
Data Structures and Algorithms: A First Course

Springer
London
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
Milan
Paris
Santa Clara
Singapore
Tokyo

lain T. Adamson

Data Structures
and Algorithms:
A First Course

i Springer

lain T. Adamson, BSc, MSc, AM, PhD
Department of Mathematics
University of Dundee
23 Perth Road, Dundee DDI 41IN, UK

ISBN·13:978-3-540-76047-4

British Library Cataloguing in Publication Data
Adamson, lain T.

Data structures and algorithms : a first course
I.Data structures (Computer science) 2.A1gorithms
I.Title
005.7'3

ISBN·13:978·3·540-76047-4

Library of Congress Cataloging·in.Publication Data
Adamson, lain T.

Data structures and algorithms : a first course 1 lain T. Adamson.
p. em.

Includes index.
ISBN·13:978·3·540-76047-4 e-ISBN·13:978-1-4471·1023·1
DOl: 10.10071978-1-4471·1023·1

1. Data structures (Computer science) 2. Computer algorithms.
I. Title.
QA76.9.D33A33 1996 96-9537
005.13'3 •• dc20 CIP

Apart from any fair dealing for the purposes of research or private study, or criticism or review,
as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permis~ion in
writing of the publishers, or in the case of reprographic reproduction in accordance With the
terms oflicences issued by the Copyright Licensing Agency. Enquiries concerning reproduction
outside those terms should be sent to the publishers.

© Springer· Verlag London Limited 1996

The use of registered names, trademarks etc. in this publication docs not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any
errors or omissions that may be made.

Typesetting: camera ready by author

34/3830·543210 Printed on acid·free paper

PREFACE

In 1976 Niklaus Wirth, the inventor of Pascal, published a book entitled
Algorithms + Data Structures = Progmms. If the assertion of Wirth's
title is correct-and it would be hard to dispute it-all young computer
scientists who aspire to write programs must learn something about
algorithms and data structures. This book is intended to help them do
that.

It is based on lecture courses developed over the past few years and
I hope that at least some of the informality of the classroom and the
spoken word has been transferred to the printed page. The lectures were
given to first and second year students in The University of Dundee who
had been well-grounded in Pascal and who had therefore already met
some elementary data structures and sorting and searching algorithms;
but only the syntax of Pascal was taken for granted, as it is in the book.
My students had rather varied mathematical backgrounds and some
were not very well-disposed to old-fashioned algebraic manipulation. A
little of this (and a brief mention of limits) does appear in the book; but
readers of a book are more fortunate than students in a classroom­
they can skip all the details and concentrate on the final results.

The book is divided into four parts. Part Ion Data Structures intro­
duces a variety of structures and the fundamental operations associated
with them, together with descriptions of how they are implemented in
Pascal. Chapter 1, on arrays, records and linked lists, and Chapter 3,
on binary trees, are largely (but not entirely) recapitulation of ideas
from any introductory programming course. Chapter 2, on stacks and
queues, introduces these structures and describes various ways of imple­
menting them; it also discusses some of the many applications of stacks
in computer science. Heaps (priority queues) are introduced in Chapter

v

vi Preface

4 as a way of modelling constantly changing collections in which the
only item of interest at any moment is the one with highest priority. In
Chapter 5 we introduce graphs, which are much less regular structures
than any of the earlier ones, and we describe how, in spite of their
irregularity, they can be handled in the computer science environment.

Part II on Algorithms begins with the short Chapter 6 in which
the concept of algorithm is discussed informally and the notion of the
complexity of an algorithm is introduced. Although some of the
mathematical details can be skipped over, it is important even at the
beginning of one's education in computer science to have at least an
inkling of the ideas introduced here.

In Chapter 7 we cover a variety of sorting algorithms, both internal
and external, paying particular attention to their complexity (though
of course the mathematical details can be skipped). It may be that
a smaller proportion of the world's computer resources are used for
sorting nowadays than the 25 to 50 per cent mentioned by Knuth in
his 1973 volume Sorting and Searching; but sorting is still an everyday
problem and it is right for students to acquire an armoury of sorting
methods.

Chapter 8 is devoted to two types of graph algorithms, dealing with
shortest path and spanning tree problems. In both sections of this
chapter there are several pages which readers may find difficult; they
may, I suppose, be described as 'mathematical', but only in the sense
that they involve close logical reasoning and proof by contradiction. I
would like to encourage readers to persevere with these hard proofs,
which provide justification that the algorithms described do in fact
solve the problems to which they apply.

The shorter Chapter 9, as its title indicates, includes an assortment
of algorithms which were included in my lectures 'as time allowed'.
Most students enjoyed particularly the stable marriage algorithm which
is described in Section 9.3.

Part II refers in passing to various approaches to algorithm
development-the divide-and-conquer method, greedy methods and
dynamic programming.

Part III is concerned with the description of successively more elab­
orate structures for the storage of records and algorithms for retrieving
a record from such a structure by means of its key (this is what is

Preface vii

meant by the 'searching' of the title). The collections of records we are
concerned with are supposed to be constantly changing; so we must
examine how to deal not only with searching but also with insertion
and deletion of records.

Part IV consists of very full solutions to nearly all the exercises in
the book. It would have been more conventional (and easier for the
author) to give more abbreviated solutions, perhaps only final results,
to only a selection of the exercises; but my students have always said
how helpful they have found my solutions to tutorial problems and
claim to have learned from them. Of course readers ought to try the
exercises for themselves before consulting the solutions.

Acknowledgements

My first word of thanks must go to the several generations of Dundee
students whose favourable comments on my lectures encouraged me to
turn them into a book. Next I have to thank Keith Edwards, who read
and commented on some of my manuscript and gave me much helpful
advice about mathematical typesetting. My chief thanks, as always, go
to my wife for her constant love and support.

Dundee,
April 1996.

lain T. Adamson

CONTENTS

PREFACE

I DATA STRUCTURES

1 ARRAYS, RECORDS AND LINKED LISTS
1.1 Arrays
1.2 Storage of arrays
1.3 Records ..
1.4 Linked lists
1.5 Exercises 1 .

2 STACKS AND QUEUES
2.1 Stacks
2.2 Applications of stacks.
2.3 Queues .. .
2.4 Exercises 2 .. .

3 BINARY TREES
3.1 Binary trees ..
3.2 Binary search trees
3.3 Exercises 3 .

4 HEAPS
4.1 Priority queues and heaps
4.2 Exercises 4

ix

.
1

1

-5
5
7

11
13
19

27
27
31
42
53

57
57
65
71

75
75
86

x

5 GRAPHS
5.1 Graphs and their implementation
5.2 Graph traversals
5.3 Exercises 5.

II ALGORITHMS

6 ALGORITHMS AND COMPLEXITY
6.1 Algorithms
6.2 Complexity of algorithms.
6.3 Exercises 6.

7 SORTING ALGORITHMS
7.1 Internal sorting by comparisons
7.2 Other internal sorting algorithms
7.3 External sorting algorithms
7.4 Exercises 7

8 GRAPH ALGORITHMS
8.1 Shortest path algorithms
8.2 Spanning tree algorithms.
8.3 Exercises 8

9 SOME MISCELLANEOUS ALGORITHMS
9.1 Numerical multiplication algorithms.
9.2 Matrix multiplication algorithms
9.3 A stable marriage algorithm
9.4 Exercises 9

III STORING AND SEARCHING

10 STORING IN ARRAYS AND LISTS
10.1 Sequential and binary searching
10.2 Hashing ..
10.3 Exercises 10

Contents

87
87
93

· 108

111

113
.113
.116
· 123

127
· 130
· 156
· 160
· 168

171
.171
· 192
.211

215
.215
.218
.227
.232

235

239
.239
.243
.254

Contents xi

11 STORING IN BINARY TREES 257
11.1 Storing in binary search trees 257
11.2 Storing in AVL-trees 260
11.3 Exercises 11 . 278

12 STORING IN MULTIWAY TREES 279
12.1 Multiway search trees 279
12.2 B-trees . 284
12.3 Tries . 302
12.4 Exercises 12 305

IV SOLUTIONS 309

13 SOLUTIONS TO EXERCISES 1 311

14 SOLUTIONS TO EXERCISES 2 321

15 SOLUTIONS TO EXERCISES 3 329

16 SOLUTIONS TO EXERCISES 4 337

17 SOLUTIONS TO EXERCISES 5 341

18 SOLUTIONS TO EXERCISES 6 347

19 SOLUTIONS TO EXERCISES 7 349

20 SOLUTIONS TO EXERCISES 8 363

21 SOLUTIONS TO EXERCISES 9 375

22 SOLUTIONS TO EXERCISES 10 381

23 SOLUTIONS TO EXERCISES 11 387

24 SOLUTIONS TO EXERCISES 12 397

INDEX 417

Part I

DATA STRUCTURES

Data structures 3

Data was originally a Latin word, meaning simply given things, but as
computer scientists use it in English its meaning has been extended­
for us it covers not only the objects which we are given to work with
at the start of our problems, but also all the objects which we use
in the course of solving them. (We remark that although data is a
Latin plural it is nowadays considered excessively pedantic-however
correct-to insist on treating it as a plural in English.) The objects we
work with in our problems are of many different kinds: we call these
different kinds of objects data types. Not only are the objects we use
of different kinds-we can also organise or arrange them in different
ways: we say that we have various possible data structures.

In a real-world situation, when we are working with an actual prob­
lem on a real live computer, we are restricted in a number of ways.
We are restricted by the capabilities of the machine we are using, espe­
cially by the word size and by the capacity of its memory-for example
in a machine with n-bit words the range of integers readily available is
limited to [_2n - 1 , 2n - 1 _l] if the usual twos complement representation
is used. We are restricted also by the programming language we use:
no doubt we can exercise our ingenuity and make our chosen language
do everything we need, but, for example, the older versions of Fortran
do not readily handle Pascal-type records, nor does Pascal have a built­
in basic type complex as Fortran does. Different languages, we say,
support different data types and different data structures.

These practical considerations are clearly important when we are
dealing with a particular practical problem, and we must not allow
ourselves to forget about them completely; in this book, though, our
concerns are more theoretical than practical, and in our discussions of
data structures we shall be looking at them primarily from an abstract
viewpoint untrammelled by machine or language considerations.

4 Data structures

This abstract approach has the great advantage that it enables us
to concentrate our attention on the essential features of the data struc­
tures we are concerned with. Nevertheless we have to remember that
these data structures are thought up as contributions towards solving
practical problems by means of computer programs. With this in mind
we shall offer for each data structure which we introduce some sugges­
tions about how it may be implemented in Pascal.

When we talk of implementing a data structure we have in mind
not only how it can be defined using the facilities available in Pascal
but also how we we can work with it-for each data structure has
associated with it a number of fundamental operations and we must
show how these operations can be carried out on the Pascal model of
our data structure.

Chapter 1

ARRAYS, RECORDS AND
LINKED LISTS

1.1 Arrays

Practically every high-level programming language supports a data
structure called an array. Different languages have different rules for
working with arrays, but the basic idea is common to them all-namely,
to describe an array we have to specify an index set I, an element set
E and for each index i in I a unique corresponding element of E. The
collection of all such arrays is called array(I, E).

In working with array(I, E) we shall require a number of basic
operations: we shall need to have a method for defining or creating an
array; we shall also want to have a method for extracting the unique
element of the set E which is associated with a given index i in a given
array a; finally, we shall require a method for updating an array entry,
that is changing the element of E associated with a given index i.

In our description of array(I, E) in the first paragraph above the
index set I and the element set E were completely arbitrary; but when
we come to implement array(I, E) concretely the programming lan­
guage we use may impose restrictions on I or E or both. We consider
first one-dimensional arrays. In Pascal the index set I is restricted to
be an ordinal type-boolean, integer, char, any enumeration type,
any sub range type-but the element set E is completely unrestricted:

5

6 Data structures

it may be any type supported by the language, including user-defined
types, array, record, set and file types. In Fortran77, however, the
index set I is restricted to be a finite subrange of the integers and the
element set E must be one of the basic types of the language. When
we come to consider n-dimensional arrays with n greater than 1 we
see that they can be thought of as forming a collection array (I , E)
where the index set I has the form I = 11 X 12 X .•• x In, with
elements (it, i2 , ••• , in) where each ik belongs to the corresponding set
h (k = 1, ... , n). In both Pascal and Fortran77 the component sets
h are restricted to be sets which would be admissible as index sets of
one-dimensional arrays; in Fortran77 the dimension n is restricted to
be no greater than 7, and later versions of Fortran have not removed
this restriction.

To implement array (I, E) in Pascal we must first of all declare the
types Index_type of the index set I (which must be an ordinal type)
and the type ElemenLtype of the element set E, unless these are pre­
declared types. If we are dealing with multidimensional arrays, where
the index set I is a product 11 X 12 ... X I k, the types of each of the
factors It, ... ,Ik must be declared, unless they are pre-declared.

We may then make a type declaration

Type T = array [Index_type] of ElemenLtype;

(for a one-dimensional array) or

Type T = array [Index_type_l, ... , Index_type_k] of ElemenLtype;

(for a k-dimensional array). T is then the Pascal implementation of
array(I, E).

To create a single array a in this collection we make the usual
declaration

Var a: T;

and to initialise it we must make assignments

a [i] := some object of ElemenLtype;

Storage of arrays 7

for each element i of Index_type.
To extract the i-th component of the array a, where i is a member

of Index_type we introduce a variable of type Element-type, say x, and
make the assignment

x:=a[i];

To change (update) the i-th component of the array we make the
assignment

a[i]:= b;

where b is a variable of Element-type.

1.2 Storage of arrays

Underlying our informal, intuitive notion of arrays is the fundamen­
tal idea that, when we have a given array before us, then, as soon as
we are given one of the indices of the array, we can find at once the
corresponding component of the array. In order to achieve in
practice our idea of getting direct access to an array component as
soon as its index is known, we need a mechanism which, given any
index, will find the address of the storage location in the computer's
memory which holds the array component corresponding to the given
index. The calculation of a machine address from an array index is
carried out by means of an array mapping function. The oper­
ation of this function is hidden from naive users of the programming
language, who simply reap its benefits without soiling their fingers with
such sordid matters as machine addresses. None the less it is interest­
ing to see how the array mapping function is organised to produce
the required machine addresses with the same amount of effort for all
indices.

We look first at one-dimensional arrays. In Fortran the index type of
such an array is a finite subrange of the integers; in Pascal more general
index sets are allowed, but they are all ordinal types and so they can be
put in one-to-one correspondence with finite subranges of the integers.
(This is true even if the index set is the Pascal type integer, since in

8 Data structures

any implementation of Pascal this is restricted to a finite subrange of
the infinite set of all integers.) So there is no loss of generality if we deal
with arrays indexed by such a subrange, say 1 .. Uj we call 1 the lower
bound and U the upper bound of the range. Notice that the number
of entries in an array indexed by 1 .. U is U - 1 + 1. (If you believe it
to be u - 1 just consider an array indexed by 1 .. 2!) Suppose that to
store an object of the element type of our array requires L bytes: we
call L the component length of the -array.

Let us assume that the memory of our computer is one-dimensional
and that we are to store the entries of our array in adjacent memory
locations, each capable of holding one byte. Suppose that the first byte
of the first component of the array (i.e. the component indexed by 1)
has address b: we call b the base address. Then the first component
is stored in the L bytes with addresses

b, b + 1, b + 2, ... , b + L - 1.

So the address of the first byte of the second component, indexed
by 1 + 1, is b + L = b + «1 + 1) - 1) L. In general, when we come
to store the component indexed by i (1 ~ i ~ u) we will have used up
(i - 1) L bytes starting with b to store the i-I preceding components.
So the address of the first byte of the i-th component is

b + (i - 1) L

which we can rewrite as

(b - 1 L) + i L = Co + CI t

where

CI L,
Co = b - 1 L = b - CI 1.

Thus, once the constants Co and Clare calculated for -a given array, -the
calculation of the address of the first byte of any component requires
one multiplication (CI i) and one addition (Co + CI i) whatever the index
of the component. If a is an array indexed by 1 .. u its array mapping
function addr is given by

Storage of arrays 9

addr(i) = address of first byte of i-th component of a = Co + CI i.

Consider now a two-dimensional array, indexed by I = II X 12 with
elements (iI, i2) where il E II and i2 E 12, II and 12 being sets which
are admissible as index sets for one-dimensional arrays. Without loss
of generality we may assume that II and 12 are sub ranges II .. UI and
h .. U2 of the integers.

As in the one-dimensional case we shall assume that the array
components are stored in adjacent memory locations. We notice at
once that there are two natural ways of doing this:

(1) Row major order. This method consists in storing the array
components row by row; that is, we store first the components of the
first row in increasing order of column index, then the components of
the second row in increasing order of column index, followed by the
components of the third row and so on. This method of arrangement
is also known as lexical or lexicographic or dictionary order: we
notice that a(il' i2) precedes a(jI,j2) in this arrangement if and only if
either (il < jd or (il = it and i2 < h), that is if and only if the
"word" il i2 comes earlier in the dictionary than jl h.

Suppose the component length is L and the base address (the
address of the first byte of the (It, 12)-th component) is b. The number
of components in each row is U2 - 12 + 1; so, when we come to store
the (it, i2)-th component we shall already have stored il - II complete
rows, requiring (il -It)(u2 -12 + 1) L bytes, together with the preceding
i2 - h components in the irth row, requiring (i2 - 12) L bytes. So the
address of the first byte of the (iI, i2)-th component is

which we can rewrite as

where

C2 = L,
CI = (U2 - 12 + 1) L = (U2 - 12 + 1) C2,
Co = b - (U2 - 12 + 1) II L - 12 L = b - CI II - c212.

10 Data structures

So once the constants Co, Cl, C2 are calculated for a given array, the
calculation of the address of the first byte of any component requires
two multiplications and two additions.

(2) Column major order. Here we store the components of
the array column by column instead of row by row. Fortran actually
requires that two-dimensional arrays be stored in column major order.
An easy modification of the discussion of row major order produces the
result that when column major order is used the address of the first
byte of the (i1, i2)-th component is

We mention briefly higher-dimensional arrays indexed, say, by the
product set I = II X 12 x ... X h, where we may assume that
11, .. . ,h are the ranges of integers 11 .. Ul, ... , h .. Uk. If we store
the components in the k-dimensional analogue of dictionary order we
conclude after some modest algebraic manipulation that the address of
the first byte of the (iI, i 2 , ••• , ik)-th component is

where

Ck = L,
Cj -1 = (Uj

Co = b - Cl h
1j + 1) Cj for j = 2, ... , k,
- C2 12 - ... - ck 1k •

As in the one- and two-dimensional cases we see that as soon as the
constants Co, Cl, ... , Ck have been calculated we can find the address
of any component of the array by carrying out k multiplications and k
additions.

Clearly in the running of a program it is important for every array
to have associated with it an array descriptor-an identity card, so
to speak-which gathers together its important characteristics. These
would include (1) the name of the array, (2) some indication of its
element type, (3) the component length of its elements, (4) the base
address, (5) the lower and upper bounds in each dimension and (6) the

Records 11

constants of the array mapping function. The naive user will never have
to be concerned explicitly with array descriptors, but they are implicit
in the running of programs which involve arrays.

1.3 Records

An array with index set I and element set E is a composite object
made up of a number of components, one for each index i in I. These
components are all of the same type E: we say that arrays are homo­
geneous structures. Frequently, however, we want to gather together
into a single package a collection of pieces of information which are not
all of the same type-such a structure would be called heterogeneous.
For example a university record department would want to hold to­
gether for each student an identification number (presumably of type
integer or perhaps some subrange), a name (no doubt thought of as a
packed array of char), an indication of gender (M or F), and various
other pieces of personal and academic information (nationality, marital
status, whether undergraduate or postgraduate, courses being studied
and so on). Now of course it would be possible without too much
trouble to represent all these disparate pieces of information by inte­
gers, for example, and so represent each student by an array of integers,
with one component corresponding to each piece of information. But
this is clearly unnatural and it would be preferable to introduce a new
type of data structure which gathers together into a single whole a
collection of items of different types.

We call this new kind of structure a record, and each of the items
is called a field of the record. Each of the fields of a record has a name
and a set. Suppose we have n fields, with names idl, ... , idn , and
corresponding sets E1 , ••• , En. Then a record with these fields is an
ordered n-tuple (Xl, ••• , xn) where each component Xk belongs to the
corresponding set Ek (k = 1, ... , n)j such an n-tuple is an element
of the cartesian product set El X ... x En. So for each collection of
ordered pairs (idk , E k) (k = 1, ... , n) we define a collection which we
denote by record((idt, Ed, ... ,(idn, En)).

In dealing with this collection we need to have some basic operations
analogous to those for arrays. We shall require a method for creating

12 Data structures

a record and we shall want to have ways of extracting and updating a
given field of a record.

To implement record((idl, Ed, ... ,(idn, En)) in Pascal we must
first declare the types T1 , ••• , Tn of the element sets E1 , ••• , En (unless
they are pre-declared types). We then make the declaration

Type T = Record
idt : Tt;
id2 : T2 ;

idn : Tn
end;

whereupon T is the Pascal representation of our collection of records.
To create a single record of this type we make the declaration

Var r: T;

and to initialise it we make assignments

r.idk := some object of type Tk;

for each k = 1, ... , n.
To extract the k-th field of the record r we introduce a variable Xk

of type Tk and make the assignment

while to update the k-th field of r we make the assignment

r.idk := bk ;

where bk is a variable of type Tk •

Records, like arrays, should have descriptors associated with them,
in which their "vital statistics" are collected together. These would
include (1) the name of the record, (2) the base address, which for a
record would be the address of the first byte of the first field of the
record and (3) for each field, its name, some indication of its type and
its offset, which is the total number of bytes required to store all the
preceding fields.

Linked lists 13

1.4 Linked lists
In everyday life when we make a list of jobs to be done we usually have
it in mind to start at the top (or head) of the list and work through
the list in order until we reach the end. So we might think of defining
a list as a (finite) sequence

of items, all of the same type. At first sight this may not seem very
different from an array of items indexed by 1 .. n; but there are some
important differences between arrays and lists. First of all, arrays are
usually thought of as random access structures (and we have seen that
we can organise the storage of an array in such a way that the same
amount of work is required to access each array entry) while the entries
in a list are usually dealt with in order, starting at the head. Next, once
an array is set up its size remains constant, although individual entries
may be changed; lists, on the other hand, are subject to alteration­
for example, our list of tasks to be performed is constantly changing
as some tasks are completed and the corresponding items are removed
from the list while new tasks present themselves, causing items to be
added to the list, perhaps at the end or at some intermediate point or
even at the head. We notice, too, that with luck, if we are assiduous
in carrying out all the tasks on our list, then we shall no longer have
any tasks left on the list-the list is empty. If we are to carry out our
intention of working through our list of jobs in order then it is clear
that as we deal with each item we must know where to go next (unless
we have reached the end of the list).

This informal discussion leads us to the following definition. For
each set E the collection list(E) consists of the empty list together
with all objects made up of an element of E (called the head of the
list) followed by an object in list (E) (called the tail of the list). This
is, of course, a recursive definition, but it is well-founded since we have
been careful to give one member of the collection list (E) explicitly,
namely the empty list.

Associated with the collection list(E) we have a number of funda­
mental operations. At the very least we shall require an operation to
create a list; we shall want to determine whether a given list is empty;

14 Data structures

and we shall need to know how to make insertions in a list and deletions
from it.

Since we have it very much in mind that the lists we handle are to
be constantly changing, it is appropriate when we come to implement
lists in Pascal that we should use the dynamic capabilities of Pascal's
pointer types. We think informally of a list as a sequence of nodes,
each with two cells, one containing an element of E, the other giving
the address of (i.e. a pointer to) the next node on the list. Formally,
we make the declarations

Type T = ElemenLtype ;
LisLpointer = i Node;
Node = Record

Info: T;
Next : LisLpointer

end;

We recall that Pascal allows us to use i Node as the definition of the
type LisLpointer even before the type Node itself has been defined.
The reason for this is that the values of a pointer variable of any type
are addresses: so to store any pointer variable requires only enough
space to store an address. If p is a pointer variable of type i Node it
is conventional to represent the address which is the current value of p
by an arrow to the object pi of type Node which is actually stored at
that address.

Having made these declarations we shall implement a list of elements
of type T by an object of type LisLpointer: we think of representing
a list by a pointer to its head node whose Next field contains a pointer
to the rest of the list. We begin by making the declaration

Var head: LisLpointer;

and the assignment

head := nil ;

which of course provides us with a list which has no members. To build

Linked lists 15

up a list which actually does contain some members we have to consider
the problem of making insertions in a list. We look first at the general
situation where we want to insert a new item after an existing one; we
think of gaining access to the item after which the insertion is to be
made by means of a pointer to the node containing it. Suppose, then,
that we want to insert an item a of type T after the node pi pointed
to by a (non-nil) pointer p, as in the diagram

p i·Next

--01 x I -+-----t°l z I --+-_0···

1
p

We must create a new node (by the standard Pascal device of
introducing a local LisLpointer variable q, say, and giving the
command new (q) which sets q to point to the new node qj); the Info
field of qi is given the value a (the new item) and its Next field is given
the value of the Next field of pi, which is then set equal to q, so that it
points to the new node. Summing this up we have the Pascal procedure:

Procedure insert_after (a : T; Var p : LisLpointer);
Var q : LisLpointer;
Begin

if p <> nil then begin
new (q);

End;

with qi do begin
Info := a; Next := pi.Next end;

pi.Next := q end

16 Data structures

The operation of this procedure is illustrated by the diagram

p i.Next (before)

-'Ix'~ 'Iz'

I "cilll
p I

q
pi. Next (after) = q q i.Next = p i.Next (before)

It is important to notice that the procedure inserLafter is not
applicable when we want to insert a new item at the head of the list, in
particular when we want to insert the first item in a list initialised to
nil-in these cases there is no node after which to make the insertion.
We deal with this situation by means of the following procedure:

Procedure inserLaLhead (a : T; Var head: List-pointer)
Var q ~ List-pointer;
Begin

End;

new (q);
with qj do begin

Info := a ; Next := head end;
head:= q

We illustrate the operation of this procedure in the diagram

head (before) --·1 x , -tl-­
q --·1 a' head

----+1·1 z L/1

Linked lists 17

head (after) = q-_.! a ! .! x! ---+-_ •... ---+I.! z l21

head (b~fore)

(We use the diagonal line in the box representing the Next field of the
last node to indicate that its Next pointer is nil.)

From the operation of inserting new items in a list we turn to the
operation of deleting existing items. Here again it is convenient to make
our approach to the item which is to be removed by means of a pointer
p to the node which contains the item (if there is one) preceding the
item to be deleted. The deletion is carried out by setting the Next field
of the predecessor node to be the Next field of the node to be deleted;
we can then use the built-in procedure dispose to return the unwanted
node to the store of available memory locations. Of course the dele­
tion procedure just described will not work if p is nil, nor if pi.Next
is nil (in that case there is no node to delete). Summing this up we have

Procedure deleteAfter (Var p :LisLpointer) ;
Var q :LisLpointer;
Begin

if (p <> nil) and (p i.Next <> nil) then begin
q := pi·Next ;
pi.Next := qi.Next;
dispose(q) end

End;

As in the case of insertion we notice also here that our procedure is not
applicable at the head of the list: to deal with the operation of deleting
the first element of a list we use the following procedure:

18 Data structures

Procedure delete-<tt_head (Var head :LisLpointer);
Var q : LisLpointer;
Begin

if (head <> nil) then begin
q := head;

End;

head := qj . Next ;
dispose(q) end

Although we have used pointers to implement linked lists this is not
the only way available to us: we may also implement linked lists by
means of arrays. Since we need to know for each member of a list the
location of the next member it will not be adequate to use an array of
ElemenLtype ; the array entries should be records with an information
field of ElemenLtype and a Next field containing the array index of the
next element of the list. So we decide on an array size N and declare

Const N = ...

Type Node = Record
Info: T;
Next: 0 .. N

end;

Var list: Array [1 .. N] of Node;

The reason we use 0 .. N as the range of values for the Next field is
that we need to have a way of indicating that there is no next entry
and it seems appropriate to use 0 for this purpose.

This array approach to representing lists of course raises problems
of programming-how are we to represent an empty list? how are we
to gain access to a non-empty list? how do we handle insertions and
deletions? These are not difficult questions to answer and we leave
them to the reader as simple exercises. But there is another question
to be considered if we decide to use arrays to implement lists: this is the
choice of N, the size of the array. Two possible difficulties arise. On the

Exercises 1 19

one hand we may choose N too small for the number of items which we
shall eventually want to include in the list (this number may well not
be known in advance); in this case we shall have to start all over again
with a new value for N. On the other hand, if we try to avoid the first
difficulty by choosing N very large, we may end up with a situation
where much of the storage set aside when the array is declared is never
used. These difficulties are avoided when we use pointers, for there is
(at least in theory) no limit to the number of insertions we can make,
though each insertion requires the execution of the new operation.

1.5 Exercises 1

1. Suppose we declare

Var A : array [1 .. 10] of integer;
B : array [5 .. 20, -3 .. 3] of real;
C : array [3 .. 7, 1 .. 10] of real;
D : array [5 .. 16, 6 .. 10, 3 .. 12] of boolean;

Find the array mapping functions

(a) for A, where the base address is 995 and the component length
is 4;

(b) for B, stored in row major order, where the base address is 1005
and the component length is 8;

(c) for C, stored in column major order, where the base address is
3716 and the component length is 8;

(d) for D, stored in dictionary order, where the base address is 643
and the component length is 1.

2. An N X N matrix A with real number entries aij is said to be
symmetric if for all indices i, j we have aij = aji. To represent
such a matrix we think first of declaring

Var A : array [1 .. N, 1 .. N] of real;

As soon as we do this the computer reserves N2 locations, one for
each array entry. This is not an error, but it is extravagant of space,

20 Data structures

since once we know the entries on and below the main diagonal (the
entries aij for which i ::; j) we know all the entries-for if i > j we
have aij = aji. There are only

1 + 2 + 3 + ... + N = ~N(N + 1)

entries aij with i ::; j, so we need actually store only this number of
entries, not all N2. So suppose M = ~ N (N + 1) and declare

Then we store
an in Al[I],

Var Al : array [1 .. M] of real;

a21 and a22 in Al[2] and Al[3] respectively,
a3b a32 and a33 in Al[4], Al[S] and Al[6] respectively

and so on. Show that aij with i ::; j is stored in Al[~i(i - 1) + j].

If the entries of A are stored in the one-dimensional array Al in this
way then we can no longer access the entry aij as A[i,j] and instead
we get our hands on it by means of

Function extract (i, j : 1 .. N) : real;
Begin if i ::; j then extract := Al[(i * (i - 1)) div 2 + j]

else extract := extract(j, i) End;

In an analogous way define

Procedure update (i,j: 1 .. N; x: real);

which will have the effect of changing the current value of aij to x.

3. An N x N matrix S with real number entries is said to be skew­
symmetric if for all indices i, j we have Sij = -Sji. Notice that for
the diagonal elements Sii we have Sii = -Sii and so these elements are
all zero. Thus when we store a skew-symmetric matrix we need only
store the

o + 1 + 2 + ... + (N - 1) = ~(N - I)N

elements Sij below the main diagonal, i.e. the elements Sij with i < j.
Show that if we do this in a one-dimensional array SI with index set
1 .. ~ (N - I)N then each Sij with i < j is stored as the array entry
SI[((i - 2) * (i - 1)) div 2 + j].

Exercises 1 21

Define Function extract and Procedure update as in Exercise 2.
(Remember that it would be an error to try to update a diagonal
entry to a non-zero value.)

4. An N X N matrix T with real number entries is called a tridiagonal
matrix ifthe only non-zero entries tij lie on the main diagonal (i = i),
the superdiagonal (i = i-I) and the sub diagonal (i = i + 1). (Notice
that we are not saying that the elements of these three diagonals are
all non-zero, just that the elements not on these diagonals are zero.)
Clearly we need store only the elements of the three diagonals, which
are 3N - 2 in number (N on the main diagonal and (N - 1) on each
of the super- and sub diagonals).

Show that if we store the elements of the three diagonals in row major
order-i.e.

in a one-dimensional array Tl indexed by 1 .. 3N - 2 then each aij

with Ii - il :::; 1 is stored in Tl[2 * i + i - 2].

Define Function extract and Procedure update as in the previous
exercises.

5. Suppose we declare

Type T = Record
Key: integer;
Info: array[1 .. 20] of char

end;

Tl = Record
List: array [1 .. 15] of T;
Season: (spring, summer, autumn, winter)

end;

Var a: Tl ;

Explain how to determine the addresses of the locations of the first
bytes of

a.List[4].Info[13] and a.Season.

22 Data structures

(Your answers will involve the base address and the component lengths
of the types integer and char.)

6. Suppose we have made the usual declarations for handling linked lists
using Pascal pointers, i.e.

Type T = ElemenUype ;
LisLpointer = i Node;
Node = Record

Info: T;
Next: LisLpointer

end;

Write Pascal subprograms as follows:

(a) Function length (l : LisLpointer) : integer;
such that length(1) is 0 if 1 is the nil list and otherwise is the
number of nodes in the list headed by 1 i.

(b) Procedure print (l : LisLpointer);
such that print(l) prints out the Info fields of the nodes in the
list headed by 1 i. (We may suppose that elements a of type T
can be output by the commands Write(a) and Writeln(a).)

(c) Function concatenate (p, q : LisLpointer) : LisLpointer;
such that concatenate(p,q) is a pointer to the head of the list
formed by the list headed by p i followed by the list headed by
q i : thus if

p~and

then

concatenate(p,q

(Here and in future we adopt the convention that the diagonal
line in the box representing the Next field of a node indicates
that the Next pointer is nil.)

(d) Procedure dock (Var I: LisLpointer);
Such that after the execution of dock(l) the list headed by I i
has its last entry removed.

(e) Function search (I : LisLpointer; x : T) : LisLpointer;
such that search(I ,x) is a pointer to the first node in the list

Exercises 1 23

headed by 1 i with x as its Info field (if there is such a node) and
nil otherwise.

(f) Function reverse (l : List-pointer) : List-pointer;
such that reverse (I) is a pointer to the list obtained by writing
the entries of the list headed by I i in reverse order.

(g) Procedure remove (x : T; Var I : List-pointer);
such that after the execution of remove(x,/) all the nodes with x
as Info field have been removed from the list headed by 1 i.

(h) Procedure interchange (m, n: 1 .. maxint; Var 1: List-pointer);
such that after the execution of interchange(m, n, 1) the Info
fields of the m-th and n-th nodes in the list headed by 1 i are
interchanged.

(i) Function compare (11,/2: List-pointer) : boolean;
such that compare (11,12) is true if 11 and 12 are the same length
and have the same Info fields in corresponding nodes and false
otherwise.

7. Suppose we have a polynomial such as

f(x) = 3x4 + 7x 2 - 4x + 2.

We may declare

Type PolynomiaL-pointer = i Term_Node;
Term_Node = Record

Then we may declare

Coefficient: real;
Exponent: 0 .. maxint;
Next: PolynomiaL-pointer

end;

Var f : PolynomiaL-pointer;

and initialise f so that we have

24 Data structures

Define

Function derivative (p : PolynomiaLpointer) : PolynomiaLpointer;

such that derivative(J) is a pointer to the list representation of the
derivative of the polynomial represented by the pointer p; for example
with f as above we would have

derivative(J)--j12 131 +11411 1 +1-41 0 1/1

8. Make the Type declarations which we would need to work with dou­
bly linked lists in which each node has an information field and two
pointer fields, one containing a pointer to the successor of the node in
the list, the other to its predecessor. Describe procedures to carry out
insertions in and deletions from a doubly linked list.

9. If we have an m x n matrix A with integer or real number entries it is
natural to represent it in a Pascal program by declaring

Var A : array [1 .. m, 1 .. n] of integer (or real);

whereupon the computer reserves mn locations, one for each array
entry. A matrix of numbers is said to be sparse if a large proportion
of its entries is zero. (This is a pretty imprecise definition; in practice
a large matrix is considered sparse if no more than 10% of its entries
are nonzero.) For such a matrix it is a waste of space to set aside a
location for each of the zero entries: clearly what is important for us
to know is the values of the nonzero entries and their positions in the
matrix. This information can be conveniently stored in a list of triples
(i,j,aij) giving the row index, column index and value of each of the
nonzero entries aij. So we might declare

Type Row_index = 1 .. m;
Column_index = 1 .. n;

Exercises 1

Number = integer or real;
Matrix_pointer = i Entry_Node;
Entry_Node = Record

Row: Row_index;
Column: Column_index;
Entry: Number;
Next: Matrix_pointer

end;

25

and form a list having one node for each nonzero entry of the matrix.
It is convenient to organise the list in "dictionary" order, so that if aij

and akl are nonzero entries of the matrix the node corresponding to
aij precedes the node corresponding to akl if either i < k or i = k and
j < I. For example the sparse matrix

[
0 0 2
000
040

would be represented by the list

Define

~ ~ ~ 1
000

Function extract (s : Matrix_pointer; i : Row_index;
j : Column_index) : Number;

which returns the (i,j)-th entry of the sparse matrix represented by
(the dictionary-ordered list pointed to by) the Matrix_pointer s. Define
also

Procedure update (Var s : Matrix_pointer; i : Row_index;
j : Column_index; x : Number);

which changes the (i,j)-th entry of the sparse matrix represented by
s to x.

Chapter 2

STACKS AND QUEUES

2.1 Stacks

When we were dealing with linked lists in the last chapter we allowed
the possibility of carrying out insertions and deletions at arbitrary
positions in a list. We consider now a more restricted type of list in
which insertions and deletions may be made at one end only, namely
at the head; a list of this kind is called a stack. The requirement that
insertions and deletions may be made at one end only implies that at
any point of time the only element which can be removed or retrieved
from a stack is the one which was most recently inserted: we say there­
fore that a stack exhibits last-in-first-out behaviour, or that it is a LIFO
structure. Perhaps the most familiar example of a stack in everyday life
is the pile of trays in a cafeteria, where newly washed trays are placed
on the top of the pile and customers remove trays also from the top of
the pile.

If E is any set the collection of all stacks with elements drawn from
E, stack(E), is the same as the collection list(E); but the fundamental
operations associated with stack(E) are more restricted. As in the case
of linked lists we need to have an operation to create a stack and we
have to be able to determine whether a given stack is full (because then
no further insertion can be made) or empty (in which case no deletion
can be made); but in place of the unrestricted insertions and deletions
we allowed when we studied list(E) we require only the operation of

27

28 Data structures

inserting an element of type E at the head-we call this operation
push-and the operation of removing the element at the head, which
we call pop.

When we come to look at examples of the use of stacks in computer
science we shall see that the stacks involved are constantly changing;
so it is natural to use the same kind of implementation using pointers
which we described for linked lists. Thus we make the declarations

Type T = Element-type;
Stack_pointer = i Node;
Node = Record

Info: T;
Next: Stack_pointer

end;
Var stack: Stack_pointer;

and, to create an initially empty stack, the assignment

stack := nil ;

To determine whether the stack with head stack is empty we clearly
have only to check whether the pointer stack is nil; thus we define the
Pascal function

Function empty (stack: Stack_pointer) : boolean;
Begin empty := (stack = nil) End;

Since insertion in a list implemented in Pascal using pointers will be
made using the operation new which (theoretically at least) can always
be applied to produce a new node, a stack implemented in this way will
never be full; so we might define the Pascal function

Function full (stack: Stack_pointer) : boolean;
Begin full := false End;

The operation of pushing an element onto a stack is identical with that
of insertion at the head of a list; so we implement it by means of an
analogcus procedure:

Stacks

Procedure push (a : T; Var stack: Stack_pointer);
Var q : Stack_pointer;

29

Begin if full (stack) then ... (* take some appropriate action *)
else begin

End;

new(q);
with qj do begin

Info := a; Next := stack end;
stack := q end

In the same way we may think of the operation of popping a stack
as identical with that of deleting the element at the head of a list;
but when we want to pop a stack we frequently want to use the ele­
ment which is popped. So as formal parameters for the procedure which
implements pop we use not only a Stack_pointer parameter (which must
be a Var parameter since the stack is to be altered by the operation)
but also a Var parameter of type T which, after the execution of the
procedure, will hold the element which was at the stack head. Thus we
define

Procedure pop (Var stack: Stack_pointer; Var top: T);
Var q: Stack_pointer;
Begin if empty(stack) then ... (* take some appropriate action *)

End;

else begin
top := stackj . Info;
q := stack;
stack := stackj . Next;
dispose(q) end

The operation of this procedure in the case of a non-empty stack is
shown in the diagram

stack (before) .1 a I I ·1 b I ·1 z 121
stack (after) , I b I I 'I z Vl and top := a

30 Data structures

(As in the case of general linked lists we use a diagonal line in the box
representing the Next field of a node to indicate that the Next pointer
is nil.)

Although it seems most natural to use pointers to implement stacks,
here also, as in the case of linked lists, it is possible to use arrays. As
usual we must decide on the size of the array before we start using
it (with the attendant dangers of running out of space to hold stack
entries if we choose the size too small or of setting aside space which
is never used if we choose it too large). At any rate we begin by
estimating the largest size maxsize which we expect the stack to
attain and then declare

Const N = maxsize ;

We think of inserting stack elements into the 1st, 2nd, ... positions of
an array indexed by 1 .. N. We shall also have to keep a note of the
position of the top of the stack, i.e. the highest array index used to
hold the current elements of the stack-to take account of the possibil­
ity that the stack is empty we shall use 0 .. N as range of values for
the top index. So we declare

Type Stack = Record
Stack_array: array [1 .. N] of T;
Top: 0 .. N

end;

It is now clear how we should define the boolean functions which
test whether a stack is empty or full.

Function empty (s : Stack) : boolean;
Begin empty := (s. Top = 0) End;

Function full (s : Stack) : boolean;
Begin full := (s. Top = N) End;

Applications of stacks 31

The operations of pushing and popping can now be implemented as
follows:

Procedure push (a : T; Var s: Stack);
Begin if full(s) then ... (* take some appropriate action *)

else with s do begin
Top := Top + 1;
Stack_array [Top] := a end

End;

Procedure pop (Var s : Stack; Var top: T);
Begin if empty(s) then ... (* take some appropriate action *)

else with s do begin

End;

top := Stack_array[Top];
Top := Top - 1 end

2.2 Applications of stacks

As a first illustration of the use of stacks in computer science we de­
scribe how they are implicitly involved in the execution of computer
programs. To do this we examine the following Pascal program:

32

1:
2:

3:
4:

5:
6:
7:
8:
9:

10:

11:
12:
13:
14:
15:

16:
17:
18:
19:
20:

Program P;
Var m, n : integer;

Procedure Q (M : integer);
Var m : integer;

Procedure R (N : integer);
Var n : integer;

Begin (* R *)
n := 2 * N;
Writeln(m + n)

End; (* R *)

Begin (* Q *)
m:= 3 * M;
R(n);
Writeln(m + n)

End; (* Q *)

Begin (* Main Program P *)
m := 1; n:= 2;
Q(m);
Writeln(m + n)

End. (* Main Program *)

Data structures

where we have framed the procedures Q and R to emphasize their
relation to one another and to the main program P and have numbered
the lines for ease of reference (of course neither the frames nor the line
numbers form part of the program).

We recall the Pascal scope rule that for any occurrence of an
identifier the declaration which applies to it is the one at the head
of the smallest block containing both that occurrence and a declara­
tion of the identifier. Thus on lines 8 and 9 n is the integer variable
declared on line 6 at the head of procedure R, while on line 9 m is
the integer variable declared on line 4 at the head of procedure Q.

Applications of stacks 33

On lines 12 and 14 m is the integer variable declared on line 4 at the
head of procedure Q, while on lines 13 and 14 n is the integer variable
declared on line 2 at the head of the main program P. Finally, on lines
17-19 m and n are the integer variables declared on line 2 at the head
of P.

When the compiler first processes the program it marks each
identifier occurrence for which there is no corresponding declaration
in the smallest block containing the occurrence with an indicator of the
larger block which contains the declaration applying to the occurrence.
Thus on line 9 we mark m with a Q (writing it as m.Q say) and on
lines 13 and 14 we rewrite n as n.P.

When a procedure is called we form what is known as its activation
record in which we collect various pieces of information which are
required in order to run the procedure. Among these are the addresses
of the locations set aside for the formal parameters of the procedure
and for the local variables declared at the head of the procedure. In
addition the activation record will hold the so-called return address:
this is the address of the location containing the next command in
the calling procedure to be executed after the execution of the called
procedure is complete.

We can now describe how we use a stack, called the run-time
stack, to organise the running of the program. The elements of our
stack are activation records. Initially the stack is empty, but as soon
as execution of the program starts with the Begin on line 16 we push
on to the stack the activation record of P:

11ain Program P
Local variable m : integer, stored in location 1
Local variable n : integer, stored in location 2

(There is no return address for the main program.) Line 17 assigns to
locations 1 and 2 the values of the local variables m and n (1 and 2
respectively) .
Line 18 calls procedure Q with actual parameter m, which we see (by
consulting the activation record of P) is the local variable stored in
location 1 with current value 1. The activation record of Q is pushed
onto the stack which now becomes

34 Data structures

Procedure Q
Formal parameter M : integer, stored in location 3
Local variable m : integer, stored in location 4
Return address: address of location holding line 19

Main Program P
Local variable m : integer, stored in location 1
Local variable n : integer, stored in location 2

The activation record of Q shows that the formal parameter M is
allocated to location 3; so location 3 is assigned the current value
(1) of the actual parameter m.
In line 12 (m := 3 * M) we search in the activation record of Q
(which is at the top of the stack) for identifiers m and M and find they
have been allocated to locations 4 and 3 respectively. So location 4 is
updated to 3 * (contents of location 3) = 3.
Line 13 calls procedure R with actual parameter n. Now n was marked
as n.P, so we move down the stack till we reach the activation record of
P; searching there we discover that n is allocated to location 2, which
currently contains the value 2. The activation record of R is pushed
onto the stack which is now

Procedure R
Formal parameter N : integer, stored in location 5
Local variable n : integer, stored in location 6
Return address: address of location holding line 14

Procedure Q
Formal parameter M : integer, stored in location 3
Local variable m : integer, stored in location 4
Return address: address of location holding line 19

Main Program P
Local variable m : integer, stored in location 1
Local variable n : integer, stored in location 2

Applications of stacks 35

The activation record of R shows that the formal parameter N is
allocated to location 5. So location 5 is assigned the current value
(2) of the actual parameter n.
On line 8 (n := 2 * N) we search in the activation record of R, which
is now at the top of the stack, for the identifiers nand N. Both appear
in the activation record, where they are allocated to locations 5 and 6
respectively. Thus location 6 is updated to contain 2 * (contents of
location 5) = 4.
On line 9 m has been marked as m.Qj so we must move down the stack
to the activation record of Q where we find that m is allocated to loca­
tion 4, which currently contains 3. n appears in the activation record
of Rj it is allocated to location 6, which currently contains 4. So line 9
writes out 7.
When we reach line 10 we have completed the execution of procedure
Rj so we look in the activation record of R for the return address (line
14) and then pop the stack which now becomes

Procedure Q
Formal parameter M : integer, stored in location 3
Local variable m : integer, stored in location 4
Return address: address of location holding liI).e 19

Main Program P
Local variable m : integer, stored in location 1
Local variable n : integer, stored in location 2

On line 14 we search the activation record of Q, which is now at the
top of the stack, and find that m has been allocated to location 4,
with current contents 3j n has been marked n.P and by moving down
the stack to the activation record of P we find that n corresponds to
location 2, which contains the value 2. So line 14 writes out 5.
On line 15 we complete the execution of the procedure Q, so we look in
its activation record for the return address (line 19) and pop the stack
which becomes

36 Data structures

Main Program P
Local variable m : integer, stored in location 1
Local variable n : integer, stored in location 2

On line 19 we search the activation record for P and find that m and
n are allocated to locations 1 and 2, which currently contain 1 and 2
respectively. So line 19 writes out 3.
Line 20 concludes the execution of the program.

As a second application of stacks in computer science we mention
that they occur implicitly also when we work with recursive procedures
and functions. We illustrate this very informally by looking at every­
one's favourite example of a recursively defined function, the factorial
function. The definition is given by

Function factorial(n : integer) : integer;
Begin if n = 0 then factorial := 1

else factorial := n * factorial(n - 1)
End;

We see that if, for example, a program in which this function is
declared calls for the evaluation of factorial(3) then the function body
will call for the evaluation of factorial(2); this evaluation will call for
the evaluation of factorial(l), which calls in turn for the evaluation of
factorial(O); this, however, is given explicitly to be 1. Having
obtained the value of factorial(O) we can plug it into the evaluation
of factorial(l), which can then be used to evaluate factorial(2) and
hence eventually to give factorial(3). We can think of this process as
forming a stack of function calls, pushing first factorial(3), then fac­
torial(2), factorial(l), factorial(O) in order. Then factorial(O) can be
immediately evaluated and the stack popped; the value of factorial(O)
can be used to evaluate factorial(l) and the stack popped; proceeding
in this way we eventually obtain the value of factorial(3).

The next application of stacks in computer science (again mostly
concealed from the user by the friendly machine) concerns the repre­
sentation of arithmetic expressions.

Applications of stacks 37

If a and b are numbers then we have long been used to representing
their sum as

a + b.

We call this the infix notation. The Polish logician Lukasiewicz intro­
duced an alternative notation for the sum of a and b; he wrote

+ a b.

This is called the prefix or (in more easily spelt reference to Lukasiewicz)
the Polish notation. The third notation is called postfix or reverse
Polish notation; here the sum of a and b is represented as

a b +.

Most computers use postfix notation for their internal representation
of arithmetic expressions; both prefix and postfix notations have the
great advantage that expressions can be written without parentheses.

Consider the following expression in standard infix form

a + b * c.

In order to evaluate this expression we have to know which of the
operations + and * is to be performed first. The long-standing conven­
tion which we learned in our schooldays is that multiplication is done
before addition or, as we say, multiplication has higher precedence than
addition. To convert the given expression to postfix form we proceed
as follows:

a + b * c --+ a + (b * c)
(inserting parentheses to emphasize precedence)

--+ a + (bc*) (converting product to postfix)
--+ a(bc*)+ (converting sum to postfix)

--+ abc * +
Notice that operations where the operator has higher precedence are
converted first and that after a conversion of part of the expression to
postfix form the converted form is treated as a single operand.

Consider now the same expression with the precedence changed by
inserting parentheses:

38

(a + b) * c

Here the conversion proceeds as follows:

(a + b) * c --t (ab+) * c
--t (ab+)c*
--t ab+ c*

Data structures

We now describe a systematic method, using a stack, for converting
an arithmetic expression given in infix form to postfix form. First we
lay down explicitly the rules of precedence: the conventional order of
precedence of arithmetic operators, highest first, is:

Exponentiation (/\),
Multiplication (*) and Division (J) (with the same precedence),
Addition (+) and Subtraction (-) (with the same precedence).

There is a further convention that (unless this is over-ridden by
bracketing) operators of the same precedence "associate to the left"
except for exponentiation which "associates to the right". This means,
for example, that

a - b + c is to be interpreted as (a - b) + c

while

a /\ b /\ c is interpreted as a /\ (b /\ c).

To take account of the convention about exponentiation we sometimes
find it convenient to say that /\ has higher precedence than /\. There is,
of course, underlying all these conventions the rule that a subexpression
enclosed in parentheses (or square or curly brackets) is always to be
considered as a single operand and so must be processed before any
larger expression of which it forms a part.

To convert an arithmetic expression given in infix form to the equi­
valent postfix form we proceed as follows: we set up an (initially empty)
stack whose entries are characters and enclose the whole given infix
expression between an opening symbol f- and a closing symbol -1 which
do not otherwise appear in the expression. The whole expression is then

Applications of stacks 39

read character by character and processed according to the following
instructions:

1. The opening symbol f- is pushed onto the stack;
2. Left parentheses or left brackets of any kind are pushed onto the

stack;
3. Operands are added immediately to the output stream containing

the postfix form;
4. An operator is compared with the character currently at the head

of the stack. Then
a. if this head character is the opening symbol f- or a left

parenthesis or bracket the incoming operator is pushed onto the stack;
b. if the head character is an operator of lower precedence

than the incoming operator, then the incoming operator is pushed onto
the stack (it is here that we have to remember the convention about
exponentiation: an incoming 1\ has higher precedence than an existing
1\ and so is pushed onto the stack);

c. if the head character is an operator of higher precedence
than the incoming operator or the same precedence, the head character
is popped and added to the output stream and the incoming character
is compared with the character which is now at the head of the stack
and dealt with according to whichever of a, b or c is appropriate;

5. A right parenthesis or bracket is not added to the stack; all
operators on the stack down to the first matching left parenthesis or
bracket are popped and added to the output stream; both parentheses
disappear;

6. When the closing symbol -j is reached the stack is cleared, i.e.
all entries are popped in turn and added to the output stream; both -j
and f- disappear.

Example 1. Consider the expression we examined earlier, a + b * c.
We introduce the opening and closing symbols, obtaining

f-a+b*c-!.

Let us write our stacks horizontally, with head to the left. Then we
have

40 Data structures

I Input I Stack I Output I
l- I-
a I- a

+ +1-
b +1- b

* *+1-
c *+1- c
-1 *+

So the postfix form is abc * +, as we found earlier.

Example 2. Consider now the bracketed expression (a + b) * c.
Here we have

I Input I Stack I Output I
l- I-
((I-
a (I- a

+ +(1-
b +(1- b
) I- +
* * I-
c * I- c
-1 *

Thus the postfix form is a b + c *.

Although we have now seen how to transform arithmetic expressions
from their familiar infix form to the unfamiliar postfix form we still
have to answer the question "Why bother?". We do this by describing
an automatic procedure (using a stack-surprise, surprise!) for the
evaluation of expressions in postfix form. The principle underlying the
procedure is the observation that the operands of any operator in a
postfix expression are the values of the preceding two subexpressions.

We set up a stack whose entries are to be operands, i.e. numbers.
Then we read our postfix expression character by character and proceed
as follows:

Applications of stacks 41

a. if the incoming character is an operand we push it onto the stack;
b. if the incoming character is an operator we pop the top two

elements of the stack, combine them by applying the operator (being
careful about the order) and push the result of this operation onto the
stack so that it is available as an operand for a later operator.
When we have read the whole expression there is only one number left
in the stack and this is the value of the expression.

Example 1. Evaluate 6 3 4 * + (which is the postfix form of the
infix expression 6 + (3 * 4)).

When we read 6, then 3, then 4 the stack is successively

4

3

6

When we read * we pop 4, then 3 and form 3 * 4 = 12; then we push
12; the stack is now

When we read + we pop 12, then 6 and form 6 + 12 = 18; we push 18;
the stack now contains 18 alone. Thus 18 is the required value.

Example 2. Evaluate 6 3 + 4 *, which is the postfix form of the
expression (6 + 3) * 4.

When we read 6, then 3 the stack is successively

42 Data structures

When we read + we pop 3, then 6 and form 6 + 3 = 9; then we push
9, so that the stack consists of 9 alone.
When we read 4 we push it, so that the stack becomes

When we read * we pop 4, then 9 and form 9 * 4 = 36; we push 36,
and this is now the required value.

We should perhaps say a word about the parenthetical phrase above
about "being careful about the order". We recall that a postfix expres­
sion of the form

(OperandI) (Operand2) (Operator)

is a representation of the infix expression

(OperandI) (Operator) (Operand2)

In our evaluation procedure OperandI will be pushed onto the stack
before Operand2; so Operand2 will be popped before OperandI. Thus
the second operand to be popped is the first operand of the operator.
This observation is crucial for the non-commutative operators -, /, 1\
where changing the order of the two operands may change the value of
the expression.

2.3 Queues

In spite of all we have seen about the usefulness of stacks in com­
puter science we cannot, if we have been carefully brought up, avoid
the uneasy feeling that the last-in-first-out behaviour of stacks is some­
how unfair: in many situations of everyday life we much prefer to see
jirst-in-first-out behaviour. There are also in computer science many
situations where the first-in-first-out protocol is the one to use; so we
study next a data structure which is subject to this protocol. Such a
data structure is called a queue in obvious reference to queues in our

Queues 43

everyday experience. Formally, a queue is a list in which deletions may
be made at one end only, which we call the front, and insertions may
be made only at the other end, which we call the rear; a queue is also
referred to as a FIFO (first-in-first-out) structure.

If E is any set then the collection of all queues with elements drawn
from the set E, queue(E), is the same as the collection list(E); but,
as in the case of stack(E), the collection queue(E) has its own funda­
mental operations associated with it. As in the case of general linked
lists we shall need an operation which creates a queue, and, as in the
case of stacks (and for the same reasons), we shall need to be able to
check whether a given queue is full or empty. In the case of queues
we require the operation of removing an element from the front of the
queue-we call this operation serve-and the operation of inserting an
element at the rear, which we call enqueue.

The characteristic of queues which we join day by day, in the post
office or cafeteria or booking office, is that they are always changing­
customers at the front of the queue are gradually served and depart,
while new customers join the rear of the queue. This suggests that for
the computer implementation of queues we might again use pointers as
we did for linked lists and stacks. So we declare

Type T = Element-type;
Queue_pointer = i Node;
Node = Record

Info: T;
Next: Queue_pointer

end;
Queue = Record

Var Q : Queue;

Front, Rear: Queue_pointer
end;

and create an initially empty queue by making the assignments

Q.Front := nil; Q.Rear:= nil;

As in the case of stacks, insertions in queues will be carried out
by using the operation new which (at least in theory) can be invoked

44 Data structures

indefinitely often; so queues implemented in this way will never be full.
We may thus define the Pascal function

Function full (Q: Queue) : boolean;
Begin full := false End;

The analogy for queues of the test for an empty stack is

Function empty (Q : Queue) : boolean;
Begin empty := (Queue.Front = nil) and

(Queue.Rear = nil) End;

When an element of type T is added to a queue Q it is put in the Info
field of a new node, which becomes the new rear node. This new node
has to be tacked on to the end of Q; we do this by setting the Next field
of the former rear node to point to the new node-unless, of course,
Q is originally empty, in which case the new node becomes both the
front and rear node of a one-node queue. Both cases are covered by the
following procedure:

Procedure enqueue (a : T; Var Q: Queue);
Var p: Queue_pointer;
Begin if full (Q) then ... (* take some appropriate action *)

else begin

End;

new(p);
with pi do begin

Info := a; Next := nil end;
if Q.Rear = nil then Q.Front = p;

else Q.Reari . Next := p;
Q.Rear := pend

We illustrate the operation of this procedure in the case where Q is
non-empty by the diagram

Queues 45

Q.Front (before) Q.Rear (before) p

l l l
I x I · ... ----+I" Z l21 rn

Q.Front (after) Q.Rear (after) = p

l l
-+-_ •. ,.

When we remove the element at the front of the queue we certainly
change the queue; and we often want to work with the element which
is removed. So we take as formal parameters for the procedure which
implements serve a Var parameter of type Queue and another Var
parameter of type T which, after the execution of the procedure, holds
the element which was at the front of the queue. When we remove
the front node of a queue the new front node is the node pointed to
by the Next field of the original front node; if this pointer is nil then
the original front node was also the rear node and after it is removed
both front and rear pointers are nil. We sum this up in the following
procedure:

Procedure serve (Var Q : Queue; Var first: T)j
Var p: Queue_pointer;
Begin if empty(Q) then ... (* take some appropriate action *)

End;

else begin
p := Q.Front;
first := pT . Info;
Q.Front := Q.FrontT . Next ;
if Q.Front = nil then Q.Rear;= nil;
dispose(p) end

46 Data structures

We illustrate the operation of the procedure (in the case where the
queue is non-empty) in the following diagram

Q.Front (before) Q.Rear (before)

1 1
-----+I., Z l21

Q.Front (after) Q.Rear (after)

1 1
------+I., Z 1/1 and first := a

When we were studying linked lists and stacks we saw that it was
possible to implement them not only by means of pointers but also
using arraySj so we naturally ask whether we can implement queues
also by means of arrays. The answer is that we can, but the details
are not altogether straightforward. We begin, as in the case of lists
and arrays, by guessing what will be the largest size maxsize which the
queue will reach and then declare

Const N = maxsize j

We think of the queue entries at each moment of time as occupying
successive positions, say from 1 to r in an array indexed by 1 .. Nj we
shall have to keep a record of the array indices which hold the front
and rear of the queue. Thus we declare

Queues 47

Type Queue = Record
Queue_array: array [1 .. N] of T;
Front, Rear: 0 .. N

end;

(where we use 0 .. N as range for the front and rear indices to help us
deal with the case of an empty queue). It turns out to be convenient
also to let Front be the index of the position just before the one holding
the first element of the queue (i.e. Front = 1 - 1); Rear will be the
index of the position holding the last (most recently added) element of
the queue, so that Rear = r. If we declare

Var Q : Queue;

then we initialise Q to an empty queue by making the assignments

Q.Front := 0; Q.Rear:= 0;

Our first naive idea about the way to handle the serving and
enqueuing operations when the queue members are stored in the
subarray indexed from 1 = Front + 1 to r = Rear is as follows. To
serve the queue we remove the I-th entry of the array; the remaining
members are stored in the sub array indexed from 1 + 1 to r, so Front
is increased by 1. To enqueue a new element a of type T we assign a

to the (r + 1)-st entry of the array; the queue now extends from the
position 1 to the position r + 1, i.e. Rear has been increased by 1. If we
use this approach we notice that when Rear has the value N it will not
be possible to enqueue any further elements of T since increasing Rear
by 1 would take it outside the permitted index range. This situation
might arise even if all the "customers" had been served (when Front
= Rear = N). Clearly this is undesirable, since even though Rear = N
there may still be many vacant locations in the lower part of the array.

What are we to do to avoid this situation? We might think of
imitating what happens in real-life queues, in which whenever a cus­
tomer is served from the front of the queue all the remaining customers
move up one place. If we did this the queue members would always
reside in a subarray with lowest index 1 (so that Front would always be

48 Data structures

0). To achieve this in a Pascal procedure would require an assignment
of the form

Queue_array[i - 1] := Queue_array[i]

for each of the remaining queue members. Each of these assignments
takes time to execute. To reduce the time involved in this "mov­
ing up" performance we might decide to let the queue grow without
such movement until the rear got to the right hand end of the array
(Rear = N) and then to move the queue to the left if there are any
unoccupied locations. This still requires an assignment operation for
each remaining member.

To avoid all this movement we think of letting the array "wrap
around". The difficulty we have been facing stems from the fact that
there is no array entry after the N-thj we can get round this by imagin­
ing that the first entry of the array follows immediately after the N-th,
so that instead of increasing Front by 1 when we serve the queue and
increasing Rear by 1 when we enqueue a new element we make this
increase mod N. We are not out of the wood yet though, for, as we
shall see, it is now hard to decide, using only Front and Rear, when a
queue is full or empty.

Consider the queue originally represented by the array

with Front = 0 and Rear = 3

If we carry out three serve operations we obtain successively

with Front = 1 and Rear = 3

with Front = 2 and Rear = 3

with Front = 3 and Rear = 3

Queues 49

The queue is now empty and we have Front = Rear. But consider the
queue represented by

with Front = 1 and Rear = 4

If we enqueue e and then a we obtain successively

I b I c I die I with Front = 1 and Rear = 5

I a I b I c I die I with Front = 1 and Rear = 1

This time the queue is full and again Front = Rear.

One way out of this difficulty is to introduce a further field

Count: 1 .. N

in the Record type Queue and to increase Count by 1 whenever a
new element in enqueued and to decrease it by 1 whenever the queue
is served. The queue would then be full when Count = N and empty
when Count = O. This approach is easy to understand and to imple­
ment, but it involves an assignment to Count for each application of
serve or enqueue in addition to the inevitable assignments from or to
Queue_array and to either Front or Rear, and each assignment takes
time.

A widely favoured way to handle the difficulty we have been describ­
ing is to agree that the array holding a queue will be counted as full
when all positions but one in the array are occupied by queue elements.
An examination of the following examples

I b I c I d I I a I with Front = 4 and Rear = 3

50 Data structures

I a I b I c I d I with Front = 1 and Rear = 5

I a I b I c I d I with Front = 0 and Rear = 4

will show that in each case we have Front = (Rear + 1) mod 5.
So we are now able to implement the queue operations in the array

representation as follows:

Function full (Q : Queue) : boolean;
Begin full := ((Q.Rear + 1) mod N = Q.Front) End;

Function empty (Q : Queue) : boolean;
Begin empty := (Q.Front = Q.Rear) End;

Procedure enqueue (a : T; Var Q : Queue);
Begin if full(Q) then ... (* take some appropriate action *)

else with Q do begin

End;

Rear:= (Rear + 1) mod Nj
Queue_array[Rear] := a end

Procedure serve (Var Q: Queue; Var customer: T);
Var front: 1 .. N;
Begin if empty(Q) then ... (* take some appropriate action *)

End;

else with Q do begin
front := (Front + 1) mod N;
customer := Queue_array[Jront];
Front := front end

The keen-eyed whizz-kid programmer will have noticed that in the
enqueue procedure above we may have to calculate the number
(Q.Rear + 1) mod N twice-once in evaluating full (Q) in the if part
and possibly also in the else part. It is an easy exercise, left to the
reader, to eliminate this possible duplication of effort.

Queues 51

The idea used in the array implementation we have just described­
of making the array "wrap around" as we called it-suggests a third
possible implementation of queues, using circular lists. We think of
forming a circular list from an ordinary linked list by replacing the nil
Next pointer from the rear node by a pointer to the front node. This
has the advantage that it is no longer necessary to maintain both Front
and Rear pointers, since Front may be replaced by Rearj.Next. So for
this implementation we would declare T, Queue_pointer and Node as
before and then introduce

Var queue : Queue_pointer;

and initialise queue to be nil.

The boolean functions to test if a pointer represents a full or an
empty queue are defined in the obvious way:

Function full (queue: Queue_pointer): boolean;
Begin full := false End;

Function empty (queue: Queue_pointer) : boolean;
Begin empty := (queue = nil) End;

To implement the operation of enqueuing an element a at the end of a
queue whose rear node is pointed to by a pointer queue we shall form
a new node and put a in its Info field. We have now to integrate the
new node into its proper place in the circular list to which we have
access by a pointer to the original rear node. If this pointer is nil then
the new node will be the only node in the resulting queue, so it will
be both front and rear node; its Next pointer must therefore point to
itself. Otherwise, if the pointer to the original rear node is not nil, the
Next pointer of the new node must point to the front node (which was
previously pointed to by the Next field of the original rear node); this
Next field must be altered to contain a pointer to the new node. Finally
the access pointer to the list must be altered to point to the new node.
This is illustrated in the diagram

52

(old rear)

(old queue)j.Next
(after)

~-'-t-'

(old queue)j.Next
(before)

Data structures

(new rear)

. ________ . p i·Next

~ ____ --,III (front)

and summed up in the following procedure:

Procedure enqueue (a : T; Var queue: Queue_pointer);
Var p: Queue_pointer;
Begin if full(Q) then ... (* take some appropriate action *)

End;

else begin
new(p);
pi.Info := a;
if empty(queue) then queue := p

else queuei.Next := p;
queuei . Next := p;
queue := pend

Serving a queue represented as a circular list to which we have access by
a pointer to the rear node involves first moving to the front node, which
is pointed to by the Next pointer of the rear node. We then retrieve the
element stored in the Info field of the front node and discard the front
node. We have now to decide what to do about the Next pointer of
the rear node. Notice first that if the queue originally consisted of one
node only (which would be the case if and only if queuei.Next = queue)
then after a serve operation the queue will be empty and so we set the

Exercises 2 53

pointer queue to be nil; but otherwise the Next pointer of the rear node
must point to the node previously pointed to by the Next pointer of the
original front node (which we had better get hold of before we dispose
of the node). Summing up we have the following procedure:

Procedure serve (Var queue: Queue_pointer; Var customer: T);
Var p: Queue_pointer;
Begin if empty(queue) then ... (* take some appropriate action *)

End;

else begin
p := queuei . Next;
customer := pi . Info;
if p = queue then queue := nil

else queuei.Next := p i.Next;
dispose(p) end

2.4 Exercises 2

1. Suppose we have a stack X of characters; let out(X) be an abbrevia­
tion for

begin pop(X, x)j Write(x) endj

Suppose we have an input stream ofletters, say S, T, A, R, which we
push onto the stack X in that order. By introducing four applications
of out at various places between the push operations we obtain output
streams which are anagrams of STAR: for example

push('S',X)j push('T',X)j push('A',X); out(X)j push('R',X)j
out(X)j out(X); out(X);

produces ARTS.

Now consider the input stream A, B, C, D, E, F. By suitably
interleaving push and out operations can the following anagrams of
ABCDEF be produced as output streams?

54

(a) BDCFEA, (b) DBACEF, (c) ABCDEF,
(d) EBFCDA, (e) FEDCBA.

2. Suppose we have defined

Procedure push (a : T; Var 8 : P);
Procedure pop (Var a : T; Var 8 : T);
Function full (8 : P) : boolean;
Function empty (8 : P) : boolean;

Data structures

where P is the type we are using to represent stacks (Stack_pointer or
Stack). Using these, write functions and procedures as follows:

(a) Function stack_top (8 : P) : T;
such that stack_top(8) is the most recently added element of the
stack 8, which is left unchanged.

(b) Function second (8 : P) : T;
such that second(8) is the second top element of 8 and 8 itself is
left unchanged;

(c) Procedure two_off (Var 8 : P; Var a : T);
such that after the execution of two_off(8, a) the value of a is the
second top element of the stack 8 and 8 is left without its top
two elements;

(d) Procedure bottom (Var 8 : P; Var a : T);
such that after the execution of bottom(8, a) the stack 8 is empty
and the value of a is the bottom element of the stack (the one
least recently added);

(e) Function last (8 : P) : T;
such that last(8) is the bottom element of the stack 8 and 8 is
left unchanged.

3. Show how to use a stack of characters to determine whether a given
input stream of characters has the form xAx*, where x is a character
string and x* is its reverse (e.g. abcAcba).

4. In a complicated mathematical expression we often have several sets
of nested brackets of various kinds. How would you use a stack to test
whether there is an equal number of opening and closing brackets,

Exercises 2 55

that each closing bracket is preceded by a matching opening bracket
and that the types of opening and closing brackets match? Apply any
method you devise to test the expression

{x + (y - [a + bD * c - [Cd + e)]}j(h - (j - (k - [m - n]))).

5. Transform each of the following infix arithmetic expressions to postfix
form:

(a) aj(b * c)

(b) ajb * c

(c) aAbAc

(d) (aAb)Ac

(e) a-b-c

(f) a - (b - c)

(g) as + 4a3 - 3a2 + 7

(h) (a + b) * (c - d)

(i) sa+bn

6. If a, b, c have the values 3, 4, 5 respectively, use stacks to evaluate the
following postfix expressions:

(a)ab+c*

(b) abc + *
(c)abAca+*

7. Suppose we have declared a queue Q of type char and initialised it to
be empty. Describe the composition of Q after each of the following
operations, giving the value of first after each serve operation:

(1) enqueue('A', Q);
(2) enqueue('B', Q);
(3) enqueue('C', Q);
(4) serve(Q, first);
(5) enqueue('D', Q);
(6) enqueue('E', Q);

56

(7) serve(Q, first);
(8) serve(Q, first);
(9) enqueue('F', Q);
(10) serve(Q, first).

8. Suppose we have defined

Procedure enqueue (a: T ; Var q : Q);
Procedure serve (Var q : Q ; Var a : T);
Function full (q : Q) : boolean;
Function empty (q : Q) : boolean;

Data structures

where Q is the type we are using to represent queues (either of the
types Queue or Queue_pointer). Using these, write procedures which
will write out the elements in a queue (a) from front to rear and
(b) from rear to front, in each case leaving the queue unaltered.

9. A deque (double-ended queue) is a list in which insertion and deletion
can take place at both ends of the list but nowhere else. How would
you implement deques (a) using arrays, (b) using pointers?

Chapter 3

BINARY TREES

3.1 Binary trees

We begin with an informal and incomplete description of the kind of
structure we are going to study in this section. Roughly speaking, a
binary tree T with elements from a set E consists of a single distin­
guished element a of E called the root of E together with an ordered
pair (L, R) of binary trees with elements from Ej Land R are called
respectively the left and right subtrees of T. We think of T pictorially
as

R

It is clear why the description we have just given is unsatisfactory: it
is, of course, recursive, since it defines the binary tree T in terms of
the binary trees Land Rj but we have given no explicit example of a
binary tree on which to found our recursive definition. The way out of
this difficulty is not hard to seek: we simply lay it down that for every
set E the empty set is a binary tree with elements from E. Now we can

57

58 Data structures

be a little more formal and say that a binary tree T with elements
in E is a list which is either empty or else consists of three members,
the first being an element of E, called the root of T, while the second
and third are binary trees with elements in E, called respectively the
left and right subtrees of T. Readers who have some knowledge of
Prolog may like to think of what we have been saying as an indication
of the way to define a Prolog predicate is_E_tree: namely, we write

is_E_tree([D.
is_E_tree([A, L, RD :- is_in_E(A), is_E_tree(L), is_E_tree(R).

Although we have given a (more or less) formal definition of the binary
tree structure it has to be admitted that most people think of binary
trees pictorially. This is entirely reasonable since, for example, the
diagram

gives an immediately accessible description of the binary tree with root
a and left and right subtrees represented by the diagrams

and

respectively. The left subtree has root b, left subtree represented by d
(with root d and left and right subtrees empty) and empty right sub­
tree. The right subtree has root c, left and right subtrees represented

Binary trees 59

by e and f respectively, with e and / as roots and empty left and right
subtrees. The two-dimensional representation in the diagram is much
more transparent than the one-dimensional list form:

[a,[b,[d,[],[]],[]],[c,[e,[],[]],[/,[],[]]]].

It is conventional to call the elements of a binary tree nodes. It
is easy to convince ourselves by looking at the pictorial representation
of a binary tree (and not very much harder if we stick to the formal
list definition) that every node in a binary tree is the root of a binary
subtree of the original tree. Let N be a node in a binary tree and look
at the binary tree TN with root N. If the left subtree of TN is non­
empty we call its root the left child of N; if the left subtree of TN is
empty we say that N has no left child. Similarly if the right subtree
of TN is non-empty its root is called the right child of N and if the
right subtree of TN is empty then N has no right child. A node which
has no children at all is called a leaf. A node N is called the parent
of its child or children if it has one or both; if N has both a left and a
right child these children are called siblings. If N1 and N2 are nodes
we say that N1 is an ancestor of N2 and N2 is a descendant of N1
if either (1) N1 is the parent of N2 or else (2) N1 is the parent of an
ancestor of N2; here we have another example of a recursive definition
since the clause (2) defines 'ancestor' in terms of 'ancestor' but clause
(1) provides a firm foundation for the recursion.

We associate with each node in a binary tree a number called its
level; the level of the root node is defined to be 0, while the level of any
non-root node is defined to be 1 greater than the level of its parent.
The height of a non-empty tree is the maximum level of any of its
nodes; we define the height of the empty tree to be -1.

We show now that for every natural number n a binary tree of height
n cannot have more than 2n+1 - 1 nodes and not more than 2n of these
can be leaves. First of all it is clear that for each natural number k the
maximum number of nodes at level k is 2k and so, for a tree of height
n the maximum number of nodes is

60 Data structures

To prove the assertion about the maximum number of leaves we pro­
ceed by mathematical induction. First of all, if a tree has height 0 it
must consist of the root node alone and this is the only leaf node: a tree
of height 0 has exactly 1 = 2° leaf. Now suppose that for some natural
number k we have shown that every binary tree of height less than or
equal to k has at most 2k leaves (and note that we have done this for
k = 0). Look at any binary tree T of height k + 1: both its left subtree
and its right subtree must have height less than or equal to k. Thus the
number of leaves of T, which is the number of leaves in the left subtree
+ the number of leaves in the right subtree ::; 2k + 2k = 2k+1. Thus
every binary tree of height less than or equal to k + 1 has at most 2k+1
leaves. This completes the inductive step.

When we think about how to implement binary trees in Pascal it is
natural to think of the lines from the root to its left and right subtrees
as pointers and so to make the declarations

Type T = Element-type;
Tree_pointer = i Node;
Node = Record

Info: T;
Left, Right: Tree_pointer

end;
Var tree: Tree_pointer;

Thus we think of representing a binary tree by a pointer to its root; for
an empty tree the corresponding pointer is nil.

It is also possible to represent binary trees by means of arrays.
As usual when we do this in Pascal we have to begin by fixing the
size of the array; so, just as we did in the case of linked lists, stacks
and queues, we have to guess in advance what will be the maximum
number N of nodes which will ever occur in the tree. Then we declare
an array indexed by 1 .. N. The entries of the array correspond to the
nodes of the tree; so each entry must contain the element of type T
stored in the corresponding node, together with some way of accessing
the left and right subtrees. The simplest way of getting to the subtrees

Binary trees 61

is to give the indices of the array entries corresponding to the left and
right children of the node; to allow for the possibility that one or both
children may be absent we should extend the range of possible indices
to be 0 .. N and use 0 to indicate the absence of a child. Thus we declare

Const N = ...
Type Node = Record

Info: T;
Left, Right: 0 .. N

end;
Var tree: Array [1 .. N] of Node;

For example the tree we looked at earlier would be represented by the
array

Index Info Left Right
1 a 2 3
2 b 4 0
3 c 5 6
4 d 0 0
5 e 0 0
6 f 0 0

If we have a binary tree which is known to have height n then, as
we have seen, the maximum number of nodes is 2n +1 - 1. In this case
we may represent the tree as an array indexed 1 .. 2n+1 - 1, thus allo­
cating an array entry for each possible tree node, whether it is actually
present or not. This may be wasteful if the tree has far fewer than
the maximum number of nodes; but, on the other hand, it avoids the
necessity to have record entries for our array-we can get by with an
array [1 .. 2n+1 - 1] of T if we make the convention that the informa­
tion stored at the root appears in the first position of the array while
for each index i from 1 to 2n - 1 the information items held by the left
and right children of the node represented by the i-th entry appear in
the 2i-th and (2i + 1)-th entries.

Suppose we have a collection of n objects and an operation, which
we call process, which can be carried out on these objects. When we

62 Data structures

apply the operation to each of the n objects exactly once we say that
we carry out a traversal of our collection. There are n! arrangements
of n objects, so there are n! possible traversals. Some of these n!
possible orders of processing the n objects seem more natural than
others, depending on the way we have stored them. For example, if
the objects are stored in a linked list it seems most natural to process
first the object stored at the head of the list, then to follow the Next
indicator and process the object stored in the location it indicates and
then to proceed in this way till we reach the end of the list.

It is not so obvious how to carry out a traversal if our objects are
stored in a binary tree. To get a clue about what we might do we
look a little more closely at the traversal of a linked list. In the infor­
mal (but surely understandable) description in the preceding paragraph
the phrase "proceed in this way" is a signal that we are describing a
recursive procedure. To bring out the recursion more explicitly we
might say that to traverse a list we process its head and then traverse
the remainder (the tail) of the list; of course this doesn't work for an
empty list, which doesn't have a head-but to traverse an empty list
we don't have to do anything: this observation provides the foundation
for our recursion. How can we adapt this recursive idea to the traversal
of a binary tree? Here, in place of a bipartite division into the head
which is processed and the tail of the list which is traversed, we have a
tripartite division into root, left subtree and right subtree. Clearly the
element at the root must be processed and the subtrees traversed-but
in what order? Three arrangements of the operations have proved im­
portant in computer science. They are as follows:

(1) Preorder traversal: here we first process the root, then
carry out the preorder traversal of the left subtree, followed by the pre­
order traversal of the right subtree;

(2) Inorder traversal: here we carry out the inorder traversal
of the left subtree, then process the root and finally make the inorder
traversal of the right subtree;

(3) Postorder traversal: in this case we carry out the postorder
traversal of the left subtree, followed by the postorder traversal of the
right subtree and then process the root.

The prefixes pre-, in- and post- indicate the position of the root­
processing operation. These descriptions of binary tree traversals are

Binary trees 63

of course recursive but, as they stand, they are incomplete unless we
note explicitly that to traverse an empty tree we do nothing. The three
traversals can be implemented by recursive Pascal procedures; we need
only give one example:

Procedure preorder (t: Tree_pointer);
Begin

End;

If t <> nil then with t i do begin
process (Info);
preorder(Left);
preorder(Right) end

Consider the binary tree

Then the order in which we process the information fields in the pre­
order traversal is

a b d e 9 c f h i.

For the inorder traversal the order is

dbgeachfi

and for the postorder traversal

d 9 e b h if c a.

64 Data structures

We have met the prefixes pre-, in- and post- earlier in connexion
with the representation of arithmetic expressions in prefix, infix and
postfix forms; we shall now see how these are tied up with binary tree
traversals. Suppose we are given an arithmetic expression in infix form.
The rules of precedence allow us to put the expression in the form

(subexpression 1) (operator) (subexpression 2).

We represent this by a binary tree which has the operator in the Info
field of its root and whose left and right subtrees are the binary tree
representations of subexpres-sion 1 ·and subexpression 2 respectively. As
usual we are giving a recursive definition, so we must ensure that it is
well-founded. Our recursive description certainly doesn't work when
the arithmetic expression just consists of a single operand: in this case
we represent the expression by a tree consisting of a single node with
the operand in its Info field and its Left and Right fields nil-this
prescription provides a base for our recursion.

Consider for example the expression

bj2-4*a*c

Recalling that * associates to the left, so that 4 * a * c has to be
interpreted as (4 * a) * c, we have the binary tree representation

If we now carry out the preorder and postorder traversals of this
tree we obtain

Binary search trees 65

and

which we recognise as the prefix and postfix forms of the original infix
expression.

3.2 Binary search trees

When we were studying binary trees in complete generality in the last
section we laid no restriction at all on the type E to which the informa­
tion fields of the tree nodes belong. We now specialise to the situation
where the type E of the information field is either itself ordered or
(more usually) a record type one of whose fields, usually called the
key field, is of an ordered type. (We recall that if E is an ordered type
there is a relation < (less than) defined on E such that if a and bare
distinct members of E then either a < b or b < a.) A binary tree
with elements of such a type E is called a binary search tree if for
every node in the tree the key field of its information field is greater
than that for every node in its left subtree and less than that for every
node in its right subtree. When we give examples to illustrate binary
search trees we shall usually take the information field itself to be of
ordered type, for example integers or character strings with dictionary
order; but in the real world our main interest is seldom in the ordered
key field but in all the other fields of the record type-the chief im­
portance of the key field is to determine the location in which to store
and later to find the associated information. As an example of a binary
search tree with integer entries we have

66 Data structures

(Readers in the eight older Scottish universities will not need to be told
the significance of the entries.)

To implement binary search trees using pointers we make the
declarations

Type Key_type = ... (* some ordered type *)
Element-type = Record

Key: Key_type;
... (* other information fields *)

end;
Tree_pointer = i Node;
Node = Record

Info: Element-type;
Left, Right: Tree_pointer

end;
Var tree: Trecpointer;

and initialise the variable tree by making it nil.
The fundamental operations associated with binary search trees are

the insertion of new entries and the removal of existing entries; each of

Binary search trees 67

these operations has to be defined in such a way that when we apply it
to a binary search tree the result is again a binary search tree.

It is easy to see how to carry out the insertion of a new record. First
of all, if the given tree is empty we make a new node containing the
new record in its Info field and nil pointers in its Left and Right fields;
we then change the original nil Tree_pointer to point to the new node.
This provides us with the basis for a recursive definition, for if the given
tree is not empty we compare the key of the new record (the "new key")
with the key of the record held in the Info field of the root node (the
"root key"); if the new key is less than the root key the new record must
be inserted in the left subtree, while if the new key is greater than the
root key the new record must go in the right subtree. (An ultra-careful
programmer might like to consider what action should be taken if the
new key is the same as the root key.)

For example, to insert a record with key 5 in the binary search tree

(in which we display only the keys of the entries) we argue as follows:
5 is less than 8 so it must be inserted in the left subtree of 8, which has
root 3; 5 is greater than 3, so it must be inserted in the right subtree
of 3, which has root 6; 5 is less than 6, so it must be inserted in the left
subtree of 6, which is nil; so a new node must be created to contain 5
and inserted as left child of 6, producing the tree

68 Data structures

(Notice that we have referred in a slipshod way to "the left subtree
of 8" for example when we should properly have spoken of "the left
su btree of the tree with root 8".)

We sum up the general story in the following procedure:
Procedure insert (a : ElemenLtype; Var t: Trecpointer);
Var p: Trecpointer;
Begin if t = nil then begin

new(p);

End;

with p do begin

t := pend

Info := a;
Left := nil;
Right := nil end;

else if (a.Info.Key < t i.Info.Key)
then insert(a, t i.Left)

else if (a.Info.Key > t i.Info.Key)
then insert (a, t i . Right)

else Writeln ('already present')

Next we consider the problem of deleting an entry from a binary
search tree in such a way that after the deletion we are left with a
binary search tree. There are three cases to consider:

(1) If the node N containing the element to be deleted has no child-

Binary search trees 69

ren it may be removed without any further adjustment to the tree by
reassigning the pointer to N to be nil. This is the situation when we
delete 15 from the above tree, when we obtain

8

~
ill]

(2) If the node N containing the element to be deleted has one child
we have to remove N from the tree while still leaving its child as a node
of the tree. Suppose N is P i where p is either the pointer to N from
its parent or else (if N is the root node) the tree pointer by which we
gain access to the binary search tree. Then we alter p to point to the
single child of N. It is not hard to check that the binary search tree
property is maintained. To illustrate consider what happens when we
delete 9 from the tree we have just obtained:

70 Data structures

(3) Suppose finally that the node N to be deleted has two children
(think of the node containing 11 in the above tree). In this case we
look first at the node N' which comes immediately after N in the in­
order traversal of the tree, its "immediate inorder successor"; N' is the
farthest left node of the right subtree of N and so has key greater than
the key of N. Notice that N' cannot have a left child: any such child
would also be in the right subtree of N but would come before N' in
the inorder traversal.

To delete N we replace the pointer to N by a pointer to N' and
the pointer to N' by the Right pointer from N' (i.e. the pointer to
its right child if it has one and nil if it doesn't). Again it is easy to
check that the binary search tree property is maintained. When N is
the node containing 11 the immediate inorder successor N' is the node
containing 12. So when N is removed in the way just described the
tree becomes

which is still a binary search tree.

It would of course be possible to replace N by its immediate in­
order predecessor (the farthest right node in its left subtree) and that
predecessor by its left child (it couldn't have a right child).

The following Pascal procedure implements the deletion operation
as we described it:

Exercises 3

Procedure delete (a : ElemenLtype; Var t: Tree_pointer);
Var p, q: Tree_pointer;
Begin if t = nil then Writeln (a, 'is not present ')

else if a < t i .Info.Key then delete(a, t i .Left)
else if a > t i .Info.Key then delete(a, t i .Right)

else (* if a = t i . Info. Key *)
begin

q:= t;
if q i.Right = nil then t := q i.Left

else if q i.Left = nil then t := q i.Right
else begin

p := q i .Right;

71

while p i .Left <> nil do p := p i .Left;
t:= p;
t i .Left := q i .Left;
p := p i .Right end end

End;

Readers who are anxious to know what binary search trees have to
do with searching must be patient until they reach Part IlIon Storing
and Searching.

3.3 Exercises 3

1. Draw diagrams of all possible binary trees with 4 nodes.

2. How many ancestors does a node at level n in a binary tree have?
Prove your answer using mathematical induction.

3. Write Pascal functions which will determine

(a) the number of nodes in a binary tree;

(b) the height of a binary tree;

(c) the sum of the information fields (supposed to be of type inte­
ger) of all the nodes in a binary tree.

72 Data structures

4. A binary tree is said to be strictly binary if every node which is not
a leaf has two children. Write a Pascal function which will determine
whether a given binary tree is strictly binary.

5. Carry out the preorder, inorder and postorder traversals of the binary
tree

6. Find the binary tree whose preorder traversal is

ABCDEXZUTY

and whose inorder traversal is

DCEBA UZTXY.

7. Represent each of the following arithmetic expressions by means of a
binary tree and hence derive the Polish and reverse Polish forms of
each:

(a) aj(b * c)

(b) a5 + 4a3 - 3a2 + 7

(c) (a + b) * (c - d)

(d) sa+bn

8. Build up binary search trees using the following input streams of key
fields:

Exercises 3

(a) 1 2345;

(b) 5432 1;

(c) fe ex jk ha ge ap aa by my da.

(In (c) the order relation is dictionary order.)

9. Construct a binary search tree using the input stream:

8,9,11,15,19,20,21,7,3,2,1,5,6,4,13,10,12,17,16,18

and then delete in order the nodes containing

2, 10, 19, 8, 20

so that at each stage the tree is still a binary search tree.

73

Chapter 4

HEAPS

4.1 Priority queues and heaps

Although most queues in everyday life follow the first-in-first-out
protocol there are familiar situations where it is acceptable for people
to "jump the queue": for example in a hospital casualty department
patients may in general be treated in order of their arrival times, but a
severely injured accident victim is certain to be dealt with before some­
one with a fishbone in the throat no matter at what times they arrived.
It is natural to say that the accident victim has higher priority than the
patient with the fishbone. There are also situations in the operation of
a time-sharing computer system where requests are handled not in the
order in which they are made in time but according to the priorities
assigned to them by the operating system.

In these cases we are clearly dealing with a new kind of data struc­
ture, which we call a priority queue or heap. This is a collection of
objects drawn from some set E each of which has a priority associated
with it; the priorities of the objects are elements of some ordered type
(so that we can talk of one object's priority as being higher or lower
than that of another). At any stage in its existence the only object
which can be removed from a priority queue is the one with highest
priority.

It might appear at first sight that in order to implement a priority
queue we should think of storing the elements in decreasing order of

75

76 Data structures

priority; but since at any moment we are interested only in the element
which is currently of highest priority the order of the remaining elements
is not really relevant-and of course it may change as soon as a new
object is added to the queue.

It is best to begin by representing a heap as a special kind of binary
tree, which we call a heap-tree. As in the case of binary search trees
(which are not heap-trees) the information field type E of the nodes
of the tree is either an ordered type or (more usually) a record type
one of whose fields, the key field, is of an ordered type (when we use
a heap-tree to implement a priority queue this would be an indicator
of the priority). The defining characteristics which a binary tree must
satisfy in order to qualify as a heap-tree are as follows:

(1) all the leaves of the tree are on one level or on two adjacent
levels;

(2) all the levels, except possibly the one with highest level number
(the lowest on the page in the usual way of displaying trees), have the
largest possible number of nodes containing information items; and all
the leaves in the "lowest" level are as far to the left as possible;

(3) for each non-leaf node the key of the information item which it
holds is greater than the keys of the items held by its children.

Notice that condition (3) implies that the element stored in the root
node has the greatest key of all the items in the whole tree.

As an .example of a heap-tree, in which we take the information
items to be just the integer keys, we have

We can of course implement heap-trees using Pascal pointers in the

Priority queues and heaps 77

way we described when we introduced binary trees in Chapter 3; but
since nearly all the nodes of a heap-tree are used to store information
(all but possibly some at the right of the lowest level) it is not unreason­
able to think of using an array implementation. Namely, if the height
of the heap-tree is N, we set up an array H of type E (the type of the
information items) indexed by 1 .. (2N+1 - 1); we store the element at
the root in the array entry H[1] and for each index i, if the node whose
information is stored in H[i] has one child then the child's information
is stored in H[2i], while if it has two children then their information is
stored in H[2i] and H[2i + 1]. For example the heap-tree in the diagram
above would be represented by the array

(Notice that if a node has two children the one with the larger key may
appear as either the left or right child.)

The basic operations to be carried out on a heap are (1) insertion of
a new element in a given heap in such a way that the heap properties
are still satisfied after the insertion and (2) removal of the element at
the root of the heap (the element with largest key) and reorganisation
of the remaining entries so that we still have a heap. We shall also need
to have a method for creating a heap and (as in the case of stacks and
ordinary queues) we should have methods for deciding whether a given
heap is empty or full.

As we shall see in a moment the operation of insertion in a heap­
tree requires us to compare the key of the information field of a node
with that of its parent. So to implement the heap-tree structure using
pointers would involve introducing an additional Tree_pointer field
Parent in the definition of the type Node. In the array approach, how­
ever, where we store the children of H[i] in H[2i] and H[2i + 1], then
the parent of H[j] is clearly H[j div 2]. So it is more convenient to use
the array implementation.

We begin by guessing the greatest height, maxheight, to which the
heap-tree will grow and then declare

Const N = maxheight ; M = 2N +1 - 1;

78 Data structures

It follows from the definition of a heap-tree and our agreement about
how to store its elements in an array that the elements occupy consec­
utive positions starting at position 1 in an array indexed by 1 .. M. It
will be important for us to know how many positions are in use, so we
declare

Type Key_type = ... (* some ordered type *)
ElemenLtype = Record

Heap = Record

Key : Key_type;
. . . (* other information fields *)

end;

Heap_array: array [1 .. M] of ElemenLtype;
Count: 0 .. M

end;

If we declare

Var H: Heap;

then we initialise H to an empty heap by making the assignment

H.Count := 0;

Clearly a heap is empty if its Count field has the value 0 and full if its
Count field has the value M. Formally we define

Function empty (H: Heap) : boolean;
Begin empty:= (H.Count = 0) End;

Function full (H: Heap) : boolean;
Begin full := (H. Count = M) End;

Now we examine the operation of inserting a new element in a heap
H. This will of course not be possible if the heap is full; but if H is
not full the existing elements will be stored in positions 1 to H. Count
of H.Heap_array. The obvious place to put a new element is in the

Priority queues and heaps 79

(H. Count + l)-th position of H.Heap_arraYi but if the key (of the Info
field) of the new element is greater than that of its parent the heap con­
dition will be violated. If this happens we try to retrieve the situation
by interchanging the new element and its parent. Even when we have
done this, however, the heap condition may not yet be satisfied, for the
key of the new element may be greater than that of its new parenti
obviously if this occurs we interchange the new element and the parent
of its new position and keep on in the same way until either the new
element reaches the root or has key less than its current parent. We
talk of bubbling up the new element.

For example, suppose we have to insert 82 in the heap we considered
above,

We start by inserting 82 in a new node which is attached to the tree
as right child of the node containing 42. The tree represented by the
resulting array

is not a heap since the parent 42 is not greater than its new right child
82. We interchange 42 and 82, obtaining

which still does not represent a heap since the next parent 70 is not
greater than its new left child 82. We interchange 70 and 82, obtaining

which does represent a heap.

The insertion operation can be handled by the following procedure:

80 Data structures

Procedure insert (a : ElemenLtype; Var H: Heap);
Type Table: array [1 .. M] of ElemenLtype;
Var k: 1 .. M;

Procedure bubble (l : 1 .. M; Var K: Table);
Var i, j : 1 .. M; x, y : Key_type;

Procedure swap (r, s : 1 .. M);
Var temp: ElemenLtype;
Begin (* swap *)

temp:= I<[r]; I<[r] := I<[s]; I<[s] := temp
End; (* swap *)

Begin (* bubble *)
i := 1; j := I div 2;
x := I<[i].Info.Key; y := I<[j].Info.Key;
if ((j <> 0) and (y < x)) then begin

End; (* bubble *)
Begin (* insert *)

swap(i, j);
bubble(I div 2, I<) end

if full (If) then ... (* take some appropriate action *)
else begin

k := H.Count;
H.Heap_array[k + 1] := a;
bubble(k + 1, H.Heap_array);
H. Count := H. Count + 1 end

End; (* insert *)

When we come to the operation of serving a non-empty heap, by
which we mean removing the element with largest key (which is stored
at the root node of the heap-tree representation or in the first entry
of the heap-array representation), we shall do as we did in the case of
popping stacks and serving queues-we shall return the element which
is removed as the value of a Var parameter. If H.Count = 1 before
the first element is removed then after the removal H will be empty.
But if H. Count> 1 how are we to reorganise the remaining elements so
that they form a heap? In particular, which element should become the

Priority queues and heaps 81

first heap-array entry, corresponding to the root node of the heap-tree
representation? We begin by trying the last element in the Heap_array
field of H, that is H.Heap_array[H.Count]; this is the element of the
farthest right node of the lowest level of H. If we are very lucky the
key k (of the Info field) of this element will be greater than the keys
of both children of the root node; for if this happens the heap condi­
tion is satisfied. Otherwise we interchange the new root element with
whichever of its children has the larger key; then we compare its key
with the keys of the children of its new position and proceed in this
way until it reaches either a position with no children (a leaf) or a
position where the key or keys of its child or children are less than k.
We describe this process as trickling down.

Consider for example the heap

When we remove the root entry 77 we replace it by 27; this produces

which does not represent a heap since 27 is less than both its children
73 and 66. We interchange 27 and its larger child 73, obtaining

This still does not represent a heap since although 27 is greater than
one of its children (26) it is less than the other (60). So again we inter­
change 27 with the larger of its children. The resulting structure

does represent a heap.

Serving a heap can be handled by the following procedure:

82 Data structures

Procedure serve (Var a : Element-type; Var H: Heap);
Type Table: array [1 .. M] of Element-type;

Procedure swap (r, s : 1 .. M; Var I<: Table);
Var temp: Element-type;
Begin(* swap *)

temp:= I<[r]; I<[r] := I<[s]; I<[s] := temp
End; (* swap *)

Procedure trickle (k, I : 1 .. M; Var I<: Table);
Var i : 1 .. M; x, y, z : I<ey_type;
Begin (* trickle *)

i := k; x := I<[i].I<ey;
while (i <= I div 2) do begin

if 2 * i = I then begin y := I<[I].I<ey;
if y > x then begin

swap(i, 2*i, I<); i := I end end
else begin

y := I<[2 * i].Key;
z := I<[2 * i + 1].Key;

if (x < y) and (y> z) then begin
swap(i, 2 * i, I<); i := 2 * i end

else if (x < y) and (y < z) then begin
swap(i, 2*i+l, I<); i:= 2*i+l end

else i := I end end
End; (* trickle *)

Begin (* serve *)
if empty(II) then ... (* take some appropriate action *)

else begin a := H.Heap_array[I];
swap(l, H.Count, H.Heap_array);
if H.Count = 1 then H.Count := 0

End; (* serve *)

else begin H.Count := H.Count-lj
trickle(l, H.Count, H.Heap_array)end

Priority queues and heaps 83

At each stage of the procedure trickle at which the current position
of the element x which is being trickled down has two children we need
two key comparisons in order to find which of the three elements (x and
its two children) has largest key and so should stay in or be promoted to
the current position. There is an alternative version of trickle which on
average involves fewer comparisons. In this version we always exchange
the element x with its child if it has only one and otherwise with the
larger of its two children (it needs only one comparison at each stage
to find which is the larger), continuing until x reaches a leaf; then we
bubble x up, i.e. we keep comparing it with its parent, grandparent, ...
and exchanging it if its key is greater than that of its current parent.

For the example we looked at earlier when we were trickling down
27 in

we needed 6 comparisons (2 to find the largest of 27, 73, 66; 2 to find
the largest of 27, 26, 60; 2 to find the largest of 27, 14, 10). Using the
alternative version of trickle we obtain successively

The result is the same as before but we needed only 4 comparisons
(between 73 and 66, between 60 and 26, between 14 and 10, between
27 and 14).

84 Data structures

The new version of trickle can be implemented as follows:

Procedure new_trickle (k, 1 : 1 .. M; Var K: Table);
Var i : 1 .. M; x, y : Key_type; temp, top: Element-type;
Begin i := k; top := K[i];

while 2 * i <= 1 do begin
if 2 * i = 1 then begin

K[i] := K[1]; i := 1 end
else begin

end end;
K[i] := top;

x := K[2 * i].Key; y := K[2 * i + 1].Key;
if x >= y then begin

K[i] := K[2 * i]; i := 2 * i end
else if x < y then begin

K[i] := K[2 * i + 1]; i := 2 * i + 1 end

while (i div 2) >= k do begin

End;

if K[i].Key > K[idiv 2].Key then
swap(i, i div 2, K)

i := i div 2 end

If we are presented with an input stream of elements then we can of
course make them into a heap by introducing an initially empty heap
and invoking the insert procedure for each element in turn. There are
situations, however, when we are given a collection of elements all at
once and want to organise the collection as a heap. Suppose there are
M elements altogether (M need no longer be of the form 2N +1 - 1).
We store the elements in an array A indexed by 1 .. M. For each index
i greater than M div 2 we have 2i and 2i + 1 greater than M; so
the node represented by A[i] has no children and hence the sub array
indexed by (M div 2 + 1) .. M satisfies the heap property. We then
move back to the beginning of the array trickling down A[Mdiv 2],
A[M div 2 - 1], ... , A[I] in order.

For example, suppose we are given the integer array A

Priority queues and heaps 85

with M = 8. We begin by trickling down A[M div 2] = A[4] = 60; this
produces the array

1 5 110 127173159162114160 I
Now we trickle down A[3] = 27, which gives

1 5 110 162173159127114160 I
Trickling down A[2] = 10 gives first

and then

Finally we trickle down A[I] = 5, obtaining first

then

and at last the array

1731601621101591271141 5 1

which does represent a heap.
Thus we construct a heap using

Procedure makelleap (Var A: Table);
Var i: 1 .. M;
Begin for i := M div 2 downto 1 do trickle(i, M, A) End;

86 Data structures

4.2 Exercises 4

1. Check that the tree

is a heap-tree and give its array representation.

2. Insert 75 in the heap represented by the tree of Exercise 1.

3. Carry out the operation serve on the heap whose array representation
is

using both versions of the trickle procedure.

4. Reorganise the entries of the arrays

and

to form arrays which represent heaps.

Chapter 5

GRAPHS

5.1 Graphs and their implementation

In the data structures we have been chiefly concerned with so far, linked
lists and binary trees and their variants, there is a kind of regularity to
be observed. Thus in a linked list each node except the last has a unique
successor and each node except the first has a unique predecessor; in
the case of a binary tree each node has at most two children and every
node except the root has a single parent. There are, however, many
collections of objects in the world in which the inter-rel;:ttions are much
less regular. Consider, for example, the collection of civil airports in
Scotland. Some of them are linked by direct flights to many of the
others; but some are linked in this way to very few of the rest. It would
clearly be useful to have a way of imposing a structure on the set of
airports which would illustrate the direct connections (and possibly also
such associated information as the cost or distance or flying time for
each connection). There is, of course, a familiar way of representing
this information: we draw a rough sketch map, usually not to scale,
representing each airport by a dot; and if two airports are linked by a
direct flight then we join the dots representing them by a straight or
curved line; alongside each of these linking lines we may note the cost
or distance or flying time.

Such a picture is an example, quite familiar in everyday life, of a
pictorial representation of a structure called a graph, which we now

87

88 Data structures

define formally as follows: a graph G is an ordered pair (V, E) consist­
ing of a set V of vertices (in our example the vertices are the airports)
and a set E of edgesj each edge is a pair {v, w} of distinct vertices (in
the airport example the edges are the pairs of airports which have a
direct connection). Two vertices v and w in a graph G are said to be
adjacent and each is said to be a neighbour of the other if {v, w}
is one of the edges of Gj an edge of G is said to be incident to each
of the two vertices of which it is composed. A weighted graph is a
graph G = (V, E) equipped with a function W which associates to each
edge e in E a number W(e) which we call its weight (or length, or
capacity according to the particular application). In the airport exam­
ple distance, cost and flying times would be possible weights.

We represent a graph G pictorially just as we did in the airport
example-each vertex v in V is represented by a dot and each edge e
= {v, w} by an arc (a straight line or curve) joining the dots which
represent v and w. If the graph is weighted we may attach the weight
of each edge to the arc representing it.

In our example of the airports linked by direct flights we took it
for granted that if there is a direct flight from Al to A2 then there is
also a direct flight from A2 to AI. But if we come down to earth there
are one-way traffic systems which provide a direct link in one direction
between two places, say from Al to A2 but require a very circuitous
route to get from A2 to AI. Such a system would be represented by
a directed graph or digraph D, which is an ordered pair (V, E)
consisting of a set V of vertices and a set E of directed edgesj in a
digraph each directed edge is an ordered pair (v, w) of vertices. We
call v the tail and w the head of the directed edge e = (v, w), and
we say that e is an edge from v to w. If v and ware vertices of a
digraph and (v,w) is one of its edges we say that w is adjacent to or
is a neighbour of Vj we notice that even if w is adjacent to v it does
not follow that v is adjacent to w-this will be the case only if (w, v)
is also one of the directed edges of the digraph. A weighted digraph
is a digraph D = (V, E) equipped with a function W which associates
to each directed edge e in E a number W(e) called its weight.

We represent a digraph pictorially by using dots to represent the
vertices and for each directed edge e = (v, w) a directed arc from the
dot representing v to the dot representing w, that is a straight line or

Graphs and their implementation 89

curve with an arrow on it pointing from the dot representing v to the
dot representing w.

We now describe how we implement graphs, with their possibly
quite irregular structure, in the computer science environment. The
two most widely-used methods are derived from the observation that
if we are trying to describe a graph to someone we might begin by
specifying its vertices and then either (1) for each pair {v, w} of vertices
saying whether or nor it is one of the edges of the graph or (2) for each
vertex v giving a list of all the vertices w such that {v, w} is an edge of
the graph.

Let G = (V, E) be a graph with vertex set V = {VI, V2, ... , VN}.
Then we may formalise the first way of describing G by means of its
adjacency matrix. We declare

Var adj: array [1 .. N, 1 .. NJ of 0 .. 1;

and then initialise by the double loop

for i := 1 to N do for j := 1 to N do

dl "J'- { 1 if {Vi,Vj} is one of the edges in E
a 'J Z, J"- 0 if {Vi, Vj} is not one of the edges in E

If G is a weighted graph with weight function W taking real number
values say, then we can modify our declaration of the adjacency matrix
to

Var adj_ W: array [1 "" N, 1 .. N] of real;

and the initialisation to

for i := 1 to N do for j := 1 to N do

d" W[" "J.= { W({Vi,Vj}) if {Vi,Vj} is one of the edges in E
a 'J - z, J" c if {Vi, Vj} is not one of the edges in E

where c is a constant which we choose depending on the particular

90 Data structures

problem for which our graph is being used-adj_ W [i, j] might, for
example, be taken as 00 if the weights represent lengths of edges and
there is no edge {Vi, Vj}; in other situations it may be more appropriate
to choose c to be zero.

We notice that the adjacency matrix of a graph is symmetric, i.e.
we have adj [i,j] = adj [j, i] for all indices i, j: this is clear since the
pairs {Vi, Vj} and {Vj, vd are the same and one is an edge if and only
if the other is. Since the vertices constituting an edge are distinct it
follows that all the diagonal elements adj [i, i] are zero. Thus we need
only store the

1 + 2 + ... + (N - 1) = !N(N - 1)

above-diagonal entries in the adjacency matrix. (For the details com­
pare Exercise 1.2). If a graph has only a few edges then most of the
entries in the adjacency matrix will be 0; thus the adjacency matrix
is sparse and we can be even more economical of storage space (see
Exercise 1.9).

Although we have defined the adjacency matrix to have entries in
the sub range type 0 .. 1 it may sometimes be convenient to use boolean
entries instead and to assign

dl 0].= { true if {Vi, Vj} is one of the edges in E
a 'J Z, J. false if {Vi, Vj} is not one of the edges in E

If we use the first (0 .. 1) approach then the adjacency matrix for
the graph

1 2

4 3

Figure 1

is easily seen to be

Graphs and their implementation 91

It is not hard to see how to amend the definition of adjacency matrix
to deal with digraphs. Namely, if D = (V, E) is a digraph with vertex
set V = {VI, V2, . .. ,VN} then we declare

Var adj: array [1 .. N, 1 .. N] of 0 .. 1 (or boolean)

and initialise adj by

for i := 1 to N do for j := 1 to N do

dl .].= { 1 or true if (Vi,Vj) is one of the directed edges in E
a 'J Z, J. 0 or false if (Vi, Vj) is not one of the directed edges in E

The amendment to deal with a weighted digraph is clear.
Using the 0 .. 1 approach we see that the adjacency matrix for the

digraph

1 2

4 3

Figure 2

IS

[~
0 0

~ 1
0 1
0 0
1 1

92 Data structures

We now turn to the second way of describing a graph by listing for
each vertex all the vertices with which it forms an edge; this is the
method of adjacency lists. Again let G = (V, E) be a graph with
vertex set V = {VI, V2, ••• , V N }. Then we declare

Type Pointer = i Node;
Node = Record

Vertex: 1 .. N;
Next: Pointer

end;

Var adj_list : array [1 .. N] of Pointer;

The idea here is that for i = 1, 2, ... , N the array entry adj_list[i]
points to the list of indices j of the vertices Vj such that {Vi, Vj} is in
E. For a digraph the i-th adjacency list would consist of the indices of
the vertices Vj such that the directed edge (Vi, Vj) is in E.

In the case of the graph in Figure 1 the adjacency lists are given by

adj_list[l]- [I[3---[!0

adj_list[2]- [IG--[IT3--[!0

adj_list [3] - [I[3---[I]2]

adj_list[4] - [IG--[I[3---[]]2]

while for the digraph in Figure 2 the adjacency lists are

adj_list[l]- [!0

adj_list[2]- [IG--[ill

adj_list [3] = nil

Graph traversals 93

In the case of a graph there will be two adjacency list entries corre­
sponding to each edge {Vi, Vj}: for j will appear in the list adj_list[i] i
and i in the list adj_list [j] i. In the case of a digraph there will be only
one adjacency list entry corresponding to each directed edge (Vi, Vj):
namely j appears in the list adj_list [i] i.

To adapt the adjacency list representation to deal with weighted
graphs and digraphs the obvious approach is to redefine the type Node
by introducing an additional Weight field, so that we would have

Type W_pointer = i W_Node;
W_Node = Record

Vertex: 1 .. N;
Weight: real;

(* if the weight function W takes real values *)
Next: W_pointer

end;

Var W_adj_list: array [1 .. N] of W_pointer ;

Then W_adj_list[i] will point to a list whose entries are the indices of
the vertices Vj adjacent to Vi together with the weights W({Vi, Vj})-or
W((Vi' Vj)) in the case of a digraph-of the corresponding edges.

5.2 Graph traversals

When we were studying binary trees we introduced the notion of a
traversal of a collection of objects. We recall the definition: we have a
collection S of N objects and an operation called process which can be
applied to the objects in S; then a traversal of S consists in applying
process to each of the N objects in S exactly once. We described ways
of carrying out traversals of a collection S when the objects of S are
stored in a linked list or in a binary tree; now we examine how to make
traversals of a collection of objects stored at the vertices of a graph or
a digraph.

In the list and tree traversals which we described earlier we never

94 Data structures

visited a node more than once, so we never ran the risk of processing an
object more than once (unless, of course, the same object was stored in
more than one node, which ought not to happen). In a graph, however,
the connections between the vertices may be much less regular than
those between the nodes of a list or a binary tree, so we run the risk
of returning to a vertex which we have already visited; if this happens
we would clearly not wish to process again the element stored at that
vertex, for that would contradict the 'exactly once' requirement in the
definition of a traversal. To avoid the possibility of reprocessing an
object we associate with each vertex of the graph a marker to indicate
whether it has been visited. Thus if (V, E) is a graph or digraph, with
vertex set V = {VI, V2, ... , VN} we might declare

Var visited: array [1 .. N] of boolean;

and initialise this array by the loop

for i := 1 to N do visited [i] := false;

We describe two methods of traversal of a graph. The first, called
depth first traversal, is an adaptation for general graphs of the
preorder traversal of a binary tree. We begin by describing the depth
first traversal from a vertex v-if v has already been visited no
action is taken (the contents of v will already have been processed)
but if v has not yet been visited we process its contents, mark it
'visited' and then (recursively) carry out depth first traversal from each
of the vertices adjacent to v. The depth first traversal of the whole
graph or digraph then consists in carrying out depth first traversal
from all its vertices.

Suppose we have declared and initialised the array visited as above,
and that we are using the adjacency list implementation, so that we
have declared and initialised an array adj_list such that each entry
adj_list[i] points to the list of indices of the vertices Vj which are adja­
cent to Vi in the graph or digraph. Then the depth first traversal of the
whole graph or digraph is carried out by

Graph traversals

for i := 1 to N do if not visited [i] then dft_from(i);

where we have declared

Procedure deaLwith (i : 1 .. N);
Begin (* apply process to object stored in Vi *) End;

Procedure dfLfrom (i : 1 .. N);
Var k: 1 .. N;

p : Pointer;
Begin

End;

visited [i] := true;
deaLwith (i);
p : = adj_list [i];
while p <> nil do begin

k := pi. Vertex;
if not visited [k] then dft_from (k);
p := p i.Next end

95

When executing our recursive procedure dft_from the computer will
employ a stack, which we can think of as a stack of vertices waiting to
be processed. When executing dfLirom(i) we begin by pushing Vi onto
an initially empty stack S; we then carry out the procedure informally
described as follows:

Repeat
pop(S,top):
if not visited (top) then begin

deaLwith(top);
visited(top) := true;
push onto S all the unvisited vertices

adjacent to the vertex just popped end
until empty(S)

96 Data structures

Consider for example the execution of dft.from (A) for the graph

for which the adjacency lists are

adj_list[A] --[N3-[QJ3--[QI3--CM

adj_list[B] -- [&3-[QI3--[g]2]

adj_list[C] --[&3-CM

adj_list[D] -- [&3-[N3-[g]2]

adj_list[E] --[&3-[N3-[QJ3--[QJ2]

1. Initially we have visited[X] = false for X = A, ... , E.
The stack S is

s--G1]2J

pop(S,top) sets top to be A.
Since visited[A] = false we process the object stored at A, set
visited[A] to be true and push onto the stack the unvisited neigh­
bours of A.

The situation is now illustrated by the diagram

Graph traversals 97

Here we use the symbol 0 to indicate the vertices which have not
yet been visited and the symbol .1 that A was dealt with at the
first stage.

2. pop(S,top) sets top to be E.
Since visited[E] = false we process the object stored at E, set
visited[E] to be true and push onto the stack the unvisited neigh­
bours of E. The situation is now

98 Data structures

3. pop(S, top) sets top to be D.
Since visited[D] = false we process the object stored at D, set
visited[D] to be true and push onto the stack the unvisited neigh­
bours of D.

We have now reached the situation

4. pop(S, top) sets top to B.
Since visited[B] = false we process the object stored at Band
set visited[B] to be true. Since B has no unvisited neighbours
we leave the (popped) stack unaltered.

We are now in the situation

Graph traversals 99

5. pop(S, top) sets top to C.
Since visited[C] = false we process the object stored at C, set­
ting visited[C] to be true. Again the vertex just visited has no
unvisited neighbours, so we leave the popped stack unaltered.

The situation is now

6. pop(S, top) sets top to B. Since visited[B] = true we take no
action.

100 Data structures

The stack is now

pop(S, top) sets top to D. Since visited[D] = true we take no
action.

The stack is now

S-[QG-~

pop(S, top) sets top to C. Since visited[C] = true we take no
action.

Now the stack becomes

S-~

pop(S, top) sets top to B. Since visited[B] = true we take no
action.

The stack S is now empty; so we have completed the execution
of dftJrom(A).

Thus the depth first traversal from A visits the vertices in the order

AEDBC.

To justify the statement we made earlier that depth first traversal of a
graph is an adaptation of the preorder traversal of a binary tree, con­
sider the graph

Graph traversals 101

1

5

Suppose that on the adjacency list for each vertex its right child (if
any) precedes , i.e. is nearer to the head of the list than its left child
(if there is one). Then dft..from(l) proceeds as follows:

1. S consists of 1 alone; pop(S, top) sets top to 1. Since 1 is un­
visited, process the contents of V1; mark 1 'visited' and push the
unvisited neighbours of 1-3 and then 2.

2. S now consists of 23 (we write our stacks with head to the left);
pop(S, top) sets top to 2. Since 2 is unvisited, process the contents
of V2; mark 2 'visited' and push the unvisited neighbours of 2-
there is only one, namely 4.

3. S now consists of 4 3; pop(S, top) sets top to 4. Since 4 is un­
visited, process the contents of V4; mark 4 'visited' and push the
unvisited neighbours of 4-there are none.

4. S now consists of 3; pop(S, top) sets top to 3. Since 3 is unvisited,
process the contents of V3; mark 3 'visited' and push the unvisited
neighbours of 3-there is only one, namely 5.

5. S now consists of 5; pop(S, top) sets top to 5. Since 5 is unvisited,
process the contents of Vs; mark 5 'visited' and push the unvisited
neighbours of 5-there are none.

The stack S is now empty, so dft..from(l) is complete. The order in
which the vertices are visited is

1 2 4 3 5,

102 Data structures

the same as in preorder traversal.

Perhaps the second example helps to explain the name depth first
traversal. In executing dft..from(i) we proceed from Vi to a neighbour,
then to a neighbour of that neighbour and so on, moving always further
away from Vi (distance being measured by the number of intermediate
edges) until there are no unvisited neighbours; only then do we retreat
towards Vi, and by the shortest distance possible, to the most recently
visited vertex which has unvisited neighbours.

In both the examples we have worked through we achieved a com­
plete traversal of the graph by carrying out dft..from(1). But for the
digraph

1 2 3

4

5

we see that
dft..froin(1) visits only vertices 1, 2, 6 and 5;
dft..from(2) takes no action since 2 has been visited during the

execution of dft..from(1).
dft_from(3) visits only vertex 3.
dfLfrom(4) visits vertices 4 and 7 and the depth first traversal of

the graph is complete.

The second method of traversal of a graph which we describe is
known as breadth first traversal. As in the case of depth first traver­
sal we begin by describing breadth first traversal from a vert.exv-if
v has already been visited then no action is taken, but if v has not
yet been visited we process its contents, mark v 'visited' and visit all
its as yet unvisited neighbours, then all their unvisited neighbours and
proceed in this way. Thus breadth first traversal of a graph or digraph

Graph traversals 103

is carried out by

for i := 1 to N do if not visited [i] then bft_from (i);

where we describe bftJrom(i) informally as follows, using this time a
queue Q of vertices waiting to be processed instead of the stack used
in depth first traversal:

Begin enqueue(i,Q); visited[i] := true;
while not empty(Q) do

End;

begin serve(Q, first);
deaLwith(first);
enqueue all the unvisited neighbours of first

marking them 'visited' end

Consider, for example, the breadth first traversal from A of the graph:

for which the adjacency lists are

adj_list[A] - [ID3--r:m2]

adj_list[B] - C&3-[Q[3-[Q[2]

adj_list[C] - [ID3--[Q[2]

adj_list[D] - [ID3--[Q[3-[ID2]

adj_list[E] - C&3-[Q[2]

104 Data structures

1. Initially we have visited[X] = false for X = A, . .. , E.
To start with the queue Q is illustrated by

Q.Rear -~- Q.Front

and we set visited[A] to be true.
Since Q is not empty we execute serve(Q, fir-st),which sets fir"st
to A. We process the object stored at A. Then we enqueue the
unvisited neighbours of A in the order in which they appear in
the adjacency list of A (Le. B, then E) and mark them 'visited'.

2. The situation is now

c 0

(We use the symbol e1 to indicate that we have processed the
object stored at A during stage 1 of the traversal; the symbol
o marks vertices for which the stored objects have not yet been
processed-even though they have been marked 'visited'.)

Q.Rear -[§I3---[IDZ]- Q.Front

Since Q is not empty we execute serve(Q, first) which sets first to
B. We process the object stored at B and enqueue the unvisited
neighbours C and D of B, marking them 'visited'.

3. Now we have

Graph traversals 105

c 0

Q.Rear -[Q[3-[Q[3---IE]2J-- Q.Front

Since Q is not empty we execute serve(Q, first), which sets first to
E. We process the object stored at E. Since E has no unvisited
neighbour the (served) queue is left unaltered.

4. Now we are in the situation

c 0

.1 Ar--------i

Q.Rear -[Q[3-[Q]2J-- Q.Front

Since Q is not empty we execute serve(Q, first), which sets first to
C. We process the object stored at C. Since C has no unvisited
neighbours no further vertices are added to the queue.

106 Data structures

5. The situation is now illustrated by

Q.Rear -[Q:]21-- Q.Front

Q is not empty. When we execute serve(Q, first) we set first to
D. We process the object stored at D. Since D has no unvisited
neighbours we add no vertices to the queue.

6. We have now reached the situation

and

Q. Front = Q Rear = nil.

Since Q is now empty, execution terminates.

Graph traversals 107

So breadth first traversal of the graph from A deals with the contents
of the vertices in the order

ABECD

The name breadth first traversal possibly appears more natural if
we apply it to the binary tree

1

6

Let us agree that when we are enqueuing the children (which are the
unvisited neighbours) of a node we shall enqueue the left child (if any)
before the right child (if any). Then bft_from(l) proceeds as follows:

1. Mark 1 'visited'; Q consists of 1; serve Q and process the contents
of VI.

Enqueue the unvisited neighbours of VI and mark them 'visited'.

2. Q consists of 32 (we write our queues with front to the right and
rear to the left); serve Q and process the contents of V2.

Enqueue the unvisited neighbours of 2 and mark them 'visited'.

3. Q now consists of 5 4 3; serve Q and process the contents of V3.

Enqueue the unvisited neighbour of 3 and mark it 'visited'.

4. Q is now 6 5 4; serve Q and process the contents of V4.

4 has no unvisited neighbour.

5. Q is now 6 5; serve Q and process the contents of Vs.

5 has no unvisited neighbour.

108 Data structures

6. Q now consists of 6 alone; serve Q and process the contents of V6.

6 has no unvisited neighbour.

The queue is now empty, so execution terminates.
The vertices are visited in the order

123456

so that we are visiting the vertices across the tree or 'breadthwise'.
In both our examples we have obtained a complete traversal of the

graph under consideration by carrying out bft..from(l). But, as in the
case of depth first traversal, this is not always the case.

5.3 Exercises 5

1. Show how the graph

2 7

1 9

4------------------·6

would be represented (a) by its adjacency matrix, (b) by means of
adjacency lists.

Exercises 5 109

How would these representations be changed if the graph were changed
into a digraph by directing each edge from the endpoint with the
smaller number to that with the larger number?

2. Carry out depth first and breadth first traversals for the graph in Ex­
ercise 1 and the digraph below, starting in each case at the vertex
numbered 1:

1 2

3._-----. 7

5

Part II

ALGORITHMS

Chapter 6

ALGORITHMS AND
COMPLEXITY

6.1 Algorithms

In the ninth century of the Christian era, in a small town in
Uzbekistan now called Khiva but then Khowarizm, there lived an Arab
mathematician called Abu Ja'far Mohamed ben Musa, who was nick­
named al-Khowarizmi, the man from Khowarizm. He was the author
of a book on arithmetic and algebra (algebra is actually derived from
one of the Arabic words in his title) and it was through the translation
of this book that the Arabic numerals and the decimal number system
became known in Europe. The word algorism, derived from his nick­
name, was used to refer to the Arabic system and more generally to
arithmetic. By what the Oxford English Dictionary calls 'learned con­
fusion' with the Greek word arithmos, meaning 'number', it has been
transformed into algorithm.

So much for its etymology: but what does it mean nowadays?
Before answering this question let us look at the kind of problems we

are concerned with in computer science. Very Toughly speaking these
are problems in which we begin with some given information, data or
input and try to produce from that input a result, an output which is
related in some desired way to the input. We think, for example, of the

113

114 Algorithms

following three problems:

1. Numerical multiplication. Here the input consists of two integers
and the output is a single integer which is the product of the given
integers.

2. Solution of simultaneous equations. In this case the input consists
of six real numbers, all, a12, a21, a22, bI, b2 subject to the condition
that al1a22 - a12a21 =f 0 and the desired output is a pair of real
numbers XI, X2 such that

al1xl + a12x 2 = b1

a21Xl + a22x 2 = b2

3. Sorting. Here the input might be an array of character strings
and the desired output an array with entries the same as the given
array but rearranged in dictionary order.

With these simple examples in mind we can agree that when we
speak about solving a problem we mean finding a way to produce
the desired output from the given input. We remark that, as in the
examples, we are usually concerned not with single problems but with
classes of problems; we are interested in finding solution methods which
will work in a uniform way for all the problems of a given class-we
don't want to have to develop a different solution method for each par­
ticular instance of a class of problems. Now there are many particular
problems which can be solved by the use of intelligent guesswork or
by the use of special properties of the input information. These special
methods, these unexpected flashes of insight, are often very interesting;
but, for all the fascination of clever ways to deal with special cases, it
is important also to have general systematic methods of solution which
will yield the desired output corresponding to any legitimate input.
Such a general systematic method is what we mean by an algorithm.

As computer scientists we are inclined to think of formalising this
idea of a general systematic method by that of a computer program; but
attempts to give rigorous definitions of the notion of algorithm started
in the 1930's before computers were invented.

Algorithms 115

Before we give a formal (or at least semiformal) definition of the
term algorithm it is worth mentioning briefly some quite informal
definitions which, with luck, will help to give us a rough notion of what
is to be included in our formal definition. We begin by thinking of an
algorithm as a concise description of a method for solving a problem­
and we have at least at the back of our minds the idea that the method
should be suitable for mechanical implementation. This leads us to de­
scribe an algorithm as a sequence of clearly described, well-understood
steps taken to solve a problem; and we clearly have it in mind that the
sequence is finite and that each step can be carried out with a finite
amount of effort in a finite time. Since we are thinking of having the
algorithm carried out in some sense mechanically, we would want to
insist that none of the steps should include any subjective decision nor
involve any use of intuition or creativity.

Putting these ideas together we arrive at the following semiformal
definition: an algorithm is a finite sequence of instructions for solving
a problem; the instructions must be carried out by a computing agent
which reacts to them in a discrete stepwise fashion with no use of
continuous methods or analogue devices; furthermore .the execution
of the instructions must proceed in a completely deterministic way,
not subject to chance. We sometimes include in the definition the
requirement that the computing agent should have facilities for making,
storing and retrieving steps in the computation.

This definition has been described as semiformal: to make it com­
pletely formal we would have to give a formal definition of the comput­
ing agent-this can certainly be done, but to do so would lead us to a
higher level of abstraction than is appropriate for an introductory book
of this kind.

We cannot help noticing that, although the definition of algorithm
which we have given essentially antedates the invention of modern elec­
tronic computers, we can probably most easily think of the definition
when we relate it to computers. Thus the "finite sequence of instruc­
tions" corresponds roughly to a computer program; the "computing
agent" to a computer; the "facilities for making, storing and retrieving
steps in the computation" make us think of the memory of the com­
puter; and the requirement that the computation should proceed in a
discrete stepwise fashion is satisfied by a digital computer.

116 Algori thms

6.2 Complexity of algorithms

For a given problem or class of problems there may be many different
algorithms which provide solutions; so the question arises: how are we
to choose which of these algorithms to use? We may make our decision
for human reasons-making our choice depend on how easy it is for a
human user to understand the algorithm and/or how easy it is to imple­
ment the algorithm by a program; but we may also make our choice for
machine reasons--on the basis of the efficiency of use of our computer
resources (time and space, especially time). Neither viewpoint can be
ignored, because the cost of using an algorithm to solve a problem can
be split up as

Cost = (Cost of understanding and programming)
+ (Cost of running)

= Software cost + Hardware cost

Now the hardware cost is expressible as

Hardware cost =
(Cost of running program once) * (Number of executions)

If the algorithm is to be used once only or just a few times then the
software costs predominate; so it is probably best in this case to use
an easily understandable, easily programmable algorithm even if it is
relatively expensive in its use of computer resources. But if the algo­
rithm is to be used many times then it is probably worth .the .effort
to understand and program a more complicated algorithm if it can be
shown to use computer resources more efficiently.

So we are faced with the question: How do we compare the efficiency
of two algorithms?

We might think of measuring the execution times of programs which
implement the algorithms. But this is dependent on the particular
machine we choose to run our programs on; and of course it requires us
to implement both algorithms in order to compare the execution times.
Again, we might compare the size of program required to implement
the algorithms (the number of lines or the number of instructions, for

Complexity of algorithms 117

example); but this measure depends on the skill of the programmer
and on the particular language chosen for the program, and of course
it again requires us to implement both algorithms. It would clearly be
better to have some way of measuring the efficiency which depends on
the algorithm itself, not on the machine, the programming language or
the programmer.

No doubt if we had before us a completely formal, abstract definition
of the computing device referred to in the definition of an algorithm we
might measure the complexity of an algorithm by counting up the num­
ber of operations carried out by the abstract "machine". The difficulty
here is that such an approach tends to be so abstract that it takes us
very far from our intuitive understanding of how our algorithms work.
(And again we would have to carry out the detailed formal analysis for
each of the algorithms being compared.)

So in examining the efficiency or complexity of algorithms it is usual
to concentrate our attention on what we think of as the "basic oper­
ations" involved in the kind of problem we happen to be considering.
Different classes of problem will have different basic operations associ­
ated with them, for example

1. When we consider the problem of searching for a given object in
a particular collection we might think of the basic operation as
the comparison of the object we are searching for with an object
in the collection.

2. When we are concerned with the problem of multiplying two
matrices with numerical entries it is natural to think of the
multiplication of two numbers as the fundamental operation.

3. When we deal with the problem of sorting a collection of records
with keys from an ordered type then we might consider the com­
parison of two keys (to see which is the less) as the basic operation;
we might also think of the exchange of two records as the basic
operation.

If we have just a single problem for which there are several algo­
rithms available we might count up for each algorithm the number of
basic operations required to deal with the problem, and we would think

118 Algorithms

of choosing the algorithm for which the number of fundamental opera­
tions is least.

But typically we are not concerned with single problems-we usually
deal with classes of problems consisting of a large number of instances:
these may not all be of the same size and we naturally expect that the
amount of work (by which we mean the number of basic operations)
required for an instance of large size will be greater than that for one of
small size. We notice in passing that there is no reason to suppose that
all problem instances of the same size will necessarily involve the same
amount of work (think of the multiplication of single-digit numbers: it
would probably require less work to multiply by 0 or 1 than by other
multipliers).

We think of choosing a way to measure the size of a problem
instance. For example, for a searching problem it would he natural to
take the number of elements in the collection in which we are searching;
for the problem of multiplying square matrices we would naturally take
the size of the matrices; and for the problem of solving simultaneous
equations we would take the number of equations in the system.

Now suppose that we have a class of problems for each of which the
size can be given by an integer n 2:: O. We describe two ways of defining
the notion of complexity of an algorithm designed to solve the class of
problems.

(1) For each integer n 2:: 0 we look at all instances of the problem
which have size n. For each such instance I we work out the amount of
work (the number of basic operations) required by the algorithm when
applied to I: call this number T(I). Then define

W(n) = the maximum value of T(I) for all instances I of size n.

Then the function W which assigns to each integer n 2:: 0 the integer
W(n) is called the worst case complexity of the algorithm.

(2) Again for each integer n 2:: 0 we look at all instances of the prob­
lem which have size n. Suppose that, from experience, or on the basis
of some special information or by making some simplifying assumption
we have been able to assign to each instance I of size n a measure p(1)
of the probability that the instance I will occur. Then we define

A(n) = the sum of the numbers p(1)T(1) for all instances I of size n.

Complexity of algorithms 119

Thus A(n) is the expected number (in the sense of probability theory)
of basic operations which will be carried out when the algorithm is
applied to a problem instance of size n.

The function A which assigns to each integer n 2:: 0 the number A(n)
is called the average complexity of the algorithm (corresponding to
the probability assignments p(I».

Suppose we have two algorithms Pt and P2 for the same problem
class, with worst case complexities Wt and W2 given by Wt(n) = lOOn
and W2(n) = 4n2 respectively.

For input sizes n ::; 25 we have Wt(n) = lOOn 2:: 4n2 = W2(n)j so
for input sizes not exceeding 25 it is more economical to use algorithm
P2 j but if n > 25 we have W2(n) > Wt(n) and so for input sizes greater
than 25 it is more economical to use algorithm Pt. This simple example
suggests that in comparing the complexity of different algorithms it is
important to examine how they behave for large input sizes.

Now suppose we have a third algorithm P3 for our problem class,
with worst case complexity W3 given by W3(n) = 10000n. Clearly, if we
implement them both on the same computer P3 will always take longer
on its worst case than Pt does on its worst case (though the worst cases
may be different) whatever the input size n, but if we implement P3 on
a computer which runs 1000 times faster than the one used for Pt the
time required for the worst case for P3 will be less than that for the
worst case for Pt. Notice also that if we run P2 and P3 on the same
machine then P2 will run faster than P3 for all input sizes n less than
2500j but for input sizes greater than 2500 it is more economical of
effort to use P3 •

These examples are intended to suggest that we ought not to dis­
tinguish between functions which are constant (positive) multiples of
one another, but that we should distinguish between functions if one
eventually outstrips the other.

We now introduce some technical notation and terminology which
is useful when we talk about the rate of growth of real-valued functions.

We let f and 9 be two positive real-valued functions defined for all
positive integers n. Then we say

1. 9 is O(f) or 9(n) is O(f(n)) (read "9 is big 0 of 1") if 9(n) is
eventually less than a constant multiple of f(n), i.e. if there is a

120 Algorithms

positive real number K and an integer no such that g(11,) ~ K f(11,)
for all integers 11, ~ no.

2. 9 is n(f) or g(n) is n(f(n)) (read "g is big omega of 1") if g(n)
is eventually greater than a constant multiple of f(n), i.e. if
there is a positive real number K1 and an integer 11,1 such that
g(n) ~ Kd(n) for all integers 11, ~ 11,1.

3. 9 is 8(f) or g(n) is 8(f(n)) (read "g is big theta of 1") if g(n)
is eventually between two constant multiples of f(n), i.e. if there
are positive real numbers K and K1 and an integer no such that
Kf(n) ~ g(n) ~ Kd(n) for all integers 11, ~ no.

If 9 is O(f) but f is not O(g) we say that O(g) is better than O(f).
In this case an algorithm with worst case complexity 9 will eventually
(that is for all sufficiently large input sizes) run faster than one with
worst case complexity f. An algorithm is said to be efficient if its
worst case complexity is O(nk) for some positive integer k.

For the sake of readers whose mathematical background includes
the notion of limit of a sequence of real numbers we offer some useful
methods of comparing the growth rates of two functions f and g.

1. If limg(n)/ f(n) = c where c is a non-negative real number (i.e.
c ~ 0) then 9 is O(f).

We recall that when we say that limg(n)/ f(n) = c we mean
that g(n)/ f(n) is eventually as close as we please to c. So we
eventually have g(n)/ f(n) within 1 of c. That is to say there is
an integer no such that for all integers 11, ~ no we have

c-1 < g(n)/f(n) < c+ 1.

So for all integers 11, > no we have g(n) < (c + l)f(n). Thus 9 is
O(f).

2. If limg(n)/ f(n) = c where c is a strictly positive real number (i.e.
c> 0) or if limg(n)/ f(n) = 00 then 9 is n(f).

Suppose first that limg(n)/ f(n) = c where c is a strictly positive
real number. Then we eventually have g(n)/ f(n) within ~c of c.

Complexity of algorithms 121

That means there is an integer nl such that for all integers n ~ nl
we have

!c < g(n)j f(n) < ~c.

So for all integers n greater than nl we have g(n) > ~ef(n). Thus
9 is 0(1).

Now suppose that limg(n)j f(n) = 00. This means that g(n)j f(n)
is eventually as large as we please, say greater than 1; so there is
an integer nl such that for all integers n ~ nl we have g(n) j f(n) >
1 and so g(n) > f(n). So in this situation also we have that 9 is
0(1).

3. If limg(n)j f(n) = e where e is a positive real number (i.e.
0< e < 00) then 9 is 0(1).

By 2. above we see that 9 is 0(1); so there is a positive real
number Kl and an integer nl such that g(n) ~ Kd(n) for all
integers n greater than nl. Similarly, by 1. above, 9 is 0(1); so
there is a positive real number K2 and an integer n2 such that
g(n) ~ Kzf(n) for all integers n greater than n2. Hence for all
integers n greater than the larger of nl and n2 we have

Kd(n) ~ g(n) ~ Kzf(n).

So 9 is 0(1).

Notice that if limg(n)j f(n) = e, where e is a positive real number,
we have limf(n)jg(n) = 1je, which is also a positive real number; so
in this case we have both that 9 is 0(1) and that f is O(g). But if
limg{n)j f(n) = 0, although we have that 9 is 0(1), f is not O(g); so
in this case 9 is better than f.

(To see this, suppose that f were O(g), so that f(n) is eventually
less than some positive constant multiple of g(n), say

f(n) ~ Kg(n) for all integers n greater than some integer no

122 Algorithms

where K is a positive real number. It follows that for all integers n
greater than no we haveg(n)/ fen) ~ 1/ Kj so we cannot haveg(n)/ fen)
eventually closer to 0 than 1/ K and so we cannot have limg(n)/ fen) =
0.)

Readers who have been introduced to elementary mathematical
analysis may remember meeting the following results:

lim(log2 n/n) = 0, lim(n/nlog2n) = 0,

lim(nP /nq) = 0 if p < q, lim(nP /2n) = 0 for all positive indices p.

It is not important for non-mathematical readers to look at the
details of the proofs of these resultsj but even for them it is important in
studying the relative efficiency of algorithms to remember the following
consequences:

1. O(log2 n) is better than O(n)j

2. O(n) is better than O(nlog2n)j

3. O(n log2 n) is better than O(n2)j

4. O(nP) is better than O(nq) if p < qj

5. O(nP) is better than O(2n) for all positive indices p.

Suppose we have an algorithm with worst case complexity ·W(n);
suppose that the time taken for a given machine to carry out one of
the basic operations of the algorithm is T. Then for a given time T the
maximum size of input which we can be sure of being able to handle in
time T is obtained by solving the equation W(n)T = T.

For example, if T = 1 ms, Wen) = n2 and T = 1 hour we solve

n 2 x 10-3 = 60 x 60 (number of seconds in one hour)

whence n2 = 6 x 105 , so that n = 600.JfO ~ 1897.
Suppose we run the same algorithm on a machine which works at k

times the speed of the first, so that the time taken to carry out a basic
operation is T / k. If the maximum sizes of input which we can be sure
of handling in time T on the two machines are nl and n2 then we have

Exercises 6 123

so that nl and n2 are related according to the equation

For example, if W(n) = 2n we have 2n2 = k2n1 , from which we
deduce that n2 = nl + log2 k.

When we develop an algorithm for the solution of a problem or
class of problems it is interesting and important to analyse its com­
plexity, worst case or average or both; we are particularly concerned to
produce efficient algorithms, in the technical sense that their worst case
complexity is O(nk) for some positive integer k, preferably quite small­
only for such algorithms is the execution practically feasible when the
problem size n is large.

But complexity is not the only factor to be considered. As we
mentioned earlier, if a problem is to be solved only once, or a very
small number of times, the cost of programming an algorithm is a
significant part of the total cost; so it may be more economical to
choose the algorithm which is easiest to implement rather than the
one with slowest growth rate. Again, as we saw earlier in the chapter,
if a problem is to be solved only for small input sizes, the algorithm
which eventually (i.e. for sufficiently large input sizes) runs fastest
may not necessarily be the best to choose. We have to recall also that
algorithms whose complexity functions are of the same order do not
all run at the same speed. There is also the sad and often-forgotten
fact that complicated programs, however efficient, may not be easy to
maintain, especially if the programmer is not the original author.

6.3 Exercises 6

1. Let p and q be real numbers such that 0 < p < q. Prove that nP is
O(nq) but that nq is not O(nP).

2. Consider the function f given by

f(n) = 4n3 - 3n2 + 2n - 1 for all positive integers n.

124 Algorithms

For what positive integers k can we say that (1) f is O(nk); (2) f is
f!(nk); (3) f is 0(nk)?

3. Let f and 9 be positive real-valued functions defined for all positive
integers n. Prove that (1) if f is O(g) then 9 is f!(I); (2) if f is 0(g)
then 9 is 0(1).

4. Find the worst case complexity of the following program designed to
multiply two n X n matrices A and B:

for i := 1 to n do
for j := 1 to n do

begin
C[i,j]:= 0;
for k := 1 to n do

C[i,j] := C[i,j] + A[i, k] * B[k,j]
end;

5. Find the worst case complexity of the following recursive algorithm
for computing the value of a certain function F:

Function F (n : integer) : integer;
Begin

If n = 1 then F := 1
else F := F(n - 1) + F(n - 1)

End;

How would your result be altered if we were to replace the else clause
by

else F := 2 * F(n - 1) ?

6. Suppose we have a programming language in which go to commands
are allowed. Consider a program which has a loop containing such a
command (subject to some boolean condition C) to a point after the
loop, as follows:

Exercises 6

for i := 1 to n do begin

IfC then go to L

end;
L : instruction;

125

How would you suggest estimating the complexity of this program?

7. Consider the program fragment

if C then 81 else 82

where C is a boolean condition and 81 and 82 are sequences of in­
structions. How would you estimate the complexity of this fragment?

Chapter 7

SORTING ALGORITHMS

Suppose we have a collection E of data items each of which consists of
a number of pieces of information; suppose too that each of these items
has a key belonging to an ordered set J(. (We recall that an ordered set
J(is equipped with a relation which we denote by < and call "is less
than" or "precedes"; furthermore, if kl and k2 are distinct members of
J(then we have either kl < k2 or k2 < k1 .) The key of a data item­
think of a student's ID number-is not usually very interesting; its main
use is to provide a means of access to the information components of
the item.

It is the common experience of everyone that it is much easier to
search for a number in a list arranged in increasing order or a word in a
list arranged in dictionary order than to search in completely random
lists. (We shall prove in Chapter 10 that if we have an ordered collection
of N objects of an ordered set we can locate one of these objects in
O(log N) time, while for an unordered collection we may require O(N)
time.) This familiar observation suggests that if we are to be searching
for data items in our collection E by means of their keys it would be well
worth while arranging the items in non-decreasing order of key-this is
what we mean by sorting E according to key.

127

128 Algorithms

To fix our ideas let us suppose we have made the Pascal declarations

Type K = (* some ordered type *);
T = Record

Key: K;
. . . (* other fields holding information *)

end;

and let E be a collection of items of type T.

The collection E may be small enough to fit into the internal
memory of the computer we are using. In this case we would think of
storing the elements of E in an array. If E is too large to be held
all at once in the internal memory we would store E in a file held on
an external storage device, probably on disk though possibly on mag­
netic tape. Algorithms for sorting collections stored in arrays are called
internal sorting algorithms; those for sorting collections stored in files
are called external sorting algorithms.

When we come to analyse the complexity of sorting algorithms it is
clear that we should take as measure of the size of a problem instance
simply the number of elements in the collection E. For the 'basic
operations' which we are to count up to measure the complexity we
have two choices: we may count either the number of comparisons of
keys required by our algorithm or else the number of times we exchange
two records in our collection.

We look for a moment at sorting methods which use only key
comparisons. Such an algorithm can be represented by a binary tree,
which we call a decision tree, in the following way: each non-leaf node
of the tree corresponds to a comparison of two keys kl and k2 ; we make
the convention that if kl ::; k2 we pass to the left child of the node
while if kl > k2 we pass to the right child. For example one method of
sorting three keys a, b, c is represented by the tree

Sorting algorithms 129

The worst case complexity of a sorting algorithm involving
comparisons only which can be represented by a decision tree in this way
is the maximum number of comparisons required to reach the sorted
arrangement: this is clearly the height of the decision tree. If the
collection E which is being sorted consists of N elements there are N!
possible outcomes, which will appear as leaves of the tree. We recall
from Section 3.1 that a binary tree of height h has at most 2h leaves.
Hence, if h is the height of the decision tree, we have 2h ~ N! and so
the worst case complexity W(N) = h ~ log2(N I).

Let n be any positive integer. If n is even, say n = 2k where k is
an integer, we have

n! ~ (2k)(2k - 1) ... (k + l)k > kk+1 ~ kk = (~n)~n

while if n is odd, say n = 2k + 1, we have

So for every positive integer n we have n! > (~n)~n and consequently
log2(n!) > ~nlog2(~n). If n ~ 4 we have ~log2n ~ 1, and so

130 Algorithms

log2(~n) = log2n - 1 ~ ~log2n.

It follows that for N ~ 4 we have

So the worst case complexity is o'(N log2 N).

7.1 Internal sorting by comparisons

Throughout this section suppose we have declared

Const N = ... (* the size of the array to be sorted *);
Type /(= ... (* the ordered key type *);

Index = 1 .. N;
T = Record

Key: /(;
. . . (* other information fields *)

end;
Var A : array [Index] of T;
Procedure swap (Var x, y : T);

Var temp: T;
Begin temp:= X; X := y; y := temp End;

We begin by describing three elementary methods of sorting the en­
tries in an array. These methods are easy to understand and easy to
program, but they are not very efficient, having worst case complexity
O(N2).

(1) Bubblesort. Bubblesort of an array with N elements proceeds
in N - 1 stages, which we call 'passes' through the array.

After the first pass the entry with the smallest key lands in the first
place in the array; after the second pass the entries with the smallest
and second smallest key fields are in the first and second places respec­
tively; in general, after the k-th pass (for k = 1,2, ... , N -1) the entries
with the smallest, second smallest, ... , k-th smallest key fields are in

Internal sorting by comparisons 131

the first, second, ... , k-th places respectively. Thus finally, after the
(N - I)-th pass, the array is sorted.

To see how this works it is convenient to number the passes from
2 to N. Then, on the i-th pass, we start with A[N] and compare
it with A[N - 1]; if they are in the wrong order, that is if we have
A[N].Key < A[N - I].Key, we exchange them; we then compare the
(possibly altered) A[N - 1] with A[N - 2], exchanging them if they
are in the wrong order of key; and proceed in this way as far as the
comparison of A[i] and A[i - 1].

The whole process can be summed up in the program fragment

for i := 2 to N do
begin

for j := N downto i do
if A[j].Key < A[j - I].Key then swap(A[j - 1], A[j])

end;

We illustrate the operation of Bubblesort by applying it to the array
A of integers

141 1 131 2 I

Here N = 4. So the outer for loop runs from i = 2 to i = N = 4.
When i = 2 the inner for loop runs from j = 4 down to j = 2 as
follows.

j = 4: Consider

Compare A[4] = 2 and A[3] = 3; since 3 > 2 we swap A[3] and A[4],
obtaining

132 Algorithms

j = 3: Consider

Compare the new A[3] = 2 and A[2] = 1; since 1 < 2 we do nothing.

j = 2: Consider

Compare A[2] = 1 and A[l] = 4; since 4> 1 we swap A[l] and A[2].

Thus at the end of the i = 2 stage A is

I 1 141 2 I 3 I
Now when i = 3 the inner for loop runs from j = 4 down to j = 3 as
follows.

j = 4: Consider

Compare A[4] = 3 and A[3] = 2; since 2 < 3 we do nothing.

j = 3: Consider

Compare A[3] = 2 and A[2] = 4; since 4> 2 we swap A[2] and A[3].

So at the end of the i = 3 stage A is

Internal sorting by comparisons 133

I 1 I 2 I 4 I 3 I
When i = 4 the inner for loop is executed only for j = 4, where we
consider

I 1 I 2 141 3 I

We compare A[4] = 3 and A[3] = 4; since 4> 3 we swap A[3] and A[4].

The final version of A is then

I 1 121 3 141

On the i-th pass of Bubblesort we make N - i + 1 comparisons. So
the total number of comparisons is

(N -1) + (N - 2) + ... + 3 + 2 + 1 = ~ N (N -1).

Hence, counting comparisons, the worst case complexity of Bubblesort
is O(N2).

(2) Insertion Sort. Insertion Sort proceeds by looking at the sec­
ond, third, ... , N-th entries of the array A in turn and inserting each of
them in its proper place among the (already sorted) preceding entries.
To find the proper place for the entry in the i-th position we compare
it with the (i -1)-th, (i - 2)-th, ... entries in turn until either we reach
an entry with smaller key or else reach the left hand end of the array.

There is a temptation to describe Insertion Sort by means of the
Pascal program fragment

for i := 2 to N do begin
x := A[i]; j := i-I;
while (j > 0) and (A[jl.Key > x.Key)

do begin
swap(x, A[j]); j := j - 1 end end;

134 Algorithms

Unfortunately this will not work satisfactorily: before entering the
while loop Pascal will check both conditions (j > 0 and A[j].Key >
x.Key); if the previous execution of the loop has set j = 0, in which
case the loop should not be re-entered, Pascal tests whether j > 0 (and
finds this condition false) but then goes on to test if A[O].Key < x.Key
and this produces an error message since 0 does not belong to the index
set Index of the array A. To get round this difficulty we redeclare

Var A : array [0 .. N] of T;

and store the elements to be sorted in the entries A[l], ... , A[N]. Then
we proceed according to the program fragment

for i := 2 to N do begin
x := A[i]; A[O] := x;j := i-I;
while (A[j].Key > x.Key)

do begin
A[j + 1] := A[j];
A[j] := x;
j := j - 1 end end;

To illustrate the operation of Insertion Sort we consider again the
array A onntegers

141 1 131 2 I

and extend it by introducing a O-th entry.
Again N = 4 and Insertion Sort consists of a for loop running from

i = 2 to i = N = 4

When i = 2 we begin by setting A[O] = x = A[2] = 1 and j = l.We
compare A[j] = A[l] = 4 with x = 1:

Internal sorting by comparisons 135

Since 4 > 1 we have satisfied the condition for entry to the body of the
while loop, so we set A[2] = 4, A[I] = x = 1 (interchanging A[I] and
A[2]), obtaining

[~(]1 I 4 I 3 I 2 I
Now j becomes 0 and we compare A[j] = A[O] = 1 with x = 1:

The loop condition A[j] > x, i.e. 1 > 1 is false; so we exit from the
while loop. Thus at the end of the i = 2 stage the original array is
transformed to

I 1 141 3 I 2 I
(with the first 2 entries in order).

When i = 3 we set A[O] = x = A[3] = 3 and j = 2. We compare
A[j] = A[2] = 4 with x = 3:

Since 4 > 3 we enter the body of the while loop; so we interchange
A[2] and A[3], obtaining

We set j = 1 and compare A[j] = A[I] = 1 with x = 3:

[~{! .. ~ I 3 I 4 I 2 I
The loop condition A[j] > x, i.e. 1 > 3 is false, so we exit from the

136 Algorithms

while loop and see that at the end of the i = 3 stage the original array
IS

(with the first 3 entries in order).

When i = 4 we set A[O] = x = A[4] = 2 and j = 3; we compare
A[j] = A[3] = 4 with x = 2:

Since 4 > 2 we enter the body of the while loop; so we interchange
A[3] = 4 and A[4J, obtaining

and set j = 2. Next we compare AU] = A[2] = 3 with x = 2:

Since 3 > 2 we re-enter the body of the while loop; thus we interchange
A[2] and A[3], obtaining

and set j = 1. Then we compare A[j] = A[1] = 1 with x = 2:

This time AU] > x, i.e. 1 > 2, is false, so we exit from the while loop.
So at the end of the i = 4 stage the original array is

Internal sorting by comparisons 137

I 1 121 3 I 4 I
We remark now that the program fragment we wrote to implement

Insertion Sort and worked through in the example reflects faithfully
our naive idea of the working of the algorithm. But it is in fact rather
inefficient: each execution of the body of the while loop involves three
assignments (A[j + IJ := A[jJ; A[jJ := x; j := j - 1); but we do not
really need to overwrite successive array entries with x until we exit
from the while loop, and the following fragment, with only two assign­
ments in the body of the while loop and one on exit, will implement
Insertion Sort more efficiently:

for i := 2 to N do begin
x := A[iJ; A[O] := x;j := i-I;
while (AUJ.Key > x.Key)

do begin
AU + IJ := A[jJ;j := j -1 end;

A[j + IJ := x end;

On the i-th execution of the for loop of Insertion Sort the maximum
number of comparisons we have to make in order to find the proper
place for the i- th entry is i-I (this occurs in the case where the i- th
entry is less than all the preceding i-I entries). So we see that in the
worst possible case the total number of comparisons is

(N - 1) + (N - 2) + ... + 3 + 2 + 1 = ! N(N - 1)

So, counting by comparisons, the worst case complexity of Insertion
Sort is O(N2).

(3) Selection Sort. Selection Sort proceeds in N - 1 stages. At
the i-th stage (i = 1, ... , N -1) we find the entry with least key among
the i-th, (i + 1)-th, ... ,N-th entries of the array and put it in the i-th
place.

The trick to find the entry with minimum key among A[i], ... , A[NJ
is to introduce auxiliary variables k of type Index and x of type T,

138 Algorithms

initialising k to i and x to A[i]. Then we execute the loop

for j := i + 1 to N do
if A[j].I<ey < x.I<ey then begin k := j; x := A[j] end;

The entry with minimum key is the final value of x; its position in the
array is given by the final value of k. We then exchange A[i] and A[k].

We illustrate the operation of Selection Sort on the integer array A

141 1 131 2 I

At the i = 1 stage the minimum entry among A[i](= A[1]), ... ,A[4] is
1, in position 2; so we exchange A[2] and A[l], changing A to

When i = 2 the minimum entry among A[i](= A[2]), . .. , A[4] is 2, in
position 4; so we exchange A[4] and A[2], changing A to

Finally, when i = 3 the minimum entry among A[i](= A[3]) , A[4]
is 3, in position 3; no exchange is necessary and A is now

I 1 121 3 I 4 I
It is clear that there are N - i comparisons involved in finding the

entry with least key among A[i], ... , A[N]. So once again the total
number of comparisons is

(N -1) + (N - 2) + ... + 3 + 2 + 1 = ~ N (N - 1)

and the worst case complexity is O(N2).

Many experiments have been carried out to compare the efficiency
of sorting methods. Table 1 shows the results of applying the three

Internal sorting by comparisons 139

methods we have described to arrays of integers of length 128, 256,
512, 1024 and 2048 with "random" entries and also to two arrays of
length 1024 whose entries are in sorted order and the reverse of sorted
order, denoted in the table by 01024 and R1024 respectively.

11128 1 256 1 512 11024 1 01024 1 R1024 1 2048 1
Bubblesort 54 221 881 3621 1285 5627 14497
Insertion Sort 15 69 276 1137 6 2200 4536
Selection Sort 12 45 164 634 643 833 2497

Table 1

It is not hard to explain why Selection Sort tends to run faster than
Bubblesort and Insertion Sort-we remark that, although it always
carries out !N(N - 1) comparisons whatever array it is applied to,
Selection Sort involves at most N -1 exchanges of array elements, and
exchanges (which are carried out by means of three assignments) take
more time than comparisons. We also see easily why Insertion Sort
does so well on an array which is already sorted-for such an array it
makes only N - 1 comparisons and no exchanges are required.

The moral to be drawn from all the experimf'..Dt.al ev:idf'..D.ce iq t.ha.t.
although Bubblesort, Insertion Sort and Selection Sort all have worst
case complexity O(N2) we should use Selection Sort in preference to
Insertion Sort unless the data is very nearly sorted, and that Bubblesort
should never be used.

We turn now to three internal sorting methods which, at least on
average, perform better than the O(N2) methods we have just
described.

(4) Quicksort is an example of what is known as a divide-and­
conquer algorithm. The underlying philosophy of such an algorithm
is easy to describe: to solve a large problem we split it into smaller
subproblems, solve these (perhaps by means of further subdivisions,
perhaps by some other method) and then obtain the solution to the
original large problem by an appropriate combination of the solutions
to the subproblems. It will not have escaped the eagle-eyed reader that

140 Algorithms

if we solve the subproblems by a further subdivision we are in effect
using a technique which is very familiar, namely recursion.

Quicksort is indeed a recursive algorithm. Like every recursive
algorithm it requires a basis, and this is provided by the observation
that an array with just one component is certainly sorted. An applica­
tion of Quicksort to an array with more than a single element consists
of two stages. First we choose an object of the key type K, usually but
not necessarily the key of one of the records stored in the array: we call
this object the pivot. Once the pivot is chosen the array is partitioned
into two subarrays in such a way that all the entries with key less than
the pivot appear in the left hand subarray while those with key greater
than or equal to the pivot appear in the right hand subarray.

Let us suppose, without giving details for the moment, that we have
defined (1) a function

Function find_pivot (i,j : Index) : K;

such that find_pivot(i,j) is the object of key type to be used in parti­
tioning the subarray indexed by i .. j and (2) a procedure

Procedure partition (i,j : Index; p : K; Var k : Index);

such that the execution of partition(i, j, p, k) uses the pivot p to effect
the required partition of the subarray indexed by i .. j and returns in the
parameter k the left hand index of the right subarray of the partition.
Then we define the recursive procedure quick as follows:

Procedure quick (i,j : Index);
Var p : K; k : Index;
Begin

if i < j then begin
p := find_pivot(i,j);
partition(i,j,p, k);
quick(i, k - 1);
quick(k,j) end End;

We begin with the conditional clause "if i < j" because we ought never

Internal sorting by comparisons 141

to have j < i (perhaps we should output an appropriate error message
if we do) and chiefly because if j = i the subarray indexed by i .. j has
only one entry and so is sorted-thus no further action is required.

To sort the complete array A indexed by 1 .. N we make the pro­
cedure call quick(l, N).

We turn now to the details of the function find_pivot and the pro­
cedure partition. Various suggestions have been made about how to
choose a pivot to use for the partition of the su barray indexed by i .. j:

(1) Use a random number generator to produce an index k in the
range i .. j and then define find_pivot(i,j) to be the key of A[k];

(2) Define find_pivot(i,j) to be the key of the "middle" element
of the subarray, i.e. of A[(i + j) div 2];

(3) Take a small sample of entries from the subarray and then
define find_pivot (i, j) to be the median of the keys of the sample.

It is strongly advised on the basis of experience that we should not use
the key of the first entry in the subarray, A[i], as pivot.

Notice that if we follow any of the suggestions described above it
may turn out that the pivot is the least key of all the entries in the
array: this is disastrous, for with this choice of pivot the recursive pro­
cedure quick will never terminate-the left hand subarray produced by
the partition procedure (which consists of entries with key less than
the pivot) will be empty, while the right hand subarray will just be the
original array. To ensure that we do not fall into this situation it is
recommended that we examine the keys of A[i], A[i + 1], ... , A(j] until
we find two which are different and then choose the larger of these keys
as our pivot; if all the entries in the subarray have the same key then we
won't find a pivot by this method, but we don't need one, since in this
case the entries are already ordered. To take account of this possibility
it is convenient to introduce a new type

Type ExLindex = 0 .. N;

and to define a function

142 Algorithms

Function pivotjndex (i., j : In.dex) : .ExLindex;

which will return the index of the element whose key is to be used as
pivot for partitioning the sub array indexed by i .. j unless all the entries
have the same key, in which case it returns o. This is done as follows:

Function pivoUndex (i, j : Index) : ExLindex;
Var p, q : Integer;

found: boolean;
Begin found := false;

p := i-I; q := i;
Repeat

p:= p + 1; q:= q + 1;
if A[p].Key <> A[q].Key then found :=true;
if A[p].Key < A[q].Key then pivoUndex := q

else pivoUndex := p

until (p = j - 1) or found;
if not found then pivotjndex := 0

End;

We then replace the procedure quick described above by

Procedure quickl (i, j : Index);
Var p: K;

k : Index;
n : ExLindex;

Begin n := pivoUndex(i, j);
if (n <> 0) and (j > i) then begin

p := A[n].Key;
partition(i, j, p, k);
quickl(i, k - 1);
quickl(k, j) end End;

We describe next how to carry out the partitioning phase of Quick­
sort. We think of working with two pointers, left and right (not Pascal
pointers, but our left and right forefingers); initially left points to A[i]

Internal sorting by comparisons 143

and right to A(j]. The pointer left moves gradually right, stopping
when it reaches an array entry with key greater than or equal to the
pivot; the pointer right moves gradually left, stopping when it reaches
an entry with key less than the pivot; if both pointers come to a stop
before crossing then the corresponding array entries are interchanged.
We now repeat the performance until left and right do cross over. The
final position of left is the left hand index of the right hand subarray of
the partition. The Pascal version is as follows:

Procedure partition (i, j : Index; p : K; Var k : Index);
Var left, right: Index;
Begin left := i; right := j;

End;

Repeat
while A[left].J(ey < p do left := left + 1;
while A[right].J(ey 2: p do right := right - 1;
if left < right then swap{A[left], A[right])

until left > right;
k := left

We illustrate the operation of Quicksort by looking at the problem
of sorting into dictionary order the array of three-letter words

beg car sup and the bee sum pie

(where the words themselves are the keys).
Let us decide that for each sub array we shall choose as pivot the

larger of the first two distinct keys. So we begin by choosing car as pivot
and proceed to partition as follows, using < to mean "comes earlier in
the dictionary than" with an obvious similar interpretation for 2:.

We have beg < car, so we move the left pointer to the right; then
car 2: car, so we stop. Starting at the right hand end we have pie 2:
car, so we move the right pointer to the left; next sum 2: car, so we
move right left again; then bee < car, so we stop in the situation

beg car sup and the bee sum pie

and interchange car and bee, obtaining

144 Algorithms

beg bee sup and the car sum pie

with the left and right pointers pointing to bee and car respectively.
Since bee < car we move the left pointer to the right; then since sup

~ car we stop. Since car ~ car we move the right pointer to the left;
the > car, so we move right left again; and < car, so we stop in the
situation

beg bee sup and the car sum pie

Interchanging sup with and we obtain

beg bee and sup the car sum pie

with the left and right pointers pointing to and and sup respectively.
Since and < car we move the left pointer to the right; since sup>

car we stop. Since sup ~ car we move the right pointer to the left; since
and < car we stop; we have reached the partition

beg bee and I sup the car sum pie

in which all the words to the left of the vertical bar come before car in
the dictionary and all those to the right of the bar other thaIl cur itself
come after it.

We now repeat the performance recursively on each of the sub arrays
so formed.

Next we examine the complexity of Quicksort. Notice first that in
order to partition a sub array using a given pivot the keys of all the
entries of the subarray must be compared with the pivot so that we
know whether they should be assigned to the left or right subarray of
the partition. Of course if the chosen pivot is the key of one of the
array entries we need not carry out any comparison for that entry-we
know it must be assigned to the right hand subarray. Thus the number
of comparisons needed to partition an array of length I is either I or (if
the pivot is the key of one of the entries) I - l.

Suppose first that we apply Quicksort to an array indexed by 1 .. N
in which the keys of the array entries are all distinct and which is
already sorted; for each subarray let us use as pivot the larger of the

Internal sorting by comparisons 145

keys of the first two entries with different keys-since the whole array
is already sorted this will in each case be the key of the second entry of
the subarray. The first application of the procedure partition will yield
a I-element left sub array and an (N - I)-element right sub array. The
I-element left subarray needs no further manipulation, but we must
apply the procedure partition to the right subarray. This produces a
I-element left subarray and an (N - 2)-element right sub array. Pro­
ceeding in this way we see that the number of comparisons required in
an application of Quicksort to an array of length N which is already
sorted is

(N - 1) + (N - 2) + ... + 3 + 2 + 1 = ~ N (N - 1);

The same number of comparisons would be required if the array were
originally in the reverse of sorted order.

This discussion seems to suggest that Quicksort is no better than
the O(N2) sorting algorithms described earlier in the chapter. But
the situation we found ourselves in in the last paragraph is certainly
not what we are hoping for when we apply Quicksort-what we would
really like would be to have the procedure partition divide each subarray
into roughly equal parts. Suppose we have N = 2m and suppose we
are in the very best possible situation where each time we partition a
subarray it is divided into exactly equal parts. Then, while the first
partition of the original array of length 2m will require 2m comparisons,
the partition of the two half-arrays of length 2m - 1 will each require
2m - 1 comparisons and so on. Thus the total number of comparisons is

This is of course very much better than O(N 2) and indeed, as we
saw at the beginning of the Chapter, it is the best we can hope for
from a sorting method based on comparisons. We would, however, be
very lucky indeed to find ourselves in the "exact halving" situation.
So we are led to ask not about the best nor the worst behaviour of
Quicksort but about its average behaviour. We shall investigate this
in the case where all the items to be sorted have different keys and
where the pivot used to partition an array is always the key of one of
its entries but never the least of these keys. If we have N items to be

146 Algorithms

sorted, all with different keys, they may be stored in an array indexed
by 1 .. N in N! different ways; we make the further assumption that
each of these N! array representations is equally likely. It follows that
it is equally likely that the left subarray of the partition of the array
consists of 1,2, ... ,N - 1 items.

Let A(l) be the average number of comparisons involved in the
application of Quicksort to an array of length 1. Then A(1) = 0 and if
N> 1 we have

A(N) = (N - 1) (comparisons of "non-pivot" entries with the pivot)
+ (probability that left sub array has 1 entry) (A(1) + A(N - 1))
+ (probability that left subarray has 2 entries) (A(2) + A(N - 2))

+ (probability that left subarray has (N - 1) entries) *
* (A(N -1) + A(1))

(The expressions A(i) + A(N - i) represent the average number of
comparisons involved in the application of Quicksort to the left and
right subarrays.) Clearly the probabilities involved are all 1/(N - 1).
Thus

A(N) = (N _ 1) + 2(A(1) + ... + A(N - 1))
N-1

Replacing N in (1) by N - 1 we obtain

A(N _ 1) = (N _ 2) + 2(A(1) + ... + A(N - 2))
N-2

Multiply (1) by (N - 1), (2) by (N - 2) and subtract: we obtain

(1)

(2)

(N -1)A(N) - (N - 2)A(N - 1) = (N - 1)2 - (N - 2)2 + 2A(N - 1)

Rearranging and simplifying we have

(N -l)A(N) - NA(N -1) = 2N - 3 (3)

Now divide (3) by N(N - 1); this gives

A(N) A(N - 1) 2N - 3 3 1
--- = ----

N N -1 N(N -1) N N-1

Internal sorting by comparisons 147

(the last equality being obtained by the technique of partial fractions).
It is convenient to write B(k) for A(k) / k (k = 1, ... , N). Then (3)
becomes

B(N) - B(N _ 1) = ~ __ I_
N N-l

Replace N in this equation by N - 1, N - 2, ... , 2 and add UPi since
B(I) = 0 we get

Now it was discovered a long time ago by Euler (1707-1783) that when
N is large the sum

1 1 1
1+ 2+"3+ ... + N

is approximately equal to In N, the natural logarithm of N, which is
approximately 0.693log2N. We deduce finally that when N is large
A(N), the average complexity of Quicksort, is approximately 1.4Nlog2N,
which is certainly O(Nlog2N).

Table 2 allows us to compare the behaviour of Quicksort with the
various O(N2) sorting algorithms we described earlier.

11128 \ 256 \ 512 \1024 \ 01024 I RI024 I 2048 I
Bubblesort 54 221 881 3621 1285 5627 14497
Insertion Sort 15 69 276 1137 6 2200 4536
Selection Sort 12 45 164 634 643 833 2497
Quicksort 12 27 55 112 1131 1200 230

Table 2

This shows clearly the unsatisfactory performance of Quicksort when
dealing with arrays which are already sorted or in the reverse of sorted
order. Table 2 also gives a very rough indication that the improvement
in performance of Quicksort as compared with the O(N2) algorithms
increases with the size of the input. Part of the reason for this is that

148 Algorithms

for smaller arrays the computer overheads involved in successive recur­
sive calls of the procedure quick (storing of return addresses, formal
parameters and local variables) tend to outweigh the decrease in the
number of comparisons. It seems sensible, therefore, to amend the pro­
cedure quick so that when j - i is small (less than 16 is often suggested)
quick(i, j) applies Selection Sort to the subarray indexed by i .. j. The
results of this are shown in Table 3 in which we denote the modification
of Quicksort by Quicksort 1.

11128 1 256 1 512 11024 1 01024 1 R1024 1 2048 1
Bubblesort 54 221 881 3621 1285 5627 14497
Insertion Sort 15 69 276 1137 6 2200 4536
Selection Sort 12 45 164 634 643 833 2497
Quicksort 12 27 55 112 1131 1200 230
Quicksort! 6 12. 24. 57 1115 .119.1 J34

Table 3

(5) Heapsort. Although we often say informally that Quicksort
is an O(N log2N) algorithm we ought never to forget that this is its
average complexity and that its worst case behaviour is O(N2). We
turn now to a sorting method, Heapsort, whose worst case complexity
is O(N log2N).

We recall from Chapter 4 that an array A of records indexed by
1 .. N represents a heap or is a heap-array if for every index i such that
2i ::; N we have A[i].Key > A[2i].Key and for every index i such that
2i + 1 ::; N we have A[i].Key > A[2i + 1].Key. It follows that in a
heap-array the first entry has the largest key.

At the end of Chapter 4 we showed how to make a given array A into
a heap by successive applications of the procedure trickle-we execute

for i := N div 2 downto 1 do trickle(i, N, A).

The execution of trickle(i, N, A) consists of a succession of comparison­
and-interchange stages. Each of these requires at most two compar­
isons to discover which of the array entries AU] (the current position of
the element being trickled down) and its children A[2j] and A[2j + 1]
has the largest key; there would, of course, be only one comparison

Internal sorting by comparisons 149

if 2j = N. The total number of comparisons is thus at most twice
the number of comparison-and-interchange stages. After each stage in
which an interchange takes place the index j is replaced by 2j or 2j + 1.
Suppose there are k stages altogether involved in executing the instruc­
tion trickle(i, N, A); then the index of the entry containing the element
which is being trickled down, originally set at i, is finally at least 2ki.
But this index must of course be no greater than N, so we have 2ki :::; N
and hence k S log2(Nji). It follows that the total number of com­
parisons involved in carrying out trickle(i, ,N, A) is not more than
2log2(Nji). Hence, if we write m = N div 2, the total number of
comparisons involved in making A into a heap-array is not more than

which is easily transformed into

2mlog2 N - 2log2m!

In 1730 the Scottish mathematician James Stirling found an approx­
imation to the natural logarithm of N! when N is large; from this
we can deduce that when m is large then log2m! is approximately
mlog2m - 1.5m. Thus the total number of comparisons required to
form a heap-array from the array A is not greater than an upper bound
which is approximately

and since N jm is approximately 2 this upper bound is approximately
5m, which is approximately 2.5N.

We recall once more that when the entries of an array have been
rearranged to form a heap-array the entry with the largest key is in the
first position. Heapsort proceeds by interchanging this .entry with the
one in the last position, for that is where the entry with the largest key
ought to be. Once this is done we need never be concerned with this
entry again: all that remains is to sort the first N - 1 entries. To do
this we proceed by making the subarray indexed by 1 .. N - 1 into a
heap-array, whereupon the entry of the original array with the second
largest key will be in the first position. We then interchange this entry
with that in the (N - l)-st position, which is where it ought to be

150 Algorithms

when the array is sorted. Now only the first N - 2 entries have to be
sorted and it should be clear how we proceed-we repeatedly form a
heap-array from the remaining entries and then move the first entry to
its proper position. Notice that since we are starting with a heap-array
A all we have to do to transform a subarray A[1 .. j] indexed by 1 .. j
into a heap-array after the first entry is changed is to trickle down the
new first entry. Thus we carry out

for i := N downto 2 do begin
swap(A[IJ, A[i]);
trickle(l, i-I, A) end;

We illustrate the operation of Heapsort using the array

I 5 110 127160 1591621141731

which we looked at towards the end of Chapter 4 where we made it
into a heap-array

We interchange the first and the last entries, obtaining

Now 73 is in its correct position (we have indicated this by offsetting
it a little from the rest of the array) and we now proceed to make the
first 7 elements into a heap-array by trickling down 5, obtaining first

and then

1621601271101591 5 1141 @J
We interchange 62 and 14, producing

Internal sorting by comparisons 151

114160 127110 1591 5 11621731
and trickle down 14, getting first

and then

160 159127110 1141 5 11621731
Now interchange 60 and 5; this gives

I 5 159127110 1141160 1621731
Trickle down 5, producing in turn

and then

159114127110 1 5 1160 1621731
Interchange 59 and 5, getting

1 5 114127110 1159160 1621731
Trickle down 5, so that we have

Interchange 27 and 10; this gives

110 1141 5 1127159160 1621731
Trickle down 10, getting

152 Algorithms

Interchange 14 and 5; we obtain

Trickle down 5, producing

Finally interchange 10 and 5; we obtain the sorted version

I 5 110 114127159160 1621731

To analyse the worst case complexity of Heapsort we recall first from
our discussion earlier in this Section that the first phase of Heapsort,
which transforms a given array indexed by 1 .. N into a heap-array,
requires at most 2.5N comparisons. Next we extract from that earlier
discussion an upper bound for the number of comparisons involved in
carrying out trickle(l, j, A), namely 210g2j. So the total number of
comparisons required in the repeated interchange-and-trickle phase of
Heapsort is at most

which is approximately 2Nlog2N - 3N when N is large.
The total number of comparisons involved in Heapsort is thus

bounded above by 2Nlog2N; so the worst case complexity of Heap­
sort is O(Nlog2N).

(6) Mergesort. Let A and B be two sequences of records, both
arranged in increasing order of keys. To merge A and B means to
construct a new sequence C consisting of all the records in A and B
arranged in increasing order of keys according to the following
prescription-we keep looking at a record from A and a record from B,
comparing their keys and moving the one with smaller key to C, until

Internal sorting by comparisons 153

one of the sequences A and B is exhausted, whereupon we copy to C
the remaining records in the other sequence.

For example, if A is the sequence 1 3 4 and B is 2 5 6 we proceed
as follows:
1. Compare 1 from A and 2 from B. Since 1 < 2 we move 1 to C. So

A is 3 4, B is 2 5 6 and C is 1.

2. Compare 3 from A and 2 from B. Since 2 < 3 we move 2 to C. So

A is 3 4, B is 5 6 and C is 1 2.

3. Compare 3 from A and 5 from B. Since 3 < 5 we move 3 to C. So

A is 4, B is 5 6 and C is 1 2 3.

4. Compare 4 from A and 5 from B. Since 4 < 5 we move 4 to C. So

A is empty, B is 5 6 and C is 1 2 3 4.

5. Since A is empty we copy the remainder of B to C so that

A is empty, B is empty and C is 1 2 3 4 5 6.

In a computer situation the sequences A, Band C may be stored
in arrays or in sequential files. If arrays are used then merging would
be carried out by declaring

Type Arrayl = array[1 .. M] of T;
Array2 = array[1 .. N] of T;
Array3 = array[1 .. M + N] of T;

(where M and N are the array sizes) and then using

Procedure merge (A : Arrayl; B : Array2; Var C : Array3);
Var i : 1 .. M; j : 1 .. N; k : 1 .. M + N; I : Integer;
Begin i := 1; j := 1; k := 1;

while (i :s; M) and (j :s; N) do begin
if A[i].Key :s; B[j].Key then begin

C[k] := A[i]; i := i + 1 end

154 Algorithms

else begin elk] := B[j]; j := j + 1 end;
k:= k + 1 end;

if i > M then for I := j to N do begin
elk] := B[/]; k := k + 1 end;

if j > N then for I := i to M do begin
elk] := A[l]; k := k + 1 end End;

The reader is invited to think about the appropriate analogue of this
procedure for the case where the sequences are stored in files rather
than arrays.

Mergesort is a divide-and-conquer internal sorting algorithm which
proceeds by splitting the array to be sorted into two roughly equal
subarrays, sorting the subarrays by recursive applications of Mergesort
and then merging the sorted subarrays. The idea is expressed in the
following quasi-Pascal procedure:

Procedure sort_byJIlerge (low, high: Index);
Var mid: low .. high;

B : array [low .. high] of T;
Begin if low < high then begin

mid := (low + high) div 2;
sorLby JIlerge(low, mid);
sorLbyJIlerge(mid + 1, high);
merge(A[low .. mid], A[mid + 1 .. high], B);
Copy B to A[low .. high] end End;

In analysing the complexity of Mergesort we shall make the assump­
tion that the time taken to merge two sorted sequences of lengths It
and 12 is proportional to 11 + 12 • Let W be the worst case complex­
ity function for Mergesort. Then W(l) is some constant, a say. Now
suppose first that N is a power of 2, say N = 2k. Then we have

W(N) = 2W(!N) + eN where c is a constant

(the right hand side of this equation is the maximum time to apply
Mergesort to the two half-arrays + the time to merge the two sorted

Internal sorting by comparisons

half-arrays). So we have

W(N) = 2W(!N) + cN

= 4W(~N) + 2eN

= 2kW(1) + keN = aN + eNlog2N.

If 2k- 1 < N :5 2k then we have

155

W(N) :5 W(2k) = a.2k + ek.2k :5 a.2N + e(log2N + 1)(2N)
= 2eNlog2N + 2(a + e)N

which is O(Nlog2N).
As in the case of Quicksort we can speed up Mergesort by refusing to

carry out the subdivision of the array to be sorted (with the associated
overheads of repeated recursive calls) right to the bitter end of one­
element subarrays. Once high - low is small, say less than 16, we
make sort_by.merge(low, high) apply Selection Sort to the subarray
A[low .. high].

Table 4 displays the times achieved by all our sorting methods.
(Mergesortl is the modification of Mergesort which we have just de­
scribed.)

11128 1 256 1 512 11024 1 01024 1 R1024 1 2048 1
Bubblesort 54 221 881 3621 1285 5627 14497
Insertion Sort 15 69 276 1137 6 2200 4536
Selection Sort 12 45 164 634 643 833 2497
Quicksort 12 27 55 112 1131 1200 230
Quicksort 1 6 12 24 57 1115 1191 134
Heapsort 21 45 103 236 215 249 527
Mergesort 18 36 88 188 166 170 409
Mergesort1 6 22 48 112 94 93 254

Table 4

156 Algorithms

7.2 Other internal sorting algorithms

The sorting methods we described in Section 1 can be applied to sort
records whose keys are of any ordered type whatever since the only
operation we carry out on the keys is comparison. But if we know
more about the key type than just the simple fact that it is ordered we
may perhaps be able to use the special properties of the key type to
speed up the sorting process.

(1) To take a simple example, suppose first of all that we have an
array A indexed by 1 .. N of records whose keys are known to be the
integers from 1 to N in some order.

In this situation it is easy to obtain a sorted version of the entries
of A by declaring a second array B, also indexed by 1 .. N, and giving
the instruction

for i := 1 to N do B[A[i].Key] := A[i];

Here we examine the records in the array A in increasing order of array
index and put each entry of A in the position of B which in indexed by
its key. So the record with key k lands in position B[k] for k = 1, ... ,N
and so the entries of B are those of A arranged in increasing order of
key. Choosing the "basic operation" of this algorithm to be assignment
we see that its complexity is O(N). Notice, though, that this method
needs extra space to accommodate the second array B.

It is possible, however, to apply the same basic idea without intro­
ducing a new array. It is clear that if the key of A[i] is j =f:. i then, if we
interchange A[i] and AU] the new j-th entry (which has key j) is now
correct. So we can sort A "in place" by means of the instruction

for i := 1 to N do while A[i].Key <> i do swap(A[iJ, A[A[i].Key]);

Choose the "basic operation" to be an interchange of array entries
(a swap); then, since after each interchange at least one record is in
its correct position, the maximum number of interchanges required is
N -1 (once (N -1) entries are in their correct positions the N-th must
also be in its correct position) and hence the algorithm has worst case

Other internal sorting algorithms 157

complexity O(N).

(2) Suppose now that we have a collection of records whose keys are
integers in the range 0 .. 99. We shall show how to sort this array by
setting up an array of 10 queues. We make the declarations

Type Queue_pointer = i Node;
Node = Reco.rd

Info: T;
Next: Queue_pointer

end;
Queue = Reco.rd

Var Q : Queue

Front, Rear: Queue_pointer
end;

Qu : array[O .. 9] o.f Queue;

It is convenient to store the records to be sorted in the queue Q.
The first pass of two.-pass radix so.rting consists in taking .the r.ecor.ds
from Q in turn, examining their keys and enqueuing each record in the
queue in the array Qu indexed by the least significant digit of its key:

while no.t empty (Q) do. begin
serve (Q, x);
j := (x.Key) mo.d 10;
enqueue (x,Qu[j]) end;

We now concatenate the queues Qu[O], Qu[I], ... , Qu[9] into a
single input stream, which we may as well call Q again. The
second pass of radix sorting again takes the records from Q in turn
and examines their keys, but this time enqueues each record in the
queue in Qu which is indexed by the most significant digit of its key:

158

while not empty (Q) do begin
serve (Q, x);
j := (x.Key) div 10;
enqueue (x,Qu[j]) end;

Algorithms

Again we concatenate the queues Qu[O], Qu[l], ... , Qu[9] into a
single output stream, which we claim is now in order. To see that this is
indeed the case suppose that X and Yare the keys of two of the records
to be sorted; let X = lOa + b, Y = 10c + d, where 0 ~ a, b, c, d < 10.

If X < Y then we must have a ~ c.
Suppose first that a < c. Then on the second pass of radix sorting

the record with key X will be put in the queue Qu[a] and the record
with key Y in the queue Qu[c]. Since a < c the queue Qu[a] appears in
the concatenated output stream before the queue Qu[c]; so the record
with key X appears, as it should, before the record with key Y.

If a = c then we must have b < d. In this case during the first
pass of radix sorting the record with key X will be put in the queue
Qu[b] and the record with key Y in the queue Qu[d]. Since b < d the
queue Qu[b] appears in the concatenated input stream for the second
pass before Qu[d]. Thus, although on the second pass the records with
keys X and Yare both put in Qu[a] = Qu[c], the record with key X
is added before the record with key Y and hence again appears first in
the concatenated output stream.

We illustrate the two-pass radix sorting method using the input
stream

73 29 92 14 74 45 54 18 3 97 9 61 11 63 35 37

After the first pass of radix sorting the queues Qu[O], ... , Qu[9] are
as follows:

Qu[O].Front = nil = Qu[O].Rear

Qu[1].Front---1 61 1 +-1111/1- Qu[l].Rear

Qu [2]. Front ---1921/1- Qu [2]. Rear

Qu[3].Front---1 73 1 +-131 +-1631Zl-- Qu[3].Rear

Other internal sorting algorithms

Qu[4].Front----l141 +-1741 +-1541/1- Qu[4].Rear

Qu[5].Front----l451 +-1351/1- Qu[12].Rear

Qu[6].Front = nil = Qu[6].Rear

Qu[7]. Front ----l97\ +-137171- Qu[7].Rear

Qu[S].Front----llSI/1- Qu[S].Rear

Qu[9].Front----l291 +-191/1- Qu[9].Rear

159

When we concatenate these queues the input stream for the second
pass IS

61 11 92 73 3 63 14 74 54 45 35 97 37 IS 29 9

After the second pass the queues Qu[O], ... , Qu[9] are

Qu[O].Front----l 31 +-191/1- Qu[O].Rear

Qu[I].Front----ll1l +-1141 +-11SI/1- Qu[l].Rear

Qu[2].Front--j29171- Qu[2].Rear

Qu[3].Front----l351 +-1371/1- Qu[3].Rear

Qu[4].Front--j451/1- Qu[4].Rear

Qu[5].Front--j541/1- Qu[5].Rear

Qu[6].Front--j61 1 +-1631/1- Qu[6].Rear

Qu[7].Front--j731 +-1741/1- Qu[7].Rear

Qu[S].Front = nil = Qu[S].Rear

160 Algorithms

Qu[9].Front--j921 ---+-J97[2}- Qu[9].Rear

When these queues are concatenated we obtain the sorted output
stream

3 9 11 14 18 29 35 37 45 54 61 63 73 74 92 97

If we choose as fundamental operation for radix sorting the extrac­
tion of one of the digits of a key then it is clear that to apply two-pass
radix sorting to a collection of N records requires 2N fundamental
operations. There is, of course, more to be done in radix sorting than
just the extraction of digits-each record has to be enqueued in the
proper queue in each of the two passes, and the queues have to be con­
catenated after each pass. The effort required to enqueue the records
is clearly proportional to N; and the concatenation involves only the
adjustment of the Next fields of the Rear nodes of the queues Qu[i]. So
the complexity of two-pass radix sorting is O(N).

We have described two-pass radix sorting for the sake of simplicity,
but it is surely clear how we would carry out m-pass radix sorting of
a collection of records whose keys are m-digit numbers; the complexity
here will still be O(N).

7.3 External sorting algorithms

In this section we turn to the problem of sorting vast collections of
records, that is collections which are too large to fit into the internal
memory of the computer we are using. In such cases the records must
be stored in secondary memory, possibly on magnetic tape or (as we
shall assume in this section) in a file held on disk. We observe that
the maximum number of records which can be held in internal memory
depends on the size of the records-on the number and type of their
fields. It might be possible to increase the number if corresponding to
each of the records in the collection to be sorted we were to create a
new record with just two fields, the key of the original record and its
address (an indication of where it is stored on disk); but there might

External sorting algorithms 161

still be too many of these "key-address" pairs to fit at once into internal
memory, so we may still have to resort to external sorting methods.

To describe these methods it is convenient to introduce the term
run to mean a sequence of records, of arbitrary length, arranged in
non-decreasing order of the key field. The sorting methods we consider
proceed by identifying or constructing runs and then merging them
to form successively longer runs until all the records to be sorted are
included in a single run.

(1) Balanced Mergesort. We begin by declaring

Var F, F1, F2, F3, F4 : file of Tj

and suppose that a collection of N records to be sorted is held in the
file F. Let M be the largest number of records which can be held in
the internal memory of our computers (along with the program of an
internal sorting method).

Balanced Mergesort now proceeds in two stages:

(a) The Distribution Stage. In this stage we construct runs of
records, all (with possibly one exception) of length M, and distribute
them between the files F1 and F2. We begin by opening F for reading
and F1 and F2 for writing by giving the commands

Reset(F)j Rewrite(F1)j Rewrite(F2)j

Then, so long as there are at least M records remaining in the file F
we read exactly M into an array (in the internal memory) and sort the
entries of this array using an internal sorting method. The elements of
the sorted array constitute a run which we write to F1 or F2, using
these files alternately. If we reach a situation in which there are fewer
than M records (but at least one) remaining in F then we read the
remaining records into an array, sort its entries into a run, again using
an internal sorting method, and write the resulting run to whichever of
F1, F2 was not used for the last run of length M.

(b) The Merge Stage. In this stage we merge the runs which were

162 Algorithms

produced in the Distribution Stage and written to FI and F2. We
begin by opening FI and F2 for reading and F3 and F4 for writing,
using the commands

Reset(FI)j Reset(F2)j Rewrite(F3)j Rewrite(F4)j

Then, so long as both FI and F2 are non-empty (i.e. while not
eof(FI) and not eof(F2)) we read the leading runs on the two files
and merge them into a single run which we write to F3 or F4, using
these files alternately. If one of the files FI, F2 is exhausted before
the other it is clear from the way the Distribution Stage works that the
non-empty file contains just one runj in this case we copy the single
run to whichever of F3, F4 was not used for the last merged run.

We now interchange the roles of FI, F2 and F3, F4 by giving the
commands

Reset(F3)j Reset(F4)j Rewrite(FI)j Rewrite(F2)j

Then, so long as F3 and F4 are non-empty, we read the leading runs
on these two files, merge them into a single run and write it to FI or
F2, using FI and F2 alternately. Again, if one of the files F3, F4
is exhausted before the other we copy the single run remaining in the
non-empty file to whichever of FI, F2 was not used for the last merged
run.

We proceed in this way using the pairs FI, F2 and F3, F4
alternately for reading and writing until there is only one run and the
sorting is complete.

To illustrate the working of Balanced Mergesort suppose we have a
file F containing the letters

THEQUICKBROWNFOXJUMPSOVERTHELAZYDOG

which we want to sort into alphabetical order. Suppose that our
computer can sort no more than four letters at a time. Then we read
groups of four letters in turn from F, sort them, and write the resulting

External sorting algorithms 163

runs alternately to Fl and F2. This produces the following arrange­
ment on Fl and F2:

Fl: EHQTIBORWIJMPUIEHRTIDGO
F2: CII<UIFNOXIEOSVIALYZ

(The vertical bars do not, of course, appear in the files but are intro­
duced here to help the reader see the ends of the runs.)

The first round of the Merge Stage reads 4-member runs from Fl
and F2 and merges them to form 8-member runs which it writes alter­
nately to F3 and F4, producing the following arrangement:

F3: CEHII<QTUIEJMOPSUVIDGO
F4: BFNOORWXIAEHLRTYZ

The second round reads 8-member runs from F3 and F4, merges them
to form 16-member runs and writes these alternately to Fl and F2,
yielding the arrangement

Fl : BCEFHII<NOOQRTUWXIDGO
F2:AEEHJLMOPRSTUVYZ

The third round produces

F3: ABCEEEFHHIJI<LMNOOOPQRRSTTUUVWXYZ
F4:DGO

Finally we have

Fl: ABCDEEEFGHHIJI<LMNOOOOP
QRRSTTUUVWXYZ

F2: empty

where the original collection is sorted into a single run on Fl.

To analyse the complexity of Balanced Mergesort we suppose for
simplicity that N, the number of records to be sorted, is an integer
multiple of M, the run length at the Distribution Stage; so the number
of runs formed at the Distribution Stage is r = N / M (in general r is the
least integer greater than or equal to N / M). To simplify the analysis

164 Algorithms

still further let us assume that r is a power of 2, say r = 2k. After each
round of the Merge Stage the length of the runs is doubled and their
number halved; so after k merge rounds sorting is complete.

Suppose that at the Distribution Stage we use an internal sorting
algorithm whose complexity (counting by comparisons) is O(Xlog2X);
thus when X is large the number of key comparisons involved in sorting
X records is at most AXlog2X where A is a constant. So the total
number of comparisons involved in forming the r runs of length M will
be at most r(AMlog2M) = ANlog2M.

On the first round of the Merge Stage we merge r /2 pairs of runs of
length M; on the second round r /4 pairs of runs of length 2M and so
on. We notice that when we merge two runs of length 1 the number of
key comparisons is at least 1 and at most 21- 1. (Think first of merging
the two runs 1 2 3 and 4 5 6, which requires only 3 comparisons, and
then of merging 1 3 5 and 2 4 6, which requires 5 comparisons.) So the
maximum number of comparisons required in the Merge Stage is

~r(2M -1) + ~r(4M -1) + ... + 21kr(2kM -1)

=krM-r(~+~+ ... +~)

If B is the larger of 1 and A we deduce that the total number of key
comparisons involved in the whole Balanced Mergesort operation is at
most BNlog2M + BNlog2r = BNlog2N.

(2) Natural Mergesort. When we use Balanced Two-way Merge­
sort the Distribution Stage uses the input stream of the records to be
sorted to produce runs all of which (except possibly the last) have the
same length. It may happen, however, that the input stream is made
up of quite long runs, possibly even longer than the maximum which
can be held in internal memory; to read in such runs (even if it were
possible) and sort them is pointless. It would be a particular waste
of time if we were to use Quicksort for the internal sorting: as we

External sorting algorithms 165

have seen, Quicksort does not work very efficiently on arrays which are
already sorted. So, provided we can devise a procedure to test when
the input stream comes to the end of a run, we may read successive
runs of arbitrary length from the input file F, write them alternately to
FI and F2 and then carry out a Merge Stage similar to that described
for the Balanced Mergesort.

Although the basic idea behind Natural Mergesort is essentially the
same as that of Balanced Mergesort, some care has to be taken in
implementing the Natural version. In the Balanced version we know at
each stage the length of every run except possibly the last; so we know
when to stop using a section of the input file for merging. Consider,
however, the input stream of characters

ADGKMRBXSTUCYVWEFKLNPQ

The Distribution Stage produces the arrangement

FI: ADGKMRISTU!VW
F2: BXICYIEFKLNPQ

where again the vertical bars indicate the ends of the runs. Notice here
that the bars are not just (as in the Balanced version) an aid to the eye
of the reader: some such indication is essential for the proper running
of the algorithm-without them the three runs on Fl would coalesce
to form a single run; but if we were to treat the entries on FI as a
single run it would not be clear what to do with the second and third
runs on F2.

The first round of the Merge Stage reads successive pairs of runs
from FI and F2 and merges them to form single runs which are written
to F3 and F4 alternately, producing

F3: ABDGKMRXIEFKLNPQVW
F4:CSTUY

The second round reads runs from F3 and F4, merges them and writes
the merged runs to FI and F2 alternately. This produces the arrange­
ment

FI : ABCDGKMRSTUXY
F2:EFKLNPQVW

166

Finally we have

F3:ABCDEFGKKLMNPQRSTUVWXY
F4: empty

Algorithms

(3) Polyphase Sorting. We begin this section by talking about
the Fibonacci numbers. These are the numbers Fk (k = 0,1, ...)
defined by

Fo = 0, Fl = 1 and, for all integers k 2:: 2, Fk = Fk- 1 + Fk- 2 •

So the Fibonacci numbers are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Suppose that we have managed to organise the collection of records
to be sorted into r runs, where r is one of the Fibonacci numbers, say
r = Fn. How this is actually done is not important for the description
of the Polyphase Sorting algorithm-the runs may be formed as in
Balanced Mergesort by reading in large blocks of data and sorting by
an internal sorting algorithm or as in Natural Mergesort by reading
successive "naturally occurring" runs from the input stream. Suppose
the r runs-are stored in a file T with "end-of-run" markers.

Let r = Fn where n 2:: 2 (there is clearly no sorting to be done
if n = ° or 1); then we have Fn = Fn- 1 + Fn- 2 • We introduce three
working files TI, T2, T3 and give the commands

Rewrite(T1); Rewrite(T2); Reset(T);

We then read Fn- 1 runs from T, writing them to TI, and write the
remaining Fn - 2 runs to T2.

Now we give the commands

Rewrite(T3); Reset(T1); Reset(T2);

and merge the leading Fn- 2 pairs of runs on T1 and T2, writing all
the merged runs to T3 and using "end-of-run" markers to separate
successive runs. When this has been completed the file T2 is empty,

External sorting algori thms 167

but T1 still holds Fn - 1 - Fn - 2 runs; by the definition of the Fibonacci
numbers this is Fn - 3 • So we are again in the position we were in at
the start-we have three files, one of which is empty and the other two
hold runs which are in number two successive Fibonacci numbers. We
can then repeat the process, using the empty file for writing and the
other files for reading, carrying on in this way until there is only one
run left, i.e. the collection is sorted.

Suppose, for example, the input file T holds Fs = 21 runs. We
distribute these runs by giving the commands

Rewrite(T1); Rewrite(T2); Reset(T);

sending F7 = 13 runs to T1 and F6 = 8 runs to T2. Thus we have the
starting position

T1 holds F7 = 13 runs, T2 holds F6 = 8 runs, T3 is empty

Now we give the commands

Rewrite(T3); Reset(T1); Reset(T2);

and merge the first, second, ... , 8th runs on T1 with the corresponding
runs on T2, writing the 8 merged runs in turn to T3. We now have the
situation

T1 holds F5 = 5 runs, T2 is empty, T3 holds F6 = 8 runs

We give the commands

Rewrite(T2); Reset(T3);

and merge 5 pairs of runs from T1 and T3, writing the merged runs to
T2, so that we have

T1 is empty, T2 holds F5 = 5 runs, F3 holds F4 = 3 runs

Next we give the commands

Rewrite(T1); Reset(T2);

168 Algorithms

and merge 3 pairs of runs from T2 and T3, writing the merged runs to
Tl, whereupon we obtain

Tl holds F4 = 3 runs, T2 holds F3 = 2 runs, T3 is empty

We proceed in this way for three more stages, resulting successively in
the positions

Tl holds F2 = 1 run, T2 is empty, T3 holds F3 = 2 runs
Tl is empty, T2 holds F2 = 1 run, T3 holds FI = 1 run
Tl holds FI = 1 run, T2 is empty, T3 is empty

Our description of Polyphase Sorting started with the assumption
that the collection of records to be sorted has been organised into r
runs, where r is a Fibonacci number. In the general situation, where
the number of runs is not a Fibonacci number we introduce enough
dummy (empty) runs to make the total number a Fibonacci number
and proceed in the way described above. (Clearly when we merge two
dummy runs the result is a dummy run; when we merge a dummy run
with a non-empty run we simply copy the non-empty run.)

7.4 Exercises 7

1. Use Bubblesort, Insertion Sort and Selection Sort to sort the following
character strings into dictionary order:

dog egg rum gin and rye nog for

2. Use Quicksort and Heapsort to sort the following stream of integers
into increasing order:

66 36 79 45 13 62 16 76

Exercises 7 169

3. Show that if we use the entries of an array of records as input stream
to build a binary search tree then the inorder traversal of the resulting
tree will display the entries in increasing order of key. illustrate by
sorting the array:

53 29 82 44 11 54 14 75

What is the worst case complexity (counting comparisons) of the tree­
building phase of this sorting method?

4. Use the pivot-and-partition idea of Quicksort to develop a recursive
algorithm for finding the entry of an array of records whose key is k-th
in order of size of key.

5. Sort the following array of integers into increasing order using Merge­
sort:

662236 6 792645 75 13 31 62 27 7633 1647

6. Following the example of two-pass radix sorting design a three-pass
sorting method to sort collections of three-digit numbers. illustrate
by sorting the following input stream:

131 92 325 921 444508 1358900477 83 721 698 92342

7. Describle how to construct a radix-type sorting method to put in order
an input stream of dates given in the form

Month Day Year

8. Write a function which takes as input a Text file F holding one integer
per line and returns another Text file containing the entries of F one
per line with a blank line introduced after each run.

9. Suppose we have a computer which can sort internally no more than
5 integers at a time. Apply Balanced Mergesort to a file F containing
the following integers:

66 31 22 97 36 15 6 32 79 44 26 19 45 46 75 8 13 17 62 88 76 33 72.

10. Sort the same input file using Natural Mergesort.

170 Algorithms

11. Suppose we have N files FI, F2 , ••• , FN with N > 4. Describe a
mergesorting procedure along the lines of Balanced Mergesort using
M and N - M files, with both M and N - M at least 2. Discuss how
you would carry out the merging if the number of files containing runs
to be merged exceeds 2.

Chapter 8

GRAPH ALGORITHMS

8.1 Shortest path algorithms
Let G = (V, E) be a graph or digraph with vertex set V and edge set
E. If a and b are vertices of G then we define a k-edge path from a to
b to be a sequence

of (k + 1) vertices such that each vertex after the first is adjacent to its
predecessor. We recall that this means, if G is a graph, that {Vi, vi+!l
is an edge of G (is in E) for i = 0,1, ... ,k - 1, while if G is a digraph
we have (Vi, Vi+t) a directed edge of G again for i = 0,1, ... , k - 1.
A cycle in G is a k-edge path p with k at least 3 in which no vertex
occurs more than once except that Vo = Vk.

If G is a weighted graph or digraph, with weight function W which
takes real number values, then the weight or length of the path p is

if G is a graph and

if G is a digraph. It is clear what is meant by a shortest path from a
vertex a to a vertex b: it is a path p from a to b such that W(p) $ W(p')
for all paths p' from a to b.

171

172 Algorithms

There are four shortest path problems which naturally suggest them­
selves for our consideration:

1. The single pair problem: find a shortest path from one given
vertex a (the source) to another given vertex b (the sink);

2. The single source problem: given a source vertex a, find for every
vertex v a shortest path from a to v;

3. The single sink problem: given a sink vertex b, find for every
vertex v a shortest path from v to b;

4. The all pairs problem: for every ordered pair (a, b) of vertices find
a shortest path from a to b.

Obviously problems (2) and (3) are essentially the same for an (undi­
rected) graph; for a digraph they can be transformed into one another
by the simple device of reversing the arrows on the directed edges (i.e.
replacing each ordered pair (v, w) in E by the reversed pair (w, v) and
giving it the same weight). Clearly also, if we can solve problem (2) then
we can solve problem (4) by applying (2) to each vertex of G in turn.
It might seem that problem (1) is the basic problem and that all the
others would be deduced from that; but in fact all known approaches
to solving problem (1) proceed by finding at least partial solutions to
problem (2) or its equivalent, problem (3).

Although, as we said above, it is clear what is meant by a shortest
path from one vertex to another, it is not so clear that there always
exists such a path. To see what could prevent the existence of a shortest
path we introduce the notion of a negative cycle: this is a cycle whose
length is a negative number.

Suppose that a and b are vertices of a graph or digraph G such that
there is at least one path from a to b. Then we claim that there actually
exists a shortest path from a to b if and only if no path from a to b
includes a negative cycle.

To see that this is so let us suppose first that some path from a

to b does include a negative cycle and show that in this case there is
no shortest path. This is clear, because if we start with a path which
includes a negative cycle then we can produce a shorter path simply by
going round the negative cycle again.

Shortest path algorithms 173

So, if there does exist a shortest path from a to b then no path from
a to b can include a negative cycle.

Suppose conversely that there is no negative cycle included in any
path from a to b. If a path from a to b has a repeated vertex v then
the section of the path from the first occurrence of v to the second is a
cycle whose length is non-negative; if we remove all the vertices of this
cycle except one of the occurrences of v we produce a path from a to
b whose length is less than or equal to the length of the original path.
So we can confine our attention to paths from a to b with no repeated
vertices. A shortest path from a to b is then one among these paths
with least length.

We now confine our attention to weighted digraphs in which all the
weights are non-negative; this implies, of course, that they have no
negative cycles.

Dijkstra's algorithm solves the single source problem for such a
digraph.

Dijkstra proceeds by building up a set S of vertices, initialised to
consist of the source vertex alone, and adding one new vertex at a time
until eventually all the vertices of the graph are in S. To decide at
each stage which vertex is to be adjoined to S we work with an array
d indexed by the vertices other than the source vertex; the array d is
initialised by setting

{ W((a, w» if (a, w) is an edge of G d[w] :=
00 otherwise.

Dijkstra's algorithm is most easily described by writing it as a loop:

174 Algorithms

for i := 1 to n - 1 do begin
Choose a vertex v not in S for which d[v] is least;
S:= Su {v};
For each vertex w not in S,

d[w] := min{d[w], d[v] + W((v, w))} end;

(It might be worth while to replace the last line by
begin r:= d[v] + W((v,w));

if r < d[w] then d[w] := r end end;

We shall show that when the loop execution is complete then for
each vertex w other than the initial vertex a the final value of the array
entry d[w] is the length of all shortest paths from a to w. The idea
behind the algorithm can be seen by looking at the first iteration of the
for loop. First, if Vt is a vertex such that the edge from a to Vt is no
longer than any other edge from a, then clearly that edge consitutes
a shortest path from a to Vt. (Any other path would have to start
with the edge from a to some other vertex w, which would be at least
as long as (a, Vt), followed by a path from w to vI, so that the total
length could not be less than the length of (a, vt).) Then for each of the
remaining vertices w we compare the lengths of the edge (a, w)-the
"direct route" from a to w-and the sum of the lengths of the edges
(a,vt) and (Vt,w)j in each case we update d[w] to be the smaller of
the lengths of the two possible paths from a to w. At the beginning of
the second iteration of the for loop we choose a vertex V2 for which the
(updated) d[V2] is least, and it is not hard to convince ourselves that for
this vertex V2 the length of all shortest paths from a to V2 is d[V2]'

We illustrate the working of Dijkstra's algorithm by applying it to
the graph shown below, with vertex 1 as source vertex.

Shortest path algorithms 175

~------200--------(?

40

300 10

20 70~
~------20------~

Initially S = {I} and we have

d[2] = 200, d[3] = 00, d[4] = 300, d[5] = 100.

The minimum entry in d is d[5] = 100, so we adjoin vertex 5 to Sand
then for i = 2, 3, 4 we change d[i] to min{d[i], d[5] + W((5,i))}. So we
calculate

d[2] = mini d[2], d[5] + W((5, 2))} = min{200, 100 + 40} = 140,
d[3] = min{d[3],d[5] + W((5,3))} = min{00,100 + 70} = 170,
d[4] = mini d[4], d[5] + W((5, 4))} = min{300, 100 + oo} = 300.

So at this stage we have

d[2] = 140, d[3] = 170, d[4] = 300.

The minimum entry in d is now d[2] = 140, so we adjoin 2 to S and then
for i = 3, 4 we change d[i] to min{d[i], d[2] + W((2,i))}. We calculate

d[3] = min{d[3],d[2] + W((2,3))} = min{170,140 + 10} = 150,
d[4] = min{d[4],d[2] + W((2,4))} = min{300, 140 + oo} = 300.

This time we have

176 Algorithms

d[3] = 150, d[4] = 300.

Now the minimum entry in dis d[3] = 150. We adjoin 3 to S and then
change d[4] to min{d[4], d[3] + W((3,4))} = min{300, 150 + 20} = 170.

So the lengths of the shortest paths from 1 to the remaining vertices
are the final entries in d:

d[2] = 140, d[3] = 150, d[4] = 170, d[5] = 100.

We notice that vertices are added to S in increasing order of the lengths
of their shortest paths from the source. Obviously if we are concerned
only with the distance from the source to one particular vertex v we
need only continue the execution of the algorithm until v is added to
S.

To prove formally that Dijkstra's algorithm works it is useful to
introduce the notion of a special path: a path from the source vertex a
to a vertex v not in the set S is said to be S-special if all the vertices
on the path except v itself are in S.

We are going to show that at each stage in the execution of the
algorithm the following statements are true:

1. If w is a vertex in S other than the source vertex a then d[w] is
the length of all shortest paths from a to Wj

2. If W is a vertex not in S then d[w] is the length of all shortest
S-special paths from a to w.

In proving these statements it will be helpful if we use Si-l and Si
to represent the set Sand di - 1 and di the array d before and after the
i-th iteration of the for loop.

Statements (1) and (2) are certainly true before we enter the for
loop, when S = So consists of the source vertex a alone and d[w] is
either W((a, w)) if there is an edge from a to w or 00 if not. (Statement
(1) holds because there is no vertex w in So other than aj statement
(2) holds because at this stage an So-special path from a to any vertex
w-that is a path all of whose intermediate vertices are in So-must be
the edge (if there is one) from a, which is the only vertex in So, to w.)

Shortest path algorithms 177

Now we suppose that for some integer i (i = 1, ... , n - 1) the
statements (1) and (2) hold before we start the i-th iteration of the
loop-we have just seen that this is certainly true when i = 1. We are
going to prove that statements (1) and (2) hold after the i-th iteration,
during which we adjoined a new vertex Vi to S;-1.

The proof proceeds in two parts.

(a) For all the vertices w other than a which are contained in the
set Si-1 (= S before the i-th iteration) the array entry di-dw] is not
changed by the i-th iteration; so, since (1) holds before the i-th itera­
tion, it follows that, for all vertices w in Si-1 other than a, di-dw] was
then, and remains afterwards (as di[w]), the length of all shortest paths
from a to w.

We have now to show that after the i-th iteration the entry d[Vi],
which also remains unaltered by this iteration, is the length of all short­
est paths from a to Vi.

We recall that, since (2) holds before Vi is adjoined to Si-1, di - 1 [v;)
is the length of all shortest Si_1-special paths from a to Vi. So if di[Vi] =
di-tlvi] is not the length of all shortest paths from a to Vi there would
have to be a shorter path p which is not Si_rspecial; such a path
would have an intermediate vertex between a and Vi which is not in
Si-1. Follow the path p from a towards Vi and let x be the first vertex
on it which is not in Si-1 (See Figure 1).

-p
e---~-~~-.---~-~-ex

Figure 1

178 Algorithms

Clearly the section of p from a to x is an Si_rspecial path to x.
Now we have

Total length of p

~ length of section of p from a to x
= length of an Si_rspecial path from a to x
~ di - 1[X]

(which is the length of the shortest Si-l -special path from a to x)
~ di- 1 [Vi]

(since Vi was chosen because di-tlvi] ::; di-tlv] for all V not in Si-t)

But this is a contradiction since p was supposed to be a path of length
less than di-dvi]. It follows that there is no shorter path from a to Vi
than the Si_l-special path corresponding to Vi. So di [Vi] is the length
of all shortest paths from a to Vi.

Thus (1) holds after the i-th iteration of the for loop.

(b) Now suppose w is a vertex not in Si = Si-l U {v;}.
We recall that di[w] is the smaller of di-dw] and di-dvi]+W((Vi, w)).
We want to show that the shortest length of any Si-special path

from a to w is di[w].
There are two cases to consider: (i) there is a shortest Si-special

path from. a to w not passing through Vi, (ii) all shortest Si-special
paths from a to w pass through Vi.

In case (i) any shortest Si-special path p from a to w which does
not pass through Vi is actually a shortest Si-l special path from a to w
and so has length di-tlw]. But in this case we have di[w] = di-dw]; for
if di-tlVi] + W((Vi' w)) < di-tlw] any shortest Si_rspecial path from
a to Vi followed by the edge from Vi to w would be an Si-special path
from a to w shorter than p, which is impossible since p is a shortest
such path.

In case (ii) let p be any shortest Si-special path from a to w; by
the hypothesis of case (ii) p must pass through Vi. We claim that Vi
must be the last vertex on p which lies in Si. If this is not the case let
x be the last vertex on p which lies in Si; since x =J. Vi we must have
x E Si-l. It follows that di-dx] ::; di-tlvi] (otherwise Vi would have
been adjoined to Si-l before x). (See Figure 2.)

Shortest path algorithms 179

......... _--- -----~ -----_ .. _------_. -_ -----..... -..... ~
1 s·1

1----------------- 'j
! a vJ

x W

Sj-1
0 .. _____ ----.----------------------------

Figure 2

Now the total length of p
= the length of the section of p from a to Vi
+ the length of the section of p from Vj to x
+ W((x,w))

Since p is a shortest Sj-special path from a to w, the section from a
to Vi must be a shortest Si_1-special path from a to Vi, so must have
length dj-dVj]. Thus we have

Total length of p > di- 1 [Vi] + W((x, w))
~ di-dx] + W((x, w))

i.e. we can produce an Si-special path from a to w shorter than p by
taking a shortest path to x followed by the edge from x to w.

So p has length di-dvi] + W((Vj, w)).

We claim that in this case we have di[w] = di- 1 [Vi] + W((Vi'W)).
For, if we had di[w] = di- 1 [W] < di - 1 [Vi] + W((Vi,W)), we would have
an Si_1-special path from a to w shorter than p, which is not possible
since, by the hypothesis of case (ii) all shortest Si-special paths must
pass through Vi.

180 Algorithms

We have thus shown in both cases (i) and (ii) that if w is a vertex
not in Sj then ddw] is the length of all shortest Si-special paths from a
to w, i.e. (2) holds after the i-th iteration of the for loop.

Since (1) and (2) hold before the first entry to the loop they hold
on the first exit from the loop, which is the second entry; hence they
hold on the second exit, which is the third entry, and so on until we
reach the last exit, when all the vertices of the graph are in S. It
follows that when the loop execution terminatesd[v] is the length of
all shortest paths from a to v (for all vertices v other than the source),
i.e. Dijkstra's algorithm works.

The reader may legitimately complain that all we have done so far is
to find the lengths of all shortest paths from the source to the other ver­
tices: we haven't actually produced the lists of vertices which form the
shortest paths. We can do this by a simple modification of Dijkstra's
algorithm. Namely, we introduce an array p indexed by the vertices
other than the source and whose entries are vertices-what we have in
mind is that if v is a vertex other than the source then p[v] shall be the
vertex immediately preceding v on the current shortest special path to
v. We initialise p by setting p[v] := the source vertex for all vertices v
other than the source. Then we would rewrite the Dijkstra for loop as
follows:

for i := 1 to n - 1 do begin
Choose a vertex v not in S for which d[v] is least;
S:=SU{v};
for each vertex w not in S do begin

if d[v] + W((v, w)) < d[w] then begin
d[w] := d[v] + W((v, w));
p[w] := vend end;

It is then a simple programming exercise to produce the vertices in the
shortest paths.

Shortest path algorithms 181

Dijkstra's algorithm is an example of a greedy algorithm. At
each stage it makes what is currently the optimal choice, choosing
for each vertex w not in Si either the previously constructed shortest
Si_l-special path to w or else a new path going first to the newly added
vertex Vi and then by the edge (Vi, w). This "greedy" strategy, pro­
ceeding in stages and making the best choice at each stage, cannot be
guaranteed in every problem to produce a result which is best overall
(see Exercise 1); but, as we have shown, it does succeed in the case of
Dijkstra's algorithm.

We turn now to the fourth shortest path problem mentioned at
the beginning of the section, the all pairs problem, that of finding for
every ordered pair of vertices (a, b) a shortest path from a to b. We
can certainly deal with this problem by applying Dijkstra's algorithm
n times, using each of the n vertices in turn as source. There is, how­
ever, another way of dealing with the problem which gives an example of
another interesting approach to algorithm construction. This is Floyd's
algorithm. Like Dijkstra's algorithm this deals with a weighted
digraph G in which all the weights are non-negative; we number the
vertices from 1 to n.

Floyd's algorithm rests on the following simple observation: we·con­
sider a shortest path p from vertex i to vertex j and suppose that the
intermediate vertex on this path with highest index is k. Then we easily
convince ourselves that the section of p from i to k must be a shortest
path from i to k having no intermediate vertex with index greater than
k - 1 and the section of p from k to j must be a shortest path from k
to j having no intermediate vertex greater than k - 1.

We begin by introducing an n X n matrix D whose entries are given
by

D[i .]:= { W((i,j)) i.f (i,j) is an edge of G
, J 00 otherwIse

We now construct a sequence of matrices

182 Algorithms

where for k = 1,2, ... ,n the entry Dk[i, j] is the length of the shortest
path from i to j having no intermediate vertex greater than k. Clearly
the entries of Dn are the lengths of the absolutely shortest paths we
are looking for.

We construct each matrix Dk (k = 1,2, ... , n) from its predecessor
Dk - 1 as follows.

Let us look at a shortest path from i to j which passes through no
intermediate vertex greater than k: it is the length of such a path which
is to appear as the matrix element Dk[i,j]. Two cases can occur. First,
it may happen that the path we are considering has all its intermediate
vertices less than k-so none is greater than k - 1. In this case we
clearly have Dk[i,j] = Dk-di,j]. Alternatively, the path may pass
through vertex k. In this case it is made up of two sections (a) a
shortest path from i to k with no intermediate vertex greater than
k - 1 followed by (b) a shortest path from k to j with no intermediate
vertex greater than k-1. Thus in the second case its length is Dk[i, j] =
Dk-di, k] + Dk-dk,j]. Of course we don't know in advance which case
will occur, but we can use Dk - 1 to calculate both possible lengths and
then define

Notice that for each index i we have

Ddi, k] = min{ Dk- 1 [i, kJ, Dk- 1 [i, k] + Dk- 1 [k, k]} = Dk- 1 [i, k]

and similarly for each index j we have

So as we move from Dk- 1 to Dk the k-th row and the k-th column are
unchanged.

In programming Floyd's algorithm we need only a single matrix D
declared as

Var D : array [1 .. n, 1 .. n] of real;

(if the weights are real numbers) and initialised as described above.
Then we carry out the triple loop

Shortest path algorithms 183

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
D[i,j] := min{D[i,j], D[i, k] + D[k,j]};

The final entries of D are the lengths of the required shortest paths.

(As we did in the case of Dijkstra's algorithm, we should consider
replacing the last line by

begin r := D[i, k] + D[k,j];
if r < D[i,j] then D[i,j] := rend;)

We illustrate Floyd's algorithm for the graph

Here the initial version of the matrix D is

[
0 3

D = Do = 7 0
2 00

To form Dl we have to make the assignments

D[i,j] := min{D[i,j], D[i, 1] + D[l,j]}.

184 Algorithms

As we saw above, the first row and first column remain unaltered; the
diagonal entries D[i, i] remain zero. So we compute

D[2,3] := min{D[2, 3], D[2, 1] + D[I, 3]} = min{I, 7 + IO} = 1,
D[3,2] := min{D[3, 2], D[3, 1] + D[I, 2]} = mini 00,2 + 3} = 5.

So we have

[0 3 10]
D = Dl = 7 0 1

2 5 0

Now to form D2 we make the assignments

D[i,j] := min{D[i,j], D[i, 2] + D[2,j]}.

This time the second row and second column remain unchanged and
the diagonal entries remain zero. We then compute

D[I,3] := min{D[I,3],D[1,2] + D[2,3]} = min{IO,3 + I} = 4,
D[3,I] := min{D[3, 1], D[3, 2] + D[2, I]} = min{2, 5 + 7} = 2.

This gives

[0 3 4]
D = D2 = 7 0 1

2 5 0

Finally we construct D3 by making the assignments

D[i,j] := min{D[i,j]' D[i, 3] + D[3,j]}.

Here the third row and third column remain unaltered and the diagonal
entries remain zero. So we calculate

D[I,2] := min{D[I,2],D[I,3] + D[3,2]} = min{3,4 + 5} = 3,
D[2,I] := min{D[2, 1], D[2, 3] + D[3, I]} = min{7, 1 + 2} = 3.

Shortest path algorithms 185

So for each ordered pair (i,j) the length of the shortest paths from
vertex i to vertex j is the (i, j)-th entry of

Like Dijkstra's algorithm, Floyd's may be modified to give the lists
of vertices of the shortest paths, not just their lengths. We proceed by
introducing a matrix P indexed by 1 .. n, 1 .. n whose entries are either
o or vertices (and so are drawn from the range 0 .. n). We initialise all
the entries of P to o. Then we amend Floyd's algorithm to read

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
if D[i, k] + D[k,j] < D[i,j] then begin

D[i,j] := D[i, k] + D[k,j];
P[i, j] := k end

Thus the current entry in P[i, j] is the vertex of highest index on
the current shortest path from i to j. To retrieve the list of vertices
which constitute the shortest path from vertex v to vertex w we notice
first that if P(v, w) = 0 then there are no intermediate vertices and
the shortest path is the edge from v to W; but if P[v, w] =1= 0 we obtain
the list of intermediate vertices by calling path(v, w) where path is the
procedure defined as follows:

Procedure path (i, j : 1 .. n);
Var x : 0 .. n;
Begin

x := P[i,j];
if x <> 0 then begin

path(i, x); Writeln (x); path(x, j) end End;

186 Algorithms

The next shortest path problem we consider has been tradition­
ally known as the Travelling Salesman Problem and is often referred
to as the TSP; but not all travelling salespeople are men, and this
has led some authors to rename it the Travelling Salesperson Problem.
Unfortunately 'salesperson' is an unattractive word and so it is
proposed here to call it the Commercial Traveller Problem. To
describe the problem we are to think of a collection of customers all
of whom the commercial traveller has to visit once each, using as little
petrol, or taking the least time, or travelling the shortest distance pos­
sible. We naturally think of representing the customers by the vertices
of a graph and the direct routes between the customers by its edges;
to each edge we attach a number which is either the cost, the time
or the distance involved in taking that route. So we reformulate the
problem as follows. Let G = (V, E) be a weighted digraph in which all
the weights are non-negative; then the Commercial Traveller Problem
is to find a tour of G of minimum cost, where by a tour of G we mean
a cycle containing each vertex of G exactly once and the cost of the
tour is the sum of the weights of all its edges.

Suppose V = {VI, V2, ... , vn }.

We make the simple observation that if we have a cheapest tour
starting and finishing at the vertex VI then, if the first edge is (VI, Vk)

the remainder of the tour must go from Vk back to VI passing through
all the remaining vertices exactly once and it must be the cheapest path
to do so.

For each index i (1 ~ i ~ n) and each subset S of V we define
g(i, S) to be the cost of a cheapest path from Vi to VI passing exactly
once through each of the vertices in S. Then the cost of a minimal cost
tour of G starting and finishing at VI is g(l, V rv {vd). To calculate
this minimal cost we remark that if a cheapest tour starts with (VI, Vk)

then g(l, V rv {vd) = W((VI,Vk)) + g(k, V rv {vI,vd). Of course we
don't know in advance which is the first edge; all we can say is that
g(l, V rv {vd) will be the minimum of all the n - 1 numbers
W((VI,Vk)) + g(k, V rv {vI,vd) for k = 2, ... ,no Thus if we could find
g(k, V rv {v!, vd) for k = 2, ... ,n we would deduce at once the cost of
the cheapest tour.

The same argument can be applied to show for every i = 1, ... , n
and every subset S of V that

Shortest path algorithms 187

As a foundation for our calculations we remark that for each i = 1, ... , n

we have g(i, 0) = the cost of the cheapest path from Vi to V1 passing
through no intermediate vertex = W((Vi' V1)).

To find the succession of vertices on the commercial traveller's tour
all we have to do is to note at each stage along with the minimum
g(i, S) the index j which produces the minimum on the right hand side
of the relation (*).

To see how this line of attack works in practice we consider a digraph
G with vertices numbered 1 to 5 whose adjacency matrix is

o 4 3 5 8
3 0 5 5 4
5 4 0 8 5
27505
7 4 9 4 0

Suppose we are looking for a shortest tour starting from and finishing
at vertex 1.

For each vertex i i= 1 we have

g(i,0) = cost of cheapest path from i to 1 with no intermediate vertex
= Ci1·

So

g(2,0) = C21 = 3,
g(3,0) = C31 = 5,
g(4,0) = C41 = 2,
g(5, 0) = CS1 = 7.

Next, for each i i= 1 and each k i= 1, i we have

188

So

g(2, {3}) = C23 + C31 = 5 + 5 = 10,
g(2, {4}) = C24 + C41 = 5 + 2 = 7,
g(2, {5}) = C26 + C61 = 4 + 7 = 11,
g(3, {2}) = C32 + C21 = 4 + 3 = 7,
g(3, {4}) = C34 + C41 = 8 + 2 = 10,
g(3, {5}) = C36 + C51 = 5 + 7 = 12,
g(4, {2}) = C42 + C21 = 7 + 3 = 10,
g(4, {3}) = C43 + C31 = 5 + 5 = 10,
g(4, {5}) = C46 + C51 = 5 + 7 = 12,
g(5, {2}) = C62 + C21 = 4 + 3 = 7,
g(5, {3}) = C63 + C31 = 9 + 5 = 14,
g(5, {4}) = C54 + C41 = 4 + 2 = 6.

Now for all appropriate i, j, k we have

Algorithms

g(i, {j, k}) = min{Cij + g(j, {k}), CiA: + g(k, {j})}.

Thus we have

g(2, {3,4}) = min {C23 + g(3, {4}),C24 + g(4, {3})}
= min {5 + 10,5 + 10} = 15,

using either 2 --+ 3 or 2 --+ 4,
g(2, {3, 5}) = min {C23 + g(3, {5}), C25 + g(5, {3})}

= min {5 + 12,4 + 14} = 17, using 2 --+ 3,
g(2, {4,5}) = min {C24+g(4,{5}),C25 +g(5,{4})}

= min {5 + 12,4 + 6} = 10, using 2 --+ 5,
g(3, {2, 4}) = min {C32 + g(2, {4}), C34 + g(4, {2})}

= min {4 + 7,8 + 10} = 11, using 3 --+ 2,
g(3, {2, 5}) = min {C32 + g(2, {5}), C35 + g(5, {2})}

= min {4 + 11,5 + 7} = 12, using 3 --+ 5,
g(3, {4,5}) = min {C34 + g(4, {5}), C35 + g(5, {4})}

= min {8 + 12,5 + 6} = 11, using 3 --+ 5,
g(4, {2, 3}) = min {C42 + g(2, {3}), C43 + g(3, {2})}

= min {7 + 10,5 + 7} = 12, using 4 --+ 3,
g(4, {2, 5}) = min {C42 + g(2, {5}), C45 + g(5, {2})}

= min {7 + 11,5 + 7} = 12, using 4 --+ 5,

Shortest path algorithms

g(4, {3, 5}) = min {C43 + g(3, {5}), C45 + g(5, {3} n
= min {5 + 12,5 + 14} = 17, using 4 ---* 3,

g(5, {2, 3}) = min {C52 + g(2, {3}), C53 + g(3, {2} n
= min {4 + 10,9 + 7} = 14, using 5 ---* 2,

g(5,{2,4}) = min {C52+g(2,{4}),C54 +g(4,{2}n
= min {4 + 7,4 + 10} = 11, using 5 ---* 2,

g(5,{3,4}) = min {C53 +g(3, {4}),C54 +g(4,{3}n
= min {9 + 10,4 + 10} = 14, using 5 ---* 4.

Next, for all appropriate i, j, k, I we have

189

g(i, {j, k, I}) = min{ Cij + g(j, {k, I}), Cik + g(k, {j, I}), Cit + g(l, {j, k} n.

So

g(2, {3, 4, 5}) = min{ C23+g(3, {4, 5}), C24 +g(4, {3, 5}), C25+g(5, {3, 4} n
= min{5 + 11,5 + 17,4 + 14} = 16, using 2 ---* 3,

g(3, {2, 4, 5}) = min{ C32+g(2, {4, 5}), C34+g(4, {2, 5}), C35+g(5, {2, 4} n
= min{4 + 10,8 + 12,5 + 11} = 14, using 3 ---* 2,

g(4, {2, 3, 5}) = min{ C42+g(2, {3, 5}), C43+g(3, {2, 5}), C45+g(5, {2, 3})}
= min{7 + 17,5 + 12,5 + 14} = 17, using 4 ---* 3,

g(5, {2, 3, 4}) = min{ C52+g(2, {3, 4}), C53+g(3, {2, 4}), C54+g(4, {2, 3} n
= min{4 + 15,9 + 11,4 + 12} = 16, using 5 ---* 4.

Finally we have

g(l, {2, 3, 4, 5}) = min{ c12+g(2, {3, 4, 5}), C13+g(3, {2, 4, 5},
C14+g(4, {2,3,5}),C15+g(5, {2,3,4}n

= min{4 + 16,3 + 14,5 + 17,8 + 16}
= 17, using 1 ---* 3.

So the commercial traveller's tour is of length 17, going from 1 to 3
to 2 to 5 to 4 and back to 1.

To assess the complexity of the algorithm we have described for the
solution of the Commercial Traveller Problem we count the number of
comparisons involved in the calculation of the numbers g(i, S). The
index i can be chosen in n - 1 ways (it is one of the indices 2,3, ... , n).
For each choice of i the set S is a subset of V "" {Vb Vi}; the number

190 Algorithms

of elements in S is thus between 0 and n - 2 inclusive. For each such
number k there are (n~2) subsets with k elements.

If S has k elements with k > 1 the computation of g(i, S), which
involves finding the minimum of k numbers, requires k -1 comparisons.
So the total number of comparisons for all possible subsets S of size k is
(k - 1) (n~2). Thus for each i = 2,3, ... ,n the number of comparisons

for all subsets S of V '" {VI, Vi} is

n-2 (2) L (k - 1) n ~ = (n - 4)2n - 3 + 1 (1)
k=l

(See below for the justification of equation (1).) It follows that the total
number of comparisons involved in calculating att the numbers g(i, S)
IS

(n - l){(n - 4)2n - 3 + I}.

There are then a further n - 2 comparisons involved in finding the
number g(l, V", {vtJ). So the total number of comparisons is

(n - l)(n - 4)2n - 3 + 2n - 3

which is O(n2 2n) and so very far from efficient; but at least it is better
than the examination of all n! possible tours.

To prove the result (1) above, we notice first that according to the
binomial theorem we have

So

n-2 (2) n - k n-2 L k X = (1 + X) - 1. (2).
k=l

Setting X = 1 we have

n-2 (2) L n ~ = 2n - 2 - 1. (3)
k=l

Shortest path algorithms 191

If we differentiate (2) we have

~ k(n - 2)Xk - 1 = (n - 2)(1 + xt-3

k=l k

and putting X = 1 we have

n-2 (2) L k n ~ = (n - 2) 2n - 3 • •••••••••••..•••••..••••.• (4)
k=l

Subtracting (3) from (4) we obtain (1).

In introducing Floyd's algorithm we said that it offered another
interesting approach to algorithm design, but we did not elaborate
on this remark. Let us now consider the similarities between Floyd's
algorithm and the algorithm we have just described for the Commer­
cial Traveller Problem. Both problems are concerned with finding an
optimal result-the shortest path between two vertices in a digraph,
the cheapest tour of a digraph. In each case our thinking about the
problem begins by asking a question to which we cannot immediately
find the answer-we ask what is the largest index of the intermediate
vertices on the shortest path from i to j and we ask what is the first
vertex (after the starting vertex vd on a cheapest tour.

Although we don't know the answers to these questions we do know
that if only an answer could be found then we would be able to solve
our original optimisation problem provided we had the solution to a
slightly simpler problem or problems of similar type. (If k were the
intermediate vertex of highest index on a shortest path from i to j
we would have to look for shortest paths from i to k and from k to j
passing through no vertex with index greater than k - 1; if Vk were the
first vertex on a cheapest tour we would have to find a cheapest path
from Vk back to the starting vertex passing through all the remaining
vertices once only.)

The idea then is to find solutions to the simpler problem or problems
corresponding to each possible answer to our original question-only
one of them will be required as a constituent of the final solution, but
we need to examine them all to decide which one it is. Of course the

192 Algorithms

simpler problems are themselves of the same type and can be handled
in the same way by finding optimal solutions to still simpler problems.
We are thus led to a kind of 'bottom-up' approach in which we begin
by noting the solutions to the very simplest problems (the shortest
path from each vertex to every other passing through no intermediate
vertex or the cheapest path from each vertex back to the starting vertex
passing through no intermediate vertex) and we use these solutions to
solve the second simplest and proceed in this way. Thus we build up a
table of solutions to intermediate problems which lead eventually to a
solution of the original problem.

This approach to algorithm design is known as dynamic program­
ming; it may be tried in situations where the so-called Optimality Prin­
ciple applies, that is when in an optimal sequence of decisions or choices
each subsequence is also optimal.

8.2 Spanning tree algorithms

We begin with three definitions. First, a path

(and, in particular, a cycle) in a graph is said to be simple if the
vertices Vi are all distinct (except in the case of a cycle, where Vo = Vk).

Next, a graph is said to be connected iffor all vertices V and w there
is a simple path from v to w. Finally, a tree is a connected graph which
has no simple cycle.

Although binary trees, which we met in Chapter 3, are defined in a
completely different way, it is clear that our usual graphical represen­
tations of binary trees are trees in the sense we have just described.

We note two elementary facts about trees:
(1) If v and ware distinct vertices of a tree there is a unique simple

path from v to w.
There is one such path because the tree is connected; if there were

two, then the sequence formed by the first followed by the reverse of
the second would be or would include a cycle.

Spanning tree algorithms 193

(2) A tree with n vertices has n - 1 edges.

We think of building up the tree from one of its vertices: every time
we add a new edge we must also add a new vertex (otherwise we would
produce a cycle); so there must always be one more vertex than there
are edges.

Let G = (V, E) be a connected graph; a spanning tree of G is a
tree whose vertex set is V and whose edge set is a subset of E-so it
has all the vertices of G and just enough edges of G to form a tree. We
may construct a spanning tree for a given connected graph by choosing
a cycle and removing one of its edges, noting that after the removal
we still have a connected graph; we then repeat the procedure with
any cycle that remains, continuing until there are no cycles left. For
example, starting with the connected graph

1 2

4-------- 3

in which 1, 2, 3,4, 1 is a cycle, we remove first the edge {I, 4}, obtaining

1 2

3

which is still connected but has a cycle 2, 3, 4, 2. If we remove the edge
{3, 4} from this cycle we obtain a spanning tree

194 Algorithms

1 2

3

Now let G = (V, E) be a weighted graph with n vertices and weight
function W. The cost of a spanning tree is defined to be the sum of
the weights of its edges; a minimum spanning tree is a spanning
tree with cost as small as possible.

There are several -algorithms -for constructing minimum spanning
trees for a given connected weighted graph. We are going to describe
them as special cases of a general greedy method; having shown that
the general method in fact succeeds in producing a minimum spanning
tree we shall not need to verify separately that the special cases work.

The general method builds up a minimum spanning tree edge by
edge, including appropriate low-weight edges and excluding appropri­
ate high-weight edges. We maintain two changing subsets of E, the
set of edges which are accepted, coloured blue, and those which are
rejected, coloured red. Initially both sets are empty, i.e. there are no
blue edges and no red edges. Thus we can certainly assert that, initially
at any rate,

(*) There is a minimum spanning tree of G which includes all the blue
edges and none of the red edges.

We now carry out a sequence of colouring steps, each of which
colours one edge, in such a way that (*) holds after each step if it
holds before (though the minimum spanning tree including all the blue
edges may not be the same after the colouring step as it was before).
Eventually, when all the edges are coloured, the blue edges actually
form a minimum spanning tree; but since a tree with n vertices has
n - 1 edges we need not complete the colouring of all the edges-we
can stop as soon as n - 1 edges have been coloured blue.

Spanning tree algorithms 195

We describe two procedures, called the Blue Rule and the Red Rule,
and show that after each application of either of these Rules the prop­
erty (*) is maintained, i.e. if it holds before the application of the Rule
then it also holds after.

Let X be a subset of the set V of vertices; we say that an edge
e = {v, w} protrudes (sticks out) from X if one of the ends v, w of e
is in X and the other is not. Then the Blue Rule can be described as
follows:

(1) Choose a non-empty subset X of V from which no blue edge
protrudes;

(2) Among the uncoloured edges protruding from X choose one
of minimum weight and colour it blue.

The Red Rule is

(1) Choose a simple cycle]{ which includes no red edge;
(2) Among the uncoloured edges of]{ choose one of maximum

weight and colour it red.

The general greedy method consists in a non-deterministic sequence of
applications of the Blue Rule and the Red Rule, i.e. applying either
rule at any time in arbitrary order until n - 1 edges are coloured blue.

We notice that so long as at least one edge remains uncoloured at
least one of the rules may be applied. (At each stage, since the blue
edges are all included in a minimum spanning tree, they form a forest,
which is a union of disjoint trees. Suppose there is an uncoloured edge
e. If both ends of e lie in the same blue tree there is a path in that
tree joining the ends of e; that path, together with e itself, constitutes
a cycle]{. The Red Rule can then be applied to]{ which has at least
the uncoloured edge e. If the ends of e are in different blue trees then
e is an uncoloured edge protruding from the set of vertices of one of
them, T say; so the Blue Rule may be applied to T.)

Now we prove that if (*) holds before an application of the Blue
Rule then it also holds after the application.

196 Algorithms

Let T be a minimum spanning tree which, before the rule is applied,
includes all the blue edges and none of the red edges of G.

Let X be a non-empty subset of V from which no blue edge
protrudes; let e be an uncoloured edge of minimum weight protrud­
ing from X which, after the application of the Blue Rule, is coloured
blue.

If e is one of the edges of the minimum spanning tree T then (*)
clearly holds after the application of the rule, with the same minimum
spanning tree T.

So suppose e is not one of the edges of T. To fix the ideas, consider
the graph below, taking X to consist of the vertices B, e, D, E and
T to be the tree with edges AB, Be, BD, DE, DF; let the minimum
weight uncoloured edge e protruding from X be EF.

There is certainly a path in T joining the ends of e (in the graph
shown this is the path E, D, F); one of the edges of this path must
protrude from X-call it e' (in the graph below, e' is the edge DF).
Since e' is an edge of the tree T which contains no red edge, e' is not
coloured red; since no blue edge protrudes from X and e' protrudes
from X, it follows that e' is not coloured blue. So e' is uncoloured. But
e was chosen to be an uncoloured edge of least weight protruding from
Xj so W(e') ~ W(e). Let T' be the tree obtained from T when we
replace e' by e (so T' has edges AB, Be, BD, DE, EF). Then the
cost of T' = the cost of T + W(e) - W(e') :::; the cost of T. Since T is
a minimum spanning tree we must have the cost of T' = the cost of T.

Spanning tree algorithms 197

So T' is a minimum spanning tree which, after the application of
the Blue Rule, includes all the blue edges and none of the red edges.

Next we prove that if (*) holds before an application of the Red
Rule then it also holds after the application.

Again let T be a minimum spanning tree which, before the rule is
applied, includes all the blue edges and none of the red edges of G.

Let K be a simple cycle which includes no red edge; let e be an
uncoloured edge of maximum weight included in K which, after the
application of the Red Rule, is coloured red.

If e is not one of the edges of the minimum spanning tree T then (*)
clearly holds after the application of the rule, with the same minimum
spanning tree T.

So suppose e is one of the edges of T. Consider again, for example,
the graph above, with T as before the tree with edges AB, BC, BD,
DE, DF; let K be the cycle A, C, D, B, A and suppose that the
maximum weight uncoloured edge e in K is B D. When we remove the
edge e from T we are left with two subtrees Tl and T2 (in the example
Tl has edges AB, BO and T2 has edges DE and DF). The cycle K
must include another edge which has one end in Tl and the other in T2;
call it e' (in our example graph e' is CD). By hypothesis, T contains
all the blue edges; so, since e' is not an edge of T, it follows that e' is
not coloured blue. Since K includes no red edge, e' is not coloured red.
Hence e' is uncoloured. But e was chosen to be an uncoloured edge of
greatest weight in K; so W(e') :::; W(e). Let T' be the tree formed from
TI, T2 and the edge e' (so, in the example, T' has edges AB, BC, CD,
DE, DF). Then we see that

cost of T' = cost of Tl + W (e') + cost of T2

< cost of Tl + W(e) + cost of T2
= cost of T.

Since T is a minimum spanning tree we must have the cost of T' = the
cost of T.

So T' is a minimum spanning tree which, after the application of
the Red Rule, includes all the blue edges and none of the red edges.

198 Algorithms

We now describe three special applications of the general greedy
method for constructing minimum spanning trees.

1. Bor-t.vka's algorithm. Let G be a weighted graph with n

vertices in which the weights of the edges are all distinct.
We work with a changing collection F of blue trees, initialised to

consist of n single-vertex trees. Then, until F consists of a single blue
tree, we repeat the following instructions:

For each tree in F we determine the edge of minimum weight
protruding from it. Some of these minimum edges may be repeated
(they may be edges of minimum weight protruding from both trees con­
taining their end points). Let Fl be a subset of F containing enough
of the trees in F to account for each of these minimum weight edges
exactly once. Apply the Blue Rule to the sets of vertices of each of the
trees in F 1, so colouring blue the minimum weight edges. Let F now
become the collection of trees obtained after this colouring.

The final single blue tree is the required minimum spanning tree.
To illustrate how this works, consider the graph

/G
55 25 45

/ 1 ~
" I /-3°7

5 40 20 50

~I/ /
,-

157
35 10

1/
®

Initially F consists of 8 single-node trees, ({A}, 0), ... , ({H}, 0).

Spanning tree algorithms

Minimum weight edge from ({A}, 0) is AC oflength 25;
Minimum weight edge from ({B}, 0) is BE of length 5;
Minimum weight edge from ({C}, 0) is CA of length 25;
Minimum weight edge from ({D}, 0) is DE of length 20;
Minimum weight edge from ({E}, 0) is EB of length 5;
Minimum weight edge from ({F}, 0) is FG of length 10;
Minimum weight edge from ({ G}, 0) is GF of length 10;
Minimum weight edge from ({ H}, 0) is H D of length 30;

199

Since AC = CA, BE = EB, FG = GF each appear twice, we take
Fl to consist of the 5 single-node trees ({A}, 0), ({B}, 0), ({D}, 0),
({F}, 0), ({H}, 0) and apply the Blue Rule to their vertex sets, colour­
ing AC, BE, DE, FG and HD blue.

F now consists of the three blue trees

Tl = ({A, C}, {AC}),
T2 = ({B, E, D, H}, {BE, ED, DH}),
T3 = ({F, G}, {FG}),

whose edges are shown as solid bold lines in the diagram:

N ow we see that

200

Minimum weight edge from Tl is GE of length 40,
Minimum weight edge from T2 is EG of length 15,
Minimum weight edge from T3 is GE of length 15.

Algorithms

Since EG = GE occurs twice we take Fl to consist of Tl and T2 and
apply the Blue Rule to their vertex sets, colouring G E and EG blue.

We now have F consisting of a single blue tree, consisting of the
bold edges in the diagram

This tree, with edges AG, BE, GE, ED, EG, FG and DH is a
minimum spanning tree; the total cost is 145.

2. Kruskal's algorithm. The first move in applying Kruskal's
algorithm is to arrange the edges of the graph in non-decreasing order
of weight (length); so suppose we have ordered the edges ell e2, ... , em

so that W(el) ~ W(e2) ~ ... ~ W(em). As in Boruvka's algorithm we
work with a changing colection F of blue subtrees, initialised to consist
of n single-vertex trees with no edges. We then examine in turn each
of the edges ei (which are originally uncoloured). Two cases can arise:

(a) If both ends of the edge e currently under consideration are

Spanning tree algorithms 201

in the same blue tree T there is a path in T joining its endpoints; this
path, together with e constitutes a cycle f{ which includes no red edge.
Since e is the only uncoloured edge of f{ it is an uncoloured edge of
maximum weight; so we may apply the Red Rule to f{ and colour e
red.

(b) If the ends of e are in different blue trees Tl and T2 then no blue
edge protrudes from the set VJ. of vertices of Tl and e is an uncoloured
edge of minimum weight protruding from VJ. (since all edges of weight
less than e have already been coloured). So we may apply the Blue
Rule to VJ. and colour e blue.

We continue until n - 1 edges have been coloured blue; these blue
edges then make up a minimum spanning tree.

We can summarise Kruskal's algorithm as follows:

Start with n single-vertex blue trees;
i := 1;
Repeat

if both ends of ei are in the same blue tree
then colour ei red
else colour ei blue;

i := i + 1
until there are n - 1 blue edges;

We illustrate the application of Kruskal's algorithm using the same
graph as before. We shall use solid bold lines to represent blue edges
and dotted bold lines to represent red edges.

The edges in non-decreasing order of weight are

BE (5), FG (10), EG (15), ED (20), AC (25), DH (30),
EF (35), CE (40), AD (45), GH (50), AB (55).

Initially there are 8 single-node blue trees:

({A},0), ({B},0), ... , ({H},0)

BE has its endpoints in two different blue trees; so colour it blue.
We obtain

202 Algorithms

~
55 25 45

/ 1 ~
" I /-307 5 40 20 50 which has 7 blue trees:

\f15~
35 10

1/
®

({A}, 0),
({B, E}, {BE}),
({C},0),

({H}, O).

FG has its endpoints in two different blue trees; so we colour it blue
and obtain

~
55 25 45

/ 1 ~
" I /-3°7

5 40 20 50 which has 6 blue trees: '\1/ / ({A},0), 7 ({B,E},{BE}),
-15- ({C},0),

1 ({D},0),
35 10 ({F, G}, {FG}). V ({H},0),

EG has its endpoints in two different blue trees; we colour it blue,
obtaining

Spanning tree algorithms

~
55 25 45

/ 1 ~
" f /-3°7

5 40 20 50 which has 5 blue trees '" 1/ / ({A},0),
~®-17 ({B,E,F,G},

1
{BE,EG,FG}),

({C},0),
35 1 ({D},0), V ({H},0),

203

ED has its endpoints in two different blue trees; we colour it blue
and obtain

~
55 25 45

/ I ~
" f /- 307 5 40 20 50 which has 4 blue trees:

, I / ~ ({A},0),
~1 ({B,D,E,F,G},

I {BE,ED,EG,FG})
{C},0),

35 10 {H}, O),

V
AC has its endpoints in two different blue trees; we colour it blue,

getting

204 Algorithms

~
/55 r 45""
, t /-a07

5 40 20 50 which has 3 blue trees:

'" I / / ({A,C},{AC}),
~17 ({B,D,E,F,G},

I {BE, ED, EG, FG},
({H},0) Vi

DH has its endpoints in two different blue trees; so we colour it
blue and obtain

~
55 25 45

/' "" , ! ~a07
5 Jo 2~ 50

~IS-/ which has 2 blue tree"
I / ({A, C}, {AC},

35 10 ({B, D, E, F, G, H}, V {BE, DH,ED, EG,FG}).

E F has its ends in the same blue tree; we colour it red and obtain

Spanning tree algorithms 205

C E has its endpoints in two different blue trees; we colour it blue.
and obtain

206 Algorithms

We now have a single blue tree, with edges

AC,BE,CE,DH,ED,EG,FG

which is a minimum spanning tree.

3. Prim's algorithm starts with an arbitrarily chosen initial
vertex and proceeds to build up a minimum spanning tree one edge at
a time. We start with a one-vertex blue tree T consisting of the initial
vertex. Then we execute the following loop:

for i := 1 to n do begin
Apply the Blue Rule to the set of vertices of T;
T := T U {the new blue edge} end;

To implement Prim's algorithm we may proceed by maintaining a
list of all the uncoloured edges protruding from the current version of
the tree T and at each stage adjoining to T a protruding uncoloured
edge of least weight. We have to be careful about the list of protruding
edges. When first we think of adding an edge e to the list, e has one
endpoint in T and the other, v say, not in T. At the same stage or at
some later stage another protruding edge e' with the same endpoint v
not in T may be a candidate for inclusion in the list; we notice that e

and e' together with the path in T joining their endpoints in T form a
cycle J{ with no red edge; we should apply the Red Rule to J{.

To see how this works we examine again the same graph as before,
taking A as initial vertex.

At the first stage we have T = ({A}, 0).
1. The edges protruding from Tare AB (55), AC (25), AD (45).

These are all uncoloured. Applying the Blue Rule to {A} we colour
AC blue and obtain

Spanning tree algorithms 207

/l\
55 25 45

/ I ~ , t /-3°7
5 40 20 50

~I/ /
@I -15~ The tree T is now

/ ({A, C}, {AC}).

35 10

1/
®

2. The edges protruding from Tare AB (55), AD (45) as before
and CE (40). These are all uncoloured and no two of them have the
same endpoint. Applying the Blue Rule to {A,C} we colour CE blue;
this produces

/l\
55 25 45

< f >-3°7
5 40 20 50

~I/ /
@1--15-jQ>ThetreeTisnow

/ ({A,C,E},{AC,CE}).

35 10

1/
®

208 Algorithms

3. The edges protruding from Tare AB (55), AD (45) as before
and EB (5), ED (20), EF (35) and EG (15). These are all uncoloured,
but AB and EB have the same endpoint B outside T and AD and ED
have the same endpoint D outside T. We apply the Red Rule to the
cycles A, G, E, B, A and A, G, E, D, A, coloring AB and AD red.
The uncoloured edges protruding from {A, G, E} are now EB (5), ED
(20), EF (35) and EG (15). Applying the Blue Rule to {A, G, E} we
colour EB blue. We have now reached the situation

The tree T is now {A, B, G, E}, {AG, GE, EB}).

4. The edges protruding from T are AD, which has been coloured
red, and ED (20), EF (35) and EG (15) which are still uncoloured.
Applying the Blue Rule to {A, B, G, E} we colour EG blue, obtaining

Spanning tree algorithms 209

The tree T is now ({A,B,C,E,G},{AC,CE,EB,EG}).

5. The protruding edges are AD, which is red, and ED (20), EF
(35), GF (10) and GH (50) which are all uncoloured. Since EF and GF
have the same endpoint F outside T we apply the Red Rule to the cycle
E, G, F, E and colour E F red. The uncoloured edges protruding from
{A, B, C, E, G}) are now ED (20), GF (10) and GH (50). Applying
the Blue Rule to {A, B, C, E, G} we colour GF blue. The resulting
situation is

210

The tree T is now
({A, B, G, E, F, G},

Algorithms

{AG, GE, EB, EG, GF}).

6. The edges protruding from T are AD, which is red, ED (20)
and GH (50), which are still uncoloured. Applying the Blue Rule to
{A,B,C,E,F,G} we colour ED blue and obtain

55~45
< t >-307

5W350 :1:7/50

The tree T is now r ({A,B,G,D,E,F,G},
{AC, GE, EB, ED, EG, GF})

V

Exercises 8 211

7. The protruding edges are GH and DH (30) which are uncoloured.
They both have the same end point H outside T. We apply the Red
Rule to the cycle E, D, H, G, E and colour GH red. Finally we apply
the Blue Rule to {A, B, C, D, E, F, G} and colour DB blue, obtaining
finally

So we end up with a minimum spanning tree with edges AC, CE,
EB, ED, EG, GF, DH and cost 145.

8.3 Exercises 8

1. Suppose we have a currency system having coins of (integer) values
at, a2, ... , an where at > a2 > ... > an ~ 1. Consider the problem of
finding a collection of coins of these denominations having total value
a given integer A in such a way that the total number of coins is least.
(We have to find integers kt, k2' ... , kn such that

kt at + k2a2 + ... + knan = A

212 Algorithms

and kl + k2 + ... + kn is least.)

Suggest a greedy algorithm to solve this problem and show that it
does not work in the case where at = 11, a2 = 5 and a3 = 1 when
A = 15.

2. Apply Dijkstra's algorithm to find the shortest paths (lists of vertices
and lengths) from A to the other vertices of the digraph

250T
500 20

~--------20--------~

3. Discuss the complexity of Dijkstra's algorithm.

4. Use Floyd's algorithm to find the shortest paths between all ordered
pairs of vertices in the digraph with adjacency matrix

[
0 90 100 70]

40 0 5 10
7 00 0 4

20 10 7 0

5. Discuss the complexity of Floyd's algorithm.

Exercises 8 213

6. Solve the Commercial Traveller Problem for the graph with adjacency
matrix

0 3 7 4 2
3 0 3 4 6
7 3 0 8 6
4 4 8 0 5
2 6 6 5 0

7. Using the three algorithms described in this section find a minimum
spanning tree for the graph

1 ------I

9 5

~1~
4 6 12 3

)t-8~
7 14

Dr---------- 2 ----------~

8. Given a digraph whose adjacency matrix has boolean entries, use the
idea of dynamic programming, as in Floyd's algorithm, to determine
for each ordered pair of vertices (a, b) whether there exists a path in
the graph from a to b.

Chapter 9

SOME MISCELLANEOUS
ALGORITHMS

9.1 Numerical multiplication algorithms

Suppose we represent the integers to be multiplied using the base b.
There are two basic operations involved when we carry out the multipli­
cation of two integers, namely addition and multiplication of single-digit
numbers; each of these operations produces two single-digit results, a
'units' digit and a 'carry' digit.

Let x and y be integers which require n digits to represent them
using base b.

Old-fashioned "long multiplication" which used to be taught in
primary schools involves forming the product of each digit in the
multiplicand (the number which is to be multiplied) by every digit in
the multiplier; so there are in all n2 single-digit multiplications involved.
In addition there are n2 single-digit additions of thefonn

(carry digit from previous multiplication) + (units digit of current
multiplication).

Finally there are several multi-digit additions.

In several books on recreational mathematics we find a method for
multiplying integers which is sometimes called old Russian

215

216 Algorithms

multiplication but is also attributed to various primitive peoples. In
this method we make two columns of numbers, one under the multi­
plicand x and the other under the multiplier y. Then we follow the
instructions

Repeat
Double the entry in the multiplicand column;
Halve the entry in the multiplier column (ignoring fractions)

until the entry in the multiplier column is 1;
Add the entries in the multiplicand column which correspond to

odd entries in the multiplier column;

For example, to multiply 68 by 97 (using base 10) we have

68 97
136 48
272 24
544 12

1088 6
2176 3
4352 1

Adding 68, 2176 and 4352 corresponding to the odd entries 97, 3
and 1 we obtain the product 6596.

Any mystery there may be about how this works is dispelled at once
when we carry it out using binary notation.

We turn now to a method of multiplying integers due to three
Russian mathematicians, Karatusba, Of man and Toom, which we shall
describe as new Russian multiplication.

Again let x and y be integers which require n digits for their repre­
sentation using base b and suppose that n is even, say n = 2k. Then
we may write

x = Xl bk + Xo and y = YI bk + Yo

where xo, Xl, Yo and YI are integers which can be represented using base
b with at most k digits; suppose we use exactly k digits by "padding"

Numerical multiplication algorithms 217

with zeros to the left if necessary. Now the product z = xy can be
written as

z = (XIYI)b2k + (XIYO + xOYI)bk + (xoyo)

which appears to require four multiplications of k-digit numbers. But
consider the equation

XIYo + XOYI = (xo - XI)(YI - Yo) + XoYo + XIYI

From this we deduce that we can obtain the product z = xy by means
of

3 multiplications of k-digit numbers (xoYo, XIYI, (XO-XI)(YI-YO));
2 subtractions of k-digit numbers (xo - Xl and YI - yo);
2 additions of n-digit numbers ((xo - XI)(YI - Yo) +xoYo +X-lYI);
addition of (XIYI)b2k + (XIYO + xoydbk + (xoYo).

For example, if X = 68 and Y = 97 (using base 10) then we have

Xl = 6, Xo = 8, YI = 9, yo = 7;
Xo - Xl = 2, YI - Yo = 2;

(xo - XI)(YI - Yo) + XoYo + XIYI = 2 x 2 + 8 x 7 + 6 x 9 = 114.

Then

z = xy = (XIYI) x 100 + ((xo - Xl)(Yl - Yo) + XoYo + XIYl) x 10 + XoYo
= 54 x 100 + 114 x 10 + 56 = 6596 as before.

We have shown how to produce the product of two n-digit numbers,
where n = 2k by means of

3 k-digit multiplications and
4n basic addition operations

where a "basic addition operation" is an addition or subtraction of two
single-digit integers with the possibility of a "carry" or a "borrow".

We can then use the same procedure to calculate the three k-digit
products. For simplicity let us assume that n = 28 (we can always

218 Algorithms

achieve this by padding to the left with zeros). Then multiplication of
two n-digit numbers requires

4.28 basic addition operations
+ 3(4.28- 1 basic additions

+ 3 multiplications of 28 - 2-digit numbers)

= (4.28 + 3.4.28- 1) basic additions
+ 32(4.28 - 2 basic additions

+ 3 multiplications of 28 - 3-digit numbers)

=

= (eventually) (4.28 + 3.4.28- 1 + 32.4.28- 2 + ... + 38- 1 .4.2) basic
additions + 38 single-digit multiplications

= 8(38 - 28) basic additions + 38 single-digit multiplications.

So we have a method for multiplying two n-digit numbers which
reqUIres

and at most 8 nlog23 basic additions.

9.2 Matrix multiplication algorithms

In this section we are concerned with matrices whose entries are
numbers. We recall that a matrix with m rows and n columns is called
an m x n matrix and that if A is such a matrix then the element in the
ith row and jth column is denoted byaij (i = 1, ... , m; j = 1, ... , n).
The product AB of two matrices A and B is defined only when the
number of columns of A is the same as the number of rows of B (so
the row length of A is the same as the column length of B). If A is an

Matrix multiplication algorithms 219

m x n matrix and B is an n x p matrix then their product C = AB is
defined to be the m x p matrix given by

for i = 1, ... , m; j = 1, ... ,po We notice that what we have here is
"row-by-column" multiplication-the (i,j)th entry of the product is
obtained by multiplying the elements of the ith row of A in turn by
the corresponding elements of the jth column of B and adding up the
products.

We notice in particular that if A and B are the 2 x 2 matrices

[bu
and B = b21

then their product C = AB is

[au bu + a12b21
a21 bu + a22b21

au b12 + a12b22]
a21 b12 + a22b22

We return to the general case where A and Bare m x nand n x p
matrices respectively. Let r, s, t be integers such that 1 ::; r < m,
1 ::; s < nand 1 ::; t < p. The entries in the first r rows and the first
s columns of A constitute an r X s matrix which we call Au; clearly
the (i,j)th entry of Au = [AU]ij = aij (i = 1, ... ,r; j = 1, ... ,s).
The entries in the first r rows and columns s + 1 to n of A make up
an r X (n - s) matrix A12 with elements [A12]ij = ai,s+j (i = 1, ... , r;
j = 1, ... , n-s). In the same way we have (m-r) xs and (m-r) x(n-s)
matrices A21 and A22 for which [A21]ij = ar+i,j (i = 1, ... , m - r;
j = 1, ... ,s) and [A22]ij = ar+i,s+j (i = 1, ... ,m - r; j = 1, ... ,n - s).
We say we have partitioned A as

220 Algorithms

Let us also partition B as

where B ll , B 12 , B 21 , B22 are respectively s x t, s x (p - t), (n - s) x t,
(n - s) x (p - t) matrices. Now let us also partition C as

where Cll , C12 , C21 , C22 are respectively r x t, r x (p - t), (m - r) x t,
(m - r) x (p - t) matrices. We claim that

Writing this out in full we see that what we are saying is that

Cll = AllBll + A 12B 2b C12 = AllB12 + A 12B 22 ,
C2l = A2lB ll + A 22 B 21 , C22 = A21B12 + A22B 22 ,

so that the submatrices of the partitioned form of C are obtained from
the submatrices of A and B by multiplying and adding in the same way
as we form the product of two 2 x 2 numerical matrices by multiplying
and adding their numerical components.

To justify this statement we compare corresponding elements of each
Cij and the corresponding Ai1B1j + A i2 B 2j . For example, consider the
(f.-l, II)th entry of Cll (where 1 :s; f.-l :s; r, 1 :s; II :s; t): this entry is

CJ.t,v = aJ.t1b1v + aJ.t2b2v + ... + aJ.tnbnv
= aJ.t1b1v + ... + aJ.tsbsv + aJ.t,s+lbs+1,v + ... + aJ.tnbnv
= [All]J.tdBllhv + ... + [All]J.ts[Bll]sv

+ [A12]J.t1[B21hv + ... + [Au]J.t,n-s[B2l]n-s,v
= [AllBll]J.tv + [A12B 2l]J.tv
= [AllBll + A 12B 21]J.tv

So Cll = AllBll + A12B21 and the other three equalities above follow
by similar arguments.

Matrix multiplication algorithms 221

We now turn away from the multiplication of general rectangu­
lar matrices to consider the multiplication of square matrices. One
consequence of our discussion of the multiplication of partitioned ma­
trices is that in theoretical investigations of multiplication of square
matrices we may restrict ourselves to products of N x N matrices where
N is a power of 2. To see this, let A and B be n x n matrices where
2m < n < 2m +!; then we may take N = 2m +!, p = n, q = N - nand
define

A _ [A Opq]
I - Oqp Oqq and BI = [~ gpq] qp qq

where Oij denotes the i x j matrix whose elements are all zero. Then if
we know how to multiply square matrices whose size is a power of 2 we
form the product AIBI and notice that according to our description of
how to multiply partitioned matrices we have

AIBI = [AB Opq]
Oqp Oqq

so we can read off the desired product AB.
Now suppose we have a method for multiplying two numerical 2 x 2

matrices which involves in all M numerical multiplications-if we use
the method of the definition we have M = 8. Then we can apply this
method to produce a method for multiplying two 2k x 2k matrices which
involves M multiplications of 2k - 1 x 2k - 1 matrices.

Let T(n) be the number of numerical multiplications required to
multiply two numerical n x n matrices where n = 2k. Then we have

T(n) = M T(!n) = M2 T(~n) = ... = Mk T(l) = Mk

since T(l) = 1 (because to multiply two numerical 1 x 1 matrices we
have simply to multiply their single elements).

If we write Mk = nOt we have Mk = (2k)Ot and so, taking logarithms
to base 2 of both sides we obtain k log2 M = ak and hence eventually
that a = log2 M.

So we have T(n) = n1og2 M

For the algorithm which simply applies the definition of 2 x 2 matrix
multiplication we have M = 8 and so T(n) = n3 • This is the same num­
ber of numerical multiplications as we need if we apply the definition

222 Algorithms

directly to the given matrices, so the recursive partitioning approach
has not led to any improvement (and the overheads of successive recur­
sive calls will undoubtedly cause a deterioration in performance). But
consider two numerical 2 x 2 matrices

A = [an
a21

and B = [bn
b2I

and compute the 7 numbers qI, ... , q7 given by

qI = (an + a22) x (bn + b22)
q2 = (a2I + a22) x bn
q3 = an x (b12 - b22)
q4 = a22 x (-bll + b2d
q5 = (an + a12) x b22
q6 = (-au + a2I) x (bu + b12)

q7 = (a12 - a22) x (b2I + b22)

(noticing that only 7 numerical multiplications are required to carry
out this computation). Then dedicated symbol-pushing reveals that

qI + q4 - q5 + q7 = aubn + al2b21 = [AB]ll
q3 + q5 = an b12 + al2b22 = [ABh2
q2 + q4 = a2I bu + a22b2I = [ABhI
qI - q2 + q3 + q6 = a2I b12 + a22 b22 = [ABh2

Thus we have succeeded in evaluating the product of two numerical
2 x 2 matrices using 7 numerical multiplications. It follows that if we
use this technique in the recursive partitioning approach to multiplying
n x n matrices then the number of numerical multiplications required
is niog27 = n 2.81 which is an improvement over n3 • The definition of
qI, ... , q7 and the discovery of their use in computing the elements of
AB are due to Strassen and the recursive partitioning method of matrix
multiplication based on them is often called Strassen's algorithm.

As in the case of other recursive algorithms we have considered­
for example Quicksort and Mergesort-there comes a point at which
the cost of the "housekeeping" operations involved in implementing the
recursion outweighs the theoretical advantage of Strassen's algorithm.

Matrix multiplication algorithms 223

Experience suggests that it is advisable to use ordinary matrix multi­
plication (i.e. as in the definition) for n x n matrices with n ::; 128
(n a power of 2).

The attentive reader may have noticed and complain that although
Strassen's method for multiplying 2 x 2 matrices requires only 7 multi­
plications it needs 18 additions in contrast to the 4 in ordinary matrix
multiplication. But a detailed analysis of Strassen's algorithm for n x n
matrices shows that the number of additions is O(n1og2 7) whereas for
ordinary matrix multiplication it is O(n3).

We turn now from the problem of multiplying two square matrices
to that of multiplying a sequence of several rectangular matrices each of
which after the first has the same number of rows as its predecessor has
columns. (Here we are thinking of using ordinary matrix multiplication,
not any more elaborate algorithm such as Strassen's.)

First of all let A, B, C be respectively p x q, q x r, r x s matrices
with numerical entries. In order to form the p x r matrix product
AB we have to carry out pqr numerical multiplications (for each of
the pr entries of AB we have to multiply the q entries of a row of
A by the corresponding entries of a column of B). Now consider the
product of the sequence of three matrices ABC. Since we have defined
multiplication only for products of two matrices we have to bracket
ABC either as (AB)C or A(BC). It is shown in every book on linear
algebra and matrix theory that both these ways of bracketing lead
to the same final result (this is what is meant by saying that matrix
multiplication is associative). But, although the results are the same,
the effort involved in reaching them is usually not the same for the two
ways of bracketing. To form the p x r matrix AB requires pqr numerical
multiplications; then to multiply this p x r matrix by the r x s matrix C
requires prs numerical multiplications. So to produce (AB)C requires
pqr + prs numerical multiplications. In a similar way we deduce that to
form A(BC) requires qrs+pqs numerical multiplications. For example,
if p = 3, q = 5, r = 7 and s = 10 the calculation of (AB)C requires
3 x 5 x 7 + 3 x 7 x 10 = 315 numerical multiplications, while that of
A(BC) needs 5 x 7 x 10 + 3 x 5 x 10 = 500 numerical multiplications.

224 Algorithms

It is a fairly easy exercise in the use of mathematical induction to
deduce from the fact that (AB)C = A(BC) for all matrices A, B, C
for which these products can be formed that for all integers n ~ 3 and
all sequences of n matrices Ab A 2 , ••• , An of matrices of orders do x db
dl X d2 , ••• , dn- l x dn respectively all legitimate ways of bracketing
A1A 2 ••• An produce the same final result. They will not, however,
all involve the same amount of work; so we find ourselves asking the
question: given a sequence of matrices whose product can be formed,
which way of bracketing will require the smallest number of numerical
multiplications? The naive approach-examine all ways of bracketing
the product and calculate for each the number of numerical multiplica­
tions required to carry out the corresponding evaluation-is not really
practicable: it can be shown that the total number of ways of brack­
eting a product of n matrices is en~12) /n and that is greater than
4n - l /n(2n - 1) which grows very fast as n increases.

We notice, however, that we are in a situation where the optimal­
ity principle applies, so that we may be able to use a dynamic pro­
gramming approach. For suppose we have found an optimal bracketing
of A1A 2 ••• An, i.e. one which involves the least possible number of
numerical multiplications; this must be of the form

(some bracketing of Al ... Ai)(some bracketing of Ai+! ... An)

where i is some index for which 1 $ i < n. Then it is clear that the
bracketings of Al ... Ai and Ai+l ... An which occur must themselves be
optimal (otherwise we could replace them by bracketings which needed
fewer numerical multiplications; but this would reduce the number
required to evaluate the complete product, which is supposed to be
the minimum possible).

This discussion leads us to introduce the integers mij for all indices
i, j such that 1 $ i $ j $ n, where mij is defined to be the minimum
number of numerical multiplications required to evaluate the product
AiAi+! ... A j . Our aim, of course, is to evaluate mIn.

If i = j, so that the sequence AiAi+1 ... Aj consists of a single matrix
Ai, we need no numerical multiplication to evaluate the "product".
Hence we have

mii = 0 (i = 1, ... , n).

Matrix multiplication algorithms 225

If j = i + 1 the sequence AAi+1 ... Aj consists of the product AAi+1
of a di- I X di matrix and a di X di+1 matrix; so the number of numerical
multiplications required is di-I didi+1. Hence

We have now to find the numbers mi,i+s where s 2: 2. The optimal
bracketing of AiAi+1 ... A+s must be of the form

(optimal bracketing of Ai ... Ak) (optimal bracketing of Ak+1 ... A+s)

for some index k such that i ~ k < i + s. The number of numerical
multiplications required to evaluate this product is mik (to produce
the di- I x dk matrix A ... Ak) + mk+1,i+s (to produce the dk x di+s
matrix Ak+1 ... Ai+s) + di-Idkdi+s (to multiply these matrices). We
don't know which choice of index k produces the optimal bracketing,
so we must compute this sum for all possible k and find the minimum.
Thus we have

for each i = 1, ... , n and each s = 2, ... , n - i.

To see how this works in practice let A, B, C, D, E be matrices of
orders 13 X 5, 5 x 89, 89 x 3, 3 x 34, 34 x 10 respectively. Then, in the
notation we have been using we have

Al = A,A2 = B,A3 = C,A4 = D,As = E

and

do = 13, dl = 5, d2 = 89, d3 = 3, d4 = 34, ds = 10.

Then we have

m12 = dodId2 = 5785,
m23 = dId2d3 = 1335,
m34 = d2d3d4 = 9078,
m4S = d3d4ds = 1020,

226 Algorithms

ml3 = min{mn + m23 + dodld3, ml2 + m33 + dod2d3}
= min {O + 1335 + 195,5785 + 0 + 3471} = 1530

with optimal bracketing A1(A2A3),

m24 = min{m22 + m34 + dld2d4, m23 + m44 + d1d3d4}
= min {O + 9078 + 15130,1335 + 0 + 510} = 1845

with optimal bracketing (A2A3)A4,

m3S = min{m33 + m4S + d2d3ds, m34 + mSS + d2d4ds}
= min {O + 1020 + 2670,9078 + 0 + 30260} = 3690

with optimal bracketing A3(A4AS),

m14 = min {mn + m24 + dodl d4, m12 + m34 + dod2d4, m13 + m44 + do d3 d4 }
= min {0+1845+2210, 5785+9078+39338, 1530+0+1326} = 2856

with optimal bracketing
(optimal bracketing of AIA2A3)A4
= (Al(A2 A3))A4,

m24 = min{m22+m3S+ dld2ds, m23+ m4S+ dld3dS, m24+ mSS+ dld4dS}
= min {O + 3690 + 4450,1335 + 1020 + 150,1845 + 0 + 1700} = 2505

with optimal bracketing (A2A3)(A4AS).

Finally

mlS = min{mn + m2S + dodlds, m12 + m3S + dod2ds,
m13 + m4S + do d3ds, m14 + mSS + dod4ds}

= min {O + 2505 + 650, 5785 + 3690 + 11570,
1530 + 1020 + 390, 2856 + 0 + 4420}

= 2940
with optimal bracketing

(optimal bracketing of AIA2A3)(A4AS)
= (Al(A2A3))(A4AS) = (A(BC))(DE).

To assess the complexity of this algorithm we may count the number
of arithmetic operations involved in forming the various numbers mij

or the number of comparisons required to find the various minima.

A stable marriage algorithm 227

First we notice that to compute the (n - 1) numbers mi,i+l
(i = 1, ... , n - 1) requires 2 multiplications for each, making a total of
2(n -1) multiplications. Next, for each 8 = 2, ... , n -1 there are n - 8

numbers mi,i+s, namely ml,l+s, m2,2+s, ... , mn-s,n. Each of these is
obtained by finding the minimum of the 8 numbers

(k = i, ... , i + 8 - 1)

which involves making (8 - 1) comparisons. To form the 8 numbers
requires 28 additions and 28 multiplications.

Hence the total number of additions is

2{2(n - 2) + 3(n - 3) + ... + (n - I)} = !(n - 1)(n - 2)(n + 3)

and the total number of multiplications is

2(n - 1) + 2{2(n - 2) + 3(n - 3) + ... + (n - I)} = !(n3 - n).

Finally the total number of comparisons is

(n - 2)(1) + (n - 3)(2) + ... + (1)(n - 2) = Hn - 2)(n - l)n.

So, however we count, the algorithm has complexity O(n3).

9.3 A stable marriage algorithm

In this section we consider the situation in which there are n men and
n women and each of these 2n people has arranged the n members of
the opposite sex in strictly decreasing order of preference as marriage
partners. There are n! ways in which these 2n people can contract n
non-bigamous marriages. But not all of these n! marriage arrangements
will be stable, where by a stable marriage arrangement we mean one
in which we do not have a man and a woman who are not married to
each other but who both prefer each other to their present partners. (If
a is married to A and (3 is married to B but a prefers B to his wife A
and B prefers a to her husband (3 then a and B would at least consider
breaking their present marriages and marrying each other.)

Consider, for example, three men a, (3, I and three women A, B,
C whose orders of preference are indicated in the tables

228 Algorithms

1 2 3 1 2 3
0 A B C A f3 'Y 0

f3 B C A B 'Y 0 f3
'Y C A B C 0 f3 'Y

There are six possible marriage arrangements, which we list as fol­
lows, using the genealogists' standard notation 0 = A to indicate that
o is married to A:

(1) o=A, f3 = B, 'Y = Cj
(2) o=A, f3 = C, 'Y = Bj
(3) o=B, f3 = A, 'Y = Cj
(4) o=B, f3 = C, 'Y = Aj
(5) o=C, f3 = A, 'Y = Bj
(6) o=C, f3 = B, 'Y = A.

It is easy to check that arrangements (1), (4) and (5) are stable,
while the other arrangements are unstable-in (2) A prefers 'Y to 0 and
'Y prefers A to Bj in (3) C prefers f3 to 'Y and f3 prefers C to Aj in (6)
B prefers 0 to f3 and 0 prefers B to C.

The question naturally arises whether there are always stable mar­
riage arrangements and if so how do we obtain them. The answer to
the first question is that no matter what the order of preferences of
the participants there is always at least one stable arrangement and
the answer to the second is provided by the Gale-Shapley algorithm
which produces one such arrangement.

In order to describe this algorithm we agree that each of the 2n
persons involved may be either free, (temporarily) engaged or married.
It is important to be clear that in the context of the Gale-Shapley
algorithm engagements are not the essentially final arrangements that
they mostly are in reallifej it might be nearer the mark when a woman
A becomes engaged to a man 0 to say that A has put 0 on her string,
hoping for a better offer.

The execution of the algorithm begins with all the men and all the
women free. As the execution proceeds the men may alternate between
being engaged and being freej but once a woman becomes engaged
she always remains engaged, though (as we suggested above) possibly

A stable marriage algorithm 229

to different men at different stages. As we shall see, for a man each
successive engagement is to a less attractive partner, while for a woman
each successive engagement is to a more attractive partner.

The procedure is as follows.

1. Each man proposes to the women on his list in decreasing
order of preference until he becomes engaged (i.e. is temporarily
accepted).

2. When a woman who is free receives a proposal she must accept
it and become engaged, though without necessarily committing
herself to marriage.

3. When a woman who is already engaged receives a proposal she
compares her current fiance with the new proposer (who must
be free at the time the proposal is made). If she prefers her
current partner then she refuses the offer from her new suitor,
who remains free; if she prefers her new suitor then she breaks her
present engagement, setting her current fiance free, and becomes
engaged to her new sui tor.

4. When a man becomes free as a result of a broken engagement
he proceeds to make a proposal to the next woman on his list of
preferences.

The execution of the algorithm terminates when everyone is
engaged; then all the engaged couples are married and we shall show
that the resulting marriage arrangement is stable.

We may summarise the algorithm in pseudo-Pascal as follows:

Begin
Assign each person to be free;
while not all men engaged

(* i.e. there is at least one man m free *)
do begin

w := first woman on m's list to whom
he has not yet proposed;

230 Algorithms

if w is free then m and w become engaged
else if w prefers m to her present fiance m'

then begin m and w become engaged ;
m' becomes free end;

else w rejects m who remains free end
All the couples currently engaged are married

End;

We notice first of all that the execution of this algorithm is bound
to terminate.

To begin with, it is clear that no man can be rejected by all the
women. To see this we remark that according to the provisions of the
algorithm a woman may reject a man only if she is already engaged.
So, if a man is rejected by the last woman on his list all n women must
be engaged; but there are only n - 1 other men for them to be engaged
to, and since no man can be engaged to more than one woman, this is
impossible.

Next, since each iteration of the while loop involves one proposal
and no man proposes to the same woman twice there can be at most
n 2 iterations of the while loop.

We now show that the marriage arrangement produced by the
algorithm i~ actually stable.

To see this, let m be anyone of the men; suppose that when the
algorithm terminates m is married to w. Now it may happen that m
prefers another woman w' to his wife w. If this is the case then w'
must have been higher up m's preference list than w. So m must have
proposed to w' before proposing to wand been rejected in favour of an
offer which w' found more acceptable than m's. So, although m prefers
w' to his wife, nevertheless w' does not prefer m to her husband. Thus
there is no instability.

To see how the algorithm works in practice consider the case of four
men CY, (3, " 8 and four women A, B, C, D with preference tables

A stable marriage algorithm 231

1 2 3 4 1 2 3 4
a A B C D A , 8 a (3
(3 A B C D B 8 a (3 , , B C A D C a (3 , 8
8 C A B D D 8 , a (3

The Gale-Shapley algorithm proceeds as follows:

1. a proposes to his first choice Aj since A is free she accepts his
proposal-a and A are engaged.

2. (3 proposes to his first choice, who is also Aj since A is already
engaged to a and since she prefers a to (3 she refuses (3's proposal.

3. (3 proposes to the second woman on his list, namely Bj since B
is free she accepts his proposal and (3 and B become engaged.

4. , proposes to his first choice Bj since B is engaged to (3, whom
she prefers to " she does not accept ,'s proposal.

5. ,proposes to his second choice Cj since C is free she accepts-so
, and C are engaged.

6. 8 proposes to his first choice Cj C is engaged to , and she prefers
, to 8j so she rejects 8's proposal.

7. 8 proposes to his second choice Aj A is engaged to a but she
prefers 8 to aj so she accepts 8's proposal-8 and A are engaged
and a becomes free.

8. a proposes to his second choice Bj B is engaged to (3 but she
prefers a to (3-a and B become engaged and (3 becomes free.

9. (3 proposes to his third choice Cj C is engaged to, but she prefers
(3 to ,-(3 and C are engaged and, becomes free.

10. , proposes to his third choice Aj although A is engaged to 8 she
prefers, to 8-, and A are engaged and 8 is free.

232 Algorithms

11. ~ proposes to his third choice B; B is engaged to a but she prefers
~ to a-~ and B become engaged and a is free.

12. a proposes to his third choice C; C is engaged to f3 but she prefers
a to f3-a and C are engaged and f3 is free.

13. f3 proposes to his fourth choice D; since D is free she accepts his
proposal-f3 and D are engaged.

All the participants are now engaged; so four marriages are celebrated:

a = C, f3 = D, I = A, ~ = B.

Some readers may complain that the Gale-Shapley algorithm is
biased in favour of men, since it is the men who do the proposing; others
that it is biased in favour of women, since they may make temporary
engagements and later break them. It should be clear, however, that
the algorithm would produce a stable marriage arrangement equally
well if we reversed the roles of the men and the women, letting the
women do the proposing and the men the "stringing". If we do this
in the example above it takes seven steps to produce a stable match­
ing. In this case we reach the same matching as before, but this is not
always the case-for example, in the case of the three men and three
women described at the start of this section, if the men do the propos­
ing then the stable arrangement (1) results while if the women make
the proposals we end up with the stable arrangement (5).

9.4 Exercises 9

1. Using both old Russian and new Russian multiplication find the prod­
uct of the binary numbers

10111001 and 10101110.

2. Do the same for the decimal numbers

Exercises 9 233

372 and 219.

3. Find the minimum number of numerical multiplications required to
evaluate the product ABC D where A, B, C, D are numerical matrices
of size 20 X 10, 10 X 5, 5 X 100, 100 X 8 respectively.

4. Write a Pascal program fragment which will produce not only the
minimum number of numerical multiplications required to evaluate a
product of numerical matrices but also the bracketing which produces
this minimum number.

5. Suppose we have three men a, f3, 'Y and three women A, B, C whose
orders of preference are indicated in the tables

1 2 3 1 2 3
a C B A A f3 'Y a
f3 A C B B f3 a 'Y
'Y C A B C f3 a 'Y

Which of the following marriage arrangements are stable:

(1)
(2)
(3)

a = A, f3 = B,
a = C, f3 = A,
a = C, f3 = B,

'Y = Cj
'Y = Bj
'Y = A?

6. Find a stable marriage arrangement for the four men a, f3, 'Y and 6
and four women A, B, C and D whose preferences for each other are
given in the following tables:

1 2 3 4 1 2 3 4
a C B D A A a f3 6 'Y
f3 B A C D B 'Y a 6 f3
'Y B D A C C 'Y f3 6 a
6 C A D B D f3 a 'Y 6

7. By considering the four men A, B, C, D whose preferences for one
another as room-mates are given by the table

234 Algorithms

1 2 3
A B C D
B C A D
C A B D
D A B C

show that it is not always possible to arrange 2n people into n couples
without instability.

Part III

STORING AND
SEARCHING

237

The title of D.E. Knuth's great volume Sorting and searching is so
familiar to all computer scientists that the title of this chapter may
appear to be a misprint. But this is not so-we have said all we have
space to say about sorting in Chapter 7. Nevertheless we start this
chapter as we did Chapter 7 with a collection of records each of which
has many fields, one of them a key field whose entries are taken from
a key type which is usually, though in this chapter not necessarily, an
ordered type. Thus we declare

Type K = (* the key type *);
T = Record

Key: K;
. . . (* other fields holding information *)

end;

The problem we are concerned with is easily stated: given the key of a
particular record we want to locate the complete record so that we can
retrieve the really interesting information held in the other fields of the
record. It is clear that the solution to our searching problem depends
on the way in which the collection of records is stored.

Of course, as we so often do in everyday life, we may impose no
structure at all on the collection in which we shall be searching. In
this case we can offer no systematic way of searching for a particular
object. We may simply make random choices ·of ·objects and examine
each choice to see whether it is in fact the one we are looking for; this has
the disadvantage that we may find ourselves examining an unwanted
record more than once. It is not really appropriate to think of trying to
implement this random method of storing and searching in a computer.
(The Pascal data type set may at first sight appear to correspond to
random storage, but in Pascal sets are implemented, roughly speaking,
as arrays.) We are led to the conclusion that we really ought to impose
some kind of organisation on the collection in which we are searching,
and this chapter describes various ways of doing that.

Chapter 10

STORING IN ARRAYS
AND LISTS

10.1 Sequential and binary searching

Suppose we store our N records as components of a one-dimensional
array introduced by the declaration

Var A : array [1 .. N] of Tj

Then to retrieve the record with a given key k of the key type of our
records we may start at the lower end of the array (the entry which has
index 1) and compare k with the key field of each component of the
array in turn until either a match is found or else we reach the upper
end of the array without ever finding a match (so that the required
record is actually missing from our collection). This method of search­
ing is known as sequential search. It can be implemented using the
following Pascal procedure

239

240 Storing and searching

Procedure array_sequential (X : array [1 .. N] of T; k : K);
Var i : integer;
Begin i := 0;

End;

Repeat i := i + 1 until (X[i].Key = k) or (i > N);
if X[i].Key = k then success at position i

else (* if i > N *) failure

If the record with key k is present in position i then i key comparisons
are required to locate it; if the record with key k is absent then we
require N + 1 comparisons to establish this fact. So the worst case
complexity of sequential search in an array (counting comparisons) is
O(N). If we assume that we are equally likely to be searching for each
of the array entries, so that the probability for each position i is 1/ N,
then the expected number of comparisons to locate one of the entries
of the array is

-k (1 + 2 + ... + N) = -k (~N (N + 1)) = ~ (N + 1)

since i comparisons are required to reach the entry in the ith place.
If the collection we are working with is liable to change through

insertions or deletions then it may be more appropriate to use a linked
list rather than an array to store the collection, declaring in the usual
way

Type LisLpointer = jNode;
Node = Record

Info: T;
Next: LisLpointer

end;
Var head: LisLpointer;

Then sequential search of the list pointed to by h.ead proceed,> by
examining the nodes of the list in turn, starting with headj and fol­
lowing the Next pointers until either we reach a node whose Info field
holds the record with key k or we reach the end of the list without
finding such a node. To carry out sequential search in a list we use the
following procedure

Sequential and binary searching

Procedure list-Bequential (p : List-pointer; k : K)j
Var q : List-pointer;
Begin q:= pj

while q <> nil do

241

if q i. Info. Key = k then success else q := q i.Nextj
if q = nil then failure

Endj

The worst case complexity of sequential search in a list is clearly O(N)
where N is the number of records stored.

We turn now to the situation in which the keys of our records are
drawn from an ordered type. Then, using the key field, we can sort the
records by anyone of the many sorting methods we learned about in
Chapter 7. Let us suppose that this has been done and that our records
are stored in increasing order of key in the array A. We now describe
a divide-and-conquer strategy to search for the record with a given
key k.

The idea is that if we look at a component A[i] of the array there
are these three possibilities: (1) A[i].Key = kj (2) A[i].Key > kj
(3) A[i].Key < k. If (1) occurs then we have successfully located the
record with key k in the ith position in the array. If (2) occurs then
since the entries of A are sorted it follows that the record with key
k must occur (if it is present at all) in the subarray of A indexed by
1 .. (i - l)j so our search for that record can be restricted to this sub­
array, which is smaller than the whole array A. In the same way, if
(3) occurs, then the record with key k (if it is present) must be in the
subarray indexed by (i + 1) .. N, which is again shorter than A.

The binary search algorithm uses this idea by choosing the com­
ponent A[i] to be the middle component of the array-or, to be more
precise, since an array with an even number of entries doesn't have a
middle component, we choose i to be (1 + N) div 2. The same pro­
cedure is repeated, if necessary (that is if the middle component isn't
the record we are searching for), by examining the middle component
of the appropriate lower or upper subarray. Thus we carry out binary

242 Storing and searching

search by giving the command

array_binarY-Bearch(k, 1, N);

where we have defined

Procedure array_binarY-Bearch(k : K; low, high: 1 .. N);
Var mid: 1 .. N;
Begin if low> high then failure

else begin

End;

mid := (low + high) div 2;
if A[mid].Key = k then success at position mid

else if k < A[mid].Key
then array_binarY-Bearch(k, low, mid - 1)

else array_binary_search(k, mid + 1, high) end

Although this recursive procedure mirrors the underlying idea of
the binary search algorithm it has the usual practical disadvantages of
recursion and it may be better to rewrite the algorithm non-recursively
(though perhaps a little less transparently) as follows

Begi~

End;

low := 1; high := N;
while low < high do begin

mid:= (low + high) div 2;
if A[mid].K ey = k then success at position mid

else if k < A[mid].Key then high := mid - 1
else low := mid + 1 end;

if low> high then failure

If 2k- 1 ::; N < 2k we can see that the binary search algorithm makes
at most k comparisons for a successful termination and either k - 1 or
k comparisons in the case of failure. Since k ~ log2N we see that the
worst case complexity of the binary search algorithm is 0(1og2N). This

Hashing 243

is much better than the O(N) complexity of sequential search; but we
have to take account of the work involved in sorting the array, though
of course this is done once only in preparation for a large number of
searches.

10.2 Hashing

Part of the process of compiling a program is the formation of a symbol
table in which we store all the identifiers occurring in the program
together with necessary information about them, such as type, location
in memory and various other attributes depending on the language in
which the program is written. Each time an identifier is encountered
in a program we must check whether it has already appeared; if so,
we retrieve from the symbol table the information associated with it; if
not, we add it to the symbol table or report an error.

To implement the symbol table we might think of introducing the
enumerated type Id consisting of all possible identifiers and storing the
attributes of each identifier i which occurs in the program in the ith
component of an array indexed by Id. This, however, is not a very
good idea-the number of allowable FORTRAN identifiers has been
estimated to be 1.3 x 109 , so it is not really reasonable to set up an
array of this size, which would make quite unreasonable demands on
the space available. Most of the space set aside for such an array would
inevitably remain unused, since the number of identifiers likely to occur
in a given program is a very great deal less than 1.3 x 109 •

A second (but still not very good) idea to implement the symbol
table for a program might be to form a linked list of all the identifiers
occurring in the program together with their associated information.
Insertion of a new identifier at the head of such a list is quick and easy
to perform; but when we come to search in such a list-to see whether
an identifier has to be inserted or to retrieve information about an
identifier-we have to proceed by sequential search which tends to slow
down as the number of identifiers increases.

For the maintenance of symbol tables, and for many other purposes,
it is convenient to use the method of storing and searching known as
hashing. In hashing we use an array in which the array position of a

244 Storing and searching

record can be determined by means of simple arithmetic operations on
its key field. Although we have suggested several times (in Chapters 1
and 2 and earlier in this chapter) that arrays are most suitable for the
static situation in which the collection of records stored is essentially
unchanging, hashing is designed so that even though it uses an array it
is able to handle constantly changing collections.

As before, let f{ be the key type, i.e. the set of all possible keys of
the records we are dealing with. We choose an array of size M, indexed
by 0 .. M - 1, where M is very much smaller than the size of f{-we

think of taking M to be roughly the number of records we are likely to
be storing. The array is called the hash table; and we have to make
it explicit that we have not yet said anything about the type of the
entries in the hash table.

We define a mapping h from f{, the set of all keys, to the index
set 0 .. M - 1 of the hash table. This mapping h is called the hash
function. For every possible key k it returns an integer h(k) such that
o ~ h(k) ~ M - 1. If a record has key k then we find the index h(k)
and say that the h(k)th entry in the hash table is the home position
of the record.

The underlying rough idea of hashing is to store each record in its
home position in the hash table. Unfortunately, since the size M of
the hash table is very much smaller than the total number of possible
keys, there must inevitably be pairs of keys kl' k2 such that kl i= k2
but h(kl) = h(k2)' Such pairs are called collisions. If the keys of
two records form a collision then the two records have the same home
position. This clearly raises a difficulty if the entries of the hash table
are to be records from our collection, because we can store only one
record in each component of an array.

So how do we handle collisions? We describe two ways of answering
this question.

(1) Direct chaining. The first approach proceeds by giving up the
idea that the hash table entries are of the record type T. Instead we
define the entries in the hash table to be (pointers to) lists of records.
Thus the ith component of the hash table is a pointer to a list consisting
of all the records whose home position is i, that is for which h(k) = i

Hashing

where k is the key of the record. We declare in the usual way

Type Pointer = iNode;

and then

Node = Record
Info: T;
Next: Pointer

end;

Var H : array [0 .. M - 1] of Pointer;

245

and initialise all the entries of H to be nil. Then to insert a record R at
the beginning or at any later stage we calculate i = h(R. J(ey) and then
perform Inserkat_head(R, H[i]) using the procedure defined in Section
1.4.

To search for a record in a hash table constructed in this way we
proceed by finding its home position i and then searching sequentially
in the list H[i] i. This is a possible disadvantage of the direct chaining
method, for, as the lists pointed to by the pointers in the hash table
become long, sequential searching may become rather slow. To over­
come this it is sometimes suggested that when we search for and find
a record we should at once put it at the head of the list it belongs to
(the thought here is that if a record is required once it is just possible
that it may be required again and it will be more quickly found if it is
located at the head of the list at its home position).

To delete a record we begin as usual by finding its home position i,
searching sequentially in the list H[i] i and deleting the node holding
the record by adjusting pointers in the usual way.

We have already mentioned one disadvantage of the direct chaining
method of hashing, namely the time required for sequential searching in
the lists pointed to by the hash table pointers. Another disadvantage is
that additional space is required to hold the Next pointers in the nodes,
though if the records themselves are large this represents only a small
proportional increase in the space requirement. On the other hand there
are considerable advantages in direct chaining. We have already noticed
how easy it is to insert new records and to delete existing records. But

246 Storing and searching

the main advantage is that there is (at least in theory) no limit to the
number of records which can be stored since the lists "in" the hash
table may be indefinitely extended. It is not even necessary to ensure
that the size .M of the hash table is as large as the number of records
we expect to be present-if the number is greater than M some of the
lists will contain more than one node.

To estimate the complexity of direct chaining it is convenient to
introduce the load factor A = N / M where N is the number of records
stored and M is the size of the hash table.

If we suppose that the N records are distributed uniformly over
the M lists then to make an unsuccessful search we must examine all
the entries in the list corresponding to the home position of the record
we are seeking, so the expected number of comparisons is the average
number of entries in a list, which is just A.

If our search for a record is successful then it occurs in the list corre­
sponding to its home position; let us assume that the remaining N - 1
records are uniformly distributed over all M lists. Then the expected
number of entries in the list where the record is found is 1 + (N -1) / M.
As we saw in Section 1 of this chapter (when we discussed sequential
search) the average number of comparisons required for successful se­
quential search in a list of length 1 is ~(l + 1). So the expected number
of comparisons for a successful search in the direct chaining situation
IS

HI + (N - 1)/M + 1) = 1 + HN - 1)/M ~ 1 + ~A.

To illustrate the working of direct chaining we set up a hash table of
pointers indexed by 0 .. 12; we use the hash function h defined by setting
h(k) = k mod 13 for each key k in I<. Then to store a sequence of
records with the following keys and home positions

Hashing 247

k: 897 885 329 407 336 117
h(k): 0 1 4 4 11 0

k: 115 526 586 435 138 834
h(k): 11 6 1 6 8 2

we obtain the following table of lists:

H[O] -1117\ +1897171

H[I] -1586\ +1885 171

H[2] -1834171

H[3] = nil

H[5] = nil

H[7] = nil

H[8] -1138171

H[9] = nil

H[10] = nil

H[l1] -1115\ +1336 171

H[12] = nil

(Remember that incoming records are always inserted at the head
of the appropriate list.)

248 Storing and searching

(2) Open addressing. In this method of hashing the entries of
the hash table are actual records; so we have to develop some strategy
for handling records with different keys which have the same home
position.

Initially, when all the positions in the hash table are unoccupied,
the first record may clearly be inserted in its home position. For each
succeeding record to be stored we calculate the home position and
examine whether that home position is unoccupied. If it is, then we
insert the record there; but if the home position is already occupied we
must find another location to hold the new record.

The idea here is to set up what is called a probing sequence; this
is a sequence of locations which we examine in succession until we find
one which is unoccupied, whereupon we insert the new record there.
There are several ways of defining probing sequences.

(a) The simplest approach is known as linear probing. Here the
probing sequence to be followed if the ith position is occupied is

(i + 1) mod M, (i + 2) mod M, (i + 3) mod M, ...

(The presence of mod M here indicates that when the probing sequence
reaches the top end of the array it returns to the bottom end.)

To search for a record in a hash table which has been set up using
the linear probing protocol we simply apply the hash function to its key
to find the home position and then follow the probing sequence from the
home position until the record is found or all the occupied positions in
the probing sequence have been examined without finding it. We have
to be careful here about what constitutes an "occupied" position-a
deletion may have been made from a position in the probing sequence
while there are still records stored in later positions of the sequence.

We take account of the problem we have just raised when we discuss
deletion. Clearly to delete a record with a given key we calculate its
home position as usual and follow the probing sequence until we find
the record. We then remove it from the hash table, leaving its posi­
tion unoccupied and available for use to store any new record which
is following the same probing sequence (or an overlapping one from
some other home position). But we must take some action to indicate
that there may be some occupied positions farther along the probing

Hashing 249

sequence. One way to do this would be to put a 'deleted' mark on a
location from which a record has been removed, so indicating that it is
unoccupied because of a deletion and that there may still be occupied
positions in the probing sequence.

We notice that in linear probing the probing sequences from different
home positions tend eventually to overlap, so that a record with one
of these home positions may collide with previously entered records
with another home position before it is found (during searching) or an
unoccupied position is found for it (during insertion). This overlapping
phenomenon is known as primary clustering. Of course a similar
situation arises for records with the same home position, which have
not just overlapping but identical probing sequences; we talk here of
secondary clustering.

It would take us too long to give a detailed discussion of the
average number of comparisons involved in searching when we use open
addressing; we simply record the results. As in the case of direct chain­
ing we introduce the load factor>' = N/M, where N is the number of
records stored and M is the size of the hash table; when we use open
addressing we must have >. :::; 1. Careful analysis shows that for open
addressing with linear probing the expected number of comparisons for
an unsuccessful search is

while for a successful search the expected number is

We now show the working of open addressing with linear probing
using the same input stream as we used to illustrate direct chaining,
with the same hash function (h(k) = k mod 13) and keys and home
positions

250 Storing and searching

k: 897 885 329 407 336 117
h(k): 0 1 4 4 11 0

k: 115 526 586 435 138 834
h(k): 11 6 1 6 8 2

Then the entries in the hash table H are built up as follows:

897, 885 and 329 can be inserted in their home positions 0, 1, 4
respectively since these are unoccupied.

407 has home position 4, but this is already occupied; so we examine
position 5, which is vacant, and thus we insert 407 in position 5.

336 can be inserted in its home position 11 which is vacant.

117 has home position 0, which is occupied; so is position 1. But
position 2 is not yet occupied, so we insert 117 there.

115 has home position 11, which is occupied. Position 12 is still
vacant, so 115 is inserted there.

526 can be inserted in its home position 6 which is free.

586's home position is 1, which is already occupied; so is the next
position, 2. But position 3 is free, so we insert 586 there.

435 has home position 6, which is already occupied by 526; but
position 7 is unoccupied, so we insert 435 there.

138 has home position 8, which is vacant; so 138 goes in its home
position.

Finally 834 has home position 2. Positions 2, 3, 4, 5, 6, 7 and 8 are
all occupied; so 834 lands eventually in position 9.

We can summarise the procedure just described by means of the
following table where the records with the unbracketed keys are stored
in the positions indicated, while the bracketed entries show successive
attempts to find vacant positions for the records with those keys.

Hashing 251

H[O] 897 (117)
H[l] 885 (117) (586)
H[2] 117 (586) (834)
H[3] 586 (834)
H[4] 329 (407) (834)
H[5] 407 (834)
H[6] 526 (435) (834)
H[7] 435 (834)
H[8] 138 (834)
H[9] 834

H[10]
H[l1] 336 (115)
H[12] 115

(b) An alternative approach to collision handling in open addressing
is quadratic probing. Here it is convenient to choose the hash table
size to be a prime number P and to prescribe that the probing sequence
to be followed if the ith position is occupied should be

(i + 1) mod P, (i + 4) mod P, (i + 9) mod P, ...

This approach still suffers from secondary clustering, since all entries
with the same home position follow the same probing sequence; but
primary clustering is avoided-the probing sequences from different
home positions may occasionally overlap, but they will not coalesce
as they do in linear probing. Quadratic probing does have the disad­
vantage, however, that the probing sequence will examine only half the
entries in the hash table (only half the numbers 1, 2, ... , P - 1 are
congruent to squares mod P). We can avoid this difficulty by choosing
P to be a prime number which is congruent to 3 mod 4 and using the
probing sequence

(i + 1) mod P, (i -1) mod P, (i + 4) mod P, (i - 4) mod P,
(i + 9) mod P, (i - 9) mod P, ...

which will eventually include all the array positions.

252 Storing and searching

Using P = 13 and the same input stream and hash function as be­
fore, the first version of quadratic probing will produce the table

H[O] 897 (117)
H[l] 885 (117) (586)
H[2] 586 (834)
H[3] 834
H[4] 329 (407) (117)
H[5] 407
H[6] 526 (435)
H[7] 435
H[8] 138
H[9] 117

H[10]
H[l1] 336 (115)
H[12] 115

(c) A third approach to collision handling in open addressing which
reduces clustering almost completely is double hashing. Here we
define a second hash function h' and then for a record with key k whose
home position under the first hash function h is h(k) = i we follow the
probing sequence

(i + h'(k)) mod M, (i + 2h'(k)) mod M, (i + 3h'(k)) mod M, ...

Thus secondary clustering occurs only for keys which have the same
value under both hash function h and h'. Primary clustering is greatly
reduced.

If we use the same input stream and hash function as before and
define the second hash function h' by h'(k) = 1 + (k mod 11) then we
have

k: 897 885 329 407 336 117
h(k): 0 1 4 4 11 0
h'(k): 7 6 11 1 7 8

Hashing 253

k: 115 526 586 435 138 834
h(k): 11 6 1 6 8 2
h'(k): 6 10 4 7 7 10

and we produce the table

H[O] 897 (117) (435)
H[1] 885 (586)
H[2] 138 (834)
H[3]
H[4] 329 (407) (115)
H[5] 407 (586)
H[6] 526 (435)
H[7] 435
H[8] 117 (138)
H[9] 586

H[10] 115
H[11] 336 (115)
H[12] 834

We have not yet discussed the question of how we choose a hash
function. It is clear that since the purpose of hashing is to provide
quick access to records we should use a hash function which is easy to
compute; furthermore, although we cannot expect to avoid collisions
entirely, we would certainly like to avoid the situation where only a few
of the entries in the hash table occur as home positions for records in our
collection-it would be preferable to have a hash function whose values
were uniformly spread over the index set of the hash table. Various
approaches have been suggested for the definition of suitable functions.

The first idea is to transform the keys of our records into integers.
(This can be done in many ways; for example, when we are forming
a symbol table we might form a number from an identifier by adding
up the ordinal numbers of its constituent characters.) Then we choose
for the size M of the hash table, indexed by 0 .. M - 1, a large prime
number (in practice it is suggested that a number with all its prime
factors greater than about 20 would be acceptable) and define the hash
function h by setting h(k) = (k mod M) for all keys k.

254 Storing and searching

Alternatively we may choose the hash table size to be a power of
2, say M = 2m • Then the elements of the index set 0 .. M - 1 can
all be expressed using m binary digits. Here again we transform the
keys of our records into integers, expressing them this time in binary
notation. Then various hash functions may be defined by constructing
m-bit sequences from the binary representations of the keys. For exam­
ple, we may simply choose the m most significant .bits;or we may ·cut
the binary form of each key into m-bit sections, add these and take the
m least significant bits of the sum; again it is sometimes recommended
that we square the binary form of the key and extract m bits from the
middle of the binary representation of the square.

10.3 Exercises 10
1. illustrate the working of binary search by looking for the records with

Key fields 30 and 14 in the array A indexed by 1 .. 16 given by

Index 1 2 3 4 5 6 7 8
Entry 5 7 8 10 13 15 18 20

Index 9 10 11 12 13 14 15 16
Entry 22 24 25 26 27 30 32 38

2. If you want to test a program you have written to implement binary
search for an array with N records in increasing order of Key field,
how many test runs would convince you that your program is correct?

3. Can you suggest how we might devise a "ternary" search algorithm
which would split the array in which we are searching into three parts
rather than two as in binary search?

4. Show how to insert a stream of records with Key fields as follows

534702 105523959699821883 8426866584 20382570344

in a hash table H of size 19 (indexed by 0 .. 18), using the hash function
h given by h(k) = (k mod 19) and

(a) linear probing;

Exercises 10 255

(b) quadratic probing (both versions);
(c) double hashing, using the secondary hash function h' given

by h'Ck) = 1 + (k mod 17).
In each case find the average number of comparisons required to search
for a record which is present in the hash table.

5. Show the result of using the direct chaining method to store the same
input stream, using a hash table of size 13 (indexed by 0 .. 12) and the
hash function hl given by hl(k) = (k mod 13).

Chapter 11

STORING IN BINARY
TREES

11.1 Storing in binary search trees

We recall from Chapter 3 that a binary search tree is a binary tree
whose nodes hold records in such a way that for every node in the tree
the key field of its information field (assumed of ordered type) is greater
than that of every node in its left subtree and less than that of every
node in its right subtree. Although we did not discuss the problem in
Chapter 3 it is clear how to search for an item stored in a binary search
tree-we compare its key with the key of the information field of the
element stored at the root node (the "root key"); if they are the same
then our search has been successful; if not, then we search recursively
in the left or right subtree of the root according as the key of the item
we are searching for is less than or greater than the root key.

Using the declarations of Chapter 3 we search in a binary search
tree using the procedure

257

258 Storing and searching

Procedure tree_binary_search (k : K; p: Tree_pointer);
Begin if p = nil then failure

End;

else if p i.lnfo.Key = k then success
else if p i.lnfo.Key > k

then tree_binary _search (k, p i . Left)
else tree_binary _search (k, pi. Right)

or non-recursively by introducing a boolean variable done and
proceeding as follows:

Begin Repeat
if p = nil then begin failure; done := true end

else if p i.lnfo.Key = k then begin success;
done := true end

else begin

until done
End;

done := false;
if k < P i·lnfo.Key

then p:= p i.Left
else p := p i.Right end

To determine the complexity of tree_binary_search we begin by
noticing that the maximum number of key comparisons which will be
required is one more than the height of the tree in whose nodes the
items are stored. The height of a binary search tree containing a
collection of items will depend not only on the number of items but
on the order in which they were inserted in the tree. For example, if
a collection of items with keys 1, 2, ... , 7 is inserted in increasing or
decreasing order of key then the :resulting tree reduces to a list and so
has height 6; but if the keys appear in the order 4, 2, 6, 1, 3, 5, 7 then
the tree which is produced is

Storing in binary search trees 259

which has height 2.
In general the height h of a binary search tree with N nodes satisfies

llog2 N J :::; h :::; N - 1

where l x J denotes the largest integer less than or equal to the real
number x.

Thus in the worst case the maximum number of key comparisons
required to find one of N items stored in a binary search tree is N, while
in the most favourable case the maximum number is 1 + llog2 N J. It can
be shown that if all N! possible arrangements of the keys in the input
stream are equally likely then the average number of comparisons over
all items and all N! binary search trees is approximately 2 InN, where In
denotes the natural logarithm, and this is approximately 1.386 log2 N.

Speaking very roughly we can say that if we want to reduce the
height of a binary search tree (and so the maximum number of
comparisons required in searching) we should try to balance the left
and right subtrees. This idea of balancing can be formalised in two
ways, sometimes described as weight-balancing and height-balancing.

Using the first approach we introduce perfectly balanced trees:
a binary tree is said to be perfectly balanced if for the root node and
every other node of the tree the number of nodes in its left subtree
and the number of nodes in its right subtree differ by at most 1. If
we know the number of items we are dealing with, N say, it is easy
to devise a recursive procedure to construct a perfectly balanced tree
to store them: we store the first item in the root node, then use the
next N div 2 items to form a perfectly balanced tree, which is taken to

260 Storing and searching

be the left subtree of the root, and then finally we use the remaining
N - N div 2 -1 items to form a perfectly balanced tree and take it to be
the right subtree of the root. The trouble with this simple idea is that,
although the resulting tree is perfectly balanced, there is no guarantee
that it will be a binary search tree. Even if it were a search tree we
would still have to face the problem of maintaining both the search
tree property and perfect balance every time we carry out insertion or
deletion of an item.

11.2 Storing in AVL-trees

Since the maximum number of comparisons required to search for an
item is so closely related to the height of the tree in which our collection
is stored, it seems natural in the context of storing and searching to
consider height-balance rather than weight-balance. So we introduce
the so-called AVL-trees, first described by the Russian mathematicians
Adel'son-Vel'skii and Landis. An AVL-tree is a binary search tree in
which for every node the heights of the left and right subtrees differ by
at most 1. Thus, for example,

is an AVL-tree, while

Storing in AVL-trees 261

is not, since the height of the left subtree of the root is 1 while that of
its right subtree is 3.

We consider now the operation of inserting a new item in an AVL­
tree. Since an AVL-tree is a binary search tree we begin by carrying
out ordinary binary search tree insertion as described in Chapter 3. It
may happen that after this operation has been carried out the resulting
binary search tree is still an AVL-tree. For example, if we insert 1 or 9
in the A VL-tree

we produce the trees

262 Storing and searching

which are both AVL-trees. But if we insert 1, 3, 5 or 7 in the AVL-tree

we destroy the AVL property; for example, inserting 3 produces the tree

Storing in AVL-trees 263

which is not an AVL-tree since the height of the left subtree of the root
is 3 while that of its right subtree is 1.

In order to discuss the action to be taken when binary search tree
insertion in an AVL-tree destroys the AVL property it is convenient to
attach to each node of the tree an additional field

Balance: -1 .. 1

with the understanding that the Balance field of a node has the value

Height of the left subtree of the node - Height of its right subtree.

When we insert a new item in a binary search tree we start at the
root and follow a sequence of nodes until eventually we create a new
left or right child for the last node in the sequence and use it to hold
the new item; we call this sequence of nodes the search path for the
new item-it is, after all, the path we would take if we were searching
for the new item.

Now we specialise to the case of an AVL-tree. If it happens that
for every node on the search path of a new item we have Balance = 0
then insertion of the new item will change the Balance field of each
of these nodes, but only to -lor 1, so that the tree retains the AVL
property. This is illustrated by the insertion of an item with Key 3 in
the A VL-tree

(where the numbers in parentheses are the Balance fields of the nodes).
After insertion we have

264 Storing and searching

~ 16 (0)1

13 (0)1

Next suppose that at least one node on the search path has nonzero
Balance; let A be the node on the search path with nonzero balance
which is closest to the new node which would be required for ordinary
binary search tree insertion. We call A the pivot node. Consider, for
example, the AVL-tree

To insert an item with Key field 5 we follow the search path 8, 4, 6 and
to insert an item with Key field 9 the search path is 8, 10; in both cases
the node A holding the item with Key 8 is the pivot node.

Since the Balance field of A is nonzero its subtrees are of unequal
height-let us call them the higher and the lower subtree. It 1S clear
that if the insertion under consideration is to be in the lower of the
two subtrees of A then the Balance field of A will become 0 and

Storing in A VL-trees 265

the augmented tree will satisfy the AVL property without any further
adjustment. This is what happens w.hen we inser.t 9 in the .abo.ve tree.

We have next to consider what happens when the insertion should
be made in the higher of the two subtrees of A. Here straightforward
binary search tree insertion would change the Balance of A to 2 or -2
and so destroy the AVL property. We now show how to reorganise the
entries in the subtree with root A together with the new item so as to
form an AVL-tree. This will clearly make the whole augmented tree
into an AVL-tree.

Suppose first that the higher subtree of A is the left subtree, so
that the Balance field of A is 1. Let the root node of this subtree be
Bj according to the definition of the pivot node A the Balance field of
B is O. Before the insertion of the new item the subtree with root A
can be represented schematically as

where Tr(A) is the right subtree of A and T,(B) and Tr(B) are the left
and right subtrees respectively of B. Since A has Balance = 1 and B
has Balance = 0, the three subtrees Tr(A), T,(B) and Tr(B) all have
the same height.

Now there are two cases to consider:

(1) which we denote by LL: the new item should be inserted in the
left subtree T,(B) of B. Straightforward insertion would produce a new
left subtree T{(B) of height 1 greater than T,(B), so the subtree with
root A becomes

266 Storing and searching

in which A has Balance = 2, which is not allowed.

In this case we form the tree represented schematically by

which has the AVL property; the nodes A and B both have Balance
=0.

The LL adjustment (often called an LL-rotation) may be described
as follows: The left child B of the pivot node A takes the position of
the pivot node, carrying with it its left subtree; the pivot node becomes
the right child of B, carrying with it its right subtree and acquiring the

Storing in AVL-trees 267

right subtree of B as its left subtree.

Consider for example the insertion of a record with Key field 2 in
the A VL-tree

The search path for 2 is 8, 5, 3, 1; the pivot node is A = 5 and
its left child is B = 3. Straightforward binary search tree insertion
produces the non-AVL tree

268 Storing and searching

Since 2 was inserted in the left subtree of B we are in the situation
LLj so we readjust the tree according to the description above, obtaining

(2) The second case we have to consider is denoted by LR: in this
case the new item should be inserted in the right subtree Tr(B) of B.

There are here three possibilities to consider, but they are all dealt
with in a similar way.

(a) It may happen that the node B has no children, i.e. TI(B) and
Tr(B) (and so also Tr(A)) are all nil. In this situation we must intro­
duce a new node as right child C for B and store the new item in C.
This produces the subtree

Storing in A VL- trees 269

rooted at A, in which A has Balance = 2, which is not allowed and B
has Balance = 1. To restore the AVL property we replace this subtree
by

This is the situation we find ourselves in when we have to insert a new
record with Key field 7 in the AVL-tree

The search path is 10, 5, 8, 6; the pivot node A is the node containing
8; B is the node containing 6. If we introduce a new node containing 7
as right child for B we obtain

270 Storing and searching

This is not an AVL-tree, so we must rebalance according to the
general discussion above, obtaining

(b) It may happen that the right subtree of B (in which the new
item is to be inserted) is not nil but has root node which we denote
by C and left and right subtrees Tz(C) and Tr(C) (possibly nil). We
illustrate schematically by

Storing in AVL-trees 271

Here B and C have Balance = 0 since A is the last node on the search
path with non-zero Balance. So T/(C) and Tr(C) have the same height,
h say, and it follows that T/(B) and Tr(A) have height h + 1.

Suppose the new item is to be inserted in T/(C). Ordinary binary
search tree insertion would produce a new left subtree T{(C) of height
1 greater than T/(C). This would alter the Balance of A to 2, which is
illegal. We restore the AVL property by replacing the inadmissible

272 Storing and searching

by

in which Band C have Balance = 0 and A has Balance = -1.

(c) Suppose the situation is as in (b) but that this time the new item
is to be inserted in the right subtree Tr(C) of C. Ordinary insertion
would produce the non-AVL tree

Storing in AVL-trees 273

where T:(C) is the tree of height h + 1 obtained by inserting the new
item in Tr(C). In this case the AVL property is restored by replacing
the above non-AVL tree by

in which A and C have Balance = 0 and B has Balance = 1.

The three versions of the LR adjustment (often called LR-rotations)
can all be described in the same general way. As above, let A be the
pivot node, B its left child, and let C be the right child of B. Then C
takes the position of the pivot node Aj B becomes its left child and A
its right child. B retains its left subtree and acquires the left subtree
of C as its right subtree. A retains its right subtree and acquires the
right subtree of C as its left subtree.

We illustrate (c) by examining the insertion of a record with Key
= 7 in the A VL-tree

274 Storing and searching

The search path is 9, 4, 6, 8; the pivot node A is the node containing 9;
B is the node containing 4; the record with Key = 7 is to be inserted
in the right subtree of B, so we are in case LR(c). Straightforward
insertion produces the non-AVL tree

Storing in AVL-trees 275

and the rebalancing described above produces the AVL-tree

So far we have been dealing only with the situation where the pivot
node for a particular insertion has Balance = 1 and the new item has
to be inserted in the left subtree of the pivot node. There were two
cases to consider, one, which we called LL, where the new item must
be inserted in the left subtree of the left child of the pivot and the
other, which we called LR where the insertion must be made in the
right subtree of this left child.

We turn now to the situation where the pivot node has Balance
= -1, so that the right subtree of the pivot node is the higher, and we
have to insert a new item in this higher right subtree. Again there are
two cases to consider, which are symmetric in the obvious sense to LL
and LR:

(1) RR-rotation. Here the new item must be inserted in the right
subtree of the right child B of the pivot node A. In this case B takes
the place of A, carrying with it its right subtree; A becomes the left
child of B, carrying with it its left subtree and acquiring the left subtree
of B as its right subtree.

(2) RL-rotation. Here the new item is to be inserted in the left
subtree of B, the right child of the pivot A. If C is the left child of
B after ordinary binary search tree insertion then C takes the place of
A; B becomes its right child and A becomes its left child. B retains

276 Storing and searching

its right subtree and acquires C's right subtree as its left subtree; A
retains its left subtree and acquires C's left subtree as its right subtree.

It has been shown by examination of a large body of empirical
evidence that just over half the insertions in an AVL-tree require no
rebalancing, and that of those which do require rebalancing roughly
half are of types LL or RR and roughly half of type LR or RL.

Since the number of key comparisons required to search for a record
in a binary search tree is at most 1 greater than the height of the tree,
we now investigate what can be said about the height of an AVL-tree
when we know the number of nodes, i.e. the number of records stored
in the tree.

It is clear that if we have a binary search tree of height h then the
number of its nodes is between h + 1 and 2h+l - 1 inclusive. So if N is
the number of records stored in an AVL-tree of height h we have

N ::; 2h+l - 1

and so

Now let Nh be the least number of records which can be stored in
a binary search tree of height h without violating the AVL property.
Clearly No = 1 and Nl = 2. If h ;::: 2 then an AVL-tree of height h with
as few entries as possible must consist of a root node whose subtrees
are AVL-trees of heights h - 1 and h - 2 each with as few entries as
possible. Thus for h ;::: 2 we have

Nh = 1 + Nh- l + Nh-2.

Recall the definition of the Fibonacci numbers:

Fo = 0, Fl = 1 and, for all integers k ;::: 2, Fk = Fk- 1 + Fk- 2.

It is easy to establish using mathematical induction that for all integers
h ;::: 0 we have Nh = Fh+3 - 1. So if we have N records stored in an
AVL-tree of height h we must have

Storing in AVL-trees 277

It is known that for all integers k ~ 0 we have the inequality

where <p = !(1 + V5). Hence we have

Taking logarithms to base 2 we have

from which we deduce eventually that

h < 1.4404 log2(N + 2) - 1.328.

Thus if N items are stored in an AVL-tree then the height h of the tree
is restricted by the inequalities

log2(N + 1) - 1 :5 h < 1.4404log2(N + 2) - 1.328.

In fact it has been found as a result of extensive experimentation that
if all N! arrangements of an input stream of N records are equally
likely then the average height of all N! AVL-trees is approximately
log2N +0.25. It can also be shown that for an AVL-tree with N entries
the operations of searching for a record, inserting a new record and
deleting an existing record are all O(log2N) operations.

278 Storing and searching

11.3 Exercises 11

1. Starting with the AVL-tree

insert in order records with keys 15,22,37,39, maintaining the AVL
property after each insertion.

2. Starting with the same AVL-tree

in each case, construct the AVL-trees which result from inserting
(a) hI, then iaj (b) hI, dl, then bl.

3. Build up an AVL-tree from the input stream

D, E, G, B, A, C, F.

Chapter 12

STORING IN MULTIWAY
TREES

12.1 Multiway search trees

Suppose, as usual, that we have a collection of records each of which
has, among many others, a field Key of some ordered type. In thinking
of a way to generalise the binary search tree structure, whose usefulness
has been described in the previous Chapter, we might be tempted to
introduce a structure made up of nodes each having a fixed number
n of children (which are again structures of the same type or possibly
empty) and containing n - 1 records-binary trees correspond to the
case n = 2. It turns out that it is better not to be quite so restrictive,
but rather to require only that each node have at most n children and
contain one fewer record than it has children.

So we make the following definition. Let n be an integer greater
than or equal to 2. Then a multi way search tree of order n is
either nil or else consists of a distinguished node, called its root, which
contains m records (where 1 ::; m < n) arranged in increasing order
of Key field and has associated with it m + 1 multiway search trees
of order n, called its subtrees, in such a way that if the subtrees of
the root are Sl, S2, ... , Sm+l and kl' k2' ... , km are the Key fields (in
increasing order) of the records stored in the root then

279

280 Storing and searching

(1) for every record X in the root of Sl we have X.Key ~ k1 ;

(2) if 1 < i < m + 1 then for every record X in the root of Si we
have ki - 1 < X.Key ~ k i ;

(3) for every record X in the root of Sm+l we have X.Key > km .

To implement multiway search trees in Pascal it is convenient to
extend the type T of the records to be stored by adding a "null" or
"absent" record to T; we call the augmented type T'. This extension
allows us to pretend that every node contains n - 1 records, where n is
the order of the multiway search tree-namely, we add to the right of
the m actual records held in the node n - m - 1 of the "null" records.
In the same way we may pretend that each node has n subtrees, simply
by introducing nil subtrees to make up the number. Then we make the
declarations

Const order = n;
Type Multiway_tree_pointer = i Node;

Node = Record
Element : array [1 " order -1] of T';
Child: array [1 .. order] of Multiway_tree_pointer;
Number: 1 .. order -1

end;

where we use the Number field to hold the number of actual (non­
"null") records held in the node. For some purposes it is necessary to
add another field Parent of type Multiway_tree_pointer: its name makes
its meaning clear.

In order to discuss the operation of searching in a multiway search
tree it is useful to introduce a function

Function place (k : K; B : Node) : 1 .. order;

with the property that
if (1) k ~ B.Element[I].Key then place(k, B) = 1;
if (i) B.Element[i - 1].Key < k ~ B.Element[i].Key (where

1 < i < order) then place(k, B) = i;
if (n) B.Element[order -1].Key < k then place(k, B) = order.

The details of the definition of this function are left to the reader. If
the order is not very large it may be as well just to use a sequential

Multiway search trees 281

search type of approachj but since the keys of the elements in the node
B are in increasing order a modified binary search approach would also
be appropriate.

Suppose now that we are searching for a record with key kl in the
multiway search tree whose root is pi, i.e. is the node pointed to by
the Multiway_tree_pointer p. Let i = place(kl' p n.

If 1 ~ i ~ order -1 and kl = p i .Element[i].Key then we report
success and our search is terminated-the record we are looking for is
the ith record in the node pi. Otherwise kl will satisfy the inequality
numbered (i) with ~ replaced by < (notice that here i may be equal to
the order n)j in this case we follow the pointer pi. Child[i] and repeat
the process recursively.

When we carry out a search in a multiway search tree we really
want to know two things-(I) the node which holds the record we are
looking for and (2) its position in that node. Since a Pascal function
cannot return more than one result we write a function which returns
a pointer to the node (1) and we set a global variable position to hold
the position (2). Thus we declare

Var position: 0 .. order -lj

(we allow 0 as a possible value for position to deal with the case
where the record weare looking 'for is llOt present) -andthen'write -the
recurSIve

Function search (k : K j q: Multiway_tree_pointer) Multi-
way_tree_pointerj

Var t : Multiway_tree_pointerj
i : 1 .. order;

Begin t := qj

Endj

if t = nil then begin search := nilj position := 0 end
else begin

i := place(k, t j)j
if k = t i .Element[i].Key

then begin search := tj position := i end
else search := search(k, t i . Child[i]) end

282 Storing and searching

This can, as usual, be transformed into a non-recursive version, as
follows:

Function searchl (k : I<; q : Multiway_tree_pointer) Multi-
way_treLpointer;

Var t : Multiway_tree_pointer;
i : 1 .. order;
found: boolean;

Begin t := q;

End;

found := false;
while (t <> nil) and (not found) do begin

i := place(k, t j);
if k = t i .Element[i].I<ey then found := true

else t := t i . Child[i] end;
if found then begin searchl := t; position := i end

else begin searchl := nil; position := 0 end

Perhaps the most frequent use of multi way search trees is in
situations where we have to deal with vast collections of data, too
large to be stored in the internal memory of our computer. In such
situations we shall think of the nodes of our search trees as residing in
external memory-on disk, say-and pointed to by variables of type
ExLpointer whose values are the addresses in external memory of the
locations holding the nodes they point to. In order to work with the
contents of a node we must read its contents into internal memory.
We handle this by declaring a variable block of type Node and defin­
ing a procedure diskread with an ExLpointer parameter such that the
command diskread(p) reads the contents of the node pion disk into
the Node variable block. Then searching can be carried out by using
the following function:

Multiway search trees 283

Function exLsearch (k : I<; q : ExLpointer) : ExLpointer;
Var t : ExLpointer;

i : 1 .. order;
found: boolean;

Begin t := q;

End;

found := false;
while (t <> nil) and (not found) do begin

diskread (t) ;
i := place(k, block);
if k = block.Element[i].I<ey then found := true

else t := block.Child[i] end;
if found then begin ext-Bearch := t; position := i end

else begin ext-Bearch := nil; position := 0 end

Each execution of the while loop of the procedure ext-Bearch
involves accessing a node in external memory and transferring its con­
tents to internal memory: only then can the search proceed. The
access-and-transfer operation tends to be more time-consuming than
the work done after the transfer is made; so the whole process will be­
come more efficient if the number of disk accesses can be reduced. The
desire to do this raises a general question about the storage of infor­
mation items-should we store complete items or just their keys along
with the addresses of the locations where the corresponding complete
items are stored? The maximum size of a node-the amount of infor­
mation which can be transferred in one disk access-is usually deter­
mined for us by the computer we are using; but since complete records
typically take 5 to 40 times as much space as their keys we can store
in a node many more key-and-address pairs than complete records. Of
course once such a pair is found another disk access will be necessary to
retrieve all the interesting information fields of the corresponding record.

We turn now to the operation of insertion in a multi way search tree.
By an obvious modification of the search procedure we find the node of
the tree in which the new item would be stored if it were present and

284 Storing and searching

also the position it would occupy among the items stored in that node
(we recall that the items in a node are arranged in increasing order of
Key field). We should decide what action to take if the item we are
trying to insert is already present. If it is not already present then the
node we reach by means of the search procedure will be a leaf, i.e. all
its subtrees are nil.

If this leaf is not full, i.e. if it contains fewer than the maximum
permitted number of actual records (order -1), then we insert the new
record in its proper position, so that the Key fields are still in increas­
ing order, and the insertion process terminates. If the leaf reached is
full then we must introduce a new node, with the new record as its
only entry, and make it the appropriate child of the full leaf node-if
kl < k2 < ... < kn - 1 are the keys in the leaf node and ki - 1 < k < ki

where k is the key of the new record then the Child[i] pointer from the
leaf node points to the new node.

As in the case of binary search trees this insertion procedure may
produce very unbalanced trees, in which searching for some entries may
require a large number of node accesses. Furthermore, since when leaves
are created they contain only one item, and new leaves may be created
before previously created leaves are full, space may be wasted in setting
aside space for new nodes which are nearly empty and time wasted in
transferring nearly empty nodes from disk. On the other hand new
nodes are not created until their parents are full; the nodes nearest the
root tend to be full, so many keys will be found on short paths.

12.2 B-trees

At the end of the last Section we mentioned some disadvantages of
general multiway search trees caused by using the natural method of
inserting new items-the tree may become unbalanced and there may
be many nearly empty nodes. In an attempt to avoid these difficulties
we introduce a special type of multiway search tree as follows: a B-tree
of order n is a multi way search tree of order n such that

(1) the root node may contain between 1 and n - 1 records;
(2) each non-root node must contain between (n - 1) div 2 and

B-trees 285

n - 1 records;
(3) all the leaves are at the same level.

Searching in a B-tree is carried out according to the procedures
which we described in the last Section for searching in general
multiway search trees; but the procedure described there for insertion in
general multiway search trees would destroy the B-tree property since it
involves creating I-element leaf nodes which (at least for n > 4) would
contradict condition (2). To illustrate the insertion procedure which
is used in order to maintain the B-tree property consider the follow­
ing examples where the order n is 5 and so n div 2 is 2. (In real life
situations the order of the B-trees in use is likely to be very much
larger, perhaps around 100.)

Suppose we start with a B-tree consisting of a root node which con­
tains 3 records:

(We show only the Key fields of the entries; the order relation for the
two-letter keys is dictionary order.)

There is still room in the root node to insert a record. whose Key is
da (we shall just talk of "inserting da"); but once this insertion is made
we have the node full:

If we want to insert fa we cannot put it in the root node which is
now full, nor can we introduce a I-element leaf, which would not be
permissible in a B-tree of order 5. Instead we carry out the following
"node-splitting" operation:

(1) we split the given node into two nodes Land R;

(2) we put the records with the smallest two keys (among the

286 Storing and searching

original four and the new record) into the left node L;
(3) we put the records with the largest two keys among the five into

the right node R;
(4) we create a new root node;
(5) we put the record with the middle key into the new root node

(where we are allowed to have only a single entry) and introduce point­
ers to the left and right of this record pointing to Land R respectively.

We obtain

To insert cf we notice that ef precedes da in dictionary order; so it
must be inserted in the subtree of the root node to the left of da, which
consists of the leaf containing ba and ca. Similarly ee and ee come later
in the dictionary than da and so they must be inserted in the subtree to
the right of da, which consists of the leaf containing ea and fa. Hence,
inserting ef, ee and ee (in any order) we obtain eventually

Suppose now that we want to insert eb. Since eb is later than da in
dictionary order it should go to the right of da. But all we have to the
right of da is a full node. So we split the node containing ea, ee, ee and
fa into two, sending ea and eb to the left of the two new nodes, ee and
fa to the right and promoting ee to the root node, with pointers to its
left and right pointing to the new nodes. Thus we have

B-trees 287

To insert di we notice that di occurs in the dictionary between da
and ec, so it must go in the subtree pointed to by the arrow between
da and ec, which consists of a leaf node which is not yet full. So di is
inserted in its dictionary-order place in this leaf. In the same way we
insert dc and f g to obtain

If at this stage we have to insert any entry between da and ec the
middle leaf must split; thus if de is inserted we obtain

In the same way, if we insert fi, ga, fc and fe we reach eventually

Next suppose we want toiIlserta record with f(ey -field between ec -and
fg. Such an item ought to go in the fourth leaf-but this is already
full. So we split it in the usual way and promote an item to the parent,

288 Storing and searching

which is the root node. But the root node is also full, so it must be
split and an item passed up to a newly created root node containing
just this single item. So, for example, if we insert eg we split the fourth
leaf into a node containing ee and eg and one containing fe and fe;
and we pass fa up to the root node. This is then split into a node
containing da and di and one containing fa and fg. The new root
node contains only ec. So the B-tree we have constructed is

where the left subtree L of ec is

and its right subtree R is

To sum up what we have learned from building this B-tree, we have
the following instructions:

To insert a new item in a nil B-tree we create a new node with the
new item as its only entry. To insert a new item in a non-nil B-tree
we begin by finding the leaf node N which would contain the item if it
were present (by following a search path in the usual multi way search
tree fashion). Then

B-trees 289

(1) if N is not already full (i.e. contains fewer than n - 1 items,
where n is the order of the B-tree), introduce the new item into N so
as to keep the entries of N in sorted order of J(ey fields;

(2) if N is full (i.e. contains n - 1 items),
(a) arrange the new item and the n - 1 pre-existing items of

N in increasing order of J(ey field, say

(b) split the node N into a left-hand node L containing XI,
... , X q , where q = (n - 1) div 2 and a right-hand node R containing
X q+2, ... , Xn;

(c) if N has a parent node P which is not full, insert X q+1 in
P using (1) and let the pointers to the left and right of X q+1 point to
Land R respectively;

if N has a parent node P which is full, apply (2) recursively;
if N has no parent node, create a new node with the promoted

item X q+1 as its only item and its two pointers pointing to Land R.

We repeat that insertion in a B-tree always begins by trying to add
an element to a leaf node. The B-tree resists increasing its height by
examining all the nodes on the search path from root node to this leaf
to see if any of them has room for an extra element. Only if all these
nodes are full do we have to create a new root and increase the height
of the B-tree by 1.

Suppose we have a B-tree of order n; let q = (n -1) div 2. Consider
the following table:

290 Storing and searching

Minimum Maximum Minimum Maximum
Level Number Number Number Number

of nodes of nodes of items of items
0 1 1 1 n-1
1 2 n 2q n(n - 1)
2 2(q + 1) n2 2q(q + 1) n2 (n + 1)
3 2(q + 1)2 n3 2q(q + 1)2 n3 (n - 1)

h 2(q + 1)h-l nh 2q(q + 1)h-l nh(n - 1)

whose entries can be deduced directly from the definition of B-trees.
Thus the minimum number of items in a B-tree of order nand

height h (h ~ 2) is

1 + 2q + 2q(q + 1) + 2q(q + 1)2 + ... + 2q(q + 1)h-l

= 1 + 2q(1 + (q + 1) + (q + 1? + ... + (q + 1)h-l)

(q + 1)h - 1
= 1 + 2q (q + 1) _ 1

= 1 + 2((q + 1)n - 1) = 2(q + 1)h - 1

So if a B-tree of order n and height h contains N items we must have

N ~ 2(q + l)h - 1,

where q = (n - 1) div 2, from which we deduce that

h ~ 10gq+t(HN + 1))

and so the maximum number of nodes which have to be examined in
order to locate an item, which is 1 more than the height, is at most

The maximum number of items in a B-tree of height h is

B-trees

(n - 1) + n(n - 1) + n2(n - 1) + ... + nh(n - 1)
= (n - 1)(1 + n + n2 + ... + nh)

n h+1 - 1
= (n - 1) = n h+1 - 1

n-1

291

Thus, for example, in B-trees of order 100 (n = 100, q = (n -1)div2 =
49) and heights 1, 2, 3 we can store up to 9999, 999999, 99999999 items
respectively.

We have next to consider the problem of how to delete an item
from a B-tree without destroying the B-tree property. First of all we
persuade ourselves that we may confine our attention to the problem
of deleting an item from a leaf of the B-tree. Suppose we have an
item X somewhere in a B-tree. Consider the right pointer of X, i.e.
if X is p i .Element[i] for some node P i (1 :::; i :::; n - 1), we look at
pi. Child[i + 1]. All the items in the subtree pointed to by this pointer
have Key field greater than X.Key. The item in this subtree with least
Key field is the first entry in the leftmost leaf of the subtree. If we
delete this element from the B-tree (maintaining the B-tree property)
and then replace X by this element we are left with a B-tree with X
deleted.

For example, suppose we want to delete the record with Key 32
from the B-tree of order 5

L

where the left subtree L of 32 is

292 Storing and searching

and its right subtree R is

We look at the leftmost leaf in R; this is the node

We remove the record with lowest J(ey -field in -this node, 34, and use
it to replace the record with Key field 32 in the root node, which we
want to delete. This produces

where L is as before and .the new .right subtree RI is

We have seen by the preceding discussion and example that the
problem of deleting an entry from a B-tree reduces to the question:
How do we delete an entry from a leaf node N?

If N is also the root node then, since the minimum number of entries
in the root node of a B-tree is 1, we may simply remove elements from
N without destroying the B-tree property until there is only -one left;
and when the last element in the root node is deleted we are left with

B-trees 293

a nil B-tree.
Suppose now that N is a leaf node but not the root.
(1) If N has more than q = (n -1) div 2 entries we simply remove

the item to be deleted and readjust the numbering of the elements in
the node; after this removal N still has at least q entries, the minimum
allowable for a non-root node in a B-tree. We carried out this operation
in removing 34 from

to form

(2) If N has exactly q entries then removal of one of them would leave N
with fewer than the minimum number of entries allowed in a non-root
node of a B-tree.

Two possibilities can occur. To describe them it is useful to intro­
duce a modest amount of terminology which is almost self-explanatory.
Suppose N is the node pointed to by the ith Child pointer of its Parent
node P. If 1 < i ~ n then the node pointed to by P. Child[i-I] is
called the left sibling of N and if 1 ~ i < n then that pointed to by
P.Child[i + 1] is called the right sibling of N.

(a) It may happen that N has either a left or right sibling (or both)
with more than q entries. Let S be such a sibling. (If we were writing
a program to implement this we would have to say which sibling to
choose if both had more than q entries.) Suppose S is the left sibling
of N. Then consider the sequence

entries of S,
"separating" element P.Element[i - 1] in P,

remaining entries of N after deletion.

This sequence is in increasing order of Key field. Suppose the number
of entries in this sequence is k: certainly k ~ (q + 1) + 1 + (q - 1) =
2q + 1, from which we deduce easily that k div 2 ~ q and hence also

294 Storing and searching

k-1- (k div 2) ~ q. We relocate the k entries of the sequence, putting
the first k div 2 entries in S and the last k -1- (k div 2) entries in Nj
the remaining element of the sequence is promoted to the parent node
P and becomes the new separating element. It is clear how to amend
this procedure if S is the right sibling of N.

For example, if we remove the records with Key fields 22 and 42
from the B-tree

where the left subtree L of 34 is

and its right subtree R is

we obtain

where the new left subtree L1 of 34 is

B-trees 295

and its new right subtree Rl is

(b) On the other hand it may happen that no sibling of N has more
than q entries.

In this case let S be one of the siblings of N (again, if we were writing
a program to implement this we would have to say which sibling to
choose). Form a new node N' containing 2q entries-q from the chosen
sibling S, the q - 1 entries remaining in N after the deletion and the
separating element in the parent node P. But this is not the end of the
story: we have to examine the effect on the parent node P.

(1) If P still has at least q entries after the separating element is
"demoted" to N' then all that remains to do is to move down one
place the entries to the right of the separating element and readjust
the numbering of the subtree pointers.

For example, to remove the record with Key field 44 from the B-tree
of order 5

then, using the left sibling of the node N containing the record we want
to delete, we form a new node

296 Storing and searching

and attach it to the readjusted parent node as shown:

If we had used the right sibling of N we would have produced

(2) If P is the root node and at least one element remains after the
demotion of the separating element then, since the root node of a B­
tree may have as few as one entry, the B-tree condition is not violated
and we need only move down entries and readjust the numbering of the
subtrees as in (1). For example, removal of the entry with Key field 41
from the B-tree of order 5

produces

B-trees 297

1101201 1

If before the deletion P has 1 element and 2 subtrees each with q
entries, then when an element is removed from one of the children a new
node is formed using the 2q remaining entries arranged in increasing
order of Key field, and this new node becomes the root. Thus on
removing the record with Key field 40 from the B-tree of order 5

we are left with the single node

(3) If P is not the root node and has fewer than q entries after the
demotion of the separating element then we examine the siblings of P
to see whether one of them has more than q entries-if so, then we
proceed as in (a) above; if not, then we proceed as in (b).

The reader is invited to check that if we remove the record with Key
field fi from the B-tree of order 5 we constructed earlier, namely

®
where L is

298 Storing and searching

and R is

then we end up with the B-tree

The idea behind the requirement that every non-root node in a B­
tree be at least half full was to ensure that the work in reading a node
from disk should result in the transfer of a reasonable number of records
for processing; it also reduced the number of nodes and the amount
of allocated but unused space which might be required in a general
multiway search tree. We can move a bit further in the same direction
by requiring that each non-root node be at least (roughly) two-thirds
full. Thus we introduce the notion of a B*-tree of order n. This is
a structure similar to a multiway search tree of order n; its root node,
however, may hold more elements than any node in such a search tree.
Formally

(1) the root node may contain between 1 and 2((2n - 2) div 3)
records;

(2) each non-root node must contain between (2n - 2) div 3 and

B-trees 299

n - 1 records;

(3) all the leaves are at the same level.

For example, for a B*-tree of order 7 the root node may contain between
1 and 8 records and each non-root node must contain between 4 and 6
records.

To understand why the maximum number of entries in the root
node is not the same as the maximum number for the non-root nodes,
we have to think about what happens when the root node becomes
full and we try to insert an additional entry. Following the example
of the B-tree situation we would split the contents of the root and the
new entry into a single element for the root and entries for two new
nodes which will be children of the root. Thus the maximum number
of elements in the root node must be twice the minimum number in
the non-root nodes.

We look briefly at the operation of insertion in a B*-tree, taking for
our examples n = 7 and starting with the root node

which is full. If we want to insert ia then we split the root node and
obtain

(We have used diagonal lines in the non-root nodes to indicate that they
may not hold more than 6 entries; this would be dealt with in a Pascal
program by use of the Number field of the Node variables involved.)

Insertion of records with Key fields ja and ka produce the B*-tree

300 Storing and searching

The right leaf is now full, but its left sibling still has room for two
further entries. Following the example of B-tree insertion we see that
adding records with Key fields la and na produces successively

and

When we come to the situation where we want to insert a new record
in a full leaf node N where there is no free space in a sibling then we
examine the (n - 1) elements of N, the (n - 1) elements of a chosen
sibling S, the separator of Nand S in the parent node P and the new
element-there are 2n elements there altogether. Using these we form
3 leaf nodes and 2 separating elements in P. The three nodes must all
satisfy the B*-tree property about the minimum number of entries in
a non-root node; we can achieve this by giving them (2n - 2) div 3,
(2n - 1) div 3 and 2n div 3 elements. (The reader is invited to check
that these add up to 2n - 2 elements-to do this, consider separately
the cases where n mod 3 is 0, 1 or 2.)

In the case where n = 7 we have (2n - 2) div 3 -= (2n - 1) div 3=

B-trees 301

2n div 3 = 4. Thus, if we insert in the above B*-tree of order 7 a new
record with Key field pa we end up with

In Section 12.1 we suggested that storage space may be saved by
storing only key-and-address pairs in our search trees rather than com­
plete records. Even more space might be saved if we were to store keys
only, though of course there must eventually be some means of accessing
a complete record from its key. In a B-tree it is easy to access sequen­
tiallyall the records whose key-and-address pairs are stored in a single
node; but sequential access beyond a single node would require a more
complicated procedure involving following Parent pointers. B+ -trees
constitute an attempt to deal with the two points we have mentioned,
space saving and sequential access.

B+ -trees of order n resemble B-trees of order n in that their root
nodes may contain between 1 and n - 1 entries while their non-root
nodes must contain between (n - 1) div 2 and n - 1 entries. But

(1) the non-leaf nodes of a B+ -tree contain only keys of records;
(2) the leaf nodes of a B+ -tree, which are all at the same level,

contain key-and-address pairs for all the records being stored (or pos­
sibly complete records);

(3) there is a pointer from each leaf node (except the last) to the
next.

Notice that the keys in the non-leaf nodes are there solely to help
construct search paths to the actual records. Thus, in order to locate
a record with a given key, we must continue the standard multi way
search procedure until we reach a leaf node, for it is only the leaf nodes

302 Storing and searching

that contain the associated information or address. Since the key of a
record stored (or pointed to) in a leaf node may also occur in a non-leaf
node we must establish a convention to decide whether we move to the
left or the right when we come across in a non-leaf node the key of the
record we are searching for. In the example shown below the convention
followed is to go to the left.

Insertion in a B+ -tree is similar to that in a B-tree except that when
a node is split the middle key is retained in the left "half-node" as well
as being promoted to the parent node.

Notice that when we delete a record from a leaf node it is unnec­
essary to remove its key from any non-leaf node in which it occurs: it
can still function perfectly satisfactorily as a separator.

12.3 Tries

In all the searching algorithms we have studied so far the objects in the
J(ey field of our records have been indivisible: they have been members
of an ordered type K and the only operation we have carried out on
them is comparison. But if the keys were words, for example, we could
subdivide them into their constituent letters and think of searching for
them letter by letter, starting with the first.

The data structure used to put this idea into practice is called a trie.
(Although the word was invented by taking the middle four letters of
the word "retrieve" it is usually pronounced "try".)

Formally we define a trie of order n to be either empty or else an
ordered sequence of n tries of order n.

Thinking of our keys as words of a certain limited length made up

Tries

of the 26 lower case letters we might declare

Const maxlength = ... j
Type Letter = 'a' .. 'Z'j

Letter_and_space = (* 'a' .. 'z' and space character *)j
K = array [1 .. maxlength] of Letter;
Trie_pointer = i Nodej
Node = Record

Branch: array [Letter] of Trie_pointer;
Info: T

endj
Function length (w : K) : 0.. maxlengthj

303

(We think of a key word of length I being stored in the first I com­
ponents of an array of type K, with the remaining components being
filled with space characters. Clearly length(w) is to be the number of
letters in the key word w.)

To access the information associated with the key word w we
initialise a Trie_pointer variable p to point to the root of the trie and
an integer variable i to 1. Then we execute the loop

while i <= length(w) do begin
p := pi .Branch[w[i]]j
i := i + 1 endj

The information required (or its address) is then in the Info field of the
node pointed to by the final version of p.

In the following example we have restricted the type Letter to 'a' .. 'C'j
the key words are the words in the Oxford English Dictionary which
are formed using these letters. We have represented the Info fields
of the nodes by integers, which we think of as the addresses of the
locations storing the definitions of the corresponding key words (we set
this field to be 0 if there is no correponding record). To save space
we have not labelled the branches from the nodes of the trie but have
represented the tails of the 'a', 'b' and 'c' pointers from each node by
three dots, the first for Branch['a'], the second for Branch['b'] and the

304 Storing and searching

third for Branch['c']. Dots from which no arrows emerge are supposed
to represent nil pointers.

1· .. 11~ r
~

1 .. ·1181

To search in this trie for the record with key word 'caaba' we start
at the root node and follow in turn the 'c', the 'a', the 'a', the 'b' and
then the 'a' pointers, arriving finally at the bottom right leaf node in
the picture, with Info field 18. Looking in location 18 we find

18. caaba: The sacred edifice at Mecca, which contains the 'black
stone', and is the 'Holy of Holies' of Islam.

To insert new entries in a trie we trace our way down the trie step
by step using the pointers corresponding to the successive letters of the
key word. If at any stage the pointer corresponding to the next letter
of the key word is nil we introduce a new node and replace the nil
pointer by a pointer to this node.

Exercises 12 305

To delete a record we follow the path indicated by the letters of its
key word until we reach the node containing (or pointing to) the record.
If this node is not a leaf then we amend the Info field to indicate that
there is no corresponding record (in our example we would set the Info
field to 0). If the node corresponding to the deleted record is a leaf then
we move to its parent and make the pointer to it from its parent nil.
If all the other pointers from the parent are nil then we can dispose of
the parent and possibly also ancestors of previous generations. Thus to
delete the record with key word 'caaba' from our sample trie we would
remove the corresponding node and also its parent and grandparent.
If we are to be deleting records from a trie then we ought to include
a Parent field in the definition of Node. Clearly also, in programming
the deletion operation it would be a good idea as we move down the
trie to stack the nodes we have visited so that we can dispose of them
in turn if their pointers are all nil.

Suppose the key "words" were all possible 4-letter sequences: there
are 264 = 156,976 of these. In a trie of order 26 anyone of these words
can be located in at most 4 steps. Search in a binary search tree would
require (on average) 10g2(264) ~ 10.8 comparisons, though of course
the number would be reduced by using B-trees of higher order.

12.4 Exercises 12

1. Build up a multiway search tree of order 5 using the following input
stream (of keys):

25,17,31,42,21,19,26,33,47,44,45,43,8,9.

2. Build up a multiway search tree of order 5 using the following input
stream (of keys):

20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10,9, 8, 7, 6, 5, 4, 3, 2, 1.

306 Storing and searching

3. Construct a B-tree of order 5 using an input stream of records with
two-letter keys

ea ea ba da bl dl ah eg bi ee al eg bd ee eh ai de di ee el el.

4. Show how to insert a record with key I I in the B-tree of order 5

Ifalfglfhlfi I

where A, ... , H are subtrees whose detailed structure need not concern
you.

5. Using the same input stream as in Exercise 3, but stopping at the
record with key de construct a B+ -tree of order 5.

6. Using the same input stream as in Exercise 3 construct a B*-tree of
order 7.

7. Show the sequence of B-trees formed as we delete from the B-tree of
order 5 constructed in Exercise 1 the records with keys

el, el, ee, di, de, ai, eh, eg, bd, ee, aI, ee, bi, eg, ah, dl, bj.

8. Show the sequence of B+ -trees formed as we delete from the B+ -tree
of order 5 constructed in Exercise 3 the records with keys

dc, ai, eh, eg, bd, ee, aj, ee, bi, eg, ah, dj, bl.

9. Build a trie with the aid of which you can retrieve the information
associated with the following keywords formed using the letters 'a',
'r', 's', 't':

Exercises 12

a, art, arts, as, astart, at, ras, rast, rat, rats, sat, star,
stars, start, ta, tar, tars, tart, tartar, tat, tatt, tsar.

307

10. Show how to delete the record with key hd from the B-tree of order 5
below.

where P, ... , Z are subtrees whose detailed structure need not concern
you.

Part IV

SOLUTIONS

Chapter 13

SOLUTIONS TO
EXERCISES 1

1. (a) addr(i) = 991 + 4ij

(b) addr(i,j) = 749 + 56i + 8jj

(c) addr(i,j) = 3687 + 8i + 5jj

(d) addr(iI,i2,i3) = 300 + 50il + 10i2 +i3 •

2. Procedure update (i,j : 1 .. Nj x : real)j
Begin if i <= j then Al[(i * (i - 1)) div 2 + j] := x

else update(j, i, x) Endj .

3. Function extract (i, j : 1 .. N) : realj
Begin if i = j then extract := 0

else if i < j then extract := SI[((i - 1) * (i - 2)) div 2 + j]
else extract := -extract(j, i) End j

Procedure update (i, j : 1 .. Nj x : real)j
Begin if (i = j) and (x <> 0) then Writeln(,illegal update')

else if i < j then SI[((i - 1) * (i - 2)) div 2 + j] := x
else update(j, i, -x) Endj

4. an, for which i = j = 1, is stored in Tl[I] and 2 * i + j - 2 = 1.
a12, for which i = 1, j = 2, is stored in Tl[2] and 2 * i + j - 2 = 2.
If i > 1 then to store the subdiagonal, diagonal and superdiagonal
elements in the first i-I rows we require 2 + 3(i - 2) = 3i - 4 entries

311

312 Solutions

in Tl. The elements in the i-th row to be stored are ai,i-b aii and (if
i < N) ai,i+I and these are stored in position

3i - 4 + 1 = 2i + (i - 1) - 2
3i - 4 + 2 = 2i + i - 2

and (if i < N)
3i - 4 + 3 = 2i + (i + 1) - 2.

Thus each aij with Ii - jl ~ 1 is stored in Tl[2 * i + j - 2].

Function extract (i, j : 1 .. N) : real;
Begin if abs(i - j) > 1 then extract := 0

else extract := Tl[2 * i + j - 2] End;

Procedure update (i, j : 1 .. N; x : real);
Begin if(abs(i - j) > 1) and (x <> 0)

then Writeln('illegal update')
else Tl[2 * i + j - 2] := x End;

5. Each object in the record type T consists of an integer and an array
of 20 characters and hence requires

LT = Linteger + 20 Lehar

bytes to store it, where Linteger and Lehar are the component lengths
of the types integer and char respectively.

If b is the base address then the addresses of the first bytes of

a.List[I], a.List[2], a.List[3] and a.List[4]

are respectively

We store a.List[4] by storing successively its

[(ey, Info[I], Info[2], ... , Info[15]

fields. So the address of the first byte of a.List[4].Info[13] is

b + 3 LT + Linteger + 12 Lehar

and similarly the address of the first byte of a.Season is b + 15 LT.

Solutions to Exercises 1 313

6. (a) We introduce the auxiliary LisLpointer variable p, initialised to
1, and an integer variable count, initialised to o. If p (= I) is
nil we take no action, so count remains 0; otherwise we enter
a while loop on each execution of which we increase count by
1 and replace p by p i .Next, stopping when we reach the end
of the list, i.e. when the current value of p is nil. The value
returned by the function is the final value of the variable count.
So we write

Function length (I : LisLpointer) : integer;
Var p : LisLpointer;

count: integer;
Begin p := I; count := 0;

End;

while p < > nil do begin

length := count

count := count + 1;
p := p i .Next end;

(b) First we decide what action to take if I is nil. It would not be
wrong to do nothing but perhaps it would be better to output a
message that the list is empty. If I is not nil we initialise an aux­
iliary LisLpointer variable p to I and enter a Repeat loop which
writes out the Info field of pi and then replaces p by pi .Next,
stopping when p is nil. Thus we write

Procedure print (1 : LisLpointer);
Var p : LisLpointer;
Begin if 1 = nil then Writeln(,The list is empty')

else begin

End;

p:= I;
Repeat Write(p i .Info);

p:= pi .Next
until p = nil end

(c) If either of the lists headed by p i or q i is nil then the con­
catenation is the other list. Otherwise we must proceed node by

314 Solutions

node down the list headed by p i until we reach the last node,
whose Next field will be nil; we alter this nil List-pointer to q.
The Pascal version is

Function concatenate (p, q : List-pointer) : List-pointer;
Var r, s : List-pointer;
Begin if p = nil then concatenate := q

else if q = nil then concatenate := p
else begin

End;

r:= PiS :=p;
while s i.Next <> nil do s := s i .Next;
s i .Next := q;
concatenate := rend

(d) We remark first that we cannot remove the last entry from a nil
list and that if we remove the last entry from a one-element list
we are left with the nil list. To deal with lists having more than
one element we introduce two auxiliary List-pointer variables p
and q initialised to point to the first and second nodes in the list
respectively. Then we move down the list, repeatedly replacing p
and q by their successors until q points to the last node (signalled
by q i .Next = nil) and then setting p i .Next to be nil. The
Pascal version of this is as follows:

list ')

Procedure dock (Var I : List-pointer);
Var p, q : List-pointer;
Begin if I = nil then writeln (,You cannot dock an empty

End;

else if I i .Next = nil then I := nil
else begin

p := I; q := I i .Next;
while q i .Next <> nil do begin

p:= q;
q := q i .Next end;

p i .Next := nil end

Solutions to Exercises 1 315

(e) We have to go down the list node by node until either we find x
for the first time, in which case we return a pointer to the node
where x occurs as Info field, or else we come to the end of the list
without finding x, in which case we return nil. We introduce an
auxiliary LisLpointer variable as usual to help us move down the
list and a boolean variable found, initially set to false, which
will enable us to stop going further down the list once we have
found x. The Pascal version is:

Function search (x : Tj 1 : LisLpointer) : LisLpointerj
Var p : LisLpointerj

found: booleanj
Begin p := /j found := falsej

Endj

while (p <> nil) and (not found) do
if p i .Info = x then found := true

else p := p i .Nextj
if found then search := p else search := nil

(f) We notice first that if 1 = nil or 1 i .Next = nil (i.e. if the
list headed by 1 i has either no node or only one node) then
reverse(1) = I. If there are two nodes or more in the list to be
reversed then (1) the Next field of the head node must be set to
nil (because it is to be the last node of the reversed list)j (2) the
Next field of the second node must be set to point to the first
nodej (3) then (if there is a third node) we must move down the
list, setting the Next field of the third node to point back to the
second and so onj (4) eventually, when we reach the end of the
list, reverse(l) must be set to point to the last node. To carry
this out in Pascal we write:

Function reverse (l : LisLpointer) : LisLpointerj
Var p, q, r : LisLpointerj
Begin if 1 = nil then reverse := 1

else if 1 i .Next = nil then reverse := 1
else begin

p := Ij p 1 .Next := nilj
q := 1 i . Nextj
while q i .Next <> nil do begin

316

Endj

r := q i .Nextj
q i .Next := pj

Solutions

p := qj q := r endj
q i .Next := pj
reverse := q end

(g) If I is nil no action is required. If the element x which is to be
removed occurs in the Info field of the head node 1 i then we re­
place 1 by its successor I i .Next and apply the procedure remove
recursively. Otherwise we introduce two auxiliary List-pointer
variables p and q pointing to the head node and its successor if
it has one. If the head node has no successor (Le. q = nil) no
action is taken. Otherwise we check whether q i .Info = Xj if it is
the node q i must be deleted-this is done by altering the Next
field of p ij if not, p is altered to point to q ij and in both cases q
is altered to point to its successor. The process is repeated until
the updated value of q is nil. The Pascal version is:

Procedure remove (x : Tj Var 1 : List-pointer)j
Var p, q : List-pointer;
Begin if I < > nil then begin

End;

if Ii .Info = x then begin
1 := I i .Next;
remove(x, 1) end

else begin
p := 1; q := 1 i .Next;
while q <> nil do begin

if q i .Info = x
then p i .Next := q i .Next
else p:= q;

q := q i .Next end end end

(h) Clearly if m = n no action is required. Otherwise we move aux­
iliary pointers p and q down the list until they point to the m-th
and n-th nodes and then apply the usual programming device to
swap their Info fields. To avoid counting down from the head of
the list twice to find the m-th and n-th nodes we might begin by

Solutions to Exercises 1 317

finding the larger and smaller of m and n, counting down to the
smaller and then counting on to the larger.
The Pascal version is as follows:

Procedure interchange (m, n 1.. maxintj Var I
List-pointer)j

Var i : integerj x : Tj
p, q : List-pointerj

Procedure min_max (m, n : integerj
Var min, max: integer)j

Begin
if m <= n then begin min := mj max := n end

else begin min := nj max := mend
Endj

Begin if m < > n then begin
min_max (m, n, min, max)j
p:= Ij

Endj

for i := 1 to min - 1 do p := pi .Nextj
q:= pj
for i := 1 to max - min do q := q i .Nextj
x := pi .Infoj
p i .Info := q i .Infoj
q i .Info := x end

7. If the list f represents a constant polynomial (that is if we have
f i . Exponent = 0) then derivative(f) must represent the zero poly­
nomialj otherwise derivative(f) is a pointer to a node whose Coeffi­
cient field is (f i. Coefficient)*(f i . Exponent) , whose Exponent field is
(f i . Exponent -1) and whose Next field is the pointer derivative(f i .Next).
Thus we define:

Function derivative (p : PolynomiaLpointer) :
PolynomiaLpointerj

Var q : PolynomiaLpointerj
Begin if p i . Exponent = 0 then begin

new (q)j
q i. Coefficient := OJ
q i . Exponent := OJ

318

End;

q i.Next:= nil end
else begin

new (q);

Solutions

q i. Coefficient: = (p i· Coefficient) * (p i . Exponent);
q i.Exponent:= (p i.Exponent) -1;
q i . Next := derivative(p i . Next) end;

derivative := q

8. Declare

Type Pointer = i Node;
Node = Record

Info: T;
Pred, Succ: Pointer

end;
Var head: Pointer;

Suppose we wish to insert an information item in a new node after a
given node pointed to by a pointer p. Then we must create the new
node, using new as usual, and set its Info field to the given informa­
tion item. Its Pred field must contain a pointer to the node pointed to
by p and its Succ field a pointer to the successor of the node pointed
to by p. The Succ field of p i must be altered to hold a pointer to the
new node and so must the Pred field of the original successor of p i
(unless p i.Succ is nil). In Pascal this becomes

Procedure inserLafter (a : T; p : Pointer);
Var q, r : Pointer;
Begin if p < > nil then begin

new (q);

End;

with q i do begin
q i .Info := a;
q i .Succ := p i .Succ;
q i .Pred := pend;

r := p i .Succ;
if r <> nil then r i .Pred:= q;
p i .Succ := q end

Solutions to Exercises 1 319

As in the case of (singly) linked lists we have to deal separately with
insertion at the head of a doubly linked list. We proceed by creating a
new head node, setting its Info field to be the given information item,
its Pred field to be nil and its Succ field to be a pointer to the old
head node; the Pred field of the old head node must be altered from
nil to be a pointer to the new head node. Thus we have

Procedure inserLatll.ead (a : T; Var head: Pointer);
Var q : Pointer;
Begin new(q);

End;

with q j do begin
Info:= a;
Pred:= nil ;
Succ := head end;

headj .Pred := q;
head:= q

To delete the node after a given node pointed to by a pointer p we
do nothing (except possibly output a warning message) if either p or
p j . Next is nil . Otherwise we adjust the Succ field of p and the Pred
field of (p j.Succ)j.Succ (unless it is nil). So we have

Proced ure delete_after (p : Pointer);
Var q, r : Pointer;
Begin if (p <> nil) and (p j.Next <>nil) then begin

q := p j .Succ;

End;

r := q j .Succ;
p j.Succ:= T;
if T <>nil then T j .Pred:= p;
Dispose(q) end

Finally, to handle deletion of the head node we use:

320 Solutions

Procedure delete_at-Itead (Var head: Pointer);
Var q, r : Pointer;
Begin q := head;

End;

r := q i .Succ;
r i .Pred := nil ;
head:= r;
Dispose(q)

9. Starting at the head of the list pointed to by s we follow the Next
pointers until either we reach a node with Row field i and Column
field j or else reach the end of the list without finding such a node. In
the first case the function value is the Entry field ofthe "(i,j)" node;
in the second case the function returns o. Thus we define

Function extract (s : Matrix_pointer; i : Row_index;
j : Column_index) : Number

Var q : Matrix_pointer;
found: boolean;
Begin q:= s;

End;

found := false;
while (q <> nil) and (found = false) do begin

if (q i.Row = i) and (q i.Column = j)
then begin

extract := q i . Entry;
found := true end

else q := q i.Next end;
if not found then extract := 0

To update the (i,j)-th entry we proceed down the list until either we
reach a node with Row field i and Column field j or else a node with
Row field k and Column field I where either k > i or else k = i and
I> j. In the first case we alter the Entry field of the "(i,j)" node to
x if x is nonzero or delete it if x is zero. In the second case we do
nothing if x is zero; but if x is nonzero we insert before the "(k,I)"
node a new node with Row field i, Column field j and Entry field x.

Chapter 14

SOLUTIONS TO
EXERCISES 2

1. (a) The sequence of commands

push('A',X); push('B',X); out(X); push('C',X); push('D',X);
out(X); out(X); push('E',X); push('F',X); out(X); out(X);

out(X);

produces the output BDCFEA.

(b) If' D' is to be the first character in the output stream we must
have pushed 'A', 'B', 'C', 'D' successively onto the stack; when
we pop the stack to obtain' D' the head of the stack is 'C' and we
cannot extract 'B' before 'C'. So BDACEF cannot be obtained
by any arrangement of push and out operations.

(c) The sequence of commands

push('A',X); out(X); push('B',X); out(X); push('C',X);
out(X);

push('D',X); out(X); push('E',X); out(X); push('F',X);
out(X);

produces the output ABCDEF.

(d) If' E' is to be the first character in the output stream we must
have pushed 'A', 'B', 'C', 'D', 'E' onto the stack in that order.
Then we pop to obtain 'E'; after we have done this the head of
the stack is 'D', which must be popped before we can extract

321

322 Solutions

'B'. So EBFCDA cannot be obtained by any arrangement of
push and out operations.

(e) The sequence of commands

push('A',X); push('B',X); push(,C',X); push('D',X);
push('E',X); push('F',X); out(X); out(X); out(X);
out(X); out(X); out(X);

produces the output FEDCBA.

2. (a) Function stack_top (8 : P) : T;
Var a: T;
Begin pop(a,8); push(a, 8);

stack_top := a
End;

(b) Function second (8 : P) : T;
Var a, b: T;
Begin pop(a, 8); pop(b, 8); push(b, 8); push(a, 8);

second := b
End;

(c) Procedure two_off (Var 8 : P; a : T);
Begin pop (a, 8); pope a, 8) End;

(d) Procedure bottom (Var 8 : P;Var a : T);
Begin if empty(8) then Writeln ('The stack is empty')

else while not emptY(8) do pop(a, 8)
End;

(e) Function last (8 : P) : T;
Var a : T; 81 : P;
Begin if empty(8) then Writeln ('The stack is empty')

else begin

End;

while not empty (8) do begin
pop(a, 8); push(a, 81) end;

last := a;
while not empty(8) do begin

pope a, 81); push(a, 8) end

3. Read the incoming string character by character, pushing each char­
acter in turn onto the stack until the character' A' appears. Ignore

Solutions to Exercises 2 323

'A', i.e, do not push it onto the stack. Now continue to read the in­
coming stream one character at a time and as each character is read
compare it with the character obtained by popping the stack. If at
any stage the character read and the character popped are different
then the input string is not of the required form xAx*. If the input
string terminates before the stack is empty or if the stack becomes
empty before the input string terminates then again the input is not
of the required form.

4. We work with a stack whose elements are opening brackets of various
types.

5.

The input string is read character by character. Input characters other
than brackets pass by the stack; opening brackets are pushed onto the
stack. When the input character is a closing bracket then

1. if the stack is empty there is no matching opening bracket,
so the input string is invalid;

2. if the stack is nonempty we compare the types of the incoming
closing bracket and the opening bracket at the top of the stack:

(a) if the types are different then the input string is invalid;
(b) if the types are the same we pop the stack and continue

reading the input string.
When we come to the last closing bracket in the input string and 2(b)
applies we examine the stack;

1. if the stack is nonempty then the input string is invalid, for
it contains more opening brackets than closing brackets;

2. if the stack is empty then the input string is valid.

(a) Postfix form is abc * /.
(b) Postfix form is ab / c*.

(c) Postfix form is abc /\ /\

(d) Postfix form is ab /\ c/\.

(e) Postfix form is ab - c-.

(f) Postfix form is abc - -.

(g) Postfix form is a5 /\ 4a3 /\ * + 3a2 /\ * - 7+

(h) Postfix form is ab + cd - *.
(i) Postfix form is Sabn /\ +/\

6. We write our stacks horizontally with head to the left:

324 Solutions

(a) Input Stack

3 3
4 43

+ 7 (Pop 4, pop 3, form 3 + 4 = 7, push 7)
5 57

* 35 (Pop 5, pop 7, form 7 * 5 = 35, push 35)

Thus the value of the expression is 35.

(b) Input Stack

3 3
4
5
+
*

43
543
93
27

(Pop 5, pop 4, form 4 + 5 = 9, push 9)
(Pop 9, pop 3, form 3 * 9 = 27, push 27)

Thus the value of the expression is 27.

(c) Input Stack

3 3
4 43
/I. 81 (Pop 4, pop 3, form 3/1.4 = 81, push 81)
5 581
3 3581

+ 881 (Pop 3, pop 5, form 5 + 3 = 8, push 8)

* 648 (Pop 8, pop 81, form 81 * 8 = 648, push 648)

Thus the value of the expression is 648.

7. We write the queue Q with its front to the right and its rear to the
left. Then after operation (1) Q consists of A alone, which is both
front and rearj after operation (2) Q is B Aj after (3) Q is C B Aj
after (4) Q is C B and first = Aj after (5) Q is D C Bj after (6) Q is
E D C Bj after (7) Q is E D C and first = Bj after (8) Q is E D and
first = Cj after (9) Q is F E Dj after (10) Q is F E and first = D.

Solutions to Exercises 2 325

8. (a) Procedure fronLto..rear (q : Q)j
Var a: Tj
Begin while not empty(q) do begin

serve(q, a)j write(a) end
Endj

(b) Procedure rear_toJront (q : Q)j
Var a : Tj S : Pj (* P is the type representing stacks *)
Begin while not empty(q) do begin

serve(q, a)j push(a, s) endj
while not empty(s) do begin

pop(s, a)j write(a) end
Endj

9. (a) Make the declarations

Const N = maxsizej
Type T = ElemenUypej

Deque = Record
Deque_array : array [1 .. N] of Tj
Front, Rear: 0 .. N

end j

Then we define Function full (D : Deque) : boolean and
Function empty (D : Deque) : boolean exactly as for queues.
To add an element at the rear of a deque we use Procedure
inserLat..rear (a : Tj Var D : Deque) identical with the enqueue
operation for queues. To remove an element from the front of a
de que we use Procedure removeJ"romJront (Var D : Dequej
a : T) identical with the serve procedure for queues.
To add an element to the front of a de que we define

Procedure insert_atJront (a : Tj Var D : Deque)j
Begin if full(D) then ... (* take appropriate action *)

else with D do begin

Endj

if Front = 0 then Front := N - 1
else Front := Front - 1 end

Deque_array[Front + 1] := a end

To remove an element from the rear we use:

326 Solutions

Procedure remove.irom..rear (Var D : Deque; Var a : T);
Begin iffull(D) then ... (* take appropriate action *)

else with D do begin
a := Deque_array[Rear];
if Rear = 1 then Rear := N

else Rear := Rear - 1 end
End;

(b) Make the declarations:

Type T = ElemenUype;
Deque_pointer = i Node;
Node = Record

Info: T;
Next: Deque_pointer

end;
Deque = Record

Front, Rear: Deque_pointer
end;

Functions full and empty and procedures inserLat..rear and
remove.irom.iront are defined as for the pointer representation
of queues.
To add an element at the front we define:

Procedure inserLat.iront (Var D : Deque; a : T);
Var p : Deque_pointer;
Begin new (p); P i.Info:= a; p i.Next := D.Front;

if D.Front = nil then D.Rear := Pi
D.Front:= p

End;

To remove an element from the rear we use

Procedure remove.irom..rear (Var D : Deque;
Var a: T);

Var p : Deque_pointer;
Begin ifempty(D) then ... (* take appropriate action *)

else with D do begin

Solutions to Exercises 2 327

a := Rearl.lnfo;
if Front = Rear then begin

Front := nil; Rear:= nil end;
else begin

p:= Front;
Repeat p := p 1.Next

until P 1.Next = nil;
Rear := p end end End;

Chapter 15

SOLUTIONS TO
EXERCISES 3

1. The 14 trees with 4 nodes are

and the mirror images of these in the vertical through the root.

2. For every natural number n each node at level n in a binary tree has
n ancestors.

Proof by induction: (1) There is only one node at level 0, namely
the root, and it has 0 ancestors.

(2) Suppose we have shown for some natural number k that
every node at level k in a binary tree has k ancestors. Let N be any
node at level (k + 1). Then

number of ancestors of N = 1 (i.e. its parent) +
(number of ancestors of its parent) = 1 + k

This establishes the induction.

329

330 Solutions

3. (a) Function number_oLnodes(t: Tree_pointer): integer;
Begin if t = nil then number_oLnodes := 0

End;

else number_oLnodes := numbeLoLnodes(t i.Left)
+ number _of..llodes(t i . Right)

(b) Function height (t : Tree_pointer) : integer;
Function max(m, n : integer) : integer;
Begin if m >= n then max := m else max := n End;

Begin if t = nil then height := -1
else height := 1 + max(height(t i.Left), height(t i.Right»

End;

(c) Function count(t: Tree_pointer) : integer;
Begin if t = nil then count := 0

else count:= (t i.Info) + count(t i.Left) + count(t i.Right)
End;

4. Function strictly _binary (t: Tree_pointer): boolean;
Function leaf (t: Tree_pointer) : boolean;
Begin leaf := (t i.Left = nil) and (t i.Right = nil) End;
Function two..kids (t: Tree_pointer) : boolean;
Begin two..kids := (t i.Left <> nil) and (t i.Right <> nil)
End;

Begin if t = nil then strictly _binary := true

End;

else ifleaf(t) then strictly_binary := true
else if two..kids(t) then

strictly_binary := strictly _binary(t i . Left)
and strictly _binary(t i. Right)

else strictly_binary := false

5. Preorder: A P Q MEN D R T B C
Inorder: Q M P NED ARB T C
Postorder: M Q N D E P BeT R A

6. Since the preorder traversal starts with A it follows that the root node
contains A.
The inorder traversal then shows that

(1) the inorder traversal of the left subtree is DeE B and
(2) the inorder traversal of the right subtree is U Z T X Y.

The preorder traversal of the left subtree comes immediately -after the

Solutions to Exercises 3 331

root in the preorder traversal of the whole tree and must consist of
the same nodes as the inorder traversal-so we see that the preorder
traversal of the left subtree must be BCD E.
Thus the left subtree has root B.
Examining the inorder traversal D C E B we see that the inorder
traversal of the left subtree of (the tree with root) B is D C E and
hence the right subtree of B is nil.
The preorder traversal of the left subtree of B must be C D E, so its
root is C. It follows easily that the left subtree of B is

and arguing in a similar way for the right subtree we find eventually
that the required tree is

7. (a) The binary tree representation of a/(b * c) is:

The Polish (prefix) form is / a * b c.
The reverse Polish (postfix) form is abc * /.

332 Solutions

(b) The binary tree representation of as + 4a3 - 3a2 + 7 = «as +
4a3) - 3a2) + 7 = «(a i 5) + (4 * (a i 3))) - (3 * (a i 2)) + 7) is:

The Polish form is + - + i a 5 * 4 i a 3 * 3 i a 2 7. The
reverse Polish form is a 5 i 4 a 3 i * + 3 a 2 i * - 7 +.

(c) The binary tree representation of (a + b) * (c - d) is:

The Polish form is * + a b - c d.
The reverse Polish form is a b + cd - *.

Solutions to Exercises 3 333

(d) The binary tree representation of sa+bR = S i (a + (b in)) is:

8. (a)

(c)

The Polish form is i S + a ibn.
The reverse Polish form is S a b n i + i.

~ (b) YJ
~ 9J
~ YJ
~ YJ

IT] IT]

~~~§] 
B[}!][EJ 



334 Solutions 

When 2 is deleted the tree becomes: 



Solutions to Exercises 3 335 

When 10 is deleted the tree becomes: 

When 19 is deleted the tree becomes: 



336 Solutions 

When 8 is deleted the tree becomes: 

When 20 is deleted the tree becomes: 



Chapter 16 

SOLUTIONS TO 
EXERCISES 4 

1. The array representation is 

2. We begin by inserting 75 in the first unoccupied position in the array: 

Since 75 is greater than its parent 38 we interchange 75 and 38, ob­
taining 

Now 75 is greater than its new parent 73; so we interchange 75 and 
73, obtaining 

which is the array representation of a heap. 

337 



338 Solutions 

3. We begin by removing the entry in the first position and replacing it 
by the entry in the last position, obtaining: 

For the first version of the trickle procedure we begin by finding the 
maXimum of A[l] = 32, A[2] = 69 and A[3] = 67 (involving two com­
parisons); interchange 32 and 69 to obtain 

Now find the maximum of A[2] = 32, A[4] = 54 and A[5] = 53 (again 
involving two comparisons); interchange 32 and 54, obtaining 

Next find the maximum of A[4] = 32, A[8] = 48 and A[9] = 41 (using 
two more comparisons); interchange 32 and 48 to obtain 

Finally find the larger of A[8] = 32 and A[16] = 30; since 32 > 30 the 
most recently obtained array represents a heap. 

For the second version of trickle we begin by comparing A[2] = 69 and 
A[3] = 67; we interchange 32 with the larger, 69, obtaining 

Now compare A[4] = 54 and A[5] = 53; interchange 32 with the larger, 
54, to obtain 

Now compare A[8] = 48 and A[9] = 41; interchange 32 with the larger, 



Solutions to Exercises 4 339 

48, so obtaining 

A[8] has only one child, A[16] = 30; we interchange 32 and its child: 

Now compare A[16] = 32 with its parent A[8] = 30; since 30 < 32 we 
interchange these entries, getting 

Compare A[8] = 32 with its parent A[4] = 48. Since 48 > 32 the most 
recently obtained array represents a heap. 
The first method involves 7 comparisons, the second only 5. 

4. The execution of trickle(4, A) on the array 

produces 

(since A[8] = 73 > A[4] = 17). Since A[3] = 94 is greater than both 
its children A[6] = 19 and A[7] = 68, trickle(3,A) leaves this array 
unchanged. When we apply trickle(2,A) we see that A[2] = 12 is less 
than both its children A[4] = 73 and A[5] = 55; so we interchange 12 
and 73, obtaining 

Since the new A[4] = 12 is less than its child A[8] = 17 these must be 
interchanged. So the final result of trickle(2,A) is 



340 Solutions 

Finally trickle(I,A) first interchanges A[l] = 43 with its larger child 
A[3] = 94 and then the new A[3] = 43 with its larger child A[7] = 68. 
The required heap is then 

For the array 

execution of trickle( 4,B) produces 

Then trickle(3,B) gives 

Next trickle(2,B) gives first 

and then 

Finally, trickle(I,B) gives first 

and eventually 

which represents a heap. 



Chapter 17 

SOLUTIONS TO 
EXERCISES 5 

l. ( a) The adjacency matrix for the given graph is 

0 1 1 1 0 0 0 0 0 
1 0 0 0 1 0 0 0 0 
1 0 0 0 1 0 0 0 0 
1 0 0 0 0 1 0 0 0 
0 1 1 0 0 0 1 1 0 
0 0 0 1 0 0 0 1 0 
0 0 0 0 1 0 0 0 1 
0 0 0 0 1 1 0 0 1 
0 0 0 0 0 0 1 1 0 

When the graph is changed to a digraph in the way described the ad-
jacency matrix becomes 

0 1 1 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 

341 



342 Solutions 

( b) The adjacency lists for the given graph are 

adi_list[l] - 2 ·1 31 .8J2J 
adi_list[2] - 1 · [TI2J 
adi_list[3] - 1 · [TI2J 
adi_list[4] - 1 · [IT2J 
ad i_list [5] - 2 ·131 I ·1 71 · [IT2J 
adi_list[6] - 4 · [IT2J 
adi_list[7] - 5 · ITJ2J 
adi_list[8] - 5 ·161 I · ITJ2J 
adi_list[9] - 7 . ITJ2J 
When the graph is changed to a digraph as described, the adjacency 
lists become 

adi_list[l] -121 
adi_list[2] -[TI2J 
ad i_list [3] -[TI2J 
adi_list[4] -[IT2J 
adi_list[5] -171 I 
adi_list[6] -ITJ2J 
adi_list[7] -ITJ2J 
adi_list[8] -ITJ2J 
adi_list[9] = nil 



Solutions to Exercises 5 343 

2. (a) For the depth first traversal we write the stack S horizontally with 
head to the left. For the graph in Exercise 1 we have initially visited[i] 
= false for i = 1, ... ,9. Then dftJ"rom(1) proceeds as follows: 

(1) S consists of 1 alone; pop produces 1; since visited[1] = false we 
process Vb set visited[1] to true and push the unvisited neigh­
bours of 1. 

(2) S is now 2 3 4; pop produces 2; since visited[2] = false we process 
V2, set visited[2] to true and push the unvisited neighbour of 2. 

(3) S is now 5 3 4; pop produces 5; since visited[5] = false we process 
V5, set visited[5] to true and push the unvisited neighbours of 5. 

(4) S is now 3 7 8 3 4; pop produces 3; since visited [3] = false 
we process V3 and set visited [3] to true ; we would push the 
unvisited neighbours of 3 if it had any, but it doesn't. 

(5) S is now 7 8 34; pop produces 7; since visited[7] = false we pro­
cess V7, set visited[7] to true and push the unvisited neighbour 
of 7. 

(6) S is now 9 8 34; pop produces 9; since visited[9] = false we pro­
cess Vg, set visited[9] to true and push the unvisited neighbour 
of 9. 

(7) S is now 8 8 34; pop produces 8; since visited[8] = false we pro­
cess V8, set visited[8] to true and push the unvisited neighbour 
of 8. 

(8) S is now 6 8 3 4; pop produces 6; since visited[6] = false we pro­
cess V6, set visited[6] to true and push the unvisited neighbour 
of 6. 

(9) S is now 4 8 3 4; pop produces 4; since visited[4] = false we 
process V4, set visited[4] to true; 4 has no unvisited neighbour. 

(10) The remaining entries in the stack have all been visited, so as we 
pop them in turn we take no further action. 

Thus the depth first traversal from 1 visits the vertices in the order 

1 253 7 9 8 6 4 



344 Solutions 

and since this exhausts all the vertices of the graph we have completed 
its depth first traversal. 

For the digraph in Exercise 2 we have 

(1) Sis Ij pop 1; process VI; push 2, 3, 6. 

(2) S is 6 3 2; pop 6; process V6; push 4. 

(3) S is 4 3 2; pop 4; process V4; 4 has no neighbours, visited or 
unvisited. 

(4) S is 3 2; pop 3; process V3j 3 has no unvisited neighbours. 

(5) Sis 2; pop 2; process V2; push 5. 

(6) S is 5; pop 5; process Vs; 5 has no unvisited neighbours. 

Thus dftJrom( 1) visits the vertices 

16432 5 

in that order. 

Since 2, 3,4, 5 and 6 have been visited dft_from(2), ... , dfLfrom(6) 
take no action. Finally dftJrom(7) processes V7. SO depth first traver­
sal of the digraph visits the vertices in the order 

1643257 

( b) For the breadth first traversal we write the queue Q horizontally 
with front to the right and rear to the left. For the graph in Exercise 
1 we have initially visited[i] = false for i = 1, ... ,9. Then bft_from(l) 
proceeds as follows: 

(1) visited[I]:= true; serve produces first = 1; process VI; enqueue 
unvisited neighbours of 1 and mark them 'visited'. 

(2) Q is now 4 3 2; serve produces first = 2; process V2; enqueue the 
unvisited neighbour of 2 and mark it 'visited'. 

(3) Q is now 5 4 3; serve produces fi7'st = 3; process V3; 3 has no 
unvisited neighbour. 

(4) Q is now 5 4; serve produces first = 4; process V4; enqueue the 
unvisited neighbour of 4 and mark it 'visited'. 



Solutions to Exercises 5 345 

(5) Q is now 6 5; serve produces first = 5; process V5; enqueue the 
unvisited neighbours of 5 and mark them 'visited'. 

(6) Q is now 8 7 6; serve produces first = 6; process V6; 6 has no 
unvisited neighbour. 

(7) Q is now 8 7; serve produces first = 7; process V7; enqueue the 
unvisited neighbour of 7 and mark it 'visited'. 

(8) Q is now 9 8; serve produces first = 8; process Vs; 8 has no 
unvisited neighbour. 

(9) Q is now 9; serve produces first = 9; process Vg; 9 has no unvisited 
neighbour. 

Thus the breadth first traversal from 1 visits the vertices in the order 

123456789 

and since this exhausts all the vertices of the graph we have completed 
its breadth first traversal. 

For the digraph in Exercise 2 we have 

(1) Q is 1; process VI; enqueue 2, 3 and 6. 

(2) Q is 6 3 2; process V2; enqueue 5. 

(3) Q is 5 6 3; process V3; enqueue 4. 

(4) Q is 4 5 6; process V6; 6 has no unvisited neighbour. 

(5) Q is 4 5; process V5; 5 has no unvisited neighbour. 

(6) Q is 4; process V4; 4 has no unvisited neighbour. 

Q is now empty. Thus bft_from(l) visits the vertices 

123654 

in that order. 

Since 2, 3,4, 5 and 6 have been visited bftJrom(2), ... , bft_from(6) 
take no action. Finally bft_from(7) processes V7. SO breadth first 
traversal of the digraph visits the vertices in the order 

1 2 3 654 7 



Chapter 18 

SOLUTIONS TO 
EXERCISES 6 

1. Since p < q we have lim(nP/nq) = limnP- q = OJ so nP is O(nq). 

If nq were O( nP) there would be a positive real number J( and an 
integer no such that nq $ J( nP and so nq- p $ J( for all integers 
n ~ no. But this is not possible: since q > p we have lim nq- p = 00 

and so nq- p is eventually greater than any positive real number we 
choose, in particular greater than J(. 

So nq is not O( nP). 

2. For all positive integer'n we have 

If k = 3 we have lim(f(n)/nk) = 4. 

If k > 3 we have lim(f(n)/nk) = o. 
If k < 3 we have lim(f(n)/nk) = 00. 

Thus f( n) is O( nk) for all k ~ 3 and n( nk) for all k $ 3. It follows 
that f(n) is 0(nk) only for k = 3. 

3. (1) If f is O(g) then there is a positive real number J( and an integer 
no such that f( n) $ J( g( n) for all integers n ~ no. It follows that 
g(n) ~ (l/K)f(n) for all integers n ~ no and so 9 is n(f). 

347 



348 Solutions 

(2) If f is 0(g) then f is O(g) and f is neg). It follows from (1) that 
9 is n(l) and a similar argument shows that since f is n(g) we have 
that 9 is 0(1). So 9 is 0(1). 

4. Taking the multiplication of two numbers as our basic operation we 
see that the total number of basic operations carried out is n3 • So we 
estimate the complexity as O( n3 ). 

5. Let W be the worst case complexity of the algorithm. 

Then for n > 1 we have 

Wen) = 2W(n - 1) = 22W(n - 2) = ... = 2n- 1W(1) 

So Wen) is 0(2n- l = 0(2n). 

If we rewrite the else clause as 

we reduce the complexity to O( n). 

6. In the worst case the complete loop will be executed n times (this is 
the case in which the condition C is never satisfied). 

So the worst case complexity is 

n* {(worst case complexity of ... before test for C) 
+ (worst case complexity of evaluating C) 
+ (worst case complexity of ... after test for C)}. 

7. Worst case complexity = Worst case complexity of evaluating C 
+ (the larger of the worst case complexity of SI 

and the worst case complexity of S2). 



Chapter 19 

SOLUTIONS TO 
EXERCISES 7 

1. (a) We show the state of the array before each comparison-and-
possible-exchange step; the entries in bold type are those which 
have to be compared. 

i = 2: 
j=8 dog egg rum gin and rye nog for 
j=7 dog egg rum gin and rye for nog 
j=6 dog egg rum gin and for rye nog 
j=5 dog egg rum gin and for rye nog 
j=4 dog egg rum and gin for rye nog 
j=3 dog egg and rum gin for rye nog 
j=2 dog and egg rum gin for rye nog 

i = 3: 
j=8 and dog egg rum gin for rye nog 
j=7 and dog egg rum gin for nog rye 
j=6 and dog egg rum gin for nog rye 
j=5 and dog egg rum for gin nog rye 
j=4 and dog egg for rum gin nog rye 
j=3 and dog egg for rum gin nog rye 

349 



350 Solutions 

i = 4: 
j=8 and dog egg for rum gin nog rye 
j=7 and dog egg for rum gm nog rye 
j=6 and dog egg for rum gm nog rye 
j=5 and dog egg for gin rum nog rye 
j=4 and dog egg for gin rum nog rye 

i = 5 : 
j=8 and dog egg for gin rum nog rye 
j=7 and dog egg for gin rum nog rye 
j=6 and dog egg for gin nog rum rye 
j=5 and dog egg for gin nog rum rye 

i = 6: 
j=8 and dog egg for gin nog rum rye 
j=7 and dog egg for gin nog rum rye 
j=6 and dog egg for gin nog rum rye 

i = 7: 
j=8 and dog egg for gm nog rum rye 
j=7 and dog egg for gin nog rum rye 

i = 8: 
j=8 and dog egg for gin nog rum rye 

The final sorted version is then 

and dog egg for gin nog rum rye 

(b) For each stage (i = 2, ... ,8) we show the successive states of the 
array as the element shown in bold type is repositioned. 

i=2 dog egg rum gin and rye nog for 

i = 3 dog egg rum gin and rye nog for 

i=4 dog egg rum gin and rye nog for 
dog egg gin rum and rye nog for 

i = 5 dog egg gin rum and rye nog for 
dog egg gin and rum rye nog for 
dog egg and gin rum rye nog for 
dog and egg gin rum rye nog for 
and dog egg gin rum rye nog for 



Solutions to Exercises 7 351 

i = 6 and dog egg gin rum rye nog for 

i = 7 and dog egg gin rum rye nog for 
and dog egg gin rum nog rye for 
and dog egg gin nog rum rye for 

i = 8 and dog egg gin nog rum rye for 
and dog egg gin nog rum for rye 
and dog egg gin nog for rum rye 
and dog egg gin for nog rum rye 
and dog egg for gin nog rum rye 

Thus the sorted version is, as before, 

and dog egg for gin nog rum rye 

(c) For each stage (i = 2, ... , 7) we show the minimum entry of the 
subarray indexed by i .. 8 and the result of interchanging it with 
the i-th entry: 

i = 1 dog egg rum gin and rye nog for 
and egg rum gin dog rye nog for 

i = 2 and egg rum gin dog rye nog for 
and dog rum gin egg rye nog for 

i = 3 and dog rum gm egg rye nog for 
and dog egg gin rum rye nog for 

i = 4 and dog egg gm rum rye nog for 
and dog egg for rum rye nog gin 

i = 5 and dog egg for rum rye nog gin 
and dog egg for gin rye nog rum 

i = 6 and dog egg for gin rye nog rum 
and dog egg for gin nog rye rum 



352 Solutions 

i = 7 and dog egg for gin nog rye rum 
and dog egg for gin nog rum rye 

So the sorted version is, once again, 

and dog egg for gin nog rum rye 

2. (a) For Quicksort we shall always choose as pivot to partition a sub­
array the larger of the first two entries which are distinct. So we 
begin by choosing 66 as pivot. Starting with the left pointer at 
66 and moving right till we reach an entry greater than or equal 
to the pivot, and with the right pointer at 16, moving left till we 
reach an entry less than the pivot, we stop at the situation 

66 36 79 45 13 62 16 76 

and swap 66 and 16, obtaining 

16 36 79 45 13 62 66 76. 

Moving the pointers as before we reach the situation 

16 36 79 45 13 62 66 76. 

We swap 79 and 62, getting 

16 36 62 45 13 79 66 76. 

Moving again, the left pointer stops at 79, the right at 13-so 
the pointers have crossed over and we have reached the partition 

16 36 62 45 13 I 79 66 76 

We proceed similarly with the two subarrays. 

(b) We begin by making the given array A into a heap-array by 
executing the loop 

for i := 4 downto 1 do trickle(i, A) 



Solutions to Exercises 7 353 

i=4 66 36 79 45 13 62 16 76 
66 36 79 76 13 62 16 45 

i = 3 66 36 79 76 13 62 16 45 

i = 2 66 36 79 76 13 62 16 45 
66 76 79 36 13 62 16 45 
66 76 79 45 13 62 16 36 

i = 1 66 76 79 45 13 62 16 36 
79 76 66 45 13 62 16 36 

Now for i = 8, ... ,2 we interchange the entries in positions 1 and 
i and make the subarray A[1..i -1] into a heap-array by trickling 
down the new first entry: 

i = 8 36 76 66 45 13 62 16 79 
76 36 66 45 13 62 16 79 
76 45 66 36 13 62 16 79 

i=7 16 45 66 36 13 62 76 79 
66 45 16 36 13 62 76 79 
66 45 62 36 13 16 76 79 

i = 6 16 45 62 36 13 66 76 79 
62 45 16 36 13 66 76 79 

i=5 13 45 16 36 62 66 76 79 
45 13 16 36 62 66 76 79 
45 36 16 13 62 66 76 79 

i = 4 13 36 16 45 62 66 76 79 
36 13 16 45 62 66 76 79 

i=3 16 13 36 45 62 66 76 79 

i = 2 13 16 36 45 62 66 76 79 



354 Solutions 

So the sorted version is 

13 16364562 66 76 79 

3. We prove the result by mathematical induction. 

The basis for the inductive proof is given by the observation that 
the inorder traversal of a binary search tree with 1 node produces its 
output (which just consists of a single record) in increasing order of 
key. 

Suppose now that for some natural number k we have shown that 
the inorder traversal of every binary search tree with fewer than k 
nodes produces its output in increasing order of key; notice that we 
have certainly done this for k = 2. Let T be a binary search tree 
with exactly k nodes. The left and right subtrees Land R of Teach 
have fewer than k nodes; so, by the inductive hypothesis, their inorder 
traversals produce their output in increasing order of key. The inorder 
traversal of T consists of the inorder traversal of L followed by the item 
stored at the root followed by the inorder traversal of R. Since every 
record stored in L has key less than the key of the record stored at 
the root and every record stored in R has key greater than the key 
of the record stored at the root, and since the inorder traversals of L 
and R are in increasing order, it follows that the inorder traversal of 
T produces its output in increasing order of key. 

This completes the inductive step, so the result is established. 

For the given array the binary search tree produced is 

and the inorder traversal gives the sorted output 

11 14 29 44 53 54 75 82. 



Solutions to Exercises 7 355 

If the given array is already sorted (or is in the reverse of sorted order) 
the number of comparisons required to construct the corresponding 
binary search tree (which reduces to a single list) is 

1 + 2 + ... + (N - 1) = !N(N - 1). 

4. We try to define a recursive function 

Function order (i, j : Index; q : Integer) : T; 

such that order( i, j, q) is the entry in the subarray indexed by i .. j 
which is q-th in order of key. Then to find the entry of the complete 
array, indexed by 1 .. N, which is k-th in order of key we evaluate 
order(l, N, k). 

To see how to define the function order we notice first that for the 
expression order(i, j, q) to make sense we must have 0 < q S j - i + 1 
(the number of elements in the subarray indexed by i .. j); next, if 
i = j, in which case q must be 1, order(i, i, 1) should be A[i]. 

Suppose now that i < j and 0 < q S j - i + 1. We proceed as in 
Quicksort by choosing a pivot p for the subarray A[i .. j] and parti­
tioning the sub array using the procedure call partition( i, j, p, r). This 
produces a left subarray L = A[i .. r -1], all of whose entries have keys 
less than those of the entries in the right subarray R = A[r .. j]. If 
q S r - i, the number of elements in L, then order(i, j, q) = order(i, 
r - 1, q); otherwise the q-th element of A[i .. j] in order of key is the 
(q - (r - i))-th element of R in order of key and so order(i, j, q) = 
order(r, j, q - r + i). 

5. We decompose the array into 16 subarrays, each with one element and 
merge successive pairs to form 8 runs each with 2 elements: 

2266 I 6 36 I 26 79 I 45 75 11331 I 27 62 I 33 76 I 1647 

We now merge successive pairs of these 2-element runs to form 4 runs 
each with 4 elements: 

6223666126457579113273162116334776 



356 Solutions 

Again merging successive pairs of runs we produce 2 8-element runs: 

62226364566757911316273133476276 

The final merging of these runs produces the sorted version 

6131622262731333645476266757679. 

6. As in two-pass radix sort we introduce a queue Q to hold the input 
stream of records to be sorted and Qu, an array [0 .. 9] of queues. 

We take the records from Q in turn and add each to the element 
of Qu indexed by the least significant (units) digit of the key of the 
record. We concatenate Qu[O], ... , Qu[9] into a single input stream, 
again called Q. Then we take the records from Q and add each to 
the element of Qu indexed by the next-to-Ieast (tens) digit of its key. 
Again we concatenate Qu[O], ... , Qu[9] into Q and taking the records 
from Q in turn we add each to the element of Qu indexed by the most 
significant (hundreds) digit ofthe key. When finally Qu[O], ... , Qu[9] 
are concatenated the resulting queue is ordered from head to tail. 

After the first pass of three-pass radix sort for the given input stream 
we have 

Qu[O].Front--l9001/1- Qu[O].Rear 

Qu[I].Front--l1311 3-19211 3-17211/1- Qu[I].Rear 

Qu[2].Front--.j921 3-1421/1- Qu[2].Rear 

Qu[3].Front--l831 3-19231/1- Qu[3].Rear 

Qu[4].Front--l4441/1- Qu[4].Rear 

Qu[5].Front--l3251 3-11351/1- Qu[5].Rear 

Qu[6].Front = nil = Qu[6].Rear 

Qu[7].Front--.j4771/1- Qu[7].Rear 



Solutions to Exercises 7 357 

Qu[8].Front-4 5081 +-1 8 1 +-1698[/}- Qu[8].Rear 

Qu[9].Front = nil = Qu[9].Rear 

Concatenating these queues we obtain the input stream for the second 
pass: 

900 131 921 721 92 42 83 923 444 325 1354775088698. 

After the second pass we have 

Qu[0].Front-4 9001 +-15081 +-1 8 [/}- Qu[O].Rear 

Qu[l].Front = nil = Qu[l].Rear 

Qu[2].Front-49211 +-17211 +-19231 +-1325171- Qu[2].Rear 

Qu[3].Front-41311 +-1135[/}- Qu[2].Rear 

Qu[4].Front-4421 +-1444[/}- Qu[4].Rear 

Qu[5].Front = nil = Qu[5].Rear 

Qu[6].Front = nil = Qu[6].Rear 

Qu[7].Front-4477[/}- Qu[7].Rear 

Qu[8].Front-4 83 [/}- Qu[8].Rear 

Qu[9].Front-4921 +-1698[/}- Qu[9].Rear 

Concatenating again we obtain the input stream for the third pass: 

9005088921 721 923 325 131 13542444477 83 92 698. 



358 Solutions 

Then the third pass produces 

Qu[O].Front--! 8 1 3--1421 3--1 831 3--192171- Qu[O].Rear 

Qu[1].Front--!1311 3--1135171- Qu[1].Rear 

Qu[2].Front = nil = Qu[2].Rear 

Qu[3].Front--!325171- Qu[3].Rear 

Qu[4].Front--!4441 3--1477171- QU[4].Rear 

Qu[5].Front--!508171- Qu[5].Rear 

Qu[6].Front--!698171- Qu[6].Rear 

Qu[7]:Front--!721171- Qu[7].Rear 

QU[8].Front = nil = Qu[8].Rear 

Qu[9].Front-!9001 3--19211 +-1923171- Qu[9].Rear 

Concatenating the queues for the last time we obtain the sorted output 

8 42 83 92 131 135 325 444 477 508 698 721 900 921 923. 



Solutions to Exercises 7 359 

7. The data should be processed in three stages. 

The first stage should produce an output stream in which the Day 
fields are in non-decreasing order. This might be done by setting up 
31 queues and enqueuing each item in the queue corresponding to its 
Day field; or else, if this is thought to be too extravagant of space, we 
could use a two-pass radix sort, first with 10 queues .corresponding to 
the units digit and second with 4 queues indexed by 0 .. 3 corresponding 
to the tens digit. 

The second stage should produce an output stream in which both Day 
and Month fields are in non-decreasing order. This could be achieved 
by setting 12 queues and enqueuing each item in the output stream 
from the first stage in the queue corresponding to its Month field. 

Finally in the third stage we produce the required ordered output. If 
the number of different Year fields occurring in our collection is small 
we might do this by setting up one queue for each possible year; but 
if the spread of Year fields is large it might be better to carry out the 
third stage in several passes, perhaps as many as 4. 

We would clearly have to think further if some of the dates were B.C. 

8. Function mark (F : Text) : Text; 
Var G: Text; 

m, n : Integer; 
Begin Reset(F); Rewrite(G); 

If not eof(F) then begin 

End; 

Readln(F, m); Writeln(G, m) end; 
Repeat 

If not eof(F) then Readln(F, n); 
If m ~ n then begin 

Writeln(G, n); m := n end 
else begin 

until eof( F);l 
mark:= G 

Writeln(G, ' '); Writeln(G, n); 
m:= n end 



360 Solutions 

9. We introduce four files F1, F2, F3, F4. 
Then we read successive groups of 5 integers from F, sort them, and 
write the resulting runs alternately to F1 and F2. This produces the 
arrangement: 

F1 : 2231 3666 97 119264546 75 1 33 72 76 
F2: 6153244791813176288 

Now we read 5-member runs from F1 and F2, merge them, and write 
the resulting 10-member runs to F3 and F4 alternately, obtaining 

F3 : 6 15 22 31 32 36 44 66 79 97 1 33 72 76 
F4 : 8 13 17 19 26 45 46 62 75 88 

We read 10-member runs from F3 and F4, merging them and writing 
the resulting runs alternately to F1 and F2 so that we have 

F1 : 6 8 13 15 17 19 22 26 31 32 36 44 45 46 62 66 75 79 
8897 

F2 : 337276 

Finally we merge the single runs on F1 and F2 to obtain 

F3 : 6 8 13 15 17 19 22 26 31 32 33 36 44 45 46 62 66 72 
7576 798897 

F4: empty 

10. We read successive runs from the input file and write them alternately 
to F1 and F2, obtaining 

F1 : 66 1 22 97 1 15 1 44 1 19 45 46 75 1 76 
F2 : 31 1 36 1 6 32 79 1 26 1 8 13 176288 1 3372 

Then, merging and distributing in the usual way we obtain successively 

F3: 316616153279181317194546627588 
F4 : 22 36 97 1 26 44 1 33 72 76 

F1: 2231366697181317193345466272757688 
F2 : 6 15 26 32 44 79 



Solutions to Exercises 7 

F3 : 6 15222631 323644667997 
F4 : 8 13 17 19 33 45 46 62 72 75 76 88 

F1 : 6 8 13 15 17 19 22 26 31 32 33 36 44 45 46 62 66 72 
7576798898 

F2 : empty 

361 

11. As in the Balanced Mergesort described in Section 7.3 we would re­
peatedly read in from the input file as many records as can be held 
in internal memory along with an internal sorting program, use the 
program to form a run, and write away the merged run, using F1 , 

F2 ... , FM in cyclic order (Le. after we have written a run to Fi we 
write the next one to Fi+1 if i = 1,2, ... , M - 1 or Fl if i = M). Then 
we repeatedly merge the leading runs on F1 , ••• , FM into longer runs, 
which we write in cyclic order to FM+t, ... , FN. We then interchange 
the roles of Ft, ... , FM and FM +1, ... ,FN and continue in this way 
until there is only one run. 

To merge M runs we must repeatedly find the minimum of the keys 
of the leading entries of the M runs and transfer to the merged run 
the record which has this minimum key. 



Chapter 20 

SOLUTIONS TO 
EXERCISES 8 

1. The natural greedy strategy would be as follows: 
Take kl to be the largest integer k such that kal ~ Aj thus we 

take kl = A div alj 
Take k2 to be the largest integer k such that ka2 ~ A - kl al j 

thus k2 = (A - klat) div a2, 
and proceed in this way. 

If we apply this method in the case where we have coins of value 11,5 
and 1 then to change 15 we would offer one coin of value 11, none of 
value 5 and 4 of value 1, a total of 5 coins in allj but 3 coins of value 
5 would be a better solution! 

2. Initially S = {A} and we have 

d[B] = 100, d[C] = 250, d[D] = 500, d[E] = 200, 
p[B] = A, p[C] = A, p[D] = A, prE] = A. 

The minimum entry in the array dis d[B] = 100, so we adjoin B to Sj 
then for X = C, D, E we alter d[X] to min{d[X],d[B]+length(BX)}. 
This produces 

d[C] = min{250, 100 + oo} = 250j p[C] = Aj 
d[D] = min{500, 100 + 175} = 275j p[D] = Bj 
d[E] = min{200, 100 + 20} = 120, prE] = B. 

363 



364 Solutions 

The minimum entry in dis d[E] = 120, so we adjoin E to S; then for 
X = C, D we change d[X] to min{d[X],d[E] + length(EX)}. This 
gives 

d[C] = min{250, 120 + oo} = 250; p[C] = A; 
d[D] = min{275, 120 + oo} = 275; p[D] = B. 

The minimum entry in dis d[C] = 250, so we adjoin C to S; then we 
alter d[D] to min{ d[D], d[C] + length( CD)}. So we have 

d[D] = min{275, 250 + 20} = 270; p[D] = C. 

Thus the shortest paths are 

AB(100), AC(250), ACD(270), ABE(120). 

3. Consider the main loop of Dijkstra's algorithm which we can rewrite 
as follows: 

for i := 1 to n - 1 do begin 
Choose a vertex v not in S for which d[v] is least; 
Adjoin v to S; 
For each vertex w not in S do 

if d[w] > d[v] + W((v, w)) then d[w] := d[v] + W((v, w)) 
end 

At the beginning of the i- th iteration of the loop there are n - i vertices 
not in S. So n - i-I comparisons are required to find the vertex v 
not in S for which d[v] is least; and n - i -1 comparisons are required 
to determine whether the entries d[w] corresponding to the remaining 
vertices w have to be updated. Thus the total number of comparisons 
is 

2((n - 1) + (n - 2) + ... + 3 + 2 + 1) = (n - l)(n - 2). 

Hence, counting comparisons, Dijkstra's algorithm is 0(n2 ). 

4. The initial versions of the matrices D and Pare 

[

0 90 
40 0 
7 00 

20 10 

100 
5 
o 
7 

70] 10 
4 

o 
and [

0 0 
o 0 
o 0 
o 0 



Solutions to Exercises 8 365 

respectively. 

We now make the assignments 

D[i,j] := min{D[i,j], D[i, 1] + D[l,j]} 

and 
P[i,j] := 1 if D[i,j] has been reduced. 

Thus we have 

D[2,3]:= min{D[2,3],D[2,1]+ D[1,3]} = min {5, 40 + 100} = 5 
D[2,4]:= min{D[2,4],D[2,1]+ D[1,4]} = min {10, 40 + 70} = 10 
D[3,2] := min{D[3, 2], D[3, 1] + D[l, 2]} = min {oo, 7 + 90} = 97 

and P[3,2] := 1 
D[3,4]:= min{D[3,4],D[3, 1]+ D[1,4]} = min {4, 7 + 70} = 4 
D[4,2]:= min{D[4,2], D[4, 1] + D[1,2]} = min {1O, 20 + 90} = 10 
D[4,3]:= min{D[4,3],D[4,1]+ D[1,3]} = min {7, 20 + 100} = 7 

So we have 

D = [~o 90 100 70] 

Md P = [~ 
0 0 

~] o 5 10 0 0 
97 0 4 1 0 

20 10 7 0 0 0 

We now make the assignments 

D[i,j] := min{D[i,j], D[i, 2] + D[2,j]} 

and 
P[i,j] := 2 if D[i,j] has been reduced. 

Thus we have 

D[1,3]:= min{D[1,3],D[1,2]+ D[2,3]} = min {100, 90 + 5} = 95 
and P[1,3] := 2 

D[1,4]:= min{D[1,4],D[1,2] + D[2,4]} = min {70, 90 + 10} = 70 
D[3, 1] := min{D[3, 1], D[3, 2] + D[2, I]} = min {7, 97 + 40} = 7 
D[3,4]:= min{D[3,4],D[3,2]+ D[2,4]} = min {4, 97 + 10} = 4 
D[4,1] := min{D[4, 1], D[4, 2] + D[2, I]} = min {20, 10 + 40} = 20 
D[4,3]:= min{D[4,3],D[4,2] + D[2,3]} = min {7, 10 + 5} = 7 



366 Solutions 

So we have 

D= [f 90 95 70] 
Md p= [~ 

0 2 

~] o 5 10 0 0 
97 0 4 1 0 

20 10 7 0 0 0 

We now make the assignments 

D[i,j] := min{D[i,j], D[i, 3] + D[3,j]} 

and 
P[i,j] := 3 if D[i,j] has been reduced. 

Thus we have 
D[I,2] := min{D[I, 2], D[I, 3] + D[3, 2]} = min {90, 95 + 97} = 90 
D[I,4]:= min{D[I,4],D[I,3]+ D[3,4]} = min {70, 95 + 4} = 70 
D[2, 1] := min{D[2, 1], D[2, 3] + D[3, I]} = min {40, 5 + 7} = 12 

and P[2, 1] := 3 
D[2,4]:= min{D[2,4],D[2,3] + D[3,4]} = min {1O, 5 + 4} = 9 

and P[2,4] := 3 
D[4,1] := min {D[4, 1], D[4, 3] + D[3, I]} = min {20, 7 + 7} = 14 

and P[4, 1] := 3 
D[4,2]:= min{D[4,2],D[4,3] + D[3,2]} = min {1O, 7 + 97} = 10 

So we have 

D=[~ 
90 95 70] 

Md P = [~ 
0 2 

~] 059 0 0 
97 0 4 1 0 

14 10 7 0 0 0 

We now make the assignments 

D[i,j] := min{D[i,j], D[i,4] + D[4,j]} 

and 
P[i,j] := 4 if D[i,j] has been reduced. 

Thus we have 



Solutions to Exercises 8 367 

D[I,2] := min{D[I, 2], D[I,4] + D[4, 2]} = min {90, 70 + 10} = 80 
and P[I, 2] := 4 

D[I,3]:= min{D[I,3],D[I,4]+ D[4,3]} = min {95, 70 + 7} = 77 
and P[I, 3] := 4 

D[2, 1] := min{D[2, 1], D[2,4] + D[4, I]} = min {12, 9 + 14} = 12 
D[2,3]:= min{D[2,3],D[2,4]+ D[4,3]} = min {5, 9 + 7} = 5 
D[3,1] := min{D[3, 1], D[3,4] + D[4, I]} = min {7, 4 + 14} = 7 
D[3,2]:= min{D[3,2J,D[3,4] + D[4,2]} = min {97, 4 + 1O} = 14 

and P[3,2] := 4 

So we have finally 

80 77 701 [0 4 4 01 059 3003 
14 0 4 and P = 0 4 0 0 

10 7 0 3 0 0 0 

The (i,j)-th entry of the matrix D is the length of the shortest path 
from vertex i to vertex j. To list the intermediate vertices we call the 
procedure path( i, j). Eventually we find 

Shortest path from 1 to 2 is 1, 4, 2 of length 80; 
Shortest path from 1 to 3 is 1, 4, 3 of length 77; 
Shortest path from 1 to 4 is 1, 4 of length 70; 
Shortest path from 2 to 1 is 2, 3, 1 of length 12; 
Shortest path from 2 to 3 is 2, 3 of length 5; 
Shortest path from 2 to 4 is 2, 3, 4 of length 9; 
Shortest path from 3 to 1 is 3, 1 of length 7; 
Shortest path from 3 to 2 is 3, 4, 2 of length 14; 
Shortest path from 3 to 4 is 3, 4 of length 4; 
Shortest path from 4 to 1 is 4, 3, 1 of length 14; 
Shortest path from 4 to 2 is 4, 2 of length 10; 
Shortest path from 4 to 3 is 4, 3 of length 7. 

5. The execution of Floyd's algorithm clearly always requires n3 compar­
isons; so the algorithm is 0( n3 ). 

This is the same order as an n-fold application of Dijkstra's algorithm, 
using each vertex in turn as initial vertex; but Floyd's algorithm re­
quires space to store an n X n array. 



368 Solutions 

6. Suppose we are looking for a shortest tour starting from and finishing 
at vertex 1. 

For each vertex i '" 1 we have g( i, 0) = cost of cheapest path from i 
to 1 with no intermediate vertex = Ci1. So 

g(2, 0) = C21 = 3 
g(3, 0) = C31 = 7 
g( 4,0) = C41 = 4 
g(5, 0) = CS1 = 2 

Next, for each i '" 1 and each k '" 1, i we have 

So 

g( i, {k}) = minjE{k} {Cij + g{j, 0}} = Cik + g(k, 0) = Cik + Ck1. 

g(2, {3}) = C23 + C31 = 3 + 7 = 10 
g( 2, { 4} ) = C24 + C41 = 4 + 4 = 8 
g(2, {5}) = C2S + CS1 = 6 + 2 = 8 
g(3, {2}) = C32 + C21 = 3 + 3 = 6 
g(3, {4}) = C34 + C41 = 8 + 4 = 12 
g(3, {5}) = C3S + CS1 = 6 + 2 = 8 
g( 4, {2}) = C42 + C21 = 4 + 3 = 7 
g( 4, {3}) = C43 + C31 = 8 + 7 = 15 
g( 4, {5} ) = C4S + CS1 = 5 + 2 = 7 
9(5, {2}) = CS2 + C21 = 6 + 3 = 9 
g(5, {3}) = CS3 + C31 = 6 + 7 = 13 
g(5, {4}) = CS4 + C41 = 5 + 4 = 9 

Now for all appropriate i, j, k we have 

So 

g( i, {j, k} ) = min {Cij + g(j, {k} ), Cik + g( k, {j} )}. 

g(2,{3,4}) = min {C23 + g(3,{4}),C24+g(4,{3})} 
= min {3 + 12,4 + 15} = 15, using 2 -+ 3 

g(2,{3,5}) = min {C23+g(3,{5}),C2S+g(5,{3})} 
= min {3 + 8,6 + 13} = 11, using 2 -+ 3 

g(2,{4,5}) = min {C24 + g(4,{5}),C2S+g(5,{4})} 
= min {4 + 7, 6 + 9} = 11, using 2 -+ 4 



Solutions to Exercises 8 

g(3, {2, 4}) = min {C32 + g(2, {4}), C34 + g(4, {2})} 
= min {3+ 8,8+ 7} = 11, using 3 -+ 2 

g(3, {2, 5}) = min {C32 + g(2, {5}), C3S + g(5, {2})} 
= min {3 + 8,6 + 9} = 11, using 3 -+ 2 

g(3,{4,5}) = min {C34 + g(4,{5}),C3S+g(5,{4})} 
= min {8+ 7,6+ 9} = 15, 

using either 3 -+ 4 or 3 -+ 5 
g( 4, {2, 3}) = min {C42 + g(2, {3}), C43 + g(3, {2})} 

= min {4+ 10,8+ 6} = 14, 
using either 4 -+ 2 or 4 -+ 3 

g( 4, {2, 5}) = min {C42 + g(2, {5}), C4S + g(5, {2})} 
= min {4 + 8,5 + 9} = 12, using 4 -+ 2 

g(4,{3,5}) = min {C43+g(3,{5}),C4S+g(5,{3})} 
= min {8 + 8,5 + 13} = 16, using 4 -+ 3 

g( 5, {2, 3}) = min {CS2 + g(2, {3}), CS3 + g(3, {2})} 
= min {6 + 10,6+ 6} = 12, using 5 -+ 3 

g(5, {2, 4}) = min {CS2 + g(2, {4} ),CS4 + g(4, {2})} 
= min {6 + 8,5 + 7} = 12, using 5 -+ 4 

g(5,{3,4}) = min {cs3+g(3,{4}),CS4+g(4,{3})} 
= min {6+ 12,5+ 15} = 18, using 5 -+ 3 

Next, for all appropriate i, i, k, 1 we have 

369 

g(i, {i, k, I}) = min{cii + g(j, {k, 1}),Cik+ g(k, {i, I}), Cil+ g(/, {i, k})}. 

So 

g(2, {3, 4, 5}) = mini C23+g(3, {4, 5}), C24+g( 4, {3, 5}), c2s+g(5, {3, 4})} 
= min{3 + 15,4+ 16,6+ 18} = 18, using 2 -+ 3 

g(3, {2, 4, 5}) = mini C32+g(2, {4, 5}), C34+g( 4, {2, 5}), c3s+g(5, {2, 4})} 
= min{3 + 11,8 + 12,6 + 12} = 14, using 3 -+ 2 

g( 4, {2, 3, 5}) = mini C42+g(2, {3, 5}), C43+g(3, {2, 5}), c4s+g(5, {2, 3})} 
= min{4 + 11,8 + 11,5 + 12} = 15, using 4 -+ 2 

g(5, {2, 3, 4}) = mini cS2+g(2, {3, 4}), cS3+g(3, {2, 4}), CS4+g( 4, {2, 3})} 
= min{6 + 15,6 + 11,5 + 14} = 17, using 5 -+ 3 



370 Solutions 

Finally we have 

g(l, {2, 3, 4, 5}) = min{ C12+g(2, {3, 4, 5}), C13+g(3, {2, 4, 5}, 
C14+g( 4, {2, 3, 5}), cls+g(5, {2, 3,4})} 

= min {3 + 18, 7 + 14, 4 + 15, 2 + 17} 
= 19, using either 1 -+ 4 or 1 -+ 5. 

Thus the shortest tours are 

1, 4, 2, 3, 5, 1 and 1, 5, 3, 2, 4, 1 

7. (a) Bor~vka's algorithm. F initially consists of 8 single-node 
trees, ({A},0), ... , ({H},0). 

Minimum weight edge from ({A},0) is AB oflength 1; 
Minimum weight edge from ({B}, 0) is BA oflength 1; 
Minimum weight edge from ({ C}, 0) is CD of length 2; 
Minimum weight edge from ({D}, 0) is DC oflength 2; 
Minimum weight edge from ({ E}, 0) is EH oflength 6; 
Minimum weight edge from ({F}, 0) is F B of length 5; 
Minimum weight edge from ({ G}, 0) is G H of length 8; 
Minimum weight edge from ({H}, 0) is HE of length 6. 

Since AB = BA, CD = DC, EH = HE each appear twice we 
take Fl to consist of the 5 single-node trees ({A},0), ({C},0), 
({E},0), ({F},0), ({G},0) and apply the Blue Rule to their 
vertex sets, colouring AB, CD, EH, FE and GH blue. 
F now consists of the three blue trees 

Tl = ({A, B, F}, {AB, BF}); 
T2 = ({C,D},{CD}); 
T3 = ({E,G,H},{EH,GH}). 

We now see that we have 

Minimum weight edge from Tl is BC of length 3; 
Minimum weight edge from T2 is C B of length 3; 
Minimum weight edge from T3 is D H of length 7. 

Since BC = CB occurs twice we take Fl to consist of Tl and T3 
and apply the Blue Rule to their vertex sets, colouring BC and 
DH blue. 
F now consists of a single blue tree, with edges AB, BC, CD, 
D H , E H , F Band G H; this is a minimum spanning tree, of total 
weight 32. 



Solutions to Exercises 8 371 

(b) Kruskal's algorithm. In increasing order of length we have 

AB (1), CD (2), BC (3), AD (4), BF (5), EH (6), 
DH (7), GH (8), AE (9), EF (10), FG (12), CG (14) 

Originally there are 8 single-node blue trees 

({A},0), ({B},0), ... , ({H},0). 

AB has its endpoints in distinct blue trees; so we colour it blue. 
There are now 7 blue trees 

({A,B},{AB}), ({C},0), ... , ({H},0). 

CD has its endpoints in distinct blue trees; so we colour it blue. 
There are now 6 blue trees 

({A,B},{AB}), ({C,D},{CD}), ({E},0), ... , ({H},0). 

BC has its endpoints in distinct blue trees; so we colour it blue. 
There are now 5 blue trees 

({A,B,C,D},{AB,BC,CD}), ({E},0), ... , ({H},0). 

AD has its endpoints in the same blue tree; so we colour it red. 

BF has its endpoints in distinct blue trees; so we colour it blue. 
There are now 4 blue trees 

({A,B,C,D,F},{AB,BC,CD,BF}), ({E},0), ({G},0), 
({H}, O). 

EH has its endpoints in distinct blue trees; so we colour it blue. 
There are now 3 blue trees 

({A,B,C,D, F},{AB,BC,CD,BF}), ({E,H},{EH}), 
({G},0). 

D H has its endpoints in distinct blue trees; so we colour it blue. 
There are now 2 blue trees 

({A,B,C,D, E,F,H}, {AB, BC,CD,BF,EH,DH}), ({G},0). 

G H has its endpoints in distinct blue trees; so we colour it blue. 
There is now just one blue tree with 7 edges, 

({A,B,C,D,E,F,G,H},{AB,BC,CD,BF,EH,DH,GH}). 



372 Solutions 

which is a minimum spanning tree. 

(c) Prim's algorithm. 1. We begin with the I-node tree T = 
({A},0). 
The edges protruding from Tare AB (1), AD (4), AE (9) which 
are all uncoloured. We apply the Blue Rule to {A} and colour 
AB blue. 

2. T is now ({A,B},{AB}). 

The edges protruding from T are AD (4), AE (9), BF (5), 
BC (3) which are all uncoloured. Applying the Blue Rule to 
{A, B} we colour BC blue. 

3. T is now ({A, B, C}, {AB, BC}). 

The edges protruding from T are AD (4), AE (9), BF (5), 
CG (14) and CD (2). These are all uncoloured; but AD and CD 
have the same endpoint D outside T-so we apply the Red Rule 
to the cycle A, B, C, D, A and colour AD red. The uncoloured 
edges protruding from T are now AE (9), BF (5), CG (14), 
CD (2). We apply the Blue Rule to {A,B,C} and colour CD 
blue. 

4. T now becomes ({A,B,C,D},{AB,BC,CD}). 

The protruding edges are AE (9), BF (5), CG (14), DH (7) 
which are all uncoloured and no two of which have the same 
endpoint outside T. Applying the Blue Rule to {A,B,C,D} we 
colour BF blue. 

5. T is now ({A,B,C,D,F},{AB,BC,CD,BF}). 

The edges protruding from Tare AE (9), CG (14), DH (7), 
FE (10), FG (12) which are all uncoloured. AE and FE have 
the same endpoint E outside T; we apply the Red Rule to the 
cycle A, B, F, E, A and colour FE red. CG and FG have 
the same endpoint G outside T; we apply the Red Rule to the 
cycle C, B, F, G, C and colour CG red. The uncoloured edges 
protruding from T are now AE (9), DH (7), FG (12). Applying 
the Blue Rule to {A,B,C,D,F} we colour DH blue. 

6. T is now ({A,B,C,D,F,H},{AB,BC,CD,BF,DH}). 

The edges protruding from Tare AE and CG, which are red and 
FE (10), FG (12), HE (6), HG (8). Now FE and HE have the 
same endpoint E outside T; we apply the Red Rule to the cycle 
F, B, C, D, H, E, F and colour FE red. FG and HG have the 



Solutions to Exercises 8 373 

same endpoint G outside T; applying the Red Rule to the cycle 
F, B, C, D, H, G, F we colour FG red. The uncoloured edges 
protruding from T are now HE (6) and HG (8). We apply the 
Blue Rule to {A,B,C,D,F,H} and colour HE blue. 

7. T is now ({A,B,C, D,E,F, H}, {AB,BC,CD,BF,DH,H E}). 

The only edges protruding from Tare FG, which is red, and 
HG (8), which is uncoloured. So we apply the Blue Rule to 
{A, B, C, D, E, F, H} and colour HG blue. 

As before we obtain a minimum spanning tree 

({A, B, C, D, E, F, G, H}, {AB, BC,CD,BF, DH, H E,HG}). 

8. As in Floyd's algorithm we construct a sequence of arrays 

Po, PI, ... , Pn 

with boolean entries such that for i, j, k = 1, ... , n we have P[i,j] = 
true if and only if there is a path from vertex i to vertex j which has 
no intermediate vertex with number higher than k. Then clearly Po 
is the adjacency matrix and the (i, j)-th entry of Pn tells us whether 
or not there is a path in the graph from i to j. 

We declare 

Var P : array [1 .. n, 1 .. n] of boolean; 

initialise P to be the adjacency matrix and then carry out the triple 
loop 

for k:= 1 to n do 
for i:= 1 to n do 

for j:= 1 to n do 
P[i, j] := P[i, j] or (P[i, k] and P[k, j]); 



Chapter 21 

SOLUTIONS TO 
EXERCISES 9 

1. (a) Old Russian multiplication. 

10111001 10101110 
101110010 1010111 

1011100100 101011 
10111001000 10101 

101110010000 
1011100100000 

10111001000000 
101110010000000 

So the product is the sum of 

101110010 
1011100100 

10111001000 
1011100100000 

101110010000000 

which is 0111110110111110. 

(b) New Russian multiplication. 

Let x = 10111001 and y = 10101110. Then 

375 

1010 
101 

10 
1 



376 

Xl = 1011, Xo = 1001, YI = 1010, Yo = 1110, 
Xl - Xo = 0010, Yo - YI = 0100. 

We now have to calculate the three products 

P2 = XIYb PI = (Xl - XO)(yo - YI), Po = XoYO· 

Solutions 

For the calculation of P2 we write X = 1011 and Y = 1010. Then 

Then we have 

Xl = 10, Xo = 11, YI = 10, Yo = 10, 
Xl - Xo = -01, Yo - YI = O. 

q2 = XIYI = (10) X (10) = 0100, 
ql = (Xl - xo)(yo - yt) = 0, 

qo = xoYo = (11) X (10) = 0110. 

So the product P2 is 

0100 X 24 + (0100 + 0 + 0110) X 22 + 0110 = 
01000000 + 101000 + 0110 = 01101110. 

To calculate PI we write X = 0010 and Y = 0100. Then 

Then we have 

Xl = 00, Xo = 10, YI = 01, Yo = 00, 
Xl - Xo = -10, Yo - YI = -01. 

q2 = XIYI = (00) X (01) = 0000, 
ql = (Xl - xo)(yo - YI) = (-10) X (-01) = 0010, 

qo = XoYo = (10) X (00) = 0000. 

So the product PI is 

0000 X24 + 0010 X 22 + 0000 = 00001000. 

Finally we calculate Po, starting by writing X = 1001 and Y = 1110. 
Then 



Solutions to Exercises 9 

Then we have 

Xl = 10, Xo = 01, YI = 11, Yo = 10, 
Xl - Xo = 01, Yo - YI = -01. 

q2 = XIYI = (10) X (11) = 0110, 
ql = (Xl - xo)(Yo - YI) = (01) x (-01) = -0001, 

qo = XoYo = (01) X (10) = 0010. 

So the product Po is 

0110 X 24 + (0110 - 0001 + 0010) X 22 + 0010 = 
01100000 + 011100 + 0010 = 01111110. 

The required product is now 

377 

01101110 X 28 + (01111110 + 00001000 + 01101110) X 24 + 01111110 
= 0110111000000000+ 111101000000 + 01111110 

= 0111110110111110. 

2. Both methods must produce the same product 81468. 

3. In the usual notation we have 

mll = m22 = m33 = m44 = 0, 

ml2 = 20 X 10 X 5 = 1000, 
m23 = 10 X 5 X 100 = 5000, 
m34 = 5 X 100 X 8 = 4000. 

ml3 = min{mll + m23 + dodl d3 , m12 + m33 + dod2d3 } 

= min {O + 5000 + 20 X 10 X 100,1000 + 0 + 20 X 5 X 100} 
= 11000, 

m24 = min{m22 + m34 + d l d2d4 , m23 + m44 + d l d3d4 } 

= min {O + 4400 + 20 X 10 X 8,5000 + 0 + 10 X 100 X 8} 
= 4400. 

Finally we have 
m14 = min{m11 + m24 + dodl d4 ,m12 + m34 + dod2d4 , 

ml3 + m44 + dod3d4 } 

= min {O + 4400 + 20 X 10 X 8,1000 + 4000 + 20 X 5 X 8, 
11000 + 0 + 20 X 100 X 8 } 

= 5800. 



378 Solutions 

4. Suppose there are n matrices in the product. Then declare 

Var m : array [1 .. n] of integerj 

and compute the entries m[i,j] for i :::; i :::; j :::; n using the definitions 
of the mij in the description of the algorithm. The required minimum 
number of multiplications is m[1, n]. 

To produce the optimal bracketing we think of working with an array 
b of character strings (if our version of Pascal supports such a data 
type) with the idea that the array entry b[i,j] should be the optimal 
bracketing of the partial product AiAi+1'" Aj. Clearly each b[i, i] 
is the string consisting of the name of the ith factor of the product 
(i = 1, ... , n) and for i = 1, ... , n - 1 the entry b[i, i + 1] is the string 
consisting of a left parenthesis followed by the names of the ith and 
(i + 1 )st factors followed by a right parenthesis. When we are finding 

we can determine b[i, i + s] by noting the index k which produces the 
minimum-call it ko. Then b[i, i + s] is the string consisting of a left 
parenthesis followed by b[i, ko] and then b[ko + 1, i + s] followed by a 
right parenthesis. 

The final optimal bracketing is the array entry b[1, n]. 

5. (1) is unstable because a prefers C to his wife A and C prefers a to 
her husband "y. (There are two other unstable pairs: f3 prefers A to B 
and A prefers f3 to aj also f3 prefers C to Band C prefers f3 to "y.) 
(2) is stable. 
(3) is unstable because f3 prefers A to B and A prefers f3 to "y (and 
also because f3 prefers C to B and C prefers f3 to a). 

6. The Gale-Shapley algorithm with the men doing the proposing pro­
ceeds as follows: 

(a) a asks C and they become engaged. 

(b) f3 asks B and they become engaged. 

(c) "y asks B, who prefers "Y to her current fiance f3j so "Y and B 
become engaged and f3 becomes free. 



Solutions to Exercises 9 379 

(d) f3 asks his second choice A who is freej so f3 and A become 
engaged. 

(e) 0 asks C who prefers him to her current partner aj so 0 and C 
become engaged and a becomes free. 

(f) a asks B who rejects his offer because she prefers her present 
partner "y. 

(g) a asks D who is free and accepts him. 

The resulting stable arrangement is 

a = D, f3 = A, "Y = B, 6 = C. 

7. (a) If A is paired with D (and hence B with C) the situation is 
unstable since A prefers C to D and C prefers A to B. 

(b) If B is paired with D (so A with C) the situation is unstable 
since B prefers A to D and A prefers B to C. 

(c) If C is paired with D (so A with B) then since C prefers B to 
D and B prefers C to A we again have an instability. 



Chapter 22 

SOLUTIONS TO 
EXERCISES 10 

1. (a) (1 + 16) div 2 = 8; A[8] = 20; 30 > 20, so search in the subarray 
indexed by 9 .. 16. 

(9 + 16) div 2 = 12; A[12] = 26; 30 > 26, so search in the subarray 
indexed by 13 .. 16. 

(13+ 16) div 2 = 14; A[14] = 30, so the required record in in A[14]. 
(b) (1 + 16) div 2 = 8; A[8] = 20; 14 < 20, so search in the subarray 
indexed by 1 .. 7. 

(1 + 7) div 2 = 4; A[4] = 10; 14 > 10, so search in the subarray 
indexed by 5 .. 7. 

(5 + 7) div 2 = 6; A[6] = 15; 14 < 15, so search in the subarray 
indexed by 5 .. 5. 

A[5] = 13 -114; so the required record is not present. 

2. We should test that the program locates successfully the N entries 
we know to be present and that it reports failure for any chosen key 
less than A[l].Key, any chosen key between A[i].Key and A[i + l].Key 
(i = 1, ... ,N - 1) and any chosen key greater than A[ N]. Key. 

3. The idea would be, given an array indexed by 10 .. hi, to choose two 
intermediate indices, say th and twoth, which subdivide the array into 
three roughly equal parts. Then, in searching for a record with Key 
field k, we would compare A[th].Key with k-if they are equal then 
we have success at position tho If k < A[th].Key then we would apply 
the ternary search procedure (recursively) to the subarray indexed 

381 



382 Solutions 

by 10 .. (th - 1). If k > A[th].Key then we compare A[twoth].Key 
with k-if they are equal then we have success at position twoth. If 
k < A[twoth].Key then apply ternary search to the subarray indexed 
(th + 1) .. (twoth - 1); otherwise, if k > A[twoth].Key then apply 
ternary search to the subarray indexed by (twoth) + 1 .. hi. 

4. We begin by evaluating the hash function for each of the keys: 

k 534 702 105 523 959 699 821 883 
h(k) 2 18 10 10 9 15 4 9 

k 842 686 658 4 20 382 570 344 
h(k) 6 2 12 4 1 202 

(a) When we use linear probing to resolve collisions the entries in 
the hash table H are as follows, where, as usual, bracketed entries 
indicate unsuccessful attempts to find vacant positions for the 
records with these keys. 

H[O] 
H[I] 
H[2] 
H[3] 
H[4] 
H[5] 
H[6] 
H[7] 
H[8] 
H[9] 

570 
20 
534 (686) 
686 (382) 
821 (4) 

4 (382) 
842 (382) 
382 (344) 
344 
959 (883) 

(382) 
(344) 
(382) 
(344) 
(344) 

(344) 

(344) 

H[10] 
H[ll] 
H[12] 
H[13] 
H[14] 
H[15] 
H[16] 
H[17] 
H[18] 

105 (523) (883) 
523 (883) 
883 (658) 
658 

699 

702 

9 of the entries are located in their home positions; 4 are one location 
removed from their home positions; one (the record with key 883) is 3 
locations removed. For the record with key 382, whose home position 
is 2, we have to try positions 2,3,4, 5, 6, 7 (6 in all) before we find a 
vacant location. For the record with key 344, we have to try positions 
2, 3, 4, 5, 6, 7, 8 (7 in all). So the total number of comparisons 
required to search for all the entries is 

(9 * 1) + (4 * 2) + (h 4) + (1 * 6) + (1 * 7) = 34. 



Solutions to Exercises 10 383 

So the average number of comparisons to locate a record which is 
present is 2.125. 

(b) Using the first version of quadratic probing to handle collisions, we 
produce the hash table 

H[O] 570 (344) H[10] 105 (523) (883) 
H[I] 20 H[ll] 523 (382) (344) 
H[2] 534 (686) (382) (344) H[12] 658 
H[3] 686 (382) (344) H[13] 883 (344) 
H[4] 821 (4) H[14] 
H[5] 4 H[15] 699 
H[6] 842 (382) (344) H[16] 
H[7] 344 H[17] 
H[8] 382 (344) H[18] 702 (382) (344) 
H[9] 959 (883) 

In this case 10 of the entries are located in their home positions; 3 
are one step along the probing sequence and one is 2 steps along the 
probing sequence. For the record with key 382, whose home position 
is 2, we have to try positions 

2,2+ 1,2 + 4,2 + 9,2 + 16,2 + 25 == 8 mod 19 (6 in all) 

before we find a vacant location. For the record with. key 344, which 
also has home position 2, we must try positions 

2, 2 + 1, 2 + 4, 2 + 9, 2 + 16, 2 + 25 == 8 mod 19, 
2 + 36 == 0 mod 19, 2 + 49 == 13 mod 19, 
2 + 64 == 9 mod 19, 2 + 81 == 7 mod 19 (10 in all) 

before we find a vacant location. 

The total number of comparisons required to search for all the entries 
is thus 

(10 * 1) + (3 * 2) + (1 * 3) + (1 * 6) + (1 * 10) = 35 

and so the average number of comparisons is 2.1875 



384 Solutions 

For the second version of quadratic probing we produce the hash table 

H[O] 570 (344) H[10] 105 (523) (883) 
H[I] 20 (382) (344) H[l1] 523 (344) 
H[2] 534 (686) (382) (344) H[12] 658 (344) 
H[3] 686 (382) (344) H[13] 344 
H[4] 821 (4) (344) H[14] 
H[5] 4 (344) H[15] 699 (344) 
H[6] 842 (382) (344) H[16] 
H[7] H[17] 382 (344) 
H[8] 883 (344) H[18] 702 (344) 
H[9] 959 (883) 

Here 10 of the records are located in their home positions; 3 have to 
move one step down the probing sequence and one has to move 2 steps 
down. To find a position for the record with key 382, for which the 
home position is 2, we must try positions 

2, 2 + 1, 2 - 1, 2 + 4, 2 - 4 == 17 mod 19 (5 in all) 

before we find a vacancy. For the last record, with key 344 and home 
position 2, we must try positions 

2, 2 + 1, 2 - 1, 2 + 4, 2 - 4 == 17 mod 19, 2 + 9, 
2 - 9 == 12 mod 19, 2 + 16, 2 - 16 == 5 mod 19 
2 + 25 == 8 mod 19, 2 - 25 == 15 mod 19, 2 + 36 == 0 mod 

19, 
2 - 36 == 4 mod 19, 2 + 49 == 13 mod 19 (14 in all) 

before we find a vacant location. 

The total number of comparisons is 

(10 * 1) + (3 * 2) + (1 * 3) + (1 * 5) + (1 * 14) = 38 

So the average number of comparisons is 2.375. 



Solutions to Exercises 10 385 

5. 

(c) We begin by evaluating the two hash functions for each of the keys: 

k 534 702 105 523 959 699 821 883 
h(k) 2 18 10 10 9 15 4 9 
hl(k) 8 6 4 14 8 3 6 17 

k 842 686 658 4 20 382 570 344 
h(k) 6 2 12 4 1 2 0 2 
hl(k) 10 7 13 5 4 9 10 5 

Then we construct the hash table: 

H[O] 570 H[10] 105 (523) 
H[l] 20 H[l1] 382 
H[2] 534 (686) (382) (344) H[12] 658 (344) 
H[3] H[13] 
H[4] 821 (4) H[14] 4 
H[5] 523 H[15] 699 
H[6] 842 H[16] 686 
H[7] 883 (334) H[17] 344 
H[8] H[18] 702 
H[9] 959 (883) (686) (4) 

Here 10 records are in their home position; for 3 records we had to try 
2 positions; for 2 we had to try 3 positions; and for the record with key 
344 we had to try 4 positions. Thus the total number of comparisons 
required to search for all the records in the table is 

(10 * 1) + (3 * 2) + (2 * 3) + (1 * 4) = 26. 

Thus the average number of comparisons is 1.625. 

We calculate the values of the hash function hI: 

k 534 702 105 523 959 699 821 883 
h1(k) 1 0 1 3 10 10 2 12 

k 842 686 658 4 20 382 570 344 
hl(k) 10 10 8 4 7 5 11 6 

and obtain the following table of lists: 



386 

H[O] -17021/1 

H[l]-I1051 +-15341/1 

H[2]-I 8211/1 

H[3]-I 5231/1 

H[4]-I 4 1/1 

H[5]-I382[/1 

H[6]-I3441/1 

H[7]-I20 1/1 

H[8]-I6581/1 

H[9] = nil 

H[10]-I6861 +18421 +16991 +19591/1 

H[ll]--j570171 

H[12]--j8831/1 

The total number of comparisons is 

10 + (1 + 2) + (1 + 2 + 3 + 4)) = 23 

So the average number of comparisons is 1.4375. 

Solutions 



Chapter 23 

SOLUTIONS TO 
EXERCISES 11 

1. (a) Ordinary binary search tree insertion of 15 produces 

which is not an AVL-tree. The search path followed before this 
insertion was 55(1), 35(1), 20(0), 10(0), where the figures in 
parentheses are the Balance fields of the corresponding nodes. 
The pivot node A is the node containing 35. The insertion was 
made in the left subtree of A, with root the node B containing 
20. Since the insertion was made to the left of B we are in the 

387 



388 Solutions 

situation LL; following the LL instructions we restore the AVL 
property, obtaining 

75 

(b) When we insert 22 the ordinary insertion procedure produces 

which is not an AVL-tree. The search path followed before the 
insertion of 22 was 55(1),20(0), 35(0), 25(0); the pivot node A 
is the node containing 55. The insertion had to be made in the 
left subtree of A, with root B, the node containing 20. This time 
the insertion had to be made to the right of B, so we are in the 
situation LR, with the node containing 35 playing the role of C. 
Following the LR instructions we produce the AVL-tree 



Solutions to Exercises 11 389 

(c) When we insert 37, using ordinary binary search tree insertion, 
we obtain 

The search path for this insertion is 35(0), 55(-1),40(0). The 
insertion is made to the left of 55; so the ordinary insertion pro­
cedure improves the balance of the node containing 55 and the 
tree produced is actually an AVL-tree. 

(d) Inserting 39 by the ordinary binary search tree procedure gives 
the tree 



390 Solutions 

~ T,7 ~ 
~~ B~ ~ 

C~ 

which is not an AVL-tree. 

The search path before the insertion was 35(0), 55(0), 40(1), 
37(0). The pivot node A is the node containing 40. The insertion 
is made to the left of A but to the right of its left child B (the 
node containing 37). So we are in the case LR with C the new 
node containing 39. Application of the LR rules produces the 
AVL-tree 

2. (a) When we insert hf in the tree 



Solutions to Exercises 11 391 

we obtain 

which is unbalanced (Case RR: A is the node containing ga, B 
is the node containing ha). Rebalancing produces 



392 Solutions 

When we insert ge we obtain 

which has to be rebalanced (Case RL: A, B, C are the nodes 
containing fa, ha, ge respectively). Rebalancing produces 

(b) We showed in (a) that the insertion of hf in the given AVL-tree 
produces, after rebalancing 



Solutions to Exercises 11 393 

When we insert df in this tree we obtain 

which satisfies the AVL conditions. Insertion of bf in this tree 
leads to 

which has to be rebalanced (Case LR, with the nodes containing 
ca, ba, bf playing the roles of A, B, C respectively). Rebalancing 



394 Solutions 

produces 

3. Ordinary binary search tree insertion of D, E, G produces 

which is rebalanced (Case RR), producing 

Inserting B produces the AVL-tree 



Solutions to Exercises 11 395 

When we insert A we produce the tree 

which has to be rebalanced (Case LL), producing 

When we insert C using binary search tree insertion we have 



396 Solutions 

which is not an AVL-tree. It needs rebalancing (Case LR)j this leads 
to 

Finally, when we insert F we produce the tree 

which has to be rebalanced (Case RL), giving eventually 



Chapter 24 

SOLUTIONS TO 
EXERCISES 12 

1. 

2. 

397 



398 Solutions 

3. Inserting the first four elements produces the full root node 

Iba lea Ida lea I 

To insert bf we must split the node, putting ba and bf to the left, da 
and ea to the right and ca up as single element of a new root node: 

Iba Ibll 

Insertion of df, ah, cg and bi produces eventually 

To insert cc we must split the second leaf node, sending cc and cg to 
the left, df and ea to the right and da up to the root node. This gives 

Icc leg I 

To insert af we must split the first leaf node, obtaining 



Solutions to Exercises 12 399 

Insertion of eg, bd, ec, ch, ai produces 

To insert dc we have to split the fourth leaf node; this yields 

The next three insertions (of di, ce and ef) go into nodes which are 
not full, producing 

Icc Ice Icglchl 

The final record, with Key field cf should go in the node 

Icc Ice Icg ICh I 

which is full. So we should split it into two nodes containing cc, ce 
and cg, ch, promoting cf to the root node 

Iba Ica Ida lea I 

which is unfortunately full. So it must be split into two and a new 



400 Solutions 

root node created with the middle element as its only entry. The final 
B-tree is 

L 

where the left subtree L of cl is 

and its right subtree R is 

4. The record with key I I should be inserted in the node 

Ilallyllhi/i I 

But this node is full; so we must split it into two nodes containing la, 
I I and Ih, Ii, with Ig promoted to the parent node 

Idl lei Iya Iyi I 

But this is also full; so it is split with dl, ei to the left, ga, gi to the 
right and Ig promoted to the root node 



Solutions to Exercises 12 401 

which is also full. So it is split-af, ba go to the left; da, fg go to the 
right and ca is promoted to be the single entry of a new root node. 
The resulting B-tree is 

dl ei 

Ilhlli I 

5. We shall distinguish between records and their keys by using the upper 
case version of the key to represent the complete record (or key-and­
address pair)-thus, for example, AB will be used to denote the record 
with key abo 

Insertion of the first four records (with keys ca, ea, ba, da) produces, 
as in Exercise 1, the full node 

To insert the record with key bf we have to consider the five elements 

BA, BF, CA, DA, EA 



402 Solutions 

and send the key of the middle record up to be the single element in 
a new root node. But all five records must appear in the leaves, so we 
have 

Insertion of the records with keys dj, ah, cg produces eventually 

When we insert the record with key bi we have to split the first leaf, 
promoting the key of the middle element BF, and so obtaining 

Similarly, when we insert the record with key cc we produce 

Inserting the records with keys aj and eg does not require any node­
splitting: we obtain 



Solutions to Exercises 12 403 

To insert the record with key bd we split the first node and get 

The next three records, with keys ee, ch and ai, can be inserted with­
out any node splitting to obtain 

Finally, when we insert the record with key de we have to split the 
last leaf, sending the middle key ea up to its parent, the root node, 
which must in turn be split, to produce finally the B+ -tree 

L 

whose left subtree L is 



404 Solutions 

and whose right subtree R is 

6. The root node of a B·-tree of order 7 may contain between 1 and 8 
records. So the first 8 records in the input stream are stored in the 
root in increasing order of key: 

For the insertion of bi we must split the root node-of the 9 records 
(8 in the root node and the new record) the one with the middle key 
remains as single entry in the root node, the first 4 in increasing order 
of key are put in the first leaf node and the last 4 in the second. So 
we have 

The non-root nodes of a B·-tree of order 7 must contain between 4 
and 6 entries. So we may insert cc, ai, eg and bd in the correct order 
of key in the appropriate leaf nodes, obtaining 



Solutions to Exercises 12 405 

To insert ee, which should go in the second leaf node, where there is 
no room for it, we must consider the entries in the left sibling, the 
separating element in the parent, the entries in the node and the new 
entry, all arranged in increasing order of key: 

aj, ah, ba, bd, bj, bi, ea, ee, eg, da, dj, ea, ee, ego 

We organise these into three nodes, with two separating elements, as 
shown: 

The next 5 records, with keys eh, ai, de, di, ee, can be inserted (in 
proper order of key) in the appropriate leaves, producing 

To insert ej, which should go in the already full third node, we ex­
amine the elements in the left sibling, the separating element in the 
parent, the elements of the third node and the new element, in in­
creasing order of key-

bi, ea, ee, ee, eg, eh, da, de, dj, di, ea, ee, ej, eg 

and organise them as three nodes with two separators. This produces 
the root node 

and four leaf nodes 



406 Solutions 

laflahlai Iba Ibd I 021 

Ibi lea Icc Ice I VV1 

leh Ida Ide Idf I l/l/l 

lea lee lef leg I VV1 

Finally the record with key ef goes into the second leaf node. 

7. To remove ef from the B-tree 

® 
where the left subtree L of ef is 

and the right subtree R is 

we replace ef by eg, the leftmost entry in the leftmost leaf of the right 
subtree of efi when we remove eg from the node 



Solutions to Exercises 12 407 

Icg Ichl 

it no longer contains the minimum number of entries for a B-tree of 
order 5; its right sibling has one more than the minimum number, so 
we readjust the separating element in the parent node, obtaining 

where the left subtree L of cg is 

and its right subtree R is 

We may remove ef from its leaf node without further adjustment. 
But when we remove ce we have to readjust the separating element 
between its node and its left sibling. So when ef and ce are removed 
we have 

® 
where the left subtree L of cg is 



408 Solutions 

and its right subtree R is 

When we remove di from the node 

its number of elements falls below the minimum allowed. Both siblings 
of this node have exactly the minimum number. So we amalgamate 
the node with its left sibling and the separating element, forming 

But, by demoting de to this new leaf node, we have reduced the number 
of elements in its node below the allowed minimum, so we amalgamate 
it with its left sibling and their separator to form a new root node, 
making the tree 

After de and eh are removed we have 



Solutions to Exercises 12 409 

When we remove eg readjustment is required, resulting in 

The removal of bd also requires readjustment, producing 

lea Icc I 

Removing ec and af produces 

lea lee I 

without any readjustment. But when we remove cc we must change 
the separator between the first and second leaves, obtaining 

Ibi lea I 



410 Solutions 

We now remove bi by changing the separator between the second and 
third leaves, whereupon we have 

Ica Icg I 

The remaining deletions, of cg, ah, df and b f produce in turn 

8. Starting with the B+ -tree 

L ® 
whose left subtree L is 



Solutions to Exercises 12 411 

and whose right subtree R is 

we may remove the records DC, AI, cn with keys dc, ai, ch from 
the leaf nodes containing them without further adjustment, since the 
nodes still have at least the minimum number of entries prescribed for 
non-root nodes of a B+ -tree of order 5. We obtain 

® 
whose left subtree L is 

1-

and whose right subtree R is 



412 Solutions 

To remove the record EG with key eg we must amalgamate the fifth 
and sixth leaves, removing from their parent node the separating key 
ea (the record EA with key ea occurs in the amalgamated leaf node). 
But when we remove ea from the node containing it we reduce the 
number of entries below the minimum permissible. So we must amal­
gamate it with its left sibling and their separator, forming a new root 
node and making the tree 

Removal of ED requires readjustment of the first two leaves; EC can 
be removed without further adjustment. After these two deletions we 
obtain 

Removal of AF involves amalgamation of the first two leaves; CC can 
be removed without further adjustment. We obtain 



Solutions to Exercises 12 413 

To remove BI we readjust the entries of the first two leaves and obtain 

To delete CG we amalgamate the third and fourth leaves; this gives 

Deletion of AH requires amalgamation of the first and second leaves, 
producing 

Removal of BF and DF proceeds without further adjustment, leading 
to 

9. Using the conventions of the example in Section 12.3, with the four 
dots corresponding to a, r, t, s, we have the trie 



414 Solutions 

with the Info fields corresponding to the given words as follows: 

1: a 12: star 
2: art 13: stars 
3: arts 14: start 
4: as 15: ta 
5: astart 16: tar 
6: at 17: tars 
7: ras 18: tart 
8: rast 19: tartar 
9: rat 20: tat 

10: rats 21: tatt 
11: sat 

10. If we were to remove hd from the node 



Index 415 

the node would be left with too few entries. Its left and right siblings 
each have only the minimum number of elements allowed in a non-root 
node of a B-tree of order 5. So we consider the elements ga, g/ in its 
left sibling, the separating element gi and the remaining element ha; 
these form the node 

But when we demote gi to this new node we leave its previous node 
with only one entry, hi, which is too few for a non-root node. Again 
the left and right siblings have only the minimum permitted number 
of entries. So we consider the elements b/, ca from the left sibling, the 
separating element cc and the remaining element hi; these form the 
node 

Demotion of cc to this node leaves its previous node with only one 
element ja. This time the left sibling has one more than the minimum 
number of elements allowed, so we move bb up to the root in place of 
be and replace cc by be. Thus we obtain finally 

af ai 



Index 

Activation record ............. 33 Data types .................... 3 
Adjacency lists ............... 92 Depth first traversal .......... 94 
Adjacency matrix ............. 89 Descendant ................... 59 
Adjacent ..................... 88 Dictionary order ............... 9 
Algorithm ................... 115 Digraph ...................... 88 
Ancestor ..................... 59 Dijkstra's algorithm ......... 173 
Array descriptor .............. 10 Direct chaining .............. 244 
Array mapping function ....... 7 Directed graph ............... 88 
Array ......................... 5 Divide-and-conquer algorithm 139 
Average complexity .......... 119 Double hashing .............. 252 
AVL-tree .................... 260 Dynamic programming ...... 192 
B-tree ....................... 284 Edge ......................... 88 
B+ -tree ..................... 301 Efficient algorithm ........... 120 
B*-tree ...................... 298 Enqueue ..................... .43 
Balanced mergesort .......... 161 External sorting ............. 128 
Base address ................... 8 FIFO structure ............... 43 
Binary search tree ............ 65 Fibonacci numbers .......... 166 
Binary search ............... 241 Field ......................... 11 
Binary tree ................... 58 Floyd's algorithm ............ 181 
Blue Rule ................... 195 Front ......................... 43 
Bor~vka's algorithm ......... 198 Graph ........................ 88 
Breadth first traversal ....... 102 Greedy algorithm ............ 181 
Bubbling up .................. 79 Hash function ............... 244 
Child ......................... 59 Hash table .................. 244 
Collision .................... 244 Hashing ..................... 244 
Column major order .......... 10 Head (of a list) ............... 13 
Commercial traveller problem 186 Head (of an edge) ............ 88 
Component length ............. 8 Heap-tree .................... 76 
Connected ................... 192 Heapsort .................... 148 
Cycle ....................... 171 Heap ......................... 75 
Data structures ................ 3 Height ........................ 59 

417 



418 Index 

Home position ............... 244 Pop .......................... 28 
Incident ...................... 88 Postfix notation .............. 37 
Infix notation ................. 37 Postorder traversal ........... 62 
Inorder traversal .............. 62 Prefix notation ............... 37 
Internal sorting .............. 128 Preorder traversal ............ 62 
Kruskal's algorithm .......... 200 Prim's algorithm ............ 206 
LIFO structure ............... 27 Primary clustering ........... 249 
Leaf .......................... 59 Priority queue ................ 75 
Left child ..................... 59 Probing sequence ............ 248 
Left sibling .................. 293 Push ......................... 28 
Left subtree .................. 58 Quadratic probing ........... 251 
Level ......................... 59 Queue ........................ 42 
Lexical order .................. 9 Quicksort ................... 139 
Lexicographic order ............ 9 Radix sorting ................ 157 
Linear probing .............. 248 Rear ......................... 43 
Linked list .................... 13 Record ....................... ll 
LL-Rotation ................. 266 Red Rule .................... 195 
Load factor ............. 246,249 Return address ............... 33 
Lower bound .................. 8 Reverse Polish notation ....... 37 
LR-Rotation ................ 273 Right child ................... 59 
Mergesort ................... 152 Right sibling ................ 293 
Merge ....................... 152 Right subtree ................. 58 
Minimum spanning tree ..... 194 RL-Rotation ................ 275 
Multiway search tree ........ 279 Root .................... 58,279 
Natural merge sort ........... 164 Row major order .............. 9 
Negative cycle ............... 172 RR-Rotation ................ 275 
Neighbour .................... 88 Run-time stack ............... 33 
New Russian multiplication .. 216 Run ......................... 161 
Node ......................... 59 S -special .................... 176 
Old Russian multiplication .. 215 Search path ................. 263 
Open addressing ............. 248 Secondary clustering ......... 249 
Optimality principle ......... 192 Selection sort ................ 137 
Parent ....................... 59 Sequential search ............ 239 
Path ........................ 171 Serve ......................... 43 
Perfectly balanced trees ..... 259 Shortest path ................ 171 
Pivot node .................. 264 Sibling ....................... 59 
Pivot ........................ 140 Simple cycle ................. 192 
Polish notation ............... 37 Skew-symmetric matrix ....... 20 
Polyphase sorting ........... 166 Sorting ...................... 127 



Index 419 

Spanning tree ............... 193 Traversal ..................... 62 
Sparse matrix ................ 24 Tree ......................... 192 
Stable marriage arrangement 227 Trickling down ............... 81 
Stack ......................... 27 Tridiagonal matrix ............ 21 
Strassen's algorithm ......... 222 Trie ......................... 302 
Subtree ..................... 279 Upper bound .................. 8 
Symmetric matrix ............ 19 Vertex ........................ 88 
Tail (of a list) ................ 13 Weighted digraph ............. 88 
Tail (of an edge) .............. 88 Weighted graph .............. 88 
Tour ........................ 186 Weight ....................... 88 
Travelling salesman problem . 186 Worst case complexity ....... 118 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




