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Preface

The information in the world doubles every 20 months. Important data sources are
business and industrial processes, text and structured data bases, image and biomed-
ical data. Many applications show that data analytics can provide huge benefits. We
need models and algorithms to collect, preprocess, analyze, and evaluate data, from
various fields such as statistics, system theory, machine learning, pattern recogni-
tion, or computational intelligence. With this book you will learn about the most
important methods and algorithms for data analytics. You will be able to choose
appropriate methods for specific tasks and apply these in your own data analytics
projects. You will understand the basic concepts of the growing field of data analyt-
ics, which will allow you to keep pace and to actively contribute to the advancement
of the field.

This text is designed for undergraduate and graduate courses on data analytics
for engineering, computer science, and math students. It is also suitable for prac-
titioners working on data analytics projects. The book is structured according to
typical practical data analytics projects. Only basic mathematics is required. This is
the third edition of a book that has been used for more than ten years in numerous
courses at the Technical University of Munich, Germany, in short courses at several
other universities, and in tutorials at international scientific conferences. Much of
the content is based on the results of industrial research and development projects
at Siemens.

The author wishes to express his sincere appreciation to everybody who has sup-
ported this work, in particular Wilfried Brauer, Jim Bezdek, Javier Esparza, Ralph
Grothmann, Hans Hellendoorn, Jürgen Hollatz, Eyke Hüllermeyer, Uzay Kaymak,
Jim Keller, Frank Klawonn, Rudolf Kruse, Rainer Palm, Bernd Schürmann, João
Sousa, and Hans-Georg Zimmermann, the reviewers and students for pointing out
errors and suggesting improvements, and the editorial and publisher team for their
professional collaboration.

Munich, August 2012 Thomas Runkler
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Chapter 1
Introduction

Abstract This book deals with models and algorithms for the analysis of data sets,
for example industrial process data, business data, text and structured data, im-
age data, and biomedical data. We define the terms data analytics, data mining,
knowledge discovery, and the KDD and CRISP-DM processes. Typical data analy-
sis projects can be divided into several phases: preparation, preprocessing, analysis,
and postprocessing. The chapters of this book are structured according to the main
methods of data preprocessing and data analysis: data and relations, data preprocess-
ing, visualization, correlation, regression, forecasting, classification, and clustering.

1.1 It’s All About Data

The focus of this book is the analysis of large data sets, for example:

• Industrial process data: An increasing amount of data is acquired, stored and
processed in order to automate and control industrial production, manufacturing,
distribution, logistics and supply chain processes. Data are used on all levels of
the automation pyramid: sensors and actuators at the field level, control signals at
the control level, operation and monitoring data at the execution level, schedules
and indicators at the planning level. The main purpose of data analysis in industry
is to optimize processes and to improve the competitive position of the company.

• Business data: Data of business performance are analyzed to better understand
and drive business processes. Important business domains to be analyzed include
customers, portfolio, sales, marketing, pricing, financials, risk, and fraud. An ex-
ample is shopping basket analysis that finds out which products customers pur-
chase at the same time. This analysis aims to improve cross selling and thus
increases sales. Another example for business data analysis is customer segmen-
tation for tailored advertising and sales promotions.

• Text and structured data: The analysis of numerical data has been the focus of
mathematical statistics for centuries. Today, text and structured data also serve

1T. A. Runkler, Data Analytics, DOI 10.1007/978-3-8348-2589-6_1, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 201  2



2 1 Introduction

as important information sources: text documents, electronic messages (like e-
mail), web documents, or web based data bases (the so-called deep web). The
analysis of text and structured data helps to filter, search, extract, and structure
information. Structured data (as opposed to unstructured text) uses particular or-
ganizational criteria such as record fields or object structures which are often
enhanced by semantic and ontological models.

• Image data: An increasing number of image sensors ranging from smartphone
cameras to satellite cameras provides large amounts of 2D and also 3D image
data. Image data analysis finds and recognizes objects, analyzes and classifies
scenes, and relates image data with other information sources.

• Biomedical data: Data from laboratory experiments are used to analyze, under-
stand and exploit biological and medical processes, for example to analyze DNA
sequences, to understand and annotate genome functions, to analyze gene and
protein expressions or to model regulation networks.

1.2 Data Analytics, Data Mining, and Knowledge Discovery

The term data mining dates back to the 1980s [3]. The goal of data mining is to
extract knowledge from data [1]. In this context, knowledge is defined as interest-
ing patterns that are generally valid, novel, useful, and understandable to humans.
Whether or not the extracted patterns are interesting depends on the particular appli-
cation and needs to be verified by application experts. Based on expert feedback the
knowledge extraction process is often interactively refined. The term data analytics
became popular in the early 2000s [2, 6]. Data analytics is defined as the application
of computer systems to the analysis of large data sets for the support of decisions.
Data analytics is a very interdisciplinary field that has adopted aspects from many
other scientific disciplines such as statistics, signal theory, pattern recognition, com-
putational intelligence, machine learning, and operations research.

Typical data analysis projects can be divided into several phases. Data are as-
sessed and selected, cleaned and filtered, visualized and analyzed, and the analysis
results are finally interpreted and evaluated. The knowledge discovery in databases
(KDD) process [1] comprises the six phases selection, preprocessing, transforma-
tion, data mining, interpretation, and evaluation. The cross industry standard pro-
cess for data mining (CRISP-DM) [5] comprises the six phases business under-
standing, data understanding, data preparation, modeling, evaluation, and deploy-
ment. For simplicity we distinguish only four phases here: preparation, preprocess-
ing, analysis, and postprocessing (Fig. 1.1). The main focus of this book is data
preprocessing and data analysis. The chapters are structured according to the main
methods of preprocessing and analysis: data and relations, data preprocessing, visu-
alization, correlation, regression, forecasting, classification, and clustering.

This book gives a clear and concise overview of the most important methods and
algorithms of data analysis. It enables the reader to gain a complete and compre-
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Fig. 1.1 Phases of data analysis projects.

hensive understanding of data analysis, to apply data analysis methods to his or her
own projects, and to contribute to the progress of the field.

A large number a software tools for data mining are available today. Popular
commercial software tools include MATLAB, SPSS, SAS, and STATISTICA. Pop-
ular free and open-source software tools include R, Rapid Miner, and WEKA. This
book does not present, compare, or recommend any data mining software tools. For
a comprehensive overview of current data mining software tools please refer to [4].
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Chapter 2
Data and Relations

Abstract The popular Iris benchmark set is used to introduce the basic concepts
of data analysis. Data scales (nominal, ordinal, interval, ratio) must be accounted
for because certain mathematical operations are only appropriate for specific scales.
Numerical data can be represented by sets, vectors, or matrices. Data analysis is of-
ten based on dissimilarity measures (like inner product norms, Lebesgue/Minkowski
norms) or on similarity measures (like cosine, overlap, Dice, Jaccard, Tanimoto).
Sequences can be analyzed using sequence relations (like Hamming, Levenshtein,
edit distance). Data can be extracted from continuous signals by sampling and quan-
tization. The Nyquist condition allows sampling without loss of information.

2.1 The Iris Data Set

To introduce the basic concepts of data analysis we consider one of the most popular
historic benchmark data sets: the Iris data set [1]. The Iris data set was originally
created in 1935 by the American botanist Edgar Anderson who examined the ge-
ographic distribution of Iris flowers on the Gaspé peninsula in Quebec (Canada).
In 1936, Sir Ronald Aylmer Fisher used Anderson’s Iris data set as an example for
multivariate discriminant analysis [4] (see chapter 8). Subsequently, the Iris data
set became one of the most frequently used reference data set in statistics and data
analysis.

The Iris data set comprises measurements from 150 Iris flower samples: 50 from
each of the three species Iris Setosa, Iris Virginica, and Iris Versicolor. For each
of the 150 flowers, values of four numerical features chosen by Anderson were
measured: the length and the width of sepal and petal leaves in centimeters. For
illustration, Table 2.1 shows the complete Iris data set. Notice that several distinct
replicates of the original Iris data set have been used and published, so in experi-
ments with this data set the version should be carefully checked [2]. The Iris data
set as well as many other popular data sets are available, for example, through the
machine learning data base at the University of California at Irvine (UCI).

5T. A. Runkler, Data Analytics, DOI 10.1007/978-3-8348-2589-6_ , 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 201  
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6 2 Data and Relations

Table 2.1 The Iris data set (from [1])

Setosa Versicolor Virginica
sepal petal sepal petal sepal petal

length width length width length width length width length width length width
5.1 3.5 1.4 0.2 7 3.2 4.7 1.4 6.3 3.3 6 2.5
4.9 3 1.4 0.2 6.4 3.2 4.5 1.5 5.8 2.7 5.1 1.9
4.7 3.2 1.3 0.2 6.9 3.1 4.9 1.5 7.1 3 5.9 2.1
4.6 3.1 1.5 0.2 5.5 2.3 4 1.3 6.3 2.9 5.6 1.8
5 3.6 1.4 0.2 6.5 2.8 4.6 1.5 6.5 3 5.8 2.2

5.4 3.9 1.7 0.4 5.7 2.8 4.5 1.3 7.6 3 6.6 2.1
4.6 3.4 1.4 0.3 6.3 3.3 4.7 1.6 4.9 2.5 4.5 1.7
5 3.4 1.5 0.2 4.9 2.4 3.3 1 7.3 2.9 6.3 1.8

4.4 2.9 1.4 0.2 6.6 2.9 4.6 1.3 6.7 2.5 5.8 1.8
4.9 3.1 1.5 0.1 5.2 2.7 3.9 1.4 7.2 3.6 6.1 2.5
5.4 3.7 1.5 0.2 5 2 3.5 1 6.5 3.2 5.1 2
4.8 3.4 1.6 0.2 5.9 3 4.2 1.5 6.4 2.7 5.3 1.9
4.8 3 1.4 0.1 6 2.2 4 1 6.8 3 5.5 2.1
4.3 3 1.1 0.1 6.1 2.9 4.7 1.4 5.7 2.5 5 2
5.8 4 1.2 0.2 5.6 2.9 3.6 1.3 5.8 2.8 5.1 2.4
5.7 4.4 1.5 0.4 6.7 3.1 4.4 1.4 6.4 3.2 5.3 2.3
5.4 3.9 1.3 0.4 5.6 3 4.5 1.5 6.5 3 5.5 1.8
5.1 3.5 1.4 0.3 5.8 2.7 4.1 1 7.7 3.8 6.7 2.2
5.7 3.8 1.7 0.3 6.2 2.2 4.5 1.5 7.7 2.6 6.9 2.3
5.1 3.8 1.5 0.3 5.6 2.5 3.9 1.1 6 2.2 5 1.5
5.4 3.4 1.7 0.2 5.9 3.2 4.8 1.8 6.9 3.2 5.7 2.3
5.1 3.7 1.5 0.4 6.1 2.8 4 1.3 5.6 2.8 4.9 2
4.6 3.6 1 0.2 6.3 2.5 4.9 1.5 7.7 2.8 6.7 2
5.1 3.3 1.7 0.5 6.1 2.8 4.7 1.2 6.3 2.7 4.9 1.8
4.8 3.4 1.9 0.2 6.4 2.9 4.3 1.3 6.7 3.3 5.7 2.1
5 3 1.6 0.2 6.6 3 4.4 1.4 7.2 3.2 6 1.8
5 3.4 1.6 0.4 6.8 2.8 4.8 1.4 6.2 2.8 4.8 1.8

5.2 3.5 1.5 0.2 6.7 3 5 1.7 6.1 3 4.9 1.8
5.2 3.4 1.4 0.2 6 2.9 4.5 1.5 6.4 2.8 5.6 2.1
4.7 3.2 1.6 0.2 5.7 2.6 3.5 1 7.2 3 5.8 1.6
4.8 3.1 1.6 0.2 5.5 2.4 3.8 1.1 7.4 2.8 6.1 1.9
5.4 3.4 1.5 0.4 5.5 2.4 3.7 1 7.9 3.8 6.4 2
5.2 4.1 1.5 0.1 5.8 2.7 3.9 1.2 6.4 2.8 5.6 2.2
5.5 4.2 1.4 0.2 6 2.7 5.1 1.6 6.3 2.8 5.1 1.5
4.9 3.1 1.5 0.2 5.4 3 4.5 1.5 6.1 2.6 5.6 1.4
5 3.2 1.2 0.2 6 3.4 4.5 1.6 7.7 3 6.1 2.3

5.5 3.5 1.3 0.2 6.7 3.1 4.7 1.5 6.3 3.4 5.6 2.4
4.9 3.6 1.4 0.1 6.3 2.3 4.4 1.3 6.4 3.1 5.5 1.8
4.4 3 1.3 0.2 5.6 3 4.1 1.3 6 3 4.8 1.8
5.1 3.4 1.5 0.2 5.5 2.5 4 1.3 6.9 3.1 5.4 2.1
5 3.5 1.3 0.3 5.5 2.6 4.4 1.2 6.7 3.1 5.6 2.4

4.5 2.3 1.3 0.3 6.1 3 4.6 1.4 6.9 3.1 5.1 2.3
4.4 3.2 1.3 0.2 5.8 2.6 4 1.2 5.8 2.7 5.1 1.9
5 3.5 1.6 0.6 5 2.3 3.3 1 6.8 3.2 5.9 2.3

5.1 3.8 1.9 0.4 5.6 2.7 4.2 1.3 6.7 3.3 5.7 2.5
4.8 3 1.4 0.3 5.7 3 4.2 1.2 6.7 3 5.2 2.3
5.1 3.8 1.6 0.2 5.7 2.9 4.2 1.3 6.3 2.5 5 1.9
4.6 3.2 1.4 0.2 6.2 2.9 4.3 1.3 6.5 3 5.2 2
5.3 3.7 1.5 0.2 5.1 2.5 3 1.1 6.2 3.4 5.4 2.3
5 3.3 1.4 0.2 5.7 2.8 4.1 1.3 5.9 3 5.1 1.8
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Table 2.2 Scales for numerical measurements.
scale operations example statistics
nominal = �= Alice, Bob, Carol mode
ordinal > < A, B, C, D, F median
interval + − 2015 A.D., 20◦C mean
ratio · / 21 years, 273◦K generalized mean

In data analysis we call each of the 150 Iris flowers an object, each of the three
species a class, and each of the four dimensions a feature. Here is a list of typical
questions that we try to answer by data analysis:

• Which of the data might contain errors or false class assignments?
• What is the error caused by rounding the data off to one decimal place?
• What is the correlation between petal length and petal width?
• Which pair of dimensions is correlated most?
• None of the flowers in the data set has a sepal width of 1.8 centimeters. Which

sepal length would we expect for a flower that did have 1.8 cm as its sepal width?
• Which species would an Iris with a sepal width of 1.8 centimeters belong to?
• Do the three species contain sub-species that can be identified from the data?

In this book you will find numerous methods and algorithms to answer these and
other data analysis questions. For a better understanding of these data analysis meth-
ods and algorithms we first define and examine the fundamental properties of data
and their relations.

2.2 Data Scales

Numerical measurements may have different semantic meanings, even if they are
represented by the same numerical data. Depending on the semantic meaning dif-
ferent types of mathematical operations are appropriate. For the semantic meaning
of numerical measurement Stevens [7] suggested the four different scales that are
shown in Table 2.2. For nominal scaled data (first row) only tests for equality or in-
equality are valid. Examples for nominal features are names of persons or codes of
objects. Data of a nominal feature can be represented by the mode which is defined
as the value that occurs most frequently. For ordinal scaled data (second row) the
operations ”greater than” and ”less than” are valid. For each scale level the opera-
tions and statistics of the lower scale levels are also valid, so for the ordinal scale
we have equality, inequality, and the combinations ”greater than or equal” (≥) and
”less than or equal” (≤). The relation ”less than or equal” (≤) defines a total or-
der, such that for any x,y,z we have (x ≤ y)∧ (y ≤ x) ⇒ (x = y) (antisymmetry),
(x ≤ y)∧ (y ≤ z)⇒ (x ≤ z) (transitivity), and (x ≤ y)∨ (y ≤ x) (totality). Examples
for ordinal features are school grades. Data of an ordinal feature can be represented
by the median which is defined as the value for which (almost) as many smaller as
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Table 2.3 Computation of the median petal width of the Iris data set.

value frequency accumulated frequency value frequency accumulated frequency
0.1 5 5 2.5 3 3
0.2 29 34 2.4 3 6
0.3 7 41 2.3 8 14
0.4 7 48 2.2 3 17
0.5 1 49 2.1 6 23
0.6 1 50 2 6 29
0.7 0 50 1.9 5 34
0.8 0 50 1.8 12 46
0.9 0 50 1.7 2 48
1 7 57 1.6 4 52

1.1 3 60 1.5 12 64
1.2 5 65 1.4 8 72
1.3 10(13) 75 1.3 3(13) 75

larger values exist. The mean is not valid for ordinal features, so for example it does
not make sense to say that the average school grade is C. For interval scaled data
(third row) addition and subtraction are valid. Interval scaled features have arbitrary
zero points. Examples are years in the Anno Domini dating system or temperatures
in degrees Celcius (centigrade) or Fahrenheit, so for example it does not make sense
to say that 40◦C is twice as high as 20◦C. Data of an interval scaled feature, for
example, a set of values X = {x1, . . . ,xn}, can be represented by the (arithmetic)
mean

x̄ =
1
n

n

∑
k=1

xk (2.1)

For ratio scaled data (fourth row) multiplication and division are valid. Examples
for ratio scaled features are time differences like ages or temperatures on the Kelvin
scale. Data of an interval scaled feature can be represented by the generalized mean

mα(X) = α

√
1
n

n

∑
k=1

xα
k (2.2)

with the parameter α ∈ R, which includes the special cases minimum (α → −∞),
harmonic mean (α = −1), geometric mean (α → 0), arithmetic mean (α = 1),
quadratic mean (α = 2), and maximum (α → ∞).

The features of the Iris data set are on ratio scale. For example, we can approxi-
mately estimate the sepal surface area by multiplying the sepal length and the sepal
width. Hence, we can compute the mode, median, mean and generalized mean of
each of the features of the Iris data set. Table 2.3 illustrates this for the petal width
(fourth feature). The Iris data set contains petal widths between 0.1 and 2.5 centime-
ters. The most frequent value of the petal width is 0.2 centimeters, which occurs 29
times, so the mode is 0.2 centimeters. To compute the median we can accumulate
the numbers of occurences of the values for 0.1 centimeters, 0.2 centimeters, and so
on, until we reach half of the number of objects (75). This algorithm yields a me-
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dian petal width of 1.3 centimeters. The accumulation of the frequencies can also be
done in reverse order (right view of Table 2.3). The complexity of this algorithm is
O(n logn). Notice, however, and this is surprising even to many scientists, that the
median can be efficiently computed in linear time using selection algorithms [3].
Finally, the mean petal width can be computed as about x̄(4) ≈ 1.19933.

The majority of methods presented in this book use addition, subtraction, multi-
plication, or division of feature values and are therefore suitable only for interval and
ratio scaled data. To analyze nominal and ordinal data we define relations between
pairs of such data, that can be analyzed using specific relational methods.

2.3 Set and Matrix Representations

We denote numerical feature data as the set

X = {x1, . . . ,xn} ⊂ R
p (2.3)

with n elements, where each element is a p-dimensional real-valued feature vector,
where n and p are positive integers. For p = 1 we call X a scalar data set. As an
alternative to the set representation, numerical feature data are also often represented
as a matrix

X =

⎛
⎜⎜⎝

x(1)1 · · · x(p)
1

...
. . .

...

x(1)n · · · x(p)
n

⎞
⎟⎟⎠ (2.4)

so the vectors x1, . . . ,xn are row vectors. Although it is a bit sloppy, data sets and data
matrices are commonly used as equivalent data representations. Fig. 2.1 illustrates
the common terms and notations of a data matrix. Each row of the data matrix
corresponds to an element of the data set. It is called feature vector or data point
xk, k = 1, . . . ,n. Each column of the data matrix corresponds to one component of
all elements of the data set. It is called ith feature or ith component x(i), i = 1, . . . , p.
In this book we distinguish rows and columns by using subscripts for rows and
bracketed superscripts for columns. Alternative notations in the literature are x(k, .)
and x(., i), for example. A single matrix element is a component of an element of

the data set. It is called datum or value x(i)k , k = 1, . . . ,n, i = 1, . . . , p.
The Iris data set can be written as a data matrix with 150 rows and 4 columns,

where each row represents one object (flower) and each column represents one fea-
ture (dimension). The Iris data matrix can be obtained by vertical concatenation of
the three portions shown in Table 2.1. The class information (Setosa, Versicolor,
Virginica) can be interpreted as a fifth feature, on nominal scale.
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data (set) X

1

n

1 p

�
ith feature x(i)

ith component x(i)

� feature vector xk

data point xk�
�
�
�
�
�
�
�
�
�
��

datum x(i)k

value x(i)k

Fig. 2.1 Matrix representation of a data set.

2.4 Relations

Consider a set of (abstract) elements, without referring to numerical feature vectors.

O = {o1, . . . ,on} (2.5)

It is often the case that there is no feature vector representation for the objects ok,
k = 1, . . . ,n, so conventional feature-based data analysis methods are not applicable.
Instead, the relation of all pairs of objects can often be quantified and written as a
square matrix

R =

⎛
⎜⎝ r11 · · · r1n

...
. . .

...
rn1 · · · rnn

⎞
⎟⎠ ∈R

n×n (2.6)

Each relation value ri j, i, j = 1, . . . ,n, may refer to a degree of similarity, dissimilar-
ity, compatibility, incompatibility, proximity or distance between the pair of objects
oi and o j. R may be symmetric, so ri j = r ji for all i, j = 1, . . . ,n. R may be manu-
ally defined or computed from features. If numerical features X are available, then
R may be computed from X using an appropriate function f : Rp ×R

p → R. For
example, a relational matrix for Iris may be manually defined by a botanist who
optically compares and then numerically scores some relationship between pairs of
flowers, or R may be computed from sepal and petal lengths and widths. The most
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important classes of relations, dissimilarities and similarities, are presented in the
following two sections.

2.5 Dissimilarity Measures

A function d is called dissimilarity or distance measure if for all x,y ∈R
p

d(x,y) = d(y,x) (2.7)

d(x,y) = 0 ⇔ x = y (2.8)

d(x,z) ≤ d(x,y)+ d(y,z) (2.9)

From these axioms follows

d(x,y) ≥ 0 (2.10)

A class of dissimilarity measures is defined using a norm ‖.‖ of x− y, so

d(x,y) = ‖x− y‖ (2.11)

A function ‖.‖ : Rp → R
+ is a norm if and only if

‖x‖= 0 ⇔ x = (0, . . . ,0) (2.12)

‖a · x‖ = |a| · ‖x‖ ∀a ∈ R,x ∈ R
p (2.13)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x,y ∈ R
p (2.14)

For example, the frequently used so-called hyperbolic norm

‖x‖h =
p

∏
i=1

x(i) (2.15)

is not a norm according to the previous definition, since condition (2.12) is violated
by x = (0,1) �= (0,0) with ‖x‖h = ‖(0,1)‖h = 0, or condition (2.13) is violated by
x = (1,1) and a = 2, where ‖a · x‖h = ‖2 · (1,1)‖h = ‖(2,2)‖h = 4 �= |a| · ‖x‖h =
|2| · ‖(1,1)‖h = 2.

Frequently used classes of norms are inner product norms and Lebesgue or
Minkowski norms. The inner product norm is defined as

‖x‖A =
√

xAxT (2.16)

with a norm inducing matrix A ∈R
n×n. Important special cases of the inner product

norm are the Euclidean norm
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A =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎠ (2.17)

the Frobenius or Hilbert-Schmidt norm

A =

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎞
⎟⎟⎟⎠ (2.18)

the diagonal norm with individual weights for each feature

A =

⎛
⎜⎜⎜⎝

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dp

⎞
⎟⎟⎟⎠ (2.19)

and the Mahalanobis norm

A = cov−1X =

(
1

n− 1

n

∑
k=1

(xk − x̄)T (xk − x̄)

)−1

(2.20)

The Mahalanobis norm uses the inverse of the covariance matrix of the data set X
(see chapter 5). It adapts the weighting of the individual features based on the ob-
served statistics and also accounts for correlations between pairs of features.

The Lebesgue or Minkowski norm is defined as

‖x‖α = α

√√√√ p

∑
j=1

∣∣x( j)
∣∣α (2.21)

which is equal to the generalized mean at (2.2) except for a constant factor α√n.
Important special cases of the Lebesgue or Minkowski norm are the infimum norm
(α →−∞)

‖x‖−∞ = min
j=1,...,p

x( j) (2.22)

the Manhattan or city block distance (α = 1)

‖x‖1 =
p

∑
j=1

∣∣∣x( j)
∣∣∣ (2.23)

the Euclidean norm (α = 2), which is the unique point in the intersection of the
inner product and Minkowski families,
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‖x‖2 =

√√√√ p

∑
j=1

(
x( j)
)2

(2.24)

and the supremum norm (α → ∞)

‖x‖∞ = max
j=1,...,p

x( j) (2.25)

Another frequently used dissimilarity measure is the Hamming distance [5] de-
fined as

dH(x,y) =
p

∑
i=1

ρ(x(i),y(i)) (2.26)

with the discrete metric
ρ(x,y) =

{
0 if x = y
1 otherwise

(2.27)

So the Hamming distance yields the number of feature values that do not match. For
binary features, the Hamming distance is equal to the Manhattan or city block dis-
tance (2.23), dH(x,y) = ‖x−y‖1. Notice, however, that the Hamming distance is not
a norm because condition (2.13) does not hold. Variants of the Hamming distance
use modified functions ρ to specify similarities between individual features. For ex-
ample, if the features are (nominal scale) components of a machine, then ρ might
be lower for pairs of similar components and higher for pairs of rather dissimilar
components.

2.6 Similarity Measures

A function s is called similarity or proximity measure if for all x,y ∈ R
p

s(x,y) = s(y,x) (2.28)

s(x,y) ≤ s(x,x) (2.29)

s(x,z) ≤ s(x,y)+ s(y,z) (2.30)

s(x,y) ≥ 0 (2.31)

The function s is called normalized similarity measure if additionally

s(x,x) = 1 (2.32)

Any dissimilarity measure d can be used to define a corresponding similarity mea-
sure s and vice versa, for example using a monotonically decreasing positive func-
tion f with f (0) = 1 such as

s(x,y) =
1

1+ d(x,y)
(2.33)
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However, the examples presented in the previous section are mostly used in their
dissimilarity version, and the examples presented in this section are mostly used
in their similarity version. Let us first consider similarities between binary feature
vectors. A pair of binary feature vectors can be considered similar if many ones
coincide. This conjunction can be represented by the product, so the scalar product
of the feature vectors is a reasonable candidate for a similarity measure. Also for
real-valued features similarity measures can be defined based on scalar products
that may be normalized in different ways:

• cosine

s(x,y) =

p
∑

i=1
x(i)y(i)√

p
∑

i=1

(
x(i)
)2 p

∑
i=1

(
y(i)
)2

(2.34)

• overlap

s(x,y) =

p
∑

i=1
x(i)y(i)

min

(
p
∑

i=1

(
x(i)
)2
,

p
∑

i=1

(
y(i)
)2
) (2.35)

• Dice

s(x,y) =
2

p
∑

i=1
x(i)y(i)

p
∑

i=1

(
x(i)
)2

+
p
∑

i=1

(
y(i)
)2

(2.36)

• Jaccard (or sometimes called Tanimoto)

s(x,y) =

p
∑

i=1
x(i)y(i)

p

∑
i=1

(
x(i)
)2

+
p

∑
i=1

(
y(i)
)2 −

p

∑
i=1

x(i)y(i)
(2.37)

These expressions are undefined for zero feature vectors because the denominators
are zero then, so the similarity has to be explicitly defined for this case, for example
as zero. Notice that the cosine similarity is invariant against (positive) scaling of the
feature vectors and therefore considers the relative distribution of the features,

s(c · x,y) = s(x,y) (2.38)

s(x,c · y) = s(x,y) (2.39)

for all x,y ∈R
p and c > 0. Consider for example two cake recipes, one with 3 eggs,

1 1/2 cups sugar, 1 1/2 cups flour, 1/2 cup butter, and the other one with 6 eggs, 3
cups sugar, 3 cups flour, and 1 cup butter. Obviously, both recipes yield the same
cake, but the second one yields twice as much cake as the first one. Following the
intuitive expectation the cosine similarity between the two recipes is equal to one.
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In this section we discussed functions to quantify the similarity between feature
vectors (rows of the data matrix). In chapter 5 we will discuss functions to quantify
the similarity between features (columns of the data matrix), the so-called correla-
tion. If the data matrix is transposed (the rows and columns are exchanged), then the
correlation can also be used as an alternative way to quantify the similarity between
feature vectors.

2.7 Sequence Relations

The dissimilarity and similarity measures presented in the previous two sections ap-
ply to feature vectors whose elements refer to different features. In this section we
consider sequences of feature values or feature vectors, for example sequences of
daily temperature values at different locations, text documents viewed as sequences
of alphanumerical characters, or sequences of web pages visited by different users.
Formally, such sequences could be viewed as feature vectors, but it is more appro-
priate to explicitly consider the sequential character, the fact that each element of
the sequence refers to the same feature, and to be able to compare sequences of
different lengths.

We use a function ρ to compare individual pairs of sequence elements. An exam-
ple is the discrete inequality function (2.27) that is used in the Hamming distance
(2.26). The Hamming distance may be used as a sequence relation, but only for se-
quences of the same length. To compute the relation between sequences of different
lengths, neutral elements like zeros or space characters might be appended to the
shorter sequence. Depending on the alignment of the subsequences lower Hamming
distances might be achieved by prepending or even optimally inserting neutral el-
ements. This is the idea of the Levenshtein or edit distance [6] that determines the
minimum number of edit operations (insert, delete, or change a sequence element)
necessary to transform one sequence into the other. We denote Li j(x,y) as the edit
distance between the first i elements of x and the first j elements of y, and recursively
define the edit distance as

Li j =

⎧⎨
⎩

i j = 0
j i = 0
min{Li−1, j + 1, Li, j−1 + 1, Li−1, j−1 +ρ(x(i),y( j))} otherwise

(2.40)

The first two cases consider empty sequences and terminate the recursion. In the
third case, the three arguments of the minimum operator correspond to the three
edit operations insert, delete, and change. To compute Li j we have to compute all
Lst , s = 1, . . . , i, t = 1, . . . , j. A direct implementation of the recursive definition
of the edit distance is inefficient because it computes many values of Lst multiple
times. Fig. 2.2 shows an efficient iterative implementation of the edit distance that
computes each Lst only once. This algorithm first initializes the distances of the
empty sequences Ls0 = s, s = 1, . . . , i, and L0t = t, t = 1, . . . , j, and then iteratively
computes new distance values Lst from the already computed distances Ls−1 t , Lst−1,
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for s = 1, . . . , i
Ls0 = s

for t = 1, . . . , j
L0t = t

for s = 1, . . . , i
for t = 1, . . . , j

Lst = min{Ls−1 t +1,
Lst−1 +1,
Ls−1 t−1+ρ(x(s),y(t))}

Fig. 2.2 An iterative algorithm to computer the edit distance Li j.

C L E O P A T R A
0 1 2 3 4 5 6 7 8 9

C 1 0 1 2 3 4 5 6 7 8
A 2 1 1 2 3 4 4 5 6 7
E 3 2 2 1 2 3 4 5 6 7
S 4 3 3 2 2 3 4 5 6 7
A 5 4 4 3 3 3 3 4 5 6
R 4 5 5 4 4 4 4 4 4 5

Fig. 2.3 Edit distance matrix for the sequences CAESAR and CLEOPATRA.

C A E S A R
0 1 0 1 1 0 1 0 1 ⇒ 5
C L E O P A T R A

Fig. 2.4 Edit operations to convert the sequence CAESAR into the sequence CLEOPATRA.

and Ls−1 t−1. The algorithm in Fig. 2.2 computes L column by column. Instead, L
can also be computed row by row or in a diagonal scheme.

Fig. 2.3 shows the edit distance matrix L for the alphanumerical character se-
quences CAESAR and CLEOPATRA. Each matrix element is computed as the min-
imum of its top neighbor plus one, left neighbor plus one, and top left diagonal
neighbor plus the corresponding character distance. The resulting edit distance be-
tween both sequences in the bottom right value, in this case 5. This means, that we
need at least five edit operations to convert the sequence CAESAR into the sequence
CLEOPATRA and vice versa. Fig. 2.4 shows five such edit operations: change char-
acter 2, change character 4, insert character 5, insert character 7, and insert character
9.
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Fig. 2.5 Continuous signal and sampled time series.

2.8 Sampling and Quantization

In the previous section we have considered finite discrete sequences of features or
feature vectors. In many cases such a sequence is obtained by sampling a continuous
signal x(t) with a fixed sampling period T , for example by measuring the room
temperature every ten minutes, so we obtain the time series

xk = x(k ·T ), k = 1, . . . ,n (2.41)

Fig. 2.5 shows an example of such a signal and the corresponding sampled time se-
ries (vertical bars starting at zero). The time series contains only individual samples
of the continuous signal, but it does not contain any information about the infinitely
many points of the signal between any pair of adjacent samples, so it covers only a
part of the information contained in the signal. Increasing the sampling period will
decrease the information of the time series until the time series will not provide any
valuable information about the time series any more. Decreasing the sampling pe-
riod will lead to a more accurate match between the time series and the signal, but
it will also increase the required amount of memory to store the samples. To find a
good compromise between these extremes we want to find the largest possible sam-
pling period for which the time series contains all relevant information about the
time series.

Any finite continuous signal can be represented as a sum of periodic signals with
different frequencies (see chapter 4). A signal x(t) is called band limited if the max-
imum frequency fmax is finite, so the Fourier spectrum is |x( j2π f )| = 0 for | f | >
fmax. If this signal is sampled with a sampling period less than Ts = 1/(2 · fmax),
or equivalently a sampling frequency larger than fs = 2 · fmax, then the original sig-
nal can be completely reconstructed from the (infinite) time series. This is called
Shannon’s sampling theorem. The condition T ≤ Ts (or f ≥ fs) is called the Nyquist
condition. Fig. 2.6 shows three time series obtained from the original signal at the
left view of Fig. 2.5 using three different sampling periods. The left time series is
sampled with T < 1/(2 · fmax), so the Nyquist condition holds, and the piecewise
linear reconstruction of the signal matches well the original signal. The middle time
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Fig. 2.6 Sampled time series for different sampling periods and reconstructed signals.

series is sampled with T = 1/(2 · fmax), so it is at the edge of the Nyquist condi-
tion, and the reconstruction still matches the original signal. Notice however, that
the match would be worse if the sampling times were delayed (a so-called phase
shift). For a delay of T/2 the samples would be all zero for this example, yielding
zero information about the original signal. The sampling period should therefore be
chosen well below the Nyquist condition. Finally, the right time series is sampled
with T > 1/(2 · fmax), so the Nyquist condition does not hold, and the reconstructed
signal is very different from the original signal.

In many data analysis projects only sampled data and not the original signals are
available. Given only the sampled data, it is not possible to find out whether or not
sampling was done according to the Nyquist condition. Therefore, it is often useful
to discuss this issue with the data providers.

The first part of this section considered discretization in time, called sampling.
Now we consider the discretization of the data values, called quantization. Quan-
tization applies to analog values that are digitized with finite precision as well as
digital values whose precision is reduced in order to save memory or to speed up
data transmission. Quantization matches the continuous interval [xmin,xmax] to the
set of discrete values {x1, . . . ,xq}, where q is the number of quantization levels. Do
not confuse the quantization levels x1, . . . ,xq with the time series or the feature val-
ues for different objects. Each quantized value can be represented as a b = �log2 q�
bit binary number, for example. Each continuous value x ∈ [xmin,xmax] can be trans-
lated to a quantized value xk ∈ {x1, . . . ,xq} or an index k ∈ {1, . . . ,q} by rounding.

xk−1+xk
2 − x1

xq − x1
≤ x− xmin

xmax − xmin
<

xk+xk+1
2 − x1

xq − x1
(2.42)

The quantization process causes a quantization error. The left view of Fig. 2.7 shows
the quantization of the signal from the left view of Fig. 2.5 for q = 11 equidistant
quantization levels {−1,−0.8, . . . ,1}. The quantization levels appear as horizontal
lines (stairs) in the curve. The right view of Fig. 2.7 shows the quantization error
e(t) = x(t)− xq(t). In this case the quantization levels are equidistant, xi = x1 +
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Fig. 2.7 Quantized data and quantization error.

(i− 1) ·Δx, i = 1, . . . ,q, Δx = (xq − x1)/(q− 1), so the quantization error is in the
interval e(t)∈ [−Δx/2,Δx/2). Therefore, quantization causes an additive error with
the maximum absolute value |e| ≤ Δx/2. To keep the quantization error low, the
quantization levels should be close, i.e. Δx should be small or q should be large.

A binary number with b bits can represent integers between x1 = 0 and xq =
2b − 1. The relative quantization error can then be estimated as |e/(xq − x1)| ≤
100%/2/(2b − 1) ≈ 100%/2b+1. For conventional values of b ≥ 8 this quantiza-
tion error can often be practically ignored, if the limits xmin and xmax are chosen
appropriately. If the range xmax−xmin is much higher than the actual variation of the
data, then the quantized data might appear constant or possibly exhibit sudden jumps
caused by the borders of the quantization levels. For example, if the room temper-
ature in degrees Celsius is represented with 8 bits and [xmin,xmax] = [0◦C,1000◦C],
then temperatures between about 13.72◦C and 17.65◦C correspond to the quanti-
zation level 4, and temperatures between about 17.65◦C and 21.57◦C correspond
to the quantization level 5. Normal room temperature will therefore yield only the
values 4 or 5, and the only information contained in the quantized data is whether
or not the temperature threshold of 17.65◦C is exceeded.

Problems

2.1. A cake recipe says ”bake the cake at 350 degrees Farenheit for 45 minutes”.
What are the scales of the bold data?

2.2. What are the values of the suitable statistics for X = {1,2,3,4,4}, if the data
are (a) nominal, (b) ordinal, (c) interval scaled?

2.3. Compute the (a) Euclidean, (b) city block, (c) Hamming, and
(d) edit distance between (0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1) and
(1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0).

2.4. Which of the following functions are similarity or dissimilarity measures?
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f (x,y) =
{

1 if x = y
0 otherwise

(2.43)

f (x,y) =
x · yT√

x · xT · y · yT
(2.44)

f (x,y) = tanh
(
(x− y) · (x− y)T) (2.45)

f (x,y) = cos
(
(x− y) · (x− y)T) (2.46)
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Chapter 3
Data Preprocessing

Abstract In almost all real applications, data contain errors and noise, need to be
scaled and transformed, or need to be collected from different and possibly het-
erogeneous information sources. We distinguish deterministic and stochastic errors.
Deterministic errors can sometimes be easily corrected. Outliers need to be iden-
tified and removed or corrected. Outliers or noise can be reduced by filtering. We
distinguish many different filtering methods with different effectiveness and compu-
tational complexities: moving statistical measures, discrete linear filters, finite im-
pule response, infinite impulse response. Data features with different ranges often
need to be standardized or transformed.

3.1 Error Types

Data often contain errors that may cause incorrect data analysis results. We distin-
guish stochastic and deterministic errors. Examples for stochastic errors are mea-
surement or transmission errors, which can be modeled by additive noise. The left
view of Fig. 3.1 shows again the data set from the right view of Fig. 2.5. To mimic a
corresponding data set containing stochastic errors we generate Gaussian noise data
using a random generator that produces data following a Gaussian distribution with
mean zero and standard deviation 0.1, a so-called N(0,0.1) distribution. The mid-
dle and right views of Fig. 3.1 show the Gaussian noise data and the data obtained
by adding the noise to the original data, respectively. The original (left) and noisy
(right) data look very similar, and in fact low noise has often only little impact on
data analysis results.

Another type of problematic data are outliers, which are defined as individual
data with large deviations from normal. Outliers may be caused by stochastic or
deterministic effects, for example by extreme individual measurement errors, or
by packet losses in data transmission. In manual data assessment outliers may be
caused when individual data are stored in the wrong data fields, by typos, especially
when the decimal point is put at the wrong position. Decimal point errors may also

21T. A. Runkler, Data Analytics, DOI 10.1007/978-3-8348-2589-6_ , 
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Fig. 3.1 Original data, Gaussian noise, and noisy data.
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Fig. 3.2 Original data, outliers, and drift.

be caused by a deterministic effect, for example when data are exchanged between
systems using different meanings for the . and , characters, so 1.234 might be
transformed to 1,234, which may refer to 1.234 · 100 and 1.234 · 103, depending
on country specific notation, and therefore differ by a factor of 1000.

Other types of deterministic errors include the use of wrong formulas for the
computation of derived data, or measurement errors caused by wrong calibration,
wrong scaling, or sensor drift. Data with such deterministic errors can be corrected,
if the error systematic is known.

Fig. 3.2 shows the data set from above again (left), the same data with two outliers
(middle), and distorted by a drift effect (right). It is not easy to see the two outliers
in the middle view of Fig. 3.2 (marked with little arrows), but they may have a
big impact on the data analysis results, so outlier handling is an important issue in
data preprocessing. Unlike the outliers in this example, sometimes outliers can be
detected, because they significantly deviate from the global distribution of all the
other data. Such severe outliers can be identified, for example, by the 2-sigma rule
that classifies a data vector xk ∈ X as outlier if at least one feature deviates from the
(feature) mean by at least twice the (feature) standard deviation (sigma).
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xk ∈ X is outlier ⇔ ∃i ∈ {1, . . . , p}.
∣∣∣∣∣x

(i)
k − x̄(i)

s(i)x

∣∣∣∣∣> 2 (3.1)

where x̄(i) denotes the mean (2.1) and s(i)x denotes the standard deviation of the ith

feature.

s(i)x =

√
1

n− 1

n

∑
k=1

(x(i)k − x̄(i))2 =

√√√√ 1
n− 1

(
n

∑
k=1

(
x(i)k

)2 − n
(
x̄(i)
)2

)
(3.2)

More generally, m-sigma rules with arbitrary values of m can be defined accordingly.
We already mentioned above that the outliers in the middle view of Fig. 3.2

can not be identified by the 2-sigma rule, because they are local outliers inside the
global data distribution. Such data are called inliers. In time series, inliers can be
better detected by approaches that consider the differential change of subsequent
values. An alternative is the use of filtering methods that not only detect outliers but
also mitigate them.

Outlier handling should be used with caution, because sometimes data contain
unusual but correct data that contain valuable information and should therefore not
be removed. For example, if a production plant produces a product with an unusu-
ally high or low quality, then the corresponding production data might be removed as
outliers, although they might be highly important to identify the influence of specific
production parameters on the product quality. Another example for true anomalies
are earthquake events in seismographic records. To distinguish such exotic but valu-
able data from erroneous data it is often necessary to consult with domain experts.

Invalid data can be detected when their feature values are outside the admissible
range. Such outliers can be identified by comparison with feature limits x(i)min and

x(i)max, i = 1, . . . , p.

xk ∈ X is invalid ⇔ ∃i ∈ {1, . . . , p}.
(

x(i)k < x(i)min

)
∨
(

x(i)k > x(i)max

)
(3.3)

The feature limits may be defined by the sign (price, weight, time), the sensor range,
the time interval of considered data, or the range of physically meaningful values.

Constant data features may be erroneous or correct.

x(i)k = x(i)l ∀k, l = 1, . . . ,n (3.4)

Such constant features do not contain useful information, but they may cause prob-
lems with some data analysis methods and should therefore be removed from the
data set.
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3.2 Error Handling

If outliers, invalid, or missing data are identified, these can be handled in various
ways:

1. invalidity list: the data stay unchanged, but the indices of the invalid data are
stored in a separate list that is checked in each data processing step.

2. invalidity value: the outlier datum x(i)k is replaced by a specific invalidity value

x(i)k = NaN, where NaN stands for not a number. In the 64 bit IEEE floating
number format NaN is defined as $7FFFFFFF.

3. Correction or estimation of x(i)k : Only individual features of individual vectors
are corrected (if invalid) or estimated (if missing). This can be done in various
ways:

a. replacing invalid data by the mean, median, minimum, or maximum of the
valid feature data xi.

b. nearest neighbor correction: Set x(i)k = x(i)j with

‖x j − xk‖¬i = min
l∈{1,...,n}

‖xl − xk‖¬i (3.5)

where ‖.‖¬i ignores feature i and invalid or missing data.
c. linear interpolation for equidistant time series

x(i)k =
x(i)k−1 + x(i)k+1

2
(3.6)

d. linear interpolation for non-equidistant time series

x(i)k =
x(i)k−1 · (tk+1 − tk)+ x(i)k+1 · (tk − tk−1)

tk+1 − tk−1
(3.7)

e. nonlinear interpolation, for example using splines [1]
f. filtering (see below)
g. model-based estimation by regression (see chapter 6)

4. outlier removal: the complete vector xk is removed.

The choice of a method depends on the number of available data and on the rela-
tive percentage of the outliers. If only a few data are available, and assessment of
additional data is difficult or even impossible, then it is often worth the effort to
estimate missing data and to correct invalid data. If sufficient data are available and
data quality is important, then suspicious data should be completely removed.
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Fig. 3.3 Some important filtering methods for series data.

3.3 Filtering

Using the methods discussed in the previous section outliers are removed by chang-
ing only individual data. The filtering methods presented in this section specifically
consider series data, and they typically change all values of the series. The goal is
not only to remove outliers but also to remove noise. Fig. 3.3 shows a categorization
of the different filter types presented here.

A widely used class of filters uses statistical measures over moving windows.
To compute the filtering result for each value xk, k = 1, . . . ,n, all series values in
a local window around xk are considered and the filter output yk is the value of a
statistical measure of the data in this window. Symmetric windows of the odd order
q ∈ {3,5,7, . . .} consider the window wkq = {x

k− q−1
2
, . . . ,x

k+ q−1
2
} which contains

xk, the (q− 1)/2 previous values and the (q− 1)/2 following values. Symmetric
windows are only suitable for offline filtering when the future values of the series
are already known. Asymmetric windows of the order q ∈ {2,3,4, . . .} consider the
window wkq = {xk−q+1, . . . ,xk} which contains xk and the q− 1 previous values.
Asymmetric windows are also suitable for online filtering and are able to provide
each filter output yk as soon as xk is known.

The mean value is often used as the statistical measure for the data in the win-
dow. This yields the symmetric (3.8) and asymmetric (3.9) moving mean or moving
average of the order q defined as

yk =
1
q

k+ q−1
2

∑
i=k− q−1

2

xi (3.8)
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Fig. 3.4 Original data and moving mean filtered data, q = 21 and q = 201.

yk =
1
q

k

∑
i=k−q+1

xi (3.9)

The left view of Fig. 3.4 shows a time series X = {x1, . . . ,xn} generated from cosine
data with additive noise and one strong outlier. The middle and right views of Fig.
3.4 show the output of asymmetric moving means for q = 21 (middle) and q = 201
(right). In both filtered time series the noise is substantially reduced. For q= 201 the
noise is almost completely eliminated. The amplitude of the outlier is reduced from
2 to about 0.5 (q = 21) and 0.1 (q = 201). Better filter effects can be achieved by
larger values of the window size q, but q− 1 data points are lost by filtering, so the
window size should be much smaller than the length of the time series to be filtered,
q � n.

In the previous chapter we discussed the median as a statistical measure for or-
dinal, interval, and ratio scaled data. Using the median as the statistical measure
over symmetric or asymmetric moving windows yields the symmetric and asym-
metric moving median or median filter of the order q defined as mkq ∈ wkq =
{x

k− q−1
2
, . . . ,x

k+ q−1
2
} or wkq = {xk−q+1, . . . ,xk} with

|{xi ∈ wkq | xi < mkq}|= |{xi ∈ wkq | xi > mkq}| (3.10)

where |.| denotes the set cardinality. Fig. 3.5 shows the same situation as in Fig. 3.4,
but with the moving median instead of the moving mean. For the same window size,
the moving mean and the moving median achieve similar degrees of noise reduction,
but the moving median achieves a much better suppression of the outlier.

The third family of filtering methods presented here is the exponential filter. The
exponential filter works best with slow changes of the filtered data, so each value of
the filter output yk is similar to the previous value of the filter output yk−1, except
for a correction term that is computed as a fraction η ∈ [0,1] of the previous filter
error xk−1 − yk−1. So, the exponential filter is defined as

yk = yk−1 +η · (xk−1 − yk−1), k = 1, . . . ,n− 1 (3.11)
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Fig. 3.5 Original data and moving median filtered data, q = 21 and q = 201.
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Fig. 3.6 Original data and exponentially filtered data, η = 0.1, 0.01, and 0.001.

with an initial filter output y0 = 0. The current filter output yk is affected by each
past filter output yk−i, i = 1, . . . ,k − 1, with the multiplier (1 − η)i, so the filter
exponentially forgets previous filter outputs, hence the name exponential filter. For
η = 0 the exponential filter simply maintains the initial value yk = y0 = 0. For η = 1
it simply repeats the previous filter input, yk = xk−1. Fig. 3.6 shows the output of the
exponential filter for the example data set in Figs. 3.4 and 3.5, with the parameters
η = 0.1, 0.01, and 0.001. The higher the value of η , the higher the noise reduction.
The outlier suppression is much weaker than with the median filter. Notice the lag
for smaller values of η . For η = 0.001 the filter output is not able to follow the
amplitude of the original data any more. So, for the exponential filter the parameter
η has to be chosen carefully. It has to be small enough to achieve a sufficient filter
effect but large enough to maintain the essential characteristics of the original data.

The moving mean and the exponential filter are special cases of the more general
family of discrete linear filters. An asymmetric discrete linear filter of the order
q = 1,2, . . . is defined by

q−1

∑
i=0

ai · yk−i =
q−1

∑
i=0

bi · xk−i (3.12)
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with the filter coefficients a0, . . . ,aq−1,b0, . . . ,bq−1 ∈R [3]. The output of an asym-
metric discrete linear filter can be written as

yk =
q−1

∑
i=0

bi

a0
· xk−i −

q−1

∑
i=1

ai

a0
· yk−i (3.13)

For simplicity we consider only the asymmetric case here. The reader may easily
modify the indices to obtain the equations for the symmetric discrete linear filter.
The properties of a discrete linear filter are specified by the coefficient vectors a =
(a0, . . . ,aq−1) and b = (b0, . . . ,bq−1), where a0 �= 0. If a1 = . . . = aq−1 = 0, then
the filter output yk only depends on the inputs xk−q+1, . . . ,xk, and is independent of
the previous outputs yk−q+1, . . . ,yk−1, so a change in the input xk affects only the
current output yk and the following outputs yk+1, . . . ,yk+q−1, and is then completely
forgotten. For a1 = . . . = aq−1 = 0, a discrete linear filter is therefore called a finite
impulse response (FIR) filter. Otherwise, we call the discrete linear filter an infinite
impulse response (IIR) filter. Fig. 3.7 shows the data flow graph of an FIR filter.
Each circle with a plus sign (+) represents the addition of the node inputs, each
labeled edge represents multiplication by the values of the edge label, and each
empty cirle represents a time delay of one step, i.e. in each step the current value is
stored and the previous value is retrieved (a so-called register). The FIR data flow
graph is a sequence of q stages, where each stage requires a multiplication, addition,
and storage. Fig. 3.8 shows the data flow graph of an IIR filter. Each stage of the IIR
data flow graph requires two multiplications, an addition of three arguments, and the
storage of two values. So-called signal processors provide dedicated hardware units
that are able to compute individual FIR and IIR stages in only a few clock cycles,
which enables very fast filtering.
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Fig. 3.9 Original data, FIR low pass filter (order 21) filtered data, and FIR filter coefficients.

The moving mean and exponential filter are special cases of discrete linear filters.
Inserting the coefficient vectors a = (1,η − 1), b = (0,η) into (3.13) yields

yk = η · xk−1 − (η − 1) · yk−1 = yk−1 +η(xk−1 − yk−1) (3.14)

which is equal to the exponential filter at (3.11). Inserting the coefficient vectors

a = (1), b = (
1
q
, . . . ,

1
q︸ ︷︷ ︸

q times

) into (3.13) yields

yk =
q−1

∑
i=0

1
q
· xk−i =

1
q

k

∑
i=k−q+1

xi (3.15)

which is equal to the (asymmetric) moving mean at (3.9). The moving mean of
order q = 2 is also called a first order FIR low pass filter which means that it lets
the low frequencies pass. Many other types of low pass, high pass, and other filter
types have been defined. FIR or IIR filters of specific types with desired properties
can be designed using filter coefficient tables in books or electronic form as well as
software tools for filter design.

Fig. 3.9 shows the example data set (Figs. 3.4-3.6 left), the output of an FIR low
pass filter of order 21 (middle), and the corresponding filter parameters b0, . . . ,b21

(right). All filter coefficients b are positive and are on a symmetric bell-shaped curve.
The largest value has the middle coefficient b10, and the sum of all coefficients is
b0 + . . .+ b21 = 1. As for all FIR filters, we have a = (1).

A popular family of IIR filters are the so-called Butterworth filters [2]. A first
order Butterworth low pass filter with limit frequency ωg = 0.5 has the filter coeffi-
cients a = (1), b = (0.5,0.5), and corresponds to the first order FIR low pass filter
and the second order moving mean. Table 3.1 shows the filter coefficients for the
second order Butterworth low pass filter for the limit frequencies ωg = 0.01, 0.003,
and 0.001. All filter coefficients are positive, and we have 2 · b0 = b1 = 2 · b2. For
ωg → 0 we apparently obtain a = (1,−2,1) and b = (0,0,0). This corresponds to
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Table 3.1 Filter coefficients for the second order Butterworth low pass filter for different limit
frequencies.

ωg a0 a1 a2 b0 b1 b2

0.01 1 −1.96 0.957 2.41 ·10−4 4.83 ·10−4 2.41 ·10−4

0.003 1 −1.99 0.987 2.21 ·10−5 4.41 ·10−5 2.21 ·10−5

0.001 1 −2 0.996 2.46 ·10−6 4.92 ·10−6 2.46 ·10−6
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Fig. 3.10 Original data and second order Butterworth low pass filtered data, ωg = 0.01, 0.003, and
0.001.

an autoregressive system with

yk =−2yk−1 + yk−2 (3.16)

which for zero initialization y0 = y1 = 0 yields constant zero outputs yk = 0, and
is unstable for all other initializations. Fig. 3.10 shows the output of second order
Butterworth low pass filters with the parameters from Table 3.1. For ωg = 0.01,
noise and outliers are considerably reduced. Smaller limit frequencies cause the
same effect that we already observed for exponential filters (Fig. 3.6): The filter
output lags the filter input more and more as ωg decreases, until for ωg → 0 the
output becomes zero. These IIR low pass filters have only 6 parameters, as opposed
to the 22 parameters of the FIR low pass filter from Fig. 3.9. Compared to FIR
filters, IIR filters need less parameters and require a lower computational effort, but
are more sensitive to changes in their parameters and may become unstable.

3.4 Data Transformation

Different features may have considerably different ranges. For example, the price
of a car in Euros and its horse power may differ by several orders of magnitude.
If such features are used together, incorrect results may be obtained because the
ranges of the features are so different. The left view of Fig. 3.11 shows a data
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Fig. 3.11 Two features with distinct ranges: original data and standardized data.

set which is randomly generated using two-dimensional Gaussian distribution with
mean μ = (30000,100) and standard deviation s = (9000,30), so the two features
are uncorrelated and differ by a factor of 300. The data set appears as a horizontal
line close to zero, so only the first (larger) feature is visible. This visualization might
be appropriate, for example if the features are the lengths and widths of steel tubes in
millimeters. But it might be inappropriate if the features are the price (in Euros) and
horse power of cars, which might be considered equally important features. Also the
choice of the feature units might be arbitrary. In our example it should not matter
if we measure the car’s power in horse power, kilowatts, or watts. In such cases it
is useful to transform the feature data to similar data ranges. This transformation
is called standardization. The minimal hypercube of a p-dimensional data set X is
defined as

H(X) = [min{X (1)},max{X (1)}]× . . .× [min{X (p)},max{X (p)}] (3.17)

so H(X) contains all points in X , or X ⊆H. If X contains outliers or covers only part
of the actually relevant feature space, then it might be more suitable not to consider
the observed minimal hypercube but the relevant hypercube

H∗(X) = [x(1)min,x
(1)
max]× . . .× [x(p)

min,x
(p)
max] (3.18)

where the limits xmin and xmax might come from X , so xmin = min{X (i)} or xmax =
max{X (i)}, or might be arbitrarily defined. In a suitable representation of the data
all edges of the hypercube should have the same lengths. This corresponds to the
transformation

y(i)k =
x(i)k − x(i)min

x(i)max − x(i)min

(3.19)

that is called hypercube standardization.
Alternative standardization methods use statistical transformations of the data set

X , for example using the mean x̄ (2.1) and the standard deviation sx (3.2) of each
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feature, which leads to the so-called μ-σ -standardization

y(i)k =
x(i)k − x̄(i)

s(i)x

(3.20)

The right view of Fig. 3.11 shows the μ-σ -standardization of the data set shown on
the left. The standardized data do not appear as a line but as a point cloud that possi-
bly reflects the data structure more appropriately, but this depends on the semantics
of the data, as pointed out before.

Hypercube standardization is appropriate for uniformly distributed features, and
μ-σ -standardization is appropriate for Gaussian distributed features. Many features
can be at least approximately viewed as uniformly or Gaussian distributed. Other
features, however, might be better modeled as asymmetric distributions with an up-
per or lower bound. For example, time differences between random events like order
arrivals may follow a Poisson distribution that always yields positive values (lower
bound zero) but allows arbitrarily large values with low probabilities (upper bound
infinity). Hypercube or μ-σ -standardization would not yield reasonable represen-
tations of such features. Instead, such features are often first transformed such that
the resulting distribution can be better approximated by uniform or Gaussian dis-
tributions. To choose an appropriate transformation it is useful to first consider the
observed and the desired data range. The following list presents some frequently
used data tranformations and the corresponding data ranges.

• inverse transformation f : R\{0}→ R\{0}

f (x) = f−1(x) =
1
x

(3.21)

• root transformation f : (c,∞)→R
+

f (x) = b
√

x− c (3.22)

f−1(x) = xb + c, c ∈ R, b > 0 (3.23)

• logarithmic transformation f : (c,∞)→ R

f (x) = logb(x− c) (3.24)

f−1(x) = bx + c, c ∈ R, b > 0 (3.25)

• Fisher-Z transformation f : (−1,1)→ R

f (x) = artanh x =
1
2
· ln 1+ x

1− x
(3.26)

f−1(x) = tanh x =
ex − e−x

ex + e−x (3.27)
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Fig. 3.12 Feature based merging of data sets.

3.5 Data Merging

Often the relevant data are not contained in a single data set but come from different
data sets, files, data bases, or systems. For example, prices, sales figures, logistics
data, and manufacturing parameters might be stored in different data sets and might
have to be merged, i.e. feature vectors from different data sets have to be assigned to
each other. This assignment can be done based on specific label features like codes
of people or objects, (relative) time stamps, or (relative) locations. Fig. 3.12 shows
the scheme of feature based merging two data sets. Feature vectors with the same
labels are concatenated. Suitable mechanisms need to be defined if the labels only
match approximately, for example, two time stamps 10:59 and 11:00 might be
considered equivalent. Missing data might be generated if a label in one data set
does not match labels in all other data sets.

Problems

3.1. Does {0,0,0,1,0,0,0} contain noise, outliers, or inliers?

3.2. Find the outliers and inliers in the following data sets: (a) {1,1,1,1,4,2,2,2,2},
(b) {1,2,3,4,5,1,3,2,1}, (c) {(2,9),(1,9),(2,1),(2,8),(1,7),(1,8),(2,7)}.

3.3. Compute the output of (a) an asymmetric moving mean filter, q = 3, (b) an
asymmetric moving median filter, q = 3, (c) an exponential filter, y0 = 0, η = 0.5
for the time series (0,0,0,1,0,0,0). Which filter result do you like best?

3.4. Standardize {(−1,−10),(1,10)}.

References

1. B. A. Barsky and D. P. Greenberg. Determining a set of B–spline control vertices to generate an
interpolating surface. Computer Graphics and Image Processing, 14(3):203–226, November
1980.

2. S. Butterworth. On the theory of filter amplifiers. Wireless Engineer, 7:536–541, 1930.



34 3 Data Preprocessing

3. A. V. Oppenheim, R. W. Schafer, and J. R Buck. Discrete–Time Signal Processing. Prentice
Hall, 1999.



Chapter 4
Data Visualization

Abstract Data can often be very effectively analyzed using visualization tech-
niques. Standard visualization methods for object data are plots and scatter plots. To
visualize high-dimensional data, projection methods are necessary. We present lin-
ear projection (principal component analysis, Karhunen-Loève transform, singular
value decomposition, eigenvector projection, Hotelling transform, proper orthog-
onal decomposition) and nonlinear projection methods (multidimensional scaling,
Sammon mapping, auto-associator). Data distributions can be estimated and visual-
ized using histogram techniques. Periodic time series can be analyzed and visualized
using spectral analysis (cosine and sine transforms, amplitude and phase spectra).

4.1 Diagrams

The human eye (and brain) is a very powerful tool for analyzing data. There-
fore, data visualization plays an important role in data analysis [1, 10]. Visual-
ized data are also useful for documenting and communicating data analysis results,
for example for discussions with domain experts. Paper and screens allow for two-
dimensional visualization. Projection methods are required for the visualization of
higher-dimensional data. Fig. 4.1 shows the visualization and projection methods
presented in this chapter.

Two-dimensional visualization uses two orthogonal coordinate axes and repre-
sents each feature vector as a point in the coordinate system. The visualization
of only one feature is called a (simple) diagram. Visualizations of more than one
feature can be done with scatter diagrams. A two-dimensional scatter diagram
matches each feature to one of the two coordinate axes, so the feature plane matches
the visualization plane. Higher-dimensional scatter diagrams project the higher di-
mensional feature space to the two-dimensional visualization plane or use specific
symbols (geometric characters, numbers, grey values, or colors) to represent spe-
cific features. Three-dimensional scatter diagrams often use linear projections of
the three-dimensional feature space to the two-dimensional visualization plane.

35T. A. Runkler, Data Analytics, DOI 10.1007/978-3-8348-2589-6_ , 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012 

4



36 4 Data Visualization

visualization

spectrum

histogram

scatter diagram

diagram

associator
auto-

mapping
Sammon

scaling
multidimensional

nent analysis
principal compo-

projection
axis-parallel

projection

Fig. 4.1 Visualization and projection methods.
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Fig. 4.2 Simple diagram, two-dimensional and three-dimensional scatter diagram.

Fig. 4.2 shows a three-dimensional data set X = {(x1,y1,z1), . . . ,(xn,yn,zn)} as
a simple diagram X (1) = {x1, . . . ,xn} (left), as a two-dimensional scatter diagram
X (1,2) = {(x1,y1), . . . ,(xn,yn)} (middle), and as a three-dimensional scatter diagram
X (1,...,3) = {(x1,y1,z1), . . . ,(xn,yn,zn)} (right). The simple diagram shows only the
first feature, the two-dimensional scatter diagram displays the first and the second
features, and the three-dimensional scatter diagram displays all three features. A
three-dimensional scatter plot is only useful if the viewpoint is chosen appropri-
ately. The simplest kind of projections are axis-parallel projections. In chapter 6
we will present feature selection methods which yield axis-parallel projections. Fig.
4.3 shows the three two-dimensional axis-parallel projections (x,y), (x,z), and (y,z)
of the three-dimensional data set from above. Such axis-parallel projections can be
simply produced by omitting the features x, y, or z. The two-dimensional diagrams
then display the remaining pairs of features. In this example, the axis-parallel pro-
jections do not allow us to appropriately assess the geometric relation between the
three features. In the next sections we present more sophisticated linear and nonlin-
ear projection methods for the visualization of high-dimensional data.
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Fig. 4.4 Principal component analysis.

4.2 Principal Component Analysis

The principal component analysis (PCA) [4] is also called Karhunen-Loève trans-
form, singular value decomposition (SVD), eigenvector projection, Hotelling trans-
form, or proper orthogonal decomposition. The main idea of PCA is to find a linear
projection of the data that optimally matches the data structure in the well defined
sense of accounting for the maximum amount of variance that can be captured in
the lower dimensional representations of the data. Fig. 4.4 shows a two-dimensional
data set. A projection of these data to the axes y1 and y2 maximizes the amount of
original variance that can be captured by any linear projection. The vectors y1 and
y2 are called the main axes or principal components of the data set, hence the name
principal component analysis.

PCA performs a linear transform of a data set X , which consists of a translation
and a rotation.

yk = (xk − x̄) ·E (4.1)

where E is a rotation matrix that has to be determined from X . The corresponding
inverse transform is

xk = yk ·ET + x̄ (4.2)
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To determine the rotation matrix E , the variance of Y is maximized. The variance of
Y can be written as

vy =
1

n− 1

n

∑
k=1

yT
k yk (4.3)

=
1

n− 1

n

∑
k=1

(
(xk − x̄) ·E)T · ((xk − x̄) ·E) (4.4)

=
1

n− 1

n

∑
k=1

ET · (xk − x̄)T · (xk − x̄) ·E (4.5)

= ET

(
1

n− 1

n

∑
k=1

(xk − x̄)T · (xk − x̄)

)
·E (4.6)

= ET ·C ·E (4.7)

where C is the covariance matrix of X . The elements of the covariance matrix are

ci j =
1

n− 1

n

∑
k=1

(x(i)k − x̄(i))(x( j)
k − x̄( j)), i, j = 1, . . . , p (4.8)

The transformation matrix E should only represent a rotation, not a dilation, so we
require

ET ·E = 1 (4.9)

This leads to a constrained optimization problem that can be solved using Lagrange
optimization. For details on Lagrange optimization please refer to the appendix.
The variance (4.7) can be maximized under the constraint (4.9) using the Lagrange
function

L = ETCE −λ (ET E − 1) (4.10)

The necessary condition for optima of L is

∂L
∂E

= 0 (4.11)

⇔ CE +ETC− 2λ E = 0 (4.12)

⇔ CE = λ E (4.13)

Equation (4.13) defines an eigenproblem which can be solved, for example, by con-
version into the homogeneous equation system

(C−λ I) ·E = 0 (4.14)

The rotation matrix E is the concatenation of the eigenvectors of C.

E = (v1, . . . ,vp), (v1, . . . ,vp,λ1, . . . ,λp) = eig C (4.15)

The variances in Y correspond to the eigenvalues λ1, . . . ,λp of C because
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CE = λ E ⇔ λ = ETCE = vy (4.16)

This means that PCA not only yields the coordinate axes in Y and the transformation
matrix that maximizes the variances in Y but also the values of these variances. This
can be used for a dimension reduction that maximizes the variances. To map a data
set X ⊂R

p to a data set Y ⊂R
q with 1≤ q< p, we can use a rotation (and projection)

matrix E generated by concatenating the eigenvectors with the q largest eigenvalues.

E = (v1, . . . ,vq) (4.17)

Choosing q = 2 allows us to display an approximation of a high-dimensional data
set in a two dimensional scatter plot. Dimension reduction is often applied to make
subsequent data processing more efficient. To reduce a high-dimensional data set to
only the most relevant features we might require that the projection covers a certain
percentage of the variances, say 95%, so we choose q to satisfy

q

∑
i=1

λi

/
p

∑
i=1

λi ≥ 95% (4.18)

For p = q, PCA performs a translation and a rotation of the data set, no projection,
so the inverse PCA completely recovers the original data and the transformation
error is zero. For q < p, PCA performs a projection that causes an information loss,
so inverse PCA yields x′k, k = 1, . . . ,n, with typically x′k �= xk. It can be shown that
the average quadratic transformation error is equal to the sum of the eigenvalues of
the omitted eigenvectors.

e =
1
n

n

∑
k=1

(xk − x′k)
2 =

p

∑
i=q+1

λi (4.19)

PCA chooses the eigenvectors with the largest eigenvalues, so PCA yields the pro-
jection with not only the largest variance but also the smallest quadratic transforma-
tion error. In our derivation of PCA we maximized the variance and found that the
same method minimizes the quadratic transformation error. PCA can also be derived
in the reverse order: if we minimize the quadratic transformation error, then we will
find that the same method maximizes the variance.

We illustrate PCA with a simple example. Fig. 4.5 shows the data set

X = {(1,1),(2,1),(2,2),(3,2)} (4.20)

with mean (2.1) and covariance (4.8)

x̄ =
1
2
· (4,3) (4.21)

C =
1
3
·
(

2 1
1 1

)
(4.22)
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Fig. 4.5 Principal component analysis, example.

and the eigenvalues and eigenvectors (4.15)

λ1 = 0.8727 (4.23)

λ2 = 0.1273 (4.24)

v1 =

(−0.85065
−0.52573

)
(4.25)

v2 =

(
0.52573
−0.85065

)
(4.26)

If we map the p = 2 dimensional data set to a q = 1 dimensional data set, then we
choose v1, the eigenvector with the largest eigenvalue, for the rotation matrix. This
projection covers 87% (4.23) of the variances and has a projection error of 13%
(4.24). The new coordinate system consists of only one axis that is shown in Fig.
4.5 as an arrow v1 originating at x̄. The rotation (and projection) matrix is

E = v1 =

(−0.85065
−0.52573

)
(4.27)

which yields the projected data (4.1)

Y = {1.1135,0.2629,−0.2629,−1.1135} (4.28)

Inverse PCA (4.2) yields

X ′ = { (1.0528,0.91459), (1.7764,1.3618),
(2.2236,1.6382), (2.9472,2.0854) } �= X

(4.29)

These projections X ′ are on the principal axis of X , the coordinate vector v1, see
Fig. 4.5 (right). Our example illustrates a PCA projection of a two-dimensional data
set to a one-dimensional data set. More frequently, PCA is used to map higher-
dimensional data, in particular to two-dimensional data for visualization.
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PCA is a linear mapping with low computational effort and high robustness.
Complex nonlinear data structures can not be appropriately projected by linear map-
pings but require nonlinear approaches. The following sections present three pop-
ular examples for such nonlinear projections: multidimensional scaling, Sammon
mapping, and auto-associators.

4.3 Multidimensional Scaling

Multidimensional scaling (MDS) [11] is a nonlinear mapping based on matrix de-
composition. Given the data matrix X ∈ R

n×p, eigendecomposition of the product
matrix XXT yields

XXT = QΛQT = (Q
√

Λ
T
) · (

√
ΛQT ) = (Q

√
Λ

T
) · (Q

√
Λ

T
)T (4.30)

where Q = (v1, . . . ,vn) is the matrix of eigenvectors of XXT and Λ is the diagonal
matrix whose diagonal elements are the corresponding eigenvalues of XXT , Λii = λi,
i = 1, . . . ,n. Using this eigendecomposition, an estimate for X is

Y = Q
√

Λ
T

(4.31)

To produce lower dimensional projections Y ⊂R
q, q< p, only the first q dimensions

are used and then scaled so that their squared norms are equal to the corresponding
eigenvalues.

MDS is not only suited to find a mapping Y from a data matrix X , but also from a
Euclidean distance matrix D. Assume that D is associated with a data set X̃ ∈R

n×p,
arbitrarily choose x̃a, a ∈ {1, . . . ,n}, as an anchor point, and transform X̃ to X in a
coordinate system with origin x̃a, so

xk = x̃k − x̃a (4.32)

k = 1, . . . ,n, and
x̃i − x̃ j = xi − x j (4.33)

i, j = 1, . . . ,n. Taking the scalar product of each side with itself yields

(x̃i − x̃ j)(x̃i − x̃ j)
T = (xi − x j)(xi − x j)

T (4.34)

⇒ d2
i j = xix

T
i − 2xix

T
j + x jx

T
j = d2

ia − 2xix
T
j + d2

ja (4.35)

⇒ xix
T
j = (d2

ia + d2
ja − d2

i j)/2 (4.36)

so the product matrix XXT can be computed from the Euclidean distance matrix D.
We illustrate MDS with the example data set from the previous section, so con-

sider again the data set from Fig. 4.5. Subtracting the mean yields
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X =

{
(−1,−1

2
),(0,−1

2
),(0,

1
2
),(1,

1
2
)

}
(4.37)

and the product matrix

XXT =
1
4

⎛
⎜⎜⎝

5 1 −1 −5
1 1 −1 −1

−1 −1 1 1
−5 −1 1 5

⎞
⎟⎟⎠ (4.38)

The largest eigenvalue and the corresponding eigenvector of XXT are

λ1 ≈ 2.618 (4.39)

v1 ≈

⎛
⎜⎜⎝

−0.6882
−0.1625

0.1625
0.6882

⎞
⎟⎟⎠ (4.40)

and with (4.31) we finally obtain the MDS projection

Y ≈

⎛
⎜⎜⎝

−0.6882
−0.1625

0.1625
0.6882

⎞
⎟⎟⎠√

2.618 ≈

⎛
⎜⎜⎝

−1.1135
−0.2629

0.2629
1.1135

⎞
⎟⎟⎠ (4.41)

The quality of this mapping can be visualized by a so-called Shepard diagram, a
scatter plot of the distances dy

i j in the projection versus the distances dx
i j of the orig-

inal data, i, j = 1, . . . ,n. For our example we have

Dx =

⎛
⎜⎜⎝

0 1
√

2
√

5
1 0 1

√
2√

2 1 0 1√
5
√

2 1 0

⎞
⎟⎟⎠≈

⎛
⎜⎜⎝

0 1 1.4142 2.2361
1 0 1 1.4142

1.4142 1 0 1
2.2361 1.4142 1 0

⎞
⎟⎟⎠ (4.42)

Dy ≈

⎛
⎜⎜⎝

0 0.8507 1.3764 2.2270
0.8507 0 0.5257 1.3764
1.3764 0.5257 0 0.8507
2.2270 1.3764 0.8507 0

⎞
⎟⎟⎠ (4.43)

Fig. 4.6 shows the corresponding Shepard diagram. Multiple points in the same
matrix triangle are displayed as ticks with circles. An optimal mapping would yield
only points on the main diagonal with dx

i j = dy
i j but this can usually not be achieved.

For this example MDS yields a Shepard diagram with several points very close to
the main diagonal but one point is quite distant (referring to dx

23 = dx
32 = 1 and

dy
23 = dy

32 ≈ 0.5257). So MDS yields a very good mapping for many pairwise dis-
tances at the expense of one distance that is not mapped well. The points in the
Shepard diagram are connected by dashed lines. In this example the line segments
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Fig. 4.6 Shepard diagram for MDS projection (four points data set).
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Fig. 4.7 Helix data set, MDS projection, and projection errors

show that the MDS mapping is monotonic, i.e. increasing dx does not decrease dy.
Finding such monotonic mappings is the purpose of an alternative method proposed
by Torgerson [9].

We further illustrate MDS using two more complex data sets. The first data set is
a 3D helix curve defined by

X = {(t,sin t,cost)T | t ∈ {0,0.1,0.2, . . . ,50}} (4.44)

Fig. 4.7 shows this data set (left), its MDS projection onto the plane (center), and
its projection error Δd = dy

i j − dx
i j over dx

i j (right). We plot the projection errors
Δd here because they are much lower than the distances dx, so a Shepard diagram
would only display a close approximate of the main diagonal. The MDS mapping
(Fig. 4.7, center) represents the data structure quite well, and the projection errors
are low. However, all of the projection errors are non-positive, so MDS exhibits a
tendency towards lower distances dy for this example. The second more complex
data set considered here is a 3D bent square defined by

X = {((t1 − 1) · (t2 − 1), t1, t2)
T | t1, t2 ∈ {0,0.1,0.2, . . . ,2}} (4.45)
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Fig. 4.8 Bent square data set, MDS projection, and projection errors

Fig. 4.8 shows this data set, its MDS projection onto the plane, and its projection
error. The MDS mapping represents the data structure vey well, but again the pro-
jection errors indicate a tendency towards lower dy.

4.4 Sammon Mapping

The idea of Sammon mapping [6] is to map a data set X ⊂ R
p to a data set Y ⊂ R

q

so that distances between pairs of elements of X are similar to the corresponding
distances between pairs of elements of Y .

dx
i j ≈ dy

i j (4.46)

i, j = 1, . . . ,n. Sammon mapping may also be used to produce a feature represen-
tation Y from a Euclidean distance matrix Dx. Y is found by minimizing the error
between Dx and Dy. Candidates for this error functional are

E1 =
1

n
∑

i=1

n
∑

j=i+1

(
dx

i j

)2

n

∑
i=1

n

∑
j=i+1

(
dy

i j − dx
i j

)2
(4.47)

E2 =
n

∑
i=1

n

∑
j=i+1

(
dy

i j − dx
i j

dx
i j

)2

(4.48)

E3 =
1

n
∑

i=1

n
∑

j=i+1
dx

i j

n

∑
i=1

n

∑
j=i+1

(
dy

i j − dx
i j

)2

dx
i j

(4.49)

The first factors in E1 and E3 depend only on X and may therefore be ignored in
the minimization. E1 is the absolute quadratic error, E2 is the relative quadratic
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Fig. 4.9 Four points data set: pairwise distances, Sammon mapping after 0, . . . ,10 iterations, Sam-
mon error function.

error, and E3 is a compromise between the absolute and relative quadratic error that
usually yields the best results, so we will restrict our attention to E3 here. No closed
form solution has been found for minima of E3, so E3 is iteratively minimized by
gradient descent or Newton optimization (see the appendix for more details). For
the computation of the first and second order derivatives of E3 notice that

∂dy
i j

∂yk
=

∂
∂yk

‖yi − y j‖=
{ yk−y j

dy
k j

if i = k

0 otherwise
(4.50)

so we obtain

∂E3

∂yk
=

2
n
∑

i=1

n
∑

j=i+1
dx

i j

n

∑
j=1
j �=k

(
1

dx
k j
− 1

dy
k j

)
(yk − y j) (4.51)

∂ 2E3

∂y2
k

=
2

n
∑

i=1

n
∑

j=i+1
dx

i j

n

∑
j=1
j �=k

(
1

dx
k j
− 1

dy
k j

− (yk − y j)
2

(dy
k j)

3

)
(4.52)

Consider again the data set from Fig. 4.5. Fig. 4.9 (left) shows the pairwise dis-
tances dx given in (4.42). We initialize Y = {1,2,3,4}, which corresponds to the
bottom row in Fig. 4.9 (center) and yields the distance matrix

Dy =

⎛
⎜⎜⎝

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

⎞
⎟⎟⎠ (4.53)

and the initial Sammon error
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Fig. 4.10 Shepard diagrams for Sammon projection (four points data set).

E3 =
1

3 ·1+ 2 ·√2+
√

5
·

⎛
⎜⎝2 ·

(
2−√

2
)2

√
2

+

(
3−√

5
)2

√
5

⎞
⎟⎠≈ 0.0925 (4.54)

This is the first (leftmost) value of the Sammon error function shown in Fig. 4.9
(right). For this initialization, the error gradients are

∂E3

∂y1
=

2

3 ·1+ 2 ·√2+
√

5
·
(
−2−√

2√
2

− 3−√
5√

5

)
≈−0.1875 (4.55)

∂E3

∂y2
=

2

3 ·1+ 2 ·√2+
√

5
·
(
−2−√

2√
2

)
≈−0.1027 (4.56)

∂E3

∂y3
=

2

3 ·1+ 2 ·√2+
√

5
·
(

2−√
2√

2

)
≈ 0.1027 (4.57)

∂E3

∂y4
=

2

3 ·1+ 2 ·√2+
√

5
·
(

3−√
5√

5
+

2−√
2√

2

)
≈ 0.1875 (4.58)

With step length α = 1, gradient descent produces the next estimate Y ≈
(1.1875, 2.1027, 2.8973, 3.8125), which corresponds to the second row in Fig.
4.9 (center). The center and right view of Fig. 4.9 show the values of Y and
E3 for the first ten gradient descent steps. After ten steps we obtain Y ≈
(1.3058, 2.1359, 2.8641, 3.6942) and E3 ≈ 0.0212. Fig. 4.10 shows the Shepard
diagrams for the Sammon projection after one and ten gradient descent steps. In con-
trast to MDS (Fig. 4.6), the Sammon mapping yields a Shepard diagram where all
points are close to the main diagonal but none of them is very close. Figs. 4.11 and
4.12 show the Sammon mapping results for the helix (4.44) and bent square (4.45)
data sets (Newton’s method, random initialization, 100 steps). Compared with MDS
(Figs. 4.7 and 4.8), the Sammon mapping yields lower and unbiased projection er-
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Fig. 4.12 Bent square data set, Sammon projection, and projection errors

rors |Δd|. The computational effort of our implementation of the Sammon mapping,
however, is substantially higher than that of MDS.

4.5 Auto-Associator

The idea of an auto-associator is to find two functions f : Rp →R
q and g : Rq →R

p

that map X to Y and back, so

yk = f (xk) (4.59)

xk ≈ g(yk) (4.60)

k = 1, . . . ,n. Given the data set X , g ◦ f can be found by regression (see section 6),
where each vector xk serves as input and output training vector at the same time,
hence the name auto-associator.

xk ≈ g ◦ f (xk) = g( f (xk)) (4.61)
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Once the regression function g ◦ f is trained, the forward transformation function f
is used to generate the projected data Y from X using (4.59), and the backward trans-
formation function is ignored. Popular regression methods used for auto-associators
include multi layer perceptrons (MLP, see chapter 6). In general, the quality of
the mapping using auto-associators strongly depends on the underlying regression
function. Depending on the algorithm used to find the parameters of the regression
model, the computational complexity may be relatively high.

4.6 Histograms

The previous sections presented methods to visualize individual feature vectors.
This section deals with visualizing the statistical distribution of features. Statisti-
cal measures like the mode, median or mean can be used to describe features on a
very abstract level (see chapter 2). More details about the distribution of the feature
values can be obtained and visualized by histograms. We consider histograms of
individual features, which for simplicity we denote as one-dimensional data sets X .
We define m histogram intervals

[ξ1,ξ2], [ξ2,ξ3], . . . , [ξm,ξm+1] (4.62)

ξ1 = minX , ξm+1 = maxX (4.63)

and count the number of values in X in each interval. This yields

hk(X)=|{ξ ∈ X | ξk ≤ ξ < ξk+1}|, k = 1, . . . ,m (4.64)

where the sum of the counts is the number of data points

m

∑
k=1

hk(X) = |X |= n (4.65)

Equally spaced intervals Δx = (maxX − minX)/m are often used, which yield
the interval borders ξk = minX + (k − 1) · Δx, k = 1, . . . ,m + 1. Each count hk,
k = 1, . . . ,m can be visualized as a vertical bar. The left and right borders of each
bar represent the lower and upper limits of the corresponding data interval. The
height of each bar represents the interval count. A diagram of such bars is called
a histogram. Fig. 4.13 shows the histograms (m = 100) of the three features of the
data set from Fig. 4.3 . The fist two features are apparently approximately equally
distributed. The third feature contains many values close to zero and to one, which
correspond to the upper and lower planes in the scatter plot in Fig. 4.2. Such data
accumulations can be easily seen in histograms. Histograms can also be used to esti-
mate the underlying statistical distributions (for example equal, Gaussian, Poisson,
or scale free distribution). The parameter m, the number of histogram bins, has to be
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Fig. 4.13 Histograms of the features x, y, z.

chosen carefully. If m is too low, then the shape of the distribution can not be rec-
ognized from the histogram. The same observation holds if m is too high, because
then most bins are empty or contain only few points. A good choice of m generally
depends on the data. Some rules of thumb often yield good estimates for m:

• Sturgess [8] (based on the number of data)

m = 1+ log2 n (4.66)

• Scott [7] (based on the standard deviation, tailored for Gaussian distributions)

m =
3.49 · s

3
√

n
(4.67)

• Freedman and Diaconis [2] (based on the middle 50% quantile, also suitable for
long tailed distributions)

m =
2 · (Q75%−Q25%)

3
√

n
(4.68)

with quantiles defined by

|{x ∈ X | x ≤ Qϕ}|= ϕ ·n (4.69)

Instead of equally spaced bins, the histogram intervals may have different widths,
for example to obtain a finer resolution in areas with high data densities [3]. His-
togram intervals may be defined as 1/m quantiles, so that each bin contains the
same number of data. In the visualization of such non-equally spaced histograms
the height of each bar does not correspond to the number of data but to the number
of data divided by the bin width, so the area of each bar reflects the corresponding
number of data.

Every datum between the lower and upper bounds of a histogram interval is
counted for the respective bin, whether it is close to the interval center or close to
the border. A fuzzy histogram [5] partially counts data for several neighboring bins.
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For example, a datum at the border between two bins may be counted as half for one
and half for the other bin. More generally, fuzzy histograms use data counts in fuzzy
intervals defined by membership functions μ : X → [0,1]. For example, triangular
membership functions are often used (Fig. 4.14):

μ1(x) =

⎧⎨
⎩

1 if x < ξ1
ξ2−x

ξ2−ξ1
if ξ1 ≤ x < ξ2

0 if x ≥ ξ2

(4.70)

μk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x < ξk−1
x−ξk−1
ξk−ξk−1

if ξk−1 ≤ x < ξk

ξk+1−x
ξk+1−ξk

if ξk ≤ x < ξk+1

0 if x ≥ ξk+1

(4.71)

k = 2, . . . ,m− 1

μm(x) =

⎧⎨
⎩

0 if x < ξm−1
x−ξm−1

ξm−ξm−1
if ξm−1 ≤ x < ξm

1 if x ≥ ξm

(4.72)

Such membership functions assign each datum x to a certain extent to one or two
intervals, where the sum of counts is one. In general, the counts of fuzzy histograms
are computed as

h̃k(X) = ∑
x∈X

μk(x) (4.73)

Conventional histograms are special cases of fuzzy histograms for complementary
rectangular membership functions.

4.7 Spectral Analysis

The purpose of data visualization is to show important data characteristics. Impor-
tant characteristics of time series data are spectral features such as the amplitude and
phase spectra. These spectra are motivated by the Fourier theorem: Every continu-
ously differentiable function f can be decomposed into cosine and sine components
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according to

f (x) =

∞∫
0

(a(y) cosxy + b(y) sin xy) dy with (4.74)

a(y) =
1
π

∞∫
−∞

f (u) cosyudu (4.75)

b(y) =
1
π

∞∫
−∞

f (u) sinyudu (4.76)

Based on this theorem we define the Fourier cosine transform Fc(y) and the Fourier
sine transform Fs(y).

Fc(y) =

√
2
π

∞∫
0

f (x) cosxydx (4.77)

f (x) =

√
2
π

∞∫
0

Fc(y) cosxydy (4.78)

Fs(y) =

√
2
π

∞∫
0

f (x) sinxydx (4.79)

f (x) =

√
2
π

∞∫
0

Fs(y) sinxydy (4.80)

The Fourier cosine and sine transforms can be applied to discrete functions by sub-
stituting x = k ·T and y = l ·ω in (4.77-4.80), where T is a time constant and ω is
a frequency constant. The data xk, k = 1, . . . ,n, are considered to represent equidis-
tant samples of the discrete function f , so f (k · T ) = xk, k = 1, . . . ,n. The Fourier
transform then yields the Fourier cosine and sine transform data Fc(l ·ω) = yc

l and
Fs(l ·ω) = ys

l , l = 1, . . . ,m.

yc
l =

2
n

n

∑
k=1

xk cosklωT (4.81)

x′k =
nωT

π

m

∑
l=1

yc
l cosklωT (4.82)

ys
l =

2
n

n

∑
k=1

xk sin klωT (4.83)

x′k =
nωT

π

m

∑
l=1

ys
l sinklωT (4.84)
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Fig. 4.15 Time series data, absolute Fourier transforms, and reverse transforms (top: cosine, bot-
tom: sine).

Fig. 4.15 (left) is a graph of the n = 5000 points in the artificial data set

X = {(i,cos(0.001 · i)+ 0.5 · cos(0.01 · i− 1)) | i ∈ {1, . . . ,5000}} (4.85)

that comprises two periodic sequences, one with lower frequency and higher am-
plitude and the other with higher frequency and lower amplitude. Imagine that such
a data set might be generated from sales figures with weekly and seasonal fluctua-
tions. The center column in Fig. 4.15 shows the absolute values of the Fourier cosine
transform (4.81) (top) and the Fourier sine transform (4.83) (bottom) for m = 100
and ωT = 10−4. The parameters ω and T always occur as products ωT , so ωT
can be considered as only one parameter. Here, ωT = 0.01. The local maxima of
both transforms are at about y10 and y100, which corresponds to the frequencies
10 ·ωT = 0.001 and 100 ·ωT = 0.01 and thus to the frequencies in the cosine terms
of (4.85). The values of the maxima are yc

9 ≈ 0.9722, yc
98 ≈ 0.4313, ys

14 ≈ 0.7075,
and ys

103 ≈ 0.5104, which roughly corresponds to the amplitudes of the cosine terms
in (4.85), but especially yc

98 and ys
14 do not match well. The right column in Fig.

4.15 shows the reverse Fourier cosine transform (4.82) (top) and the reverse Fourier
sine transform (4.84) (bottom). The reverse Fourier cosine transform approximately
matches the original time series. The error (displayed as a dashed curve) is almost
zero. However, the reverse Fourier sine transform is very different from the original
time series (displayed here as the dashed curve).
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Fig. 4.16 Orthogonal decomposition, amplitude and phase spectrum.

The Fourier cosine transform yc and the Fourier sine transform ys can be viewed
as the legs of a right-angled triangle, as shown in Fig. 4.16 (left). The Fourier am-
plitude spectrum y is defined as the hypotenuse and the Fourier phase spectrum is
defined as the angle opposed to the sine of this triangle.

yl =
√
(yc

l )
2 +(ys

l )
2 (4.86)

pl = arctan
ys

l

yc
l

(4.87)

Fig. 4.16 (center) shows the Fourier amplitude spectrum (4.86) of our example time
series. The local maxima are at y10 ≈ 0.9784 and y101 ≈ 0.5261, and match quite
well the frequencies and amplitudes of the cosine terms in (4.85). Fig. 4.16 (right)
shows the Fourier phase spectrum (4.87). The angles at the amplitude maxima are
p10 ≈ 0.2073 and p100 ≈ 1.0320, and approximately correspond with the original
angle offsets of the cosine terms in (4.85). Thus, given time series data, Fourier
analysis allows us to compute the amplitude spectrum Y = {y1, . . . ,ym} ⊂R and the
phase spectrum P = {p1, . . . , pm} ⊂ R, that represent the frequencies, amplitudes,
and phase angles of the spectral components of the time series.

Problems

4.1. Find the pricipal axes of X = {(−3,−1,−1),(0,−1,0),(−2,−1,2),(1,−1,3)}.

4.2. Find a two-dimensional PCA projection of X , the reverse projection, the pro-
jection error, and plot a Shepard diagram of this projection.

4.3. Find a one-dimensional PCA projection of X , the reverse projection, the pro-
jection error, and plot a Shepard diagram of this projection.

4.4. What can you learn from the results of both projections?
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Chapter 5
Correlation

Abstract Correlation quantifies the relationship between features in order to iden-
tify feature candidates that may be best suited to achieve desired effects. Linear
correlation methods are robust and computationally efficient but detect only linear
dependencies. Nonlinear correlation methods are able to detect nonlinear dependen-
cies but need to be carefully parametrized. As a popular example for nonlinear cor-
relation we present the chi-square test for independence that is based on histogram
counts. Nonlinear correlation can also be quantified by the regression validation er-
ror. Correlation does not imply causality, so correlation analysis may reveal spurious
correlations. If the underlying features are known, then spurios correlations may be
handled with partial correlation methods.

5.1 Linear Correlation

Correlation quantifies the relationship between features. The purpose of correla-
tion analysis is to understand the dependencies between features and to be able to
systematically influence specific features. For example, for a production plant cor-
relation analysis may yield the features that correlate aspects of product quality,
so the target quality can be achieved by systematically modifying the most rele-
vant features. Fig. 5.1 gives an overview of the correlation measures presented in
this chapter. First, we focus on the linear correlation between pairs of features. In
(2.20) and (4.8) we introduced the covariance matrix C of a data set X ⊂R

p, where
each matrix element ci j denotes the covariance between the features x(i) and x( j),
i, j = 1, . . . , p.

ci j =
1

n− 1

n

∑
k=1

(x(i)k − x̄(i))(x( j)
k − x̄( j)) (5.1)

If ci j is positive large, then there is a strong positive dependency between x(i) and
x( j), i.e. high values of x(i) coincide with high values of x( j), and low values of
x(i) coincide with low values of x( j). If ci j is negative large, then there is a strong
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Fig. 5.1 Some important correlation measures.

negative dependency, i.e. high values of x(i) coincide with low values of x( j) and vice
versa. If ci j is close to zero, then there is a weak dependency between x(i) and x( j).
If a feature is multiplied by a constant factor α , then the covariance between this
feature and any other feature will also increase by a factor α , although we do not
expect this feature to make more useful contributions to data analysis. The Pearson
correlation coefficient compensates the effect of constant scaling by dividing the
covariance by the product of the standard deviations of both features.

si j =
ci j

s(i)s( j)
(5.2)

=

n
∑

k=1
(x(i)k − x̄(i))(x( j)

k − x̄( j))√(
n
∑

k=1
(x(i)k − x̄(i))2

)(
n
∑

k=1
(x( j)

k − x̄( j))2

) (5.3)

=
∑n

k=1 x(i)k x( j)
k − n x̄(i)x̄( j)√(

n
∑

k=1

(
x(i)k

)2 − n
(
x̄(i)
)2
)(

n
∑

k=1

(
x( j)

k

)2 − n
(
x̄( j)
)2
) (5.4)

The standard deviations are the square roots of the variances, i.e. the square roots of
the diagonal elements of the covariance matrix, s(i) =

√
cii, so the (Pearson) corre-

lation matrix can be directly computed from the covariance matrix.

si j =
ci j√
ciic j j

(5.5)

where si j ∈ [−1,1]. If si j ≈ 1 then there is a strong positive correlation between x(i)

and x( j). If si j ≈ −1 then there is a strong negative correlation. If si j ≈ 0 then x(i)
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and x( j) are (almost) independent, so correlation can be interpreted as the opposite
of independence. Notice that for μ-σ -standardized data, covariance and correlation
are equal.

5.2 Correlation and Causality

Correlation does not imply causality. A correlation between x and y may indicate
four different causal scenarios or a combination of these:

1. coincidence
2. x causes y
3. y causes x
4. z causes both x and y

Even though the data suggest a correlation, this might be a coincidence, so x and
y do not possess any causal connection (scenario 1). If there is a causal connection
between x and y, then correlation does not distinguish whether x causes y or y causes
x (scenarios 2 and 3), for example a correlation between the consumption of diet
drinks and obesity does not tell us whether diet drinks cause obesity or obesity
causes people to drink diet drinks. Finally, there might be no causal connection
between x and y: instead both x and y may be caused by z (scenario 4). For example
a correlation between forest fires and harvest does not imply that forest fires increase
harvest nor that harvest causes forest fires. Instead, it may be that both forest fires
and harvest are caused by sunny weather. This is called spurious correlation [4] or
third cause fallacy. Correlation analysis does not help to identify which of these
scenarios is valid, so additional expert knowledge is required.

If x(i) and x( j) are correlated and also both correlated with x(k) (like in the spu-
rious correlation scenario), then we might want to know the correlation between
x(i) and x( j) without the influence of x(k). This is called the partial or conditional
correlation which is defined as

si j|k =
si j − siks jk√

(1− s2
ik)(1− s2

jk)
(5.6)

The correlation between x(i) and x( j) without the influence of the two features x(k)

and x(l) is called bipartial correlation defined as

si|k, j|l =
si j − siks jk − sils jl + sikskls jl√

(1− s2
ik)(1− s2

jl)
(5.7)

The correlation of x(i) with a whole group of features x( j1), . . . ,x( jq) is called multiple
correlation and defined as
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si,( j1,..., jq) =

√√√√√√√√(si j1 . . .si jq) ·

⎛
⎜⎜⎜⎝

1 s j2 j1 . . . s j1 jq
s j1 j2 1 . . . s j2 jq

...
...

. . .
...

s j1 jq s j2 jq . . . 1

⎞
⎟⎟⎟⎠

−1

·

⎛
⎜⎜⎜⎝

si j1
si j2

...
si jq

⎞
⎟⎟⎟⎠ (5.8)

For q = 1, multiple correlation becomes the simple correlation.

si,( j1) = |si j1 | (5.9)

For q = 2 we obtain

si,( j1, j2) =

√√√√ s2
i j1

+ s2
i j2

− 2si j1si j2 s j1 j2

1− s2
j1 j2

(5.10)

Notice that si j = [−1,1] holds for the (simple) correlation, but not necessarily for
the partial, bipartial, and multiple correlations. For more information about linear
correlation analysis refer to statistics textbooks, for example [1].

5.3 Chi-Square Test for Independence

The correlation methods presented in the previous section assume linear dependen-
cies between features. Strong nonlinear dependencies might yield small or even zero
linear correlations. A method to quantify the nonlinear correlation between features
is the chi-square test for independence [2]. To quantify the nonlinear correlation be-
tween two features x(1) and x(2), we first compute the histograms of x(1) and x(2) for
r and s bins, respectively.

h(1) = (h(1)1 , . . . ,h(1)r ), h(2) = (h(2)1 , . . . ,h(2)s ) (5.11)

Then we count the number of data that fall into each combination of the ith bin of
x(1), i = 1, . . . ,r, and the jth bin of x(2), j = 1, . . . ,s, denote this count as hi j, and
write these counts as a matrix

H =

⎛
⎜⎜⎜⎝

h11 h12 · · · h1s

h21 h22 · · · h2s
...

...
. . .

...
hr1 hr2 · · · hrs

⎞
⎟⎟⎟⎠ (5.12)

Fig. 5.2 illustrates the counts h(1)i , h(2)j , and hi j, i = 1, . . . ,r, j = 1, . . . ,s. The his-

tograms of x(1) and x(2) are the row and column sums of H, respectively.
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Fig. 5.2 Counts for the chi-square test for independence.

r

∑
j=1

hi j = h(1)i , i = 1, . . . ,r (5.13)

r

∑
i=1

hi j = h(2)j , j = 1, . . . ,s (5.14)

If the features are independent, then the probability of a data point falling into the

bin combination hi j is equal to the product of the probability of falling into bin h(1)i

and the probability of falling into bin h(2)j , so

hi j

n
=

h(1)i

n
· h(2)j

n
⇒ hi j =

h(1)i ·h(2)j

n
(5.15)

where

n =
r

∑
i=1

s

∑
j=1

hi j =
r

∑
i=1

h(1)i =
s

∑
j=1

h(2)j (5.16)

Similar to Sammon’s mapping, the deviation of hi j from complete independence
(5.15) can be quantified using the absolute square error

E1 =

⎛
⎝hi j −

h(1)i ·h(2)j

n

⎞
⎠2

(5.17)

the relative square error

E2 =

⎛
⎝hi j −

h(1)i ·h(2)j

n

⎞
⎠2/⎛⎝h(1)i ·h(2)j

n

⎞
⎠2

(5.18)

or a compromise between absolute and relative square error
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E3 =

⎛
⎝hi j −

h(1)i ·h(2)j

n

⎞
⎠2/⎛⎝h(1)i ·h(2)j

n

⎞
⎠ (5.19)

Just as in Sammon’s mapping we choose the compromise E3 and obtain the chi-
square test statistic

χ2 =
1
n

r

∑
i=1

s

∑
j=1

(
n ·hi j − h(1)i ·h(2)j

)2

h(1)i ·h(2)j

(5.20)

The hypothesis that the features are independent is rejected if

χ2 > χ2(1−α,r− 1,s− 1) (5.21)

where α is the significance level. Values of this distribution function are tabulated
and available in [1], for example. Small values of χ2 confirm the hypothesis that the
features are independent. The chi-square distribution is monotonic, so the feature
pair that can be considered independent at the lowest significance level will yield
the highest value of χ2. Therefore, to produce a list of pairs of features in order of
their nonlinear correlation, it is not necessary to compute χ2(1−α,r−1,s−1), but
it is sufficient to sort the plain χ2 values.

The number of bins has to be chosen carefully when using the chi-square test for
independence, just like for histograms. Nonlinear dependencies can not be recog-
nized if there are either too few or too many bins. If there are too few bins, then the
resulting coarse grid can not adequately represent the functional dependendency. If
there are too many bins, then most bins will be empty or contain only a few points.
A good choice for the number of bins is often obtained using the rules of thumb
given in the histogram section. Also fuzzy bins may be used in the chi-square test
for independence, which yields the fuzzy chi-square test for independence [3].

An alternative to the chi-square test for independence, nonlinear correlation can
also be quantified by building regression models and computing the regression error.
This approach is discussed in more detail in the next chapter.

Problems

5.1. Compute the covariance and correlation matrices for the data set X =
{(1,0),(2,0),(3,1),(4,1),(5,1),(6,1),(7,0),(8,0)}.

5.2. For the data set X , compute χ2 of the chi-square test for independence for two
bins for each feature.

5.3. For the data set X , compute χ2 of the chi-square test for independence for four
bins for the first feature and two bins for the second feature.
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5.4. How do you interpret the three results?

5.5. Explain the difference between correlation and causality.
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Chapter 6
Regression

Abstract Regression estimates functional dependencies between features to under-
stand dependencies and to systematically control systems. Linear regression models
can be efficiently computed from covariances but are restricted to linear dependen-
cies. Substitution allows us to identify specific nonlinear dependencies by linear re-
gression. Robust regression finds models that are robust against outliers. A popular
family of nonlinear regression methods are universal approximators. We present two
well-known examples for universal approximators from the field of artificial neural
networks: the multilayer perceptron and radial basis function networks. Universal
approximators can realize arbitrarily small training errors, but cross-validation is re-
quired to find models with low validation errors that generalize well on other data
sets. Feature selection allows us to include only relevant features in regression mod-
els leading to more accurate models.

6.1 Linear Regression

The correlation methods discussed in the previous chapter quantify the degree of
relationship between features. In contrast to correlation, regression estimates the
actual functional dependency between features. For example, if correlation analy-
sis has identified the features that mostly influence product quality, then regression
models indicate to which specific values the features should be set to achieve a given
target quality. Fig. 6.1 gives an overview of the regression methods presented in this
chapter. Just as in the previous chapter we first focus on linear methods. Linear
regression identifies a linear functional dependency between features. The linear
approximation of a function of one feature x(i) = f (x( j)), i, j ∈ {1, . . . , p}, can be
written as

x(i)k ≈ a · x( j)
k + b (6.1)

so linear regression has to estimate the parameters a,b ∈R from X by minimizing a
suitable error functional. Conventional linear regression uses the average quadratic
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Fig. 6.1 Some important regression methods.

regression error

E =
1
n

n

∑
k=1

e2
k =

1
n

n

∑
k=1

(
x(i)k − a · x( j)

k − b
)2

(6.2)

One necessary criterion for local extrema of E is

∂E
∂b

=−2
n

n

∑
k=1

(
x(i)k − a · x( j)

k − b
)
= 0 ⇒ b = x̄(i)k − a · x̄( j)

k (6.3)

So we can write the regression error as

E =
1
n

n

∑
k=1

(
x(i)k − x̄(i)− a(x( j)

k − x̄( j))
)2

(6.4)

The other necessary criterion for local extrema of E is

∂E
∂a

=−2
n

n

∑
k=1

(x( j)
k − x̄( j))

(
x(i)k − x̄(i)− a(x( j)

k − x̄( j))
)
= 0 (6.5)

which yields

a =

n
∑

k=1
(x(i)k − x̄(i))(x( j)

k − x̄( j))

n
∑

k=1
(x( j)

k − x̄( j))2
=

ci j

c j j
(6.6)

So all pairwise linear regression models of a data set X can be immediately com-
puted from the means and the covariance matrix of X .

The linear approximation of a function of m ∈ {2,3, . . .} features x(i) =
f (x( j1), . . . ,x( jm)), i, j1, . . . , jm ∈ {1, . . . , p}, can be written as
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x(i)k ≈
m

∑
l=1

al · x( jl)
k + b (6.7)

and the parameters a1, . . . ,am,b ∈R can be found by minimizing

E =
1
n

n

∑
k=1

e2
k =

1
n

n

∑
k=1

(
x(i)k −

m

∑
l=1

al · x( jl)
k − b

)2

(6.8)

One necessary criterion for local extrema of E yields

∂E
∂b

=−2
n

n

∑
k=1

(
x(i)k −

m

∑
l=1

al · x( jl)
k − b

)
= 0 ⇒ b = x̄(i)k −

m

∑
l=1

al · x̄( jl) (6.9)

from which

E =
1
n

n

∑
k=1

(
x(i)k − x̄(i)−

m

∑
l=1

al · (x( jl )
k − x̄( jl))

)2

(6.10)

The other necessary criterion for local extrema of E is

∂E
∂ar

=−2
n

n

∑
k=1

(x( jr)
k − x̄( jr))

(
x(i)k − x̄(i)−

m

∑
l=1

al · (x( jl)
k − x̄( jl))

)
= 0 (6.11)

r = 1, . . . ,m, which can be written as a system of linear equations

m

∑
l=1

al

n

∑
k=1

(x( jl )
k − x̄( jl))(x( jr)

k − x̄( jr)) =
n

∑
k=1

(x(i)k − x̄(i))(x( jr)
k − x̄( jr)) (6.12)

⇔
m

∑
l=1

alc jl jr = ci jr , r = 1, . . . ,m (6.13)

which can be solved by various algorithms for solving systems of linear equations
such as Gaussian elimination or Cramer’s rule. Thus, all the parameters needed for
multiple linear regression can be immediately computed from the means and the
covariance matrix of X .

An equivalent result for linear regression is obtained by writing the regression
problem (6.7) in matrix form. With (6.9) we denote

Y =

⎛
⎜⎜⎝

x(i)1 − x̄(i)

...

x(i)k − x̄(i)

⎞
⎟⎟⎠ X =

⎛
⎜⎜⎝

x( j1)
1 − x̄( j1) . . . x( jm)

1 − x̄( jm)

...
. . .

...

x( j1)
k − x̄( j1) . . . x( jm)

k − x̄( jm)

⎞
⎟⎟⎠ A =

⎛
⎜⎝ a1

...
am

⎞
⎟⎠ (6.14)

and write (6.7) as

Y = X ·A (6.15)

XT ·Y = XT ·X ·A (6.16)
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(XT ·X)−1 ·XT ·Y = A (6.17)

where (XT ·X)−1 ·XT is called the pseudoinverse of X , so the regression parameters
A can be computed as the product of the pseudoinverse of X and the matrix Y .

As an example for multiple linear regression consider the data set

X =

⎛
⎜⎜⎜⎜⎝

6 4 −2
2 1 −1
0 0 0
0 1 1
2 4 2

⎞
⎟⎟⎟⎟⎠ (6.18)

We want to estimate a linear function x(1) = f (x(2),x(3)), so

x(1)k ≈ x̄(1))+ a1(x
(2)
k − x̄(2))+ a2(x

(3)
k − x̄(3)) (6.19)

The mean values of the features are

x̄(1) =
6+ 2+ 2

5
= 2 (6.20)

x̄(2) =
4+ 1+ 1+ 4

5
= 2 (6.21)

x̄(3) =
−2− 1+ 1+ 2

5
= 0 (6.22)

The covariance matrix of X is

C =

⎛
⎝ 6 3.5 −2.5

3.5 3.5 0
−2.5 0 2.5

⎞
⎠ (6.23)

The linear equations to determine a1 and a2 are

c22a1 + c32a2 = c12 (6.24)

c23a1 + c33a2 = c13 (6.25)

(6.24) ⇔ 3.5a1 = 3.5 ⇔ a1 = 1 (6.26)

(6.25) ⇔ 2.5a2 = −2.5 ⇔ a2 =−1 (6.27)

So, multiple linear regression yields the function

x(1)k ≈ 2+(x(2)k − 2)− (x(3)k − 0) = x(2)k − x(3)k (6.28)

Inserting X (6.18) into (6.28) yields an approximation error of zero in this case. This
is usually not the case: the approximation error is usually larger than zero.

Using the pseudoinverse approach we obtain
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Y =

⎛
⎜⎜⎜⎜⎝

6− 2
2− 2
0− 2
0− 2
2− 2

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

4
0
−2
−2
0

⎞
⎟⎟⎟⎟⎠ X =

⎛
⎜⎜⎜⎜⎝

4− 2 −2− 0
1− 2 −1− 0
0− 2 0− 0
1− 2 1− 0
4− 2 2− 0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

2 −2
−1 −1
−2 0
−1 1

2 2

⎞
⎟⎟⎟⎟⎠ (6.29)

and so
A = (XT ·X)−1 ·XT ·Y

=

⎛
⎜⎜⎜⎜⎝
(

2 −1 −2 −1 2
−2 −1 0 1 2

)
⎛
⎜⎜⎜⎜⎝

2 −2
−1 −1
−2 0
−1 1

2 2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

−1(
2 −1 −2 −1 2

−2 −1 0 1 2

)
⎛
⎜⎜⎜⎜⎝

4
0

−2
−2

0

⎞
⎟⎟⎟⎟⎠

=

(
14 0
0 10

)−1( 14
10

)
=

( 1
14 0
0 1

10

)(
14
10

)
=

(
1

−1

)
(6.30)

which corresponds to the solution a1 = 1, a2 =−1 reported above.

6.2 Linear Regression with Nonlinear Substitution

Substituting features by nonlinear functions of features enables linear regression to
build nonlinear regression models based on given nonlinear functions. For exam-
ple, the aerodynamic drag on any object moving through the atmosphere increases
quadratically with the velocity. Although the dependence is nonlinear, we can esti-
mate the drag coefficients by linear regression using drag and velocity data. To do
so, we compute the quadratic velocities from the original velocity data and use the
computed quadratic velocity as input feature. Another example for linear regression
with nonlinear substitutions is the polynomial regression of degree q ∈ {1,2, . . .}. In
polynomial regression we use data for the input x and the output y, and compute the
additional input features

x2, . . . ,xq (6.31)

Linear regression with the input x and the q− 1 additional computed features then
yields the polynomial coefficients a0,a1, . . . ,ap for the function

y ≈ f (x) =
p

∑
i=0

aix
i (6.32)
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6.3 Robust Regression

The average quadratic error functional in conventional linear regression is very sen-
sitive to outliers because they have a quadratic impact on the error. Robust error
functionals aim to reduce the influence of outliers. Linear regression with robust
error functionals is called robust linear regression. One example of a robust error
functional is the Huber function where the errors are only squared if they are smaller
than a threshold ε > 0, otherwise they have only a linear impact [5].

EH =
n

∑
k=1

{
e2

k if ek < ε
2ε · ek − ε2 otherwise

(6.33)

Another example of a robust error functional is least trimmed squares [10] which
sorts the errors so that

e′1 ≤ e′2 ≤ . . .≤ e′n (6.34)

and only considers the m smallest errors, 1 ≤ m ≤ n.

ELT S =
m

∑
k=1

e′2k (6.35)

6.4 Neural Networks

A popular class of nonlinear regression methods are the so-called universal approx-
imators [4, 6]. Consider a continuous real-valued function f on a compact subset
U ⊂ R

n

f : U → R (6.36)

A class F of such functions f is called a universal approximator if and only if for
any ε > 0 there exists a function f ∗ ∈ F such that

| f (x)− f ∗(x)|< ε (6.37)

for all x ∈U . The next two sections present two examples for universal approxima-
tors: the multilayer perceptron and radial basis function networks.

A multilayer perceptron (MLP) [9] is a feedforward neural network [3] that can
be represented as a directed graph as shown in Fig. 6.2 (left). Because of the simi-
larity with biological neural networks, MLP nodes are called neurons. The neurons
are arranged in a layer structure. The inputs to the neurons in the first layer (input
layer) are the network inputs and the outputs of the neurons in the last layer (out-
put layer) are the network outputs. Layers between the input and output layers are
called hidden layers. The network in Fig. 6.2 (left) has three layers: one input layer,
one hidden layer, and one output layer. Each network edge represents a scalar infor-
mation flow, so the number p of input neurons and the number q of output neurons
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Fig. 6.2 Multilayer perceptron and sigmoidal function.

specifies the input and output dimensionality of the network which then realizes a
function with p inputs and q outputs, f : Rp → R

q. The example in Fig. 6.2 (left)
realizes a function with three inputs and three outputs, f : R3 →R

3. Neurons of ad-
jacent layers may be connected by directed edges. Each directed edge from neuron
i to neuron j has a real-valued weight wi j ∈ R. For simplicity, non-existing edges
are represented by edges with zero weights. The output of each neuron i is the real-
valued scalar Oi ∈ R. The “effective” input to each neuron is the weighted sum of
the inputs.

Ii = ∑
j

w jiO j (6.38)

The output of each neuron is computed from the effective input using a nonlinear
activation function s : R→ R, so

Oi = s(Ii) (6.39)

Frequently used activation functions include the sigmoid (s-shaped) functions, for
example the logistic function

s(x) =
1

1+ e−x ∈ (0,1) (6.40)

or the hyperbolic tangent function

s(x) = tanh x ∈ (−1,1) (6.41)

Sigmoid functions map the possibly infinite range of neuron inputs to a finite range
of neuron outputs (see the data transformations in chapter 3). For a given input,
the MLP output can be computed using equations (6.38), (6.39), and (6.40) or
(6.41). The MLP realizes a function f : Rp → R

q specified by the weights wi j.
In nonlinear regression, a set Z = {(x1,y1), . . . ,(xn,yn)} ⊂ R

p+q of pairs of input
and output data vectors is used to estimate the weights wi j, so that for each in-
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put vector xk, k = 1, . . . ,n, the MLP estimates the corresponding output vector yk,
yk ≈ fMLP(xk), (xk,yk) ∈ Z. In the context of artificial neural networks, the esti-
mation of the parameters wi j from Z is called training, and Z is called the train-
ing data set. To illustrate the MLP training process we first consider three layer
MLPs: MLPs with one input layer (p neurons), one hidden layer (h neurons), and
one output layer (q neurons), so the MLP has a total of p+ h+ q neurons and a
total of p ·h+h ·q edge weights, where missing connections are represented by zero
weights. We define the neuron indices so that neurons 1, . . . , p are the input neu-
rons, p+ 1, . . . , p+ h are the hidden neurons, and p+ h+ 1, . . . , p+ h+ q are the
output neurons, so the network input is x = (I1, . . . , Ip) ∈R

p and the network output
is fMLP(x) = (Op+h+1, . . . ,Op+h+q) ∈ R

q. For a given input xk the network output
will be fMLP(xk) but it should be yk, so we want to minimize the average quadratic
error between fMLP(xk) and yk. We denote yk = (O′

p+h+1, . . . ,O
′
p+h+q) and write the

error as

E =
1
q
·

p+h+q

∑
i=p+h+1

(Oi −O′
i)

2 (6.42)

We use gradient descent to find the weights wi j , so after initialization we iteratively
update the new weights wi j as

wi j −α(t) · ∂E
∂wi j

(6.43)

In the neural network context the step length α is usually called learning rate. Using
the chain rule, the error gradients can be computed from (6.38), (6.39), and (6.42).

∂E
∂wi j

=

∼

∂E
∂O j

· ∂O j

∂ I j

(O j −O′
j) · s′(I j)︸ ︷︷ ︸

= δ (O)
j

· ∂ I j

∂wi j

· Oi

(6.44)

The term δ (O)
j , j = p+ q+ 1, . . . , p+ q+ r, is called the delta value of the output

layer. With this delta value, the update rule (6.43) can be written as the so-called
delta rule [11]

wi j −α(t) ·δ (O)
j ·Oi (6.45)

For the logistic function (6.40), for example, we can write the derivative s′(I j) as

s′(I j) =
∂

∂ I j

1

1+ e−Ij
=− 1(

1+ e−Ij
)2 · (−e−Ij

)
=

1

1+ e−Ij
· e−Ij

1+ e−Ij
= O j · (1−O j) (6.46)
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so (6.44) and (6.46) yield an elegant formula for the delta value for the logistic
activation function.

δ (O)
j = (O j −O′

j) ·O j · (1−O j) (6.47)

To update the weights between input layer and hidden layer we have to consider the
sum of derivatives of all outputs.

∂E
∂wi j

=
p+h+q

∑
l=p+h+1

∂E
∂Ol

· ∂Ol

∂ Il
· ∂ Il

∂O j
· ∂O j

∂ I j
· ∂ I j

∂wi j

∼
p+h+q

∑
l=p+h+1

(Ol −O′
l) · s′(Il) · wjl · s′(I j) · Oi

=
p+h+q

∑
l=p+h+1

δ (O)
l w jl · s′(I j) · Oi

(6.48)

In correspondence with (6.44) we find that

∂E
∂wi j

= s′(I j) ·
p+h+q

∑
l=p+h+q

δ (O)
l ·wjl︸ ︷︷ ︸

= δ (H)
j

·Oi (6.49)

so corresponding to (6.45), the delta rule for the new weights between the input
layer and the hidden layer is

wi j −α(t) ·δ (H)
j ·Oi (6.50)

For the logistic activation function we obtain with (6.46) and (6.49)

δ (H)
j = (O j) · (1−O j) ·

p+q+r

∑
l=p+q+1

δ (O)
l ·wjl (6.51)

Notice the correspondence of the delta rules for the different layers. For more than
three layers, we obtain the same delta rules, all instances of the so-called general-
ized delta rule, where the delta values are computed from the neuron outputs of the
corresponding layer and the delta values of the succeeding layers. The weights of
the whole network can be efficiently updated by starting with the weights of the out-
put layer and then propagating back layer by layer up to the input layer. This scheme
is called the backpropagation algorithm [14]. The backpropagation algorithm iter-
atively updates the MLP weights for each input-output vector of the training data
set, and passes through the training data several times, where each pass is called a
learning epoch. The complete backpropagation algorithm (for a three layer MLP) is
illustrated in Fig. 6.3. After training the MLP can be used as a nonlinear regression
function for previously unknown input vectors, which is called the recall mode.
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1. input: neuron numbers p,h,q ∈ {1,2, . . .},
input training data X = {x1, . . .,xn} ⊂ R

p,
output training data Y = {y1, . . .,yn} ⊂ R

q,
learning rate α(t)

2. initialize wi j for i = 1, . . . , p, j = p+1, . . . , p+h
and for i = p+1, . . . , p+h, j = p+h+1, . . ., p+h+q

3. for each input-output vector pair (xk,yk), k = 1, . . . ,n,

a. update the weights of the output layer

wi j =wi j−α(t)·δ (O)
j ·Oi,

i = p+1, . . . , p+h
j = p+h+1, . . ., p+h+q

b. update the weights of the hidden layer

wi j =wi j−α(t)·δ (H)
j ·Oi,

i = 1, . . . , p
j = p+1, . . . , p+h

4. repeat from (3.) until termination criterion holds
5. output: weights wi j , i = 1, . . . , p, j = p+1, . . . , p+h,

and i = p+1, . . . , p+h, j = p+h+1, . . . , p+h+q

Fig. 6.3 Backpropagation algorithm for three layer MLP.

6.5 Radial Basis Function Networks

As a second example of universal approximators we present radial basis function
(RBF) networks [8]. Each RBF neuron implements a single radial basis function
with the argument ‖x− μi‖, for example the frequently used Gaussian function

ui(x) = e
−
( ‖x−μi‖

σi

)2

(6.52)

μi ∈ R
p, σi > 0, i = 1, . . . ,c. Fig. 6.4 shows an RBF network with three neurons

and, correspondingly, three basis functions. Each neuron is connected with the input
x ∈ R

p and, via a weight wi ∈ R, with the additive output neuron. Notice that each
edge can carry a vector here as opposed to the scalar edges for MLPs in the previous
section. The output of a Gaussian RBF network is

y =
c

∑
i=1

wi · e−
( ‖x−μi‖

σi

)2

(6.53)

RBF networks have two sets of parameters: the RBF parameters (the centers
μ1, . . . ,μc and standard deviations σ1, . . . ,σc for Gaussian RBFs) and the weights
w1, . . . ,wc. The RBF parameters may be found by clustering (see chapter 9). Here,
we illustrate an alternating optimization scheme, where the RBF parameters and
weights are alternatingly optimized. The output of the RBF network is a linear com-
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Fig. 6.4 RBF network with three radial basis functions.

bination of the c individual RBF functions, so the weight coefficients can be found
by linear regression (see above), for example using the pseudoinverse approach. The
RBF parameters may be found by gradient descent. The average quadratic error of
the RBF network is

E =
1
n

n

∑
k=1

(
c

∑
i=1

wi e
−
( ‖xk−μi‖

σi

)2

− yk

)2

(6.54)

This yields the error gradients

∂E
∂ μi

=
4wi

nσ2
i

n

∑
k=1

⎛
⎝ m

∑
j=1

wj e
−
( ‖xk−μ j‖

σ j

)2

− yk

⎞
⎠‖xk − μi‖e

−
( ‖xk−μi‖

σi

)2

(6.55)

∂E
∂σi

=
4wi

nσ3
i

n

∑
k=1

⎛
⎝ m

∑
j=1

wj e
−
( ‖xk−μ j‖

σ j

)2

− yk

⎞
⎠‖xk − μi‖2 e

−
( ‖xk−μi‖

σi

)2

(6.56)

To find the optimal weights we have to know the RBF parameters, and to find the op-
timal RBF parameters we have to know the weights. We find both sets of parameters
by alternating optimization. There are two variants of alternating optimization with
two sets of variables. In the first variant, the weights are randomly initialized, then
we alternatingly optimize the RBF parameters and the weights until a termination
criterion holds. In the second variant, the RBF parameters are randomly initialized,
then we alternatingly optimize the weights and the RBF parameters. Fig. 6.5 illus-
trates the RBF training using the first variant.
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1. input: RBF number c ∈ {1,2, . . .},
input training data X = {x1, . . .,xn} ⊂ R

p,
output training data Y = {y1, . . .,yn} ⊂ R

r,
learning rate α(t)

2. initialize weights w1, . . .,wc ∈ R

3. for each input-output vector pair (xk,yk), k = 1, . . . ,n,
update the RBF parameters

μi = μi −α(t) · ∂ E
∂ μi

, i = 1, . . . ,c (6.55)

σi = σi −α(t) · ∂ E
∂ μi

, i = 1, . . .,c (6.56)

until termination criterion holds
4. for each input-output vector pair (xk,yk), k = 1, . . . ,n,

find the optimal weights w1, . . .,wc ∈ R by linear regression
5. repeat from (3.) until termination criterion holds
6. output: RBF parameters μi, σi and weights wi, i = 1, . . . ,c

Fig. 6.5 Training algorithm for RBF networks.

6.6 Cross-Validation

Cross-validation is a method to validate statistical models generated from data, for
example regression models. Regression models such as universal approximators are
able to model given training data with very low or even zero error, if sufficiently
many model parameters are used, for example when the number of hidden layer
neurons or RBF functions is very high. Very low error models tend to overfitting,
which means that they model the training data noise rather than the underlying input-
output relation. In extreme cases, the number of model parameters matches or even
exceeds the number of data, so the model is able to memorize the training data
instead of finding a generalizing model. Such overfitting can be avoided by cross-
validation. The idea of cross-validation is to partition the available input-output data
set Z = {(x1,y1), . . . ,(xn,yn)} ⊂ R

p+q into a training data set Zt ⊂ Z and a disjoint
validation data set Zv ⊂ Z, Zt ∩Zv = {}, Zt ∪Zv = Z, where the training data are used
to build (train) a model f , and the validation data are used to validate this trained
model (Fig. 6.6). For continuous regression problems, the average quadratic training
error is

Et =
1
|Zt | ∑

(x,y)∈Zt

‖y− f (x)‖2 (6.57)

and the average quadratic validation error is

Ev =
1
|Zv| ∑

(x,y)∈Zv

‖y− f (x)‖2 (6.58)
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Fig. 6.6 Cross-validation.

Since the validation data are not used for training, a low validation error indicates
that the trained model is a good representation of the underlying input-output rela-
tion.

k-fold cross-validation randomly partitions Z into k pairwise disjoint and (al-
most) equally sized subsets Z1, . . . ,Zk, where Zi∩Zj = {} for all i �= j, Z1∪. . .∪Zk =
Z, and |Zi| ≈ |Zj| for all i, j = 1, . . . ,k. Each of the subsets Zi, i = 1, . . . ,k, is used to
validate the model fi trained with the remaining k−1 subsets Zj, j = 1, . . . ,k, j �= i.
This yields k validation errors Ev1, . . . ,Evk for the k models f1, . . . , fk

Evi =
1
|Zi| ∑

(x,y)∈Zi

‖y− fi(x)‖2 (6.59)

i = 1, . . . ,k, whose average is called the k-fold cross-validation error.

Ev =
1
k

k

∑
i=1

Evi (6.60)

Notice that this is not the error of one individual model but the average error of k
different models obtained with a specific regression method with specific parame-
ters.

Leave one out is a cross-validation scheme where for each model only one single
data vector is retained for validation. So, leave one out can be viewed as n-fold cross-
validation. Popular cross-validation schemes are two-fold cross-validation, ten-fold
cross-validation, and leave one out. In k-fold cross-validation, k models are trained
and each data vector is used once for validation and k−1 times for training. In two-
fold cross-validation, two models are trained and each data vector is used once for
validation and once for training. In leave one out, n models are trained and each data
vector is used once for validation and n− 1 times for training.

The validation error is typically larger that the training error, Ev > Et , because
the models are trained with the training data and not with the validation data. If d
denotes the number of free model parameters, for example the number of MLP edge
weights, then the relation between the training error and the validation error can be
estimated in various ways [1, 2] as

Ev ≈ 1+ d/n
1− d/n

Et (6.61)
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Ev ≈ (1+ 2d/n)Et (6.62)

Ev ≈ 1
(1− d/n)2 Et (6.63)

Models are good generalizations when the validation error is close to the training
error, Ev ≈ Et . For the three estimates above this requires d � n. Suitable values of
d may be obtained by either starting with low d and successively increasing d until
training and validation errors start to diverge too much, or by starting with high d
and successively decreasing d until training and validation errors become similar.

A well trained and validated regression model may be interpreted as a good ap-
proximation of the underlying function between inputs and outputs. If the validation
error is low, then inputs and outputs correlate well. If the validation error is high,
then inputs and outputs do not correlate well. Thus, the inverse validation error can
be viewed as a correlation measure between the model inputs and outputs, as an
alternative to the correlation measures presented in the previous chapter.

6.7 Feature Selection

In the previous sections we assumed that the output features in Y depend on all in-
put features in X , and therefore all features in X were considered for the (regression)
model. However, in many applications this is not the case. Some of the features in
X may be irrelevant. Taking into account irrelevant features may lead to unnecces-
sarily high model complexity (too many model parameters and high computational
effort for training) or even to lower model performance, for example if the model
overfits because of irrelevant features. Therefore, in many data analysis tasks it is
useful to select and use only the relevant features, not only in regression but also
in forecasting, classification and clustering. In chapter 8 we will present a decision
tree approach that implicitly finds the most relevant features for a given classifica-
tion task. However, any regression, forecasting, classification and clustering method
can be combined with feature selection. To do so, subsets of the available features
are used for model building and are successively adapted according to the model
performance until a satisfactory feature subset is found. A simple feature selec-
tion approach starts with the complete set of features and successively removes the
least relevant feature until the model performance falls below a given threshold. The
reverse approach starts with an empty feature set and successively adds the most
relevant feature until no significant model improvement can be achieved. Because
of possibly complex interdependencies between the features both approaches may
find bad solutions. For example, if two features individually have a low relevance
but jointly have a high relevance, then the second approach will not take into ac-
count either of them. This drawback can be reduced by combining both approaches
where the feature sets are alternatingly extended and reduced. To find a set of fea-
tures which are optimal in some well-defined sense, all possible combinations need
to be evaluated. This is not feasible due to the exponential effort. Many stochastic
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methods have been proposed to approximate an optimal feature selection, includ-
ing meta-heuristics such as simulated annealing [7], evolutionary algorithms [12],
or swarm intelligence [13]. Notice that feature selection yields an (axis-parallel)
projection of the data (see chapter 4).

Problems

6.1. Compute the covariance matrix and the linear regression models for the data set
X = {(1,1),(2,2),(3,3),(4,4),(5,5)}.

6.2. Now change the last point in X from (5,5) to (5,0). Compute again the covari-
ance matrix and the linear regression models.

6.3. How do you explain the different results?

6.4. Explain the difference between correlation and regression.

6.5. What does a small training error and a large validation error indicate?
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Chapter 7
Forecasting

Abstract For forecasting future values of a time series we imagine that the time
series is generated by a (possibly noisy) deterministic process such as a Mealy or
a Moore machine. This leads to recurrent or auto-regressive models. Building fore-
casting models is essentially a regression task. The training data sets for forecasting
models are generated by finite unfolding in time. Popular linear forecasting models
are auto-regressive models (AR) and generalized AR models with moving average
(ARMA), with integral terms (ARIMA), or with local regression (ARMAX). Popu-
lar nonlinear forecasting models are recurrent neural networks.

7.1 Finite State Machines

Sequences of data play an important role in data analysis. In chapter 2 we presented
relations for sequential data and sampling schemes for continuous signals. In chapter
3 we showed how sequences can be preprocessed by filtering. And in chapter 4
we illustrated how sequential data can be analyzed and visualized using spectral
analysis. In data analysis we not only preprocess, visualize and analyze sequential
data but also try to use observed data sequences to produce reliable forecasts of
future data.

Finding an appropriate forecasting model begins with the assumption that the
sequence is generated by a dynamic feedback system [2] with an input x ∈ R

p, a
hidden state s ∈ R

h, and an output y ∈ R
q. Notice the similarity to the three-layer

MLP architecture presented in the previous chapter. At each time step k such a
dynamic feedback system can be described by a state equation

sk = fs(sk−1,xk) (7.1)

and an output equation
yk = fy(sk,xk) (7.2)

The top left view of Fig. 7.1 shows a block diagram of such a system. If the set
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Fig. 7.1 Finite state machines: Mealy machine (top left), Moore machine (top right), unfolded
Moore machine (bottom)

of states that can be reached in a such system is finite, we call the system a finite
state machine, for example when s ∈ {0,1}r, r ∈ {1,2, . . .}. Equations (7.1) and
(7.2) describe a so-called Mealy machine [3]. Special cases of Mealy machines are
Moore machines [4], where the output only depends on the state but not the current
input. So a Moore machine is described by a state equation

sk = fs(sk−1,xk) (7.3)

and an output equation
yk = fy(sk) (7.4)

The top right view of Fig. 7.1 shows a block diagram of a Moore machine. Any
Mealy machine can be translated into an equivalent Moore machine and vice versa.
To realize a given behavior, Mealy machines usually require a smaller state space.
However, Moore machines are often easier to design and their behavior is easier to
analyze. Without loss of generality we will restrict here to Moore machines.

7.2 Recurrent Models

Forecasting uses the observed input and output sequences {x1, . . . ,xn} and
{y1, . . . ,yn} to predict the expected output sequence {yn+1, . . . ,yn+q} without know-
ing the expected input sequence {xn+1, . . . ,xn+q}. To build a forecasting model we
have to find functions fs and fy that approximate the observed data in some well-
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defined sense, for example by minimizing the average quadratic error between the
observations yk and the predicted values y′k.

E =
1
n

n

∑
k=1

(yk − y′k)
2 (7.5)

This leads to a regression problem (just as described in the previous chapter),
where the functions fs and fy are estimated from the quadruples (xk,sk−1,sk,yk),
k = 1, . . . ,n. The internal states s are usually unknown and have to be estimated
from the observed data. Each state sk depends on the (also unknown) previous states
s0, . . . ,sk−1. The previous states were influenced by the input values x1, . . . ,xk−1 via
the function fs and have impacted the output values y1, . . . ,yk−1 via the function fy.
We can therefore assume that sk can be estimated from x1, . . . ,xk−1 and y1, . . . ,yk−1.
This assumption yields a state free model that can be interpreted as an approxima-
tion of a Moore machine:

yk = fk(y1, . . . ,yk−1,x1, . . . ,xk−1), k = 2, . . . ,n (7.6)

The functions f2, . . . , fn can not be found by regression because at each time step
k only a single data tuple is available. This can be overcome when the state is not
estimated from all previous input and output values but only from the last m of these.
The corresponding model is

yk = f (yk−m, . . . ,yk−1,xk−m, . . . ,xk−1), k = m+ 1, . . . ,n (7.7)

The function f can be estimated from n−m data tuples. For example, for m = 3 and
n = 8 these 8− 3 = 5 tuples are

y4 = f (y1,y2,y3,x1,x2,x3) (7.8)

y5 = f (y2,y3,y4,x2,x3,x4) (7.9)

y6 = f (y3,y4,y5,x3,x4,x5) (7.10)

y7 = f (y4,y5,y6,x4,x5,x6) (7.11)

y8 = f (y5,y6,y7,x5,x6,x7) (7.12)

The values xm, . . . ,xn−m and ym+1, . . . ,yn−m (x3,x4,x5,y4,y5 in this example) occur
most, so these influence the forecasting model most. The number of considered time
steps m should not be too small to make sure that the hidden states can be estimated
well, and it should not be too large to make sure that the number of data tuples is
sufficient for a good regression model. Fig. 7.2 illustrates the algorithm to build state
free forecasting models. This algorithm reduces forecasting to a regression problem.
Any regression method may be used here, for example the methods illustrated in
the previous chapter. Suitable values for the parameter m and for the parameters of
the chosen regression model can be determined by cross-validation (see previous
chapter). The forecasting model yields the model-based estimates of the (already
observed) outputs y1, . . . ,yn, and it can be used to produce forecasts of the future
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1. input data sets X = {x1, . . .,xn} ⊂ R
p, Y = {y1, . . .,yn} ⊂ R

q, parameter m ∈ {1, . . . ,n}
2. construct regression data set Z according to (7.7)
3. estimate f from Z using a suitable regression method
4. output f

Fig. 7.2 State free forecasting.

outputs yn+1,yn+2, . . . if the future inputs xn+1,xn+2, . . . are known or can at least be
estimated. A simple estimation is the average of the previously observed inputs.

xk =
1
n

n

∑
j=1

x j, k = n+ 1,n+ 2, . . . (7.13)

7.3 Autoregressive Models

The problem of unknown future inputs can be avoided by models that do not con-
sider the inputs at all, the so-called auto-regressive models.

yk = f (yk−m, . . . ,yk−1), k = m+ 1, . . . ,n (7.14)

For example, for m = 3 and n = 8 the regression tuples are

y4 = f (y1,y2,y3) (7.15)

y5 = f (y2,y3,y4) (7.16)

y6 = f (y3,y4,y5) (7.17)

y7 = f (y4,y5,y6) (7.18)

y8 = f (y5,y6,y7) (7.19)

For linear regression such autoregressive models are called linear autoregressive
(AR) models [1]. Such linear models can be estimated very efficiently but they yield
suboptimal results if the underlying relations are highly nonlinear. To obtain better
results for nonlinear systems, linear AR models use moving averages (ARMA mod-
els), integral terms (ARIMA models), or local regression (ARMAX models). More
accurate nonlinear forecasting models can be found with nonlinear regression, for
example using neural networks. A successful approach for forecasting with recur-
rent neural networks uses the scheme of the Moore machine (7.3),(7.4) with finite
unfolding as in the bottom view of Fig. 7.1, neural regression of fs and fy, and repre-
sents the unknown state vectors by free variables that are determined in the training
phase [5].
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Problems

7.1. Construct the data tuples for an autoregressive forecasting model with a time
horizon of m = 2 for the time series x = {1,2,3,5,8}.

7.2. Which forecasting model do you obtain by linear regression?

7.3. Which forecast does this model produce?
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Chapter 8
Classification

Abstract Classification is supervised learning that uses labeled data to assign ob-
jects to classes. We distinguish false positive and false negative errors and define
numerous indicators to quantify classifier performance. Pairs of indicators are con-
sidered to assess classification performance. We illustrate this with the receiver op-
erating characteristic and the precision recall diagram. Several different classifiers
with specific features and drawbacks are presented in detail: the naive Bayes classi-
fier, linear discriminant analysis, the support vector machine (SVM) using the kernel
trick, nearest neighbor classifiers, learning vector quantification, and hierarchical
classification using regression trees.

8.1 Classification Criteria

The previous chapters have considered two types of data: feature data

X = {x1, . . . ,xn} ⊂ R
p (8.1)

and pairs of input and output features

Z = {(x1,y1), . . . ,(xn,yn)} ⊂ R
p+q (8.2)

This chapter considers data of objects that are assigned to c classes, c ∈ {2,3, . . .}.
For example, a medical examination yields features of a patient such as body tem-
perature or blood pressure that can be used to determine whether the patient is
healthy or sick, i.e. whether the patient can be assigned to the class of healthy or
sick patients. The class assignment of a feature data set can be specified by a class
vector y ⊂ {1, . . . ,c}. The tuples of feature data and class assignments form a la-
beled feature data set

Z = {(x1,y1), . . . ,(xn,yn)} ⊂ R
p ×{1, . . . ,c} (8.3)
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Notice that in classification, we denote yk ∈ {1, . . . ,c} as the class label, and in
regression, we denote yk ∈ R

q as the output.
We assume a systematic relation between the feature vectors and classes of the

objects described by a labeled feature data set, and that the objects are represen-
tative for their classes. Based on this assumption we use the data to model classes
and design classifiers that are able to classify previously unknown objects based on
their feature vectors. For example, the data set may indicate that patients with a high
body temperature belong to the class of sick patients, so a new patient with a high
body temperature would also be classified as sick. So, based on a labeled feature
data set, we look for a classifier function f : Rp → {1, . . . ,c} that yields a class y
for a given feature vector x. Constructing a classifier function from data is called
classifier design, and the application of this function is called classification [9, 21].
Classifier design is similar to regression (chapter 6). We partition the available data
into training and validation data, train the classifiers with the training data and vali-
date with the validation data. The goal is to obtain good classification performance
on the validation data.

To assess classifier performance we consider a selected class, for example the
class of sick patients. An ideal classifier classifies all healthy patients as healthy and
all sick patients as sick. A incorrect classification can either mean that a healthy
patient is classified as sick, or that a sick patient is classified as healthy. These two
types of classification errors may have significantly different meanings and effects
and are therefore distinguished. Each classification result belongs to one of the fol-
lowing four cases [2, 15]:

1. true positive (TP): y = i, f (x) = i
(a sick patient is classified as sick)

2. true negative (TN): y �= i, f (x) �= i
(a healthy patient is classified as healthy)

3. false positive (FP): y �= i, f (x) = i
(a healthy patient is classified as sick)

4. false negative (FN): y = i, f (x) �= i
(a sick patient is classified as healthy)

FP is also called type I error or error of the first kind. FN is also called type II error
or error of the second kind. Based on the TP, TN, FP, and FN counts of a training or
validation data set, various classification performance criteria are frequently used:

• total number of classifications n=TP+TN+FP+FN
• true classifications T=TP+TN

(number of correctly classified patients)
• false classifications F=FP+FN

(number of incorrectly classified patients)
• relevance R=TP+FN

(number of sick patients)
• irrelevance I=FP+TN

(number of healthy patients)
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• positivity P=TP+FP
(number of patients that are classified as sick)

• negativity N=TN+FN
(number of patients that are classified as healthy)

• true classification rate or accuracy T/n
(probability that a patient is correctly classified)

• false classification rate F/n
(probability that a patient is incorrectly classified)

• true positive rate or sensitivity or recall or hit rate TPR=TP/R
(probability that a sick patient is classified as sick)

• true negative rate or specificity TNR=TN/I
(probability that a healthy patient is classified as healthy)

• false positive rate or fall out or false alarm rate FPR=FP/I
(probability that a healthy patient is classified as sick)

• false negative rate FNR=FN/R
(probability that a sick patient is classified as healthy)

• positive predictive value or precision TP/P
(probability that a sick classified patient is sick)

• negative predictive value TN/N
(probability that a healthy classified patient is healthy)

• negative false classification rate FN/N
(probability that a healthy classified patient is sick)

• positive false classification rate FP/P
(probability that a sick classified patient is healthy)

None of these criteria alone is sufficient to assess the performance of a classifier.
Good values of a single criterion can be obtained by trivial classifiers. For example,
a true positive rate of 100% (very good) might be achieved by a trivial classifier that
produces a positive classification for any arbitrary feature vector. However, such a
trivial classifier can also achieve a false positive rate of 100% (very bad). So classi-
fier performance is usually assessed by considering pairs of classification criteria.

One example for such an approach is the receiver operating characteristic
(ROC), a scatter plot of the true positive rate (TPR) and the false positive rate (FPR).
Fig. 8.1 (left) shows an example of an ROC diagram. The (training or recall) per-
formance of a certain classifier on a certain data set is displayed as a point in the
ROC diagram. The ROC diagram can be used for different purposes, for example
to compare training and recall performance, the performance of different classifiers,
the effect of different parameter settings, or the performance on different data sets.
An optimal classifier yields 100% TPR and 0% FPR which corresponds to the top
left corner of the ROC diagram. Therefore a good classification yields a point close
to the top left corner of the ROC diagram. The trivial always positive classifier dis-
cussed above yields 100% TPR and 100% FPR (top right corner), and the trivial
always negative classifier yields 0% TPR and 0% FPR (bottom left corner). A clas-
sifier that always produces the false result yields 0% TPR and 100% FPR (bottom
right corner). This could be converted to an optimal classifier by just inverting the
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Fig. 8.1 Receiver operating characteristic and precision recall diagram.

classification result. For any classification, inverting the classification result will re-
flect the corresponding point in the ROC diagram along the main diagonal (dashed
line). So any classifier that yields a point below the main diagonal can be improved
by inverting the classification result. Hence, ROC diagrams usually only display
points above the main diagonal.

Another example for assessing classifier performance by considering a pair of
classification criteria is the precision recall (PR) diagram which displays the preci-
sion (or positive predictive value) TP/P versus the recall (true positive rate, sensitiv-
ity, or hit rate) TPR. The right view of Fig. 8.1 shows an example of a PR diagram. A
high precision can usually be achieved for a low recall, i.e. it is easy to build a clas-
sifier that correctly classifies only a few sick patients. A higher recall can usually be
obtained only with a lower precision. A good classifier maintains a high precision
with a high recall. The intersection of the PR curve with the main diagonal is called
precision recall (PR) breakeven point which is considered an important classifica-
tion criterion, so a good classifier should have a high PR breakeven point. A detailed
discussion and comparison of ROC and PR diagrams can be found in [8].

The following sections present some important families of classifiers and their
specific advantages and drawbacks: probabilistic, linear, prototype based, and hier-
archical classifiers (Fig. 8.2).

8.2 Naive Bayes Classifier

The naive Bayes classifier is a probabilistic classifier based on Bayes’s theorem [3]:
Let A and B denote two events, then

p(A | B) · p(B) = p(B | A) · p(A) (8.4)

If the event A can be decomposed into the disjoint events A1,. . . ,Ac, p(Ai) > 0,
i = 1, . . . ,c, then
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Fig. 8.2 Some important classifier schemes.

p(Ai | B) =
p(Ai) · p(B | Ai)

c
∑
j=1

P(A j) ·P(B | A j)
(8.5)

The relevant events considered in classification are “object belongs to class i”, or
more briefly, just “i”, and “object has the feature vector x”, or “x”. Replacing Ai, A j

and B in (8.5) by these events yields

p(i | x) =
p(i) · p(x | i)

c
∑
j=1

p( j) · p(x | j)
(8.6)

If the p features in x are statistically independent, then

p(x | i) =
p

∏
k=1

p(x(k) | i) (8.7)

Inserting this into (8.6) yields the classification probabilities of the naive Bayes
classifier.

p(i | x) =
p(i) ·

p
∏

k=1
p(x(k) | i)

c
∑
j=1

p( j) ·
p

∏
k=1

p(x(k) | j)
(8.8)

Given a labeled feature data set Z = {(x1,y1), . . . ,(xn,yn)} ⊂ R
p ×{1, . . . ,c}, the

prior probabilities can be estimated from the observed frequencies: p(i) is the rel-
ative frequency of class y = i, i = 1, . . . ,c, and the probabilities p(x(k) | i) are the
relative frequencies of feature x(k) in class y = i, i = 1, . . . ,c, k = 1, . . . , p. For a
given feature vector x, equation (8.8) yields the classification probabilities for each
class. For a deterministic classification the class with the highest probability is se-
lected.

As an example for naive Bayes classification consider a group of students taking
an exam. Some of the students went to class regularly, and the others didn’t. Some of
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Table 8.1 Naive Bayes classifier: data of the student example.

number of
students who
passed failed

went to class 21 4
did not go to class 1 3
studied material 16 2
did not study material 6 5

the students studied the course material, and the others didn’t. Some of the students
passed the exam, and the others didn’t. The corresponding numbers of students are
given in Table 8.1. We want to find the probability that a student will pass the exam,
if he went to class regularly and studied the course material. From the numbers in
Table 8.1 we can compute the probabilities

p(went to class | passed) =
21

21+ 1
=

21
22

(8.9)

p(studied material | passed) =
16

16+ 6
=

16
22

(8.10)

⇒ p(x | passed) =
21 ·16
22 ·22

=
84
121

(8.11)

p(went to class | failed) =
4

4+ 3
=

4
7

(8.12)

p(studied material | failed) =
2

2+ 5
=

2
7

(8.13)

⇒ p(x | failed) =
4 ·2
7 ·7 =

8
49

(8.14)

p(passed) =
22

22+ 7
=

22
29

(8.15)

p(failed) =
7

22+ 7
=

7
29

(8.16)

p(passed) · p(x | passed) =
22
29

· 84
121

=
168
319

(8.17)

p(failed) · p(x | failed) =
7

29
· 8

49
=

8
203

(8.18)

⇒ p(passed | x) =
168
319

168
319 +

8
203

(8.19)

=
168 ·203

168 ·203+ 8 ·319
=

147
158

≈ 93% (8.20)

So, a student who went to class regularly and studied the course material will pass
with a probability of 93%, and a deterministic naive Bayes classifier will yield
“passed” for this student, and all other students with the same history. Table 8.2
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Table 8.2 Naive Bayes classifier: classifier function for the student example.

probability for
passed failed classification

went to class studied material 93% 7% passed
went to class did not study material 67% 33% passed
did not go to class studied material 46% 54% failed
did not go to class did not study material 11% 89% failed
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Fig. 8.3 Linear discriminant based on the perpendicular bisector of the line joining the means (left,
dotted line) and linear discriminant analysis (right, dashed line).

shows the classifier probabilities and the values of the classifier function for all four
possible student histories.

The major advantages of the naive Bayes classifier are its efficiency, because the
training data have to be evaluated only once (to compute the relative frequencies),
and missing data can be simply ignored. The major disadvantages are that the fea-
tures must be statistically independent, which is usually not the case in real-world
data, and that the features must be discrete. Continuous features may be used in the
naive Bayes classifier after discretization, as described in chapters 4 (histograms)
and 5 (chi-square test).

8.3 Linear Discriminant Analysis

The left view of Fig. 8.3 shows a scatter plot of a two-dimensional real-valued data
set with two classes. The feature vectors of class 1 and 2 are shown as crosses and
circles, respectively. Most points above the dotted line belong to class one (crosses),
and most points below the dotted line belong to class two (circles). So the dotted
line can be used as a class border, a so-called discriminant line, written as

w · xT + b = 0, w ∈R
p, b ∈ R (8.21)

For higher dimensions this denotes a discriminant plane (p = 3) or a discriminant
hyperplane (p > 3). Without loss of generality we illustrate only two-dimensional
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linear discrimination here (p= 2). For a given data set Z, linear discriminant analysis
finds a discriminant line (plane or hyperplane) by finding the parameters w and b that
are optimal with respect to some well-defined criterion. For simplicity we restrict
to two classes here. Multiple classes can be realized by multiple discriminant lines
(planes or hyperplanes) or by combining several two-class classifiers.

The data in the left view of Fig. 8.3 are approximately Gaussian with means μ1,
μ2 and approximately equal standard deviations σ1 ≈ σ2. In this case, for symmetry
reasons a suitable discriminant line is the perpendicular bisector of the line joining
the two means, so the parameters of the discriminant line are

w = μ1 − μ2 (8.22)

b = −w · μT
1 + μT

2

2
(8.23)

The dotted line in the left view of Fig. 8.3 is computed using these equations.
The right view of Fig. 8.3 shows two classes with the same means μ1 and μ2 as

in the left view, but the horizontal standard deviations are larger than the vertical
standard deviations. The dotted line in the right view of Fig. 8.3 computed by (8.22)
and (8.23) does not appropriately separate the classes in this case. Linear discrimi-
nant analysis is related to principal component analysis (chapter 4). If we map the
data to an orthogonal to the dotted line, then we obtain one-dimensional projections
where the classes are quite well separated for the data in Fig. 8.3 (left), and not well
separated for the data in Fig. 8.3 (right). Well separable means that in the projection
the within-class variance

vw =
c

∑
i=1

∑
yk=i

(xk − μi)
T (xk − μi) (8.24)

is low, and the between-class variance

vb =
c

∑
i=1

(μi − x̄)T (μi − x̄) (8.25)

is high. Therefore, Fisher’s linear discriminant analysis [10] (that was originally
used to analyze the Iris data set, see chapter 2) maximizes the quotient

J =
wT · vb ·w
wT · vw ·w (8.26)

Similar to principal component analysis, this maximization yields the eigen problem

(v−1
b vw) ·w = λ ·w (8.27)

that can be solved for w, and then b can be computed by (8.23). For c = 2 we can
simplify (8.25) to

vb = (μ1 − μ2)
T (μ1 − μ2) (8.28)
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and obtain
w = v−1

w (μ1 − μ2) (8.29)

The dashed linear discriminant line in Fig. 8.3 (right) is computed using (8.29) and
(8.23). It separates the classes much better than the dotted line.

The major advantages of linear discriminant analysis are its efficiency and its
suitability for correlated features. The major disadvantage is that it assumes an ap-
proximately Gaussian distribution of the features and is not suited for nonlinear
class borders.

8.4 Support Vector Machine

A support vector machine (SVM) [19] is also based on linear class borders, but with
a margin around the discriminant hyperplane. For two classes, the SVM requires
that

w · xT
k + b ≥ +1 if yk = 1 (8.30)

w · xT
k + b ≤ −1 if yk = 2 (8.31)

where b > 0 is the margin parameter. If these constraints possess multiple (possibly
infinitely many) solutions, then the SVM finds the solution with minimal

J =
1
2
‖w‖2 (8.32)

For closely adjacent or even overlapping classes no class border can satisfy (8.30)
and (8.31), so these conditions are relaxed to

w · xT
k + b ≥ +1− ξk if yk = 1 (8.33)

w · xT
k + b ≤ −1+ ξk if yk = 2 (8.34)

with the slack variables ξ1, . . . ,ξn. To keep the slack variables low, a penalty term is
added to the cost function (8.32) which yields

J =
1
2
‖w‖2 + γ ·

n

∑
k=1

ξk, γ > 0 (8.35)

The SVM parameters w and b can be found by minimizing (8.35) under the con-
straints (8.33) and (8.34). The usual method for solving this constrained optimiza-
tion problem is quadratic programming. See the references in the appendix for the
details of this method.

A modification of this approach represents the normal vector of the discriminant
hyperplane as a linear combination of the training data
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w = ∑
y j=1

α jx j − ∑
y j=2

α jx j (8.36)

and then finds the optimal parameters α1, . . . ,αn. The classification rule then reads

∑
y j=1

α jx jx
T
k − ∑

y j=2

α jx jx
T
k + b ≥ +1− ξk if yk = 1 (8.37)

∑
y j=1

α jx jx
T
k − ∑

y j=2

α jx jx
T
k + b ≤ −1+ ξk if yk = 2 (8.38)

This modification increases the number of free parameters from p + 1 to n + 1,
which makes the optimization harder, but allows the application of the so-called
kernel trick which extends the SVM to nonlinear class borders. The basic idea which
underlies the kernel trick is to map a data set X = {x1, . . . ,xn} ∈ R

p to a higher-
dimensional data set X ′ = {x′1, . . . ,x

′
n} ∈ R

q, q > p, so that the structure of the data
in X ′ is more suitable than the structure in X . For the SVM we use the kernel trick
to map classes with nonlinear class borders in X to classes with (approximately)
linear class borders in X ′ and then use the linear classification approach presented
above. In the next chapter we will also present an application of the kernel trick
to relational cluster analysis. The mathematical basis of the kernel trick is Mercer’s
theorem [14] that was first published more than a hundred years ago and has gained a
lot of attention in recent years because of its application to the kernel trick. Mercer’s
theorem states that for any data set X and any kernel function k : Rp×R

p →R there
exists a mapping ϕ : Rp → R

q so that

k(x j,xk) = ϕ(x′j) ·ϕ(x′k)T (8.39)

This means that a mapping from X to X ′ can be implicitly done by replacing scalar
products in X ′ by kernel function values in X , without explicitly computing X ′.
Replacing scalar products in X ′ by kernel functions in X is called the kernel trick.
Some frequently used kernel functions are

• linear kernel
k(x j ,xk) = x j · xT

k (8.40)

• polynomial kernel

k(x j,xk) = (x j · xT
k )

d , d ∈ {2,3, . . .} (8.41)

• Gaussian kernel

k(x j,xk) = e
−‖x j−xk‖2

σ2 , σ > 0 (8.42)

• hyperbolic tangent kernel

k(x j ,xk) = 1− tanh
‖x j − xk‖2

σ2 , σ > 0 (8.43)

• radial basis function (RBF) kernel [16]
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k(x j ,xk) = f (‖x j − xk‖) (8.44)

The Gaussian and hyperbolic tangent kernels are special cases of the RBF kernel.
We apply the kernel trick to (8.37) and (8.38), and finally obtain the SVM classifier
rule

∑
y j=1

α jk(x j,xk)− ∑
y j=2

α jk(x j,xk)+ b ≥ +1− ξk if yk = 1 (8.45)

∑
y j=1

α jk(x j,xk)− ∑
y j=2

α jk(x j,xk)+ b ≤ −1+ ξk if yk = 2 (8.46)

The major advantage of the SVM is that it can find nonlinear class borders. The
major disadvantage is that it requires to solve a very high-dimensional optimization
problem with nonlinear constraints that is computationally relatively expensive.

8.5 Nearest Neighbor Classifier

A much simpler classifier method is the nearest neighbor classifier [20] which as-
signs an object with a given feature vector to the class of the training object with the
most similar feature vector. More formally, for a given feature vector x the nearest
neighbor classifier yields class yk if

‖x− xk‖= min
j=1,...,n

‖x− x j‖ (8.47)

where ‖.‖ is a suitable dissimilarity measure, for example the Euclidean or the Ma-
halanobis distance. For noisy data or overlapping classes the nearest neighbor clas-
sifier sometimes yields bad results near the noise data or the class borders. This can
be avoided by the k-nearest neighbors classifier which not only considers the near-
est neighbor but the k ∈ {2, . . . ,n} nearest neighbors and yields the most frequent
class of these neighbors. For two classes, ties can be avoided by selecting odd val-
ues for k. Do not confuse the k as in k-nearest neighbors classifier with the object
index k.

The nearest neighbor and k-nearest neighbors classifiers do not explicitly design
a classifier function but simply store the training data and only evaluate the data on
a classification request. This behavior is called lazy learning [1]. The major advan-
tages of the (k-)nearest neighbor(s) classifier is that no explicit learning is required,
that new training data can be easily included, and that arbitrarily nonlinear class
borders can be identified. The major disadvantage is the high computational com-
plexity of the classification, because for each classification the dissimilarities with
each training feature vector have to be computed.
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1. input labeled data set X = {x1, . . .,xn} ⊂ R
p, y = {y1, . . . ,yn} ⊂ {1, . . . ,c},

class number c ∈ {2, . . . ,n−1}, step length α(t)
2. initialize V = {v1, . . .,vc} ⊂ R

p, t = 1
3. for k = 1, . . . ,n

a. find winner prototype vi ∈V with

‖xk − vi‖ ≤ ‖xk − v‖ ∀v ∈V

b. move winner prototype

vi =

{
vi +α(t)(xk − vi) if yk = i
vi −α(t)(xk − vi) otherwise

4. t = t +1
5. repeat from (3.) until termination criterion holds
6. output prototypes V = {v1, . . .,vc} ⊂ R

p

Fig. 8.4 Learning vector quantization (training).

8.6 Learning Vector Quantization

Many approaches have been suggested to reduce the computational complexity of
the nearest neighbor classification, for example by extracting a number of repre-
sentative feature vectors (so-called prototypes) from the training data set and only
computing the dissimilarities with these prototypes. A popular example for these ap-
proaches is learning vector quantization (LVQ) [12, 13], a heuristic algorithm that
finds one prototype vi ∈ R

p, i = 1, . . . ,c, for each class and then assigns a feature
vector x to class i if

‖x− vi‖= min
j=1,...,c

‖x− v j‖ (8.48)

In LVQ training the prototypes are first randomly initialized. For each training vec-
tor the nearest prototype is moved towards the training vector if it belongs to the
same class, and away from the training vector if it belongs to a different class. No-
tice that this scheme is similar to the exponential filter presented in chapter 3. To
enforce convergence the step length is successivey reduced during training. The al-
gorithm passes through the training data set several times until a suitable termination
criterion holds. Fig. 8.4 presents the LVQ training algorithm in detail. While LVQ
assigns each feature vector to one class, fuzzy learning vector quantization (FLVQ)
[7, 4] partially assigns each vector to several classes.

The major advantage of LVQ compared to the (k-)nearest neighbor(s) classifier
is that it only has to find the minimum of c and not n dissimilarities for each classi-
fication, so it is computationally much cheaper for c � n. The major disadvantages
are that it requires a training phase where each training vector has to be processed
several times and that it can only realize quite simple class structures where each
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Fig. 8.5 Two functionally equivalent decision trees.

class is represented by only one prototype, the so-called Voronoi diagrams. For more
complicated nonlinear class structures, various LVQ extensions have been proposed
that use multiple prototypes per class. For an overview see [5].

8.7 Decision Trees

All previously presented classifiers consider all p features at a time. This may be
disadvantageous if not all features are necessary for a good classification, and if
the assessment of the feature values causes a high effort. In medical diagnosis, for
example, body temperature or blood pressure are measured for many patients be-
cause these features are assessed with low effort and yield significant information
about the patient’s health, whereas more expensive or time-consuming tests are only
performed if needed to support a specific diagnosis. Depending on the already ob-
served feature data, additional features may be ranked by importance, and only a
subset of all possible features is used. This scheme leads to a hierarchical structure
of the features, as opposed to the flat feature structure of the classifiers presented
so far. Hierarchical classifiers can be represented by decision trees [18]. Fig. 8.5
shows two decision trees that represent the same classifier. Both classifiers use the
two-dimensional feature vector x = (l,h) of a creature, where l ∈ {0,2,4} is the
number of legs, and h > 0 is the body beight (in meters). Based on these two fea-
tures the creature is classified as fish, bird, human, cat, or horse, so five classes are
considered here. The first decision tree (top view of Fig. 8.5) considers first the fea-
ture l. For l = 0 the classification is terminated, the feature h can be ignored, and
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Table 8.3 Data set for Fig. 8.5.

index 1 2 3 4 5 6 7 8
height h [m] 0.1 0.2 1.8 0.2 2.1 1.7 0.1 1.6
legs l 0 2 2 4 4 2 4 2
class fish bird human cat horse human cat human

the result is fish. For l = 2 and l = 4 the set of possible classes is reduced to bird
or human (l = 2) or cat or horse (l = 4), so the classification is not terminated, but
the first feature yielded an information gain, and the class is finally determined by
considering the second feature h. The second decision tree (bottom view of Fig. 8.5)
considers first feature h, yields an information gain, and finalizes the classification
by considering the second feature l.

Both decision trees realize the same classifier but they yield different informa-
tion gains, depending on the order in which the features are considered. Given the
training data Z = (X ,Y ), the probability for class k is

p(y = k) =
|{y ∈ Y | y = k}|

|Y | (8.49)

so the entropy at the root node is

H(Z) = −
c

∑
k=1

p(y = k) log2 p(y = k) (8.50)

= −
c

∑
k=1

|{y ∈ Y | y = k}|
|Y | log2

|{y ∈Y | y = k}|
|Y | (8.51)

At the root node we consider feature x( j), j ∈ {1, . . . , p}, with the discrete range
x( j) ∈ {1, . . . ,v j}, v j ∈ {1,2, . . .}. The probability that x( j) = k, k = 1, . . . ,v j, is

p(x( j) = k) =
|{x ∈ X | x( j) = k}|

|X | (8.52)

and if x( j) = k, then the new entropy is H(Z | x( j) = k). So considering feature x( j)

yields an information gain of H(Z) minus the expected value of H(Z | x( j) = k).

g j = H(Z)−
v j

∑
k=1

p(x( j) = k) ·H(Z | x( j) = k) (8.53)

= H(Z)−
v j

∑
k=1

|{x ∈ X | x( j) = k}|
|X | H(Z | x( j) = k) (8.54)

At each node, the decision tree that is optimal with respect to maximum entropy
picks the feature that yields the highest information gain. For our example in Fig.
8.5 consider the data sets X and Y given in Table 8.3. The data set contains one fish,
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one bird, one horse, three humans, and two cats, so the entropy is

H(Z) = −1
8

log2
1
8
− 1

8
log2

1
8
− 3

8
log2

3
8
− 2

8
log2

2
8
− 1

8
log2

1
8

≈ 2.1556 bit (8.55)

We first consider the decision tree in the top view of Fig. 8.5, where the feature
l ∈ {0,2,4} is considered first. The corresponding conditional entropies are

H(Z | l = 0) = −1log2 1 = 0 (8.56)

H(Z | l = 2) = −1
4

log2
1
4
− 3

4
log2

3
4
≈ 0.8113 bit (8.57)

H(Z | l = 4) = −1
3

log2
1
3
− 2

3
log2

2
3
≈ 0.9183 bit (8.58)

So at the root node the information gain for feature l is

gl = H(Z)− 1
8

H(Z | l = 0)− 4
8

H(Z | l = 2)− 3
8

H(Z | l = 4)

≈ 1.4056 bit (8.59)

Next we consider the decision tree in the bottom view of Fig. 8.5, where the feature
h ∈ {< 1m,> 1m} is considered first. The corresponding conditional entropies are

H(Z | h < 1m) = −1
4

log2
1
4
− 1

4
log2

1
4
− 2

4
log2

2
4
≈ 1.5 bit (8.60)

H(Z | h > 1m) = −1
4

log2
1
4
− 3

4
log2

3
4
≈ 0.8113 bit (8.61)

So at the root node the information gain for feature h is

gh = H(Z)− 4
8

H(Z | h < 1m)− 4
8

H(Z | h > 1m)

≈ 1 bit (8.62)

At the root node, the information gain of feature l is higher than the information
gain of feature h, gl > gh, so in our example the optimal decision tree is the one
shown in the top view of Fig. 8.5.

Optimal decision trees can be constructed using the iterative dichotomiser 3
(ID3) algorithm [17] shown in Fig. 8.6. The recursive procedure is called with the
data sets X and Y , the root of the decision tree to be constructed, and the set of all
feature indices. The recursion stops if all data belong to the same class, because then
further branches are not necessary. Otherwise the algorithm computes the informa-
tion gain for the remaining features and determines the winner feature. The data are
partitioned according to the values of the winner feature, and for each nonempty
subset a new node is created and appended. For each appended node the algorithm
recursively computes the corresponding sub-tree.
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• input X = {x1, . . .,xn} ⊂ {1, . . . ,v1}× . . .×{1, . . . ,vp}, Y = {y1, . . .,yn} ⊂ {1, . . . ,c}
call ID3(X ,Y, root,{1, . . . , p})

• procedure ID3(X ,Y,N, I)

1. if all Y are equal then break
2. compute information gain gi(X ,Y ) ∀i ∈ I
3. determine winner feature j = argmax{gi(X ,Y )}
4. partition X ,Y into v j disjoint subsets

Xi = {xk ∈ X | x( j)
k = i}, Yi = {yk ∈Y | x( j)

k = i}, i = 1, . . .,v j

5. for i with Xi �= {}, Yi �= {}
– create new node Ni and append it to N
– call ID3(Xi,Yi,Ni, I\{ j})

Fig. 8.6 The ID3 algorithm.

ID3 requires discrete features. An extension of ID3 to real-valued features is the
classification and regression tree (CART) algorithm [6] that finds optimal interval
borders (like < 1m and > 1m in our example) that maximize the entropy. The chi-
square automatic interaction detection (CHAID) algorithm [11] finds the interval
borders using a chi-squared test. Other extensions of ID3 such as C4.5 and C5.0
accept real-valued and missing features, use pruning mechanisms to reduce the tree
size and enable exportation of the decision tree in form of decision rules.

The major advantages of decision tree classifiers are that they do not necessar-
ily consider all features, which is useful for data with a large number of features,
and that they provide additional information about feature ranks. The major dis-
advantage is that they are either restricted to discrete features, or they work with
continuous features but the class borders can only be (at least piecewise) parallel to
the coordinate axes, so complicated nonlinear class borders can not be efficiently
modeled.

Problems

8.1. Consider the data sets for two classes X1 = {(0,0)} and X2 = {(1,0),(0,1)}.
Which classification probabilities will a naive Bayes classifier produce for the fea-
ture vector (0,0)?

8.2. Which disciminant line will a support vector machine without kernelization
produce for the same data sets?

8.3. Which classification rule will a nearest neighbor classifier produce for the same
data sets?
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8.4. Which classification rule will a 3-nearest neighbors classifier produce for the
same data sets?

8.5. Draw a receiver operating characteristic for these four classifiers, where class 2
is considered positive.
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Chapter 9
Clustering

Abstract Clustering is unsupervised learning that assigns labels to objects in un-
labeled data. When clustering is performed on data that do have physical classes,
the clusters may or may not correspond with the physical classes. Cluster partitions
may be mathematically represented by sets, partition matrices, and/or cluster pro-
totypes. Sequential clustering (single linkage, complete linkage, average linkage,
Ward’s method, etc.) is easily implemented but computationally expensive. Parti-
tional clustering can be based on hard, fuzzy, possibilistic, or noise clustering mod-
els. Cluster prototypes can take many forms such as hyperspheric, ellipsoidal, lin-
ear, circles, or more complex shapes. Relational clustering models find clusters in
relational data. Complex relational clusters can be found by kernelization. Cluster
tendency assessment finds out if the data contain clusters at all, and cluster validity
measures help to identify an appropriate number of clusters. Clustering can also be
done by heuristic methods such as the self-organizing map.

9.1 Cluster Partitions

The previous chapter on classification considered data sets that contain feature vec-
tors X and class labels Y . In many applications class labels are not available or at
least difficult to obtain, for example by manual labeling. Clustering [18, 19] identi-
fies structures in unlabeled feature data X . When clustering is performed on data that
do have physical classes (such as the Iris data), the clusters may or may not corre-
spond with the physical classes, however, clusters are often used as class estimates.
Fig. 9.1 illustrates the clustering methods presented in this book. We distinguish se-
quential and partitional clustering. Partitional clustering may use different cluster-
ing models (hard, fuzzy, possibilistic, noise), prototypes (hyperspheric, ellipsoidal,
linear, complex shapes), and other characteristics (medoids, relational, kernelized,
heuristic).

Fig. 9.2 (left) shows a scatter plot of the data set

103T. A. Runkler, Data Analytics, DOI 10.1007/978-3-8348-2589-6_9, 
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Fig. 9.1 Some important clustering methods.
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Fig. 9.2 A data set and its cluster structure.

X = {(2,2),(3,2),(4,3),(6,7),(7,8),(8,8),(5,5)} (9.1)

that arguably contains two clusters, bottom left and top right, whose crisp bound-
aries are illustrated by the dashed circles in Fig. 9.2 (right). The cluster structure par-
titions this data set X into the disjoint subsets C1 = {x1,x2,x3} and C2 = {x4,x5,x6}.
More generally, crisp clustering partitions a data set X = {x1, . . . ,xn} ⊂ R

p into
c ∈ {2,3, . . . ,n− 1} disjoint subsets C1, . . . ,Cc so that

X = C1 ∪ . . .∪Cc (9.2)

Ci �= {} for all i = 1, . . . ,c (9.3)

Ci ∩Cj = {} for all i, j = 1, . . . ,c, i �= j (9.4)
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1. initialize Γn = {{o1}, . . .,{on}}
2. for c = n−1,n−2, . . .,1

• (i, j) = argmin
(Cr ,Cs)∈Γc

d(Cr ,Cs)

• Γc = (Γc+1 −Ci −Cj)∪ (Ci ∪Cj)

3. output partitions Γ1, . . .,Γn

Fig. 9.3 Sequential agglomerative hierarchical nonoverlapping (SAHN) clustering.

9.2 Sequential Clustering

A popular family of sequential clustering methods is sequential agglomerative hi-
erarchical nonoverlapping (SAHN) clustering [30] that is illustrated in Fig. 9.3.
Initially, SAHN interprets each of the n objects as an individual cluster, so the ini-
tial partition is Γn = {{o1}, . . . ,{on}}. In each step, SAHN finds the pair of least
dissimilar (or most similar) clusters and merges these two clusters to a new cluster,
so the number of clusters is decreased by one. Notice that we restrict our attention
to the dissimilarity version of SAHN here. SAHN terminates when the number of
desired clusters is reached, or when all objects are merged to a single cluster which
corresponds to the the partition Γ1 = {{o1, . . . ,on}}. The dissimilarity between a
pair of clusters can be computed from the dissimilarities between pairs of objects in
various ways:

• minimum distance or single linkage

d(Cr,Cs) = min
x∈Cr , y∈Cs

d(x,y) (9.5)

• maximum distance or complete linkage

d(Cr,Cs) = max
x∈Cr , y∈Cs

d(x,y) (9.6)

• average distance or average linkage

d(Cr,Cs) =
1

|Cr| · |Cs| ∑
x∈Cr , y∈Cs

d(x,y) (9.7)

These three options apply to relational or feature data. Two more options which are
defined only for feature data are

• distance of the centers

d(Cr,Cs) =

∥∥∥∥∥ 1
|Cr| ∑

x∈Cr

x− 1
|Cs| ∑

x∈Cs

x

∥∥∥∥∥ (9.8)
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Fig. 9.4 Distances between clusters (left: single and complete linkage, right: average linkage).

1 2 3 4 5 6
0

1
1.414

4.472

8.485

Fig. 9.5 Dendrogram.

• Ward’s measure [31]

d(Cr,Cs) =
|Cr| · |Cs|
|Cr|+ |Cs|

∥∥∥∥∥ 1
|Cr| ∑

x∈Cr

x− 1
|Cs| ∑

x∈Cs

x

∥∥∥∥∥ (9.9)

Fig. 9.4 visualizes the first three options (single, complete, and average linkage).
The left diagram shows the minimum and maximum distances (single and complete
linkage) between the clusters from Fig. 9.2. The right diagram shows all mutual
distances that are used in average linkage. Eq. (9.5) is one of the most popular clus-
ter distance measures. However, single linkage tends to form long stringy clusters.
SAHN algorithms with specific cluster distance measures are often denoted by the
measure only, for example SAHN with the (9.5) is simply called single linkage clus-
tering.

The partitions produced by SAHN represent a hierarchical structure that can be
visualized by a so-called dendrogram. Fig. 9.5 shows the single linkage dendrogram
for our simple six point data set, that illustrates how the points x1, . . . ,x6 (indices
on the horizontal axis) are successively merged. The vertical axis shows the single
linkage distances. The single linkage partitions are

Γ0 = {{x1},{x2},{x3},{x4},{x5},{x6}} (9.10)
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Γ1 = Γ2 = {{x1,x2},{x3},{x4},{x5,x6}} (9.11)

Γ3 = Γ4 = {{x1,x2,x3},{x4,x5,x6}} (9.12)

Γ5 = {{x1,x2,x3,x4,x5,x6}}= {X} (9.13)

A variant of SAHN uses density estimators instead of distance measures to merge
clusters: density-based spatial clustering of applications with noise (DBSCAN) [28].

The reverse or bottom-up variant of SAHN is sequential divisive hierarchical
nonoverlapping (SDHN) clustering which starts with all points in one cluster and
successively separates clusters into sub-clusters, so c0 = 1 and Γ0 = {{x1, . . . ,xn}}.
Separating clusters is not a trivial task, so SDHN is less popular than SAHN. An
example of literature on SDHN is [11].

The main advantages of SAHN are that it is easily implemented and provides
information about the hierarchical cluster structure. The main disadvantage is the
high computational complexity (o(n3) for the algorithm in Fig. 9.3). Notice that
more efficient algorithms for SAHN (o(n2 logn)) and single linkage (o(n2)) have
been presented in the literature [10].

9.3 Prototype-Based Clustering

In the previous section we represented a partition of X by a partition set Γ contain-
ing disjoint subsets of X . An equivalent representation is a partition matrix U with
the elements

uik =

{
1 if xk ∈Ci

0 if xk �∈Ci
(9.14)

i = 1, . . . ,c, k = 1, . . . ,n, so uik is a membership value that indicates if xk belongs to
Ci. For non-empty clusters we require

n

∑
k=1

uik > 0, i = 1, . . . ,c (9.15)

and for pairwise disjoint clusters

c

∑
i=1

uik = 1, k = 1, . . . ,n (9.16)

Fig. 9.6 (left) shows our six point data set again with vertical bars representing the
second row of the partition matix. The second row of the partition matrix is one for
the elements of the second cluster and zero for all other points. Therefore, there are
three bars with height one at the points x4, . . . ,x6, and there are no bars (zero height)
at the other points.

Besides partition sets and partition matrices also cluster prototypes can be used
to represent clusters when the data are feature vectors. For example, each cluster
may be represented by a (single) center vi, i = 1, . . . ,c, so the cluster structure is
defined by the set of cluster centers

V = {v1, . . . ,vc} ⊂ R
p (9.17)
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Fig. 9.6 Cluster memberships and cluster centers.

Given a data set X , the cluster centers V and the assignment of data points X to
clusters can be found by optimizing the c-means (CM) clustering model [1] defined
as the sum of the square distances between the cluster centers and the data points
belonging to the respective clusters.

JCM(U,V ;X) =
c

∑
i=1

∑
xk∈Ci

‖xk − vi‖2 =
c

∑
i=1

n

∑
k=1

uik ‖xk − vi‖2 (9.18)

To minimize JCM, for each k we pick the the minimum ‖xk − vi‖ and set the cor-
responding membership uik to one. This yields the partition matrix U ∈ [0,1]c×p

with
uik =

{
1 if ‖xk − vi‖= min j=1,...,c ‖xk − v j‖
0 otherwise

(9.19)

where ties have to be handled in an appropriate way, for example by random assign-
ment. The necessary condition for extrema of (9.18)

∂JCM(U,V ;X)

∂vi
= 0, i = 1, . . . ,c (9.20)

yields the cluster centers

vi =
1
|Ci| ∑

xk∈Ci

xk =

n
∑

k=1
uik xk

n
∑

k=1
uik

(9.21)

So the cluster centers are the averages of the data points assigned to the correspond-
ing cluster, and the data points are assigned to clusters using the nearest neighbor
rule.

Notice that the optimal V depends on U (and X), and the optimal U depends
on V (and X), so this requires an alternating optimization (AO) of U and V , as
shown in Fig. 9.7. This AO variant initializes V , alternatingly computes U and V ,
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1. input data X = {x1, . . . ,xn} ⊂R
p,

cluster number c ∈ {2, . . . ,n−1},
maximum number of steps tmax,
distance measure ‖.‖,
distance measure for termination ‖.‖ε ,
termination threshold ε

2. initialize prototypes V (0) ⊂R
p

3. for t = 1, . . . , tmax

– compute U(t)(V (t−1),X)
– compute V (t)(U(t),X)
– if ‖V (t)−V (t−1)‖ε ≤ ε , stop

4. output partition matrix U ∈ [0,1]c×n,
prototypes V = {v1, . . .,vc} ∈ R

p

Fig. 9.7 Alternating optimization of clustering models.

and terminates on V . A dual AO variant initializes U , alternatingly computes V and
U , and terminates on U . The size of V is c× p, and the size of U is c× n, so for
p � n, the AO variant shown in Fig. 9.7 is more efficient. However, for p � n (for
example in many bioinformatics applications) the dual variant is more efficient.

9.4 Fuzzy Clustering

CM clustering works well if the clusters are well separated and do not contain inliers
or outliers. We add the point x7 = (5,5) to the previously considered six point data
set and obtain the new seven point data set

X = {(2,2),(3,2),(4,3),(6,7),(7,8),(8,8),(5,5)} (9.22)

Fig. 9.8 (left) shows this data set, with the new data point shown as a plus sign.
Assigning the additional data point to either of the two clusters would contradict
intuition. Because the data set is symmetric about the new point, it seems reasonable
to assign it equal, partial membership in both clusters. A partial cluster assignment
can be formally realized by allowing the elements of the partition matrix to be in the
unit interval uik ∈ [0,1], i = 1, . . . ,c, k = 1, . . . ,n. In correspondence with (9.15) we
require non-empty fuzzy clusters

n

∑
k=1

uik > 0, i = 1, . . . ,c (9.23)

and in correspondence with (9.16) we require that for each point the cluster mem-
berships sum up to one
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Fig. 9.8 Data set with a point that belongs to both clusters (left) and part of a fuzzy 2-partition
(right).

c

∑
i=1

uik = 1, k = 1, . . . ,n (9.24)

Condition (9.24) is similar to the normalization of probabilistic distributions, but
these set memberships are not probabilistic. For a discussion on the difference be-
tween fuzziness and probability we refer to [3]. Fig. 9.8 (right) shows the member-
ships of (the second row of) a fuzzy partition. The memberships of the new point x7

are u17 = u27 = 1/2. The memberships u21,u22,u23 are small but may be different
from zero, and the memberships u24,u25,u26 are large but may be less than one to
satisfy constraint (9.24). Each point is assigned to all (both) clusters to a certain
degree.

Given a data set X , a set of protoypes V and a fuzzy partition matrix U and be
found by optimizing the fuzzy c-means (FCM) clustering model [2, 7] defined by
the objective function

JFCM(U,V ;X) =
n

∑
k=1

c

∑
i=1

um
ik ‖xk − vi‖2 (9.25)

with the constraints 0 ≤ uik ≤ 1, (9.23) and (9.24). The parameter m> 1 specifies the
fuzziness of the clusters. As m→ 1 from above, FCM becomes CM. For m→∞ each
point in X −V will obtain the same membership uik = 1/c, i = 1, . . . ,c, k = 1, . . . ,n,
in all clusters. A frequent choice is m= 2. In FCM, constraint (9.23) can be formally
ignored but constraint (9.24) has to be respected in order to avoid the trivial solution
uik = 0, i = 1, . . . ,c, k = 1, . . . ,n. Finding extrema of JFCM begins with the Lagrange
function (see appendix)

FFCM(U,V,λ ;X) =
n

∑
k=1

c

∑
i=1

um
ik ‖xk − vi‖2 −

n

∑
k=1

λk ·
(

c

∑
i=1

uik − 1

)
(9.26)

The necessary conditions for extrema yield



9.4 Fuzzy Clustering 111

∂FFCM

∂λk
= 0

∂FFCM

∂uik
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭⇒ uik = 1

/
c

∑
j=1

( ‖xk − vi‖
‖xk − v j‖

) 2
m−1

(9.27)

∂JFCM

∂vi
= 0 ⇒ vi =

n
∑

k=1
um

ik xk

n
∑

k=1
um

ik

(9.28)

Comparing (9.25) with (9.18), (9.27) with (9.19), and (9.28) with (9.21) confirms
that as m → 1 from above, FCM becomes CM. In FCM, U depends on V , and V de-
pends on U , so U and V are found by alternating optimization (AO) as shown in Fig.
9.7. Other methods have been proposed to optimize FCM, for example evolutionary
algorithms [6] or swarm intelligence [27].

FCM often yields good results, even if the clusters are overlapping and data are
noisy, but it is sensitive to outliers. Outliers that are almost equally distant to all
cluster centers receive the FCM memberships uik ≈ 1/c, i = 1, . . . ,c, in order to sat-
isfy the normalization criterion (9.24). So for FCM, outliers are equivalent to other
data points that are equidistant to all data points like the middle point in Fig. 9.8.
But intuitively we expect outliers to have low membership in all clusters because
they are not representative for any cluster. This may be realized by dropping the
normalization criterion (9.24) and adding a penalty term to the FCM objective func-
tion, which yields the possibilistic c-means (PCM) clustering model [23] with the
objective function

JPCM(U,V ;X) =
n

∑
k=1

c

∑
i=1

um
ik ‖xk − vi‖2 +

c

∑
i=1

ηi

n

∑
k=1

(1− uik)
m (9.29)

with the constraint (9.23) and the cluster sizes η1, . . . ,ηc > 0. The necessary condi-
tions for extrema yield (9.28) and

uik = 1

/
c

∑
j=1

⎛
⎝1+

(‖xk − vi‖2

ηi

) 1
m−1

⎞
⎠ (9.30)

which is a so-called Cauchy function.
An alternative approach to handle outliers in fuzzy clustering defines an addi-

tional cluster specifically for outliers. The membership of each point in this outlier
cluster is one minus the memberships in the regular clusters. The outlier cluster does
not have a cluster center, but the distance between each data point and the outlier
cluster is a constant δ > 0 that has to be chosen higher than the distances between
non-outliers and regular cluster centers. This yields the noise clustering (NC) model
[9] with the objective function
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JNC(U,V ;X) =
n

∑
k=1

c

∑
i=1

um
ik ‖xk − vi‖2 +

n

∑
k=1

(
1−

c

∑
j=1

u jk

)m

δ 2 (9.31)

The necessary conditions for extrema yield (9.28) and

uik = 1

/(
c

∑
j=1

( ‖xk − vi‖
‖xk − v j‖

) 2
m−1

+

(‖xk − vi‖
δ

) 2
m−1
)

(9.32)

The distances in the objective functions of CM (9.18), FCM (9.25), PCM (9.29),
NC (9.31) and in the corresponding equations for uik (9.19),(9.27), (9.30), (9.32)
can be defined by any of the measures from chapter 2, for example the Euclidean
norm or the Mahalanobis norm. A variant of the Mahalanobis norm considers the
covariance matrices of the individual clusters instead of the whole data set. The
covariance within cluster i = 1, . . . ,c is defined as

Si =
n

∑
k=1

um
ik (xk − vi)

T (xk − vi) (9.33)

which corresponds to the within-class covariance (8.24) for linear discriminant anal-
ysis (chapter 8). The within-cluster covariance defines a norm inducing matrix

Ai =
p
√

ρi det(Si)S−1
i (9.34)

which normalizes each cluster to the hypervolume det(Ai) = ρi. A frequent choice
is ρ1 = . . .= ρc = 1. FCM with the within-cluster Mahalanobis norm is also called
the Gustafson-Kessel (GK) clustering model [13] with the objective function

JGK(U,V ;X) =
n

∑
k=1

c

∑
i=1

um
ik(xk − vi)Ai(xk − vi)

T (9.35)

The within-cluster Mahalanobis norm can also be used in CM, PCM, and NC.
The Euclidean norm yields hyperspherical clusters, and the within-cluster Maha-

lanobis norm yields hyperellipsoidal clusters. Expanding our notion of prototypes to
include structures more complex than points in the feature space allows us to model
more complicated geometric cluster structures. A line, plane, or hyperplane can be
defined by a point vi ∈R

p and one or more directions di1, . . . ,diq, q ∈ {1, . . . , p−1},
where q = 1 for lines and q = 2 for planes. The distance of a point xk and such a
line, plane, or hyperplane follows from the orthogonal projection.

d(xk,vi,di1, . . . ,diq) =

√
‖xk − vi‖2 −

q

∑
l=1

(xk − vi)dT
il (9.36)

Formally, the distance ‖xk − vi‖ in any clustering model (CM, FCM, PCM, or NC)
and the corresponding equations to compute U can be simply replaced by (9.36) to
obtain a clustering model for lines, planes, or hyperplanes. For FCM, for example,
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Fig. 9.9 Detection of lines and circles by clustering.

we obtain the fuzzy c-varieties (FCV) clustering model [4]

JFCV(U,V,D;X) =
n

∑
k=1

c

∑
i=1

um
ik

(
‖xk − vi‖2 −

q

∑
l=1

(xk − vi)d
T
il

)
(9.37)

For q= 1, this is also called the fuzzy c-lines (FCL) clustering model. For FCV/FCL,
U is then computed as

uik = 1

/
c

∑
j=1

⎛
⎜⎜⎝

‖xk − vi‖2 −
q
∑

l=1
(xk − vi)dT

il

‖xk − v j‖2 −
q

∑
l=1

(xk − v j)dT
jl

⎞
⎟⎟⎠

1
m−1

(9.38)

V by (9.28), and D are the eigenvalues of the within-cluster covariance matrices
(9.33).

di j = eig j

n

∑
k=1

um
ik (xk − vi)

T (xk − vi), j = 1, . . . ,q (9.39)

A third example of non-spherical prototypes (besides GK and FCV/FCL) are
elliptotypes [5] defined by the distance

d(xk,vi,di1, . . . ,diq) =

√
‖xk − vi‖2 −α ·

q

∑
l=1

(xk − vi)dT
il (9.40)

with the parameter α ∈ [0,1]. For α = 0 elliptotypes are points, and for α = 1
elliptotypes are lines, planes, or hyperplanes. Elliptotypes are used, for example,
to define the fuzzy c-elliptotypes (FCE) clustering model. Fig. 9.9 (left) shows the
cluster prototypes found by AO of FCE with the parameters c= 2, m= 2, q= 1, α =
0.5, tmax = 100. The cluster centers v1, v2 are shown as circles, and the directions
d11, d21 are shown as arrows. They match well the local linear structures.

An example of more complicated geometric prototypes are circles. Each circle
can be represented by a center vi and a radius ri. The distance between point xk and
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such a circle is
d(xk,vi,ri) = |‖xk − vi‖− ri| . (9.41)

which defines, for example, the fuzzy c-shells (FCS) clustering model [8]. In FCS,
the centers are computed by (9.28), and the radii by

ri =

n
∑

k=1
um

ik‖xk − vi‖
n
∑

k=1
um

ik

(9.42)

Fig. 9.9 (right) shows the FCS results for a data set with two circles. A wide variety
of clustering models for complex geometries can be obtained by combining basic
clustering models (CM, FCM, PCM, NC) with appropriate distance measures.

9.5 Relational Clustering

The previously presented clustering methods find clusters in feature data sets X ⊂
R

p. This section presents clustering methods that find clusters in relational data
specified by relation matrices R ∈ R

n×n (compare chapter 2). More specifically, we
consider symmetric distance matrices D, where dii = 0, di j = d ji, i, j = 1, . . . ,n. Re-
lational data may be approximately transformed to feature data using multidimen-
sional scaling or Sammon mapping (chapter 4), and then conventional clustering
methods may be used to find clusters in the resulting feature data. Here, we focus
on relational clustering that finds clusters in relational data without explicitly pro-
ducing feature data [26].

SAHN clustering with single, complete, or average linkage never uses the fea-
ture vectors but only the distances between pairs of feature vectors, so SAHN is
relational clustering. The CM, FCM, PCM, and NC clustering models use distances
between feature vectors and cluster centers. If we require the cluster centers to be
chosen from the set of data vectors, V ⊆ X , the so-called medoids [22], then these
clustering models can also be used for relational clustering, because all possible
distances between feature vectors and medoids are available in R. The correspond-
ing clustering models are called relational c-medoids (RCMdd), relational fuzzy c-
medoids (RFCMdd), relational possibilistic c-medoids (RPCMdd), relational noise
clustering with medoids (RNCMdd). The restriction to medoids leaves the cluster-
ing model unchanged but adds the constraint V ⊆ X that makes sure that U can be
computed from R. The selection of the medoids V is a discrete optimization prob-
lem that is usually solved by exhaustive search. We illustrate this for RFCMdd. The
contribution of cluster i to the objective function JRFCMdd = JFCM is the additive term

J∗i =
n

∑
k=1

um
ik‖xk − vi‖2 (9.43)
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so we can write J = ∑c
i=1 J∗i . Without loss of generality we assume that vi = x j, so

we have ‖vi − xk‖= r jk and further

J∗i = Ji j =
n

∑
k=1

um
ikr2

jk (9.44)

So the best choice of the medoids is vi = xwi , i = 1, . . . ,n, where

wi = argmin{Ji1, . . . ,Jin} (9.45)

This exhaustive search usually leads to a large computational effort.
A different approach to transform feature based clustering models to relational

clustering models is to only implicitly compute the cluster prototypes, for example
by inserting the equation for optimal cluster centers into the objective function of the
clustering model. This so-called reformulation [15] yields objective functions for
relational clustering. Reformulation of CM, FCM, PCM, and NC yields relational
c-means (RCM), relational fuzzy c-means (RFCM), relational possibilistic c-means
(RPCM), and relational noise clustering (RNC) [16]. We illustrate the reformulation
for the example of RFCM. Inserting (9.28) into (9.25) yields the objective function

JRFCM(U ;R) =
c

∑
i=1

n
∑
j=1

n
∑

k=1
um

i ju
m
ikr2

jk

n
∑
j=1

um
i j

(9.46)

The necessary conditions for extrema of JRFCM yield

uik = 1

/
n

∑
j=1

n
∑

s=1

um
isrsk
n
∑

r=1
um

ir

−
n
∑

s=1

n
∑

t=1

um
isum

it rst

2
( n

∑
r=1

um
ir

)2

n
∑

s=1

um
jsrsk

n
∑

r=1
um

jr

−
n
∑

s=1

n
∑

t=1

um
jsum

jt rst

2
( n

∑
r=1

um
jr

)2

(9.47)

i = 1, . . . ,c, k = 1, . . . ,n.
Imagine that the relational data matrix R may be computed from a feature

data set X using the norm ‖.‖, for example the Euclidean norm, then minimiz-
ing JFCM(U,V ;X) will yield the same partition U (except for a reordering of the
clusters) as minimizing JRFCM(U ;R). The same holds for the pairs CM/RCM,
PCM/RPCM, NC/RNC, CMdd/RCMdd, FCMdd/RFCMdd, PCMdd/RPCMdd, and
NCMdd/RNCMdd. It does not hold, if R is computed from X using a different norm
or without using feature data at all. In this case, the minimization of the relational
objective function might yield memberships uik < 0 or uik > 1. This can be avoided
by transforming the non-Euclidean matrix D into a Euclidean matrix using the so-
called beta transform [14]

Dβ = D+β ·B (9.48)
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with the parameter β ≥ 0, where B is the inverse diagonal matrix with bi j = 1 for
all i, j = 1, . . . ,n, i �= j, and bii = 0 for all i = 1, . . . ,n. The parameter β is ini-
tially set to zero and is successively increased until all memberships are in the unit
interval. For the corresponding clustering models we use the prefix “NE” for “non-
Euclidean”, for example non-Euclidean relational fuzzy c-means (NERFCM) [14]
or non-Euclidean relational possibilistic c-means (NERPCM) [25].

The previously presented relational clustering models are derived from feature
data clustering models considering hyperspherical data. In the previous section we
have presented feature data clustering models for more complicated cluster shapes
like ellipsoidals, hyperplanes, or circles. It is difficult to extend these models to re-
lational data. In chapter 8 we have used a different approach to extend algorithms
from simple geometries to more complicated geometries: the kernel trick. For the
support vector machine the kernel trick is used to transform low-dimensional non-
linear class borders to high-dimensional linear class borders. For clustering the ker-
nel trick is used to transform low-dimensional clusters with complicated shapes to
high-dimensional hyperspherical clusters. The kernel trick has been applied, for ex-
ample, to CM [29, 38, 12], FCM [35, 36, 34], PCM [37], NERFCM [17], and NER-
PCM [25]. We denote the kernelized variants with the prefix “k”, for example kCM,
kFCM, kPCM, kNERFCM, kNERPCM. In relational clustering with Euclidean
distances the kernel trick yields

r2
jk = ‖ϕ(x j)−ϕ(xk)‖2 (9.49)

= (ϕ(x j)−ϕ(xk)) (ϕ(x j)−ϕ(xk))
T (9.50)

= ϕ(x j)ϕ(x j)
T − 2ϕ(x j)ϕ(xk)

T +ϕ(xk)ϕ(xk)
T (9.51)

= k(x j,x j)− 2 · k(x j,xk)+ k(xk,xk) (9.52)

= 2− 2 · k(x j,xk) (9.53)

where we assume that k(x,x) = 0 for all x ∈ R
p. So a kernel variant of a Euclidean

relational clustering model can be realized by a simple preprocessing step where
the relational data matrix R is transformed to a kernelized matrix R′ using (9.53),
and the unchanged clustering algorithm is then applied to R′ instead of R. For the
Gaussian kernel (8.42) and the hyperbolic tangent kernel (8.43), for example, we
obtain the kernel transformations

r′jk =

√
2− 2 · e−

r2
jk

σ2 (9.54)

r′jk =

√√√√2 · tanh

(
r2

jk

σ2

)
(9.55)

Fig. 9.10 shows these functions for σ ∈ {1,2,3,4}. Notice the similarity between
these two kernel transformations. The distances are softly clipped at the threshold
r′ =

√
2, and small distances are approximately linearly scaled. We assume that the

clustering algorithm is invariant to an arbitrary scaling of the distances by a constant
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Fig. 9.10 Kernel transformation by Gaussian kernel (left) and hyperbolic tangent kernel (right).
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Fig. 9.11 Scaled kernel transformation by Gaussian kernel (left) and hyperbolic tangent kernel
(right).

factor α > 0, so R and R∗, r∗jk =α ·r jk, j,k = 1, . . . ,n, will yield the same results. We
can therefore multiply each function in Fig. 9.10 with an arbitrary constant factor,
more specifically with a factor that yields a slope of one at the origin (Fig. 9.11).
This view illustrates that the kernel transforms yield a soft clipping of the distance at
the threshold σ , so the effect of large distances in R, for example caused by outliers,
is reduced [24].

9.6 Cluster Tendency Assessment

Clustering algorithms will find clusters in data, even if the data do not contain
any clusters. Cluster tendency assessment attempts to find out if there are clus-
ters contained in the data at all. A popular cluster tendency assessment method
uses the Hopkins index [18, 19]. To compute the Hopkins index of a data set
X = {x1, . . . ,xn} ⊂ R

p we first randomly pick m points R = {r1, . . . ,rm} in the con-
vex hull of X , where m � n. Notice that this is a non-trivial computing problem; to
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Fig. 9.12 Three data sets and their Hopkins indices.

avoid this, some authors suggest to use the minimal hypercube instead of the con-
vex hull. Then we randomly pick m data points S = {s1, . . . ,sm} from X , so S ⊂ X .
For both sets R and S we compute the distances to the nearest neighbor in X , which
yields dr1 , . . . ,drm and ds1 , . . . ,dsm . Based on these distances the Hopkins index is
defined as

h =

m
∑

i=1
d p

ri

m
∑

i=1
d p

ri +
m
∑

i=1
d p

si

(9.56)

which yields h ∈ [0,1]. We distinguish three cases

1. For h ≈ 0.5 the nearest neighbor distances in X are almost the same as between
R and X , so R and X have similar distributions. Since R was purely randomly
chosen, we can conclude that X is also randomly distributed and does not contain
clusters.

2. For h≈ 1 the nearest neighbor distances in X are relatively small, which indicates
that X contains a cluster structure.

3. For h≈ 0 the nearest neighbor distances in X are relatively large, which indicates
that X is on a regular grid.

To illustrate these three cases, Fig. 9.12 shows three different data sets and their
Hopkins indices (m = 10, n = 1000). The left data set is randomly distributed, so
h ≈ 0.5. The middle data set contains two well-separated clusters, so h ≈ 1. The
right data set is on a regular rectangular grid, so h is very small. A Hopkins index
h > 0.5 indicates that the data possess a cluster structure.

9.7 Cluster Validity

The Hopkins index may indicate whether or not a data set contains clusters. All clus-
tering methods presented here require specification of the number c ∈ {2, . . . ,n−1}
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Table 9.1 Validity indices for crisp and indifferent partitions.

U PC(U) CE(U)⎛
⎜⎜⎜⎝

1 0 . . . 0
0 1 0
...

. . .
...

0 0 . . . 1

⎞
⎟⎟⎟⎠ 1 0

⎛
⎜⎝

1
c . . . 1

c
...

. . .
...

1
c . . . 1

c

⎞
⎟⎠ 1

c logc

of clusters to seek. In many applications the number of clusters is not known in
advance. To estimate the number of clusters contained in the data, cluster valid-
ity measures are used. Clustering is performed for different numbers of clusters,
and the resulting partition with the best validity indicates the appropriate number of
clusters. Frequently used cluster validity measures are the average square member-
ship or partition coefficient (PC) [2]

PC(U) =
1
n

n

∑
k=1

c

∑
i=1

u2
ik (9.57)

and the average entropy or classification entropy (CE) [33]

CE(U) =
1
n

n

∑
k=1

c

∑
i=1

−uik · loguik (9.58)

where we define
−0 · log0 = lim

u→0
−u logu = 0 (9.59)

Table 9.1 shows the validity indices PC and CE for a crisp and for an indifferent
partition, where the crisp partition is more valid than the indifferent partition. So, a
good choice of the cluster number will yield a high value of PC (close to one), or a
low value of CE (close to zero).

9.8 Self-Organizing Map

A self-organizing map [20, 21, 32] is a regular q-dimensional array of a total of l
reference nodes used for clustering and projection. Unlike most other clustering and
projection methods presented here, the self-organizing map does not optimize an ob-
jective function but is a pure heuristic algorithm. Two-dimensional self-organizing
maps may have a rectangular or hexagonal structure (Fig. 9.13) Each node has a
location vector ri ∈ R

q that defines its position on the map, and a reference vector
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Fig. 9.13 Rectangular and hexagonal self-organizing map.

mi ∈ R
p that relates to the data X , i = 1, . . . , l. For training the reference vectors

mi ∈ R
p are first randomly initialized. Then for each data point xk ∈ X we find the

closest reference vector, say mc, and update the reference vectors that are located on
the map in the neighborhood of rc. The neighborhood may be defined by the bubble
function

hci =
{α(t) if ‖rc − ri‖< ρ(t)

0 otherwise
(9.60)

or the Gaussian function

hci = α(t) · e−
‖rc−ri‖2

2·ρ2(t) (9.61)

The neighborhood radius ρ(t) and the learning rate α(t) may be monotonically
decreased, for example by

α(t) =
A

B+ t
, A,B > 0 (9.62)

Fig. 9.14 shows the training algorithm of a self-organizing map. Notice the similar-
ity of the update of the reference vectors with learning vector quantization (chapter
8). After training, regions of close (or even equal) reference vectors on the map in-
dicate clusters in the data. Moreover, each data point can be mapped to the closest
reference vector.

Problems

9.1. Draw the single linkage dendrogram for X = {−6,−5,0,4,7}.

9.2. Draw the complete linkage dendrogram for the same data set X .

9.3. Compute the sequence of cluster centers that c-means produces for X with ini-
tialization V = {5,6}.

9.4. Find an initialization for which c-means yields a different result for X .

9.5. What is the difference between classification and clustering?
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1. input data X = {x1, . . . ,xn} ⊂R
p,

map dimension q ∈ {1, . . . , p−1},
node positions R = {r1, . . . , rl} ⊂R

q

2. initialize M = {m1, . . . ,ml} ⊂R
p, t = 1

3. for each xk , k = 1, . . . ,n,

a. find winner node mc with

‖xk −mc‖ ≤ ‖xk −mi‖ ∀i = 1, . . . , l

b. update winner and neighbors

mi = mi +hci · (xk −mc) ∀i = 1, . . . , l

4. t = t +1
5. repeat from (3.) until termination criterion holds
6. output reference vectors M = {m1, . . . ,ml} ⊂ R

p

Fig. 9.14 Training algorithm for a self-organizing map.
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Appendix A
Brief Review of Some Optimization Methods

In this book we have discussed many data analysis methods that use some form
of optimization. Many data analysis algorithms are essentially optimization algo-
rithms. In this appendix we briefly review the basics of the optimization methods
used in this book: optimization with derivatives, gradient descent, and Lagrange op-
timization. For a more comprehensive overview of optimization methods the reader
is referred to the literature, for example [1, 2, 3].

A.1 Optimization with Derivatives

A popular approach to find extrema of a differentiable function y = f (x) is to set the
necessary conditions for extrema of f to zero

∂ f

∂x(i)
= 0 (A.1)

where the second derivative ∂ 2 f
∂ (xi)2 is negative for maxima, positive for minima, and

zero for saddle points. Suppose for example that we want to find the extrema of the
function

y = f (x(1),x(2)) = (x(1)− 1)2 +(x(2)− 2)2 (A.2)

The derivatives of f are

∂ f

∂x(1)
= 2(x(1)− 1),

∂ f

∂x(2)
= 2(x(2)− 2) (A.3)

∂ 2 f

∂ (x(1))2
= 2,

∂ 2 f

∂ (x(2))2
= 2 (A.4)

Setting the derivatives of f to zero yields

2(x(1)− 1) = 0 ⇒ x(1) = 1, 2(x(2)− 2) = 0 ⇒ x(2) = 2 (A.5)
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and since the second order derivatives are positive, f has a minimum at x = (1,2).

A.2 Gradient Descent

Gradient descent is an iterative approximative optimization method for differen-
tiable functions. It is often suitable if setting the derivatives of f to zero can not
be explicitly solved. Gradient descent minimizes a function y = f (x) by randomly
initializing the parameter vector x = x0 and then iteratively updating

x(i)k = x(i)k−1 −α
∂ f

∂x(i)

∣∣∣∣
x=xk−1

(A.6)

with a suitable step length α > 0 and k= 1,2, . . .. For our example (A.2) we initialize
x = (0,0), use the gradients (A.3), and obtain with α = 1/2

x(1)1 = 0− 1
2
·2 · (0− 1) = 1, x(2)1 = 0− 1

2
·2 · (0− 2)= 2 (A.7)

x(1)2 = 1− 1
2
·2 · (1− 1) = 1, x(2)2 = 2− 1

2
·2 · (2− 2)= 2 (A.8)

So in this case the gradient descent finds the correct minimum x = (1,2) in one step.
For the same example α = 1/4 yields

x(1)1 = 0− 1
4
·2 · (0− 1) =

1
2
, x(2)1 = 0− 1

4
·2 · (0− 2)= 1 (A.9)

x(1)2 =
1
2
− 1

4
·2 · (1

2
− 1) =

3
4
, x(2)2 = 1− 1

4
·2 · (1− 2) =

3
2

(A.10)

x(1)3 =
3
4
− 1

4
·2 · (3

4
− 1) =

7
8
, x(2)3 =

3
2
− 1

4
·2 · (3

2
− 2) =

7
4

(A.11)

So the algorithm approximates of the correct minimum with a decreasing error that
approaches zero as the number of steps approaches infinity. As a third example we
choose α = 1, which yields

x(1)1 = 0− 2 · (0− 1)= 2, x(2)1 = 0− 2 · (0− 2)= 4 (A.12)

x(1)2 = 2− 2 · (2− 1)= 0, x(2)2 = 4− 2 · (4− 2)= 0 (A.13)

So the algorithm infinitely alternates between (2,4) and (0,0). Finally, we choose
α = 2, which yields

x(1)1 = 0− 2 ·2 · (0−1)= 4, x(2)1 = 0− 2 ·2 · (0− 2)= 8 (A.14)

x(1)2 = 4− 2 ·2 · (4− 1)=−8, x(2)2 = 8− 2 ·2 · (8− 2)=−16 (A.15)
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x(1)3 =−8− 2 ·2 · (−8−1)= 28, x(2)3 =−16− 2 ·2 · (−16−2)= 56 (A.16)

So the algorithm diverges to (±∞,±∞). Thus, gradient descent is a simple optimiza-
tion method that works well for many functions (like the chosen quadratic function)
and which requires the step length α to be chosen appropriately. More advanced
methods consider first and higher order derivatives to estimate suitable step lengths,
for example Newton’s method

x(i)k = x(i)k−1 −
∂ f

∂x(i)

∣∣∣
x=xk−1

∂ 2 f
∂ (x(i))2

∣∣∣
x=xk−1

(A.17)

The simplex algorithm (also called Nelder-Mead method) is a better choice for min-
imizing constrained linear functions. Sequential programming is a family of opti-
mization methods that successively minimizes approximations of the function to
be minimized, for example sequential linear programming or sequential quadratic
programming.

A.3 Lagrange Optimization

Consider the problem of optimizing a function y = f (x) under the constraint
g(x) = 0. For example, we may require that x(1) = x(2) by defining the constraint
function g(x(1),x(2)) = x(1) − x(2). In some cases constrained optimization can be
done by inserting the constraint into the function to be optimized and then perform-
ing (unconstrained) optimization. For example, if we consider again our example
(A.2) with the constraint x(1) = x(2), then we can replace x(2) by x(1) and obtain

y = f (x(1)) = (x(1)− 1)2 +(x(1)− 2)2 = 2(x(1))2 − 6x(1) + 5 (A.18)

with the first and second order derivatives

∂ f

∂x(1)
= 4x(1)− 6,

∂ 2 f

∂ (x(1))2
= 4 (A.19)

Setting the (first order) derivative of f to zero yields

4x(1)− 6 = 0 ⇒ x(1) =
3
2

(A.20)

so under the constraint x(1) = x(2), f has a minimum at x = ( 3
2 ,

3
2 ). In many cases

inserting the constraint does not lead to an explicitly solvable function. In such cases
optimization under equality constraints can be done using Lagrange optimization.
Lagrange optimization transforms the problem of optimizing a function y = f (x)
under the constraint g(x) = 0 into the unconstrained problem of optimizing a func-
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tion
L(x,λ ) = f (x)−λ g(x) (A.21)

with an additional parameter λ ∈R. For our example (A.2) with g(x(1),x(2)) = x(1)−
x(2) we obtain

L(x(1),x(2),λ ) = (x(1)− 1)2 +(x(2)− 2)2 −λ (x(1)− x(2)) (A.22)

with the derivatives

∂L

∂x(1)
= 2(x(1)−1)−λ ,

∂L

∂x(2)
= 2(x(2)−2)+λ ,

∂L
∂λ

=−(x(1)−x(2)) (A.23)

Setting the derivatives to zero yields

x(1) = 1+
λ
2
, x(2) = 2− λ

2
, x(1) = x(2) (A.24)

and further x = ( 3
2 ,

3
2 ). For multiple constraints g1(x), . . . ,gr(x), Lagrange optimiza-

tion is defined as

L(x,λ ) = f (x)−
r

∑
i=1

λigi(x) (A.25)

with the parameters λ1, . . . ,λr ∈ R. Optimization becomes considerably more dif-
ficult when inequality constraints are part of the problem, for example, g(x) ≥ 0.
In this third case we use the Karush-Kuhn-Tucker (KKT) theory. See [2] for this
method.
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Solutions

Problems of Chapter 2

2.1 cake: nominal, 350: interval, 45: ratio

2.2 (a) 4, (b) 3, (c) 2.8

2.3 (a) 4, (b) 16, (c) 16, (d) 2

2.4 (2.43): similarity, (2.44): similarity, (2.45): dissimilarity, (2.46): none

Problems of Chapter 3

3.1 no noise, one outlier, no inlier

3.2 (a) outlier 4, (b) inlier middle 1, (c) outlier (2,1)

3.3 (a) (0, 1
3 ,

1
3 ,

1
3 ,0), (b) (0,0,0,0,0), (c) (0,0,0, 1

2 ,
1
4 ,

1
8 ,

1
16)

3.4 hypercube: {(0,0),(1,1)}, μ-σ : {(−
√

2
2 ,−

√
2

2 ),(
√

2
2 ,

√
2

2 )}

Problems of Chapter 4

4.1 (
√

2
2 ,0,

√
2

2 ), (−
√

2
2 ,0,

√
2

2 )

4.2 X ′ = {(−3,−1),(0,0),(−2,2),(1,3)}, X , 0

4.3 X ′ = {0,2
√

2,2
√

2,4
√

2}, X = {(−3,−1,−1),(−1,−1,1),(−1,−1,1),(1,−1,3)},√
2/2
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Problems of Chapter 5

5.1 C =

(
2
7 0
0 6

)
, S =

(
1 0
0 1

)
5.2 0

5.3 1

Problems of Chapter 6

6.1 C =

(
2.5 2.5
2.5 2.5

)
, x(1) = x(2)

6.2 C =

(
2.5 0
0 2.5

)
, x(1) = 3, x(2) = 2

Problems of Chapter 7

7.1 (1,2;3), (2,3;5), (3,5;8)

7.2 yk = yk−1 + yk−2

7.3 13,21,34, . . .

Problems of Chapter 8

8.1 p(1 | (0,0)) = 2
3 , p(2 | (0,0)) = 1

3

8.2 x ·
(

1
1

)
− 1

2 = 0

8.3 f (x) =

⎧⎨
⎩1 if x(1) < 0.5 and x(2) < 0.5

2 if x(1) > 0.5 or x(2) > 0.5
undefined otherwise

8.4 f (x) = 2

8.5 naive Bayes, SVM, NN: TPR=1, FPR=0; 3-NN: TPR=1, FPR=1
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Problems of Chapter 9

9.1 {{−6,5},{0,{4,7}}}
9.2 {{−6,5},0},{4,7}}}
9.3 V =

{− 7
4 ,7
}

, V =
{− 11

3 , 11
2

}
9.4 for example V =

{− 11
2 , 11

3

}



List of Symbols

∀x ∈ X for each x in X
∃x ∈ X there exists an x in X
⇒ if . . . then . . .
⇔ if and only if
b∫
a

f dx integral of f from x = a to x = b

∂ f
∂x partial derivative of f with respect to x
∧ conjunction
∨ disjunction
∩ intersection
∪ union
¬ complement
\ set difference
⊂,⊆ inclusion
· product, inner product
× cartesian product, vector product
{} empty set
[x,y] closed interval from x to y
(x,y], [x,y) half-bounded intervals from x to y
(x,y) open interval from x to y
|x| absolute value of x
|X | cardinality of the set X
‖x‖ norm of vector x
�x� smallest integer a ≥ x
�x� largest integer a ≤ x( n

m

)
vector with the components n and m, binomial coefficient

∞ infinity
a � b a is much less than b
a � b a is much greater than b
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132 List of Symbols

α(t) time variant learning rate
argmin X index of the minimum of X
argmax X index of the maximum of X
arctan x arctangent of x
artanh x inverse hyperbolic tangent of x
ci j covariance between features i and j
CE(U) classification entropy of U
cov X covariance matrix of X
d(a,b) distance between a and b
eig X eigenvectors and eigenvalues of X
Fc Fourier cosine transform
Fs Fourier sine transform
h(X) Hopkins index of X
H(a,b) Hamming distance between a and b
H(Z) minimal hypercube or entropy of Z
H(Z | a) entropy of Z given a
inf X infimum of X
λ eigenvalue, Lagrange variable
L(a,b) edit distance between a and b
limx→y limit as x approaches y
logb x logarithm of x to base b
maxX maximum of X
minX minimum of X
a mod b a modulo b
N(μ ,σ) Gaussian distribution with mean μ and standard deviation σ
NaN undefined (not a number)
PC(U) partition coefficient of U
R set of real numbers
R
+ set of positive real numbers

r radius
s standard deviation
si j correlation between features i and j
sup X supremum of X
tanh x hyperbolic tangent of x
uik membership of the kth vector in the ith cluster
X set or matrix X
x̄ average of X
XT ,xT transpose of the matrix X , or the vector x
xk kth vector of X
x(i) ith component of X

x(i)k ith componente of the kth vector of X
x scalar or vector x
x(t) time signal
x( j2π f ) spectrum
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2-sigma rule, 22

activation function, 69
actuator, 1
additive noise, 21
alternating optimization, 108
amplitude spectrum, 53
analog, 18
Anderson, 5
AO, 108
AR model, 82
ARIMA model, 82
ARMA model, 82
ARMAX model, 82
auto-associator, 47
automation pyramid, 1
autoregressive model, 82
average linkage, 105
axis-parallel projection, 36

backpropagation algorithm,
71

Bayes classifier, 88
Bayes theorem, 88
beta transform, 115
between-class variance, 92
bioinformatics, 109
biology, 2
biomedical data, 2
bipartial correlation, 57
bubble function, 120
business data, 1
business process, 1
Butterworth filter, 29

c-means, 108
kernelized, 116

relational, 115
C4.5, 100
C5.0, 100
calibration, 22
CART, 100
Cauchy function, 111
causality, 57
CE, 119
CHAID, 100
chi-square automatic

interaction detection,
100

chi-square test, 58
fuzzy, 60

city block norm, 12
class, 7
classification, 85
classification and regression

tree, 100
classification entropy, 119
classifier, 86

Bayes, 88
C4.5, 100
C5.0, 100
CART, 100
CHAID, 100
chi-square automatic

interaction detection,
100

classification and
regression tree, 100

decision tree, 97
fuzzy learning vector

quantization, 96
ID3, 99
iterative dichotomiser, 99
k-nearest neighbors, 95

learning vector quantiza-
tion, 96

linear discrimination, 91
nearest neighbor, 95

cluster tendency assessment,
117

cluster validity, 118
clustering, 103

average linkage, 105
c-means, 108
circles, 114
CM, 108
complete linkage, 105
DBSCAN, 107
elliptotypes, 113
FCE, 113
FCL, 113
FCM, 110
FCS, 114
FCV, 113
fuzzy, 109
fuzzy c-means, 110
GK, 112
Gustafson-Kessel, 112
kernelized, 116
lines, 113
medoids, 114
NC, 111
noise, 111
non-Euclidean, 116
PCM, 111
possibilistic c-means, 111
prototype-based, 107
RCM, 115
relational, 114
RFCM, 115
RNC, 115

133



134 Index

RPCM, 115
SAHN, 105
SDHN, 107
sequential, 105
sequential agglomer-

ative hierarchical
nonoverlapping, 105

sequential divisive hierar-
chical nonoverlapping,
107

shells, 114
single linkage, 105
tendency, 117
validity, 118
varieties, 113
Ward, 106

CM, 108
kernelized, 116
relational, 115

complete linkage, 105
computational intelligence, 2
conditional correlation, 57
constant data, 23
control, 1
convex hull, 117
correlation, 55

bipartial, 57
conditional, 57
linear, 55
multiple, 57
nonlinear, 58
partial, 57
spurious, 57

cosine similarity, 14
covariance, 55
CRISP-DM, 2
cross industry standard

process for data mining,
2

cross-validation, 74
customer segmentation, 1

data
biomedical, 2
business, 1
constant, 23
exotic, 23
image, 2
industrial process, 1
invalid, 23
Iris, 5
labeled, 85
relational, 10
text and structured, 1

training, 74
unlabeled, 103
validation, 74

data analytics, 2
data base, 2
data mining, 2
data preprocessing, 21
data scale, 7
data visualization, 35
DBSCAN, 107
decision tree, 97
deep web, 2
delta rule, 70
density-based spatial cluster-

ing of applications with
noise, 107

deterministic error, 22
Diaconis, 49
diagonal norm, 12
diagram, 35
Dice similarity, 14
discrete linear filter, 27
discrimination, 92
dissimilarity, 11
distance, 11
DNA sequence, 2
drift, 22

e-mail, 2
edit distance, 15
eigendecomposition, 41
eigenvector projection, 37
elliptotype, 113
entropy, 98
error, 21

training, 74
type I, 86
type II, 86
validation, 74

error of the first kind, 86
error of the second kind, 86
Euclidean norm, 11, 12
evolutionary algorithm, 77,

111
exotic data, 23
exponential filter, 26

fall out, 87
fallacy, third cause, 57
false alarm rate, 87
false classification rate, 87
false classifications, 86
false negative, 86
false negative rate, 87

false positive, 86
false positive rate, 87
FCE, 113
FCL, 113
FCM, 110

kernelized, 116
non-Euclidean, 116
relational, 115

FCS, 114
FCV, 113
feature, 7
feature selection, 76
feature vector, 9
feedforward neural network,

68
filter, 25
finite impulse response, 28
finite state machine, 79
finite unfolding, 82
FIR, 28
Fisher, 5
Fisher’s linear discriminant

analysis, 92
Fisher-Z transformation, 32
FLVQ, 96
forecasting, 79
Fourier cosine transform, 51
Fourier sine transform, 51
Fourier theorem, 50
fraud, 1
Freedman, 49
Frobenius norm, 12
fuzziness, 110
fuzzy c-elliptotypes, 113
fuzzy c-lines, 113
fuzzy c-means, 110

kernelized, 116
non-Euclidean, 116
relational, 115

fuzzy c-shells, 114
fuzzy c-varieties, 113
fuzzy chi-square test, 60
fuzzy clustering, 109
fuzzy histogram, 49
fuzzy learning vector

quantization, 96

Gaussian function, 120
Gaussian kernel, 94, 116
gene, 2
generalized delta rule, 71
generalized mean, 8, 12
genome, 2
geometric mean, 8
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GK, 112
gradient descent, 124
Gustafson-Kessel, 112

Hamming distance, 13
harmonic mean, 8
hexagonal, 119
Hilbert-Schmidt norm, 12
histogram, 48, 58

fuzzy, 49
hit rate, 87
Hopkins index, 117
Hotelling transform, 37
Huber function, 68
hyperbolic norm, 11
hyperbolic tangent, 32, 69
hyperbolic tangent kernel, 94,

116
hypercube, 31

ID3, 99
IIR, 28
image data, 2
industrial process data, 1
infimum norm, 12
infinite impulse response, 28
inlier, 23
inner product norm, 11
interval scale, 8
invalid data, 23
Iris data, 5
irrelevance, 86
iterative dichotomiser, 99

Jaccard similarity, 14

k-nearest neighbors classifier,
95

Karhunen-Loève transform,
37

kCM, 116
KDD, 2
kernel

Gaussian, 94, 116
hyperbolic tangent, 94, 116
linear, 94
polynomial, 94
RBF, 94

kernel trick, 94, 116
kFCM, 116
kNERFCM, 116
kNERPCM, 116
knowledge discovery, 2
knowledge extraction, 2

kPCM, 116

labeled data, 85
Lagrange optimization, 125
lazy learning, 95
learning

lazy, 95
supervised, 85
unsupervised, 103

learning vector quantization,
96

fuzzy, 96
least trimmed squares, 68
leave one out, 75
Lebesgue norm, 11
Levenshtein distance, 15
linear autoregressive model,

82
linear correlation, 55
linear discriminant analysis,

91
linear kernel, 94
linear regression, 63

least trimmed squares, 68
nonlinear substitution, 67
robust, 68

logistic function, 69
logistics, 1
LVQ, 96

fuzzy, 96

machine learning, 2
machine learning data base, 5
Mahalanobis norm, 12, 112
Manhattan norm, 12
manufacturing, 1
MATLAB, 3
matrix decomposition, 41
MDS, 41
Mealy machine, 80
mean

generalized, 8, 12
geometric, 8
harmonic, 8
quadratic, 8

measurement error, 21
median, 7
median filter, 26
medicine, 2
medoid, 114
membership function, 50
Mercer’s theorem, 94
Minkowski norm, 11
MLP, 68

mode, 7
monitoring, 1
Moore machine, 80
moving average, 25
moving mean, 25
moving median, 26
multidimensional scaling, 41
multilayer perceptron, 68
multiple correlation, 57

naive Bayes classifier, 88
NaN, 24
NC, 111

relational, 115
nearest neighbor (c-means),

108
nearest neighbor classifier, 95
nearest neighbor correction,

24
negative false classification

rate, 87
negative predictive value, 87
negativity, 87
Nelder-Mead, 125
NERFCM, 116

kernelized, 116
NERPCM, 116

kernelized, 116
neural network, 68
neuron, 68
Newton’s method, 125
noise, 21
noise clustering, 111

relational, 115
nominal scale, 7
non-Euclidean relational

fuzzy c-means, 116
kernelized, 116

non-Euclidean relational
possibilistic c-means,
116

kernelized, 116
nonlinear correlation, 58
nonlinear substitution, 67
norm, 11

city block, 12
diagonal, 12
Euclidean, 11, 12
Frobenius, 12
Hilbert-Schmidt, 12
hyperbolic, 11
infimum, 12
inner product, 11
Lebesgue, 11
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Mahalanobis, 12, 112
Manhattan, 12
Minkowski, 11
supremum, 13

not a number, 24
Nyquist condition, 17

object, 7
ontology, 2
operations research, 2
optimization

alternating, 108
gradient descent, 124
Lagrange, 125
Nelder-Mead, 125
sequential programming,

125
simplex, 125
with derivatives, 123

ordinal scale, 7
outlier, 21, 117
overfitting, 74
overlap similarity, 14

partial correlation, 57
partition, 103
partition coefficient, 119
partition matrix, 107

fuzzy, 110
pattern recognition, 2
PC, 119
PCA, 37
PCM, 111

kernelized, 116
non-Euclidean, 116
relational, 115

Pearson correlation, 56
phase spectrum, 53
polynomial kernel, 94
polynomial regression, 67
positive false classification

rate, 87
positive predictive value, 87
positivity, 87
possibilistic c-means, 111

kernelized, 116
non-Euclidean, 116
relational, 115

PR breakeven point, 88
PR diagram, 88
precision, 87
precision recall breakeven

point, 88
precision recall diagram, 88

preprocessing, 21
principal component analysis,

37
projection, axis-parallel, 36
proper orthogonal decompo-

sition, 37
protein, 2
prototype, 96
prototype-based clustering,

107
proximity, 13
pruning, 100
pseudoinverse, 66
pyramid, automation, 1

quadratic mean, 8
quantization, 17

R, 3
radial basis function, 72
Rapid Miner, 3
ratio scale, 8
RBF, 72
RCM, 115
RCMdd, 114
recall, 87
receiver operating character-

istic, 87
rectangular, 119
recurrent model, 80
reformulation, 115
regression, 63

least trimmed squares, 68
linear, 63
nonlinear substitution, 67
polynomial, 67
robust, 68

relation, 10
sequence, 15

relational c-means, 115
relational c-medoids, 114
relational clustering, 114
relational data, 10
relational fuzzy c-means, 115

kernelized, 116
non-Euclidean, 116

relational fuzzy c-medoids,
114

relational noise clustering,
115

relational noise clustering
with medoids, 114

relational possibilistic
c-means, 115

kernelized, 116
non-Euclidean, 116

relational possibilistic
c-medoids, 114

relevance, 86
RFCM, 115

kernelized, 116
non-Euclidean, 116

RFCMdd, 114
RNC, 115
RNCMdd, 114
robust regression, 68
ROC, 87
rounding, 18
RPCM, 115

kernelized, 116
non-Euclidean, 116

RPCMdd, 114

s-shaped function, 69
SAHN, 105
sales, 1
Sammon mapping, 44
sampling, 17
SAS, 3
satellite, 2
scale, 7
scaling, 22
scatter diagram, 35
Scott, 49
SDHN, 107
self-organizing map, 119
semantics, 2
sensitivity, 87
sensor, 1
sequence relation, 15
sequential agglomera-

tive hierarchical
nonoverlapping, 105

sequential clustering, 105
sequential divisive hierar-

chical nonoverlapping,
107

sequential linear program-
ming, 125

sequential programming, 125
sequential quadratic

programming, 125
Shannon’s sampling theorem,

17
Shepard diagram, 42
shopping basket analysis, 1
sigmoid function, 69
signal, 17
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signal theory, 2
similarity, 13

cosine, 14
Dice, 14
Jaccard, 14
overlap, 14
Tanimoto, 14

simplex algorithm, 125
simulated annealing, 77
single linkage, 105
singular value decomposition,

37
software, 3
specificity, 87
spectral analysis, 50
spectrum, 53
SPSS, 3
spurious correlation, 57
standardization, 31
STATISTICA, 3
statistics, 2
stochastic errors, 21

Sturgess, 49
supervised learning, 85
supply chain, 1
support vector machine, 93
supremum norm, 13
SVD, 37
SVM, 93
swarm intelligence, 77, 111

Tanimoto similarity, 14
tendency assessment, 117
text and structured data, 1
text document, 2
third cause fallacy, 57
tool, 3
Torgerson, 43
total order, 7
training data, 74
training error, 74
transmission error, 21
true classification rate, 87
true classifications, 86

true negative, 86
true negative rate, 87
true positive, 86
true positive rate, 87
type I error, 86
type II error, 86

universal approximator, 68
unlabeled data, 103
unsupervised learning, 103

validation, 74
validation data, 74
validation error, 74
visualization, 35
Voronoi diagram, 97

Ward’s measure, 106
web, 2
WEKA, 3
within-class variance, 92
within-cluster covariance, 112
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