following the 
pattern. In the field of software architecture, the quality attributes (see ChapterÂ€5) 
are often important forces for a solution. FigureÂ€6.3-5 shows how the different 
forces, which are all typical quality attributes, influence a solution.

Figure 6.3-5: Quality attributes as forces that influence a solution

Known uses

Forces
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Not every solution offers a good balance between all the given forces in a prob-
lem situation. For example, a very efficient solution can drive the costs up or 
have a negative effect on resource consumption (as a result of the long develop-
ment times for this special solution). In such cases, there may also be several 
patterns that solve a particular problem in different ways. For example, the Lay-
ers pattern [Buschmann et al. 1996] (see SectionÂ€6.4.1) and the Pipes and filters 
pattern [Buschmann et al. 1996] (see SectionÂ€6.4.2) can be alternatives for a 
design that divides responsibilities. Pipes and filters is a pattern with a positive 
effect on flexibility if you have to map relatively linear call sequences. Layers are 
more suitable, for example, when you have to compose complex structures of 
building blocks in an architecture in a way that they can be understood.

In a pattern, the consequences of using the pattern are specified explicitly so that 
the reader can weigh up whether using it is viable and which positive and nega-
tive effects to expect.

A pattern should explicitly describe how the solution breaks down the forces and 
why the solution breaks down the forces in this specific way. Different pattern 
descriptions do this in different ways. In particular, however, the following are 
frequently specified: a detailed solution with examples, descriptions of the par-
ticipants of the pattern, descriptions of the interaction of the parts of the pattern, 
variants of the pattern, and the relationship of the pattern to other patterns. You 
often find parts of the detailed solution that are very concrete, for example, in the 
form of UML diagrams or source code fragments. These illustrate the pattern. 
They should never be confused with the pattern itself, which is more general than 
all of these solution variants.

In the context of software architecture, both design patterns and architecture 
patterns are very important. What they have in common is that they both gener-
ally present structural, technical solutions. You can therefore distinguish them 
from patterns that cover functional aspects (see, for example, [Fowler 1996] and 
[Evans 2004]). Patterns for functional aspects are often the basis for the domain-
driven design of an analysis model. Design patterns and architecture patterns 
are thus frequently used in the implementation of the analysis model. In general, 
design patterns describe more specific design solutions that have a local effect, 
whereas architecture patterns tend to describe system structures that have an 
effect across the entire system. However, it is difficult to differentiate between 
these two categories of patterns.

For example, the pattern interpreter [Gamma et al. 1995] was originally pre-
sented as a design pattern and you can implement it using just a few classes. 
However, you can also use the same pattern as the basis for more complex 
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architectures, for example, by using the interpreter as the architecture of an inter-
preted programming language (see also: interpreter architecture style in [Shaw 
and Garlan 1996]).

Typical design patterns, like the patterns described in [Gamma et al. 1995], are 
often used as part of the solution of an architecture pattern. However, this is also 
not a general rule and depends on the concrete architecture and how the pattern 
is viewed.

You can see that the differentiation between design pattern and architecture pat-
tern depends on the view of the person considering it and the purpose for which 
it is being considered.

Now we will consider two patterns as examples: the proxy design pattern and the 
broker architecture pattern. We will first outline the proxy pattern [Gamma et al. 
1995, Buschmann et al. 1996].

Name: Proxy
Context: A client must access the operations of an instance of a 

specific class.
Problem: Direct access to the operations of the class is not pos-

sible, difficult, or inappropriate. For example, direct access 
may not be secure or efficient, or you are in a distributed 
environment. Here it may not be desirable for the physi-
cal network address for the direct access to a distributed 
object to be hard-coded in the client. However, without this 
address, direct access via the network is not possible.

Forces: Access to an instance of a specific class should be 
runtime-efficient and secure. This cannot be achieved 
with a direct call.
Access to an instance of a specific class should be 
transparent from the view of the client. In particular, it 
should not be necessary to change the usual call be-
havior or usual call syntax of the client.
Client developers should know and assess possible ef-
fects of a call. Complete transparency of the call be-
havior from the view of the client can make this difficult.

Solution: The client communicates with a placeholder, the proxy, 
instead of with an instance of the actual class. The 
proxy offers the same interface as the instances of the 
class that are to be called. Internally, the proxy forwards 
the call to an instance of this class. However, it can also 
implement additional functionalities, such as authenti-
cation or the triggering of a distributed call.

Differentiation 
depends on the angle 
of consideration

Example: Proxy 
design pattern
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Consequences: A proxy offers the advantage that it decouples clients 
from the implementing instance. In a distributed envi-
ronment, for example, this means that the client must 
not have the server network address hard-coded. The 
proxy thus increases the flexibility of the application be-
cause it enables a client to also influence the behavior 
of the “service” called by changing the proxy object. A 
proxy can increase the runtime efficiency, for example, 
by portraying the results in a cache and then delivering 
these instead of a renewed calculation.
However, a proxy is also an additional indirection, i.e., at 
least one additional call. This means that the proxy slightly 
reduces the runtime efficiency. You should be cautious 
about using complex proxy variants because a complex 
logic in a proxy can produce a considerable effort, for ex-
ample, with reference to resource consumption.

The basic structure of a proxy is usually implemented with just a few classes, as 
shown in FigureÂ€6.3-6. The figure shows an example of a solution scheme—part 
of the pattern description—and not an example for the application of a proxy pat-
tern for a concrete problem.

Here you can see a proxy and a target class. Both implement the same inter-
face. The proxy delegates calls to the target class using an association relation-
ship. It can thus act as a placeholder for instances of the target class. The client 
therefore only has a reference to the interface as it should not know whether it 
is dealing with the proxy as a placeholder or with an instance of the target class.

A proxy is a typical design pattern. However, proxies can also be an important 
part of more complex architectures. For example, proxies are often part of the 

Figure 6.3-6: An example of a solution scheme for a proxy

Proxy example
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broker pattern [Buschmann et al. 1996; Völter et al. 2004]. We will describe this 
pattern as an example of an architecture pattern.

An important note on the examples in pattern descriptions: the class diagrams 
(and other examples) in the pattern description are pure concept diagrams with 
concept classes that you do not have to or cannot implement one-to-one in “real” 
building blocks (e.g., classes) in the solution of a concrete problem. The ex-
amples therefore show the solution in principle, but a concrete implementation of 
the proxy pattern can have more than just a few classes or can even have fewer 
classes than described in the pattern.

Name: Broker
Context: You want to design a distributed object system. This 

means that objects are to be made available in a server 
process and they are to be accessed by distributed cli-
ents via the network.

Problem: A distributed system presents many challenges that do not 
occur in a local system that runs in a single process. An 
important challenge in this area is the communication via 
non-permitted networks—in contrast to local calls, a net-
work can fail without the client or server failing. Furthermore, 
heterogeneous components must be brought into a coher-
ent architecture and the distributed resources must be used 
efficiently. If developers from distributed applications had to 
master all of these challenges, they would probably forget 
the actual task in hand: developing a distributed application 
that solves the problems of the domain well.

Forces: Communication via a network is more complex than local 
calls: connections have to be established, call parame-
ters have to be sent via the network, and network-specific 
errors, such as network failure, must be dealt with.
You want to avoid spreading aspects of distributed pro-
gramming across the code of a distributed application.
The network address and other parameters of the server 
should not be hard-coded in the client application. This is 
important to allow a distributed service to be realized by 
other servers without having to change the client.

Example diagrams in 
patterns

Example: Broker 
architecture pattern
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Solution: The outsourcing of all communication tasks to a bro-
ker separates the communication tasks of a distributed 
system from its application logic. The broker hides and 
controls the communication between the objects or com-
ponents of the distributed system. On the client side, the 
broker establishes the distributed calls and then forwards 
them to the server. On the server side, it receives the 
request and establishes a call from it, which it then ex-
ecutes on a server object. In the same way the broker 
returns the response to the client. The broker takes over 
all details of the distributed communication, such as es-
tablishing the connection, marshaling the message (con-
verting the data sent into the message format), etc., and 
hides these details from the client and the distributed ob-
ject as far as possible.

Consequences: A broker has the advantage that it abstracts from and sim-
plifies distributed communication. The broker infrastruc-
ture can be reused by different distributed applications. 
Since the broker is responsible for finding the server or 
the distributed object via a symbolic name or an ID, it al-
lows transparency of the location at which the distributed 
object is really situated in the network.
A broker architecture typically has slightly worse perfor-
mance and consumes more resources than a well-de-
signed, distributed architecture in which static, distributed 
objects are connected directly to the network. A broker 
has a certain complexity that must be understood. For 
very simple applications, for example, in the area of em-
bedded systems, more simple architectures may bring 
the same benefits as a broker architecture but are easier 
to maintain and to understand. For most other distributed 
systems, such as in the enterprise domain, the use of a 
broker is recommended.

FigureÂ€6.3-7 gives an overview of the broker architecture (for more details, see 
[Buschmann et al. 1996; Völter et al. 2004]). You can see how a client commu-
nicates with a distributed object “virtually,” but instead of addressing the object 
directly, directs the request to the broker.

Broker: Example 
architecture
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The broker contains a requestor, which, using a marshaller, converts the request 
into a form that can be transferred by the network. On the server side, again us-
ing a marshaller, the message is converted into a call and used by an invoker to 
call the distributed object. What you can clearly see here is that the broker pat-
tern is made up of many other patterns that resolve the different individual tasks 
of the broker.

The proxy pattern described above is also often used in a broker. In order for the 
client to be able to access the interface of the distributed object, it requires a lo-
cal placeholder that implements the same interface and forwards the call to the 
requestor. The client proxy [Völter et al. 2004], a variant of the proxy pattern for 
distributed object systems, takes over this task.

6.3.5	�Pattern Languages

An individual pattern describes a solution to an individually recurring problem. 
However, in most use cases, the situation is more complex. This applies in clas-
sic architecture as well as in software architecture and other fields of application 
of patterns. Designing a software architecture typically involves several design 
problems that frequently occur together and are strongly related. For example, a 
pattern can be part of the solution of another pattern, or the context of a pattern 
is a situation in which another pattern was applied. Therefore, patterns are often 
described together, rather than isolated from one another. We can differentiate 
between the following ways of describing related patterns:
>	 �Related patterns: In the simplest form, these relationships occur in individual 

patterns if these patterns are related to one or more other patterns. For ex-

Proxy use in a broker

Complex pattern 
relationships

Figure 6.3-7: Example architecture of a broker for distributed objects
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ample, a pattern can describe which other patterns are alternatives or which 
other patterns are often applied in the same context.

>	 �Composite patterns: A stronger type of pattern relationship is represented 
by composite patterns. These consist of one or more other patterns and add 
an increment to these individual solutions. An example of a composite pat-
tern is the broker pattern described above. It is composed of a number of 
individual patterns in the area of design of distributed object systems.

>	 �Pattern systems: Some authors describe pattern systems that, for example, 
are applied in the same domain or fulfill another classification criterion. One 
example is the POSA book [Buschmann et al. 1996], which describes a 
system of patterns in the field of software architecture.

>	 �Pattern languages: In his original pattern definition, Alexander [Alexander 
1977] strives for deeper relationships between the patterns than simple pat-
tern systems. These deeper pattern relationships are described in pattern 
languages. We will look at these in more detail in the rest of this section.

A pattern language is a collection of semantically related patterns that offer solu-
tion principles for problems in a specific context. In particular, pattern languages 
focus on the relationships of the patterns in the language. In concrete terms, 
this means that the pattern descriptions are highly integrated—for example, by 
the fact that the context of one pattern takes up another pattern and that special 
value is placed on the description of the pattern interactions.

Furthermore, Alexander [Alexander 1977] promotes a “generative” nature of a 
pattern language. The idea is that when you apply a pattern, a new context, in 
which other patterns of the pattern language can be applied, arises “automati-
cally.” Thus a better architecture arises step-by-step. Every incremental step in 
the further development leads to an improvement in the quality of the entire ar-
chitecture. An example for the “generative” nature of a pattern language is given 
later in this section.

The domain-specific nature of a pattern language is very important for its ap-
plication. In collections of individual patterns, it is often very difficult to determine 
when to use which pattern. A pattern language makes this consideration easier, 
since it presents the patterns in a coherent form. After every pattern application, 
the pattern description immediately shows which other patterns can be applied 
next, which patterns are alternatives to the given pattern, etc. These relationships 
are known as pattern sequences. The main idea behind this form of description 
is that the number of possible combinations of patterns in a pattern language is 
enormous, but the number of combinations that work is low.

FigureÂ€6.3-8 shows an example of an extract from a pattern language that op-
erates in the domain “development of distributed object systems” [Völter et al. 
2004]. This means that this pattern language primarily describes the structure of 
OO-RPC middleware, such as CORBA, web service frameworks, .NET remoting, 

Pattern languages
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Java RMI, and many others. The illustration shows a section of this pattern lan-
guage that is concerned with the basic patterns for realizing a broker architecture.

Using this example we can also explain the “generative” nature of the pattern 
language in more detail. If, for example, you begin an architecture design with 
the provision of a remote object, then you create a context in which you need 
an invoker to call remote objects. The invoker must be addressed from the client 
and must receive messages that both communication partners understand. This 
is the context in which you can apply the marshaller and requestor. On the other 
hand, both the client and the server must be connected to the network and oper-
ating system resources must be used efficiently, which leads to the use of client 
and server request handlers. In many cases the client should be able to refer to 
the interface of the remote object. This is described by the interface description 
and supported on the client side with a client proxy. Finally, the distributed errors 
must be handled and forwarded between the client and server, which leads to the 
use of the remoting error pattern.

From this example you can see that the patterns in this pattern language are 
closely related and their step-by-step integration leads to the realization of a 
complex broker architecture.

The basic architecture of a typical broker therefore comprises a series of pat-
terns. Firstly, the client proxy provides the interface of the remote object, as men-
tioned in the example above. The server developers can deliver this client proxy 
to the clients.

Figure 6.3-8: Overview of an extract of a pattern language for distributed object 
systems

Description of the 
pattern language 
example
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As an alternative that is often realized in the area of distributed systems, the 
client proxy can also be created on the client side. In order to realize this alter-
native, the client must know what the interface of the remote object is like—oth-
erwise it is not possible to create the correct type of client proxy. The pattern 
interface description provides this information by describing the public interface 
of a remote object.

The requestor is responsible for creating the message and triggering the sending 
of the message. It must also wait for the result for the client. The client can also use 
the requestor directly, but in doing so it loses the call transparency that the client 
proxy pattern offers. Therefore, if you require call transparency, you should use a 
client proxy. The client proxy then uses the requestor internally. The client request 
handler is responsible for transferring the message via the network efficiently.

On the server side, the server request handler receives the message. It “listens” 
at the network port and waits for incoming messages. When messages come in, 
the server request handler forwards them to an invoker. The invoker transforms 
the message into a call again and thus calls the remote object.

The requestor and invoker use a marshaller for marshalling and unmarshalling 
the message automatically.

Errors that cannot occur in local calls can occur in the network and during the 
distributed call, for example, network failure. These special errors are forwarded 
by remoting errors that can be created anywhere in the call chain.

This brief outline should be sufficient to represent an extract from the architecture 
pattern language for distributed object systems. Actually, the pattern language 
describes a number of other patterns that occur in every broker architecture.

As the brief example clearly shows, the patterns in a pattern language normally 
describe roles rather than building blocks of a system. In some of the patterns 
mentioned above, some systems will contain exactly one building block that im-
plements this pattern. However, the patterns are often distributed across several 
classes or an implementing class implements several patterns.

Despite this it is still easy to find the above-mentioned patterns in almost every 
OO-RPC middleware such as CORBA, web service frameworks, .NET remoting, 
Java RMI, etc. It is also easy to recognize the sequences and alternatives, i.e., 
how the patterns are related.

These are all decisive advantages in the application of pattern languages com-
pared to the use of individual, isolated patterns. Pattern languages are thus be-
coming increasingly dominant in architecture pattern literature.

The role of the 
pattern in pattern 
languages
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6.3.6	�Summary

>	 �Requirement patterns describe when to use the pattern and how to write 
requirements based on it.

>	 �A tactic is a design decision that influences the realization of the reaction 
of a quality attribute scenario.

>	 �The prerequisite for using tactics is the analysis of the quality attributes. A 
suitable means for this is quality attribute scenarios.

>	 �Quality attribute scenarios can be divided into scenario types according to 
quality attributes. Examples are: availability scenarios, changeability sce-
narios, performance scenarios, etc.

>	 �An architecture style is a pattern of a structural organization of a family of 
systems.

>	 �Architecture styles and architecture patterns are very similar concepts.
>	 �A pattern is a three-part rule that expresses the relationship between a 

certain context, a certain system of forces which occurs repeatedly in that 
context, and a certain software configuration which allows these forces to 
resolve themselves.

>	 �Patterns express the considerations behind a design decision and the con-
sequences of such a decision.

>	 �In the context of software architecture, both design patterns and architec-
ture patterns are very important.

>	 �A pattern language is a collection of patterns that solves the problems in a 
specific domain and/or in a specific context.

>	 �In particular, pattern languages focus on the relationships of the patterns 
in the language.

6.4	� Basic Architectures

This section covers some fundamental basic architectures that are used in many 
systems. To structure architecture, these basic architectures use the various ar-
chitecture means discussed in the previous sections. They therefore represent 
more concrete architecture means that you can use to structure entire systems. 
We will first discuss simple basic architectures based on individual patterns and 
styles, such as layered architecture. For more details about the basic patterns 
and styles covered in this section, see [Avgeriou and Zdun 2005]. We will then 
discuss “larger” basic architectures, such as service-oriented architectures or 
security architectures.

The “worst” form of architecture structure is often a monolith. In a monolith, the 
complete architecture specified during the design process is summarized in one 
single system building block. This type of architecture can only rarely implement 
the architecture principles from SectionÂ€6.1 well. For example, since you cannot 
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consider different building blocks separately in a monolithic architecture struc-
ture, you cannot achieve separation of concerns. The same applies to loose 
coupling: in a monolith no building blocks are coupled, and therefore you can-
not suitably implement loose coupling. Below we will explain some prototypical 
solutions that use a different architecture structure to the monolith. For suitable 
use cases, the basic architectures covered below implement the architecture 
principles better than a monolith.

Legacy systems that have often grown over decades are a typical example of 
monoliths. Here the business logic is often hard-coded and difficult to find be-
cause it is spread over the code and not documented. Typical symptoms of leg-
acy systems as monoliths are:
>	 �It is difficult to adjust the business logic to new requirements.
>	 �Tests for new releases require a lot of effort and are long and drawn out.
>	 �Small changes involve a large effort and endanger the stability of the entire 

system.
>	 �Employees adapt their work processes to the behavior of the software and 

not vice versa.
>	 �Only a few long-standing employees really know the software because the 

documentation is insufficient.

One fundamental question you have to consider in deciding against a monolithic 
architecture is centralization versus decentralization. At many levels of the archi-
tecture design you have to ask yourself: Is it better to bundle a concern in one 
system building block (centralization) or to spread it over multiple system building 
blocks (decentralization)? The monolith represents an extreme form of central-
ization: everything is bundled in one single system building block. However, you 
generally have to weigh up centralization and decentralization and come to a 
compromise.

One clear advantage of decentralization is the often lower hardware costs. If you 
decentralize across several computers, then you can usually access more cost-
effective hardware than if you bundle the software building blocks on a computer 
with great performance but which is therefore very expensive (the opposite can 
also be true). Decentralized architectures are also more flexible with regard to 
change and can cope better when individual building blocks fail, since usually 
the same building blocks are present redundantly. It is sometimes also simpler to 
structure the architecture based on tasks, since you can model the system land-
scape structurally following the responsibilities within the enterprise (or system 
environment).

In contrast, the advantages of centralization lie where the focus is on central 
tasks. For example, it is considerably easier to ensure the following in one central 
system: high data and IT security, logging, checks, monitoring, simple delivery of 
new software building blocks, etc. As a result, there are advantages with regard 
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to the costs for personal supervision. Therefore, typical central tasks are: man-
agement of larger databases, network control, control of transaction processing, 
continual checking of hardware and software in the entire network, and delivery 
and provision of software building blocks. Further advantages of centralization 
are in some cases lower hardware costs (for example, when applications can be 
pooled on hardware) and lower costs for hardware energy consumption.

One important influencing factor in weighing up between centralization and de-
centralization is the use case in question. For example, if you are thinking of 
centralizing an enterprise-wide application system, then you will have to involve 
more sub-areas, systems, and stakeholders in the decision than if the centraliza-
tion or decentralization relates only to one project or one department. However, 
as part of a consideration of an entire system at a physical and logical level, 
centralization and decentralization do not exclude each other—you can often use 
them in combination to take advantage of synergy effects. For example, you can 
implement an LDAP service on a distributed basis from a physical point of view, 
but logically a central directory service is provided.

The brief discussion of basic architectures below can only give an overview of 
important examples in current practice—the information should not be consid-
ered exhaustive. There are many other suitable basic architectures. FigureÂ€6.4-1 
gives an overview of the basic architectures covered.

Figure 6.4-1: Overview of basic architectures

Overview of basic 
architectures
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6.4.1	�Layered Architectures

One fundamental question about structuring architectures that affects both func-
tional and non-functional requirements is how to divide a system into groups of 
similar functions or responsibilities. The Layers pattern [Buschmann et al. 1996] 
and the Layers style [Shaw and Garlan 1996] describe a typical solution.

You apply layers in situations where a group of building blocks is dependent 
on another group of building blocks in order to provide their function, and this 
group is in turn dependent on another group of building blocks, etc. The Layers 
pattern states that every layer groups a number of building blocks and the layer 
above this group provides services through interfaces. In every layer the building 
blocks of that layer can interact freely. Between two layers, communication may 
only take place via the specified interfaces. Generally speaking, you should not 
bridge layers. This means that layer “n” only calls the services of layer “n-1” but 
not those of “n-2.”

The main aims of creating layers are to increase the modifiability of the system, 
to design the system so that it is portable, and/or to increase the reusability of 
the layers.

FigureÂ€6.4-2 shows a schematic example of a layered architecture.

Figure 6.4-2: Example of a layered architecture. [Avgeriou and Zdun 2005]

Layers pattern
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6.4.2	�Dataflow Architectures

Another fundamental type of structuring is along the dataflows of an architecture. 
This type of architecture is particularly useful if you can split a complex task into 
a series of simple tasks and then map it as a combination of independent calls. It 
is difficult to achieve this with a monolithic building block because it would quickly 
become overcomplicated and thus modifiability and reusability would suffer.

One solution is the Batch sequential style [Shaw and Garlan 1996]. Here you 
split a task into partial steps and then implement them as separate and indepen-
dent building blocks. Every partial step runs to completion and then calls the next 
step in a sequence of steps. In every step the data is used for calculations and 
the results data is forwarded to the next step as a whole.

Batch sequential is the basis for simple dataflow architectures. Sometimes there 
is an additional requirement for streams of data to be provided. Different clients 
also require different combinations of processing steps. In this case it makes 
sense to use the Pipes and filters pattern [Buschmann et al. 1996] or the Pipes 
and filters style [Shaw and Garlan 1996]. Here too, you split a task into sequential 
partial steps and implement them in separate building blocks (the filters). Filters 
have a number of input and output interfaces that you can use to combine the fil-
ters flexibly using so-called pipes. Each pipe realizes a datastream between two 
filters. Filters consume and deliver data incrementally. This means that different 
filters can potentially work on tasks in parallel. Pipes act as data buffers between 
filters. For more details on Pipes and filters, see SectionÂ€6.3.

One example of a Pipes and filters architecture is the Java Servlet filter. These 
filters allow you to access the requests and responses when you are accessing a 
web resource. You can configure several filters flexibly in a chain for one specific 
web resource. Examples for the application of Servlet filters are logging, encryp-
tion and decryption, compression and decompression, and transformation (e.g., 
from XML using XSLT).

6.4.3	�Repositories

The main task of repositories is to enable different building blocks to access 
data simultaneously. The Shared repository style [Shaw and Garlan 1996] is a 
fundamental example of this type of structure. This fundamental structure is also 
described in the Repository pattern [Evans 2004].

In a shared repository architecture, a system building block provides a central 
data storage unit. The shared repository provides means for accessing and 
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changing the data, for example, an API or a query language. It must ensure ef-
ficient access to the data for clients, be scalable, and guarantee the consistency 
of the data. For example, the repository can offer suitable locking functions or 
transaction mechanisms to exclude the data being changed by two clients simul-
taneously. Other functions, such as security functions, can also be offered.

FigureÂ€6.4-3 shows a schematic example of a repository architecture.

A simple example of a repository architecture is a metadata repository for an enter-
prise application integration (EAI) solution. EAI solutions often require data transfor-
mations that are performed by transformation tools (also referred to as mapping). 
The different distributed building blocks of the EAI architecture require uniform and 
consistent information about the data sources and data destinations of a transfor-
mation, the transformation rules, and the dataflow rules. It must also be possible to 
change this information and these rules concurrently. You can solve this by using a 
central metadata repository that can be accessed by all building blocks of the EAI 
architecture and that provides services, such as locking for concurrent changes.

6.4.4	�Client/Server Architecture

The client/server model, also documented as an architecture style (see [Shaw 
and Garlan 1996]), has a significant importance in modern software architecture. 
Here the user operates application programs (clients) on his or her computer 
and these programs access the resources of the server. The resources are man-
aged, shared, and made available centrally. As you can see in FigureÂ€6.4-4, the 
client/server model is based on a simple request-response schema. This means 
that files no longer have to be transferred as a whole—requests can be placed 
specifically. For example, the server often accesses a (relational) database and 
executes a query specified in the client’s request.

Figure 6.4-3: Example of a repository architecture. [Avgeriou and Zdun 2005]
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Note that you also have to consider and make decisions about centralization ver-
sus decentralization in a “larger” or “smaller” context. For example, if the system 
building blocks are not individual computers but whole networks, there are simi-
lar considerations and mostly a mix of centralized and decentralized elements. 
FigureÂ€ 6.4-5 shows an example of a centralized computer center (with some 
central servers Z1 … Z3) that is connected to several decentralized branches 
and that offers centralized server services to these branches. Each branch has 
one or more centralized servers. In turn, the individual computer connections 
realize the client/server model.

6.4.5	�n-Tier Architecture

A tier is a means for structuring the distribution of software building blocks on 
hardware building blocks. A tier contains cohesive system building blocks (soft-
ware and hardware building blocks) that are connected via a network.The classic 
client/server model, for example, is based on a two-tier architecture: the user 
interface is usually located on the user’s PC and the database management is on 
a more powerful computer that serves several clients. The calculations and the 
process control are thus split between the client and the server. For example, the 
database server provides stored procedures and database triggers for execut-
ing calculations on the database. Of course, there are also two-tier architectures 

Figure 6.4-5: Example of a computer network
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(and general n-tier architectures) that do not use a database, but we use this 
typical example here for illustration.

Two-tier architectures work well up to a certain number of clients working si-
multaneously on the database. However, with a very high number of users, the 
performance decreases quickly. There is also a dependency to the manufacturer 
of the database: since the database procedures are proprietary and dependent 
on the manufacturer, changing the database usually involves considerable effort 
and costs.

Three-tier architectures resolve this problem by introducing an intermediate tier 
between the client and the database server. The intermediate tier takes over tasks 
such as queuing, scheduling of requests, handling requests according to prior-
ity, and so on. Central tasks of the application logic are also implemented here. 
There are a number of standard solutions that realize this tier, such as transaction 
processing monitors, messaging servers, application servers, and others. The ad-
ditional tier improves performance in the case of a larger number of clients and 
increases the flexibility. FigureÂ€6.4-6 shows a typical three-tier architecture.

Two-tier architectures and three-tier architectures are special cases of n-tier ar-
chitectures. Sometimes architectures have more than two or three tiers. This is 
often because of high loads, security requirements, reliability requirements, or 
similar requirements for specific quality attributes of the architecture. For ex-
ample, you can create the server in the intermediate tier redundantly to achieve 
higher performance, reliability, or load balancing. To do this, you have to insert an 
additional instance that takes over the distribution of requests to the redundant 
architecture, thus creating a four-tier architecture. You can also create the data-

Figure 6.4-6: Three-tier architecture
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base redundantly on the data tier. You use this type of architecture in particular 
if a distributed architecture has particularly high requirements for load figures, 
availability, or reliability. Another possible use case for n-tier architectures is that 
an entire application should run on different, dedicated hardware building blocks. 
For further discussion of this topic, see [Dyson and Longshaw 2004], where this 
type of architecture is covered in detail.

Connecting multiple three-tier architectures also leads to n-tier architectures with 
higher numbers. A server is often a three-tier architecture client of another server 
in another three-tier architecture. From the point of view of the original client, the 
entire architecture is then a four-tier architecture.

6.4.6	�Rich Client versus Thin Client

A central question in the design of a client/server architecture is how to split up 
the functionality between the client and the server. This question is known as the 
decision between a rich client and a thin client.

The mainframe model outlined above represents an extreme form of the thin 
client: the terminal as client has virtually no functionality. All calculations are per-
formed on the mainframe.

The introduction of PCs and the file sharing concept led to a strong emphasis on 
the rich client: almost all calculations were performed on the client.

The client/server model and n-tier architectures are compromises between these 
two extremes. The first client/server architectures usually had a rich client written 
specifically for the respective application. The rich client takes over some func-
tionality, but part of the functionality is always located on the server.

There are a number of criteria for comparing rich clients and thin clients:
>	 �A thin client generally places a greater load on the server resources as more 

calculations have to be performed on the server.
>	 �The network load is a further important criterion, as is the related client per-

formance. With every network request you have to wait considerably longer 
than for a local request. Therefore, the type and quantity of data to be trans-
ferred is important in deciding which model is more suitable with regard to 
network load and performance.

>	 �With thin clients, you are generally more dependent on the network operabil-
ity. In contrast, with rich clients it is usually easier to provide a local working 
environment. Therefore, rich clients are often more suitable for laptops for 
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field employees, for example. However, the disadvantage here is that under 
some circumstances, the data has to be replicated and synchronized.

>	 �Last but not least, client maintenance and delivery are important topics: cen-
tral software building blocks can be replaced on the server to which the de-
velopers have direct access. In contrast, to update the client, you may have 
to access a number of workplace computers, which means a considerably 
higher effort.

As a result of the last point in particular, the success of the World Wide Web 
meant that in many cases, the web browser was used as a thin client solution. 
An application server contains the complete application logic and the users use 
only a standard browser to access the applications. This has the advantage that 
you have very few clients to maintain. The disadvantage of this solution is that 
you are restricted to the functionality of the browser—in particular the restricted 
user interface—and therefore have to send every request via the network. This 
means that the work is difficult without network access. One consequence is also 
that the performance of the application tends to be low.

A more recent trend is the return to rich clients because the thin client technolo-
gies based on browsers do not satisfy all requirements. An important driving fac-
tor here is the so-called rich client platforms, such as Eclipse [Eclipse 2010a]. 
They offer automatic delivery and updates of clients in a standard environment 
but are equally as good in the user environment of a classic desktop application.

Web 2.0 or Ajax represent a middle course between the two alternatives. Ajax is 
the option of performing asynchronous queries with Javascript and thus reload-
ing and changing content without the user having to switch web page. Parts of 
the tasks are performed in the browser, but the scripts that implement these 
tasks are provided by the server. The term “Web 2.0” refers less to specific tech-
nologies than to specific types of web applications in which users create and 
edit content themselves, for example, with Ajax or similar technologies. These 
web applications are often social software that allows users to network with one 
another.

6.4.7	�Peer-To-Peer Architecture

Client/server is an architecture style that is a specialization of the general explicit 
invocation style [Shaw and Garlan 1996]. This means that the client communi-
cates with the server via direct, explicit calls and receives responses to these 
calls from the server. One alternative is the peer-to-peer style [Shaw and Garlan 
1996], which also specializes explicit invocation but focuses on direct communi-
cation between clients rather than communication via a central service.
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Peer-to-peer (P2P) uses a series of equal peers. In the pure P2P architecture 
structure there is no central server. Every peer can offer and consume services in 
the network. The entire status of the system is spread over the peers. Internally, 
P2P systems are realized partly with standard middleware, but the user of a P2P 
system is not aware of this.

In the P2P architecture, you can add or remove a service at any time. Clients 
must therefore find out which services are currently available before using a 
service.

Not all P2P systems are “pure” P2P systems. Most systems are hybrids and use 
central servers for certain services, for example, as points of access into the 
network.

6.4.8	�Publish/Subscribe Architecture

Publish/subscribe is a pattern [Buschmann et al. 1996] or style [Shaw and Garlan 
1996] and represents an alternative to client/server and peer-to-peer. In contrast 
to client/server and peer-to-peer, publish/subscribe represents a form of the im-
plicit invocation style [Shaw and Garlan 1996] rather than being based on the 
explicit invocation style [Shaw and Garlan 1996]. This means that calls are not 
sent directly between the communication participants; events are forwarded via 
an intermediary.

Publish/subscribe is dedicated to the problem that a series of clients has to be in-
formed about runtime events. These events have a different nature to the direct, 
explicit invocations found in client/server and peer-to-peer: sometimes a series 
of clients must be informed actively about an event; in other cases, only a spe-
cific client is interested in the event. In contrast to the explicit invocation style, the 
producer and consumer of an event must be decoupled, for example, to ensure 
separate modifiability or so that a defined time can pass between the occurrence 
and the handling of the event.

Publish/subscribe enables the event consumer to register for specific event 
types. When such an event takes place, the event producer informs all regis-
tered consumers—for example, using a publish/subscribe system. The publish/
subscribe system therefore decouples the producer and consumer of events.

6.4.9	�Middleware

Once you have decided on one of the above-mentioned architecture alterna-
tives (client/server, peer-to-peer, or publish/subscribe), you have to decide on the 
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type of connection for the system building blocks. The most important architec-
ture structures in this area are different middleware-based architectures. Below 
we will discuss communication middleware—referred to here as “middleware.” 
(There are other forms of middleware, but we will not look at these in detail here.)

Middleware is a platform that offers applications services for all aspects of the 
distribution, such as distributed calls, efficient access to the network, transac-
tions, and much more. The book Distributed Systems by Tanenbaum and van 
Steen [Tanenbaum and van Steen 2003] offers a general introduction to the topic 
“distributed systems.” The information presented below is based on the intro-
duction in the book Remoting Patterns [Völter et al. 2004], which introduces a 
pattern language for OO-RPC middleware systems that builds on the broker pat-
tern [Buschmann et al. 1996] used as an example above (see SectionÂ€6.3). As 
a pattern, broker generally represents the architectural basis for most common 
middleware systems.

Distributed systems are used in various areas of application. Many of the largest 
and most complex systems used today are distributed systems. Examples are 
Internet systems, telecommunications networks, business-to-business applica-
tions (B2B), international finance transactions, embedded systems, and many 
more.

In addition to distributed problems, such as the collaboration of spatially dis-
tributed partners via the network, there are many other reasons for selecting 
distributed architectures. For example, the performance and scalability of a dis-
tributed system can be considerably better than with a non-distributed system. 
A distributed system can therefore manage scenarios that involve system loads 
so high that an individual computer can no longer manage them cost-effectively. 
Alternatively, the error tolerance of the system can increase as a result of distri-
bution: many error tolerance procedures are based on the physical redundancy 
of hardware units such as computers or processors—which in turn entails a dis-
tributed architecture.

However, compared to non-distributed systems, you have a series of “new” chal-
lenges to overcome if you give a system a distributed architecture. Important 
challenges are:
>	 �Network latency: A distributed call requires considerably more time than a 

local call.
>	 �Predictability: As a result of the latency and the possible failure of the net-

work, it is also much more difficult to predict call times. Therefore, in distrib-
uted architectures that require real time behavior, it is a major challenge to 
guarantee this.
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>	 �Concurrency: In contrast to single-processor systems, distributed systems 
have real concurrency. Therefore, you have to consider resulting problems 
such as non-determinism and deadlocks as early as the planning stage for 
a distributed architecture.

>	 �Scalability: As a result of distribution, in many systems it is more difficult to 
predict when clients access the system and how many. Therefore, in dis-
tributed systems, you will tend to have to deal more with potential high load 
situations and ensure even more that the entire system is scalable.

>	 �Partial system failure: Since several hardware and software elements are 
used together in a distributed system, you may face situations in which parts 
of the system fail but other parts continue to work. In these cases, the parts 
of the system that are still working can try to reconfigure the system such 
that it continues to work despite the partial system failure—this is, however, 
no trivial matter (see [Tanenbaum and van Steen 2003]).

You could develop distributed systems based directly on the network APIs of the 
operating system—for example, with the TCP/IP protocols. However, the devel-
oper would then have to deal with all of the challenges detailed above himself. 
He would then probably lose sight of his actual task very quickly—to develop a 
functional, distributed system. Furthermore, good solutions for the above-men-
tioned challenges would probably not be reused.

A communication middleware dedicates itself to these problems. Its task is to 
take over the communication tasks transparently for the developer and to hide 
the complexity and heterogeneity of the underlying platform.

FigureÂ€6.4-7 shows the structure of a middleware. The middleware is an addi-
tional software tier that sits between the distributed application and the APIs of 
the operating system. Clients and server applications usually must not bypass 
this tier to execute services of lower tiers directly—thus the middleware achieves 
transparency of the distribution tasks from the application view.

However, the middleware only makes the distribution as transparent as possible. 
Developers and architects must always bear the distribution aspect in mind be-
cause the application must often handle, for example, errors caused by a partial 
system failure of the network or a server directly. In the example “server failure,” 
the client could contact a different server or simply forward an error message. 
The application logic of the client determines what should be done and there-
fore the middleware cannot take over this task transparently. It is the task of 
the middleware to return qualified error messages to the client or to enable the 
server to do this.
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A number of distribution styles are used in middleware systems today. From an 
historical point of view, the distributed calculation is based on simple file trans-
fer (see the file sharing discussion above). This is now out of date for many of 
today’s systems with high system loads since it leads to high latency and high 
resource usage. Most modern middleware systems are based on one or more of 
the following distribution styles [Völter et al. 2004]:
>	 �Remote procedure call (RPC) systems use the known and for many develop-

ers familiar procedure abstraction in a distributed environment. A distributed 
procedure call can be executed very similarly to a local procedure call and 
the RPC middleware forwards it transparently from the client to the server. 
Several RPC systems support object-oriented abstractions—so-called OO-
RPC systems. [Völter et al. 2004] covers the OO-RPC system in detail.

>	 �Messaging systems send messages asynchronously (or also synchronously 
as an option) from a sender to one or more recipient systems. There are 
various message types, such as requests, responses, error messages, etc. 

Figure 6.4-7: Schematic representation of a middleware architecture

Distribution styles
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They are stored in message queues temporarily until they can be sent or 
consumed. Messaging systems can thus guarantee the delivery of a mes-
sage even if system failures occur from time to time. The topic of messaging 
systems is covered extensively in [Hohpe and Woolf 2003].

>	 �Shared repositories provide different clients with a common dataspace on a 
distributed basis. The clients have read and write access to this dataspace.

>	 �Streaming systems allow continuous data exchange via a datastream—in 
contrast to the discrete exchange of data in the three styles mentioned so 
far.

6.4.10	� Component Platforms

We introduced component architectures as a concept in SectionÂ€6.2.3.  Here we 
will discuss component platforms in the enterprise environment as an example of 
an important basic architecture. [Völter et al. 2002] contains a pattern language 
on this topic, and the information presented below is loosely based on this. Note 
however, that all other component approaches named in SectionÂ€6.2.3 are also 
very important in practice and belong to your software architect’s “toolbox.”

Typical examples for component platforms in the enterprise environment are 
JEE, CCM, and .NET. These component platforms are based on the separa-
tion of technical concerns and functional concerns for an information system. 

Figure 6.4-8: Component container architecture
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Examples of technical concerns in the enterprise environment are distribution, 
security, persistence, transactions, concurrency, and resource management. In 
other environments, such as embedded systems, other technical concerns may 
be important. The component container—the central building block of the com-
ponent platform—takes over the technical concerns automatically. This architec-
ture is reflected in FigureÂ€6.4-8.

The functional requirements a component-based system must satisfy are real-
ized through the components. In the component approaches mentioned, there 
is a differentiation between the different types of components that fulfill diverse 
tasks and have different lifetimes (the container also manages these lifetimes):
>	 �Entity components represent persistent data. The container manages the 

persistence automatically. Entity components usually exist from the start of 
the application to its termination.

>	 �Session components can hold a status during a user session. This means 
that their lifetime generally corresponds to a user session.

>	 �Service components provide services that can be processed within a single 
call. Their lifetime thus corresponds to exactly one call.

In contrast to object-oriented approaches, component-based systems use ex-
clusively black box reuse based on the component interface. This means that 
the interaction between the components is realized by well-defined component 
interfaces and delegation to other components, without being dependent on 
concrete implementations of these components. You can therefore develop the 
implementations of the components further independently of one another and 
the implementations can support different versions of a component in parallel.

Component platforms usually support a number of middleware systems for dis-
tributed communication, such as CORBA, RMI, or .NET. Many component plat-
forms are integrated in existing application servers.

In many situations, not all instances of a component can be held actively in the 
memory of the server since this would lead to resource problems. The container 
can assign any number of logical instances sequentially to a physical instance 
(so-called pooling of resources). It can also remove component instances tem-
porarily not required from the memory and buffer them in a database. This is 
known as passivation. The component instances are reactivated automatically 
when they are required again. In order for this to work, the container must be able 
to control the lifecycle of the component instances. The components therefore 
provide so-called lifecycle operations, such as activate, destroy, passivate, etc.

For a deeper understanding of component platforms, we recommend the book 
Server Component Patterns [Völter et al. 2002].

Types of components
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6.4.11	� Service-Oriented Architectures

Service-oriented architectures (SOAs) are a basic architecture that represents 
the technically functional interfaces of software building blocks as reusable, dis-
tributed, loosely coupled, and standardized accessible services (see [Zdun et al. 
2006] and [Zdun and Hendrich 2006]).

FigureÂ€6.4-9 provides an overview of the key concepts of service-oriented archi-
tectures.

In an SOA, services are generally distinguished by the following properties:
>	 �Services generally have a lower level of detail than component interfaces 

and are structured more strongly than components with regard to their busi-
ness relevance (see also component architectures in SectionÂ€6.4.10).

>	 �Services communicate in a technology-independent and standardized way 
with synchronous or asynchronous messages.

>	 �Services often permit anonymous use. That is, you do not know who is using 
the service. The service works as if it did not know its client. In other words: 
the client and the service are loosely coupled.

Figure 6.4-9: Concept overview for service-oriented architectures
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>	 �To a certain degree, services are self-descriptive. This feature is frequently 
realized using metadata whose properties are determined using a lookup 
service.

>	 �Services are ideally idempotent, without status, and completed transaction-
ally. Idempotent generally describes operations that always lead to the same 
results, irrespective of how often they are repeated with the same data. 
Expressed mathematically: anâ•ƒ=â•ƒa, nâ•ƒ>â•ƒ0.

>	 �Services consist of the service interface and the service implementation. 
The service interface has the character of a contract (see also design by 
contract in SectionÂ€6.1.6) and connects service consumers to service pro-
viders (see the architecture principle of loose coupling in SectionÂ€6.1.1). The 
service implementation is not part of the contract and is interchangeable 
when in keeping with interface commitments.

FigureÂ€ 6.4-10 shows the structural key abstractions of an SOA. The process 
topological view used there underlines the intermediate character that helps the 
SOA systems to achieve loose coupling. The service consumer does not ask 
for a specific service from the service provider. The bus and repository building 
blocks are responsible for the communication performance when the service is 
called and for reporting the results, even though you could realize a simple SOA 
without this. The repository building block registers the service provider and sup-
ports complex searches for this service provider. The bus building block supports 
the reporting of messages and thus switches between all other building blocks 
of an SOA. Using the SOA approach enables you to detach non-functional as-
pects from the service consumer and provider. Examples of such non-functional 
aspects are security, logging, transformation of messages, and content-based 
forwarding of messages. The bus and repository thus offer a configurable ac-
cess to the above-mentioned aspects. This enables you to implement very el-
egant fundamental architecture principles, for example, design for change as in 
SectionÂ€6.1.3, or separation of concerns as in SectionÂ€6.1.4. You can therefore 
separate the security requirement from the technical building blocks and make it 
accessible on the bus and repository basis (in a way that it can be configured).

Figure 6.4-10: Key abstractions of a service-oriented architecture
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An SOA focuses mainly on the level of the technical architecture of an application 
(see also SectionÂ€3.2). However, the SOA approach suggests the use of interme-
diary middleware for the bus and repository building blocks. Various terms are 
used today for middleware that is specially tailored to the requirements of SOA 
solutions. A more product-independent term is service-oriented infrastructure 
(SOI). Another term used very often, with almost the same meaning, is enterprise 
service bus (ESB).

With reference to the key abstractions of an SOA depicted in FigureÂ€6.4-10, an 
SOI is restricted to the bus and repository building blocks. In the meantime how-
ever, a correspondingly enhanced SOI includes further building blocks, such as 
a process engine. From a technical point of view, you can realize a basic SOA 
based on component platforms such as CORBA, RMI, or .NET, which possess 
all rudimentary bus and repository building blocks. However, special service-
oriented infrastructures offer functions that exceed the capabilities of the afore-
mentioned component platforms:
>	 �The creation of new, more complex services through orchestration. Com-

plex services arise based on simpler services, whereby the execution of the 
complex service is by means of an interpreter or conductor. An important 
standard for the orchestration of web services is the Business Process Ex-
ecution Language (BPEL). This capability is realized by process engines.

>	 �Support from Internet standards such as web services, SOAP, and XML. 
You use these standards to implement remote service calls with regard to 
interface abstraction, call log, and format description.

>	 �Embedding and support from enterprise application integration (EAI).
>	 �Injection points for aspects such as security, content-based message for-

warding, or message filtering. See also SectionÂ€6.2.7.
>	 �Building blocks for implementing SOA governance, service management, 

and service versioning.
>	 �Business activity monitoring (BAM) building blocks to support continual pro-

cess analysis and optimization.

Enterprise service bus (ESB) is a product category that has developed in the in-
dustry for broad areas of service-oriented infrastructures. Although other product 
categories can be classified in the environment of service-oriented infrastruc-
tures, a considerable proportion of the integration requirements of larger systems 
are implemented using ESBs. The spectrum of capabilities of ESBs covers:
>	 �A results-driven and message-oriented processing model that is based on 

document standards such as XML and supports synchronous and asynchro-
nous communication. An ESB is therefore also the basis of an EDA (event-
driven architecture) .

SOA compared to SOI

Enterprise service 
bus (ESB)
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>	 �Content-based message forwarding and filter functions that ensure that 
messages always reach the correct recipient. See also Message-Oriented 
Middleware in SectionÂ€6.7.1.3.

>	 �Transformation functionalities that support changing the format and content 
of messages.

>	 �A number of interfaces for common middleware systems, databases, and 
standard applications. ESBs frequently offer converters or adapters that 
support mapping between standard interfaces.

An ESB is managed on a distributed basis and is not based on a central control. 
However, the ESBs of different manufacturers are often realized in very different 
ways technically. The basis of the common ESBs today is mostly coupled to the 
product history of the respective manufacturer. However, the product approach-
es known today can be assigned to one of the following categories:
>	 �Application-server based ESBs
>	 �ESBs based on EAI frameworks or message-oriented middleware (see 

Message-Oriented Middleware in SectionÂ€6.7.1.3)
>	 �ESBs based on XML appliances. An XML appliance is a separate comput-

er system that can exchange XML-based messages with other systems, 
whereby these messages are forwarded in particular content-based, se-
curely, and efficiently.

Beyond their implementation, concrete ESBs can be very different with regard 
to their functionality and their operating characteristics (e.g., economic usabil-
ity or operational security). For manufacturers that already have an extensive 
middleware range, ESB-type products complete the corresponding middleware 
packages.

The horizontal structure of an SOA discussed up to this point is primarily a runtime 
consideration of the SOA architecture approach. Service-oriented infrastructures 
are important in this consideration. However, SOAs also have a deeper vertical 
structure. An SOA frequently covers several tiers. As the example in FigureÂ€6.4-
11 shows, these levels can be different with regard to granularity, freedom from 
functional contexts, number of relationships to other services, or also with regard 
to the average frequency of change of the respective services.

ESB implementations

Vertical levels of an 
SOA
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Non-functional requirements placed on an SOA or individual services, such as 
reusability, must therefore be assessed based on the level. This makes it easier 
to reuse business-independent basic services in different business contexts. For 
a business process service, however, reusability will be much more difficult to 
achieve.

The SOA approach is increasingly replacing the “application” concept in favor of 
the “service” concept. This is primarily because services should be much more 
finely grained and should be able to exist independently of the business context. 
This is good and desired and increases the possibility of reusing a corresponding 
service more easily. However, at the same time, this demand increases the com-
plexity of an SOA. A service that was previously only used and only existed as 
part of an individual application should now be capable of being used outside the 
boundaries of this application. Applications that accommodated such services 
previously, however, were never just soulless function containers—they always 
restricted the room for interpretation to which embedded services related as well. 
A business function could relate simple questions such as “What is a product?” 
or “What does the concept ‘customer’ mean to me?” to the restricted room for 
interpretation in which it existed. Note here that it is difficult to achieve integration 
at a high semantic level, which means that you have to integrate heterogeneous 
“customer concepts” later. If, in the SOA sense, you start to place such a busi-

Figure 6.4-11: Vertical structure of an SOA
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ness function alone and remove it from the context of closed applications, the 
room for interpretation expands significantly—in many cases on a large scale. 
For example, it stretches to the whole department, the area, the enterprise, or 
a partner network under consideration. If terms such as “customer” or “product” 
previously had to be explained in the context of individual applications, you now 
have to do this for the extended scope. Since a cross-system understanding of 
basic concepts is the responsibility of enterprise architecture, the success of a 
comprehensive SOA initiative created is directly linked to the enterprise architec-
ture topic (see also Enterprise Architecture in SectionÂ€3.2).

Up to this point we have investigated the topology and non-functional aspects 
of SOA. One of the greatest challenges for you as an architect, however, is the 
relevant specialist or functional decomposition of the problem. For example, you 
must decide how to split the entire solution space of processes and applications 
into relevant part solutions or services. The optimization goal that you will often 
follow in your decomposition approach is to be able to react to future changes 
in the specification easily and with little effort (see also design for change in 
SectionÂ€6.1.3). However, you could also ask yourself how you should design a 
specific service interface to achieve high reusability for this service. You share 
the responsibility for answering such questions appropriately to the problem with 
the experts from the relevant business domains. The quality of any given SOA 
design, more than with other basic architectures, depends on the functional ap-
proach, understanding, and experience of the experts involved.

We can generally identify the following procedures for modeling the solution 
space:
>	 �Top-down approach: In the top-down approach, you start with given pro-

cesses and identify the functional software building blocks necessary to re-
alize these processes.

>	 �Bottom-up approach: In the bottom-up approach, you start with the number 
of software building blocks already available and try to map these into new 
application contexts.

>	 �Finally, the meet-in-the-middle approach connects the top-down approach 
to the bottom-up approach. From the top down you determine the func-
tional requirements. From the bottom up you take stock of existing services. 
Based on this information, you can determine missing functions and plan 
their realization. This procedure is explained in detail in the Business-Driven 
Service pattern [Zdun and Hendrich 2006].

A typical situation in which an SOA can be used meaningfully is the fusion of 
two enterprises. These situations frequently involve different infrastructures, pro-
gramming languages, component platforms, middleware systems, etc. In the en-
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terprises concerned, a number of business processes have often already been 
defined and implemented. Although the heterogeneity will tend to increase at 
infrastructure level, the business processes of the enterprises concerned will 
usually overlap considerably. All of these software building blocks have to some-
how be integrated, sorted out, or replaced. Such heterogeneous situations at 
technical and functional levels are not restricted to enterprise fusions: there are 
many examples in which this form of functional overlapping or infrastructural 
heterogeneity can already be observed between individual departments of one 
and the same enterprise. As long as the departments have nothing to do with one 
another, this is not a serious problem. However, if the business fields, business 
constraints, or legal constraints suddenly change and a tight networking of the 
departments mentioned is regarded as critical for business, then this situation is 
hardly different to a situation with fusions.

Further examples in which SOAs can be used meaningfully:
>	 �Development of a mashup based on web services to realize a requirement 

in an enterprise quickly.
>	 �Reuse of a currency conversion service implemented in an enterprise. This 

scenario reduces redundancies as well as implementation, test, and main-
tenance costs.

>	 �Making the functionality of a legacy system (e.g., AS 400) accessible via 
web services to protect investments made.

>	 �Realization of the functional connection to a business partner via an agreed 
service interface. This approach allows the enforcement of rules directly on 
the call path and thus outside of the business solutions involved in the en-
terprise.

6.4.12	� Security Architectures

Before considering the topic of security architectures in more depth, it is im-
portant to understand that security is a so-called crosscutting concern. From 
the view of a software architect [Schumacher et al. 2005], this means that the 
security architecture of an application is not completely absorbed in the software 
architecture itself. The security aspect is in fact a high-grade distributed aspect. 
It is realized across several system building blocks that cannot be directly at-
tributed to the software architecture of applications under consideration. Some 
examples of such system building blocks are firewalls, public key infrastructures 
(PKI), reverse proxies, web access management solutions (WAM), and directory 
services.

The term “security architecture” thus refers to:
>	 �An application to be protected or made secure.

Security as a 
distributed aspect
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>	 �Further system building blocks that do not belong to the application under 
consideration and are therefore assigned to the underlying security infra-
structure.

FigureÂ€6.4-12 provides an overview of the key concepts in the area of security 
architectures.

Before you can design a comprehensive security architecture for an application, 
certain prerequisites must be fulfilled. The quality and completeness with which 
you can design a security architecture at application level depends heavily on the 
scope and extent to which the following prerequisites are met:
>	 �Existence of security systems at all network levels, including operating sys-

tems
>	 �Systems for user and identity management
>	 �Systems for authentication
>	 �Systems for authorization management
>	 �Systems for privacy
>	 �Systems for non-repudiation
>	 �Systems for operation management and threat detection

Figure 6.4-12: Concept overview for security architectures
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In addition to the primary technical prerequisites, there are further organizational 
constraints that a security architecture must refer to:
>	 �Information and protection class assignment in the enterprise. These as-

signments are made to formulate the protection requirement for informa-
tion, data, and documents categorically and be able to enforce it in the IT 
systems.

>	 �Guidelines for handling goods and information worthy of protection at the 
levels department, enterprise, partner, state, etc.

>	 �Organizations and institutions in the enterprise that are responsible for the 
planning, implementation, and enforcement of the security architectures 
considered here.

Identity and Access Management (IAM) is a frequently used generic term for all 
of the above capabilities. Common synonyms are IAM system or IAM platform. 
The connection between the IAM system and security architecture is as follows: 
you design and implement the security architecture of an application based on 
the security systems of an IAM platform.

IAM platforms are usually implemented centrally and across the enterprise to 
provide all applications of an enterprise with both access management and iden-
tity management. An Identity Management system (IM system) is a system that 
covers the organization, processes, and the IT infrastructure that support the 
creation, management, and use of digital identities. IM systems are therefore not 
pure software systems.

Digital identity is the representation of a subject, i.e., a person, process, service, 
or application using:
>	 �Unique ID (e.g., artificial or derived key),
>	 �One or more credentials (e.g., user name and password), and
>	 �Further attributes (e.g., e-mail address, age, position)

Access Management systems (AM systems) are systems that provide the ap-
plications supported with functions for identity verification (authentication) and 
access and authorization control.

Personnel management systems and processes are mostly realized directly 
based on IAM platforms. This means there is a very close link (at least for the IM 
area) between personnel management systems and security systems.

The goal of IAM systems is to give the correct people, groups, and applications 
timely access to the correct enterprise functions. Furthermore, the aim is to do 
this in a user-friendly, efficient, secure, and comprehensible way. IAM systems 
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are thus not exclusively about increasing security for applications but rather also 
about designing basic access rules efficiently. Therefore, functions such as sin-
gle sign-on (SSO), as well as role and group management, also belong to the 
area of IAM systems. In enterprises, IAM systems are motivated not only by 
security arguments but above all by the reduction of costs and redundancies. It 
is therefore better to integrate individual applications with an enterprise-wide and 
central user management than to provide a separate user management function 
for every enterprise system. One example for the reduction of costs is the intro-
duction of a single sign-on solution. This ensures a big reduction in the number 
of support requests submitted to help desks and therefore reduces costs further.

The examples already show that applications with an enterprise-wide IAM plat-
form must be integrated before the improvements described can be achieved. 
Security architects are responsible for implementing this integration.

The most important performance characteristics or functions of security archi-
tectures are:
>	 �Privacy: This means that messages that are exchanged between two sys-

tem building blocks cannot be read or understood on the communication 
path itself. It is achieved by encrypting the message before sending it and 
decrypting it directly before further processing on the part of the receiving 
system building block.

>	 �Integrity: This requires that it must not be possible to change messages on 
the communication path. The recipient has the guarantee that no unauthor-
ized third party has changed the message while it was en route and then for-
warded it. Integrity is usually realized through hashing procedures. Here, a 
hash value is calculated for the original message and sent with the message 
itself. The recipient calculates a comparative value based on the message 
received and then compares both hash values. If they match, everything is 
correct and proper. A difference in the values means that integrity has been 
breached.

>	 �Authentication: The process of verifying identity. A user uses credentials to 
prove to the authentication function that he or she is who they claim to be. 
A widespread type of credential is the combination of user name and pass-
word.

>	 �Authorization: The process of access control by means of a corresponding 
system building block. The identification of a user or system is the necessary 
prerequisite for the authorization step. The access control system can thus 
deny an identified user the execution of a function but simultaneously permit 
the user to read a value table.

>	 �Non-repudiation: The ability to prove security-related events beyond doubt, 
i.e., in a court of law if necessary. This performance characteristic is fre-
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quently realized using special access-protected journals, and in connection 
with corresponding transactions, sometimes also through digital signatures.

>	 �Intrusion protection: The set of all measures that guarantee operating integ-
rity and vitality. This includes providing an effective defense against attacks 
such as denial-of-service (DoS) attacks.

Further performance characteristics, which in part can be derived from the char-
acteristics named above, are:
>	 �Detection of security gaps and incidents
>	 �Development and enforcement of security guidelines
>	 �Single sign-on
>	 �Role-based and group-based access models

You can implement even a comparatively simple performance characteristic 
such as authentication in many different ways. For example, an application could 
save the IDs and passwords for all users in a separate database. The application 
could then use a dialog to request these two values from a user logging on in 
order to compare them with the entries in the database. If a corresponding entry 
exists, this means that the user was able to prove his or her identity. If this is not 
the case, the application would deny the user access.

In a completely different example, an application would have been able to del-
egate the authentication step to a central directory service instead of implement-
ing it itself.

Below we will explain three of the most common types of security architecture 
today. Each type described covers all security performance characteristics—pri-
vacy, integrity, authentication, and authorization—but to a different degree.

FigureÂ€6.4-13 shows security architectures that are based on separate system 
building blocks. In this approach, all major security functions themselves are 
implemented. The authentication function is programmed in a method that per-
forms a value check on the separate user database. The authorization function is 
implemented by reading role information for the identified users from a separate 
privilege database. Privacy is achieved by checking the access to the data sys-
tems and encrypting the data transport paths themselves. This type of security 
architecture is still very widespread. Many standard systems even implement 
their security architecture based on separate system building blocks. This is be-
cause they cannot assume that the required system building blocks are offered 
standardized and centralized in all target environments. However, security ar-
chitectures of this type have many disadvantages. It is often difficult to integrate 
them with existing IAM systems. Often, the only integration option is to provision 
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data from IAM systems in corresponding applications, which does, however, lead 
to tight coupling (see also loose coupling in SectionÂ€6.1.1). Even self-implement-
ed encryption procedures rarely satisfy modern requirements. Here provisioning 
refers to the automation of all processes with regard to the creation, manage-
ment, deactivation, and deletion of digital identities as well as their attributes and 
authorizations.

FigureÂ€6.4-14 shows an architecture that is based on standard services. This 
security architecture represents an improvement compared to the completely 
proprietary security architectures. Examples of this type of standard services are 
LDAP directory services or public key infrastructures (PKI). The advantage of se-
curity architectures based on standard services is that you can replace security-
related system building blocks without having to adjust the application itself. This 
means that you can replace the implementation of an LDAP directory service 
that implements the authentication function at any time without having to adjust 
the application. One disadvantage is that, as before, you have to link security-
relevant information at the application level. If, for example, user information is 
read from an LDAP directory, but data that describes the access authorization 
situation is read from a privilege database, then you have to link these two items 
of information at the level of the application.

Figure 6.4-13: Security architectures based on separate security building blocks

Figure 6.4-14: Security architectures based on standard services
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Security architectures that are based on component platforms overcome the dis-
advantages of the two categories previously discussed. As FigureÂ€6.4-15 shows, 
component platforms define the supported applications compared to separate 
standards that bundle security functionality at a higher level of abstraction and 
integration. For example, they link authentication and authorization functionality. 
They themselves are based on standard services. This means that you can ad-
just their implementation without this having any effect on applications operated. 
One example of a corresponding component platform is JEE. The JEE server 
provides its applications with standardized (e.g., JAAS-API) security functions 
(e.g., authentication and authorization) and allows you to integrate security build-
ing blocks that lie outside the JEE server. One example is the connection of an 
external directory service based on JAAS-SPI. Component platforms also sup-
port the whole range of security functions of built-in user management and role 
management. They do this through the support of various authentication meth-
ods right up to encryption and signature functions. CORBA or the .NET platform 
from Microsoft are further examples of component platforms that define their own 
security standards.

In addition to the approaches detailed above, there are a number of other se-
curity architecture approaches today. We will however only explain client-side 
architectures, web-centric architectures, and single sign-on architectures here 
in more detail.

The central element of client-side security architectures (see FigureÂ€6.4-16) is 
a software building block that is installed on the user’s end device (e.g., laptop) 
and that manages the access data for all registered applications. This building 

Figure 6.4-15: Security architectures based on component platforms
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block activates itself when a user accesses a recognized application and it first 
and foremost takes over (virtually “from outside”) the authentication of this user. 
Client-side security architectures are easy to implement and completely non-
invasive. They simulate the user to all registered applications. Their biggest dis-
advantage is that their performance is restricted to authentications in which there 
is a real dialog with an end user. They do not cover situations in which a software 
building block has to authenticate itself to another software building block. Cli-
ent-side architectures may be suitable for many software architectures from thin 
clients to rich clients, but they are limited by complex authentication processes. 
They also do not help to free applications from the burden of user management 
by, for example, centralizing this function.

Web-centric security architectures, also known as reverse proxy architectures 
and shown in FigureÂ€6.4-17, are restricted to web applications. A web building 
block (reverse proxy) protects static and dynamic web applications. From the 
view of the software architect, their advantage lies in the fact that authentica-
tion, authorization, and the security session migrate to the system perimeter and 
no longer have to be programmed in the application itself. Web-centric security 
architectures can support open token standards as well as introduce token for-
mats themselves. Applications are either directly integrated with the web-centric 
security building block or are operated on a component platform that has been 
integrated.

Figure 6.4-16: Client-side security architectures

Figure 6.4-17: Web-centric security architectures
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Single sign-on building blocks, as shown in FigureÂ€6.4-18, are system building 
blocks at the security infrastructure level. They take over authentication, session 
management, and token management and verification. Ideally, the authentica-
tion step is part of the first system logon (e.g., logon to the operating system). As 
soon as the user has successfully logged on, the single sign-on building block 
creates a security session and issues the user with a key (token) that represents 
this session. From now on, the user no longer has to log on individually to appli-
cations that accept this key. The advantage and disadvantage of single sign-on 
architectures is their deep integration with corresponding applications.

6.4.13	� Cloud Computing Architectures

Cloud computing refers more to a set of characteristics that all IT systems imple-
menting a cloud model share rather than a specific architecture. Furthermore, 
cloud computing is a rather orthogonal element to many of today’s IT related 
themes. The most unique feature that the concept of cloud computing encom-
passes is its focus on all aspects of an IT system’s operating model. Cloud com-
puting has received a lot of attention for its promise to increase the transparency 
of IT services towards their actual consumers. In this section we will look at:
>	 �Cornerstone elements of cloud computing
>	 �Different types of clouds
>	 �Cloud computing benefits and challenges
>	 �Three distinct cloud computing adoption scenarios

Most definitions of cloud computing are based on the set of key characteristics 
below. Any IT system that claims to meet the cloud criterion must at least encom-
pass the following attributes:

Figure 6.4-18: Single sign-on architectures
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>	 �It provides on-demand network access to a pool of configurable computing 
resources that are often shared amongst clients.

>	 �Here, the term computing resource spans a broad range of IT services such 
as networks, servers, storage, applications, development tools.

>	 �The provision of computing resources requires no or only minimal manage-
ment effort and service provider involvement.

>	 �It offers an elastic and scalable form of coping with both increasing as well 
as decreasing demand for computing.

>	 �It provides a consumption-based pricing model by leveraging a metering 
capability at some level of abstraction.

A widely used definition of cloud computing comes from the National Institute of 
Standards and Technology [NIST 2009]:

Cloud computing is a model for enabling convenient, on-demand network 
access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service pro-
vider interaction.

Beyond the core set of cloud computing attributes there is an extended list of 
characteristics that are often referred to in the broader cloud computing context. 
In the following paragraphs we will elaborate on four cloud computing distinc-
tions:
>	 �Types of services (e.g., SaaS, Paas, and IaaS)
>	 �Deployment models (e.g., private cloud, public cloud, and hybrid cloud)
>	 �Locality aspects (e.g., internal and external clouds)
>	 �Cloud adoption scenarios

FigureÂ€ 6.4-19 provides an overview of the key concepts in the area of cloud 
computing architectures.
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SaaS, PaaS, and IaaS—the three types of services named above—are only the 
tip of the iceberg, as you can see in FigureÂ€6.4-20.

SaaS, PaaS, and IaaS can be considered super categories of a much broader 
and deeper service type taxonomy that the cloud computing world now distin-
guishes:
>	 �Software as a Service (SaaS) is a very broad category of services whose 

only common feature is that the actual software is delivered via the web 

Figure 6.4-20: Cloud computing service types

Figure 6.4-19: Concept overview for cloud computing architectures
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and usually accessed through a web browser by an end user. Examples of 
software offerings that already exist in the cloud are e-mail, calendar, docu-
ment sharing, or web conferencing. Other examples in the area of business 
domain-specific software are customer relationship management (CRM) or 
enterprise resource planning (ERP) types of applications.

>	 �Information as a Service (INFaaS) refers to the consumption of information, 
situated anywhere in the cloud, through a well-defined information interface.

>	 �Platform as a Service (PaaS) offers readily integrated and coherently set-
up application and development platforms. Examples of PaaS offerings are 
pre-fabricated JEE or .Net environments.

>	 �Integration as a Service (INTaaS) refers to cloud-based offers encapsulat-
ing complete integration stacks that support interfacing with applications, 
semantic mediation, and flow control functionality.

>	 �Infrastructure as a Service (i.e., IaaS) primarily relates to services of the 
type computing power, such as servers and server farms. Beyond this spe-
cific use, the term is also often used as an umbrella term to refer to the 
remaining set of service types in this list (i.e., STaaS and DaaS).

>	 �Storage as a Service (STaaS) offers storage and disk systems on demand.
>	 �Database as a Service (DaaS) provides higher abstraction level access to 

persistence systems than StaaS usually does.

Deployment types are yet another important dimension if you want to understand 
all of the different flavors of cloud computing offerings available today. The three 
predominant categories here are:
>	 �Private clouds, where all cloud services are provided solely for one organi-

zation or enterprise. Public clouds, where all cloud services are made avail-
able to the general public or at least a broader group of individual clients 
(so-called community clouds)—typically by an organization selling cloud 
services.

>	 �Hybrid clouds, where the hybrid cloud is a composition of two or more 
clouds—private or public—that remain unique entities.

Another distinction that will continue to be an important criterion to consider in 
the cloud computing domain is hosting. Here we can distinguish between the 
following:
>	 �Internal clouds are an IT capability offered as a service and hosted by an 

enterprise’s own IT organization.
>	 �External clouds can be—similar to internal clouds—public or private. How-

ever, an external cloud is an offering hosted by an IT organization that is 
external to the organization or enterprise consuming this cloud’s services.

FigureÂ€6.4-21 summarizes fundamental cloud computing characteristics and pro-
vides an overview of the key dimensions to consider.
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So far we have only looked at general cloud computing characteristics and a 
high-level taxonomy to distinguish between the multitude of cloud computing of-
ferings available.

Another important distinction is the different architecture adoption scenarios that 
you can take:
>	 �Implementing in the cloud: In this scenario you use cloud services (e.g., 

development and test environments) to ease development and test efforts.
>	 �Integrating with the cloud: In this scenario you integrate your IT system with 

existing cloud services, for example, a cloud storage service.
>	 �Architecting for the cloud: In this scenario you design, build, and provide IT 

systems that are cloud services themselves.

Before we move on to elaborating on the various adoption scenarios of cloud 
computing, we will provide a brief overview of the benefits that IT managers, 
sourcing departments, architects, and end users associate with cloud-based ser-
vices. However, everything comes at a price—even here. Cloud computing also 
imposes a set of significant challenges on all of the above-mentioned parties. 
Below we outline both sides of the cloud computing coin—its benefits as well as 
some of its challenges.

Benefits associated with cloud computing are:
>	 �Shared costs: In the past, each application was supported by a dedicated 

physical node. This was the most reliable way to insulate an application 
from being negatively impacted by others. Today, virtualization technology 
allows us to effectively isolate applications even though they all are hosted 
in parallel on a single physical node. This allows cloud vendors to share 
hardware costs across multiple clients. For applications that are capable of 

Figure 6.4-21: A cloud computing taxonomy
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multi-tenancy, cost sharing can be taken even one step further up to the ap-
plication layers—thus up to respective SaaS offerings.

>	 �Variable instead of fixed costs: From an enterprise’s perspective, most IT-
related costs are fixed for one year. Examples are fixed number of oper-
ators, fixed number of licenses, dedicated computers, or leased network 
links. The cloud computing paradigm allows these costs to become variable 
and consumption-based.

>	 �OPEX over CAPEX: Another financial benefit is that a cloud’s “pay as you 
go” model promotes an operational expenditure (i.e., OPEX) schema over 
a capital expenditure (CAPEX) schema. In most enterprises OPEX-related 
request processes are significantly faster than CAPEX-related ones, which 
increases the throughputs of financial departments as well as relevant work-
loads.

>	 �Time-to-value: The most important of all cost arguments is probably that you 
can use a readily available cloud solution, be this an application, infrastruc-
ture, or platform, immediately whereas the on-premise creation of a similar 
solution would last significantly longer. Time-to-value is therefore the most 
convincing factor for an ROI-focused IT management.

>	 �Scalability: Beyond financial arguments, scalability is the key criterion for 
rationalizing cloud-based solution approaches. Since it can be very difficult 
to predict future capacity requirements, overly scalable solutions that are 
capable of serving request troughs as well as the highest request peaks can 
quickly become a competitive advantage in today’s fast growing businesses.

>	 �Opaque operations: Setting up and running an operational environment that 
is sufficiently staffed, highly available, scalable, capable of recovering from 
disaster, monitored, secure, configurable and adaptable to specific custom-
ers’ needs, as well as surrounded by self-service provisioning processes, is 
a very complex and expensive undertaking. Clouds make most if not all of 
these operational duties opaque to their respective clients.

>	 �Additional benefits include the simplification and increase of access to IT 
services for mobile workforces, a clear push for extreme standardization, as 
well as higher added value due to the fact that many clouds offer clients the 
opportunity to participate in extending the cloud—thus making it more useful 
for themselves but also for other clients.

As stated above, the benefits come at a price. The most important challenges 
that you should be prepared to cope with in the context of cloud computing are:
>	 �Availability and vendor lock-in: The most significant challenge of clouds is 

probably that a cloud vendor can disappear from the Internet overnight and 
take your cloud-based solutions with him. The more standardized the ser-
vices that you consumed as a client were, the easier it will be for you to find 
another vendor offering a similar service. However, the more you use cloud 
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services from the application layers (i.e., SaaS), the more difficult it will be 
for you to find a comparable offering, since semantic coupling is usually a 
lot higher further up the abstraction stack. Therefore, companies striving to 
adopt cloud computing should include the maturity of the cloud provider as 
a crucial element of their due diligence.

>	 �Privacy and legislation: Many enterprises have already moved some of their 
data off premise in the past, for example, in the context of data center out-
sourcing endeavors. However, moving data into a cloud without knowing 
where this data will actually reside (i.e., in which country) is still not an option 
in a lot of industries today. For example, there are legal regulations in some 
countries prohibiting certain data from leaving the country.

>	 �Security: Security measures established in the past to secure the perimeters 
of the physical computing environments of our corporations do not work well 
any more with virtualized, shippable, cloneable, and configurable applica-
tions, computers, networks, and persistence systems. If I can provision and 
de-provision a new computer in seconds, bring it to service and take it out of 
service based on demand, when do I scan this computer for viruses, patch 
the virtual OS, or inventorize its installed base? Security means that cope 
with the transiency and speed at which cloud-based solutions change their 
shape and appearance need to be completely different to traditional means.

>	 �Users, identities, privileges: Cloud computing also poses completely new 
requirements on identity and access management. In the same way as the 
enterprise’s own solutions grant or deny their users access to information, 
cloud-based solutions also have to work from a clearly defined user base. 
For hybrid clouds this means that these solutions need to cope with harmo-
nized and aligned user base supersets of the individual clouds. All of this 
requires that enterprises have clear user models both within and beyond the 
enterprise and this is not an easy challenge to deal with at all.

>	 �Customization: Cloud offerings are similar to non-cloud solutions in that they 
are designed generically for a mass market but offer customization means 
so that clients can adjust them to their specific needs. For cloud vendors 
this means that they have to extend their multi-tenancy model to also in-
clude client-specific configurations and customizations. This usually makes 
architectures of cloud solutions significantly more complex. Beyond these 
structural extensions that cloud vendors need to cater for, there are different 
approaches for offering customization hooks to their client base. Examples 
are property pages and script languages, as well as compiled modules that 
can be registered with the cloud’s own compile base. The specific options a 
vendor offers around a cloud depend heavily on the complexity level of re-
quired customizations as well as on customization skills available at clients.

>	 �Integration: Last but not least we will expand on the challenges that arise 
from integration needs clients have around clouds. It is quite common to 
see an SaaS solution insulated from an on-premise IT solution even though 
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both need to support one and the same business process. This means, for 
example, that users of this business process have to revalidate and re-enter 
data manually. System level integration between an SaaS and an internal IT 
solution may remove or lower this burden on end users. However, system 
level integrations in a cloud context come at a higher price than integration 
between non-cloud solutions do, but this is not limited to the aspects listed 
above (e.g., security, availability, users, and privileges). IT providers have 
identified the integration challenge and provide both software and hardware 
specifically for cloud integration (e.g., IBM WebSphere Cast Iron).

Cloud computing and cloud computing architectures are means that you can 
apply in three main scenarios. In the first scenario you use cloud computing to 
ease development and test efforts. In the second scenario you integrate your IT 
system with existing cloud services, and in the third scenario, you design and 
build services that the cloud provides yourself.

As an architect you can consider cloud computing as an important means for 
accelerating your development and testing efforts. Nowadays, cloud providers, 
e.g., Amazon, Microsoft, Oracle, and IBM, offer cloud environments that allow 
you to use development and test environments from the cloud quickly and agile-
ly. Such offerings reduce the overall costs of labor and capital and reduce the risk 
of misconfigured environments since they are provided in an automated fashion 
based on standardized images. An image is a standardized configuration of a 
software building block that the cloud management environment can provide in 
an automated fashion. For example, standardized application or database serv-
ers can be provided immediately based on defined images. This also increases 
the overall architectural compliance as standardized images can enforce archi-
tectural principles and guidelines. However, the creation of images that adhere 
to actual project standards takes time and effort. Therefore, you should plan 
your development and test environment early, define the standards, and create 
the environment images based on your defined standards. Besides using cloud 
computing for development and test environments, moving the integrated devel-
opment environment (IDE) to the cloud may also be an attractive option to pur-
sue. Instead of having to install your favorite IDE on each and every developer’s 
workstation and letting each developer configure his installation to match project 
standards, developers can log on to the cloud and use the preconfigured IDE. 
This type of approach is particularly worthwhile if you have a large project team 
spread across the globe. Thus cloud computing is an essential means that can 
support you in implementing the architecture (see SectionÂ€8.6).

As more and more companies adopt cloud computing as part of their IT sourcing 
strategy, more and more IT systems will run in the cloud. IT systems may either 
use cloud computing services or may be cloud computing services themselves. 
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For example, the management information system presented in ChapterÂ€8 may 
use a cloud storage service to persist its data or it may actually be designed as 
an SaaS offering itself, allowing multiple tenants to capture, analyze, and report 
relevant management information. This means that the architecture of your IT 
system must take account of cloud computing characteristics.

If your IT system is not an SaaS offering itself but only uses cloud computing ser-
vices, the functional architecture is not affected. However, the technical architec-
ture needs to consider the fact that the IT system is going to use cloud computing 
services. The APIs of the various cloud computing providers are still proprietary. 
This means that your architecture should contain specific integration building 
blocks (see SectionÂ€8.5). These building blocks abstract from the proprietary API 
of the cloud provider and provide the required functionality via well-defined and 
cloud provider-independent interfaces. Many cloud computing providers have 
identified the need for standardizing cloud computing APIs and have thus signed 
the Open Cloud Manifesto [OCM 2010].

If you are tasked with the design and development of a real SaaS offering, you 
will have to design both your functional and your technical architecture for this 
purpose.

For example, the IT system will require functionality in addition to the primary 
business logic (e.g., customer relationship management) such as
>	 �Ordering
>	 �Provisioning
>	 �Metering
>	 �Billing
>	 �Accounting

This functionality is required to manage orders for your service, provide the ser-
vice, as well as meter, bill, and account for tenants’ use of your service.

Furthermore, your IT system must support multiple tenants, should allow for easy 
integration, should not be bound to specific hardware, and should allow for self-
service to name just a few additional requirements.

These requirements impact not only the technical but also the functional archi-
tecture of your IT system. For example, you may identify a functional building 
block responsible for satisfying the metering requirements. Moreover, the techni-
cal architecture must support the multi-tenancy requirement. This requirement 
cannot be assigned to a single building block. Instead, your overall architecture 
must allow for multiple tenants to use your IT system at the same time without 
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interfering with each other. For example, company A and company B may use 
your CRM SaaS offering but must not see each other’s CRM data. Such require-
ments not only affect the identification of required building blocks but also impact 
the programming model required to implement the functionality. For example, de-
velopers may not store the tenant-specific state in global variables as this would 
compromise the multi-tenancy capability.

Cloud computing reference architectures can help you design your own archi-
tecture by identifying the required building blocks from a functional as well as 
technical perspective and defining the relationships among those building blocks 
(see SectionÂ€ 6.5). If actual implementations of the reference architecture are 
available, the implementation of your IT system can even be accelerated. Cloud 
computing reference architectures are similar to reference architectures of the 
telecommunications industry, since operation support systems (OSS) and busi-
ness support systems (BSS) are required to provide the functionality of a fully 
fledged cloud computing offering/platform. FigureÂ€6.4-22 depicts a cloud comput-
ing reference architecture illustrating the major building blocks required.

Due to the importance of cloud computing, we anticipate that more and more 
specific architecture means such as styles, patterns, and reference architec-
tures will be defined, enabling you to define your own cloud computing IT system 
based on industry best practices and proven experience.

Figure 6.4-22: Cloud computing reference architecture. (Following [IBM 2011])
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6.4.14	� Summary

>	 �There are fundamental basic architectures that are used in many systems.
>	 �One fundamental question is the comparison of centralization to decentral-

ization. Here you often have to find a compromise. However, in considering 
an entire system at physical and logical level, centralization and decentral-
ization do not exclude each other—you can often use them in combination 
to take advantage of synergy effects.

>	 �Layered architectures enable you to structure architectures by arranging 
building blocks in layers where every layer provides the layer above with 
services through interfaces.

>	 �Dataflow architectures structure an architecture along the dataflows. They 
are particularly useful if you can split a complex task into a series of simple 
tasks and then map it as a combination of independent calls.

>	 �In a shared repository architecture, a system building block provides a 
central data storage unit.

>	 �The classic client/server model is based on a two-tier architecture.
>	 �Three-tier architectures expand the two-tier architecture by introducing an 

intermediate tier between the client and the database server.
>	 �Two-tier architectures and three-tier architectures are special cases of n-

tier architectures.
>	 �The decision between a rich client and a thin client is based on the ques-

tion of how to split the functionality between the client and the server.
>	 �Peer-to-peer is a basic architecture that uses a series of equal peers for 

(distributed) communication.
>	 �A publish/subscribe architecture is a basic architecture in which calls are 

not sent to the communication participants directly but are forwarded by an 
intermediary. In a publish/subscribe architecture, communication is typi-
cally via asynchronous events.

>	 �Middleware is a central technology for connecting many distributed sys-
tems. It is a platform that offers applications services for all aspects of 
the distribution, such as distributed calls, efficient access to the network, 
transactions, and much more.

>	 �Component platforms are based on the separation of technical concerns 
and functional requirements. A container takes over the technical concerns 
automatically. Examples of technical concerns in the enterprise environ-
ment are distribution, security, persistence, transactions, concurrency, and 
resource management.

>	 �Service-oriented architectures (SOA) are a basic architecture that repre-
sents the functional interfaces of software building blocks as reusable, dis-
tributed, loosely coupled, services that are accessible as standard.

>	 �Security architectures refer to an application that is to be protected and an 
underlying security infrastructure.

Summary: Basic 
architectures
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>	 �Cloud computing refers more to a set of characteristics that all IT systems 
implementing a cloud model share rather than a specific architecture. The 
typical service offerings distinguished today are Infrastructure as a Service 
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) 
and these are the most common types of services provided via a cloud.

6.5	� Reference Architectures

In the previous sections we presented important architecture design means—
such as architecture principles, tactics, styles, and patterns—that form the basis 
for successful architectures. We also discussed the application of these means 
in common basic architectures. They represent solutions for general architecture 
requirements or rather, qualities. However, IT systems are not assessed primarily 
on the basis of their architectural elegance. They must satisfy functional require-
ments and offer a concrete benefit for the customer. This presents you with a 
great challenge. On one hand you have to be an expert in basic architecture 
questions, but on the other hand, you also have to know the special characteris-
tics and needs of different industries and take account of these in the architecture 
design. You can only create IT solutions that support business strategies and that 
can differentiate you from competitors when you consolidate general architecture 
expertise and industry-specific knowledge. The industry-specific knowledge is 
not restricted to business models and processes and IT support for these: it 
extends to IT system landscapes valid for an industry and the requirements of 
these landscapes. To act successfully as an architect in different industries, you 
need means that unite the knowledge and experience of the general architecture 
disciplines with those of the concrete industries.

FigureÂ€6.5-1 illustrates that reference architectures combine both general archi-
tecture knowledge, such as patterns and architecture concepts, as well as con-
cepts and knowledge of the domains.

Figure 6.5-1: Overview of reference architectures
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6.5.1	�Definition and Elements

Reference architectures combine general architecture knowledge and general 
experience with specific requirements for a coherent architectural solution for a 
specific problem domain. They document the structures of the system, the main 
system building blocks, their responsibilities, and their interactions

As you can see from FigureÂ€6.5-2, reference architectures are created on one 
hand based on proven architecture means, and on the other hand, based on 
specific requirements in the form of desired functionality expressed in a refer-
ence model.

A reference model contains the specific characteristics of the problem domain 
addressed. The functionality is divided up into dedicated function building blocks. 
A reference model documents these building blocks and the information flows 
between them [Bass et al. 2003]. FigureÂ€6.5-3 shows an example of the structure 
of a reference model.

Figure 6.5-2: Elements of a reference architecture

Figure 6.5-3: Structure of a reference model
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By interacting, the conceptual function building blocks fulfill the requirements 
of the problem domain. A reference model does not yet state how an IT system 
under construction fulfills this functionality. The reference architecture takes over 
this task by describing how the function building blocks are distributed to system 
building blocks. It also explains their responsibilities and their interaction [Hof-
meister et al. 1999].

6.5.2	�Use and Advantages of Reference Architectures

When designing an architecture, you use reference architectures and convert 
them into concrete architectures. Here you have to weigh up which parts of a 
reference architecture you need for the problem in question. Reference archi-
tectures are often very extensive. Therefore, a direct copy generally does not 
make sense. Instead, you should always only implement those elements that 
you really need to reduce the complexity of the architecture you are designing 
(see FigureÂ€6.5-4).

The use of reference architectures brings the following advantages:
>	 �You can build on the knowledge and experience of other people who have 

contributed to the design of the reference architecture.
>	 �A reference architecture reduces the risk of designing a non-viable archi-

tecture.
>	 �Using a reference architecture leads to an increase in quality for the archi-

tecture you are designing since it is based on a proven architecture means.
>	 �A reference architecture reduces the cost of the architecture design because 

it already contains important findings from the area of the problem domain 
analysis and therefore reduces the effort for this activity.

>	 �The use of a reference architecture allows you to develop an IT system more 
quickly and gives you a better time-to-market.

Figure 6.5-4:  Use of reference architectures
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6.5.3	�Requirements Placed on Reference Architectures

In order to offer real advantages in architecture design, good reference architec-
tures must have the following features:
>	 �They must be based on proven principles, patterns, styles, and tactics.
>	 �They must have been used successfully. Reference architectures only prove 

how good they are in practice when they are used successfully. Before you 
decide on a reference architecture, you should therefore always ensure that 
it has already been used in a similar context.

>	 �They must be adaptable to concrete needs. As already stated, reference 
architectures can be very extensive. It must therefore be possible to design 
the concrete architecture based on the reference architecture and to expand 
it step-by-step when new requirements arise.

>	 �They must be documented extensively. You can only use a reference archi-
tecture successfully if you have access to meaningful documentation. This 
documentation should clearly show which architecture means have been 
applied and how the reference model has been mapped to the reference ar-
chitecture. The architectural forces should also be named and the documen-
tation should show how the architecture balances out these forces. There-
fore, a documentation style as for architecture patterns is recommended.

6.5.4	�Types of Reference Architectures

In practice there are different types of reference architectures. Some of them 
are like standards. This means that you must, or rather, should implement them 
exactly as they are described. For example, there are reference architectures 
for component platforms that illustrate how to realize architectures for different 
problems based on the platform. Known representatives of this type are JEE 
BluePrints from Sun Microsystems for the JEE platform [Oracle 2011a]. The re-
alization of a service-oriented architecture or the development of a web-based 
shopping solution are examples of such reference architectures. The focus of 
these architectures is on the correct use of the underlying platform. A reference 
architecture in this category covers not only conceptual artefacts, such as archi-
tecture diagrams, but also concrete implementations in the form of source text or 
ready-to-run building blocks.

There are also extensive, industry-specific reference architectures tailored to the 
concrete needs of enterprises. Many IT service providers and consultants offer, 
for example, reference architectures for the telecommunications, air travel, bank, 
or insurance industries to name just a few. Their underlying reference models 
cover function building blocks and information flows that usually enable sup-
port for all important business processes in an enterprise. Furthermore, these 
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reference architectures show how the function building blocks are mapped to 
concrete, commercial software products. The individual development is normally 
restricted to the adjustment and integration of the products in the IT system land-
scape of the customer. NGOSS and OSS/J are examples of such reference ar-
chitectures (see SectionÂ€6.5.5).

Between the platform-specific and industry-specific reference architectures are 
reference architectures that are concerned with a topic relevant in different in-
dustries, for example, Supply Chain Management (SCM) and Customer Rela-
tionship Management (CRM).

A special form of reference architecture is a product line architecture. It defines 
the common architecture of several similar software products [Hofmeister et al. 
1999]. This form of reference architecture covers the common system building 
blocks, their responsibilities, and their cooperation. Product line architectures 
are designed with the aim of designing products more cost-effectively by having 
them share a common architecture and under some circumstances, they can 
even reuse prefabricated ready-to-run software building blocks.

6.5.5	�Example of a Reference Architecture

The New Generation Operations Systems and Software (NGOSS) initiative from 
TeleManagement Forum defines a comprehensive reference architecture tai-
lored to the telecommunications industry [TMF 2004a].

Figure 6.5-5: Overview of the NGOSS reference model
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This reference architecture is based on the reference model [TMF 2004b] pre-
sented in FigureÂ€6.5-5 and explained below:
>	 �Shared information and data model (SID):
		� The shared information and data model is a standardized model from the 

telecommunications domain. It defines the standard abstractions, such as 
customer, order, and network service. The model also makes clear state-
ments about the meaning of the abstractions, their behavior, and their col-
laboration.

>	� Security:
		� This function building block defines the security mechanisms and poli-

cies. These are based on the Information Security Management Standard 
[ISO17799 2001].

>	� Policies:
		� NGOSS recommends the use of policy-based management (PBM). PBM is 

based on rules that define how to handle building blocks. The system evalu-
ates and applies these rules at runtime.

>	� Business processes:
		� This part of the NGOSS reference model contains standardized business 

processes and activities for the telecommunications domain. These are 
summarized in the Enhanced Telecom Operations map (eTOM).

>	� OSS applications:
		� Business-related functionality to be supported by an NGOSS-conform IT 

system is grouped in this part of the NGOSS reference model. In this con-
text, OSS stands for Operations Support System. For more detailed infor-
mation on this topic, see [Terplan 2001].

>	� OSS framework services:
		� OSS framework services define basic services that can be used by different 

OSS applications.
>	� Basic framework services:
		� In the NGOSS reference model, primary technical services, such as find-

ing a service in a directory, are covered by basic framework services. The 
higher quality services (OSS framework services) build on this functionality.

>	� Basic mechanisms:
		� Basic mechanisms deal with the functionality required to enable the com-

munication between the building blocks of an NGOSS system and the call 
of services of individual building blocks.

In addition to the reference model, the NGOSS reference architecture (technol-
ogy-independent architecture) is based on general architecture means and is 
therefore based on the standardized architecture model RM-ODP (see Chap-
terÂ€4). It defines the architectural aspects and building blocks of a distributed, 
NGOSS-conform IT system [TMF 2004b].

NGOSS reference 
model

NGOSS and RM-ODP
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However, TeleManagement Forum does not offer a concrete implementation of 
its reference architecture. Software manufacturers and IT service providers use 
the reference architecture to realize concrete solutions. TeleManagement Forum 
provides the option of certifying these solutions. This is an advantage for cus-
tomers since they can rely on the TMF seal of quality when selecting NGOSS 
implementations.

The NGOSS reference architecture is a technology-independent architecture. 
You have to map it to concrete component platforms for the respective use case. 
Therefore, leading manufacturers launched the OSS for Java (OSS/J) initiative 
as part of the Java Community Process (JCP) for the JEE platform. The initiative 
implements the NGOSS reference architecture based on JEE [OSSJ 2004].

The aim of the OSS/J initiative is to offer software building blocks or rather, prod-
ucts, based on OSS/J for the telecommunications domain. This means that you 
can combine products from different manufacturers to form a comprehensive 
telecommunications solution by considerably reducing the integration costs.

To do this, the OSS/J initiative defines different application programming inter-
faces (API) based on eTOM from NGOSS. The API specifications reflect on one 
hand the required functionality and on the other, the architecturally significant 
system building blocks. TableÂ€6.5-1 gives an overview of the APIs.

TableÂ€6.5-1: Overview of OSS/J APIs

Java API Description

OSS Common 
API

This API contains basic communication mechanisms and design 
guidelines that all other APIs must satisfy.

OSS Service 
Activation API

In a telecommunications architecture, it must be possible to activate 
services (e.g., SMS) for a customer automatically after a contract 
has been signed. To do this, the Service Activation API creates the 
required functionality and models the relevant building blocks.

OSS Quality of 
Service API

The Quality of Service API defines the functionality and building 
blocks for monitoring and determining the quality of the telecommu-
nications services. For example, it is important to determine whether 
the bandwidth available in a network drops below a specific value.

OSS Trouble 
Ticket API

The Trouble Ticket API is used to manage error tickets. It covers the 
required functionality and building blocks in the area of error man-
agement and tracking.

OSS IP Billing 
API

Customers must be billed for the use of telecommunications ser-
vices. Therefore, you need building blocks that take over the billing. 
The IP Billing API is dedicated to these building blocks and their 
functionality by defining their required characteristics.

NGOSS 
implementations

OSS/J as NGOSS 
implementation

Aim of OSS/J

Parts of OSS/J
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As a whole, the OSS/J APIs model the required functionality of a telecommunica-
tions architecture. The Common API mainly addresses the OSS framework ser-
vices of the NGOSS reference model. In contrast, the other APIs are dedicated 
to the functionality modeled by the OSS applications and the building blocks. In 
OSS/J, the JEE platform assumes the task of the basic framework services and 
the basic mechanisms and services. The use of JEE as an architecture platform 
has the great advantage that you can rely on a proven platform that offers impor-
tant basic services such as scalability and transaction control.

FigureÂ€6.5-6 shows an example of a simple architecture based on OSS/J.

The architecture shown is based on the use of the standardized OSS/J APIs for 
integrating different subsystems of a telecommunications system. Since the sys-
tems required offer corresponding interfaces, the systems can communicate with 
one another without having to access system-specific interfaces. This reduces 
the integration effort considerably.

Java API Description

OSS Inventory 
API

A telecommunications architecture consists of different network 
building blocks such as servers, routers, and switches. Inventor-
izing these parts and being able to call up their location quickly, 
for example, in the case of an error, are important requirements of 
telecommunications providers. Therefore, it must be possible to run 
inventories. The Inventory API models the relevant functionality and 
required building blocks.

OSS Service 
Quality Man-
agement API

This API is dedicated to the required functionality for determining 
the quality of a telecommunications service and demonstrates the 
building blocks required.

Figure 6.5-6: A simple OSS/J-based architecture

Responsibilities

OSS/J architecture 
example
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In the underlying scenario a network management system monitors network ele-
ments. As soon as an error is detected in a network element, the network man-
agement system forwards a corresponding message to the SLA system. The 
message complies with a format defined by the OSS/J initiative. The SLA system 
checks whether the defined service level agreements have been violated. If this 
is the case, the SLA system requests that the Trouble Ticket system creates 
a corresponding Trouble Ticket. As soon as the error in the network element 
has been corrected by a technician, the Trouble Ticket is closed and an OSS/J 
confirm service activation request is sent to the Service Activation system. This 
reactivates the corresponding network element.

In a simplified way, this example shows which types of systems are required to 
realize this scenario. It also illustrates the structure of a corresponding telecom-
munications architecture as well as the responsibilities and interaction of the 
subsystems.

6.5.6	�Summary

>	 �Reference architectures combine general architecture knowledge and 
general experience with specific requirements for a coherent architectural 
solution for a specific problem domain.

>	 �Reference architectures are created based on proven architecture means 
(e.g., principles, patterns, styles, and tactics), as well as on specific re-
quirements in the form of desired functionality expressed in a reference 
model.

>	 �A reference model contains the specific characteristics of the problem do-
main addressed.

>	 �The selection of a reference architecture as an architecture design means 
offers great advantages as you can build on the knowledge and experi-
ence of other people who have contributed to the design of the reference 
architecture.

>	 �In practice there are different types of reference architectures: platform-
related reference architectures, industry-specific reference architectures, 
cross-industry reference architectures.

>	 �A product line architecture is a special form of reference architecture. It 
defines the common architecture of several similar software products.

>	 �The New Generation Operations Systems and Software (NGOSS) initia-
tive from TeleManagement Forum defines a comprehensive reference ar-
chitecture tailored to the telecommunications industry.

Summary: Reference 
architectures
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6.6	� Architecture Modeling Means

From the very beginning, software development has been accompanied by con-
stant innovations with regard to new concepts of abstraction. As an abstraction 
concept, modeling now has a fixed place in modern software development. With 
regard to software architectures, modeling is used as a means for documenta-
tion, specification, communication, analysis, and validation of architectures, to 
some extent also to support automatic code generation. We explained this last 
aspect in the context of architecture-centric MDSD (see SectionÂ€6.2.6).

At the beginning of this section, we will introduce and explain important model-
ing terms and concepts in the context of software development. Later on in the 
section, we will address modeling languages that you should use in architecture 
modeling. We will consider three important means with regard to their options 
for modeling architecture precisely: Unified Modeling Language (UML), domain-
specific languages (DSL), and a special language family of DSLs, the architec-
ture description languages (ADL). This list is not exhaustive. There are further 
options, for example, entity relationship diagrams or notations from the environ-
ment of structured analysis/design (SA/D), which you can also use to formally re-
cord and document at least some aspects of an architecture. FigureÂ€6.6-1 gives 
an overview of the concepts and architecture modeling means presented in this 
section.

Note that an architecture specification in the form of a model is not a method in 
the sense of a method model (see SectionÂ€6.6.5). A method defines concrete 
procedure instructions (contents) and a development process. Combined, these 
specify what has to be done, and how and when it has to be done. A method 
thus specifies an ordered framework of the models, for example, the architecture 
model, that you create during the lifecycle of a project. However, modeling is a 
suitable means if you want to formulate the method precisely. A corresponding 
metamodel is covered in SectionÂ€6.6.5.

6.6.1	�Basic Concepts of Modeling

There are a number of different definitions of the model concept in literature. 
Amongst other reasons, this is because the use of models has established itself 
in the most varied engineering disciplines and fields of science. For a generally 
recognized and cross-domain definition of the model concept we can refer to 
[Stachowiak 1973]:

>	 �Reproduction. A model is always a reproduction of something, a natural or 
a synthetic original, which can be a model itself.

Modeling as 
a fixed part of 
modern software 
development

Structure of this 
section

Architecture model is 
not a method

Definition: Model 
concept according 
to Stachowiak
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>	 �Abbreviation. A model does not reproduce all attributes of the original, only 
those that appear relevant to the model creator or the model user.

>	 �Pragmatism. Pragmatism means “orientation around usefulness.” A model 
is not assigned to an original for its own sake. The assignment to the origi-
nal is affected by the questions: Who is the model for? What is the model 
for? Why has the model been created? A model is used by the model cre-
ator or the model user in place of an original for a certain period of time to 
serve a certain purpose. The model is therefore interpreted.

Models are thus an abstraction of the original because they do not consider all 
details, only those that are useful to the stakeholder of the model for his or her 
purposes.

In this book, we will look at models in the context of the design of object-oriented 
software systems. In software development too, a model is considered to be the 
abstract reproduction of an original. This section introduces the most important 

Figure 6.6-1: Basic concepts of modeling and architecture modeling means—
overview

Models in software 
development
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terms in the context of modeling in software development and develops a con-
ceptual superstructure for the topic.

The basis for any automated processing of model data is the definition of a model 
in a formal language. In software development, a special type of modeling has 
evolved to satisfy this requirement. Here, model types (or to be more precise, 
the abstract syntax of a model type, see below) are usually described via mod-
els called metamodels. The operation of constructing such a model is known 
as metamodeling. Metamodeling thus represents a special case in modeling. A 
notion of object orientation has thus permeated the formalism or language us-
age of metamodeling. This notion is that a metamodel specifies types that you 
instantiate in the model. A model is thus also known as an instance of the related 
metamodel. The language usage “a model is conform to its metamodel” is also 
common.

The cascade of sequential abstraction through the creation of a metamodel can 
potentially continue unrestricted. The hierarchy of models created opens up a 
series of modeling layers into which you can classify the respective models. You 
can only classify a model into a concrete modeling layer uniquely with reference 
to a specific model hierarchy.

In practice, the concept of four-layer modeling architecture has is well-
established. The individual modeling layers are referred to mostly with M0 
to M3, as in this book. The model located at M3 closes the model hierarchy 
in an upwards direction. From a conceptual point of view, this conforms to a 
metamodel of a layer M4, which in turn is isomorphic to the model defined at 
layer M3. In this context, an isomorphic mapping is the reversible, unique (bi-
jective) mapping of the model elements of one model to elements of the other 
model with the same meaning. With the four-layer modeling architecture from 
OMG, SectionÂ€6.6.2 presents a concrete modeling architecture for a family of 
modeling languages.

Due to the fact that it defines a (usually infinite) number of valid instances, a 
metamodel can also be understood as a means for describing a modeling lan-
guage. It is usually only the abstract syntax of the specified modeling language 
that is defined exactly in a formal manner. Therefore, the terms “metamodel” and 
“abstract syntax” are often used synonymously. Since the semantics of a model-
ing language are frequently defined informally in the form of natural language, in 
this case we also refer to semi-formal languages.

Metamodeling

Modeling layers

Four-layer modeling 
architectures

Modeling languages
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Whilst the abstract syntax only describes the structure of a modeling language, 
the concrete syntax provides an instrument for the textual or graphical nota-
tion of models. To explain this we will use an analogy to classic programming 
languages. Here the concrete syntax defines which entries a parser accepts for 
this language. The abstract syntax merely specifies what the structure of the lan-
guage looks like. There are no details, for example, of how key words are written. 
The abstract syntax is mostly specified by a metamodel.

The static semantics of a language define the well-formedness criteria that its 
syntax cannot define. Without going into the precise theoretical background, 
here we will use an illustrative example from the world of classic programming 
languages: some languages have the rule that variables have to be declared 
before values can be assigned to them. With regard to the individual phases of a 
compiler, the parser would not be able to recognize a violation of this rule. Initially 
the compiler’s static analysis would fail. In the context of modeling languages, 
the static semantics are mostly defined by a series of constraints. Constraints 
always refer to dedicated model elements as the context. Typical constraints are, 
for example, the constraint of the value range of attributes of a model element or 
the constraint of the relationships between model elements.

In addition to the abstract and concrete syntax, as well as the static semantics, 
every language must also have semantics that precisely define the meaning of 
the model. In the case of UML, the semantics of the model elements are de-
scribed informally in the UML superstructure (see SectionÂ€6.6.2) through natural 
language English explanations as part of the definition of the abstract syntax. 
In the case of MDSD (see SectionÂ€6.2.6), we also refer to a translational defini-
tion of the semantics. This means that the models are mapped on another well-
known language (often a 3GL language) using transformations. These mapping 
rules thus define the meaning of the modeling language used.

6.6.2	�Unified Modeling Language

The Unified Modeling Language (UML) arose at the end of the 1990s as a result 
of the merging of different notations by Rumbaugh, Booch, and Jacobson. The 
great success of UML brought an end to the Babylonian language confusion in 
the notations in the object-oriented community (see TableÂ€6.6-1).

Abstract and 
concrete syntax

Static semantics

Semantics

One of the most 
important standard 
modeling languages
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TableÂ€6.6-1: From notations Babylon to UML

Period Notation Comment

2005 UML 2.0 Revised metamodel

2001 UML 1.4 Market dominance achieved

1999 UML 1.3 XML Metadata Interchange (XMI)

1998 UML 1.2 OMG takes charge

1997 UML 1.0 Object Constraint Language 
(OCL)

1996 Unified Modeling Lan-
guage (UML) 0.9

Unified Method and OOSE

1995 Unified Method OMT and OOD

1992 OOD and OOSE Booch and Jacobson

1991 OMT Rumbaugh

1987–1998 OMT, OOD, OOSE, 
OOSA, and many 
more

Notations Babylon

Under the care of the Object Management Group (OMG), UML has now become 
one of the most important standards in software development. In this book we 
refer to UML in version 2.0. It is supported by almost all development tools. Be-
fore we look at the different types of diagrams, we will first outline the embedding 
and integration of UML in the OMG modeling architecture and place them in the 
context of the concepts presented in SectionÂ€6.2.1.

Facility The Meta-Object Facility (MOF) [OMG 2010b] is the basis of the OMG 
modeling architecture. The MOF specification defines an abstract syntax and 
a framework for the construction and handling of technology-independent 
metamodels, referred to as MOF-based metamodels. In addition to further OMG 
standards, such as the Common Warehouse Metamodel (CWM)  [OMG 2003], 
the UML metamodel can also be classified with the MOF-based metamodels. 
MOF is based on the concept of a four-layer modeling architecture presented in 
SectionÂ€6.6.1.

FigureÂ€6.6-2 shows the four-layer OMG modeling architecture. The left column 
uses the OMG standardized naming for the model levels. The middle column 
lists concrete models at each layer. For illustration purposes, here we also show 
a comparison to a known language architecture. The right column therefore as-
signs terms from the Java programming language to the corresponding layers.

The Meta-Object 
Facility

The four-layer 
modeling architecture 
of the OMG
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The specification of UML 2.0 has a much more modular structure than previous 
versions. To reuse defined packages and their elements, UML 2.0 specifies the 
Package Merge Algorithm [Zito et al. 2006], a complex transformation guideline 
for merging two packages. One central new feature of UML 2.0 in comparison to 
its predecessor version is the separation of the UML specification into infrastruc-
ture and superstructure. This separation enables you to reuse (using package 
merge) the infrastructure as a basis for other metamodels.

The Core package specified by the UML Infrastructure specification [OMG 
2007b] is the language core of UML. It was designed in such general and reus-
able terms that it can also be used as the core of other language definitions. 
FigureÂ€6.6-3 shows the use of the Core package both as a basis for the MOF 
specification and as a basis for the UML and CWM specification (Common Ware-
house Metamodel) [OMG 2003]. Together with the Profiles package, also defined 
by the infrastructure, it forms the Infrastructure Library (IL). Note that you can 

Figure 6.6-2: The four-layer modeling architecture of the OMG 
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use the IL in different modeling layers of the modeling architecture. The inclusion 
of the norming process for UML and MOF in version 2.0 thus follows the goal of 
completely uniting the core of UML and MOF based on a uniform set of basic 
concepts.

The UML Superstructure specification [OMG 2007a] is also based on the Core 
package of the infrastructure. Using the package merge algorithm, the sub-pack-
ages defined in Core merge with the packages defined by the superstructure. 
They are then refined to receive the special model elements that make up the 
language definition generally referred to as UML metamodel. Note that the UML 
superstructure only specifies the abstract syntax of the language. For notation, 
referred to as concrete syntax in SectionÂ€ 6.6.1, there are both graphical and 
textual variants that in turn are defined in separate specifications. One textual 
representation option is the XMI Standard [OMG 2007c]. The diagram types de-
scribed later in this section are a graphical notation variant.

The UML language constructs are designed very generically. Within domain-spe-
cific languages (see SectionÂ€6.6.3), modeling languages adapted to a specific 
application domain and reflecting the concepts of a specific domain as precisely 
as possible are often required. One option for realizing such a language is to 
adapt UML. We will outline the two basic options for adapting UML to specific 
usage purposes below.

One option for extending UML is a real extension of the UML metamodel. Here, 
you use the language means of the next higher metalevel for modeling, in this 
case MOF. By instantiating elements specified by MOF, you can define complete-
ly new model elements and also refine existing elements of the UML metamodel 
(using specialization). Note that the instantiation of MOF elements is in no way 

Figure 6.6-3: Usage of the Infrastructure Library in MOF and UML
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restricted only to the instantiation of the MOF metaclass Class—you can use all 
language means used to extend the UML metamodel. Due to the far-reaching ef-
fects on the metamodel, this form of extension of the language scope is referred 
to as a heavyweight extension.

With the definition of UML 2.0, the stereotype mechanism of the predecessor ver-
sion was extended to a more extensive profile mechanism. FigureÂ€6.6-4 provides 
a simplified illustration of the relevant section of the UML Superstructure [OMG 
2007a].

The core of the profile mechanism is the Extension (see FigureÂ€6.6-4). This spe-
cial association defines the metaclass that is extended through the stereotype 
specified as part of a profile definition. Profiles are special packages. You can 
profile a package by applying a ProfileApplication, a specialization of Package-
Import. This means that you can use the stereotype defined by a profile within 

Figure 6.6-4: Profile mechanism of UML 2.0: Relevant section of the UML Su-
perstructure. [OMG 2007a]

Profile mechanism of 
UML 2.0
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the profiled package. A Stereotype can have attributes referred to as tagged val-
ues. The only other language means available to the definition of profiles is the 
specification of constraints (see SectionÂ€6.6.1) for the new stereotype defined. 
In addition to the heavyweight extension of the metamodel presented above, the 
UML profile mechanism therefore also allows the addition of existing modeling 
concepts without any intervention in the metamodel. UML profiles are therefore 
referred to as lightweight extensions.

Each of the two extension mechanisms presented have their own specific advan-
tages and disadvantages that we will outline below. The goal of extending UML 
is always to create models conform to the extended metamodel. The functional 
requirement of specifying profiles and applying them to concrete models is real-
ized in most UML tools. Many UML tools also offer the option for verifying con-
straints specified by an applied profile. If the purpose of an extension of the UML 
metamodel is only the introduction of new terms (in the form of stereotypes), 
the profile mechanism is a suitable means. However, the power of expression 
of profiles, when compared to heavyweight extensions of the UML metamodel 
or the definition of an independent metamodel based on MOF, is very restricted. 
Many facts can only be formulated with difficulty and using complex, difficult to 
understand constraints. Here the use of so-called metacase tools is recommend-
ed, for example MetaEdit+ [MetaEdit 2010]. Metacase tools allow you to define 
your own metamodels based on a dedicated metametamodel. To a certain ex-
tent, you can assign a separate representation to every language element of the 
metamodel created. That is, you can define the concrete syntax of the language. 
This can be both graphically oriented and textually oriented. In the first case, for 
example, you assign graphical symbols to the language elements; in the second 
case, dedicated keywords.

The central philosophy of UML is “one model, different views.” This means that 
with UML, you can partly visualize different aspects of a system with a number 
of different diagram types. TableÂ€6.6-2 gives a short overview of the diagrams 
(UML views) of UML. The focus is on aspects important for architecture model-
ing, whereby there is a differentiation between static and dynamic aspects of the 
architecture. For a comprehensive overview with details of all notation elements 
and the specific UML terms, see [Booch et al. 2005].

One model, different 
views
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TableÂ€6.6-2: Architectural meaning of the UML diagrams

Diagram Shows Static/dynamic

Activity diagram Steps that run within a system to 
fulfill a specific task. With specifica-
tion of the building blocks involved

Dynamic

Use case diagram Use cases of a planned or existing 
system and the parties involved

Dynamic

Interaction overview 
diagram

The interactions that run between 
building blocks and when they run

Dynamic

Class diagram/compo-
nent diagram

Interfaces and relationships of 
building blocks

Static

Communication diagram Building blocks that collaborate or 
communicate

Dynamic

Composite structure 
diagram

Building blocks with regard to their 
interfaces and relationships as well 
as their internal workings

Static

Object diagram Internal structure of a building block 
at a specific point at runtime

Static

Package diagram Logical grouping of cohesive build-
ing blocks.

Static

Sequence diagram Communication processes be-
tween building blocks

Dynamic

Timing diagram States of building blocks dependent 
on the time

Dynamic

Deployment diagram Physical deployment of building 
blocks at runtime

Static

State machine diagram States of a building block and 
events that cause these states

Dynamic

TableÂ€6.6-3 shows how you can use UML to represent static and dynamic aspects 
of architecture views (see SectionÂ€4.2). It details which diagrams you should ide-
ally use for the respective architecture views of the common architecture view 
model from SectionÂ€4.2. 

FigureÂ€6.6-5 shows an example of a static UML diagram. It shows the logical 
view (see SectionÂ€4.2) of a multi-layered architecture. The diagram shows the 
main building blocks of an online ordering system together with its dependencies 
and relations. The architecture patterns Front Controller, Business Delegate, and 
Data Access Object [Alur et al. 2003] are used. Model elements that realize the 
corresponding roles of the patterns named are indicated by special stereotypes, 
which in an ideal case, are defined by a profile. In this example, the focus is on 

Example of a logical 
architecture view
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the building blocks and their relationships. Stereotypical dependency relation-
ships are used for notation, namely “uses” and “delegates”. To address the inter-
faces, you would usually create further diagrams that, with the help of further no-
tation elements (e.g., interface class or component), would represent the building 
blocks in more detail. A diagram should not represent too many aspects at once. 

Architecture view UML diagram

Requirements view Activity diagram
Use case diagram
Class diagram
Package diagram
Sequence diagram
State machine diagram

Logical view Activity diagram
Class diagram
Component diagram
Composite structure diagram
Package diagram
Sequence diagram
State machine diagram

Data view Class diagram
Component diagram
Package diagram

Implementation view Class diagram
Component diagram
Package diagram
Sequence diagram
Deployment diagram
State machine diagram

Process view Activity diagram
Communication diagram
Interaction overview diagram
Sequence diagram
Timing diagram

Deployment view Component diagram
Package diagram
Sequence diagram
Deployment diagram
State machine diagram

TableÂ€6.6-3: Representation of architecture views with UML
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This ensures that the power of expression of a diagram on specific points is not 
lost in a sea of different aspects.

Figure 6.6-5: Example logical view in UML
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6.6.3	�Domain-Specific Languages 

In this context, a domain is a restricted area of interest or knowledge that can be 
both functionally and technically motivated. Typical domains are, for example, 
embedded systems, insurances, financial service systems, but also software ar-
chitectures. The aim of a domain-specific language is to formally cover relevant 
properties for a respective domain and map them in the form of a suitable lan-
guage. The opposite of domain-specific languages (DSLs) are general purpose 
languages (GPL). These are languages that are designed so generically that 
they can be used for all applications and problems. Typical examples of GPLs 
are known 3GL programming languages such as Java or UML, as covered in 
SectionÂ€6.6.2.

The starting point for designing a DSL is the identification of the relevant con-
cepts of a domain as part of the domain analysis. The formation of an extensive 
concept is usually a suitable starting point, for example, in the form of an ontol-
ogy. One option for formalizing the knowledge provided by the domain analysis 
is to define a modeling language embedded in a (usually four-layered) modeling 
architecture. A DSL is usually specified in accordance with the considerations de-
tailed in SectionÂ€6.6.1, so in the definition of a metamodel (layer M2) conform to a 
metametamodel (layer M3). On this basis, you can then define concrete models 
(layer M1) that represent instances of a specific domain (layer M0).

In a brief excursion, we will look at some of the existing options for specifying a 
DSL in practice. We have already presented two such options in SectionÂ€6.6.2 
with the UML extension options discussed there. However, their practical use 
is dependent to a large extent on the implementation of the standard by the 
UML tools available on the market. These often place the aspect of language 
extension in the background. Due to the popularity of the Eclipse development 
environment [Eclipse 2010a], the Eclipse Modeling Framework (EMF)  [Eclipse 
2010b] is becoming increasingly interesting and important. It follows various 
OMG specifications of MOF and UML. EMF is a Java-based realization of a four-
layered modeling architecture. The Ecore Model can be seen as an equivalent to 
MOF that closes the hierarchy of EMF models in an upwards direction and thus 
represents the metametamodel of the modeling architecture. Furthermore, EMF 
offers generic editors and generators for creating and processing models, which 
also makes the use of EMF attractive in practice.

The term “domain-specific language” is very broad. In the MDSD context (see 
SectionÂ€6.2.6), the models formulated in a specific DSL are mostly reduced to 
the aspect of inputs for transformation tools and code generators. Note here that 
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code generation in no way represents the only use case of a formalization of do-
main-relevant concepts. In the context of domain architecture, the formal record-
ing of an architecture is therefore a suitable means if you want to “standardize” 
an architecture, for example, as part of a large project. The benefits extend from 
a precise means of documentation to the basis for the design of a product line of 
a system family based on this architecture (see SectionÂ€6.2.6). An architecture 
documented purely informally is not sufficient for this purpose, since the required 
precision is missing.

An architecture metamodel formally defines the building blocks that make up 
an architecture, their relationships to one another, and possible constraints that 
define when a system has a valid architecture and when it does not. A concrete 
architecture is therefore specified by instances of an architecture metamodel.

In this example, the means for describing the metamodel is UML, or more pre-
cisely, the UML’s notation. The use of the graphical notation of UML for specifying 
a metamodel has already been used as part of the introduction of MOF. The Ob-
ject Constraint Language [OMG 2010a] is also often used to precisely formulate 
the constraints specified in this example in the form of simple notes. At this point 
we should highlight again the big difference between DSLs and UML. UML is not 
specialized to specific domains and you can therefore use it for a broad range 
of areas, in contrast to DSLs. The price for this flexibility is a loss of precision. 
Compared with DSLs, UML also has restricted analysis and simulation options 
as well as possible misunderstandings with regard to the semantics of a model.

Describing the architecture of a system using a DSL suitable for the architec-
ture has some advantages. For example, the communication across the system 
or architecture is clearer because the concepts are clearly defined. Ultimately, 
an architecture metamodel is a type of structured glossary that represents an 
important part of an architecture documentation. The requirement to create an 
architecture metamodel helps you to achieve clarity about the architecture—the 
formalization forces this. The approach is also appropriate for a technology-free 
architecture definition. It avoids defining realization technologies too early. The 
procedure also paves the way for automation in software development (see Sec-
tionÂ€6.2.6).

6.6.4	�Architecture Description Languages

Architecture Description Languages (ADLs) [Shaw and Garlan 1994] are a spe-
cial case of a technically motivated domain-specific language. The domain here 

Architecture 
metamodel

Reference to UML

Consequences

Precise 
representation of 
architecture



254 6â•… Architecture Means (WITH WHAT)

is software architecture. ADLs therefore specialize in the precise representation 
of architectures even before a system is implemented [Shaw et al. 1995]. They 
thus support architecture-based software development. With ADLs and corre-
sponding tools, you can design, analyze, and simulate an architecture. In particu-
lar, you can determine whether the architecture meets the existing requirements 
in such an early phase. With ADLs you try to increase the extent to which archi-
tectures can be understood and reused and to achieve better analysis options in 
this area [Shaw et al. 1995]. ADLs are distinguished by [Opengroup 1999]:
>	 �A formal representation of architecture using textual and graphical notations 

at a very high level of abstraction.
>	 �Legibility for man and machine.
>	 �Analysis options for various architecture aspects such as completeness, 

consistency, performance, etc.
>	 �Partial support for automatic code generation.

ADLs are still in the development stage and far away from being standardized. 
This is shown by the following points [Opengroup 1999]:
>	 �There is no common agreement on which architecture aspects ADLs should 

document and which ADLs are most suitable for specific problems.
>	 �There is no clear distinction from other means such as formal specifications 

or simulation languages [Medvidovic and Taylor 2000].
>	 �There is no one standard ADL, rather a series of ADLs that are concerned 

with different architecture aspects and domains.
>	 �The different ADLs each have very different structures and the power of their 

analysis or simulation tools is also very different.
>	 �ADLs are still a research topic at universities and are only rarely used com-

mercially. They tend to be geared towards academic purposes with no refer-
ence to commercial use.

>	 �The notations of the different ADLs are difficult to process and are not sup-
ported by commercial development tools.

>	 �ADLs specialize primarily vertically in the analysis of specific architecture 
aspects.

>	 �Some ADLs can be directly translated into code—for others the implementa-
tion of the specified architecture is still open.

In the course of this section we will discuss the common characteristics of ADLs. 
Following [Medvidovic and Taylor 2000, ADML 2002], TableÂ€6.6-4 gives an over-
view of existing ADLs and their principle uses.
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TableÂ€6.6-4: Overview of ADLs

ADL Description

ACME Developed (as a number of other ADLs) at the Carnegie Mellon Univer-
sity (CMU) as part of the ABLE project (Architecture Based Languages 
and Environment) [ABLE 2009]. Focuses on static architecture aspects 
and tool-supported interchangeability of architecture documentation 
between different ADLs. Can be used as the basis for new tools of this 
type

ADML Developed by The Open Group. Based on ACME and introduces an 
XML-based and therefore standardized form of representation

Aesop Developed at CMU. Support for hierarchy-based architecture styles in 
the specification of architectures

C2 SADL Developed at the University of California. Development of architectures 
for distributed and dynamic systems

Darwin Similar direction to C2, but with a stricter formalism in the description of 
dynamic aspects

Koala Developed by Philips. Development of product line architectures for the 
embedded area

MetaH Developed in Honeywell Labs. Development of architectures for the 
navigation systems domain

Rapide Developed at the University of Stanford. Modeling and simulation of the 
dynamic behavior of distributed, object-oriented systems

SADL Developed at the System Design Laboratory of SRI. Definition and 
formal analysis of architectural hierarchies

UniCon Developed at CMU. Generation of connectors for existing components 
using widespread interaction protocols

Weaves Development of architectures for systems with realtime processing of 
large data volumes

Wright Developed at CMU. Support in the area of connectors. Specification 
and analysis of protocols

What all ADLs have in common is that they focus on component-based architec-
tures and at the core, are concerned with the architecture aspects illustrated in 
FigureÂ€6.6-6 [Medvidovic and Rosenblum 1997, Garlan et al. 2000]:
>	 �Components: The definition of a component contains the syntactic and se-

mantic specification of functional and non-functional aspects of a building 
block using interfaces. Both the interfaces exported by a component and the 
imported interfaces required are described. The data and data integrity of 
components are also described. The understanding of a component here is 
based largely on the definition introduced in SectionÂ€6.2.3.

>	 �Connectors: Components communicate with one another using connectors 
that define how and according to which rules components interact with one 
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another. Connectors can represent various communication technologies 
(e.g., RPC, HTTP, or Unix Pipes).

>	 �Architecture configuration: The architecture configuration describes the ar-
chitectural structure by defining which components are connected via con-
nectors and how they are connected.

With regard to the component diagrams of UML in version 2.0, we can observe 
a merging with concepts of ADLs. Therefore, as a pure documentation means, in 
practice UML is generally preferred over ADLs. However, ADLs support a series 
of static (at compile time) and dynamic (at runtime) analyses. The objects of such 
analyses can be, for example:
>	 �Compatibility (typing, syntax, and behavior) of the interfaces of components 

of a configuration.
>	 �Degree of fulfillment of specified restrictions.
>	 �Performance, security, stability, and reliability aspects of the architecture.
>	 �Compliance with architecture guidelines.

FigureÂ€6.6-7 shows the architecture configuration of a very simple client/server 
example, presented in a box and line diagram. The component Customer uses 
the component Database access via an RPC connector.

The following example code shows the formal definition of the architecture con-
figuration presented above in the ADL ACME [Garlan et al. 2000]. The prereq-
uisite is that the components and RPC connector used here have already been 
defined formally at another point. Firstly two components (Customer and Data-
base access) are declared. The component Customer (client) receives a send 
request port and the component Database access (server) receives a receive 
request port. Then a connector (RPC) with the roles caller and callee is declared. 

Figure 6.6-6: ADL core concepts

Figure 6.6-7: Simple client/server example with ADL
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Finally, the two components are connected (attachments) via the connector by 
associating the ports with the corresponding roles of the connector.

System ExampleSystem = {

  Component customer = {Port send-request}

  Component databaseAccess = {Port receive-request}

  Connector rpc = {Roles {caller, callee}}

  Attachments : {

		  customer.send-request to rpc.caller;

		  databaseAccess.receive-request to rpc.callee

	  }

} 

ADLs define a metamodel that you can use for architectures generally and pro-
vide means for modeling an architecture. As always, if you look for a generic 
solution to a problem, the solution is usually rather unspecific. ADLs are therefore 
rarely used in practice. There is a recognizable trend that ADLs are becoming 
increasingly specific for certain domains. Examples are the EAST ADL for de-
scribing the architecture of software on (vehicle) control units [EAST 2005] or the 
EDOC profile for distributed enterprise applications [OMG 2005].

6.6.5	�Unified Method Architecture

The development and introduction of software systems covers typical core dis-
ciplines (requirements engineering, analysis, design, implementation, and test), 
(architecture) activities, (architecture) actions, as well as a series of overarching 
tasks that can be found completely in almost every software project (see Sec-
tionÂ€8.1). A structured and planned procedure is essential, particularly in larger 
projects.

The structuring of the procedure addresses two central topics, called develop-
ment process and method content (or in abbreviated form process and content) 
in the context of OMG [OMG 2008c]. Method content is a defined procedure for 
executing specific activities. It can thus be regarded as a “recipe” or “procedure 
guide.” Method content reflects the „best practices“ gained from experience for 
a specific activity, for example, the creation of a use case model, and provides 
them in the form of a procedure guide. In contrast, a development process struc-
tures individual disciplines and activities and places them in relationship to one 
another. In particular, the development process thus defines a chronological se-
quence and refers to the lifecycle of a project. We will illustrate the conceptual 
separation of content and process using an example. The above-mentioned ex-
ample activity of creating a use case model will be part of the development pro-
cess in a number of projects executed both according to the waterfall model and 
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projects executed iteratively. With regard to the method applied, i.e., the content 
applied, the activity will only be marginally different, if at all. The difference is 
that in projects executed according to the waterfall model, this activity typically 
happens once during the analysis phase; in projects executed iteratively, the use 
case model to be created is refined repeatedly and step-by-step in the course of 
different phases.

In the context of OMG, a method is the aggregate of content and process. There 
are a series of commercial and open methods, such as the Rational Unified Pro-
cess [Kruchten 2000], the V-Modell 97, the V-Modell XT [V-Modell XT 2009], or 
the Open Unified Process [Eclipse 2010c]. In these examples the time structur-
ing aspect of the method, i.e., the process, is more strongly accentuated than the 
method content.

The generally prescriptive description of a method maps from an original (the ac-
tual method applied), abstracts from irrelevant details, and is subject to a certain 
pragmatism. It can therefore also be perceived as a model, referred to as method 
model below (see SectionÂ€6.6.1). If we consider the basic concepts of model 
creation introduced in SectionÂ€6.6.1 again, here we arrive at the concept of the 
method metamodel. A method metamodel defines general terminology and se-
mantics for describing concrete methods. For a long time, method metamodels 
existed only in the minds of the process engineers or in the form of a hard-coded 
implementation in mostly proprietary tools. However, in order to be able to guar-
antee interoperability between different method models, a standardized method 
metamodel and thus embedding in an existing modeling architecture (see Sec-
tionÂ€6.6.1) is necessary. FigureÂ€6.6-8 shows the classification of the concepts 
introduced in this section in the OMG modeling architecture (see SectionÂ€6.6.2). 
We will look at the example method metamodels (UMA and SPEM) shown in 
FigureÂ€6.6-8 later on in this section.

As far back as 2002, OMG tried to standardize a method metamodel with the 
specification of the Software Process Engineering Metamodel (SPEM) [OMG 
2008c]. In versions 1.x, SPEM was specified as both an independent metamodel 
based on the UML superstructure and as a UML profile (see SectionÂ€6.6.2). The 
underlying basis in both cases was UML version 1.4. SPEM version 1.x was, 
however, largely unaccepted, meaning that only a few, mainly commercial, im-
plementations were produced. Since UML 2 has increasingly established itself, 
the desire to use the new features of UML 2 for SPEM as well was quickly rec-
ognized. The Unified Method Architecture (UMA) [Haumer 2005], a standardized 
method metamodel from IBM, addresses some of the weaknesses of SPEM in 
versions 1.x. Just like the adaptation to UML 2, it also influences the SPEM 2.0 
specification decisively [OMG 2008c]. UMA is implemented as part of the freely 
available Eclipse Process Framework (EPF) [Eclipse 2010c] and the Rational 
Method Composer (RMC), a commercial tool from IBM. EPF and RMC provide 
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the functionality for modeling concrete methods based on UMA. You can then 
export these methods in various output formats (for example, HTML) and pro-
vide them to the development team. In this context therefore, you use method 
metamodels as documentation means.

SPEM and UMA can be considered as special DSLs (see SectionÂ€6.6.3).  The 
language constructs of these DSLs stem from the functional domain “Methods 
for developing software systems.” Later in this section we will briefly present 
the implementation of the domain-specific language constructs as heavyweight 
extension of the UML metamodel (see SectionÂ€6.6.2) using a few selected ele-
ments of UMA.

The basic philosophy of a separation of method content and development pro-
cess is also reflected in UMA. A model element is therefore either a building block 
for modeling method content or a means in the specification of processes or pro-
cess building blocks. The only exception is the element Guidance, which enables 
the formulation of support and guidelines. These can be used in the method 
context and in the process context. The distinction of the language constructs 
of UMA as method or process building blocks is realized via the object-oriented 
concept of generalization. MethodElement or ProcessElement are thus the root 
elements of the inheritance hierarchies shown in FiguresÂ€6.6-9 and 6.6-10.

Figure 6.6-8:â•‡ Classification of method model and method metamodel in the 
OMG modeling architecture
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Figure 6.6-10: UMA language constructs for modeling development processes 
(extract)

Figure 6.6-9: UMA language constructs for modeling method content (extract)
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Method content enables you to model procedure guides for realizing specific 
development goals. FigureÂ€6.6-11 expresses the central relationships between 
the three language constructs Role, Task, and WorkProduct for the definition of 
a method. These three language constructs form the core concept of a method 
specification.

A Task defines work to be performed by a specific Role. A task has a performing 
role (performedBy) as well as any number of additional processing roles (addi-
tionallyPerformedBy). You can assign input and output WorkProducts to a task. 
They are classified as optional (optionalInput) or necessary (mandatoryInput). 
Every task has a clearly defined goal and provides a step-by-step instruction in 
the form of all steps necessary for achieving the goal. A WorkProduct represents 
an abstraction of those elements that are created, required, or modified by tasks. 
Since project participants perform tasks in a specific role (naturally, one project 
participant can take on several roles), roles use work products to perform their 

Figure 6.6-11: Relationships between the UMA language constructs Role, Task, 
and WorkProduct
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tasks or create them during a task. UMA also assigns a responsible role to every 
work product.

You can use activities and process building blocks to structure contents and 
place them in relationship to one another. Activities and process building blocks 
define when the basic tasks defined as content are to be performed as part of 
a project-specific development process. In UMA, the hierarchical structure of 
all work packages and sub-tasks of a project are referred to as the WorkBreak-
downStructure (WBS). In the context of project management, the WBS is some-
times also referred to as the project structure plan (PSP). FigureÂ€6.6-12 shows 
the core of the relevant extract of the UMA specification with regard to the WBS. 
It shows the option of a hierarchical structure of activities and subclasses (not 
shown in the graphic) of the BreakdownElement class defined as abstract.

You integrate content into the WBS using descriptors. FigureÂ€6.6-13 shows this 
using the example of the method element Task. The indirection introduced by 
the descriptor concept enables you to adapt method content to special activi-
ties individually, for example, via the selection of the steps to be performed in a 
specific context.

Figure 6.6-12: Hierarchical structure of project activities in UMA
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6.6.6	�Summary

>	 �A modeling language is the aggregation of concrete syntax, abstract 
syntax, and static and dynamic semantics. The abstract syntax is mostly 
specified by a metamodel. The terms “well-formedness criteria” and “con-
straints” are also used as synonyms for static semantics.

>	 �Models are noted in a concrete syntax, are given meaning by the seman-
tics of the modeling language, respect the well-formedness criteria, and 
conform to a dedicated metamodel.

>	 �A metamodel is a special model for defining the abstract syntax of a model-
ing language. In particular, you specify the types of model elements as well 
as their possible relationships to one another. Models are also known as 
instances of the related metamodel.

>	 �The cascade of sequential abstraction through the creation of a metamod-
el opens up a hierarchy of modeling layers and is referred to as modeling 
architecture.

>	 �Four-layered modeling architectures are well-established in software de-
velopment. The most prominent representative is the OMG modeling ar-
chitecture with MOF as the uppermost metamodel, in this case also re-
ferred to as metametamodel.

>	 �UML is a special modeling language. The UML infrastructure is the core 
of MOF and the UML superstructure. The UML superstructure specifies 
the UML metamodel. UML diagrams are an option for the notation of UML 
models.

Figure 6.6-13: Integration of method content using the Task example
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>	 �Using the UML profile mechanism or a real metamodel extension, you can 
adapt and extend the language scope of UML to meet specific needs.

>	 �Like UML, domain-specific languages (DSLs) are special modeling lan-
guages. You can use them to describe the relevant concepts of a specific 
functionally or technically motivated domain precisely.

>	 �Architecture description languages (ADLs) are special DSLs used to de-
scribe the architecture of applications precisely.

>	 �Unified Method Architecture (UMA) is a special DSL and is used to specify 
methods. In this book, analogous to the OMG terminology, methods are 
considered as the aggregation of method content and development pro-
cess.

6.7	� Architecturally Relevant Technologies

This section covers some categories of technologies that are used in modern 
software architectures and therefore belong to your software architect’s “tool-
box.” In detail we will discuss communication middleware systems, databases 
and persistence of business objects, data exchange and data transformation 
with XML, web application servers, component platforms, and web services. Fig-
ureÂ€6.7-1 gives an overview of the technologies covered.

The technologies specified provide a “general” infrastructure in many software 
architectures. Of course, this is still only a small selection of technologies. There 
are many basic technologies that are very important for many architectures but 
including them would exceed the scope of this section: for example, compilers 

Figure 6.7-1: Overview of architecturally relevant technologies

Overview
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or virtual machines. There are also many specific technologies, for example, 
content management systems or enterprise resource planning systems (ERP).

6.7.1	�Middleware Systems

We have already addressed middleware as a basic architecture in SectionÂ€6.4. 
We will now discuss some examples of important middleware systems in more 
detail. They are: transaction processing monitors, RPC and OO-RPC systems, 
and message-oriented middleware. We will also give a brief overview of other 
systems. Later on we will discuss web services. These are a special case be-
cause although they realize middleware basic architecture, they also support the 
more extensive SOA basic architecture.

6.7.1.1	� Transaction Processing Monitors

Transaction processing monitors (TP monitors) are one of the oldest forms of 
middleware. They provide an infrastructure for developing, running, and control-
ling distributed transactions.

Transaction processing monitors can efficiently map a number of client requests 
on servers or databases. Many of them support a series of communication styles, 
such as RPC, publish/subscribe, and message queues.

The concept of the transaction was developed in the database environment. 
Transactions should usually have a set of properties (so-called ACID properties):
>	 �Atomicity: A transaction is treated as an inseparable unit and is either pro-

cessed completely or not at all.
>	 �Consistency: When a transaction finishes, the system must be in a consis-

tent state.
>	 �Isolation: The behavior of a transaction must not be influenced by other 

transactions.
>	 �Durability: Once a transaction has been completed, changes are permanent 

or persistent—they can thus even survive the system crashing.

A distributed transaction covers more than one distributed resource. RPC treats 
all calls as if they were independent of one another. In contrast, transaction pro-
cessing monitors allow the user to group a series of calls in one transaction. You 
can also realize distributed transactions through a two-phase commit protocol 
(2PC, see also [Gray 1978]). This protocol guarantees the ACID properties for a 
transaction and supports the distributed synchronization of several transaction 
resources.

ACID properties

Two-phase commit
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One of the first transaction processing monitors was the Customer and Control 
System (CICS) from IBM [IBM 2003]. It was developed in the late 1960s and is 
still used today. Other known commercial transaction processing monitors are 
Tuxedo from Oracle [Oracle 2011d] and the Microsoft Transaction Server (MTS), 
which is now integrated into the Microsoft COM+ Component Services [Microsoft 
2010].

6.7.1.2	� RPC and OO-RPC Middleware

RPC and OO-RPC middleware systems use the RPC distribution style described 
above to call procedures or methods (hereinafter referred to uniformly as “opera-
tions”) in a distributed way. Distributed calls should, as far as possible—but not 
further—look like local operation calls. Internally, RPC and OO-RPC systems are 
realized in a very similar way. The main difference is that OO-RPC also supports 
object-oriented abstractions, in particular such as object identity, but also class 
and inheritance relationships.

RPC implements the client/server model as follows: clients call operations; serv-
ers accept operation calls. The server provides a set of operations that the client 
can call distributed.

From the client view, RPC operations look identical to local operations: they also 
have an operation name, parameters, and a return type. One considerable dif-
ference is that there can be additional error messages, for example, because the 
network fails, or the server has not implemented a called operation. The client 
must be informed of these errors—that is, the client must be able to process 
them.

In a typical case, the client process is blocked until the response to the opera-
tion call has been returned by the server. This synchronous type of RPC is the 
standard case in most RPC systems. Some RPC systems also support asyn-
chronous RPC. In this case, the client does not block and continues its work 
immediately after the request. Usually there are different types of asynchronous 
operations—including those that return a result and those that do not (so-called 
one-way operations).

Early, popular RPC systems are the Distributed Computing Environment (DCE) 
[OSF 1991] and Sun RPC [Sun 1988]. These already implement the typically 
simple way of calling RPC operations: the server registers a procedure as a 
so-called endpoint in the server application and registers this service in a direc-
tory server—which may run on a different computer. The client can now find this 
service using the directory server. In the future the client uses the endpoint to 
actually call the distributed procedure.

Transaction 
processing monitors: 
Products

RPC/OO-RPC 
middleware systems

Synchronous and 
asynchronous RPC

Procedural RPC 
systems



2676.7 Architecturally Relevant Technologies)>>

DCE primarily arose as a procedural RPC. It does have an enhancement to 
support distributed objects though. Today, however, there are many OO-RPC 
middleware systems that have been designed specifically for this purpose. Ex-
amples are:
>	 �Common Object Request Broker Architecture (CORBA) [OMG 2008a]
>	 �Microsoft’s .NET Remoting [Microsoft 2009]
>	 �Various web service frameworks (see the section on web services below)
>	 �Microsoft’s DCOM [Grimes 1997]
>	 �Sun’s Java RMI [Grosso 2001]

For a deeper understanding of this type of middleware system, we recommend 
the book Remoting Patterns [Völter et al. 2004]. It discusses the fundamental 
design and architecture patterns of RPC and OO-RPC middleware systems.

6.7.1.3	� Message-Oriented Middleware

Message-oriented middleware (MOM) systems use the message metaphor to re-
alize asynchronous, distributed communication. Neither the client nor the server 
send or receive requests, responses, or other message types directly. Instead, 
they place them in, or expect them from, message queues. This means that 
instead of blocking, in the standard case the clients continue their work immedi-
ately after sending a message.

Results are either:
>	 �Returned by a callback (an operation called asynchronously as an event), or
>	 �Obtained by the client by means of request to the message queue (so-called 

“polling”).
>	 �Both variants are asynchronous. It is therefore essential that the client can 

assign a specific response to a previous request, since the responses do 
not necessarily arrive in the same order in which the requests were sent. 
Responses are usually assigned to requests by means of a unique identifier 
that is sent with the request and that is returned with the response (a so-
called “correlation identifier” [Hohpe and Woolf 2003]).

MOM systems typically support several message channels as a connection be-
tween specific senders and specific receivers. Each of these channels has its 
own send and receive message queues. Client and server applications typically 
do not interact directly with message queues or message channels. Instead, they 
use so-called endpoints as abstractions—these take over all interaction with the 
MOM system.
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MOM systems also have some distinguishing properties. Typically, these are:
>	 �Messages are reliably transmitted. This means that a temporary breakdown 

in system resources, such as the network or the server, can be tolerated.
>	 �The sequence of delivery and receipt of messages can be guaranteed.
>	 �If a message still cannot be delivered after a long time, it can be removed 

from the MOM system automatically if you set an expiration time.
>	 �The MOM system automatically recognizes and processes messages sent 

twice erroneously.

The MOM concepts are implemented in a series of middleware systems. Exam-
ples are IBM WebSphere MQ (previously MQ Series) [IBM 2004], JMS [Oracle 
2011b], Microsoft MSMQ [Microsoft 2011], and TIBCO Enterprise Message Ser-
vice [TIBCO 2011].

For a deeper understanding of MOM systems, we recommend the book Enter-
prise Integration Patterns [Hohpe and Woolf 2003].

6.7.1.4	� Further Middleware Systems

The three types of middleware systems discussed in more detail (transaction 
processing monitors, RPC systems, and MOM systems) are relatively wide-
spread today and are commercially accepted. However, there are a number of 
other middleware systems that are also frequently used or are still being devel-
oped. We will give a brief overview of these systems here (for a more in-depth 
discussion, see the book Remoting Patterns [Völter et al. 2004]):
>	 �Peer-to-peer systems (P2P) are different to other distributed architectures in 

that they are not based on the client/server style or n-tier architecture style. 
In contrast, they are based on a network of equal peers that communicate 
with one another and coordinate each other. Internally, many P2P systems 
are realized with distributed objects. Examples of P2P systems and projects 
are: Napster [Roxio 2003], SETI@home [Anderson et al. 2002], and JXTA 
[Sun 2003].

>	 �Closely related to P2P systems are spontaneous networks. They allow you 
to offer and remove any services in the network at any time. You can use 
spontaneous networks as an infrastructure to implement a P2P network. 
One example of a spontaneous network is Jini [Jini 2007].

>	 �The aim of Grid Computing [Foster et al. 2001] is to use distributed resourc-
es, such as computer performance, information, or memory together. A net-
work of connected computers is merged to one system.

>	 �Mobile Code [Fugetta et al. 1998] is different to other middleware approach-
es in that it sends not only requests and results—i.e., data—but also code. 
Code can thus be provided by the client and executed in the local context of 
the server. This has the advantage, for example, that clients can influence 
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the calculation guidelines but the data for a calculation still does not have to 
be sent completely via the network.

6.7.2	�Databases and Persistence of Business Objects

Databases are often an important part of the software architecture. Our aim here 
is not to provide an introduction to databases but to give an overview of the archi-
tecture requirements of persistent data management. We will therefore discuss 
the typical problems and technological solution options when using database 
technologies to manage business objects persistently. In general, persistence 
means that you transfer data from volatile storage (often also denoted as tran-
sient storage or representation), such as the main memory (RAM), to permanent 
storage media, such as hard drives or optical storage media. The aim of this is to 
store business data “securely” and, if necessary, update it for changes accord-
ingly.

Another important problem that leads to persistent data management is that the 
memory requirements of many programs considerably exceed the main memory 
available. In general we can say that the slower a memory is, the cheaper it is. 
You therefore try, as far as possible, to replace expensive main memory with 
cheaper storage options, such as hard drives, optical storage media, or tape 
storage. The persistent storage of business objects is usually based on a data-
base, i.e., storage on hard drives. However, there are also other forms of “se-
cure” storage of business data. For example, for large volumes of data, optical 
storage media with so-called “jukeboxes” are used. Today these allow access to 
an almost unlimited volume of data, but they are considerably slower than hard 
drives.

In addition to the basic persistence requirement that a database must satisfy—
i.e., its main functionality—there are a number of other requirements that can be 
placed on the database or the database management system:
>	 �In many systems a number of requests can be submitted to a database at 

the same time. Therefore, good performance and scalability are necessary.
>	 �Since the database is a central part of the IT architecture, high availability is 

also an important point.
>	 �The database should support transactions. Here we differentiate between 

short-running transactions, such as a series of requests, and long-running 
transactions, such as a workflow with human interactions. In long-running 
transactions, the above-mentioned ACID properties can sometimes be diffi-
cult to maintain. Therefore, these have to be supported specially, i.e., gener-
ally not only by the database but also by application logic.

Persistence 
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>	 �A database should support the security of the data and be able to manage 
different security rights, for example, with a user and/or role concept.

>	 �The simplicity of the access to the data is important in order to be able to 
understand the data models and access the data easily. In particular, this 
also means that it must be possible to map the data models and access 
structures on the application architecture easily.

>	 �The database should provide a maintenance interface for the administration 
and control of the database.

Another problem is that in many projects today, development is on an object-
oriented basis but the predominant databases are based on relational data mod-
els. In other words, you have to decide whether you want to use the more usual 
relational database management system (RDBMS) or, as a result of the object-
oriented nature of the application, you want to use an object-oriented database 
management system (OODBMS). Note that this problem occurs not only with 
object orientation but also with other programming paradigms, such as procedur-
al programming, logical programming, or aspect orientation. For each program-
ming paradigm, you have to think about how to map the data to the database in a 
meaningful way. The following are examples of options that are always possible:
>	 �The database is capable of mapping data abstractions and relationships of 

the programming paradigm itself.
>	 �The database supports abstractions other than the programming paradigm. 

This situation is known as a structural break that you have to react to. This 
means that you have to consider how you can map the application model to 
the database model.

Now we will look at the solution options for the example of persistence of object-
oriented business objects more precisely. If you store object-oriented business 
objects, you generally want to map their properties, such as object relationships, 
object identity, class relationships, inheritance, polymorphism, etc., to the stor-
age in the database. Here an OODBMS offers the advantage that it already 
maps object-oriented properties. This means that mapping the object-oriented 
models in the programming language is very simple. However, the serious disad-
vantage of OODBMS systems is that they are used considerably less often than 
relational database systems. Since databases are mostly extremely important 
for enterprises, in many projects the risk of selecting an OODBMS system is 
considered to be too great.

In contrast, storing business objects in relational databases often leads to the 
above-mentioned structural break: the relations in tables and relationships are 
mapped using foreign keys. This model must be mapped to the object-orient-
ed model with its relationships, hierarchies, and identities. This mapping is not 
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unique and there is therefore a whole series of approaches for object-relational 
mapping [Keller 1997].

One simple approach is to embed the SQL code for the access to the database 
in the application logic. However, this has serious disadvantages: you have to 
change the application logic code for even simple data changes. The aspect 
“persistence” is distributed across the whole program meaning that central 
changes are difficult. Therefore, it is generally recommended that you introduce 
at least separate “data classes”—their task is to handle database accesses and 
they are independent of the application logic.

However, a lot of tasks for database access are recurring. To overcome this situ-
ation, a separate database access layer is frequently introduced. This encapsu-
lates all requests to a database and cannot be circumvented. It is where object-
relational mapping takes place. The database access layer often consists of two 
layers itself [Keller and Coldewey 1998] (see FigureÂ€6.7-2): a logical access layer 
provides a stable interface for the application layer; a physical access layer be-
low that establishes the actual access to the database and you can, for example, 
modify it for performance reasons or for changes to the database version.

Many languages have standard libraries for the database access. Java, for ex-
ample, has JDBC (Java Database Connectivity)—a library for access to rela-
tional databases. In general, JDBC offers functions for establishing the connec-
tion to a database, the use of SQL instructions for so-called CRUD operations 
(create, read, update, delete), and the evaluation of the results. An advantage 
of this type of standard library is, at least primarily, the independence from the 
database implementation. However, the database programming is still at a very 
low level here, and developers need to have precise knowledge of SQL and have 
to resolve all technical details of the persistence.

Figure 6.7-2: Database access layer. [Keller and Coldewey 1998]
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Many languages also have more extensive standard libraries that enable trans-
parent persistence of the objects. This functionality is known as object-relational 
mapping (ORM). It means that the developer only has to configure the persis-
tence (which objects have to be kept persistent, where the data is stored, etc.) 
and all other persistence tasks are taken over automatically. Examples in Java 
are the Java Persistence API (JPA) in EJB 3, Hibernate, and Java Data Objects 
(JDO).

6.7.3	�XML and Other X Standards

The smooth exchange of structured data and the transformation of this data are 
of enormous importance for many information systems.

With the appearance of the Internet, the description, exchange, and process-
ing of structured data was carried out more and more based on web protocols. 
HTML—the language with which web pages are described in WWW—is, how-
ever, not suitable for representing structured data. Therefore, the eXtensible 
Markup Language (XML) [Bray et al. 1998] was developed with the aim of pro-
viding a flexible, extensible, and simple standard for structured data exchange on 
the Internet. XML allows you to describe information in a structured way. It is not 
a standard itself for exchanging and processing data in enterprises. It merely al-
lows you to define XML-based exchange formats and exchange standards using 
a document type definition or an XML schema (see below). XML can therefore be 
extended flexibly. It is also very simple to transform proprietary data formats into 
XML formats and vice versa. This is important for integrating legacy systems that 
often use proprietary data exchange formats. Another important advantage of 
XML is that it has now become very widespread on many platforms, languages, 
and systems. It is now also used for many other tasks: for example, domain-
specific languages are described based on XML, configuration and delivery de-
scriptors are formulated, semantic information is added to the Internet based on 
XHTML, object serialization is implemented, etc.

You can use a document type definition (DTD) to specify the structure of XML 
documents. DTDs are easy to understand and validators for DTDs are wide-
spread and efficient. However, DTDs have some disadvantages: in particular 
they are not XML documents themselves and therefore you cannot edit them 
using XML tools. The possibilities for data specification are also limited: for ex-
ample, you have no built-in language means for specifying data types.

The XML schema standard [W3C 2004] aims to solve these problems. Every 
schema is a valid XML document and XML schemas allow typed data based on 
primitive and self-defined data types.
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The definition of the data formats—in DTDs or schemas—is particularly impor-
tant for complex applications.

Beyond these basic elements of the XML language there are many other stan-
dards that complete XML in different areas. We will list a few central standards 
that are generally important briefly here:
>	 �XML namespaces are used to differentiate between names in different con-

texts. This allows the developer to select the name without naming conflicts 
occurring in the case of common use of two documents developed inde-
pendently of one another (because both documents specify their names 
uniquely in the context of their namespace).

>	 �XHTML is an XML variant of HTML. It has the same presentation-oriented 
properties as HTML, but in the XML sense is well-formed (for example, ev-
ery opening tag must also have a closing counterpart).

>	 �XLink is a linking mechanism for XML documents. Its links far exceed the 
links known from HTML. For example, you can link to a number of docu-
ments and specify traversals.

>	 �XPath is a language for localizing and extracting information within an XML 
document.

>	 �XSLT allows you to generate any documents from XML documents. It is 
used most frequently in practice to transform XML documents. In XSLT, 
XPath is used to specify XML structures.

>	 �XQuery is an SQL-like query language for queries to XML documents.
>	 �The Resource Description Framework (RDF) is an XML language that al-

lows you to specify metadata via web resources. Under some circumstanc-
es this metadata can be described in an ontology language.

This is just a small extract of the multitude of XML standards. As well as these 
general standards, there are many more domain-specific or industry-specific 
XML languages.

In addition to the XML languages, there are many standards, de facto standards, 
and APIs for processing XML, such as:
>	 �SAX—a programmatic API for processing XML
>	 �DOM—a document tree-based API for processing XML
>	 �Redland—an API for access to RDF data

We explained XML here as an example of a standard for the definition of data 
exchange languages due to the fact that it is very widespread. There are many 
other languages and formats. It often makes sense to use XML. The central 
advantages are that XML is simple, flexible, and extensible. However, there are 
also some disadvantages. As a result of its properties, XML needs quite a lot of 
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memory space (or bandwidth for data exchange). This is because it uses mean-
ingful tags and mostly a presentation that can be read directly by human beings. 
In some cases, the string processing during parsing and interpretation of XML 
can also lead to performance problems. Furthermore, XML itself is very simple, 
but some XML standards are already very complex. These reasons might indi-
cate that a proprietary format is more suitable for certain tasks than XML. The mi-
gration to XML, particularly in legacy applications, can cause considerable costs.

6.7.4	�Dynamic Web Pages and Web Application Servers

Today, almost all (larger) websites require web pages to be created dynamically. 
This means that data is created dynamically or retrieved in a web request by 
a back-end, such as a database or legacy application. These results are then 
formatted with HTML and then delivered. Using web requests (for example, trig-
gered by clicking a link in the browser) or HTML forms, you can change the data 
in a back-end from a browser. These changes must be written back to the back-
end.

To enable such dynamic interactions in the web, there must be a program behind 
the web page that creates the page dynamically from the current data of the 
back-end, and, if necessary, performs changes to the back-end. A web server 
that enables this is known as a web application server.

There are a number of technologies and architectures that you can use to in-
tegrate server-side programs in a web server architecture. These have various 
advantages and disadvantages:
>	 �The CGI interface (Common Gateway Interface) is one of the earliest tech-

nologies still used that is supported by practically every web server. When a 
web request comes in, a process that executes a “little program” is started 
dynamically. Scripting languages such as Perl or Tcl are often used to do 
this, but you can use any programming language. The program receives the 
request parameters via environment variables. The new process for every 
request can however lead to performance problems and high resource con-
sumption. Fast CGI is a CGI extension that uses multi-threading to avoid 
this problem. However, there is still the general problem of CGI that “larger” 
interactions, such as a complete business transaction, are mapped using 
many small programs that are not connected to one another. This means 
that complex CGI architectures are difficult to understand and maintain.

>	 �There is a series of template languages that embed program text in HTML 
pages and allow it to be replaced by the application server dynamically. Ex-
amples are PHP, ColdFusion, Active Server Pages (ASP), and Java Server 
Pages (JSP). In these languages the code consists of normal HTML code 
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with code in the respective template language embedded in specific areas 
that are often indicated by pre-defined start and end characters such as 
“<% …%>”. All approaches named offer wide support, good performance, 
comfortable libraries, a good database connection, and are relatively easy 
to learn. However, these approaches sometimes have one or more of the 
following difficulties, particularly for complex projects. For example, simple 
means for communicating with other applications are missing. Program log-
ic in the respective template language can also often not be used for other 
purposes. The individual pages remain relatively loosely coupled and are 
therefore—just like with CGI—driven only by requests.

>	 �Some of the disadvantages of template languages are solved by applica-
tion servers, such as Apache Tomcat, JBoss, BEA WebLogic, or IBM Web-
Sphere. These are often part of larger standard architectures, for example, 
Microsoft’s .NET or JEE. Application servers are professional complete sys-
tems that typically offer a server-side component model, transaction man-
agement, scaling, load balancing, security mechanisms, fail-over, and inte-
gration with other middleware and web services.

>	 �Web content management and community systems, such as Zope or Open 
ACS, are based on web application servers and also offer many extension 
modules, for example, for community functions, forums, Wikis, collaboration 
in virtual groups, etc.

>	 �Agile web frameworks are web frameworks in dynamic programming lan-
guages, such as Ruby on Rails, Seaside, Mason, or Grails. They are re-
ferred to as “agile” because they have been designed in order to support 
principles such as “Don’t Repeat Yourself” (DRY) and “Convention over 
Configuration.” This means that these frameworks support agile software 
development by placing programming conventions above the application 
configuration and thus allow fast implementation of requirements.

For information about patterns underlying these technologies we recommend 
the pattern language on the topic of generation and conversion of contents in the 
web, see [Vogel and Zdun 2002].

6.7.5	�Component Platforms

In this section we will present some known platforms that implement the compo-
nent platform basic architecture from architectural viewpoints.

6.7.5.1	� Java Enterprise Edition (JEE)

Java Enterprise Edition (JEE) is a component platform based on Java technol-
ogy in the Java programming language. This component platform is thus plat-
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form-independent. The manufacturer-independence is limited, as the platform is 
based on specifications from Oracle. JEE is firstly a collection of specifications 
for the building blocks of a component platform. If you want to use JEE, you have 
to select a product (container and services) from a number of JEE implemen-
tations from different manufacturers (commercial or open source). Depending 
on the orientation of the product, only certain parts of the JEE specifications 
are implemented. There can also be proprietary extensions that lead to a close 
manufacturer lock-in. You have to consider all of this when making a selection 
from an architecture view. The implementations that you finally decide on depend 
above all on your requirements and your budget.

One concern for the architecture of a system is that JEE involves numerous 
interfaces that have to be satisfied and you have to extensively configure JEE 
components via XML configuration files (so-called deployment descriptors) for 
the purposes of delivery. You also have to configure the container. JEE imple-
ments many of the concepts described in the previous sections. These concepts 
should also be applied if you use JEE. This means that you must use JEE quite 
specifically in an architectural framework and not just in its “raw” form. This is im-
portant on one hand because JEE gives rise to architectural constraints, and on 
the other hand, an improper use of JEE can lead to critical problems for a system 
(e.g., bad performance). We strongly recommend using proven JEE design tech-
nologies in this context as they are explained, for example, in [Alur et al. 2003]. 
We will now give an overview of the central parts of JEE. FigureÂ€6.7-3 shows an 
overview of the JEE component platform. For detailed descriptions and further 
literature recommendations, see [Oracle 2011c].
>	 �Java Servlets/Java Server Pages (JSP)/Java Server Faces (JSF): These 

building blocks are responsible for communication between the browser as 
client and the model layer in JEE-based web applications. They are located 
in the presentation layer.

>	 �Enterprise JavaBeans (EJB): These building blocks represent the actual 
model components and are therefore located in the model layer. They exist 
in the forms Entity Bean (entity component), Session Bean (session compo-
nent), and Message-Driven Bean (message component). 

Figure 6.7-3: Overview of the JEE component platform
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6.7.5.2	� Microsoft .NET

From a conceptual point of view, Microsoft’s component platform .NET is very 
similar to JEE. For example, it also has a virtual machine, the Common Lan-
guage Runtime (CLR). However, there are a number of important differences in 
the implementation of the concepts. .NET supports different programming lan-
guages (VB, C++, etc.), whereby only C# as the actual .NET programming lan-
guage supports the component capability of .NET to its full extent. .NET is more 
data-oriented than object-oriented. This means that the object-oriented design is 
strongly driven by data structures.

This fact is also shown in the implementation of the component approach. In the 
stricter sense, .NET only has entity components as components. However, the 
most serious differences to JEE are that .NET, although basically available in 
platform-independent form, is only available for the Windows platform in a usable 
form and there is a very strict manufacturer lock-in because there is only one 
significant manufacturer, namely Microsoft.

The close integration with the operating system means that in comparison to 
JEE, the integration of the different building blocks of this infrastructure is better 
overall. We can conclude that the architectural situation is very similar to JEE, 
but extended by the platform aspect. For more details about .NET, see [Microsoft 
2009]. The main differences between and common features of JEE and .NET are 
visible if you compare FigureÂ€6.7-4 with FigureÂ€6.7-3.

6.7.5.3	� CORBA Component Model (CCM)

Since version 3.0, the CORBA Component Model (CCM) is part of the Common 
Object Request Broker Architecture (CORBA). It is the specification of a model 
for distributed components of the model layer and its containers. CCM is inde-
pendent of any programming language or platform. With some limitations, JEE 
and .NET are CCM implementations. With the exception of a few Open Source 
products, up until now there has been no complete implementation. OMG now 
uses JEE more than component technology. In addition to the component types 
described above, CCM also has the process components. These correspond to 

Figure 6.7-4: Overview of the .NET component platform
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a business transaction and can be used persistently as well as by several clients. 
You can define the following interfaces for a CCM component:
>	 �Facets: Services that the component offers externally.
>	 �Receptacles: Services that the component requires from other components.

FigureÂ€6.7-5 shows an overview of CCM. For more information about CCM, see 
[OMG 2006]. 

6.7.6	�Web Services

Here we will briefly discuss web services specifically as a middleware architec-
ture that implements the SOA basic architecture and that heavily uses the previ-
ously described XML and Internet standards. SOA describes a general basic 
architecture for loosely coupled interaction between different distributed software 
applications. In contrast, web services represent a possible (standardized) real-
ization of this basic architecture.

Web services originate from the World Wide Web (WWW), which was originally 
designed to exchange unstructured information such as HTML texts. However, 
interactions between programs have become increasingly important, for exam-
ple, in the area of e-commerce or EDI. XML [Bray et al. 1998] and standards 
based on XML are used here in particular. The XML RPC specification [Winer 
1999] represents a first standard for RPC communication via XML.

Web services today are based on a layered architecture made up of several 
standardized protocols:
>	 �SOAP [Box et al. 2000] is an XML-based message exchange protocol that 

has quickly become a de facto standard for web services. It is the—clearly 
extended—successor to the XML RPC specification.

>	 �An alternative to SOAP is REST (Representational State Transfer). It is not 
a standard but an architecture style that is based on existing web standards 
such as HTTP and URI. With REST-conform web services, the interaction 
between client and server is processed using the standardized interface 

Figure 6.7-5: Overview of the CCM component platform
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defined by HTTP. The concrete data exchange takes place via user-defined 
XML formats.

>	 �WSDL [Christensen et al. 2001] plays an important role in web service ar-
chitectures. It is an interface description language that is understood by both 
the senders and recipients of the messages. WSDL is therefore very impor-
tant for interoperability in heterogeneous systems, for example, if different 
web service systems are to interoperate. WSDL is also based on XML.

>	 �Web services do not need a special communication protocol. You can use 
HTTP or other protocols such as SMTP, FTP, JMS, IIOP, or other protocols, 
for example. HTTP is supported as standard protocol in most web service 
systems today and you can generally use a number of other protocols as 
plug-ins.

>	 �UDDI is a standard for a lookup service [OASIS 2002]. It allows you to find 
web services and their WSDL description based on properties. However, so 
far, UDDI has not really established itself commercially and many other—in 
part, proprietary—lookup services are used.

>	 �There are some standards for composing web services. One important 
category of these standards describes the orchestration of web services 
through business process models that are processed in a process engine. 
The activities of the processes (i.e., the process steps) call the web services 
or receive their results. The most important standard in this area is currently 
the Business Process Execution Language for Web Services (BPEL4WS) 
[Andrews et al. 2003], an XML-based workflow definition language that al-
lows you to describe business processes.

In addition to these standards, there are a number of other web service stan-
dards, for example, in the area of security and long-running business transac-
tions.

6.7.7	�Summary 

>	 �There are architecturally relevant technologies that provide a major infra-
structure in many software architectures.

>	 �Communication middleware is a central technology for many distributed 
systems.

>	 �Main middleware systems are transaction processing monitors, RPC and 
OO-RPC middleware, and message-oriented middleware.

>	 �A structural break is an important architectural problem that designates 
the break between two paradigms. For example, in persistent data man-
agement, there is a structural break between the paradigms of relational 
database management systems and the application logic.

Summary: 
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>	 �Object-relational mapping enables the integration of an object-oriented ap-
plication with the relational paradigm. ORM also offers a database access 
layer for relational databases and object-oriented application logic. Object-
relational mappers, such as Hibernate, are an important technology in this 
area.

>	 �Another important technology for persistent data management is standard 
libraries for database access, such as JDBC.

>	 �The description, smooth exchange, and processing of structured data are 
enormously important for many information systems. One important ex-
ample technology in this area is XML.

>	 �XML enables you to describe the structure of information in a standard 
way, separating content and structure information. XML itself is not a stan-
dard for data exchange as such, but enables the definition of XML-based 
exchange formats and exchange standards.

>	 �A web application server is a server for web applications that creates dy-
namic HTML pages and executes the application logic between the client 
(browser) and different backend systems, such as a database.

>	 �A component platform is a runtime environment (container) for compo-
nents. It is based on the separation of technical and functional concerns. 
The component platform takes over the technical concerns. Examples of 
technical concerns in the enterprise environment are distribution, security, 
persistence, transactions, concurrency, and resource management.

>	 �Important component platforms are Java Enterprise Edition (JEE), Micro-
soft .NET, and the CORBA Component Model (CCM).

>	 �Web services are a technology serving as enabler while implementing the 
SOA basic architecture and which focuses heavily on XML and Internet 
standards.
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In this chapter we look at the WHO dimension of the architecture orientation 
framework more closely. We will show organizational and social influencing fac-
tors that affect the architecture of a system and that can influence the work of an 
architect. We will also provide basic knowledge about groups and their dynam-
ics. In addition, we will define the role of the architect. Applying the knowledge 
contained within this dimension enables you to understand the relevance of the 
influencing factors mentioned, describe the role of an architect, consider the pro-
cesses of group dynamics, and act accordingly.

7	 Organizations and Individuals (WHO)

Architectures and architecture disciplines
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Figure 7-1: Positioning of the chapter in the architecture orientation framework
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Figure 7-2 shows the basic concepts covered in this chapter and visualizes how 
they connect.

7.1	� General

When you are designing an architecture, you have to take many influences and 
aspects into account. The most obvious are the consideration of the functional 
and non-functional requirements placed on the IT system that the architecture 
must satisfy. You can apply various architecture means to address these require-

Figure 7-2: Basic concepts of the WHO dimension

Basic concepts of the 
WHO dimension

Focusing on 
technical and 
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is not enough
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ments (see Chapter 6). In addition to applying these means, you can view the so-
lution to be created from different perspectives (see Chapter 4). You can also act 
according to a specific method to ensure a systematic and successful architecture 
design (see Chapter 8). In terms of the architecture definition introduced as part of 
the WHAT dimension (see Chapter 3), this covers all significant aspects required 
to perform an architectural activity. However, this alone is still not sufficient. You 
must also consider social and organizational influencing factors. This requires 
you to look at the bigger technological picture and have a basic understanding of 
organizations and individuals. Therefore, in this chapter, we will look at organiza-
tions and individuals in general and show the interdependencies with architecture.

Architectures, or rather the IT systems based on them, are always designed by 
and for people. Furthermore, architectural activity is generally embedded within 
an organization, be that the enterprise for which the IT system is being designed 
or the project organization that consists of the persons involved. The organiza-
tional term is therefore intentionally broad. It can refer to enterprises and project 
organizations. As shown in Figure 7.1-1, an architecture is therefore always inter-
dependent with the organization in which it is designed and with the individuals 
involved in and affected by the architecture.

An organization is distinguished by its culture and the related values and norms. 
These affect the architecture by defining the normative framework and thus the 
freedom of scope for the architecture design. This can be expressed by the spec-
ification of very clear standards and guidelines and the organization rejecting, for 
example, new, unconventional approaches. As a consequence, an architecture 
that contradicts the values and norms of the organization runs the risk of failure 
even though it fulfills all functional and non-functional requirements. The culture 
of an organization also defines how people within the organization deal with one 
another and what expectations the organization has of them. This means that 
there are interdependencies between the organization and the single individual, 
which in turn affect the architecture. An organization therefore also affects the 
architecture as a discipline (see Chapter 3). An organization can consist of fur-
ther sub-organizations with different cultures. An enterprise, as a high-level or-

Figure 7.1-1: Interdependencies between the organization, the individual, and 
the architecture
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ganization, can thus consist of different departments or organizational units with 
their own cultures. This aspect is particularly relevant today, when enterprises 
are represented internationally, since organizations can cross different culture 
groups that have different values and norms.

The structures of an organization also influence the architecture of an IT system. 
For example, if an enterprise has dedicated departments for developing different 
parts of an IT system, there is a risk that the overall architecture will reflect this 
organizational separation. This is because the organizational separation makes 
communication across department boundaries more difficult. Empirical studies 
show that it is precisely the integration to one overall system that places great 
challenges on organizationally separate project teams [Herbsleb and Grinter 
1999]. The influence of organizational structures on the architecture of an IT 
system was recognized by Melvin Conway and has found its way into literature 
as Conway’s law [Conway 1968]:

Organizations that design systems are constrained to produce systems 
whose structures are copies of the communication structures of these or-
ganizations.

Organizations therefore influence the architecture. In order to understand this, it 
is important to know about organizations and how they work. Section 7.2 there-
fore looks at organizations in more detail. Organizational influences are of great 
importance above all in the age of offshoring, since only overarching, regular co-
ordination and communication can lead to a homogeneous overall system [Curtis 
et al. 1988].

People vary in their strengths, weaknesses, desires, fears, and mentality. 
Through their individual properties they contribute to an IT system. They act in 
different roles, e.g., architect, designer, or developer, and fulfill the expectations 
placed on the roles in different ways. People can perform different roles simulta-
neously. Depending on his experience, an architect will design an architecture in 
one way or another. A designer will allow the architectural specifications to flow 
into his design according to his understanding and preferences, and a developer 
will implement these in his own special way. The individuality of each member of 
the project therefore influences the architecture, since every member fulfills his 
assigned roles in an individual way. People are unique and will always make very 
individual contributions. The different mentalities also influence the collaboration 
and communication between the members of the project. They have an indirect 
influence on the architecture, since important information may not be communi-
cated or problems of understanding may not be voiced. This can mean that the 
architecture on paper is noticeably different to the architecture finally realized. It 
is also possible that the architectural specification is not accepted since its use-

Influences of the 
organizational 
structure

Conway’s law

Organizations 
influence architecture

Influences of 
individuals
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fulness is not recognized or proposals from others are not accepted. In literature, 
this is often called the “Not-invented-here syndrome” [Cockburn 2002]. Sympa-
thies and antipathies between people are also very important. If, for example, 
the collaboration between the architect and his team members is restricted due 
to personal differences, then not everyone in the team will be committed to the 
architecture and it will ultimately not be successful. This makes it indispensable 
that an architect is an expert not only in domain-specific and methodological 
areas, but also has social skills and a basic understanding of individuals. Section 
7.3 looks at this understanding.

However, it is not only the organization and the individual that influence architec-
ture. The architecture itself in turn affects the organization and the individual. An 
architecture defines the structures of an IT system by identifying its subsystems 
and building blocks. Each subsystem has dedicated responsibilities and there 
are dependencies between the subsystems. Each subsystem is usually devel-
oped further and implemented by different teams. The organization is therefore 
frequently structured around the architectural structures [Brooks 1995]. On one 
hand, the architecture therefore affects the organization. On the other hand, it also 
influences every individual team member, since each member is assigned spe-
cific roles. For example, the role of the designer, who structures the subsystem 
further, or the tester, who designs the test cases and scenarios for the subsystem.

7.2	� Organizations

In the previous section we explained the reasons why organizations influence 
architecture. The following section conveys significant knowledge about under-
standing organizations. We will cover general topics from organization theory, 
and we will also look at these topics from the context of architecture. We will 
firstly introduce the topic in general, and then put it in context to architecture.

An organization can be described according to the following definition [Kieser 
and Kubicek 1993]:

An organization is a social entity that permanently follows an objective 
and has a formal structure that enables the activities of the member to be 
focused on the objective followed.

Over the course of time, different understandings and interpretations of organiza-
tions have evolved. We will discuss the significant basic understandings in more 
detail below. They are:
>	 �Scientific management understanding
>	 �Behavioral science understanding
>	 �Systemic understanding

Influences of 
architectures

Objectives

Definition: Organization

Different 
interpretation options
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The scientific management understanding has its roots in early industrialization. 
It is based on the principle of the perfect division of labor. The person as an in-
dividual is perceived as a production factor that can be planned, predicted, and 
controlled. Organizations shaped by this principle have rigid organization hierar-
chies. Communication takes place strictly via the hierarchy. This approach can 
lead to a strict delineation between the individual organizational units or teams. 
In its extreme form, there is a clear separation between planning and execution. 
F. W. Taylor can be seen as the father of this understanding [Taylor 1913]. The 
term Taylorism is therefore often used in this context.

If we recall Conway’s law, it becomes evident why organizations that are built 
up on pure scientific management aspects develop IT systems that reflect their 
communication structures. The clear separation is present in the organization 
and there is no overarching understanding. If different teams are responsible for 
different subsystems of a system, for example, the architecture of the IT system 
will also display this structure. Based on this fact, as an architect you must be 
aware that significant architecture principles (see Chapter 6), such as separa-
tion of concerns, modularization, and information hiding, whilst important for the 
architecture of an IT system, should not be applied to the same extent to the 
organization that is realizing the IT system. Instead, important information must 
flow, communication must be made easier, and new forms of collaboration must 
be established, for example, through the use of collaboration tools such as Wikis, 
instant messaging systems, and team rooms.

The behavioral science understanding places the person at the center of the con-
sideration by perceiving the person as a social being striving for recognition and 
appreciation rather than as a pure production factor. The strict division of labor 
thus becomes less important and the focus is on the creation of suitable work-
ing conditions that allow the person to develop. An important aspect here is the 
fostering of communication and increasing work satisfaction through appropriate 
motivation measures. In this context, Herzberg talks of motivators and hygiene 
factors [Herzberg 1966]. Motivators are, for example, work itself, responsibil-
ity, and recognition. These increase work satisfaction, but do not reduce work 
dissatisfaction. Work dissatisfaction is influenced by hygiene factors, such as 
the relationship to managers and peers as well as politics. If these factors are 
perceived as positive, they can reduce work dissatisfaction, but do not increase 
work satisfaction [Drumm 1995].

For the purposes of defining an architecture, from these findings we can see that, 
in order to minimize the work dissatisfaction, the principles and concepts of the 
architecture must be communicated to team members and suitable communica-
tion channels and means must be achieved. These can include joint standup 

Scientific 
management 
understanding

Conway’s law and 
Taylorism

Behavioral science 
understanding

Behavioral science 
understanding and 
architecture



2937.2 Organizations)>>

meetings, where problems and next steps are discussed [Beedle and Schwaber 
2001], or the establishment of an instant messaging environment. However, 
this is not sufficient to increase work satisfaction. It is much more the case that 
each team member must be entrusted with activities with which they can identify 
themselves. In addition, they should be involved in the architecture design and 
encouraged to reflect in a solution-oriented way. Ultimately, architecture should 
be understood like a team sport. With this background, it also becomes obvious 
that a strict separation of roles, as given in Taylorism, does not make sense in 
realizing IT systems.

From a systemic point of view, an organization is nothing other than a system 
(see Section 3.3) and as such fulfills the classic properties of systems (see Fig-
ure 7.2-1).

A system exists to achieve an objective. The realization of an IT system for the 
entry and automatic processing of orders is an example of a project organization 
objective.

The environment, for example, the client of the IT system, sets the objective for 
the organization and thus provides its reason for existence. Furthermore, the 
environment provides the organization with resources to fulfill its task. These can 
be material things, such as rooms and tools, or immaterial things, such as infor-
mation. People can also be made available to the organization until the objective 
is reached. They thus become part of the organization. Since an organization is 

Figure 7.2-1: Organization as system (following [Steiger and Lippmann 2003]).
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embedded in its environment, the environment also specifies the general condi-
tions within which the organization can act. An important aspect here is the cul-
ture of the environment and the related values and norms. These can include the 
way people deal with each other and concrete process specifications.

An enterprise can be the surrounding environment. As an architect, on one hand 
you are a member of the enterprise, and on the other, a member of the project 
organization. Depending on the culture, during the implementation of the archi-
tecture designed, you will be motivated to do some of the work yourself or to let 
your team members do the actual work.

An organization develops an individual understanding about how to achieve the 
objective given by the environment. This task perception is based on the experi-
ences of the members of the organization. Each organization will therefore solve 
a given task in different ways. In other words, it acts autonomously. In the case of 
an IT system, an architecture can be designed with different means. For exam-
ple, a data-centered system can be structured according to the Batch sequential 
style or the Pipes and filters style (see Section 6.4).

In order to achieve its objective, (e.g., realizing an IT system), the organization 
structures itself. The structure is on one hand the structural organization and on 
the other, the operational organization. The structural organization describes the 
positions to be filled and their hierarchical relationships. The job descriptions 
characterize the roles to be assigned within the organization. The operational 
organization defines processes for achieving objectives efficiently. In this con-
text, development processes such as the Unified Software Development Pro-
cess (USDP) [Jacobson et al. 1999] can be used, for example (see Section 8.1).

Within organizations, there are formal and informal structures. The formal struc-
tures are given by the official project organization. These define, for example, 
that the communication with members of other sub-teams of a project must 
be via the team lead only. The informal structures circumvent these specifica-
tions and enable direct communication across organizational boundaries. These 
structures arise through relationships between people that go beyond the project 
organization. For example, people have already worked together in a previous 
project, or have the same hobby and play e.g., tennis together regularly. Studies 
indicate that it is these informal bridges that are essential for successfully achiev-
ing the organization’s objective [Herbsleb and Grinter 1999].

The task perception and the structures of the organization are based on the 
values and norms of the people involved. For example, if a project lead has a 
very authoritarian style of leadership, the organizational structure will be strictly 
hierarchical. There will be clear specifications about how tasks are to be fulfilled 
and understood. The same applies for the architect. If you trust the capabilities 
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of your team members and allow them to participate in the design of the archi-
tecture, the organizational structures will be flatter and there will be a collective 
task perception. The particular values and norms of an organization are the orga-
nizational culture. The organizational culture also defines how the organization 
interacts with its environment. For example, it can define whether team members 
such as developers or testers may communicate with customers or not.

The structure, the task perception, and the culture of an organization are interre-
lated. They always describe the overall organization, but from different perspec-
tives, and they influence each other. In complex organizations, cause and effect 
cannot be clearly separated [Steiger and Lippmann 2003].

In development projects and in IT generally, the influence of organizations on ar-
chitectures is being increasingly taken into account. Over time, different organi-
zational principles and patterns have developed for structuring and reflecting or-
ganizations. Alistair Cockburn, Jim Coplien, and Neil Harrison look at this set of 
topics in great detail [Cockburn 2002; Coplien and Harrison 2004]. Furthermore, in 
recent times, many agile software development and project management methods 
have emerged, such as Scrum, the Crystal family of methodologies, or Extreme 
Programming (XP) to name just a few [Fowler 2003]. All of these approaches are 
based on behavioral science understanding and systemic organizational under-
standing. They place the person at the center and consider him as a motivated 
individual. Furthermore, according to their understanding, organizations must be 
set up so that people feel good in them and can grow. Ultimately therefore, the 
objective of every organization must be to increase work satisfaction and reduce 
work dissatisfaction. The new methods also trust in the self-organization of orga-
nizations [Cunningham et al. 2001]. To satisfy all of these demands, it is important 
to have basic knowledge of individuals and self-organizing groups. On this basis, 
we will look at the person as an individual more closely in the next section. We will 
then cover groups as self-organizing entities in more detail.

7.3	� Individuals

Architectures are created by individuals. People have different character traits, 
strengths, weaknesses, preferences, and tendencies. Therefore, it is not enough 
to look at people as a pure production factor. Instead, you must perceive your 
team members as individuals and treat them accordingly. We therefore provide 
basic knowledge about individuals in this section.

To get an image of people and to understand them better, it is important to rec-
ognize that every person has their own identity. The identity can be seen as 
based on five major pillars. These pillars are presented in Table 7.3-1 [Petzold 
and Sieber 1993].
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understanding in IT

Individuals shape 
architecture

Five pillars of identity



296 7â•… Organizations and Individuals (WHO)

Table 7.3-1: The five pillars of identity

Social network Career and 
work

Physical 
state

Material Val-
ues

Values and 
norms

Family Status Health Money Religion

Friends Activity Age Car Politics

Neighbors Responsibility Nutrition Clothes Norms

Colleagues Gender Tradition

Sexuality

Each person’s identity is defined by these pillars to different degrees. For one 
person career advancement is important, but for another unimportant. One per-
son places great value on prestige, another is more interested in his family.

Even though every person is unique, the types of people illustrated in Figure 
7.3-1 can be distinguished [Belbin 1993]. This is just one possible theory, but 
one which illustrates the basic character traits of people well. Literature contains 
further approaches for interpreting people. For example, the approach devel-
oped by Myers and Briggs, which is based on the theories of C. G. Jung. It also 
outlines different types of people and shows which types can work together in a 
team. For more information, see [Briggs and Myers 1995].

Belbin identifies the types of people presented in Figure 7.3-1. It is important to 
know these basic types in order to understand the processes of group dynamics.

Person-
oriented

Innovation-
oriented

Procedure-
oriented

Result-
oriented

Team worker Resource
investigator

Plant

Moderator Shaper

Individual

Evaluator Completer Implementer

Figure 7.3-1: Types of people according to Belbin
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The different types of people are described in Table 7.3-2.

Table 7.3-2: Description of types of people according to Belbin

Type Description

Team 
worker

Based on their social nature, team workers have the ability to approach 
people and cultivate team spirit. In crisis situations they tend to be indeci-
sive.

Re-
source 
investi-
gator

Resource investigators seek out challenges and are extroverted and 
communicative. Their strengths lie in building up personal contacts and 
researching new topics. In contrast however, they tend to lose interest in a 
topic when it becomes routine.

Plant Plants are people who take unconventional approaches and can con-
tribute to solutions based on their knowledge and powers of imagination. 
However, they also tend to overlook regulations and have their head in the 
clouds.

Shaper Shapers have a dynamic personality with a strong will and are capable of 
pushing through decisions. They are, however, excitable and have a ten-
dency to provoke.

Imple-
menter

Implementers are conscientious people who complete tasks thoroughly 
and carefully. They sometimes tend to be perfectionists and can allow 
themselves to be disturbed by trivialities.

Com-
pleter

Completers investigate content and are good at analyzing. However, they 
are not good at bringing in their own ideas and motivating other people.

Evalua-
tor

Evaluators are disciplined and hard-working people who approach prob-
lem solutions pragmatically. They cannot, however, adapt to changing situ-
ations and accept unverified ideas.

Modera-
tor

Moderators are self-confident people with few prejudices and a calm 
nature. They can integrate other people into the team activity easily and 
have a strong perception. However, they do not have the usual level of 
creativity.

People cannot be assigned to just one of the different types alone. Each person 
is too unique to allow this. However, tendencies are recognizable within each 
person. Since different individuals come together in each team, each architec-
ture has a unique face. The composition of the team therefore says a lot about 
the success of a team (see Section 7.4).

7.4	� Individuals and Groups

In the development of an IT system, or rather the design of an architecture, dif-
ferent individuals come together for the duration of a project in order to achieve 
the objective together: the realization of the IT system. Individuals therefore join 

Assignment is never 
unique
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a group and take on different roles within the group as well as the tasks related 
to those roles (see Figure 7.4-1).

A group is a special form of an organization. It interacts with its environment, 
pursues a task, has a structure, and develops a culture (see Section 7.2). One 
important aspect is that each individual takes on one or more roles within the 
group. These can be the formal roles, such as architect, designer, or developer; 
they can also be informal roles, such as joker or scapegoat. A group defines its 
expectations of group members via these roles. Each person has their own role 
understanding and fulfills these expectations in their own way.

Furthermore, the person exists not only within the group, but also in his own indi-
vidual environment. In this environment he takes on further roles not geared to-
wards the objective of the group, for example, father, husband, or friend. People 
must therefore also satisfy the expectations of their individual environment. It is 
essential to realize that group members also have a life outside the group and 
must be granted enough freedom for this. Ultimately, this increases the probabil-
ity of success of the group, since the people feel good within the group and do 
not feel under pressure. Edward Yourdon explicitly recommends to project leads 
that the individual environment of each team member must not be restricted 
[Yourdon 1997].

Figure 7.4-1: The group as a system [Steiger and Lippmann 2003]
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Experience shows that the type of group composition is significant for the group’s 
success. Surprisingly, studies show that groups consisting of highly intelligent, 
analytical, and mentally strong people, so-called Apollo teams, generally pro-
duce worse results in the achievement of objectives than heterogeneous groups. 
One reason for the poor efficiency of Apollo teams is the desire of every member 
of the team to push their ideas through. Members of Apollo teams also pay less 
attention to the work and ideas of others [Belbin 1993]. Belbin names the follow-
ing factors for well-functioning, successful teams:
>	 Groups are led by a good, cooperative moderator.
>	 �As an absolute prerequisite for success, the group contains one or two 

plants.
>	 Team members are deployed in accordance with their capabilities.

Groups should therefore have a heterogeneous group structure. This applies 
both for the character traits as well as the abilities and experience. To improve 
the understanding for the problem, Cockburn suggests, for example, composing 
teams from analysts, designers, and developers. This ensures that the business 
problem, for example, the evaluation of the creditworthiness of enterprises, is 
understood in the team just as well as the problems related to design and imple-
mentation [Cockburn 1996].

In addition to a heterogeneous group composition, the identification with the 
group is also a critical success factor. When groups are established, and the 
individual group members know each other, they are capable of producing many 
times what an unestablished group can produce [Cockburn 2002]. This has to do 
with the fact that the group is already given, so has formed a structure or hier-
archy, and does not need to find itself before dealing with achieving the group’s 
objective.

This process for forming groups is presented in Table 7.4-1. The model considers 
the entire life cycle of a group, from creation to recreation.

Group composition 
and success

Heterogeneous group 
structure

Group identification 
and success

Group dynamics
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Table 7.4-1: Group dynamics according to Tuckman [Stahl 2002]

Stage Primary activity Group performance Means

Forming stage Getting to know one 
another

Assessing one another

Classification

Separation Conventions

Storming stage Showing oneself

Representing oneself

Dispute

Amplification Conflicts

Norming stage Committing oneself

Accepting

Conciliation

Decision (selection) Agreement

Performing stage Participating

Getting involved

Collaboration

Confirmation (resta-
bilization)

Cooperation

Adjourning stage Balancing

Reflecting

Exchange of experi-
ences

Change (variation) Results

In the forming stage, the members of the group get to know each other and as-
sess one another. Individual group members can be classified at this stage. The 
group also distinguishes itself from its environment. Treatment of one another is 
based on clear conventions. The group members are polite, pleasant, and ac-
commodating. It is important that a leading role, for example, the architect, com-
municates the task and objectives of the group and lays down the organizational 
conditions. The group members must receive a clear picture of what is expected 
of them.

Based on the group understanding obtained in the forming stage, in the storming 
stage, each group member decides whether they want to stay in the group or 
not. Furthermore, each member tries to obtain an adequate position within the 
group. This can be different to the position or role envisaged. There is therefore 
an emphasis on differences of opinion, competitive behavior, and confrontations 
in this stage. These disputes must be permitted by the group leader in order to 
enable the group to find itself. However, the group leader should point out rules 
agreed in the forming stage and only permit confrontations within this framework.

Forming stage

Storming stage
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The norming stage follows the storming stage. In this stage the group finds it-
self. The members of the group identify themselves with the roles worked out 
and agree on rules for working together. The group develops an identity and a 
“we” feeling arises. From this point, tasks should be delegated to encourage the 
independence of the members of the group. This should be done based on the 
strengths and weaknesses of the individual members (see Section 7.3).

The performing stage is distinguished by the commitment of each team member. 
The team spirit that has developed results in goal-oriented, collaborative co-op-
eration. At this point, the group has established itself and achieved its potential. 
In this stage, the independence of the group should be guaranteed and the group 
should be shielded from disruptive influences. However, this does not mean that 
information from outside that would, for example, show the group objective in a 
new light, should be blocked. In the development of an IT system, this can be 
new requirements, which of course must be considered.

After achieving the group objective, the adjourning stage reflects on the perfor-
mance and experiences of the group. The group can also dissolve or set a new 
objective. Since the stages up to the performing stage can be very intensive and 
protracted for the group, retaining an established team and setting them a new 
objective is recommended.

The Tuckman stages described above are generally experienced several times 
before the group finds and establishes itself. This applies particularly to the first 
three stages of the model.

7.5	� Architect as Central Role

As an architect you are involved in many tasks and communicate with different 
stakeholders. As a rule, you are involved as early as preliminary studies, for ex-
ample, to verify whether an IT plan is feasible, through the analysis phase of a 
project, right up to the point when an IT system is put into operation. During this 
time you interact with many different roles, as shown in Figure 7.5-1.

Norming stage

Performing stage

Adjourning stage

Spiral process flow

Architect as central 
role
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As a result of this central nature, you are more than just a designer of an architec-
ture, although this is one of your most important tasks. This is where you bring in 
all of your experience, identify the architecturally significant use cases, consider 
architecture principles, select appropriate architecture styles, and adapt proven 
reference architectures. However, these are just a few of your tasks.

In designing the architecture, you act as a problem solver by creating the archi-
tectural basis for fulfilling functional and non-functional requirements.

You answer architectural questions and make strategic decisions. You are ex-
pected to be capable of making decisions in uncertain situations.

You must also act as visionary for the architecture. You must never lose sight of 
the vision to be realized through the architecture. Rather, you must ensure that 
everyone involved always knows the basic principles of the architecture and acts 
accordingly. This applies to both the customer and the team.

You must also have extensive communicative skills. You must approach people 
proactively, convey information, and ensure that everyone involved has an ad-
equate level of knowledge with regard to the architecture. To enable you to do 
this, you must be able to communicate your ideas and present them geared 
towards the target group.

In addition to conveying information, you must of course be open to ideas and 
questions from others. You must therefore always listen actively, and, for exam-

Figure 7.5-1: Architect in the organizational social environment
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ple, be responsive to suggestions from your team members. The team members 
are specialists in their area and can assess the usefulness of the architecture for 
their field. However, it is important not to lose sight of the overall view of the archi-
tecture. You must always assess the usefulness for the architecture as a whole.

In addition, it is your task to convince your team members of the selected archi-
tecture. You must therefore also see yourself as motivator. You should motivate 
in the spirit of the author Antoine de Saint-Exupéry:

“If you want to build a ship, don’t drum up people to collect wood and don’t 
assign them tasks and work, but rather teach them to long for the endless 
immensity of the sea.”

From De Saint-Exupéry’s words, it becomes clear that the correct motivation 
can only be awakened if people work towards a goal with which they can identify 
themselves wholly and completely. For you, this means you have to get your 
team members on board. You can achieve this by delegating responsibilities and 
by considering ideas and suggestions from others. You should also communicate 
the usefulness and importance of each team member to them clearly to increase 
their satisfaction.

You are also the technical leader of an IT plan. You must therefore have leader-
ship qualities. Some of these qualities, such as motivating the team, have al-
ready been mentioned explicitly. In exercising your leadership role, it is important 
to apply a leadership style suitable for the respective situation and the particular 
individual. For example, if team members are highly qualified and motivated, you 
should delegate tasks. A delegating leadership style is demonstrated through 
you outlining the problem and defining the boundaries within which team mem-
bers have the freedom to make their own decisions. The team or the individual 
then makes decisions independently within their freedom to decide. In the case 
of team members who are highly motivated but lack sufficient experience, you 
should support them in making decisions. You can do this in your role as listener 
and by answering questions. The freedom to decide is given by the architecture, 
for example, through the definition of architecture principles and description of 
subsystems and their responsibilities, as well as the communication methods.

However, you should not just design specifications—you should also be actively 
involved, since this makes a significant contribution to the success of the archi-
tecture. This enables you to assess immediately whether architectural ideas are 
realizable. It also increases the probability that the team members understand 
the architecture because there is direct communication between you, the design-
ers, and the developers. Furthermore, it increases your acceptance by the team 

Architect as motivator

Architect as leader

Architect as 
practitioner
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members, since direct collaboration breaks down social barriers [Ambler 2002]. 
You must therefore also always see yourself as a practitioner. The organizational 
pattern ArchitectAlsoImplements expresses this requirement [Coplien and Har-
rison 2004].

You must have a broad knowledge base that enables you to recognize and un-
derstand contexts, and derive consequences from them. With regard to the ar-
chitecture disciplines presented in Chapter 3, this means that you have a general 
knowledge in the individual disciplines. You can therefore be considered a gener-
alist who, for deeper questions and problems, accesses the specialist knowledge 
of your team members. However, in addition to these architecture-related fields 
of knowledge, you must also have considerable knowledge of the problem do-
main for which the IT system is being developed. This enables you to understand 
the wants and needs of the client and the user. You also need project manage-
ment knowledge in order to design the project plan together with the project lead. 
Last but not least, you also need a well-founded knowledge in testing systems in 
order to coordinate the test plans and scenarios with testers.

The knowledge and skills of an architect outlined above are very extensive, but 
important for success. Vitruvius reformulated the competencies of an architect 
as follows:

The ideal architect should be a man of letters, a mathematician, familiar 
with historical studies, a diligent student of philosophy, acquainted with 
music, not ignorant of medicine, learned in the responses of juriconsults, 
familiar with astronomy and astronomical calculations.

This description expresses the broad knowledge basis expected of an architect, 
which stretches over technical, methodological, and social competencies.

The tasks of an architect presented here are very extensive. The question is 
whether these tasks can be fulfilled by one person alone. Depending on their 
individual strengths and weaknesses, a person will be able to fulfill the tasks 
better or worse, and may be overstretched if they have to fulfill all tasks (see 
Section 7.3). This supports the need for establishing teams of architects, where 
the members of the team complement each other accordingly.

Some companies have formulated the competencies and skills expected of an 
architect specifically and developed dedicated requirements profiles for archi-
tects. One example is the Enterprise Architecture Skills Framework of The Open 
Group [Jones 2004]. In this framework, The Open Group differentiates between 
the following areas of knowledge:

Architect as generalist

Competencies of an 
architect

Teams of architects

Dedicated 
development paths 
and requirement 
profiles
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>	 �Generic skills—geared towards the social skills of architects and dealing 
with topics such as leadership and teamwork.

>	 �Business skills and methods—communicating, for example, business pro-
cesses and strategic planning.

>	 �Enterprise architecture skills—conveying topics to do with enterprise archi-
tecture.

>	 �Program or project management skills—promoting methodology skills within 
projects.

>	 �IT general knowledge skills
>	 �Technical IT skills—containing elementary topics such as software develop-

ment and data modeling.
>	 �Legal environment

A suitable development program is a useful basis for further development as an 
architect. However, architecture is always the result of experience. Therefore, 
you must be open to new experiences and recognize that you never stop learn-
ing. Every new architecture project is therefore an opportunity for further devel-
opment and for increasing your wealth of experience.

For some years now, various organizations and service providers, such as The 
Open Group, Oracle, Microsoft, SAP, etc. have been offering architecture certifi-
cates. These are increasingly recognized on the market as a record of achieve-
ment. However, as yet there is no one standardized manufacturer-independent 
and technology-independent and internationally recognized architecture certifi-
cate. As a result of the lack of orientation on the topic software architecture that 
often exists (see Chapter 1), there is no uniform perception about the career 
scenario of the software architect. This means that the content, structure, and 
scope of the certification programs are very different. The costs (from EUR 1,000 
to over EUR 20,000) and time (from a few days up to several months) involved 
in obtaining an architecture certificate also vary greatly. Generally, the prerequi-
sites for participating in certification programs are good knowledge of software 
engineering and sometimes extensive work experience (10 years and more). 
With some certification programs, there is also an admissions procedure to go 
through first. Final examinations can comprise multiple choice tests, interviews, 
and project examinations. Here we will take a brief look at the manufacturer-
independent and technology-independent Open Group certifications. The Open 
Group differentiates three certification levels:
>	 �Level 1: Certified IT Architect
		� A Level 1 certified IT architect can act as an architect under supervision. He 

has a broad range of required architecture knowledge.
>	 �Level 2: Master Certified IT Architect

Architecture requires 
experience

Certifications 
as record of 
achievement
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		� A Level 2 certified IT architect can act independently and take responsibility 
for the design of architectures.

>	 �Level 3: Distinguished Certified IT Architect
		� Based on his broad and extensive architecture experience, a Level 3 certi-

fied IT architect has a considerable influence on his environment. He usually 
acts as Chief Architect, Enterprise Architect, or head of the IT architecture 
division of his enterprise.

The competency increases from Level 1 to Level 3. For more information see 
[Opengroup 2008b]. 

7.6	� Summary

>	 �Organizations, individuals, and architectures influence each other mutu-
ally.

>	 �Conway’s law states that organizations that design systems are con-
strained to produce systems whose structures are copies of the communi-
cation structures of these organizations.

>	 �Architectures or rather the IT systems based on them are always designed 
by and for people.

>	 �The architectural activity is always embedded within an organization, be 
that the enterprise for which the IT system is being designed or the project 
organization that consists of the persons involved.

>	 �An organization is a social entity that permanently follows an objective 
and has a formal structure that enables the activities of the member to be 
focused on the objective followed.

>	 �In organization theory, there is a differentiation between scientific man-
agement understanding, behavioral science understanding, and systemic 
understanding.

>	 �Scientific management understanding, also known as Taylorism, treats the 
individual as a production factor that can be planned, predicted, and con-
trolled.

>	 �Behavioral science understanding places the person at the center of the 
consideration by perceiving the person as a social being striving for recog-
nition and appreciation rather than as a pure production factor.

>	 �Systemic understanding considers the organization as a system that exists 
to achieve an objective, and which interacts with its environment. Orga-

Summary: General

Summary: 
Organizations
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nizations have an own task perception, an own culture, and formal and 
informal structures.

>	 �Agile development processes are based on behavioral science under-
standing and systemic organizational understanding. They place the per-
son at the center and consider him as a motivated individual.

�Every person has their own identity. The identity is based on five major pillars: 
social network, career and work, physical state, material values, values and 
norms.
>	 �Belbin differentiates between the following different types of people: Team 

worker, resource investigator, plant, shaper, implementer, completer, eval-
uator, and moderator.

>	 �People cannot be assigned to just one of the different types of people 
alone. However, tendencies are recognizable within each person.

>	 �A group is a special form of an organization. It interacts with its environ-
ment, pursues a task, has a structure, and develops a culture.

>	 �Belbin names the following factors for well-functioning, successful teams:
>	 �The group is led by a good, cooperative moderator.
>	 �As an absolute prerequisite for success, the group contains one or two 

plants.
>	 �Team members are deployed in accordance with their capabilities.
>	 �Groups should have a heterogeneous group structure. This applies both 

for the character traits as well as the abilities and experience.
>	 �According to Tuckman, each group goes through the following stages: 

Forming, storming, norming, performing, adjourning.
>	 �The Tuckman stages described are generally experienced multiple times 

before the group finds and establishes itself.

>	 �As an architect you are involved as early as preliminary studies, for ex-
ample, to verify whether an IT plan is feasible, through the analysis phase 
of a project, right up to the point when an IT system is put into operation.

>	 �Architects act in different roles—for example, designer, problem solver, 
decision maker, visionary, communicator, listener, motivator, leader, prac-
titioner, generalist.

>	 �Teams of architects consist of members who complement each other mu-
tually in order to realize the numerous architecture tasks ideally.

Summary: Individuals

Summary: Individuals 
and groups

Summary: Architect 
as central role
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>	 �For some years now, various organizations and service providers, such as 
The Open Group, SUN, Microsoft, SAP, etc have been offering architecture 
certificates.

>	 �The prerequisites for obtaining an architecture certificate are generally 
good knowledge of software engineering and sometimes extensive work 
experience (10 years and more).

>	 �With some certification programs, there is also an admissions procedure 
to go through first.

>	 �Final examinations of certification programs can comprise multiple choice 
tests, interviews, and project examinations.
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This chapter concentrates on the HOW dimension of the architecture orientation 
framework. Firstly we present knowledge about development processes that is 
relevant for you as an architect, before describing your individual activities during 
the creation of a system at a general level. We then make these activities more 
concrete using a real world example. This approach connects the architecture 
orientation framework to the contents of the previous chapters. It enables you 
to understand how to apply the information presented in the other chapters to a 
concrete problem (FigureÂ€8-1).

8	 Architecture Method (HOW)

Figure 8-1: Positioning of the chapter in the architecture orientation framework
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Section 8.8 is based on the work by Prof. Dr. Uwe Zdun for the German Edition 
of this book.
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FigureÂ€8-2 shows the basic concepts covered in this chapter and visualizes how 
they relate to each other. SectionsÂ€8.1–8.7 discuss these concepts in detail.

8.1	� Architecture and Development Processes

The development of a software system only rarely follows the path you originally 
planned (see FigureÂ€8.1-1). You may have to make changes even at the begin-
ning of a project, for example, because important project team members with the 
required capabilities are not available. The project will continue to deviate from 
the planned path over the course of time and the end product will not match the 
original plan precisely. There can be various reasons for this. System require-
ments can change or important team members can leave the project. Learning 

Figure 8-2: Basic concepts of the HOW dimension
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effects (even for an architect) that arise during the course of the project and 
constraints can mean that the project needs to change course. As long as you 
can react to such changes, and still achieve the overall objective defined by the 
stakeholders, this is not a problem. The reaction to such changes can differ in 
quality depending on the method you select. As an architect you have to adapt 
your activities to the conditions. In the following section we will therefore briefly 
discuss the methods used most frequently in practice. SectionÂ€6.6.5 provides 
more detailed information.

The waterfall model was first discussed in an article in the 1970s [Royce 1970]. 
Its essence is the sequential and once-only processing of different software de-
velopment disciplines (see FigureÂ€8.1-2). A discipline is a set of related activi-
ties producing a set of deliverables required by the subsequent discipline. For 
example, the requirements gathering discipline deals with the gathering of the 
requirements and the creation of requirements specification deliverables, e.g., 
use case models. In the waterfall model, you execute the various disciplines, 
e.g., requirements gathering, analysis, design, and implementation one after the 
other. In other words, one discipline starts only once another discipline has been 
fully completed. This means that the deliverables of the respective disciplines 
must be complete and must contain no errors at the end of that particular disci-
pline. Based on the requirements documented during requirements gathering, 
you create suitable analysis models. The design itself documents how the sys-
tem should be realized during implementation. In this context, disciplines are 
often referred to as phases.

Due to its simplicity (which is quite unlike reality), many people initially find the 
waterfall model very interesting. It is very easy to plan a development project 
using this approach: you can plan the beginning and the end of the different 
disciplines, and the specific point in time when people are required for individual 
activities (e.g., creating use cases, programming) [Cockburn 2002]. On the other 
hand, however, this approach contains many inherent risks for the planned proj-
ect schedule: for example, feedback is collected from users of the system very 
late in the development process—specifically, during the test phase. This means 

Figure 8.1-1: Planned development path vs. actual development path
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that you cannot react to errors in the system and to changed requirements. Fur-
thermore, the deliverables you create (e.g., the design) will have gaps, be contra-
dictory, or simply be defective. You cannot correct errors like this at short notice. 
It is often the case that the client only identifies or raises some requirements 
when the implementation phase starts (e.g., requirements for the user interface). 
If you use the waterfall model, you cannot take these late requirements into ac-
count appropriately. Furthermore, by definition, a sequential method takes longer 
than a non-sequential method since one discipline can only begin when the pre-
vious discipline is complete.

Practice has shown that the waterfall approach is rarely successful [Parnas et 
al. 1986; Larman 2002; Cockburn 2002]. Despite this, many projects still apply 
it and thus fail. Even Royce was aware of and discussed the problems of a se-
quential method [Royce 1970]. The waterfall model can be viewed as an histori-
cal mistake [Oestereich and Weiss 2008].

As the explanations clearly show, in an architecture method you cannot assume 
that you will design the architecture in detail first and then implement it. Doing 
this would mean that you could not adapt to changes to the requirements quickly 
enough. Furthermore, the architecture is validated too late in the development 
process. It is then very difficult to correct errors in the architecture and you can 
only do so with substantial effort and hence cost.

Figure 8.1-2: Example of the waterfall model
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The spiral model is a refinement of the waterfall model that tries to resolve the 
weaknesses of the latter [Boehm 1998]. Instead of executing the specified dis-
ciplines sequentially just once, you subdivide a software development plan into 
several cycles and execute every discipline in every cycle. Each cycle ends with 
the stakeholders affected reviewing the deliverables: for example, users will test 
the system towards the end of a cycle. This review provides important informa-
tion about the extent to which you have achieved the goals—information that you 
can then take into account in the next cycle. You thus create the deliverables, 
such as use case descriptions, UML components and sequence diagrams, or 
source code step-by-step. This reduces the risk that you might not achieve the 
goal at the end of a development project. An important part of the spiral model 
is the development of prototypes or simulations to assess alternatives and esti-
mate risks. Prototypes in particular are a valuable tool for verifying or visualizing 
aspects of an architecture (see SectionsÂ€8.4 and 8.5).

Similarly to the spiral model, newer methods, such as Unified Software Develop-
ment Process (USDP) [Jacobson et al. 1999], V-Modell XT [V-Modell XT 2009], 
Extreme Programming (XP) [Beck 2005], Feature Driven Development (FDD) 
[Parmer and Felsing 2002], and Scrum [Cohn 2010] also focus on a step-by-
step development of software systems that runs through multiple cycles. In this 
context, the term “iterative, incremental development process” has become 
widespread. The entire development process is divided into individual, sequen-
tial development steps that build on one another, so-called iterations. What is 
special about this process is that all typical disciplines and activities of a software 
development take place within each iteration. This means that in each iteration, 
you analyze part of the overall task, create a design for what you have analyzed, 
and then implement the design. Thus, at the end of an iteration, you have moved 
one step further in the overall task and added another piece to the solution. Ev-
ery one of these pieces that make up the solution is called an “increment,” and 
represents a system with some parts that are already working. Thus you arrive at 
the final system, step-by-step and piece by piece—iteratively and incrementally.

Of course, you must plan an iterative, incremental development process as pre-
cisely as a sequential one. It is particularly important to plan the iterations. De-
termine the number of iterations required, and then define the requirements to 
be realized in each of the respective iterations. As the architect, you must sup-
port the project lead in the planning in order to ensure that the architecturally 
significant requirements (see SectionÂ€8.4) are prioritized sensibly. The analysis 
of the requirements is one factor that determines the weighting of the individual 
requirements. For example, requirements with a great benefit for the user and/
or a high risk (e.g., time budget would be exceeded considerably or technical 
implementation is not possible without further effort) could receive a high weight-
ing. In contrast, requirements with a low benefit and/or a low risk would receive 
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a correspondingly lower weighting. During iteration planning, you distribute the 
individual requirements to the individual iterations based on their weighting: real-
ize requirements with a high weighting early in the development process, i.e., in 
one of the first iterations; schedule requirements with a low weighting for later 
iterations. For more information about weighting requirements, see SectionÂ€8.4. 
However, the distribution of the requirements to individual iterations is not set in 
stone. During the individual iterations, you may change the weighting of individ-
ual requirements, new requirements may arise, and existing requirements may 
change. These changes mean that you have to adapt the initial iteration planning 
as well. This is where an iterative, incremental development process offers a 
decisive advantage: you can continuously adjust the development process and 
its results to the changing environment. However, this also means that you need 
a special method for your work. This chapter presents the essential method that 
you should be concerned with within a development process.

You must consider architecturally significant requirements in the effort estimation 
for resource planning (budget, time, people) as well as in the iteration planning 
in addition to the normal requirements. It is important that you are sufficiently 
involved in prioritizing and estimating the effort for requirements in order to sup-
port the project lead and domain experts—otherwise there is a risk that technical 
aspects do not receive sufficient attention or are estimated incorrectly (e.g., re-
stricted possibilities of a framework with reference to the implementation of spe-
cific requirements). This can have negative consequences for the further project 
planning (e.g., implementation requires more people than planned).

We have already named some agile methods: XP, FDD, and Scrum. From an 
architectural view, what is relevant about agile methods is that they use exclu-
sively an iterative, incremental development process and restrict the scope of the 
documentation or rather, question “superfluous” documentation [Cunningham 
et al. 2001]. For example, documentation should only cover existing, concrete 
requirements and not possible future ones. For you, the question is whether 
this also applies to the architecture documentation—or rather, how loosely must 
you define an architecture and how can you then make this explicit in an agile 
context? Opinions circulating in the XP community deem an architecture design 
unnecessary—although the issue is the subject of much controversy [Fowler 
2004]. In general, we can say that the degree of the architecture design and 
the architecture documentation should fulfill the “sufficient-to-purpose” principle 
[Cockburn 2002; Fowler 2004]. Hence consider each specific situation individu-
ally. Ambler argues that you must pay sufficient attention to architecture even in 
agile methods. In the first iteration, it should be successful enough to serve as a 
vision and orientation for team members. You will adjust the architecture itself, 
and the documentation, as required over time in agile approaches [Ambler 2010].

Resource planning 
and requirements

Agile methods
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Methods are templates that you have to adapt to concrete situations. For ex-
ample, the project size is an indicator of how you should adapt a method in 
practice. Variants of USDP already exist for large and small projects. In addition 
to adapting methods, in large projects in particular, subprojects can use different 
methods suitable for their respective context (e.g., team members are very ex-
perienced, meaning that XP is suitable). However, this can also cause problems 
because inhomogeneous methods make coordination among the individual sub-
projects more difficult. You can also combine methods. Projects can base their 
concrete development process on USDP and XP, for example. USDP can define 
the general method, but you can also integrate best practices such as continuous 
integration and pair programming from Extreme Programming (XP) [Beck 2005] 
in the process. Here we should briefly mention the Software & Systems Pro-
cess Engineering Meta Model (SPEM) from OMG [OMG 2008c] and the Eclipse 
Process Framework (EPF) [Eclipse 2010c]. SPEM is a metamodel for defining 
processes (see SectionÂ€6.6.5). With EPF, you can create, adapt, and combine 
processes based on the SPEM metamodel.

In this section we will take a closer look at USDP, frequently also referred to 
as UP (Unified Process). It is an example of an iterative, incremental develop-
ment process [Jacobson et al. 1999]. One variant is the Rational Unified Process 
(RUP). FigureÂ€8.1-3 shows the main elements of USDP.

FigureÂ€8.1-3 shows how an iterative, incremental development process is struc-
tured over time (phases and iterations) on the vertical axis, and over the core 
process disciplines on the horizontal axis. Only the core process disciplines most 
relevant for you as an architect are shown—USDP has further core process dis-
ciplines. For clarity, an iterative, incremental development process differentiates 
between specific phases (time sections) that run during the development of a 
system. Do not confuse these phases with the phases of the waterfall model. 
Each one can be made up of more or fewer iterations. The core process disci-

Figure 8.1-3: Elements of USDP
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plines have a different weighting depending on the phase to which an iteration 
belongs. FigureÂ€ 8.1-3 shows the weighting of the core disciplines at different 
times using different sized blocks at the intersections of the time and activity 
axes. However, it only shows the tendency in the weighting of the core process 
disciplines: in a concrete project, the absolute figures can be different. We will 
now briefly discuss the different phases.

In the inception phase, the focus is on the agreement of the stakeholders on the 
goals of the project. It is also important at this early stage to define the scope 
of the system to be realized. This includes defining the most important require-
ments and the acceptance criteria. You must also identify and assess risks. In 
this first phase you make initial decisions about the architecture and, if appli-
cable, design an initial architecture to demonstrate feasibility and thus establish 
confidence in the planned project.

The elaboration phase is particularly challenging since here you must complete 
the architecture to such a degree that you have a stable architectural basis for the 
activities in the subsequent phases. In this phase you do the following: consider 
all architectural requirements, design the architecture, verify alternatives using 
architecture prototypes, and implement evolutionary architecture prototypes. An 
evolutionary architecture prototype is evolved over time in the actual IT system 
by adding more functionality incrementally. At the end of the elaboration phase, 
you must be sure that the architecture you have designed sufficiently minimizes 
the risks identified and sufficiently satisfies the architectural requirements.

In the construction phase, you analyze requirements that you have not previ-
ously considered in detail more precisely and document them. You also imple-
ment the individual requirements incrementally. In other words, in this phase, 
you develop the system based on the architecture you have designed. From 
an architectural point of view, the focus is on ensuring that the system actually 
conforms to the architecture. You can achieve this, for example, through reviews 
and training. As the architect, your task is also to make using the architecture 
as efficient as possible. You could create a skeleton system that complies with 
the architecture, for example (see SectionÂ€8.6). This would enable developers to 
concentrate on implementing the business logic and they would not have to deal 
with infrastructure-related logic.

In the subsequent transition phase, the focus is on ensuring that the system can 
be handed over to the end user. For example, errors are corrected, users are 
trained, the maintenance personnel are instructed, and the operating and instal-
lation documentation is created. As the architect you will frequently be involved 
in the error analysis and bug fixing. You will also be responsible for training the 
maintenance and operating personnel with regard to the architectural aspects.

Inception

Elaboration

Construction

Transition
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TableÂ€8.1-1 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.1 and the architectural topics 
discussed in ChaptersÂ€3–7.

Table 8.1-1: Overview of the connections between SectionÂ€8.1 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section 
heading

Reason for connection

3.2 From Classic Archi-
tecture to Software 
Architecture (WHAT)

Architectural activities and related decisions are 
influenced by the surrounding process

4 Architecture Per-
spectives (WHERE)

Activities and deliverables defined by processes 
are at different levels of abstraction and require 
the usage of different views

5 Architecture Re-
quirements (WHY)

Processes must support the sufficient handling of 
architecturally significant requirements

6 Architecture Means 
(WITH WHAT)

Prozesses must ensure appropriate utilization of 
architecture means within architectural activities

7.1 General (WHO) The architect acts in the context of an organiza-
tion and his activities are therefore heavily influ-
enced by this context. One important aspect is 
that organizations often define which kind of pro-
cesses have to be applied by the different projects

7.2 Organizations 
(WHO)

Which development process is chosen also de-
pends on the significant basic understandings of 
an organization. For example, scientific manage-
ment understanding tends to prefer the waterfall 
model

7.3 Individuals (WHO) The different identities individuals can have influ-
ence the way a process is executed and should 
be considered when choosing a process

7.4 Individuals and 
Groups (WHO)

Group dynamics and group composition influence 
the way a process is executed

7.5 Architect as Central 
Role (WHO)

Processes can be used to limit or to promote the 
architect’s role

8.2	� Overview of the Architecture Method

The previous chapters provided essential architectural knowledge that forms an 
important basis for you to practice successfully as an architect on a daily ba-
sis. However, this knowledge is worthless if you cannot use it consciously and 
purposefully. To do this, you have to develop an architectural awareness, think 
architecturally, and proceed architecturally so that the architectural knowledge 
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discussed in the previous chapters actually brings useful benefits. But what is the 
best way to proceed? What are your important activities? How can you integrate 
the method into an existing software development process? And finally, what ef-
fect do other architecture dimensions (WHAT, WHERE, WHY, WITH WHAT, and 
WHO) have on the architectural activities? This section provides a brief overview 
of your activities as an architect. SectionsÂ€8.3–8.7 cover the individual activities 
in detail.

As explained in ChapterÂ€3, software architecture covers not only the software 
structures of a system, but also the activities that lead to these structures. There 
are many architecture means for structuring (see ChapterÂ€6). However, using 
them does not automatically lead to good architecture. It is therefore important to 
use a systematic architecture method as a basis when you are selecting the ar-
chitecture means. Regardless of whether you develop the system based on the 
waterfall model or iteratively and incrementally, the challenge will always be to 
align your method to the definition of an architecture that fulfills both the function-
al and the non-functional requirements. As emphasized in SectionÂ€8.1, an itera-
tive, incremental development process is preferred over a sequential process.

However, applying an appropriate method is still no guarantee for a good ar-
chitecture. As an architect you can allow yourself to be guided by a method. To 
create architecture, however, you will always have to use your own wealth of 
experience in addition to the generic help provided by a method. For example, 
you will have to adapt the recommendations of a method to the specific project 
situation based on your own experience.

What are the activities that make up an architecture method? FigureÂ€8.2-1 vi-
sualizes the general architecture method using a UML activity diagram. We will 
explain the model later in this section before we analyze how it can be embedded 
in software development processes.

The activities presented in FigureÂ€8.2-1 are based on the work of Bass et al. 
[Bass et al. 2003] and our own experiences. Bass et al. also introduce the activi-
ties “analyze and assess the architecture” and “ensure architectural conformity.” 
In the method presented here, the architecture is assessed as part of the activity 
“designing the architecture.” The activity “implementing the architecture” is de-
voted to the aspect of architectural conformity. The activities are independent of 
the concrete development process. However, with the exception of the activity 
“creating the system vision,” you should always execute the activities iteratively 
and incrementally. Therefore, later in this chapter, we will look at the activities in 
the context of an iterative, incremental development process.

An architect needs 
a method

… and experience

The typical 
activities of an 
architect
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On one hand, a system vision evaluates the business usefulness of an initiative. 
For example, a system vision for replacing a host system that has grown over 
decades with a JEE-based system will contain clear statements about the de-
sired and expected profitability. On the other hand, a system vision also defines 
the essential requirements for the future system. It is your responsibility as an 
architect to question these requirements critically with regard to their architec-
tural feasibility in the overall or global IT context of an organization. You must 
also point out contradictory requirements and indicate alternatives. Therefore, it 
is essential that you participate in the creation of the system vision at this early 
stage. If you do not, there is a danger that a system vision will be unrealistic from 
an architectural point of view and the realization is therefore at a disadvantage 

Figure 8.2-1: Overview of the architecture method
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from the very beginning. As far as the architecture method is concerned, when 
executing the activity “creating the system vision,” see yourself as an architec-
tural consultant—your task is to position the system vision on viable architectural 
foundations. You can proceed with the other architectural activities once the sys-
tem vision has been adopted.

As explained in ChapterÂ€5, requirements restrict your creative freedom as an 
architect. In order to be able to envision and use this freedom, you must under-
stand both the stakeholders and the requirements. The activity “understanding 
the requirements” is therefore concerned with the identification, prioritization, 
and detailing of architecturally significant requirements. In particular, it is very im-
portant that you examine the non-functional requirements deliberately and thor-
oughly. These requirements are often either loosely formulated or not formulated 
at all. The more explicitly the architecturally significant requirements are detailed, 
the clearer your architectural freedom will be, and the more closely the architec-
ture that you define in the next step will meet the requirements placed on it.

You create the actual architecture during the activity “designing the architecture.” 
Here you can choose from a wide range of architecture means (see ChapterÂ€6). 
For example, you may consider using a proven reference architecture, a tried 
and tested architecture pattern, or simple, timeless architecture principles. At a 
later point in time, you will make concrete platform or technology decisions. The 
architecture of the system is the sum of all decisions. There is usually more than 
one architecture alternative for implementing the given requirements. You will 
therefore have to decide between the alternatives. The assessment of architec-
ture alternatives is therefore very important as part of this activity.

An architecture should not remain just a design: you must also demonstrate it 
technologically and therefore implement it successfully. You can do this in differ-
ent ways. The spectrum ranges from defining pure development guidelines and 
manual reviews to establishing an infrastructure that guides and supports the 
developers in implementing the system so that it conforms to the architecture. 
The implementation of the architecture is often neglected (see ChapterÂ€7). This 
results in systems that follow the architecture only partially or not at all, and that 
do not satisfy architecturally significant requirements.

As an architect you must not only design an architecture, you must also com-
municate it to the different stakeholders. The aim of the activity “communicating 
the architecture” is therefore to convey the best possible understanding of the 
architecture and the architecture decisions to the individual stakeholders (e.g., 
project leaders, developers, users, customers). In turn, this understanding is a 
good basis for the activities of the individual stakeholders. Here, communication 
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comprises documenting an architecture and conveying it verbally based on or 
using the architecture documentation. You always communicate the architecture 
in parallel to the other activities. During the “understanding the requirements” 
activity, you will already be communicating with the stakeholders, for example, to 
point out contradictory requirements. In the “designing the architecture” activity, 
you will present your designs to stakeholders. During the implementation of the 
architecture, you will also run source code reviews to ensure architectural confor-
mity. You will communicate with your developers and discuss the review results. 
And of course, communication also takes place during the creation of the system 
vision. However, the main part of the communication will take place during the 
development of a system.

After you have successfully created a vision for a system, and the actual soft-
ware development project has begun, you will perform the other architectural 
activities over the entire software development process (see FigureÂ€8.2-1). The 
focus shifts from “understanding the requirements” through “designing the ar-
chitecture” to “implementing the architecture.” “Communicating the architecture” 
does not become less important, however, since you must keep an architecture 
alive in the minds of the stakeholders.

An important result of the architectural activities is the creation of different archi-
tecture views as described in ChapterÂ€4 [Rozanski and Woods 2005]. TableÂ€8.2-
1 shows the architecture views that you develop in the individual architectural 
activities.

Table 8.2-1: Architecture views and architectural activities

Architecture views Architectural activities

Requirements view
>	 Creating the system vision
>	 Understanding the requirements
>	 Communicating the architecture

Logical view
>	 Creating the system vision
>	 Designing the architecture
>	 Communicating the architecture

Data view >	 Designing the architecture
>	 Communicating the architecture

Implementation view >	 Implementing the architecture
>	 Communicating the architecture

Deployment view >	 Designing the architecture
>	 Communicating the architecture

Process view >	 Designing the architecture
>	 Communicating the architecture

An architect is 
involved over the 
entire software 
development cycle

Developing 
architecture views
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You perform the architectural activities continuously in an iterative, incremental 
development process. In each iteration, the architectural work is made up of a 
combination of the activities. However, the ratio of the individual activities chang-
es from iteration to iteration. In the initial phase, the main focus is on the activities 
“creating the system vision” and “understanding the requirements.” During the 
development process, the focus then moves to the activities “designing the archi-
tecture,” “implementing the architecture,” and “communicating the architecture.” 
The architectural activities thus fit into the structure of the surrounding iterative, 
incremental development process. This enables you to adapt the work in the in-
dividual architectural activities to the changing requirements, to the same extent 
as the development process is adapted.

The architectural activities can be embedded in the USDP disciplines. Fig-
ureÂ€8.2-2 shows which architectural activities you take into account in each of the 
core process disciplines of an iterative, incremental development process using 
the example of USDP. You cannot always assign the activity to one core process 
discipline uniquely. However, this is not particularly significant as it is more impor-
tant to perform the activities, regardless of the core process discipline in which 
they are to be embedded.

An architecture is only successful if it is accepted by the team that has to real-
ize and implement it. Furthermore, the stakeholders must also be informed and 
aware of the architectural decisions and the impact on them. Therefore, it is es-
sential that you involve stakeholders in the definition of the architecture and that 
you communicate the architecture at an early stage (see SectionÂ€8.7). You will 
not be able to cover each and every aspect yourself. You will need the insights 
and experience of the experts in your team (e.g. security, usability, or integration 
experts and developers). Involving your team in the architecture activities will not 
only improve the acceptance of the architecture but will also make it sounder. 

Figure 8.2-2: USDP core process disciplines and architectural activities
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Although we are focusing on the architect and describe the architectural activities 
from an architect’s perspective, you need to be aware that you are part of a team 
and that organizational and social aspects apply (see ChapterÂ€7).

You also need to support your project manager from an architecture perspective. 
For example, you will need to identify the skills required and participate in the 
selection of appropriate practitioners (see SectionÂ€ 8.7). Furthermore, you will 
have to work together with the project manager to create a project plan based on 
the effort you have estimated. Often an architect is also considered a technical 
project manager.

We will now look at the architecture method using a concrete real world example. 
We can use the Management Information System (MIS) presented in SectionÂ€3.4 
for collecting and evaluating business key figures.

TableÂ€8.2-2 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.2 and the architectural topics 
discussed in ChaptersÂ€3–7.

Chapter/
section
number

Chapter/section 
heading

Reason for connection

3.2 From Classic Archi-
tecture to Software 
Architecture (WHAT)

The architecture method is the manifestation of 
the fact that software architecture is not only the 
representation of the structures of a system but 
also a discipline

3.3 Architecture and the 
System Concept 
(WHAT)

Thinking in systems is one of the essential pre-
requisites for executing the architecture method 
sensibly

3.4 Architecture and the 
Building Blocks of a 
System (WHAT)

The architecture method deals with a set of fun-
damental system building blocks

4.1 Architecture
Levels (WHERE)

The activities of the architecture method are 
performed at different architecture levels

4.2 Architecture Views 
(WHERE)

Within each activity of the architecture method 
one or more different architectures views are cre-
ated or worked out

5 Architecture
Requirements 
(WHY)

While executing the architecture method the 
architect is guided by requirements throughout all 
activities and the actions of the activities

6 Architecture Means 
(WITH WHAT)

While executing the architecture method the 
architect applies different architecture means 
corresponding to the activity in question and its 
actions

Table 8.2-2: Overview of the connections between SectionÂ€8.2 and ChaptersÂ€3–7
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8.3	� Creating the System Vision

FigureÂ€8.3-1 shows the basic concepts of the activity “creating the system vision.” 
We will look at these in more detail and visualize how they relate to each other.

Chapter/
section
number

Chapter/section 
heading

Reason for connection

6.6.5 Unified Method Ar-
chitecture (UMA)

UMA can be used to model the architecture meth-
od in order to embed the activities of the architec-
ture method into an overall development process

7.2 Organizations 
(WHO)

Which development process is chosen also de-
pends on the significant basic understandings of 
an organization. For example, scientific manage-
ment understanding tends to prefer the waterfall 
model

7.3 Individuals (WHO) The different identities individuals can have influ-
ence the way a process is executed and should 
be considered when choosing a process

7.4 Individuals and 
Groups (WHO)

Group dynamics and group composition influence 
the way a process is executed

7.5 Architect as Central 
Role (WHO)

The architecture method comprises those activi-
ties and corresponding actions that are required 
by the architect’s role

Figure 8.3-1: Basic concepts of the activity “creating the system vision
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FigureÂ€8.3-2 illustrates the individual actions of the activity “creating the system 
vision.” This activity is primarily concerned with developing the requirements view 
of a system (see SectionÂ€4.2). Not all of the actions have a primarily architectural 
nature. However, a system vision must be architecturally feasible. It is therefore 
important that you participate in all actions and look at the system vision from 
an architectural point of view. Imagine the following example: The requirement 
is for a system to be available for productive use at a specific point in time. In 
order to have the greatest possible freedom for further development, there is the 
additional requirement for the organization to develop the system in-house. How-
ever, the functional scope of the system is so vast that it cannot be developed 
in-house within the given time frame due to missing development capabilities. It 
is now your task as the architect to draw attention to the conflict between these 
individual requirements and to show alternative solutions. In this case, the fol-
lowing alternative solutions could be possible: moving the productive start for the 
system, or realizing the system by integrating commercial off the shelf products 
with custom-developed software building blocks. Use custom development in 
cases where it is important not to be dependent on product lifecycles of a product 
supplier and where the IT system built should support a business capability that 
distinguishes it from competitors.

In this activity you take on the role of an architectural consultant in a team of 
experts from different areas. Other team members are domain experts, for ex-
ample. You can only create an overall system vision by putting together a team 
with members from the different areas.

The term “business case” is sometimes used instead of “system vision.” A busi-
ness case generally highlights the economic benefits more clearly than a system 
vision. However, it is sometimes difficult to differentiate between them. USDP 
does differentiate between “business case” and “system vision,” but stresses the 
close connection between the two.

The business opportunities to be achieved by realizing the system are an impor-
tant part of the system vision. You should clearly state the benefits of the system 
and the problems that the system solves. Make the benefits tangible both qualita-
tively and quantitatively—quantitatively in the form of business key figures, such 
as “return on investment (ROI), time to market, or time to value.”

The way to a 
system vision

Architect as 
architectural 
consultant

System vision and 
business case

Describe business 
opportunities
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TableÂ€8.3-1 illustrates the business context, the business opportunities, and the 
problem description for MIS.

Figure 8.3-2: Creating the system vision
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In addition to describing business opportunities, a system vision also identifies 
the stakeholders of the system. Since the success of a system depends on its ac-
ceptance by the stakeholders, this action is very important [Rozanski and Woods 
2005]. The stakeholders include the immediate users of the system, as well as 
clients, operators, or departments affected. The following questions can be use-
ful in identifying the stakeholders:
>	 �Who uses the system?
>	 �Who is affected by the introduction of the system?
>	 �Who benefits from the system?
>	 �Who operates the system?
>	 �Who maintains the system?
>	 �Who accepts the system?
>	 �What expectations do the stakeholders have?
>	 �What tasks, competencies, and responsibilities do the stakeholders have?

Table 8.3-1: Business opportunities and problem description for MIS

Business context

MIS is embedded in the global department responsible for the enterprise resource 
planning systems (ERP Support) for the enterprise. This department offers its services 
to all departments that need ERP systems

Business opportunities

The management of ERP Support wants to be able to measure the performance of 
its global department as well as its regional sub-departments. Therefore, key perfor-
mance indicators (e.g., number of tickets closed, reopened, rejected) are to be re-
corded and evaluated. Based on the findings, the management of ERP Support will be 
able to rectify weaknesses directly and thus improve the overall performance

Problem description

Problem At the moment there is no information available about the 
qualitative and quantitative performance of the ERP Sup-
port department

Concerns Management
Team leaders

Consequences No management measures can be undertaken to maintain 
and improve services.

Successful solution The transparency of the actual performance ability of the 
department is increased and justified measures can be 
taken. In the long term, customer satisfaction is increased.

Task of the system MIS should enable the recording and evaluation of perfor-
mance indicators.

Identify stakeholders
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We recommend describing the stakeholders using a standard template that re-
flects the answers to the questions above.

Stakeholders are not always positive about the development of a new system. 
A new system could shift the political power structure between departments, for 
example. In the worst case, individual stakeholders could boycott the project. 
Therefore, always be aware that social aspects are also important for you in your 
role as an architect (see Chapter 7). Address the expectations stakeholders have 
of the system and the architecture actively. This aspect should be recognized as 
part of the activity “communicating the architecture” (see SectionÂ€8.7).

Table 8.3-2: MIS stakeholders

Stakeholder Role Description

ERP management Represents the inter-
ests of management

Analyzes performance indicators 
and derives actions from them

Central architecture Represents central 
architectural guidelines

Assesses the conformity of the 
MIS architecture with the central 
guidelines

System operation Represents operation-
al specifications

Operates MIS (installation, start, 
stop, update)

Team leader Represents the re-
quirements of the team 
leaders

Records data for collecting perfor-
mance indicators

Administrator Represents the re-
quirements of the 
administrators

Manages MIS users. Initiates data 
imports

Controller Represents the re-
quirements from con-
trolling

Runs reports and checks per-
formance of the various support 
teams against defined perfor-
mance indicators

TableÂ€8.3-2 contains the stakeholders for our MIS example. Enterprises often 
have a central architecture department that defines architectural specifications 
valid for the whole enterprise. Sometimes this department is identified as a 
stakeholder too late. You should therefore always analyze the organizational 
environment and include stakeholders with architectural relevance. These in-
clude, for example, system operators who will later operate the system. You 
can also prioritize the stakeholders in order of their importance to enable you to 
take their requirements into account correspondingly later on [Oestereich and 
Bremer 2009]

Expectation 
management is 
necessary

Identify stakeholders 
with architectural 
relevance early
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A system vision should document the significant requirements that the system 
must satisfy. This ensures that you define the system’s functional scope at an 
early stage. During requirements gathering, you derive detailed requirements 
within the identified scope. Record the relevant non-functional requirements as 
well as the functional requirements.

Identifying the functional requirements means defining the functionality the sys-
tem is to provide (see ChapterÂ€5). The focus should be on the primary functional-
ity. From the significant functional requirements, select those of an architectural 
nature. For example, you may have to connect external systems in order to real-
ize some requirements. You must therefore investigate the feasibility of integrat-
ing these systems. TableÂ€8.3-3 contains some examples of functional require-
ments for MIS.

Table 8.3-3: Significant functional requirements for MIS

Functional
requirement

Description

Log on Users must authenticate themselves with an ID and a pass-
word before MIS grants them access

Enter performance 
data

Team leaders must be able to enter performance data for their 
teams. Administrators must be able to enter performance data 
for any teams

Import incident data Incident data must be imported into MIS from the Incident 
Management System (IMS) to determine performance indica-
tors

Import CCM data Configuration & Change Management (CCM) data must be 
imported into MIS from the CCM system (CCMS) to determine 
performance indicators

Create performance 
reports

Controllers must be able to create performance reports

Manage user ac-
counts

Administrators must be able to manage user accounts

Display performance 
reports

Managers, team leaders, controllers, and administrators must 
be able to look at performance reports

Unfortunately, the non-functional requirements that a system must satisfy are 
often neglected. However, to ensure the system is accepted, you must also rec-
ognize these requirements. The direct non-functional requirements determine 
the expected quality of the functional requirements (see SectionsÂ€5.1 and 5.5). 
For example, a requirement for displaying the input screens of MIS may be that 
80% of the screens must appear within 5Â€s. Indirect non-functional requirements 
can also have an effect on the system. Such requirements, also known as con-

Document significant 
requirements

Identify functional 
requirements

Identify non-
functional 
requirements
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straints, restrict your creative freedom as an architect. The central architecture 
department can specify, for example, that MIS must be implemented based on 
JEE. This excludes a realization of MIS with PHP or .NET from the very begin-
ning. In particular, you must assess and gather the non-functional requirements 
at an early stage. Furthermore, you will always be faced with the challenge of 
identifying undocumented non-functional requirements and agreeing them with 
stakeholders. TableÂ€8.3-4 contains non-functional requirements for MIS.

Table 8.3-4: Significant non-functional requirements for MIS

Non-functional
requirement

Description

Operability MIS must be connected to the central system management 
infrastructure

Extensibility It must be possible to add new performance indicators and 
performance reports to MIS within an average of ten person 
days

Time-to-Market MIS must be developed within six months

Compliance with IT 
standards

Guidelines issued by the central architecture department must 
be complied with

Security Only authenticated users must be able to access functional-
ities and data for which they have authorization.

Usability MIS must offer context-sensitive online help for users

Availability MIS must be available 24/7

Performance 80% of the screens must be displayed within 5Â€s

Based on the significant requirements identified, you can now start to create the 
system overview. You will consider the system in its context for the first time. 
Therefore, you initially view the system as a black box (see SectionÂ€3.3) and 
identify the human and system actors that the system interacts with. The hu-
man actors are the users of the system. System actors are the external systems 
(peripheral systems) that the system communicates with. The system context 
boundary depicts the relationship between the system under construction and 
its human actors and system actors. It thus illustrates the system boundary. You 
refine the system context and make it more concrete later on in the course of the 
project.

FigureÂ€8.3-3 illustrates the system context of MIS. It contains the human actors 
(roles). These were derived from the stakeholders. It also contains the peripheral 
systems. In this example, these are an Incident Management System (IMS), a 
Configuration & Change Management System (CCMS), and a System Manage-

Create system 
overview

Create a first system 
context
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ment System. The IMS contains information about incidents that the ERP sup-
port department processes. These include setting up or unlocking a user ac-
count. This information shows how long it took to process an incident. If errors 
are discovered in ERP, these must be corrected by the development department. 
The support department sends them to the development department by means 
of change requests. These changes are managed in CCMS and not in IMS. 
Since information must be available from both CCMS and IMS for a precise anal-
ysis, MIS must also communicate with CCMS. To operate MIS, it must also be 
connected to the central system management infrastructure (see SectionÂ€3.4). 
This is the result of the non-functional requirement of operability, rather than 
functional requirements. The corresponding extension of the system context lays 
the foundation for fulfilling this non-functional requirement later.

During this activity, you create a first approximate decomposition of the system 
as well as the system context. It corresponds to a first architectural vision. The 
vision is usually vague. You make it more concrete later during the “designing the 
architecture” activity. The presentation at this point can be very informal and you 
can restrict it to the identification of significant building blocks (see FigureÂ€8.3-4). 

Figure 8.3-3: MIS system context

Controller
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Incident
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So-called “box and line diagrams” are frequently used instead of UML diagrams. 
These are very informal and make it easier for various stakeholders to understand 
the architecture vision. This type of diagram is sometimes also used as the basis 
for more precise and more formal UML diagrams [Rozanski and Woods 2005].

Creating this system overview completes the main actions for creating a system 
vision. The system vision can now be assessed. It is assessed on one hand by 
the team that created it and on the other by the stakeholders—in the MIS case, 
for example, by the ERP management. The requirements could also be critically 
reviewed in this context. For example, the architect responsible for MIS may 
notice that the availability requirement does not allow for a maintenance window 
and could point out this problem.

TableÂ€ 8.3-5 shows which artefacts have been worked out for the architecture 
view “requirements view” (see SectionÂ€4.2) for MIS during the “creating the sys-
tem vision” activity.

Table 8.3-5: Architecture views developed during “creating the system vision”

Architecture view MIS artefacts

Requirements 
view

>	 �Business opportunities and problem description (see Ta-
bleÂ€8.3-1)

>	 MIS stakeholders (see TableÂ€8.3-2)
>	 Significant functional requirements (see TableÂ€8.3-3)
>	 �Significant non-functional requirements (see TableÂ€8.3-4)

Logical view >	 MIS system context (see FigureÂ€8.3-3)
>	 First architecture idea of MIS (see FigureÂ€8.3-4)

Figure 8.3-4: First architecture idea of MIS

Assess system 
vision

MIS: Architecture 
views developed
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Have business opportunities and the problem description been documented? 

Are all stakeholders clearly agreed on the essential task of the system to be developed? 

Have all architecturally significant stakeholders been identified? 

Have all significant requirements been documented? 

Has sufficient attention been paid to non-functional requirements? 

Has a system context been created? 

Does the system context cover all human and system actors (peripheral systems)? 

Has an architecture vision been created? 

Has the system vision been assessed? 

TableÂ€8.3-6 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.3 and the architectural topics 
discussed in ChaptersÂ€2–7.

Checklist: Creating 
the system vision

Connections between 
Section 8.3 and 
Chapters 3–7

Table 8.3-6: Overview of the connections between SectionÂ€8.3 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section 
heading

Reason for connection

3.3 Architecture and the 
System Concept 
(WHAT)

Thinking in systems is applied to work out build-
ing blocks required. The system and its environ-
ment are the basis for creating the first system 
context

3.4 Architecture and the 
Building Blocks of a 
System (WHAT)

A system and its building blocks are the basis for 
identifying the first building blocks of the system 
to be developed

4.1 Architecture
Levels (WHERE)

At the organizational level the business oppor-
tunities are described and the stakeholders are 
identified. At the system level the requirements 
are identified and the system context is created. 
At building block level the first building blocks of 
the system are identified

4.2 Architecture Views 
(WHERE)

The requirements view and the logical view are 
created

5 Architecture
Requirements (WHY)

Functional requirements, qualities, and con-
straints are considered

6.1 Architecture Prin-
ciples (WITH WHAT)

Architecture principles (e.g., modularity and 
loose coupling) are applied to create the system 
overview and the first building blocks

6.2 Basic Architecture 
Concepts (WITH 
WHAT)

Basic architecture concepts (e.g., component 
orientation) are applied to create the system 
overview and the first building blocks
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[Oestereich and Bremer 2009]
Oestereich, Bernd; Bremer, Stefan, Analyse und Design mit UML 2.3 - Objekto-
rientierte Softwareentwicklung, 9. Auflage, Oldenbourg Verlag, 2009 (available 
in German language only)

[Rozanski and Woods 2005] 
Rozanski, Nick und Woods, Eoin, Software Systems Architecture - Working with 
Stakeholders Using Viewpoints and Perspectives, Addison-Wesley, 2005

>	 �In this activity you take on the role of an architectural consultant in a team 
of experts from different domains.

>	 �The term “business case” is sometimes used instead of “system vision.”
>	 �A system vision should contain the business opportunities, the stakehold-

ers, the significant requirements, and a first system overview.
>	 �Identify and prioritize the stakeholders.
>	 �During the creation of the system vision, you must manage the expecta-

tions of the individual stakeholders.
>	 Document the significant functional and non-functional requirements.
>	 �A first system overview should consist of a system context and a first ar-

chitecture idea.
>	 �At this point the presentation of the architecture idea can be very informal 

and you can restrict it to the identification of significant building blocks. 

8.4	� Understanding the Requirements

FigureÂ€8.4-1 shows the basic concepts of the activity “understanding the require-
ments” and visualizes how they relate to each other. We will look at these in more 
detail in this section.

Further reading: 
Creating the system 
vision

Summary:  
Creating the system 
vision

Basic concepts 
of the activity 
“understanding the 
requirements”

Chapter/
section
number

Chapter/section 
heading

Reason for connection

6.6 Architecture Model-
ing Means (WITH 
WHAT)

Architecture modeling means (e.g., UML) are ap-
plied to document the system overview and the 
first building blocks

7 Organizations and 
Individuals (WHO)

The architect has to understand the concerns and 
needs of the various stakeholders and therefore 
has to communicate and collaborate with them
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It is important to have a good understanding of the requirements an architecture 
must satisfy to be able to utilize your creative freedom as an architect when 
designing the architecture (see SectionÂ€8.5). This applies to both functional and 
non-functional requirements. You cannot design an architecture without a good 
understanding of architecturally significant requirements. Therefore, the archi-
tectural activity “understanding the requirements” consists of the actions shown 
in FigureÂ€8.4-2. It is primarily concerned with developing the requirements view 
of a system (see SectionÂ€4.2).

Unfortunately, requirements are not always documented clearly. In practice, you 
are more likely to meet contradictory and imprecise formulations. Some relevant 
requirements may not even be documented. The requirement that it must be 
possible to extend our example system MIS is very imprecise: it must be made 
more concrete. For example, a more precise formulation would be that it must 
be possible to add new performance indicators and performance reports to MIS 
within an average of ten person days.

You have to clear up contradictions and imprecise formulations in the require-
ments and identify and document missing requirements. Finally, make require-

Figure 8.4-1: Basic concepts of the activity “understanding the requirements”

Understanding the 
requirements is 
the prerequisite for 
architecture design

Requirements are not 
always clear

Requirements must 
be tangible
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ments tangible. Clear, imaginable, and measurable formulations make it easier 
to discuss requirements with stakeholders.

Requirements do not all have the same value. Some will provide a higher benefit 
than others. The realization of different requirements also bears different risks. 
Prioritize requirements based on the benefits and the risks.

Both functional and non-functional requirements can be architecturally signifi-
cant. In practice, functional requirements that relate to interactions with a system 
are frequently documented as use cases. Therefore, in this context, we often talk 
about identifying the architecturally significant use cases. Non-functional require-
ments can be divided into qualities and constraints. Qualities are a measure for 
the quality of the realization of the functional requirements. One example of a 
quality is that MIS should be available 24/7. Constraints define the way functional 
requirements and qualities can be realized (see SectionÂ€5.1). The development 

Figure 8.4-2: Understanding the requirements
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period of six months given for MIS is a condition that restricts the architectural 
creative freedom. It therefore represents a constraint.

In this activity you identify the architecturally significant requirements. But what 
exactly is an architecturally significant requirement and how can you extract 
it from the total of all requirements? Often, all of the requirements appear ar-
chitecturally significant at first glance. It is therefore important that you classify 
requirements systematically. Requirements are given by different stakeholders, 
and the stakeholders each have a different priority. You can thus filter the re-
quirements initially according to the priority of the stakeholders. Requirements 
each have a different relevance for stakeholders because they have different 
benefits. Furthermore, there are various risks involved in realizing requirements. 
You can therefore assess requirements using the criteria “benefit” and “risk” (see 
FigureÂ€8.4-3). Candidates for architecturally significant requirements are require-
ments with a high benefit for the stakeholders and a low implementation risk. 
Requirements can have both a high benefit and a high implementation risk—pro-
cess these requirements with top priority. Requirements that have only a high 
benefit or only a high implementation risk should be treated as second priority. 
We will look at this more closely with some examples for MIS.

Important requirements are the significant requirements with the highest benefit 
for the stakeholders. For example, the recording of performance data is very 
important for the MIS stakeholders, since without this feature, it is not possible 
to create performance reports. In contrast, the sending of e-mail notifications as 
soon as new performance reports are available is less important.

Figure 8.4-3: Criteria for identification of architecturally significant requirements
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Identification by 
benefit
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Requirements that have a high architectural risk are typically requirements where 
you have no experience of realization or requirements that affect areas that are 
not completely under your own control (e.g., building blocks of an external part-
ner). Thus there is a high risk involved in realizing such requirements because 
you are not sure whether you can feasibly realize them successfully on time and 
within budget. One example is requirements that involve peripheral systems. If, 
in the case of MIS, for example, we have to connect the IMS system to its JEE 
application using a JCA adapter, but have no experience in this area, we have 
to consider this requirement as high risk and architecturally significant. Require-
ments where the implementation has a big effect on the system to be realized 
can also have a high implementation risk. The central specification of IT guide-
lines has, for example, a great effect on a system to be realized: non-compliance 
with these guidelines can lead to a refusal by stakeholders to accept the system. 
Requirements that involve a high effort if they are not considered early enough 
in the architecture design also belong to this category. For example, it is often 
important for reasons of security and traceability that you document actions per-
formed within a system. In this context we often speak of auditing. You can only 
integrate such a requirement at a late stage in the architecture and in the existing 
system implementation with a high effort. A further feature of such requirements 
is that they influence many architecturally significant building blocks. A use case 
where the realization involves building blocks from the presentation logic layer, 
the business logic layer, and the persistence logic layer (see SectionÂ€3.4) is gen-
erally architecturally significant. From the wealth of use cases, you have to select 
candidates that require different architecturally significant building block types.

Refining the architecturally significant requirements is primarily concerned with 
making requirements tangible. This includes documenting the requirements ef-
fectively, connecting functional and non-functional requirements, as well as dem-
onstrating requirements.

As already stated, in practice it is usual to describe functional requirements by 
means of use cases. One means for documenting qualities that is not used so 
frequently in practice is the so-called quality attribute scenario (see SectionÂ€6.3). 
Some qualities, such as the availability of MIS, are valid for the system as a 
whole. However, other qualities apply to only some of the functional require-
ments. For example, with MIS, controllers must be able to create performance 
reports. MIS should also ensure safe access to data. A combination of these two 
requirements would lead to controllers only being able to create performance 
reports for teams for which they have the appropriate authorization. You can use 
quality attribute scenarios for qualities that apply across the whole system and 
qualities that are use case-specific.

Identification by risk

Refine requirements

Documentation of 
qualities with quality 
attribute scenarios
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It therefore seems obvious to connect architecturally significant use cases with 
architecturally significant qualities. To do this, look at every architecturally signifi-
cant use case with regard to the level of its qualitative realization. The more dif-
ferent quality features (e.g., security, traceability, performance) a use case has, 
the greater its architectural character. You can create quality attribute scenarios 
for each combination. We will discuss this below using the example of creating 
performance reports in MIS (see TableÂ€8.4-1).

Table 8.4-1: Use case-specific quality attribute scenarios

Creating performance reports and security

Criterion Meaning

Source Identified controller

Stimulus Tries to create a performance report for teams for which he is not 
authorized

Artefact Performance report data in the system

Context System is in normal state

Reaction System refuses access to the performance data and logs the 
access attempt

Reaction mea-
surement

System has refused access and a log entry exists

Creating performance reports and traceability

Criterion Meaning

Source Identified controller

Stimulus Creates performance reports

Artefact Performance report data in the system

Context System is in normal state.

Reaction System creates performance reports and logs the actions ex-
ecuted.

Reaction mea-
surement

Performance reports are available and actions were logged

Creating performance reports and performance

Criterion Meaning

Source Identified controller

Stimulus Creates performance reports

Artefact Performance report data in the system

Context System is in normal state

Reaction System creates performance reports and logs the actions ex-
ecuted

Reaction mea-
surement

The average time for creation is 5Â€s

Connecting 
functional 
requirements and 
qualities
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You should then investigate how to realize the quality attribute scenarios within 
the defined constraints. It frequently becomes clear that this is not possible. In 
this case, point out these contradictions and show stakeholders alternatives.

You can use various means to demonstrate documented requirements (e.g., pro-
totypes). This shows the requirements in a different light and enables you to gain 
new insights.

One way of getting a better understanding for the individual architecturally signifi-
cant requirements and checking their feasibility is to use prototypes. Prototypes 
help to minimize the risk of any problems that may arise later. For example, if you 
are confronted with new technologies, you can use a prototype to assess them. 
In the case of MIS, the architect could look into the use of JCA as a means of 
integration. The prototypes in the activity “understanding the requirements” do 
not reflect the subsequent architecture of the system; they merely help to pro-
vide a better understanding of requirements given. It is also common practice to 
create prototypes to demonstrate the user interface during requirements gather-
ing. Prototypes can also provide valuable architectural findings for usability. For 
example, if the requirement is that user queries can be aborted (abort feature) or 
several actions can be canceled (undo feature), these aspects are architecturally 
significant.

As shown in ChapterÂ€5, requirements are situated at different architecture levels. 
The individual requirements are related to one another above and beyond these 
levels. They thus refine the system to be created step-by-step from architecture 
level to architecture level. In this activity you therefore refine the requirements 
of the organizational level, through the system level, down to the building block 
level, within several iterations.

Architecturally significant requirements only become fully complete and consis-
tent during the design and implementation of an architecture. This is implied by 
the iterations in the architecture method presented here. During the activities 
“designing the architecture” and “implementing the architecture,” new require-
ments may arise as feedback or it may become necessary to adjust existing 
requirements. You should then deal with the new or adjusted requirements in the 
subsequent iteration during the activity “understanding the requirements.”

A further action during the “understanding the requirements” activity is prioritizing 
the requirements. The prioritization is the result of classifying the requirements 
according to benefit and risk. Address requirements with a high benefit and a 
high risk as early as possible. These are requirements that an architecture must 
satisfy. TablesÂ€8.4-2 and 8.4-3 show an example of the prioritization of the func-
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and qualities within 
the given constraints
Demonstrating 
requirements

Architecture 
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Refining the 
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tional and non-functional requirements for MIS. The priority is determined using 
the following formula: Priority = (Benefit + Risk)/2.

Table 8.4-2: Prioritized functional requirements

Table 8.4-3: Prioritized non-functional requirements

One risk that architects typically fall for is that they want to make the architecture 
too perfect. This is the case when you consider certain non-functional require-
ments disproportionately heavily although they only play a small role or even no 
role in the case in question. An example is when the architecture plans for the 
graphical interface to be replaceable (non-functional requirement “extensibility”) 
even though the system is to be operated exclusively via a desktop interface of 

Functional
requirement

Benefit Risk Priority

(1â•›=â•›high, 3â•›=â•›low)

Display performance reports 1 1 1

Import incident data 1 1 1

Import CCM data 1 1 1

Log on 3 1 2

Enter performance data 1 3 2

Print performance data 2 2 2

Create performance reports 2 3 2.5

Manage user accounts 3 2 2.5

Send e-mail 3 3 3

Non-functional
requirement

Benefit Risk Priority

(1â•›=â•›high, 3â•›=â•›low)

Operability 1 1 1

Extensibility 1 3 2

Time-to-Market 2 3 2.5

Compliance with IT standards 1 1 1

Security 2 2 2

Usability 3 3 3

Availability 2 3 2.5

Performance 1 2 1.5

Risk of architectures 
that are “too good”
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a specific platform. Examples of possible negative consequences are unneces-
sarily complex architectures or systems that are not “finished” or systems that do 
not sufficiently meet requirements. Therefore, in your own interest, as a measure 
of discipline, use a table, for example, to explicitly specify which of the generally 
known direct non-functional requirements are at all relevant for the quality prop-
erties of a system. TableÂ€8.4-4 shows this using the example of MIS.

Table 8.4-4: Quality relevance of non-functional requirements

Note, however, that prioritizing requirements (like other metrics) is a useful tool 
that provides you with orientation (tendency) but does not dictate the exact direc-
tion (see also SectionÂ€8.6).

TableÂ€8.4-5 shows which artefacts have been worked out for the “Requirements 
view” architecture view (see SectionÂ€4.2) for MIS during the “understanding the 
requirements” activity.

Non-functional
requirement

Relevance for the quality
(1â•›=â•›high, 3â•›=â•›low)

Operability 1

Interoperability 1

Performance 1

Manufacturer indepen-
dence

2

Portability 2

Availability 2

Security 2

Scalability 2

Testability 2

Maintainability 2

Extensibility 2

Modifiability 2

User-friendliness 3

Prioritization of re-
quirements provides 
“only” orientation

MIS: Architecture 
view developed
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Table 8.4-5: Architecture views developed during “understanding the require-
ments”

Architecture view MIS artefacts

Requirements 
view

>	 �Use case-specific quality attribute scenarios (see 
TableÂ€8.4-1)

>	 �Prioritized functional requirements (see TableÂ€8.4-2)
>	 �Prioritized non-functional requirements (see Ta-

bleÂ€8.4-3)
>	 �Quality relevance of non-functional requirements (see 

TableÂ€8.4-4)

Have all architecturally significant requirements been identified? 
Has sufficient attention been paid to non-functional requirements? 
Are all architecturally significant requirements measurable? 
Do any architecturally significant requirements exclude each other? 
Have all architecturally significant requirements been prioritized? 
Have all architecturally significant requirements been refined? 
Have all architecturally significant requirements been documented? 
Have the architecturally significant requirements been confirmed by the stake-
holders? 

TableÂ€8.4-6 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.4 and the architectural topics 
discussed in ChaptersÂ€3–7.

Table 8.4-6: Overview of the connections between SectionÂ€8.4 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section heading Reason for connection

3.1 Classic Architecture as 
Starting Point (WHAT)

Architecture has to cover all requirements 
in order to be useful. Therefore, architec-
turally significant requirements have to be 
identified

4.1 Architecture
Levels (WHERE)

Architecturally significant require-ments at 
system level are identified

4.2 Architecture Views 
(WHERE)

The requirements view is created

Checklist:
Understanding the
requirements

Connections between 
Section 8.4 and 
Chapters 3–7
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8.5	� Designing the Architecture

FigureÂ€8.5-1 shows the basic concepts of the activity “designing the architecture” 
that we will look at in this chapter and visualizes how they relate to each other.

Figure 8.5-1: Basic concepts of the activity “designing the architecture”

Chapter/
section
number

Chapter/section heading Reason for connection

5 Architecture Require-
ments (WHY)

Architecturally significant requirements, 
qualities, and constraints are analyzed

6.3 Architecture Tactics, 
Styles, and Patterns 
(WITH WHAT)

Requirements can be documented system-
atically by applying use cases, quality at-
tribute scenarios, and requirement patterns

7 Organizations and Indi-
viduals (WHO)

To analyze and refine requirements the 
architect depends on information from 
different stakeholders. Therefore, he has to 
communicate and collaborate with them

Basic concepts of the 
activity “designing 
the architecture”
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Systems are embedded in organizations, are created for specific functional areas 
or functional domains, and must fulfill dedicated requirements (see SectionÂ€3.3). 
As we can see from FigureÂ€8.5-2, you must take these facts into account when de-
signing the architecture. You identify the architecturally significant requirements 
and analyze them in more detail during the “understanding the requirements” ac-
tivity. In the “analysis and design” discipline you create functional models. Since 
you also design the architecture within this discipline, you also analyze functional 
models from an architectural perspective during this activity. You also consider 
and refine the system context. In addition, you use architecture means (e.g., pat-
terns, reference architectures) to design the architecture (see ChapterÂ€6).

The individual actions of this activity are aligned with the influencing factors. 
FigureÂ€8.5-3 gives an overview of these actions. The result of the first iteration 
is often referred to as the architecture vision, since you make the significant 
decisions about the structuring of the system in this iteration. The architecture 
vision contains the basic system building blocks, their responsibilities, and their 
interactions. It also defines the technologies (see SectionÂ€6.7) for the subsequent 
implementation. We will look at the different actions in more detail in this section. 
In this activity, you primarily develop the logical, data, process, and deployment 
views of a system (see SectionÂ€4.2).

During the “creating the system vision” activity, you define a first system context 
(see SectionÂ€8.3). In the “designing the architecture” activity, you refine this con-
text and make it more concrete. Often, different architects work on the creation of 

Figure 8.5-2: Influencing factors on the architecture design
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Figure 8.5-3: Designing the architecture
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the system vision and the design of the architecture. If this is the case, examine 
the system context even more closely here to close any possible gaps. In the 
case of MIS, for example, there are requirements that users must authenticate 
themselves and that central guidelines must be complied with. One of these 
guidelines could specify that each system must be connected to the central Iden-
tity and Access Management infrastructure (IAM infrastructure). This would mean 
that the IAM system must be added to the system context (see FigureÂ€8.5-4).

In this activity, you also make the interfaces between the system and its actors 
more concrete, for example, by considering the following questions:
>	 �Which services do the actors of the system require?
>	 �Which services does the system require from the connected systems?
>	 �Which entities are transferred via the interface and what meaning do these 

have?
>	 �Which interface technologies are used?

A system context is more than just a diagram: it is an artefact that documents 
every interface in detail. For more information about the system context, see 
SectionÂ€8.3.3. You can use contexts not only at system level, but also at the 
level of more finely grained system building blocks (e.g., subsystems). Dedicated 

MIS

Incident
Management

System

Controller

Manager

Team leader

RMI

CCM
System

SOAP

System
Management

JMS

Administrator

IAM System

RMI

Figure 8.5-4: Extended MIS system context
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more than just a  
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interface agreements can also be derived from the system context. These agree-
ments represent separate artefacts and define an interface.

As stated in SectionÂ€3.3, an architecture covers both functional and technical as-
pects. Therefore, it is usual to design both a functional and a technical architec-
ture. Since the functional architecture is oriented around the functional domains, 
in this action you analyze these domains with regard to their key abstractions. 
Key abstractions represent the significant abstractions of a functional domain 
that must be handled by the system to be realized—examples are abstractions 
of objects, concepts, locations, or persons [Oestereich and Bremer 2009] In the 
case of MIS, these are, for example, performance report, service, or support 
department (see FigureÂ€8.5-5). Terms such as “primary business entity,” “primary 
business object,” “core entity,” or “core object” are frequently used as synonyms 
for the term “key abstraction.” You can derive the functional architecture from the 
key abstractions and the functional requirements.

In this action you select the architecturally significant requirements that you want 
to consider in the architecture design in the current iteration. To do this you use 
the quality attribute scenarios that arose during the “understanding the require-
ments” activity. Include requirements with a high priority as early as possible in 
an architecture.

Now that you know the key abstractions as well as the requirements and the 
system context, in a next step you can identify suitable architecture means. You 
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should select them for pure purpose considerations (geared towards the exist-
ing requirements). Do not fall into the trap of following hype, the golden hammer 
syndrome, or the silver bullet syndrome; neither should you give political con-
siderations priority. An architecture means alone does not solve all problems: 
you have to apply it correctly, adapt it, and if necessary combine it with your 
own design ideas. This implies that despite selecting an appropriate architecture 
means, there is still a risk that you might use it incorrectly. Two simple examples 
should make this clear:
>	 �If you use the MVC pattern [Buschmann et al. 1996], then you can use an 

MVC framework (e.g., Struts). However, if (e.g., for convenience) you use 
specific building blocks (e.g., value objects) of this framework in the busi-
ness logic layer, the result is a close coupling with the presentation layer. It 
is precisely this coupling that using the MVC pattern was supposed to avoid.

>	 �If you use object orientation in the development of a distributed system (e.g., 
by means of entity objects with JEE), then there is a risk that the network 
load will be too high and performance will be lacking. This would happen if 
you used the individual attributes of the entity objects according to the pure 
theory of object orientation using methods.

As soon as you have designed the basic structures of the system to be realized, 
the focus shifts from functionality to technology. This means that the techno-
logical architecture means become more important. For example, you define the 
concrete application servers, databases, or middleware systems.

In the case of MIS, it would be ideal to have an existing reference architecture 
for such a performance indicator system. In many cases this will not be the case. 
You should then look beyond the project horizons to determine whether other 
projects have developed similar systems.

To select architecture means for a functional architecture, firstly check whether 
there is an existing reference architecture for the given functional domain, since 
this would have the highest level of reusability. SectionÂ€6.5.4 gives examples of 
such reference architectures. Functional reference architectures are similar in na-
ture to analysis patterns [Fowler 1996]. However, in contrast to analysis patterns, 
they are at the level of coarse grained software building blocks and not classes. A 
functional reference architecture for the MIS example would specify the functional 
building blocks required to handle the key abstractions and to fulfill the functional 
requirements. If there are no suitable reference architectures, you can determine 
the functional building blocks using the architecture principles, such as separa-
tion of concerns, loose coupling, and high cohesion (see SectionÂ€6.1).

Why do we break down the software system functionally? Is there a functional 
requirement for this? As long as the system fulfills the desired functional require-

The focus shifts from 
functionality to tech-
nology

Identification of suit-
able means

Identify architecture 
means for the func-
tional architecture

Why are architecture 
means required for 
functional concerns?
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ments, how the system is structured functionally should be irrelevant. At first 
glance this is correct. However, the non-functional requirements also influence 
the functional architecture. For example, the desire for extensibility of the system 
or for parallel development by multiple teams forces structuring in sensible, man-
ageable units or building blocks.

The wealth of means for designing technical architecture is larger than that for 
functional architecture. Therefore, it is generally easier to find suitable architec-
ture means here. The starting point for selecting the means is the non-functional 
requirements. For example, IT standards in an enterprise often specify the com-
ponent platform to be used. There are usually suitable platform-specific refer-
ence architectures for the respective platform, such as JEE or .NET (see Sec-
tionÂ€6.5.4). You can reuse them in any project either without changes or with slight 
adjustments [Siedersleben 2004]. Such reference architectures also define which 
types of technical building blocks are required to fulfill non-functional require-
ments. If there are no reference architectures, look at basic architectures (see 
SectionÂ€6.4) as well as architecture tactics, styles, and patterns (see SectionÂ€6.3).

A first step in identifying the correct architecture means is to look at the rela-
tionship between certain non-functional requirements and architecture principles 
(see SectionÂ€ 6.1) frequently used to satisfy the non-functional requirements. 
Since these architecture principles have an effect in all other architecture means 
(e.g., tactics and patterns), this relationship provides hints for other possible 
architecture means. The more specialized architecture principles derived from 
“high cohesion” and “loose coupling” are particularly interesting. However, this 
relationship is not complete and precisely unique: it is a trial and error approach 
that you develop based on your experiences over time. Documenting such trial 
and error approaches and reusing them in various contexts is very useful. The 
examples in table 8.5-1 demonstrate the architecture principles that may be rel-
evant for fulfilling some non-functional requirements.

Table 8.5-1: Relationship between non-functional requirements and architecture 
principles

Non-functional
requirement

Architecture principle

User-friendliness Explicit interfaces, interface segregation, …

Interoperability Information hiding, separation of interface and implementation, …

Robustness Loose coupling, high cohesion, …

Security Information hiding, interface segregation, …

Testability Loose coupling, high cohesion, separation of interface and imple-
mentation, …

Identify architecture 
means for the tech-
nical architecture

Relationship between 
non-functional
requirements and
architecture prin-
ciples
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You identify the building blocks using the selected architecture means. In the 
simplest case you can use an existing reference architecture. This specifies the 
building blocks required. In this case your activity can be restricted to verification: 
check whether every key abstraction is assigned to exactly one building block. 
The identification of the building blocks and the definition of their responsibilities 
are closely related. Therefore, these two actions are handled together.

What is the best way to identify functional building blocks? The functional build-
ing blocks are concerned with the key abstractions and the associated functional 
requirements. By identifying a functional building block for functionally related 
key abstractions, you therefore identify possible candidates for functional build-
ing blocks. On one hand you apply the separation of concerns principle, and on 
the other, the principle of high cohesion. The cohesion within a functional building 
block is high, since the key abstractions handled by the building block are closely 
related. A building block identified in this way also takes care of a significant 
functional concern. FigureÂ€8.5-6 illustrates the functional building blocks of MIS.

Figure 8.5-6: Functional building blocks of MIS

Non-functional
requirement

Architecture principle

Extensibility Loose coupling, encapsulation, abstraction, separation of con-
cerns, information hiding, …

Reusability See Extensibility
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In this action you identify the functional subsystems of the system as part of the 
architecture vision. The functional building blocks from FigureÂ€ 8.5-6 therefore 
correspond to the functional subsystems of MIS. In a further step you split the 
functional subsystems into finer functional building blocks.

Functional building blocks realize the functional requirements that are closely 
related to the key abstractions they handle. Therefore, categorize the architectur-
ally significant requirements according to the key abstractions and assign them 
to the appropriate functional building blocks. This defines the responsibilities of 
the building blocks. For MIS these are documented in table 8.5-2.

Table 8.5-2: Functional building blocks of MIS and their responsibilities

Functional building block Key abstractions Responsibilities

Organization Support department Realizes any functionality for 
managing support depart-
ments or organizational units

Performance Performance, perfor-
mance report, perfor-
mance indicator

Realizes any functionality for 
managing performance, per-
formance reports, and perfor-
mance indicators

Incident Incident Realizes any functionality for 
managing incidents

Change request Change request Realizes any functionality for 
managing change requests

You can define the responsibilities in more detail by assigning every step of an 
architecturally significant use case to a functional building block. Do not think 
yet about which building blocks specified by the technical architecture realize 
the step. This ensures that the functional scope of the functional subsystems or 
building blocks is separate from their technical realization. FigureÂ€8.5-7 visual-
izes this definition of the responsibilities using the example “Calculate perfor-
mance indicator.”

Functional building 
blocks of the archi-
tecture vision cor-
respond to functional 
subsystems

Define the responsi-
bilities of the func-
tional building blocks
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Functional building blocks alone are not viable: they must be supported by tech-
nical building blocks in order to be able to exist on a platform. You must there-
fore also identify technical building blocks. In the same way as for the functional 
building blocks, you should also look out for suitable architecture means for the 
technical building blocks. You will usually use a suitable technical reference ar-
chitecture. FigureÂ€8.5-8 shows one that is often suitable in practice.

The technical reference architecture from FigureÂ€8.5-8 is an example. Similar il-
lustrations can be found in [Oestereich and Bremer 2009], [Siedersleben 2004], 
and [Fowler 2003]. We will briefly explain the parts of the reference architecture 
below. TableÂ€8.5-3 covers the layers and TableÂ€8.5-4 the building blocks.

Figure 8.5-7: Definition of functional responsibilities using the example of MIS

Identify technical 
building blocks and 
define their respon-
sibilities
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Figure 8.5-8: Example of a technical reference architecture
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Table 8.5-3: Layers and their responsibilities

Layer Responsibility

Basic services Technical building blocks that represent basic functionality are as-
signed to this layer. They can be used by building blocks from the 
presentation logic layer, application logic layer, domain logic layer, 
and integration logic layer. If the layers are distributed beyond the 
process and network boundaries, plan corresponding call mecha-
nisms (keyword: remoting)

Presentation 
logic

The presentation logic layer contains building blocks used for 
communication with the user

Application logic The application logic layer contains building blocks that real-
ize application logic. Application logic is logic with a very close 
relationship to the application to be realized and which you often 
cannot or cannot easily reuse in other contexts. For example, the 
presentation of a performance indicator in graphical or textual 
form is dependent on the concrete use case and is difficult to 
reuse

Domain logic The domain logic layer contains building blocks that realize do-
main logic. Domain logic represents functionality that you can 
reuse across application boundaries. It is therefore application-
independent and operates purely on functional abstractions. For 
example, the calculation of a performance indicator is indepen-
dent of whether the indicator is displayed graphically or in text 
form.

Integration logic The integration logic layer houses building blocks that encapsu-
late the connection of enterprise systems. One simple example is 
Data Access Objects that abstract the database access [Fowler 
2003].

Enterprise The enterprise layer, often referred to as the back-end layer, 
contains systems with which the system to be developed must in-
teract. These can be databases, enterprise information systems, 
system management systems, etc.

The differentiation between application logic and domain logic is not always ob-
vious and the border between the two is sometimes blurred [Evans 2004]. As 
stated in TableÂ€8.5-3, the domain logic is application-independent and you can 
reuse it in various contexts. For example, the calculation of telephone costs is in-
dependent of whether the costs are requested from a call center application or a 
self-service application. The display of the costs, however, is application-specific. 
Application logic should not spread into the domain logic layer, otherwise there 
is a danger that the domain logic cannot be reused in other use cases and is 
difficult to test.

Differentiation be-
tween application 
logic and domain 
logic
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Table 8.5-4: Building blocks and responsibilities of the technical reference ar-
chitecture

Building block Responsibility

Dialog A dialog corresponds to the view building block within the 
model-view-controller architecture pattern [Buschmann et 
al. 1996]

Dialog control A dialog control building block corresponds to the controller 
building block within the model-view-controller architecture 
pattern [Buschmann et al. 1996]. It uses services from ap-
plication building blocks

Application building 
block

An application building block encapsulates application logic 
and makes it available in a controlled manner. The data is 
exchanged using data transfer objects (DTO) [Fowler 2003]

Domain building block A domain building block encapsulates domain logic and 
makes it available in a controlled manner. The data is ex-
changed using data transfer objects (DTO)

Integration building 
block

An integration building block encapsulates integration logic 
(e.g., database, SAP, LDAP) and makes it available

Basic service building 
block

A basic service building block provides basic services (e.g., 
logging, management of reference data)

Regardless of whether you have been able to use a technical reference architec-
ture or have designed your own technical architecture, you can use the functional 
subsystems identified and the building block types specified by the technical 
architecture to derive concrete functional building blocks for the functional sub-
systems. The technical architecture defines how functional building blocks or 
subsystems are realized. In the example used here, we can identify the required 
dialog, dialog control, application, domain, and integration building blocks for 
every functional subsystem. TableÂ€ 8.5-5 shows this using the example of the 
functional subsystem “Performance.” It shows only building blocks for the key 
abstraction “Performance.” For the sake of simplicity, we have ignored the perfor-
mance indicator and performance report.

Table 8.5-5: Identification of building blocks based on functional and technical 
architecture using the example of MIS

Building block Building block type Responsibility

Performance dialog Dialog Presents performance-related data 
and receives entries

Performance dialog 
control

Dialog control Controls the user interaction for 
performance-related aspects

PerformanceABB Application building 
block

Encapsulates performance-related 
application logic

PerformanceDBB Domain building 
block

Encapsulates performance-related 
domain logic

PerformanceIBB Integration building 
block

Encapsulates performance-related 
integration logic

Making functional 
subsystems more 
concrete
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The functional building blocks identified in this way structure in total a functional 
subsystem realized with the concepts of the technical architecture (see Fig-
ureÂ€8.5-9).

As soon as the functional scope of the functional subsystems has been defined, 
you can consider the responsibilities in more detail. In other words, you now treat 
the subsystems as a white box and divide the functionality across the concrete 
building blocks. In the MIS example, a functional step of a use case can be split 
into presentation logic, application logic, domain logic, and integration logic. Ba-
sic services such as security can also be involved. For example, in MIS, a user 
must log on before she or he can enter performance data or view performance 
reports. This produces the concrete responsibilities of the building blocks. The 
actual calculation of a performance indicator is the responsibility of the domain 
building block PerformanceDBB, for example.

Once you have identified the building blocks and documented their responsibili-
ties, you can define their dependencies. The dependencies result on one hand 
from the functional conditions and on the other from the technical conditions.

You can derive the functional dependencies from the structural relationships of 
the functional key abstractions. For example, in the case of MIS, “performance” 
is related to “incident” and “change request.” From this we can define a depen-
dency of the functional building block “performance” to the functional building 
blocks “incident” and “change request” (see FigureÂ€8.5-10). Thus we get a first 
dependency diagram. It may well be that due to technical circumstances, the 
functional dependencies are not immediately visible in the final architecture.

The technical dependencies result from the architecture means you select for de-
signing the technical architecture. FigureÂ€8.5-11 illustrates which building blocks 
may be in relationship to one another if you use this technical reference archi-
tecture. For example, application building blocks may not communicate directly 

Figure 8.5-9: Example of a functional subsystem of MIS
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with integration building blocks. Instead, application building blocks interact with 
domain building blocks, and these in turn interact with integration building blocks. 
This should achieve the highest possible platform and technology independence 
(see SectionÂ€3.4).

FigureÂ€8.5-11 visualizes the dependencies of the MIS building blocks using the 
example of “performance” and “change request,” which arise from the func-
tional and technical conditions. What is the effect of the functional dependence 
of “performance” and “change request?” It becomes clear that the application 
building block ApplicationABB is dependent on the domain building block Chan-
geRequestDBB and that there is no dependency between PerformanceDBB and 
ChangeRequestDBB. The domains “performance” and “change request” are 
therefore decoupled at the domain building block level. This is an example for the 
application of the principle of loose coupling (see SectionÂ€6.1). The advantage 
of this decoupling is that functional domains can remain independent from one 
another as far as possible and thus be developed separately.

The decoupling can vary in strength. You can therefore generally prohibit the 
communication of domain building blocks across domain boundaries. The con-
sequence of this is that application building blocks must transfer all non-domain 
data to domain building blocks. For example, if data from the change request 
domain is required for the calculation of a performance indicator, the application 
building block PerformanceABB has to get this data from the change request 
domain and transfer it to the domain building block PerformanceDBB. In the 
case of a strong decoupling, the change request data in the example must be 
converted into a form that the domain building block PerformanceDBB expects. If 
the decoupling is less strong, you can permit some cross-domain dependencies 
at the domain building block level. For example, if you want to decouple the user 
of the performance domain from the fact that change requests are required to 

Figure 8.5-10: Functional dependencies using the example of performance
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calculate performance indicators, you could permit access to the change request 
domain from the performance domain. To keep the coupling as low as possible, 
plan dedicated interface building blocks that act as facades into the external 
domains [Gamma et al. 1995].

Figure 8.5-11: Dependencies of MIS building blocks
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By defining the interactions you document the dynamic relationships between 
the software building blocks at an architectural level. To do this, you analyze 
the architecturally significant use cases and determine which building blocks 
communicate with each other and how in order to realize the functionality to be 
delivered, enabling you to clearly show how the building blocks exercise their 
responsibilities. This action is closely related to the definition of the interfaces, 
since the interactions are expressed by the service calls and the transfer of data 
to interfaces. You generally perform these actions simultaneously. Even though 
it will not be possible to portray all facets of an interaction, you should define 
interactions for every architecturally significant requirement. However, by illus-
trating the significant features of the interactions, you will be able to determine 
the strengths and weaknesses of an architecture [Oestereich and Bremer 2009]. 
This is particularly important for the assessment of the architecture. UML com-
munication and sequence diagrams are frequently used to model the interac-
tions [Oestereich and Bremer 2009]. Interactions can also stretch across sys-
tem boundaries. As an architect you will also have to define and model these 
cross-system interactions. FigureÂ€8.5-12 illustrates a very simplified interaction 
between MIS building blocks for entering performance data.

Normally, you can abstract typical architecturally significant interactions in such 
a way that they visualize the usual collaborations between building blocks at a 
generally accepted level. Examples of this are the classic Create-Read-Update-
Delete (CRUD) operations. An architecture generally realizes these identically, 
regardless of the concrete abstraction. For example, the recording of data via 
a user interface is always the same, regardless of whether performance data 
or support departments are to be recorded. Such interactions may already be 
documented by the reference architecture you use.

Figure 8.5-12: Simplified interaction between MIS building blocks
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Building blocks communicate with one another via interfaces (see SectionÂ€3.4). 
They offer their services via interfaces and use functionality from other building 
blocks via their interfaces. Therefore, in this action, you must define both the 
interfaces offered and the interfaces required. You have two challenges here: 
firstly, expressing the required and offered functionality using interfaces; sec-
ondly, defining the interfaces such that the dependencies between the building 
blocks are as low as possible. When you defined the dependencies you already 
defined which building blocks are dependent on one another in principle. The 
definition of the interfaces determines the degree of dependence. Depending on 
how the interfaces are designed, building blocks can be more or less strongly 
dependent on one another. Hence this action deals with some aspects of good 
interface design. In the following sections we use the term “service” for a piece of 
functionality that is offered or required by a building block via an interface.

Interfaces are abstractions of concrete building block implementations (see Sec-
tionÂ€6.1). Therefore, implementation-specific aspects should not be visible in an 
interface. This applies even to the naming of services offered by interfaces. Ser-
vices should clearly express their purpose by reflecting this in their name. In this 
context we also talk about intention-revealing interfaces [Evans 2004]. The name 
of the service should clearly state what you can achieve with it, and not how it 
achieves something.

There are two types of services: services that do not change the state of a build-
ing block and services that do [Evans 2004; Siedersleben 2004]. The former are 
referred to as functions or queries, and the latter as commands. In contrast to 
commands, functions have no side effects. They are easier to test and present 
fewer risks than commands and are also known as idempotent functions. The 
reading of performance data is an example of a function. In contrast, commands 
put building blocks into another state and therefore require more extensive test-
ing. The creation of performance data is an example of a command. The defini-
tion of the interface should clearly segregate (see SectionÂ€ 6.1) functions and 
commands by having services represent either functions or commands.

The preconditions and post-conditions of a service should be documented in 
order to better express its character. Preconditions are conditions that must be 
fulfilled before the service can be called. Post-conditions are the conditions that 
are guaranteed by the service if the preconditions are fulfilled. This corresponds 
to the Design by Contract principle (see SectionÂ€6.1).

A service expects input parameters and returns output parameters. Therefore, 
clients of the service depend on the data types it declares. This can lead to a 
close coupling (see SectionÂ€6.1) between building blocks if the data types dis-

Interfaces should 
disclose their pur-
pose and not their 
implementation

Services should be 
divided into functions 
and commands

Services should doc-
ument their precondi-
tions and postcondi-
tions

Services should not 
disclose any details

Define interfaces
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close too many details. For the purpose of loose coupling therefore, you should 
consider the information hiding principle (see SectionÂ€6.1) when designing an 
interface. Depending on the type of interface, you can use different classes of 
data types (see TableÂ€8.5-6). We can generally say that the coupling within a 
subsystem should be high (internal coupling), and between subsystems it should 
be low (external coupling). Therefore, you can use standard data types, entity 
objects [Evans 2004], and value objects [Fowler 2003] within a subsystem. For 
the communication between subsystems, however, use data transfer objects in-
stead of entity objects. Entity objects have their own identity within a domain. 
An incident is an example of an entity object in the MIS case. In contrast, value 
objects are defined exclusively via their attributes. They do not have their own 
identity and are immutable. For example, an amount of money can be repre-
sented by a value object of the type money. In the MIS case, the monetary costs 
of an incident could be represented using money value objects. The costs belong 
to an incident and have no own identity. The difference between entity objects 
and value objects is domain-specific. For example, the abstraction “address” can 
be an entity object in one domain, and a value object in another. Data transfer 
objects are objects that originate from the idea of minimizing the number of client/
server interactions necessary (see SectionÂ€6.4) and decoupling clients from the 
concrete representation of entity objects. In the case of MIS, a performanceDTO 
could represent the entity “performance,” for example.

Table 8.5-6: Use of data types in interfaces

Classes of data types Examples Internal External

Standard data types Integer, double, string, etc. X X

Data transfer objects PerformanceDTO, change 
requestDTO, customerDTO, 
contractDTO, etc.

X

Entity objects Performance, customer, 
contract, address

X

Value objects Money, color, period X X

Sometimes you can even use data transfer objects between building blocks of 
a subsystem. This is the case, for example, if data is to be transported beyond 
network or process boundaries. You can also select this approach to decouple 
building blocks of a higher layer from building block details of a lower layer. In 
the MIS case, for example, domain building blocks could exchange data with ap-
plication building blocks via data transfer objects instead of entity objects.

The question of whether interfaces should be defined for entity objects is fre-
quently discussed. There is no one definitive answer to this question. If the entity 
classes or objects are real objects in the sense of object orientation (see Sec-
tionÂ€6.2), then the use of interfaces is appropriate. However, if the actual busi-

Data transfer objects 
within subsystems?

Interfaces for  
entities?
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ness logic is primarily encapsulated in service providers, the use of interfaces 
brings only little advantage as the operations are then restricted to the setting 
and reading of attributes (so-called “setter” and “getter” operations).

Associations between entities have a considerable influence on the coupling of 
building blocks. In the MIS example, a support department delivers one or more 
services (see FigureÂ€8.5-5). How should the relationship between support de-
partment and service be mapped? The use of real object associations leads to 
a close coupling between the subsystems, since the data types of the subsys-
tems are communicated via the interfaces. In contrast, the use of logical keys for 
referencing entities across building block boundaries decouples building blocks 
from one another. A logical key identifies an entity uniquely without referencing it 
directly via an object association. To achieve this, every entity receives a unique 
number or a unique time stamp, for example. Use logical keys for interfaces 
across subsystem and system boundaries. For internal interfaces object refer-
ences are preferred.

You should take the instructions given above into account when you are defin-
ing interfaces. However, how do we actually create the interfaces? Interfaces 
are driven by the concrete requirements. It is not a matter of publishing random 
services in the interfaces; you must analyze the functional and non-functional re-
quirements precisely and define suitable services for them. If you do not, there is 
a danger that you will define too many services or incorrect services. Therefore, 
based on the architecturally significant use cases, play out the interactions and 
continually ask yourself which services the building block in question specifically 
requires in this iteration. During the course of the iterations, you revise services 
by splitting or merging them. You should always follow the instructions given for 
purposeful interface design.

You can use various means to specify interfaces. TableÂ€8.5-7 shows some of 
these means. In many cases, you will use a combination of the means listed.

Table 8.5-7: Means for specifying interfaces

Means Description

UML with 
OCL

In combination with OCL, UML offers suitable options for specifying 
interfaces (see SectionÂ€6.6.2)

IDL You can use implementation-independent interface description languag-
es, as we know them from CORBA and COM, to specify interfaces

WSDL An interface can also be specified by the sum of the messages ex-
changed. This is the case particularly in the SOA environment. WSDL is 
frequently used there

DSL You can also use domain-specific languages to specify interfaces. In 
this case, you create a language closely based on the domain in order 
to specify the interface

Associations be-
tween entities

How do we create 
interfaces?

What means do you 
use for the specifica-
tion of interfaces?
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Once you have defined the interfaces, you place the building blocks on pro-
cesses or threads and the platform. Thus you work out and complete the process 
view and the deployment view of the architecture.

A platform consists of both hardware and software building blocks (see Sec-
tionÂ€3.4). In this context we also refer to the nodes of a system. In placing the 
building blocks on the platform, you place the software building blocks on the 
nodes. Nodes, or platform building blocks, can be both hardware as well as 
software building blocks. For example, a JEE execution environment can be in-
stalled on a hardware server. The software building blocks are then executed in 
the execution environment on the hardware server. The deployment view also 
shows the connections between the nodes. It therefore goes beyond the pure 
placement of the software building blocks on the nodes. Further relevant points 
are, for example, specifying the dimensions of the hardware server (processor, 
main memory, disk space, etc.) and the network, as well as specifying the pre-
cise software to be used (operating system, application server, database, driver, 
etc.). These points as a whole are often referred to as operational architecture. 
They cover more than just software aspects. Designing them requires knowledge 
of other disciplines, such as the network and system management architecture 
(see SectionÂ€3.2). In this section the focus is on the deployment of the building 
blocks. FigureÂ€8.5-13 visualizes the deployment view of MIS. The IAM system is 
not shown here in order to keep the diagram in proportion.

Figure 8.5-13: Deployment view of MIS
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Concurrency is an important topic in the design of architectures for software sys-
tems today. Component platforms may already offer corresponding services to 
simplify concurrency management (e.g., remote access, lifecycle management, 
clustering), but they cannot be relied on alone. This is because these services 
do not eliminate typical problems, such as race conditions, deadlocks, or data 
inconsistencies. You have to deal with these topics actively. In this action, there-
fore, you create concurrent models and state models. Concurrent models illus-
trate the placement of software building blocks to processes or threads. [Schmidt 
et al. 2000] contains useful architecture patterns for concurrency. State models 
articulate the possible states a system can be in and the permitted state transi-
tions, as well as events and actions. Making this information explicit makes it 
easier to avoid possible concurrency problems. For more information about this 
topic, see [Rozanski and Woods 2005].

Do not use an architecture without thinking about it thoroughly. Carefully analyze 
how suitable the architecture is for the intended purpose. And there is always 
more than one architecture alternative. Therefore, as an architect, you will often 
be faced with the challenge of selecting the most suitable alternative from those 
available. You will also be asked to assess existing architectures. Assessing an 
architecture is relevant during both the elaboration of an initial architecture and 
during the subsequent development of a system. It enables you to check whether 
an architecture matches the requirements defined initially or that have been sub-
sequently modified. There are various methods available for assessing architec-
tures [Rozanski and Woods 2005]. We will briefly discuss some of them.

In a presentation, you present aspects of an architecture to stakeholders infor-
mally. Stakeholders can give immediate feedback to the aspects presented.

Formal reviews are performed by a group of stakeholders. They analyze the 
architecture documentation systematically, comment on it formally, and where 
necessary, decide on actions for rectifying deficiencies.

Walkthroughs are based on architecturally significant scenarios. These scenar-
ios are played out to determine whether and how an architecture fulfills them. 
Affected stakeholders take part in walkthroughs. In the MIS case, for example, 
the use case “Enter performance data” could be played out.

You create simulations to provide answers to specific questions, such as the 
behavior of the system under load, answers to be received, etc., without having 
to implement the system itself.

Placing the building 
blocks on processes

Assess architecture
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Architecture prototypes are implementations for assessing architecture alterna-
tives or aspects of an architecture. You can use them to realize typical processes 
of an architecture. In a prototype, you implement an architecture using rudimen-
tary building blocks so that you can test the most important processes to a limited 
degree. If all relevant system building blocks (e.g., from the user interface right 
up to persistence) interact successfully, this is often referred to as an architecture 
“viability prototype.” Implement this “viability prototype” as early as possible in 
order to reduce risks.

The Software Architecture Analysis Method (SAAM) [Kazman et al. 1994] and the 
Architecture Tradeoff Analysis Method (ATAM) [Kazman et al. 1998] developed 
further from SAAM are examples of scenario-based methods. They address the 
problem of room for interpretation for non-functional requirements by working out 
concrete scenarios that make a non-functional requirement more specific. The 
individual scenarios are worked out in groups in which all stakeholders—user, 
client, architect, etc.—are represented. This enables all stakeholders to get a 
better understanding for the individual requirements. An example scenario for 
the requirement of extensibility could be as follows: “With a maximum effort of 
one person year, the system should be integrated in an enterprise-wide portal.” 
Based on the scenarios worked out, an architecture is assessed and the effects 
of the scenarios on an architecture are evaluated. Using the example scenario, 
the assessment could produce the following result: “The rules for programming 
the page sequence are not yet completely defined, meaning that this logic is 
distributed across the entire presentation view. In the case of a changeover in 
the user navigation, therefore, all program parts of the presentation layer must be 
changed.” These example scenarios enable a detailed qualitative assessment 
of an architecture. However, this assessment method is based on the architec-
ture documentation (see SectionÂ€8.7). It requires very detailed knowledge of an 
architecture to be assessed and the changes to be made in order to be able to 
understand all of the effects of such a scenario.

Checklists can be very useful in assessing an architecture. A checklist consists of 
a list of detailed questions that you can use to assess the various requirements of 
an architecture. You can use checklists for various assessment methods.

Based on the example of the “extensibility” requirement, the question could be: 
“Does the architecture allow the subsequent provision of an additional web user 
interface?” You can use these questions to determine how well an architecture 
supports the given requirements. The difficulty of this method is that you already 
need to have a very precise understanding of the requirements when you create 
the checklist. In the example above, you must already know that extensibility 
refers to the additional integration of a web user interface and an additional user 
interface for mobile devices is not required.

Architecture proto-
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TableÂ€8.5-8 shows which artefacts have been worked out for which architecture 
views (see SectionÂ€4.2) for MIS during the “designing the architecture” activity.

Table 8.5-8: Architecture views developed during “designing the architecture”
Architecture view MIS artefacts

Logical view >	 �Extended system context (see Figure 8.5-4)
>	 �Key abstractions (see Figure 8.5-5)
>	 �Functional building blocks (see Figure 8.5-6)
>	 �Functional building blocks and their responsibilities (see Ta-

ble 8.5-2)
>	 �Definition of functional responsibilities (see Figure 8.5-7)
>	 �Identification of building blocks based on functional and tech-

nical architecture (see Table 8.5-5)
>	 �An example functional subsystem (see Figure 8.5-9)
>	 �Functional dependencies using the example of performance 

(see Figure 8.5-10)
>	 �Dependencies of MIS building blocks (see Figure 8.5-11)
>	 �Simplified interaction between MIS building blocks (see Fig-

ure 8.5-12)

Data view Use of data types in interfaces (see Table 8.5-6)

Deployment view Deployment of software building blocks (see Figure 8.5-13)

Are all peripheral systems (even indirect systems, e.g., system management) detailed 
in the system context?

Are all architecturally significant use cases covered by building blocks?

Is every building block involved in at least one use case?

Are all other kinds of functional requirements (for example, business rules) covered by 
appropriate means?

Are all non-functional requirements covered by appropriate means?

Has every building block been documented with regard to its responsibility, interface, 
and interactions with other building blocks?

Has every key abstraction been assigned to a functional building block?

Have functional building blocks been designed according to the reference architecture 
used?

Have building blocks been planned for crosscutting tasks (e.g., logging)?

Does every building block have a clear responsibility and no overlaps with other build-
ing blocks?

Has every building block been assigned to a suitable logical layer?

Do interfaces exist between the system and its peripheral systems?

Do interfaces exist between the subsystems?

Do interactions between building blocks take place exclusively via interfaces?

Are there any unnecessary interactions between building blocks?

Are there any circular dependencies between building blocks?

MIS:
Architecture views 
developed

Checklist:
Designing the
architecture
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Has every building block been placed on a node?

Has enough attention been paid to the concern of concurrency?

Has the architecture been assessed?

Have the results of the assessment been integrated into the architecture?

Has sufficient attention been paid to the degree of maturity of the means used?

Have the means used been evaluated?

Are proven means used to design the architecture?

Are standard means used or rather proprietary means?

If proprietary means are used, are the reasons for this documented?

Do the selected means bring any benefit compared to simple proprietary solutions?

Is the additional effort for using the selected means justifiable?

Are the impacts of selected means on architectural properties documented?

Are the impacts of selected means on architectural properties documented?

Is the decision for and the adaption of means sufficiently documented?

Are the selected means sufficiently adaptable as required?

Have the selected means been adapted with respect to the domain in question?

Are alternatives (advantages and disadvantages) to the means selected documented?

Based on the given requirements have all relevant means been considered?

Are all selected means actually in use?

Are there examples for the successful use of the selected means?

Whenever possible, are the most concrete means applied?

Are the reasons for not using means as recommended documented?

Are conflicts between means documented?

Are means selected that allow work directly in the domain in question?

Are means used whose use is necessary as a result of the application of other 
means?

Are those low level means used that are recommended as advisable for the imple-
mentation of chosen high level means?

Is a selected high level means (for example, a reference architecture) based on prov-
en low level means (principles, patterns, styles etc.) and are these documented?

Is the use of means sufficiently documented?

Can structural breaks be avoided through the use of specific means?

Is there a reference implementation for a selected reference architecture and is this 
accessible (e.g., as Open Source)?

Where useful, are domain-specific languages used?

If domain-specific languages are used, are suitable basic concepts (dynamic languag-
es, scripting languages, MDSD) and technologies used to implement them?
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If a modeling means is used not only for documentation but also for generation or 
model-driven development, are the models sufficiently formal?

Where useful, are domain-specific languages also used for the architecture descrip-
tion, i.e., an ADL?

Are sufficient resources provided for measures to improve the architecture as part of 
reengineering and maintenance?

Are there sufficient measures to improve the architecture in reengineering and main-
tenance?

TableÂ€8.5-9 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.5 and the architectural topics 
discussed in ChaptersÂ€3–7.

Table 8.5-9: Overview of the connections between SectionÂ€8.5 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section heading Reason for connection

3.2 From Classic Architecture 
to Software Architecture 
(WHAT)

For a better separation of different 
concerns, a distinction should be made 
between functional, technical, and plat-
form architecture

3.3 Architecture and the Sys-
tem Concept

Thinking in systems is applied to create 
building blocks required

3.4 Architecture and the Build-
ing Blocks of a System 
(WHAT)

A set of fundamental system building 
blocks is applied to create the building 
blocks required

4.1 Architecture Levels 
(WHERE)

Building blocks are created at system 
and building block level

4.2 Architecture Views 
(WHERE)

Logical view, data view, and deployment 
view are created

5 Architecture Requirements 
(WHY)

Functional requirements, qualities, and 
constraints are taken into account for 
creating building blocks

6 Architecture Means (WITH 
WHAT)

Different architecture means are used to 
work out the system context and to cre-
ate the building blocks.

6.6 Architecture Modeling 
Means (WITH WHAT)

Architecture modeling means (e.g., 
UML) are applied to document the sys-
tem context and the building blocks

7 Organizations and Indi-
viduals (WHO)

During the activity designing the ar-
chitecture the architect interacts with 
various stakeholders to validate the 
architecture. Furthermore the architect 
should involve the developers in design-
ing the architecture and take their inputs 
into account

Connections between 
Section 8.5 and 
Chapters 3–7

8.5 Designing the Architecture
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8.6	� Implementing the Architecture

FigureÂ€8.6-1 shows the basic concepts of the activity “implementing the architec-
ture” that we will look at in this chapter and visualizes how they relate to each 
other.

Your work as an architect does not end with the design of the architecture. You 
are also involved with the implementation of the system, since you have to en-
sure that it can be implemented based on your architecture. FigureÂ€8.6-2 shows 
the actions you perform. The activity “implementing the architecture” is primar-
ily concerned with developing the implementation view of a system (see Sec-
tionÂ€4.2). You do not execute this activity all by yourself—you work with experts 
from your team (e.g., developers, configuration managers, test managers) and 
you delegate tasks. However, the architectural responsibility for implementing 
the architecture lies with you.

Figure 8.6-1: Basic concepts of the activity “implementing the architecture”

Basic concepts of the 
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ing the architecture”

Architect is respon-
sible for feasibility
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The logical view of the system created during the design of the architecture must 
now be reflected in the realization. You therefore define how the building blocks 
of the logical view are mapped on the building blocks of the implementation view. 
The result of this action is the implementation structure, which is the decomposi-
tion of the source code into manageable units. Your options are restricted by the 
realization technology you use. For example, if you use Java for the realization, 
the units package, class, and interface are available. The architect of MIS would 
therefore have to define how the subsystems, building blocks, and interfaces 
of MIS are to be mapped onto packages, classes, and interfaces of the Java 
technology.

Figure 8.6-2: Implementing the architecture

Define implementa-
tion structure
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In addition to defining a first concrete mapping, you must also define mapping 
rules and naming conventions. You should group all realization units that define 
the interface of a building block or a subsystem in dedicated interface pack-
ages. However, position realization units that implement the interface in internal 
packages. You must also differentiate between public and published interfaces 
[Fowler 2002]. Public interfaces are interfaces used within your own source code 
basis. It is easier to change such interfaces, since you can identify and adapt 
consumers of the interface using tools. Published interfaces however, are difficult 
to change, since they are used across system boundaries and you do not con-
trol the source code of the systems using your published interfaces. In the MIS 
example, these are the interfaces to the peripheral systems, such as IMS and 
CCMS. However, from a certain system size, this already applies for subsystem 
boundaries, since there may also be a clear source code responsibility here and 
you cannot make changes easily. For a better differentiation between the public 
and published interfaces, the implementation structure should clearly separate 
these interfaces by, for example, using different packages.

When implementing an architecture, as well as ensuring that the realization 
matches the original design, you must also ensure that the implementation pro-
ceeds as efficiently as possible and without any problems. This requires that 
you take the selection of the architecture means (development environment, 
programming language, etc.) into account in the architectural work for the imple-
mentation, as well as the structuring of the system. The means together are re-
ferred to as the implementation infrastructure. The implementation infrastructure 
includes:
>	 �Programming environments
>	 �Modeling environments
>	 �Build environments
>	 �Configuration management environments
>	 �Test environments

By defining the programming environment, e.g., Eclipse, you also define which 
source code formats and templates are to be used, how an application server 
should be integrated, or how the configuration management repository should be 
accessed. The definition of the implementation infrastructure is often neglected, 
resulting in a heterogeneous implementation infrastructure that restricts the ef-
ficiency of the implementation.

The aim of selecting the architecture means for the implementation infrastructure 
is to enable the collaboration between the individual developers on the entire 
system to be as efficient as possible. To achieve this, you must have standard-
ized procedures that define how, for example:

Defining mapping 
rules and naming 
conventions

Define the implemen-
tation infrastructure

Defining the imple-
mentation infrastruc-
ture is essential

Enabling efficient col-
laboration
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>	 �Changes are integrated in the entire system
>	 �The individual parts of the entire system are created and installed
>	 �The entire system is tested.

The concrete definition of the procedures is heavily dependent on the respective 
conditions. In addition to the architecture means used, other factors such as the 
number of developers involved, or the distribution over one or more development 
locations, influence the procedures.

Before a system can be realized on a broad scale, you must establish the techni-
cal basis. A technical basis includes the basic technical services (see SectionÂ€8.5) 
required and the implementation of the frameworks used to realize the functional 
building blocks. The actual business logic should be as independent from the 
basic technical services and frameworks as possible. In other words, the depen-
dency of the functional building blocks on the technical building blocks and frame-
works should be as low as possible. The technical basis should also abstract and 
encapsulate aspects of the platform as far as possible. In MIS, for example, it 
should be possible to test the functional building blocks both within a JEE server 
and outside of it. However, you can only create an appropriate technical basis if 
you have sufficient information about the needs of the functional building blocks. 
This is one reason for implementing a skeleton system. A skeleton system also 
clearly shows how the system can be implemented conform to the architecture.

The structure of a skeleton system already corresponds to the architecture of 
the final system. However, the individual building blocks do not yet provide a 
complete implementation of the functionality. They usually provide the functional-
ity required to reflect a clearly delineated use case. All other functionalities are 
either not implemented or defined with temporary implementations (mocks or 
mockups). Using a skeleton system gives you a “complete, ready-to-run” system 
as early as possible for a clearly delineated use case. This system contains all 
fundamental building blocks even if they have not yet been realized completely. 
The functional scope of the use case is second priority here. However, you must 
select it such that all fundamental building blocks are also involved in the real-
ization of that use case. Once you have realized the skeleton of the total sys-
tem, you can develop the individual building blocks further, thus increasing the 
functional scope of the system further. This approach has the advantage that 
during the development period, a “ready-to-run” system is available at all times. 
It enables you to continuously verify the requirements given using the existing 
system. In addition, you can direct the focus towards critical or complex aspects 
of the system at the beginning, resulting in a reduction of the risks. A skeleton 
system enables developers to focus on the actual domain logic of the system 
since the fundamental structure of the system already exists. Model-driven soft-
ware development is a real accelerator in this context since the fundamental 
structure can be generated based on the defined architecture models.

Implement the tech-
nical basis

Implement a skeleton 
system
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Implement the technical basis and the skeleton system in parallel. This enables 
you to take conclusions obtained from the implementation of the skeleton system 
into account when you implement the technical basis. The technical basis will 
always be one iteration ahead of the skeleton system.

As an architect, you should be involved not only in the implementation of the 
technical basis and the skeleton system, but also in the implementation of the 
concrete functional building blocks as the project progresses. This provides you 
with immediate feedback on whether your architecture fulfills the intended pur-
pose and you can eliminate weaknesses early. Your involvement also increases 
your acceptance within the team (see ChapterÂ€7).

An important task in implementing the architecture, or rather, of architecture 
guidelines, is the verification and safeguarding of architecture conformity. This 
is also known as architectural enforcement. The conformity of the deliverables 
with a defined architecture must be ensured with the first lines of source code 
written or the first abstraction modeled. If this is not the case, potential architec-
ture erosions are detected too late. An example of an architecture erosion is that 
the system deviates from the initially defined architecture because changes are 
executed during maintenance without complying with the architecture. Various 
means are available to safeguard the conformity of an implemented system with 
the planned architecture.

The most simple means is continuous, manual verification that the source code 
written complies with the architecture. As it is so simple, this means is available 
quickly and at short notice. The disadvantage of manual verification is the effort it 
requires and the incomplete coverage of the building blocks verified.

You can also use automated checks to verify the source code. The open source 
range for Java has various tools for this, e.g., FindBugs, Checkstyle, or PMD. 
In the analysis, include metrics that enable you to make a statement about the 
quality of the source code. These include, for example:
>	 �Cyclomatic complexity [McCabe 1976]
>	 �Method lengths
>	 �Class lengths
>	 �Inheritance depth and breadth
>	 �Number of attributes and methods of a class
>	 �Cohesion of methods of a class
>	 �Number and scope of Copy&Paste violations

However, do not apply metrics blindly and as the sole assessment criterion to 
base architectural decisions on. Assess them on a case by case basis, and in-
clude further parameters (e.g., special requirements) from the respective con-
text. It is also important to communicate the use of metrics in advance (see 

Developing the tech-
nical basis and skele-
ton system in parallel

Implement building 
blocks

Verify architecture 
conformity

Continuous, manual 
verification

Use of tools for 
source code and 
model analysis

Do not apply metrics 
blindly
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SectionÂ€8.7). Such tools can also verify the compliance with guidelines (for pro-
gramming, naming conventions, etc.) or even enforce compliance. Many model-
ing environments also enable you to define modeling rules and check them auto-
matically during modeling. This ensures that you can identify potential problems 
as early as the design stage.

Another option for ensuring that an architecture is implemented correctly is to spec-
ify the architecture using a skeleton system as a template. The developers have 
freedom within the scope of the skeleton system. However, the prerequisite for 
this is that such a skeleton system actually implements all architectural decisions.

Frameworks are another option for achieving a good match between architecture 
and realization (see SectionÂ€6.2). Using interfaces and abstract implementations, 
frameworks give their users guidelines for realizing a solution. These interfaces 
and abstract implementations reflect the architecture you created. They thus en-
sure that the solution implemented matches a predefined architecture. You must 
provide examples of typical use cases of the framework. The developers can use 
these as a reference to implement their own functionality.

A further option for achieving the best possible match between the system imple-
mented and the predefined architecture is the use of source code generators 
(see SectionÂ€6.2.5) and model-driven software development (see SectionÂ€6.2.6). 
These options enable you to generate source code using specifications. Speci-
fications may be available in the form of models and thus enable a description 
of the entire system or parts of a system at a higher level of abstraction. The 
generator uses these models to create source code for larger parts of the total 
system. It ensures that the source code created for the architecture is compliant 
by generating all architecturally significant realization building blocks.

Is compliance with architecture guidelines checked automatically?

Is correct implementation of the architecture ensured automatically?

Does the documentation contain an example for best and worst case for every metric?

Are there rules for mapping building blocks of the logical view to building blocks of the 
implementation view?

Is every building block of the logical view also contained in the implementation view?

Have the implementation infrastructure means used been evaluated?

Are proven implementation infrastructure means used?

Are standard implementation infrastructure means used or rather proprietary means?

If proprietary implementation infrastructure means are used, are the reasons for this 
documented?

Has the implementation infrastructure been aligned with the organizational con-
straints?

Has the implementation infrastructure been configured in accordance with architecture 
guidelines?

Checklist: Implement-
ing the architecture

Skeleton system as a 
template

Frameworks

Generative approach-
es and model-driven 
software develop-
ment
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Is there a cookbook for the implementation infrastructure?

Is there a technical basis?

Does the technical basis comply with the predefined architecture?

Does the technical basis cover all architecturally significant use cases?

TableÂ€8.6-1 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.6 and the architectural topics 
discussed in ChaptersÂ€3–7.

Table 8.6-1: Overview of the connections between SectionÂ€8.6 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section head-
ing

Reason for connection

3.1 Classic Architecture as 
Starting Point (WHAT)

The Classic architecture definition states that 
the architect is involved in implementing an 
architecture too

3.4 Architecture and the 
Building Blocks of a 
System (WHAT)

A set of fundamental system building blocks is 
applied to create the building blocks required 
for implementing  the architectural design

4.2 Architecture Views 
(WHERE)

Implementation view is created

5 Architecture Require-
ments (WHY)

Functional requirements, qualities, and con-
straints are taken into account for creating 
building blocks implementing  the architec-
tural design  

6.7 Architecturally Rel-
evant Technologies 
(WITH WHAT)

Different technologies are chosen and ap-
plied to define the implementation structure 
and infrastructure and to implement the 
technical basis, skeleton system, and build-
ing blocks

6.2 Basic Architecture 
Concepts

To achieve architectural conformance frame-
works, generative approaches and model-
driven software development (MDSD) are 
applied

7 Organizations and 
Individuals (WHO)

The architect must be actively involved in the 
implementation of the system and ensure 
that the system is implemented according to 
the planned architecture. He therefore has to 
interact in particular with developers

8.7	� Communicating the Architecture

FigureÂ€8.7-1 shows the basic concepts of the “communicating the architecture” 
activity that we will look at in detail in this chapter and visualizes how they relate 
to each other.

Connections between 
Section 8.6 and 
Chapters 3–7

Basic concepts of the 
activity “communi-
cating the architec-
ture”
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An architecture provides a model for all stakeholders. They can work with this 
model and thus communicate with one another. However, the prerequisite for 
this is that you communicate an architecture you have designed to the relevant 
stakeholders continuously as part of all architectural activities (see FigureÂ€8.2-1). 
You must communicate the architecture clearly and with reference to the objec-
tives. Thus all stakeholders get an understanding for a system to be realized 
and the work they have to do as well as the collaboration within the team or the 
project organization (see ChapterÂ€7). The following examples explain why it is so 
important to communicate an architecture to all stakeholders [Bass et al. 2003]:
>	 �Developers must be able to understand how to implement the architecture 

correctly.
>	 �Testers must be able to understand the building blocks to be tested accord-

ing to the specifications of an architecture.
>	 �Managers must be able to understand what effect an architecture has on 

the project planning.
>	 �Customers must be able to understand why the consideration of certain 

requirements means more effort in the design of an architecture.

Communicating an architecture means involving stakeholders in different aspects 
of an architecture. To ensure that an architecture is accepted, understood, and 
correctly implemented, it is very important to involve “your” developers in archi-
tectural decisions. With regard to the various other stakeholders, it is important 
to communicate an architecture because this enables you and the stakeholders 
to verify whether and how a future system fulfills the given requirements. It also 
enables you to improve the acceptance of the future system by the stakeholders.

Figure 8.7-1: Basic concepts of the activity “communicating the architecture”
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FigureÂ€8.7-2 shows the individual actions of the architectural activity “communi-
cating the architecture” and the sequence in which you execute them.

Defining architecture guidelines is one of your central tasks. You do this in all 
architectural activities. There are different architecture guidelines for different 
aspects and stakeholders. In order for you to be able to communicate effective 
architecture guidelines and ensure they are applied, you must document them 
explicitly as an important part of an architecture documentation. It is not sufficient 
to communicate the architecture guidelines verbally only.

Architecture guidelines support you in ensuring the following for an architecture:
>	 �Quality
>	 �Correct implementation
>	 �Communication

Figure 8.7-2: Communicating the architecture
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You define architecture guidelines for two areas:
>	 �How architecture means are to be used
>	 �How architecture is to be documented (we will look at this more closely later 

on in this section)

Examples of architecture means for which you have to create architecture guide-
lines are:
>	 �Use of object-oriented concepts in Java
>	 �Naming conventions, e.g., for building blocks
>	 �Programming in Java
>	 �Use of UML diagrams

Architecture guidelines must be easy to use in daily work. If they are documented 
in a bureaucratic creation of endless pages they will not be applied systemati-
cally and may even be disregarded. Therefore, restrict architecture guidelines 
to a manageable number of truly relevant and transparent specifications. De-
scribe these specifications concisely, uniformly, and understandably. Structure 
the documentation of architecture guidelines such that it can be used without 
unnecessary effort and supports its communication. It should therefore always 
consist of at least the following parts:
>	 �The guideline itself
>	 �Reason for the guideline
>	 �Example for the application of the guideline
>	 �Example for the violation of the guideline

TableÂ€8.7-1 contains an example guideline for MIS.

Table 8.7-1: Guideline using the example of MIS

Guideline

Data is exchanged between building blocks across the boundaries of logical layers 
using data transfer objects (DTO)

Reason Better decoupling of the layers and reduction of the net-
work load

Example for application See FigureÂ€8.5-11

Example for violation Building blocks for the web framework are used to ex-
change data between the presentation logic layer and the 
application logic layer

Before you start creating architecture guidelines, check whether the desired 
guidelines already exist somewhere else and can be used as a basis. For ex-
ample, the UML community has rules for writing identifiers as a quasi-standard. 

Areas of architecture 
guidelines

Subjects of architec-
ture guidelines

How should architec-
ture guidelines be 
documented?

Do not create archi-
tecture guidelines 
where they already 
exist
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However, do not use such standards without further consideration—you have to 
adapt them to the specific requirements (e.g., project size).

To use architecture means practically and create artefacts you have to consider 
architecture guidelines. This means that you have to create architecture guide-
lines continuously and from an early stage. Creating or considering architecture 
guidelines retrospectively is only feasible with a high effort, if at all.

You must also define architecture guidelines for creating the architecture docu-
mentation and using architecture modeling means. Do this before you start cre-
ating an architecture documentation. Architecture guidelines should answer the 
questions below for the architecture documentation (you can add to the list as 
required):
>	 �What is the content of the architecture documentation?
>	 �How is the architecture documentation structured?
>	 �How is the architecture documentation organized?
>	 �How is the architecture documentation kept up-to-date?
>	 �What rules are there for the style of writing?
>	 �How should architecture modeling means be used?
>	 �Which language should be used for the identifiers (all types)?
>	 �Which styles of writing are to be used for identifiers?

You communicate architecture in presentations, reviews, training, etc. Architec-
ture documentation has an effect on these activities, either directly or indirectly. 
Therefore, the architecture documentation has a key role in communicating an 
architecture.

Architecture documentation should be aligned with the following two important 
objectives [Bredemeyer and Malan 2010]:
>	 �Document an architect’s decisions completely and unambiguously.
>	 �Communicate architecture aligned with the various stakeholders or target 

groups (customer, project lead, software developers, etc.).

An architecture can only be implemented as you planned if the related architec-
ture documentation, created in accordance with the objectives above and ac-
cording to specific rules, is available and you communicate it actively (see Sec-
tionÂ€7.5). Only such an explicit architecture can be communicated, understood, 
and implemented. If an architecture is well thought out but generally only exists 
in your mind, it can only be partly implemented or may be implemented incor-
rectly. Alternatively, the related architecture documentation is destined to gather 
dust on a shelf. An important side effect of the architecture documentation is that 
creating it often provides important insights into an architecture itself, which may 

When should archi-
tecture guidelines be 
created?

Drawing up architec-
ture guidelines for 
architecture docu-
mentation

Document architec-
ture
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again lead to its improvement. Architecture and its documentation are therefore 
interdependent.

Architecture documentation should always describe at least the following as-
pects [Bredemeyer and Malan 2010]:
>	 �Architecture decisions (see SectionsÂ€8.2–8.6)
>	 �Architecture views (see ChapterÂ€4)
>	 �Architecture requirements (see ChapterÂ€5 and SectionsÂ€8.2 and 8.3)

Documenting the architecture decisions explicitly is a very important point in an 
architecture documentation. The architecture decisions that led to a specific ar-
chitecture can only be understood and justified—especially after a long time—if 
they are known. Architecture decisions are visualized in the results of the archi-
tecture design, which are reflected in the architecture documentation. However, 
a UML diagram that, for example, shows a logical four layer architecture, does 
not clearly indicate all underlying architecture decisions. Therefore, you have to 
document the architecture decisions as well as the results of the architecture 
design—for example, in the form of a table.

Important architecture decisions in MIS are, for example:
>	 �Prioritization of requirements (see TablesÂ€8.4-2 and 8.4-3)
>	 �Interface protocols to the peripheral systems (see FigureÂ€8.5-4)
>	 �Identification of the key abstractions (see FigureÂ€8.5-5)

Important subjects of architecture decisions are:
>	 �Architecturally significant requirements (e.g., scalability)
>	 �Selection of specific architecture means (e.g., selection of a pattern or a 

platform technology)
>	 �How the selected architecture means are applied (e.g., a specific building 

block specified by a selected pattern is missing)
>	 �Structure of the building blocks (e.g., certain building blocks collaborate di-

rectly, rather than via their interfaces)

This leads to the following questions that can be answered using explicitly docu-
mented architecture decisions:
>	 �Which are the architecturally significant requirements and why?
>	 �Why were certain architecture means selected?
>	 �Why were the architecture means applied in this way?
>	 �Why are the building blocks structured in this way?

FigureÂ€8.7-3 shows the context of architecture documentation. We will now look 
at the facts presented in FigureÂ€8.7-3 that have not been explained more closely 
yet.

Aspects that should 
not be missing in any 
architecture docu-
mentation

Documenting archi-
tecture decisions

Subjects of architec-
ture decisions

Context of architec-
ture documentation
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As the architect you will create large parts of an architecture documentation 
However, other stakeholders (analysts, developers, etc.) will also contribute to it. 
The architecture documentation is created taking account of the guidelines you 
specify.

As previously stated, an architecture is important for various stakeholders. The 
architecture documentation should therefore be available in different forms so 
that it satisfies the different viewpoints of the different target groups. For exam-
ple, a slide presentation that shows only the most significant building blocks of a 
system with simple graphical means (box and line diagrams), without going into 
detail about technical details such as interfaces, is completely sufficient for the 
decision-makers target group. Presenting a semi-formal model using the Unified 
Modeling Language (UML) or an Architecture Description Language (ADL) would 
not have the desired effect for these stakeholders. In contrast, it would be fatal 
to design and realize a system based on a slide presentation because important 
aspects would be missing. Thus you would use a marchitecture (see SectionÂ€1.1) 
for high-level presentations only. Do not leave the selection of the architecture 
modeling means (see SectionÂ€6.6) and the form of an architecture documenta-
tion to chance. Instead, select them deliberately and with a specific objective.

The selection of an architecture modeling means is important for the mainte-
nance and communication of an architecture documentation. Using established 
standards (see SectionÂ€6.6) brings considerable benefits:
>	 �Use of the architecture modeling means is documented
>	 �Architecture modeling means has been tested and proven

Figure 8.7-3: Architecture documentation in context
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>	 �Better support for questions and problems
>	 �Support for the architecture modeling means via tools from various manu-

facturers

There are degrees of flexibility in the use of architecture modeling means (e.g., in 
the selection of the language for identifiers or the utilization of specific options of 
an architecture modeling means). If these degrees of flexibility are used without 
any clear intention, the quality of an architecture documentation can suffer with 
regard to the following points:
>	 �Consistency
>	 �Understanding
>	 �Clarity
>	 �Maintainability

”Poor” architecture documentation has wide-reaching, undesirable consequenc-
es. It often has a negative effect on an architecture, i.e., the software quality of 
the system suffers. For example, an awkward naming (e.g., for building blocks) 
in an architecture documentation can have an effect right down to the source 
code. The source code then becomes unreadable and thus difficult to maintain.

You can and should use the possibilities of the selected architecture modeling 
means to describe all views of a system described in ChapterÂ€4. Consider both 
static and dynamic aspects.

For MIS, for example, part of the requirements view is documented with qual-
ity attribute scenarios (see TableÂ€ 8.4-1) and prioritized requirements (see Ta-
blesÂ€8.4-2 and 8.4-3).

Do not mix different architecture levels and views (see ChapterÂ€4) in an archi-
tecture documentation. Instead, divide an architecture documentation into the 
different levels and views explicitly. This makes it easier for someone reading the 
architecture documentation to get a step-by-step understanding of the different 
architecture aspects and to find the content relevant for them. The details for the 
MIS example show this clearly (see SectionsÂ€8.2–8.6). If you want to visualize 
aspects of different architecture levels together, mark the different levels clearly. 
If this is not possible (in a clear form), use multiple diagrams.

There is no one standard for structuring an architecture documentation but there 
are numerous procedures. For example, you can split up or organize an architec-
ture documentation according to building blocks and/or architecture views. An ar-
chitecture documentation should be based on the template shown in TableÂ€8.7-2.
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incorrect use of ar-
chitecture modeling 
means

Poor quality architec-
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Table 8.7-2: Template for architecture documentation

Introduction

Overview

Selection of require-
ments

Selection and application of

architecture means

Structure of the

building blocks

Architecture views

Require-
ments view

Logical view Data view Implementa-
tion view

Pro-
cess 
view

De-
ploy-
ment 
view

Crosscutting aspects

Architecture guidelines Other

Architecture assessment

Project aspects

Open issues

Glossary

This template shows a basic structure based on [IEEE 2007] for architecture 
documentation. We recommend that you add to and refine this structure as re-
quired for a specific project. The main elements of this template have the follow-
ing contents:
>	 �Introduction: Motivation, objectives, target groups, and reader guide.
>	 �Overview: Essential architecture aspects grouped with references to in-

depth parts in the architecture documentation.
>	 �Architecture views: Contents according to the respective viewpoint of a 

view. Here it is important to document the architecture decisions that led to 
the artefacts, and not simply list the artefacts.

>	 �Crosscutting aspects: Aspects that cannot be assigned to individual archi-
tecture views. These include, for example, guidelines for using UML dia-
grams or the definition of viewpoints.

>	 �Architecture assessment: Logs of architecture assessments and rejected 
architecture alternatives.

>	 �Project aspects: Aspects such as iteration planning, task distribution, or 
training.

>	 �Open issues: Points that still require clarification, e.g., unclear requirements.
>	 �Glossary: Must always be included! Central terminology and synonyms.

You can use a structure like this both for architecture documentation bundled in 
a single artefact and documentation distributed over several artefacts. Further-
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more, you can base the storage structures (e.g., directory structures in a file sys-
tem) for the artefacts of an architecture documentation on this basic structure. An 
architecture documentation should always be structured based on a proven tem-
plate. One example of such a template is the ANSI/IEEE standard 1471–2000 
[IEEE 2007; OpenGroup 2001]. [Bass et al. 2003] also contains useful comments 
and templates for sensible structuring of architecture documentation.

The terms (in an architecture documentation) are a considerable problem in the 
use of an architecture documentation if they are interpreted differently by differ-
ent stakeholders. This is particularly valid for key terms of a domain. To alleviate 
this problem, [Evans 2004] suggests the following architecture guidelines:
>	 �Use only terms from the domain model.
>	 �Discuss the meaning of alternatives for a term and define which of the terms 

available for selection should be used as standard in future.
>	 �Make sure that changes with regard to terms used are reflected in the do-

main model.
>	 �Check terms for correctness (consistency, contradictions, understanding, 

etc.).

We recommend supplementing the textual architecture documentation with an 
audio-visual documentation to make it easier to communicate the architecture. 
There are various media and means available:
>	 �Audio books
>	 �Blog
>	 �Freehand drawings
>	 �Livestream
>	 �Podcast
>	 �RSS-Feed
>	 �UML diagrams
>	 �Video/DVD

To document architecture and make it easier to communicate, it is essential to 
have the significant features of an architecture in visual form as well as in text 
form in an architecture documentation. You should therefore visualize the model 
of the system to be developed. The visualized artefacts of a model are an impor-
tant part of an architecture documentation. Important: visualize the different as-
pects of an architecture with different artefacts (e.g., UML diagrams). Such visual 
artefacts make it easier to present, communicate, and discuss an architecture 
and the effects of changing requirements on this architecture. There are various 
more or less formal architecture modeling means available for this purpose (see 
SectionÂ€6.6). A visual architecture documentation can never replace a written 
architecture documentation—it supplements it by providing an overview of the 
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audio-visual architec-
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Visualization of the 
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architecture quickly and enabling the reader to focus on specific aspects without 
getting lost in the details of a text. The visual display also serves as a means of 
navigation through the textual description. This has an effect particularly when, 
for example, as an architect and/or developer you have to familiarize yourself 
with a new architecture.

In order for the visual architecture documentation to bring a real benefit, it should 
not attempt to portray all details of the textual description. Instead, it should high-
light the important aspects (e.g., interfaces and layer association). The visual ar-
chitecture documentation thus makes it easier to access the concepts described 
in the textual architecture documentation. It should also answer at least the fol-
lowing questions with regard to system building blocks:
>	 �What roles do the building blocks have?
>	 �What relationships exist between the building blocks?
>	 �How do the building blocks communicate with one another?

These aspects are documented in the logical view.

It is important to ensure fast and easy access to an architecture documentation. 
Therefore, it is important to have a corresponding technical infrastructure (e.g., 
use of a CMS or a repository) with the option of version control, since architec-
ture documents are developed further over time.

Architecture documentation can vary in scope and can cover different types of 
artefacts (texts, diagrams, presentations, etc.). How much architecture docu-
mentation is necessary? Generally, the scope of an architecture documenta-
tion should be selected such that all stakeholders can properly understand an 
architecture and it can be correctly implemented. The complexity of a project 
(e.g., requirements, system size, project organization, functional experience of 
the project team members, etc.) influences the scope of the documentation (see 
FigureÂ€8.7-4). It is therefore not possible to specify a universal scope The chal-
lenge is to maintain the scope to fit the purpose. Remember, however, that most 
artefacts created must also be maintained in the future. You can partially limit the 
scope by consistently complying with the following rules:
>	 �Document only architecturally significant aspects (e.g., interfaces).
>	 �Create only artefacts that bring a real added value and that will actually be 

used (e.g., consider whether it makes sense to create a UML activity dia-
gram for every use case).

>	 �Avoid redundancies (e.g., the documentation of an interface should not be 
repeated for each building block that implements the interface).

>	 �Remember that sometimes “less is more.”
>	 �Architecture documentation must be 100% up-to-date. This means that the 

scope must not restrict the maintenance of the documentation.

Visual architecture 
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You cannot assume that an architecture and the architecture guidelines will be 
understood and implemented correctly based on the architecture documentation 
alone (no matter how well-developed it is). As the architect you have to con-
tinuously bring the architecture and architecture guidelines into the minds of the 
respective stakeholders. Architecture and architecture guidelines can only fulfill 
their intended purpose if the stakeholders consider and correctly apply them. The 
prerequisite for this is that architecture and architecture guidelines are known, 
accepted, and understood. Therefore, communicate architecture and architec-
ture guidelines deliberately and with caution. To communicate architecture and 
architecture guidelines successfully, it is important that you do not refer to them 
simply by means of an architecture documentation but that they are also com-
municated or trained verbally. For example, this can take place as part of a team 
meeting or the establishment of an architecture board. This achieves real accep-
tance of architecture and architecture guidelines and prevents an incorrect use 
or understanding that would lead to considerable effort in eliminating consequen-
tial errors (e.g., in the implementation of an architecture).

Training courses require resources and must be planned. The project lead should 
not make decisions on this issue alone because the project lead often cannot finally 
assess the technical facts (e.g., should a different persistence framework be used 
in the future, or can our Java developers change over to Ruby with no further ef-
fort?). Once again you are required to act as a technical consultant and determine 
the training requirements of the individual stakeholders. The training effort general-
ly increases the more the training is concerned with implementing an architecture.

Figure 8.7-4: Correlation between project complexity and architecture docu-
mentation scope
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Training courses can be offered as
>	 �External/internal seminars or workshops
>	 �Blended learning
>	 �Coaching measures
>	 �Presentations in a team meeting
>	 �Participation in an architecture

As an architect you should always represent your architecture, even in the face 
of (political) resistance. You do this on various fronts. Dangers for an architecture 
must be recognized early (e.g., the possible rejection of an architecture decision 
by an important stakeholder). An architecture, and thus also the architect, is sub-
ject to the potentially conflicting opinions of the different stakeholders. Therefore, 
do not neglect any stakeholders when you are positioning an architecture. For 
example, you risk not getting your architecture accepted if you do not represent it 
actively enough to management, claiming to be “just a technician.”

Are developers involved in architectural decisions?

Is the architecture communicated to all stakeholders?

Are guidelines communicated to the respective stakeholders affected?

Is the architecture represented to all stakeholders?

Are there guidelines for using architecture means?

Are there guidelines for creating architecture documentation?

Are architecture guidelines documented?

Are guidelines based on standards?

Are guidelines created continuously and in time?

Have the architecture modeling means used been evaluated?

Are proven architecture modeling means used?

Are standard architecture modeling means used or rather proprietary means?

If proprietary architecture modeling means are used, are the reasons for this docu-
mented?

Is IEEE standard 1471 [IEEE 2007] complied with?

Are at least the requirements, logical, and deployment views documented?

Are at least architecture decisions, architecture views, and architecture requirements 
documented?

Are different architecture levels and views not mixed?

Is there a supplementary audio-visual architecture documentation?

Does the visual architecture documentation concentrate only on architecturally signifi-
cant aspects?

Can the architecture documentation be accessed quickly and easily?

Is the scope of the architecture documentation appropriate to the requirements, system 
size, and project organization?

Types of training 
courses

Represent architec-
ture

Checklist:
Communicating the 
architecture

Checklist:
Architecture guide-
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Checklist:
Architecture docu-
mentation
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Does the scope of the architecture documentation still allow unrestricted maintenance 
of the architecture documentation?

Are architecture guidelines part of the architecture documentation?

Does the architecture documentation include a glossary?

Is version management available for the architecture documentation?

Does the architecture documentation contain context information, such as author(s), 
change history, version, etc.?

Is a standardized architecture view model used?

Has the selected architecture view model been adapted?

Are all views used specified?

Do any views used have redundancies?

Are all views used coherent?

Are static and dynamic structures considered?

TableÂ€8.7-3 gives an overview of important relationships between the aspects 
of the architecture method described in SectionÂ€8.7 and the architectural topics 
discussed in ChaptersÂ€3–7.

Table 8.7-3: Overview of the connections between SectionÂ€8.7 and ChaptersÂ€3–7

Chapter/
section
number

Chapter/section 
heading

Reason for connection

3 Architecturs and 
Architecture Disci-
plines (WHAT)

The understanding of the definition of software 
architecture and its major concerns is a key 
prerequisite for communicating the architecture 
successfully

4.1 Architecture Levels 
(WHERE)

Architecture levels are used to structure archi-
tecture documentation and to align architecture 
training to the appropriate audience

4.2 Architecture Views 
(WHERE)

Architecture views are worked out and used to 
communicate and document an architecture

5 Architecture Re-
quirements (WHY)

For communicating the architecture appropriate 
it is required to know the stakeholdes and the 
corresponding different requirements which led to 
given architectural decisions

6.6 Architecture Mod-
eling Means
(WITH WHAT)

Architecture modeling means are used to work 
out the architecture documentation

7 Organizations and 
Individuals (WHO)

The architect has to communicate the architec-
ture to various stakeholders in the right form so 
that the stakeholders understand the architecture 
and how it addresses their needs and concerns

Checklist:
Architecture views

Connections between 
Section 8.7 and 
Chapters 3–7
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8.8	� Maintaining the Architecture

FigureÂ€8.8-1 shows the basic concepts of the “maintaining the architecture” activ-
ity that we will look at in detail in this chapter and visualizes how they relate to 
each other.

Maintenance of software systems deals with changes to the system after it has 
been delivered. This covers, for example, the correction of errors, the improve-
ment of quality attributes such as performance, and the evolution or further de-
velopment of the system. According to a study from Nosek and Palvia [Nosek 
and Palvia 1990], only 20% of the time invested in a software system is con-
cerned with the actual development. In contrast, 40% of the time is spent on 
understanding, and 40% again on changing the software system—i.e., on typical 
activities in software maintenance. During maintenance it is especially important 
to avoid the erosion of the architecture. To do this you will perform the architec-
ture activities presented in this chapter. This means that you will also understand 
the requirements (often expressed in change requests), determine the impact 
of the requirements on the architecture, define the necessary changes to the 
architecture, and ensure that these changes are implemented in order to avoid 
the erosion of the architecture.

In real software development we can observe two important laws [Lehmann and 
Belady 1985]: the law of constant change and the law of growing complexity. 
With reference to the maintenance of software architectures, this means that as 
the architect, you have to constantly contend with changes but still ensure you 

Figure 8.8-1: Basic concepts of the activity “maintaining the architecture”
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keep the complexity under control. In reality, this is often difficult for the following 
reasons:
>	 �It is difficult to be prepared for unexpected changes.
>	 �Knowledge is not documented sufficiently or documentation is lost. In some 

legacy systems even the source code no longer exists. If the original archi-
tects and developers have left the enterprise, it is difficult to get back the 
knowledge about the system.

>	 �Where changes are quick—in the hectic of daily business—revising the 
documentation and the design, architecture, and requirements documents 
is often forgotten. The principle of traceability is violated.

>	 �Quick changes and corrections, in particular when they are performed by 
persons other than those who originally designed the architecture, tend to 
violate architectural conventions.

Below we will briefly outline the most important means for software maintenance.

From an architecture view, software reengineering is an important part of soft-
ware maintenance. It is concerned with the following major tasks [Chikofsky and 
Cross 1990]:
>	 �Reverse engineering covers activities for regaining lost information about 

existing software systems. The first task is to identify the system building 
blocks. Their interactions and relationships must also be reconstructed. The 
goal is the description of a view of a system with a higher level of abstrac-
tion. This can be the reconstruction of an architecture based on the code, 
for example. Many reverse engineering tools use visualizations to illustrate 
an architecture.

>	 �Restructuring covers all activities for changing the structure of a system. 
This can refer to both the code and to other documents related to the sys-
tem. This means that architecture documents can also be reconstructed. 
Restructuring is thus primarily changing a representation into another repre-
sentation at the same level of abstraction.

>	 �Software evolution is the implementation of changes to the software system. 
Here we can differentiate in particular technologies for bringing in expected 
and unexpected changes.

>	 �Wrapping gives a given system or a building block a new interface but does 
not change the system itself. It is frequently used for version adjustments 
or other slight interface changes to software building blocks. It is also used 
for software evolution: if you want to completely change a large system, it is 
often unwise to completely rewrite it. Instead, it is better to change it step-
by-step. The new and old parts must then communicate with one another, 
for example, to test the system. A wrapper can provide an old subsystem 
as a building block in a new system. Wrappers are also sometimes used for 

Reengineering
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interim solutions if an old system will soon be exchanged. In practice, how-
ever, such interim solutions often survive longer than planned.

The term reengineering therefore covers all activities for understanding and 
changing a software system to implement it in a new form.

Software reengineering often involves legacy systems, i.e., systems that have 
existed for a long time but still represent a value for the enterprise. Redeveloping 
the system is deemed to be more problematic than adjusting the legacy system 
to new facts—for example, for cost reasons.

However, reengineering is not just about legacy systems. Through their addition-
al abstractions, such as class hierarchies or explicit interfaces, modern object-
oriented or component-oriented systems easily enable restructuring, tracing the 
architecture, or refactoring. This means that as a result of the additional abstrac-
tion and modularity, in these systems it is easier to improve and extend the archi-
tecture incrementally—which means a strong focus on reengineering activities.

You can use, for example, the means introduced in SectionÂ€6.2 such as aspect 
orientation, generative programming, and model-driven development.

In practice, unfortunately, relatively little value is placed on measures to improve 
architecture. This is because these measures often involve a lot of effort but it 
is not easy to identify the short-term business benefits. For example, improving 
the modularity can be very important for the modifiability and reusability of the 
architecture and its ability to be understood. However, a new functionality is still 
more suitable for convincing a customer to invest in a product.

Therefore, in practice, important tasks in reengineering are influenced more by 
changes to the “environment.” Some examples are:
>	 �Systems are often confronted with new programming languages, new stan-

dards, new platforms, new middleware products, databases, and other new 
environment elements that have to be integrated or to which the systems 
have to be migrated.

>	 �It can often happen that a system needs a new user interface. For example, 
mainframe systems are often character-oriented and have to be migrated to 
graphical user interfaces. Today, many systems receive an (additional) web 
interface. Mainframe applications are also often changed to client-server 
architectures or integrated in them.

Your task as the architect is to pay attention to this and to convince stakeholders 
to give sufficient weight to measures to improve the architecture as part of main-
tenance work. In particular, you have to point out the long-term consequences of 

Areas of use for
reengineering

Measures to improve 
architecture

Reengineering 
through environmen-
tal influences

Architect must work 
towards measures to 
improve architecture
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failure to improve the architecture to the stakeholders. Previous subsections of 
ChapterÂ€8 deal with this and similar tasks in detail.

In connection with reengineering, the term “forward engineering” is often differ-
entiated. It covers primarily situations in which you develop a new system. In its 
extreme, with forward engineering, the problem and the possible solution alter-
natives are still completely unclear and it is difficult to estimate the effort required. 
You can design the architecture with a great degree of freedom without having to 
consider dependencies from legacy systems.

Reengineering is usually concerned with the opposite situation: there are numer-
ous dependencies but you have already gathered some experience and can 
estimate the reengineering effort quite well. This ability to estimate the effort bet-
ter often means in practice that reengineering is preferred to forward engineer-
ing—where possible—in order to keep the risks under control.

There are a number of tools for the different reengineering technologies:
>	 �Classic tools are available for the program analysis, such as grep, diff, and 

debugger. However, there are also more extensive tools, for example, for 
architecture visualizations, analysis tools based on syntax trees or control 
flows, as well as tools for static and dynamic analysis of characteristics.

>	 �Based on the program analysis tools you can calculate metrics automati-
cally, i.e., measured values for the software architecture or the software 
system.

>	 �With load generators and profilers you can execute performance analyses.
>	 �You can use wrapper generators to automate wrapping.

Tools for refactoring enable you to refine an architecture step-by-step. Modern 
development environments, such as Eclipse [Eclipse 2010a], already provide 
simple refactorings, such as “shift method” or “rename class.” More extensive 
tools enable remodularization, the clustering of structures in order to detect mod-
ule dependencies, as well as the analysis and restructuring of inheritance hier-
archies.

8.9	� Summary

>	 �The planned and the actual development path deviate from one another 
due to various influencing factors. Be aware of this and adapt your method 
accordingly.

Contrast to forward 
engineering

Reengineering tools

Summary:
Architecture and
development proc-
esses
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>	 �Methods are guides for structuring individual core disciplines, (architec-
ture) activities, (architecture) actions, and crosscutting tasks. They define 
the chronological sequence of these aspects in a development process.

>	 �We can differentiate between the waterfall model and iterative, incremental 
development processes.

>	 �Iterative, incremental development processes provide the best opportunity 
for reacting to changes during development.

>	 �Create an architecture iteratively and incrementally, rather than in strict 
sequence.

>	 �As the architect you must support the project lead in planning the itera-
tions in order to ensure that architecturally significant requirements are 
addressed as early as possible and that risks are therefore minimized.

>	 �You can combine methods. There are process metamodels (e.g., SPEM or 
UMA) on the market, as well as software tools (e.g., RMC or EPF).

>	 �USDP differentiates between the following phases: inception, elaboration, 
construction, and transition.

>	 �As an architect, you need a method to guide you in your project.
>	 �In addition to the method, your own experience is essential for adapting the 

recommendations of the method to the concrete project situation.
>	 �The architecture method consists of the following activities: creating the 

system vision, understanding the requirements, designing the architecture, 
implementing the architecture, and communicating the architecture.

>	 �Execute the activity “communicating the architecture” in parallel to the 
other activities.

>	 �In the “creating the system vision” activity, it is your responsibility to ques-
tion requirements critically with regard to their architectural feasibility in 
the overall or global IT context of an organization. Point out contradictory 
requirements and indicate alternatives.

>	 �With regard to the architecture method, during the activity “creating the 
system vision,” see yourself as an architectural consultant.

>	 �The activity “understanding the requirements” is dedicated to the identifica-
tion, prioritization, and detailing of architecturally significant requirements. 
It is particularly important to consider non-functional requirements thor-
oughly.

>	 �”Implementing the architecture” is concerned with the definition of develop-
ment guidelines, with manual reviews, and the establishment of an infra-
structure, for example.

>	 �The aim of the activity “communicating the architecture” is to convey the 
best possible understanding of the architecture and the architecture deci-
sions to the individual stakeholders.

Summary:
Overview of the
architecture method
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>	 �An important result of the architectural activities is the creation of the differ-
ent architecture views as described in ChapterÂ€4.

>	 �The ratio of the individual architectural activities changes from iteration to 
iteration.

>	 �In this activity you take on the role of an architectural consultant in a team 
of experts from different domains.

>	 �The term “business case” is sometimes used instead of “system vision.”
>	 �A system vision should contain the business opportunities, the stakehold-

ers, the significant requirements, and a first system overview.
>	 �Identify and prioritize the stakeholders.
>	 �During the creation of the system vision, you must manage the expecta-

tions of the individual stakeholders.
>	 �Document the significant functional and non-functional requirements.
>	 �A first system overview should consist of a system context and a first ar-

chitecture idea.
>	 �At this point the presentation of the architecture idea can be very informal 

and you can restrict it to the identification of significant building blocks.

>	 �Requirements restrict your creative freedom as an architect and are rarely 
precise.

>	 �Identify and prioritize requirements and make them tangible.
>	 �Identify and prioritize architecturally significant requirements according to 

benefit and risk.
>	 �Document qualities with quality attribute scenarios.
>	 �Quality attribute scenarios can also document the qualitative nature of 

functional requirements.
>	 �Consider architecturally significant use cases and qualities within the given 

constraints.
>	 �Use architecture prototypes to demonstrate architecturally significant re-

quirements.
>	 �In performing the activity “understanding the requirements,” refine the re-

quirements of the organizational level, through the system level, down to 
the building block level, within several iterations.

>	 �The design of an architecture is influenced by the architecturally significant 
requirements, functional models, the system context, and the architecture 
means to be used.

>	 �The architecture of the first iteration is also known as the architecture vision.

Summary:
Creating the
system vision

Summary:
Understanding the 
requirements

Summary:
Designing the
architecture
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>	 �In defining the system context, you make the system context contained in 
the system vision more concrete and document the interfaces. A system 
context is more than just a diagram.

>	 �Identify the key abstractions of the functional domain for the architecture 
design.

>	 �Consider requirements with a high priority as early as possible in the de-
sign.

>	 �An architecture means alone does not solve all problems. As the architect 
you have to adapt the means and where applicable combine them with 
your own design ideas.

>	 �When selecting architecture means, first consider reference architectures 
and basic architectures. If none of these are suitable, consider tactics, 
styles, and patterns, as well as concepts and principles.

>	 �During the architecture design, the focus shifts from functionality to tech-
nology.

>	 �Define the responsibilities and dependencies of every building block.
>	 �You identify functional building blocks using key abstractions, the func-

tional requirements belonging to the abstractions, and non-functional re-
quirements.

>	 �You can derive dependencies from functional and technical facts.
>	 �Document the interactions between the building blocks.
>	 �Interfaces should disclose their purpose and not their implementation.
>	 �The placement of the building blocks covers their placement on nodes and 

processes.
>	 �Informal and formal methods are available for assessing an architecture 

(e.g., presentations, walkthroughs, simulations, architecture prototypes, 
scenario-based methods).

>	 �As the architect you are responsible for the implementation of the archi-
tecture.

>	 �In the “implementing the architecture” activity you define the implementa-
tion structure. It should be derived from the logical view.

>	 Define mapping rules and naming conventions.
>	 �Define an implementation infrastructure (development environment, pro-

gramming language, etc.). This infrastructure must enable efficient col-
laboration.

>	 �Implement the technical basis and the skeleton system. Develop them in 
parallel, whereby the basis should always be one step ahead of the skel-
eton system.

>	 �As the architect you should also implement building blocks yourself, in 
order to get feedback on whether your architecture fulfills the intended 
purpose and to achieve higher acceptance within the team.

Summary:
Implementing the 
architecture
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>	 �Verify whether the implementation conforms to the architecture defined. 
This verification should be automated where possible.

>	 �In order for an architecture to be correctly understood and implemented by 
the stakeholders, you must communicate it continuously during all archi-
tectural activities.

>	 �To ensure that an architecture is accepted, understood, and correctly im-
plemented, it is very important to involve the developers in architectural 
decisions.

>	 �Communicate architecture verbally, in writing, and visually.
>	 �The architecture documentation plays a key role in communicating an ar-

chitecture.
>	 �The architecture documentation documents an architecture and architec-

ture guidelines.
>	 �Create and communicate architecture guidelines continuously and in time.
>	 �Important aspects that the architecture documentation must always cover 

are architecture decisions, architecture views, and architecture require-
ments.

>	 �The explicit documentation of the architecture decisions is a very important 
point in an architecture documentation. The architecture decisions that led 
to a specific architecture can only be understood and justified once they 
are known.

>	 �Use standardized architecture modeling means to create an architecture 
documentation.

>	 �When creating an architecture documentation, pay attention to consisten-
cy, understanding, clarity, and maintainability. These must be safeguarded 
by corresponding guidelines.

>	 �It makes sense to supplement the textual architecture documentation with 
an audio-visual architecture documentation.

>	 �The visual architecture documentation should not attempt to portray all 
details of the textual description—it should only highlight the important as-
pects.

>	 �It is important to ensure fast and easy access to an architecture documen-
tation and a corresponding technical infrastructure should be planned.

>	 �The scope of an architecture documentation depends on requirements, 
system size, and project organization, among other things. You can re-
strict it by limiting yourself to the truly architecturally significant aspects and 
strictly avoiding redundancies. With regard to the scope, do not exceed 
any limits that restrict the maintenance of an architecture documentation 
with the given resources.

Summary:
Communicating the 
architecture
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>	 �Maintenance of software systems deals with changes to the system after it 
has been delivered. This covers, for example, the correction of errors, the 
improvement of quality attributes such as performance, and the evolution 
or further development of the system.

>	 �40% of the time invested in a software system is concerned with changing 
the software system.

>	 �During maintenance it is especially important to avoid the erosion of the 
architecture

>	 �In real software development we can observe two important laws [Lehm-
ann and Belady 1985]: the law of constant change and the law of growing 
complexity.

>	 �The architect has to constantly contend with changes but still ensure he 
keeps the complexity under control.

>	 �Software reengineering deals with the following important tasks: reverse 
engineering, restructuring, software evolution, and wrapping.

>	 �Reengineering often takes place more as a result of environmental influ-
ences.

>	 �Software reengineering often involves legacy systems, i.e., systems that 
have existed for a long time but still represent a value for the enterprise.

>	 �In practice, unfortunately, relatively little value is placed on measures to 
improve architecture.

>	 �As the architect you have to work towards measures to improve archi-
tecture.

>	 �In connection with reengineering, the term “forward engineering” is often 
differentiated. It covers primarily situations in which you develop a new 
system.

>	 �There are a number of tools for the different reengineering technologies 
(e.g., program analysis, calculation of metrics, performance analyses, and 
automatic wrapping)

>	 �Tools for refactoring allow to refine an architecture step-by-step
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Figure: Architecture method—activities and work products
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Glossary

Term (synonym) Explanation
.NET .NET is a Microsoft component platform.

4+1 view model The 4+1 view model is an architecture view model developed by 
Philippe Kruchten. It defines five architecture views frequently 
required in practice.

Abstract syntax The abstract syntax describes the structure of a formal (model-
ing) language.

Abstraction Abstraction means focusing on aspects of a concept that are rel-
evant for a specific purpose and neglecting unimportant details 
for this particular purpose.

Adjourning stage The adjourning stage is the fifth stage of group development 
according to Tuckman. After achieving the group objective, the 
adjourning stage reflects on the performance and experiences of 
the group. The group can also dissolve or set a new objective.

Agile method An agile method is based on an iterative and incremental ap-
proach and strives to reduce unnecessary tasks to a minimum 
(e.g., the creation of superfluous documentation). Examples are 
XP, Scrum, and FDD.

Apollo team An Apollo team is a homogeneous group consisting of highly 
intelligent, analytical people with high mental ability. It generally 
produces worse results in the achievement of objectives than 
heterogeneous teams.

Application building 
block

An application building block encapsulates application logic and 
makes it available in a controlled manner.

Application logic Application logic is logic with a very close relationship to the ap-
plication to be realized and which often cannot or cannot easily 
be reused in other contexts.

Application server An application server is a software framework that provides 
basic services supporting the efficient development of a specific 
type of applications, as for example web applications (see Web 
application server).

Architectural aware-
ness

Architectural awareness is a mindset that recognizes the impor-
tance of architecture. The quality of this awareness is relevant 
strategically and in the long term, since an architectural aware-
ness is a basis for lifelong learning and thus for being a success-
ful architect.

Architecturally rel-
evant technology

A technology that has impacts on design and implementation 
of architecture and therefore belongs to the software architect’s 
“toolbox.”

Architecturally 
significant require-
ment

An architecturally significant requirement is a requirement with 
a high benefit for the stakeholders and/or a high implementation 
risk.

Architecture action 
(architecture step)

An architecture action is an action within an architecture activity.

Architecture activity An architecture activity is an activity performed within an archi-
tecture method.



410 Glossary

Term (synonym) Explanation
Architecture deci-
sion

An architecture decision is a strategic decision about aspects of 
an architecture. For example, the decision to apply the architec-
ture pattern MVC or the decision to mention the nonfunctional 
requirement portability is an architecture decision.

Architecture de-
scription language 
(ADL)

An architecture description language is a special DSL (see 
Domainspecific language) used to describe the architecture of 
systems precisely to simulate and validate the architecture via 
software tools.

Architecture dimen-
sion

An architecture dimension is a category of the architecture ori-
entation framework. All architecture dimensions together help 
to systematically breakdown the overall domain “architecture.” 
An architecture dimension thus covers one specific architectural 
aspect and has a question word assigned to it for clarity and 
better usability.

Architecture disci-
pline

An architecture discipline deals with certain architectural aspects 
of a system and comprises corresponding architectural activi-
ties. There are different types of architecture disciplines. For 
example, as well as software architecture, data architecture and 
security architecture.

Architecture docu-
mentation

An architecture documentation covers all artefacts that describe 
an architecture. It is generally structured according to the follow-
ing topics: architecture decisions, architecture views, crosscut-
ting aspects, architecture assessment, project aspects, open 
points, and glossary.

Architecture domain An architecture domain is a restricted area of knowledge or inter-
est in which “architecture” is of fundamental importance. Typical 
architecture domains are software architecture, enterprise archi-
tecture, or system architecture.

Architecture Ero-
sion

Architecture Erosion describes the fact that architectures erode 
over time due to changes which are applied in a blindfold man-
ner without thinking about the architectural impact and overall 
consequences.

Architecture frame-
work

An architecture framework is a collection of standards, specifica-
tions, guidelines, best practices, methods, reference models, 
and architecture view models. Architecture frameworks, such as 
the Zachman Framework, RMODP, or TOGAF address the en-
terprise architecture of an organization and are distinguished by 
their specific scope and design.

Architecture guide-
line

An architecture guideline is a guideline that should be consid-
ered during the design and implementation of an architecture. 
Guidelines ensure that architectures are correctly designed and 
implemented.

Architecture level An architecture level encompasses architecturally significant ele-
ments at the same level of abstraction.

Architecture means Architecture means are applied during the design and implemen-
tation of an architecture. The spectrum of possible architecture 
means ranges from elementary principles to concrete technolo-
gies. Architecture means comprise the toolbox of an architect.

Architecture method An architecture method defines the method for designing and 
implementing an architecture.
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Architecture model-
ing means

Architecture modeling means are for documentation, specifica-
tion, communication, analysis, and validation of architectures, 
to some extent also to support automatic code generation. The 
Unified Modeling Language (UML) is an example.

Architecture orien-
tation framework

The architecture orientation framework is a framework in which 
knowledge and experience of architecture can be embedded. It 
is structured according to different architecture dimensions.

Architecture pattern 
(pattern)

An architecture pattern is a threepart rule that expresses the re-
lationship between a certain context, a certain system of forces, 
and a specific building block configuration. The building block 
configuration enables the recurring forces arising in the context 
concerned to disperse.

Architecture pattern 
language

An architecture pattern language is a specific pattern language 
(see Pattern language) that offers a set of composable architec-
ture patterns (see Architecture pattern).

Architecture prin-
ciple

An architecture principle is a proven and tested principle that 
should be applied in the design and implementation of an archi-
tecture.

Architecture pro-
totype

An architecture prototype is generally used to investigate risks. 
A ready-to-run implementation is created for specific problems, 
thus enabling a better understanding of the risks.

Within the “understanding the requirements” activity, prototypes 
do not yet reflect the actual architecture. Instead, they are used 
to obtain a better understanding for the individual architecturally 
significant requirements and to check their feasibility (for ex-
ample, to investigate new technologies).

As part of the “designing the architecture” activity, prototypes 
refer to actual architecture and are used to assess architecture 
alternatives or aspects of an architecture.

Architecture style 
(style)

An architecture style is a special type of architecture pattern. In 
particular, styles express the structural organization of a family 
of systems.

Architecture tactic An architecture tactic provides guidelines for implementing a 
quality attribute of the system under construction and its archi-
tecture. In principle therefore, an architecture tactic helps you to 
get a first idea about a design problem.

Architecture type 
case

The architecture type case is the metaphor used in this book on 
which the architecture orientation framework is based (see Archi-
tecture orientation framework).

Architecture viability 
prototype

An architecture viability prototype is an architecture prototype 
that brings together all relevant system building blocks (e.g., 
from the user interface right up to persistence) for successful in-
teraction. It is developed to prove the viability of the architecture.

Architecture view An architecture view represents a system from the viewpoint of a 
set of related concerns.

Architecture view 
model

An architecture view model defines architecture views and their 
content.



412

Term (synonym) Explanation
Architecture vision An architecture vision is a first, approximate decomposition of 

a system. It is usually not clearly defined, and becomes more 
concrete later during the design of the architecture. The presen-
tation is usually informal.

Aspect orientation 
(AOP, AO)

Aspect orientation avoids crosscutting concerns being spread 
across the source code or the design. Instead, solutions are 
encapsulated in an aspect and thus separated from the system 
or system building block affected by the aspect.

Authentication The process of verifying that someone (really) is who he claims 
he is. “Someone” may be a person, an IT system, a process, etc.

Authorization Authorization supplements authentication by verifying that an 
identified user or IT system is entitled to perform a requested 
action (e.g. read, write, delete, execute) on a targeted resource 
(e.g., file, database record).

Availability Availability is a runtime requirement expressed in the relation-
ship of the downtimes to the productive times. The fewer the 
downtimes compared to the productive times, the higher the 
availability of the system.

Basic architecture A basic architecture is a architecture mean that helps to struc-
ture entire systems. This mean applies various architecture 
means and is more conrete than other more generic means like 
principles or patterns.

Basic architecture 
concept

An important concept that architects use today to design and 
implement architectures.

Basic service build-
ing block

A basic service building block provides basic services (e.g., log-
ging, management of reference data).

Behavioral science 
understanding

This understanding places the person at the center of the con-
sideration by perceiving the person as a social being striving for 
recognition and appreciation rather than as a pure production 
factor.

Black box Black box is a form of the information hiding principle. It states 
that the internal details of a system building block should not be 
visible for the clients.

Building block level In macro-architecture, the building block level is the level of 
architecturally significant system building blocks. In contrast, in 
microarchitecture, the building block level contains architectur-
ally insignificant system building blocks.

Business case A business case is similar to a system vision. It generally high-
lights the economic benefits more clearly than a system vision. 
The term is sometimes used instead of system vision, but there 
is no great difference between the two terms.

Business oppor-
tunity

A business opportunity is a benefit for an organization that is to 
be achieved through the realization of the system. It is a signifi-
cant part of a system vision. The business opportunities include 
the benefit of the system and the problems that the system 
solves. The benefit is made tangible both qualitatively and quan-
titatively—quantitatively in the form of business key figures.

	

Glossary



413

Term (synonym) Explanation

Centralization Centralization designates the location of a concern in exactly one 
system building block. In most cases, there must be a trade-off 
between centralization and decentralization.

Change Request A change request defines a change to an IT system or its specifi-
cations due to a defect or enhancement.

Checklist A checklist consists of a list of detailed questions that can be used 
to assess the various aspects of an architecture. Checklists can 
be used for various assessment methods.

Circular depen-
dencies, avoid-
ance of

The avoidance of circular dependencies between the building 
blocks of a system is an important sub-principle of loose coupling. 
It states, that the graph which results from the dependencies 
between building blocks must be acyclic.

Client/Server ar-
chitecture

The classic client/server model is based on a two-tier architec-
ture that partitions tasks or workloads between the providers of 
a resource or service (servers), and service requesters (clients). 
A central question in the design of a client/server architecture is 
how to split up the functionality between the client and the server. 
This question is known as the decision between a rich client and 
a thin client.

Closed system A closed system does not exchange information with its environ-
ment. It does, however, have an energetic relationship with its 
environment.

Cloud Computing Cloud computing is a model for enabling convenient, on-demand 
network access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and ser-
vices) that can be rapidly provisioned and released with minimal 
management effort or service provider interaction. Different cloud 
deployment types exist, i.e. private, public and hybrid clouds.

Command A command is a special type of service offered via an interface. It 
changes the state of a building block.

Common Object 
Request Broker 
Architecture 
(CORBA)

The Common Object Request Broker Architecture is a standard 
specified by the Object Management Group (OMG). It defines 
interoperability between software components written in multiple 
computer languages and running on multiple computers.

Communicating 
the architecture

The objective of the architecture activity “communicating the 
architecture” is to convey the best possible understanding of the 
architecture and the architecture decisions to the individual stake-
holders (e.g., project leads, developers, users, customers).

Communication 
middleware

A communication middleware is a central technology that con-
nects many distributed systems (see Middleware). It is a platform 
that offers systems services for all aspects of the distribution, 
such as distributed calls, efficient access to the network, transac-
tions, and much more.

Completer Completers investigate content and are good at analyzing. How-
ever, they are not good at bringing in their own ideas and motivat-
ing other people.

Glossary



414

Term (synonym) Explanation

Component A component (from the Latin componere: to compound) is a 
coarse-grained system building block with the following features: 
self-contained, used via defined interfaces (functional and techni-
cal), reusable in various contexts, has meta-information. A com-
ponent consists of finer detailed building blocks (e.g., classes, 
interfaces) or other components and may be part of a component, 
a layer, or a subsystem.

Component orien-
tation

Component orientation can be considered as the evolution of ob-
ject orientation that looks at the development of the components 
of a system.

Component plat-
form

A component platform is a runtime environment (container) for 
components. It is based on the separation of technical and func-
tional concerns. The component platform takes over the techni-
cal concerns. Examples of technical concerns in the enterprise 
environment are distribution, security, persistence, transactions, 
concurrency, and resource management.

Concept see Basic architecture concepts.

Conceptual view The conceptual view describes functional aspects of a system 
without reference to technical details.

Concern A concern is a matter that affects or touches one; a subject that 
excites one’s interest, attention or care. A concern can also be a 
requirement, a question, a worry, an objective, or a wish.

Concrete syntax The concrete syntax provides an instrument for the textual or 
graphical notation of models.

Consistency The principle of consistency states that an architecture should 
follow a standard set of rules from beginning to end: naming con-
vention, communication of the system building blocks, structure of 
the interfaces, structure of the documentation, etc.

Constraint see Indirect non-functional requirement.

Convention over 
Configuration

The Convention over Configuration Principle states that standard 
assumptions are made and only necessary adjustments have to 
be configured.

Conway’s law Conway’s law states that organizations that design systems are 
constrained to produce systems whose structures are copies of 
the communication structures of these organizations.

CORBA compo-
nent model

The CORBA component model is a standard specified by the 
Object Management Group (OMG). It defines a component model 
and is based on the OMG’s CORBA standard.

Creating the sys-
tem vision

The creation of the system vision is the architecture activity that 
ensures that the system vision is feasible from an architecture 
perspective.

Crosscutting con-
cern

A crosscutting concern is a technical aspect (e.g., logging) that 
is orthogonal to functional aspects. Crosscutting concerns are 
spread across functional building blocks.

Data architecture Data architecture encompasses the data-oriented aspects of a 
system. The design of logical or physical data models, the selec-
tion of persistence mechanisms (e.g., database or file system), 
the configuration of a database, or the design of a data ware-
house are possible activities of this discipline.

Glossary
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Data flow archi-
tecture

A data flow architecture is a type of architecture that is particularly 
useful for splitting a complex task into a series of simple tasks 
and then map it as a combination of independent calls (e.g., pipes 
and filters).

Data transfer ob-
ject (DTO)

A data transfer object is an object that minimizes the number of 
client/server interactions necessary. It is also intended to decou-
ple clients from the concrete representation of entity objects.

Data view A data view describes aspects of a system with regard to saving, 
manipulating, managing, and distributing data.

Database A database is a system intended to organize, store, and retrieve 
large amounts of data easily.

Database as a 
Service (DaaS)

Database as a Service (DaaS) provides higher abstraction level 
access to persistence systems than StaaS usually does.

Dataflow architec-
ture (Pipes and 
filters, Batch se-
quential)

A dataflow architecture structures an architecture along the data-
flows. It is particularly useful if a complex task can be split into 
a series of simple tasks and then mapped as a combination of 
independent calls.

Decentralization Decentralization is the term for the distribution of a concern to 
several system building blocks. In most cases, there must be a 
trade-off between centralization and decentralization.

Defect A defect characterizes an error or fault in an IT system or its 
specifications.

Dependency Injec-
tion

Dependency Injection is an application of the Inversion of Control 
Principle. It transfers the responsibility for the creation and linking 
of building blocks to an externally configurable framework in order 
to reduce the coupling to the environment of the building block.

Dependency Inver-
sion

Dependency Inversion is an application of the Hollywood Principle 
or loose coupling: one building block defines an interface with 
which it works and other building blocks realize the interface.

Deployment view 
(execution view)

The deployment view describes the physical deployment of sys-
tem building blocks at runtime.

Design Design encompasses the process for defining the architecture, 
building blocks, interfaces, and other properties of a system 
or a system building block. The design is also the result of this 
process. Depending on the level of detail of the system building 
blocks, the design differentiates between macro-architecture and 
micro-architecture.

Design for change The principle of design for change states that architecture should 
be designed such that probable changes to a software system 
can be implemented easily.

Designing the 
architecture

The design of the architecture is the architecture activity in which 
the architecturally significant structures of a system are created. 
Here specific means are selected from a broad range of architec-
ture means and decisions are taken.

Development 
process

A development process structures individual disciplines, activities, 
and tasks and puts them into chronological order.
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Development time 
requirement

A development time requirement is a quality or constraint that 
must be specifically considered during the development of a sys-
tem.

Dialog building 
block

A dialog building block corresponds to the view building block 
within the model-view-controller architecture pattern.

Dialog control 
building block

A dialog control building block corresponds to the controller build-
ing block within the model-view-controller architecture pattern. It 
uses services from application building blocks.

Digital Identity Digital identity is an IT system level representation of a person, 
a process, a service, or other resource. Digital identities are in-
troduced so that a single person can be recognized as a singular 
entity across multiple IT systems.

Direct non-func-
tional requirement 
(quality, quality 
attribute)

A direct non-functional requirement is also known as a quality 
or quality attribute since it reflects the qualitative nature of the 
functional requirements fulfilled by organizations, IT systems, or 
building blocks. For example, the desire of customers to receive 
an order within 24 hours is a non-functional requirement that an 
organization must satisfy.

Discipline see Software development discipline.

Domain A domain is a restricted area of knowledge or interest.

Domain building 
block

A domain building block encapsulates domain logic and makes it 
available in a controlled manner.

Domain logic Domain logic represents functionality that can be reused across 
application boundaries. It is therefore application-independent 
and operates purely on domain-specific abstractions.

Domain-specific 
language (DSL)

A domain-specific language is a special modeling language. It can 
be used to describe the relevant concepts of a specific, techni-
cally motivated domain precisely.

Don’t Repeat Your-
self (DRY)

The Don't Repeat Yourself (DRY) Principle states that redundancy 
must be avoided whenever possible.

Dynamic language A dynamic language is a language at a high level of abstraction 
that executes many tasks during runtime that other languages 
execute at compile time.

Emergence Emergence states that a system has properties that differentiate it 
from its system building blocks. Accordingly, no one system build-
ing block holds these properties alone. They arise from the inter-
action of the individual system building blocks. Hence, a system is 
more than the sum of its parts.

Enhancement An enhancement characterizes the need for additional functional-
ity of an IT system or the need to enhance the IT system’s quality 
attributes or specifications.

Enterprise archi-
tecture

Enterprise architecture is a discipline that designs an enterprise-
wide IT architecture taking into account business strategies, busi-
ness processes, and business data.

Entity object An entity object is an abstraction that has its own identity within a 
domain. Typical examples are customer, order, and product.
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Evaluator Evaluators are disciplined and hard-working people who ap-
proach problem solutions pragmatically. They cannot, however, 
adapt to changing situations and accept unverified ideas.

Execution environ-
ment

An execution environment is a software building block of a 
platform that provides services to software building blocks of a 
system. For example, a JEE application server offers execution 
environments for JEE components such as Java Servlets or En-
terprise JavaBeans.

Explicit interface An explicit interface is detached from the actual system building 
block. The concept of the explicit interface is implemented, for 
example, by technologies such as Enterprise JavaBeans or web 
services.

Extensibility Extensibility is a development time requirement that states that it 
must be possible to extend a system with new functionality. The 
lower the coupling between system building blocks, the better the 
extensibility of the system.

eXtensible Markup 
Language (XML)

The eXtensible Markup Language is a standard defined by the 
World Wide Web Consortium (W3C) in order to define and repre-
sent structured data by means of textual documents. In addition 
to the core standard, there is a broad set of related standards, 
tools, complementary languages and typical utilization scenarios 
around the processing (e.g., editing, transforming etc.) of XML 
documents.

Extreme Program-
ming (XP)

Extreme Programming is an agile software development method 
that focuses on the flexible and timely implementation of require-
ments and prioritizes working source code over documentation.

Facade A facade is a building block that protects an entire subsystem 
against direct access from clients. It provides a common interface 
for the building blocks of a subsystem and this hides the subsys-
tems building blocks from clients.

Feature Driven 
Development 
(FDD)

Feature Driven Development is an agile method that covers a 
collection of proven practices known across industry. It focuses 
on the timely implementation of the features required in short 
iterations.

Formal review A formal review is performed by a group of stakeholders. They 
analyze the architecture documentation systematically, comment 
on it formally, and where necessary, decide on actions for rectify-
ing deficiencies.

Forming stage The forming stage is the first stage of group development ac-
cording to Tuckman. The members of the group get to know each 
other and can assess each other. Individual group members can 
be classified at this stage. The group also distinguishes itself from 
its environment.

Forward engineer-
ing

Forward engineering covers primarily situations in which you 
develop a new system.

Function (query) A function is a special type of service offered via an interface. It 
has no side-effects and is easier to test and carries less risk than 
a command. It is also known as an idempotent function.
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Functional archi-
tecture

A functional architecture defines functional building blocks of a 
system, which are required to satisfy functional requirements, on 
a technology-independent level.

Functional building 
block

A functional building block deals with the key abstractions of a 
domain and the associated functional requirements.

Functional building 
block requirement

A functional building block requirement is a functional property 
that a system building block must possess for the system to be 
able to fulfill its requirements.

Functional model A functional model defines the concepts, their responsibilities and 
relationships of a functional domain. For example, the functional 
model for the domain customer defines all concepts related to a 
customer such as customer, customer address, customer rela-
tionships, customer preferences, etc.

Functional orga-
nizational require-
ment

A functional organizational requirement is a functional require-
ment placed on organizations by, for example, their customers, 
employees, business partners, or by authorities.

Functional require-
ment

A functional requirement defines required functionality.

Generative cre-
ation of a system 
building block

Generative creation of a system building block automates the 
recurring creation of building blocks using generators.

Generative pro-
gramming

Generative programming is the generative creation of system 
building blocks. The objective of generative programming is to 
increase the level of automation in the creation of software.

Group A group is a special form of an organization. It interacts with its 
environment, pursues a task, has a structure, and develops a 
culture.

High cohesion Cohesion is a measurement of the semantic dependencies within 
a building block. The principle of high cohesion states that these 
dependencies should be as high as possible.

Holism Holism considers a system in its entirety. It concentrates on the 
emergent system properties that arise from the interaction of the 
system building blocks.

Hollywood Prin-
ciple

see Inversion of Control.

HOW dimension 
(architecture 
method)

The HOW dimension contains the most important architecture 
activities that an architect performs during his work.

Hygiene factory Work dissatisfaction is influenced by hygiene factors, such as the 
relationship to managers and peers as well as politics. If these 
factors are perceived as positive, they can reduce work dissatis-
faction, but do not increase work satisfaction

Identity and 
Access Manage-
ment (IAM)

Identity Management (IdM) comprises all technical as well as 
organizational means which underpin the administration, attesta-
tion, and provisioning of identity-related user attributes. Access 
Management (AM) supplements entitlement-management as well 
as access control enforcement.

Implementation 
infrastructure

The implementation infrastructure encompasses architecture 
means (development environment, programming language, etc.) 
for the implementation of an architecture.
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Implementation 
structure

The implementation structure defines how the building blocks of 
the logical view of a system are mapped on the building blocks of 
the implementation layer.

Implementation 
view (development 
view)

The implementation view describes aspects of a system with 
regard to implementation, build, configuration, test, delivery, and 
maintenance.

Implementer Implementers are conscientious people who complete tasks thor-
oughly and carefully. They sometimes tend to be perfectionists 
and can allow themselves to be disturbed by trivialities.

Implementing the 
architecture

Implementing the architecture is the architecture activity in which 
the architecture designed is implemented. On one hand the 
implementation infrastructure is established, and on the other, 
conformity with the architecture is governed.

Implicit interface An implicit interface is a direct part of a system building block. A 
module written in the programming language C is an example of a 
system building block with an implicit interface.

Increment An increment is a result that arises at the end of an iteration. It is 
usually a piece of software that is ready-to-run.

Incrementality The incrementality principle states that a first architecture design, 
as well as changes to an existing architecture, should be imple-
mented incrementally as far as possible.

Indirect non-func-
tional requirement 
(constraint)

An indirect non-functional requirement has an effect on the way 
the required functionalities and qualities are realized. It represents 
specifications or facts that must be adhered to or taken into ac-
count.

Information as a 
Service (INFaaS)

Information as a Service (INFaaS) refers to the consumption of in-
formation, situated anywhere in the cloud, through a well-defined 
information interface.

Information hiding The information hiding principle states that a client can access 
only those parts of an artefact (e.g., system building block) that 
are really necessary for the client’s task. All remaining parts are 
hidden from the client.

Infrastructure as a 
Service (IaaS)

Infrastructure as a Service (i.e., IaaS) primarily relates to services 
of the type computing power, such as servers and server farms. 
Beyond this specific use, the term is also often used as an um-
brella term to refer to the remaining set of service types in this list 
(i.e., STaaS and DaaS).

Integration archi-
tecture

Integration architecture is concerned with the planning and real-
ization of integrative solutions. Its objective is connecting multiple 
systems of one or more enterprises.

Integration as a 
Service (INTaaS)

Integration as a Service (INTaaS) refers to cloud-based offers 
encapsulating complete integration stacks that support interfacing 
with applications, semantic mediation, and flow control functional-
ity.

Integration building 
block

An integration building block encapsulates integration logic (e.g., 
database, SAP, LDAP) and makes it available.  

Integration logic Integration logic embodies logic for connecting enterprise sys-
tems. A simple example is logic for accessing databases.
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Interface An interface defines a contract between the system building block 
that offers a functionality and the system building blocks that 
use the functionality. It also defines the operations offered by the 
system building block.

Interface Segrega-
tion Principle

The Interface Segregation Principle states that a client should 
never be based on an interface that it does not use. In particular, 
this also means that you should segregate complex interfaces 
that multiple client types are based on into multiple individual 
interfaces.

Intrusion protec-
tion

Intrusion protection is the set of all measures that guarantee 
operating integrity and vitality of IT systems, including an effective 
defense against threats such as denial-of-service (DoS) attacks.

Inversion of Con-
trol (Hollywood 
Principle)

The Inversion of Control Principle states, that the relationships of 
building blocks should follow the so-called Hollywood Principle: 
“don’t call us, we’ll call you”. This means, that application (client) 
building blocks hand over the control flow to framework (server) 
building blocks which call back the client building blocks when-
ever it is necessary.

IT standard and 
guideline

An IT standard or guideline is a specification across an organiza-
tion that IT systems being developed within an organization must 
satisfy.

IT system (system) A system is a unit that consists of integrated software and hard-
ware building blocks for the purpose of fulfilling a functional objec-
tive. To achieve this objective, it communicates with its environ-
ment and must take account of the constraints predetermined by 
the environment.

Iteration An iteration is an individual development step within an iterative 
and incremental development process. All of the typical activities 
of software development, such as analysis, design, etc. are ex-
ecuted within an iteration.

Java Enterprise 
Edition (JEE)

JEE is an Oracle/SUN component platform.

Key abstraction A key abstraction represents a significant abstraction of a func-
tional domain that the system under construction must handle. 
Examples are abstractions of objects, concepts, locations, or 
persons.

Language support 
for abstractions

The principle of language support for abstractions states that 
architectural abstractions, such as components or interfaces, 
should have language support in both the design language and 
the programming language.

Law of Demeter The Law of Demeter states that a system building block should 
only use closely related building blocks.

Layered architec-
ture

A layered architecture structures a system into layers logically.

Layers Layers is an architecture pattern that structures the software 
building blocks of a system logically using layers. Software build-
ing blocks of a layer are cohesive and can access software build-
ing blocks of a directly subsequent lower layer. Layers are used to 
develop the logical view.
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Liskov Substitution 
Principle

The Liskov Substitution Principle states that subtypes must 
behave exactly as their corresponding basetype. In this way a 
basetype can be replaced by one of its subtypes without affecting 
depend clients.

Loose coupling Loose coupling is a measurement for the degree of coupling of 
building blocks. The principle of loose coupling states that the 
coupling between building blocks should be as weak as possible.

Maintainability Maintainability is a development time requirement that states that 
errors in a system can be corrected with appropriate efforts. The 
easier it is to correct an error, the more maintainable the system.

Maintaining the 
architecture

The maintenance of the architecture is the architecture activity in 
which the architecture is evolved during the maintenance phase 
of the system lifecycle. Defects are fixed and enhancements are 
added.

Maintenance Maintenance of software systems deals with changes to the 
system after it has been delivered. This covers, for example, the 
correction of errors, the improvement of quality attributes such 
as performance, and the evolution or further development of the 
system.

Message-oriented 
middleware

Message-oriented middleware is a widespread type of middle-
ware system (see Communication middleware) that uses asyn-
chronous messages as a central communication means.

Metamodel A metamodel defines the abstract syntax (that is, model elements 
and their relationships) of the set of all models conforming to this 
metamodel. In a broader sense, it may also define the semantics 
and the concrete syntax (representation), e.g., textual or graphi-
cal notation. Models are also known as instances of the related 
metamodel.

Meta-object facility The meta-object facility (MOF) is the basis of the OMG modeling 
architecture. The MOF specification defines an abstract syntax 
and a framework for the construction and handling of technology-
independent metamodels, referred to as MOF-based metamod-
els.

Meta-object pro-
tocol

A meta-object protocol (MOP) is a comfortable programming 
interface that enables a program to access itself.

Metaprogramming The idea of metaprogramming is to overcome the classical sepa-
ration of programs and their data. In metaprogramming, programs 
are considered to be data themselves. Thus, programs can ma-
nipulate or at least reflect themselves. The goal is to achieve a 
higher level of flexibility and control in software systems by means 
of an additional abstraction layer.

Method In this book, a method represents the aggregation of method 
content and development process.

Method content 
(content)

Method content is a defined procedure instruction for executing a 
specific software development task or activity.

Micro-architecture A micro-architecture details a software architecture in which 
non-fundamental system building blocks and their structure are 
defined.
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Middleware Middleware comprises distribution aspects of the architecture of 
a software system. It offers applications services for all aspects 
of the distribution, such as distributed calls, efficient access to the 
network, transactions, and much more.

Model A models is an abstraction of the original. It doesn’t consider all 
details, only those that are useful to the stakeholder of the model 
for his or her purposes.

Model-driven soft-
ware development 
(MDSD, MDD, 
MDE)

Model-driven software development does not use models solely 
for documentation purposes. It treats them as central artefacts of 
a ready-to-run system. It is a generic term for technologies that 
create ready-to-run software from models automatically.

Modeling language Modeling languages are used to specify systems. A modeling lan-
guage is the aggregation of concrete syntax, abstract syntax, and 
static and dynamic semantics. The abstract syntax is also known 
as the metamodel. The terms “well-formedness criteria” and “con-
straints” are also used as synonyms for static semantics.

Moderator Moderators are self-confident people with few prejudices and a 
calm nature. They can integrate other people into the team activ-
ity easily and have a strong perception. However, they do not 
have the usual level of creativity.

Modularity The modularity principle states that systems should consist of 
well-defined system building blocks with clearly distinguishable 
functional responsibilities.

Motivator Motivators are, for example, work itself, responsibility, and recog-
nition. These increase work satisfaction, but do not reduce work 
dissatisfaction.

Network architec-
ture

Network architecture is concerned with the network infrastructure 
of systems. The main tasks of this discipline are the planning and 
design of the functions, services, building blocks, and protocols of 
a network.

New Generation 
Operations Sys-
tems and Software 
(NGOSS) initiative

The New Generation Operations Systems and Software 
(NGOSS) initiative from TeleManagement Forum defines a com-
prehensive reference architecture tailored to the telecommunica-
tions industry.

Node A node is a system resource, such as a physical processing unit, 
an execution environment, or an application server.

Non-functional 
building block 
requirement

A non-functional building block requirement expresses the stan-
dard of quality that the environment demands in the fulfillment of 
the functional building block requirements.

Non-functional 
organizational 
requirement

A non-functional organizational requirement expresses the stan-
dard of quality that the environment demands in the fulfillment 
of the functional organizational requirements. Delivery within 24 
hours or a two year guarantee time are examples of non-function-
al organizational requirements.

Non-functional 
requirement

A non-functional requirement reflects an expectation and necessi-
ty that stakeholders consider important in addition to the function-
al requirements. A non-functional requirement always describes a 
quality aspect demanded (e.g., performance, extensibility) in the 
implementation of functional requirements.
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Non-functional 
system require-
ment

A non-functional system requirement expresses the standard 
of quality that the environment demands in the fulfillment of the 
functional system requirements. Typical non-functional system 
requirements are performance, availability, extensibility, and plat-
form independence.

Non-repudiation Non-repudiation is the ability to prove security-related events 
beyond doubt, i.e., in a court of law if necessary.

Norming stage The norming stage is the third stage of group development ac-
cording to Tuckman. The members of the group identify them-
selves with the roles worked out and agree on rules for working 
together.

n-tier architecture A n-tier architecture is used to structure a system logically in n 
tiers, where the variable n represents the number of tiers. Two-tier 
and three-tier architectures are examples of n-tier architecture 
frequently encountered.

Object orientation Object orientation is based on the core idea of encapsulating data 
and the related functionality. This means that object orientation 
is a further development of the procedural (structured) concept. 
Today, object orientation is a prevalent architecture concept.

Object-oriented 
remote procedure 
call (OORPC) 
system

An OORPC system is a widespread type of middleware system 
(see Communication middleware) based on object-oriented, dis-
tributed RPC calls.

Object-relational 
mapping (ORM)

Object-relational mapping enables the integration of an object-ori-
ented application with the relational paradigm. ORM also provides 
an object-oriented database access layer to relational databases 
for object-oriented application logic. Object-relational mappers, 
such as Hibernate, are an important technology in this area.

Open system An open system is in touch with and exchanges information with 
its environment. The system has to interact with its environment 
to be able to exist.

Open/closed prin-
ciple

The open/closed principle states that system building blocks 
should be open for changes but closed for the use of their internal 
details by other system building blocks.

Organization An organization is a social entity that permanently follows an 
objective and has a formal structure that enables the activities of 
the member to be focused on the objective followed.

Organizational 
constraint

An organizational constraint is a specification, such as budget 
and time-to-market. Another example is the restrictions that the 
knowledge and experience within the team place on the design of 
the architecture.

Organizational 
culture (culture)

An organizational culture defines the norms and thus the free-
dom for the design of the architecture. It can be expressed in the 
specification of very clear standards and guidelines. The culture 
of an organization also defines how people within the organization 
deal with one another and what expectations the organization has 
of them.

Organizational 
level

The organizational level encompasses architecturally significant 
elements at the abstraction level of organizations.
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Pattern See Architecture pattern.

Pattern language A pattern language is a collection of semantically related patterns 
that offer solution principles for problems in a specific context.

Peer-to-peer archi-
tecture

A peer-to-peer architecture is a basic architecture that uses a 
series of equal peers for (distributed) communication.

Performance Performance is a runtime requirement and describes the capabil-
ity of a system to react to external events in a certain timeframe.

Performing stage The performing stage is the fourth stage of group development 
according to Tuckman. The team spirit that has developed results 
in goal-oriented, collaborative cooperation. At this point, the group 
has established itself and achieved its potential.

Phase A Phase is a certain time segment in a development process, in 
which certain development activities are carried out. For example, 
during the construction phase of the Unified Software Develop-
ment Process (USDP) the IT system is being implemented and 
tested.

Piecemeal growth The idea of the principle of piecemeal growth is to let an architec-
ture grow step-by-step. After every step there is an assessment 
that entails a decision about what to do next. This means that 
there is little or no planning in advance.

Plant Plants are people who take unconventional approaches and can 
contribute to solutions based on their knowledge and powers of 
imagination. However, they also tend to overlook regulations and 
have their head in the clouds.

Platform A platform is a system that can consist of software and, if ap-
plicable, hardware building blocks. It executes software building 
blocks of a system.

Platform architec-
ture

A platform architecture defines the platform building blocks and 
their structure.

Platform as a 
Service (PaaS)

Platform as a Service (PaaS) offers readily integrated and coher-
ently set-up application and development platforms. Examples of 
PaaS offerings are pre-fabricated JEE or .Net environments.

Platform indepen-
dence (portability)

Platform independence is a development time requirement and 
requires that a system can be operated on different platforms or 
can be ported to different platforms.

Polymorphism Polymorphism is the ability of objects belonging to different class-
es but to the same type to respond to method, field, or property 
calls of the same name, each one according to an appropriate 
type-specific behavior. Polymorphism enables “connector com-
patibility” based on interfaces. How the connector is realized is 
irrelevant for the clients.

Presentation A presentation can be used as an informal means of review. In a 
presentation, aspects of an architecture are presented to stake-
holders informally. Stakeholders can give immediate feedback to 
the aspects presented.

Presentation logic Presentation logic is the logic used for communication with the 
user.

Principle see Architecture principle.
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Procedural ap-
proach

A Procedural approach is a classic approach for structuring archi-
tectures using procedures, which are also called  sub-program, 
function, routine, or operation.

Process view The process view describes concurrency aspects of the system 
building blocks.

Product line archi-
tecture

A product line architecture is a special form of reference archi-
tecture that defines the common architecture of multiple similar 
software products.

Prototyping The prototyping principle states that you should develop simple 
prototypes first before developing a product in order to get to 
know the problem better.

Publish/subscribe 
architecture

A publish/subscribe architecture is a basic architecture in which 
calls are not sent to the communication participants directly but 
are forwarded by an intermediary. In a publish/subscribe architec-
ture, communication is typically via asynchronous events.

Quality see Direct non-functional requirement.

Quality attribute see Direct non-functional requirement.

Quality attribute 
scenario

A quality attribute scenario makes non-functional requirements 
understandable by describing them according to a specific 
scheme. Specifically, the focus is on measurability. Quality at-
tribute scenarios can be divided into scenario types. Examples 
are: availability scenarios, changeability scenarios, performance 
scenarios etc.

Reductionism 
(decomposition)

Reductionism investigates system building blocks separately. This 
view enables concrete statements to be made about the behavior 
and function of individual system building blocks.

Reengineering Reengineering is an important part of software maintenance and 
is concerned with reverse engineering, restructuring, software 
evolution, and wrapping.

Reengineering tool A reengineering tool is a piece of software used to perform reen-
gineering activities.

Reference archi-
tecture

A reference architecture combines general architecture knowl-
edge and general experience with specific requirements for a 
coherent architectural solution for a specific problem domain.

Reference model A reference model contains the specific characteristics of the 
problem domain addressed (in the context of a reference archi-
tecture).

Reference Model 
for Open Distrib-
uted Processing 
(RM-ODP)

RM-ODP is an ISO standard architecture framework for open, 
distributed systems. In addition to an architecture view model, it 
includes an object model and a collection of function definitions.

Reference to use 
cases

The reference to use cases principle states that an architecture 
should not be created randomly; rather, its design should be 
based on the relevant use cases. This ensures that an architec-
ture does not exceed the aim of the desired system.

Reflection Reflection enables access to meta-information (e.g., type, fea-
tures) of a building block.
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Remote procedure 
call (RPC) system

An RPC system is a widespread type of middleware system (see 
Communication middleware) that uses distributed procedure calls 
as a central abstraction.

Repository A repository is a data storage unit. Its main task is to enable dif-
ferent building blocks to access data simultaneously.

Requirement A requirement is a system capability that the user needs to solve 
a problem or achieve an objective. Alternatively, a requirement is 
a capability that the system must possess in order to fulfill a con-
tract, standard, specification, or other formal document.

Requirement pat-
tern

A requirement pattern is a methodological tool that enables the 
systematic development of requirements.

Requirements 
catalog

A requirements catalog contains the set of requirements placed 
on a system. A catalog must be complete and consistent.

Requirements 
view

The requirements view describes the requirements a system has 
to fulfill and their context (business opportunities, problem de-
scription Stakeholders and business processes).

Resource investi-
gator

Resource investigators seek out challenges and are extroverted 
and communicative. Their strengths lie in building up personal 
contacts and researching new topics. In contrast, they tend to 
lose interest in a topic when it becomes routine.

Restructuring Restructuring covers all activities for changing the structure of a 
system.

Reusability Reusability is a development requirement that states that system 
building blocks should be designed and implemented such that 
they can be used or reused in other contexts.

Reverse engineer-
ing

Reverse engineering covers activities for regaining lost informa-
tion about existing software systems.

Runtime require-
ment

A runtime requirement contains expectations with regard to the 
behavior of a system at runtime.

Scalability Scalability is a development time requirement that states that a 
system must be able to cope with increasing loads. There is a 
general differentiation between vertical and horizontal scalability. 
In the case of vertical scalability, for example, a server is replaced 
with a more powerful server. With horizontal scalability, the load is 
distributed across several servers.

Scenario-based 
method

A scenario-based method is a method of assessment that ad-
dresses the problem of the scope for interpretation with regard to 
non-functional requirements. It works out concrete scenarios that 
make a non-functional requirement more specific. The architec-
ture is assessed based on the scenarios.

Scientific manage-
ment understand-
ing (Taylorism)

The scientific management understanding has its roots in early 
industrialization. It is based on the principle of the perfect division 
of labor. The person as an individual is perceived as a production 
factor.

Scripting language In the original sense, a scripting language is a programming lan-
guage intended to control the software systems. Today, however, 
scripting languages are used for all other possible purposes (e.g., 
dynamic websites) as languages at a higher abstraction level.
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Scrum Scrum is an agile method that encompasses a collection of meet-
ings, artefacts, roles, values, and basic convictions. Here, the 
work is organized and the means and methods selected to a 
great extent independently by the project members.

Security Security is a non-functional requirement with a pervasive nature. 
It covers confidentiality, authentication, integrity, privacy, non-
repudiation, and intrusion protection.

Security architec-
ture

As a discipline, security architecture focuses on guaranteeing se-
curity aspects such as identity and authorization checks and the 
verifiability and non-repudiation of security-relevant operations.

As a basic architecture, security architecture refers to an applica-
tion that is to be protected and an underlying security infrastruc-
ture.

Security Infrastruc-
ture

Security Infrastructure is an umbrella term which spans all 
security-related components underpinning the planning, design-
ing, development, as well as operation of IT systems. Samples of 
security infrastructure are firewalls, intrusion protection systems, 
as well as IT systems, which offer the authentication of users.

Self-documenta-
tion

The self-documentation principle states that the architect or de-
veloper of a system building block should try to make every item 
of information about the system building block part of the system 
building block itself.

Semantic Semantic is the study of meaning. It typically focuses on the rela-
tion between signifiers (e.g., words) of a language and what they 
stand for. In addition to the abstract and concrete syntax, as well 
as the static semantics, every language must also have seman-
tics that precisely define the meaning of the model.

Separation of con-
cerns principle

The separation of concerns principle states that different aspects 
of a problem (e.g., logging and exceptions) must be separated 
and each individual problem part treated separately.

Separation of 
interface and 
implementation

The separation of interface and implementation principle states 
that interfaces should be described separately from the imple-
mentations so that the client can rely on the interface without 
knowing any implementation details.

Service (platform 
service)

A service is a software building block that provides basic func-
tionality that is usually independent of any business functionality 
realized by the system. In other words, a service provides func-
tionality for satisfying non-functional requirements.

A service can also be functionality provided via the interface of a 
building block.

Service-oriented 
architecture (SOA)

A service-oriented architecture is a basic architecture that rep-
resents software building blocks as reusable, distributed, and 
loosely coupled services that provide standardized access.

Shaper Shapers have a dynamic personality with a strong will and are 
capable of pushing through decisions. They are, however, excit-
able and have a tendency to provoke.

Shared repository 
architecture

A shared repository architecture stipulates a system building 
block that serves as a central data storage unit.
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Simulation A simulation provides answers to specific questions, such as the 
behavior of the system under load, without the need to implement 
the system itself. 

Single Sign-On 
(SSO)

SSO is an attribute of authentication and authorization towards 
multiple independent IT systems. SSO allows users to log into the 
SSO system once and gain access to all connected IT systems, 
transparently (i.e. without being prompted to log in again).

Skeleton system The structure of a skeleton system already corresponds to the 
architecture of the final system. However, the individual building 
blocks do not yet provide a complete implementation of the func-
tionality. They only provide the functionality required to reflect a 
clearly delineated use case. A skeleton system is evolved into the 
complete system by adding functionality (use cases) incremen-
tally.

Software architec-
ture (application 
architecture, mac-
ro-architecture, 
high-level design)

Software architecturetotal = Software architecturestructure + Software 
architecturediscipline 

Software architecturestructure: The software architecture of a sys-
tem is the structure or structures of the system, which comprise 
software building blocks, the externally visible properties of those 
building blocks, and the relationship among them and with their 
environment.

Software architecturediscipline: As a discipline, software architecture 
covers the architecture activities and the related decisions about 
the design and implementation of a software architecture.

Software as a 
Service (SaaS)

Software as a Service (SaaS) is a very broad category of services 
whose only common feature is that the actual software is deliv-
ered via the web and usually accessed through a web browser by 
an end user. Examples of software offerings that already exist in 
the cloud are e-mail, calendar, document sharing, or web confer-
encing. Other examples in the area of business domain-specific 
software are customer relationship management (CRM) or enter-
prise resource planning (ERP) types of applications.

Software develop-
ment discipline

A software development discipline is a set of related activities 
producing a set of deliverables required by the subsequent disci-
pline. Examples of software development disciplines are business 
modeling, requirements gathering and analysis.

Software evolution Software evolution is the implementation of changes to the soft-
ware system.

Software reengi-
neering

Software reengineering is concerned with the following important 
tasks: reverse engineering, restructuring, software evolution, and 
wrapping.

Spiral model The spiral model is a refinement of the waterfall model that 
tries to resolve the weaknesses of the latter. Instead of running 
through the specified disciplines sequentially just once, a software 
development plan is subdivided into several cycles.

Stakeholder A stakeholder is a natural or legal person or organization with a 
concern in a system to be realized. The stakeholders include the 
immediate users of a system, as well as clients, the state, opera-
tors, or departments affected, etc.
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Static semantic The static semantic define the well-formedness criteria of a lan-
guage that its syntax cannot define.

Storage as a Ser-
vice (STaaS)

Storage as a Service (STaaS) offers storage and disk systems on 
demand.

Storming stage The storming stage is the second stage of group development 
according to Tuckman. For each member of the group, this stage 
decides whether they want to remain in the group.

Strategic decision A strategic decision is long-term in nature and has a more com-
prehensive effect.

Structural break A structural break is an important architectural problem that des-
ignates the break between two paradigms. For example, there is 
a structural break between the object-oriented paradigm of pro-
gramming languages and the relational paradigm of databases.

Style see Architecture style.

Subsystem A subsystem encapsulates coherent functionality and is self-
contained. It therefore provides related functionality that satisfies 
some of the requirements placed on the system.

Superfluous com-
plexity, avoidance 
of

The avoidance of superfluous complexity is a principle that pro-
claims to keep architectures as easy as possible because un-
necessarily complex architectures are prone to error and are not 
sufficiently understood.

System architec-
ture

System architecturetotal = System architecturestructure + System 
architecturediscipline 

System architecturestructure: The system architecture of a system 
is the structure or structures of the system, which comprise build-
ing blocks (software and hardware building blocks), the externally 
visible properties of those building blocks, and the relationship 
among them and with their environment.

System architecturediscipline: As a discipline, system architecture 
covers the architecture activities and the related decisions about 
the design and implementation of a system architecture. 

System Boundary A system boundary separates a system from its environment. It 
allows to draw the line between what belongs to the system and 
what does not.

System building 
block (building 
block)

A system building block represents the abstract type of all con-
crete building blocks of a system. It can require other system 
building blocks and can have one or more interfaces or require 
one or more interfaces of other system building blocks.

System context A system context encompasses a graphical representation of the 
system and its environment, including its human actors and sur-
rounding systems. It also documents the interfaces between the 
system and its human actors and surrounding systems.

System level The system level encompasses architecturally significant ele-
ments at the abstraction level of IT systems.

System manage-
ment architecture

System management architecture primarily contains the opera-
tional aspects of systems. Within this discipline, the tasks of an 
architect are the design of operating strategies of centralized and 
decentralized system landscapes and the definition of service 
level agreements.
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System overview A system overview consists of a system context and an architec-
ture vision.

System vision A system vision evaluates the business usefulness of a system, 
names the stakeholders, defines the essential requirements, and 
contains a first system overview.

Systemic under-
standing

The systemic understanding considers the organization as a 
system with an objective and system limits, and which interacts 
with its environment.

Tactic see Architecture tactic.

Team worker Based on their social nature, team workers have the ability to 
approach people and cultivate team spirit. In crisis situations they 
tend to be indecisive.

Technical archi-
tecture

A technical architecture is dedicated primarily to the realization of 
non-functional requirements and defines technical building blocks.

Technical basis A technical basis includes the basic technical services required 
and the implementation of the framework used to realize the 
functional building blocks.

Technical building 
block

A technical building block encapsulates functionality for non-func-
tional aspects, such as logging, auditing, security, reference data, 
persistence, and transaction management. It uses services from 
the platform and abstracts them such that they can be used in a 
platform-independent way by functional building blocks.

Technology see Architecturally Relevant Technology.

The Open Group 
Architecture 
Framework 
(TOGAF)

The Open Group Architecture Framework (TOGAF) is a compre-
hensive and widely used architecture framework for developing 
enterprise architectures. TOGAF comprises a method (Architec-
ture Development Method (ADM)), a framework for defining the 
structural content of architecture (Architecture Content Frame-
work (ACF)), as well as tools, reference models, and taxonomies. 
Numerous best practices, principles, guidelines, and technologies 
also play a part.

Three-tier archi-
tecture

A three-tier architecture expands a two-tier architecture by intro-
ducing an intermediate tier between the client and the database 
server or Enterprise Information System.

Traceability The principle of traceability states that it should be possible to find 
the actual architectural structures, as they are implemented in the 
code or other artifacts.

Transaction pro-
cessing monitor 
(TP monitor)

A transaction processing monitor (TP monitor) is one of the oldest 
forms of middleware. It provides an infrastructure for developing, 
running, and controlling distributed transactions. Historically, a TP 
monitor is a widespread form of middleware system (see Commu-
nication middleware).

Two-tier architec-
ture

A two-tier architecture consists of two tiers. The classic client/
server model, for example, is based on a two-tier architecture.

UML infrastructure The UML infrastructure specifies the Core package which is the 
language core of UML.
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UML superstruc-
ture

The UML superstructure is based on the Core package of the 
UML infrastructure. It makes up the UML language definition 
generally referred to as UML metamodel. The UML superstructure 
specifies the abstract syntax of UML.

Understanding the 
requirements

Understanding the requirements is an architecture activity that 
deals with the identification, prioritization, and refinement of archi-
tecturally significant requirements. The conscious examination of 
non-functional requirements in particular is of great importance, 
since these are often either weakly formulated or not formulated 
at all.

Unified Method Ar-
chitecture (UMA)

The Unified Method Architecture is a special DSL used to specify 
methods.

Unified Modeling 
Language (UML)

The Unified Modeling Language is a generic modeling language 
specified by the Object Management Group (OMG). Its specifica-
tion is divided into several parts. The UML infrastructure forms the 
core of the Meta-Object Facility (MOF) and the UML superstruc-
ture. The UML superstructure specifies the UML metamodel. UML 
diagrams are an option for the notation of UML models.

Unified Software 
Development Pro-
cess (USDP)

The Unified Software Development Process is an iterative and 
incremental method that comprehensively defines artefacts, ac-
tivities, and roles.

Usability The usability of a system is a measure of the extent to which the 
user experiences the operation of the system as efficient, ergo-
nomic, and satisfactory.

Use case A use case is a description of a series of interaction between an 
actor and the IT system under design. Use cases are usually 
described according to a predefined description template. They 
can be described textually and graphically.

Value object A value object is defined solely by its attributes. It does not have 
its own identity and is immutable. For example, an amount of 
money can be represented by a value object of the type money.

View see Architecture view.

Viewpoint A viewpoint is the system-independent specification of a specific 
architecture view.

V-Modell The V-Modell is a method developed in Germany for projects for 
public authorities. Its name comes from the V-shaped presenta-
tion of the activities.

V-Modell XT The V-Modell XT is a further development of the V-Modell that 
permits the adjustment of the method to concrete project de-
mands.

Walkthrough A walkthrough is based on architecturally significant scenarios. 
In walkthroughs, these scenarios are played out to determine 
whether and how an architecture fulfills them. Affected stakehold-
ers take part in walkthroughs.

Waterfall model The waterfall model is a method that allows for the sequential 
and one-time processing of different software development dis-
ciplines. For example, it runs through the disciplines requirement 
gathering, analysis, design, and implementation one after the 
other.
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Web application 
server

A web application server is a server for web applications that 
creates dynamic HTML pages and executes the application logic 
between the client (browser) and downstream systems, such as 
a database.

Web service A web service is a technology that implements both the middle-
ware and the SOA basic architecture and focuses heavily on XML 
and Internet standards.

WHAT dimension 
(architectures and 
architecture disci-
plines)

The WHAT dimension contains architecture basics and defini-
tions. It therefore lays the basis for working as an architect.

WHERE dimen-
sion (architecture 
perspectives)

The WHERE dimension is an architecture dimension that cov-
ers the different levels at which architecture takes place and the 
views with which architecture can be considered.

WHO dimension 
(organizations and 
individuals)

The WHO dimension is an architecture dimension that deals with 
the role of the architect and the influence of individuals and orga-
nizations on architecture.

WHY dimension 
(architecture re-
quirements)

The WHY dimension is dedicated to the requirements placed on 
IT systems in general and architectures in particular.

WITH WHAT di-
mension (architec-
ture means)

The WITH WHAT dimension structures the different architecture 
means an architect can use in his activities.

Wrapping Wrapping gives a given system or a building block a new inter-
face but does not change the system itself. It is frequently used 
for version adjustments or other slight interface changes to soft-
ware building blocks.

XML see eXtensible Markup Language.

Zachman Frame-
work

The Zachman Framework is a domain-independent and technol-
ogy-independent architecture framework, originally developed at 
IBM, that focuses on enterprise architecture. It provides a power-
ful architecture view model that, in addition to views, defines view 
aspects and roles that are orthogonal to the views for each view.



Abbreviation Meaning
2PC Two-Phase Commit Protocol
3GL 3rd Generation Language
ABLE Architecture Based Languages and Environment
ACF Architecture Content Framework
ACID Atomicity, Consistency, Isolation, Durability
AC-MDSD Architecture Centric MDSD
ACME Architectural Description of Component-based Systems
ACS Ars Digita Community System
ADL Architecture Description Language
ADM Architecture Development Method
ADML Architecture Description Markup Language
Ajax Asynchronous JavaScript and XML
AM Access Management
ANSI American National Standards Institute
AOP Aspect Oriented Programming
API Application Programming Interface
ASCET Advanced Simulation and Control Engineering Tool
ASP Active Server Pages
ASP Application Service Provider
AST Abstract Syntax Tree
ATAM Architecture Tradeoff Analysis Method
B2B Business to Business
B2BAI Business to Business Application Integration
BAM Business Activity Monitoring
BC Before Christ
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BPM Business Process Management
BPM Business Process Modeling
BSS Business Support Systems
CAPEX Capital Expenditure
CASE Computer-Aided Software Engineering
CCM Corba Component Model
CCM Configuration &Change-Management
CCMS Configuration & Change-Management-System
CGI Common Gateway Interface
CICS Customer and Controller Systems

List of Abbreviations
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Abbreviation Meaning
CIO Chief Information Officer
CLOS Common Lisp Object System
CLR Common Language Runtime
CMS Content Management System
CMU Carnegie Mellon University
COBOL Common Business Oriented Language
COM Component Object Model
CORBA Common Object Request Broker Architecture
COTS Commercial off-the-shelf
CRM Customer Relationship Management
CRUD Create, Read, Update, Delete
CTO Chief Technology Officer or Chief Technical Officer
CVS Concurrent Versions System
CWM Common Warehouse Metamodel
DaaS Database as a Service
DCE Distributed Computing Environment
DCOM Distributed Component Object Model
DLL Dynamic Link Library
DOM Document Object Model
DoS Denial-of-Service
DRY Don’t Repeat Yourself
DSL Domain Specific Language
DTD Document Type Definition
DTO Data Transfer Object
DVD Dissociated Vertical Deviation
EAI Enterprise Application Integration
EAST Electronics Architecture and Software Technology
EDA Event Driven Architecture
EDI Electronic Data Interchange
EDOC Enterprise Distributed Object Computing
EJB Enterprise Java Beans
EMF Eclipse Modeling Framework
EPF Eclipse Process Framework
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
ETL Extract Transform and Load
eTOM Enhanced Telecom Operations Map
FDD Feature Driven Development
FOP Formatting Objects Processor
FTP File Transfer Protocol
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Abbreviation Meaning
GoF Gang of Four
GPL General Purpose Language
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
IaaS Infrastructure as a Service
IAM Identity and Access Management
IBM International Business Machines
IDL Interface Description Language
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IIOP Internet Inter ORB Protocol
IMS Incident Management System
INFaaS Information as a Service
INTaaS Integration as a Service
IoC Inversion of Control
ISO International Organization for Standardization
ISP Internet Service Provider
IT Information Technology
ITU International Telecommunication Union
J2EE Java 2 Enterprise Edition
JAAS Java Authentication and Authorization Service
JCA Java Connector Architecture
JDBC Java Database Connectivity
JDO Java Data Objects
JEE Java Enterprise Edition
JET Java Emitter Template
JMS Java Messaging Service
JPA Java Persistence API
JSF Java Server Faces
JSP Java Server Pages
JVM Java Virtual Machine
LAN Local Area Network
LDAP Lightweight Directory Access Protocol
MDA Model Driven Architecture
MDD Model Driven Development
MDE Model Driven Engineering
MDSD Model Driven Software Development
MIS Management Information System
MOF Meta Object Facility
MOM Message Oriented Middleware
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Abbreviation Meaning
MOP Meta Object Protocol
MQ Message Queue
MS Microsoft
MVC Model View Controller
NGOSS Next Generation Operations Support Systems
NIST National Institute of Standards and Technology
NTLM NT Lan Manager
OASIS Organization for the Advancement of Structured Information Stan-

dards
OCL Object Constraint Language
OCM Open Cloud Manifesto
OMA Object Management Architecture
OMG Object Management Group
OMT Object Modeling Technique
OOA Object Oriented Analysis
OOD Object Oriented Design
OODBMS Object Oriented Database Management System
OOP Object Oriented Programming
OO-RPC Object Oriented Remote Procedure Call
OOSA Object Oriented System Analysis
OOSE Object Oriented Software Engineering
OPEX Operational Expenditure
ORB Object Request Broker
ORM Object Relational Mapping
OS Operating System
OSF Open Software Foundation
OSI Open Systems Interconnection
OSS Operations Support System
OSS/J OSS for Java Initiative
P2P Peer-to-Peer
PaaS Platform as a Service
PBM Policy Based Management
PC Personal Computer
PDF Portable Document Format
PHP PHP Hypertext Preprocessor
PIM Platform Independent Model
PKI Public Key Infrastructure
PL Product Line
PLE Product Line Engineering
POC Proof of Concept

List of Abbreviations
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Abbreviation Meaning
POSA Pattern Oriented Software Architecture
PSM Platform Specific Model
PSM Protocol State Machine
PSP Project Structure Plan
QoS Quality of Service
QVT Query, Views, Transformation
QWAN Quality without a Name
RAM Random Access Memory
RDBMS Relational Database Management System
RDF Resource Description Framework
REST Representational State Transfer
RMC Rational Method Composer
RMI Remote Method Invocation
RM-ODP Reference Model for Open Distributed Processing
ROI Return on Investment
RPC Remote Procedure Call
RSS Really Simple Syndication
RUP Rational Unified Process
SA/D Structured Analysis/Design
SAAM Software Architecture Analysis Method
SaaS Software as a Service
SADL Structural Architecture Description Language
SAP Systeme, Anwendungen und Produkte
SAX Simple API for XML
SCM Supply Chain Management
SCM Software Configuration Management
SDLM Software Design Level Model
SEI Software Engineering Institute
SETI Search for Extra-Terrestrial Intelligence
SID Shared Information and Data Model
SLA Service Level Agreement
SMTP Simple Mail Transport Protocol
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SOI Service Oriented Infrastructure
SPEM Software Process Engineering Metamodel
SPI Service Provider Interface
SQL Structured Query Language
SSF Software System Family
SSO Single Sign On

List of Abbreviations
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Abbreviation Meaning
STaaS Storage as a Service
TAFIM Technical Architecture Framework for Information Management
Tcl Tool Command Language
TCP/IP Transmission Control Protocol/Internet Protocol
TMF Tele Management Forum
TOGAF The Open Group Architecture Framework
TP Transaction Processing
TT Trouble Ticket
UDDI Universal Description, Discovery and Integration
UMA Unified Method Architecture
UML Unified Modeling Language
UP Unified Process
URI Uniform Resource Identifier
USDP Unified Software Development Process
USE Unanticipated Software Evolution
VB Visual Basic
VM Virtual Machine
WAM Web Access Management
WBS Work Breakdown Structure
WSDL Web Services Description Language
WWW World Wide Web
XMI XML Metadata Interchange
XML eXtensible Markup Language
XP eXtreme Programming
XSL eXtensible Stylesheet Language
XSLT eXtensible Stylesheet Language Transformations 

List of Abbreviations
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Architecture decision �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 383
Architecture description  

language �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 383
Architecture design �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 347
Architecture dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26

HOW dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  27, 35, 311
relationship �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 29
WHAT dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26, 30, 65
WHERE dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26, 30, 65
WHO dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26
WHY dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26, 31, 97
WITH WHAT dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 26, 32, 

115, 239
Architecture discipline �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 29, 30, 

50, 304
interaction �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 52

Architecture documentation �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 382
architecture guideline �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 382
audio-visual �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 387
checklist �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 390
content �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 387
context �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 383
creation �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 384
guideline �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 380
management �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 388
necessity �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 382
objective �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 382
scope �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ 388
selection of terminology �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 387

selection of the means �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 385
target group �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 384
template �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 386
unsatisfactory �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 385
visual �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ 387

Architecture experience �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 41
Architecture guideline �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 80, 380

checklist �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 390
Architecture level �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  110

and architecture principle �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 69
and architecture quality �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 68
architecture vs. design �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 69
building block level �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 74
change of level �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 75
definition of design �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 70
definition of software architectural 

design �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 70
definition of software detailed  

design �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 70
levels model �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 67, 68
organizational level �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 68, 72
software design level model 

(SDLM) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 69
system level �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 68, 73

Architecture means �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 32
basic architecture �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 33
basic concept �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 32, 140
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system �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 101
types �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 31, 100
WHAT dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  112
WHERE dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  110
WHO dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  112
WITH WHAT dimension �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  112

Requirement pattern �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 172
and architecturally significant  

requirement �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 172
and quality attribute scenario �ï¿½ï¿½ 173
and use case �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 173
characteristic and motivation �ï¿½ï¿½ï¿½ 172
descriptions according to  

Withall �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 173
example �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 172

Requirements catalog �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 100
Requirements view �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 82
Resource Description Framework 

(RDF) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 273
Restructuring �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 393
Reusability �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 109
Reverse engineering �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 393
Rich client �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 198
Rich client platform �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 199
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476

RM-ODP, see Reference Model for 
Open Distributed Processing

Round-trip engineering �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 157
Ruby �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 167
Ruby on Rails �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 275
Runtime requirement �ï¿½ï¿½ï¿½ï¿½ï¿½ 31, 103, 107

availability �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 107
performance �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 107
scalability �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 107
security �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 108
usability �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 108

S
SAAM, see Software Architecture 

Analysis Method (SAAM)
Scalability �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 107
Scientific management  

understanding �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 292
Scripting language �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 167

advantage �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 170
and Domain-specific language 

(DSL) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ 169
disadvantage �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 170
Perl �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 167
Python �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 167
Ruby �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 167
Tcl �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 167

Scrum �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 295
Seaside �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ï¿½ 275
Security architecture �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 51

and aspect orientation �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 129
and decomposition �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 128
and modularity �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 127
architecture approach �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 216
authentication �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 215
authorization �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 215
based on component  

platforms �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 218
based on separate system  

building blocks �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 216
based on standard services �ï¿½ï¿½ï¿½ï¿½ 217
client-side �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 218

integrity �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 215
intrusion protection �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 216
key concept �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 213
non-repudiation �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 216
performance characteristics �ï¿½ï¿½ï¿½ï¿½ 215
prerequisite �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 213
privacy �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 215
self-documentation principle �ï¿½ï¿½ï¿½ï¿½ 137
semantic �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 243
separation of concerns �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 127
single-sign on �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 220
web-centric �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 219

Server-side component platform �ï¿½ï¿½ï¿½ 204
Service �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 62, 206, 363
Service component �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 205
Service-oriented architecture  

(SOA) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 206, 278
and enterprise architecture �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 210
development approach �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  211
key abstractions �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 207
scenarios �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½  211
service �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ 206

Service-oriented infrastructure  
(SOI) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 208

function �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ 208
Session component �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 205
Shared repository �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 204
Simple API for XML (SAX) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 273
Simple Object Access Protocol 

(SOAP) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 278
Single-sign on �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 220
Skeleton system �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 375
Smalltalk �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 151, 168
Social skill �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ 35
Software architecture, see 

Architecture
Software as a Service  

(SaaS) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 222
Software building block �ï¿½ï¿½ï¿½ï¿½ï¿½ 44, 45, 58

relationships �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 46
visible property �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 45

Software crisis �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 5
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Software design level model  
(SDLM) �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ 69

Software development �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ 2, 313
Evolution �ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½ï¿½å°“ï¿½ï¿½ï¿½ï¿½ 2
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