
CRC Press is an imprint of the

Taylor & Francis Group, an informa business

Boca Raton London New York

Uday P. Khedker

Amitabha Sanyal

Bageshri Karkare

Theory and Practice

Data
Flow
Analysis

© 2009 by Taylor & Francis Group, LLC

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-0-8493-2880-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Khedker, Uday.
Data flow analysis : theory and practice / Uday Khedker, Amitabha Sanyal,

Bageshri Karkare.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-8493-2880-0 (hardcover : alk. paper)
1. Compilers (Computer programs) 2. Data flow computing. 3. Software

engineering. 4. Computer software--Verification. I. Sanyal, Amitabha. II. Karkare,
Bageshri. III. Title.

QA76.76.C65K54 2009
004’.35--dc22 2009002056

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

Preface

Data flow analysis is a classical static analysis technique that has been used to dis-

cover useful properties of programs being analyzed. It has found many useful ap-

plications ranging from compiler optimizations to software engineering to software

verification. Modern compilers use this technique to produce code that maximize

performance. In software engineering, it is used to re-engineer or reverse engineer

programs. Finally, data flow analysis based techniques are used in software verifica-

tion to prove the soundness of programs with respect to properties of interest.

This book provides a detailed treatment of data flow analysis. Although we explain

it in the context of compiler optimizations, the concepts are general enough to be

used for other applications. This is possible because we use a general model of data

flow equations to represent the specification of data flow analysis. These data flow

equations are defined in terms of constant and dependent Gen and Kill components.

For classical bit vector frameworks, the constant Gen and Kill suffice; dependent

parts are required for frameworks like constant propagation, points-to analysis etc.

Such a modeling explicates the inter-dependence of data flow values and leads to

an orthogonal generality that models flow functions in terms of a rather small set

of constituent functions called entity functions. On the one hand, modeling flow

functions in terms of entity functions allows us to define information flow paths that

explain empirical observations for a large class of data flow frameworks and facilitate

tight complexity bounds on solution procedures for data flow equations. On the

other hand, this modeling also allows reasoning about the feasibility of constructing

summary flow functions.

The book is organized in three parts: The first part deals with the specification of

data flow frameworks and the solution process at the intraprocedural level. This part

presents the lattice theoretic modeling of data flow frameworks apart from the gen-

eralizations of constant and dependent parts in flow functions and entity functions

as constituents of flow functions. It shows how these generalizations lead to tight

complexity bounds. This part also presents a large number of data flow frameworks.

The diversity of these analyses is an evidence of the wide applicability of the gener-

alizations presented. The final chapter of the first part presents SSA representation of

programs. This is interesting because it builds an additional layer of abstraction over

the control flow graph representation of programs and directly relates the definition

points and the use points of data. This increases the efficiency with which a class of

optimizations can be performed.

The second part of the book presents interprocedural data flow analysis. As a

matter of choice, we avoid methods that are specific to a particular application or

v
© 2009 by Taylor & Francis Group, LLC

vi

a particular data flow framework and instead, focus on generic approaches. The

first approach is a functional approach that constructs context independent summary

flow functions of procedures. These flow functions are used at the call points to

incorporate the effects of procedure calls. The second approach is a value-based

approach that computes distinct values for distinct calling contexts; this is achieved

by augmenting the data flow values with context information.

The third part of the book describes the implementation of a generic data flow

analyzer for bit vector frameworks in GCC and shows how it can be instantiated to a

given framework.

This book is an outcome of our notes for the course CS618: Program Analysis

which is a graduate course at the Department of Computer Science and Engineering,

IIT Bombay. The slides used in the course and the source of the generic data flow

analyzer gdfa are available at the web page of the book:

http://www.cse.iitb.ac.in/˜uday/dfaBook-web

As errors are discovered, we will upload an errata on the above web page. Any

additional material that we find relevant to a course based on this book will also be

made available on the same web page.

Many people have gone through the earlier versions of this manuscript. The reg-

istrants of CS618 were our captive audience for testing our examples—some ex-

amples tested their patience in the examinations of CS618. The following students

of CS618 pointed out errors to us: Abhishek Shrivastav, Amitraj Singh Chouhan,

Dhritiman Das, Harshada Gune, Md. Naseerunddin, Nilesh Padariya, Prashima

Sharma, and Pushpraj Agrawal. Among others, Jaishri Waghmare, Prashant Singh

Rawat, Sameera Deshpande, Santosh Sonawane, and Seema Ravandale read some

chapters and gave valuable comments. Seema extended gdfa to include support for

reaching definitions analysis. Sameera’s help in preparing the first draft of the index

is gratefully acknowledged.

Finally, this book would not have been possible without the patience and constant

encouragement of our families. They have gracefully tolerated our mental, if not

physical, absence, relieving us from a sense of guilt. We express a deep sense of

gratitude for their support.

Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare

© 2009 by Taylor & Francis Group, LLC

vii

To my mother Rajani and the memory of my father Prabhakar Khedker

Uday Khedker

To my parents Arunojjwal and Prakriti Sanyal

Amitabha Sanyal

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

Contents

Preface v

1 An Introduction to Data Flow Analysis 1

1.1 A Motivating Example . 1

1.1.1 Optimizing for Heap Memory 1

1.1.2 Computing Liveness . 4

1.1.3 Computing Aliases . 9

1.1.4 Performing Optimization 10

1.1.5 General Observations . 10

1.2 Program Analysis: The Larger Perspective 12

1.3 Characteristics of Data Flow Analysis 16

1.4 Summary and Concluding Remarks 18

1.5 Bibliographic Notes . 19

I Intraprocedural Data Flow Analysis 21

2 Classical Bit Vector Data Flow Analysis 23

2.1 Basic Concepts and Notations . 23

2.2 Discovering Local Data Flow Information 24

2.3 Discovering Global Properties of Variables 26

2.3.1 Live Variables Analysis 26

2.3.2 Dead Variables Analysis 29

2.3.3 Reaching Definitions Analysis 29

2.3.4 Reaching Definitions for Copy Propagation 32

2.4 Discovering Global Properties of Expressions 33

2.4.1 Available Expressions Analysis 33

2.4.2 Partially Available Expressions Analysis 36

2.4.3 Anticipable Expressions Analysis 37

2.4.4 Classical Partial Redundancy Elimination 39

2.4.5 Lazy Code Motion . 49

2.5 CombinedMay-Must Analyses 53

2.6 Summary and Concluding Remarks 56

2.7 Bibliographic Notes . 57

ix
© 2009 by Taylor & Francis Group, LLC

x

3 Theoretical Abstractions in Data Flow Analysis 59

3.1 Graph Properties Relevant to Data Flow Analysis 59

3.2 Data Flow Framework . 63

3.2.1 Modeling Data Flow Values Using Lattices 64

3.2.2 Modeling Flow Functions 71

3.2.3 Data Flow Frameworks 72

3.3 Data Flow Assignments . 74

3.3.1 Meet Over Paths Assignment 75

3.3.2 Fixed Point Assignment 76

3.3.3 Existence of Fixed Point Assignment 77

3.4 Computing Data Flow Assignments 79

3.4.1 Computing MFP Assignment 79

3.4.2 Comparing MFP and MOP Assignments 81

3.4.3 Undecidability of MOP Assignment Computation 83

3.5 Complexity of Data Flow Analysis for Rapid Frameworks 85

3.5.1 Properties of Data Flow Frameworks 86

3.5.2 Complexity for General CFGs 90

3.5.3 Complexity in Special Cases 97

3.6 Summary and Concluding Remarks 99

3.7 Bibliographic Notes . 100

4 General Data Flow Frameworks 101

4.1 Non-Separable Flow Functions 101

4.2 Discovering Properties of Variables 103

4.2.1 Faint Variables Analysis 103

4.2.2 Possibly Uninitialized Variables Analysis 106

4.2.3 Constant Propagation . 108

4.2.4 Variants of Constant Propagation 115

4.3 Discovering Properties of Pointers 119

4.3.1 Points-To Analysis of Stack and Static Data 119

4.3.2 Alias Analysis of Stack and Static Data 129

4.3.3 Formulating Data Flow Equations for Alias Analysis . . . 132

4.4 Liveness Analysis of Heap Data 135

4.4.1 Access Expressions and Access Paths 137

4.4.2 Liveness of Access Paths 138

4.4.3 Representing Sets of Access Paths by Access Graphs . . . 141

4.4.4 Data Flow Analysis for Explicit Liveness 146

4.4.5 The Motivating Example Revisited 151

4.5 Modeling Entity Dependence . 152

4.5.1 Primitive Entity Functions 153

4.5.2 Composite Entity Functions 155

4.6 Summary and Concluding Remarks 156

4.7 Bibliographic Notes . 156

© 2009 by Taylor & Francis Group, LLC

xi

5 Complexity of Iterative Data Flow Analysis 159

5.1 Generic Flow Functions and Data Flow Equations 159

5.2 Generic Round-Robin Iterative Algorithm 162

5.3 Complexity of Round-Robin Iterative Algorithm 164

5.3.1 Identifying the Core Work Using Work List 165

5.3.2 Information Flow Paths in Bit Vector Frameworks 171

5.3.3 Defining Complexity Using Information Flow Paths . . . 173

5.3.4 Information Flow Paths in Fast Frameworks 175

5.3.5 Information Flow Paths in Non-separable Frameworks . . 179

5.4 Summary and Concluding Remarks 184

5.5 Bibliographic Notes . 184

6 Single Static Assignment Form as Intermediate Representation 185

6.1 Introduction . 185

6.1.1 An Overview of SSA . 186

6.1.2 Benefits of SSA Representation 188

6.2 Construction of SSA Form Programs 189

6.2.1 Dominance Frontier . 191

6.2.2 Placement of φ-instructions 194

6.2.3 Renaming of Variables 196

6.2.4 Correctness of the Algorithm 198

6.3 Destruction of SSA . 207

6.3.1 An Algorithm for SSA Destruction 209

6.3.2 SSA Destruction and Register Allocation 216

6.4 Summary and Concluding Remarks 227

6.5 Bibliographic Notes . 228

II Interprocedural Data Flow Analysis 231

7 Introduction to Interprocedural Data Flow Analysis 233

7.1 A Motivating Example . 233

7.2 Program Representations for Interprocedural Analysis 234

7.3 Modeling Interprocedural Data Flow Analysis 236

7.3.1 Summary Flow Functions 236

7.3.2 Inherited and Synthesized Data Flow Information 237

7.3.3 Approaches to Interprocedural Data Flow Analysis 238

7.4 Compromising Precision for Scalability 239

7.4.1 Flow and Context Insensitivity 240

7.4.2 Side Effects Analysis . 244

7.5 Language Features Influencing Interprocedural Analysis 244

7.6 Common Variants of Interprocedural Data Flow Analysis 246

7.6.1 Intraprocedural Analysis with Conservative Interprocedu-

ral Approximation . 246

7.6.2 Intraprocedural Analysis with Side Effects Computation . 248

7.6.3 Whole Program Analysis 253

© 2009 by Taylor & Francis Group, LLC

xii

7.7 An Aside on Interprocedural Optimizations 254

7.8 Summary and Concluding Remarks 256

7.9 Bibliographic Notes . 256

8 Functional Approach to Interprocedural Data Flow Analysis 259

8.1 Side Effects Analysis of Procedure Calls 259

8.1.1 Computing Flow Sensitive Side Effects 261

8.1.2 Computing Flow Insensitive Side Effects 263

8.2 Handling the Effects of Parameters 266

8.2.1 Defining Aliasing of Parameters 267

8.2.2 Formulating Alias Analysis of Parameters 268

8.2.3 Augmenting Data Flow Analyses Using Parameter Aliases 271

8.2.4 Efficient Parameter Alias Analysis 273

8.3 Whole Program Analysis . 274

8.3.1 Lattice of Flow Functions 274

8.3.2 Reducing Function Compositions and Confluences 275

8.3.3 Constructing Summary Flow Functions 278

8.3.4 Computing Data Flow Information 282

8.3.5 Enumerating Summary Flow Functions 285

8.4 Summary and Concluding Remarks 290

8.5 Bibliographic Notes . 291

9 Value-Based Approach to Interprocedural Data Flow Analysis 293

9.1 Program Model for Value-Based Approaches to Interprocedural Data

Flow Analysis . 293

9.2 Interprocedural Analysis Using Restricted Contexts 296

9.3 Interprocedural Analysis Using Unrestricted Contexts 301

9.3.1 Using Call Strings to Represent Unrestricted Contexts . . 302

9.3.2 Issues in Termination of Call String Construction 305

9.4 Bounding Unrestricted Contexts Using Data Flow Values 311

9.4.1 Call String Invariants . 311

9.4.2 Value-Based Termination of Call String Construction . . . 317

9.5 The Motivating Example Revisited 324

9.6 Summary and Concluding Remarks 326

9.7 Bibliographic Notes . 328

III Implementing Data Flow Analysis 331

10 Implementing Data Flow Analysis in GCC 333

10.1 Specifying a Data Flow Analysis 333

10.1.1 Registering a Pass With the Pass Manager in GCC 334

10.1.2 Specifying Available Expressions Analysis 336

10.1.3 Specifying Other Bit Vector Data Flow Analyses 338

10.2 An Example of Data Flow Analysis 340

10.2.1 Executing the Data Flow Analyzer 341

© 2009 by Taylor & Francis Group, LLC

xiii

10.2.2 Examining the Gimple Version of CFG 342

10.2.3 Examining the Result of Data Flow Analysis 346

10.3 Implementing the Generic Data Flow Analyzer gdfa 352

10.3.1 Specification Primitives 352

10.3.2 Interface with GCC . 354

10.3.3 The Preparatory Pass . 358

10.3.4 Local Data Flow Analysis 358

10.3.5 Global Data Flow Analysis 360

10.4 Extending the Generic Data Flow Analyzer gdfa 363

A An Introduction to GCC 365

A.1 About GCC . 365

A.2 Building GCC . 366

A.3 Further Readings in GCC . 368

References 371

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

1

An Introduction to Data Flow Analysis

Data flow analysis is a process of deriving information about the run time behaviour

of a program.

This chapter introduces the basic concepts of data flow analysis through a contem-

porary optimization. Then we describe common properties of program analyses at

an abstract level and instantiate them for data flow analysis.

1.1 A Motivating Example

We present a data flow analysis for optimizing heap memory usage in programs to

free heap cells as soon as possible. Formal details of the analysis are postponed to

Section 4.4. In this section we perform the required analysis and explain the issues

involved intuitively. The result of intraprocedural data flow analysis of this program

using the formal theory is presented in Section 4.4.5 whereas Section 9.5 presents

the result of interprocedural data flow analysis.

1.1.1 Optimizing for Heap Memory

Figure 1.1(b) provides a program to traverse a tree in depth first order. The data

structure used for representing the input tree is illustrated in Figure 1.1(a). Func-

tion dfTraverse recursively descends down a tree node and prints node numbers

while unwinding from recursion. Figure 1.1(c) provides its control flow graph. The

nodes in this graph represent statements and the edges represent control transfers be-

tween the statements. Observe that the while loop, which is a compound statement,

has been translated in terms of a conditional branch (out edges of block n2) and an

unconditional branch (out edge of block n5).

For simplicity of descriptions, we assume that reading a pointer is equivalent to

reading the data pointed to by the pointer. Further, when we say that a given data

object is read, we mean that some pointer which points to the data object is read;

when a data object is not read, no pointer which points to the data object is read.

Figure 1.2 provides the execution trace of dfTraverse on the input tree in Fig-

ure 1.1(a). It is clear from the trace that the data object pointed to by pointer succ

is last read in block n4. Thus it is desirable that the heap memory allocated for this

1
© 2009 by Taylor & Francis Group, LLC

2 Data Flow Analysis: Theory and Practice

1

2 3 4

5 6 7 8

o1

1

o2

2

o3

3

o4

4

child
sib sib

o5

5

o6

6

child
sib

o7

7

o8

8

child
sib

(a) An example tree and its data structure representation. Each object contains a pointer to its

first child. Other children are siblings of the first child.

0. void main()

1. { Tree *tree;

2. tree = createTree();

3. dfTraverse(tree);

4. }

5. void dfTraverse(Tree *n)

6. { Tree *succ, *next;

7. succ = n->child;

8. while (succ != NULL);

9. { dfTraverse(succ);

10. next = succ->sib;

free(succ);

11. succ = next;

12. }

13. printf("%d\n",n->num);

14. }

n1 succ = n->child n1

n2 if (succ != NULL) n2

n3 dfTraverse(succ) n3

n4 next = succ->sib n4

free(succ) n5

n5 succ = next n5

printf("%d\n",n->num)

n6

T
F

(b) A tree traversal program (c) CFG of dfTraverse

FIGURE 1.1

An example of heap memory optimization. Various nodes of tree are freed as shown

in the gray boxes as soon as their traversal is over.

data object be reclaimed as soon as possible and added to the free pool for a possible

subsequent allocation. The statement which performs the suggested deallocation has

been shown in gray box and is not part of the original program. Observe that this

deallocation cannot be performed through garbage collection because all these data

objects are reachable from the root variable tree in the program.

This particular instance of optimization can be summarized as follows:

Pointer variable succ is not live at the entry of n5 and is not aliased to

any live pointer. Hence the data can be deallocated at the entry of n5.

The properties of liveness and aliasing of pointers are defined as:

Liveness of a pointer. A pointer is live at a program point u if the address that it

holds at u is read along some path starting at u.

Aliasing of pointers. Two pointers are aliased to each other at a program point u if

they hold the same address in some execution instance of u.

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 3

n1:o1,o2:n->child

n2:o2:succ

n3:o2:succ

n1:o2 ,o5:n->child

n2:o5:succ

n3:o5:succ

n1:o5,NULL:n->child

n2:NULL:succ

n6:o5:n

n4:o5 ,o6:succ->sib

n5:o6:next

n2:o6:succ

n3:o6:succ

n1:o6,NULL:n->child

n2:NULL:succ

n6:o6:n

n4:o6 ,NULL:succ->sib

n5:NULL:next

n2:NULL:succ

n6:o2:n

n4:o2,o3:succ->sib

n5:o3:next

n2:o3:succ

n3:o3:succ

n1:o3,NULL:n->child

n2:NULL:succ

n6:o3:n

n4:o3,o4:succ->sib

n5:o4:next

n2:o4:succ

n3:o4:succ

n1:o4,o7:n->child

n2:o7:succ

n3:o7:succ

n1:o7,NULL:n->child

n2:NULL:succ

n6:o7:n

n4:o7:succ->sib

n5:o8:next

n2:o8:succ

n3:o8:succ

n1:o8,NULL:n->child

n2:NULL:succ

n6:o8:n

n4:o8:succ->sib

n5:NULL:next

n2:NULL:succ

n6:o4:n

n4:o4:succ->sib

n5:NULL:next

n2:NULL:succ

FIGURE 1.2

Execution trace of function dfTraverse on the input tree in Figure 1.1(a). Each

entry is of the form x : y : z where y is the list of objects read using the pointer se-

quence z in block x. Entries with gray background correspond to the last use of the

first object in the list. Nested activations have been shown by nested indentations.

The final data flow information which enables this optimization has been provided

in Figure 1.4 (Section 1.1.4).

The liveness and alias analyses required for performing optimization such as above

use the concept of an access path which is a sequence of pointers representing a

path in the memory. The first pointer in the sequence is a local or global variable

whereas all subsequent pointers are field members of structures. In our example,

when succ points to object o2, objects o3, o4, o5, o6 can be accessed using access

paths succ sib, succ sib sib, succ child, and succ child sib; we say that objects

o3, o4, o5, and o6 are targets of access paths succ sib, succ sib sib, succ child,

and succ child sib respectively.

For the purpose of this chapter, we do not distinguish between access paths beyond

two levels of pointer indirections. Access paths with three or more pointers are

summarized by suffixing a � after the first two pointers. Thus succ sib sib and

succ sib child are both represented by succ sib �. A more precise and formal

method of summarization of access paths using graphs is presented in Section 4.4.3.

Our analyses extend the concept of liveness and aliasing of pointer variables to

liveness and aliasing of access paths.

© 2009 by Taylor & Francis Group, LLC

4 Data Flow Analysis: Theory and Practice

1.1.2 Computing Liveness

The liveness information at a program point is represented by a set of live access

paths where liveness of an access path is defined as follows:

Liveness of access paths. An access path ρ is live at a program point u if the targets

of all prefixes of ρ are read along some control flow path starting at u.

Clearly, liveness sets are prefix-closed. For notational convenience, we retain only

those access paths which are not prefixes of other access paths.

Since liveness information at u represents possible uses beyond u, it is computed

from the liveness information at the successors of u. For an access path to be live

at u, it is sufficient that it is live at any successor of u. Hence the set of live access

paths at u is a union of the corresponding sets at successors of u. In our example, the

liveness set at the exit of n2 is computed by taking a union of the sets of live access

paths at the entries of n6 and n3.

The sets of live access paths are computed by successive refinements starting from

a conservative initial value of ∅. The initial value chosen is ∅ because it is the identity

of union operation. We choose an iterative traversal over the CFG for each step of

refinement. Since liveness at a program point depends on the successor points, we

traverse the CFG against the direction of control flow. For our example, this implies

the following order of computing liveness sets: n6, n5, n4, n3, n2, and n1. This

method is called the round-robin iterative method of performing data flow analysis.

We will use this method in the rest of the book to present our examples. Sections 3.4,

3.5, and 5.2 define this method formally and analyze its complexity.

Modelling Interprocedural Effects

The data flow information within a function is influenced by interprocedural effects

arising out of function calls. In particular, the data flow information in function f is

influenced by the caller functions of f as well as by the functions called by f . If the

interprocedural effects are ignored during intraprocedural analysis, it could lead to

incorrect results. This can be avoided by either performing interprocedural analysis

or by approximating the interprocedural effects.

Figure 1.3 models the above situations for our example program. Figure 1.3(a)

illustrates the situation when the interprocedural effects are ignored: The call state-

ment in block n3 is modeled as reading merely the actual parameter succ. Further

it is assumed that no access path rooted at the formal parameter n is live at the exit

of dfTraverse. Figure 1.3(b) shows a safe approximation of liveness for handling

interprocedural effects: In block n3, it is assumed that any access path rooted at the

actual parameter succ becomes live due to the call made in n3. Similarly, it is as-

sumed that any path rooted at the formal parameter n is live at end of dfTraverse

because it may be accessed in a caller’s body using the actual parameter.

Figure 1.3(c) shows how the function dfTraverse can be represented to facili-

tate interprocedural analysis. It models function calls by splitting them into a call

node and a return node and by adding an edge from the call node to the start of the

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 5

n1 succ=n->child n1

n2 if (succ!=NULL) n2

n3 Read succ n3

n4 next=succ->sib n4

n5 succ=next n5

printf(”%d\n”,n->num)

Assume that n � is dead

n6

TF

n1 succ=n->child n1

n2 if (succ!=NULL) n2

n3 Read succ->� n3

n4 next=succ->sib n4

n5 succ=next n5

printf(”%d\n”,n->num)

Assume that n � is live

n6

TF

n1 succ=n->child n1

n2 if (succ!=NULL) n2

n3

Call n=succ

Return succ=n

n3

n4 next=succ->sib n4

n5 succ=next n5

printf(”%d\n”,n->num)

n6

TF

(a) Intraprocedural analysis

ignoring interprocedu-

ral effects.

(b) Intraprocedural analysis

with interprocedural ap-

proximation.

(c) Interprocedural analysis.

Function main has not

been shown.

FIGURE 1.3

Modelling interprocedural effects in liveness analysis for the program in Figure 1.1.

called procedure and an edge from the end of the called procedure to the return node.

A call node maps the actual parameters to the formal parameters. During liveness

analysis, the call node in block n3 transfers the liveness of the formal parameter n

in the callee’s body (dfTraverse) to the liveness of the actual parameter succ in

the caller’s body (also dfTraverse). In our example, the callee does not return any

value. However, since the parameter of dfTraverse is a pointer variable, the return

node in block n3 transfers the liveness of the actual parameter succ in the caller’s

body to the liveness of the formal parameter n in the callee’s body.

For simplicity of exposition, we first show the liveness analysis for simple in-

traprocedural analysis (modeled in Figure 1.3(a)). Then we show the effect of incor-

porating the interprocedural approximation (modeled in Figure 1.3(b)). Finally we

show a simple interprocedural liveness analysis (modeled in Figure 1.3(c)).

In the later part of the book, a solution of the simple intraprocedural liveness anal-

ysis of our example program as well as intraprocedural liveness analysis with inter-

procedural summarization has been presented in Section 4.4.5. Common variants of

interprocedural data flow analysis are later introduced in Section 7.6 and Section 9.5

presents interprocedural liveness analysis of our example.

Simple Intraprocedural Liveness Analysis

As described before, simple intraprocedural analysis disregards the interprocedural

effects completely. Thus it is assumed that no access path is live at the end of the

procedure. Liveness information at the end of the first iteration is:

© 2009 by Taylor & Francis Group, LLC

6 Data Flow Analysis: Theory and Practice

Block
Liveness at

Exit

Liveness at

Entry
Remark

n6 ∅ {n} Liveness of n is generated.

n5 ∅ {next} Liveness of next is generated.

n4 {next} {succ sib}
Liveness of next is killed.

Liveness of succ sib is generated.

n3 {succ sib} {succ sib}
Liveness of succ is generated.

Liveness of succ sib is propagated.

n2 {n,succ sib} {n,succ sib} Liveness is propagated.

n1 {n,succ sib} {n child �}
Liveness of succ sib is transferred

to n and is summarized.

Liveness computation in block n1 illustrates the process of transferring liveness

from one access path to the other access paths. The target objects of succ at the exit

of n1 are target objects of n child at the entry of n1. Hence the live access path

succ sib from the exit of n1 is transferred to the entry of n1 as n child sib which is

then summarized to n child �; this also subsumes the unchanging live access path

n. The process of transfer is described as follows:

If access path a σ is live after an assignment a = b, then σ is trans-

ferred to b and the access path b σ becomes live before the assignment.

Data flow information converges in the third iteration as shown below. In the

second iteration, liveness information {n,succ sib} at the entry of n2 is propagated

to the exit of n5 along the back edge. The assignment in n5 does not affect n, but

the access paths succ sib cease to be live before n5 due to the assignment to succ

and the liveness of succ sib is transferred as the liveness of next sib before the

assignment. Computing liveness in n4 involves transfer followed by summarization.

Block
Liveness in iteration 2 Liveness in iteration 3

At Exit At Entry At Exit At Entry

n6 ∅ {n} ∅ {n}

n5 {n,succ sib} {n,next sib} {n,succ sib �} {n,next sib�}

n4 {n,next sib} {n,succ sib �} {n,next sib�} {n,succ sib �}

n3 {n,succ sib �} {n,succ sib �} {n,succ sib �} {n,succ sib �}

n2 {n,succ sib �} {n,succ sib �} {n,succ sib �} {n,succ sib �}

n1 {n,succ sib �} {n child �} {n,succ sib �} {n child �}

Intraprocedural Analysis with Interprocedural Approximation

Interprocedural approximation assumes that n � is live at the end of dfTraverse

and succ � is live just before the recursive call. Due to this approximation, the

analysis terminates in two iterations.

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 7

Block
Liveness in iteration 2 Liveness in iteration 3

At Exit At Entry At Exit At Entry

n6 {n �} {n �} {n �} {n �}

n5 ∅ {next} {n �,succ �} {n �,next �}

n4 {next} {succ sib} {n �,next �} {n �,succ �}

n3 {succ sib} {succ �} {n �,succ �} {n �,succ �}

n2 {n �,succ �} {n �,succ �} {n �,succ �} {n �,succ �}

n1 {n �,succ �} {n �} {n �,succ �} {n �}

Interprocedural Analysis

For interprocedural analysis, we split block n3 into a call block n3.call and a return

block n3.ret and compute liveness at the entries and exits of these blocks. The initial

value is ∅. No access path is live after the call to dfTraverse in function main. The

liveness information after first two iterations is:

Block
Liveness in iteration 2 Liveness in iteration 3

At Exit At Entry At Exit At Entry

n6 ∅ {n} {n sib} {n sib}

n5 ∅ {next} {n,succ} {n,next}

n4 {next} {succ sib} {n,next} {n,succ sib}

n3.ret {succ sib} {n sib} {n,succ sib} {n sib}

n3.call ∅ ∅ {n child} {succ child}

n2 {n} {n,succ} {n sib,succ child} {n sib,succ child}

n1 {n,succ} {n child} {n sib,succ child} {n sib,n child �}

In the second iteration, {n sib} is propagated from the entry of n3.ret to the exit of

n6 and {n child } is propagated from the entry of n1 to the exit of n3.call. Further, the

transfer in block n1 causes summarization in the second iteration.

Block At Exit At Entry

It
er

at
io

n
3

n6 {n sib} {n sib}

n5 {n sib,succ child} {n sib,next child}

n4 {n sib,next child} {n sib,succ sib �}

n3.ret {n sib,succ sib �} {n sib �}

n3.call {n sib,n child �} {succ sib,succ child �}

n2 {n sib,succ sib,succ child �} {n sib,succ sib,succ child �}

n1 {n sib,succ sib,succ child �} {n sib,n child �}

It
er

at
io

n
4

n6 {n sib �} {n sib �}

n5 {n sib,succ sib,succ child �} {n sib,next sib,next child �}

n4 {n sib,next sib,next child �} {n sib,succ sib �}

n3.ret {n sib,succ sib �} {n sib �}

n3.call {n sib,n child �} {succ sib,succ child �}

n2
{n sib �,succ sib,
succ child �}

{n sib �,succ sib,
succ child �}

n1 {n sib �,succ sib, succ child �} {n �}

© 2009 by Taylor & Francis Group, LLC

8 Data Flow Analysis: Theory and Practice

Block At Exit At Entry
It

er
at

io
n

5

n6 {n sib �} {n sib �}

n5
{n sib �,succ sib,
succ child �}

{n sib �,next sib,
next child �}

n4 {n sib �,next sib,next child �} {n sib �,succ sib �}

n3.ret {n sib �,succ sib �} {n sib �}

n3.call {n �} {succ �}

n2 {n sib �,succ �} {n sib �,succ �}

n1 {n sib �,succ �} {n �}

It
er

at
io

n
6

n6 {n sib �} {n sib �}

n5 { n sib �,succ �} { n sib �,next �}

n4 { n sib �,next �} { n sib �,succ sib �}

n3.ret { n sib �,succ sib �} {n sib �}

n3.call {n �} {succ �}

n2 { n sib �,succ �} { n sib �,succ �}

n1 { n sib �,succ �} {n �}

It can be verified that the seventh iteration results in the same liveness at each pro-

gram point indicating convergence.

A Comparison of Liveness Computed by Three Methods

We reproduce below the liveness information computed by the three methods.

Program
Point

Intraprocedural Analysis

Interprocedural Analysis
Simple

Interprocedural
Approximation

n6
Exit ∅ ∅ {n sib �}

Entry {n} {n �} {n sib �}

n5
Exit {n, succ sib �} {n �, succ �} { n sib �, succ �}

Entry {n, next sib�} {n �, next �} { n sib �, next �}

n4
Exit {n, next sib�} {n �, next �} { n sib �, next �}

Entry {n, succ sib �} {n �, succ �} { n sib �,succ sib �}

n3
Exit {n, succ sib �} {n �, succ �} { n sib �,succ sib �}

Entry {n, succ sib �} {n �, succ �} {succ �}

n2
Exit {n, succ sib �} {n �, succ �} { n sib �, succ �}

Entry {n, succ sib �} {n �, succ �} { n sib �, succ �}

n1
Exit {n, succ sib �} {n �, succ �} { n sib �, succ �}

Entry {n child �} {n �} {n �}

It is easy to see that the simple intraprocedural analysis fails to record some access

paths as live. For example, access path n sib is live at the end of dfTraverse. This

is because the procedure traverses the next sibling of n after traversing n. However,

the simple intraprocedural analysis concludes that it is not live. When interprocedu-

ral summarization is included, it records n sib as live at the end of the procedure but

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 9

it also marks n child as live. The interprocedural analysis correctly recognizes that

only n sib is live at the end of the procedure.

1.1.3 Computing Aliases

Computing alias information is simpler compared to liveness for this example be-

cause there are no interprocedural effects. This is because unlike liveness which is

a property of an access path, aliasing at a program point is a relation between two

access paths that are visible at that program point. Since there are no global vari-

ables, and no assignments to formal parameter in our example, aliases created in

dfTraverse are restricted to a single activation.

Aliasing of access paths. Access path ρ1 and ρ2 are aliased to each other at a pro-

gram point u, denoted ρ1 � ρ2, if their targets are same at u along some control

flow path reaching u.

Aliasing information at a program point is represented using a set of alias pairs

ρ1 � ρ2. Since an alias holds at a program point u if it holds along some predecessor

of u, we use union to combine sets of alias pairs and use its identity (∅) as the initial

value. Unlike liveness analysis, aliasing information at a program point u depends

on the aliases at predecessors of u. Hence we traverse control flow graph along

the control flow for faster convergence of successive refinements. This implies the

following order: n1, n2, n3, n4, n5, and n6.

The aliases at the end of first iteration are as shown below:

Block Aliases at Entry Aliases at Exit Remark

n1 ∅ {succ � n child } Generation

n2 {succ � n child } {succ � n child } Propagation

n3 {succ � n child } {succ � n child } Propagation

n4 {succ � n child }

{succ � n child,
next � succ sib

next � n child � }

Propagation, transfer
and summarization

n5

{succ � n child,
next � succ sib

next � n child � }

{succ � next,
succ � n child �,
next � n child � }

Generation,
killing and
transfer

n6 {succ � n child } {succ � n child } Propagation

Observe the effect of assignment next = succ->sib in block n4 on the aliases

at the entry of n4. Since succ is aliased to n child, next gets aliased to n child �.

This is analogous to the transfer in liveness. In n5, since assignment succ = next

modifies succ, alias succ � n child ceases to hold at the exit of n6. Two new aliases

succ � next and succ � n child � are created.

The second iteration causes aliases from the exit of n5 to be propagated to the entry

of n2 and some more aliases to be generated as a consequence of transfer. Since succ

is aliased to n child � in block n4, next gets aliased to n child �.

© 2009 by Taylor & Francis Group, LLC

10 Data Flow Analysis: Theory and Practice

Block Aliases at Entry Aliases at Exit

n1 ∅ {succ � n child }

n2
{succ � next,succ � n child �

next � n child � }

{succ � next,succ � n child �,
next � n child � }

n3
{succ � next,succ � n child �,
next � n child � }

{succ � next,succ � n child �,
next � n child � }

n4
{succ � next,succ � n child �,
next � n child � }

{succ � n child �,
next � succ sib,
next � n child � }

n5
{succ � n child �,next � succ sib,
next � n child � }

{succ � next,succ � n child �,
next � n child � }

n6
{succ � next,succ � n child �,
next � n child � }

{succ � next,succ � n child �,
next � n child � }

It can be verified that the third iteration does not compute any new aliases.

1.1.4 Performing Optimization

Figure 1.4 summarizes the final data flow information which enables the desired

optimization. Access path succ is not live at the exit of n4 and the entry of n5.

Further at these points none of the access paths that it is aliased to are live. Thus

the object pointed to by it can be freed. Although next is not live in blocks n2, n3,

and n4, it is aliased to a live access path and hence its target cannot be freed. An

alternative place for deallocating succ is block n6. The difference between the two

deallocations is that the former will be performed after a call to dfTraverse is over

while the latter will be performed just before the end of a call.

1.1.5 General Observations

At the entry of n5, access path succ is not live. It is aliased to n child which is not

live either. If function main is modified to access tree->child after the call to

dfTraverse as shown below, then n child will be live at the exit of n6.

0. void main()

1. { Tree *tree;

2. tree = createTree();

3. printEdges(tree);

printf("%d\n",tree->child->num);

4. }

Since liveness of n child is not affected by the assignment in n5, it will be live at

the entry of n5 too. Thus, with this change, succ cannot be freed. Interestingly, this

change accesses only object o2 outside of function dfTraverse but prohibits freeing

any object in dfTraverse. This is because the same statements in dfTraverse are

used to access all objects and unless the code is rewritten to access o2 and other

objects differently, selective freeing is not feasible.

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 11

Program
Point

Interprocedural Liveness Aliases

n1
Entry {n �} ∅

Exit {n sib �,succ �} {succ � n child }

n2
Entry {n sib �,succ �}

{succ � next,succ � n child �,
next � n child �}

Exit {n sib �,succ �}
{succ � next,succ � n child �,
next � n child �}

n3
Entry {succ �}

{succ � next,succ � n child �,
next � n child �}

Exit {n sib �,succ sib �}
{succ � next,succ � n child �,
next � n child �}

n4
Entry {n sib �,succ sib �}

{succ � next,succ � n child �,
next � n child �}

Exit {n sib �,next �}
{succ � n child �,next � succ sib,
next � n child �}

n5
Entry {n sib �,next �}

{succ � n child �,next � succ sib,
next � n child �}

Exit {n sib �,succ �}
{succ � next,succ � n child �,
next � n child �}

n6
Entry {n sib �}

{succ � next,succ � n child �,
next � n child �}

Exit {n sib �}
{succ � next,succ � n child �,
next � n child �}

FIGURE 1.4

Liveness and alias information in function dfTraverse.

This brings out the concept of safety of data flow analysis and the conservative

approximations which are used to achieve safety. Since liveness is used to prohibit

freeing of objects, it is safer to include spurious access paths as live. Missing a live

access path could lead to incorrect optimization. Data flow information is required to

represent all possible executions on all possible inputs. Hence the concept of approx-

imation depends on the intended use of the data flow information. Approximations

performed by data flow analysis can be characterized by the following two proper-

ties: exhaustiveness and safety. Data flow information is exhaustive if it does not

miss any optimization opportunity; it is safe if it does not enable optimizations that

do not preserve program semantics. In the context of liveness analysis, exclusion of

an access path that is actually live is an approximation towards exhaustiveness be-

cause it facilitates freeing a larger number of objects; however, this may be unsafe.

In contrast, inclusion of an access path that is not live is an approximation towards

safety because it prohibits freeing objects thereby preserving program semantics.

The goal of data flow analysis is to compute the most exhaustive safe information.

© 2009 by Taylor & Francis Group, LLC

12 Data Flow Analysis: Theory and Practice

The interprocedural analysis performed by us is context insensitive because it does

not distinguish between different calling contexts. In our original example, n be-

comes live at the exit of dfTraverse in those activations of dfTraverse that are

invoked through the recursive call. It is not live at the end of the outermost activation

of dfTraverse made through main. A context sensitive interprocedural analysis

can make this distinction. However, exploiting this distinction requires rewriting

the code in a non-trivial manner. Otherwise, the data flow information reaching at

a program point along different contexts will have to be merged. This highlights

the limitation of transformations performed statically. In any case, merging the in-

formation discovered by context sensitive analysis generally results in more precise

information than the information computed by context insensitive analysis.

The alias analysis performed by us is flow sensitive because it propagates aliases

along the control flow. A flow insensitive alias analysis disregards the control flow

and assumes that the aliases discovered hold at all program points. Such an anal-

ysis visits each block only once and accumulates the aliases discovered, no aliases

can be killed. For our example, the flow insensitive aliases are: succ � n child �,

succ � next, next � succ sib, and next � n child �. This alias information pro-

hibits freeing the target of succ at the entry of n5 because it is aliased to next which

is live at that point.

We have summarized the access paths n, n child, n child sib, n child child,

n child sib sib, . . . by n child �. It is clear that some kind of summarization is

essential because statically it is not possible to know how many such access paths

need to be created by analysis. However for precision, the process of summarization

should keep as many access paths distinct in the summary information as is possible.

Further, these summaries have to be constructed automatically by data flow analysis.

Ensuring convergence on safe summaries requires creating suitable representation

for data flow information and devising appropriate operations on the chosen repre-

sentation. In the case of stack and static data, building summaries is simpler because

the mapping between names and addresses does not change during the lifetime of a

name and hence names can be directly used to represent data. Section 4.4.3 shows

how access paths for heap data can be summarized using graphs.

1.2 Program Analysis: The Larger Perspective

Program analyses cover a large spectrum of motivations, basic principles, and meth-

ods. Different approaches to program analysis differ in details but at a conceptual

level, almost all program analyses are characterized by some common properties.

Although these properties are abstract, they provide useful insights about a particu-

lar analysis. A deeper understanding of the analysis would require exploring many

more analysis-specific details.

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 13

Applications of Analysis

The uses of information derived by program analyses can be broadly classified as:

• Determining the validity of a program. An analysis may be used to validate

programs with regard to some desired properties (viz. type correctness).

• Understanding the behaviour of a program. An analysis may discover useful

properties of programs required for debugging, maintenance, verification, or

testing etc. Abstract interpretation, slicing, ripple analysis, test data generation

etc. are the common examples of such analyses.

• Transforming a program. Most analyses enable useful transformations to be

performed on programs. Traditionally, the term program analysis has been

used for the analyses that facilitate transforming a program within the same

given representation. These transformations may be aimed at optimizing the

program for space, time, or power consumption. Note that analyses such as

lexical and syntax analyses transform a program representation into another

representation and are not included in the class of program analyses.

• Enabling program execution. Program analysis can also be used for determin-

ing the operations implied by a program so that the program can be executed

(viz. dynamic type inferencing).

Approaches to Program Analysis

Some of the common paradigms of program analysis are:

• Inference Systems consisting of a set of axioms and inductive and composi-

tional definitions constituting rules of inference.

In such systems, the properties are inferred by repeatedly discovering the

premises that are satisfied by the program components of interest and by in-

voking appropriate rules of inference. Note that there is no algorithm that

suggests appropriate choice of rules; it is left to the creativity of the user of

such a system. As a consequence, such systems may not be decidable.

Typically, the inference systems are converted to constraint based system (de-

scribed below) and constraint resolution algorithms are used for inference.

• Constraint Resolution Systems consisting of a constraint store and a logic for

solving constraints.

In such systems, a program component constrains the semantic properties.

These constraints are expressed in form of inequalities and the semantics prop-

erties are derived by finding a solution which satisfies all the constraints.

Often these constraints take advantage of the temporal or spatial structures of

data and operations by grouping the related constraints together. Traditionally

they have been unconditional, and are called flow-based constraints because

they have been solved by traversals over trees or general graphs. Grouping of

© 2009 by Taylor & Francis Group, LLC

14 Data Flow Analysis: Theory and Practice

structured constraints often leads to replacing groups of related inequalities by

equations. Structured constraints often lead to more efficient analyses, both in

terms of time as well as space.

• Model Checking requires creating suitable abstractions of programs as mod-

els and the desired properties are expressed in terms of boolean formulae. A

model checking algorithm then discovers the states in the mode that satisfy the

given formulae.

• Abstract Interpretations use abstraction functions to map the concrete seman-

tics values to abstract semantics, perform the computations on the abstract se-

mantics, and use concretization functions to map the abstract semantics back to

the concrete semantics. The theory of abstract interpretation provides mecha-

nisms to show the soundness of the abstraction functions. The most interesting

aspect of this approach is that the algorithms for performing analysis emerge

from the construction of abstraction functions.

This is unlike inference systems, constraints resolution systems, and model

checking, where the specifications of analysis are generally based on intu-

itions of semantics instead of being derived formally from concrete seman-

tics. Hence these three approaches require separate algorithms that perform

the specified analyses.

Other approaches like those involving denotational semantics or logic are relatively

less common.

In general an analysis can be expressed in any of the above approaches.

Time of Performing Analysis

An analysis performed before the execution of a program is termed static analysis,

whereas an analysis performed during the execution of a program (in an interleaved

fashion) is termed dynamic analysis. Thus an interpreter can perform static analy-

sis (by analyzing a program just before execution) as well as dynamic analysis (by

analyzing the program during execution). A compiler, however, can perform static

analysis only; for dynamic analysis, a compiler must embed extra code in the com-

piled program as a part of run time support.

In principle, the choice between static and dynamics analysis is governed by the

availability of information on which the analysis depends, the amount of precision

required and the permissible run time overheads.

An analysis which depends on run time information is inherently dynamic. For

example, if type annotations can be omitted in a language and type associations

could change at run time, types can be discovered only at run time. This requires

dynamic type inferencing. If some amount of imprecision can be tolerated (viz. if

precise types are not expected but it is only expected to constrain the set of possible

types by ruling out some types before execution), it may be possible to perform

an approximate static analysis for an otherwise inherently dynamic analysis. This

obviates dynamic analysis only if a compromise on the precision of information is

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 15

acceptable; otherwise it requires a subsequent dynamic analysis. In any case, it

reduces the amount of dynamic analysis and hence, run time overheads.

If run time overheads are a matter of concern, dynamic analyses should be either

avoided or preceded by corresponding (approximate) static analyses. This often is

the case and it should not come as a surprise that, in practice a majority of analyses

performed by language processors are indeed static. Besides, many dynamic analy-

ses have a static counterpart. For instance, many languages require array bounds to

be checked at run time; optimizing compilers can minimize these checks by a static

array bound checking optimization.

Scope of Analysis

Programs can be viewed as hierarchical constructions consisting of structures and

sub-structures. Program analyses try to discover information about a program struc-

ture by correlating the information discovered for constituent sub-structures. As

such, an analysis may be confined to a small sub-structure like an expression, a

statement, or to larger sub-structure like a group of statements or function/procedure

blocks, or to still larger structures like modules or entire programs. The nature of

analysis for the structures and the sub-structures may be different. The sub-structures

that belong to the same structure are analyzed independently. Analysis of a structure

and its sub-structure may be interleaved or may be non-overlapping (and cascaded);

in either case, the larger structure can be analyzed only after their constituent sub-

structures. For example, the liveness analysis performed in Section 1.1 requires anal-

ysis of basic blocks to discover their effects.

Flow Sensitivity of Analysis

If the information discovered by an analysis at a program point depends on the con-

trol flow paths involving the program point and could vary from one program point

to another, then the analysis is flow sensitivity. Otherwise, it is flow insensitive. Type

inferencing in C is flow insensitive whereas that in Ruby is flow sensitive. In general,

flow insensitivity is a compromise on precision for achieving efficiency.

Context Sensitivity of Analysis

If the information discovered by an interprocedural analysis for a function could vary

from one calling context of the function to another, then the analysis is context sen-

sitive. A context insensitive analysis does not distinguish between different calling

contexts and computes the same information for all calling contexts of a function.

Context insensitivity is also a compromise on precision for achieving efficiency.

Granularity of Performing Analysis

An exhaustive analysis derives information starting from scratch whereas an incre-

mental analysis updates the previously derived information to incorporate the effect

of some changes in the programs. These changes may be caused by transforma-

tions (typically for optimization) or by user edits (typically in programming environ-

© 2009 by Taylor & Francis Group, LLC

16 Data Flow Analysis: Theory and Practice

ments). In general, an incremental analysis must be preceded by at least one instance

of the corresponding exhaustive analysis.

Program Representations Used for Analysis

An analysis is typically performed on an intermediate representation of the program.

Though the theoretical discussions of many analyses are in terms of the source code

(viz. in the case of parallelization), in practice these analyses are performed on a

suitable internal representation.

These internal representations differ in their “shapes”: They may be either linear

data structures (viz. a sequence of quadruples), hierarchical data structures (viz.

abstract syntax trees), or general non-linear structures (viz. graphs). The graphs may

capture linear abstractions of control flow (as in CFGs) or hierarchical abstractions

of control flow (as in call graphs).

Single Static Assignment (SSA) form is an interesting representation that does not

belong to the above category. SSA form is used for optimization rather than analysis.

As a matter of fact, it can be viewed as the result of a different kind of data flow

analysis that explicates the data flow information in a CFG.

Representations of Information

Most common representations of information are sets. The elements of these sets

may be of states of a model that satisfy given formulae, or program entities that

satisfy the given constraints, or facts that hold at a given program point, or trees or

graphs representing types. In many cases these elements may be pairs of program

entities and the representations of their properties.

Most analyses require these sets to be finite. Some form of summarization may be

required if these sets are not finite. Further the representations of individual proper-

ties must also be bounded.

1.3 Characteristics of Data Flow Analysis

Data flow analysis statically computes information about the flow of data (i.e., uses

and definitions of data) for each program point in the program being analyzed. This

information is required to be a safe approximation of the desired properties of the

run time behaviour of the program during each possible execution of that program

point on all possible inputs.

Data flow analysis is a special case of program analysis and is characterized by

the following:

• Applications. Data flow analysis can be used for

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 17

– Determining the semantic validity of a program (viz. type correctness

based on inferencing, prohibiting the use of uninitialized variables etc.)

– Understanding the behaviour of a program for debugging, maintenance,

verification, or testing.

– Transforming a program. This is the classical application of data flow

analysis and data flow analysis was originally conceived in this context.

• Approach of Program Analysis. Data flow analysis uses constraint resolution

systems based on equalities. These constraints are often unconditional. The

constraints are called Data Flow Equations.

• Time. Data flow analysis is mostly static analysis. The Just-In-Time (JIT)

compilation and dynamic slicing etc. involve dynamic data flow analysis.

• Scope. Data flow analysis may be performed at almost all levels of scope in

a program. Traditionally the following terms have been associated with data

flow analysis for different scopes in the domain of imperative languages:

– Across statements but confined to a maximal sequence of statements with

no control transfer other than fall through (i.e., within a basic block):

Local Data Flow Analysis.

– Across basic blocks but confined to a function/procedure: Global (in-

traprocedural) Data Flow Analysis.

– Across functions/procedures: Interprocedural Data Flow Analysis.

It is also common to use the term local data flow analysis for analysis of a

single statement and global data flow analysis for analysis across statements

in a function/procedure. Effectively, the basic blocks for such analyses consist

of a single statement.

• Flow Sensitivity. Data flow analysis is almost always flow sensitive in that it

computes point-specific information. In some cases like alias analysis, flow

insensitive analyses are also common.

• Context Sensitivity. Interprocedural data flow analysis can be context sensi-

tive as well as context insensitive. In general, fully context sensitive analysis

is very inefficient and most practical algorithms employ a limited amount of

context sensitivity. Context insensitive data flow analysis is also very common.

• Granularity. Data flow analysis can have exhaustive as well as incremental

versions. Incremental versions of data flow analysis are conceptually more

difficult compared to exhaustive data flow analysis.

• Program Representations. The possible internal representations for data flow

analysis are abstract syntax trees (ASTs), directed acyclic graphs (DAGs), con-

trol flow graphs (CFGs), program flow graphs (PFGs), call multigraphs (CGs),

© 2009 by Taylor & Francis Group, LLC

18 Data Flow Analysis: Theory and Practice

program dependence graphs (PDGs), static single assignment (SSA) forms

etc. The most common representations for global data flow analysis are CFGs,

PFGs, SSA, and PDGs whereas interprocedural data flow analyses use a com-

bination of CGs (and CFGs or PFGs). Though ASTs can and have been used

for data flow analysis, they are not common since they do not exhibit control

flow explicitly.

In this book, we restrict ourselves to CFGs and supergraphs created by con-

necting CFGs of different procedures.

• Representation of Data Flow Information. The most common representations

are sets of program entities such as variables or expressions satisfying the

given property. These sets are implemented using bit vectors. Some analy-

ses use sets of pairs of entities and their properties. For example, constant

propagation stores a constantness value for each expression. Some other form

of representations such as access paths require summarization.

1.4 Summary and Concluding Remarks

Data flow analysis is a technique of discovering useful information from programs

without executing them. This information can be put to a variety of uses. Data flow

analysis was conceived in the context of optimization performed by compilers and

to date this remains its most dominant application.

Data flow analysis constructs a static summary of the information that represents

run time behaviour of a program. Precision of this information depends on the for-

mulation of analysis in terms of the representation of information, rules of sum-

marization, and the algorithms used to compute the information. This chapter has

presented a contemporary optimization that demonstrates the importance of these

aspects of data flow analysis. We use access paths as a unit of data flow information

and summarization is based on treating all access paths beyond two field names as

identical.

Our formulation of liveness analysis uses sets of access paths as data flow infor-

mation; at a given program point, the data flow information depends on the compu-

tations that occur after the program point in some execution path. The effect of a

statement on the incoming data flow information is incorporated by applying a flow

function. In the case of alias analysis, the data flow information is a set of pairs of

access paths; at a given program point this information depends on the computations

that precede the program point in some execution path. In either case, the data flow

information along different paths is combined by taking a union of the sets.

We have also seen that data flow analysis can be restricted to a single procedure

by ignoring function calls or can be performed across procedure boundaries. In the

latter situation, the calling context of a procedure influences data flow information

© 2009 by Taylor & Francis Group, LLC

An Introduction to Data Flow Analysis 19

and for precision, such an analysis should be context sensitive.

This book builds on the above theme in the following manner:

• Part I presents analysis formulations at the intraprocedural level. This part

describes a large number of data flow problems ranging from the classical

problems to contemporary problems. It also presents generalizations underly-

ing these problems. In particular, it presents the lattice theoretic modeling of

data flow frameworks apart from the generalizations of constant and dependent

parts in flow functions and entity functions as constituents of flow functions.

It shows how these generalizations lead to tight complexity bounds.

The final chapter of the first part presents SSA representation of programs

which builds an additional layer of abstraction over the control flow graph

representation of programs and directly relates the definition points and the

use points of data.

• Part II shows how an intraprocedural formulation can be used for interpro-

cedural analysis. The main theme of this part is that the two are orthogonal

and hence we avoid methods that are specific to a particular application or

a particular data flow framework. This part presents two generic approaches.

The first approach is a functional approach that constructs context independent

summary flow functions of procedures. These flow functions are used at the

call points to incorporate the effects of procedure calls. The second approach

is a value-based approach that computes distinct values for distinct calling

contexts; this is achieved by augmenting the data flow values with context

information.

• Part III describes the implementation of a GCC based generic data flow an-

alyzer for bot vectors and shows how particular data flow analyses can be

implemented by writing simple specifications.

1.5 Bibliographic Notes

Most texts on compilers discuss data flow analysis in varying lengths [3, 10, 40, 75,

76, 105]. Some of them discuss details [3, 10, 76]. An advanced treatment of data

flow analysis can be found in the books by Hecht [44], Muchnick and Jones [77],

and F. Nielson, H. R. Nielson and Hankin [80].

Historically, the practice of data flow analysis precedes the theory. Hecht [44]

reports that the round-robin method of performing data flow analysis can be traced

back to Vyssotsky and Wegner [101]. It was an attempt to discover uses of variables

that were potentially uninitialized in a Bell Laboratories 7090 Fortran II compiler.

This was the first variant of an analysis that later came to be known as reaching defi-

nitions analysis. We describe this analysis in Chapter 2. A more powerful variant of

this analysis considers transitive effects of assignments and is described in Chapter 4.

© 2009 by Taylor & Francis Group, LLC

20 Data Flow Analysis: Theory and Practice

The problem of early deallocation of heap memory is an important optimization

and has been attempted in many different ways. The fact that there is ample scope

for performing such an optimization has been well established [1, 90, 91, 89, 52].

Some approaches to this optimization attempt to allocate objects on stack when pos-

sible [73, 81, 15, 16, 23]. This ensures that the memory is automatically deallocated

when activation records are popped off the control stack.

Among earliest data flow analyses, Kennedy [55] presented liveness analysis for

scalar variables and since then it has been discussed thoroughly in the literature.

Liveness of heap data was first approximated by Agesen, Detlefs and Moss [1] by

performing liveness of root variables on the stack that point to heap data. A more

precise liveness analysis for heap cells was formulated recently by Khedker, Sanyal

and Karkare [62].

The concept of aliasing was first studied in the context of interprocedural analysis

for discovering the side effects of function calls. Cooper [25] introduced aliasing in

the context formal parameters. Later aliasing of pointers was studied in details. We

list references in the bibliographic notes of Chapter 4.

Cocke [24], Ullman [100], Allen [4, 5], and Kennedy [55, 56] were the earliest

researchers in intraprocedural data flow analysis. The most influential work in in-

traprocedural analysis is the classical work by Kildall [63] and Kam and Ullman [49].

Spillman [94], Allen [6], Barth [13] and Banning [12] were the earliest researchers

to study interprocedural data flow analysis. This was motivated by the side effect

analysis. The most influential work on interprocedural data flow analysis is the clas-

sical work by Sharir and Pnueli [93].

© 2009 by Taylor & Francis Group, LLC

Part I

Intraprocedural Data Flow

Analysis

21
© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

2

Classical Bit Vector Data Flow Analysis

Data flow analysis originated with what was later termed as “bit vector” data flow

frameworks. The term “bit vector” arises from the fact that not only can the data

flow information be represented using bit vectors, it can also be computed using bit

vector operations alone. There are data flow former for which although the data flow

information can be represented using bit vectors, computing it requires additional

operations. We make this notion more precise in the chapter summary with the help

of the examples presented in the chapter.

2.1 Basic Concepts and Notations

Data flow analysis views computation of data through expressions and transition of

data through assignments to variables. Properties of programs are defined in terms

of properties of program entities such as expressions, variables, and definitions ap-

pearing in a program. In this chapter, we restrict expressions to primitive expressions

involving a single operator. Variables are restricted to scalar variables and definitions

are restricted to assignments made to scalar variables. Data flow analyses of other

program entities such as composite expressions, array variables, pointer variables,

statement numbers etc. have also been devised; we present some of them in later

chapters.

For a given program entity such as an expression, data flow analysis of a program

involves the following two steps (a) discovering the effect of individual statements

on the expression, and (b) relating these effects across statements in the program.

For reasons of efficiency, both these steps are often carried over a basic block instead

of a single statement. A basic block is a maximal group of consecutive statements

that are always executed together with a strictly sequential control flow between

them. Step (a) is called local data flow analysis and is performed for a basic block

only once. Step (b) constitutes global data flow analysis∗ and may require repeated

traversals over basic blocks in a CFG. Since global analysis correlates local proper-

ties, combining local analysis of several statements together and performing global

∗Observe that the term global data flow analysis is restricted to data flow analysis of a single procedure.

23
© 2009 by Taylor & Francis Group, LLC

24 Data Flow Analysis: Theory and Practice

analysis over the resulting basic blocks rather than individual statements implies

lesser work for global analysis.

Relating the effects across basic blocks involves propagating data flow informa-

tion from a basic block to another along the direction of control flow or against it.

Propagation along the direction of control flow constitutes a forward flow whereas

propagation against the direction of control flow constitutes a backward flow. As

observed in Sections 1.1.2 and 1.1.3, liveness analysis involves backward flows and

alias analysis involves forward flows.

Global data flow information is associated with the entry and exit points of a basic

block. For block n these points are denoted by Entry(n) and Exit(n); they represent

the possible states of the program just before the execution of the first statement and

the just after the execution of the last statement in block n. Data flow information

associated with them is usually denoted by Inn and Outn. For bit vector frameworks,

the local data flow information is usually expressed in terms of Genn and Killn. Genn
denotes the data flow information which is generated within block n whereas Killn
denotes the data flow information which becomes invalid in block n.

The relationship between local and global data flow information for a block (i.e.,

Genn, Killn, Inn, and Outn) and between global data flow information across dif-

ferent blocks is captured by a system of linear simultaneous equations called data

flow equations. In general, these equations have multiple solutions. This makes it

important to choose the initial values of Inn and Outn carefully.

Edges in CFGs denote the predecessor and successor relationships: If there is an

edge n1 → n2, then n1 is a predecessor of n2 and n2 is a successor of n1. Observe

that this is different from the notions of ancestors and descendants which are the

transitive closures of predecessors and successors respectively. Predecessors and

successors of a block n are denoted by pred(n) and succ(n) respectively.

We assume that the CFG has two distinguished unique nodes: Start which has no

predecessor and End which has no successor. If such nodes do not exist, dummy

nodes can be added without affecting the program semantics. It is further assumed

that every basic block n is reachable from the Start block and that the End block is

reachable from n. We use the terms nodes and blocks interchangeably.

2.2 Discovering Local Data Flow Information

The manner in which the effect of a statement is modeled varies from one analysis

to another. In any case, there is a common pattern of generation of data flow infor-

mation or invalidation of data flow information. In this chapter we are interested in

the following entities and operations related to data flow analysis:

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 25

Entity Operations

Variable x ∈ Var Reading the value of x Modifying the value of x

Expression e ∈ Expr Computing e Modifying an operand of e

Definition di : x = e, Occurrence of di Any definition of x

di ∈ Defs, x ∈ Var,

e ∈ Expr

Reading the value of a variable is also termed as the use of the variable. A variable

may be used or an expression may be computed (a) in the right hand side of an

assignment statement, (b) in a condition for altering flow of control, (c) as an actual

parameter in a function call, or (d) as a return value from a function. All other

operations in the above table involve an assignment statement to a relevant variable.

Note that reading a value of a variable from input can be safely considered as an

assignment statement assigning an unknown value to the variable.

The set Genn and Killn are computed from the operations described above. It is

easy to see that the operation in one column nullifies the effect of the operation in

the other column. From that viewpoint, the operation in one column is an inverse of

the operation in the other column. Computing Genn and Killn requires identifying

operations that are exposed in the direction of analysis i.e., are not followed by the

inverse operation in the direction of analysis. For forward problems, we are inter-

ested in the operations that are downwards exposed and for the backward problems

we are interested in the operations that are upwards exposed. This is illustrated by

the following example.

Example 2.1

Consider an assignment statement x = x+1. In this statement, the use of
variable x and the computation of expression x+ 1 are upwards exposed be-
cause they are not preceded by a modification of the value of x. They are not
downwards exposed because they are followed by a modification of the value
of x. As a contrasting example, the use of x and computation of x+1 are both
upwards and downwards exposed in an assignment y = x+1 if x and y do not
have the same address (i.e., they are not aliased).

Traditionally, the definitions of Genn and Killn have not been symmetric with re-

spect to the chosen operation. In particular, the operations which contribute to Genn
are required to be downwards exposed for forward flows and upwards exposed for

backward flows. The operations which contribute to Killn may be preceded or fol-

lowed by their inverses. We explain this asymmetry later in the specific contexts of

the data flow problems presented in this chapter.

Local property computation isolates global analysis from the intermediate repre-

sentation (IR) in that it is the former which needs to examine the IR statements. In

practice, IRs in real compilers are very complicated since they need to store a lot of

information about each statement across different phases of a compiler. Hence local

property computations are tedious and error-prone. Global data flow analyzers are

relatively much simpler and cleaner.

© 2009 by Taylor & Francis Group, LLC

26 Data Flow Analysis: Theory and Practice

2.3 Discovering Global Properties of Variables

In this section, we describe two analyses involving variables: Live Variables Analysis

and Reaching Definitions Analysis. Although we have listed a definition as a separate

entity, here we club its analysis with those of variables.

2.3.1 Live Variables Analysis

Section 1.1.2 has introduced liveness analysis for heap data. Liveness analysis for

scalar variables essentially involves determining whether a variable is used in future

and is relatively much simpler because it does not have to consider pointer derefer-

encing.

DEFINITION 2.1 A variable x ∈ Var is live at a program point u if some
path from u to End contains a use of x which is not preceded by its definition.

The data flow equations which define live variables analysis are:

Inn = (Outn−Killn) ∪ Genn (2.1)

Outn =



BI n is End block�

s∈succ(n)

Ins otherwise (2.2)

where Inn, Outn, Genn, Killn, and BI are sets of variables.

Liveness at Exit(End) is represented by BI. This is required because different

categories of variables have to be treated differently. Local variables are not live

at Exit(End) whereas liveness of the return value, global variables, and parameters

passed by reference depends on the calling contexts. If there is no interprocedural

analysis, all variables other than local variables are assumed to be live. We assume

that all our analyses in Part I are restricted to local entities only. Thus we will define

BI for local entities only. Under the assumption of parameter passing by value as in

C, this also allows us to ignore function calls completely.

Observe the use of ∪ in Equation (2.2). It essentially means that the liveness

information at Exit(n) is a superset of the liveness information at Entry(s) where s

is a successor of n. This is consistent with the “any path” nature of the definition

of liveness: Subsequent use along a single path is sufficient to make a variable live.

Further, since data flow information at a node depends on the successor nodes, this

is a backward data flow problem.

Genn contains the variables whose liveness is generated within n. Clearly, these

variables have upwards exposed uses in n. Killn contains the variables whose live-

ness is killed in n. These are the variables which appear on the left hand side of

an assignment anywhere in n. Observe that Genn and Killn need not be mutually

exclusive.

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 27

n1

b1: b = 4;
a1: a = b+ c;
d1: d = a ∗b;

n1

n2 b2: b = a− c; n2

n3 c1: c = b+ c; n3

n4
c2: c = a ∗b;
f (a−b); n4

n5 d2: d = a+b; n5

n6 f (b+ c); n6

n7 g(a+b); n7

n8
h(a− c);
f (b+ c); n8

Var = {a,b,c,d}

Defs = {a1,b1,b2,c1,c2,d1,d2}

Expr = {a ∗b,a+b,a−b,a− c,b+ c}

FIGURE 2.1

Program for illustrating bit vector data flow frameworks.

Example 2.2

In Figure 2.1, variable c is contained in both Genn3
and Killn3

.

In general, assuming that variable x is live at Exit(n), there are four possibilities

with four distinct semantics:

Case Local Information Effect on Liveness

1 x � Genn x � Killn Liveness of x is unaffected in block n

2 x ∈ Genn x � Killn Liveness of x is generated in block n

3 x � Genn x ∈ Killn Liveness of x is killed in block n

4 x ∈ Genn x ∈ Killn
Liveness of x is unaffected in block

n in spite of x being modified in n.

Variable x is live at Entry(n) in cases 1, 2, and 4 but the reason for its liveness is

different in each case. In particular, case 4 captures the fact that the liveness of x is

killed in n but is re-generated within n. The reason why this needs to be distinguished

from case 1 and case 2 is that in some instances, it is important to know whether the

value of a variable is modified in a block or not.

Example 2.3

We provide a trace of liveness analysis for the program flow graph in Fig-
ure 2.1. Since this analysis involves backward flows, we prefer to traverse the

© 2009 by Taylor & Francis Group, LLC

28 Data Flow Analysis: Theory and Practice

CFG in the reverse postorder. We use ∅ as the initialization and assume that
all variables are local implying that BI is ∅.

Local Global Information
Block Information Iteration # 1 Iteration # 2

Genn Killn Outn Inn Outn Inn

n8 {a,b,c} ∅ ∅ {a,b,c} ∅ {a,b,c}

n7 {a,b} ∅ {a,b,c} {a,b,c} {a,b,c} {a,b,c}

n6 {b,c} ∅ {a,b,c} {a,b,c} {a,b,c} {a,b,c}

n5 {a,b} {d} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

n4 {a,b} {c} {a,b,c} {a,b} {a,b,c} {a,b}

n3 {b,c} {c} {a,b,c} {a,b,c} {a,b,c} {a,b,c}

n2 {a,c} {b} {a,b,c} {a,c} {a,b,c} {a,c}

n1 {c} {a,b,d} {a,b,c} {c} {a,b,c} {c}

Observe that the data flow values computed in the second iteration are
identical to the values computed in the first iteration indicating convergence.
We leave it to the reader to verify that the final result would be same even
if the graph is traversed in postorder; the only difference is that it will take
many more iterations.

Observe that the result would be different if we had used the universal set
(in this case {a,b,c,d}) as the initialization. Then, d would have been live at
Exit(n7) whereas d is not used anywhere in the program.

For brevity, we will show only new values computed in an iteration in subsequent

examples—if a value is same as in the previous iteration, we will not show it explic-

itly. Hence we will not show the data flow values in the last iteration.

Two major applications of liveness analysis are in register allocation and dead

code elimination. If a variable x is live at a program point, the current value of x is

likely to be used along some execution path and hence x is a potential candidate for

being allocated a register. On the other hand, if x is not live, the register allocated to

x can be allocated to some other variable without the need of storing the value of x

in memory. If x is not live at a exit of an assignment of x, then this assignment can

be safely deleted.† For example, in Figure 2.1, variable d is not live anywhere. Thus

all assignments of d can be safely eliminated.

In some cases deleting such assignments can have a transitive effect because the

variables used in the right hand side of such an assignment may cease to be live.

Instead of repeating the sequence of liveness analysis and dead code elimination,

it is possible to discover such transitive effects through a single data flow analysis

before dead code elimination is performed. This analysis is called faint variables

analysis and will be presented in Chapter 4. Note that such an analysis cannot be

restricted to a single variable at a time because the liveness of variables occurring on

†Deletion of code which is unreachable is also called dead code elimination but we will restrict dead code

elimination to deletion of assignments to values which have no further use.

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 29

the right hand side of an assignment now also depends on the liveness of the variable

on the left hand side. Such analyses are not bit vector analyses in spite of the fact

that some of them use bit vector representation for data flow information. This is

because the effect of basic blocks in these analyses are not expressible in terms of

constant functions defined using Gen and Kill due to inter-dependence of various

entities. Such frameworks are called non-separable. We describe them in Chapter 4.

For a given variable x, liveness analysis discovers a set of liveness paths. Each

liveness path is a sequence of blocks (b1,b2, . . . ,bk) which is a prefix of some poten-

tial execution path starting at b1 such that:

• bk contains an upwards exposed use of x, and

• b1 is either Start or contains an assignment to x, and

• no other block on the path contains an assignment to x.

Example 2.4

Some liveness paths for variable c in our example program are: (n4,n7,n8),
(n3,n5,n6,n7,n8), (n3,n5,n6,n5,n6,n7,n8), and (n1,n2,n8).

2.3.2 Dead Variables Analysis

A variable is dead (i.e., not live) if it is dead along all paths. If we wish to perform

dead variables analysis instead of live variables analysis, the interpretation of Inn and

Outn changes: If a variable is contained in Inn or Outn, it is dead instead of being

live. This requires the following changes:

• The definitions of Genn and Killn will change. Genn will now contain all

variables whose values are modified in the block such that the modifications

are upwards exposed (i.e., are not preceded by a use of the variable). Killn
will contain variables which are used anywhere regardless of what precedes

or follows the uses. Observe that this is different from merely swapping Genn
and Killn of liveness analysis.

• We will have to use ∩ rather than ∪ for merging information.

• We will have to use the universal set as initialization rather than empty set.

Similarly, BI will now have a different set of variables.

2.3.3 Reaching Definitions Analysis

A definition of a variable x is a statement which assigns a value to x. For the purpose

of analysis, a unique label is associated with each assignment and these labels are

used to represent the definitions. As a consequence, different occurrences of the same

assignment become different definitions. This is different from uses of variables or

© 2009 by Taylor & Francis Group, LLC

30 Data Flow Analysis: Theory and Practice

computation of expressions—labels are not associated with them and hence lexically

same computations are not treated as different entities for analysis.

DEFINITION 2.2 A definition di ∈ Defs of a variable x ∈ Var reaches a
program point u if di occurs on some path from Start to u and is not followed
by any other definition of x on this path.

The data flow equations which define the required analysis are:

Inn =



BI n is Start block�

p∈pred(n)

Out p otherwise (2.3)

Outn = (Inn−Killn) ∪ Genn (2.4)

where Inn, Outn, Genn, Killn, and BI are sets of definitions. Observe the use of ∪ to

capture the “any path” nature of data flow. This is similar to liveness analysis except

that now the data flow is forward rather than backward.

For every local variables x, it is assumed that a fictitious definition x = undef

reaches Entry(Start). This is required for the optimization of copy propagation (de-

scribed in Section 2.3.4). If definition x = undef reaches a use of x, it suggests a

potential use before definition. Whether this happens at run time depends on the

actual results of conditions along the path taken to reach the program point.

Genn contains downwards exposed definitions in n whereas Killn contains all def-

initions of all variables modified in n. Thus Genn ⊆ Killn for reaching definitions

analysis.

Example 2.5

The labels of assignments in the program in Figure 2.1 consist of variable
names and an instance number. We use them to represent the definitions
in the programs. Definitions a0, b0, c0, and d0 represent the special defini-
tions a = undef , b = undef , c = undef , and d = undef respectively. Since the
confluence operation is ∪, the initial value at each program point is ∅.

The result of performing reaching definitions analysis has been shown in
Figure 2.2. The definitions which reach Exit(n6) and Exit(n7) in first iteration
have to be propagated to Entry(n5) and Entry(n3) respectively requiring an
additional iteration.

Reaching definitions analysis is used for constructing use-def and def-use chains

which connect definitions to their uses as illustrated in the following example. These

chains facilitate several optimizing transformations.

Example 2.6

Figure 2.3 shows the use-def and def-use chains of variables a and c in our
example program. For simplicity, we have not shown the chains for other

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 31

Local
Information

Global Information
B

lo
ck Iteration # 1 Changed values

in iteration # 2

Genn Killn Inn Outn Inn Outn

n1

{a1,
b1,
d1}

{a0,a1,
b0,b1,b2,
d0,d1,d2}

{a0,b0,c0,d0} {a1,b1,c0,d1}

n2 {b2} {b0,b1,b2} {a1,b1,c0,d1} {a1,b2,c0,d1}

n3 {c1} {c0,c1,c2} {a1,b1,c0,d1} {a1,b1,c1,d1}
{a1,b1,c0,
c1,c2,d1,d2}

{a1,b1,
c1,d1,d2}

n4 {c2} {c0,c1,c2} {a1,b1,c1,d1} {a1,b1,c2,d2}
{a1,b1,
c1,d1,d2}

{a1,b1,
c2,d1,d2}

n5 {d2} {d0,d1,d2} {a1,b1,c1,d1} {a1,b1,c1,d2}
{a1,b1,
c1,d1,d2}

n6 ∅ ∅ {a1,b1,c1,d2} {a1,b1,c1,d2}

n7 ∅ ∅
{a1,b1,c1,
c2,d1,d2}

{a1,b1,c1,
c2,d1,d2}

n8 ∅ ∅
{a1,b1,b2,c0,
c1,c2,d1,d2}

{a1,b1,b2,c0,
c1,c2,d1,d2}

FIGURE 2.2

Reaching definitions analysis for Example 2.5.

variables. Observe that the definition c0 reaches some uses of c. This suggests
a potential use before any assigning meaningful value. This, in turn, makes
variable b potentially undefined.

Transitive effects of undefined variables are captured by possibly uninitialized

variables analysis. Similar to faint variables analysis which captures transitive effect

of dead variables, possibly uninitialized variables analysis is also non-separable—

whether a variable is possibly undefined may depend on whether other variables are

possibly undefined.

For definition xi of variable x, reaching definitions analysis discovers a set of

definition reaching paths. This path is a sequence of blocks (b1,b2, . . . ,bk) which

is a prefix of some potential execution path starting at b1 such that:

• b1 contains the definition xi

• bk is either End or contains a definition of x

• no other block in the path contains a definition of x.

Example 2.7

Some definition reaching paths for variable c in our example program are:
(n4,n7,n3), (n3,n5,n6,n5,n6,n7,n8), and (n3,n5,n6,n7,n3).

© 2009 by Taylor & Francis Group, LLC

32 Data Flow Analysis: Theory and Practice

n1

c0: c = undef ;

b1: b = 4;

a1: a = b+ c;

d1: d = a∗b;

n1

n2 b2: b = b− c; n2

n3 c1: c = b+ c; n3

n4
c2: c = a∗b;

f (a−b);
n4

n5 d2: d = a+b; n5

n6 f (b+ c); n6

n7 g(a+b); n7

n8
h(b− c);

f (b+ c);
n8

FIGURE 2.3

Def-use chains of variables a and c in our example program.

2.3.4 Reaching Definitions for Copy Propagation

Another application of reaching definitions analysis is in performing copy propaga-

tion. A definition of the form x = y is called a copy because it merely copies the

value of y to x. When such a definition reaches a use of x, and no other definition of

x reaches that use then the use of x can be replaced by y.

Example 2.8

Copy b = 4 in block n1 in our example program is the only definition which
reached the uses of b in blocks n3, n4, n5, n6 and n7. Thus all these uses can
be replaced by constant 4.

In the above example, the right hand side value is constant. When they are vari-

ables, as in x = y, replacing the uses of x by y requires an additional check that the

value of y has not been modified along the path from the copy to the use. We can

define a variant of reaching definitions analysis to accomplish this. The main dif-

ference between this variant and the analysis presented in Section 2.3.3 is that we

restrict the definitions to copies and a definition x = y is contained in

• Genn if it is downwards exposed in n in the sense of not being followed by a

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 33

definition of x or y, and in

• Killb if n contains a definition of x or y.

With these changes, we can now perform reaching definitions analysis. If one defi-

nition reaches a use, we can perform copy propagation.

Note that this optimization does not improve the program on its own but it has the

potential of creating dead code: When copy propagation is performed using x = y, it

is possible that all uses of x are replaced by y thus making x dead after the assign-

ment. Thus this assignment can be safely deleted.

We leave it for the reader to define a variant of copy propagation analysis using

intersection rather than union.

2.4 Discovering Global Properties of Expressions

In this section we present analyses for eliminating redundant computations of ex-

pressions. Our first analysis involves replacing an expression by its precomputed

value. The remaining analyses facilitate code movement which involve advancing

computation an expression to earlier points in control flow paths.

2.4.1 Available Expressions Analysis

Given a program point u, this analysis discovers the expressions whose results at u

are same as the their previously computed values regardless of the execution path

taken to reach u.

DEFINITION 2.3 An expression e ∈ Expr is available at a program point
u if all paths from Start to u contain a computation of e which is not followed
by an assignment to any of its operands.

The data flow equations which define available expressions analysis are:

Inn =



BI n is Start block�

p∈pred(n)

Out p otherwise (2.5)

Outn = (Inn−Killn) ∪ Genn (2.6)

where Inn, Outn, Genn, Killn, and BI are sets of expressions. Observe the use of

∩ to capture the “all paths” nature of data flow. This is different from liveness and

reaching definitions analyses. However, similar to reaching definitions analysis, the

direction of data flow is forward.

© 2009 by Taylor & Francis Group, LLC

34 Data Flow Analysis: Theory and Practice

BI assumes that expressions involving local variables are not available at entry of

Start since the local variables come into existence with function invocations.‡ Genn
contains downwards exposed expressions in n whereas Killn contains all expressions

whose operands are modified in n.

The availability information is useful in an optimization called common subex-

pression elimination in which computation of an expression is marked as redundant

if the expression is available at that point. Let the set of expressions whose upwards

exposed computations exist in block n be denoted by AntGenn
§. Let Redundantn

denote expressions which can be eliminated in block n. Then,

Redundantn = AntGenn∩ Inn (2.7)

Values of the previous computations are stored in a temporary variable and the re-

dundant computations are replaced by that temporary variable. Most production

compilers such as gcc perform common subexpression elimination.

Example 2.9

The program in Figure 2.1 contains expressions (a ∗b), (a+b), (a−b), (a− c),
and (b+ c). We represent the set of expression by a bit vector; the position a
bit indicates the expression which it represents as shown below.

a ∗b a+b a−b a− c b+ c

Bit string 11111 represents the set {a ∗b,a+b,a−b,a− c,b+ c} whereas bit
string 00000 represents ∅. The result of available expressions analysis has
been shown below. Since this is an all paths analysis, the initial value at each

‡There could be exceptions to this in languages which allocate activation records in static area instead of

stack e.g., FORTRAN IV.
§AntGen is the Gen set for Anticipability analysis described in Section 2.4.3. Here we use a different

name to avoid confusion with Gen of the current analysis.

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 35

program point is the universal set (i.e., 11111).

Global Information

Block Local Information Iteration # 1 Changed values
in iteration # 2

Genn Killn AntGenn Inn Outn Inn Outn Redundantn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 10000 00000

n4 10100 00011 10100 10000 10100 10000

n5 01000 00000 01000 10000 11000 00000

n6 00001 00000 00001 11000 11001 00000

n7 01000 00000 01000 10000 11000 00000

n8 00011 00000 00011 00000 00011 00000

Expression (a ∗b) in n4 is redundant. Its value can be stored in a temporary
variable say t0. Then the assignment d = a ∗b in n1 can be replaced by d = t0
and the assignment c = a ∗b in n4 can be replaced by c = t0.

If we had used 00000 as the initial value, expression (a ∗b) would not have
been available anywhere in the loops except at Exit(n4). Thus we would have
missed the opportunity of eliminating the computation of (a ∗b) in n4.

For a given expression e, available expressions analysis discovers a set of avail-

ability paths. Each availability path is a sequence of blocks (b1,b2, . . . ,bk) which is

a prefix of some potential execution path starting at b1 such that:

• b1 contains a downwards exposed computation of e,

• bk is either End or contains a computation of e, or an assignment to some

operand of e,

• no block in the path contains a computation of e, or an assignment to any

operand of e, and

• every path ending on bk is an availability path for e.

Note that because of the last condition, we cannot talk about an availability path in

isolation from other paths ending on a node—we must talk about a group of avail-

ability paths.

In terms of availability paths, common subexpression elimination in block n in-

volves storing the value of redundant expression in a temporary at the start of every

availability path terminating at n and replacing the computation of the expression in

n by the temporary.

Example 2.10

Some availability paths for expression (a ∗ b) in our example program are:
(n1,n3,n4), (n1,n3,n5,n6,n7,n3,n4), and (n4,n7,n3,n4).

© 2009 by Taylor & Francis Group, LLC

36 Data Flow Analysis: Theory and Practice

n1 c = a ∗b n1 n2 c = a ∗b n2

n3 a = a ∗b n3

n1
t = a ∗b
c = t n1 n2 t = a ∗b n2

n3 a = t ∗b n3

(a) Partial Redundancy (b) Eliminating Partial Redundancy

FIGURE 2.4

Partial availability and partial redundancy.

2.4.2 Partially Available Expressions Analysis

An important variant of available expressions analysis relaxes the condition that an

expression should be available along all paths—it is sufficient if the expression is

available along some path.

If a block contains an upwards exposed computation of an expression and the

expression is available at the entry of the block, then the upwards exposed compu-

tation is totally redundant. If the expression is partially available at the entry of the

block, then the upwards exposed computation is partially redundant as illustrated in

Figure 2.4. This information is used in partial redundancy elimination described in

Section 2.4.4.

We need to make a simple change in available expressions analysis to discover

partially available expressions: Data flow information should be merged using ∪

instead of ∩. This also means that the initial value is ∅ instead of the universal set.

Partially redundant computations in block n are defined by

ParRedundn = AntGenn∩ Inn (2.8)

where AntGenn denotes the set of expressions whose upwards exposed computations

exist in block n.

Example 2.11

The result of partially available expressions analysis on our example program
has been shown below. Since the confluence operation is ∪, the initial value
of Ini and Out i for all i is 00000.

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 37

Global Information

Block Local Information Iteration # 1 Changed values
in iteration # 2

Genn Killn AntGenn Inn Outn Inn Outn ParRedundn

n1 10001 11111 00000 00000 10001 00000

n2 00010 11101 00010 10001 00010 00000

n3 00000 00011 00001 10001 10000 11101 11100 00001

n4 10100 00011 10100 10000 10100 11100 11100 10100

n5 01000 00000 01000 10000 11000 11101 11101 01000

n6 00001 00000 00001 11000 11001 11101 11101 00001

n7 01000 00000 01000 11101 11101 01000

n8 00011 00000 00011 11111 11111 00011

Observe that for every n, ParRedundn ⊇ Redundantn suggesting partial redun-
dancies subsume total redundancies. Also note that in our program, there are
many partial redundancies which are not total.

The paths discovered by partial available expressions analysis are a special case of

the availability paths discovered by available expressions analysis: The last condition

in the definition of availability paths does not apply to partial availability paths. Thus

unlike availability paths, we can talk about individual partial availability paths.

2.4.3 Anticipable Expressions Analysis

Common subexpression elimination explained in Section 2.4.1 involves “in-place”

transformation. As observed in the beginning of Section 2.4, some transformations

involve inserting expressions at program points where they were not computed in

the original program. Preserving the semantics of programs requires ensuring that a

computation should not be inserted in a path along which the computation was not

performed in the original program.

Example 2.12

Consider our running example of Figure 2.1. It is easy to see that expression
(a+b) is invariant in both the loops and it is desirable to move it out of the
loops and place it at Exit(n1). However, the control flow path n1 → n2 → n8

does not have any computation of the expression. Hence inserting the expres-
sion at Exit(n1) is not safe.

The decision such as above can be arrived at by performing anticipable expres-

sions analysis (also called very busy expressions analysis).

DEFINITION 2.4 An expression e ∈ Expr is anticipable at a program

© 2009 by Taylor & Francis Group, LLC

38 Data Flow Analysis: Theory and Practice

Global Information

Block Local
Information

Iteration # 1 Changed values
in iteration # 2

Genn Killn Outn Inn Outn Inn

n8 00011 00000 00000 00011

n7 01000 00000 00011 01011 00001 01001

n6 00001 00000 01011 01011 01001 01001

n5 01000 00000 01011 01011 01001 01001

n4 10100 00011 01011 11100 01001 11100

n3 00001 00011 01000 01001 01000 01001

n2 00010 11101 00011 00010

n1 00000 11111 00000 00000

FIGURE 2.5

Anticipable expressions analysis for Example 2.13.

point u if every path from u to End contains a computation of e which is not
preceded by an assignment to any operand of e.

The data flow equations which define anticipable expressions analysis are:

Inn = (Outn−Killn) ∪ Genn (2.9)

Outn =



BI n is End block�

s∈succ(n)

Ins otherwise (2.10)

where Inn, Outn, Genn, Killn, and BI are sets of expressions. Similar to available

expressions analysis, these equations use ∩ to capture the “all paths” nature of data

flow. However, the data flow is backward similar to live variables analysis.

BI assumes that the expressions involving local variables are not anticipated at

Exit(End). Genn contains upwards exposed expressions in n whereas Killn contains

all expressions whose operands are modified in n.

Example 2.13

The result of anticipable expressions analysis on our example program has
been shown in Figure 2.5. Since the confluence operation is ∩, the initial
value of Ini and Out i for all i is 11111.

For a given expression e, anticipable expressions analysis discovers a set of antic-

ipability paths. Each anticipability path is a sequence of blocks (b1,b2, . . . ,bk) which

is a prefix of some potential execution path starting at b1 such that:

• bk contains an upwards exposed computation of e,

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 39

v a∗b a∗b

a∗b

a∗b a∗b

a∗b

a∗b

Liveness Anticipability Availability Partial Availability

FIGURE 2.6

Data flow paths discovered by data flow analysis (shown by double lines).

• b1 is either Start or contains a computation of e, or an assignment to some

operand of e,

• no block in the path contains a computation of e, or an assignment to any

operand of e, and

• every path starting at b1 is an anticipability path.

Similar to availability paths, we talk about a group of anticipability paths rather than

a single anticipability path.

Example 2.14

Some anticipability paths for expression (a+ b) in our example program are:
(n5,n6,n5), (n5,n6,n7), (n3,n4,n7), and (n3,n5). Note that (a+ b) is not antici-
pable at Exit(n1).

2.4.4 Classical Partial Redundancy Elimination

This section presents the classical approach to partial redundancy elimination (PRE)

which involves a bidirectional formulation of data flows. This section also describes

its limitations and shows how they are overcome by some of its variants.

The basic principle of PRE has been illustrated in Figure 2.4. It can be viewed

as an instance of code hoisting along a hosting path. This hoisting subsumes loop

invariant movement and common subexpression elimination.

Example 2.15

In Figure 2.4 the hoisting path is (n2,n3); path (n1,n3) is an availability path.
In Figure 2.7, expression b ∗ c is loop invariant and is partially available due
the availability path along the back edge. This is a special case of partial
redundancy and can be eliminated along the hoisting path (n1,n2).

© 2009 by Taylor & Francis Group, LLC

40 Data Flow Analysis: Theory and Practice

n1 a = b ∗ c n1

n2 a = b ∗ c n2

not available

available

n1 t = b ∗ c n1

n2 a = t n2

(a) Original program (b) Optimized program

FIGURE 2.7

Loop invariant is a special case of PRE.

Hoisting Path of an Expression

Informally, the safety and desirability of hoisting an expression are defined as fol-

lows: An expression can be safely hoisted to a program point u if it is anticipable at

u. It should be hoisted to ancestors of u if it is partially available at u.

For an expression e, a hoisting path is a maximal sequence of blocks (b1,b2, . . . ,bk)

which is a prefix of a potential execution path starting at b1 such that:

• bk contains an upwards exposed computation of e,

• e is anticipable and partially available at Entry(bi) and Exit(bi) of each block

bi (other than b1 and bk), and at Entry(bk),

• e is not available at Exit(b1), or can be hoisted to Entry(b1), and

• no block in the path contains a computation of e, or an assignment to any

operand of e.

A key design idea in defining a hoisting path is that an expression is hoisted to

Entry(n) only if it can be hoisted out of n into its predecessors. This means that if an

expression has to be inserted at the start of a hoisting path, it is inserted at the exit of

the first block rather than at its entry. The conditions for hoisting an expression into

and out of a block are defined as follows:

• Safety of hoisting to Exit(n).

An expression e should be hoisted to Exit(n) only if

(S.1) it can be hoisted to Entry(s) for every successor s of n.

This is captured by the equation:

Outn =



BI n is End block�

s∈succ(n)

Ins otherwise (2.11)

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 41

• Safety of hoisting to Entry(n).

An expression e should be hoisted to Entry(n) only if

(S.2) n contains an upwards exposed computation of e, or

(S.3) e can be hoisted to Exit(n) and n does not contain an assignment to any

operand of e.

Condition S.2 is satisfied by Genn of Anticipability analysis which is denoted

by AntGenn to distinguish it from Genn of other analyses. Condition S.3 is

satisfied by the term (Outn−Killn).
¶ Thus the safety of placement at Entry(n)

is captured by the term

Inn ⊆ (AntGenn∪ (Outn−Killn)) (2.12)

• Desirability of hoisting.

By design, an expression e should be hoisted to Entry(n) only if it can be

hoisted out of it into a predecessor of n. If it can be hoisted into some prede-

cessor but not all predecessors then safety requires that one evaluation of the

expression should be made in n and then it is not profitable to hoist it into any

predecessor.

Further, if it is not partially available, hoisting it does not eliminate any partial

redundancy. Hence an expression e should be hoisted to Entry(n) only if

(D.1) e is partially available at Entry(n), and

(D.2) for each predecessor p of n,

(D.2.a) e can be hoisted to Exit(p), or

(D.2.b) e is available at Exit(p) (and hence need not be inserted at Exit(n)).

Condition D.1 is captured by the term

Inn ⊆ PavInn (2.13)

Condition D.2 is captured by the term

Inn ⊆
�

p∈pred(n)

�
Out p∪AvOut p

�
(2.14)

Combining Conditions (2.12), (2.13), and (2.14) results in Equation (2.15) below

which defines Inn. Outn is defined by Equation (2.11).

¶Note that Killn is same for all analyses involving expressions: Available expressions analysis, partially

available expressions analysis, anticipable expressions analysis, and PRE.

© 2009 by Taylor & Francis Group, LLC

42 Data Flow Analysis: Theory and Practice

Global Information
B

lo
ck Local

information
Constant

information
Iteration # 1 Changes in

iteration # 2
Changes in
iteration # 3

Genn Killn PavInn AvOutn Outn Inn Outn Inn Outn Inn

n8 00011 00000 11111 00011 00000 00011 00001

n7 01000 00000 11101 11000 00011 01001 00001

n6 00001 00000 11101 11001 01001 01001 01000

n5 01000 00000 11101 11000 01001 01001 01000

n4 10100 00011 11100 10100 01001 11100 11000

n3 00001 00011 11101 10000 01000 01001 00001

n2 00010 11101 10001 00010 00011 00000 00001

n1 00000 11111 00000 10001 00000 00000

FIGURE 2.8

Partial redundancy elimination.

Inn = PavInn∩ (AntGenn∪ (Outn−Killn))∩�

p∈pred(n)

�
Out p∪AvOut p

�
(2.15)

Observe that if we drop the desirability terms from Equations (2.11) and (2.15),

they reduce to the anticipability equations (Equations 2.9 and 2.10).

Example 2.16

We illustrate the conditions defining hosting criteria with the help of expres-
sion (a+b) in our running example of Figure 2.1. Since this expression is not
computed along path (n1,n2,n8), it is not anticipable at the exit of n1. Hence
inserting it at the exit of n1 violates safety. However, it is anticipable at the
exit of n3 and inserting it there is safe. Feasibility condition S.2 for (a+ b)

is satisfied by block n7 and n5 whereas condition S.3 is satisfied by block n4.
Condition D.1 is satisfied by blocks n4, n5, n6, and n7. Condition D.2.a is
satisfied by n3 whereas Condition D.2.b is satisfied by n7.

Example 2.17

The computation of PRE data flow properties of our running example is shown
in Figure 2.8. Since the confluence operation is ∩, the initial value of Ini and
Out i for all i is 11111.

Figure 2.9 shows the hoisting paths in our example. Observe that there
is no hoisting path for expression (a ∗ b) since it is totally redundant and

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 43

n1

b1: b = 4;
a1: a = b+ c;
d1: d = a ∗b;

n1

n2 b2: b = a− c; n2

n3 c1: c = b+ c ; n3

n4
c2: c = a ∗b ;
f (a−b);

n4

n5 d2: d = a+b ; n5

n6 f (b+ c); n6

n7 g(a+b); n7

n8
h(a− c);
f (b+ c);

n8

FIGURE 2.9

Hoisting paths in PRE of the running example.

need not be inserted anywhere. For expression (a+b) there are three hoisting
paths: (n3,n4,n7), (n3,n5) and (n5,n6,n7). Since the last path also happens to
be an availability path, there is no need to insert the expression in n5. Ex-
pression (b+c) has the following hoisting paths: (n2,n8), (n6,n7,n8), (n6,n7,n3),
(n4,n7,n8), (n4,n7,n3), and (n5,n6). Observe that there is no hoisting path for
expressions (a−b) and (a− c).

Also observe the need of the third iteration for suppressing the hoisting of
expressions (a− c), and (b+ c). The initial values of the bits corresponding to
these expressions is 1 in In/Out values. Expression (a− c) cannot be hoisted
out of the outer loop because it is neither partially available anywhere in
the loop nor is it invariant in the loop due to assignment to c. Thus the
bit corresponding to this expression becomes 0 in Inn3

in the first iteration.
The fact that it cannot be placed at Exit(n7) because of this reason, can be
discovered only in the second iteration when its bit in Outn7

becomes 0. Its
hoisting out of n8 is suppressed in the third iteration when its bit in Inn8

becomes 0 in the third iteration.

Expression (b+ c) is not anticipated at Exit(n3) and hence its bit in Outn3

becomes 0 in the first iteration. Setting the corresponding bit in Inn5
to 0

requires the second iteration. Its placement at Exit(n6) is suppressed in the
third iteration.

© 2009 by Taylor & Francis Group, LLC

44 Data Flow Analysis: Theory and Practice

Transformation Using Hoisting Path

Having identified hoisting paths, and complementary availability paths for an ex-

pression e, the following transformations need to be performed by creating a new

temporary variable t:

• At the Start of a Hoisting or an Availability Path.

Insert an assignment t = e, just before the computation of e. Replace the orig-

inal computation of e by t at the start of an availability path.

Note that there is no need to detect an availability path explicitly. All down-

wards exposed computations of e can be safely assumed to start an availability

path. Thus the main task is to identify the start of that hoistability path where

the expression has to be inserted. The necessary conditions for block n to start

a hoistability path are:

– It should be possible to hoist the expression to Exit(n), and

– It should not be possible to hoist the expression at Entry(n), or some

operand of the expression should be modified in n.

These conditions are captured by the following:

Insertn =Outn∩ (¬Inn∪Killn) (2.16)

• At the End of a Hoisting Path.

Replace the original computation of e by t.

Identifying this is easy: It should be possible to hoist e to Entry(n) and there

should be an upwards exposed computation of e in n. These conditions are

captured by the following:

Replacen = Inn∩AntGenn (2.17)

Example 2.18

In our running example, the data flow information which enables the trans-
formation is:

Local Global Information
Block Information Iteration # 3

AntGenn Killn Inn Outn Replacen Insertn

n1 00000 11111 00000 00000 00000 00000

n2 00010 11101 00000 00001 00000 00001

n3 00001 00011 00001 01000 00001 01000

n4 10100 00011 11000 01001 10000 00001

n5 01000 00000 01000 01001 01000 00001

n6 00001 00000 01001 01000 00001 00000

n7 01000 00000 01001 00001 01000 00000

n8 00011 00000 00001 00000 00001 00000

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 45

n1

b1: b = 4;
t2 = b+ c;

a1: a = t2;
t0 = a ∗b;

d1: d = t0;

n1

n2

b2: b = c;
f (a− c);
t2 = b+ c;

n2

n3
c1: c = t2
t1 = a+b;

n3

n4

c2: c = t0;
f (a−b);
t2 = b+ c;

n4

n5
d2: d = t1;
t2 = b+ c;

n5

n6 f (t2); n6

n7 g(t1); n7

n8
h(a− c);
f (t2); n8

FIGURE 2.10

Optimized program after PRE.

Figure 2.10 shows the optimized program after performing PRE.

An important property of this transformation is that on any path in the program,

the number of computations in the optimized program is guaranteed to not exceed

the number of computations in the original program.

Limitations of Partial Redundancy Elimination

PRE combines many flows: Partial availability is a forward flow with union as the

confluence, total availability is a forward flow with intersection as the confluence,

and anticipability is backward flow with intersection as the confluence. Combin-

ing these flows results in conservative approximations. Thus in some cases, partial

redundancies cannot be eliminated; in some cases, elimination causes some undesir-

able side effects; and in most cases, efficiency of performing analysis is a matter of

concern.

Example 2.19

We illustrate the above limitations with our running example.

• Inability to eliminate all partial redundancies.

© 2009 by Taylor & Francis Group, LLC

46 Data Flow Analysis: Theory and Practice

It is clear from the optimized program in Figure 2.10 that expression
(a+b) has been moved out of the inner loop but cannot be moved out of
the outer loop. Similarly, expression (a− c) in n8 and expression (a−b)

in n4 are not eliminated in spite of being partially redundant.

• Increase in lifetimes of values of expressions, and hence increase in register

pressure.

Expression (b+c) is merely hoisted from block n6 to n5 without reducing
the number of computations of (b+ c) in that path. Such redundant
hoisting increases register pressure since the result of (b+ c) must be
kept in a register for a longer duration.

• Concern about efficiency of performing PRE.

Inn/Outn computation for PRE requires three iterations. For liveness
analysis this computation converged in one iteration whereas for all
other analyses discussed in this chapter, it converged in two iterations.

PRE is blocked by a combination of data flows in the presence of the following

two structures in CFGs: Critical edges, and critical nodes. A critical edge is an edge

that runs from a fork node (i.e., a node with more than one successor) to a join node

(i.e., a node with more than one predecessor). A critical node is a fork node which

has multiple paths reaching it.

Figure 2.11 illustrates the effect of critical edges and nodes on hoisting. Edge

n1 → n2 in Figure 2.11(a) is a critical edge whereas node n2 in Figure 2.11(b) is a

critical node. In each case, expression e is a possible candidate for hoisting from

Entry(n2) to Exit(n1) but is not anticipated at Exit(n1). In the case of a critical edge,

e is partially available at Entry(n2) due to another predecessor of n2 whereas in the

case of a critical node, e is partially available at Entry(n2) due to n1.

Observe that if e were available at Exit(n1), the critical edge or critical node would

not have any adverse effect because there would be no need of hoisting e out of n2;

it would be totally redundant in n2. Alternatively, if e were anticipated at Exit(n1),

then e would be hoisted out of n2—in the case of critical edge, it would be placed in

n1 and in the case of critical node, it would be hoisted further out of n1.

Example 2.20

Edges n1 → n3, n3 → n5, n6 → n5, n6 → n7, and n7 → n8 in our running example
are critical edges. Nodes n3, n6, and n7 are critical nodes. Edge n1 → n3 blocks
hoisting expression (a+ b) from n3 to n1, n3 → n5, blocks hoisting expression
(b+c) from n5 to n3, and n7 → n8, blocks hoisting expression (a−c) from n8 to
n7. Critical node n3 blocks hoisting expression (a−b) from n4 to n3.

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 47

n1 a = 5 n1 e ∈ PavOut

e � AntIn n2 a = 5 n2

e � AntOut e � AvOut

e ∈ AntIn e ∈ PavIn

n1 a = 5 n1

.

e � AntIn n2 a = 5 n2

e � AvIne ∈ PavIn

e � AvOute ∈ PavOut

e ∈ PavIne ∈ AntIn

(a) Edge n1 → n2 is a critical edge (b) Block n1 is a critical node

FIGURE 2.11

Critical edges and critical nodes block PRE. Expression e cannot be hoisted out of

n2 into the exit of n1.

Handling Critical Edges

A careful examination of the effect of critical edges reveals that this limitation arises

due to the fact that the data flow value represented by Inn plays a dual role: It captures

the property of safety of placement (Constraint 2.12) as well as the desirability of

placement (Constraints 2.13 and 2.14).

In Figure 2.11(a), the bit corresponding to e becomes 0 in Outn1
due to safety

constraint (e � AntIn of the successor on the left). This makes the corresponding bit

0 in Inn2
due to desirability constraint which in turn make the corresponding bit 0 in

Out of the right predecessor of n2. If a new node n12 is inserted along edge n1 → n2

in Figure 2.11, the repercussions of the desirability constraint are restricted to Inn12

since it does not have any predecessor other than n1. Further, since e ∈ AntOutn12

even if e � AntOutn1
, it becomes possible to hoist e out of n2 into the newly created

node n12. Note that this hoisting is not redundant because e is not partially available

in n12.

Example 2.21

Figure 2.12 shows PRE after splitting critical edges in our running example.
This allows hoisting (b+ c) out of the inner loop and (a+b) out of the outer
loop. Besides, (a− c) is hoisted out of n8. Note that this has no effect on the
placement of loop invariant expression (a−b).

Edge splitting has a pleasant side effect of increasing the efficiency of analysis.

Intuitively, an all-path analysis can be seen as optimistically assuming bits to be 1

in the CFG and then resetting them to 0 due to the influence of corresponding bits

at neighbouring program point. Thus analysis involves propagating 0 in the graph

along arbitrarily long paths. The corresponding view for any-path analyses assumes

the bits to be 0 initially and then propagates 1 in the graph. Edge splitting prunes

this propagation for PRE because it prohibits the repercussions of the desirability

© 2009 by Taylor & Francis Group, LLC

48 Data Flow Analysis: Theory and Practice

n1

b1: b = 4;
t2 = b+ c;

a1: a = t2;
t0 = a ∗b;

d1: d = t0;

n1

n2

b2: b = c;
t3 = a− c;
f (t3);
t2 = b+ c;

n2

n13 t1 = a+b; n13

n3 c1: c = t2 n3

n4

c2: c = t0;
f (a−b);
t2 = b+ c;

n4

n35 t2 = b+ c; n35

n5 d2: d = t1; n5

n6 f (t2); n6

n7 g(t1); n7

n78 t3 = a− c; n78

n8
h(t3);
f (t2); n8

FIGURE 2.12

PRE after splitting critical edges. Among the new blocks, we have retained only

non-empty blocks.

constraints: Propagation of 0 from Outn1
to Inn2

is truncated at Inn12
: Outn12

cannot

become 0 even if Inn12
becomes 0 and hence Inn2

remains 1.

A variant of edge-splitting is edge-placement which essentially achieves the same

effect except that instead of splitting critical edges a-priori, the approach is to change

data flow analysis to discover the edges along which expressions should be placed.

Then the required edges are split and expressions placed in the new node. Thus this

can be seen as edge-splitting on demand.

Handling Critical Nodes

Edge splitting does not help in the case of critical nodes even if we decide to split

the out edges of critical nodes regardless of whether these edges are critical or not.

If we split edge n1 → n2 in Figure 2.11(b), it would be possible to hoist e from n2

into the new node but it will continue to be partially redundant. What is required is a

transformation which will enable hoisting e out of n1 to those ancestorsm of n1 such

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 49

that e � PavOutm.

A transformation which achieves this involves duplicating the critical node, and

along with it some other nodes such that in one copy of these nodes, the expression

is available whereas in the other copy, the expression is not available. The region

in which the expression is available does not need hoisting since the expression be-

comes totally redundant. The region in which the expression is not available can be

optimized by edge-splitting.

Example 2.22

Figure 2.13 shows code duplication involving a critical node which blocks
hoisting. The basic idea is to identify code motion preventing (CMP) region
which is a set of nodes characterized by the following:

n ∈ CMP(e)⇔ e ∈ (PantOutn∩PavOutn∩PantInn∩PavInn)

For our running example,

CMP(a−b) = {n3,n35,n5,n6,n7}

A critical node is that node in CMP where the expression is not anticipated
along one set of out edges and is anticipated along the other set of edges. It
is this node which blocks the hoisting of expressions into the region. In our
case n3 is the critical node.

The transformation involves duplicating each CMP region such that for one
copy the expression is available and for the other copy it is not available. This
involves retaining the availability edge in one copy and not in the other. In our
example, the expression is available in the nodes with dashed labels through
edge n4 → n

�
7
. Note that the other copy does not have the corresponding edge.

There are two copies of the critical node and since their out edges are re-
tained, the out edges along which the expression is anticipated become critical
edges because these edges go to a unique node out of CMP region. Splitting
these edges facilitates hoisting into a new successor of the critical node.

2.4.5 Lazy Code Motion

This section presents an alternative approach to PRE which minimizes lifetimes by

separating safety and desirability constraints. It allows placement of expressions

at the entry of a block and incorporates the desirability through separate analyses.

These analyses employ a stronger notion of desirability to minimize the lifetimes of

temporary variables. Unlike the classical formulation of PRE, all analyses involved

in this approach are unidirectional.

This approach is called lazy code motion because it performs as little code motion

as possible suppressing it where it does not result in profitable placement. The main

steps of this approach are:

© 2009 by Taylor & Francis Group, LLC

50 Data Flow Analysis: Theory and Practice

n1 b+ c; n1

n13 b+ c; n13

n2 b+ c; n2

n3 b+ c; n3

n35 b+ c; n35

n5 b+ c; n5

n6 b+ c; n6

n7 b+ c; n7

n�
3
b+ c; n3

n�
35
b+ c; n35

n�
5
b+ c; n5

n�
6
b+ c; n6

n�7 b+ c; n7

n34 t4 = a−b; n34

n4 f (t4); n4

n78 b+ c; n78

n8 b+ c; n8

FIGURE 2.13

PRE after duplicating a code motion preventing region rooted at a critical node (n3).

Duplicate copies have dashed labels. Additional edge-splitting is required for the

technique to work.

1. Splitting critical edges. Observe that in classical PRE, edge-splitting only en-

hances the effectiveness of redundancy elimination but is not required for its

correctness. However, it is crucial for the correctness of this approach.

2. Discovering a region of safe placement of expressions.

This involves anticipability analysis (Section 2.4.3) for discovering hoisting

paths where the expressions could be placed anywhere to make the original

computations redundant. A safe region of placement for an expression e is the

set of program points where the expression is anticipable. Equations (2.10)

and (2.9) are used to discover the region of safe placement.

3. Discovering entry points of region of safe placements.

Entry points of a region of safe placement are the points in the region where

the expression can be inserted in order to make the original computations in

the region totally redundant.

Entry points are the earliest points and form the smallest such set where ex-

pressions can be placed. These points are discovered by combining the results

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 51

of availability analysis (Section 2.4.1) with the result of anticipability analy-

sis. Placing expressions at earliest points amounts to hoisting them from their

original points of computation.

We use the prefix Ant and Av to denote data flow values in anticipability and

availability. Let EarliestInn and EarliestOutn denote the entry points. Then,

EarliestInn = AntInn∩


�

p∈pred(n)

¬
�
AvOut p∪AntOut p

�
 (2.18)

EarliestOutn = (AntOutn∪AvGenn)∩Killn (2.19)

Availability is computed using Equations (2.5) and (2.6).

Edge splitting ensures that AntOut of all predecessors of a node is identical.

Thus the earliest points are

• Entry(n) of block n where it is safe to insert the expression, cannot be

hoisted into any predecessor, and is not available along any predecessor.

• Exit(n) of block n that contains a downwards exposed computation of the

expression such that it cannot be hoisted to Entry(n) due the presence of

an assignment to some operand of the expression.

Note that it is possible that both Exit(n) and Entry(n) are earliest points for

some expression e. This happens when e is anticipable at Exit(n) and n con-

tains both downwards and upwards exposed computations of e and an assign-

ment to an operand of e.

4. Discovering the latest points of region of safe placements.

In order to minimize the lifetimes of temporary variables, the expressions

placed at earliest points can be sunk to later points along the control flow in

the region of safe placements. This analysis is an all-paths forward analysis:

SinkInn = EarliestInn∪ (2.20)


∅ n is Start block�

p∈pred(n)

(SinkOut p−AvGenp) otherwise

SinkOutn = EarliestOutn∪ (SinkInn−AntGenn) (2.21)

Sinking begins at the earliest points of placements and discovered path along

which the expressions can be sunk. The latest placement points of expressions

are the end points of these paths and are defined by:

© 2009 by Taylor & Francis Group, LLC

52 Data Flow Analysis: Theory and Practice

LatestInn = SinkInn∩AntGenn (2.22)

LatestOutn = SinkOutn∩ (2.23)AvGenn∪


�

s∈succ(n)

¬SinkIns





The above equations use AntGenn and AvGenn to ensure that sinking is appli-

cable only to new placements—an original computation in a block cannot be

sunk.

5. Discovering those expressions whose values need not be preserved in tempo-

rary variables.

When the expressions are sunk to their latest points, some computations might

have only a local use within a block. Such computations need not be preserved

in a temporary variable. Discovering the variables whose values need not be

preserved is a simple variation of deadness analysis.

NoUseInn = EarliestInn∪NoUseOutn (2.24)

NoUseOutn =
�

s∈succ(n)

(EarliestIns∪ (NoUseIns−AntGens)) (2.25)

6. Inserting assignments to temporary variables at insertion points and replacing

original expressions by temporary variables.

The values of expressions should be stored in temporary variables at the lat-

est computation points provided the values have some use in future. This is

identified by

InsertInn = LatestInn−NoUseInn (2.26)

InsertOutn = LatestOutn−NoUseOutn (2.27)

The original computations which should be replaced by temporary variables

are defined by the following:

ReplaceInn = AntGenn− (LatestInn∩NoUseInn) (2.28)

ReplaceOutn = AvGenn− (LatestOutn∩NoUseOutn) (2.29)

Example 2.23

Consider our running example after edge splitting: Edge n1 → n3 in Figure 2.1
is split to create node n13, edge n3 → n5 is split to create node n35, and edge

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 53

Availability Anticipability Earliest Placement

B
lo

ck

Kill AvGen AvIn AvOut AntGen AntIn AntOut EarliestIn EarliestOut

n1 11111 10001 00000 10001 00000 00000 00000 00000 10001

n2 11101 00010 10001 00010 00010 00010 00011 00010 00001

n13 00000 00000 10001 10001 00000 01001 01001 01000 00000

n3 00011 00000 10000 10000 00001 01001 01000 00000 00000

n35 00000 00000 10000 10000 00000 01001 01001 00001 00000

n4 00011 10100 10000 10100 10100 11100 01001 00100 00001

n5 00000 01000 10000 11000 01000 01001 01001 00000 00000

n6 00000 00001 11000 11001 00001 01001 01001 00000 00000

n7 00000 01000 10000 11000 01000 01001 00001 00000 00000

n78 00000 00000 11000 11000 00000 00011 00011 00010 00000

n8 00000 00011 00000 00011 00011 00011 00000 00000 00000

FIGURE 2.14

Early placement points for lazy code motion.

n7 → n8 is split to create node n78. The early placement points are shown
in Figure 2.14. As shown in Figure 2.15, the earliest placement points also
happen to be the latest points for this particular example. This is because of
the early placement opportunities created by edge splitting. The optimized
program after lazy code motion is identical to that shown in Figure 2.12.

Example 2.24

If we do not split critical edges in our running example, lazy code motion
replaces all occurrence of expressions (a− c) and (a+b) by temporaries. How-
ever, the value of (a− c) is stored in its temporary only in n2 and hence it is
not available along the paths reaching n8 from n7. The value of (a+b) is not
stored in its temporary anywhere.

2.5 CombinedMay-Must Analyses

Classical PRE requires both total availability and partial availability analysis. Such a

need is not uncommon and often both any-path and all-paths variants of information

are required. The all-path variant of data flow information is also called must in-

formation. Analogously, the any-path variant of data flow information is called may

© 2009 by Taylor & Francis Group, LLC

54 Data Flow Analysis: Theory and Practice

Block SinkIn SinkOut LatestIn LatestOut NoUseIn NoUseOut

n1 00000 10001 00000 10001 11101 01100

n2 00010 00001 00010 00001 11101 11100

n13 01000 01000 00000 01000 00100 00100

n3 00000 00000 00000 00000 00100 00100

n35 00001 00001 00000 00001 00100 00100

n4 00100 00001 00100 00001 00101 00100

n5 00000 00000 00000 00000 00100 00100

n6 00000 00000 00000 00000 00100 00100

n7 00000 00000 00000 00000 00100 00100

n78 00010 00010 00000 00010 11100 11100

n8 00000 00000 00000 00000 11111 11111

FIGURE 2.15

Latest placement points for lazy code motion.

information. It is possible to define a single analysis which discovers both may and

must information. We explain this with the help of availability analysis.

Defining may-must availability analysis requires us to define four possible values

which can be associated an expression at any program point. For an expression e,

the value unknown at a program point u indicates that sufficient information is not

available at u; the value must indicates that e is available along all paths reaching u;

the value may indicates that e is available along some but not along all paths reaching

u; and the value no indicates that e is not available along any path reaching u. We

view them as degrees of certainty. We define a new confluence operation which

combines the degree of certainties of a given expression e as shown in Figure 2.16.

These values can be represented using 2 bits. If we represent unknown by 11,

must by 10, no by 01, and may by 00, then � can be implemented using simple

bitwise AND. An alternative representation is to swap the bit strings for unknown

and may and use bitwise OR for �.

The data flow information is defined in terms of sets of pairs �e,de� where de is

the degree of certainty of expression e. The local data flow information is defined as

follows:

Killn = {�e,d� | e ∈ (AvGenn∪AvKilln),d ∈ {may,must ,no,unknown}}

Genn = {�e,must� | e ∈ AvGenn}∪ {�e,no� | e ∈ AvKilln}

where AvGenn and AvKilln represent Genn and Killn for availability (or partial avail-

ability) analysis.

Observe that when an expression e is in AvGenn or AvKilln, it belongs to both

Genn as well as Killn. This is because the local effect of block n may change the

degree of certainty of e. Effectively, the pairs are neither removed nor added to in Inn
and Outn—only the degrees of certainties change. In other words, these sets have the

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 55

� �e,unknown� �e,must� �e,no� �e,may�

�e,unknown� �e,unknown� �e,must� �e,no� �e,may�

�e,must� �e,must� �e,must� �e,may� �e,may�

�e,no� �e,no� �e,may� �e,no� �e,may�

�e,may� �e,may� �e,may� �e,may� �e,may�

FIGURE 2.16

Confluence operation for combined may and must analysis.

same size at each program point. This is different from other bit vector frameworks

which we have seen in this chapter,

Since the un-availability of an expression e is reflected by recording its degree of

certainty as no instead of removing it from the set, Killn does not imply that e ceases

to be available; it captures the fact that the data flow information of e is killed.

The data flow equations are defined in the usual manner. The confluence� defined

over pairs �e,de� is lifted to the sets by applying it to pairs of the same expression.

Inn =



{�e,no� | e ∈ Expr } n is Start

p∈pred(n)
Out p otherwise

(2.30)

Outn = (Inn−Killn)∪Genn (2.31)

Example 2.25

For brevity, we represent the sets of pairs �e,de� in terms of vectors of de such
that there is a positional correspondence between e and de. We retain the
order of expressions as described in Example 2.9 except that now there are
two bits for every expression instead of a single bit. The boundary informa-
tion BI is �no,no,no,no,no� and the initial value of Inn and Outn for all n
is the tuple �unknown,unknown,unknown,unknown,unknown�. With our first
choice of representation, these values are represented by �01,01,01,01,01� and
�11,11,11,11,11� respectively.

The data flow values are presented in Figure 2.17. Note that this informa-
tion is same as availability and partial availability information computed in
Example 2.9 and 2.11 except that partial availability includes total availability
whereas may and must availabilities are mutually exclusive.

An efficient implementation of the computation of Outn is as follows:

Outn = {�e, �f n(e,X)� | e ∈ Expr } (2.32)

where �f n(e,X) represents the local effect of a block on the availability of expression

e. The actual implementation of �f n in terms of bit vector operations depends on

© 2009 by Taylor & Francis Group, LLC

56 Data Flow Analysis: Theory and Practice

Iteration #1 Iteration #2
B

lo
ck

Inn Outn Inn Outn

n1 �01,01,01,01,01� �10,01,01,01,10�

n2 �10,01,01,01,10� �01,01,01,10,01�

n3 �10,01,01,01,10� �10,01,01,01,01� �10,00,00,01,00� �10,00,00,01,01�

n4 �10,01,01,01,01� �10,01,10,01,01� �10,00,01,01,01� �10,00,10,01,01�

n5 �10,01,01,01,01� �10,10,01,01,01� �10,00,00,01,01� �10,10,00,01,01�

n6 �10,10,01,01,01� �10,10,01,01,10� �10,10,00,01,01� �10,10,00,01,10�

n7 �10,00,00,01,00� �10,10,00,01,00�

n8 �00,10,00,00,00� �00,10,00,10,10�

FIGURE 2.17

Combined may and must availability analysis.

the choice of representation for the degrees of certainty. Assuming that we use the

representation unknown ≡ 11, must ≡ 10, no ≡ 01, and may ≡ 00, and use bitwise

AND as �, �f n can be implemented as follows:

�f n(e,X) = Ae+Be ·de (2.33)

where �e,de� ∈ X, “+” denotes bitwise OR and “·” denotes bitwise AND. The values

of Ae and Be are governed by local information:

Local Information of e Ae Be

e ∈ AvGenn e ∈ Killn 10 00

e ∈ AvGenn e � Killn 10 00

e � AvGenn e ∈ Killn 01 00

e � AvGenn e � Killn 00 11

2.6 Summary and Concluding Remarks

It is clear from the data flow frameworks presented in this chapter that data flow

equations have a common form which can be customized for each analysis. The

customization of this common form involves specifying the direction of flow, the

confluence operation, and the flow functions which are defined in terms of Genn and

Killn components.

All flow functions in this chapter can be implemented using the bitwise operations

AND and OR (or set operations ∩ and ∪). There are two important points associated

with this observation:

© 2009 by Taylor & Francis Group, LLC

Classical Bit Vector Data Flow Analysis 57

• Killn used in the operation X−Killn is a constant value. Thus set complement

(or bitwise NOT) is applied only to constant value. This computation can be

performed once and the desired operation can be applied during the data flow

analysis by X∩¬Killn.

• Genn and Killn do not depend on Inn and Outn and are purely local effects.

Since Genn and Killn are constant values, Inn and Outn can be computed un-

conditionally without examining the operands.

In summary, in bit vector frameworks, the data flow information can be represented

and computed using aggregate operations on bits; there is no need to examine the

bits individually. Although the data flow value of an entity in common bit vector

frameworks is a boolean value and hence can be represented by a single bit, this is

neither necessary nor sufficient for a framework to qualify as a bit vector framework.

For example, the combined may-must availability analysis described in Section 2.5

requires two bits but is a bit vector framework. Chapter 4 presents faint variables

analysis in which data flow value is boolean and hence can be represented using a

single bit. However, it is not a bit vector framework.

Subsequent chapters relax both these constraints and describe frameworks which

capture more powerful semantics.

2.7 Bibliographic Notes

Bit vector frameworks are some of the oldest data flow problems. Among the ini-

tial works that introduced most common bit vector problems, Cocke [24] and Ull-

man [100] described available expressions analysis and its use in common subex-

pression elimination, Allen [4, 5] presented reaching definitions analysis, and live

variables analysis was described by Kennedy [55, 56]. Partial redundancy elimi-

nation was introduced by Morel and Renvoise [74]. Bodik, Gupta and Soffa [17]

discuss a combination of must and may availability and its use in complete removal

of redundancies. Knoop, Rüthing and Steffen [65] introduced lazy code motion. Al-

most every book on compiler construction discusses bit vector data flow frameworks.

A detailed treatment can be found in the advanced texts on compilers such as Aho,

Lam, Sethi, and Ullman [3], Appel [10], or Muchnick [76] or in the books devoted

to static analysis such as by Hecht [44], Muchnick and Jones [77], and F. Nielson,

H. R. Nielson and Hankin [80]. The first formal definition of bit vector frameworks

was provided by Khedker and Dhamdhere [60].

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

3

Theoretical Abstractions in Data Flow
Analysis

The study of several examples of data flow problems suggests that they share similar

features in terms of their specifications, their formulations as data flow equations,

and their solution methods. In this chapter, we describe a general framework so that

most of the data flow problems that we have seen earlier can be viewed as instances

of this framework. Doing so yields two important benefits.

The first benefit is that which results from any generalization. When a data flow

problem is shown to be an instance of the framework, it also suggests a solution

method whose properties are apparent. We do not have to separately prove the cor-

rectness or estimate the complexity of the solution method.

The second benefit is that the generalization leads to the design of data flow an-

alyzer generators, much in the way that lexer generators and parser generators have

emerged from the study of formal languages. Instead of implementing each data flow

analyzer separately, a general solution method that is parametrized with respect to

the specific details of any analysis is implemented. When the specifics of a data flow

analysis are supplied to this solution method, it yields a data flow analyzer for the

particular analysis. This results in a rapid method of implementing data flow analyz-

ers. Further, the reliability of the generated analyzers is related to the reliability of

the generator. As the generator becomes more reliable through usage, the generated

analyzers are likely to become more reliable than hand-coded analyzers.

This chapter deals with unidirectional data flow problems; generalizations for han-

dling bidirectional data flow problems have been presented in Chapter 5. Further,

although our descriptions are in terms of forward unidirectional problems, they are

uniformly applicable to backward data flow problems. For such problems, the prop-

agation of data flow information begins from the End node of the CFG instead of

the Start node and computation of the data flow value at a node is in terms of its

successors instead of its predecessors.

3.1 Graph Properties Relevant to Data Flow Analysis

Programs and their properties are often represented by directed or undirected graphs.

A path in a directed graph is a sequence of nodes (n0,n1, . . . ,nk) such that there is an

59
© 2009 by Taylor & Francis Group, LLC

60 Data Flow Analysis: Theory and Practice

Input: A CFG G with N nodes.

Output: A DFST T for G and an array rpo[1..N] representing a reverse postorder

listing of nodes in the graph.
Algorithm:
0 function dfstMain()

1 { i = N

2 make root(G) the root of T

3 dfst(root(G))

4 }

5 function dfst(currnode)

6 { mark currnode

7 while there are unmarked successors of currnode do

8 { let child be an unmarked successor of currnode in

9 { add the edge (currnode→ child) to T

10 dfst(child)

11 }

12 }

13 rpo[currnode] = i

14 i = i−1

15 }

FIGURE 3.1

An algorithm to compute a depth first spanning tree.

edge between any two consecutive nodes in the sequence. An edge between nodes

n and m is denoted as n→ m. A non-null path whose starting and ending nodes are

n and m is denoted as n
+
→ m, and the corresponding unrestricted path as n

∗
→ m,

i.e., we denote the path from n to n with no edges between them as n
∗
→ n. An edge

connecting n to m in an undirected graph is denoted as n — m. The corresponding

unrestricted path and non-null paths are denoted as n ∗— m and n +— m. The length

of the path n0,n1, . . . ,nk is k.

Recall that data flow analysis models programs in terms of CFGs which have been

described in Section 2.1. As described in Chapter 2, data flow equations are defined

by associating variables Inn and Outn with every node n in the CFG. The variables

are related through data flow equations. In the examples presented in Chapter 2, the

equations were solved using a round-robin iterative algorithm which traversed the

CFG in a fixed order.

In this section, we present some properties of CFGs that are relevant to round-

robin iterative data flow analysis. Since we restrict ourselves to CFGs, these proper-

ties are defined for connected directed graphs with a unique Start node.

A spanning tree of a directed graph G is a connected subgraph of G that includes

all nodes ofG and is a tree. The root of a spanning tree is the same as the Start node

of the graph. A depth first spanning tree (DFST) of G is a spanning tree rooted at

Start that is constructed by the algorithm in Figure 3.1.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 61

DEFINITION 3.1 Given a graph G and its DFST T , the edges of G can
be categorized as follows:

• Tree edges are the edges that are in T .

• Backward edges are the edges from a node to one of its tree ancestors in
T . A loop from a node to itself is also classified as a backward edge.

• Forward edges are the edges not in T that connect a node to one of its
tree descendants.

• Cross edges are the edges connecting nodes that are not related by the
ancestor-descendant relation in the tree.

The classification of edges allows us to define the following order of traversal over

CFGs.

DEFINITION 3.2 Given a graph G and its DFST, consider the sub-
graph G� obtained by eliminating the back edges of G. A reverse postorder is a
topological sort of the nodes of G�.

The algorithm shown in Figure 3.1 computes a reverse postorder listing of the

input graph in the array rpo. The position of the node n in this listing is rpo[n]. The

nodes of the example graph of Figure 3.2 have been numbered in reverse postorder,

i.e., rpo[i] is i for all nodes.

As we shall see later, the process of equation solving converges faster for for-

ward data flow problems when the round-robin iterative algorithm traverses the CFGs

graphs in reverse postorder. For backward data flow problems, the preferred order of

traversal is a postorder traversal.

OBSERVATION 3.1 Let G be a graph and T be a DFST of G. Then,

1. An edge x→ y of G is a back edge iff rpo[x] ≥ rpo[y].

2. Every cycle of G contains at least one back edge.

Back edges are important for unidirectional data flow problems since they prop-

agate data flow information in a direction which is opposite to the chosen direction

of graph traversal. Therefore, they may add to the number of iterations required for

convergence of the analyses.

DEFINITION 3.3 Let G be a graph and T be a DFST of G. The loop
connectedness (more often called depth) of G with respect to T , denoted as
d(G,T), is the largest number of back edges in any acyclic path in G.

The depth of a graph could be different for different DFSTs. There is a special

class of graphs called reducible graphs for which the choice of DFST does not matter

because every DFST identifies exactly the same set of back edges.

© 2009 by Taylor & Francis Group, LLC

62 Data Flow Analysis: Theory and Practice

1

2

6

34

5

7

8

1

2

6

34

5

7

8

1

2

6 8

7

3 4 5

(a) G and one of its DFSTs. Tree edges inG are shown

by double lines, back edges by single black lines,

the forward edge by a gray line, and cross edges by

dashed lines.

(b) Dominator tree of G.

Given an edge x→ y,

x = idom(y).

FIGURE 3.2

A graph, its depth first spanning tree and its dominator tree.

DEFINITION 3.4 A graph G is reducible if and only if it does not
contain the forbidden subgraph shown in Figure 3.3 on the next page.

The forbidden subgraph is characterized by presence of a cycle that has two dis-

tinct entry points for paths from a node that does not appear in the cycle. The com-

mon control constructs in programs result in reducible control flow graphs. However,

a compiler inserts gotos liberally in a program being compiled. The CFG of such a

program could become irreducible after optimizations.

DEFINITION 3.5 Let n and m be nodes in the CFG. The node n is said
to dominate m, denoted n � m, if every path from Start to m passes through n.

Dominance is, by definition, reflexive. It is also transitive. Figure 3.2(b) shows

the dominator tree for our example graph.

We now prove an important result that relates dominance and reducibility.

LEMMA 3.1

A graph G is reducible iff the head of every back edge in G dominates its tail.

PROOF If part: We show that if G is not reducible then there is a back
edge in G whose head does not dominate its tail. Indeed if G is irreducible
then it must contain the forbidden subgraph shown in Figure 3.3. Without
any loss of generality, let us consider b→ c to be a back edge. Then there is
a path from Start to b through a which does not pass through c.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 63

a

b c

FIGURE 3.3

The forbidden subgraph for reducibility.

Only if part: We now show that if there is a back edge in G whose head does
not dominate its tail, G is irreducible. Assume that b→ c is such a back edge.
Since c does not dominate b, there is a path from Start to b which bypasses c.
Further, there is also a path from Start to c which bypasses b, or else b would
have been visited before c in any depth first traversal and b→ c would not
have been a back edge. Thus G contains a forbidden subgraph with Start, b
and c as the constituent nodes.

The graph in Figure 3.2(a) is reducible. Some examples of edges whose addition

could make it irreducible are: 1→ 7, 1→ 3, and 1→ 5.

3.2 Data Flow Framework

As we have said earlier, given a data flow problem, we associate data flow variables

with entry and exit points of each basic block. The data flow variables are related

through equations which are then solved to get data flow values at the program points.

To obtain a solution of these equations, each data flow variable is initialized with a

value, and the equations are iterated over till the value of each data flow variable

converges.

Recall that in the case of available expressions analysis, the value of a data flow

variable during an iteration is a subset of the value in the preceding iteration. In gen-

eral there is an order between the values that a data flow variable takes in successive

iterations during the solution process. In fact, one can impose an order on the entire

space of data flow values. The order is related to the notion of approximation of

data flow values that we discussed in Section 1.1.5 and is also important in reason-

ing about the termination of the solution procedure. Therefore the first step in the

generalization of data flow problems and their solutions is to formalize this notion of

order in the space of data flow values. A general way to express an order between

objects is to embed them in a mathematical structure called a lattice.

The analyses studied in the previous chapter also illustrated the effect of a basic

© 2009 by Taylor & Francis Group, LLC

64 Data Flow Analysis: Theory and Practice

block on data flow values and the manner in which data flow values arriving along

different paths are merged. Our generalization includes both these aspects of data

flow analysis. The transformations effected by basic blocks on data flow values are

called flow functions. The essential properties of flow functions and merge operations

are identified as part of the generalization.

A data flow framework is an algebraic structure consisting of a set of data flow

values, a set of flow functions and a merge operator.

3.2.1 Modeling Data Flow Values Using Lattices

Systematic computation of data flow values requires that the concept of approxi-

mations of data flow values and the operation of merging data flow values should

satisfy certain properties. In this section we provide a lattice theoretic basis of these

properties.

Partially Ordered Sets

The relation of partial order, defined below, captures the notion of approximations

amongst data flow values.

DEFINITION 3.6 A partial order � on a set S is a relation over S ×S
that is

1. Reflexive. For all elements x ∈ S : x� x.

2. Transitive. For all elements x,y,z ∈ S : x�y and y�z implies x� z.

3. Anti-symmetric. For all elements x,y ∈ S : x�y and y� x implies x = y.

A partially ordered set (abbreviated as poset), denoted by (S , �), is a set S
with a partial order � .

We shall read x�y as “x is weaker than y”. If x�y and x � y, we shall say that

“x is strictly weaker than y”, and denote this as x � y. If x�y (x � y), we shall also

equivalently write y� x (y � x) and read it as “y is stronger than (strictly stronger

than) x”. The posets that we shall deal with will often have an element which is

weaker than any other element in the poset. Such an element, if it exists, is called

the least element and denoted as ⊥. The greatest element, defined similarly, will be

denoted as �.

Example 3.1

The poset of data flow values in live variables analysis is shown in Figure 3.4
on the facing page. Here, the set of all data flow values, denoted by Llv, is
2Var, where Var denotes the set of variables in a program. The partial order
is: For xi and x j in Llv, xi� lvx j iff xi ⊇ x j. The greatest element of this poset

is ∅ and the least element is Var.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 65

∅

{a} {b} {c} {d}

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}

{a,b,c} {a,b,d} {a,c,d} {b,c,d}

{a,b,c,d}

FIGURE 3.4

Llv as a partially ordered set.

In the representation of the poset as a directed graph, xi � x j, if there is a directed

path from x j to xi. Since paths of length 0 are also possible, for every element xi,

xi� xi. Such representations of posets are called Hasse diagrams∗.

Example 3.2

As a dual example, consider the poset of data flow values for available expres-
sions analysis. If we denote the set of all expressions occurring in the program
as Expr, then the set of data flow values, Lav, is 2Expr, the set of all subsets
of Expr. Consider the partial order �av defined as: for all xi and x j in Lav,
xi�avx j iff xi ⊆ x j. The least element of this poset is the empty set ∅ and the

top element is Expr.

In the context of data flow analysis, the relation � can be interpreted as “a con-

servative (safe) approximation of”. If x�y, then, in any context, the data flow value

x can be used in place of y for optimization without affecting the correctness of the

optimized program. As an example, consider the use of liveness analysis for either

dead code elimination (Section 2.3.1) or freeing memory objects (Section 1.1.5). If

y is the set of variables that are actually live, then performing an optimization on the

basis of a set x that is larger than y will not make the optimization unsafe. It is for

this reason that the � relation in the case of live variables analysis is ⊇. Similarly, for

optimizations which are based on available expressions analysis like common subex-

pression or partial redundancy elimination, an optimization performed at a program

∗Traditionally, Hasse diagrams are undirected graphs with the implicit assumption that xi� x j if x j is

drawn at a higher level in the diagram than xi . We have, instead, chosen to make the graph directed with

the hope that this lends to clarity.

© 2009 by Taylor & Francis Group, LLC

66 Data Flow Analysis: Theory and Practice

point on the basis of a set of expressions y can safely be replaced by one based on a

subset x of y. Therefore the partial order in the case of available expressions analysis

is ⊆.

Conversely, x�y can be interpreted as follows: In any context, the data flow value

x provides more opportunities for optimization than y, or, using the terminology

introduced in Chapter 1, x is more exhaustive than y. This may be at the cost of safety,

i.e., the optimization based on xmay result in a program that has a behavior different

from the original program. We would like the data flow values resulting from our

analyses to be safe and yet provide maximum opportunities for optimization.

DEFINITION 3.7 Let (L, �) be a poset and let S ⊆ L. An element x ∈ L
is an upper bound of S iff for all y ∈ S , y� x. Similarly, an element x ∈ L is a
lower bound of S iff for all y ∈ S , x�y.

In the graphical representation of a poset, x is an upper bound of S iff there are

paths from x to each element of S . Similarly, x is an lower bound of S iff there

are paths from each element of S to x. Also note that the definition above does

not require the upper bound of a set to be in the set itself. As an example, let S =

{{a,b}, {b,c}} in Figure 3.4. Then none of the upper or lower bounds of S are in S .

DEFINITION 3.8 The least upper bound (lub) of a set S is an element
x such that (i) x is an upper bound of S , and (ii) for all other upper bounds y
of S , x�y. The greatest lower bound (glb) of a set is an element x such that
(i) x is a lower bound of S , and (ii) for all other lower bounds y of S , y� x.

Referring once again to Figure 3.4 on the previous page, {a,b}, {a}, {b} are all

upper bounds of the set {{a,b,c}, {a,b,d}}. However the lub of this set is {a,b}.

The lub of a set S is also called the join of S and is denoted as S . The glb of a

set S is also called the meet of S and is denoted as S . can also be used as an

infix operator; x� y denotes the lub of the two elements x and y. The lub (glb) of a

set, if it exists, is unique. It can be verified that the join (and meet) operator has the

following properties:

1. Idempotence. ∀x ∈ S : x� x = x.

2. Commutativity. ∀x,y ∈ S : x�y = y� x.

3. Associativity. ∀x,y,z ∈ S : (x�y)�z = x� (y�z).

In the context of data flow analysis, the meet operator is used to merge data flow

values along different paths and reaching a join node of the underlying CFG. The

result of the meet operation is the most exhaustive safe approximation of data flow

values along each of the paths.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 67

OBSERVATION 3.2 Let L be a poset and S be a subset of L whose glb exists. Let

x ∈ L. If x�y for each y ∈ S , then x� S . This is just a restatement of the fact that

any lower bound of a poset is weaker than the glb of the poset.

It is important to mention that the posets that represent data flow values may be

infinite. However, since each data flow value is a finite quantity, the posets are count-

able. Since we want to present algorithms that search for solutions of equations in

posets which may be countably infinite, we have to impose additional constraints on

these posets to ensure termination of the algorithms.

DEFINITION 3.9 A chain S is a subset of a poset which is totally
ordered, i.e., ∀x,y ∈ S : x�y or y� x. A descending chain is a sequence of
elements {x1, x2, . . .} from a poset such that i ≤ j implies xi� x j.

DEFINITION 3.10 A descending chain {x1, x2, . . .} stabilizes eventually iff
∃n,∀m > n : xm = xn.

DEFINITION 3.11 A poset satisfies the descending chain condition iff
every descending chain in the poset stabilizes eventually.

The importance of the descending chain condition is that it allows us to extend the

guarantee of existence of meets to countably infinite sets. Let S = {x1, x2, x3, . . .} be

such a set. Then the values

k

i=1
xi, k = 1,2, . . ., form a chain. Because of the descending

chain condition, there is an m such that for any n > m,

m

i=1
xi =

n

i=1
xi. Then

m

i=1
xi is the

glb of S .

Analogous to the descending chain condition, we can also define the ascending

chain condition. However, since data flow analysis uses the meet operator for con-

fluence, the result of merging is a lower bound of the data flow values being merged.

Hence we are interested in the descending chain condition rather than the ascending

chain condition. In the rest of the chapter we restrict the discussions to posets that

satisfy the descending chain condition.

Lattices and Complete Lattices

During data flow analysis, we have to merge sets of data flow values. Therefore it is

important to ensure that the meet of such sets exists.

DEFINITION 3.12 A poset (L, �) is a lattice, iff, for each non-empty
finite subset S of L, both S and S are in L. L is a complete lattice, iff, for
each subset S of L, both S and S are in L.

© 2009 by Taylor & Francis Group, LLC

68 Data Flow Analysis: Theory and Practice

The condition that every non-empty finite subset must have a glb and a lub in L is

equivalent to the condition that for any pair of elements x and y, both x� y and x�y

should be in L. For the lattice L to be complete, even ∅ and infinite subsets of Lmust

have a glb and lub in L.

Example 3.3

The posets (Llv, � lv) and (Lav, �av) are complete lattices. An example of a
lattice which is not complete is the set of natural numbers N = {0,1,2,3, . . .},
ordered by ≤. In fact, any infinite set in this lattice does not have a lub. This
set can be converted to a complete lattice by adding the element ∞ with the
property that for any x ∈ N, x ≤∞.

For a poset L, the conditions (i) S ∈ L for every subset S of L and (ii) S ∈ L

for every subset S of L are equivalent. Thus for a poset to be a complete lattice,

it is enough to require one of the two conditions to hold, the other is automatically

satisfied. To see this, assume that the glb of every subset of L exists in L. We have to

show that for an arbitrary S ⊆ L, the lub of S exists. Consider the set B of all upper

bounds of S . Since every element of S is a lower bound of B, from Observation 3.2

B is an upper bound of S . In particular, it is the least upper bound of S .

If L is a complete lattice, then we denote the top element of the lattice, L, by �.

Similarly, the bottom element of the lattice, L is denoted by ⊥. Since every subset

of L must have a glb and a lub, ∅ must also have a glb and a lub. It turns out that ∅

is � and ∅ is ⊥. To see this, consider the definition of a lower bound of S : x is a

lower bound of S iff ∀y ∈ S : x�y. When S is ∅, every element of L is vacuously a

lower bound of S . The greatest among them, �, is the glb of ∅. For similar reasons

⊥ is the same as ∅. Observe that ∅ cannot be a complete lattice; the smallest poset

which is complete must contain at least one element which can serve as both � and

⊥.

Very often we shall consider tuples of values, each component of the tuple coming

from a complete lattice. In such a case, the tuples themselves also form a complete

lattice.

DEFINITION 3.13 Let Li, 1 ≤ i ≤m be complete lattices with the partial
order � i and meet � i. Then the cross-product L = L1 × L2 × . . .× Lm is also a
complete lattice with the partial order:

�x1, x2, . . . , xm���y1,y2, . . . ,ym� iff xi � i yi for all i, 1 ≤ i ≤ m

and the induced meet

�x1, x2, . . . , xm���y1,y2, . . . ,ym� = �x1� 1y1, x2�2y2, . . . , xn�nyn�

The Lis are called the components of the product lattice L.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 69

�x � y,must� �x � y,no�

�x � y,may�

FIGURE 3.5

A meet semilattice for may-must alias analysis.

Meet Semilattices

Although the data flow values of most of the analyses can be modeled as a complete

lattice, there are analyses whose data flow values cannot be modeled even as a lattice.

Hence we need a structure which is less restrictive than a lattice.

Example 3.4

As an example of a data flow analysis problem which cannot be modeled
naturally as a lattice, consider the combined may-must alias analysis problem.
This is a similar to the combined may-must analysis described in Section 2.5.
Assume that a program has just two pointer variables x and y. The data flow
values for this problem can be modeled as a pair (x � y,d), where d is one of
the three values must , may and no. The data flow value (x � y,must) at a
program point p indicates that x and y are aliased along all paths reaching p,
(x � y,may) indicates that x and y are aliased along some paths and not along
all paths reaching p, and (x � y,no) indicates that x and y are not aliased
along any path reaching p. The poset of these data flow values is shown in
Figure 3.5.

In particular, we shall consider posets in which subsets have a glb but drop the

requirement that they have a lub as well. Thus these lattices may not have a �

element. The poset in Figure 3.5 is an example of a meet semilattice.

DEFINITION 3.14 A poset (L, �) is a meet semilattice, iff, for each
non-empty finite subset S of L, S is in L.

We are interested in meet semilattices that satisfy the descending chain condition.

Further, some of the algorithms that we discuss (algorithm in Figure 3.9, for ex-

ample) assume the existence of the greatest element �. In general, it is possible to

modify these algorithms to avoid using � (algorithm in Figure 3.15). However, it is

often convenient to use an element outside of the meet semilattice and give it the sta-

tus of the � element. As an example, the algorithm used for may-must availability

analysis in Section 2.5 required a � and hence a fictitious value unknown was added

to the meet semilattice. Adding a new value requires us to define all flow functions

for the value. We shall assume that for all functions f , f (�) =�. This extension pre-

serves monotonicity of functions. Adding a � element to a meet semilattice results

© 2009 by Taylor & Francis Group, LLC

70 Data Flow Analysis: Theory and Practice

Meet Semilattices (M)

Meet Semilattices

with ⊥ element (Mb)

Meet Semilattices

satisfying dcc (Md)

Join Semilattices (J)

Join Semilattices

with � element (Jt)

Join Semilattices

satisfying acc (Ja)

Lattices (L) Bounded lattices (B)

Complete lattices (C) Complete lattices

with dcc and acc (Cda)

• dcc = descending chain condition

• acc = ascending chain condition

L = M∩ J

B = Mb∩ Jt
Cda = Md ∩ Ja

Md ⊆ Mb ⊆ M

Ja ⊆ Jt ⊆ J

Cda ⊆ C ⊆ B ⊆ L

FIGURE 3.6

Relationships between different types of posets. The posets are assumed to be count-

able.

in a bounded lattice, i.e., a lattice with � and ⊥ elements. Note that a bounded lattice

need not be complete because arbitrary subsets may not have a lub or glb.

Example 3.5

Consider the poset (A,⊆) of all finite subsets of the set of integers I. Since
every element of A is a subset of I, the poset (A∪{I} ,⊆) is a bounded lattice
with I and ∅ as � and ⊥. However, it is not a complete lattice because the
join (∪) of arbitrary subsets of A∪{I} may not exist in A∪{I}. For example,
the union of all sets that do not contain a given number (say 1) does not exist
in A∪{I}.

It is possible to define a join semilattice much in the same way as a meet semilat-

tice. Figure 3.6 illustrates the relationships between different kinds of posets.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 71

3.2.2 Modeling Flow Functions

Recall that the data flow equations for reaching definitions analysis are:

Inn =



BI n is Start block�

p∈pred(n)

Out p otherwise (3.1)

Outn = (Inn−Killn) ∪ Genn (3.2)

where Inn and Outn are data flow variables, whose values are being defined by the

data flow equations and Genn and Killn are constants whose values depend on the

contents of node n. BI is the information that is available at the Start block of the

CFG.

For unidirectional problems, having two sets of variables Inn and Outn is not

essential—it just increases the readability of the equations. To avoid proliferation

of variables in the ensuing discussion, we substitute for Out in the equations for In,

and get

Inn =



BI n is Start block�

p∈pred(n)

(Inp−Kill p) ∪ Genp otherwise (3.3)

Expressing (Inp −Kill p) ∪ Genp as the application of a flow function fp on Inp,

we have:

Inn =



BI n is Start block�

p∈pred(n)

fp(Inp) otherwise (3.4)

We generalize Equations (3.4) so that the set of equations for any data flow analy-

sis can be seen as an instance of the general set of equations shown below:

Inn =


BI n is Start block

p∈pred(n)
fp(Inp) otherwise (3.5)

In Equation (3.5), is the meet operator used to merge data flow information

along different paths. If the set of data flow values is L, then fn : L �→ L represents the

transformation of the data flow values that reach the basic block n by the statements

in n. These functions are called flow functions. Two important and related properties

of flow functions are monotonicity and distributivity.

DEFINITION 3.15 A function f : L �→ L is called monotonic iff

∀x,y ∈ L : x�y⇒ f (x)� f (y)

© 2009 by Taylor & Francis Group, LLC

72 Data Flow Analysis: Theory and Practice

Monotonicity implies that the flow functions are well-behaved in the sense that

they preserve the order of approximations.

DEFINITION 3.16 A function f : L �→ L is called distributive iff

∀x,y ∈ L : f (x�y) = f (x)� f (y)

OBSERVATION 3.3 If f is monotonic then f (x�y)� f (x)� f (y).

OBSERVATION 3.4 Every distributive function is also monotonic. If x�y, then

x = x�y and distributivity gives f (x) = f (x)� f (y). This implies f (x)� f (y).

Distributivity is a stronger condition than monotonicity. A distributive function

not only preserves the order of approximations but also guarantees that merging in-

formation before function application does not result in any loss of precision.

In our generalization we shall assume that the set of flow functions F has the

following properties:

1. The identity function id ∈ F. This is the flow function for the empty block of

statements.

2. If f ∈ F and g ∈ F, then f ◦g ∈ F. Composing the flow functions transforma-

tions of two basic blocks results in a flow function.

3. The functions in F are monotonic.

4. For every x ∈ L, there is a finite set of flow functions { f1, f2, . . . fm} such that

x =
1≤i≤m

fi(BI). This condition arises from the fact that solution procedures

can only compute data flow values which are expressible as a finite meet of

flow functions applied to BI. This condition can be seen either as a minimality

condition on the set of data flow values or as a sufficiency condition on the set

of flow functions.

The above four conditions characterize the set of admissible functions for data flow

analysis.

3.2.3 Data Flow Frameworks

Having discussed lattice theoretic modeling of data flow values and the admissible

flow functions, we now combine the two to present a generalization called data flow

frameworks.

DEFINITION 3.17 A data flow framework is a tuple (LG, �G,FG), where
G is a symbol standing for a unspecified CFG, and :

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 73

• LG is a description of a meet semilattice that represents the data flow
values relevant to the problem. LG must satisfy the descending chain
condition.

• G is a description of the meet operator of the semilattice. G is, of
course, derivable from LG.

• FG is a description of the set of admissible flow functions from LG to
LG. Each flow function has an associated direction which could be along
the control flow in the unspecified CFG G or against it.

Forward flow functions indicate flow of information along the flow of control: The

data flow information associated with a node is influenced by its predecessors. Back-

ward flow functions indicate flow of information against the flow of control: The

data flow information at a node is influenced by its successors. In unidirectional data

flow frameworks, all functions have the same direction; bidirectional frameworks

have a combination of flow functions in both directions.

Since we assume that the set of admissible functions are monotonic, we call the

framework a monotone data flow framework. If the admissible functions are dis-

tributive, we call the framework a distributive data flow framework.

Example 3.6

As an example of a monotone data flow framework, consider available ex-
pressions analysis. In this framework LG is 2Expr, where Expr is the set of
all expressions occurring in G, G is ∩, and FG consists of functions f such
that f (X) = (X−Kill)∪Gen for arbitrary subsets Kill and Gen of Expr. When
Kill =Gen = ∅, f is the identity function.

OBSERVATION 3.5 Bit vector frameworks are distributive, i.e., if the flow func-

tions f : L �→ L of a framework can be expressed as f (x) = (x−Kill)∪Gen where

Kill ,Gen ∈ L, then

∀x,y ∈ L : f (x� y) = f (x)� f (y)

It follows that bit vector frameworks are also monotonic.

DEFINITION 3.18 An instance of a data flow framework is an instantia-
tion of the framework to a particular CFG. It is a pair �G,MG� where

• G = �Nodes,Edges� is an instance of G. This yields concrete values LG,

G and FG for LG, G and FG.

• MG is a mapping from blocks in G to FG.

© 2009 by Taylor & Francis Group, LLC

74 Data Flow Analysis: Theory and Practice

Example 3.7

An instance of the available expression analysis is a pair consisting of a con-
crete CFG G and a mapping function MG. A basic block consisting of a single
statement a = b ∗ c would be mapped to the following function by MG.

f (X) = X−Expra∪{b ∗ c}

where Expra is the set of all expressions in G that have a as an operand.

Example 3.8

As a more interesting example, consider the may alias problem for a CFG G.
The goal here is to find at each program point the set of pointer variables
whose values are the same, i.e., they point to the same location. The result of
this analysis is used to sharpen the effect of optimizations in the presence of
pointers. As an example, the fact that a and b are not may aliased ensures that
the assignment ∗b = 5 does not kill the expression ∗a+ c. Thus the expression
∗a+ c can be discovered as a common sub-expression.

• The meet semilattice LG consists of sets of pairs e1 � e2, where e1 and
e2 are pointer expressions. The data flow value at a program point p
containing this pair indicates a possible aliasing of the expressions e1

and e2 at p.

• Since a larger set of may aliases represent safer approximation by dis-
abling more optimization opportunities, the partial order is: X�GY iff
X ⊇ Y. Thus G is ∪.

• Apart from the identity function, FG consists of functions f such that
f (X)= X−Kill(X)∪Gen(X). Notice that unlike available expressions anal-
ysis the Kill and Gen sets are dependent on X.

Consider a basic block consisting of a single assignment statement ∗x = y.
Kill(X) consists of the set of pairs in X, one of whose components has ∗x as a
prefix.† Gen(X) consists of all pairs (∗e1 � e2) such that e1 � x and e2 � y in
X.

3.3 Data Flow Assignments

Given an instance of a data flow framework, the desired data flow information is

represented by the values of data flow variables Inn for every node n. We define

†A more precise definition of Kill (X) would include all those pairs in X, one of whose components has a

prefix that is must aliased to ∗x.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 75

f1

f2 f3

f4

f5

d1 d2

d1�d2 d1�d2

(a) Example CFG (b) Merging information at a join node

FIGURE 3.7

Example to illustrate MOP assignment value and fixed point assignment.

a data flow assignment (or simply assignment) as a mapping from each data flow

variable Inn to a data flow value.

3.3.1 Meet Over Paths Assignment

Let paths(p) denote the set of paths from Start to p. Given a path ρ ∈ paths(p)

consisting of basic blocks (n1,n2 . . .ni), let fρ denote the composition of functions

corresponding to the blocks in ρ, i.e., fρ = fni−1
◦ . . .◦ f2 ◦ f1. If ρ is a path (n) con-

sisting of a single block, fρ is the identity function.

DEFINITION 3.19 An assignment represented by the values of data flow
variables Inn is safe iff

∀n ∈ Nodes : Inn�
ρ∈paths(n)

fρ(BI) (3.6)

Observe that the informal definitions of analyses (2.1), (2.2) and (2.3) in Chapter 2

have been given in terms of paths from Start to p.

DEFINITION 3.20 A Meet Over Paths assignment, denoted MOP , is the
maximum safe assignment.

∀n ∈ Nodes : MOPn =
ρ∈paths(n)

fρ(BI) (3.7)

The existence of a MOP assignment follows from the closure and monotonicity

properties of flow functions and the descending chain condition of the lattice of data

flow values. A safe assignment is an approximation of the MOP assignment.

© 2009 by Taylor & Francis Group, LLC

76 Data Flow Analysis: Theory and Practice

3.3.2 Fixed Point Assignment

Observe that the definition of the MOP assignment as the desired data flow informa-

tion is a path-based definition whereas the data flow equations such as (3.5) form an

edge-based specification: Data flow information of a node is computed from the data

flow information at the predecessors.

Example 3.9

Consider Figure 3.7(a). The data flow information at the beginning of node
5 can be characterized by the following equations.

In1 = BI

In2 = f1(In1)

In3 = f1(In1)� f3(In3)

In4 = f2(In2)� f3(In3)

In5 = f4(In4)

Unfolding the right hand side of In5 partially, we get:

f4(f2(f1(BI)) � (f3(f1(BI) � f3(In3)))) (3.8)

The expression, represented as a tree in Figure 3.8(a), gives an idea of
the nature of the solution of the equations. The solution computed by data
flow equations at p consider all paths to p starting from the Start block and
computes the data flow information along all these paths. However it merges
the information at join nodes as shown in part (b) of Figure 3.7 on the previous
page. The data flow information d1 and d2 is merged at the join node and
the merged information d1�d2 is propagated along all edges beyond the join
node.

In contrast, the computation of MOP assignment does not involve merging
values at intermediate points as shown in part (b) of Figure 3.8 on the facing
page.

As we shall see, merging is important for the existence of an algorithm for obtain-

ing a solution. However it can also imply a potential loss of information.

To investigate whether the system of equations described by (3.5) have a solution,

we first convert it into a single equation. The equations are of the form:

In1 = f1(In1, . . . , InN)

In2 = f2(In1, . . . , InN)

. . .

InN = fN(In1, . . . , InN)

where Ini ∈ Li. Let the product lattice L1× L2× . . .LN be denoted by
−→
L . Observe the

difference between fi and f i. fi ∈ F : Li �→ Li is a flow function, whereas f i :
−→
L �→ Li

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 77

f4

∩

f2 f3

f1 ∩

BI f1 f3

BI In3

∩

f4 f4 f4

f2 f3 f3

f1 f1 f3

BI BI f1

BI

f4

f3

f3

f3

f1

BI

. . .

(a) Expression tree for MFP (b) Expression tree for MOP

FIGURE 3.8

Unfoldings of In5.

is formed by composing flow functions and the meet operator. The system of simul-

taneous equations can be rewritten as the single equation

−→
In =

−→
f (
−→
In) (3.9)

where
−→
In ∈

−→
L and

−→
f :

−→
L �→

−→
L is defined as

−→
f (
−→
In) =

�
f1(
−→
In), f2(

−→
In), . . . fN(

−→
In)

�

A solution of Equation (3.9) represents the data flow information computed by solv-

ing data flow equations.

DEFINITION 3.21 A fixed point of a function f : L �→ L is a value v ∈ L
that satisfies f (v) = v.

A fixed point assignment is a solution of the data flow equations represented by

(3.9). For a fixed point assignment FP , we denote the value of variable Inn by FPn.

The maximum fixed point assignment is a fixed point assignment MFP such that for

any fixed point assignment FP ,

∀n ∈ Nodes : FPn�MFPn

3.3.3 Existence of Fixed Point Assignment

The set of all fixed points of f is denoted by fix(f). We are interested in the existence

and structure of fix(
−→
f) where

−→
f is the function used for defining Equation (3.9). We

© 2009 by Taylor & Francis Group, LLC

78 Data Flow Analysis: Theory and Practice

require
−→
f to be monotonic; this in turn depends on the monotonicity of the flow

functions in the data flow framework.

The desired properties of fix(
−→
f) follow from the Knaster-Tarski fixed point theo-

rem which we present below in a general setting.

DEFINITION 3.22 Consider a monotonic function f : L �→ L. A value
v ∈ L is a reductive point of f iff f (v) � v. A value v is an extensive point of f
iff f (v) � v.

The set of all reductive points of a function is denoted as red(f) and the set of all

extensive points of a function is denoted as ext(f).

THEOREM 3.1 (Knaster-Tarski fixed point theorem)

Let f : L �→ L be a monotonic function on a complete lattice L. Then

1. red(f) ∈ fix(f) and fix(f) = red(f).

2. ext(f) ∈ fix(f) and fix(f) = ext(f).

3. fix(f) is a complete lattice.

PROOF

1. Let red(f) be l. We first prove that l is a fixed point, i.e., f (l) = l. To
show f (l)� l, consider any element x ∈ red(f). Since l� x, f (l)� f (x) be-
cause of monotonicity of f . Further, since x ∈ red(f), f (x)� x. Therefore
f (l)� x. Since x was an arbitrary element in red(f), f (l)� l by Observa-
tion 3.2.

We now show l� f (l). Interestingly, this can be derived from f (l)� l.
Because of monotonicity, f (f (l))� f (l). Thus f (l) is a reductive point of
red(f). Since l is red(f), we have l� f (l).

Since fix(f) ⊆ red(f), red(f) is a lower bound of fix(f). Further, since
red(f) ∈ fix(f), red(f) = fix(f).

2. Similar to 1.

3. Consider any arbitrary subset Y of fix(f). It is enough to show that Y

exists in fix(f). Let X = {x | x� Y, x ∈ L}. Since L is a complete lattice, it
is easy to see that X is a complete lattice with Y as the top element and
the bottom of L as the bottom element of X. Now consider a restriction
of f to X called f �. f � is a monotonic function on the complete lattice
X. Clearly fix(f �) ⊆ fix(f). Further, fix(f �) ⊆ X. Thus every fixed point of
f � is weaker than Y. Since fix(f �) ⊆ fix(f), Y is contained in fix(f).

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 79

Input: An instance (G,MG) of a monotone data flow framework (LG, �G, FG). The

function to which MG maps a node n is denoted as fn. The Start node is

numbered 0. The rest of the nodes are arbitrarily ordered from 1 to N −1.
Output: Ink,0 ≤ k ≤ N −1 giving the output of the data flow analysis for each node.

Algorithm:

0 function dfaMain()

1 { In0 = BI

2 for all j, j � 0 do In j = �

3 change = true

4 while change do

5 { change = false

6 for j = 1 to N −1 do

7 { temp =
p∈pred(j)

fp(Inp)

8 if temp � In j then

9 { In j = temp

10 change = true

11 }

12 }

13 }

14 }

FIGURE 3.9

Round-robin iterative algorithm for computing MFP assignment for frameworks

with a complete lattice.

3.4 Computing Data Flow Assignments

Given a complete lattice and a monotonic function defining data flow equations

(which, in our case, is
−→
f), the Knaster-Tarski fixed point theorem guarantees ex-

istence of fixed points. In this section we present an algorithm for computing the

MFP assignment and show the computability of MFP assignment and undecidabil-

ity of MOP assignment.

3.4.1 Computing MFP Assignment

Figure 3.9 provides an algorithm to solve the data flow equations. The iterations of

lines 7-12 can be indexed using a pair (i, j), where i, starting with 1, is the iteration

number of the while loop, and j is the iteration number (the index) of the for loop.

Given an iteration (i, j), we shall denote the next iteration in lexicographical ordering

as N(i, j) and the value of Inm before the (i, j)th iteration as Inm
(i, j).

© 2009 by Taylor & Francis Group, LLC

80 Data Flow Analysis: Theory and Practice

LEMMA 3.2

The algorithm shown in Figure 3.9 terminates.

PROOF We shall first show that the value of a data flow variable decreases
across successive iterations. In other words, for all m

Inm
(i, j) � Inm

N(i, j) (3.10)

This must be true for m = 0 for all (i, j) as its value remains constant at BI.
For other values of m, we show (3.10) by induction on the iteration count (i, j).
Basis: True, because the value of Inm

N(1,1) is �.
Inductive Step: Assume as the inductive hypothesis that Inm

(i, j)� Inm
N(i, j) for

all m. From monotonicity, it follows that

∀m ∈ Nodes : fm
�
Inm

(i, j)
�
� fm

�
Inm

N(i, j)
�

(3.11)

We have to show that

∀m ∈ Nodes : Inm
N(i, j) � Inm

N(N(i, j)) (3.12)

The second component of N(i, j) gives the block number whose data flow
variable is examined on line 8 in N(i, j)th iteration. We shall denote this
block number as l. If this is not the same as m, or, if the value of Inm is the
same since it was last examined, there is nothing to be proven. Otherwise, by
lines 7 and 9 of the algorithm, the proof obligation (3.12) reduces to

p∈pred(l)
fp

�
Inp

(i, j)
�
�
p∈pred(l)

fp
�
Inp

(N(i, j))
�

(3.13)

The inductive step then follows from (3.11) and Observation 3.2.
The termination of the algorithm follows directly from (3.10) and the de-

scending chain condition.

We next show that algorithm (3.9) computes the MFP assignment of the associ-

ated data flow equations.

LEMMA 3.3

The algorithm in Figure 3.9 computes the MFP assignment of the data flow
equations represented by (3.5).

PROOF The convergence of the algorithm implies that the values of
In found by the algorithm form a fixed point assignment of the equations
represented by (3.5). We have to prove that it is the maximum fixed point
by showing that for any other fixed point assignment FP , FPm � Inm for every
node m. We do this by showing that the value of Inm computed at each step

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 81

(i, j) of the algorithm is stronger than FPm. This is true of FP0 and In0 since
the value of FP0 is BI and so is the value of In0 in each step of the algorithm.
We therefore prove the lemma for values of m other than 0. The proof is by
induction on (i, j).

Basis: Follows from the fact that Inm(1,1) = �

Inductive step: We have to show that FPm� Inm
N(i, j). Since FP is a fixed

point assignment of Equation (3.5), FPm =
p∈pred(m)

fp(FP p). Further, from

line 7 of the algorithm, Inm
N(i, j) =

p∈pred(m)
fp

�
Inp

(i, j)
�
. Therefore we have to

show that

p∈pred(m)
fp(FP p) �

p∈pred(m)
fp

�
Inp

(i, j)
�

(3.14)

This once again follows from the induction hypothesis, monotonicity of the
flow functions and Observation 3.2.

3.4.2 Comparing MFP and MOP Assignments

In this section we show that the MFP assignment computed by the algorithm in Fig-

ure 3.9 is weaker than the MOP assignment. We also show examples of frameworks

in which the MFP is strictly weaker than the MOP assignment.

LEMMA 3.4

When the algorithm in Figure 3.9 terminates, ∀m ∈ Nodes, Inm�MOPm.

PROOF Let pathsl(m) denote the set of all paths of length l from Start to

m. We want to show by induction on l that Inm�
ρ∈paths l(m)

fρ(BI).

Basis: l = 1. In this case the path being considered has the single node
Start. The lemma holds because In0, which represents the data flow value at
the beginning of Start is held constant at BI.

Inductive step: We have to show that

Inm �
ρ∈paths l(m)

fρ(BI) (3.15)

From Equation (3.5), we also have

Inm =
p∈pred(m)

fp(Inp)

and as the induction hypothesis, we can assume that for all p ∈ pred(m),

Inp �
ρ∈paths l−1(p)

fρ(BI)

© 2009 by Taylor & Francis Group, LLC

82 Data Flow Analysis: Theory and Practice

x = z y = w

∗x = y

p1 p2

p3

FIGURE 3.10

CFG illustrating the non-distributivity of may alias framework.

Monotonicity of flow functions gives

fp(Inp) � fp

�

ρ∈paths l−1(p)
fρ(BI)

�

And from Observation 3.3,

fp(Inp) �
ρ∈paths l−1(p)

fp
�
fρ(BI)

�

Since ρ is a path of length l−1 and p is a predecessor of m, the composition
fp ◦ fρ corresponds to a path of length l reaching m and

fp(Inp) �
ρ∈paths l(m)

fρ(BI)

Therefore

Inm =
p∈pred(m)

fp(Inp)�
ρ∈paths l(m)

fρ(BI) � MOPm

We now show that for some data flow frameworks, the MFP assignment is strictly

weaker than the MOP assignment.

Example 3.10

Consider a CFG fragment shown in Figure 3.10 as an instance of the may

alias analysis framework. The data flow values at p1 and p2 are {x � z} and
{y � w}. While computing the MFP assignment, these data flow values will be
merged to obtain the value {x � z,y � w} at the input of the block containing
the assignment ∗x = y. The flow function of this assignment will add to this
value the cross product of all aliases of ∗x and all aliases of y. The data flow
value at p3 is thus {x � z,y � w,∗x � y,∗x � w,∗z � y,∗z � w}.

The MOP assignment on the other hand finds the effect of the assignment
∗x = y on the incoming data flow values {x � z} and {y � w} separately. This

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 83

yields the sets {x � z,∗x � y,∗z � y} and {∗x � y,∗x � w,y � w}. The value at p3

is a union of the two sets, and this is clearly stronger than the corresponding
MFP value. The MFP value includes an alias ∗z � w which is not possible
along any execution path.

In Chapter 4 we will see other examples of data flow frameworks for which the

MFP assignment is strictly weaker than MOP assignment. We now show that the

MFP and the MOP assignments coincide for distributive frameworks.

LEMMA 3.5

For distributive frameworks, ∀m ∈ Nodes, Inm =MOPm.

PROOF We replay the proof of Lemma 3.4 with � substituted by = in
(3.15). As the induction hypothesis, we can assume that for all p ∈ pred(m),

Inp =
ρ∈paths l−1(p)

fρ(BI)

Applying fp to both sides of the equation, we have:

fp(Inp) = fp

�

ρ∈paths l−1(p)
fρ(BI)

�

Because fp is distributive, we have

fp(Inp) =
ρ∈paths l−1(p)

fp
�
fρ(BI)

�

which simplifies to

fp(Inp) =
ρ∈paths l(m)

fρ(BI)

Therefore

Inm =
p∈pred(m)

fp(Inp) =
ρ∈paths l(m)

fρ(BI)

3.4.3 Undecidability of MOP Assignment Computation

We have seen that if a framework is not distributive, then the algorithm shown in

Figure 3.9 on page 79 may produce a solution which is strictly weaker than the MOP

value. Thus it is interesting to investigate whether there exists an algorithm which

can compute the MOP of an arbitrary monotone data flow framework. We now show

that the problem of finding the MOP value of a monotone data flow framework is

© 2009 by Taylor & Francis Group, LLC

84 Data Flow Analysis: Theory and Practice

undecidable. To do this we reduce an instance of an undecidable problem called

theModified Post’s Correspondence Problem (MPCP) to an instance of a monotone

data flow framework. MPCP is a decision problem defined as follows:

DEFINITION 3.23 Given lists A = [a1,a2, . . . ,ak] and B = [b1,b2, . . . ,bk],
where ai and bi are strings of 0’s and 1’s, is there an index list [1, i1, i2, . . . , ir]

such that a1ai1ai2 . . .air = b1bi1bi2 . . .bir?

In the above definition, juxtaposition of strings denotes their concatenation. Given

an instance I of MPCP, we convert it into an instance of a monotone data flow frame-

work as follows:

• The meet semilattice L of data flow values consists of lists of integers between

1 and k. These play the role of index lists. The semilattice also includes⊥ and

the special element $ indicating that the instance of MPCP has no solution.

• The relation � I is defined as x � I y iff x = y or x = ⊥.

• The set of flow functions F is formed by composing the following functions:

1. The identity function id.

2. A class of functions fi,1 ≤ i ≤ k, such that:

fi(α) =



⊥, α is ⊥

$, α is $

α# i otherwise

α# i extends the index list α by adding the integer i at the end.

3. A function g such that

g(α) =



⊥, the index list α is a solution of the

MPCP instance I

$ otherwise

• BI is the singleton list containing 1.

• The CFG is shown in Figure 3.11.

LEMMA 3.6

The data flow framework defined above is monotone.

PROOF Obvious.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 85

idBI = [1] Start

id

g

p

id

q

f1f2. . .fk

FIGURE 3.11

CFG for showing undecidability of MOP computation.

THEOREM 3.1

The problem of finding the MOP assignment for any monotone data flow
framework is undecidable.

PROOF Given an MPCP instance I, we define an instance of a monotone
data flow framework using the above construction. Each path to the program
point p generates a distinct index list as the data flow value. Conversely,
for each possible index list there is a path to p that generates the list. The
function g checks whether each of these lists is a possible solution of the MPCP
instance. Therefore, the MOP value at the program point q is $ iff there is a
solution to the MPCP instance, and ⊥ otherwise. If an algorithm to compute
the MOP assignment existed, we could use it to find a solution of the MPCP
instance I. However, since MPCP is known to be undecidable, the problem
of finding MOP for any monotone data flow framework is also undecidable.

3.5 Complexity of Data Flow Analysis for Rapid Frameworks

Recall that the MFP algorithm presented in Figure 3.9 on page 79 does not assume

an a-priori order in which nodes of the input CFG are visited during an iteration. In

order to estimate the complexity of data flow analysis, we now consider a special-

ization of the MFP algorithm in which the nodes of the CFG are visited in reverse

postorder. We also consider special properties of data flow frameworks that make

the algorithm amenable to complexity analysis.

© 2009 by Taylor & Francis Group, LLC

86 Data Flow Analysis: Theory and Practice

3.5.1 Properties of Data Flow Frameworks

Section 3.2.3 presented monotonicity and distributivity properties of data flow frame-

works. They are related to the convergence of the MFP algorithm and character-

ize the data flow assignment computed by the MFP algorithm. In this section, we

present properties of data flow frameworks based on algorithmic complexity.

DEFINITION 3.24 A monotone data flow framework is k-bounded iff

∃ k ≥ 1 s.t. ∀ f ∈ F,∀x ∈ L : f 0(x)� f 1(x)� f 2(x)� · · · =

k−1

i=0
f i(x) (3.16)

where f 0 is the identity function and f j+1 = f ◦ f j.

The unbounded expression f 0(x)� f 1(x)� f 2(x)� · · · represents the glb of the

data flow value computed in all possible traversals over a loop and is called the loop

closure of f . Since we require L to satisfy the descending chain condition, all loop

closures are bounded. For a framework to be k-bounded, the loop closures must be

bounded by a constant k.

A 2-bounded framework is called a fast framework. It can be shown that a frame-

work is fast iff

∀ f ∈ F,∀x ∈ L : f 2(x) � x � f (x) (3.17)

Intuitively, a single traversal over a loop is sufficient for computing loop closure.

LEMMA 3.7

Bit vector frameworks are fast.

PROOF Recall that the flow functions in bit vector frameworks can be
expressed as f (x) = (x−Kill)∪Gen where Kill ,Gen ∈ L. For such functions,

f 2(x) = f ((x−Kill)∪Gen)

= (((x−Kill)∪Gen)−Kill) ∪ Gen

= (x−Kill) ∪ (Gen −Kill) ∪ Gen

= (x−Kill) ∪ Gen

= f (x)

This implies f 2(x) � x � f (x).

There is an important subclass of fast frameworks called rapid frameworks in

which traversing the loop independently of the value at the entry of the loop is suffi-

cient for computing the final value at the entry of the loop.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 87

aStart

h f

ρ2

g

ρ1

FIGURE 3.12

The significance of the rapidity condition.

DEFINITION 3.25 A data flow framework is rapid, iff

(∀ f ,g ∈ F) (∀ x, BI ∈ L) : f (g(BI)) � g(BI)� f (x)� x (3.18)

The condition is significant for paths which include loops. Figure 3.12 shows an

example of such a path whose initial segment ρ1 is from the Start node to the header

h of a loop. The second segment ρ2 is from h back to h along the looping path. The

flow functions corresponding to the two segments are g and f . The result of f (g(BI))

represents the data flow value at h along the path ρ1ρ2. The rapidity condition says

that this is safely approximated by combining the data flow value generated along ρ1

and the value obtained by traversing the loop with any data flow x available at h. The

important point is that the data value g(BI) may take several iterations to reach h from

Start because of the presence of back edges in ρ1. However, the rapidity condition

ensures that it is enough to traverse the loop with a data flow value that has reached

h earlier, say, through a back edge free path from Start to h.

We now state and prove a condition that is equivalent to Condition (3.18).

LEMMA 3.8

The rapid condition (3.18) is equivalent to:

(∀ f ∈ F) (∀ x, y ∈ L) : f (y) � y� f (x)� x (3.19)

PROOF It is easy to derive (3.18) from (3.19). If (3.19) holds for any y,
in particular it holds for values expressible as g(BI) for any choice of g and BI.
To derive (3.19) from (3.18), we show that for arbitrary f , y and x,

f (y) � y� f (x)� x

Since any value y can be expressed as

k

i=0
gi(BI), our proof obligation becomes:

f (

k

i=0
gi(BI)) �

k

i=0
gi(BI) � f (x) � x

© 2009 by Taylor & Francis Group, LLC

88 Data Flow Analysis: Theory and Practice

�

v1

⊥

• Let f (�) = �, f (v1) = ⊥, and f (⊥) = ⊥.

• f is fast because ∀x ∈ L,∀i ≥ 2 : f i(x) � f (x)� x

• f is not rapid because, f (v1) � v1� f (�)

(a) Lattice L (b) Flow function

FIGURE 3.13

A fast function need not be rapid.

Because of monotonicity, this is the same as

k

i=0
f (gi(BI)) �

k

i=0
gi(BI) � f (x) � x (3.20)

Because of (3.18), f (gi(BI)) � gi(BI) � f (x) � x holds for each i. Therefore (3.20)

holds because of Observation 3.2.

A consequence of this condition is that it is not necessary for an algorithm to

traverse a loop twice. If x is taken as the value at h before iterating over the loop,

then setting y to f (x) we have

f (f (x)) � f (x)� f (x)� x

� f (x)� x

We have just shown that every rapid framework is fast. To show that fastness does

not necessarily imply rapidity, it is sufficient to construct a framework with a flow

function that is fast but is not rapid. Figure 3.13 defines such a function.

For complete lattices, the rapid condition can also be stated as

∀z ∈ L,∀ f ∈ F : f (z) � z� f (�) (3.21)

This is just an instance of (3.19). Observe this condition also has the same meaning:

A loop can be analyzed independently of the incoming information.

We have already shown that bit vector frameworks are fast (Lemma 3.7). Now we

show that they are also rapid.

LEMMA 3.9

Bit vector frameworks are rapid.

PROOF We first consider frameworks in which the � relation is ⊆. For
such frameworks, Condition (3.18) reduces to

(∀ f ,g ∈ F) (∀ x, y ∈ L) : f (g(y)) ⊇ g(y)∩ f (x)∩ x

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 89

Bounded frameworks

k-Bounded frameworks

Fast frameworks

Rapid frameworks

Bit vector frameworks

FIGURE 3.14

Monotone data flow frameworks with lattices containing � and satisfying the de-

scending chain condition.

Let g(y) = z. Then our proof obligation becomes

(∀ f ∈ F) (∀ x, z ∈ L) : f (z) ⊇ z∩ f (x)∩ x

The right hand side can be reduced to

z ∩ f (x) ∩ x = z ∩ ((x−Kill)∪Gen) ∩ x

= z ∩ (x∩ (¬Kill)∪Gen) ∩ x

= (z∩ (¬Kill)∩ x) ∪ (Gen ∩ z∩ x)

⊆ (z∩ (¬Kill)) ∪ (Gen)

⊆ (z−Kill) ∪ Gen

⊆ f (z)

Rapidity of frameworks in which � relation is ⊇, can be shown similarly.

Given arbitrary x ∈ L and arbitrary f ∈ F, we have seen that for fast frameworks,

f 2(x)� f (x)� x whereas for bit vector frameworks, f 2(x) = f (x). We now show that

the rapid frameworks satisfy the condition f 2(x)� f (x). This condition is stronger

than the condition for fast frameworks but weaker that the condition for bit vector

frameworks.

LEMMA 3.10

If f ∈ F is a flow function in a rapid framework and the underlying lattice is
complete, then ∀z ∈ L : f 2(z)� f (z).

PROOF Instantiating g to f , BI to z, and x to � in the rapid condi-
tion (3.18), we have

© 2009 by Taylor & Francis Group, LLC

90 Data Flow Analysis: Theory and Practice

Input: An instance (G,MG) of a distributive data flow framework (LG, �G, FG).

The function to which MG maps a node n is denoted as fn. The nodes are

numbered from 1 to N −1 in reverse postorder.
Output: Ink, 0 ≤ k ≤ N −1 giving the output of the data flow analysis for each node.

Algorithm:

0 function dfaMain()

1 { In0 = BI

2 for j = 1 to N −1 do In j =
p∈pred(j)∧p< j

fp(Inp)

3 change = true

4 while change do

5 { change = false

6 for j = 1 to N −1 do

7 { temp =
p∈pred(j)

fp(Inp)

8 if temp � In j then

9 { In j = temp

10 change = true

11 }

12 }

13 }

14 }

FIGURE 3.15

An efficient and more general version of the MFP algorithm.

f 2(z) � f (z)� f (�)

� f (z��) � f (z)

The second step follows from Observation 3.3 proving the lemma.

Observe that conditions f 2(x) � f (x) and f 2(x) = f (x) on rapid and bit vector

frameworks respectively are only necessary conditions and are not sufficient. For

the function f defined in Figure 3.13 on page 88, ∀x ∈ L : f 2(x) = f (x) and yet the

framework is neither rapid nor bit vector. Figure 3.14 shows the relationship between

various frameworks.

3.5.2 Complexity for General CFGs

The complexity analysis in this section is restricted to rapid frameworks that are dis-

tributive. The modified algorithm is shown in Figure 3.15. Note that the data flow

variables are also initialized differently. Such an initialization obviates the need of

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 91

the � element and allows handling frameworks with meet semilattices. This initial-

ization has the effect of assigning to each node except Start with � and propagating

the initial values by assuming f (�) = �.

We count the number of iterations of the algorithm as follows. The initialization

of all data flow variables in the for loop in line 2 is counted as the first iteration.

Following this, each iteration of the while loop is counted separately.

To prove the main complexity result, we need a couple of auxiliary results. The

first result characterizes the data flow value at any program point after a given number

of iterations in terms of paths containing a specified number of back edges. When

the number of back edges in paths also needs to be denoted, we extend the notation

paths(j) to pathsk(j) to denote the set of paths containing at most k−1 back edges.

LEMMA 3.11

After k iterations of the algorithm, the data flow value at the entry of block

j is given by In j =
ρ∈pathsk(j)

fρ(BI).

PROOF The proof is by induction on the number of iterations k.

• Basis: k = 1. This step corresponds to line 2 of the algorithm when we
traverse only back edge free paths. To prove this case, we do an inner
induction on the visiting order of nodes. The variable j is used to denote
the position of the nodes in this order.

– Basis: j = 0. The node that is numbered 0 in the visiting order
is Start. The relevant path in this case is (Start). Thus we have
In0 = BI = f(Start)(BI).

– Inductive step: Recall that the nodes are visited in reverse postorder.
Assume that the lemma holds for all nodes whose position in reverse
postorder is less than j. Observe that back edge free paths from
Start to j consist of back edge free paths from Start to p, where
p < j, followed by the forward edge (p, j). Thus:

In j =
p∈pred(j)∧p< j

fp(Inp)

=
p∈pred(j)∧p< j

fp(
ρ∈paths1(p)

fρ(BI))

=
p∈pred(j)∧p< j ρ∈paths1(p)

fp(fρ(BI))

=
ρ∈paths1(j)

fρ(BI)

• Inductive step: Assume that the lemma holds for k − 1 iterations. We
once again do an inner induction on the visiting order of nodes.

– Basis: Trivial.

© 2009 by Taylor & Francis Group, LLC

92 Data Flow Analysis: Theory and Practice

– Inductive step: Assume that the lemma holds for k iterations for
those nodes whose number in reverse postorder is less than j. Then:

In j =
p∈pred(j)

fp(Inp)

=

�

p∈pred(j)∧p< j
fp(Inp)

� �

p∈pred(j)∧p≥ j
fp(Inp)

�

=

�

p∈pred(j)∧p< j
fp

�

ρ∈pathsk(p)
fρ(BI)

��

�

p∈pred(j)∧p≥ j
fp

�

ρ∈pathsk−1(p)
fρ(BI)

��

{using induction hypothesis}

=

�

(p∈pred(j)∧p< j) (ρ∈pathsk(p))
fp(fρ(BI))

�

�

(p∈pred(j)∧p≥ j) (ρ∈pathsk−1(p))
fp(fρ(BI))

�

{distributivity}

=
ρ∈pathsk(j)

fρ(BI)

The last step is justified because a path from Start to j with k back
edges could either be made up of (i) a path with k back edges from
Start to p, where p < j, followed by a traversal along the forward
edge p→ j, or (ii) a path from Start to p with k− 1 back edges,
where p ≥ j, followed by a traversal along the back edge p→ j.

Hence the lemma.

Since pathsk−1(j) ⊂ pathsk(j), the data flow value at any node decreases with

increasing number of iterations. This is similar to the algorithm shown in Figure 3.9,

and is crucial for the termination of the algorithm. Note that the algorithms have this

property because of the choice of the initial values.

The second result relates the termination of the algorithm to the data flow values

at program points.

LEMMA 3.12

The algorithm terminates within k iterations iff for each block j, each path ρ
in paths(j) and any boundary value BI, there exists a finite set of paths ρ1, . . .ρr
from pathsk−1(j) such that

fρ(BI) �
1≤i≤r

fρi (BI) (3.22)

PROOF If part: Let BI be an arbitrary boundary value. Assume that

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 93

Condition (3.22) is satisfied after k iterations. Since pathsk−1(j) ⊆ pathsk(j),

ρ∈pathsk(j)
fρ(BI) �

ρ∈pathsk−1(j)
fρ(BI) (3.23)

Further, following Condition (3.22), for each path ρ ∈ pathsk(j) we have a finite

set of paths ρ1, . . .ρr from pathsk−1(j) such that fρ(BI)�
1≤i≤r

fρi (BI). Therefore

fρ(BI)�
ρ�∈pathsk−1(j)

fρ� (BI). Considering all paths in pathsk(j) we have:

ρ∈pathsk(j)
fρ(BI) �

ρ∈pathsk−1(j)
fρ(BI) (3.24)

Combining (3.23) and (3.24), we have:

ρ∈pathsk(j)
fρ(BI) =

ρ∈pathsk−1(j)
fρ(BI)

Therefore the data flow values at the end of iterations k−1 and k coincide at
every program point and the algorithm terminates.
Only if part: Suppose the algorithm halts after m iterations, where m ≤ k.

From Lemma 3.11, the data flow information at any node j after m iterations

is
ρ∈pathsm(j)

fρ(BI). Further, since the data flow framework is assumed to be

distributive, the algorithm computes the MOP solution. Thus

In j =
ρ∈paths(j)

fρ(BI) =
ρ∈pathsm(j)

fρ(BI)

Therefore, for an arbitrary path ρ ∈ paths(j),

fρ(BI) �
ρ∈pathsm(j)

fρ(BI)

We now show that there is a finite set S of paths in pathsm(j) such that

ρ∈pathsm(j)
fρ(BI) =

ρ∈S
fρ(BI). Enumerate the paths in pathsm(j) as ρ1,ρ2 . . ., and

let xi =
1≤n≤i

fρn (BI). It is clear that the xi’s form a chain. Therefore, from

the descending chain condition, there is a number i� such that for all i�� > i�,
xi� = xi�� . Let S be {ρ1,ρ2, . . .ρi� }. We then have:

fρ(BI) �
ρ∈pathsm(j)

fρ(BI) =
ρ∈S
fρ(BI)

Now we prove the main complexity result captured by Theorem 3.2. Note that the

theorem asserts a property of data flow frameworks and not of particular instances of

© 2009 by Taylor & Francis Group, LLC

94 Data Flow Analysis: Theory and Practice

ai1

a

aia = ib

a

a ia+1

a

air

ai1

a

aia = ib

a

a ia+1

a

air

ρ2

ρ3

ρ4

ρ1

(a) A representative path of interest (b) Relevant path segments

FIGURE 3.16

Paths of interest in the CFG.

the framework. It says that if the framework satisfies the rapid condition, the algo-

rithm will terminate for every instance of the framework within an instance-related

bound. Conversely, if the algorithm terminates for every instance of the framework

within the specified bound, the framework is rapid. The theorem, however, does not

say anything about the precision of the specified bound.

THEOREM 3.2

Let (G,MG) be an arbitrary instance of a distributive data flow framework
(L, � ,F). Assume that the traversal of G is based on the DFST T . Then the
rapid condition is both necessary and sufficient for the algorithm in Figure 3.15
to terminate within d(G,T)+3 iterations.

PROOF If part: Following Lemma 3.12, it is enough to show that for an
arbitrary program point j and a path ρ ∈ paths(j), there exists a set of paths
S = {ρ1,ρ2, . . . ,ρm} ⊆ pathsd(G,T)+2(j) and

fρ(BI) �
ρ�∈S

fρ� (BI)

We shall prove the above by induction on the number of back edges l in the
path ρ.
Basis: l ≤ d(G,T)+1. In this case ρ itself is in pathsd(G,T)+2(j) and S = {ρ}.
Inductive Step: l > d(G,T)+1. Since the number of back edges in ρ exceeds

the depth d(G,T), ρ has a cycle. Let us enumerate the program points that
constitute ρ as (i0, i1, . . . , ia, . . . , ib, . . . , ir), where ia is the last point in the path
that is the same as a later point ib in the path. This situation is illustrated
in Figure 3.16. We now identify the following subpaths of ρ in the graph:

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 95

• The path ρ1 = (i1, . . . ia) contains at least one back edge. This is because
the path (ia+1, . . . , ir) is cycle free and contains at most d(G,T) edges, and
even assuming the edge ia→ ia+1 to be a back edge, the number of back
edges in (ia, . . . , ir) is at most d(G,T)+1.

• The path ρ2 = (ia, . . . ib) constitutes a cycle and therefore must contain
at least one back edge.

• The path ρ3 = (ib, . . . ir) is an acyclic path and therefore contains at most
d(G,T) back edges.

• Let ρ4 be a back edge free path from i0 to ia. Such a path can always
be found by following tree edges from i0 to ia.

Using the rapid condition, fρ(BI) can be rewritten as:

fρ(BI) = fρ3
(fρ2

(fρ1
(BI)))

� fρ3

�
fρ1

(BI) � fρ2
(x)� x

�

for any x. Instantiating x to fρ4
(BI), we have

fρ(BI) � fρ3

�
fρ1

(BI) � fρ2
(fρ4

(BI)) � fρ4
(BI)

�

which, because of distributivity, gives

fρ(BI) � fρ3
(fρ1

(BI)) � fρ3
(fρ2

(fρ4
(BI))) � fρ3

(fρ4
(BI))

Recall that the original path ρ1ρ2ρ3 had l back edges. We observe that:

• The path ρ1ρ3 has at most l−1 back edges since the path ρ2 = (ia, . . . ib)

has at least one back edge.

• The path ρ4ρ2ρ3 has at most l−1 back edges since ρ1, which had at least
one back edge, has been replaced by ρ4 which has none.

• The path ρ4ρ3 has less than l−1 back edges.

Thus the induction hypothesis applies and there exists sets S 1, S 2 and S 3, all
of them subsets of pathsd(G,T)+2(j), such that

fρ(BI) �
σ∈S 1

fσ(BI)�
σ∈S 2

fσ(BI)�
σ∈S 3

fσ(BI)

Thus the required set S is S 1∪S 2∪S 3.
Only if part: Assume that condition (3.18) is violated for a data flow frame-

work, i.e.,

(∃ f ,g ∈ F)(∃x, BI ∈ L) : f (g(BI)) �� g(BI)� f (x)� (x)

Using the above f , g, x and BI, we have to create an instance of the framework
for which the algorithm takes more than d(G,T)+1 iterations to terminate.

© 2009 by Taylor & Francis Group, LLC

96 Data Flow Analysis: Theory and Practice

id1

h1

2

h2

3

. . . hn

n+1

f
n+2

id
1

h1

2

h2

3

. . . hn

n+1

id
n+2

id

n+3

id

n+6

bot

n+4

g n+5

f
n+7

(a) f (f (x)) � � f (x)� x (b) f (f (x))� f (x)� x

FIGURE 3.17

Instances that require more than d(G,T) iterations to converge.

Because of the conditions on the values in the data flow lattice and the
admissible flow functions (Section 3.2.2), we can assume that x =

1≤i≤n
hi(BI).

There are two cases to consider. If f (f (x))�/ f (x)� x then consider the CFG
of part (a) of Figure 3.17. The tree edges are drawn with double lines, back
edges are single lines, cross edges are dashed lines, and forward edges are gray
lines. The depth of the graph for the indicated DFST is 0.‡ The data flow
values Inn+2 in the first three iterations are: x, x� f (x), and x� f (x)� f (f (x))
respectively. Clearly, the algorithm will not terminate within 3 iterations.

If f (f (x))� f (x)� x, then we consider the instance in part (b) of Figure 3.17.
The function bot in node n+4 is the constant function ∀x ∈ L : bot(x) = ⊥. The
depth of the graph in this case is 2. Figure 3.18 shows the data flow values
at program points of interest in the first four iterations. In the fifth iteration,
the data flow value at n+3 is x� f (x)�g(⊥)� f (g(⊥)). Under the assumed
condition, this value is different from the value at n+3 in the fourth iteration.
Therefore the algorithm takes at least six iterations to terminate.

Example 3.11

Figure 3.19 provides an instance of a framework that requires d(G,T)+3 iter-
ations. We leave it for the reader to verify that the framework is distributive
and rapid. As usual, tree edges have been shown in double lines and back

‡Note that this is because we are not distinguishing between In and Out properties.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 97

Node i
Ini in various iterations

#1 #2 #3 #4

n+2 x x x� f (x)�g(⊥) x� f (x)�g(⊥)

n+3 x x�g(⊥) x� f (x)�g(⊥) x� f (x)�g(⊥)

n+4 x x�g(⊥) x� f (x)�g(⊥) x� f (x)�g(⊥)

n+5 ⊥ ⊥ ⊥ ⊥

n+6 x x� f (x)
x� f (x)� f (f (x))�g(⊥)

= x� f (x)�g(⊥)
x� f (x)�g(⊥)� f (g(⊥))

n+7 x x� f (x) x� f (x)�g(⊥) x� f (x)�g(⊥)� f (g(⊥))

FIGURE 3.18

First four iterations for the instance in Figure 3.17 on the facing page.

edges are shown in single lines. The value of d(G,T) is 1. The lattice does not
have a � element but the graph is reducible.

As shown in the following table, the data flow values converge in the third
iteration—one more iteration is required to detect convergence. This is inde-
pendent of the BI value because of the presence of function h1. We leave it for
the reader to verify that if L contains �, three iterations are sufficient.

Variables
Values in each iteration

Iteration 1 Iteration 2 Iteration 3 Iteration 4

In1 v1 v1 v1 v1

In2 v1 v1 ⊥ ⊥

In3 v0 ⊥ ⊥ ⊥

In4 v0 ⊥ ⊥ ⊥

An non-rapid fast framework has been illustrated in Figure 5.9 on page 178.

3.5.3 Complexity in Special Cases

First we consider the situation when the CFG is reducible. The modified statement

of Theorem (3.2) for reducible CFGs is as follows.

THEOREM 3.3

Let (G,MG) be an arbitrary instance of a distributive data flow framework
(L, � ,F) such that G is reducible. Assume that the traversal of G is based on
the DFST T . Then the rapid condition is both necessary and sufficient for the
algorithm in Figure 3.15 to terminate within d(G,T)+2 iterations.

© 2009 by Taylor & Francis Group, LLC

98 Data Flow Analysis: Theory and Practice

1 h1 1

2 h0 2

3 h1 3

4 f 4

v1v0 v2

⊥

Function f

v1v0 v2

⊥

v1v0 v2

⊥

Function h0 and h1

∀�x ∈�L : h0(�x) = v0

∀�x ∈�L : h1(�x) = v1

(a) CFG (b) L (c) Flow Functions

FIGURE 3.19

A instance of a distributive rapid framework that requires d(G,T)+3 iterations.

PROOF We replay the earlier proof with the expression d(G,T)+ x uni-
formly replaced by d(G,T)+ (x−1). The only change is in the portion of the
proof that asserts the sufficiency of the rapid condition (the if part).

The basis of the if part remains identical. We consider the changes required
to prove the inductive case. Reducibility imposes some restrictions on the
structure of the path ρ. We consider the following two cases:

• The edge ia→ ia+1 is not a back edge. Since the path from ia+1 to ir is
acyclic, it can have at most d(G,T) back edges. Thus the only way in
which the path ρ1ρ2ρ3 can have d(G,T)+1 back edges is to have at least
one back edge in ρ1. As in the earlier proof, this path can be replaced
by a back edge free path and the induction hypothesis applied.

• The edge ia→ ia+1 is a back edge. Due to reducibility, ia+1 must dom-
inate ia and the path segment ρ1 must also pass through ia+1. We can
then divide the path ρ into path segments as illustrated in Figure 3.20 on
the facing page. Due to the back edge ia→ ia+1, the path ρ is ρ1ρ2ρ2ρ3.
Since the path from ia+1 to ir is acyclic, the path ρ2ρ3 can have at most
d back edges. The data flow value along path ρ is:

fρ(BI) = fρ3

�
fρ2

�
fρ2

�
fρ1

(BI)
���

� fρ3

�
fρ2

�
fρ1

(BI)
��

since f 2(x)� f (x) from Lemma 3.10.

Observe that ρ has been replaced by the path ρ1ρ2ρ3 which excludes the
back edge ia → ia+1 and thus contains one back edge less. Hence, the
induction hypothesis applies to the path ρ1ρ2ρ3 and the result follows.

© 2009 by Taylor & Francis Group, LLC

Theoretical Abstractions in Data Flow Analysis 99

ai1

a

a

a

a

ia = ib

ia+1

ib+1

ir

ai1

a

a

a

a

ib+1

ia = ib

ia+1

ir

ρ2

ρ3

ρ1

(a) ia → ia+1 is a back edge

and graph is reducible.

(b) Relevant path segments

FIGURE 3.20

Paths of interest in the CFG.

Now we consider the special case when a � element exists in the meet semilattice.

The bit vector data flow problems fall in this category. In this case, the algorithm in

Figure 3.15 can be made more efficient by initializing In for each node except Start

to the value �. This is identical to the initialization on line 2 of Figure 3.9. Thus the

two algorithms become similar except for the order of traversal. Only the iterations of

the while loop are counted—the work done during the initialization step is ignored.

This is reasonable because, unlike the algorithm in Figure 3.15, no attempt is being

made to propagate the initial values in this step. We merely state the theorem and

point to the source of the proof in bibliographic notes.

THEOREM 3.4

Consider an instance (G,MG) of a distributive data flow framework (L, � ,F),
where L has a � element. The rapid condition is both necessary and sufficient
for the algorithm in Figure 3.15 with the modification mentioned above to
terminate within d(G,T)+ 2 iterations. T is the DFST used for deciding the
order of traversal of G.

3.6 Summary and Concluding Remarks

In this chapter, we have presented generalizations of data flow frameworks based on

mathematical abstractions and have presented lattice theoretic modelling of data flow

© 2009 by Taylor & Francis Group, LLC

100 Data Flow Analysis: Theory and Practice

frameworks. The generalizations include data flow values, operations to manipulate

them, algorithms to compute the data flow information and the characteristics of the

computed data flow information. All these generalizations are uniformly applicable

to all unidirectional monotone data flow frameworks but are not directly applicable

to bidirectional frameworks. Even among unidirectional frameworks, the generaliza-

tions related to complexity of data flow analysis are applicable to a limited class of

frameworks, leaving out some important frameworks that have arisen in practical sit-

uations. In the subsequent chapters, we consider some of these data flow frameworks

and then present a different view of data flow analysis to uniformly characterize the

complexity of a larger class of data flow frameworks including bidirectional frame-

works.

3.7 Bibliographic Notes

Of the graph theoretic concepts introduced early in the chapter, discussion on DFST

can be found in the texts by Aho, Hopcroft and Ullman [2] and Cormen, Rivest,

Leiserson and Stein [27]. Reducibility was introduced by Allen [4] and is further

discussed by Hecht and Ullman in [45, 46]. Dominance was introduced by Lowry

and Medlock [70]. Lengauer and Tarjan [68] present an algorithm that can be used

to compute dominators efficiently. The text by Davey and Priestley [29] is a good

introduction to lattice theory. The presentation of Tarski’s fixed point theorem is

from Tarski’s original paper [99].

The initial attempt to model data flow values in terms of meet semilattices was by

Kildall [63]. Kam and Ullman [49] introduced reverse postorder for visiting nodes

in the CFG and also introduces the rapidity condition which guarantees convergence

within d(G,T)+ 3 iterations. This work has given rise to the folklore that iterative

data flow analysis is fast for many data flow frameworks. Much of Section 3.5.2 is

based on this paper.

The papers so far dealt with distributive frameworks. Kam and Ullman [50]

showed that for montonic frameworks, which are less restrictive then distributive

frameworks, a round-robin iterative algorithm computes the MFP solution. How-

ever, for a monotonic framework that is not distributive, the MFP solution may be

different from the MOP solution. They also showed the undecidability of the problem

of finding MOP solution of an arbitrary monotonic data flow problem. Monotonicity

of flow functions was also discussed by Graham and Wegman [37] where they in-

troduced the concept of fast frameworks. A detailed treatment of these concepts can

also be found in the book by Hecht [44]. Marlowe and Ryder [71] review properties

of different data flow frameworks in lattice theoretic settings.

© 2009 by Taylor & Francis Group, LLC

4

General Data Flow Frameworks

In bit vector frameworks the data flow information of different entities is independent

of each other. However, there are many situations in which the data flow information

of an entity could depend on the data flow information of some other entity. For

example, the concept of transfer of liveness was described in Section 1.1.2 as follows:

If access path x σ is live after an assignment x = y, then σ is trans-

ferred to x and the access path y σ becomes live before the assignment.

Here, the liveness of access path x σ depends on the liveness of access path y σ.

Capturing such interdependences requires a more general kind of flow functions and

the frameworks involving such flow functions are called non-separable.

4.1 Non-Separable Flow Functions

This section defines the non-separability of flow functions, shows how it can be

modeled in terms of Gen and Kill effects, and describes the limitations it imposes on

the nature of basic blocks that can be constructed for performing data flow analysis.

Recall that a data flow framework (LG, �G,FG) is defined in terms of an unspec-

ified CFG G. For convenience, we drop the subscript G where not required. We

assume that the entities occurring in G that are of interest to us for a given analysis

are contained in a set Σ = {α,β,γ, . . . ,ω}. A given analysis discovers some proper-

ties of interest for a specific kind of entities e.g., expressions, variables, definitions,

etc. Thus for any given analysis, all entities are of the same type. The lattice L is

a product �Lα ×�Lβ× · · ·×�Lω where �Lα is the component lattice containing the data

flow values of entity α. In general, all �Ls are same. Data flow value x ∈ L is a tuple

��x α,�x β, . . . ,�x ω�.
The motivation behind modeling non-separability explicitly arises from the obser-

vation that an element in L is not atomic—it consists of a tuple of separate data flow

values for each entity. Thus it is natural to ask if instead of viewing flow functions as

atomic, they can also be modeled in terms of functions that compute data flow values

of smaller granularities. This view allows us to explicate the dependence of the data

flow value of an entity on the data flow values of the other entities. This leads to rich

insights that are useful in defining tight complexity bounds as well as the feasibility

conditions for systematic reduction of flow function compositions.

101
© 2009 by Taylor & Francis Group, LLC

102 Data Flow Analysis: Theory and Practice

DEFINITION 4.1 A flow function f : L �→ L is separable iff it is a tu-
ple ��f α, �f β, · · · , �f ω� of component functions �f : �L �→�L . If �f is of the form

L �→�L , then f is non-separable.

A component function �f α computes the data flow value of entity α. Similar to

the flow function, we use basic block as a subscript of the component function when

required.

As the name suggests, separability is based on independence of data flow proper-

ties of entities for which data flow analysis is being performed. In order to model

non-separable flow functions in terms of Gen and Kill components, instead of defin-

ing constant Genn and Killn, we define them as Genn : L �→ L and Killn : L �→ L by

allowing dependent parts also:

Genn(x) = ConstGenn∪DepGenn(x) (4.1)

Killn(x) = ConstKilln∪DepKilln(x) (4.2)

The flow function fn is defined as:

fn(x) = (x−Killn(x))∪Genn(x) (4.3)

In bit vector frameworks, the dependent parts are absent resulting in constant Gen

and Kill components. Rapid and fast frameworks require that the flow functions

are separable, so that the rapidity condition (3.18) and fastness condition (3.17) are

satisfied. In these and other separable frameworks, dependent parts may exist due

to a possibility of dependence among data flow values of the same entity at different

program points. In non-separable frameworks, the dependence can be of two types:

The data flow value of a given entity may depend on the data flow value of the

same entity or on data flow value of some other entity. Dependence captured by

DepGen on the data flow value of the same entity must necessarily be a non-identity

dependence because identity dependence is implicitly defined by ensuring that both

Gen and Kill have no effect on the entity. The dependence on other entities may be

identity or non-identity dependence. Unlike identity dependence on the same entity,

identity dependence on other entities must be explicitly defined. We model these

dependences in Section 4.5.

The presence of dependent parts in Gen and Kill makes it difficult to summa-

rize the effect of multiple statements in a flow function. Hence, basic blocks for

non-separable analyses consist of single statements. However, multiple consecutive

statements which do not have any data dependence between them can still be com-

bined into a basic block subject to the usual control flow restriction. If two consec-

utive statements can be executed in any order without affecting program semantics,

then they can be grouped into the same basic block for data flow analysis of non-

separable flows. Further, a conditional or unconditional jump need not always be a

separate block. If it is included in a block, it must be the last statement of the block.

The statements relevant to data flow analysis are divided in the following cate-

gories: (a) assignment statements x = ewhere x ∈ Var, e ∈ Expr, (b) input statements

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 103

read(x) which assign a new value to x, (c) use statements use(x) which model uses

of x for condition checking, printing and parameter passing etc., and (d) other state-

ments. Since we restrict ourselves to intraprocedural analysis in this part, we assume

that there are no function calls. Effectively, Var contains local variables only. Print

statements and evaluation of branching condition etc. are modeled in terms of use

statements.

4.2 Discovering Properties of Variables

In this section we present analyses to discover whether a given scalar variable is

dead, or possibly undefined, or has a constant value.

4.2.1 Faint Variables Analysis

As discussed towards the end of Section 2.3.1, liveness analysis does not take into

account interdependence of variables. This section describes a data flow analysis

which takes into account such interdependence and discovers the transitive closure

of deadness of a variable which is the complement of liveness.

DEFINITION 4.2 A variable x ∈ Var is faint at a program point u if
along every path from u to End, it is either not used before being defined or is
used to define a faint variable.

Clearly, this is a backward data flow problem. However, unlike liveness analysis

this is an all-paths analysis. Hence the confluence operation is ∩. The lattice is

(2Var,⊆) and � is Var. The initial value of Inn and Outn for all n is Var.

Inn = fn(Outn) (4.4)

Outn =



BI n is End�

s∈succ(n)

Ins otherwise (4.5)

All local variables are dead at the end of a procedure and BI = Var.

The constant and dependent parts of Genn(x) component are defined as follows.

A variable x becomes faint before every assignment to it. There is no other way in

which a variable that is live after a statement, could become faint before the state-

ment.

ConstGenn =



{x} n is assignment x = e, x � Opd(e)

{x} n is read(x)

∅ otherwise

DepGenn(x) = ∅

© 2009 by Taylor & Francis Group, LLC

104 Data Flow Analysis: Theory and Practice

n1 d = 0; n1

n2 if d ≥ 3; n2

n3 if d ≥ 2; n3

n4 a = b; n4

n5 if d ≥ 1; n5

n6 b = c; n6n7 read (c); n7

n8 d = d+1; n8 n9 print a; n9

truefalse

true

false

true false

FIGURE 4.1

Program for illustrating faint variables analysis and possibly uninitialized variables

analysis.

A variable x could cease to become faint before an assignment statement if it appears

on the right hand side and the left hand side variable is faint. Alternatively, it could

cease to become faint because of a use statement. The former represents the transitive

effect of left hand side variable not being faint and is captured by the dependent part

DepKilln(x) as follows:

ConstKilln =

�
{x} n is use(x)

∅ otherwise

DepKilln(x) =

�
Opd(e)∩Var n is assignment x = e, x � x

∅ otherwise

where Opd(e) denotes the operands of expression e.

Example 4.1

The result of performing faint variables analysis for the program in Figure 4.1
has been shown in Figure 4.2. Since a is used in block n9, it is not faint. As
a consequence, variables b and c cease to be faint. Discovering these facts
requires two additional iterations and propagating it against the back edge
requires the fourth iteration.

If n9 did not contain a use of a, the variables a, b, and c would have been

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 105

Node Iteration #1
Changes in
Iteration #2

Changes in
Iteration #3

Changes in
Iteration #4

Outn Inn Outn Inn Outn Inn Outn Inn

n9 {a,b,c,d} {b,c,d}

n8 {a,b,c,d} {a,b,c,d} {b,c} {b,c} {c} {c} ∅ ∅

n7 {a,b,c,d} {a,b,c,d} {b,c} {b,c} {c} {c} ∅

n6 {a,b,c,d} {a,b,c,d} {b,c} {b,c} {c} ∅ ∅

n5 {a,b,c,d} {a,b,c} {b,c} {b,c} ∅ ∅

n4 {a,b,c,d} {a,b,c,d} {b,c} {c} {c} ∅ ∅

n3 {a,b,c} {a,b,c} {c} {c} ∅ ∅

n2 {b,c} {b,c} {c} {c} ∅ ∅ ∅

n1 {b,c} {b,c,d} {c} {c,d} ∅ {d}

FIGURE 4.2

Performing faint variables analysis of program in Figure 4.1.

discovered to be faint. Liveness analysis would conclude that b and c are live
regardless of the use of a in block n9.

It is interesting to explore the distributivity, rapidity, and fastness properties of

faint variables analysis. Since DepGenn(x) is ∅, fn can be rewritten as:

fn(x) = (x−Killn(x))∪Genn(x)

= (x− (ConstKilln∪DepKilln(x))) ∪ (ConstGenn∪DepGenn(x))

= ((x−ConstKilln)∪ConstGenn) ∪ (x−DepKilln(x))

Clearly the constant part of fn is similar to flow functions in bit vector frameworks

and hence is distributive, rapid and fast. Thus, in order to investigate whether these

properties hold for fn, it is sufficient to explore them for (x−DepKilln(x)).

LEMMA 4.1

Faint variables analysis is distributive.

PROOF It is sufficient to prove that ∀x1,x2 ∈ L,∀ fn ∈ F :

(x1∩x2)−DepKilln(x1∩x2) = (x1−DepKilln(x1)) ∩ (x2 −DepKilln(x2))

From the definition of DepKilln(x), there are two cases to consider. First we
consider the case when n is an assignment statement x = e and x � x1∩x2.
Assume that x is neither in x1 nor in x2.

(x1∩x2)−DepKilln(x1∩x2) = (x1∩x2)− (Opd(e)∩Var)

= (x1− (Opd(e)∩Var)) ∩ (x2 − (Opd(e)∩Var))

= (x1−DepKilln(x1)) ∩ (x2−DepKilln(x2))

© 2009 by Taylor & Francis Group, LLC

106 Data Flow Analysis: Theory and Practice

n1 x = y n1

n2 read(a) n2

n3 a = b n3

n4 b = c n4

n5 x = y n5

Let f = fn2
◦ fn3

◦ fn4
and let x be Var. f i(x) represents

the set of faint variables at the entry of n2 in iteration

number i in postorder traversal over the graph.

x = Var

f (x) = Var− {a}

f 2(x) = Var− {a,b}

∀i ≥ 3 : f i(x) = Var− {a,b,c}

x∩ f (x)∩ f 2(x)∩ . . . � x∩ f (x)

FIGURE 4.3

Faint variables analysis is not fast.

If x � x1 but x ∈ x2, DepKilln(x2) is ∅ and the proof obligation follows due to ∩
even if Opd ∩Var is not removed from x2.

In other situations, DepKilln(x) is ∅ and the lemma trivially follows.

Figure 4.3 contains an instance of faint variables analysis to show that it is neither

rapid nor fast. It is easy to generalize the example to show that faint variables analysis

is not k-bounded. It is bounded by height of the lattice which turns out to be |Var|

and depends on the particular instance.

4.2.2 Possibly Uninitialized Variables Analysis

Section 2.3.3 described reaching definitions analysis which is primarily motivated

by construction of def-use chains. If we use BI to include definitions x = undef for

all x ∈ var, reaching definitions analysis also discovers the program points where

these definitions reach suggesting the possibility of a use before a variable is initial-

ized. However, the transitive effect of such definitions is not handled by reaching

definitions analysis. We present an analysis which handles these effects. Further, un-

like reaching definitions analysis, this analysis is aimed at discovering only whether

a given variable is possibly uninitialized—It does not collect the definitions of the

variable. This simplifies the analysis and makes it very efficient.

DEFINITION 4.3 A variable x ∈Var is possibly uninitialized at a program
point u if there exists a path from Start to u along which either no definition of
the variable has been encountered or the definition uses a possibly uninitialized
variable on the right hand side of the assignment.

Clearly this is a forward data flow problem and uses ∪ as the confluence operation.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 107

The lattice is (2Var,⊇) and � is ∅. The initial value at each node is ∅.

Inn =



BI n is Start�

p∈pred(n)

Out p otherwise (4.6)

Outn = fn(Inn) (4.7)

Since every local variable is uninitialized at Entry(Start), BI = Var.

An interesting aspect of this analysis is that the possibility of a variable being

uninitialized is generated only at Entry(Start) and no other program point. Hence

ConstGenn is ∅. The transitive effect of an uninitialized variable appearing on the

right hand side of an assignment is captured by DepGenn(x).

ConstGenn = ∅

DepGenn(x) =

�
{x} n is assignment x = e, Opd(e)∩x � ∅}

∅ otherwise

A variable ceases to be uninitialized if its value is read from input or a constant

value is assigned to it. The transitive effect of such initializations is captured by

DepKilln(x).

ConstKilln =



{x} n is assignment x = e, Opd(e) ⊆ Const

{x} n is read(x)

∅ otherwise

DepKilln(x) =

�
{x} n is assignment x = e, Opd(e)∩x = ∅}

∅ otherwise

Example 4.2

For the program in Figure 4.1, the result of possibly uninitialized analysis is:
Inn1
= {a,b,c,d}, Outn4

= {b,c}, Outn6
= {a,c}, Outn6

= {a,b}. All other Inn and

Outn are {a,b,c}.

LEMMA 4.2

Possibly uninitialized analysis is distributive.

PROOF It is sufficient to show that ∀x1,x2 ∈ L,∀ fn ∈ F :

((x1∪x2)−DepKilln(x1∪x2)) ∪ Genn(x1∪x2) =

(x1−DepKilln(x1)) ∪ (x2−DepKilln(x2)) ∪ Genn(x1) ∪ Genn(x2)

Further, it is sufficient to consider only the assignment statement x = e.
Consider the following three cases:

• Opd(e)∩x1 = ∅ and Opd(e)∩x2 = ∅. Thus Opd(e)∩ (x1∪x2) = ∅.

© 2009 by Taylor & Francis Group, LLC

108 Data Flow Analysis: Theory and Practice

In this case.

DepKilln(x1∪x1) = DepKilln(x1) = DepKilln(x2) = {x}

DepGenn(x1∪x1) = DepGenn(x1) = DepGenn(x2) = ∅

Hence the proof obligation is satisfied.

• Opd(e)∩x1 � ∅ and Opd(e)∩x2 � ∅. Thus Opd(e)∩ (x1∪x2) � ∅.

In this case.

DepKilln(x1∪x1) = DepKilln(x1) = DepKilln(x2) = ∅

DepGenn(x1∪x1) = DepGenn(x1) = DepGenn(x2) = {x}

Hence the proof obligation is satisfied.

• Opd(e)∩x1 � ∅ and Opd(e)∩x2 = ∅. Thus Opd(e)∩ (x1∪x2) � ∅.

In this case.

DepKilln(x1∪x1) = DepKilln(x1) = ∅ , DepKilln(x2) = {x}

DepGenn(x1∪x1) = DepGenn(x1) = {x} , DepKilln(x2) = ∅

In this case also, the proof obligation is satisfied.

• Opd(e)∩x1 = ∅ and Opd(e)∩x2 � ∅. Thus Opd(e)∩ (x1∪x2) � ∅.

This case is similar to the above case.

This framework is not fast, and hence is not rapid. We leave it for the reader to

construct suitable examples.

4.2.3 Constant Propagation

If it can be asserted at compile time that a given expression would compute a fixed

known value at a given program point in every execution of the program, the expres-

sion computation can be replaced by the known constant value. This can then be

propagated further as the value of the variable to which the result of the expression

is assigned. This can help in identifying if other expressions that involve the variable

compute a constant value.

For simplicity, we restrict our discussion to integer constants.

DEFINITION 4.4 A variable x ∈ Var has a constant value c ∈ Const at
a program point u if for every path reaching u along which a definition of x
reaches u, the value of x is c.

Note that this definition assumes that the program is correct in the sense that no

execution path uses a variable before defining it and if the CFG contains a path

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 109

n1 read (e); n1

n2
a = 7;b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e+2) n3

n4
b = c+1;
if (b ≥ 7) n4

n6 if (f ≥ e+1) n6

n5 f = f +1; n5

n7 c = d ∗a; n7 n8 d = a+b; n8

n9
d = a+1;
f = f +1 n9n10 e = a+b; n10

false

true
false

false
true false

true

true

FIGURE 4.4

Program for illustrating constant propagation.

reaching u that does not have any definition of x, such a path can be ignored so long

as at least one path containing a definition of x reaches u.

Example 4.3

We use the program in Figure 4.4 as a running example for constant propa-
gation. We have included branching conditions and have labeled out edges of
branch nodes with the branch outcomes to emphasize the above assumption
about the correctness of program in terms of use and definitions of variables.
Observe that, if we ignore the branching conditions, our basic blocks consist of
single statements except n2 and n9 which contains multiple statements because
they are independent of each other. Within the loop, the uses of following
variables can be replaced by their statically known values: a = 2, c = 6, and
d = 3. Further, b = 7 in block n4. This results in the branching condition in
block n4 being true making block n5 unreachable.

Given a variable x and a program point u, apart from associating integer constants

© 2009 by Taylor & Francis Group, LLC

110 Data Flow Analysis: Theory and Practice

undef (��)

−∞ . . . −1 0 1 . . . ∞

nonconst (�⊥)

��

undef −∞ . . . −1 0 1 . . . ∞

nonconst (�⊥)

(a) Assuming that every use is

preceded by a definition

(b) Combining detection of possibly

uninitialized variables

FIGURE 4.5
�L for constant propagation.

with x at u, this analysis associates two additional values: undef to indicate that no

definition of x has been seen along any path reaching u, and nonconst to indicate

that x can have different values at u along different paths reaching u. The component

lattice �L for a variable is shown in Figure 4.5(a).

Observe that the structure of the lattice is governed by the choice of ignoring

those control flow paths along which no definition of the variable has been seen. The

assumption here is that the program is correct and such paths are not executed in

any run of the program or an independent analysis to discover possibly uninitialized

variables is being performed.

An alternative policy is to combine the possibly uninitialized variables analysis

along with constant propagation. This would require declaring a variable to be

nonconst at a join point if it has a constant value along a path but is undefined

along some other path reaching the program point. This is fair under the assump-

tion that all paths are potential execution paths so the value of the variable is known

along some paths and is not known along some other paths. This results in a meet

semilattice as illustrated in Figure 4.5(b). In this lattice � is an artificial element and

is required for initialization. The flow functions will have to be suitably extended to

include this value.

Such an analysis will discover fewer constants in the program and is more conser-

vative compared to the analysis that excludes those paths that do not contain a def-

inition of the variable under consideration. Hence practically, this policy is usually

not adopted. In this book, we restrict ourselves to the common policy of assuming

that the program is correct in the sense that every use of a variable is preceded by its

definition.

Classical Constant Propagation Using Def-Use Chains

Constant propagation can be performed using def-use chains as described below:

1. Create a work list Wl consisting of definitions of the form xi : x = ci occurring

in the program, where x ∈ Var and ci ∈ Const. The read(x) statement should

be treated as a definition x = nonconst and must be inserted in the work list.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 111

n1 read (e); n1

n2
a = 7;b = 2; f = e;

if (f > 0) n2

n3
a = 2;

if (f ≥ e+2) n3

n4
b = c+1;
if (b ≥ 7) n4

n6 if (f ≥ e+1) n6

n5 f = f +1; n5

n7 c = d ∗a; n7 n8 d = a+b; n8

n9
d = a+1;
f = f +1 n9n10 e = a+b; n10

false

true
false

false
true false

true

true

FIGURE 4.6

Def-use chains of variables a, b, c, and d for constant propagation.

Repeat the following step untilWl becomes empty.

2. Remove a definition xi : x = ci from Wl. Perform the following steps for each

def-use chain of xi.

(a) Traverse the def-use chain to locate the use of x reachable by the chain.

(b) Let the value of the use be denoted by x�. If the use of x has not been

replaced by any value, then x� is ��.

(c) Replace the use of x by x���ci. This then becomes the value of x.

(d) Evaluate the expression in which the use of x occurs. If the result is a

constant value and the expression appears in the right hand side of an

assignment, replace the expression by the constant value and add the

definition to Wl. If the result is nonconst , then add the definition to Wl
without replacing the expression.

© 2009 by Taylor & Francis Group, LLC

112 Data Flow Analysis: Theory and Practice

eval(e,x) where Opd(e)∩Var � ∅

Notation: d1 = val(e1,x),d2 = val(e2,x) where {e1,e2} ⊆ (Var∪Const)

e ≡ (e1 bop e2)
e ≡ (uop e1) e ≡ e1

Any other

d2 = �� d2 = �⊥ d2 ∈ Const expression

d1 = �� �� �⊥ �� �� ��
d1 = �⊥ �⊥ �⊥ �⊥ �⊥ �⊥ �⊥

d1 ∈ Const �� �⊥ d1 bop d2 uop d1
Not

Applicable

FIGURE 4.7

Evaluating constantness of expressions for constant propagation.

Example 4.4

The def-use chains for our running example are shown in Figure 4.6. Initially,
the work list contains the assignments to a and b in blocks n2 and n7. When
we traverse the def-use chains of the definition in block n3, d is discovered to
be 3 in block n9. This is added to the work list and causes c to become 6

in block n7. This cause b to become 7 in block n4. Since this is a compile
time evaluation, it is valid for every possible execution of n4 and block n5

is never executed. Interestingly, compile time analysis concludes that b can
have different values in n8 and n10 and hence is �⊥. For n8, this is conservative
imprecision since the execution never reaches n8 after b becomes 7 in n4.

Data Flow Analysis for Constant Propagation

Observe that the specification of constant propagation in terms of def-use chains has

a highly operational flavor. Data flow equations provide a declarative mechanism of

defining a program analysis and reduce the work to fixed point computation.

Data flow analysis for constant propagation uses an overall lattice L that is a prod-

uct of �L . For convenience of defining flow functions, we represent an element in L

by sets of pairs �x,dx� where x ∈ Var and dx ∈�L .

This is a forward data flow analysis. The data flow equations are:

Inn =



BI n is Start

p∈pred(n)
Out p otherwise

(4.8)

Outn = fn(Inn) (4.9)

BI contains pairs �x,��� for all variables x ∈ Var. The confluence operation � on

elements in L is defined in terms of �� by applying it to pairs of the same variable:

∀x1,x2 ∈ L, x1�x2 = {�z,dx��dy� | �z,dx� ∈ x1, �z,dy� ∈ x2, x ∈ Var}

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 113

ConstGenn =



{�x,eval(e,�)�} n is assignment x = e,Opd(e) ⊆ Const

{�x,�⊥�} n is read(x)

∅ otherwise

DepGenn(x) =

�
{�x,eval(e,x)�} n is assignment x = e,Opd(e)∩Var � ∅

∅ otherwise

ConstKilln = ∅

DepKilln(x) =



{�x,d�} n is assignment x = e, �x,d� ∈ x

{�x,d�} n is read(x), �x,d� ∈ x

∅ otherwise

Function eval is defined in Figure 4.7. It uses val(e,x) to denote the value of a

simple expression (consisting of a variable or a constant) in the context of the given

data flow information x:

val(e,x) =

�
c if e is c ∈ Const

d if e is x ∈ Var, �x,d� ∈ x

Example 4.5

The computation of data flow values for our running example of Figure 4.4
has been shown in Figure 4.8. For brevity, we represent the data flow infor-
mation as a vector �da,db,dc,dd,de� where dx represents the constantness value

of variable x. BI is ���,��,��,��,���. The initial value of Ini and Out i for all i is

� = ���,��,��,��,���.
Observe that this analysis requires four traversals over the control flow

graph in reverse postorder. In the first iteration, d is discovered to be 3
in block n9. Thus, c is discovered to be 6 block n7 in the third iteration.
This makes b a constant with value 7 at Exit(n3) in the fourth iteration. At
Entry(n2), b is 2 along the path from n1 and 7 along the path from n6. Observe
the non-separability of constant propagation: The constantness of b depends
on the constantness of a through c and d.

Also note that b is �⊥ in n8 due to the effect of n4 in spite of the fact that
control never reaches n8 after execution n4.

Properties of Constant Propagation Data Flow Framework

In this section we show that Constant Propagation framework is monotonic but non-

distributive.

THEOREM 4.1

Constant Propagation framework is monotonic.

© 2009 by Taylor & Francis Group, LLC

114 Data Flow Analysis: Theory and Practice

Iteration #1 Changes in Changes in Changes in
iteration #2 iteration #3 iteration #4

Inn1
��,��,��,��,��,��

Outn1
��,��,��,��,�⊥,��

Inn2
��,��,��,��,�⊥,�⊥

Outn2
7,2,��,��,�⊥,�⊥

Inn3
7,2,��,��,�⊥,�⊥ �⊥,2,��,3,�⊥,�⊥ �⊥,2,6,3,�⊥,�⊥ �⊥,�⊥,6,3,�⊥,�⊥

Outn3
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Inn4
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Outn4
2,��,��,��,�⊥,�⊥ 2,��,��,3,�⊥,�⊥ 2,7,6,3,�⊥,�⊥

Inn5
2,��,��,��,�⊥,�⊥ 2,��,��,3,�⊥,�⊥ 2,7,6,3,�⊥,�⊥

Outn5
2,��,��,��,�⊥,�⊥ 2,��,��,3,�⊥,�⊥ 2,7,6,3,�⊥,�⊥

Inn6
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Outn6
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Inn7
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Outn7
2,2,��,��,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Inn8
2,2,��,��,�⊥,�⊥ 2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Outn8
2,2,��,4,�⊥,�⊥ 2,2,��,4,�⊥,�⊥ 2,2,6,4,�⊥,�⊥ 2,�⊥,6,�⊥,�⊥,�⊥

Inn9
2,2,��,4,�⊥,�⊥ 2,2,6,�⊥,�⊥,�⊥ 2,�⊥,6,�⊥,�⊥,�⊥

Outn9
2,2,��,3,�⊥,�⊥ 2,2,6,3,�⊥,�⊥ 2,�⊥,6,3,�⊥,�⊥

Inn10
�⊥,2,��,��,�⊥,�⊥ �⊥,2,��,3,�⊥,�⊥ �⊥,�⊥,6,3,�⊥,�⊥

Outn10
�⊥,2,��,��,�⊥,�⊥ �⊥,2,��,3,�⊥,�⊥ �⊥,�⊥,6,3,�⊥,�⊥

FIGURE 4.8

Constant propagation data flow analysis for the running example in Figure 4.4.

PROOF Showing monotonicity of fn(x) requires showing that (x−DepKilln(x))

and DepGenn(x) are monotonic.
DepKilln(x) is {�x,dx�} for assignment x = e or read(x). In all other cases it is

∅. Since it does not depend on x,

∀x1 � x2 ∈ L : (x1−DepKilln(x1)) � (x2−DepKilln(x2))

Showing monotonicity of DepGenn(x) reduces to showing

∀e ∈ Expr,∀x1,x2 ∈ L : x1 � x2 ⇒ eval(e,x1) �� eval(e,x2)

Function eval(e,x) examines the data flow values of the operands of e. From
its definition in Figure 4.7, it is easy to see that the data flow value computed
by eval(e,x) preserves the partial order.

THEOREM 4.2

Constant Propagation framework is non-distributive.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 115

PROOF Using the arguments similar to those in Theorem 4.1, it can be
shown in terms of eval().

∃e ∈ Expr, ∃x1,x2 ∈ L : eval(e,x1�x2) � eval(e,x1) �� eval(e,x2)

This is demonstrated by expression (a+ b) in block n10 in the program in
Figure 4.4 for x1 = �7,2,−,−,−� and x2 = �2,7,−,−,−� where “−” indicates the
values which do not matter.

Presence of non-distributivity shows the limits of static analysis: Unless all paths

are traversed independently, which may require exponential amount of work, a static

analysis is likely to miss out on useful information even if the information is indepen-

dent of program execution. This happens because of sharing of information across

distinct paths as shown by the following example.

Example 4.6

Only two execution paths reach n10: (n1, n2, n7), and (n1, n2, n3, n6, n8, n9,
n3, n6, n7, n9, n3, n4, n10). The values of a, b, and e at Exit(n10) along the first
path are 7, 2, and 9 respectively whereas along the second path they are 2,
7, and 9. Static summary of constantness information should conclude that
a and b are �⊥ and e is 9. However, due to non-distributivity, our analysis
concludes that all the three variables are �⊥. Effectively, the flow function in
n10 uses all possible combinations of a and b including those across different
paths: a = 7 and b= 2 resulting in e = 9; a = 2 and b = 7 resulting in e = 9; a = 2

and b = 2 resulting in e = 4; a = 7 and b = 7 resulting in e = 14. Observe that
the last two combinations are infeasible because there is no execution path
reaching n10 along which a and b can both be 2 or both be 7. Fortunately,
the imprecision caused by non-distributivity is safe because a �⊥ variable does
not enable any transformation.

Constant propagation is not fast, and hence is not rapid. We leave it for the reader

to construct suitable examples.

4.2.4 Variants of Constant Propagation

Constant propagation is a very useful analysis in practice. It improves the efficiency

of programs by advancing some computations to compile time. It facilitates many

other optimizations such as elimination of dead code (i.e., assignments which define

variables which are not used later) as well as unreachable code. The latter simpli-

fies control flow and may reduce branch delays on pipelined architectures. It can

help in strength reduction and may enable many loop optimizations that require loop

iterations bounds to be known at compile time.

It is not surprising that many variants of constant propagation have been proposed.

The formulation which we have presented in the preceding sections is called full

© 2009 by Taylor & Francis Group, LLC

116 Data Flow Analysis: Theory and Practice

constant propagation to distinguish it from other variants of constant propagation

which restrict the analysis in some ways.

Conditional Constant Propagation

As observed in Examples 4.3, 4.4, and 4.5, the value b = 7 in n4 causes the control

flow to leave the loop. Block n5 is never executed and the value 7 does not reach n8

resulting in both b and d being constant in n8. Conditional constant propagation can

discover this by evaluating the branching conditions appearing on execution paths.

In order to achieve the above, we create a lattice {reachable,notReachable} with

the partial order notReachable � reachable. Let L be the product lattice of �L . We

create a new product lattice Lc = {reachable,notReachable}× L. Values in Lc are

pairs �status,x� where status is either reachable or notReachable and x is the con-

stantness information as discovered in the unconditional constant propagation. The

confluence operation �c of values in Lc ignores the values which are not reachable

and is as defined below.

�status1,x1� �c �status2,x2�

status2 = reachable status2 = notReachable

status1 = reachable �reachable,x1�x2� �reachable,x1�

status1 = notReachable �reachable,x2� �notReachable,��

Reachability status is determined by evaluating branching conditions using func-

tion evalCond(m,x) which computes true, false, or undefined depending upon the

following: If basic block m contains a condition at the end and data flow informa-

tion x contains constant values for all variables required to evaluate the condition,

then evalCond(m,x) is the result of the condition. Otherwise, evalCond(m,x) is

undefined. Propagation of data flow information along the out edge associated with

the outcome is ensured by using an edge flow function.

An alternative to such a data flow analysis is to simply delete the edge that will

not be executed instead of qualifying data flow information with reachable and

notReachable values. However, this may not be possible if branch outcome is likely

to be influenced by calling contexts. In particular, when context sensitive interpro-

cedural data flow analysis is performed a branch outcome may be different in differ-

ent contexts and deletion of an edge may not be possible. Further, the abstraction

of conditional propagation along edges is a powerful mechanism that can compute

more precise data flow information for analyses such as null pointer analysis: For this

analysis, a condition that checks for the nullity of a pointer can propagate different

outcomes along the two out edges of a condition.

The propagation function for an edge m→ n, is defined as follows:

gm→n(status,x) =



�notReachable,�� evalCond(m,x) � undefined and

evalCond(m,x) � label(m→ n)

�status,x� otherwise

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 117

Iteration #1 Changes in Changes in
iteration #2 iteration #3

Inn1
R, ���,��,��,��,��,���

Outn1
R, ���,��,��,��,�⊥,���

Inn2
R, ���,��,��,��,�⊥,�⊥�

Outn2
R, �7,2,��,��,�⊥,�⊥�

Inn3
R, �7,2,��,��,�⊥,�⊥� R, ��⊥,2,��,3,�⊥,�⊥� R, ��⊥,2,6,3,�⊥,�⊥�

Outn3
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥�

Inn4
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥�

Outn4
R, �2,��,��,��,�⊥,�⊥� R, �2,��,��,3,�⊥,�⊥� R, �2,7,6,3,�⊥,�⊥�

Inn5
R, �2,��,��,��,�⊥,�⊥� R, �2,��,��,3,�⊥,�⊥� R, �2,7,6,3,�⊥,�⊥�

Outn5
R, �2,��,��,��,�⊥,�⊥� R, �2,��,��,3,�⊥,�⊥� R, �2,7,6,3,�⊥,�⊥�

Inn6
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� N,� = ���,��,��,��,��,���

Outn6
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� N,� = ���,��,��,��,��,���

Inn7
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥�

Outn7
R, �2,2,��,��,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥�

Inn8
R, �2,2,��,��,�⊥,�⊥� R, �2,2,��,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥�

Outn8
R, �2,2,��,4,�⊥,�⊥� R, �2,2,��,4,�⊥,�⊥� R, �2,2,6,4,�⊥,�⊥�

Inn9
R, �2,2,��,4,�⊥,�⊥� R, �2,2,6,�⊥,�⊥,�⊥� R, �2,�⊥,6,�⊥,�⊥,�⊥�

Outn9
R, �2,2,��,3,�⊥,�⊥� R, �2,2,6,3,�⊥,�⊥� R, �2,�⊥,6,3,�⊥,�⊥�

Inn10
R, ��⊥,2,��,��,�⊥,�⊥� R, ��⊥,2,��,3,�⊥,�⊥� R, ��⊥,�⊥,6,3,�⊥,�⊥�

Outn10
R, ��⊥,2,��,��,�⊥,�⊥� R, ��⊥,2,��,3,�⊥,�⊥� R, ��⊥,�⊥,6,3,�⊥,�⊥�

FIGURE 4.9

Conditional constant propagation for the running example in Figure 4.4.

The data flow equations remain much the same except that now they must honor

the reachability status as shown below.

Inn =



�reachable,BI� n is Start

C
p∈pred(n)

gp→n(Out p) otherwise

Outn =

�
�reachable, fn(x)� Inn = �reachable,x�

�notReachable,�� otherwise

In the beginning, only the Start block is assumed to be reachable and the initial

value associated with all other program points is �notReachable,��. This is required

for computing the MFP solution. If we use the initial value �reachable,��, the

analysis will converge on a fixed point that may not be maximum. The result would

be imprecise but safe.

© 2009 by Taylor & Francis Group, LLC

118 Data Flow Analysis: Theory and Practice

Example 4.7

Figure 4.9 provides the data flow values for conditional constant propagation
in our running example. Since the data flow information is not propagated
from n4 to n5, b remains constant in the loop and analysis converges in three
iterations rather than four.

It is easy to see that conditional constant propagation can discover more precise

information than unconditional constant propagation. It is guaranteed to be at least

as good, if not better.

Copy Constant Propagation

Copy constant propagation limits the expressions appearing on the right hand side of

an assignment to simple variables or constants. Such statements have been called

copies in Section 2.3.4 to describe copy propagation using reaching definitions.

There are two fundamental differences between the analysis presented here and the

copy propagation described in Section 2.3.4: (a) the analysis presented here allows

replacement of variables by constants only whereas the earlier analysis allowed re-

placement of variables by other variables also, and (b) the analysis presented here

takes care of transitive effects of replacements whereas the earlier analysis does not

do so.

Copy constant propagation does not generate new constants based on the values of

variables. Hence it is guaranteed to compute only a finite number of constants. Thus

the component lattice �L is finite. The flow function does not evaluate any expres-

sion involving a variable. Thus the definitions of ConstKilln and DepKilln(x) do not

change. ConstGenn and DepGenn(x) change in the following manner. DepGenn(x)

is restricted to copy assignments and DepGenn(x) computes �⊥ value for non-copy

assignments. The new definitions are:

ConstGenn =



{�v,eval(e,�)�} n is assignment v = e,Opd(e) ⊆ Const

{�v,�⊥�} n is read(v) or a non-copy assignment to v

∅ otherwise

DepGenn(x) =

�
{�v,d�} n is assignment v = w, �w,d� ∈ x

∅ otherwise

Observe that the expression evaluation in the above definition is restricted to constant

operands only.

Full constant propagation is non-distributive due to the use of function eval(e,x).

All other terms involved in defining fn are distributive. Copy constant propagation is

distributive because it does not involve eval(e,x). However, due to non-separability,

the framework remains non-fast.

Since expressions are not evaluated, this analysis finds fewer constants and is lim-

ited in scope compared to the full constant propagation.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 119

Linear Constant Propagation

A slightly more general formulation than copy constant propagation allows expres-

sions to appear on the right hand side but these expressions may contain at most a

single variable. This requires a restricted version of eval. Since this analysis com-

putes new constants, the lattice �L is infinite, unlike copy constant propagation. How-

ever, similar to copy constant propagation, linear constant propagation is distributive

because the number of variables in the right hand side is restricted to one. However,

due to non-separability, the framework remains non-fast.

4.3 Discovering Properties of Pointers

Pointers allow indirect modification of data thereby making it difficult to discover

useful information from programs. They reduce the effectiveness of program analy-

sis tools. This is because, in the absence of precise analysis of pointer manipulations,

program analysis must conservatively assume that any data object could be modified

by any pointer. Practically, this can be mitigated somewhat by using type infor-

mation and by confining the conservative assumptions within variables of the same

type. However, if information about the possible manipulations performed through

pointers is available, it can enhance the precision of other analyses.

This section presents pointer analyses for stack and static data. These analyses

capture relationships between pointers and other variables or pointers. This is differ-

ent from other analyses which we have seen because the domain of data flow values

of an entity did not involve other entities.

Our model of pointer manipulations is based on C except that we do not take into

account pointer arithmetic. Since the size of stack and static data is fixed, pointers

can point to only a fixed set of locations that are known at compile time. We as-

sume that field references of a structure are flattened out into a new pointer name:

A reference like x. f occurring in a statement can be modeled as a new pointer x f
to which the pointer x points to. Further, a null assignment to a pointer x is treated

as assigning address 0 to x. Thus assignment x = null is treated as x =&zero where

zero is a special symbol whose address is 0.

4.3.1 Points-To Analysis of Stack and Static Data

This analysis establishes points-to relation between pointer variables and memory

locations under the assumption that the program is type correct in terms of pointer

manipulations.

DEFINITION 4.5 A pointer variable x points to variable y at a program
point u, denoted x y, if it holds the address of variable y at u.

© 2009 by Taylor & Francis Group, LLC

120 Data Flow Analysis: Theory and Practice

Points-to relation is neither reflexive (because x x may not hold), nor symmetric

(because x y� y x), nor transitive (because x y,y z� x z).

We assume that the left hand side of a pointer assignment is either a pointer vari-

able x or a pointer indirection ∗x. The right hand side could be either an address

expression &x, a pointer variable x, or a pointer indirection ∗x.

The pointers which are likely to be modified by a pointer assignment are called

left locations of the assignment. The addresses which may be assigned to the left

locations are called the right locations of the assignment. Let x be the set repre-

senting the points-to relations that hold just before assignment statement n. The left

and the right locations of n which depend on x are denoted by DepLeftLn(x) and

DepRightLn(x). The left and right locations which depend solely on the local effect

of n are denoted by ConstLeftLn and ConstRightLn.

Consider an assignment statement lhsn = rhsn. The left and the right locations of

n are defined as follows:

Left Locations Right Locations

lhsn ConstLeftLn DepLeftLn(x) rhsn ConstRightLn DepRightLn(x)

x {x} ∅ x ∅ {y | (x y) ∈ x}

∗x ∅ {y | (x y) ∈ x} ∗x ∅ {z | {x y,y z} ⊆ x}

&x {x} ∅

Points-to relation between the left and the right locations is established in terms of

new points-to pairs which are generated and the points-to pairs which cease to hold

due to the effect of a basic block.

ConstGenn = {x y | x ∈ ConstLeftLn,y ∈ ConstRightLn}

DepGenn(x) = {x y | (x ∈ ConstLeftLn,y ∈ DepRightLn(x)), or

(x ∈ DepLeftLn(x),y ∈ ConstRightLn), or

(x ∈ DepLeftLn(x),y ∈ DepRightLn(x))}

ConstKilln = {x y | x ∈ ConstLeftLn}

DepKilln(x) = {x y | x ∈ DepLeftLn(x)}

DepKilln(x) depends on DepLeftLn(x) which involves pointer indirection on the left

hand side of a pointer assignment. Thus it captures the indirect effect of an assign-

ment due to pointer indirection and hence the choice of x is critical for ensuring

conservative approximation on the safer side. We explain this below.

DEFINITION 4.6 If a pointer z is modified by a pointer assignment
regardless of the execution path taken to reach the assignment, then such a
modification is called a strong update of z. If z may be modified by the assign-
ment when the execution reaches along some path and may not be modified
when it reaches along some other path, such a modification of z is called a
weak update of z.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 121

An assignment z = w causes a strong update of z. Contrast this with the assignment

∗x = w such that x z holds along some path reaching the assignment. If the execution

follows this path, then the assignment modifies z, otherwise it does not modify z. If

x z holds along every path, then z is modified by the assignment in every execution.

In order to capture the indirect effect of such an assignment, there is a need to make

a distinction between the points-to relations which cause weak updates from those

which cause strong updates. The former is called may points-to relation while the

latter is called must points-to relation.

DEFINITION 4.7 If pointer x holds the address of variable y at program
point u along some path from Start to u, then x y at u under may points-to
relation. If x holds the address of y along every path from Start to u, then x y
at u under must points-to relation.

It is easy to see that a may points-to relation is weaker than a must points-to

relation: If x must point to y at u then x may point to y at u but not vice-versa.

Since may points-to relations must not miss any points-to pair which may hold at

a program point, only the pairs affected by a strong update must be removed. Thus,

for computing MayOutn, DepKilln must depend on MustInn. Since must points-to

relations should include a points-to pair only if it is guaranteed to hold, all pairs

affected by weak update must be removed. Thus, for computing MustOutn, DepKilln
must depend on MayInn. We explain this in Example 4.9.

The data flow equations for points-to analysis are:

MayInn =



BI n is Start�

p∈pred(n)

MayOutn otherwise (4.10)

MayOutn = fn(MayInn,MustInn) (4.11)

MustInn =



BI n is Start�

p∈pred(n)

MustOutn otherwise (4.12)

MustOutn = fn(MustInn,MayInn) (4.13)

where flow function fn is defined as follows:

fn(x1,x2) = (x1 −Killn(x2))∪Genn(x1) (4.14)

Observe the use of different sets as arguments to Genn(x) and Killn(x). The Genn(x)

and Killn(x) are defined in the usual manner:

Genn(x) = ConstGenn∪DepGenn(x)

Killn(x) = ConstKilln∪DepKilln(x)

In the intraprocedural context, BI is ∅ for both may and must point-to because no

pointer points to any variable at Start.

© 2009 by Taylor & Francis Group, LLC

122 Data Flow Analysis: Theory and Practice

n1 b =&d; n1

n2 c = b; n2

n3 a =&b; n3

n4 ∗a = a; n4

n5 a =&c; n5

n6 a = ∗a; n6

n7 ∗b = c; n7

• Var = {a,b,c,d}

U = { a a, a b, a c, a d,
b a, b b, b d, b d,
c a, c b, c c, c d,
d a, d b, d c, d d }

• Lmay = �2
U,⊇�, �may = ∅,⊥may = U

• Lmust =�La ×�Lb×�Lc×�Ld
We show the component lattice �La:

{a a,a b,a c,a d}

{a a} {a b} {a c} {a d}

∅

FIGURE 4.10

Example program for points-to analysis.

Figure 4.10 illustrates the lattices for may and must points-to analysis. Observe

that the �� value for must points-to in Figure 4.10 is {a a,a b,a c,a d}. It is easy

to see to that this is a value that cannot naturally occur in any instance of must points-

to analysis because a pointer can pointer to at most one location in must points-to

analysis. This is an example of an artificial value added to a meet semilattice for

convenience. Since the descending chain condition is satisfied, the resulting lattice

is a complete lattice. By contrast, the lattice for may points-to analysis is a naturally

complete lattice and its �� element can actually occur during may points-to analysis.

Technically, the lattice for must points-to analysis is a tuple of values from com-

ponent lattice. For example, given the lattice in Figure 4.10, if a points to c, b does

not point to any location, c points to d, and d points to b, then the must points-to

information should be represented as �{a b},∅, {c d}, {d b}�. However, for compat-

ibility with may points-to analysis, we treat it as a flattened set rather than as a vector

of sets for each pointer variable. Thus, we represent the same data flow information

by {a b,c d,d b}.

Example 4.8

Consider the example program in Figure 4.10. The computation of may and
must points-to relations has been shown below. The � for may is ∅ whereas
that for must is the universal set U of points-to pairs. The computation of
may and must proceeds in an interleaved fashion.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 123

Iteration #1
Changes in
Iteration #2

Changes in
Iteration #3

MayInn1
∅

MustInn1
∅

MayOutn1
{b d}

MustOutn1
{b d}

MayInn2
{b d} {a b,a d,b b,b d,c d}

{a b,a d,b b,
b d,c b,c d}

MustInn2
{b d} ∅

MayOutn2
{b d,c d} {a b,a d,b b,b d,c b,c d}

MustOutn2
{b d,c d} ∅

MayInn3
{b d,c d} {a b,a d,b b,b d,c b,c d}

MustInn3
{b d,c d} ∅

MayOutn3
{a b,b d,c d} {a b,b b,b d,c b,c d}

MustOutn3
{a b,b d,c d} {a b}

MayInn4
{a b,b d,c d} {a b,b b,b d,c b,c d}

MustInn4
{a b,b d,c d} {a b}

MayOutn4
{a b,b b,c d} {a b,b b,c b,c d}

MustOutn4
{a b,b b,c d} {a b,b b}

MayInn5
{b d,c d} {a b,a d,b b,b d,c b,c d}

MustInn5
{b d,c d} ∅

MayOutn5
{a c,b d,c d} {a c,b b,b d,c b,c d}

MustOutn5
{a c,b d,c d} {a c}

MayInn6

{a b,a c,b b,
b d,c d}

{a b,a c,b b,b d,c b,c d}

MustInn6
{c d} ∅

MayOutn6

{a b,a d,b b,
b d,c d}

{a b,a d,b b,b d,c b,c d}

MustOutn6
{c d} ∅

MayInn7

{a b,a d,b b,
b d,c d}

{a b,a d,b b,b d,c b,c d}

MustInn7
{c d} ∅

MayOutn7

{a b,a d,b b,
b d,c d,d d}

{a b,a d,b b,b d,c b,c d,
d b,d d}

MustOutn7
{c d} ∅

Since (a b) ∈MayInn4
, assignment ∗a = a generates (b b) ∈MayOutn4

. Fur-
ther, since (a b) ∈MustInn4

, this assignment causes a strong update of b caus-
ing the removal of b d from MayInn4

. The third iteration is required c b from

MayOutn2
to MayInn2

.

Example 4.9

Consider the program flow graph in Figure 4.11 on the next page which illus-

© 2009 by Taylor & Francis Group, LLC

124 Data Flow Analysis: Theory and Practice

n1 a =&b n1

n2 c =&a n2n3 e =&d n3

n4 ∗c = e n4

n5 ∗c = e n4

• a b in block 5 along path 1,3,4,5 but not along path

1,2,4,5.

• Required: a b ∈MayInn5
and a b �MustInn5

• If DepKilln4
for MayOutn4

is defined in terms of

MayInn4
then a b � MayOutn4

because a is in

DepLeftLn4
(MayInn4

)

• If DepKilln4
for MustOutn4

is defined in terms of

MustInn4
then a b � MustOutn4

because a is in

DepLeftLn4
(MustInn4

)

FIGURE 4.11

Inverse dependence of may and must points-to relations for Kill .

trates that the dependence between may and must points-to relations for Kill

is not only mutual, but is also inverse. In block n5, the relation a b holds
along the path (n1,n3,n4,n5) but not along the path (n1,n2,n4,n5). This is be-
cause along the latter path, c a and the assignment in n4 modifies a. Since
c a ∈MayInn4

and c a �MustInn4
, a is a left location in may points-to rela-

tion but not in must points-to relation. Thus if MayInn4
is used for defining

DepKilln4
for computing MayOutn4

, a b will not exist in MayOutn4
which is

incorrect. Similarly, if MustInn4
is used for defining DepKilln4

for computing

MustOutn4
, a b will exist in MustOutn4

which is incorrect.

If may and must analyses are performed independently, then

MayOutn = fn(MayInn,∅)

MustOutn = fn(MustInn,U)

In other words, in the absence of must points-to information, no points-to pair can

be killed by indirect effect of an assignment since no strong update is known. In the

absence of may points-to information, every points-to pair must be assumed to be

killed by indirect effect of an assignment since no weak update is known.

Observe that unlike any other flow function, the flow function for points-to anal-

ysis given by Equation (4.14) is a binary function rather than a unary function. It

has been defined so to capture the inverse dependence of may and must informa-

tion through the DepKilln part. The overall lattice for the data flow Equations (4.11)

through (4.13) is a product lattice of the lattices for may and must points-to relations

and the flow function is a unary function for the values in this overall lattice. The �

element of the overall lattice is the pair �∅,U� whereas ⊥ is �U,∅�.

Given a constant must points-to information, it is easy to see that the flow func-

tions in may points-to analysis are monotonic. This is because the DepKilln(x) com-

ponent becomes constant and given a larger x, DepGenn(x) computes a larger set of

points-to pairs. Since must points-to analysis has also been defined using the same

components, given a constant may points-to information, the flow functions of must

points-to analysis are also monotonic.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 125

n1 ∗x = y n1

n2 x =&z n2n3 y =&w n3

n4 ∗x = y n4

n1 ∗x = y n1

n2
b =&c
c =&d n2n3

b =&e
e =&d n3

n4 a = ∗b n4

(a) Example for may points-to analysis (b) Example for must points-to analysis

FIGURE 4.12

Non-distributivity of points-to analysis.

Example 4.10

Figure 4.12 shows the non-distributivity of points-to analysis using the flow
function associated with node n4.

Consider the example for may points-to analysis. Assuming that the must

points-to information is constant, non-distributivity of may points-to analysis
depends on DepGenn(x). Let x1 be the may points-to information along the
edge n2 → n4 and let x2 be the may points-to information along the edge
n3 → n4. Then x1 = {x y}, x2 = {y w} and:

DepGenn(x1∪x2) = {x y,y w,z w}

DepGenn(x1) = {x y}

DepGenn(x2) = {y w}

DepGenn(x1∪x2) ⊃ DepGenn(x1) ∪ DepGenn(x2)

Consider the example for must points-to analysis under similar situations. In
this case x1 = {b c,c d}, x2 = {b e,e d} and:

DepGenn(x1∩x2) = ∅

DepGenn(x1) = {a d}

DepGenn(x2) = {a d}

DepGenn(x1∩x2) ⊂ DepGenn(x1) ∩ DepGenn(x2)

We leave it to the reader to construct examples to show that the data flow frame-

work of points-to analysis is not fast.

Points-To Analysis with Degree of Certainty

Instead of computing separate may and must points-to sets, a points-to pair x y

can be qualified with degrees of certainties may and must and can be denoted x
my
y

and xmu
y. This reduces computation of may and must points-to sets to a single

© 2009 by Taylor & Francis Group, LLC

126 Data Flow Analysis: Theory and Practice

(�)
unknown

must no

may
(⊥)

(�)

x
un
y

x
mu
y x

no
y

x
my
y

(⊥)

(a) Degree of certainty (b) Points-to relation between x and y

FIGURE 4.13

Lattices for points-to analysis with degree of certainty.

analysis unlike MayIn/MayOut and MustIn/MustOut . In order to define data flow

analysis, we add two more degrees of certainty: x no
y indicates that x does not point

to y and x un
y indicates that nothing is known about the points-to relation between x

and y.∗ This results in the component lattices shown in Figure 4.13. The confluence

operations used in defining the data flow analysis are induced by these lattices and

are left implicit in the description of the analysis.

The left and right locations are now qualified with degrees of certainty. However,

values unknown and no are irrelevant in the context of a pointer assignment. The

left locations are defined as follows:

lhsn ConstLeftLn DepLeftLn(x)

x {�x,must�} ∅

∗x ∅ {�y,d� | (x d y) ∈ x,d ∈ {may,must}}

The right locations are defined as follows:

rhsn ConstRightLn DepRightLn(x)

&x {�x,must�} ∅

x ∅ {�y,d� | (x d y) ∈ x,d ∈ {may,must}}

∗x ∅ {�z,d1�d2� | {x
d1 y,y

d2 z} ⊆ x, {d1,d2} ⊆ {may,must}}

When the left hand side is variable x, all points-to pairs with x as the source are

removed. If the right hand side is an address expression, new must and no points-

∗no and unknown need not be represented explicitly. x
no
y can be represented by ensuring that x

mu
y

or x
my
y is not present in the set enumerating the points-to relation. For x

un
y, it is sufficient to record

whether the data flow values associated with a node have been computed or not. While combining the

data flow information from predecessors, if the values have not been computed for a predecessor m, it can

be ignored in the merge operation; this has the effect of assuming that the data flow information associated

with m is �. This has been achieved on line 2 of the algorithm presented in Figure 3.15 on page 90 by

excluding the predecessors along a back edge during the initialization.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 127

to pairs are generated purely due to local effect regardless of the existing points-to

relations. ConstGenn is defined only in the context of assignments such as x =&y

whereas ConstKilln is defined only when the left hand side is a variable such as x.

ConstGenn = {x
mu
y | �x,must� ∈ ConstLeftLn, �y,must� ∈ ConstRightLn} ∪

{x
no
z | �x,must� ∈ ConstLeftLn,ConstRightLn � ∅,

�z,d� � ConstRightLn}

ConstKilln = {x
d y | �x,must� ∈ ConstLeftLn}

In other situations ConstLeftLn∩ConstRightLn = ∅. For these situations let

Leftn(x) = ConstLeftLn∪DepLeftLn(x)

Rightn(x) = ConstRightLn∪DepRightLn(x)

The dependent information that is generated and killed by a pointer assignment is

defined as follows:

DepGenn(x) = {x d y | �x,dl�∈Leftn(x), �y,dr�∈Rightn(x),d = dl�dr}∪

{x
my
y | �x,may� ∈ Leftn(x), xmu

y ∈ x}∪

{x
no
y | �x,must� ∈ Leftn(x), �y,d� � Rightn(x)}

The first term in the definition of DepGenn(x) is the result of a combination of the

left and right hand sides. The second term lowers the degree of certainty of xmu
y in

x to x
my
y due to a possible modification of x by the assignment. The third term is a

replacement of points-to pairs killed by the assignment.

DepKilln(x) = {x d y | �x,must� ∈ DepLeftLn(x)}∪

{x
mu
y | �x,may� ∈ DepLeftLn(x)}

The first term in DepKilln(x) represents the guaranteed modification of x by the

pointer assignment n. The second term removes xmu
y so that it can be replaced

by the generated pair x
my
y.

The final data flow equations are:

Inn =



BI n is Start

p∈pred(n)
Out p otherwise

Outn = fn(Inn) = (Inn−Killn(Inn))∪Genn(Inn)

where BI = {x
no
y | x is a pointer variable and y is any variable }.

Example 4.11

We show the computation of points-to pairs qualified with the degree of cer-
tainty for the example program in Figure 4.10 on page 122. For simplicity, we

© 2009 by Taylor & Francis Group, LLC

128 Data Flow Analysis: Theory and Practice

omit the pairs representing no except for Inn where we list the BI. Since we
perform round-robin analysis and traverse the graph in reverse postorder, the
pairs representing unknown are required only in the first iteration and only
for Outn6

. We leave them also implicit. Observe that now may and must are
mutually exclusive and the resulting information is more precise.

Iteration #1
Changes in
Iteration #2

Changes in
Iteration #3

Inn1
{x

no
y | x,y ∈ {a,b,c,d}}

Outn1
{b

mu
d}

Inn2
{b

mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
d}

{a
my
b,a

my
d,b

my
b,

b
my
d,c

my
b,c

my
d}

Outn2
{b

mu
d,c

mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d}

Inn3
{b

mu
d,c

mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d}

Outn3
{a

mu
b,b

mu
d,c

mu
d}

{a
mu
b,b

my
b,b

my
d,c

my
b,

c
my
d}

Inn4
{a

mu
b,b

mu
d,c

mu
d}

{a
mu
b,b

my
b,b

my
d,c

my
b,

c
my
d}

Outn4
{a

mu
b,b

mu
b,c

mu
d} {a

mu
b,b

mu
b,c

my
b,c

my
d}

Inn5
{b

mu
d,c

mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d}

Outn5
{a

mu
c,b

mu
d,c

mu
d}

{a
mu
c,b

my
b,b

my
d,c

my
b,

c
my
d}

Inn6

{a
my
b,a

my
c,b

my
b,b

my
d,

c
mu
d}

{a
my
b,a

my
c,b

my
b,b

my
d,

c
my
b,c

my
d}

Outn6

{a
my
b,a

my
d,b

my
b,b

my
d,

c
mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d}

Inn7

{a
my
b,a

my
d,b

my
b,b

my
d,

c
mu
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d}

Outn7

{a
my
b,a

my
d,b

my
b,b

my
d,

c
mu
d,d

my
d}

{a
my
b,a

my
d,b

my
b,b

my
d,

c
my
b,c

my
d,d

my
b,d

my
d}

The analysis still requires three iterations.

Example 4.12

We illustrate non-distributivity of points-to analysis with the degree of cer-

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 129

tainty by enumerating MOP and MFP assignments for the example in part (a)
of Figure 4.12 on page 125.

MOP Assignment MFP Assignment

Outn2
{x

mu
z} {x

mu
z}

Outn3
{y

mu
w} {y

mu
w}

Outn4
{x

my
z,y

my
w} {x

my
z,y

my
w,z

my
w}

4.3.2 Alias Analysis of Stack and Static Data

An alternative way of representing information about pointers is to use the relation

of aliasing. Aliasing is defined between pointer expressions which may use derefer-

encing operations, such as x, ∗x, ∗∗x etc.

DEFINITION 4.8 A pointer expression e1 is aliased to pointer expression
e2 at program point u, denoted e1 � e2, if the expressions e1 and e2 evaluate to
the same address at u.

A Comparison of Points-to and Alias Relations

Similar to points-to relation, an alias pair e1 � e2 that holds along all paths reaching

u is a must alias; if it holds along some paths then it is a may alias. The lattices of

may and must aliases are similar to the lattices for may and must points-to relations

illustrated in Figure 4.10.

Aliasing is different from points-to relation in the following sense. Although it is

possible to create points-to pairs between pointer expressions such as (∗x) (∗ ∗ y),

the points-to analysis represents the same information by a pair z w, where by con-

struction, z and w are both variable names such that z is the target of x and w is the

target of ∗ ∗ y. This is possible since points-to analysis is defined in terms of loca-

tions that are compile time constants whereas aliasing is a relation defined in terms

of address expressions that can be evaluated only at run time. This information can-

not be represented as an alias by using w because an alias does not relate a pointer

expression to the address it holds but relates pointer expressions that hold the same

address and the target of the two pointer expressions is left implicit. Hence, alias

pair ∗x � ∗ ∗ y needs to be stored.

An alternative way of comparing points-to relations and alias relations is to view

them in terms of a memory graph in which edges represent points-to pairs. Alias

pairs represent paths that reach the same node in the graph. As a consequence,

unlike points-to relation, alias relation is both symmetric and reflexive. must aliases

are transitive and may aliases are not transitive.

© 2009 by Taylor & Francis Group, LLC

130 Data Flow Analysis: Theory and Practice

a = b

d = &c

∗a = c

a b c d

a a

&a &b &c &d

l1

l2

(a) Sequence of assignments (b) Resulting memory graph

FIGURE 4.14

The need of link aliases in computing node aliases.

The difference that aliasing involves pointer expressions whereas points-to rela-

tions involves names of variables implies that in points-to relations, an edge in the

memory graph is always represented by a single points-to pair. In the presence of

cycles in a data structure, there are an infinite number of paths reaching a node. Thus

alias analysis may derive infinite aliases. To see this, consider the assignments se-

quence a =&b followed by b =&b creating a self loop around b. Thus we have an

alias a � ∗b. However, since ∗b, ∗ ∗b, ∗ ∗ ∗b etc. all point to b, we have all possible

aliases a � ∗ ∗b, a � ∗ ∗ ∗b, b � ∗b, ∗b � ∗ ∗b, ∗ ∗b � ∗b, etc. In points-to analysis,

the same information is represented by two pairs a b and b b.

Due to the presence aliases resulting from pointer indirections, it becomes impor-

tant to distinguish between node and link aliases which are defined below.

DEFINITION 4.9 Pointer expressions e1 and e2 are node aliases if
their r-values are same but l-values are different; they are link aliases if their
l-values are also same. An assignment a = b creates a node alias a � b and
link aliases ∗a � ∗b, ∗ ∗a � ∗ ∗b, etc.

In terms of paths in memory graph, link aliases relate paths that have a non-empty

common suffix whereas node aliases relate paths with disjoint non-empty suffixes.

In order to define node aliases for an assignment a =&b, we also introduce a

fictitious pointer expression &bwhich is assumed to have a unique l-value; its r-value

is b. By definition, ∗&b = b. Assignment a =&b, results in a node alias a �&b. If

this is not done, we will have to capture the effect of the assignment by alias pair

∗a � b which is not a node alias but a link alias.

Link aliases can be computed from node aliases and we restrict our analysis to

node aliases only. However, it is necessary to identify link aliases at intermediate

stages as explained in the following example. In the rest of this section, we reserve

the notation e1 � e2 to node aliases only; where link aliases are required, they are

explicitly defined in terms of node aliases.

Example 4.13

Consider the assignment sequence in Figure 4.14. The assignment ∗a = c cre-
ates the link l2 in the memory graph thereby creating the node aliases ∗a � ∗d,

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 131

s

e1

s

e2

s

e3

s

e1

s

e2

s

e3

(a) Memory graph before

the assignment s = e2

(b) Memory graph after the

assignment s = e2

FIGURE 4.15

Direct and indirect node aliases generated as a result of a pointer assignment.

∗b � ∗d and ∗b � c. In order to discover these node aliases, we need to use the
fact that ∗b is a link alias of ∗a (sharing the link l2) and ∗d is a link alias of c
(sharing the link l1).

In the general situation, given an assignment lhsn = rhsn we say that all link aliases

of lhsn get node-aliased to all node and link aliases of rhsn that are not modified by

the assignment. Unlike points-to analysis, alias analysis is significantly influenced

by the choice of representation of the alias information. When alias relation is repre-

sented in the form of pairs, the node aliases computed by relating appropriate aliases

of lhsn and rhsn, the resulting aliases are direct aliases. However, due to possible

indirections of aliases of lhsn and rhsn, indirect node aliases are also created as ex-

plained in the following example.

Example 4.14

Consider the memory graphs in Figure 4.15. As a result of the assignment
s = e2, direct aliases s � e2 and ∗e1 � e2 are created. However, node aliases
∗s � e3 and ∗ ∗ e1 � e3 must also be identified. These are examples of indirect
node aliases.

Computing indirect aliases can be avoided by representing alias relations using

graphs rather than pairs but the graph representation results in imprecision due to

transitivity: When graph representation of two alias pairs x � y and y � z are merged

at a join point, their targets are represented by the same node in the graph resulting in

a spurious alias x � z. This makes the may alias information transitive even though

the may alias relation is not transitive.

Points-to analysis does not have any of the above problems because it is restricted

to stack locations and there is a one-to-one mapping between the points-to pairs and

the edges in the memory graph. A comparison of points-to relations and alias rela-

tions for all possible assignments in our language has been provided in Figure 4.16.

It is easy to see that points-to information is much more compact than alias informa-

tion. On the flip side, using points-to information would require traversing paths in

the memory graph; alias information explicates these paths in the pointer expressions

used in the alias information.

© 2009 by Taylor & Francis Group, LLC

132 Data Flow Analysis: Theory and Practice

Statement Memory Points-to Aliases

x =&y
x yBefore

x yAfter

Existing

New x y

Existing

New Direct x�&y

x = y

x y zBefore

x y zAfter

Existing y z

New x z

Existing ∗y� z

New Direct x�y

New Indirect ∗ x� z

x = ∗y

x y z uBefore

After x y z u

Existing y zz u
New x u

Existing
∗y� z
∗z� u

∗ ∗ y� u

New Direct
x� ∗y
x� z

New Indirect ∗x� u

∗x =&y
Before x y z

After x y z

Existing x z

New z y

Existing ∗x�z

New Direct
∗x�&y
∗ z�y

∗x = y

Before x y z u

After x y z u

Existing x uy z
New u z

Existing ∗x�u
∗y�z

New Direct
∗x�y
y�u

New Indirect
∗u�z

∗ ∗ x�z

∗x = ∗y

x y z u vBefore

After x y z u v

Existing
x v
y z
z u

New v u

Existing
∗x�v
∗y�z
∗z�u

∗ ∗ y�u

New Direct

∗x�∗y
∗x�z
v�z
v�∗y

New Indirect
∗ ∗ x�u
∗v�u

FIGURE 4.16

A comparison of points-to and alias relations.

4.3.3 Formulating Data Flow Equations for Alias Analysis

In order to facilitate creation and detection of link aliases, we define a prefix relation

on pointer expressions as follows:

e1�
k e2 ⇔ e2 ≡ (∗)ke1

where (∗)k denotes k occurrences of the pointer indirection operator ∗. With this

notation x�1 ∗x, x�2 ∗ ∗ x, and ∗x�1 ∗ ∗ x. Observe that &b�1 b. We also use the &

operator with the following semantics:

&e =

�
&x e is a pointer variable x

e1 otherwise, where e1�
1 e

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 133

Given a set of node aliases x, we identify all aliases of a pointer expression e as the

maximum fixed point of the equation:

Aliases(e,x) =

�
{e1 | e1 � e ∈ x} e =&x, x ∈ Var

{e1 | e1 � e ∈ x} ∪ {∗e1 | e1 ∈ Aliases(&e,x)} otherwise

In the presence of cycles in data structures, Aliases(e,x) could be infinite; this would

require employing suitable summarization mechanism. We shall see one such mech-

anism in the context of heap data analysis.

Now we identify the right and left pointer expressions of a pointer assignment for

computing alias relations. Consider a pointer assignment lhsn = rhsn. The defini-

tions of ConstLeftLn and ConstRightLn given below are easy to follow. DepLeftLn(x)

represents the set of all link aliases of lhsn. They are computed from all link and node

aliases of &lhsn. DepRightLn(x) represents all node and link aliases of rhsn.

ConstLeftLn = {lhsn}

ConstRightLn =

�
∅ lhsn� rhsn

{rhsn} otherwise

DepLeftLn(x) =

�
∅ lhsn is &x, x ∈Var

{∗e | e ∈ Aliases(&lhsn,x)} otherwise

DepRightLn(x) =

�
∅ lhsn is &x, x ∈ Var

Aliases(rhsn,x) otherwise

Observe that we can use only those right pointer expressions that are not modified

by the assignment. The pointer expressions that are modified by the assignment are

the pointer expressions that have a prefix that is must link aliased to lhsn.

Modn(x1,x2) = {e | e1�
i e, i ≥ 0, e1 � e2 ∈ x2, e2 ∈ ({lhsn}∪DepLeftLn(x1))}

Similar to the inverse dependence of may and must points-to relations for Kill , if x1

is the set of may aliases, then x2 is the set of must aliases and vice-versa.

In the case of points-to analysis, Modn is not required because target of the re-

sulting points-to pair is referred to by a variable name rather than through rhsn.

However, in the case of alias analysis, the pointer expression rhsn is used in the gen-

erated aliases and if the resulting pointer expression is link aliased to lhsn before the

assignment, its target changes due to the assignment. Thus it should not participate

in the generation of new alias pairs.

Now we define the flow functions for alias analysis. The generated alias pairs are

defined by:

Genn(x1,x2) = ConstGenn∪DepGenn
D (x1,x2)∪DepGenn

I (x1,x2)

where DepGenn
D (x1,x2) represents the direct aliases and DepGenn

I (x1,x2) repre-

© 2009 by Taylor & Francis Group, LLC

134 Data Flow Analysis: Theory and Practice

sents indirect aliases and are defined as follows:

ConstGenn = {e1 � e2 | e1 ∈ ConstLeftLn,e2 ∈ ConstRightLn}

DepGenn
D (x1,x2) = {e1 � e2 | e2 �Modn(x1,x2), and

(e1 ∈ ConstLeftLn,e2 ∈ DepRightLn(x1)), or

(e1 ∈ DepLeftLn(x1),e2 ∈ ConstRightLn), or

(e1 ∈ DepLeftLn(x1),e2 ∈ DepRightLn(x1))}

DepGenn
I (x1,x2) = {(∗)ke1 � e2 | e2 �Modn(x1,x2), (∗)krhsn � e2 ∈ x1, k > 0,

e1 ∈ (ConstLeftLn∪DepLeftLn(x1))}

The aliases killed by the assignment are defined by

Killn(x1,x2) = ConstKilln∪DepKilln(x1,x2)

where

ConstKilln = {e1 � e2 | lhsn�
k e1, k ≥ 0}

DepKilln(x1,x2) = {e1 � e2 | e1 � e2 ∈ x2, e3�
k e1, k ≥ 0, e3 ∈ DepLeftLn(x1)}

The top level data flow equations for alias analysis are identical to that of points-to

analysis; the flow function fn is slightly different.

MayInn =



BI n is Start�

p∈pred(n)

MayOut p otherwise (4.15)

MayOutn = fn(MayInn,MustInn) (4.16)

MustInn =



BI n is Start�

p∈pred(n)

MustOut p otherwise (4.17)

MustOutn = fn(MustInn,MayInn) (4.18)

where flow function fn is defined as follows:

fn(x1,x2) = (x1 −Killn(x1,x2)) ∪ Genn(x1,x2) (4.19)

In the intraprocedural context, BI is ∅ because no aliases exist at Start.

Example 4.15

Recall that the program in Figure 4.10 on page 122 results in a cycle in the
data structure because the assignment ∗a = a in node 4 creates the points-to
pair b b in both may and must points-to analysis. This results in an infinite
number of aliases when Aliases(b,x) is computed. Hence we perform may alias
analysis for a simplified version provided in Figure 4.17 on the facing page.
The initialization and BI for may alias analysis is ∅. For simplicity, we assume

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 135

n1 b =&d; n1

n2 c = b; n2

n3 a =&b; n3n4 a =&c; n4

n5 a = ∗a; n5

FIGURE 4.17

Example program for alias analysis.

that the must alias information is ∅ at each program point; this causes fewer
aliases to be killed and hence is a safe approximation for may alias analysis.

N
o
d
e Iteration #1 Changes in Iteration #2

Inn Outn Inn Outn

n2 {b �&d} {b �&d,c � b,c �&d}
{b �&d,c �&d,
c � b,a � c,a � d}

n3 {b �&d,c � b,c �&d} {b �&d,c � b,c �&d,
a �&b,∗a � c,∗a �&d}

n4 {b �&d,c � b,c �&d} {b �&d,c � b,c �&d,
a �&c,∗a � c,∗a �&d}

n5

{b �&d,c � b,c �&d,
a �&c,a �&b,∗a � c,
∗a �&d}

{b �&d,c � b,c �&d,
a � c,a � d}

Observe that the pairs ∗a � c and ∗a �&d in Outn3
and Outn4

are indirect

aliases. All other aliases are direct aliases.

Similar to points-to analysis, alias analysis is neither fast nor distributive. Ex-

ample 3.10 in Chapter 3 (Figure 3.10) showed the non-distributivity of may alias

analysis. We leave it for the reader to construct examples to demonstrate the non-

distributivity of must alias analysis and non-fastness of may and must alias analysis.

4.4 Liveness Analysis of Heap Data

The data flow analyses described earlier referred to data objects resident in the stack

or the static area. In this section, we describe an analysis for data objects residing

© 2009 by Taylor & Francis Group, LLC

136 Data Flow Analysis: Theory and Practice

x->succ = y->rptr->lptr

z->lptr = y->rptr

...

p: ...

...

if (u == z->lptr->lptr)

...

x

y

z

m1

m2

m3

m4

m
rptr

lptr

lptr

succ

FIGURE 4.18

An example to motivate liveness analysis. The path consisting of thick edges is

explicitly live at p.

on the heap. An optimization that requires this analysis was described in Chapter 1.

The key idea was to identify heap objects that would not be used in the future, even

if they were reachable. Such objects can be freed and the memory space occupied by

them can be reused. This optimization brings down the overall memory requirement

of the program. If the run time support of the language includes a garbage collector,

then the garbage collector can be expected to collect more garbage per collection.

Further, if the collector is a copying collector, then the collection itself will be faster

since copying collectors process live data only.

To identify the nature of the analysis required for this purpose, consider the ex-

ample shown in Figure 4.18. The declared variables x, y and z are local or global

pointers and accordingly reside in the stack or the static area. We call these root

variables. The objects pointed to by these variables are on the heap. In this analysis

we ignore non-pointer variables. Though our language resembles C, we assume that

the programs being analyzed do not make use of the & (address of) operator. Thus

root variables cannot point to other root variables. We view the heap at a program

point as a directed graph called memory graph. The root variables form the entry

nodes of the memory graph. Other nodes in the graph correspond to objects on the

heap and edges correspond to pointers. The out-edges of entry nodes are labeled by

root variable names while out-edges of other nodes are labeled by field names. The

edges in the memory graph are called links.

Example 4.16

Figure 4.18 shows the memory graph at the program point p. If we can dis-
cover that the links m4 → m and m1 → m are never used in any execution
path starting from p, then we can free the object m at p by inserting the
statements z->lptr->lptr=NULL and x->succ = NULL. Here, by usage of a
link we mean either dereferencing it to access an object or testing it for com-
parison. In the example shown, the statement z->lptr->lptr=NULL cannot
be inserted because the link m4 → m is subsequently used by the condition

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 137

if (u == z->lptr->rptr) for comparison. Thus the object m cannot be
freed at p.

In this section, we consider the analysis that discovers whether a link is live i.e.,

whether it will be used in the sense described above.

4.4.1 Access Expressions and Access Paths

A program accesses data through expressions which have l-values. Such expressions

are called access expressions. They can be scalar variables such as x, or may in-

volve an array access such as a[2 ∗ i], or can be reference expressions such as ∗x or

y→ rptr→ lptr. Since we are concerned with analysis of heap-resident data, from

now on we shall limit our attention to reference expressions. These are the expres-

sions that are primarily used to access the heap. In Figure 4.18, the access expression

y→ rptr→ lptr refers to the heap data denoted as m.

In order to discover liveness and other properties of heap, we need a way of naming

links in the memory graph. We do this using access paths. An access path ρx is a root

variable name followed by a sequence of zero or more field names and is denoted

by x f1 f2 · · · fk. Since an access path represents a path in a memory graph,

it can be used for naming links and nodes. An access path consisting of just a root

variable name is called a simple access path; it represents a path from a root variable

to the object pointed to by it. In the context of C, one could think of this as the path

followed to access an object using an access expression such as ∗x. E denotes an

empty access path.

The last field name in an access path ρ is called its frontier and is denoted by

frontier(ρ). The frontier of a simple access path is the root variable name. The

access path corresponding to the sequence of names in ρ excluding only its frontier

is called its base and is denoted by base(ρ). The base of a simple access path is

the empty access path E. The object reached by traversing an access path ρ is called

the target of the access path and is denoted by target(ρ). When we use an access

path ρ to refer to a link in a memory graph, it denotes the last link in ρ i.e., the link

corresponding to frontier(ρ).

Example 4.17

Consider the access path ρz = z lptr lptr at program point p. target(ρz) de-
notes the node m and frontier(ρz) denotes the link m4 → m. As we have said
earlier, access paths are also used to denote links in memory graph. The link
denoted by ρz is also m4 → m. base(ρz) is the access path z m3 m4.

In the rest of the section, α will denote an access expression, ρ will denote an ac-

cess path and σ will denote a (possibly empty) sequence of field names separated by

. Let the access expression αx be x→ f1 → f2 . . . → fn. Then, the corresponding

access path ρx is x f1 f2 . . . fn. When the root variable name is not required, we

drop the subscripts from αx and ρx.

© 2009 by Taylor & Francis Group, LLC

138 Data Flow Analysis: Theory and Practice

We assume that our method does a context insensitive interprocedural analysis.

To simplify the description of analysis we assume that the conditions that alter flow

of control are made up only of simple variables. If not, the offending reference

expression is assigned to a fresh simple variable before the condition and is replaced

by the fresh variable in the condition.

The statements that we handle fall in one of the following categories:

• Function Calls. These are statements x = f (αy,αz, . . .) where the functions

involve access expressions in arguments. The variable x can be a reference or

a non-reference variable.

• Assignment Statements. These are assignments to references and are denoted

by αx = αy. Only these statements can modify the structure of the heap.

• Use Statements. These statements use heap references to access heap data but

do not modify heap references. For the purpose of analysis, these statements

are abstracted as lists of expressions αy.d where αy is an access expression and

d is a non-reference.

• Return Statement of the type return αx involving reference variable x.

• Other Statements. These statements include all statements which do not re-

fer to the heap. We ignore these statements since they do not influence heap

reference analysis.

As is customary in static analysis, when we talk about execution paths, we shall

refer to a trace of the program that ignores the evaluation of condition checks. For

simplicity of exposition, we present the analyses assuming that the program to be

analyzed does not create cycles in the heap during execution.

4.4.2 Liveness of Access Paths

A link l is live at a program point p if it is used in some control flow path starting

from p. As noted earlier, lmay be used in two different ways; it may be dereferenced

to access an object or tested for comparison. Figure 4.18(b) shows links that are live

before program point p by thick arrows. For a link l to be live, there must be at least

one access path from some root variable to l such that every link in this path is live.

This is the path that is actually traversed while using l.

Since the freeing of nodes is through access paths, we need to express the notion

of liveness of links in terms of access paths. An access path is defined to be live at p

if the link corresponding to its frontier is live along some path starting at p.

We limit ourselves to a subset of live access paths, whose liveness can be deter-

mined without taking into account the aliases created before p. These access paths

are live solely because of the execution of the program beyond p. We call access

paths which are live in this sense as explicitly live access paths. An interesting prop-

erty of explicitly live access paths is that they form the minimal set covering every

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 139

live link. In this section, we further restrict ourselves to the computation of explicit

liveness.

Example 4.18

The access paths z, z lptr, z lptr lptr and y rptr lptr are all live at p.
All these paths except y rptr lptr are also explicitly live. The access path
y rptr lptr is live because of the alias created before p. Also note that if an
access path is explicitly live, so are all its prefixes.

Example 4.19

We illustrate the issues in determining explicit liveness of access paths by
considering the assignment x.r.n = y.n.n.

• Killed Access Paths. Since the assignment modifies frontier(x r n), any
access path which is live after the assignment and has x r n as prefix
will cease to be live before the assignment. Access paths that are live
after the assignment and not killed by it are live before the assignment
also.

• Directly Generated Access Paths. All prefixes of x r and y n are explicitly
live before the assignment due to the local effect of the assignment.

• Transferred Access Paths. If x r n σ is live after the assignment, then
y n n σ will be live before the assignment. For example, if x r n n

is live after the assignment, then y n n n will be live before the as-
signment. The sequence of field names σ is viewed as being transferred
from x r n to y n n.

We now define liveness by generalizing the above observations. We use the no-

tation ρx ∗ to enumerate all access paths which have ρx as a prefix. The summary

liveness information for a set S of access paths is defined as follows:

summary(S) =
�

ρ∈S

{ρ ∗}

Further, the set of all global variables is denoted by Globals and the set of formal

parameters of the function being analyzed is denoted by Params.

DEFINITION 4.10 The set of explicitly live access paths at a program
point p, denoted by livenessp is defined as follows.

livenessp =
�

ψ∈paths(p)

(pathLiveness
ψ
p)

© 2009 by Taylor & Francis Group, LLC

140 Data Flow Analysis: Theory and Practice

0. w = x

1. while (x->data < max)

2. {

3. x = x->rptr

4. }

5. y = x->lptr

6. z = malloc(...)

7. y = y->lptr

8. z->sum = x->lptr->data

+ y->data
HeapStack

z

x

w
ma

y

mk

mb
rpt
r

mc
rp
tr

md
rp
tr

me

lptr

m f

lptr
mg

lptr

mh

lptr

mi

lptr

m j

lptr

ml

lptr

mm

lptr

FIGURE 4.19

An example program and possible memory graphs before line 6. Depending on

whether the while loop is iterated 0, 1, 2, or 3 times, x will point to ma, mb, mc, or

md . Accordingly y will point to mi, mf , mg, or me.

where, ψ ∈ paths(p) is a control flow path p to Start and pathLiveness
ψ
p denotes

the liveness at p along ψ and is defined as follows. If p is not program exit
then let the statement which follows it be denoted by s and the program point
immediately following s be denoted by p�. Then,

pathLiveness
ψ
p =



∅ p = Exit(main)

summary(Globals) p = Exit(f), f � main

statementLivenesss(pathLiveness
ψ

p�
) otherwise

where the flow function for s is defined as follows:

statementLivenesss(X) = (X−LKills) ∪ LDirect s ∪ LTransfer s(X)

LKills denotes the sets of access paths which cease to be live before statement
s, LDirect s denotes the set of access paths which become live due to local effect
of s and LTransfer s(X) denotes the set of access paths which become live before
s due to transfer of liveness from live access paths after s. They are defined
in Figure 4.20.

Observe that the definitions of LKills, LDirect s, and LTransfer s ensure that the

livenessp is prefix-closed.

When we view the above definition in terms of the constant and dependent parts

of flow functions as defined in Section 4.1, it is clear that LKills represents DepKill s
and ConstKill s is ∅. Liveness information is generated by LDirect s which represents

ConstGens and LTransfer s which represents DepGens.

Example 4.20

In Figure 4.19, it cannot be statically determined which link is represented by

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 141

Statement s LKills LDirect s LTransfer s(X)

αx = αy {ρx ∗} prefixes(base(ρx)) ∪
�
ρy σ | ρx σ ∈ X}

prefixes(base(ρy))

αx = f (αy) {ρx ∗} prefixes(base(ρx)) ∪ ∅

prefixes(base(ρy)) ∪

summary({ρy}∪Globals)

αx = new {ρx ∗} prefixes(base(ρx)) ∅

αx = null {ρx ∗} prefixes(base(ρx)) ∅

Use αy.d ∅ prefixes(ρy) ∅

return αy ∅ prefixes(base(ρy)) ∪ ∅

summary({ρy})

other ∅ ∅ ∅

FIGURE 4.20

Defining flow functions for liveness. Globals denotes the set of global references

and Params denotes the set of formal parameters. For simplicity, we have shown a

single access expression on the RHS.

access expression x.lptr at line 5. Depending upon the number of iterations of
the while loop, it may be any of the links represented by thick arrows. Thus at
line 0, we have to assume that all access paths {x lptr lptr, x rptr lptr lptr,
x rptr rptr lptr lptr, . . . } are explicitly live.

4.4.3 Representing Sets of Access Paths by Access Graphs

In the presence of loops, the set of access paths may be infinite and the lengths of

access paths may be unbounded. If the algorithm for analysis tries to compute sets

of access paths explicitly, termination cannot be guaranteed. We solve this problem

by representing a set of access paths by a graph of bounded size. The structure that

we use for the representation is called an access graph.

An access graph, denoted by Gv, is a directed graph �n0,N,E� representing a set

of access paths starting from a root variable v.† N is the set of nodes, n0 ∈ NF is

the entry node with no in-edges and E is the set of edges. Every path in the graph

represents an access path. The empty graph EG has no nodes or edges and does not

accept any access path.

The entry node of an access graph is labeled with the name of the root variable

while the non-entry nodes are labeled with a unique label created as follows: If a field

name f is referenced in basic block b, we create an access graph node with a label

� f ,b, i� where i is the instance number used for distinguishing multiple occurrences

of the field name f in block b. Note that this implies that the nodes with the same

†Where the root variable name is not required, we drop the subscript v from Gv.

© 2009 by Taylor & Francis Group, LLC

142 Data Flow Analysis: Theory and Practice

1 x = x.r 1

2 x = x.r 2

Live access paths at entry of block 1: {x, x r, x r r}

Corresponding access graph: G2
x

x r1 r2

1 x = x.r 1

Live access paths at entry of block 1:

{x, x r, x r r, x r r r, . . .}

Corresponding access graph: G1
x

x r1

FIGURE 4.21

Approximations in access graphs.

label are treated as being identical. Often, i is 0 and in such a case we denote the

label � f ,b,0� by fb for brevity.

A node in the access graph represents one or more links in the memory graph.

Additionally, during analysis, it represents a state of access graph construction (ex-

plained in Section 4.4.3). An edge fn→ gm in an access graph at program point p

indicates that a link corresponding to field f dereferenced in block n may be used

to dereference a link corresponding to field g in block m on some path starting at p.

This has been used in Section 4.4.4 to argue that the size of access graphs in practical

programs is small.

Pictorially, the entry node of an access graph is indicated by an incoming double

arrow.

Summarization

Recall that a link is live at a program point p if it is used along some control flow

path from p to Start. Since different access paths may be live along different control

flow paths and there may be infinitely many control flow paths in the case of a loop

following p, there may be infinitely many access paths which are live at p. Hence, the

lengths of access paths will be unbounded. In such a case summarization is required.

Summarization is achieved by merging appropriate nodes in access graphs, re-

taining all in and out edges of merged nodes. We explain merging with the help of

Figure 4.21:

• Node r1 in access graph G1
x indicates references of n at different execution

instances of the same program point. Every time this program point is visited

during analysis, the same state is reached in that the pattern of references after

r1 is repeated. Thus all occurrences of r1 are merged into a single state. This

creates a cycle which captures the repeating pattern of references.

• InG2
x, nodes r1 and r2 indicate referencing n at different program points. Since

the references made after these program points may be different, r1 and r2 are

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 143

not merged.

Summarization captures the pattern of heap traversal in the most straightforward

way. Traversing a path in the heap requires the presence of reference assignments

αx = αy such that ρx is a proper prefix of ρy. Assignments in Figure 4.21 are examples

of such assignments. The structure of the flow of control between such assignments

in a program determines the pattern of heap traversal. Summarization captures this

pattern without the need of control flow analysis and the resulting structure is re-

flected in the access graphs as can be seen in Figure 4.21. More examples of the

resemblance of program structure and access graph structure can be seen in the ac-

cess graphs in Figure 4.24.

Operations on Access Graphs

Section 4.4.2 defined liveness by applying certain operations on access paths. In

this subsection we define the corresponding operations on access graphs. Unless

specified otherwise, the binary operations are applied only to access graphs having

same root variable. The auxiliary operations and associated notations are:

• root(ρ) denotes the root variable of access path ρ, while root(G) denotes the

root variable of access graphG.

• field(n) for a node n denotes the field name component of the label of n.

• makeGraph(ρ) constructs access graphs corresponding to ρ. It uses the current

basic block number and the field names to create appropriate labels for nodes.

The instance number depends on the number of occurrences of a field name in

the block. makeGraph(ρ ∗) creates an access graph for ρ and connects the

final node of the access graph to a special node n� called summary node. In

addition, there is a self loop over n�. Both the new edges are assumed to have

all field names as labels.

• lastNode(G) returns the last node of a linear graphG constructed from a given

access path ρ.

• cleanUp(G) deletes the nodes which are not reachable from the entry node.

• CN(G,G�,S) computes the set of nodes ofG which correspond to the nodes of

G� specified in the set S . To compute CN(G,G�,S), we define ACN(G,G�), the

set of pairs of all corresponding nodes. LetG ≡ �n0,N,E� andG� ≡ �n�
0
,N�,E��.

A node n in access graphG corresponds to a node n� in access graphG� if there

exists an access path ρ which is represented by a path from n0 to n in G and a

path from n�0 to n� in G�.

© 2009 by Taylor & Francis Group, LLC

144 Data Flow Analysis: Theory and Practice

Program Access Graphs Remainder

Graphs

1 x = x.l 1

2 y = x.r.d 2

g1

x

g2

x r2

g3

x l1

g4

x l1 r2

g5
x l1 r2

g6
x l1 r2

rg1
r2

rg2

l1 r2

Union Path Removal Factorization Extension

g3 � g4 = g4

g2 � g4 = g5

g5 � g4 = g5

g5 � g6 = g6

g6� x l = g2

g5� x = EG
g4� x r = g4

g4� x l = g1

g2/ (g1, {x}) = {rg1}

g5/ (g1, {x}) = {rg1,rg2}

g5/ (g2, {r2}) = {�RG}

g4/ (g2, {r2}) = ∅

(g3, {l1})# {rg1} = g4

(g3, {x, l1})# {rg1,rg2} = g6

(g2, {r2})# {�RG} = g2

(g2, {r2})#∅ = EG

FIGURE 4.22

Examples of operations on access graphs.

Formally, ACN(G,G�) is the least solution of the following equation:

ACN(G,G�) =



∅ root(G) � root(G�)

{�n0,n
�
0�}∪ {�n j,n

�
j
� | otherwise

field(n j) = field(n�
j
),

ni→ n j ∈ E,n
�
i
→ n�

j
∈ E�,

�ni,n
�
i
� ∈ ACN(G,G�)}

CN(G,G�,S) = {n | �n,n�� ∈ ACN(G,G�), n� ∈ S }

Note that field(n j) = field(n�
j
) would hold even when n j or n�

j
is the summary node

n�.

Let G ≡ �n0,N,E� and G� ≡ �n0,N
�,E�� be access graphs (having the same entry

node). G and G� are equal if N = N� and E = E�.

The main operations of interest are defined below and are illustrated in Figure 4.22.

1. Union (�). G �G� combines access graphs G and G� such that any access

path contained in G or G� is contained in the resulting graph.

G �G� =
�
n0,N∪N

�,E∪E�
�

The operationN∪N� treats the nodes with the same label as identical. Because

of associativity, � can be generalized to arbitrary number of arguments in an

obvious manner.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 145

2. Path Removal (�). The operationG�ρ removes those access paths inG which

have ρ as a prefix.

G�ρ =



G ρ = E or root(ρ) � root(G)

EG ρ is a simple access path

cleanUp(�n0,N,E−Edel�) otherwise

where

Edel = {ni→ n j | ni→ n j ∈ E,ni ∈ CN(G,GB, {lastNode(GB)}),

{ni→
f n j |field(n j) = frontier(ρ),GB =makeGraph(base(ρ)),

{ni→
f n j |uniqueAccessPath?(G,ni)}

uniqueAccessPath?(G, n) returns true if inG, all paths from the entry node to

node n represent the same access path. Note that path removal is conservative

in that some paths having ρ as prefix may not be removed. Since an access

graph edge may be contained in more than one access path, we have to ensure

that access paths which do not have ρ as prefix are not erroneously deleted.

3. Factorization (/). Recall that the LTransfer term in Definition 4.10 requires

extracting suffixes of access paths and attaching them to some other access

paths. The corresponding operations on access graphs are performed using

factorization and extension. Given a node m ∈ (N− {n0}) of an access graph

G, the Remainder Graph of G at m is the subgraph of G rooted at m and is

denoted by RG(G, m). If m does not have any outgoing edges, then the result

is the empty remainder graph �RG. Let M be a subset of the nodes of G� and

M� be the set of corresponding nodes in G. Then,G/(G�,M) computes the set

of remainder graphs of the successors of nodes in M�.

G/(G�,M) = {RG(G, n j) | ni→ n j ∈ E,ni ∈ CN(G,G�,M)} (4.20)

A remainder graph is similar to an access graph except that (a) its entry node

does not correspond to a root variable but to a field name and (b) the entry

node can have incoming edges.

4. Extension. Extending an empty access graph EG results in the empty access

graph EG . For non-empty graphs, this operation is defined as follows.

(a) Extension with a remainder graph (·). Let M be a subset of the nodes of

G and R ≡ �n�, NR, ER� be a remainder graph. Then, (G,M) ·R appends

the suffixes in R to the access paths ending on nodes in M.

(G,M) · �RG = G

(G,M) ·R =
�
n0,N ∪N

R,E∪ER∪{ni→ n
� | ni ∈ M}

�
(4.21)

© 2009 by Taylor & Francis Group, LLC

146 Data Flow Analysis: Theory and Practice

Operation Access Graphs Access Paths

Union G3 =G1 � G2 P(G3,M3) ⊇ P(G1,M1)∪ P(G2,M2)

Path Removal G2 =G1� ρ
P(G2,M2) ⊇ P(G1,M1) −

{ρ σ | ρ σ ∈ P(G1,M1)}

Factorization S =G1/(G2,M)
P(S ,Ms) =

{σ | ρ� σ ∈ P(G1,M1), ρ� ∈ P(G2,M)}

Extension G2 = (G1,M)#S
P(G2,M2) ⊇ P(G1,M1) ∪

{ρ σ | ρ ∈ P(G1,M), σ ∈ P(S ,Ms)}

FIGURE 4.23

Safety of access graph operations. P(G,M) is the set of paths in graphG terminating

on nodes in M. For graphGi, Mi is the set of all nodes inGi. S is the set of remainder

graphs and P(S ,Ms) is the set of all paths in all remainder graphs in S .

(b) Extension with a set of remainder graphs (#). Let S be a set of remainder

graphs. Then,G#S extends access graphG with every graph in S .

(G,M)#∅ = EG

(G,M)#S =
�

R∈S

(G,M) ·R (4.22)

Safety of Access Graph Operations

Since access graphs are not exact representations of sets of access paths, the safety of

approximations needs to be defined explicitly. The constraints defined in Figure 4.23

capture safety in the context of liveness in the following sense: Every access path

which can possibly be live should be retained by each operation. Since the comple-

ment of liveness is used to free heap data by nullifying links, this ensures that no live

access path is considered for nullification.

4.4.4 Data Flow Analysis for Explicit Liveness

For a given root variable v, ELInv(i) and ELOutv(i) denote the access graphs repre-

senting explicitly live access paths at the entry and exit of basic block i. We use EG
as the initial value for ELInv(i)/ELOutv(i).

ELInv(i) = (ELOutv(i)�ELKillPathv(i)) � ELGenv(i) (4.23)

ELOutv(i) =



makeGraph(v ∗) i = Start, v ∈ Globals

EG i = Start, v � Globals�

s∈succ(i)

ELInv(s) otherwise
(4.24)

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 147

where

ELGenv(i) = LDirectv(i) � LTransferv(i)

The term LDirectv(i) represents the ConstGeni component for variable v whereas

LTransferv(i) represents the DepGeni component for v. Liveness information is

killed using path removal which is implemented by deleting an edge in an access

graph. In our case, this edge is frontier(ρx) where ρx denotes the access path rep-

resenting the access expression appearing on the left hand side of an assignment.

Hence ELKillPathv(i) represents ConstGeni. This is unlike LKills (Definition 4.10 on

page 139) which represents DepKill s rather than ConstKill s. This is because LKills is

not a fixed set but depends on the liveness information that holds after statement s.

The definitions of ELKillPathv(i), LDirectv(i), and LTransferv(i) depend on state-

ment i as follows:

1. Assignment statement αx = αy. Apart from defining the desired terms for x

and y, we also need to define them for any other variable z. In the follow-

ing equations, Gx and Gy denote makeGraph(ρx) and makeGraph(ρy) re-

spectively, whereas Mx denotes lastNode(makeGraph(ρx)) and My denotes

lastNode(makeGraph(ρy)).

LDirectx(i)=makeGraph(base(ρx))

LDirecty(i)=

�
EG αy is New . . . or null

makeGraph(base(ρy)) otherwise

LDirectz(i)=EG, for any variable z other than x and y

LTransfery(i)=



EG αy is New or null

(Gy,My)# otherwise

(ELOutx(i)/(Gx,Mx))

(4.25)

LTransferz(i)=EG, for any variable z other than y

ELKillPathx(i)=ρx

ELKillPathz(i)=E, for any variable z other than x

As stated earlier, the path removal operation deletes an edge only if it is con-

tained in a unique path. Thus fewer paths may be killed than desired. This is

a safe approximation. Another approximation which is also safe is that only

the paths rooted at x are killed. Since assignment to αx changes the link repre-

sented by frontier(ρx), for precision, any path which is guaranteed to contain

the link represented by frontier(ρx) should also be killed. Such paths can be

discovered through must-alias analysis.

2. Function call αx = f (αy). We conservatively assume that a function call may

make any access path rooted at y or any global reference variable live. Thus

© 2009 by Taylor & Francis Group, LLC

148 Data Flow Analysis: Theory and Practice

Statement i ELOut(i) ELIn(i)

7
x l7 y z

6
x l7 y z x l7 y l6 z

5
x l7 y l6 z x l7 y l6

4

x l7 y l6 x
l7

l4 l6

3

x r3

l7

l4 l6

x r3

l7

l4 l6

2

x r3

l7

l4 l6

x r3

l7

l4 l6

1

x r3

l7

l4 l6

x r3

l7

l4 l6

FIGURE 4.24

Explicit liveness for the program in Figure 4.19 on page 140 under the assumption

that all variables are local variables.

this version of our analysis is context insensitive.

LDirectx(i)=makeGraph(base(ρx))

LDirecty(i)=makeGraph(base(ρy)) �makeGraph(ρy ∗)

LDirectz(i)=

�
makeGraph(z ∗) if z is a global variable

EG otherwise

LTransferz(i)=EG, for all variables z

ELKillPathx(i)=ρx

ELKillPathz(i)=E, for any variable z other than x

3. Return Statement return αx.

LDirectx(i)=prefixes(base(ρx))∪ makeGraph(ρx ∗)

LDirectz(i)=

�
makeGraph(z ∗) if z is a global variable

EG otherwise

LTransferz(i)=EG , for any variable z

ELKillPathz(i)=E, for any variable z

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 149

4. Use Statements

LDirectx(i) =
�

makeGraph(ρx) for every αx.d used in i

LDirectz(i) = EG for any variable z other than x

LTransferz(i) = EG, for every variable z

ELKillPathz(i) = E, for every variable z

Example 4.21

Figure 4.24 lists explicit liveness information at different points of the program
in Figure 4.19 on page 140 under the assumption that all variables are local
variables.

Observe that computing liveness using Equations (4.23) and (4.24) results in an

MFP solution of data flow analysis whereas Definition 4.10 specifies an MOP so-

lution of data flow analysis. Since the flow functions are non-distributive, the two

solutions may be different.

Convergence of Explicit Liveness Analysis

We now show the termination of explicit liveness analysis using the properties of

access graph operations. In particular, we show that the flow functions are monotonic

and the data flow values form a finite complete lattice.

For a program there are a finite number of basic blocks, a finite number of fields

for any root variable, and a finite number of field names in any access expression.

Hence the number of access graphs for a program is finite. Further, the number of

nodes and hence the size of each access graph, is bounded by the number of labels

which can be created for a program.

Access graphs for a variable x form a complete lattice with a partial order �G
induced by � . Note that � is commutative, idempotent, and associative. Let

G = �x,NF ,NI ,E� and G� = �x,N�
F
,N�
I
,E�� where subscripts F and I distinguish be-

tween the final and intermediate nodes. The partial order �G is defined as

G �G G
� ⇔

�
N�F ⊆ NF

�
∧

�
N�I ⊆ (NF ∪NI)

�
∧

�
E� ⊆ E

�

Clearly, G �G G
� implies that G contains all access paths of G�. We extend �G to a

set of access graphs as follows:

S 1 �S S 2 ⇔∀G2 ∈ S 2,∃G1 ∈ S 1 s.t. G1 �G G2

It is easy to verify that �G is reflexive, transitive, and antisymmetric. For a given

variable x, the access graphEG forms the� element of the lattice while the⊥ element

is a greatest lower bound of all access graphs.

The partial order over access graphs and their sets can be carried over unaltered

to remainder graphs (�RG) and their sets (�RS), with the added condition that �RG is

incomparable to any other non empty remainder graph.

© 2009 by Taylor & Francis Group, LLC

150 Data Flow Analysis: Theory and Practice

Operation Monotonicity

Union
G1 �G G

�
1
∧G2 �G G

�
2

⇒G1 �G2 �G G
�
1
�G�

2

Path Removal
G1 �G G2

⇒G1�ρ �G G2�ρ

Factorization
G1 �G G2

⇒G1/(G,M) �RS G2/(G,M)

Extension
RS1 �RS RS2∧G1 �G G2∧M1 ⊆ M2

⇒ (G1,M1)#RS1 �G (G2,M2)#RS2

Link-Alias Closure
G1 �G G

�
1
∧G2 �G G

�
2

⇒ LnG(G1,G2, �gx,gy�) �S LnG(G�
1
,G�

2
, �gx,gy�)

FIGURE 4.25

Monotonicity of access graph operations.

Access graph operations are monotonic as described in Figure 4.25. Path removal

is monotonic in the first argument but not in the second argument. Similarly fac-

torization is monotonic in the first argument but not in the second and the third ar-

gument. However, we show that in each context where they are used, the resulting

functions are monotonic:

1. Path removal is used only for an assignment αx = αy. It is used in liveness

analysis and its second argument is ρx which is constant for any assignment

statement αx = αy. Thus the resulting flow functions are monotonic.

2. Factorization is used during liveness analysis. It is used for the flow function

corresponding to an assignment αx = αy. In this context, its second and third

arguments are makeGraph(ρx) and lastNode(makeGraph(ρx)). Both these

are constants for a given assignment statement αx = αy. Thus, the resulting

flow functions are monotonic.

Thus we conclude that all flow functions are monotonic. Since lattices are finite,

termination of explicit liveness analysis follows.

Efficiency of Explicit Liveness Analysis

This section discusses the issues which influence the efficiency of performing explicit

liveness analysis.

The data flow frameworks defined in this paper are not separable [59] because the

data flow information of a variable depends on the data flow information of other

variables. Thus the number of iterations over control flow graph is not bounded

by the depth of the graph [3, 44, 59] but would also depend on the number of root

variables that depend on each other.

The amount of work done in each iteration is not fixed but depends on the size

of access graphs. Of all operations performed in an iteration, only CFN(G,G�) is

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 151

costly. In practice, the access graphs are quite small because of the following reason:

Recall that edges in access graphs capture dependence of a reference made at one

program point on some other reference made at another point (Section 4.4.3). In

real programs, traversals involving long dependences are performed using iterative

constructs in the program. In such situations, the length of the chain of dependences

is limited by the process of summarization because summarization treats nodes with

the same label as being identical. Thus, in real programs chains of such dependences,

and hence the access graphs, are quite small in size. Hence the complexities of access

graph operations is not a matter of concern.

4.4.5 The Motivating Example Revisited

For our motivating example in Section 1.1, we had performed liveness analysis of

heap data intuitively. The liveness information was represented using access paths

which were summarized by combining all field names beyond the second field by a

summary field “�”. We now present the result of liveness analysis of the program in

Figure 1.1 on page 2 in terms of access graphs.

Intraprocedural Analysis by Ignoring the Interprocedural Effects

In this case we treat a function call as a statement that reads its actual parameters and

assume that BI is EG.

Node Outn Inn

n6 EG n

n5 n next sib n next sib

n4 n next sib n succ sib

n3 n succ sib n succ sib

n2 n succ sib n succ sib

n1 n succ sib n child sib

When we compare these results with the corresponding liveness information com-

puted in Section 1.1.2, we observe that the above access graphs do not include access

paths such as succ child sib or succ sib child whereas they are included in the

liveness information computed in Section 1.1.2. This difference arises because of

the difference between the summarization of access paths using access graphs and

the summarization by restricting the lengths of access paths.

Intraprocedural Analysis with Conservative Interprocedural Approximation

As described earlier, the effect of the function call in our example can be incorporated

conservatively by assuming that every access path rooted at n is live at the exit of

© 2009 by Taylor & Francis Group, LLC

152 Data Flow Analysis: Theory and Practice

dfTraverse and that every access path rooted at succ is live at the entry of n3

due to the call. We use the special summary node n� defined for access graph to

denote any field name. Thus we assume that the function call creates the access

graph succ n� and BI is n n� . With these assumptions, the data

flow information after first iteration is:

Node
Iteration #1

Outn Inn

n6
n n� n n�

n5 EG EG

n4 EG EG

n3 EG
succ n�

n2
n n� succ n� n n� succ n�

n1
n n� succ n� n n�

If there is an edge n→ n�, then n cannot have any other out edge because all its

successors are consumed by n�. The data flow values after second iteration are:

Node
Changes in Iteration #2

Outn Inn
n6

n5
n n� succ n� n n� next n�

n4
n n� next n� n n� succ sib n�

n3
n n� succ sib n�

n2

n1

There are no further changes. Observe that the values of Inn4
and Outn3

are more

precise than those in Section 1.1.2. This is because unlike the earlier summarization,

access graphs do not restrict the length of access paths to two.

Interprocedural analysis of this example is presented in Section 9.5.

4.5 Modeling Entity Dependence

Recall that a component function �f α : L �→�L computes the data flow value of entity

α. The domain of �f α is not atomic reflecting the fact that the data flow value of α

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 153

��x α, �x β, . . . , �x ω �

f

��x α, �x β, . . . , �x ω �

��x α, �x β, . . . , �x ω �

�f β

��x α,�x β, . . . , �x ω �

��x α, �x β, . . . , �x ω �

f
α→β

��x α,�x β, . . . , �x ω �

(a) Overall function (b) Component function (c) pef

FIGURE 4.26

Defining overall flow function in terms of component and primitive entity functions.

could depend on the data flow values of other entities also. Thus even �f α need not

be atomic. For some frameworks, it can be defined in terms of simpler functions that

use the value of an entity to compute the value of another entity.

4.5.1 Primitive Entity Functions

We define primitive entity functions (abbreviated as pef) as the functions that com-

pute the data flow value of an entity α from the data flow value of some entity β. We

denote such a pef by f
β→α

: �Lβ �→�Lα. The component function �f αu→v is defined as:

�f α(�x α) =
β ∈ Σ

f
β→α��x β� (4.26)

Figure 4.26 illustrates how an overall flow function f can be a defined in terms of

component functions �f β, and a pefs f
α→β

. x = ��x α, �x β, . . . , �x ω � is the input data

flow value and x = ��x α, �x β, . . . , �x ω � is the output data flow value.

Modeling component functions in terms of pefs is interesting because it allows

the component functions to be defined in terms of a very small set of pefs. We

explain this by distinguishing between general unspecified functions and specific

known functions. Our notation f denotes a general unspecified function. When

we wish to denote specific known functions computing specific values, we use the

notation φ. Unlike the subscript of f which denotes a program point or an edge, the

subscript of φ distinguishes it from other specific functions. A couple of common

special functions are:

∀x ∈ L : φid(x) = x

∀x ∈ L : φz(x) = z

There are two special values of φz that are used very frequently: They are φ� and

φ⊥. The specific functions that can be used for component functions and pefs are

© 2009 by Taylor & Francis Group, LLC

154 Data Flow Analysis: Theory and Practice

denoted by �φ that are defined as follows:

∀�x ∈�L : �φz(�x) =�z
∀�x ∈�L : �φid(�x) =�x

∀�x ∈�L ,∀m,n ∈ Const : �φm,n(�x) = m×�x+n

�φz are constant functions. They include �φ� and �φ⊥ also. Some other examples of

constant functions are: pefs corresponding to constant value assignments such as

a = 2 in constant propagation, pefs corresponding to constant address assignments

such as a =&b in point-to analysis etc. The latter is possible because the address of

each named variable is a compile time constant.‡

�φid is an identity pef . Note that the domain of �φid could be �Lα and the range

could be �L β. Yet, it is an identity function because the component lattices �Lα and
�L β are identical in terms of values and structure. In separable frameworks, for every

identity pef , α = β. Examples of �φid with α � β are functions corresponding to copy

statements such as a = b in non-separable frameworks like possibly uninitialized

variable analysis, constant propagation or points-to analysis.

Together, �φz and �φid cover all bit vector frameworks, all fast frameworks, all non-

separable frameworks in which the data flow values can be represented by bit vec-

tors (e.g., faint variables analysis, possibly uninitialized variables analysis), and copy

constant propagation. They also cover a restricted points-to analysis if the right hand

side does not involve indirection. The last pef �φm,n is included to cover linear con-

stant propagation. It is easy to see that all these pefs are distributive and are closed

under composition. The frameworks whose component functions can be defined us-

ing the above pefs are called primary frameworks.

If an entity β does not influence α, then f
β→α
= φ�. A separable framework is a

special case of non-separable frameworks such that

α � β ⇒ ∀�x β ∈�L β, f
β→α ��x β

�
= ��

This reduces �f α from L �→�Lα to �Lα �→�Lα.

Example 4.22

Given an assignment a = b ∗ c, some examples of component functions for some
data flow frameworks are as follows:

• Available expressions analysis: �f b∗c =�φ�; for any expression e that

involves a, �f e =�φ⊥; and for an expression e that does not involve a,
�f e =�φid.

‡As is customary, addresses defined in terms of fixed offsets from frame pointers in activations records

are considered compile time constants even if the actual address depends on run time.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 155

• Live variables analysis: �f a =�φ⊥; �f b = �f c =�φ�; and for any variable x

other than a, b, and c, �f x =�φid.

• Faint variables analysis �f a =�φ⊥; �f b =�φ bid ��φ aid; �f c =�φ cid ��φ aid; and for

any variable x other than a, b, and c, �f x =�φid.

For an assignment a = 2 in constant propagation, �f a =�φ2; for an assignment

a = b, �f a =�φ bid; and for an assignment a = b+2, �f a =�φ b1,2. For any variable x

other than a, �f x =�φid.

Example 4.23

Consider the flow functions in explicit liveness analysis of heap data. An
access graph consists of edges between nodes. Since the set of nodes that may
occur in any access graph is fixed for an instance of explicit liveness analysis,
the set of possible edges is also fixed. Thus we define the following pefs for an
edge: �φ⊥ adds an edge to the given graph, �φ� removes an edge from the given
graph whereas �φid copies an edge. Thus the flow functions of liveness analysis

defined in Section 4.4.4 can be formulated in terms of these three pefs.

4.5.2 Composite Entity Functions

The component functions of full constant propagation and points-to analysis cannot

be defined in terms of pefs. Such frameworks are not primary frameworks.

Flow functions in full constant propagation evaluate an arithmetic expression and

if we wish to define component functions in terms of simpler functions, we will have

to use the functions of the form �L ×�L �→�L . Such functions are neither distributive

nor closed under composition. In points-to analysis a right hand side could involve an

indirection like ∗x. In such a situation computing right locations requires collecting

points-to information of all z that x could point to. Contrast this with the right hand

side x; in this case, the right locations consist of only the points-to information of x.

Thus the required function has the form L �→�L .

The component functions that cannot be defined in terms of primitive entity func-

tions are defined in terms of composite entity functions (abbreviated as cef) where

cef s themselves are defined as combinations of pefs. For example, addition of two

variables in full constant propagation is represented by the composite entity function

�φ α, β+ : �L ×�L �→�L defined below:

�φ α, β+ = �φ αid +�φ βid

Indirection in points-to analysis is defined in terms of composite entity function
�φ α∗ : L �→�L defined below:

�φ α∗ =
α β

�φ βid

© 2009 by Taylor & Francis Group, LLC

156 Data Flow Analysis: Theory and Practice

Example 4.24

For an assignment x = y+ z in constant propagation, �f x =�φ y,z+ and for every

variable w other than x, �f w =�φid. For an assignment x = ∗y in points-to

analysis, �f x =�φ y∗ . Observe that modeling assignment ∗x = y does not require

a special function because we define �f z =�φid for every z such that x z.

4.6 Summary and Concluding Remarks

In this chapter we have extended the Gen-Kill model of bit vector frameworks to

general frameworks. The largest class of practical problems that can be described

using this extended model are non-separable frameworks. In principle, separable

frameworks can also have dependent parts and this model captures such frameworks

also. However, the focus of this chapter has been on non-separable frameworks

because we are not aware of a practical separable framework that is not a bit vector

framework.

The extended Gen-Kill model can be seen as a uniform specification model for

semantics captured by an analysis. This is useful because it allows flow functions

to be decomposed in similar parts so that flow functions of different frameworks

can be compared and contrasted. This facilitates modeling flow functions at a finer

granularity in terms of primitive and composite entity functions. Surprisingly, a very

small set of pefs is sufficient to model flow functions in most frameworks despite

the diversity of the data flow information. As shown in Section 4.5, four pefs are

enough to model almost all frameworks except full constant propagation and points-

to analysis in which addresses of pointers are taken. This should be contrasted with

the conventional modeling where flow functions remain at a much higher level of

abstraction f : L �→ L and no attempt is made to examine their constituents. Two

significant benefits of modeling flow functions in terms of pefs are that

• it becomes possible to devise tight complexity bounds for round-robin iterative

analysis of a large class of data flow frameworks. We do so in Chapter 5.

• it becomes possible to devise feasibility conditions for systematic reduction of

flow function compositions.

4.7 Bibliographic Notes

The term separability was coined by Khedker and Dhamdhere [60]. Separable frame-

works were called “decomposable” by Sharir and Pnueli [93] whereas Rosen [84]

had called them “factorizable”.

© 2009 by Taylor & Francis Group, LLC

General Data Flow Frameworks 157

Constant propagation was described by Kildall [63] and it has been widely stud-

ied in literature. Some important works include conditional constant propagation by

Wegman and Zadeck [102] and complexity study of many variants of constant prop-

agation by Müller-Olm and Rüthing [78]. Strongly live variables analysis, which is a

dual of faint variables analysis can be found in the text by F. Nielson, H. R. Nielson

and Hankin [80].

There is a plethora of literature on pointer analysis. Unlike our presentation which

tries to present a clean model of pointer analysis independently of other concerns,

most of the works on pointer analysis have almost always given a much higher pref-

erence to practical concerns such as efficiency and effectiveness in interprocedural

settings. Thus many combinations of flow sensitivity and context sensitivity have

been explored. Even among flow insensitive approaches, two separate categories of

equality-based and subset-basedmethods have been studied. Equality-based method

assumes that if a can point to b and c, then b can point to everything that c can point

to and vice-versa. Subset-based does not unify the points-to sets of b and c. Equality-

based approach was pioneered by Steensgaard [97] whereas subset-based approach

was pioneered by Andersen [9]. Fahndrich, Foster, Su and Aiken [35] presented

an Andersen style of context insensitive pointer analysis which was followed up by

Steensgaard style of context sensitive pointer analysis [36]. Andersen style context

sensitive pointer analysis was reported by Whaley and Lam [104]. Among other in-

fluential works on pointer analysis, Landi and Ryder [66, 67] have presented flow

sensitive pointer analysis which is also context sensitive in non-recursive parts of

programs. The work done by Choi, Burke and Carini [21, 48] belongs to the same

category. The only pointer analysis that is flow sensitive and also context sensi-

tive for recursive programs is by Emami, Ghiya and Hendren [34]. Our version of

points-to analysis is based on its reformulation by Kanade, Khedker and Sanyal [51].

An excellent discussion of the state of art of pointer analysis has been presented by

Hind [47].

Liveness analysis of heap data using access graphs is a recent work by Khed-

ker, Sanyal and A. Karkare [62]. We have only presented explicit liveness analysis.

Actual nullification requires some other analyses such as alias analysis, availability

analysis, anticipability analysis, and nullability analysis [62].

The earlier attempt at discovering the liveness of heap was by Agesen, Detlefs and

Moss [1] and was restricted to the liveness of root variables. Our approach of heap

data analysis can be seen as some kind of shape analysis [88, 106] which is a general

method of creating suitable abstractions (called Shape Graphs) of heap memory with

respect to the relevant properties. Program execution is then modeled as operations

on shape graphs. However, it is not clear how shape analysis can be directly used

for discovering future properties like liveness that require analysis against control

flow. Shaham, Yahav, Kolodner and Sagiv [92] have devised a restricted version of

liveness of heap data using shape analysis.

The concept of modeling flow functions in terms of primitive entity functions has

been proposed by B. Karkare [53].

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

5

Complexity of Iterative Data Flow Analysis

The round-robin iterative method of MFP computation presented in Chapter 3, was

described in terms of forward data flow problems. It is a general method that can be

used with suitable changes for separable and non-separable, forward and backward,

unidirectional and bidirectional frameworks. We have already used the method in

working out examples of various frameworks in Chapters 1, 2, and 4. However, its

complexity was defined only for rapid frameworks (Chapter 3).

In this chapter we present a generic version of round-robin method and define a

tight complexity bound for general monotone data flow frameworks. We also intro-

duce work list based iterative algorithm which computes data flow information in

a demand driven fashion. This algorithm forms the basis of formalizing the exact

amount of work that a data flow analysis algorithm needs to perform.

5.1 Generic Flow Functions and Data Flow Equations

For simplicity of exposition, definitions of flow functions and data flow equations in

Chapter 3 were restricted to forward unidirectional frameworks. They are applicable

to backward unidirectional frameworks with a simple substitution of Inn by Outn
and pred(n) by succ(n). In either case, the following variations are possible and are

equivalent in terms of the data flow information that is computed:

• Data flow equations can be defined in terms of Inn or Outn. It is not necessary

to define both Inn and Outn. In other words, given a neighbour m of n (i.e.,

a successor for backward problems and a predecessor for forward problems),

Inn can be computed from Inm. Similarly, Outn can be computed from Outm.

• The flow functions can be associated with nodes or edges. Thus the following

two definitions of Inn are equivalent:

Inn =
p∈pred(n)

fp(Inp)

Inn =
p∈pred(n)

fp→n(Inp)

The above variations are possible because the data flow information in unidirectional

data flows depends on either the predecessors or successors but not on both. The

159
© 2009 by Taylor & Francis Group, LLC

160 Data Flow Analysis: Theory and Practice

n

m

Inn

Outn

Inm

Outm

−→
f n

−→
f n→mForward Flows

−→
fm

Inn

Outn

Inm

Outm

←−
fn

←−
fn→m Backward Flows

←−
fm

FIGURE 5.1

Associating flow functions with nodes and edges separately.

classical formulation of PRE (Section 2.4.4) does not meet these restrictions because

data flow information associated with a node depends on both successors as well as

predecessors. In particular, in classical PRE,

• Inn is computed from Outn and Outm where m ∈ pred(n), and

• Outn is computed from Ins where s ∈ succ(n).

Such dependencies can be modeled by associating flow functions with nodes and

edges separately as illustrated in Figure 5.1.
−→
f denotes a forward flow function

whereas
←−
f denotes a backward flow function. The subscripts used in flow function

notation distinguish node flow functions from edge flow functions. Defining sep-

arate node and edge flow functions requires explicating Inn and Outn rather than

leaving one of them implicit. This allows modeling the known flows as illustrated

in Figure 5.2 by composing the node and edge flow functions appropriately. For

forward unidirectional data flows, the forward flow functions associated with edges

are identity functions φid and the backward node and edge flow functions are φ�.

Analogous remarks hold for backward unidirectional data flows. Figure 5.3 shows

flow functions in forward, backward and bidirectional bit vector frameworks.

When separate flow functions are associated with nodes and edges, the generic

data flow equations can be written as shown below.

Inn =



BIStart �
←−
fn(Outn) n = Start�

m∈pred(n)

−→
fm→n(Outm)

�
�
←−
fn(Outn) otherwise

(5.1)

Outn =



BIEnd �
−→
f n(Inn) n = End�

m∈succ(n)

←−
fm→n(Inm)

�
�
−→
f n(Inn) otherwise

(5.2)

These equations compute the MFP solution of an instance of a data flow frame-

work. They can be written at an abstract level in terms of program points rather

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 161

Forward Backward Bidirectional Bidirectional

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

j j

j

j j

i j

k

l m

−→
f k→l ◦

−→
f k ◦

−→
f i→k

←−
fi→k ◦

←−
fk ◦

←−
fk→l

−→
f i→k ◦

←−
fk→ j

←−
fk→m ◦

−→
f k→l

FIGURE 5.2

Representing different kinds of flows by composing node and edge flow functions.

than basic blocks as follows: Let Points denote the set of all program points in a

given CFG and xv ∈ L denote the data flow information associated with program

point v ∈ Points. Let neighbours(v) denote the set of program points adjacent to v.

Then,

xv = Initialv �

�

u∈neighbours(v)
fu→v(xu)

�
(5.3)

where Initialv is defined as

Initialv =



BIStart v = Entry(Start)

BIEnd v = Exit(End)

� otherwise

fu→v is a forward/backward node/edge flow function depending upon u and v as

described below:

u v fu→v

Entry(n) Exit(n)
−→
f n

Exit(n) Entry(n)
←−
fn

Exit(m) Entry(n),m ∈ pred(n)
−→
fm→n

Entry(m) Exit(n),m ∈ succ(n)
←−
fn→m

This generalization can be viewed as replacing basic blocks by their entry and exit

points with conceptual edges between them. The direction of these edges indicates

the direction in which flow functions are applied. A given edge u→ v represents

a node flow function if u and v are the two end-points of the same basic block;

otherwise it represents an edge flow function.

In Section 3.3.1 we have defined paths(n) as the paths starting from Start reach-

ing basic block n. We generalize this notion to define paths(u) as the set of paths

in the underlying undirected graph. These paths begin either at Start or End and

© 2009 by Taylor & Francis Group, LLC

162 Data Flow Analysis: Theory and Practice

fu→v

Data flow framework u = Entry(n) u = Exit(n) u = Entry(n) u = Exit(n)

v = Exit(n) v = Entry(n) v = Exit(m) v = Entry(m)

m ∈ pred(n) m ∈ succ(n)

Reaching Definitions
−→
f n φ� φid φ�

Live Variables φ�
←−
fn φ� φid

PRE φ�
←−
fn φid φid

FIGURE 5.3

Generic flow functions in forward, backward, and bidirectional bit vector frame-

works.

reach program point u. We define the path function fρ for every path in paths(u) as

composition of generic flow functions along the conceptual edges in ρ.

In unidirectional forward frameworks, the MOP solution at node n is defined in

terms of all paths in paths(n). We define MOP solution at a program point u using

the generalized definition of paths(u) and generalized path function as follows:

MOPu =
ρ∈paths(u)

fρ(BIρ) (5.4)

where BIρ is BIStart if ρ begins at Start, BIEnd otherwise.

5.2 Generic Round-Robin Iterative Algorithm

A round-robin iterative algorithm for computing MFP assignment for forward data

flow problems was described in Figure 3.9. Its version presented in Figure 3.15 uses

reverse postorder traversal over the graph. This makes it efficient for forward data

flow problems. Both the versions compute the data flow information at entry points

of all blocks. We refer to the former version as RR (Round-Robin) and the latter

version as rpoRR (Reverse PostOrder Round-Robin).

We now introduce further generalizations in terms of program points and the order

of their traversal which can be chosen according to the data flow problem. We use

the term stoRR (Specified Traversal Order Round-Robin) to refer to our algorithm.

It is presented in Figure 5.4. For simplicity we assume the presence of the � element

in the lattice, unlike rpoRR. If the lattice does not contain a � element, we replace

the initialization on Line 5 by

xu = Initialu�

�

j∈neighbours(i), j<i
f j→i(x j)

�
(5.5)

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 163

Input: An instance (G,MG) of a monotone data flow framework (LG, �G, FG). Ad-

jacent program points i, j are mapped to fi→ j by MG. Program points are

numbered from 0 . . .N −1 according to the chosen order of graph traversal.

Output: xi,∀ i giving the output of the data flow analysis for each program point.

Algorithm:

0 function stoRRMain()

1 { for all i = 0 to N −1 do

2 { if i = Start then Initiali = BIStart

3 else if i = End then Initiali = BIEnd

4 else Initiali = �

5 xi = �

6 }

7 change = true

8 while change do

9 { change = false

10 for all i = 0 to N −1 do

11 { temp = Initiali �
j∈neighbours(i)

f j→i(x j)

12 if temp � xi then

13 { xi = temp

14 change = true

15 }

16 }

17 }

18 }

FIGURE 5.4

Round-robin algorithm for computing MFP assignment at each program point.

The preferred order of traversal depends on the flow functions in the data flow

problem. For example, in forward problems, all node and edge flow functions are

forward functions, hence reverse postorder is the most efficient order of traversal. In

backward problems postorder traversal is preferable. The original bidirectional for-

mulation of PRE contains three types of flow functions: Forward edge flow functions,

backward edge flow functions and backward node flow functions. Thus a sequence

of consecutive backward flow functions can be composed but a sequence of consec-

utive forward flow functions cannot be composed. Hence postorder traversal is the

most efficient traversal.

Complexity of round-robin method is defined in context of the chosen order of

graph traversal. In Chapter 3, depth of the CFG was used to define the complexity

bound of round-robin method: The number of iterations required for MFP computa-

tion was shown to be 2+d for forward bit vector frameworks and 3+d for forward

rapid frameworks, assuming a reverse postorder traversal. For other frameworks,

© 2009 by Taylor & Francis Group, LLC

164 Data Flow Analysis: Theory and Practice

1
a = 2; b = 1;

c = 3; d = 3;
1

2 a = b+1; 2

3 b = c−2; 3

4 c = d; 4

5 d = d+3; 5

6 d = d+3; 6

Iterations

1 2 3 4 5

Out1 �2,1,3,3� �2,1,3,3� �2,1,3,3� �2,1,3,3� �2,1,3,3�

In2 �2,1,3,3� �2,1,3,�⊥� �2,1,�⊥,�⊥� �2,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥�
Out2 �2,1,3,3� �2,1,3,�⊥� �2,1,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥�
Out3 �2,1,3,3� �2,1,3,�⊥� �2,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥�
Out4 �2,1,3,3� �2,1,�⊥,�⊥� �2,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥�
Out5 �2,1,3,6� �2,1,�⊥,�⊥� �2,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥�

Data flow values of variables a,b,c,d are shown as

��xa,�xb,�xc,�xd�. Initial values are ���,��,��,���.

(a) A CFG with (b) Data flow values in round-robin method

d = 1

FIGURE 5.5

Complexity of round-robin algorithm for constant propagation cannot be defined

using depth of CFG.

depth of CFG is not sufficient to define complexity bounds for round-robin method.

Example 5.1

Consider the CFG in Figure 5.5(a). Statements in node 1 do not have any data
dependence between them hence for simplicity we have combined them into
a single block. Depth of this CFG is 1. Round-robin algorithm for constant
propagation on this graph converges in 6 iterations. Part (b) of the figure
shows the values at some program points each iteration. The last iteration
is not shown since it is required only for detection of fixed point. It is not
possible to explain the number of iterations in terms of d.

5.3 Complexity of Round-Robin Iterative Algorithm

When stoRR algorithm is used for performing data flow analysis for a given instance

of a framework, xu values are initialized to � if � exists in the lattice of the frame-

work. If the lattice does not contain �, then xu values are initialized to a suitably

high value in the lattice using Equation (5.5). As the algorithm executes, the data

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 165

flow values gradually change towards ⊥. The number of iterations required by the

algorithm depends on the number of data flow value changes that can be accommo-

dated in a single iteration. In this section we investigate the order of changes in data

flow values and their impact on the number of iterations of stoRR algorithm.

Two main steps in our treatment of complexity analysis of stoRR algorithm are:

• Formalizing the notion of order of dependence of data flow values at different

program points in a CFG.

• Devising a measure of how closely the order of traversal specified to the stoRR

algorithm follows the order of dependences of data flow values.

For the first step, we present an algorithm that directly follows the dependence of

data flow values. We show that this algorithm computes the same solution as the

stoRR. This allows us to define the minimum work that any algorithm of data flow

analysis must perform. Based on the observations made in the algorithm, we capture

the order of dependence of data flow values at different program points by defining

the concept of an information flow path. For a given order of traversal, it then be-

comes possible to quantify how close the order is to the order of the dependence of

data flow values.

5.3.1 Identifying the Core Work Using Work List

In this section we describe an iterative algorithm called the work list algorithm which

follows the order of data flow value changes, and hence is typically more efficient

than round-robin method. However, it has an additional overhead of managing the

work list. It follows the order of changes by restricting the computation of data flow

values to paths along which changes in data flow values take place. This is differ-

ent from round-robin method where a single change in the data flow information at

a program point triggers another iteration which traverses all program points indis-

criminately.

Figure 5.6 shows a work list based algorithm for performing data flow analysis

using generic flow functions. The organization of the work list influences the effi-

ciency of the algorithm significantly; it can be increased by incorporating heuristics

such as insertion of program points in a preferred order of traversal.

Lines 1 to 7 in the algorithm initialize the data flow values at each program point

to a value that is computed independently of the other program points. It is assumed

that the lattice contains a � element; if it does not, then the assignment on line

5 must be modified to restrict computation of fu→v to only those neighbours of v

that have already been visited. Initialization of the work list involves adding the

program points with non-� data flow values to the work list; a � does not influence

any value. From these program points, data flow information is propagated to their

neighbouring program point which in turn are added to the work list if their data flow

values change.

In stoRR algorithm, the data flow value at a program point is recomputed in each

iteration (line 11, Figure 5.4). This accumulates the effect of all neighbours of a

© 2009 by Taylor & Francis Group, LLC

166 Data Flow Analysis: Theory and Practice

Input: An instance (G,MG) of a monotone data flow framework (LG, �G, FG). Ad-

jacent program points u,v are mapped to fu→v by MG.
Output: xu,∀ u giving the output of the data flow analysis for each program point.

Algorithm:

0 function worklist dfaMain()

1 { for all u ∈ Points,

2 { if u = Start then Initialu = BIStart

3 else if u = End then Initialu = BIEnd

4 else Initialu = �

5 xu = Initialu�

�

v∈neighbours(u)
fv→u(�)

�

6 if xu � � then add u to worklist

7 }

8 while worklist is not empty do

9 { Remove the first program point u from worklist

10 for all v ∈ neighbours(u) do

11 { temp = xv� fu→v(xu)

12 if temp � xv then

13 { xv =temp

14 Add v to worklist

15 }

16 }

17 }

18 }

FIGURE 5.6

Work list algorithm for computing MFP assignment at each program point.

program point u on the data flow value xu. By contrast, in a work list algorithm,

a change in a value xu is propagated to all its neighbours by refining their values.

Refinement implied merging the old value at that point with the new value obtained

from a single neighbour. Because of this difference between the two algorithms, we

need to explicitly show that they compute the same assignment of data flow values.

We do so by showing three important results:

• A work list algorithm terminates.

• When a work list algorithm terminates, the resulting data flow values constitute

a fixed point assignment.

• Finally we show that the resulting fixed point assignment is actually the max-

imum fixed point assignment.

Since we know that stoRR algorithm also computes the MFP assignment, and that

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 167

the MFP assignment is unique, it follows that the two algorithms compute identical

assignment.

For proving the properties of the work list algorithm, we define the notion of a

step of the algorithm as follows. Step 1 refers to the execution of the for loop (lines

1 to 7). Each subsequent step corresponds to the refinement of some xu on lines 11,

12, and 13. Each step i uses the values from step i−1; observe that the value used

may have been computed in some earlier step. It follows that the values used in step

1 must be values from step 0; since the value used in step 1 is �, we say that x0
u = �.

LEMMA 5.1

The work list algorithm terminates.

PROOF Consider some step i in the algorithm. If step i computes xu,
then due to refinement, xiu � xi−1

u . If xu has not been modified in this step,
then xiu = xi−1

u and u is not put on the work list. However, if xu is modified and
u is put on the work list, then xiu � xi−1

u . Thus the modifications in the value of
xu follow a strictly descending chain. Since all strictly descending chains are
finite, each program point can be inserted in the worklist a finite number of
times. Eventually the worklist becomes empty and the algorithm terminates.

Now we prove that on termination, the work list algorithm computes a fixed point

assignment.

LEMMA 5.2

Let the work list algorithm terminate in n steps. Then,

∀u ∈ Points : xnu � Initialu �

�
v∈neighbours(u)

fv→u
�
xnv

��

PROOF From Lemma 5.1

∀u ∈ Points,∀i ≥ 1 : xiu � xi−1
i

⇒ ∀u ∈ Points,∀i ≥ 1 : xiu � Initialu (because ∀u ∈ Points : x1
u � Initialu)

Consider an arbitrary program point u and the last step m in which the value
of xu was computed. By the definition of refinement, we have

xmu = xm−1
u � fv→u(x

m−1
v) (5.6)

⇒ xmu � fv→u(x
m−1
v)

© 2009 by Taylor & Francis Group, LLC

168 Data Flow Analysis: Theory and Practice

Since this is the last computation of xu, the effect of changes in other neigh-
bours v� of u has been incorporated by executing (5.6) for some m� ≤ m ≤ n.
Hence,

xnu � Initialu �

�
v∈neighbours(u)

fv→u(x
n−1
v)

�
(5.7)

The algorithm terminates when no program point is added to the work list.
Thus,

∀v ∈ Points : xnv = xn−1
v

Substituting the above in (5.7) results in,

xnu � Initialu �
v∈neighbours(u)

fv→u(x
n
v)

LEMMA 5.3

Let the work list algorithm terminate in n steps. Then,

∀u ∈ Points : xnu � Initialu �

�

v∈neighbours(u)
fv→u

�
xnv

��

PROOF We prove this by induction on the number of steps.

1. Basis: In step 1, we compute

∀u ∈ Points : x1
u = Initialu �

�

v∈neighbours(u)
fv→u

�
x0
v = �

��

⇒ ∀u ∈ Points : x1
u � Initialu �

�
v∈neighbours(u)

fv→u
�
x0
v = �

��

2. Inductive step: Assume that for some step i

∀u ∈ Points : xiu � Initialu �

�
v∈neighbours(u)

fv→u
�
xi−1
v

��

Consider an arbitrary program point u and step i+1. If xu is not modified
in step i+1, xi+1

u = xiu and by the inductive hypothesis, it trivially follows
that,

xi+1
u � Initialu �

�
v∈neighbours(u)

fv→u
�
xiv

��

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 169

Thus the interesting case that needs to be proved is when xu is modified
in step i+1. By the definition of refinement,

xi+1
u = xiu � fv→u

�
xiv

�

Substituting for xiu from the inductive hypothesis

xi+1
u � Initialu �

�
v∈neighbours(u)

fv→u
�
xi−1
v

��
� fv→u

�
xiv

�

If the value of every neighbour v was modified in some step j < i, then
xiv = xi−1

v and

xi+1
u � Initialu �

�
v∈neighbours(u)

fv→u
�
xiv

��

and the lemma holds. For the other possibility, let there be a neighbour
v� whose value was modified in step i. Then,

xi+1
u � Initialu �

�

v∈neighbours(u)
fv→u

�
xi−1
v

��
� fv�→u

�
xiv�

�

We rewrite the meet to separate the term for v�

xi+1
u � Initialu �

�
v∈neighbours(u),

v�v�

fv→u
�
xi−1
v

��
� fv�→u

�
xi−1
v�

�

� fv�→u
�
xiv�

�

However, fv�→u
�
xiv�

�
� fv�→u

�
xi−1
v�

�
(because xi

v�
� xi−1

v�
)

For all other v, the values in i−1 and i are same. Hence,

xi+1
u � Initialu �

�
v∈neighbours(u),

v�v�

fv→u
�
xiv

��
� fv�→u

�
xiv�

�

� Initialu �

�

v∈neighbours(u)
fv→u

�
xiv

��

Hence the lemma follows.

LEMMA 5.4

The work list algorithm computes a solution of Equation (5.3).

PROOF Let the work list become empty after n steps. From Lemma (5.2),
we know that

∀u ∈ Points : xnu � Initialu �

�
v∈neighbours(u)

fv→u
�
xnv

��

© 2009 by Taylor & Francis Group, LLC

170 Data Flow Analysis: Theory and Practice

and from Lemma (5.3)

∀u ∈ Points : xnu � Initialu �

�
v∈neighbours(u)

fv→u
�
xnv

��

Hence it follows that,

∀u ∈ Points : xnu = Initialu �

�

v∈neighbours(u)
fv→u

�
xnv

��

LEMMA 5.5

The work list algorithm computes MFP assignment of Equation (5.3).

PROOF Consider an arbitrary solution FP of Equation (5.3). Clearly,

∀u ∈ Points : FPu = Initialu �

�
v∈neighbours(u)

fv→u
�
FPv

��

Let the work list algorithm terminate after n steps. We need to prove that

∀u ∈ Points : FPu � xnu

We prove this by induction on step number in the work list algorithm.

1. Basis: From the definition of step 1,

∀u ∈ Points : x1
u = Initialu �

�
v∈neighbours(u)

fv→u
�
�

��

Since ∀v ∈ Points : FPv � �, it follows that

∀u,v ∈ Points :
�
v∈neighbours(u)

fv→u
�
FPv

��
�

�
v∈neighbours(u)

fv→u
�
�

��

Since Initialv is constant,

∀u ∈ Points : FPu � x1
u

2. Inductive Step: Assume the inductive hypothesis

∀u ∈ Points : FPu � xiu

Consider an arbitrary program point u. If xu is not modified in step
i+1 then the inductive step trivially follows. Thus we have to show the
inductive step when xu is modified in step i+1. From the definition of
a fixed point,

∀u ∈ Points, FPu � fv→u
�
FPv

�
∀v ∈ neighbours(u)

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 171

By the inductive hypothesis, FPv � xiv and hence

∀u ∈ Points : FPu � fv→u
�
xiv

�
∀v ∈ neighbours(u)

However, from inductive hypothesis we also have

∀u ∈ Points : FPu � xiu

Combining the two,

∀u ∈ Points : FPu � xiu � fv→u
�
xiv

�
∀v ∈ neighbours(u)

From the definition of refinement,

xi+1
u = xiu� fv→u(x

i
v)

Hence it follows that

∀u ∈ Points : FPu � xi+1
u

Since the assignment computed by the work list algorithm is a fixed point and
it contains every possible fixed point FP, it must be the MFP .

5.3.2 Information Flow Paths in Bit Vector Frameworks

For simplicity of exposition we begin our discussion with bit vector frameworks in

which the data flow values of all entities are independent.

Recall that Σ = {α,β, . . . ,ω} denotes the set of program entities whose data flow

information is computed during data flow analysis. Since bit vector frameworks are

separable, flow of information for each entity can be examined independently. Hence

the discussion in this section refers to a single entity say α and its lattice �L . The

iterative algorithms defined in Figures 5.4 and 5.6 compute data flow information of

all entities simultaneously.

Since �L = {��,�⊥} in bit vector frameworks, only the following three monotonic

flow functions are possible: �φ�, �φ⊥, and �φid (Section 4.5). The data flow analysis of

bit vector framework involves initializing data flow values to �� and then propagating

the �⊥ value in the graph. The �⊥ values are generated as a result of local analysis

and are propagated to other program points during global analysis. We say that data

flow information is generated at a program point if the information results from

application of a constant function other than �φ�; in bit vector frameworks a data flow

information is generated �φ⊥. The point of generation, called origin of information

flow is defined as follows.

DEFINITION 5.1 A program point v is an origin of data flow informa-
tion for entity α if any of the following conditions is satisfied:

© 2009 by Taylor & Francis Group, LLC

172 Data Flow Analysis: Theory and Practice

1. v is Entry(Start) and �x αv = �⊥ in BIStart .

2. v is Exit(End) and �x αv = �⊥ in BIEnd .

3. If there exists a pair of adjacent program points u,v such that for some
entity α, �fu→v =�φ⊥.

DEFINITION 5.2 An information flow path for an entity α in a bit vector
framework is defined as a maximal acyclic sequence of adjacent program points
p0, p1, ...pm such that p0 is an origin of data flow information for α, and every
flow function �fpi→pi+1

is �φid.

An information flow path represents a single thread of changes in the values of an

entity in the program. In general, when there is a change in the data flow at a program

point u, the flow of information terminates at u if the change at u does not cause a

change in the data flow value of any neighbour v of u. In bit vector frameworks,

data flow value of an entity at a program point can change only once. Since an ifp

propagates a �⊥ value, no more changes in data flow value are possible at any program

point already present in the ifp . Hence, ifps in bit vector frameworks are acyclic.

Information flow paths differ from paths in paths(u) in many ways: the paths in

paths(u) always start from Start or End, ifps may start from any program point.

Further, a path in paths(u) ends on u, whereas an ifps is not defined for a give pro-

gram point. Paths in paths(u) may be cyclic, whereas ifps in bit vector frameworks

are always acyclic.

For brevity, we denote Entry(n) and Exit(n) by In and On respectively when de-

picting an information flow path. In Figure 5.2(c), the data flow indicated by the

dashed line takes place along the subpath (O i→ Ik→O j) of an ifp , while the data

flow in Figure 5.2(d) takes place along the subpath (Il→Ok→ Im) of an ifp . Fig-

ure 5.7 shows an information flow path in partial redundancy elimination for our

example program. In this example, data flow information at Exit(n6) is 0 as a re-

sult of assignment to c in n4. The ifp responsible for propagating information from

Entry(n4) to Exit(n6) is (In4
→On3

→ In5
→On6

) and is shown by a sequence of gray

dashed arrows in the figure.

The information flow from p0 to pm is realized through the path flow function �fρ
of ρ which is a composition of flow functions of all edges in ρ:

�fρ = �fpm−1→pm
◦ �fpm−2→pm−1

◦ · · · ◦ �fp1→p2
◦ �fp0→p1

(5.8)

Using the path flow function the data flow information reaching pm from p0 can be

computed. In bit vector frameworks, the path flow function of an ifp is an identity

function.

Information Flow Paths and the Work List Algorithm

Observe that the information flow paths in bit vector frameworks correspond to the

paths traced by the generic work list based algorithm given in Figure 5.6. Program

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 173

n1

b1: b = 4;
a1: a = b+ c;
d1: d = a ∗b;

n1

n2 b2: b = a− c; n2

n3 c1: c = b+ c; n3

n4
c2: c = a ∗b;
f (a−b); n4

n5 d2: d = a+b; n5

n6 f (b+ c); n6

n7 g(a+b); n7

n8
h(a− c);
f (b+ c); n8

The ifp (In4
→On3

→ In5
→On6

) (shown in dashed arrows) is responsible for sup-

pressing hoisting of expression b+ c at Exit(n6).

FIGURE 5.7

An information flow path in PRE example.

points during initialization are essentially the origins of information flow for some

entity. However, since work list algorithm operates on data flow values of all entities

simultaneously, the paths traced by work list algorithms may correspond to multiple

ifps each referring to a different entity. Further, if a program point is added to the

head of the work list, ifps for an entity are traversed independently; if it is added to

the rear, ifps of an entity may be traversed in an interleaved fashion.

5.3.3 Defining Complexity Using Information Flow Paths

We now define the complexity of stoRR algorithm by relating each iteration of the

algorithm to the fragment of an ifp that it can cover. Note that we consider the

iterations of the while loop only; the initialization is not counted in the number of

iterations unless the initialization is performed using Equation (5.5).

The discussion in this section is general and is not restricted to bit vector frame-

works because it relies on the occurrence of program points in ifps. Later when we

define ifps for fast frameworks and non-separable frameworks, the ifps are extended

to qualify the program points with additional information. It is done only to identify

© 2009 by Taylor & Francis Group, LLC

174 Data Flow Analysis: Theory and Practice

the relevant sequences of program points and eventually the complexity is defined in

terms of the sequence of program points only.

Consider an edge pi→ pi+1 in an ifp . In the stoRR algorithm, the order of visiting

pi and pi+1 depends upon the chosen order of graph traversal and is fixed throughout

the analysis. This has the following consequences:

• Let pi be visited before pi+1 in the order of traversal. In this case, the data

flow value at pi is computed first, and it is available during computation of the

value at pi+1 in the same iteration. Hence, propagation of information from pi
to pi+1 takes place in the same iteration in which the value at pi is computed.

• Let pi+1 be visited before pi in the order of traversal. In this case, the data

flow value at pi+1 is computed first. Hence, it must use the old value at pi.

The new value at pi is computed in the same iteration, but can only be used

for computing the value at pi+1 in a subsequent iteration. This implies that

propagating information from pi to pi+1 requires an additional iteration.

DEFINITION 5.3 Traversal of adjacent program point pi and pi+1 in
an information flow path ρ is called conforming if pi occurs before pi+1 in the
chosen order of traversal. Otherwise, it is a non-conforming traversal.

Conforming traversals do not contribute additional iterations in the stoRR algo-

rithm whereas each non-conforming traversal requires one extra iteration.

DEFINITION 5.4 Width of an information flow path ρ with respect to a
given order of traversal is defined as the number of non-conforming traversals
in ρ.

We denote the width of an ifp ρ by width(ρ). Width is a measure of the number of

iterations required by stoRR algorithm to propagate information along ρ.

Example 5.2

In Figure 5.7, width of ifp (In4
→ On3

→ In5
→ On6

) is 2 since edge traversals
On3

→ In5
and In5

→ On6
are non-conforming traversals as the CFG nodes are

visited in postorder traversal.

DEFINITION 5.5 A span is a maximal sequence of conforming edge
traversals in an ifp .

Spans are separated by a non-conforming edge traversal and vice-versa. Thus

two successive non-conforming edge traversals have a null span between them. An

information flow path may begin and/or end with a null span.

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 175

The information along a span can be propagated in a single traversal over the

graph. This traversal is same as the traversal of the preceding non-conforming edge.

DEFINITION 5.6 Width of a CFG for an instance of data flow frame-
work is defined with respect to a given order of traversal as the maximum
width of any ifp for the given instance.

THEOREM 5.1

If the width of a CFG for an instance of a bit vector framework is w then the
round-robin iterative method stoRR converges in w+1 iterations.

PROOF The information flow can be initiated only after data flow values
at all origins are computed. The stoRR algorithm achieves this in the first iter-
ation after initialization. The same iteration propagates the information along
a non-null span (if any) at the beginning of each ifp . Every non-conforming
edge traversal and the span following it requires an additional iteration. Thus,
w+1 iterations are sufficient along the ifps that determine width of the CFG.

Though the stoRR algorithm converges in w+ 1 iterations, in practice we do not

know the width of a flow graph and the method terminates after discovering that

there is no further change. Thus, practically, w+2 iterations are required.

The main advantage of using the notion of width is that it is uniformly applicable

to general data flow frameworks including bidirectional and non-separable frame-

works. Further, it is defined in terms of a specified order and hence explains the

difference in the number of iterations when the order of traversal is changed.

Example 5.3

The depth of the program in Figure 5.7 for PRE is 1 whereas its width is 2.
Hence the round-robin method requires at most 4 iterations to converge.

For unidirectional data flow problems, if the direction of graph traversal is same

as the direction of the data flows, the width of a graph reduces to its depth. However,

depth is applicable to unidirectional data flow problems only.

5.3.4 Information Flow Paths in Fast Frameworks

Fast frameworks are separable 2-bounded frameworks. However, they are more gen-

eral than bit vector frameworks in that they allow more than two elements in a com-

ponent lattice, and also allow flow functions that compute incomparable values. The

former requires generalizing the definition of origin while the latter requires gener-

© 2009 by Taylor & Francis Group, LLC

176 Data Flow Analysis: Theory and Practice

alizing the value associated with a program point in an ifp .

In fast frameworks, the data flow value at a program point changes due to one of

the following reasons: (a) Result of application of a flow function, or (b) Merging

incomparable values from neighbours. In bit vector frameworks, the latter situation

never arises because the component lattice does not contain incomparable values. In

order to handle fast frameworks, the definition of information flow paths must be

extended to incorporate merging of information. Also, in bit vector frameworks, an

information flow path propagates the same data flow value (�⊥) from an origin to all

possible program points. In fast frameworks, a value at a program point may undergo

more than one change due to non-identity non-constant functions and merging.

First we extend the definition of origin to allow the program point to be qualified

with the generated data flow value.

DEFINITION 5.7 A pair �v,�x αv � is an origin of information flow for
entity α if any of the following conditions is satisfied:

1. v is Entry(Start) and �x αv � �� in BIStart .

2. v is Exit(End) and �x αv � �� in BIEnd .

3. If there exists a pair of adjacent program points u,v such that for some
entity α, �f αu→v is a constant pef �φz computing the value �z � ��.

Apart from recording the data flow value, handling the merging of data flow values

intermediate program points requires the following extensions:

• Merging may involve a data flow value generated by some other ifp traversed

earlier. To remember the values computed by a different ifp , we define an ifp

with respect to a given assignment A : Points �→�L ∪{undef}. Aαu denotes value

of α at program point u in assignment A. Initial assignment is ∀u ∈ Points,Aαu =
�� if the lattice contains a �� element; it is ∀u ∈ Points,Aαu = undef otherwise.

• We need to define a function latest() to extract the latest data flow value of α

at u when examining an ifp ρ.

An ifp for a fast framework is defined as follows.

DEFINITION 5.8 Given an assignment A : Points �→�L ∪{undef}, an in-
formation flow path ρ for an entity α in a fast framework is defined as a max-
imal acyclic sequence of tuples �p0,�x0�, �p1,�x1�, . . . , �pm,�xm� such that �p0,�x0� is
an origin of information flow for α, and given �pi,�xi�, its successor �pi+1,�xi+1�

is defined as follows:

1. pi, pi+1 are adjacent program points,

2. Let ρ� be the prefix of ρ containing i tuples. Then

�xi+1 = �fpi→pi+1
(�xi) ⊕ latest(pi+1,ρ

�)

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 177

1 h1 1

2 h0 2

3 h1 3

4 f 4

v1v0 v2

⊥

Function f

v1v0 v2

⊥

v1v0 v2

⊥

Function h0 and h1

∀�x ∈�L : h0(�x) = v0

∀�x ∈�L : h1(�x) = v1

(a) CFG (b) L (c) Flow Functions

FIGURE 5.8

An instance of a distributive non-bit vector rapid framework reproduced from Fig-

ure 3.19. This instance requires d(G,T)+ 3 iterations of a round-robin algorithm

with reverse post order traversal.

where

(a) �f αpi→pi+1
is a non-constant function.

(b) latest(u,ρ�) returns value �x αj if p j is the last occurrence of u in ρ�;
if ρ� does not contain u, then latest(u,ρ�) returns Aαu .

(c) �x⊕�x � =
��x if �x � = undef
�x��x � otherwise

The acyclicity condition prohibits the same pair �pi,�xi� from occurring multiple

times in the ifp ; a program point may appear multiple times in the ifp .

Unlike bit vector frameworks, the path flow function �fρ for an ifp ρ need not

be �φid . An assignment A used to define an ifp must be a valid assignment for a

correct representation of information flows in a program. If it is arbitrarily chosen,

the resulting complexity measures could be incorrect. For the first ifp traversed,

A : ∀ u ∈ Points,�xu = � is valid if � exists in the lattice of the framework; otherwise

it must be A : ∀ u ∈ Points,�xu = undef . A must get updated by each subsequent ifp .

DEFINITION 5.9 Given an assignment A : Points �→�L ∪{undef}, and an
ifp ρ, the resulting assignment A� is ∀u ∈ Points,A�u =latest(u,ρ) where latest(u,ρ)
is defined in Definition 5.8.

Example 5.4

Consider the instance of a data flow framework shown in Figure 5.8 which
has been reproduced from Example 3.11 on page 96. For simplicity, we have
shown only the non-identity node flow functions and assume that there is

© 2009 by Taylor & Francis Group, LLC

178 Data Flow Analysis: Theory and Practice

1 h� 1

2 g 2

3 h0 3

4 f 4
4

5 f 55

�

v1v0 v2

v3

⊥

Function f Function g

�

v1v0 v2

v3

⊥

�

v1v0 v2

v3

⊥

�

v1v0 v2

v3

⊥

�

v1v0 v2

v3

⊥

Function h0 Function h�

∀x ∈ L : h0(x) = v0 ∀x ∈ L : h�(x) = �

(a) CFG (b) L (c) Flow Functions

FIGURE 5.9

An instance of a distributive non-rapid fast framework that requires d(G,T)+4 iter-

ations of a round-robin algorithm with reverse post order traversal.

a single unspecified entity. All edge flow functions are φid. Let the given
assignment be A : ∀ u ∈ Points,xu = undef . The constant function h0 produces
data flow value v0 for entity en. Hence �Exit(2),v0� is an origin of information
flow. An ifp originating at �Exit(2),v0� is

(�O2,v0� → �I3,v0� → �O3,v0� → �I4,v0� → �O4,v1� →

�I3,⊥� → �O3,⊥� → �I4,⊥�→ �O4,⊥�→ �I2,⊥�)

The round-robin algorithm requires 4 iterations to converge with a reverse
post first order traversal. The data flow value at Exit(3) is v0 in the first
iteration. In the second iteration, it changes to ⊥ as a result of merging the
data value of Exit(4) and Exit(2). The third iteration is required to propagate
this value to Entry(2) and the final iteration is required to detect convergence.

The depth of the CFG in example in Figure 5.8 is 1. The required number
of iterations can be explained in term of width. Width of the above ifp is 2

due to the non-conforming edges O4 → I3 and O4 → I2.

Example 5.5

Consider the instance of a data flow framework shown in Figure 5.9. We leave
it for the reader to verify that is a distributive non-rapid fast framework. All
edge flow functions are φid. Constant function h0 produces data flow value
v0. With the initialization � at all program points, the round-robin algorithm
converges in 5 iterations with a reverse post order traversal. The data flow
value at Entry(4) changes from v0 to v3 to ⊥ in the first three iterations. The

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 179

fourth iteration is required to propagate this change to Entry(2) and the fifth
iteration is required to detect the fixed point.

The depth of the CFG is 1. The number of iterations can be explained by
the following ifp whose origin is �Exit(3),v0�.

(�O3,v0� → �I4,v0� → �O4,v0� → �I5,v0� → �O5,v1� → �I2,v1� →

�O2,v1� → �I4,v3� → �O4,v3� → �I5,v3� → �O5,v3� → �I2,v3� →

�O2,⊥�→ �I4,⊥� → �O4,⊥� → �I5,⊥�→ �O5,⊥� → �I2,⊥�)

The width of this ifp is 3 due to three occurrences of non-conforming edge
O5 → I2; observe that the data flow values associated with the multiple occur-
rence of program points are different.

5.3.5 Information Flow Paths in Non-separable Frameworks

Recall that in bit vector frameworks, only one change is possible in the data flow

value of a given entity α at a given program point u. Further, the value of α at u

is influenced only by the value of α at a neighbouring program point v; some other

entity β cannot influence the value of α. In fast frameworks, the data flow value of α

at u could change multiple times. Hence information flow paths for fast frameworks

are defined in terms of a given assignment of values and a program point is qualified

with the data flow value. Besides, they are also defined for a given entity due to the

independence of entities.

In non-separable frameworks the possible changes in data flow values are still

more general. A data flow value of an entity α at a program point u can be influ-

enced by the data flow value of some other entity β at a neighbouring program point

v. Similar to fast frameworks, data flow value of an entity could change multiple

times. Thus multiple interdependent information flows are simultaneously possible

at a given program point.

Example 5.6

Consider the CFG in Figure 5.10 on the next page. In constant propagation
framework, the value of variable c in node 4 is influenced by the value of a
computed in node 2 (via definition of b in node 5) as well as by the value of b
computed in 3. We cover these influences in separate information flow paths.
Also, the value of a generated in node 2 is propagated to the entry and exit
points of nodes 4,5,6. This propagation is covered by a separate ifp .

We continue to define an information flow path for a single thread of information

flow. Since an ifp is defined in terms of a given assignment, using the data flow value

of an entity at a the program point where multiple ifps intersect, allows us to handle

interdependence of information flows.

We use the concepts and notations from Section 4.5 that models the component

flow functions in non-separable frameworks in terms of primitive and composite

© 2009 by Taylor & Francis Group, LLC

180 Data Flow Analysis: Theory and Practice

1 a = b 1

2 a = 2 23 b = 3 3

4 c = b 4

5 b = a 5

6 b = a 6

FIGURE 5.10

A CFG to illustrate information flow paths in copy constant propagation.

entity functions. We extend the notation by using program points u and v and edges

between them as subscripts of a function. A component function �f α that computes

the data flow value of an entity α at program point v from the values of other entities

at a neighbouring program point u is denoted by �f αu→v. If it can be defined in terms

of primitive entity functions (pefs):

�f αu→v(xu) =
β ∈ Σ

f
β→α

u→v

�
�x βu

�
(5.9)

where Σ is the set of entities, and f
β→α

u→v is the pef that computes the data flow value

of α at program point v from the value of β at program point u.

Since we need to handle changes across different entities, we extend the notion of

information flow to qualify a program point with the entity also.

DEFINITION 5.10 A tuple
�
v,�z αv ,α

�
is an origin of information flow

for entity α if any of the following conditions is satisfied:

1. v is Entry(Start) and �x αv � �� in BIStart .

2. v is Exit(End) and �x αv � �� in BIEnd .

3. If there exists a pair of adjacent program points u,v such that for some

entity α ∈ Σ, pef f
β→α

u→v is a constant pef �φz computing the value �z � ��
for every β ∈ Σ.

Observe that any other pef cannot originate the flow of information. Similarly, a

composite entity function (cef) also cannot originate the flow of information.

At each point in an ifp , we record the entity denoted en whose data flow value

is modified at that point as a result of the application of a non-constant component

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 181

function, and use it to identify the candidate entity at the subsequent point. Changes

in values due to merging of information are computed using the latest() function as

discussed in the context of fast frameworks.

DEFINITION 5.11 Given an assignment A : Points �→ L∪ {undef }, and
an origin �p0,�x α0 ,α� of information flow for some entity α, an information
flow path ρ is defined as a maximal acyclic sequence of tuples

(�p0,x0,α�, �p1,x1,en1�, . . . , �pm,xm,enm�)

where ∀β � α ∈ Σ,�x β
0
= A

β

0
and given �pi,xi,eni�, its successor �pi+1,xi+1,eni+1�

is defined as follows:

1. pi, pi+1 are adjacent program points,

2. Let ρ� be the prefix of ρ containing i tuples. Select a β such that eni
influences β through a non-constant pef or a cef . Then,

eni+1 = β

�x γ
i+1
=


�f βpi→pi+1

(xi) ⊕ latest(pi+1,ρ
�,β) γ = β

latest(pi+1,ρ
�,γ) otherwise

where

(a) latest(u,ρ�,β) returns value �x β
j

if p j is the last occurrence of u in ρ;

if ρ does not contain u, then latest(u,ρ�,β) returns A
β
u .

(b) �x⊕�x � =
��x �x � = undef
�x��x � otherwise

When the changes in data flow values are not required explicitly, we denote an ifp

by a sequence of program points p0, p1, . . . , pn. In the presence of cycles, a program

point q contained in a cycle may appear multiple times in an ifp . The condition of

acyclicity in the definition of ifp implies that a tuple �u,xu,enu� cannot appear twice

in an ifp , although a program point u may appear multiple times.

Example 5.7

Consider the instance of copy constant propagation for the CFG in Figure 5.10
on the facing page. Figure 5.11 on the next page shows some information flow
paths for this instance. Changes in data flow values due to application of non-
constant component functions are shown by adding edges from �x αu →�x βv for
each edge �u,xu,α� → �v,xv,β� in the ifp . Thick arrows indicate the traversal
along the back edge 5 → 4. We leave identification of the ifps beginning at
node 3 as an exercise.

© 2009 by Taylor & Francis Group, LLC

182 Data Flow Analysis: Theory and Practice

AI1 =
�
��,��,��

�

AO1
=

�
��,��,��

�

AI2 =
�
��,��,��

�

AO2
=

�
��,��,��

�

AI3 =
�
��,��,��

�

AO3
=

�
��,��,��

�

AI4 =
�
��,��,��

�

AO4
=

�
��,��,��

�

AI5 =
�
��,��,��

�

AO5
=

�
��,��,��

�

AI6 =
�
��,��,��

�

AO6
=

�
��,��,��

�

�
O2,

�
2,��,��

�
,a

�
,

�
I4,

�
2,��,��

�
,a

�
,

�
O4,

�
2,��,��

�
,a

�
,

�
I5,

�
2,��,��

�
,a

�
,

�
O5,

�
2,��,��

�
,a

�
,

�
I6,

�
2,��,��

�
,a

�
,

�
O6,

�
2,��,��

�
,a

�

AI1 =
�
��,��,��

�

AO1
=

�
��,��,��

�

AI2 =
�
��,��,��

�

AO2
=

�
2,��,��

�

AI3 =
�
��,��,��

�

AO3
=

�
��,��,��

�

AI4 =
�
2,��,��

�

AO4
=

�
2,��,��

�

AI5 =
�
2,��,��

�

AO5
=

�
2,��,��

�

AI6 =
�
2,��,��

�

AO6
=

�
2,��,��

�

�
O2,

�
2,��,��

�
,a

�
,

�
I4,

�
2,��,��

�
,a

�
,

�
O4,

�
2,��,��

�
,a

�
,

�
I5,

�
2,��,��

�
,a

�
,

�
O5,

�
2,2,��

�
, b

�
,

�
I4,

�
2,2,��

�
, b

�
,

�
O4,

�
2,2,��

�
, b

�
,

�
I5,

�
2,2,��

�
, b

�

Assignment A ifp ρ w.r.t. A Assignment A� ifp ρ1 w.r.t. A�

resulting from A,ρ

AI1 =
�
��,��,��

�

AO1
=

�
��,��,��

�

AI2 =
�
��,��,��

�

AO2
=

�
2,��,��

�

AI3 =
�
��,��,��

�

AO3
=

�
��,��,��

�

AI4 =
�
2,2,��

�

AO4
=

�
2,2,��

�

AI5 =
�
2,2,��

�

AO5
=

�
2,2,��

�

AI6 =
�
2,��,��

�

AO6
=

�
2,��,��

�

�
O2,

�
2,��,��

�
,a

�
,

�
I4,

�
2,��,��

�
,a

�
,

�
O4,

�
2,��,��

�
,a

�
,

�
I5,

�
2,��,��

�
,a

�
,

�
O5,

�
2,2,��

�
, b

�
,

�
I4,

�
2,2,��

�
, b

�
,

�
O4,

�
2,2,2

�
, c

�
,

�
I5,

�
2,2,2

�
, c

�
,

�
O5,

�
2,2,2

�
, c

�
,

�
I4,

�
2,2,2

�
, c

�

AI1 =
�
��,��,��

�

AO1
=

�
��,��,��

�

AI2 =
�
��,��,��

�

AO2
=

�
2,��,��

�

AI3 =
�
��,��,��

�

AO3
=

�
��,��,��

�

AI4 = �2,2,2�

AO4
= �2,2,2�

AI5 = �2,2,2�

AO5
= �2,2,2�

AI6 =
�
2,��,��

�

AO6
=

�
2,��,��

�

�
O3,

�
��,2,��

�
,b

�
,

�
I4,

�
2,�⊥,��

�
,b

�
,

�
O4,

�
2,2,�⊥

�
, c

�
,

�
I5,

�
2,2,�⊥

�
, c

�
,

�
O5,

�
2,2,�⊥

�
, c

�
,

�
I4,

�
2,�⊥,�⊥

�
, c

�
,

Assignment A�� ifp ρ2 w.r.t. A�� Assignment A��� ifp ρ3 w.r.t. A���

resulting from A�,ρ1 resulting from A��,ρ2

Data flow value xu is
�
�x au ,�x

b
u ,�x

c
u

�
for variables a,b,c.

FIGURE 5.11

Some information flow paths in copy constant propagation for CFG in Figure 5.10

© 2009 by Taylor & Francis Group, LLC

Complexity of Iterative Data Flow Analysis 183

AI1 =
�
��,��,��,��

�

AO1
=

�
��,��,��,��

�

AI2 =
�
��,��,��,��

�

AO2
=

�
��,��,��,��

�

AI3 =
�
��,��,��,��

�

AO3
=

�
��,��,��,��

�

AI4 =
�
��,��,��,��

�

AO4
=

�
��,��,��,��

�

AI5 =
�
��,��,��,��

�

AO5
=

�
��,��,��,��

�

AI6 =
�
��,��,��,��

�

AO6
=

�
��,��,��,��

�

�
O1,

�
��,��,��,3

�
, d

�
,

�
I2,

�
��,��,��,3

�
, d

�
,

�
O2,

�
��,��,��,3

�
, d

�
,

�
I3,

�
��,��,��,3

�
, d

�
,

�
O3,

�
��,��,��,3

�
, d

�
,

�
I4,

�
��,��,��,3

�
, d

�
,

�
O4,

�
��,��,��,3

�
, d

�
,

�
I5,

�
��,��,��,3

�
, d

�
,

�
O5,

�
��,��,��,6

�
, d

�
,

�
I2,

�
��,��,��,�⊥

�
,d

�
,

�
O2,

�
��,��,��,�⊥

�
,d

�
,

�
I3,

�
��,��,��,�⊥

�
,d

�
,

�
O3,

�
��,��,��,�⊥

�
,d

�
,

�
I4,

�
��,��,��,�⊥

�
,d

�
,

�
O4,

�
��,��,�⊥,�⊥

�
,c

�
,

�
I5,

�
��,��,�⊥,�⊥

�
,c

�
,

�
O5,

�
��,��,�⊥,�⊥

�
,c

�
,

�
I2,

�
��,��,�⊥,�⊥

�
,c

�
,

�
O2,

�
��,��,�⊥,�⊥

�
,c

�
,

�
I3,

�
��,��,�⊥,�⊥

�
,c

�
,

�
O3,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
I4,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
O4,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
I5,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
O5,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
I2,

�
��,�⊥,�⊥,�⊥

�
,b

�
,

�
O2,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
I3,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
O3,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
I4,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
O4,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
I5,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
O5,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�
,

�
I2,

�
�⊥,�⊥,�⊥,�⊥

�
,a

�

(a) Given assignment A (b) An ifp ρ w.r.t. A. width(ρ) = 4

FIGURE 5.12

A width defining ifp in constant propagation problem in Figure 5.5 on page 164.

Example 5.8

Recall that round-robin method requires 6 iterations for Constant Propagation
example for CFG with d = 1 in Figure 5.5 on page 164. This can be explained
using the ifp shown in Figure 5.12. In this ifp , the non-conforming edge
Exit(5)→ Entry(2) appears 4 times, which makes width of this ifp 4.

© 2009 by Taylor & Francis Group, LLC

184 Data Flow Analysis: Theory and Practice

5.4 Summary and Concluding Remarks

This chapter is the culmination of generalizations across a large class of data flow

frameworks. The first generalization was to define bit vector frameworks in terms

of data flow equations using Gen-Kill components. A subsequent generalization

extended the Gen-Kill components to general frameworks. The next step provided a

uniform model of flow functions in terms of its constituent pefs.

This chapter has shown that such a modeling allows a clean extension of com-

plexity measures for bit vector frameworks to the complexity measures for general

frameworks. In particular, the underlying theme of information flow paths and the

concept of width which governs the number of iterations of round-robin iterative

analysis remains same. The only change is that the concept of the constituent points

in an information flow path gets extended progressively with a transition from bit

vector framework to fast frameworks and then to non-separable frameworks.

5.5 Bibliographic Notes

For a long time, the complexity measures in most of the classical literature were

restricted to unidirectional data flow problems. This has also been reflected in Chap-

ter 3 where the discussion is limited to unidirectional flows. Complexity of bidirec-

tional problems like PRE [74] was first explained by Khedker and Dhamdhere [60]

which also introduced the notion of information flow path in context of bit vec-

tor frameworks. This formed a generalized theory of bit vector data flow analy-

ses [60, 59, 30] which provided a uniform treatment to unidirectional as well as bidi-

rectional data flow frameworks. However it was limited to bit vector frameworks.

This limitation was removed by the work by B. Karkare [53] which forms the basis

of our discussion in this chapter.

We have restricted ourselves to iterative methods of data flow analysis. This is

because both round-robin and work list variants of iterative data flow analysis are

general methods and can be used for all data flow frameworks. For bit vector frame-

works, a much larger class of methods exists. Among them, elimination methods

use the structural properties of CFGs and have been widely studied. The pioneer-

ing works in elimination methods of data flow analysis are by Allen and Cocke [7],

Graham and Wegman [37] and Tarjan [98]. Ryder and Paull [86] describe these

methods in details. A much wider range of solution methods have been described by

Hecht [44] and Kennedy [57].

© 2009 by Taylor & Francis Group, LLC

6

Single Static Assignment Form as
Intermediate Representation

In this chapter we present an intermediate form of programs called single static as-

signment (SSA) form that is useful for many optimizations. Because of the sparse-

ness of def-use chains in the representation, optimizations based on SSA form can

be performed efficiently.

6.1 Introduction

The result of many data flow analyses can be represented by superimposing struc-

tures called def-use or use-def chains on the CFG of a program. As mentioned in

Section 2.3.3, a def-use chain associates with each definition a list of statements that

are reached by the definition and contain uses of the variable being defined. Sim-

ilarly, a use-def chain associates with each use of a variable, a list of statements

containing definitions of the variable that reach the use. Def-use chains can be com-

puted by extending liveness analysis. In this extension, the data flow information is a

set of tuples (x,n) where x ∈Var and n is a basic block, where it is assumed that each

statement forms a basic block by itself. The CFG is traversed backwards as in live-

ness analysis. The use of a variable x in a statement at n generates the tuple (x,n). If

a statement at n� contains a definition of the variable x, then, for each (x,n) in Outn� ,

n� is chained to n. (x,n) is subsequently killed by the statement at n�. Similarly,

use-def chains can be found by a minor modification of reaching definitions analy-

sis. Optimizations like dead code elimination make use of def-use chains whereas

constant propagation and loop-invariant detection make use of use-def chains. Fig-

ure 6.1 shows an example program and its CFG on which the def-use chains have

been superimposed. A def-use chain is concretely represented by a set of def-use

edges connecting the definition with its uses.

Def-use chains are used to propagate data flow information. A def-use edge may

bypass a path through a number of control flow edges and directly connect a defi-

nition with its use. Clearly, the time taken for performing an optimization based on

def-use or use-def chains will depend on the number of def-use edges in the graph.

Any optimization over the example program shown in Figure 6.1 will have to repeat-

edly iterate over the 12 chains, propagating a data flow value from a definition to its

185
© 2009 by Taylor & Francis Group, LLC

186 Data Flow Analysis: Theory and Practice

switch(machineId)

{ case1:

st = initState1;

break;

case2:

st = initState2;

break;

case3:

st = initState3;

}

while (1)

{ sym = getsym();

if(isAlpha(sym))

st = next[st,sym];

elseif(sym == ’\n’)

{ printf("%d\n", st);

nextline();

}

else

{ printf("%d\n", st);

break;

}

}

switch(machineId)

st = initState1

st = initState2

st = initState3

sym = getsym()

if(isAlpha(sym))

st = next[st,sym] elseif(sym == ’\ n’)

printf(”%d\n”, st)

nextline()
printf(”%d\n”, st)

st = initState

FIGURE 6.1

Example of def-use chains.

corresponding uses in each iteration. The number of def-use edges tend to proliferate

when each of several definitions of a variable reach several uses of the same variable

through a join node in the CFG. As an example, m definitions reaching each of n

uses result in m×n def-use chains.

6.1.1 An Overview of SSA

A program in SSA form reduces the number of def-use (or use-def) chains by intro-

ducing a separate variable version for each definition of the same variable reaching

a join node. Thus st1, st2, st3 and st4 are four different versions of the same vari-

able st. Each version corresponds to a definition of state. The values carried by the

four versions are transferred to a new version, st5, at a join node. This is done using

a notational mechanism called a φ-instruction. A φ-instruction is a special kind of

assignment whose right hand side consists of a φ-function applied to the incoming

variable versions (st1, st2, st3 and st4 for the example), and the left hand side consists

of the new version (st5). The variable st5 reaches each of several uses in the original

program. These uses are also modified to receive their values from st5. Thus there

arem def-use chains, one for each sti reaching the φ-instruction, and n def-use chains

corresponding to the definition involving the φ-instruction reaching each of n uses,

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 187

switch(machineId)

st1 = initState1

st2 = initState2

st3 = initState3

st5 = φ(st1,st2,st3,st4)

sym = getsym()

if(isAlpha(sym))

st4 = next[st5,sym] elseif(sym == ’\ n’)

printf(“%d\n”, st5)

nextline()
printf(“%d\n”, st5)

st = initState

FIGURE 6.2

The earlier example in SSA form.

making up a total of m+n chains. Figure 6.2 shows the earlier program in SSA form.

The reduction in the number of def-use chains can be clearly observed.

The variables involved in φ-instructions are called φ-variables. The variables on

the right hand side of a φ-instruction are called the arguments of the φ-instruction and

the variable on the left hand side is called the result. Since the transformation to SSA

form includes insertion of φ-instructions, it is important to describe the semantics

of the φ-instructions. Consider a basic block with k predecessors. Then the block

could have several φ-instructions, all placed at the beginning of the block. These are

denoted as:

y1 = φ(x11, x12, . . . , x1k)

y2 = φ(x21, x12, . . . , x2k)

...

yn = φ(xn1, xn2, . . . , xnk)

During execution, if the block containing these instructions is reached along prede-

cessor edge j, then the effect of these instructions is that of simultaneously executing

the assignment statements y1 = x1 j, y2 = x2 j, . . . , yn = xn j along the edge from the jth

© 2009 by Taylor & Francis Group, LLC

188 Data Flow Analysis: Theory and Practice

a = ba = b a = b

y1 = φ(x11, . . . , x1k)

. . .

yn = φ(xn1, . . . , xnk)

a = ba = b a = b

y1 = x12||

. . . x12||

yn = xn2

y1 = x11||

. . . x11||

yn = xn1

y1 = x1k||

. . . x1k||

yn = xnk

y1 = x1k||

yn = xnk

FIGURE 6.3

Semantics of φ-instruction.

predecessor block to the block containing the φ-instructions. This is shown in Fig-

ure 6.3. A simultaneous execution of y1 = e1 and y2 = e2, denoted y1 = e1 || y1 = e2,

first evaluates the expressions e1 and e2 and then assigns the resulting values to y1

and y2 respectively. As we shall see, the semantics becomes important when we

transform the program into and out of SSA form.

6.1.2 Benefits of SSA Representation

Transformation of a program to SSA form results in a sparser representation of def-

use chains. The benefit that results due to this sparsity is an improvement in time to

perform the optimization. To see this, consider a generic work list based algorithm

that uses def-use edges. Such an algorithm will propagate data flow values from

the definition of a variable to its uses. Therefore, we can associate data flow values

with the definition end and the use end of each def-use edge. At any point of time,

the work list will hold def-use edges for which the data flow value has yet to be

propagated from the definition to the use. After this is done, the propagated value is

used to compute the value of the definition that depends on this use and, provided

this is a new value, all def-use edges which have this definition as the argument are

put on the work list.

The algorithm takes time proportional to the product of the total number of def-use

edges and the number of times each edge can be inserted in the work list. The number

of times each def-use edge can be put on the work list is the same as the maximum

number of changes in the data flow value, and this is the same as the height of the data

flow lattice. Thus, if we fix the data flow lattice, the time required for the analysis

depends on the number of def-use edges in the program representation. As we have

argued earlier, the number of def-use edges in a program in SSA form is smaller than

the program from which it was constructed, thus reducing the time required for the

analysis.

The second benefit is that certain analyses or optimizations become easier due

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 189

to the nature of the SSA form itself. In a SSA form program, there is exactly one

definition reaching each use of a variable. To see a use of this property, consider

a method for detection of induction variables in a program. Figure 6.4 shows a

program along with its SSA form. The def-use edges from the definitions to the

uses of variables are shown explicitly. To discover that i is an induction variable

of the original program, we note that statements i3 = φ(i1, i2) and i2 = i3 +2 form a

strongly connected region (SCR) involving (versions of) the variable i in the SSA

form program. The initial value of the variable is supplied by the statement i1 = 0

and the statements constituting the SCR increase i by a constant in each iteration.

In addition, since the SCR passes through the φ-instruction, i is identified as an

induction variable of the outer loop. This information is not readily available in the

original program with def-use chains. By a similar reasoning, j is detected to be

an induction variable of the inner loop of the original program. Its increment, i, is

detected to be a loop invariant of the inner loop because the definition of i2 reaching

the statement j2 = j3 + i2 in the SSA form program is outside the SCR formed by the

statements j3 = φ(j1, j2) and j2 = j3 + i2.

A larger example of use of SSA form will be presented later in the chapter when

we discuss a method for register allocation that exploits the special properties of SSA

form programs.

6.2 Construction of SSA Form Programs

As in reaching definitions analysis (Section 2.3.3), we assume that the node Start

contains an assignment of the special value undef to every variable. Thus along any

path in the CFG from Start to the use of a variable, there is at least one definition of

the variable reaching the use. Programs which satisfy this property are called strict

programs.

As mentioned earlier, the φ-instructions should be inserted where more than one

definition coming along different paths converge. We first formalize the notion of

converging paths.

DEFINITION 6.1 Let ρ1 = (n1,n2, . . . ,o) and ρ2 = (m1,m2, . . . ,o) be non-
null paths. ρ1 and ρ2 are said to converge, if:

1. The start nodes of ρ1 and ρ2 are different, i.e., n1 � m1.

2. The two paths are disjoint except for the node o.

Note that the common node o could occur in more than one position in the two

paths. An interesting example of converging paths for the CFG in Figure 6.5 is

(n1,n5,n7) and (n7,n9,n10,n7). If a variable is defined in nodes 1 and 7 of the CFG,

© 2009 by Taylor & Francis Group, LLC

190 Data Flow Analysis: Theory and Practice

0 i = 0;

1 while (...)

2 { i = i + 2;

3 j = i;

4 while (...)

5 j = j + i;

6 }

i1 = 0

i3 = φ(i1, i2)

i2 = i3 +2

j1 = i2

j3 = φ(j1, j2)

j2 = j3 + i2

i1 = 0

FIGURE 6.4

Detecting induction variables using SSA form.

then there must be a φ-instruction for this variable at the entry of 7. The exam-

ple shows why the end node is allowed to occur in more than one position in the

paths—the converging paths may include loops∗. The pair of paths (n5,n7,n8,n10)

and (n6,n7,n9,n10) is an example of paths that are non-converging.

We now specify the properties of a valid transformation of a program to SSA form.

The algorithm that we describe later will be proved to be correct with respect to this

specification.

DEFINITION 6.2 The transformation of a program to another is a valid
SSA-transformation, if the following two conditions are satisfied:

1. Correctness of form: Each variable mentioned in the transformed program
must have exactly one definition.

2. Semantic invariance: Consider an execution path leading to a use of a
variable x in the original program and a corresponding execution path
leading to the variable version xi in the program in SSA form. Then,
under the execution semantics of φ-instructions described earlier, the
two variables x and xi must have the same value.

Unless stated otherwise, by the phrase ‘a program in SSA form’ we shall mean a

program that has been obtained by a valid SSA-transformation of a strict program.

A program in SSA form is minimal, if it results from a transformation satisfying

the properties listed above and has a minimum number of φ-instructions. A program

in SSA form is pruned, if it has the added restriction that a φ-instruction is inserted

only if the result variable of the instruction is used later along some path.

∗Observe that (n1,n5,n7) and (n6 ,n7,n9,n10,n7) are also converging paths by the definition. This is clearly

not necessary since their role is subsumed by the pair of paths (n1 ,n5,n7) and (n6,n7).

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 191

Entry x = . . . Entry

n1 x = . . . 1 n2 x = . . . 2

n3 x = . . . 4 n4 x = . . . 4

n6 x = . . . 6n5 x = . . . 5

n7 x = . . . 7

n8 x = . . . 8 n9 x = . . . 9

n10 x = . . . 10

Exit x = . . . Exit

Entry x = . . . Entry

n1 x = . . . 1

n2 x = . . . 2

n3 x = . . . 4

n4 x = . . . 4

n6 x = . . . 6

n5 x = . . . 5

n7 x = . . . 7

n8 x = . . . 8

n9 x = . . . 9

n10 x = . . . 10

Exit x = . . . Exit

(a) (b)

FIGURE 6.5

(a)A CFG and (b) its dominator tree.

To distinguish between the predecessor and successor relation in the CFG and the

same relation in the dominator tree, we use the terms ancestor and descendant in the

latter case. An immediate descendant will be called a child.

6.2.1 Dominance Frontier

The key idea behind insertion of φ-instructions is that of dominance frontier. To

develop this idea, we first define the concept of dominance in a graph. Recall the

definition of dominance from Section 3.1.

DEFINITION 6.3 Let n and m be nodes in the CFG. The node n is said
to dominate m, denoted n � m, if every path from Start to m passes through n.

We also need a notion of dominance that is not reflexive.

DEFINITION 6.4 If n�m and n�m, then we say that n strictly dominates
m and denote this as n�m. Further, the closest strict dominator of a node n

© 2009 by Taylor & Francis Group, LLC

192 Data Flow Analysis: Theory and Practice

n1 x = n1

n2 x = n2n3 x = n3 n4 x = n4

n5 x = n5

n6 x = n6 n8 x = n8

n7 x = n7

n9 x = n9 n10 x = n10

n11 x = n11

FIGURE 6.6

Idea behind φ insertion through dominance frontier.

is called the immediate dominator of n and is denoted as idom (n).

We use the notation n�/ m to mean n does not strictly dominatem. Figure 6.5 shows

a CFG and its dominator tree in which the edges represent immediate dominance.

We shall sometimes consider dominance to be a relation between program points

instead of nodes.

OBSERVATION 6.1 If the nodes n and m both dominate a node o then either n�m

or m�n.

Consider Figure 6.6 in which the node n1 contains a definition of the variable x.

The node n6 is dominated by n1 and so are all the shaded nodes in the figure. Each

shaded node will have the property of a single definition of x reaching it and will thus

not require a φ-instruction for x. Now consider the node n9 which is an immediate

successor of n6 and is not dominated by n1. This node needs a φ-instruction because,

apart from the definition in n1, some other definition, possibly the one that is assumed

to initialize the value of x to undef at Start, will reach n9. Nodes such as n9, and

n10 are said to be in the dominance frontier of n1 and need a φ-instruction for the

variable x. We shall now formalize this idea.

A straightforward translation of the idea represented by Figure 6.6 gives a first

definition of dominance frontier. The dominance frontier of a node n, denoted df (n),

is given as

df (n) = {m | ∃p ∈ pred(m), (n� p and n �/ m)}

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 193

By this definition, a loop header will be included in its own dominance fron-

tier. This is reasonable since a variable in the loop header may have two reaching

definitions—one from inside the loop, the other from outside. As an example, if n1

is a loop header in Figure 6.6, a program point in n1 before the definition of x will

have more than one reaching definition—one reaching from outside the loop and the

other from the definition in n1 itself. In such a situation there will be a φ-instruction

at the beginning of n1.

A direct implementation of the above definition will find df (n) by considering

each node m dominated by n and checking whether it has an immediate successor

in the CFG that is not strictly dominated by n. The problem with this approach is

that it finds the dominance frontier of each node independently of the dominance

frontier of other nodes. A more efficient algorithm that exploits the relation between

dominance frontiers of different nodes is based on the following observations:

1. Consider Figure 6.6 as an example. Nodes that are immediate successors of

n1 and not strictly dominated by n1 are in df (n1). An example of such a node

is n2. We call such nodes as dfbase(n1) as these nodes are included in what can

be considered as the base step of an inductive definition for df .

dfbase(n) = {m ∈ succ(n) | n �/ m}

2. We shall now relate the dominance frontier of n1 in Figure 6.6 to the domi-

nance frontier of its children. Consider n5 as an example of a child of n1. The

node n9, which is in df (n5), is also in df (n1). However, n8, which is also in

df (n5) is not in df (n1). The reason is that while n5 does not dominate n8, its

immediate dominator n1 dominates n8. We call this component of df as df ind,

the inductive step of the definition of df .

df ind(n) =
�

m∈children(n)

{p ∈ df (m) | idom (m) �/ p}

Combining the two:

df (n) = dfbase(n)∪df ind(n)

We can reformulate dfbase and df ind so that they use the easily checkable� relation

instead of �/ . If m is a successor of n then the condition n�m is exactly the same as

n = idom (m). Thus

dfbase(n) = {m ∈ succ(n) | n � idom (m)}

Similarly, if m is a child of n and p is in df (m), then the condition n� p is exactly

the same as n = idom (p). To see this, we first observe that any strict dominator of p

is also a strict dominator of m. Assume to the contrary that o is a strict dominator of

p and either o is the same as m or o is unrelated to m in the dominance relationship.

In the first case o cannot dominate p, because p is in df (o). In the second, if o is

© 2009 by Taylor & Francis Group, LLC

194 Data Flow Analysis: Theory and Practice

Input: A CFG with the dominance frontier for each node.

Output: The dominance frontier of each node n in the CFG computed in a variable

DFn.
Algorithm:

0 for each n in a bottom up traversal of the dominator tree do

1 { DFn = ∅

2 for each m ∈ succ(n) do /* Calculate dfbase */

3 if idom (m) � n then DFn = DFn∪{m};

4 for each m ∈ children(n) do /* Calculate df ind */

5 for each p ∈ DFm do

6 if idom (p) � n then DFn = DFn∪{p};

7 }

FIGURE 6.7

The algorithm for dominance frontier.

unrelated to m, o cannot dominate p since there is an alternate path from Start to p

through m which does not pass through o. Thus we have a contradiction.

Now since n is the closest ancestor of m that strictly dominates p, we must have

n = idom (p). Thus we can rewrite df ind as

df ind(n) =
�

m∈children(n)

{p ∈ df (m) | n � idom (p)}

The algorithm in Figure 6.7 computes the dominance frontier using the formula-

tion presented above. The table in Figure 6.8 gives dfbase and df ind for the nodes in

the CFG in Figure 6.5.

Let E and N be the number of edges and nodes in the CFG. To calculate dfbase,

the algorithm clearly visits each edge once, so its complexity is O(E). Let |df (n)|

denote the size of dominance frontier of the node n. Then the complexity of the part

that calculates df ind is bounded by O(Σn|df (n)|). This is O(N2) for arbitrary CFGs,

which gives an overall complexity of O(E +N2). However, it can be shown that for

CFGs programs composed of assignments, if-then-else and while-dos, |df (n)| is a

constant. For such CFGs, both O(Σn|df (n)|) and E are O(N). Thus the complexity of

the algorithm is also O(N).

6.2.2 Placement of φ-instructions

The algorithm for placing φ-instructions is shown in Figure 6.9. It considers each

variable in turn and maintains a work list for nodes that are yet to be examined.

For every variable it starts by inserting the nodes that contain an assignment to the

variable in the work list. The dominance frontier of each node in the work list is

examined. φ-instructions are inserted in the nodes forming the dominance frontier,

and these nodes are in turn inserted in the work list.

The algorithm, maintains the following variables.

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 195

Node Exit 10 9 8 7 6 5 4 3 2 1 Entry

dfbase ∅ 7 8,10 10 ∅ 7,2 7,1 6 6 ∅ ∅ ∅

df ind ∅ ∅ ∅ ∅ 7 ∅ ∅ ∅ ∅ 7,2 7,1 ∅

FIGURE 6.8

dfbase and df ind for the CFG in Figure 6.5 on page 191.

• inWorklist : If inWorklistn is x, it means that the node n has been inserted in

the work list in connection with the variable x.

• inserted : If inserted n is x, it means that a φ-instruction has been inserted in

node n for the variable x.

• assign : assign x is the set of nodes containing an assignment to the variable x

in the original program.

It is possible for the following situation to arise: A node n has been put in the work

list in connection with a variable but a φ-instruction for the variable has not yet been

inserted in n. This could happen, for instance, when the node being examined is a

loop header containing an assignment to a variable. Thus insertedm and inWorklistm
could have different values when entering the body of the for loop in line 13 and

therefore checking the condition inWorklistm � x in line 16 is not redundant.

For the CFG in Figure 6.5 on page 191, a φ-instruction for the variable x is inserted

at node 1 since 1 contains a definition of x and is in its own dominance frontier.

Similarly a φ-instruction is inserted in 6 which is in df (4) and 2 which is in df (6).

φ-instructions are also inserted in 7 and 10.

From a single node, the notion of dominance frontier can be generalized to a set

of nodes in the following way:

df (S) =
�

x∈S

df (x)

It is easy to see that df is monotonic, i.e., S 1 ⊆ S 2 implies df (S 1) ⊆ df (S 2).

If S x is the set of nodes containing assignments to the variable x, then the φ-

instructions placed by the φ-placement algorithm is given by the iterated dominance

frontier of S x denoted as idf +(S x). This is defined as the limit of the increasing

sequence idf i(S):

idf 1(S) = df (S) (6.1)

idf i+1(S) = df (S ∪ idf i(S)) (6.2)

Let Aorig(n) and Atrans(n) represent the number of assignments in node n in the

original and the transformed program. Observe that nodes are put in the work list

O(Atrans) number of times, and for each node n that has been put in the work list

O(|df (n)|) nodes are examined. Let avgcost represent this work averaged over all the

assignments in the transformed program. Thus

© 2009 by Taylor & Francis Group, LLC

196 Data Flow Analysis: Theory and Practice

Input: A CFG with the dominance frontier for each node.

Output: The CFG with the φ-instructions inserted but without variable renaming.

Algorithm:
0 worklist = ∅

1 for each node n do

2 { inserted n = x0 /* x0 should not occur in the program */

3 inWorklistn = x0

4 }

5 for each variable x do

6 for each n ∈ assign (x) do

7 { inWorklistn = x

8 worklist = worklist ∪{n}

9 }

10 while worklist � ∅ do

11 { remove a node n from worklist

12 for each m ∈ dfn do

13 if insertedm � x then

14 { place a φ-instruction for x at m

15 insertedm = x

16 if inWorklistm � x then

17 { inWorklistm = x

18 worklist = worklist ∪{m}

19 }

20 }

21 }

FIGURE 6.9

The algorithm for φ placement.

avgcost =
�

n

(Atrans(n)× |df (n)|)/Σn(Atrans(n))

Then the cost for computation of the iterated dominance frontier is avgcost ×

Σn(Atrans(n)). However, for CFGs consisting of assignments, if-then-else and while-

dos, avgcost is a constant and the complexity reduces to O(Σn(Atrans(n))).

6.2.3 Renaming of Variables

The algorithm for renaming is given in Figure 6.11. In order to generate new versions

of the variable, the algorithm maintains a counter for each variable. To rename the

use of a variable in an assignment, the algorithm needs to keep track of the definition

that reaches the use. The algorithm maintains a array of stacks (called stacks), one

for each variable for this purpose. As the algorithm traverses the program, the version

of x that reaches a program point is given by the value of top (stacks x). In addition,

to rename the arguments of a φ-function, we need to know the predecessor number

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 197

n1
y = 2

x = 3
n1

n2 x = x+1 n2 n3 x = x+6 n3

n4
x = φ(x, x)

z = y ∗ x
n4

1 1

1 2

n1
y1 = 2

x1 = 3
n1

n2 x2 = x1+1 n2n3 x4 = x1 +6 n3

n4
x3 = φ(x2, x4)

z1 = y1 ∗ x3
n4

1 1

1 2

FIGURE 6.10

CFG before and after renaming variables.

of a node with respect to its successor†. This is given by predNumber (m,n), where

n is a predecessor of m.

Consider a call to rename(n). If a variable x is used by an ordinary assignment,

it is renamed to the version xi given by top(stacks x). The definition of a variable

y, whether defined by a ordinary assignment or a φ-instruction, is renamed to a new

version y j. The new version number j is inserted in the stack for y. The call to

rename (n) also renames the arguments of the φ-function in each successor m of

n. The reason why this is done during a call to rename(n) is the following. To

rewrite the ith argument of a φ-function, we need to know the variable version whose

definition reaches the end of the ith predecessor. If x is the current variable being

renamed, it is at this point of time that we know that top (stacks x) is the version of

x reaching the end of predNumber (m,n). This information is used for renaming.

Thus the uses on the right hand side of a φ-instruction and an ordinary assignment

are renamed during different calls to rename .

Example 6.1

We illustrate the algorithm for renaming variables through the example in
Figure 6.10. The labels on the edges number the predecessors of a node.
Thus n2 and n3 are the first and the second predecessors of n4.

• The algorithm does a reverse postorder traversal of the dominator tree
starting with node n1. The variables on the left hand side of the assign-
ments are renamed to y1 and x1. Since none of n1’s successors contain
a φ-instruction, the children of n1 are processed next. The values of
top (stacks x) and top (stacks y) are both 1 at this time.

†The predecessors of a node are assumed to be ordered.

© 2009 by Taylor & Francis Group, LLC

198 Data Flow Analysis: Theory and Practice

• Assume that n2 is the node that is selected next. The variable x on
the right hand side of n2 is renamed to the variable version whose def-
inition reaches this use. This is indicated by stacks x as being x1. The
variable on the left hand side is changed to a new variable version x2

and top (stacks x) is changed to 2. Since n2 has a successor which has a
φ-instruction, the first variable on the right hand side of this assignment
is renamed to x2. After n2 is processed, stacks x is popped.

• Since n4 is also a child of n1, assume it is picked next. The left hand side
of the φ-instruction is renamed to a new variable x3. Since the values
of top (stacks x) and top (stacks y) are 3 and 1, the assignment following
the φ-instruction is renamed to z1 = y1 ∗ x3. The stacks for x and z are
popped.

• Finally, the block n3 is rewritten as shown in the figure. Since n4 is a
successor of n3 and this has a φ-instruction, the second argument of the
φ-instruction is renamed to x4, the version of x reaching this program
point.

Let Mtrans(n) denote the number of mentions (uses and definitions) of variables in

the block n of the transformed program. Then the algorithm is linear in total number

of mentions of variables in the entire transformed program, i.e., the complexity is

O(Σn(Mtrans(n))).

6.2.4 Correctness of the Algorithm

We now show that the algorithm to calculate the dominance frontier, the φ-placement

algorithm and the renaming algorithm together satisfy the specification of a valid

transformation to SSA form. To do this we first need to prove the following important

property regarding placement of φ-instructions in the transformed program: If two

non-null paths which begin with the definitions of different versions of the same

variable converge at a node n, then there is a φ-instruction for the variable at n. Note

that the definitions at the beginning of the converging paths could themselves involve

φ-instructions.

DEFINITION 6.5 Given a set of nodes S , the join of S is defined as:

join(S) = {n | ∃ converging paths m1
+
→ n and m2

+
→ n, m1,m2 ∈ S } (6.3)

The iterated join of a set of nodes S , denoted ij+(S), is defined as the limit
of the increasing sequence ij i(S):

ij1(S) = join(S) (6.4)

ij i+1(S) = join(S ∪ ij i(S)) (6.5)

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 199

Input: A CFG with φ-instruction inserted.

Output: The same CFG with variables renamed.

Algorithm:
0 for each variable x do

1 { counterx = 0; stacks x = emptyStack

2 }

3 rename(Start)

4

5 function rename(n)

6 { for each assignment a in n do

7 { if a is an ordinary assignment then

8 for each variable x in RHS (a) do

9 replace x by xi where i = top (stacks x)

10 let y be LHS (a) in

11 { i = countery
12 replace y by new variable yi in y = e

13 push i onto stacks y
14 countery = i+1

15 }

16 }

17 for each m ∈ succ(n) do

18 { j = predNumber (m,n)

19 for each φ-instruction a in m do

20 replace j-th operand x in RHS (a) by xi, where i = top (stacks x)

21 }

22 for each m ∈ children(n) do rename (n)

23 for each assignment a in n do

24 pop (stacks z), where z is the original variable of LHS (a)

25 }

FIGURE 6.11

Algorithm for renaming.

The property regarding placement of φ-instructions can now be recast as follows:

If S x is the set of definition involving a variable x in the original program, then there

must be a φ-instruction for x in every node in ij+(S x). To prove this, we need a result

relating the end node of a non-null path with the iterated dominance frontier of the

start node of the path.

LEMMA 6.1

Consider a path ρ : n
+
→ m. We can find a node n� on ρ such that n� ∈ {n} ∪

idf +({n}) and n� dominates m. Further, if n does not dominate each node in ρ,
n� ∈ idf +({n}).

© 2009 by Taylor & Francis Group, LLC

200 Data Flow Analysis: Theory and Practice

n m

n�

o

ρ��
1

ρ�
1

q

m

= n = 0 n� = n = 0

o

ρ��
1

q

(a) (b)

FIGURE 6.12

Figure illustrating Lemma 6.2.

PROOF Clearly, if n dominates each node in ρ, then n� is the same as
n. Now assume that there are nodes in ρ that are not dominated by n. Let
the path ρ be (n = n0,n1, . . . ,nk =m). Since n does not dominate all nodes in ρ,
there will be some nodes in ρ that are in idf +({n}). Let n j be the node with
the largest index j that is in idf +({n}). Claim that n j is the required n�.

Suppose n j does not dominate m. Then consider the closest node ni on ρ
that is not dominated by n j. All nodes in between n j and ni+1 are dominated
by n j. Thus ni ∈ df ({n j}) and since n j ∈ idf +({n}), ni ∈ idf +({n}). Thus n j is not

the node with the largest index that is in idf +({n}).

The second lemma shows that a one step join of two nodes is contained in the

union of their iterated dominance frontier.

LEMMA 6.2

Let n and m be two distinct nodes in the CFG. Then join({n,m}) ⊆ idf +({n})∪

idf +({m}).

PROOF Let o ∈ join({n,m}). Then there are non-null paths ρ1 : n
+
→ o and

ρ2 : m
+
→ o converging at o. From Lemma 6.1, there is a node n� on ρ1 and a

node m� on ρ2 such that both n� and m� dominate o. We prove the lemma by
case analysis:

1. n� is also on ρ2: The general situation is illustrated by Figure 6.12(a)
where ρ1 is a concatenation of the paths ρ�1 and ρ��1 . Of course, one
of the path segments ρ�

1
and ρ��

1
could be null. From the definition of

convergence, n� is the same as o. If n does not dominate all nodes in ρ1

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 201

then Lemma 6.1 gives us n� ∈ idf +({n}) and we are through. If n dominates
all the nodes in ρ1 then the situation is illustrated by Figure 6.12(b)
obtained by considering ρ�

1
to be a null path. Clearly n� and n are the

same and n� ∈ df ({n}). Therefore n� ∈ idf +({n}).

2. m� is also on ρ1: The reasoning for this case is similar to the previous
case.

3. n� is not on ρ2 and m
� is not on ρ1: We shall show that this is not possible.

Since n� and m� both dominate o, from Observation 6.1, either n� �m� or
m� �n�. The condition m� �n� along with n� �o implies that every path
from m� to o has n� on it. In particular, n� is on ρ2. Since this is not
the case, the only possibility is n� �m�. By a symmetrical reasoning, we
also have m� �n�. This gives n� = m� contradicting the initial assumption
that n� is not on ρ2.

It is easy to generalize Lemma 6.2 to any finite set of nodes.

COROLLARY 6.1

For a set of nodes S , join(S) ⊆ idf +(S).

PROOF Induction on the number of nodes in S and use of Lemma 6.2.

We now show that dominance frontier is contained in joins.

LEMMA 6.3

Let S be a set of CFG nodes that contains the Start node. Then df (S) ⊆

join(S).

PROOF Let n ∈ S and m ∈ df ({n}). Then there is a path ρ1 from n to m in
which all the nodes till the predecessor of m are dominated by n. Of course,
m could be the same as n. Further, since m ∈ df ({n}), there is a path ρ2 from
Start to m which does not pass through any node in ρ1 except m. Since the

two paths converge at m, m is in join(S).

We finally show that iterated dominance frontier computes the same set that is

specified by iterated joins.

© 2009 by Taylor & Francis Group, LLC

202 Data Flow Analysis: Theory and Practice

LEMMA 6.4

Let S be a set of nodes in a CFG that contains the Start node. Then

ij+(S) = idf +(S)

PROOF We first prove

ij+(S) ⊆ idf +(S)

by an induction on the iteration index in the definition of ij+. Specifically, we
show that for all k,

ij k(S) ⊆ idf +(S)

Then, since ij+(S) = ij k(S) for some finite k, we shall have shown the con-
tainment in the limit.
Basis: Follows from Corollary 6.1.

ij (S) = join(S) ⊆ idf +(S)

Inductive step:

ij k(S) = ij (S ∪ ij k(S))

⊆ ij (S ∪ idf +(S)) (induction hypothesis, monotonicity of ij)

= join(S ∪ idf +(S)) (definition of ij)

⊂ idf +(S ∪ idf +(S)) (Corollary 6.1)

= idf +(S) (definition of idf)

The proof of idf +(S) ⊆ ij+(S) is very similar.

Let S x represent the set of nodes which contain a definition of x. By our assump-

tion, Start ∈ S x. Therefore ij+(S x) = idf +(S x) for any variable x in the program.

We next prove the first condition in the specification of valid SSA-transformation

is satisfied by the algorithm.

LEMMA 6.5

Each variable in the SSA form program is assigned exactly once.

PROOF After renaming the definition of a variable x in the original
program, counterx is incremented before renaming the next definition. So
there is at most one assignment to a variable xi. Thus we have to show that
for each variable xi which has a use occurrence in the SSA form program,
there is at least one assignment to xi.

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 203

When the renaming algorithm was renaming the use occurrence of x to xi,
the value of top (stacks x) must have been i. Since top(stacks x) is set to a value
i only after renaming a definition of x to xi, there is at least one definition of
xi.

For an assignment statement a, let the notations before(a) and after (a) denote

program points just before and after a. Similarly, if n is a block then after (n) will

denote a program point just after the last statement in n.

Finally we show that the SSA-transformation algorithm maintains semantic invari-

ance. We show that the value of a variable x at a statement in the original program

is the same as the renamed variable at the same statement in the SSA form program.

This requires us to know what the renamed variable at different program points are.

The version of x at the program point p in the transformed program is denoted as

version (x, p). This is the version that corresponds to the value of top(stacks x) when

the renaming algorithm is at the program point p during its traversal of the CFG.

Clearly, the following relations hold:

1. If the statement a1 is followed by the statement a2 in a block, then

version (x,after (a1)) = version (x,before (a2))

2. If a is the last statement in a block n, then

version (x,after(a)) = version (x,after (n))

LEMMA 6.6

Let x be a variable and n→ m be an edge in the CFG such that m does not
have a φ-instruction for x. Then

version (x,after (n)) = version (x,after (idom (m)))

PROOF If n = idom (m), there is nothing to be proven. So assume that
n � idom (m). Since n dominates a predecessor of m (namely itself) and does
not strictly dominate m, m ∈ df (n). Further, from Lemma 6.4, since m does
not have a φ-instruction for x, n does not have a definition for x.

Observe that idom (m) strictly dominates n; otherwise there would be a path
from Start to m through n which bypasses idom (m). Consider the node o that
is closest to m, strictly dominates m and defines x. Then

version (x,after (n)) = version (x,after (idom(m))) = version (x,after (o))

Given a variable x and a control flow path ρ from Start to a program point p, let

val (x,ρ) denote the value of x at program point p when execution takes place along

ρ.

© 2009 by Taylor & Francis Group, LLC

204 Data Flow Analysis: Theory and Practice

n a1 : y = e n

m
a : y = e

a :
m

n a�
1

: y j = e
� n

m
a� : y = e

a :
m

n a�
1

: y j = e
� n

m
a�� : xi = φ(. . .)

a� : y = e
m

(a) (b) (c)

FIGURE 6.13

Figure illustrating Lemma 6.7. (a) represents the original program and (b) and (c)

represent the transformed program.

LEMMA 6.7

Consider a path ρ in the original program from Start to an assignment state-
ment a. Let ρ� and a� be the corresponding path and statement in the SSA-
transformed program. Then, for any variable x,

val (x,ρ) = val (version (x,before(a�)),ρ�)

PROOF The proof is by induction on number of statements in the path
ρ. In the proof, a will denote the last statement of ρ and a� and ρ� will denote
the corresponding statement and path in the transformed program. Further
ρ− {a} will denote the path obtained by deleting the last statement a from ρ.
Basis: Consider the path ρ from Start to the first statement a of the successor

node of Start. Clearly for any variable x,

val (x, ρ) = undef

= val (x0, ρ
�)

= val (version (x, before(a�)), ρ�)

Inductive step: Now assume that the lemma holds for all paths of length
k−1 or less. Consider a path ρ of length k. We consider the following cases.

1. a is not the first statement of the containing block m. Consider the state-
ments before a and a� as shown below. e� has been obtained from e by
renaming each variable y in e to version (y, before(xi = e

�))

x = e xi = e
�

a : a� :

By the induction hypothesis, for any variable y,

val (y, ρ− {x = e}) = val (version (y, before (xi = e
�)),ρ� − {xi = e

�})

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 205

Thus from the induction hypothesis and the semantics of the assignment
statement,

val (x, ρ) = val (version (x, before(a�)),ρ�)

Variables other than x remain unchanged and the statement of the
lemma holds for them because of the induction hypothesis.

2. a is the first statement of the containing block m. Assume that the control
flows along the edge n→ m. This situation is shown in Figure 6.13.
The original program is shown in part (a) and the two cases of the
transformed program are shown in parts (b) and (c). Let the paths to
the end of node n be denoted as ρ1 and ρ�

1
. We first show that for any

variable x, val (x, ρ1) = val (version (x, after (n)), ρ�
1
). Consider the last

statement of n denoted as a1 and the corresponding statement in the
transformed program a�

1
. Because of the induction hypothesis, we have

for any variable y,

val (y, ρ1− {a1}) = val (version (y, before (a�1)), ρ�1 − {a
�
1})

Once again, using the induction hypothesis and the semantics of assign-
ment, we have:

val (x, ρ1) = val (version (x, after (a�1)), ρ�1)

and therefore

val (x, ρ1) = val (version (x, after (n)), ρ�1)

We now have to show that the values of any variable x and its renamed
version version (x, before(a�)) match. For this consider two subcases:

(a) m does not have a φ-instruction for x. Let the path to the imme-
diate dominator of m be ρ��

1
. Then:

val (x,ρ) = val (x, ρ1)

= val (version (x, after (n)), ρ�1)

= val (version (x, after (idom(m))), ρ��1) (Lemma 6.6)

= val (version (x, before(a�)), ρ�)

(Renaming algorithm, line 22)

(b) If m has a φ-instruction for x, then:

val (x, ρ) = val (x, ρ1)

= val (version (x, after (n)), ρ�1)

= val (version (x, before (a��)), ρ�1)

(Renaming algorithm, lines 18-20)

= val (xi, ρ
�) (Semantics of φ-instruction)

= val (version (x, before (a�)), ρ�)

(Renaming algorithm, line 8-9)

© 2009 by Taylor & Francis Group, LLC

206 Data Flow Analysis: Theory and Practice

The following theorem ties the previous results into an statement of correctness of

the entire algorithm.

THEOREM 6.1

The algorithms for φ-placement and renaming together constitute a valid SSA-
transformation.

PROOF Follows from Lemmas 6.5 and 6.7.

We finally prove a property about programs in SSA form that will be used in

later sections. Let the program point associated with the definition of a variable

x be represented as def (x). This is the point just before the statement that has a

definition of x, where the defining statement may also be a φ-instruction. Program

points associated with the uses of a variable x are denoted as use (x), and are defined

as follows:

DEFINITION 6.6 A program point p is in use (x) iff

1. The statement just after p is an ordinary assignment (not a φ-instruction)
and x occurs on the right hand side of the assignment.

2. p is after (n), n is the ith predecessor of a block m and m contains a
φ-function with x as the ith argument.

We shall use the term use (x) to refer to any of the points denoted by it.

LEMMA 6.8

(SSA dominance property) Consider the SSA transformation of a strict pro-
gram. For any variable x in the transformed program, def (x) �use (x).

PROOF Because of the semantic invariance property of an SSA transfor-
mation, the SSA of a strict program is also strict. Now assume that there is a
use of a variable that is not dominated by its definition. By Lemma 6.5, the
variable has a single definition. If this definition does not dominate the use,
then the SSA form program is not strict, a contradiction.

The program in SSA form must be finally converted into executable code. How-

ever no real processor has instructions that can directly capture the semantics of

φ-instructions. Therefore the φ-instructions have to be replaced by code fragments

inserted at appropriate places. The elimination of φ-instructions from a program

in SSA form is called SSA destruction. The intermediate form of the program that

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 207

n1
y = 5

x1 = 3
n1

n2 x2 = y n2

n3
x3 = φ(x1, x2)

z = x3
n1

n1
y = 5

x1 = 3
n1

n2 x2 = y n2

n3
x3 = φ(x1,y)

z = x3
n1

(a) (b)

n1
x = 5

x = 3
n1

n2 x2 = y n2

n3 z = x n3

n1

y = 5

x1 = 3

x3 = x1

n1

n2 x3 = y n2

n3 z = x3 n3

(c) (d)

FIGURE 6.14

(a) A program in CSSA form. (b) The same program in TSSA form after copy

propagation. (c) Eliminating φ assignments by merging variable versions results in

an incorrect program. (d) A correct program obtained by inserting copy statements.

emerges as the result of applying the SSA construction algorithm discussed earlier

is called canonical SSA (CSSA). This is to distinguish it from the SSA form after

optimizations called transformed SSA (TSSA).

6.3 Destruction of SSA

Before embarking on the issues related to SSA destruction, we define live ranges

for SSA form programs. Recall that the last use of the ith argument of a φ-function

© 2009 by Taylor & Francis Group, LLC

208 Data Flow Analysis: Theory and Practice

in a block n is considered to be at the end of the ith predecessor block of n. This

means that this argument, say xi, is not live at the entry of the block containing the

φ-instruction. In contrast, the result of a φ-instruction is live at the entry of the block

containing the φ-instruction. This follows from the semantics of φ-instruction which

places a copy statement . . . = xi on the edge from the ith predecessor to n.

DEFINITION 6.7 The live range of a variable is its def-use chain. It
includes all the program points between the definition and each of its uses.
Two live ranges interfere if there is a program point that is common to both
the live ranges.

Because of the single definition property of SSA form programs, the definition

associates a live range with a variable. In contrast, for non-SSA form programs, the

live range is defined as the maximal union of intersecting def-use chains‡. Since

def-use chains for SSA form programs do not intersect, the simple definition given

above suffices.

A naive method to convert a SSA form program into an executable form may sim-

ply merge different versions of the same variable into one. While merging variable

versions may be a trivial matter for a CSSA—it simply means going back to the orig-

inal program—it can affect correctness in the case of TSSAs. Figure 6.14(a) shows

an example of a program in CSSA form. Part (b) shows copy-propagation applied to

the program. Notice that the definitions of both y and x1 interfere at the end of the

predecessor block n1. This has important consequences for SSA destruction. Part

(c) shows the result of replacing y, x1 and x3 by a single variable x and eliminating

the φ-instruction. The resulting program is incorrect. However, in keeping with the

semantics of the φ-instruction, we can insert copy statements at the end of blocks n1

and n2. This is shown in part (d). While this is correct for this example, we shall

show later that removing φ-instructions by inserting copy statements may still result

in incorrect programs. Besides, the copy at the end of n1 is obviously redundant.

The subtleties involved in SSA destruction through insertion of copy statements are

illustrated through two well-known problems called the lost-copy problem and the

swap problem.

The lost copy problem is illustrated in Figure 6.15 on the next page. The original

program and its SSA form are shown in Figures 6.15, parts (a) and (b). The program

after copy propagation and dead-code elimination is shown in part (c). Finally, part

(d) shows the program after insertion of copy statements. The resulting program is

incorrect because it prints the value of x in the last iteration instead of the penultimate

iteration.

The reason for the incorrectness is a departure from the semantics of φ-instructions.

This requires us to insert the copy x3 = x2 on the back edge from node n2 to itself.

This edge is a critical edge. An edge n→ m is a critical edge if n has more than one

successor and m has more than one predecessor. What we have done is to hoist the

‡Also called a web.

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 209

n1 x = 1 n1

n2

y = x

x = x+1

x3 2

n2

n3 print(y) n3

n1 x1 = 1 n1

n2

x3 = φ(x1, x2)

y = x3

x2 = x3+1

n2

n3 print(y) n3

n1 x1 = 1 n1

n2

x3 = φ(x1, x2)

x2 = x3+1

y x3

n2

n3 print(x3) n3

n1
x1 = 1

x3 = x1
n1

n2

x3 = φ(x3, x3)

x2 = x3 +1

x3 = x2

n2

n3 print(x3) n3

(a) (b) (c) (d)

FIGURE 6.15

The lost copy problem.

copy statement across the critical edge. As a result this copy interferes with the live

range of x3 (shown using the dotted arrow).

The swap problem: The swap problem is illustrated in Figure 6.16 on the follow-

ing page. In this case also the problem arises because the process of SSA destruction

does not follow the semantics of φ-instructions. The program in Figure 6.16(c) is

correct because of the implied translation of the φ-instruction to the simultaneous

assignment x3 = y3 || y3 = x3. The actual translation, however, replaces the simulta-

neous assignment by a sequence of assignments resulting in a dependence between

them.

6.3.1 An Algorithm for SSA Destruction

Since the algorithm will require us to talk about variables which are related through

φ-instructions, we introduce the following definitions.

DEFINITION 6.8 A pair of variables are φ-related if they occur in the
same φ-instruction.

The idea of variables related through φ-instructions, which we have been infor-

mally calling variable versions, is captured through φ-congruence.

DEFINITION 6.9 For a SSA variable x, φ-congruence(x) is the least set
defined by the following two rules:

1. if y and x are φ-related, then y is in φ-congruence(x).

2. if y and z are φ-related and z is in φ-congruence(x) then y is in φ-
congruence(x).

© 2009 by Taylor & Francis Group, LLC

210 Data Flow Analysis: Theory and Practice

n1
x = 1

y = 2
n1

n2

tmp = x

x = y

y = tmp

n2

n3 print(x,y) n3

n1
x1 = 1

y1 = 2
n1

n2

x3 = φ(x1, x2)

y3 = φ(y1,y2)

tmp = x3

x2 = y3

y2 = tmp

n2

n3 print(x3,y3) n3

n1
x1 = 1

y1 = 2
n1

n2

x3 = φ(x1,y3)

y3 = φ(y1, x3)

y x3

n2

n3 print(x3,y3) n3

n1

x1 = 1

y1 = 2

x3 = x1

y3 = y1

n1

n2

x3 = φ(x3, x3)

y3 = φ(y3,y3)

x3 = y3

y3 = x3

n2

n3 print(x3,y3) n3

(a) (b) (c) (d)

FIGURE 6.16

(a) The original program (b) After conversion to SSA form (c) After copy propaga-

tion (d) Destruction of the SSA form program through copying results in an incorrect

program.

In other words, variables in φ-congruence(x) are directly or transitively connected

to x through φ-instructions. Further, if y is in φ-congruence(x) then x is also in φ-

congruence(y), and we say that x and y are in the same φ-congruence class. The

notion of φ-congruence class is very similar to the notion of live range (or web) for

programs which are not in SSA form.

For a program in CSSA form, all variables that are in the same φ-congruence class

can be replaced by a common variable and the φ-instruction can be eliminated. Our

objective now is to modify TSSA programs so that φ-instructions can be eliminated

in the same way as CSSA programs, i.e., by renaming φ-congruence variables to the

same name.

The reason why SSA-destruction through merging of φ-congruent variables poses

problems in the case of TSSA programs can be better explained through live ranges.

Observe in part (a) of Figure 6.17 on the next page that the φ-congruent variables

x1 and y interfere with each other and thus cannot be replaced by the same variable.

Replacing both the variables by a single variable effectively kills the earlier defini-

tion. So a key idea might be to make the φ-congruent variables non-interfering by

inserting copy statements. As shown in part (b) of the figure, this has been achieved

for the example by inserting the copy statement x�
1
= x1 in block n1, x�

2
= y in block

n2 and x3 = x
�
3 in n3. Further, the φ-instruction has been rewritten to refer to the new

variables x�
1
, x�

2
and x�

3
. Since the live ranges of these φ-variables are non-interfering,

they can be renamed to a single variable x and the φ-instruction can be eliminated.

The result is shown in Figure 6.17(c).

A further refinement of the idea is to minimize the number of copy instructions by

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 211

n1
y = 5

x1 = 3
n1

n2 x2 = y n2

n3
x3 = φ(x1,y)

z = x3
n3

n1

y = 5

x1 = 3

x�1 = x1

n1

n2 x�
2
= y n2

n3

x�
3
= φ(x�

1
, x�

2
)

x3 = x
�
3

z = x3

n3

(a) (b)

n1

y = 5

x1 = 3

x = x1

n1

n2 x = y n2

n3
x3 = x

z = x3
n3

n1
y = 5

x1 = 3
n1

n2 x�
2
= y n2

n3
x3 = φ(x1, x

�
2
)

z = x3
n3

(c) (d)

FIGURE 6.17

(a) Interference of Live ranges of the φ variables x1 and y. The dashed lines represent

live ranges of variables. (b) Breaking the interference through copy statements. The

new φ variables x�
1

and x�
2

do not interfere. (c) Eliminating φ assignments now results

in a correct program. (d) The copy statement for x1 is redundant.

introducing the copy statement x�
2
= y only. This also makes the live ranges of the

φ-variables x1, x�2 and x3 non-interfering. The result of this minimization is shown

in Figure 6.17(d). Observe that inserting a copy statement x�
1
= x1 at the end of block

n1 instead of x�
2
= y does not break the interference between the live ranges of the

variables x�
1

and y which are now φ-congruent.

The basis for the decision that the insertion of a single copy statement x�2 = y is

enough is as follows. First notice that the only interference that has to be broken is

between x1 and y; x3 does not interfere with these variables. Now y is live at the

exit of n1. Therefore insertion of a copy statement x�1 = x1 at the end of n1 is useless

since the new φ-congruent variables x�
1

and ywill still continue to interfere. However

insertion of the statement x�2 = y creates the φ-congruent variables x1 and x�2 which

© 2009 by Taylor & Francis Group, LLC

212 Data Flow Analysis: Theory and Practice

liveout(n1) = {x1, x3}
liveout(n2) = {x2}
liveout(n3) = {x3}

n1
x3 = 5

x1 = 3
n1

x2 = y

n2 x2 = y n2n3 x2 = y n3

n0 x0 = φ(x1, x2, x3) n0

x1

x3

x2

liveout(n1) = {x1, x2}
liveout(n2) = {x2, x4}

n3 x3 = φ(. . . , x4) n3

n1
x1 = φ(. . . , x3)

x2 = y
n1

n2 x4 = y n2

n0 x0 = φ(x1, x2) n0

x1
x2

(a) (b)

FIGURE 6.18

(a) Example to illustrate the condition when both φ-congruent(xi)∩ liveout(n j) = φ

and φ-congruent(x j) ∩ liveout(ni) = φ. Live ranges and liveout sets are shown.

(b) Example illustrating the condition φ-congruent(xi) ∩ liveout (n j) � ∅ and φ-

congruent(x j)∩ liveout(ni) � ∅.

do not interfere with each other.

The algorithm systematically creates φ-congruent classes that are non-interfering.

Initially φ-congruent(x) is set to {x} for every variable x. It considers in sequence all

the φ-instructions. For each pair of operands xi and x j mentioned in a φ-instruction,

it checks whether φ-congruent(xi) interferes with φ-congruent(x j). If it does not,

φ-congruent(xi) and φ-congruent(x j) are merged into the same φ-congruent class.

Otherwise copy statements are inserted to change the variables in the φ-instruction

itself so that the φ-congruence classes of the new variables are non-interfering. The

method for choosing the copy statement to be inserted is described below. In the

description below, n is the block that contains the φ-instruction, ni refers to the ith

predecessor of n, and xi and x j are the interfering variables. We first consider the

case when both xi and x j are arguments of the φ-instruction:

1. φ-congruent(xi)∩ liveout(n j) � ∅ and φ-congruent(x j)∩ liveout(ni) = ∅: This

situation is similar to Figure 6.17 with y playing the role of xi and x1 playing

the role of x j. In this case, a copy statement x�
i
= xi is needed at the end of ni.

xi is marked to record this fact.

2. φ-congruent(x j)∩ liveout(ni) � ∅ and φ-congruent(xi)∩ liveout(n j) = ∅: This

is similar to the previous situation and the variable x j is marked.

3. φ-congruent(xi)∩ liveout(n j) = ∅ and φ-congruent(x j)∩ liveout(ni) = ∅: This

situation is as shown in Figure 6.18(a), where x2 and x3 play the roles of xi

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 213

xi = φ(. . . , x j) xi

x j

xi = φ(. . . , x j)
xi x j

x j

xi = φ(. . . , x j)
xi

x j

xi = φ(. . . , x j) xi
x j

x j

(a) (b) (c) (d)

FIGURE 6.19

Interference between argument and result variables of a φ-instruction.

and x j. In this case, either a copy statement x�
2
= x2 at the end of n2 or a

copy statement x�
3
= x�

3
at the end of n3 will break the interference. The better

choice is to insert x�2 = x2 as it will also break the interference between x3 and

x1. Since we cannot know this till we examine the pairs x1 and x2, we defer

the insertion of the copy statement till we have examined all the pairs.

4. φ-congruent(xi)∩ liveout(n j) � ∅ and φ-congruent(x j)∩ liveout(ni) � ∅: This

situation is represented by Figure 6.18(b) with x1 and x2 playing the roles of xi
and x j. Note that x4 is in φ-congruence(x1). In this situation copy statements

are needed for both xi and x j, so both the variables are marked.

When one of the interfering variables, say xi, is the result and the other variable

x j is an argument of the φ-instruction, the situation is slightly more complex. The

program point for inserting the copy statement involving the result variable is just

after the φ-instruction. Consider the block which has the φ-instruction. As shown in

Figure 6.19(a)–(d), there are four cases:

1. φ-congruent(xi)∩ liveout (n) � ∅ and φ-congruent(x j)∩ livein(n) = ∅: We have

to insert the copy statement xi = x
�
i

just after the φ-instruction. The result

variable of the φ-instruction is changed to x�
i
.

2. φ-congruent(xi)∩ liveout(n) = ∅ and φ-congruent(x j)∩ livein(n) � ∅: As we

shall see later when we re-examine the swap problem, this situation occurs

when x j is also the result of a subsequent φ-instruction. This requires the copy

statement x�
j
= x j. The argument variable x j is changed to x�

j
.

3. φ-congruent(xi)∩ liveout(n j) = ∅ and φ-congruent(x j)∩ liveout(ni) = ∅: Here

we can insert either a copy statement for xi or for x j. As explained earlier, the

choice is deferred.

4. φ-congruent(xi)∩ liveout(n j)� ∅ and φ-congruent(x j)∩ liveout(ni)� ∅: In this

situation copy statements are needed for both xi and x j.

The variables for which copy statements are to be inserted are added to a marked or

deferred list as before. After all variables have been considered, we obtain two lists—

a list of variables which have been marked and for which we need copy statements

© 2009 by Taylor & Francis Group, LLC

214 Data Flow Analysis: Theory and Practice

Input: A CFG of a TSSA program.

Output: The corresponding program with the φ-instructions eliminated.

Algorithm:
0 Initialize the φ-congruent class of each φ variable x to {x}.

1 for each φ-instruction I do

2 { Initialize the marked and deferred lists to the empty list.

3 for each pair xi and x j of argument variables in I do

4 if xi and x j interfere, then proceed according to the four cases

described in Section 6.3.1.

5 for the result variable xi and each argument variable x j do

6 if xi and x j interfere, then proceed according to the four cases

described in Section 6.3.1.

7 if a variable x is in the marked list, then remove all pairs which have x as

one of the components from the deferred list.

8 while there are elements in the deferred list do

9 { Select the variable x that appears maximum number of times in the

deferred list.

10 Insert x in the marked list.

11 Remove all pairs which have x as one of the components from the

deferred list

12 }

13 for each element x in the marked list do

14 { Insert the copy statement x� = x at the appropriate program

point.

15 Update I to contain x� instead of x.

16 Modify the interference graph to reflect this change.

17 }

18 Put all the variables of I in the same congruence class.

19 }

20 Eliminate all φ-instructions.

FIGURE 6.20

An algorithm for SSA destruction.

and the other a list of pair of variables, the choice from which has been deferred. We

now choose a variable which appears the largest number of times in the deferred list

and enter it in the marked list. All pairs in which it appears are removed from the

deferred list. This is repeated till the deferred list is empty.

The last step consists of taking each variable from the marked list, inserting a copy

statement for the variable, updating the φ-instruction, and updating the live ranges of

the old and the new variables. The φ-instructions which now contain variables in the

same φ-congruent class are now eliminated. The algorithm for breaking interference

through insertion of copy statements is shown in Figure 6.20.

We now explain how the algorithm works on the lost-copy problem and the swap

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 215

n1 x1 = 1 n1

n2
x3 = φ(x1, x2)

x2 = x3 +1
n2

n3 print(x3) n3

x3

x2

n1 x1 = 1 n1

n2

x�
3
= φ(x1, x2)

x3 = x
�
3

x2 = x3 +1

n2

n3 print(x3) n3

(a) (b)

n1
x1 = 1

y1 = 1
n1

n2

x3 = φ(x1,y3)

y3 = φ(y1, x3) n2

n3 print(x3,y3) n3

x3,y3

n1
x1 = 1

y1 = 1
n1

n2

x�
3
= φ(x1,y

�
3
)

y3 = φ(y1, x3)

x3 = x
�
3

y�
3
= y3

n2

n3 print(x3) n3

y3

x3

n1
x1 = 1

y1 = 1
n1

n2

x�
3
= φ(x1,y

�
3
)

y3 = φ(y1, x
��
3)

x3 = x
�
3

y�
3
= y3

x��
3
= x3

n2

n3 print(x3,y3) n3

(c) (d) (e)

FIGURE 6.21

Illustrating the effect of the algorithm on the lost-copy (Figures (a) and (b)) and the

swap problem (Figures (c), (d) and (e)).

problem. Consider the SSA corresponding to the lost-copy problem shown in part

(a) of Figure 6.21. The live ranges of x2 and x3 interfere. While x3 is in liveout(n2),

x2 is not in livein(n2). Therefore, as shown in Figure 6.21(b), a copy x3 = x
�
3

inserted

after the φ-instruction breaks the interference.

The SSA form of the program illustrating the swap problem is shown in Fig-

ure 6.21(c). The live ranges of both x3 and y3 span the entire block n2. Now consider

the first assignment. Since x3 is in liveout (n2) a copy is needed for x3. Similarly,

since y3 is in livein(n2), a copy is needed for y3. Now there is no interference be-

tween the variables of the first assignment. Considering the second assignment in

Figure 6.21(d), we see that the live ranges of y3 and x3 interfere. However, neither

y3 is in liveout(n2) nor x3 is in livein(n2). Therefore a copy statement for either x3

or y3 can be inserted. We choose x3 and the result is shown in Figure 6.21(e).

© 2009 by Taylor & Francis Group, LLC

216 Data Flow Analysis: Theory and Practice

6.3.2 SSA Destruction and Register Allocation

In the traditional sequence of events during compilation, the program in SSA form is

destructed before register allocation takes place. However, as we shall explain later,

the SSA form program has properties that are useful for register allocation through

graph coloring. After register allocation is done, SSA destruction can be viewed as

a form of coalescing registers.

Overview

The idea behind register allocation through graph coloring is as follows. The main

data structure used is a graph called interference graph. An interference graph has a

node for every live range in the program. Since, for programs in SSA form, each live

range corresponds to a variable, we can also associate the nodes of the interference

graph with variables. An edge is drawn between live ranges if they interfere, i.e., they

range over common program points. In such a situation, the variables corresponding

to the live ranges cannot be allocated the same register. Thus the problem of register

allocation reduces to one of coloring the interference graph with a number of colors

equal to the number of available registers so that no two adjacent nodes have the

same color.

The chromatic number of a graph is the minimum number of colors required to

color a graph as described above. If the chromatic number of a graph is larger than

the number of available registers, then an attempt is made to reduce the interference

by spilling, i.e., inserting stores after definitions and loads before uses. This effec-

tively replaces a long live range by a number of shorter live ranges. The reduction in

interference has the possible consequence of bringing down the chromatic number.

As shown in Figure 6.22, a typical register allocator that uses graph coloring re-

peats the following steps till the graph is colored.

1. Constructing or updating the interference graph.

2. Coalescing live ranges. If the live range of x ends with a copy statement to

y, then the live ranges for x and y can be combined by replacing subsequent

references to the uses of y in the live range by x and eliminating the copy. As

this will change the interference graph, it has to be updated.

3. Attempt to color nodes. If this requires a node to be spilled, the interference

graph has to be updated. So we go back to step 1.

There are two problems with this approach. While coalescing eliminates copy

statements, it might also result in a graph with a larger chromatic number. Moreover,

since every spill may not reduce the chromatic number of the graph, the interference

graph may have to be constructed several times. This can be costly.

Now consider register allocation for a program in SSA form. We shall show that

the interference graph of a SSA form program is a special kind of graph called

chordal graph. The chromatic number of such a graph is the same as the size of

the largest clique. Moreover, the largest clique in a SSA form program is equal to

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 217

build/update

interference

graph

build / update

interference

graph

build/update

interference

graph
coalesce

build/update

interference

graph

attempt to

color

build/update

interference

graph

spill

(a)

build/update

interference

graph

spill

build/update

interference

graph
color

build/update

interference

graph
coalesce

(b)

FIGURE 6.22

(a) Traditional register allocation. (b) Register allocation for SSA form programs.

the maximum number of variables live at a program point. So we can spill variables

till the largest number of variables live at any program point equals the given number

of registers. The interference graph of the resulting program is now guaranteed to be

colorable with colors equal to the available number of registers. In fact, for the SSA

form program, there is also an efficient algorithm to find the coloring.

While variables are replaced by registers after coloring, the φ-instructions are still

present. As mentioned earlier, SSA destruction is a form of coalescing. For instance,

assume that the φ-instructions in a basic block are:

R1 = φ(R1,R3)

R2 = φ(R2,R4)

For both the φ-instructions, the first operand is the same as the result and therefore

no transfer of values need take place. An attempt is made to recolor R3 to R1 and R4

to R2. If this succeeds, then the φ-instructions can simply be eliminated. Otherwise

copy instructions must be inserted.

The overall scheme for register allocation for SSA form programs is shown in

Figure 6.22(b). Note that the process is not iterative. More importantly, all the above

steps can be carried without constructing the interference graph.

© 2009 by Taylor & Francis Group, LLC

218 Data Flow Analysis: Theory and Practice

Spilling

We now show certain properties of interference graphs of SSA form programs which

makes it easy to determine whether enough variables have been spilled so as to make

the interference graph colorable.

LEMMA 6.9

Let a variable x be live at a program point p. Then def (x) � p.

PROOF Assume to the contrary that def (x)� p. Since x is live at p, there
is a path from p to some use of x, use (x). Then def (x)�use (x) contradicting

the SSA dominance property (Lemma 6.8).

LEMMA 6.10

If x and y interfere either def (x)�def (y) or def (y)�def (x).

PROOF Since x and y interfere, there is a program point p where they are
both live. From Lemma 6.9, both def (x) and def (y) dominate p. The result

then follows from Observation 6.1.

LEMMA 6.11

Assume def (x)�def (y). Then x and y interfere if and only if then x is live at
def (y).

PROOF The if part is obvious. For the only if part observe that under
the condition def (x)�def (y) if x is not live at def (y) then there is no point p
such that x is live at p and there is a path from def (y) to p. It follows that x

and y cannot interfere, leading to a contradiction.

LEMMA 6.12

Let x — y and y — z be edges in the interference graph G of a SSA form
program. Further, assume that x — z is not an edge in G. If def (x)�def (y),
then def (y)�def (z).

PROOF Since x and y interfere and def (x)�def (y), x must be live at
def (y). Further, since y and z interfere, either def (y)�def (z) or def (z)�def (y).
If def (z)�def (y), then z must also be live at def (y) and x and z interfere. This

is a contradiction and we must have def (y)�def (z).

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 219

x = . . .

y = . . .

z = . . .

. . . = x

z = . . .

. . . = y

. . . = z

FIGURE 6.23

An example to show that Lemma 6.14 does not hold for programs not in SSA form.

LEMMA 6.13

Let G be the interference graph of a program in SSA form and let C ⊆ G
be a clique whose vertex set is {x1, . . . , xn}. Then there is a permutation π of
{1, . . . ,n} such that def (xπ(1))� , . . . , �def (xπ(n)).

PROOF For i, j ∈ {1, . . .n}, xi and x j interfere. Therefore from Lemma 6.10,
either def (xi)�def (x j) or def (x j)�def (xi). π can be obtained by sorting {x1, . . . , xn}

on � .

LEMMA 6.14

Let G be the interference graph of a program in SSA form and let C ⊆G be a
induced subgraph with vertex set {x1, . . . , xn}. C is a clique if and only if there
is a program point where x1, . . . , xn are all live.

PROOF The if part is trivial. Let C be a clique. By Lemma 6.13, there
is a permutation π of {1, . . . ,n} such that def (xπ(1))� . . . �def (xπ(n)). Therefore,

from Lemma 6.11, x1, . . . , xn are all live just after def (xπ(n)).

The above lemma does not hold for programs which are not in SSA form. Con-

sider, for example, Figure 6.23. The live ranges of x, y and z form a clique in the

interference graph. However, there is no program point where all three variables are

live.

DEFINITION 6.10 A chordal graph is a graph which does not have any
induced cycle of length more than three.

© 2009 by Taylor & Francis Group, LLC

220 Data Flow Analysis: Theory and Practice

3

1

2

4
6

7

5

FIGURE 6.24

Example of a chordal graph.

Figure 6.24 gives an example of a chordal graph.

An interesting property of a chordal graph is its chromatic number is the same

as the size of its largest clique. This can be seen in the example graph where the

maximum clique size is three which is also the minimum number of colors required

to color the graph. Therefore, if we can show that the interference graph of a pro-

gram in SSA form is chordal, then, by Lemma 6.14, its chromatic number will be

determined by the largest liveness set at any point in the program.

LEMMA 6.15

Let G be an interference graph of a program in SSA form. Then G is chordal.

PROOF Assume to the contrary that it is not. Then there will be at least
one induced cycle C = x1, x2, . . . , xn, x1 with n ≥ 4. Now consider the sequence
x1, x2, . . . , xn. Clearly, we do not have an edge xi — x j, such that j > i+1, or C
would not be a cycle.

Since x1 and x2 interfere, either def (x1)�def (x2) or def (x2)�def (x1) by
Lemma 6.10. Assume without loss of generality, def (x1)�def (x2). Since
x2 — x3 is an edge and x1 — x3 is not an edge, by Lemma 6.12, def (x2)�def (x3).
Using this idea, we can show by induction that there is a chain of dominance
def (x1)�def (x2)� . . . �def (xn).

Now since x1 and xn interfere, there is a program point p where both x1

and xn are live. Further, by Lemma 6.9, def (xn) dominates p. Because of the
chain of dominances each def (xi) dominates p.

Consider a xi, where i is not 1 or n. Since def (xi) dominates p and does
not dominate def (x1), there is at least one path from def (xi) to p that does
not have a definition of x1. Thus x1 is live at def (xi). This means there is an
interference edge between 1 and i, leading to a contradiction.

The Spilling Algorithm

The chromatic number of an SSA form program is the same as the maximum number

of variables that are live at any point in the program. Hence we should ensure through

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 221

spilling that the size of the set of live variables at any program point is no larger than

the available number of registers. This is done without constructing the interference

graph.

For every variable x we assume that there is a memory location x. These memory

locations are not in contention for registers. A spill is an assignment x = x. A reload

of a variable is an assignment x = x. For every basic block, the spilling algorithm

decides:

1. The variables that get into registers at the entry of the basic block.

2. For every assignment statement, the variables that have to be spilled so that

the operands on the right hand side of the assignment can be accommodated

into registers, by reloading if necessary.

The spilling decision at a program point is based on the nearest distance at which a

variable is subsequently used. We call this the next use of the variable and is captured

through a function called nextuse . The next variable to be spilled at a program point

is the one whose next use is the farthest. This is with the expectation that a free

register can be found for the variable by the time the next use is reached.

For a basic block n and a variable x, the function nextuse is defined as follows:

nextuse (n, x) =



∞ x is not live

0 x is used in n

1+ min
n�∈succ(n)

nextuse (n�, x)

Assume that the number of available registers is k. At the entry of each block,

we consider only the variables that are live and select k variables with the lowest

nextuse . These are the variables to be held in registers at the entry of the block.

Similarly, for an assignment p : x = op(y1, . . .yi), if any of the variables y1, . . . , yi
have to be brought into a register, the variable zwith the highest value of nextuse (p,z)

value is spilled. Since the assignment to x takes place after the computation of

op (y1, . . .yi), to find a register for x, we spill the variable z with the highest value

of minp�∈succ(p) nextuse (p�,z).

Let us assume that based on the above consideration, we have decided to assign

registers to the set of variables I at the beginning of a basic block n. Consider any

predecessor n� of n. If O is the set of variables that have been decided to be kept in

registers at the exit of the predecessor, we have to reload the variables in I−O at the

edge connecting n� and n.

Reloads introduce definitions that were not present in the original program. As a

result of reloads, the program may not be in SSA form. However, for the PEO based

coloring that we discuss later to be applicable, the program must be brought back to

SSA form. We explain with an example how this is done.

Assume that in Figure 6.25(a), the variable x1 had to be reloaded in block n3 so

that the program is no longer in SSA form. We have to bring the program back to

SSA form and rewrite the uses of x1. We start by calculating the iterated dominance

frontier of the node n3 which contains the reload. Next, the variable x1 in n3 is

© 2009 by Taylor & Francis Group, LLC

222 Data Flow Analysis: Theory and Practice

n1 x1 = . . . n1

n2 x1 = . . . n2

n3 x1 = x1 n3

n4 x1 = . . . n4

n5 x1 = . . . n5

n6 x4 = φ(x3, x1) n6

n1 x1 = . . . n1

n2 x1 = . . . n2

n3 x5 = x1 n3

n4 x7 = φ(x1, x5) n4

n5 x6 = φ(x1, x7) n5

n6 x4 = φ(x3, x6) n6

(a) (b)

FIGURE 6.25

Example to illustrate SSA reconstruction.

renamed to a new variable x5 to bring back the single definition property of SSA

form. We now rewrite the use occurrence of each variable to the definition reaching

it. In the process φ-instructions are inserted wherever necessary.

To start with, we have to decide how to rewrite the use of x1 in n6. We observe that

the predecessor n5 of n6 is in the iterated dominance frontier of n3. Since this does not

have a φ-instruction for x1, we have to insert one. The result of this φ-instruction, x6,

is the definition reaching x1 and thus will replace x1. Now we recursively try to find

the definitions reaching the first and second argument of the inserted φ-instruction

at n5. The definition reaching the first argument comes from x1 at n1. The search

for the definition reaching the second argument results in the insertion of another

φ-instruction at n4. The result of this φ instruction, x7, reaches the second argument

of the φ function at n5. The arguments of the φ function at n4 are similarly found to

be x1 and x5.

Coloring

We now describe properties of a chordal graph due to which it can be colored effi-

ciently.

DEFINITION 6.11 A node in a graph G is called simplicial if its neigh-
boring nodes induce a clique in G.

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 223

DEFINITION 6.12 A perfect elimination order (PEO) of a graph G is an
order based on elimination of the nodes of G as follows: At each step eliminate
a simplicial node in the remaining graph.

It can be verified that 1,2,4,3,6,5,7 is a PEO for the graph in Figure 6.24.

Let the maximum size of a clique in a graph be k. Consider the following proce-

dure to color the graph with k colors using a PEO ordering: Starting with the empty

graph, at each step we color and add a node, say n, in reverse order of PEO . While

adding n we are assured that its neighbors form a clique of size at most k−1. Thus a

color can always be found for n.

A graph is chordal if and only if it admits of a PEO ordering. If a graph has a

PEO , not only is its colorability equal to the maximum size over all cliques of the

graph, there is a polynomial time algorithm to obtain the coloring.

In the context of programs in SSA form, the following result gives a PEO of

interference graphs and thus forms the basis of the coloring algorithm.

LEMMA 6.16

Let G be the interference graph of a program in SSA form. Consider an
ordering of the nodes of the graph in which a node v is included only if all the
nodes whose definitions are dominated by the definition of v have been already
added to the ordering. Then the ordering is a PEO .

PROOF We have to show that v is simplicial at the point when it is
included in the ordering. Consider two nodes u and x both of which interfere
with v. Then we have to show that u and x interfere with each other.

Since the nodes v and u interfere, following Lemma 6.10 we have either
def (v)�def (u) or def (u)�def (v). Since all definitions that are dominated by u
have already been added to the ordering and eliminated from the interference
graph, it must be the case that def (u)�def (v). Therefore u is live at def (v).
For similar reasons x is also live at def (u). Thus u and x interfere.

The function colorNode uses the dominator based PEO to color the interference

graph and is shown in Figure 6.26. The function is initially called with Start. It

processes a node in the dominator tree before processing its children, and within a

node it processes the statements in sequence. This ensures that the corresponding in-

terference graph is colored in reverse PEO order. Observe that this happens without

actually constructing the interference graph.

Coalescing by Recoloring

At the end of the coloring phase, the residency of variables in registers is as follows:

1. Some variables which do not participate in any φ-instruction could be assigned

registers. If such a variable is live across a join node, it is held in a register

© 2009 by Taylor & Francis Group, LLC

224 Data Flow Analysis: Theory and Practice

Input: A node n of the CFG of the SSA form program, the dominator tree of the

CFG and the set of live variables at the entry of n. The function color returns the

color of a already colored node.

Output: A coloring of the variables in n.

Algorithm:

0 function colorNode(n)

1 { allocated = ∅

2 for each variable x in livein(n) do

3 { allocated = allocated ∪color (x)

4 for each statement s in n in sequence do

5 for each variable y used in s do

6 { if the last use of y is in s then

7 allocated = allocated − {color (y)}

8 let x be the variable defined in s and c be an unallocated color

in

9 { color (x) = c

10 allocated = allocated − {c}

11 }

12 }

13 }

14 for each child m of node n do colorNode(m)

15 }

FIGURE 6.26

Algorithm for coloring the interference graph.

along all paths reaching the join node. This situation is different for a φ vari-

able which could be held in a register along one of the paths reaching the join

point.

2. If the result of a φ-instruction is in a register, then it is ensured that the argu-

ments of the φ-instruction are also in registers. Since the number of registers

available for allocation to φ-variables is the same along all paths to a join node,

the result of the coloring algorithm can always be altered to satisfy this condi-

tion. Similarly, if the result of a φ-instruction is a memory location, then the

arguments of the φ-instruction are also made to reside memory locations.

The destruction of φ-instructions is viewed as a form of coalescing. Let alloc be

an assignment of variables to registers and consider the φ-instruction

alloc(y) = φ(alloc(x1), . . . ,alloc(xi), . . . ,alloc(xn))

Destruction of this φ-instruction is the transfer of values from the registers alloc (xi)

to alloc(y) through register copies. If alloc(y) is the same as alloc(xi), then no trans-

fer of value needs take place. Otherwise, a copy statement has to be issued to transfer

the value from alloc(xi) to alloc(y). The problem is to color the interference graph

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 225

of a program so as to minimize the transfer cost. This problem is called the SSA-

coalescing problem. We shall now define it formally.

SSA coalescing

Call a pair of variables φ-assigned, if one of them is an argument and the other the

result of a φ-instruction. Assume that we have a function c which associates a cost

with every pair of edges that are φ-assigned. This cost takes into account (i) the cost

of transferring a value x to y, assuming the variables are in separate registers, and (ii)

the frequency of execution of the basic block which has the φ-instruction containing

x and y. Given a coloring alloc , we define the cost of the coloring for the φ-assigned

pair (x,y) as

cost alloc (x,y) =

�
0 alloc (x) = alloc(y)

c(x,y) otherwise

And the cost of the coloring for the entire program P as:

cost alloc (P) =
�

(x,y)∈P, φ-assigned(x,y)

cost alloc (x,y)

DEFINITION 6.13 Given a program in SSA form and its interfer-
ence graph, the S S A-coalescing problem is to find a coloring alloc for which
cost alloc (P) is minimum.

Since this problem is NP-hard, we now present a heuristic for solving the problem.

The idea is that we take the output of the coloring algorithm described before and

modify the coloring so as to minimize the cost of transfer of values.

To start with, the algorithm forms groups of variables. Each group consists of max-

imal number of φ-congruence variables that are non-interfering. Interfering variables

cannot be given the same color. Define the cost of each such group g as the cost of

all the φ-related edges between variables in the group g, i.e.,

cost group (g) =
�

x,y∈g, φ-assigned(x,y)

cost alloc (x,y)

Clearly, a successful coloring of a costlier group will yield more benefits in trans-

fer costs. Therefore, the groups are sorted by decreasing cost and entered into a

priority queue for recoloring in this order.

Now the groups in the priority queue are attempted to be recolored. We take each

color c in turn and attempt a recoloring with c. Not all nodes in the group G can

be colored with c. As a result, the recoloring attempt results in several subgroups

g1,g2, . . . ,gn such that:

1. Each variable in each subgroup can be recolored to c.

2. Each gi forms a φ-congruence class.

© 2009 by Taylor & Francis Group, LLC

226 Data Flow Analysis: Theory and Practice

The subgroup gi with maximum value of costgroup(gi) is the candidate subgroup sgc
for the color c. This is done for all colors and the final decision is to chose c� with the

maximum sgc� . The corresponding subgroup’s color is fixed at c� and never changed

thereafter. This ensures the termination of the algorithm. A new group G − sgc� is

formed and entered in the priority queue at an appropriate place depending on its

cost. This process is repeated till the priority queue is empty.

To recolor a node with the color c, the algorithm checks that none of its neighbors

have the color c. If this is true then the recoloring attempt is successful. Otherwise

the algorithm recursively attempts to recolor the offending neighbor with a color

different from c. The recoloring attempt fails if the color of the node is already fixed

to a color that is different from the color for which the recoloring attempt is being

made, or the node cannot be colored because of a lack of color.

It might appear that the recoloring step requires construction of the interference

graph to, for example, determine non-interfering φ-congruence groups. However,

this is not the case. Assume that we want to decide whether x interferes with y. We

first determine whether def (x) and def (y) are related by a dominance relationship. If

they are not, then by Lemma 6.10 they do not interfere. On the other hand, if there

is a dominance relationship and def (x)�def (y), for example, then by Lemma 6.11,

x and y interfere if x is live at def (y).

Register Copies

The last step in the method is to arrange for transfer of value for φ-congruent vari-

ables that could not be colored with the same color. To take into account that φ-

instructions within the same basic block are to be simultaneously executed, we con-

sider all the φ-instructions in the basic block together. As an example consider the

φ-instructions

R1 = φ(. . . ,R2, . . .)

R2 = φ(. . . ,R2, . . .)

R3 = φ(. . . ,R5, . . .)

R4 = φ(. . . ,R3, . . .)

R5 = φ(. . . ,R4, . . .)

In the example, we limit ourselves to the registers at one of the argument positions.

We can represent this transfer of value through a graph shown in Figure 6.27. While

in the example, we have restricted ourselves to the registers at one of the argument

positions, the graph has to be extended to other argument positions. The resulting

graph is called the register transfer graph. Now we generate instructions to effect

the value transfers suggested by the register transfer graph. Each step is repeated as

many times as possible.

1. If there is a edge Ri → Rj in the graph such that Rj does not have any out

edges, then a copy statement Rj = Ri is issued. This is illustrated by the edge

R2 → R1 in the example, for which a copy statement R1 = R2 has to be issued.

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 227

R2

R1

R5

R3

R4

FIGURE 6.27

Graph indicating transfer of values between registers.

2. Now the register transfer graph will consist of one or more cycles. The cycles

of length 1 like R2 are eliminated.

3. The cyclic transfers values indicated by loops of length more than one like

R3,R4,R5 can be effected in more than one way:

(a) Transfer using a free register as a temporary. For the example, assuming

R0 is a free register, the instructions generated are:

R0 = R3

R3 = R4

R4 = R5

R5 = R0

(b) If there is no free register, then pairwise swap operations can be used. For

the example, the transfer can be effected through the following swaps:

swap R3 R4

swap R4 R5

swap R5 R3

If the underlying machine does not directly support a swap operation, it

may be simulated through xor operations.

6.4 Summary and Concluding Remarks

In this chapter we described a useful intermediate representation of programs called

the SSA form. In this representation every variable has exactly one definition, and

this definition dominates each use of the variable. The number of def-use chains

© 2009 by Taylor & Francis Group, LLC

228 Data Flow Analysis: Theory and Practice

in SSA form programs is much smaller than corresponding programs not in SSA

form. As a consequence, optimizations performed on SSA form programs are faster.

Apart from the sparseness of def-use chains, a program in SSA form also has other

interesting properties that could be used in various applications. An example that

was presented is register allocation.

The transformation of a program to SSA form involves finding program points

where φ-functions are to be inserted. These points are identified by iterated domi-

nance frontiers. After φ-functions are inserted, variables are renamed to satisfy the

single definition property. Both these steps can be done efficiently. The transforma-

tion of programs to their SSA form can be thought of as being the result of some

form of data flow analysis. Destruction of SSA form programs is based on creating

φ-congruence variables that are also non-interfering. This is through insertion of

copy statements. The φ-congruence variables are then renamed to the same variable

and the φ-instruction is removed.

We also presented register allocation as a way of destructing SSA form programs.

Register allocation of SSA form programs through graph coloring is convenient be-

cause the interference graphs of such programs have properties that enable us to

(a) determine how much spilling is required so that the interference graph becomes

colorable, and (b) obtain a coloring. Removal of φ-instructions is through register

coalescing. Interestingly, all these steps can be done without actually constructing

the interference graph.

SSA-based optimizations are more difficult when the entity involved in the opti-

mization is not a variable, as in the redundancy elimination optimizations. The prob-

lem is that the expressions representing redundant computations may not be lexically

the same; they may have different versions of a variable. Detecting these occurrences

and eliminating the redundant ones by exploiting the sparseness of def-use chains is

not straightforward.

6.5 Bibliographic Notes

The earliest papers on SSA form are by Rosen, Wegman and Zadeck [85] and Alpern,

Wegman and Zadeck [8]. The first comprehensive method for construction of SSA

form programs is by Cytron, Ferrante, Rosen, Wegman, and Zadeck [28]. The

method described in this chapter is based on this paper. A later paper by Sreed-

har and Gao [95] gives a linear time algorithm for placing φ-instructions using a

data structure called DJ-graphs. Both methods involve finding the dominator tree of

a program. Lengauer and Tarjan [68] give a fast algorithm for finding dominators

in a graph. The methods above construct minimal SSA. Choi, Cytron and Ferrante

[22] present a method to create programs in pruned SSA form and Briggs, Cooper,

Harvey, and Simpson [18] describe construction of semi-pruned SSA.

While Cytron, Ferrante, Rosen, Wegman, and Zadeck [28] discuss destruction of

© 2009 by Taylor & Francis Group, LLC

Single Static Assignment Form as Intermediate Representation 229

SSA, the method that they suggest has shortcomings. The method discussed here is

based on the work by Sreedhar, Dz-Ching Ju, Gillies and Santhanam [96]. Briggs,

Cooper, Harvey, and Simpson [18] discuss SSA-destruction by placing copy state-

ments along edges. The method for SSA destruction by register allocation is by

Hack [41] and by Hack, Grund, and Goos [42].

Many applications of SSA form can be found in literature. Rosen, Wegman and

Zadeck [85] describe a method to eliminate redundant computations among expres-

sions that may not be lexically identical. Alpern, Wegman and Zadeck [8] describe

how to conservatively detect equality of variables in a program. Kennedy, Chan,

Liu, Lo, Tu, and Chow [58] use SSA for partial redundancy elimination and Weg-

man and Zadeck [103] for conditional constant propagation. As mentioned earlier,

Hack, Grund, and Goos [42] perform register allocation over SSA form programs

while Knobe and Sarkar [64] use a variation of SSA form for parallelization.

Appel [11] describes the similarity between SSA programs and functional pro-

grams written in continuation passing style and Dhamdhere, Rosen and Zadeck [31]

point out the difficulties in using SSA form for partial redundancy elimination.

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

Part II

Interprocedural Data Flow

Analysis

231
© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

7

Introduction to Interprocedural Data Flow
Analysis

The intraprocedural optimizations that we have discussed so far have ignored the ef-

fect of a call under the assumption that a safe approximation of the effect of a call

can be incorporated without inspecting the called procedures. This was illustrated in

Section 1.1.2. A possible improvement of using interprocedural data flow informa-

tion by analyzing the called procedures was also demonstrated in the same section.

In this chapter we evolve the basic concepts of the latter.

7.1 A Motivating Example

We use the program in Figure 7.1 as a running example in this chapter. We perform

constant propagation and dead code elimination over this program and introduce

common variants of interprocedural analyses. Figure 7.1(a) shows our program.

From the viewpoint of interprocedural analysis, its simplifying features are that it

is non-recursive and contains global variables only.

The optimized program after performing interprocedural constant propagation is

shown in part (b). Modified statements are shown in gray background. Constant

propagation replaces uses of variables by their known values and potentially creates

dead code. The statements shown in gray background in part (c) are the assignments

that become dead code and can be deleted. Observe that when procedure p is called

from procedure q, the value of variable d is 14. However, p is also called from main

and the value of d in that call is not known. Hence we cannot conclude that d is

constant in procedure p. Also observe that when procedure p is called the second

time, since the values of b and d are known to be 2 and 14 respectively, the condition

on line 17 is true and the assignment on line 18 is executed. Since a is assigned 1 in

procedure q, the value of c becomes 3 and remains 3 in expression a+ c on line 12.

Our analysis does not perform conditional constant propagation and fails to discover

that the value of c is 3. However, it discovers the value of a in expression a+ c on

line 12 to be 2 due to the assignment in line 25.

233
© 2009 by Taylor & Francis Group, LLC

234 Data Flow Analysis: Theory and Practice

0. int a,b,c,d;

1.

2. void main()

3. { a = 5;

4. b = 3;

5. c = 7;

6. read(d);

7. p();

8. a = a+2;

9. print(c+d);

10. d = a*b;

11. q();

12. print(a+c);

13. }

14.

15. void p()

16. { b = 2;

17. if (b<d)

18. c = a+b;

19. print(c+d);

20. }

21.

22. void q()

23. { a = 1;

24. p();

25. a = a*b;

26. }

0. int a,b,c,d;

1.

2. void main()

3. { a = 5;

4. b = 3;

5. c = 7;

6. read(d);

7. p();

8. a = 7;

9. print(7+d);

10. d = 14;

11. q();

12. print(2+c);

13. }

14.

15. void p()

16. { b = 2;

17. if (2<d)

18. c = a+2;

19. print(c+d);

20. }

21.

22. void q()

23. { a = 1;

24. p();

25. a = 2;

26. }

0. int a,b,c,d;

1.

2. void main()

3. { a = 5;

4. b = 3;

5. c = 7;

6. read(d);

7. p();

8. a = 7;

9. print(7+d);

10. d = 14;

11. q();

12. print(2+c);

13. }

14.

15. void p()

16. { b = 2;

17. if (2<d)

18. c = a+2;

19. print(c+d);

20. }

21.

22. void q()

23. { a = 1;

24. p();

25. a = 2;

26. }

(a) Original program (b) Discovered constants (c) Discovered dead code

FIGURE 7.1

An example program with interprocedural constant propagation and subsequent in-

terprocedural dead code elimination. For simplicity, we assume built-in operations

to read and print data.

7.2 Program Representations for Interprocedural Analysis

Figure 7.2 shows two intermediate representations of our example. A call multigraph

is a directed graph which captures the caller-callee relationships in a program. Nodes

in a call multigraph represent procedures whereas edges represent procedure calls

and are labeled by the call sites. Since each call to a procedure is represented by a

distinct edge, a call multigraph contains parallel edges when a procedure contains

multiple calls to some procedure. Recursion in a program would cause cycles in the

call multigraph. The call multigraph for our program does not contain parallel edges

or cycles.

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 235

main

p q

c1 c2

c3

Supergraph

Call multigraph

a = 5;b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = a+2
print c+d

n1

n2 d = a ∗b n2

Call qC2

Call qR2

print a+ cEndmain

b = 2
if (b < d)

Startp

n3 c = a+b n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = a ∗bEndq

FIGURE 7.2

Common intermediate representations for interprocedural data flow analysis.

The second intermediate representation is also a directed graph called a super-

graph which connects CFGs of callers and callees by edges indicating interprocedu-

ral control transfers. A simpler version of supergraph was introduced in Chapter 1.

As illustrated in Figure 1.3 on page 5, it represented a call by a single basic block.

Now we split a call site ci into a call node Ci and the corresponding return node

Ri. A call to procedure r at call site ci is represented by an edge from Ci to Startr.

The corresponding return from procedure r is represented by an edge from Endr to

Ri. These edges are interprocedural edges. The edges in the individual CFG are in-

traprocedural edges. The supergraph in Figure 7.2 shows the interprocedural edges

by dashed lines and intraprocedural edges by solid lines. The program entry and exit

is denoted by Startmain and Endmain.

A supergraph and the corresponding call multigraph are related to each other by

a simple graph transformation. If every procedure in a supergraph of a program is

represented by a single node by combining all blocks of a procedure and all return

edges are removed, a supergraph reduces to the call multigraph of the program.

Observe that blocks Startmain, n1, and Startp in our supergraph contain multiple

statements in spite of the fact that for constant propagation a basic block consists of

a single statement. However, it is possible to combine assignment statements into a

single block when they do not have data dependence between them; we have done

so for convenience.

© 2009 by Taylor & Francis Group, LLC

236 Data Flow Analysis: Theory and Practice

7.3 Modeling Interprocedural Data Flow Analysis

In this section, we develop an abstract view of interprocedural data flow analysis with

the goal of evolving basic concepts; details are postponed to subsequent chapters.

7.3.1 Summary Flow Functions

A simple view of interprocedural analysis is to model a procedure call as a basic

block and represent the effect of the called procedure by a summary flow function.

Since it needs to represent the effect of all calls to the procedure it represents, a

summary flow function must be context independent and must be parametrized so

that the data flow information from the calling context can be incorporated.

A summary flow function fr : L �→ L for procedure r can be modeled in the usual

manner in terms of Gen and Kill components as shown below:

fr(x) = (x−Killr(x)) ∪ Genr(x)

= (x− (ConstKillr∪DepKillr(x))) ∪ (ConstGenr ∪DepGenr(x))

Note that this merely models the function fr; whether fr is actually constructed by

identifying ConstKill, DepKill, ConstGen, and DepGen is an independent matter

and is discussed in Section 7.3.3. Chapter 8 discusses how it is constructed; we

introduce some intuitions related to it in Section 7.6.

Although the notions of Genr and Killr for a procedure r are similar to the notions

of Geni and Killi for a basic block i, there are some differences arising from the

fact that the execution of a procedure may involve control transfers whereas a basic

block involves a strictly sequential execution. Thus we need to distinguish between

may and must properties. For example, when performing liveness analysis, Killr
must ensure that a variable is modified along all paths in r. This is represented by

MustKillr which is different from MayKillr; the latter says that a variable is modified

along some path but not necessarily all. For available expressions analysis, Killr
should be MayKillr rather than MustKillr.

We now describe the summary flow functions for constant propagation and live-

ness analysis of our example program. Consider the instance of constant propagation

framework involving our example program. Let x ∈ L be the tuple ��xa,�xb,�xc,�xd� rep-

resenting the constantness information of the four variables in our example program.

Thus,�xa,�xb,�xc, and�xd are values in the component lattice �L for constant propagation

(Figure 4.5 on page 110).

From the supergraph in Figure 7.2, it is clear that the data flow values of a and d

remain unaffected by procedure p since it does not modify them. Further, variable b

is always 2 at the end of procedure p regardless of the flow of execution. The data

flow value of variable c depends on result of the condition in block Startp. If the

execution follows edge Startp→ n3, the data flow value of c becomes �xa+2. The

alternative execution path involving edge Startp→ Endp does not modify c. Static

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 237

summarization of the two possibilities results in�xc� (�xa+2). Thus, the flow function

that summarizes the effect of procedures p is:

fp(��xa,�xb,�xc,�xd�) = ��xa,2,�xc� (�xa+2),�xd�

To see the flow function in terms of Gen and Kill , observe that the data flow infor-

mation x = ��xa,�xb,�xc,�xd� is merely a convenient notation for the set representation

x =
�
�a,�xa�, �b,�xb�, �c,�xc�, �d,�xd�

�
. Thus, the Gen and Kill components of fp are:

ConstGenp = {�b,2�}

ConstKill p = ∅

DepGenp(x) = {�c,�xc� (�xa +2)�}

DepKill p(x) = {�b,�xb�, �c,�xc�}

Since procedure q calls procedure p, the definition of fq depends on the definition

of fp. In particular, procedure q assigns 1 to a and then passes on the resulting data

flow information �1,�xb,�xc,�xd� to fp. The resulting intermediate flow function defines

the data flow at R3 in terms of the assumed input value x = ��xa,�xb,�xc,�xd� available at

Startq. When the flow function of block Endq is composed with it, we get

fq(��xa,�xb,�xc,�xd�) = �2,2,�xc�3,�xd�

For live variables analysis,Var = {a,b,c,d} and L is 2Var. We leave it for the reader

to verify that the flow functions for procedures p and q are:

fp(x) = (x− {b}) ∪ {a,c,d}

fq(x) = (x− {a,b}) ∪ {c,d}

where x ⊆ {a,b,c,d}.

7.3.2 Inherited and Synthesized Data Flow Information

For a given call to procedure r in the body of procedure s, let x be the data flow infor-

mation reaching the call point. Then, x represents the data flow information inherited

by procedure r from the call site in s and fr(x) represents the data flow information

synthesized by r at the call site in s. This is illustrated in Figure 7.3. The inherited

data flow information is context sensitive. The synthesized data flow information

has a context insensitive component represented by ConstGenp and a context sensi-

tive component represented by DepGenp(x) and x−
�
ConstKill p∪DepKill p(x)

�
. The

final data flow information at a program point u in procedure r is influenced by

• interprocedural data flow information inherited by r from all calls to r,

• interprocedural data flow information synthesized by calls appearing on the

paths from Startr to u for forward flows and from u to Endr for backward

flows, and

© 2009 by Taylor & Francis Group, LLC

238 Data Flow Analysis: Theory and Practice

Startr

Endr

Starts

Ends

Ci

Ri
ci

Startt

Endt

C j

R j
c j

x

x

x�

x�

y

y

y�

y�

Data Flow Information

x
Inherited by r from
call site ci in s

y Inherited by r from
call site c j in t

x�
Synthesized by r in
s at call site ci

y�
Synthesized by r in
t at call site c j

FIGURE 7.3

Inherited and synthesized data flow information.

• intraprocedural data flow information along the paths from Startr to u for for-

ward flows and from u to Endr for backward flows.

In Part I of the book, the interprocedural data flow information was approximated

as follows: The inherited data flow information was approximated by a conserva-

tive value of BI and the synthesized data flow information was approximated by

using fixed conservative values for Gen(x) and Kill(x). These approximations were

independent of calls and were same for all calls to all procedures in the program.

Interprocedural data flow analysis tries to replace the above approximations by more

precise values.

For constant propagation in our example, procedure p has a call from main and

a call from q. The context insensitive synthesized data flow information of p is

{�b,2�}. It inherits x = �5,3,7,⊥� from its call in main. Since we wish to sep-

arate the data flow information associated with different variables, we view x as

{�a,5�, �b,3�, �c,7�, �d,⊥�}. The context sensitive synthesized data flow information

for this call is {�a,5�, �c,7�, �d,⊥�}. This is the data flow information associated

with block R1 in the caller procedure main. The data flow information inherited

by p from its call in q is �1,2,7,14�. The corresponding context sensitive synthe-

sized data flow information associated with block R3 in the caller procedure q is

{�a,1�, �c,⊥�, �d,14�}.

7.3.3 Approaches to Interprocedural Data Flow Analysis

Various methods of interprocedural data flow analysis can be divided into two broad

categories: functional approach or a value-based approach.

A functional approach to interprocedural analysis consists of two steps: In the first

step, the summary flow functions that represent the effects of a call are computed.

These functions are context independent and are parametrized. In the second step,

inherited data flow information of a procedure is computed from its calling contexts.

Then, the body of the procedure is analyzed and the summary flow functions cor-

responding to the callee are used to compute the synthesized data flow information.

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 239

Observe that using the summary functions does not require traversing the body of

the caller procedures represented by the functions. In practice, computation of sum-

mary flow functions is possible only for a limited class of frameworks. In particular,

it is easy for separable frameworks. In non-separable frameworks, it may not be

possible to automatically construct summary flow functions unless the lattice is fi-

nite and flow functions are distributive. This is because constructing summary flow

functions requires reducing expressions involving function compositions and inter-

sections. Whether a systematic method of reductions can be devised or not depends

on the nature of the flow functions and data flow values.

A value-based approach avoids computing summary flow functions. Instead, it

directly computes data flow values by traversing a program during analysis. In par-

ticular, when it encounters a procedure call, the inherited data flow information is

propagated to the callee and the method starts examining the callee’s body. At the

end of the analysis of the callee’s body, synthesized data flow information is propa-

gated back to the caller and the analysis of caller’s body is resumed. This approach

requires traversing a procedure repeatedly for different calling contexts. Conceptu-

ally, this approach is simpler than functional approach except that it may have to

distinguish between a large number of contexts.

Both these approaches inherently handle recursion so long as the frameworks in-

volve finite lattices. Although our example program in this chapter is non-recursive,

subsequent chapters present these approaches for recursive programs.

7.4 Compromising Precision for Scalability

Recall that the scope of intraprocedural data flow analysis is restricted to individual

procedures. By contrast, interprocedural data flow analysis needs to examine entire

programs. Although this increases the precision of data flow information, practically

interprocedural analysis could be very inefficient both in terms of space as well as

time. Since real life applications often contain hundreds or thousands of procedures,

a supergraph is many times larger than a single CFG. Hence efficiency and scalability

issues assume much more significance in interprocedural data flow analysis than

in intraprocedural data flow analysis. Most approaches that achieve efficiency and

scalability, compromise on precision in one way or the other. Two common tradeoffs

that enhance efficiency and scalability are:

• Not distinguishing between actual and spurious control flow paths.

This manifests itself in the form of flow or context insensitivity.

• Restricting the influences between caller and callees.

This results in side effects analysis instead of whole program analysis.

In this section we explore these tradeoffs and explain how they affect the precision

of interprocedural data flow analysis. Empirical investigations have revealed that

© 2009 by Taylor & Francis Group, LLC

240 Data Flow Analysis: Theory and Practice

0 f0 0

1 f1 1

2 f2 2 3 f3 3

i fi i

m fm m

Start

0 f0 0 1 f1 1 2 f2 2 3 f3 3 . . . i fi i . . . m fm m

End

(a) CFG (b) Flow insensitive analysis

FIGURE 7.4

Modeling flow insensitive analysis.

these tradeoffs enhance the efficiency of analysis significantly. The resulting loss of

precision has been found to be tolerable in many cases but not all.

7.4.1 Flow and Context Insensitivity

Recall that the MOP value associated with a program point u is the glb of data flow

information computed along all paths reaching u (Definition 3.20). Let P(u) denote

the set of paths used for computing data flow information at u. If P(u) ⊇ paths(u),

then a data flow value computed along all paths in P(u) is weaker than MOPu and

hence is safe. Precision of the data flow value computed by traversing paths in P(u)

depends on how close P(u) is to paths(u). The larger the number of spurious paths

in P(u), the more imprecise the computed data flow value is likely to be.

As observed in Section 3.4.3, computing the MOP assignment for arbitrary mono-

tone frameworks is undecidable. Thus the algorithms that need to cover all potential

paths can at best compute the MFP solution (Section 3.4.2). This involves merging

data flow information at shared program points in paths(u). If the flow functions

are non-distributive, this has the effect of creating combinations of data flow values

across paths (Example 4.6). This can be seen as traversing some paths that are not

present in paths(u). This source of imprecision shows the limit of static analysis and

hence is accepted as inevitable.

We now describe two features called flow and context insensitivity that a method

can employ as a matter of choice for achieving efficiency. They are orthogonal but

are similar in the sense that both of them relate to spurious paths; they are different

in the nature of paths they consider.

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 241

Flow insensitivity

As mentioned in Section 1.2, flow insensitive analysis disregards the flow of control

by implicitly assuming that the block can be executed in all possible orders. This is

achieved by accumulating the effect of each block in the same data flow value and

the resulting value is a safe approximation of data flow information at each point.

For convenience, let the blocks in a procedure be numbered from 0 to m in any

arbitrary order. Then, flow insensitive analysis computes x ∈ L as defined below:

x =

m

i=0

fi(BI) (7.1)

where BI ∈ L is the boundary information. This is illustrated in Figure 7.4.

Intuitively, the operation of function composition employed in the usual flow sen-

sitive data flow analysis is replaced by the operation of function confluence; the

latter is commutative while the former is not. Thus just a single visit to each block in

any arbitrary order approximates all possible orders between blocks. Section 8.1.2

shows that the value x computed by Equation (7.1) is a safe approximation of the

corresponding flow sensitive data flow information at each program point.

In the case of flow functions with dependent parts, the above model of flow in-

sensitive computation needs to be modified slightly. This is because the dependent

component of fi could depend on a value computed by some f j and since the state-

ments are assumed to be executed in an arbitrary order, this dependence must be

taken care of. For example, consider flow insensitive may points-to analysis for the

pointer assignments in Figure 7.5(a). Block n3 generates a points-to pair b d and

since we assume that n2 could be potentially executed after n1 or n3, our analysis

should discover the points-to pairs a c and a d. Following the strategy of Fig-

ure 7.4(b) we would get the flow graph in Figure 7.5(b) and it will not compute the

desired points-to pairs. A simple way of modeling flow insensitive analysis in such a

situation is to extend the graph by adding edges from n1 and n3 to n2 as shown in Fig-

ure 7.5(c). Observe that these are data flow dependences captured by the primitive

entity functions and the composite entity functions described in Section 4.5. They

are different from the dependences of values of variables at run time which may or

may not create dependences of data flow values.

In practice, instead of creating such flow graphs, the required dependences are

remembered in a global data structure. Points-to analysis constructs a graph that

contains points-to edges as well as constraints that result in points-to edges. Thus,

edge b c is added while processing n1. When n2 is processed, edge a ∗b is also

remembered apart from adding the edge a c. Whenever new points-to information

for b becomes available, an appropriate points-to edge is added to the graph.

We now introduce the issues that arise when we wish to construct a flow insensi-

tive summary flow function instead of computing a flow insensitive data flow value.

These issues are handled in details in Chapter 8. We consider the following two cases

in constructing flow insensitive summary functions:

• When the flow functions do not have dependent parts.

© 2009 by Taylor & Francis Group, LLC

242 Data Flow Analysis: Theory and Practice

n1 : b = &c;

...

n2 : a = b;

...

n3 : b = &d;

Start

End

n1 n2 n3

Start

End

n1 n2 n3

(a) Pointer assignment (b) Default modeling (c) Required modeling

FIGURE 7.5

Modeling flow insensitive analysis in presence of dependent parts in flow functions.

Edges n1 → n2 and n3 → n2 represent the fact that DepGenn2
(x) depends on the data

flow information computed at n1 and n3.

If flow functions have only constant parts (as in liveness analysis), then the

summary flow function can be constructed by computing the values of the

constant parts. In particular, for constructing side effect function of procedure

r for liveness analysis, we need to compute only ConstKillr and ConstGenr
sets.

The ConstKill set for live variables should include only those variables that

are guaranteed to be modified within the called procedure regardless of the

order of execution of basic blocks. This is represented by flow insensitive

MustKill set which is computed using Equation (7.1) by intersecting the Kill

sets of the individual basic blocks in the procedure. This should be contrasted

with ConstGen computation which must record every variable that becomes

live locally within the called procedure regardless of the control flow. This is

represented by flow insensitive MayUse set which is computed using Equa-

tion (7.1) by taking a union of the Gen sets of individual basic blocks in the

procedure. Then,

fr(x) = (x−MustKillr) ∪ MayUser

where x ∈ L. Both these approaches are demonstrated for our example program

in Section 7.6 although their detailed formal definitions are provided later in

Chapter 8.

• When the flow functions have dependent parts.

In this case, merely combining the Gen and Kill sets does not work. Instead,

we will have to replace BI ∈ L by a symbolic value that represents the data

flow value in the calling context and parametrizes the summary flow function.

For simplicity, we describe this for liveness analysis. A symbolic value for

liveness analysis could be the following set:

BI =
�
�a,�xa� | a ∈ Gvar

�

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 243

where �xa is a symbolic value that will be replaced by a concrete value true or

false from the calling context. The flow function fi to be used in Equation (7.1)

will also have to be re-written as:

fi(x) =
�
x− Removei

�
∪ Addi

Removei = {�a,�xa� | a ∈ Killi,a � Geni}

Addi = {�a, true� | a ∈ Geni} ∪

{�a, false� | a ∈ Killi,a � Geni}

�a, true� ∈ x indicates that variable a is live and �a, false� ∈ x indicates that

variable a is not live; exactly one of them is in x by construction. The conflu-

ence operation over the sets of pairs is defined as follows for liveness analysis:

x ∪ y = {�a,�xa +�ya� | �a,�xa� ∈ x, �a,�ya� ∈ y}

where + denote the boolean OR operation.

In the presence of dependent parts in flow functions, it may not always be

possible to construct summary flow functions. In Chapter 8 we characterize

the class of frameworks for which summary flow functions can be directly

constructed. For others, either it is not possible to construct summary flow

functions or some adhoc mechanism may have to be employed. For exam-

ple, it is not possible to construct flow sensitive summary flow functions for

points-to analysis. However, flow insensitive summary flow functions can be

constructed by building a points-to graph which has been explained before.

An application of such a summary flow function requires traversing the graph.

In our example program, assuming that it is known that the value of b is 2 after

every call to procedure p, a flow insensitive analysis of procedure q would conclude

that a could be both 1 and 2 and hence is not constant in q. This is a safe conclusion

when only gross information instead of fine grained point-specific information about

q is desired.

In general, flow insensitive analysis is not common at the intraprocedural level.

Context insensitivity

A calling context is represented by the snapshot of the control stack at run time.

During program analysis, it is determined by the sequence of unfinished calls in a

path in the supergraph.

As explained in Chapter 1, context insensitive analysis does not distinguish be-

tween different calling contexts. Instead, the inherited data flow information from all

contexts is merged and the resulting synthesized data flow information is propagated

to all calling contexts indiscriminately. This implies traversing interprocedurally in-

valid paths—paths in which calls and returns do not match. In essence, there is no

distinction between the interprocedural and intraprocedural edges in a supergraph.

In our program, procedure p inherits �5,3,7,⊥� from its call in the main and

�1,2,7,14� from its call in procedure q. The merged value is �⊥,⊥,7,⊥� and the

© 2009 by Taylor & Francis Group, LLC

244 Data Flow Analysis: Theory and Practice

resulting synthesized value �⊥,2,7,⊥� is propagated back to both the callers of p.

As a consequence, such an analysis fails to discover the fact that a is constant with

value 5 at the entry of block n1. Effectively, this is a consequence of propagating

the value a = 1 from Startq to n1. Although there is a path from Startq to n1 in the

supergraph, it does not represent matching calls and returns: Data flow information

computed along the path from Startq to Endp should be propagated to R3 and not to

R1 because the last call in this path represents a call to p from q and not from main.

Context sensitive analysis excludes such paths and restricts P(u) to interprocedurally

valid paths.

The issue of context sensitivity does not arise at the intraprocedural level.

7.4.2 Side Effects Analysis

Interprocedural analysis requires incorporating the mutual influence of callers and

callees on each other. This requires computing both inherited and synthesized part

of data flow information. We call such an analysis, a whole program analysis. This

should be contrasted with the situation when only callee’s influence on callers is

computed. This is achieved by computing the synthesized part of interprocedural

data flow information; the inherited part is approximated by a fixed value for each

procedure. Traditionally, such analyses have been called side effects analyses.

A side effects analysis can also have some variations depending upon whether only

the context insensitive side effects are computed or the context sensitive side effects

are also computed. For a given procedure p, the context insensitive side effects are

represented by ConstGenp while the context sensitive side effects are represented

by DepGenp(x) and x− (ConstKill p∪DepKill p(x)). The former is much simpler but

less useful compared to the latter.

For a given procedure call, side effect analysis restricts the scope of optimization

to the caller whereas whole program analysis facilitates optimization in both caller

and callee. For example, if interprocedural live variables analysis is performed using

side effects, it is possible to decide whether a value in a register should be preserved

across a procedure call. The transformation resulting from this decision is restricted

to a caller’s body. However, if whole program analysis is performed, it may be

possible to assign the same register to a variable both within a caller and its callee.

7.5 Language Features Influencing Interprocedural Analysis

Interprocedural data flow analysis is influenced by language features that support

high level abstractions related to procedure calls.

In this chapter, we have deliberately used a non-recursive program to introduce in-

terprocedural data flow analysis. In the presence of recursion, functional approaches

require fixed point computation to construct summary flow functions. Convergence

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 245

of this computation needs to be established by examining the flow functions and data

flow values in the framework. Since the value-based approaches have to explicitly

remember contexts, a mechanism of summarizing the contexts needs to be devised.

For the frameworks with finite lattices, it is possible to bound the number of contexts

by a finite number without compromising on precision. However, the number of con-

texts remains very large. Thus recursion affects both the feasibility and the efficiency

of interprocedural data flow analysis significantly. Many practical value-based ap-

proaches perform context insensitive analysis in the recursive portions of programs.

However, it is possible to perform context sensitive interprocedural analysis in the

presence of recursions. We present such methods in Chapters 8 and 9.

The other simplifying feature of our program was that it did not involve parameters

and local variables. In practice, parameterless procedures are rare and it is important

to handle the parameter passing mechanism because computation of inherited data

flow information requires transferring the data flow information of actual parameters

to that of the corresponding formal parameters. For this purpose, the call by value

parameter passing mechanism can be modeled by simple assignments whereas call

by reference parameter passing mechanism should be modeled by pointer assign-

ments. Further, distinction should be made between global variables and local vari-

ables for inherited and synthesized data flow information. Unless local variables are

involved in the actual parameters of a procedure call, synthesized data flow informa-

tion should not be computed for local entities nor should their data flow information

be propagated as a part of the inherited data flow information of the callee. Recall

that the motivating example of heap data analysis presented in Section 1.1 contains

local pointer variables that are passed as actual parameters. Section 9.5 performs

interprocedural liveness analysis for that example and describes how transfer of data

flow information between actual and formal parameters can be modeled.

Further, in the presence of parameter passing by reference, depending upon the

actual parameters a particular call may create aliasing between formal parameters

or between formal parameters and global variables within the callee’s body. This

may affect the correctness or precision of the data flow information discovered. Sec-

tion 8.2 shows how such aliasing can be discovered.

Some languages support local functions. This influences interprocedural analysis

in the following ways: (a) The possible call structure in a program is governed by

the scope rules of the language that restrict the visibility of local procedures. (b) The

notion of global variables must now be replaced by the notion of non-local variables

that depend on the scope of a procedure.

Function pointers and subtyping mechanism resulting in dynamic dispatch of func-

tion calls hide the identity of the called procedures at compile time making the static

call structure imprecise. Exception handling mechanisms of a language have a simi-

lar effect. Interprocedural data flow analyses are restricted to single threads, similar

to intraprocedural data flow analysis. Use of library functions imply that the entire

source is not available to an interprocedural analyzer and a summary of their effects

must be provided explicitly.

© 2009 by Taylor & Francis Group, LLC

246 Data Flow Analysis: Theory and Practice

7.6 Common Variants of Interprocedural Data Flow Analysis

We introduce the following common variants using our running example.

• Intraprocedural analysis with conservative approximation. We use conser-

vative approximation of inherited and synthesized data flow information for

handling procedure calls.

• Intraprocedural analysis with side effects. We compute flow sensitive as well

as flow insensitive side effects and represent them by context independent flow

functions.

• Whole program analysis. We perform context sensitive as well as context

insensitive analysis.

In each case, the data flow information in the caller procedures is computed in flow

sensitive manner and the data flow value associated each program point is computed

separately. In the case of flow insensitive side effects, only the effect of a call is flow

insensitive—the data flow values computed in the caller’s body are flow sensitive.

Although flow insensitive analysis of all procedures has also been used in practice,

it computes a single summary data flow value per procedure which is usually very

imprecise. For example, a flow insensitive constant propagation of our program

computes the data flow value ��⊥,�⊥,�⊥,�⊥� for proceduresmain and q and, ��⊥,2,�⊥,�⊥�
for procedure p. This value is same regardless of the variant. Flow sensitive version

of these variants compute data flow values with varying degrees of precision.

7.6.1 Intraprocedural Analysis with Conservative Interprocedural Ap-
proximation

Intraprocedural analysis with conservative interprocedural approximation involves

using safe values for inherited and synthesized data flow information. This approach

was introduced in Section 1.1 analysis of heap data.

The inherited data flow information for constant propagation is represented by

BImain = �0,0,0,0� and BIp = BIq = ��⊥,�⊥,�⊥,�⊥�. This distinction arises from the fact

that all our variables are global variables which are initialized to 0; however, their

values cannot be assumed to be known when other procedures are invoked. For local

variables, the value in BI is �� but our program does not have local variables. For live

variables analysis, BImain = ∅ because no variable is live at the end of the program.

However, all global variables should be conservatively assumed to be live at the end

of other procedures, hence BIp = BIq = {a,b,c,d}.

The synthesized data flow information for constant propagation is conservatively

represented by ��⊥,�⊥,�⊥,�⊥� under the assumption that a function call could modify

all variables. For live variables analysis, the synthesized data flow information is

{a,b,c,d} because it is conservatively assumed that all global variables are live at the

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 247

Block and
associated
data flow

value

Intraprocedural
analysis with
conservative

interprocedural
approximation

Side Effects Analysis Whole Program Analysis

Flow sensitivity of
synthesized information

Context sensitivity of
inherited information

Insensitive Sensitive Insensitive Sensitive

Startm
In �0,0,0,0� �0,0,0,0� �0,0,0,0� �0,0,0,0� �0,0,0,0�

Out �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥�
C1 In,Out �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥� �5,3,7,�⊥�
R1 In,Out ��⊥,�⊥,�⊥,�⊥� �5,�⊥,�⊥,�⊥� �5,2,7,�⊥� ��⊥,2,�⊥,�⊥� �5,2,7,�⊥�

n1
In ��⊥,�⊥,�⊥,�⊥� �5,�⊥,�⊥,�⊥� �5,2,7,�⊥� ��⊥,2,�⊥,�⊥� �5,2,7,�⊥�
Out ��⊥,�⊥,�⊥,�⊥� �7,�⊥,�⊥,�⊥� �7,2,7,�⊥� ��⊥,2,�⊥,�⊥� �7,2,7,�⊥�

n2
In ��⊥,�⊥,�⊥,�⊥� �7,�⊥,�⊥,�⊥� �7,2,7,�⊥� ��⊥,2,�⊥,�⊥� �7,2,7,�⊥�
Out ��⊥,�⊥,�⊥,�⊥� �7,�⊥,�⊥,�⊥� �7,2,7,14� ��⊥,2,�⊥,�⊥� �7,2,7,14�

C2 In,Out ��⊥,�⊥,�⊥,�⊥� �7,�⊥,�⊥,�⊥� �7,2,7,14� ��⊥,2,�⊥,�⊥� �7,2,7,14�

R2 In,Out ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� �2,2,�⊥,14� ��⊥,2,�⊥,�⊥� �2,2,�⊥,14�

Endm In,Out ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� �2,2,�⊥,14� ��⊥,2,�⊥,�⊥� �2,2,�⊥,14�

Startp
In ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,7,�⊥�
Out ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,7,�⊥�

n3
In ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,7,�⊥�
Out ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥�

Endp In,Out ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥�

Startq
In ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� ��⊥,2,�⊥,�⊥� �7,2,7,14�

Out �1,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,2,�⊥,�⊥� �1,2,7,14�

C3 In,Out �1,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,2,�⊥,�⊥� �1,2,7,14�

R3 In,Out ��⊥,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� �1,2,�⊥,14�

Endq
In ��⊥,�⊥,�⊥,�⊥� �1,�⊥,�⊥,�⊥� �1,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� �1,2,�⊥,14�

Out ��⊥,�⊥,�⊥,�⊥� ��⊥,�⊥,�⊥,�⊥� �2,2,�⊥,�⊥� ��⊥,2,�⊥,�⊥� �2,2,�⊥,14�

FIGURE 7.6

Constant propagation in our example program using flow sensitive version of com-

mon variants of interprocedural data flow analysis.

entry of p and q. This does not contradict the assumption made for constant propa-

gation because although a global variable may be modified in the callee procedure,

it cannot be guaranteed to be modified along all paths before being used. These

assumptions are safe because they cannot enable incorrect optimizations.

From Figure 7.6, it is easy to see that intraprocedural analysis limits the scope

of constant propagation to a single procedure and disables it across function calls.

As illustrated in Figure 7.7 on the following page, only variable b in blocks Startp
and n3 is replaced by its value which happens to be 2. The result of performing

liveness analysis on the program obtained after constant propagation is shown in

Figure 7.7 on the next page. Our analysis concludes that all left hand side variables

in the assignments are live after the assignments. Thus this variant of analysis fails

to enable dead code elimination in our example program.

© 2009 by Taylor & Francis Group, LLC

248 Data Flow Analysis: Theory and Practice

a = 5;b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = a+2
print c+d

n1

n2 d = a ∗b n2

Call qC2

Call qR2

print a+ cEndmain

b = 2

if (2 < d)
Startp

n3 c = a+ 2 n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = a ∗bEndq

Block n Inn Outn

Startmain ∅ {a,b,c,d}

C1 {a,b,c,d} {a,b,c,d}

R1 {a,b,c,d} {a,b,c,d}

n1 {a,b,c,d} {a,b,c}

n2 {a,b,c} {a,b,c,d}

C2 {a,b,c,d} {a,b,c,d}

R2 {a,c} {a,c}

Endmain {a,c} ∅

Startp {a,c,d} {a,b,c,d}

n3 {a,b,d} {a,b,c,d}

Endp {a,b,c,d} {a,b,c,d}

Startq {b,c,d} {a,b,c,d}

C3 {a,b,c,d} {a,b,c,d}

R3 {a,b,c,d} {a,b,c,d}

Endq {a,b,c,d} {a,b,c,d}

FIGURE 7.7

Intraprocedural liveness analysis after intraprocedural constant propagation. Propa-

gated constants are shown in circles.

7.6.2 Intraprocedural Analysis with Side Effects Computation

Side effect analysis discovers which variables are actually modified in a procedure

calls. Hence it can compute more precise synthesized data flow information. Side

effect computation could be flow insensitive or flow sensitive. We compute the data

flow information in the body of a caller in a flow sensitive manner. In either case,

since no data flow information is inherited, the value of BI is same as in intraproce-

dural analysis.

After computing the side effects, function calls are treated as basic blocks and

conventional intraprocedural analysis is performed.

Flow insensitive side effects

We present two methods of computing flow insensitive side effects. The first method

uses symbolic values to parametrize the context. The other method works for frame-

works in which the flow functions do not contain dependent parts. This method

computes the values of ConstGen and ConstKill components of the summary side

effect flow function of a procedure explicitly. We illustrate the former method for

constant propagation and the latter for live variables analysis.

• Flow insensitive side effects for constant propagation.

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 249

Startp

b = 2; c = a+b print c+d

Endp

��xa,�xb,�xc,�xd� ��xa,�xb,�xc,�xd�

��xa,2,�xc,�xd�
��xa,�xb,�xc,�xd�

��xa,�xb,�xc,�xd�

��xa,�xb�2, (�xa+ (�xb�2)),�xd�

��xa,2,�xc,�xd�

Startq

a = 1 ci a = a ∗b

Endq

��xa,�xb� ��xa,�xb�

��xa�1,�xb�2�
⊥

�⊥,�xb�2�

�1,�xb�

�1,�xb�
�⊥,�xb�2�

��xa,�xb�

�⊥,�xb�2�

�1,�xb�

FIGURE 7.8

Computing flow insensitive side effect functions for procedures p and q. An edge

u→ v denotes the fact that DepGenv(x) depends on the data flow value at u; the re-

quired data flow values have been shown along with the out edges of u. For procedure

q, we show the values of variables a and b only.

Recall that a systematic construction of summary flow functions is possible

only for a limited set of data flow frameworks; in general, it is not possible for

full constant propagation. Here we use Equation (7.1) intuitively to symbol-

ically compute summary function for constant propagation and illustrate the

difficulty in automatic construction of flow functions for constant propagation.

Computation of flow insensitive side effect summary flow functions for proce-

dure p and q are illustrated in Figure 7.8. It is easy to see that:

fp(��xa,�xb,�xc,�xd�) = ��xa,�xb�2,�xc� (�xa+ (�xb�2)),�xd�

For computing the summary side effect function for q, we need to incorporate

the effect of procedure p too. For simplicity, only the computation for vari-

ables a and b for procedure p is illustrated in Figure 7.8. The expression that

represents the data flow value of a after processing the assignment a = a ∗b is�
�xa�1�

�
(�xa�1) ∗ (�xb�2)

��
. Using monotonicity of the flow function repre-

© 2009 by Taylor & Francis Group, LLC

250 Data Flow Analysis: Theory and Practice

a = 5;b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = 7
print c+d

n1

n2 d = 7 ∗b n2

Call qC2

Call qR2

print a+ cEndmain

b = 2

if (2 < d)
Startp

n3 c = a+ 2 n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = 1 ∗bEndq

Block n Inn Outn

Startmain ∅ {a,b,c,d}

C1 {a,b,c,d} {a,b,c,d}

R1 {b,c,d} {b,c,d}

n1 {b,c,d} {a,b,c}

n2 {a,b,c} {a,b,c,d}

C2 {a,b,c,d} {a,b,c,d}

R2 {a,c} {a,c}

Endmain {a,c} ∅

Startp {a,c,d} {a,b,c,d}

n3 {a,b,d} {a,b,c,d}

Endp {a,b,c,d} {a,b,c,d}

Startq {b,c,d} {a,b,c,d}

C3 {a,b,c,d} {a,b,c,d}

R3 {b,c,d} {b,c,d}

Endq {b,c,d} {a,b,c,d}

FIGURE 7.9

Interprocedural liveness analysis after interprocedural constant propagation using

flow insensitive side effects. The resulting values after constant propagation and

constant folding are shown in circles.

senting multiplication in constant propagation, it can be reduced as follows:

�xa�1�
�
(�xa�1) ∗ (�xb�2)

�
��xa�1�

�
(�xa ∗�xb)� (�xa ∗2)� (1 ∗2)� (1 ∗�xb)

�

��xa�1� (�xa ∗�xb)� (�xa ∗2)�2��xb
� �⊥

Intuitively, a can be both 1 and 2, hence it must be �⊥. Using this, the final

summary side effect function is:

fq(��xa,�xb,�xc,�xd�) = ��⊥,�xb�2,�⊥,�xd�
Observe that devising a systematic method that can perform the reductions

such as above is not easy.

The details of constants discovered in each basic block are shown in Figure 7.6

on page 247. The resulting constant propagation is shown in Figure 7.9. Ob-

serve that the number 7 in blocks n1 and n2 is a result of constant folding. The

use of flow insensitive side effects in intraprocedural analysis results in more

precise data flow information compared to the data flow information computed

using the conservative approximation of function calls.

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 251

• Flow insensitive side effects for live variables analysis.

We need to compute MustKill and MayUse sets for procedures p and q. We

compute them for the program in Figure 7.9 on the facing page.

MustKill p = KillStartp ∩Killn3
∩KillEndp = ∅

MustKillq = KillStartq ∩MustKill p∩KillEndq = ∅

MayUse p = GenStartp ∪Genn3
∪GenEndp = {a,c,d}

MayUseq = GenStartq ∪MayUse p∪GenEndq = {a,b,c,d}

fp(x) = (x−MustKill p) ∪ MayUse p = x ∪ {a,c,d}

fq(x) = (x−MustKillq) ∪ MayUseq = x ∪ {a,b,c,d}

Note that fp(x) is a little better than the conservative approximations used in

Section 7.6.1 in that it does not contain b. However, due to flow insensitivity, it

does not recognize that b is killed in procedure p. Hence, the use of b in block

n2 cause b to be considered live at the exit of Startmain. The resulting data flow

information after performing constant propagation using flow insensitive side

effects is shown in Figure 7.9 on the preceding page. Observe that no variable

is dead immediately after its assignment hence dead code elimination is not

possible using this variant also in spite of the fact that some more constant are

discovered and liveness information has become more precise.

Flow sensitive side effects

As in the previous section, we compute Kill and Gen implicitly for constant propa-

gation and explicitly for live variables analysis.

Flow sensitive side effects for constant propagation can be computed by perform-

ing data flow analysis over a called procedure with BI = ��xa,�xb,�xc,�xd�. The resulting

flow functions are represented by the symbolic data flow values at the exit of the

function. It is easy to see that:

fp(��xa,�xb,�xc,�xd�) = ��xa,2,�xc� (�xa+2),�xd�
fq(��xa,�xb,�xc,�xd�) = �2,2,�xc�3,�xd�

It is clear from Figure 7.6 on page 247 that flow sensitive side effects enable detecting

more constants than flow insensitive side effects. The resulting constant propagation

and constant folding is shown in Figure 7.10 on the next page.

For liveness analysis, we compute flow sensitive MustKill and MayUse by travers-

ing the CFG in post order. MustKill is computed by discovering the sets of variables

that are modified in basic blocks such that these modifications are upwards exposed.

If a variable is used in a basic block, it is removed from the set. By contrast, MayUse

© 2009 by Taylor & Francis Group, LLC

252 Data Flow Analysis: Theory and Practice

a = 5; b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = 7
print c+d

n1

n2 d = 14 n2

Call qC2

Call qR2

print 2 + cEndmain

b = 2

if (2 < d)
Startp

n3 c = a+ 2 n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = 2Endq

Block n Inn Outn

Startmain ∅ {a,c,d}

C1 {a,c,d} {a,c,d}

R1 {c,d} {c,d}

n1 {c,d} {c}

n2 {c} {c,d}

C2 {c,d} {c,d}

R2 {c} {c}

Endmain {c} ∅

Startp {a,c,d} {a,b,c,d}

n3 {a,b,d} {a,b,c,d}

Endp {a,b,c,d} {a,b,c,d}

Startq {c,d} {a,c,d}

C3 {a,c,d} {a,c,d}

R3 {b,c,d} {b,c,d}

Endq {b,c,d} {a,b,c,d}

FIGURE 7.10

Interprocedural liveness analysis after interprocedural constant propagation using

flow sensitive side effects. Highlighted statements are dead assignments and can

be eliminated.

is computed using live variables analysis. BI is ∅ for both MustKill and MayUse . The

resulting flow functions are:

MustKill p = {b}

MayUse p = {a,c,d}

fp(x) = (x− {b}) ∪ {a,c,d}

MustKillq = {a,b}

MayUseq = {c,d}

fq(x) = (x− {a,b}) ∪ {c,d}

Figure 7.10 shows the liveness analysis on the program in which constant propaga-

tion has been performed. Both analyses use flow sensitive side effects to incorporate

the effect of a procedure call. The results of both analyses are more precise com-

pared to the results obtained by using flow insensitive side effects. Further, dead

code elimination also becomes possible. Variable b is not live at the exit of Startmain
and Startp. Hence the assignments to these variables in the respective blocks can

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 253

a = 5; b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = a+2
print c+d

n1

n2 d = 14 n2

Call qC2

Call qR2

print a+ cEndmain

b = 2

if (2 < d)
Startp

n3 c = a+ 2 n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = a ∗ 2Endq

Block n Inn Outn

Startmain ∅ {a,c,d}

C1 {a,c,d} {a,c,d}

R1 {a,c,d} {a,c,d}

n1 {a,c,d} {a,c}

n2 {a,c} {c,d}

C2 {c,d} {c,d}

R2 {a,c} {a,c}

Endmain {a,c} ∅

Startp {a,c,d} {a,c,d}

n3 {a,d} {a,c,d}

Endp {a,c,d} {a,c,d}

Startq {c,d} {a,c,d}

C3 {a,c,d} {a,c,d}

R3 {a,c} {a,c}

Endq {a,c} {a,c}

FIGURE 7.11

Interprocedural liveness analysis after interprocedural constant propagation using

context insensitive whole program analysis.

be deleted. Observe that this still does not cover all dead assignments shown in

Figure 7.1 on page 234.

7.6.3 Whole Program Analysis

We now present interprocedural analyses that compute both inherited and synthe-

sized data flow information. As usual, the analyses are flow sensitive. Since inherited

data flow information depends on the callers alone, we present two possible variants:

(a) Context insensitive analysis, and (b) Context sensitive analysis.

Context insensitive whole program analysis

Conceptually, the simplest method of performing context insensitive whole program

analysis is to treat a supergraph as single control flow graph and compute data flow

properties with a block from all its neighbours without distinguishing between in-

terprocedural and intraprocedural edges. Thus, the constants reaching Startp are a

merge of the constants available at C1 and C3. This merged information is then used

to compute the synthesized information which is then propagated to both R1 and

R3. Thus the data flow information at C3 influences the data flow information at R1

in spite of the fact that there is no control flow from C3 to R1. Thus this method

© 2009 by Taylor & Francis Group, LLC

254 Data Flow Analysis: Theory and Practice

propagates information flow along interprocedurally invalid paths too causing an im-

precision in the context sensitive part of the synthesized data flow information; the

context insensitive part remains unaffected.

The details of constants that get propagated to each program point in this method

are presented in Figure 7.6 on page 247. The optimized program after constant prop-

agation and the result of liveness analysis on this program are shown in Figure 7.11

on the previous page. Merging inherited data flow information results in loss of

precision in the synthesized data flow information because interprocedurally invalid

paths are also covered. This happens in spite of computing flow sensitive synthesized

data flow information.

Interestingly, in our example program, this method discovers fewer constants than

the method using flow insensitive side effects. Yet it performs some dead code elim-

ination whereas the latter does not. This is because this method discovers more

precise liveness information: With flow insensitive side effects, the liveness of vari-

able b is not killed in procedure p. On the other hand, the synthesized information

computed by flow sensitive side effects discovers that b is not live. However, this

method does not compare favourably with the method that uses flow sensitive side

effects—the latter computes precise synthesized information while merging inher-

ited data flow information introduces some imprecision in the synthesized data flow

information computed by this method.

Context sensitive whole program analysis

Our final method of interprocedural data flow analysis does not merge inherited data

flow information while computing the synthesized data flow information. Thus the

context sensitive part of synthesized data flow information is more precise than in

the context insensitive whole program analysis.

It uses the same flow functions as used by the flow sensitive side effects. The main

difference is that in that method, the inherited data flow information was represented

by a conservative approximation. This method computes the inherited information

from calling contexts and propagates it within the callee’s body.

The resulting optimization is shown in Figure 7.12 on the facing page. The dead

code discovered by this method matches the dead code shown in Figure 7.1 on

page 234.

Observe that this method fails to discover that the value of c is 3 in Endmain. It can

be discovered by context sensitive whole program conditional constant propagation.

7.7 An Aside on Interprocedural Optimizations

A lot of work that analyses programs at the interprocedural level is directed at in-

terprocedural optimizations like procedure inlining and cloning. The analyses re-

quired for these optimizations are different from the analyses that are presented in

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 255

a = 5; b = 3
c = 7;read d

Startmain

Call pC1

Call pR1

n1
a = 7

print 7 +d
n1

n2 d = 14 n2

Call qC2

Call qR2

print 2 + cEndmain

b = 2

if (2 < d)
Startp

n3 c = a+ 2 n3

print c+dEndp

T F

a = 1Startq

Call pC3

Call pR3

a = 2Endq

Block n Inn Outn

Startmain ∅ {a,c,d}

C1 {a,c,d} {a,c,d}

R1 {c,d} {c,d}

n1 {c,d} {c}

n2 {a,c} {c,d}

C2 {c,d} {c,d}

R2 {c} {c}

Endmain {c} ∅

Startp {a,c,d} {a,c,d}

n3 {a,d} {c,d}

Endp {c,d} {c}

Startq {c,d} {a,c,d}

C3 {a,c,d} {a,c,d}

R3 {c} {c}

Endq {c} {c}

FIGURE 7.12

Interprocedural liveness analysis after interprocedural constant propagation using

context sensitive whole program analysis.

this book. Often they involve a single traversal over program representation. For ex-

ample, procedure inlining analyses parameters and checks that there is no recursive

call. The final decision to inline is taken based on a collection of heuristics supported

by empirical evidence. Then a transformation pass renames global variables and per-

forms inlining by traversing the call graph bottom up. Procedure cloning is based on

analyzing actual parameters from different call sites and their effects on the called

procedures. Typically, the option of cloning is considered when constant values are

passed as actual parameters. Again, the final decision depends on a collection of

thumb rules. Most production compilers gainfully employ these optimizations. An

additional advantage of these optimizations is that they enhance the possibility of

intraprocedural optimizations.

The next set of interprocedural optimizations employed by production compilers

are actually more aggressive intraprocedural optimizations using side effects of pro-

cedure calls. The common side effect that most compilers try to detect is potential

modifications of global variables and reference parameters.

Finally, many interprocedural optimizations do involve systematic analyses. How-

ever, for reasons of efficiency and scalability, most of these analyses are rooted in

specific optimizations e.g., constant propagation, side effect analysis, points-to anal-

ysis etc. There is a large body of work along these lines but it seems difficult to

© 2009 by Taylor & Francis Group, LLC

256 Data Flow Analysis: Theory and Practice

build useful generalizations across these methods. Besides, efficiency and scalabil-

ity concerns have often resulted in these methods being flow insensitive or context

insensitive or both.

7.8 Summary and Concluding Remarks

In this part we focus on generalizations in keeping with the theme of the book and

present generic methods that naturally allow interprocedural analysis of the formu-

lations presented in Part I of the book.

This chapter has presented flow and context sensitivity as two features that influ-

ence the precision of interprocedural data flow information. Further, it has identified

constructing summary flow functions versus computing values as two fundamentally

different approaches of performing interprocedural analysis. Subsequent chapters

use these concepts and primarily focus on methods that are flow and context sensi-

tive. Chapter 8 presents general methods of constructing summary flow functions

whereas Chapter 9 presents methods that compute data flow information at each

point by maintaining distinct contexts.

7.9 Bibliographic Notes

The earliest studies of interprocedural data flow analysis were motivated by the need

of discovering side effects. The work by Spillman [94] was directed at finding out

side effects in terms of values modified by the called procedure. This analysis was

performed by traversing a call graph from callees to callers. Allen [6] addressed a

slightly more general problem of additionally finding out values used by callees also.

However, unlike Spillman’s method, Allen’s method was not suited for recursive

programs. Barth [13, 14] introduced a much more general formulation based on

computing transitive closures of relationships. This method allowed asking a wider

range of questions such as whether variables shared storage or not, whether variables

were modified or used etc. More importantly, he introduced the notions of must and

may in the data flow information discovered. Banning [12] was the first to make a

distinction between flow sensitive and flow insensitive side effect computation.

The concept of context sensitivity was introduced by Sharir and Pnueli [93] which

can be easily called the most influential work on interprocedural data flow analysis.

We present their concepts in greater details in the next two chapters.

Effectiveness of interprocedural data flow analysis was studied by Richardson and

Ganapathi [83], Grove and Torczon [39], and Martin [72]. Lhoták and Hendren [69]

have empirically observed that in the presence of recursive calls, context insensitivity

© 2009 by Taylor & Francis Group, LLC

Introduction to Interprocedural Data Flow Analysis 257

leads to significant imprecision.

Duesterwald, Gupta and Soffa [32, 33] present an interesting alternative of com-

puting interprocedural data flow information incrementally on demand.

An important issue in interprocedural data flow analysis is precise call graph con-

struction. This becomes difficult in the presence of function pointers in a language

like C and virtual functions and dynamic dispatch of methods in object oriented lan-

guages. Early works along these lines were done by Hall and Kennedy [43] and by

Callahan, Carle, Hall and Kennedy. [20]. Grove and Chambers [38] present a more

recent detailed treatment of call graph construction. We do not address this issue in

this book.

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

8

Functional Approach to Interprocedural Data
Flow Analysis

Functional approach to interprocedural data flow analysis constructs context inde-

pendent summary flow functions which are then used in the calling contexts to com-

pute the data flow information synthesized by called procedures in the body of the

caller procedures. Data flow information inherited by a procedure is computed from

the calling contexts of the procedure. The main advantage of constructing context

independent summary flow functions is that a procedure needs to be analyzed only

once regardless of the number of calls to it.

We begin by presenting the classical side effects analysis for bit vector frameworks

as a special case of constructing summary flow functions. This is followed by con-

text and flow sensitive whole program analysis. Finally we show how the explicit

construction of summary flow functions can be avoided by enumerating the function

in terms of pairs of input output values.

For simplicity, we focus on data flow analysis of global variables. We present

orthogonal techniques of handling the effects of parameters. We restrict the analysis

to languages that do not contain nested procedures.

8.1 Side Effects Analysis of Procedure Calls

Classical side effects analysis focuses on computing the effect of a callee procedure

on the variables of the caller procedure in order to discover more optimization oppor-

tunities in the caller procedures. In particular, the following side effects are directly

relevant: For a given variable v and a given callee s in a procedure r

• Is the execution of r guaranteed to modify the value of v?

• Can the execution of r modify the value of v?

• Is the execution of r guaranteed to use the value of v before modifying it?

• Can the execution of r use the value of v before modifying it?

The variables for which the above answers are in affirmative are contained in MustKillr,

MayKillr, MustUser, and MayUser respectively. Clearly, the must properties are all

paths properties whereas may properties are some path properties.

259
© 2009 by Taylor & Francis Group, LLC

260 Data Flow Analysis: Theory and Practice

a = 5;b = 3
c = 7;read d

Startmain

Call pc1

n1
a = a+2
print c+d

n1

n2 d = a ∗b n2

Call qc2

print a+ cEndmain

b = 2
if (b < d)

Startp

n3 c = a+b n3 Call qc4

print c+dEndp

T F

a = 1Startq

Call pc3

a = a ∗bEndq

FIGURE 8.1

Modified version of the program in Figure 7.2.

These basic side effects of a procedure can be used to answer a variety of ques-

tions. For example, liveness analysis can handle call to procedure r by computing

Inn of the call block as follows:

Inn = (Outn−MustKillr) ∪ MayUser

Observe that liveness information of a variable is killed only when it is guaranteed

to be modified in the callee along all execution paths. Available expression analysis,

on the other hand, should use kill the availability of expressions whose operands are

in MayKillr. The variables that are guaranteed to preserve their values across a call

to procedure r are contained in Gvar−MayKillr where Gvar denotes the set of global

variables. The variables that may preserve their values along some path through

procedure r are contained in Gvar−MustKillr.

The �, � and ⊥ values for computing the above side effect properties are:

Property � � ⊥ Explanation of ⊥

MustKillr ∩ Gvar ∅
No variable can be guaranteed to be
necessarily killed by r

MustUser ∩ Gvar ∅
No variable can be guaranteed to be
necessarily used in r before being modified

MayUser ∪ ∅ Gvar
Any variable may be used in r along some
path or the other

MayKillr ∪ ∅ Gvar
Any variable may be killed in r along some
path or the other

We use the program in Figure 8.1 as a running example in this section. This

program is same as the program in the previous chapter except that we have now

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 261

included a call to procedure q in procedure p to make the program recursive.

8.1.1 Computing Flow Sensitive Side Effects

The side effect properties MustKill , MayKill , MustUse , MayUse are computed by

assuming BI to be empty set.

For computing the MustKill and MayKill , a simple data flow analysis gathers the

variables that are killed on the paths from Startr to Endr. The sets so computed do

not include local variables of r because they are not visible in the caller procedures

even if r is called recursively. The data flow value Outr defines MayKillr or MustKillr
as the case may be. The data flow equations for computing MustKillr are given below.

Inn =



BI n is Start block�

p∈pred(n)

Out p otherwise

Outn =

�
Inn ∪ MustKill s n is a call to s

Inn ∪ Genn otherwise
(8.1)

MustKillr = OutEndr

The initial values of Inn, Outn, and MustKill s are � = Gvar.

For computing MayKillr, � is ∪, and the initial values of Inn, Outn, and MayKill s
are � = ∅.

Example 8.1

The computation of MustKill and MayKill properties of procedures p and q of
our program in Figure 8.1 are shown in Figure 8.2 on the following page. Since
procedures p and q are mutually recursive, their data flow values are mutually
dependent and require a fixed point computation with � as the initial value.
When procedure p is being analyzed MustKillq is assumed to be {a,b,c,d}.
This results in MustKill p = {b,c} which is then used in computing MustKillq.
The resulting value MustKillq = {a,b,c} is used in the second iteration over p.
Although it causes a change in Outc4 , OutEndp does not change. Thus neither
MustKill p, not MustKillq changes. For computing MayKill , � is ∅. Thus the
initial value of MayKillq is ∅ resulting in MayKill p = {a,b,c}. When this is used
to compute MayKillq, the result is {a,b,c}. However, the new value of MayKillq
does not result in a change in the value of MayKill p.

Observe that c is contained in MustKill p in spite of the fact that it is com-
puted conditionally. This is because every path from Startp to Endp must
pass through n3: Even if the execution were to follow edge Startp→ c4, the
only way to unwind the recursive call to q is to execute the path involving
n3. Since there is only one path through procedure q (with varying depths of
recursion), MustKillq =MayKillq. Also observe that a is contained in MayKill p

but not in MustKill p.

© 2009 by Taylor & Francis Group, LLC

262 Data Flow Analysis: Theory and Practice

Procedure Node

MustKill MayKill

Iteration #1
Changes in
Iteration #2 Iteration #1

Changes in
Iteration #2

In Out In Out In Out In Out

p

Startp ∅ {b} ∅ {b}

n3 {b} {b,c} {b} {b,c}

c4 {b} {a,b,c,d} {a,b} {b} {b} {a,b,c}

Endp
{b,c} {b,c} {b,c} {b,c} {a,b,c} {a,b,c}

MustKill p = Endp = {b,c} MayKill p = Endp = {a,b,c}

q
Startq ∅ {a} ∅ {a}

c3 {a} {a,b,c} {a} {a,b,c}

Endq
{a,b,c} {a,b,c} {a,b,c} {a,b,c}

MustKillq = Endq = {a,b,c} MayKillq = Endq = {a,b,c}

FIGURE 8.2

Computing flow sensitive MustKill and MayKill for the program in Figure 8.1.

The data flow equations for computing MayUse have been provided below. Intu-

itively, MayUser contains the variables that are live at the entry of r assuming that

no variable is live at the exit of r. Thus except for a call statement, the data flow

equations are identical to the data flow equations of liveness analysis. Genn contains

the set of variables with upwards exposed uses in block n.

Inn =

�
(Outn−MustKillt) ∪ MayUset n is a call to t

(Outn−Killn) ∪ Genn otherwise
(8.2)

Outn =



BI n is End block�

s∈succ(n)

Ins otherwise

MayUser = InStartr

For a call statement, the variables in MustKill set of the callee cease to be live whereas

the variables in MayUse set of the callee become live. For MustUse , � is ∪ and Kill

for a call statement is MayKill instead of MustKill .

Example 8.2

The data flow analysis for computing MayUse and MustUse of our example
program is provided in Figure 8.3 on the next page. Observe that for com-
puting MayUse p we use � = ∅ as the initial value of MayUseq whereas for
computing MustUse p we use � = {a,b,c,d} as the initial value of MustUseq.
The data flow values for computing MayUse do not change in the second
iteration whereas the data flow values for computing MustUse do.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 263

Procedure Node

MayUse MustUse

Iteration #1 Iteration #1
Changes in
Iteration #2

Out In Out In Out In

p

Endp ∅ {c,d} ∅ {c,d}

n3 {c,d} {a,b,d} {c,d} {a,b,d}

c4 {c,d} {d} {c,d} {a,b,c,d} {d}

Startp
{a,b,d} {a,d} {a,b,d} {a,d} {d} {d}

MayUse p = Endp = {a,d} MustUse p = Endp = {d}

q
Endq ∅ {a,b} ∅ {a,b}

c3 {a,b} {a,d} {a,b} {a,d} {d}

Startq
{a,d} {d} {a,d} {d} {d}

MayUseq = Endq = {d} MustUseq = Endq = {d}

FIGURE 8.3

Computing flow sensitive MayUse and MustUse for the program in Figure 8.1.

8.1.2 Computing Flow Insensitive Side Effects

Recall that flow insensitive computation accumulates the effect of each block using

Equation (7.1). As explained in Figure 7.5 on page 242 and Figure 7.8 on page 249,

dependence of data flow values on other data flow values has to be explicitly handled

by adding dependence edges. In the general situation, a path in paths(u) could con-

sist of fragments where the dependent parts in the flow functions are ∅ as illustrated

in Figure 8.4 on the following page.

The following lemma shows that if dependent parts are handled explicitly, flow in-

sensitive analysis computes a safe approximation of the corresponding flow sensitive

data flow information.

LEMMA 8.1

Consider a path fragment ρ = (p0, p1, . . . , pk) along which the dependent parts
of flow functions fpi→pi+1

are ∅. Then,

∀x ∈ L :

k

i=0

fi(x) � fρ (x)

where fi = fpi→pi+1
and fρ = fk ◦ fk−1 ◦ . . .◦ f1 ◦ f0.

PROOF We prove this by induction on path length.

• Basis: Consider path of length of 1. We need to show that

∀x ∈ L : f1(x)� f0(x) � f1(f0(x))

© 2009 by Taylor & Francis Group, LLC

264 Data Flow Analysis: Theory and Practice

0 f0 0

1 f1 1

2 f2 2

3 f3 3

4 f4 4

5 f5 5

Start

0 f0 0

1� f � = f1� f2� f3� f4 1�

5 f5 5

End

(a) A path for flow sensitive analysis.
Dependent parts in f1, f2, f3, f4 are ∅.

(b) Modeling the path for flow
insensitive analysis. In5� � In5.

FIGURE 8.4

Safety of flow insensitive analysis with dependent parts.

Since there are no dependent parts in flow functions, the flow function
is separable. Thus we can prove the lemma for independent entities.
Further, absence of dependent parts imply that entity functions are
constant functions or the identity function; a non-constant non-identity
flow function requires dependent part. Thus the proof obligation reduces
to

∀α ∈ Σ,∀ �x ∈�L : �f α
0

(�x) �� �f α
1

(�x) �� �f α
0

��f α
1

(�x)
�

We consider the following two cases.

– �f α
0

is the identity function. Then the proof obligation reduces to

∀ �x ∈�L : �x �� �f α
1

(�x) �� �f α
1

(�x)

which trivially holds.

– �f α
0

is some constant function resulting in a particular value �y ∈�L .
Then the proof obligation reduces to

∀ �x ∈�Lα : �y �� �f α
1

(�x) �� �y

which also trivially holds.

• Inductive step: Assume that the lemma holds for path of length i. Then,
it follows that for fρ� = fi ◦ fi−1 ◦ . . .◦ f1 ◦ f0,

∀x ∈ L :

i

i=0

fi(x) � fρ� (x)

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 265

Property Defining expression

Result

Iteration #1
Changes in
iteration #2

MustKill p KillStartp ∩ Killn3
∩ MustKillq∩ KillEndp ∅

MayKill p KillStartp ∪ Killn3
∪ MayKillq∪ KillEndp {b,c} {a,b,c}

MustUse p GenStartp ∩ Genn3
∩ MustUseq∩ GenEndp ∅

MayUse p GenStartp ∪ Genn3
∪ MayUseq∪ GenEndp {a,b,c,d}

MustKillq KillStartq ∩ MustKill p∩ KillEndq ∅

MayKillq KillStartq ∪ MayKill p∪ KillEndq {a,b,c}

MustUseq GenStartq ∩ MustUse p∩ GenEndq ∅

MayUseq GenStartq ∪ MayUse p∪ GenEndq {a,b,c,d}

FIGURE 8.5

Flow insensitive computation of side effects for the program in Figure 8.1.

We need to show that

fi+1(x)�
� i

i=0

fi(x)
�
� fi+1

�
fρ� (�x)

�

Since the flow functions are separable we can prove this independently
for different entities by considering constant and identity entity functions
�f α
i+1

in a manner similar to that in the basis case.

Recall that for flow insensitive analysis, we merge fi(BI) (Equation 7.1). Since BI

is ∅ the flow functions defined in Equations (8.1) and (8.2) reduce to:

Property Flow Function Flow Function with x = BI = ∅

MustKillr,MayKillr x∪Kill Kill

MustUser,MayUser (x−Kill)∪Gen Gen

Example 8.3

The flow insensitive computations of side effects for our example program of
Figure 8.1 is shown in Figure 8.5. Observe the mutual dependence of the data
flow values of procedures p and q due to mutual recursion. We first compute
the values for procedure p by using � values for procedure q. The resulting
values for procedure p are then used to compute the values of procedure q.
The resulting values for procedure q are different from the initially assumed
� values. However, they do not cause any change in the values of procedure p
except for MayKill p. When this changed value is used for recomputing MayKillq,

there is no change.

© 2009 by Taylor & Francis Group, LLC

266 Data Flow Analysis: Theory and Practice

0. int a,b;

1. main()

2. { int c,d;

3. read (a,b,c);

4. q(a,b,c,d); /* Call site c1 */
5. p(c,c); /* Call site c2 */
6. }

7. q(int w, int x, int y, int z)

8. { int e;

9. x = x + 1;

10. if (x < y)

11. { q(x,y,z,e); /* Call site c3 */
12. p(w,x); /* Call site c4 */
13. }

14. }

15. p(int m, int n)

16. { n=m; }

main()

p(c,c)

c = cq(a,b,c,d)

p(a,b)

b = a

b=b+1

q(b,c,d,e)

p(b,c)

c = b

c=c+1

q(c,d,e,e)

p(c,d)

d = c

d=d+1

q(d,e,e,e)

e=e+1

FIGURE 8.6

A C program assuming parameter passing by reference. A possible activation tree

shows how variables may be modified in the program.

8.2 Handling the Effects of Parameters

Recall that we have excluded the effects of parameters from our descriptions of anal-

yses by restricting them to global variables only. If the parameter passing mechanism

is by value, the basic techniques do not change much except that the data flow in-

formation of actual parameters must be propagated as the data flow information of

formal parameters. Thus formal parameters can be considered similar to local vari-

ables except that BI for formal parameters is computed from the calling contexts.

Section 9.5 shows a way of modeling the effect of parameters to capture the transfer

of data flow information between actual and formal parameters.

In this section we look at aliasing between formal parameters in the presence of

parameter passing by reference. In this case the actual parameter and the formal pa-

rameter share the same address and hence are aliased. The main difference between

this aliasing and the aliasing created by pointer assignments (Section 4.3.2) is that in

pointer assignments, both variables involved in an alias are simultaneously visible;

in the case of parameters this need not hold always. Thus discovering such aliases

requires a different technique.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 267

8.2.1 Defining Aliasing of Parameters

We discover may aliases created by call statements only. Further, we restrict the

aliases to scalar variables only. Hence, all other statements including the control

flow statements are ignored and our analysis is flow insensitive. Observe that there is

no way of killing such aliases; they just become invisible when the variables involved

go out of scope.

Example 8.4

We consider the program in Figure 8.6 for performing side effects analysis of
procedure q. If we assume parameter passing by reference, it is easy to see
that q will modify variable b. However, it is clear from the activation tree of
the program that q can also modify the local variables of main (c and d) and
q (e). This happens because the recursive call to q at the call site c3 passes
its formal parameters as actuals in a different order. As a consequence, the
formal parameter x gets aliased to y and z in nested recursive calls. Observe
that it does not get aliased to w and the global variable a cannot be modified
anywhere in the program. The first call to p modifies c whereas the second
call to p modifies b, c, and d.

Our primary goal is to find out aliasing of formal parameters of a procedure. Con-

sider two formal parameters x and y of procedure r. They may be aliased to each

other because of any of the following reasons:

• Direct generation. There are two ways in which direct aliases are generated:

– The actual parameters of both x and y are same in some call. They may

well be global variables, local variables of the caller, or formal parame-

ters of the caller.

– In some call, the actual parameter for x (alternatively, y) is a global vari-

able v and the actual parameter of y (alternatively, x) is a formal parame-

ter of the caller and is aliased to v. Observe that a formal parameter of a

procedure can never be aliased to a local variable of the same procedure.

• Indirect generation. x may be passed as y (or vice-versa) in a call in r in a

recursive call sequence.

• Propagation. The actual parameters of x and y may be aliased in a caller’s

body.

We restrict ourselves to languages that do not support nested procedures. In the

case of nested procedures, the formal parameters of an outer procedure are visible

within the nested procedures and must be treated as global variables within them

rather than as formal parameter of the outer procedure.

© 2009 by Taylor & Francis Group, LLC

268 Data Flow Analysis: Theory and Practice

8.2.2 Formulating Alias Analysis of Parameters

We solve the problem in two steps. In the first step we find out the variables that

may be aliased to formal parameters of a procedure along some call chain leading

to the procedure. These variables may be global variables and formal parameters of

callers. In the second step, we augment this information with the aliasing between

formal parameters of the same procedure.

Let the local variables and formal parameters of procedure r be contained in Localr
and Formalr respectively; we assume that formal parameter names are distinct for

each procedure. We define a function ψ to map a formal parameter to the correspond-

ing actual parameter at a call site. Let a call site ci in procedure s call procedure r.

Given x ∈ Formalr, ψ(ci, x) = y where y ∈ Gvar∪Locals∪Formals.

Our lattice consists of data flow values denoted by x
ci�⇒ y where x is a formal

parameter of a procedure being called at call site ci and y is a variable which is rep-

resented by x in the called procedure; in the simplest case, y is the actual parameter

corresponding to x. In order to compute data flow information inherited by the callee,

the data flow information of y must be copied to the data flow information of x in

BI of the callee. To compute the data flow information synthesized by the callee, the

data flow information of x must be copied to the data flow information of y. In par-

ticular, if the callee modifies x, y should be considered to be modified in the caller’s

body. Similarly, if the callee uses x, y should be considered to be used in the caller’s

body. Thus the relation x
ci�⇒ y is not symmetric; the exact direction of dependence is

governed by the intended use of the data flow information.

The relation x
ci�⇒ y between x and y becomes symmetric if both x and y are visible

within the called procedure. This is possible only when y is a global variable or

when y is a formal parameter that encloses the called procedures. In such a situation,

a modification in y in the callee is should be considered a modification in x and vice-

versa. This situation is more appropriately modeled by considering y as a global

variable for the callee rather than as a formal parameter of the caller.

The flow function for a call site ci in procedure s calling a procedure r is defined

as follows:

fci (x) = x ∪ ConstGenci ∪ DepGenci (x)

ConstGenci = {x
ci�⇒ y | x ∈ Formalr, y = ψ(ci, x), y ∈ Gvar∪Formals}

DepGenci(x) = {x
ci�⇒ z | x ∈ Formalr, y = ψ(ci, x), y ∈ Formals, y

ci�⇒ z ∈ x}

Observe that ConstGenci excludes y ∈ Localr and z in DepGenci could well be a

formal parameter of a caller of s or some other ancestor of s along a call chain

reaching ci.

Let Calls denote all call sites in a program. In the first step, the aliasing informa-

tion is computed as the MFP solution of the following equation with � = ∅:

PVA =
�

ci∈Calls

fci (PVA) (8.3)

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 269

Formals x y

Actuals w z

Formals x y

Actuals w z

FIGURE 8.7

Aliasing relation between actual parameters should be propagated to the correspond-

ing formal parameters.

where PVA is an abbreviation of “Parameters to Variables Aliasing”. PVA contains

the variables to which formal parameters of a function may be aliased. These vari-

ables could be global variables, formal parameters of caller procedures, or formal

parameters of the same procedure in the case of recursion.

To see why PVA contains the indirectly generated aliases of formal parameters in

the presence of recursion, consider x,y ∈ Formalr for procedure r that is part of a

recursive call chain. There must be a sequence of corresponding formal parameters

x�,y�, x��,y��, etc. of the procedures called in the call sequence. If one of these pa-

rameters (say y��) is passed as an actual parameter at a different position (say in the

place of x���) in the subsequent call, it will result in a pair x���
c j�⇒ y�� in PVA . Due to

transitive propagation defined in DepGenc j(x), we will also have the pair x���
c j�⇒ y in

PVA . When this pair is propagated to r, we will get the pair x
ck�⇒ y in PVA . The pairs

x,y��, y, x�� in PVA are not meaningful by themselves because they represent formal

parameters of different procedures; their use is mainly in detecting and propagating

indirectly generated aliases.

The semantics captured by the pair x
ck�⇒ y in PVA when both x and y are in Formalr

requires some explanation. Recall that this relation is not symmetric because it de-

notes the fact that y is represented by x in a nested call. Since both x and y are formal

parameters of the same procedure, this is possible only when an incarnation of y in

a call to r is represented by an incarnation of x in a nested recursive call to r. Thus,

if we have x
ck�⇒ y in PVA and x is modified in r, we can conclude that y is modified

in r. However, if y is modified in r, then we cannot conclude that x is modified in r

unless we have y
ck�⇒ x in PVA . Observe that this is consistent with our semantics of

x
ck�⇒ y when x and y are formal parameters of different procedures.

Let VPAr(x) (abbreviation for “Variables to Parameters Aliasing”) denote the set

of formal parameters of r that are aliased to variable x. It is defined as:

VPAr(x) =



�
y | x

ci�⇒ y ∈ PVA , y ∈ Visibler,
�

if x ∈ Formalr
�
y | y

ci�⇒ x ∈ PVA , y ∈ Formalr,
�

if x ∈ Gvar
(8.4)

The meaning of y ∈ VPAr(x) is that whenever x is modified in r, y should also be con-

sidered to be modified in r; similarly, whenever x is used in r, y should be considered

to be used in r. Clearly, VPAr(x) as defined by Equation (8.4) is not symmetric.

© 2009 by Taylor & Francis Group, LLC

270 Data Flow Analysis: Theory and Practice

• Computing PVA . An element m in the set in a row ci and column l represents

the data flow value l
ci�⇒ m computed in the corresponding iteration.

Iteration
PVA for procedure q PVA for procedure p

Call
site w x y z

Call
site m n

#1
c1 {a} {b} ∅ ∅ c2 ∅ ∅

c3 {x} {y} {z} ∅ c4 {w} {x}

#2
c1 {a} {b} ∅ ∅ c2 ∅ ∅

c3 {b, x,y} {y,z} {z} ∅ c4 {a,w, x} {b, x,y}

#3
c1 {a} {b} ∅ ∅ c2 ∅ ∅

c3 {b, x,y,z} {y,z} {z} ∅ c4 {a,b,w, x,y} {b, x,y,z}

• Computing VPAr for calls with different set of actual parameters at call site c2.

Call at c2
VPAq VPAp

w x y z a b m n a b

p(c,c) {x,y,z} {y,z} {z} ∅ {w} {w, x} {n} {m} {m} {m,n}

p(c,d) {x,y,z} {y,z} {z} ∅ {w} {w, x} ∅ ∅ {m} {m,n}

FIGURE 8.8

Computing aliasing resulting from reference parameters for our example program.

The aliases contained in VPAr(x) are not complete. What remains is to detect and

propagate the directly generated aliases of formal parameters. When x is a formal

parameter, we augment VPAr(x) as shown below:

VPAr(x) = VPAr(x) ∪
� �

ci∈CallsTor

propVPAr(ci, x)
�

propVPAr(ci, x) denotes the set of aliases that are propagated to ci ∈ CallsTor: When

two aliased formal parameters of a caller of r are passed as actual parameters in a call

to r, the corresponding formal parameters of r get aliased; this has been illustrated

in Figure 8.7. The identification of directly generated aliases and their propagation

is achieved by:

propVPAr(ci, x) = directVPAr(ci, x) ∪

�
y | x

cj�⇒ w ∈ PVA , y
cj�⇒ z ∈ PVA , z ∈ VPAs(w),

c j ∈ CallsTor, x ∈ Formalr, y ∈ Formalr
�

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 271

where c j is a call site in procedure s calling r, and

directVPAr(ci, x) =
�
y |ψ(ci, x) = ψ(ci,y), x ∈ Formalr, y ∈ Formalr

�
∪

�
y | ((ψ(ci, x) = v, y

ci�⇒ v ∈ PVA) or (ψ(ci,y) = v, x
ci�⇒ v ∈ PVA)),

v ∈Gvar, x ∈ Formalr, y ∈ Formalr
�

Observe that the propagation of aliases to callees results in context insensitive

aliases because the aliases from all callers are combined. This is similar to the con-

text insensitivity observed in PVA .

Example 8.5

The computation of aliases resulting from reference parameters in the program
of Figure 8.6 has been shown in Figure 8.8 on the facing page. Beginning with
� = ∅, we compute successive approximations of PVA using Equation (8.3).
Observe that the indirect aliases for procedure q capture the fact that w
represents x, y, and z in recursive calls and x represents y and z. However,
w is not represented by any other variable. What this means is that the
assignment to x in procedure q cannot modify w although it can modify y and
z and their actual parameters.

We augment this information with aliasing between formal parameters of
the same procedure, under two different situations:

• When the call at call site c2 is p(c,c), and

• when it is p(c,d).

When the call is p(c,c), the formal parameters m and n of procedure p get
aliased. Since the data flow information is context insensitive, our analysis
assumes that this aliasing holds for all calls to p. If we change the call to
p(c,d), m and n are not aliased anymore.

8.2.3 Augmenting Data Flow Analyses Using Parameter Aliases

Now VPAr(x) can be used to augment the data flow information computed by other

analyses. We illustrate it for computing MayKillr.

We define MayKillr to consist of two components:

MayKillr =Killr ∪

� �

c j∈CallsInr

MayKillt(c j)
�
∪ (8.5)

�
y | y ∈ VPAr(x), x ∈MayKillr

�

where MayKillr represents all variables visible in r that are killed by execution of

r. They include local and global variables as well as formal parameters of r. This

information, augmented with the killing of actual parameters by a call to r at call

© 2009 by Taylor & Francis Group, LLC

272 Data Flow Analysis: Theory and Practice

Procedure Kill

When call at c2 is p(c,c) When call at c2 is p(c,d)

MayKill
Call specific MayKill

MayKill
Call specific MayKill

Call site ci MayKill(ci) Call site ci MayKill(ci)

p {n} {m,n}
c2 {c,c}

{n}
c2 {d}

c4 {w, x} c4 {x}

q {x} {w, x,y,z}
c1 {a,b,c,d}

{y,z}
c1 {b,c,d}

c3 {w, x,y,z} c3 {x,y,z}

FIGURE 8.9

Side effects for the example program of Figure 8.6.

site ci is contained in MayKillr(ci) which is defined below in Equation (8.6). Killr
represents the variables that may be directly killed within r without incorporating

the effect of calls made in r. The variables killed by a call to procedure s made at

call site c j in r are contained in MayKill s(c j).

From the gross information MayKillr, we extract MayKill Gr and MayKill Fr that de-

note the global variables and formal parameters of r killed by r. They are defined as

shown below:

MayKill Fr =MayKillr∩Formalr

MayKill Gr =MayKillr∩Gvar

Now we need to find out the local variables of the caller that may be killed by r. This

can happen only through the formal parameters of r. The complete side effect of a

call to r made at call site ci is represented by MayKillr(ci) which is defined in terms

of MayKill Gr and MayKill Fr as shown below:

MayKillr(ci) =MayKill Gr ∪

�
y | ψ(ci, x) = y, x ∈MayKill Fr

�
(8.6)

Observe that the definition of MayKillr (Equation 8.5) is flow insensitive. It can

be made flow sensitive by computing Ini and Out i along the control flow and using

MayKillr(ci) as the flow function for call site ci. However, the aliases contained in

VPAr(x) and PVA remain context and flow insensitive.

Example 8.6

The side effects computed for our example have been shown in Figure 8.9.
When the call at c2 is p(c,c), our analysis concludes that the call at c4 kills
both w and x. Hence it concludes that q can kill the global variable a which
has been passed as an actual parameter of w at call site c1. If we change the
call at c2 to p(c,d), m and n are not aliased. Hence our analysis concludes
that the call at c4 kills only x and not w. As a consequence, a is not contained
in the side effect of call at c1.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 273

m n

w x y z

c4 c4

c3 c3 c3

FIGURE 8.10

Parameter binding graph for the program in Figure 8.6.

8.2.4 Efficient Parameter Alias Analysis

The parameter analysis presented in Section 8.2.2 models the required computation

instead of designing an efficient algorithm for performing the analysis. The resulting

data flow analysis is non-separable and requires a lot of transitive computation that

may be redundant. To see this, consider an alias x
ci�⇒ y computed by Equation (8.3).

If the analysis discovers y
cj�⇒ z1 and y

ck�⇒ z2, it implies adding the pairs x
ci�⇒ z1 and

x
ci�⇒ z2. Now if w

cl�⇒ x is discovered, the analysis computes w
cl�⇒ y, w

cl�⇒ z1, and

w
cl�⇒ z2. Thus every possible transitive effect of parameters is detected. Observe

that it is not necessary to store all these relations. The core relations that need to be

stored are w
cl�⇒ x, x

ci�⇒ y, y
cj�⇒ z1, and y

ck�⇒ z2; other aliases can be discovered from

these relations when required.

A simple way of speeding up the analysis is to identify the dependence of formal

parameters on each other and store them in a graph called parameter binding graph.

For our example program, it has been illustrated in Figure 8.10. An edge x→ y rep-

resents the relation x
ci�⇒ y. This graph directly captures the dependence arising out of

non-separability and hence avoid redundant traversals over a call graph. Constructing

this graph is efficient because we only need to construct individual edges; comput-

ing PVA involves identifying all paths in the graph. After this graph is constructed,

aliasing with global variables require only propagating them in the graph along the

edges in the graph starting from the formal parameter for which the global variable

is an actual parameter. Further, indirect aliases are represented by edges between

the formal parameters of the same procedure. Thus PVA involves mapping formal

variables to global variables. There is no need to record mapping between formal

variables. This is particularly useful if there are very few recursive procedures; for

non-recursive procedures, these mappings are irrelevant.

Observe that a use of parameter binding graph is similar to the use of points-to

graph in that both these data structures capture the effect of the dependent part of

flow functions and facilitate a flow insensitive computation in a single pass over

the underlying control flow structure. The only difference between them is that for

points-to analysis the control flow structure is either a CFG or a supergraph whereas

for a parameter binding graph, it is a call graph.

© 2009 by Taylor & Francis Group, LLC

274 Data Flow Analysis: Theory and Practice

a = 5;b = 3
c = 7;read d

Startmain

Call p c1

n1
a = d+2
print d

n1

n2 d = a ∗3 n2

Call q c2

print c
Endmain

b = 2
if (b < d)Startp

n3 c = a+b n3 Call qc4

print c+dEndp

T F

a = 1Startq

Call pc3

a = a ∗b
Endq

Block Flow function fi(x)

Startmain x∪{a,b,c,d}

c1 fp(x)

n1
�
x− {d}

�
∪{a}

n2
�
x− {a | d � x}

�
∪{d}

c2 fq(x)

Endmain x

Startp
�
x− {d}

�
∪{b}

n3
�
x− {a,b | c � x}

�
∪{c}

c4 fq(x)

Endp x

Startq x∪{a}

c3 fp(x)

Endq x− {b | a � x}

FIGURE 8.11

Example program for interprocedural faint variables analysis. This is a modified

version of the program in Figure 8.1.

8.3 Whole Program Analysis

In the previous section, we constructed summary flow functions for specific anal-

yses. In this section we present the general method of constructing summary flow

functions. We consider flow sensitive methods; the flow insensitive versions can be

devised along the lines described earlier.

We use liveness analysis and faint variables analysis to explain the method. For

liveness analysis, we use the program of Section 8.1. Since it does not have much

scope for faint variables analysis, we use the program in Figure 8.11.

8.3.1 Lattice of Flow Functions

Defining a data flow analysis requires setting up a lattice of the values that are to be

computed by the analysis. This greatly simplifies reasoning about the analysis. The

same approach can be used to define analyses to construct summary flow functions.

The main difference is that the data flow values computed by other analyses we have

seen so far represent certain semantics of the entities appearing in the program. The

data flow values for the analysis that constructs summary flow functions are flow

functions that compute the data flow values desired in the end.

When we view the set of flow function F as a lattice, we define the partial order

relation over flow functions in terms of the partial order relation between the values

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 275

Lattice of

data flow

values

All possible flow functions
Lattice of flow
functions

S
in

g
le

v
ar

ia
b

le
a

�� = ∅

�⊥ = {a}

Geni Killi �f a→a
i

∅ ∅ �φid
∅ {a} �φ�
{a} ∅ �φ⊥

�φ�

�φid

�φ⊥

T
w

o
v
ar

ia
b

le
s
a

an
d
b

�= ∅

{a} {b}

⊥= {a,b}

Geni Killi fi Geni Killi fi

∅ ∅ φII {b} ∅ φI⊥
∅ {a} φ�I {b} {a} φ�⊥
∅ {b} φI� {b} {b} φI⊥
∅ {a,b} φ�� {b} {a,b} φ�⊥
{a} ∅ φ⊥I {a,b} ∅ φ⊥⊥

{a} {a} φ⊥I {a,b} {a} φ⊥⊥
{a} {b} φ⊥� {a,b} {b} φ⊥⊥
{a} {a,b} φ⊥� {a,b} {a,b} φ⊥⊥

φ��

φ�I φI�

φ�⊥ φII φ⊥�

φI� φ�I

φ⊥⊥

FIGURE 8.12

Example of lattices of functions for live variables analysis. φxy indicates that the

component flow function for variable a is x and that for variable b is y. The possible

values for x and y are: I for �φid , � for �φ�, and ⊥ for �φ⊥.

computed by the functions:

∀ fi, f j ∈ F : fi � f f j ⇔ ∀x ∈ L : fi(x) � f j(x)

The function composition and confluence operations required for constructing flow

functions are:

∀ fi, f j, fk ∈ F : fk = fi � f f j ⇔ ∀x ∈ L : fk(x) = fi(x) � f j(x)

∀ fi, f j, fk ∈ F : fk = fi ◦ f j ⇔ ∀x ∈ L : fk(x) = fi
�
f j(x)

�

∀ f ∈ F : f � f φ� = f

∀ f ∈ F : f � f φ⊥ = φ⊥

Recall that φ� and φ⊥ are constant functions.

8.3.2 Reducing Function Compositions and Confluences

Constructing flow functions requires reducing expressions involving compositions

and confluences of flow functions to a canonical form. This is different from func-

tion applications to actual data flow values. As observed in Section 7.6.2, this is easy

© 2009 by Taylor & Francis Group, LLC

276 Data Flow Analysis: Theory and Practice

to do when flow functions have only constant parts. However, when they have depen-

dent parts also, systematic reductions can be devised only when the flow functions

satisfy some additional requirements. In this section, we show how the function com-

positions and confluences can be reduced and characterize the class of flow functions

for which this can be done.

Function compositions and confluences for bit vector frameworks

For bit vector frameworks the flow function f (x) = (x−Kill)∪Gen does not have

dependent parts. To see how function composition can be reduced, let f2 ◦ f1 = f3.

Then we wish to compute Kill3 and Gen3. It is easy to see that

f3(x) = f2(f1(x)) = f2
�
(x−Kill1)∪Gen1

�

=

��
(x−Kill1)∪Gen1

�
−Kill2

�
∪ Gen2

=
�
x− (Kill1∪Kill2)

�
∪ (Gen1−Kill2) ∪ Gen2

Hence,

Kill3 = Kill1∪Kill2 (8.7)

Gen3 = (Gen1−Kill2) ∪ Gen2 (8.8)

To see how function confluences can be reduced, let f2� f1 = f3. First we consider

the case when � is ∪.

f3(x) = f2(x)∪ f1(x) =
�
(x−Kill2)∪Gen2

�
∪

�
(x−Kill1)∪Gen1

�

=
�
x− (Kill1∩Kill2)

�
∪

�
Gen1∪Gen2

�

implying that

Kill3 = Kill1∩Kill2 (8.9)

Gen3 =Gen1∪Gen2 (8.10)

When � is ∩,

f3(x) = f2(x)∩ f1(x) =
�
(x−Kill2)∪Gen2

�
∩

�
(x−Kill1)∪Gen1

�

=
�
x− (Kill1∪Kill2)

�
∪

�
Gen1∩Gen2

�

Kill and Gen are defined by

Kill3 = Kill1∪Kill2 (8.11)

Gen3 =Gen1∩Gen2 (8.12)

Thus the reduction of function composition and confluences for bit vector frame-

works can be defined in terms of ∪ and ∩ alone.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 277

Function compositions and confluences for general frameworks

When the flow functions have dependent parts also the dependence of data flow

values must also be brought in. This dependence may be dependence of values of

the same entity or across different entities. Using the notation from Definition 4.1,

fi = ��f αi , �f
β

i
, · · · , �f η

i
�

where �f α
i

: L �→�L is a component function computing the data flow value of entity

α. Given f2 ◦ f1 = f3, we need to construct �f α
3

for all α. We know that:

�f α
2
=
β ∈ Σ

�
f
β→α

2

�

where f
β→α

2 is a primitive entity function computing the data flow value of α from

β. In order to compute �f α
3

, we will need to compose f
β→α

2 with every component

function �f β
1

which is defined as:

�f β
1
=
γ ∈ Σ

�
f
γ→β

1

�

In other words, we need to compose the pefs of various components function. This

gives us the first restriction on the flow functions for systematic reduction of compo-

sitions: It is not possible to compose flow functions unless the component functions

can be defined in terms of pefs. This rules out full constant propagation and points-to

analysis.

For primary framework �f α
3

can be constructed as follows:

�f α
3
=
β ∈ Σ

�
f
β→α

2 ◦ �f β
1

�

=
β ∈ Σ

�
f
β→α

2 ◦

�

γ ∈ Σ
f
γ→β

1

��

The need to reduce this suggests the second restriction: The pefs must be distribu-

tive. Although, it is not difficult to construct non-distributive pefs of the form �L �→�L ,

most of the known such pefs in practical data flow frameworks are indeed distribu-

tive. Thus �f α
3

reduces to

�f α
3
=
β,γ ∈ Σ

�
f
β→α

2 ◦ f
γ→β

1

�
(8.13)

Function confluences are relatively easy to define. Given f3 = f1� f2,

�f α
3
= �f α

1
� �f α

2
(8.14)

=
β ∈ Σ

�
f
β→α

1 � f
β→α

2

�
(8.15)

© 2009 by Taylor & Francis Group, LLC

278 Data Flow Analysis: Theory and Practice

due to distributivity.

When we restrict ourselves to primary frameworks, compositions can be reduced

using the following identities. We use the superscript α→ β to show the dependency

of entity β on the entity α only when required.

∀�f ,∀�z ∈�L : �φz ◦ �f = �φz

∀α,β ∈ Σ : �φ β→γid ◦�φ α→βid = �φ α→γid

∀α,β ∈ Σ : �φ β→γid ◦�φz = �φz

∀α,β ∈ Σ,∀a,b ∈ Const : �φ β→γid ◦�φ α→βab = �φ α→γab

∀a,b ∈ Const,∀�z ∈�L : �φ α→βab ◦�φz = �φy where�y = a×�z+b

∀a,b,c,d ∈ Const : �φ β→γab ◦�φ α→βcd = �φ α→γmn where m = a× c, n = a×d+b

Thus all compositions of pefs can be reduced to a single pef . In some cases, function

confluences can also be reduced:

∀�f : �f � �φ� = �f
∀�f : �f � �φ⊥ = �φ⊥

∀�x,�y ∈�L : �φx� �φy =
�φz where�z =�x��y

∀a,b,c,d ∈ Const,a � c,b � d : �φab � �φcd = �φ⊥
∀a,b ∈ Const,�z � �� : �φab � �φz =

�φ⊥
∀a,b ∈ Const,a � 1,b � 0 : �φab � �φid = �φ⊥

Note that �φ α→βid ��φ β→γid cannot be reduced any further.

Recall that in the case of bit vector frameworks,

∀α � β : �φ α→βid =�φ�
Hence every component function �f α in bit vector frameworks is guaranteed to be

reduced to one of the following three functions: �φ�, �φ⊥, and �φ α→αid .

8.3.3 Constructing Summary Flow Functions

Having defined the reductions involving function compositions and confluences, it

is now possible to construct summary flow functions by traversing the CFG. Let

Φrv : L �→ L denote the summary flow function associated with program point v in

procedure r. It represents the effect of all paths from Entry(Startr) to v and from v to

Exit(Endr). If appropriate BI is computed for procedure r, applying Φrv to it results

in the desired data flow information associated with v.

Φrv is computed from Φru of u ∈ neighbours(v) as defined below:

Φrv =
u∈neighbours(v)

fu→v ◦Φ
r
u

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 279

Block

Flow functions fi(x) in terms of pefs

pefs computing
faintness of a
from a,b,c,d

pefs computing
faintness of b
from a,b,c,d

pefs computing
faintness of c
from a,b,c,d

pefs computing
faintness of d
from a,b,c,d

a b c d a b c d a b c d a b c d

Startm �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ�
n1 �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid �φ� �φ⊥ �φ⊥ �φ⊥ �φ⊥
n2 �φid �φ� �φ� �φid �φ� �φid �φ� �φid �φ� �φ� �φid �φ� �φ� �φ� �φ� �φ�

Endm �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid
Startp �φid �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φid �φ� �φ⊥ �φ⊥ �φ⊥ �φ⊥
n3 �φid �φ� �φid �φ� �φ� �φid �φid �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φid

Endp �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid
Startq �φ� �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid
Endq �φid �φ� �φ� �φ� �φid �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid

FIGURE 8.13

Flow functions for faint variables analysis of the program in Figure 8.11 expressed

in terms of pefs.

where the flow function at the entry point is φid and does not change any further.

More specifically, Φrw = φid and ∀u : fu→w = φ�; such that w is Entry(Startr) for

forward flows and Exit(Endr) for backward flows. Φrv is iteratively computed by

taking the initial value as φ�.

If edge u→ v represents a basic block calls procedure s, fu→v is replaced by the

summary flow function for procedure s. It is defined by Φsw where w is chosen based

on the following criterion:

• If fu→v is a forward flow function mapping the data flow information before

the call to the data flow information after the call, w is Exit(Ends).

• If fu→v is a backward flow function mapping the data flow information after

the call to the data flow information before the call, w is Entry(Starts).

The termination of construction of summary flow functions depends on the nature

of component flow functions and the structure of lattice of data flow values. Since

we require the pefs to be distributive and closed under composition, each component

flow function �f α constituting Φ
p
v can be reduced to the following canonical form

�f α =
i≥0, j≥0

�
φ0
i ◦φ

1
i ◦ . . .◦φ

j

i

�
(8.16)

where φ
j

i
could be any pef in the framework.

© 2009 by Taylor & Francis Group, LLC

280 Data Flow Analysis: Theory and Practice

Procedure
Flow
Function

Defining
Expression

Iteration #1
Changes in
iteration #2

Gen Kill Gen Kill

p

Φ
p

Endp
fEndp {c,d} ∅

Φ
p
n3

fn3
◦Φ

p

Endp
{a,b,d} {c}

Φ
p
c4

fq ◦Φ
p

Endp
∅ {a,b,c,d} {d} {a,b,c}

Φ
p

Startp
fStartp ◦

�
Φ
p
n3
�Φ

p
c4

�
{a,d} {b,c}

fp Φ
p

Startp
{a,d} {b,c}

q

Φ
q

Endq
fEndq {a,b} {a}

Φ
q
c3

fp ◦Φ
q

Endq
{a,d} {a,b,c}

Φ
q

Startq
fStartp ◦Φ

q
c3

{d} {a,b,c}

fq Φ
q

Startq
{d} {a,b,c}

FIGURE 8.14

Summary flow functions of procedures p and q required for interprocedural liveness

analysis of the program in Figure 8.1 on page 260. The flow functions compute the

value at the entry of the blocks.

In order to guarantee the termination of construction of �f α, it should be pos-

sible to bound both the number of terms as well as the size of each term in any

expression of the form in Equation (8.16). Bounding the size of each term requires

that it should be possible to reduce every unbounded sequence of compositions by

a bounded sequence. Bounding the number of terms requires that an infinite meet

must be equivalent to the meet of a finite number of terms.

For the primary frameworks, the sequence of compositions always reduces to a

single pef . Note that this does not bound the number possible pefs. For example,

consider the pef �φ11 in linear constant propagation. It increments the value of its

argument by 1. If we compose k such pefs, the resulting pef is �φ1k and the length

of the sequence of compositions is bounded by 1 for all k. However, there is an

unbounded number of �φ1k; in particular, one for each k. Thus bounding the size of

each term does not automatically bound the number of terms in the canonical form.

Thus it becomes important to ensure that the confluence of the terms in an ex-

pression of the form in Equation (8.16) can be reduced to a canonical form. This is

possible because of the following reason. In the worst case, each term in the canon-

ical form could compute a distinct value in L. Although, the number of such values

may not be finite, we restrict our analysis to those frameworks in which every de-

scending chain in L is finite. Thus every descending chain ending on a distinct i in

the canonical form can be represented by a finite chain. All that remains is to identify

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 281

Flow
function

pefs computing
faintness of a
from a,b,c,d

pefs computing
faintness of b
from a,b,c,d

pefs computing
faintness of c
from a,b,c,d

pefs computing
faintness of d
from a,b,c,d

a b c d a b c d a b c d a b c d

Φ
p

Endp
�φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid

Φ
p
n3

�φid �φ� �φid �φ� �φ� �φid �φid �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φid
Φ
p
c4

�φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ�
Φ
p

Startp
�φid �φ� �φid �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ⊥ �φ⊥ �φ⊥ �φ⊥

Φ
q

Endq
�φid �φ� �φ� �φ� �φid �φid �φ� �φ� �φ� �φ� �φid �φ� �φ� �φ� �φ� �φid

Φ
q
c3

�φid �φ� �φid �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ⊥ �φ⊥ �φ⊥ �φ⊥
Φ
q

Startq
�φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ� �φ⊥

FIGURE 8.15

First iteration of constructing summary flow functions of procedure p and q for in-

terprocedural faint variables analysis of the program in Figure 8.11 on page 274.

The flow functions compute the value at the entry of the blocks. Highlighted entries

show the pefs that differ from the corresponding pefs in the local flow function fi(x)

provided in Figure 8.13 on page 279.

this when summary flow functions are being constructed.

If we examine the primary pefs, the only pef that may give rise an infinite num-

ber of terms in the canonical form is �φab. Fortunately, its confluence with every

flow function can be reduced due to the structure of �L in constant propagation. All

other pefs are guaranteed to be finite in number. Hence the canonical form is al-

ways bounded and the construction of summary flow functions follows for primary

frameworks.

Example 8.7

Figure 8.14 on the preceding page provides the summary flow functions for our
example program. We first analyze procedure p. We compute summary flow
functions associated with Entry(n) of each block n; the flow function associated
with Exit(n) is left implicit. Each flow function is constructed by computing
Kill and Gen sets for function composition using Equations (8.7) and (8.8).
The confluence required in computing Φ

p

Startp
uses Equations (8.9) and (8.10)

to compute Kill and Gen sets. The analysis initially uses φ�(x) =
�
x− {a,b,c,d}

�

for fq while computing Φ
p
c4
. Hence the Gen and Kill sets ofΦ

p
c4

are approximate
in the first iteration. Using these sets, fp is computed and is used in analyzing
procedure q. The resulting fq is different from φ�. This causes change in Φ

p
c4

in the second iteration. However, this change does not affect Φ
p

Start
, and hence

© 2009 by Taylor & Francis Group, LLC

282 Data Flow Analysis: Theory and Practice

fp remains same implying that fq computed in the first iteration does not
change.

It is not surprising that Kill p and Killq computed above are identical to
MustKill p and MustKillq computed in Figure 8.2 on page 262. Similarly, Genp
and Genq computed here are identical to MayUse p and MayUseq computed

in Figure 8.2 on page 262.

Example 8.8

Figure 8.15 on the preceding page shows the first iteration in constructing
summary flow functions for faint variables analysis. Since the description
of the functions is very verbose, the relevant entries have been highlighted.
While analyzing procedure p, the summary flow function for c4 is assumed
to be φ�. When Φ

p

Startp
is computed, we discover that the faintness of a now

depends on c also. This is a result of the composition f
a→a

Startp
◦ f

c→a

n3
. When

this is merged with the earlier pef f
c→a

Startp
which was �φ�, it becomes �φid. When

procedure q is analyzed, the flow function for c3 is fp which is the same as
Φ
p

Startp
. The summary flow function as Φ

q

Startq
so computed represents the fact

that b and c are faint at the entry of Startq and d is not faint. Observe that
this is due to the effect of the called procedure p. The resulting fq is different
from the earlier φ�.

When the new value of fq is used in the second iteration, it changes the pef

f
d→d

c3
from �φ� to �φ⊥ suggesting that d is not faint at the entry of c4. However,

this does not cause any change in Φ
p

Startp
and the process of constructing

summary flow functions terminates.

8.3.4 Computing Data Flow Information

Φru represents the effect of the paths from Entry(Startr) to u for forward problems and

from u to Exit(Endr) for backward problems. This effect includes the intraprocedural

data flow information as well as synthesized data flow information resulting from

the calls along these paths. Thus the data flow information associated with u can

be computed by the function application Φru(BIr) where BI represents the data flow

information inherited by r from its callers.

Let CallsTor denote the set of callers of r. These are simply the predecessors of

r in the call graph. Let CallsTor(s) denote the call sites calling r from procedure s.

Given BImain, the data flow information associated with program point u in procedure

r, denoted xru, is computed as follows:

BIr = s∈CallsTor
ci∈CallsTor (s)

Φrci(BIs) (8.17)

xru = Φ
r
u(BIr) (8.18)

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 283

Procedure BI
Data flow

variable

Summary flow function Data flow

Name Definition value

main ∅

InEndm Φm
Endm

BIm∪{a,c} {a,c}

Inc2 Φmc2

�
BIm− {a,b,c}

�
∪{d} {d}

Inn2
Φmn2

�
BIm− {a,b,c,d}

�
∪{a,b} {a,b}

Inn1
Φmn1

�
BIm− {a,b,c,d}

�
∪{a,b,c,d} {a,b,c,d}

Inc1 Φmc1

�
BIm− {a,b,c,d}

�
∪{a,d} {a,d}

InStartm Φm
Startm

BIm− {a,b,c,d} ∅

p {a,b,c,d}

InEndp Φ
p

Endp
BIp∪{c,d} {a,b,c,d}

Inn3
Φ
p
n3

�
BIp− {c}

�
∪{a,b,d} {a,b,d}

Inc4 Φ
p
c4

�
BIp− {a,b,c}

�
∪{d} {d}

InStartp Φ
p

Startp

�
BIp− {b,c}

�
∪{a,d} {a,d}

q {a,b,c,d}

InEndq Φ
q

Endq

�
BIq− {a}

�
∪{a,b} {a,b,c,d}

Inc3 Φ
q
c3

�
BIq− {a,b,c}

�
∪{a,d} {a,d}

InStartq Φ
q

Startq

�
BIq − {a,b,c}

�
∪{d} {d}

FIGURE 8.16

Data flow information computed by interprocedural liveness analysis of the program

in Figure 8.1 on page 260 using the summary flow functions defined in Figure 8.14

on page 280.

The initial value of BIs is assumed to be �; it is assumed that appropriate boundary

point is chosen depending on the flows i.e., Entry(Startp) for forward flows and

Exit(Endp) for backward flows.

Example 8.9

Figure 8.16 shows the result of interprocedural liveness analysis of the pro-
gram in Figure 8.1 on page 260 using the summary flow functions defined in
Figure 8.14 on page 280. For simplicity, we show the information associated
with block entries only. The liveness information of the main procedure (ab-
breviated by m) can be computed in a single iteration from BI = ∅. For live
variables analysis

BIp = Inn1
∪ InEndq = Inn1

∪Φ
q

Endq
(BIq)

BIq = InEndm ∪ InEndp = InEndm ∪Φ
p

Endp
(BIp)

© 2009 by Taylor & Francis Group, LLC

284 Data Flow Analysis: Theory and Practice

Procedure BI
Data flow
variable

Summary flow function Data flow
Name Definition value

main {a,b,c,d}

InStartm Φ
m
Startm

BIm∪{a,b,c,d} {a,b,c,d}

Inc1 Φmc1

�
BIm− {d}

�
∪{b,c} {a,b,c}

Inn1
Φmn1

�
BIm− {d}

�
∪{a,c} {a,b,c}

Inn2
Φmn2

�
BIm− {a}

�
∪{c,d} {b,c,d}

Inc2 Φmc2 (BIm− {d}
�
∪{a,b,c} {a,b,c}

InEndm Φm
Endm

BIm {a,b,c,d}

p {a,b,c}

InStartp Φ
p

Startp

�
BIp−

�
{d}∪ {a | c � BIp}

��
∪{b,c} {a,b,c}

Inn3
Φ
p
n3

�
BIp− {a,b | c � BIp}

�
∪{c} {a,b,c}

Inc4 Φ
p
c4

(BIp− {d}
�
∪{a,b,c} {a,b,c}

InEndp Φ
p

Endp
BIp {a,b,c}

q {a,b,c}

InStartq Φ
q

Startq
(BIq − {d}

�
∪{a,b,c} {a,b,c}

Inc3 Φ
q
c3

�
BIq −

�
{d}∪ {a | c � BIq}

��
∪{b,c} {a,b,c}

InEndq Φ
q

Endq
BIq− {b | a � BIq} {a,b,c}

FIGURE 8.17

Interprocedural faint variables analysis for the program in Figure 8.11 on page 274

using the summary flow functions constructed in Example 8.8.

Thus BIp and BIq are mutually dependent on each other. Since Inn1
is {a,b,c,d}

which is the ⊥ element of the lattice, BIp cannot change any further. From
this, InEndp is computed which turns out to be {a,b,c,d}. Thus BIq is also
{a,b,c,d} and does not change any further.

Our analysis shows that OutStartm contains only a and d. Thus the assign-
ments to b and c in Startm are redundant and can be eliminated. Observe
that although c is used in Endp, it is found to be dead at the entry of c4. This
is because the recursion ending path must pass through block n3 before the
execution reaches Endp from c4. Due to the assignment in n3, c is not live at

the entry of c4.

Example 8.10

Figure 8.17 shows the result of interprocedural faint variables analysis of the
program in Figure 8.11 on page 274 using the summary flow functions com-
puted in Example 8.8. In faint variables analysis, BI for main is {a,b,c,d}

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 285

because every variable is faint at the end of the program. The data flow in-
formation in main can be computed in a single iteration. BI for p and q is
defined by:

BIp = Inn1
∩ InEndq = Inn1

∩Φ
q

Endq
(BIq)

BIq = InEndm ∩ InEndp = InEndm ∩Φ
p

Endp
(BIp)

For computing BIp, Inn1
is {a,b,c} and Φ

q

Endq
(BIq) is assumed to be � which

is {a,b,c,d} for faint variables analysis. Thus BIp = {a,b,c} and the data flow
information for all blocks in p also turns out to be {a,b,c}. Thus BIq is also
{a,b,c} and so is the data flow information for all blocks in q.

Thus we conclude that the only relevant assignment in procedures p and
q is the assignment to b in Startp for local use in the condition. Local con-
stant propagation can make even this assignment redundant. To see why the
assignment in Endq is redundant, consider the paths starting at Endq. If all
recursive calls to q are not over, the execution can only reach Endp and from
there Endq. When all recursive calls to q finish, the execution reaches Endmain
directly or n1 through Endp. Thus there is no use of the value assigned to a in
Endq other than in the same assignment. Hence this assignment is redundant.
This makes both a and b faint making the assignment to c in n3 redundant.
Discovering this through live variable analysis would require repeatedly per-
forming dead code elimination and live variables analysis.

8.3.5 Enumerating Summary Flow Functions

The construction method explained in previous sections requires the component flow

functions to consist of primitive flow functions only. If a component flow function

requires composite entity functions, the method is not applicable to the framework.

The main difficulty is in being able to compose entity functions and reduce the com-

positions. Function applications on the other hand do not require any reduction to

be performed. This leads to an interesting possibility: Instead of constructing closed

form summary flow functions, the flow functions can be enumerated in terms of input

output pairs by identifying the data flow values that could appear in the program as

inputs to a flow function. This is possible because every program has a well defined

BI and starting from BI the relevant data flow values can be constructed.

We write the enumerated form of function Φru as follows:

E�Φru� =
�
x �→ y | x �→ x ∈ Φrw,y = Φ

r
u(x)

�

where w is the boundary point of r which is chosen depending upon the direc-

tion of flows. For backward flows w is Exit(Endr) whereas for forward flows w

is Entry(Startr).

Enumeration for the entire program begins at the boundary point w of the main

procedure and is chosen to be the identity function restricted to BI.

E
�
Φmainw

�
=

�
BI �→ BI

�

© 2009 by Taylor & Francis Group, LLC

286 Data Flow Analysis: Theory and Practice

a = 5
b = 3
c = 7

Startmain

Call pc1

n1
a = a+2
print c n1

print a+ cEndmain

b = 2
if (. . .)

Startp

n2 c = a+b n2 Call qc2

print cEndp

a = 1Startq

Call pc3

a = a ∗bEndq

FIGURE 8.18

Program to illustrate enumeration of flow functions for full constant propagation.

Similarly, enumeration for a given procedure r also begins at its boundary point w;

however, it gets defined by the enumerated summary flow functions corresponding

to the call sites that call procedure r:

E�Φrw� =
�
x �→ x | y �→ x ∈ E

�
Φsci

�
, ci is a call to r in procedure s

�
(8.19)

For other program points v in p:

E�Φrv� =
�
x �→ y | y =

u∈neighbours(v)
fu→v(z), x �→ z ∈ E�Φru�

�
(8.20)

If edge u→ v represents a basic block calls procedure s, fu→v is replaced by the

summary flow function for procedure s. It is defined by E�Φsw� where w is chosen

based on the following criterion:

• If fu→v is a forward flow function mapping the data flow information before

the call to the data flow information after the call, w is Exit(Ends).

• If fu→v is a backward flow function mapping the data flow information after

the call to the data flow information before the call, w is Entry(Starts).

Equations (8.19) and (8.20) are computed with ∅ as the initial value.

Once all summary flow functions are enumerated, the final data flow values are

computed by simply merging the output of a summary flow function for each relevant

input that has already been identified:

xu =
x �→y ∈ E�Φru�

y (8.21)

Observe that this is different from the method of using the closed form summary flow

functions; Equations (8.17) and (8.18) require a fixed point computation whereas

Equation (8.21) does not.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 287

Procedure Block
E�Φru�

Iteration #1 Iteration #2 Iteration #3

p

Startp �5,3,7� �→ �5,3,7�
�5,3,7� �→ �5,3,7�

�1,2,7� �→ �1,2,7�

�5,3,7� �→ �5,3,7�

�1,2,7� �→ �1,2,7�

n2 �5,3,7� �→ �5,2,7�
�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

c2 �5,3,7� �→ �5,2,7�
�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

Endp �5,3,7� �→ �5,2,7�
�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,3�

�5,3,7� �→ �5�2,2,7�3�

�1,2,7� �→ �1�2,2,3�

fp �5,3,7� �→ �5,2,7�
�5,3,7� �→ �5,2,7�

�1,2,7� �→ �1,2,3�

�5,3,7� �→ ��⊥,2,�⊥�
�1,2,7� �→ ��⊥,2,3�

q

Startq �5,2,7� �→ �5,2,7�
�5,2,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

�5,2,7� �→ �5,2,7�

�1,2,7� �→ �1,2,7�

c3 �5,2,7� �→ �1,2,7�
�5,2,7� �→ �1,2,7�

�1,2,7� �→ �1,2,7�

�5,2,7� �→ �1,2,7�

�1,2,7� �→ �1,2,7�

Endq ∅
�5,2,7� �→ �1,2,3�

�1,2,7� �→ �1,2,3�

�5,2,7� �→ ��⊥,2,3�
�1,2,7� �→ ��⊥,2,3�

fq ∅
�5,2,7� �→ �2,2,3�

�1,2,7� �→ �2,2,3�

�5,2,7� �→ ��⊥,2,3�
�1,2,7� �→ ��⊥,2,3�

FIGURE 8.19

Enumerated summary flow functions for constant propagation over procedure p and

q of the program in Figure 8.18.

Example 8.11

Consider the program in Figure 8.18 on the preceding page for constant prop-
agation analysis. When procedure p is called from main, the values of a, b,
and c are 5, 3, and 7 respectively. If p does not call q at all, then the values of
a, b, and c at Endp are 5, 2, and 7 respectively. However, if q is called, then
the value of a is modified in Startq and Endq. When the recursion unwinds,
the value of c gets modified. Variable b is assignment 2 in every call to p.
Thus when p returns in main, the value of b is 2 whereas a and c are not
constants.

Iterative computation of E�Φru� for procedures p and q is shown in Fig-

ure 8.19. In the first iteration, E
�
Φ
q

Endq

�
remains ∅: mapping �5,2,7� �→ �1,2,7�

at c3 indicates that the value �5,2,7� reaching Startq is mapped to the value
�1,2,7� at c3. However, the mapping for �1,2,7� in procedure p has not been
discovered so far; the only mapping for procedure p discovered in first iter-
ation is �5,3,7� �→ �5,2,7�. Second iteration discovers �1,2,7� �→ �1,2,3� for p.
This leads to �5,2,7� �→ �2,2,3� and �1,2,7� �→ �2,2,3� for procedure q due the

© 2009 by Taylor & Francis Group, LLC

288 Data Flow Analysis: Theory and Practice

assignment a = a ∗b in Endq. This influences c2 and Endp where it is discovered
that a can be mapped to 5 if no call to q is made, 1 when p is called from q, and
2 when q returns in p. Similarly, c can be 7 and 3 depending upon whether
q is called or not. Thus fp records �5,3,7� �→ ��⊥,2,�⊥� and �1,2,7� �→ ��⊥,2,�⊥�
whereas fq contains �5,2,7� �→ ��⊥,2,3� and �1,2,7� �→ ��⊥,2,3�.

Although we have presented the enumeration of summary flow function as a fixed

point computation performed using a round-robin iterative method, in practice, this

may not be efficient since a program may consist of hundreds of procedures. The

data flow values discovered as inputs to summary flow functions may reach limited

portions of the program. In such situation, it is preferable to use a work list method

and propagate the values to the relevant portions of the program.

We outline a work list based method in the following. The work list contains pairs

(u,x) that represents the fact that E�Φru� has been computed for input value x and its

effect needs to be propagated further. The work list is initialized with the pair (w,BI)

where w is the boundary of the main procedure. As is typical in a work list based

method, an entry from work list is removed, its effect is propagated to its neighbours,

and new entries whose effect needs to be propagated are added to the work list. This

process is repeated until the work list becomes empty.

We use the following notation to describe propagation.

• The meaning of E�Φru�
�
x
�
= y is that the mapping x �→ y is included in E�Φru�.

Initially, E�Φru� is assumed to be empty.

• When E�Φru�
�
x
�

appears on the right hand side of an assignment, it denotes

y such that x �→ y ∈ E�Φru�. If there is no mapping for x in E�Φru�, E�Φru�
�
x
�

denotes �.

The meaning of propagating the effect of a pair (u,x) to its neighbour v is that

the summary flow function E�Φrv� should be constructed. Observe that v need not

be in the same procedure. It could be a program point in a caller procedure or a

called procedure. More precisely, propagation of (u,x) for forward flows is defined

as follows.

• When u is a call node ci calling procedure s. Let the successor of u be node

v in the same procedure. Then E�Φrv� should be updated with the value of the

result of applying fs to the value reaching ci.

E�Φrv�
�
x
�
= E�Φrv�

�
x
�
� E�Φsw�

�
E

�
Φrci

��
x
��

wherew is Exit(Ends). It is possible that the E�Φsw� may not have been defined

for x. Thus the effect should be propagated to Starts as follows:

E
�
Φ
s
w�

��
E

�
Φ
r
ci

��
x
��
= E

�
Φ
r
ci

��
x
�

where w� is Entry(Starts). If E�Φrv� changes, add the pair (u,x) to the work

list. If E
�
Φr
w�

�
changes, add the pair

�
w�,E

�
Φrci

��
x
��

to the work list.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 289

x = x−2
if (. . .)

Startp

call pc1

x = x+2Endp

FIGURE 8.20

Example of linear constant propagation for which a closed form summary flow func-

tion can be created but summary flow functions cannot be enumerated.

• When u is Exit(Endr). In this case, the summary flow function of callers need

to be updated. Find out all callers t of r such that E
�
Φtc j

��
y
�
= x. Let the

successor of c j in t be v. Then,

E
�
Φtv

��
y
�
= E

�
Φtv

��
y
�
� E�Φru�

�
x
�

If E�Φtv� changes, add the pair (v,y) to the work list.

• When u is some other program point. Update the summary flow function of

every neighbour v of u:

E�Φrv�
�
x
�
= E�Φrv�

�
x
�
� fu→v

�
E�Φru�

�
x
��

If E�Φrv� changes, add the pair (u,x) to the work list.

The main difference between the two methods of enumerating the summary flow

function is the fundamental difference between a round-robin method and a work

list method: In a round-robin method, the relevant computation for a given program

point u is performed by incorporating the effect of all its neighbours. In a work list

method, the influence of a program point u is propagated to all its neighbours v and

the value at u is updated.

The main advantage of enumerating summary flow functions is that there is no

need to reduce function compositions because the method relies on computing actual

values. However, the main limitation of computing values is that it may not terminate

for a lattice with infinite values. If flow functions can be reduced, the closed form

summary flow functions can be used for lattices with infinite values also.

Example 8.12

Figure 8.20 shows an example of linear constant propagation. If we construct
closed form summary flow functions, we discover that �f x in the summary
flow function at Exit(Endp) along the edge Startp→ Endp is a composition of
�φ1,−2 and �φ1,2. Thus the flow function representing p along the call free path

© 2009 by Taylor & Francis Group, LLC

290 Data Flow Analysis: Theory and Practice

is �φid. Along the other path, �f x in Φ
p
c1

is �φ1,−2. This is composed with the
�f xp = �φid to construct Φ

p

Endp
along this path resulting in Φ

p

Endp
=�φ1,−2 when

this is composed with fEndp , �f xp is discovered to be �φid along this path also.

Thus fp is found to be �φid along all paths and the method concludes that the
value of x before a call to x and after the call remains same.

To see how the enumeration method works for this program, we will need
to know the value of x when the outermost call to p is made. Assume that x
is 10 when p is called from outside. Let w denote Exit(Endp). Then we have

�10� �→ �10� in E
�
Φ
p

Startp

�
and �10� �→ �8� in E

�
Φ
p
c1

�
. Along the other path,

we get �10� �→ �10� in E
�
Φ
p
w

�
. In order to propagate the effect of �10� �→ �8�

in E
�
Φ
p
c1

�
, we find out if have �8� �→ �. . .� in E

�
Φ
p
w

�
. Since we don’t have it,

we have to propagate this effect to Startp thereby adding �8� �→ �8� to both

E

�
Φ
p

Startp

�
and E

�
Φ
p
w

�
. In the next iteration we check if have �6� �→ �. . .� in

E
�
Φ
p
w

�
. The process does not terminate because the recursive calls generate

an infinite number of values for x.

8.4 Summary and Concluding Remarks

In this chapter we have presented methods that construct context independent sum-

mary flow functions. Side effects analysis constructs summary flow functions for a

fixed set of side effects. The key idea of this approach is to reduce expressions of

sets representing flow functions. These reductions compute the sets that represent

the required summary flow functions.

A natural extension of this idea results in a whole program analysis method that

computes context independent summary flow functions for a given data flow frame-

work. This extension attempts to reduce expressions of functions instead of expres-

sions of sets. The feasibility of reducing expressions consisting of function compo-

sitions and confluences can be established in terms of the pefs that make up flow

functions of a given data flow framework. A related concern of this method is that

the canonical form of reduced expressions may not be compact and may require a lot

of space. Both these concerns are addressed by the method that enumerates functions

in terms of observed input output behaviour. This method does not need to reduce

expressions of functions. However, its main limitation is that it may not terminate if

the lattice of data flow values is not finite.

An orthogonal issue presented in this chapter is to construct functions that repre-

sent mappings of formal parameters across call sequences.

© 2009 by Taylor & Francis Group, LLC

Functional Approach to Interprocedural Data Flow Analysis 291

8.5 Bibliographic Notes

The side effect analysis presented in this chapter is a generalization of the work by

Barth [13, 14] and Banning [12]. Callahan [19] has tried to solve the same problem

using a different representation called program summary graph. The alias analysis

of parameters is based on the work by Cooper [25] and by Cooper and Kennedy [26].

The whole program analysis is based on the classical functional approach defined

by Sharir and Pnueli [93]. However, unlike Sharir and Pnueli, we use primitive

entity functions to describe reductions of flow functions. The alternative approach of

enumerating summary flow functions is an abstract model of the tabulation method

proposed by Sharir and Pnueli. The concept of partial transfer functions by Wilson

and Lam [107] can be viewed as similar to the tabulation method. However, it is

context insensitive in recursive calls.

Another interesting method of interprocedural data flow analysis that belongs to

the category of functional approaches is the method based on graph reachability

proposed by Reps, Horwitz and Sagiv [82, 87]. This approach handles exactly the

same class of frameworks that are handled by the method presented in this chapter.

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

9

Value-Based Approach to Interprocedural
Data Flow Analysis

In this chapter, we present the other paradigm of context and flow sensitive whole

program analysis. This approach does not involve precomputation of summary flow

functions. Instead, it directly computes the data flow information and propagates the

inherited data flow information from callers to callees and the synthesized data flow

information from callees to callers.

We first present the program model and some basic concepts underlying this ap-

proach. Then we present a method for precise flow and context sensitive interproce-

dural data flow analysis for bit vector frameworks. The subsequent section general-

izes this method to general frameworks.

9.1 Program Model for Value-Based Approaches to Interproce-

dural Data Flow Analysis

A value-based approach of interprocedural data flow analysis views a program as

a single large procedure with different kinds of paths rather than as a collection of

independent procedures. With this view of programs, interprocedural data flow anal-

ysis reduces to identifying the origins of ifps and traversing them; the only difference

is that these ifps are interprocedural rather than intraprocedural and hence must be

sensitive to the calling contexts. This is required to distinguish between inherited

data flow information propagated from different callers. This enables propagation of

synthesized information to appropriate callers.

A value-based approach uses a supergraph which has been explained in Sec-

tion 7.2. Let a given call site ci in procedure r call procedure s. Then, logically the

program points Entry(Ci) and Exit(Ri) belong to the caller procedure r in that the

data flow information associated with these program points holds for procedure r.

The program points Exit(Ci) and Entry(Ri) belong to the callee procedure s as the

data flow information associated with these points holds for procedure s.

The roles of call and return nodes in a supergraph cannot be abstracted out into

a single kind of node; they must be explicated for value-based interprocedural data

flow analysis. Hence unlike intraprocedural data flow analysis, a general formulation

that is uniformly applicable to both forward and backward data flow frameworks does

293
© 2009 by Taylor & Francis Group, LLC

294 Data Flow Analysis: Theory and Practice

not seem natural; the flow function of the proposed abstract node representing call

and return nodes will have to be predicated on whether the formulation is being used

for forward flows or backward flows. Hence we restrict our formulations to forward

data flow problems for simplicity of exposition,

As observed in Chapter 7, traversing all paths in a supergraph results in context

insensitive analysis. Context sensitivity requires that the propagation of data flow

information must be restricted to interprocedurally valid paths.

DEFINITION 9.1 A path from Startmain to a block n in a supergraph is
an interprocedurally valid path if

1. for every edge Endr → Ri in the path, there is a matching edge Ci→ Startr
in the path, and

2. if the subpath from Ci to Ri does not contain any other call or return
node, then after replacing this subpath by a single (fictitious) edge, the
reduced path is interprocedurally valid.

At the base level, a path consisting of only intraprocedural edges is a valid inter-

procedural path. Similarly, a path in which there is no return edge is also a valid

interprocedural path; the validity constraint arises only when a return edge is en-

countered. This is because a return edge that appears in a path must correspond to

the last call edge in the path. This constraint facilitates ensuring that the data flow

information from a callee procedure is propagated back to the correct caller proce-

dure.

Let call site ci call procedure r. In an interprocedurally valid path, this procedure

call is represented by a path segment starting with the call edge Ci→ Startr and

ending in the corresponding return edge Endr → Ri. Every such call appearing in an

interprocedurally valid path can be abstracted out by a basic block making the call;

a path containing this basic block remains an interprocedurally valid path.

We view call and return nodes as being significant nodes because they define the

structure of an interprocedural path. Often we will restrict a path to the significant

nodes appearing in it. For interprocedural validity, the structure of a path in terms of

significant nodes should be derivable from the following context free grammar with

IPVP as its start symbol:

IPVP → finishedCalls unFinishedCalls

finishedCalls → Ci finishedCalls Ri

| finishedCalls finishedCalls

| �

unFinishedCalls → Ci finishedCalls unFinishedCalls

| �

where Ci and Ri are placeholders for terminal symbols representing corresponding

call and return nodes in a supergraph.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 295

DEFINITION 9.2 An ifp ρ from a program point u to a program point
v is a an interprocedurally valid ifp if it is a suffix of some interprocedurally
valid path.

An important requirement of traversing interprocedurally valid ifps is discovering

matching Ci for every Ri encountered in a path in the supergraph in order to estab-

lish interprocedural validity of the ifp . Value-based interprocedural analyses achieve

this by embedding the information about contexts within the data flow values being

computed. This information represents the call nodes Ci encountered in the paths

traversed for computing the data flow value. In the presence of recursion, precise

embedding of context information becomes an important issue in value-based inter-

procedural data flow analysis. The methods presented in this chapter handle recursive

program without compromising on precision.

DEFINITION 9.3 A calling context of procedure r is defined as a se-
quence of callers of r starting from the main procedure.

A calling context σ is denoted by a string c1 · · ·ck of call site names. This string

represents a call sequence r1, . . . ,rk starting from the main procedure, such that

ci ∈ CallsInri and ci ∈ CallsTori+1
. Note that the call sites in a call string or the called

procedures in a call chain need not be distinct.

Value-based interprocedural data flow analysis is defined in terms of data flow

values that are pairs of the form �σ,x�where σ represents the context and x ∈ L is the

actual data flow value. We call a pair �σ,x� a qualified data flow value and denote

it by X to distinguish it from x. In some cases, X may be a set of pairs �σ,α� where

α ∈ Σ is an entity. Where the context of usage is sufficient to distinguish between the

two, we drop the adjective “qualified” and refer to both X and x as data flow values.

DEFINITION 9.4 A path ρ in a supergraph is:

• An intraprocedural segment if ρ contains intraprocedural nodes only.

• A call segment if ρ contains intraprocedural nodes and at least one call
node but no return node.

• A return segment if ρ contains intraprocedural nodes and at least one
return node but no call node.

• A symmetric segment if ρ is an interprocedurally valid path from a call
node Ci in procedure r to a return node Rj also in procedure r.

An intraprocedural segment does not alter the context in a qualified data flow value

whereas call and return segments do. A symmetric segment represents a sequence

of finished calls—it alters the context within the segment but restores it at the end of

the segment.

© 2009 by Taylor & Francis Group, LLC

296 Data Flow Analysis: Theory and Practice

Apart from handling context, an interprocedural analysis must also handle scope

rules and parameter passing mechanisms. These issues are handled as explained in

Section 8.2. For simplicity, we assume that our programs have only global variables.

9.2 Interprocedural Analysis Using Restricted Contexts

Bit vector frameworks have special properties that make it possible to perform in-

terprocedural analysis by remembering a restricted amount of context. The two key

insights that this algorithm uses are:

• For bit vector frameworks, the default value of an entity α at a program point

u, denoted �x αu , can be considered as ��. If it becomes �⊥, then it is sufficient

to make �x αv = �⊥ for all v ∈ neighbours(u) such that �f u→vα is �φid. This effect

needs to be propagated transitively.

• This propagation can be done independently of any other ifp . Thus there is no

need to consider any other ifp of α or any ifp of some other entity β.

This allows fully context sensitive analysis by restricting the length of calling

context σ to 1 at each call point in a sequence of calls. Reconstructing the calling

contexts transitively along a call chain does not introduce any imprecision—it is

possible to propagate different synthesized data flow information from a procedure

to different callers of the procedure.

Let the qualified data flow value Xu at a program point u in procedure r be a set

of tuples �ψ,α� where α is the entity whose data flow value at u is �⊥ and ψ is the

context information which is either a call site ci ∈ CallsTor or “∗”. When ψ is ci, the

data flow value �x αu = �⊥ is inherited by r from the call at ci. When ψ is ∗, the data

flow value�x αu = �⊥ is synthesized in r or in some procedure called from within r. The

main difference between the two is that a data flow value qualified by ci can only

be propagated to the caller containing the call site ci whereas the data flow value

qualified by ∗ should be propagated to all callers of r.

The exact criteria of propagation of �⊥ values in a supergraph for a forward data

flow framework is as described below. For backward data flows, the roles of Ci and

Ri should be interchanged.

• When a pair �ψ,α� reaches an intraprocedural node n,

– If �f αn =�φ�, �ψ,α� should not be propagated any further.

– If �f αn =�φ⊥, it indicates generation of synthesized data flow information.

Hence the pair �ψ,α� must be replaced by the pair �∗,α�.

– If �f αn =�φid , the pair �ψ,α� must be propagated further.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 297

• When a pair �ψ,α� reaches a call nodeCi in procedure r, the �⊥ value of αmust

be propagated to the called procedure with ci as the calling context. Thus the

pair �ci,α� must be propagated further.

• When a pair �ψ,α� reaches Ri in procedure r,

– If ψ is ∗, the pair �∗,α� must be propagated further in r.

– If ψ is ci, the value �⊥ of α has been inherited by r through the call site Ci
so the �⊥ value of α must be propagated further in the rest of r. However,

the context from where its �⊥ value reachedCi must be recovered. This is

easily done by examining the pairs reachingCi—if a pair �ψ�,α� reached

Ci, then the required context is ψ�. Observe that ψ� could be another call

site or could be ∗.

– If ψ is some c j other than ci, it indicates traversal of an interprocedurally

invalid path and the data flow value must be discarded. This is because

the context information c j represents the fact that Cj was the last call

node traversed in the path so this qualified data flow value cannot reach

any other return node; it must reach Rj where the calling context will be

reconstructed.

We use INn and OUTn to compute the qualified data flow values X; the conven-

tional variables Inn and Outn continue to contain the underlying data flow values

x ∈ L. The data flow equations are:

INn =



�
�∗,α� | α is �⊥ in BI

�
n is Startmain�

p∈pred(n)

OUTp otherwise (9.1)

OUTn = ConstGENn ∪ DepGENn(INn) −

(X− (ConstKILLn−DepKILLn(INn))) (9.2)

where the constant and dependent components are defined as follows:

ConstGENn =


∅ n is Ci or Ri�
�∗,α� | �f αn = �φ⊥

�
otherwise

DepGENn(X) =



�
�ci,α� | �ψ,α� ∈ X

�
n is Ci�

�∗,α� | �∗,α� ∈ X
�
∪�

�ψ,α� | �ci,α� ∈ X, �ψ,α� ∈ INCi
� n is Ri

∅ otherwise

ConstKILLn =
�
�ψ,α� | α ∈ Genn or α ∈ Killn

�

DepKILLn(X) = ∅

Observe the use of the component function �f αn for ConstGENn. For data flow frame-

works that use ∪ as �, �f αn is �φ⊥ if α ∈Genn whereas for data flow frameworks that

© 2009 by Taylor & Francis Group, LLC

298 Data Flow Analysis: Theory and Practice

a = 5;b = 3
c = 7;read d

Startmain

{c,d}

Call pC1

Call pR1

n1 a = c+d n1

{b,c,d}

n2 d = a ∗b n2

{a,c}

{a,b,c}

Call qC2

Call qR2

print a+ cEndmain

{a,c}

b = 2
if (b < c)

Startp

{a,b,d}

{a,c,d}

{a,c,d}

n3 c = b+2 n3

{a,b,c,d}

c = b+2C4

c = a+bR4

print cEndp

{a,b,c,d}

b = cStartq
{a,c,d}

{a,c,d}

Call pC3

Call pR3

c = bEndq

{a,b,c,d}

{a,b,d}

FIGURE 9.1

An example program for interprocedural live variables analysis.

use ∩ as �, it is �φ⊥ if α ∈ Killn and α � Genn. Also observe the use of INCi in the

definition of DepGENn(X).

The final set of entities whose data flow values are �⊥ are extracted from

Inn =

�
α | �ψ,α� ∈ INn, ψ ∈ CallsTor∪

�
∗
��

(9.3)

Outn =

�
α | �ψ,α� ∈ OUTn, ψ ∈ CallsTor∪

�
∗
��

(9.4)

Example 9.1

Consider the program in Figure 9.1 for interprocedural liveness analysis. All
variables are global variables. Variables that are live at a program point are
shown in graph boxes. Observe that variable d is live in procedure q at Startq
but not before its call in the main procedure. The use of d in block n1 makes
it live in procedure p. Since q is called from p and neither p nor q modify d,

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 299

a = 5;b = 3
c = 7;read d

Startmain

Call pC1

�∗,0010�
�c3,1001�

�c1,0001�

�∗,0011�

Call pR1

�c1,0111�

n1 a = c+d n1

�∗,0111�

n2 d = a ∗b n2

�∗,1110�

Call qC2

Call q

�∗,0010�
�c2,1000�

�c4,1001�

�∗,1010�

R2

�c2,1010�

print a+ cEndmain

�∗,1010�

b = 2
if (b < c)

Startp

�∗,0010�
�c3,1001�

�c1,0001�

n3 c = b+2 n3

�∗,0100�
�c3,1001�
�c1,0001�

c = a+bC4

�∗,0010�
�c2,1000�

�c4,1001�

�∗,0010�
�c3,1001�
�c1,0001�

c = a+bR4

�∗,0010�
�c3,1101�
�c1,0101�

�c4,1111�

print cEndp

�c3,1101��c1,0111�

�∗,0010�
�c3,1101�
�c1,0101�

b = cStartq

�∗,0010�
�c2,1000��c4,1001�

Call pC3

�∗,0010�
�c3,1001�

�∗,0010�
�c2,1000�

�c1,0001�

�c4,1001�

Call pR3

�c3,1101�

c = bEndq

�c2,1010�

�∗,0100�
�c2,1000�

�c4,1111�

�c4,1001�

FIGURE 9.2

Result of interprocedural liveness analysis for the program in Figure 9.1 on the facing

page.

© 2009 by Taylor & Francis Group, LLC

300 Data Flow Analysis: Theory and Practice

Ci

Ri

C j Ck

R j Rk

�c j,�x j� �ck,�xk�

�ci,�x j� �ci,�xk�

�ci,�y� �ci,�z�
f

• At return node Ri, we wish to re-

construct the values �c j, �f (�x j)� and

�ck, �f (�xk)�.

• If we merge the values of a at Ci and

propagate �ci,�x j��xk�, we will not get

the values �f (�x j) and �f (�xk).

• If we do not merge the values but

propagate them separately, how can we

know if �y should be propagated to Rj
or Rk? (Similarly for�z)?

FIGURE 9.3

Difficulty in handling propagation of multiple values for the same entity.

it remains live at all program points in both the procedures. Similarly, a is
live in procedure p because of the use of a in Endmain but it is not live before
the call to p in procedure main.

The result of interprocedural liveness analysis using this method has been
shown in Figure 9.2 on the preceding page. Since this is a backward data
flow problem, reconstruction of contexts happens at the call nodes rather
than return nodes. Observe that at C1, �c3,1001� contained in OUTC1 is ig-
nored, �∗,0010� is allowed to pass through, and the context of �c1,0001� is
reconstructed to ∗ by examining OUTR1 . At R3, the data flow values �∗,0100�,
�c2,1000�, and �c4,1001� are also propagated with the new context c3. Similar
actions are taken at other call and return nodes. Blocks n3, Endp and Endq
exhibit generation of synthesized data flow information. This causes a trans-
fer of context from a call site ci to ∗ for the entities that are contained in Gen

set of these blocks; the component functions for these entities compute �⊥ for
these entities.

To see why this method chooses to propagate a single value, consider Figure 9.3.

Assume that instead of propagating a single value, we wish to propagate two dif-

ferent values �xi and �xk. In general, these values could be incomparable. For context

sensitive analysis, we wish to get the values �f (�xi) at Rj and �f (�xk) at Rk. If we merge

�xi and�xk atCi, we cannot get independent values �f (�xi) and �f (�xk). If we keep�xi and
�xk separate at Ci and propagate them separately, then we can get two distinct values
�y and �z but we will not be able to map them to �x j and �xk. Thus we will not know

which one of �y and �z should be propagated to Rj and which one to Rk. Thus only

one value can be propagated and it should be �⊥ rather than ��.

The other interesting question that needs to be answered is: Can this method be

used for non-separable frameworks in which the component lattice is {��,�⊥}? To

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 301

Startr

a = b

Endr

Ci

Ri

C j Ck

R j Rk

�c j,b�

�c j,b�

�ci,b�
• From the calling context c j, variable a is

initialized but b is not.

• From the calling context ck, both a and b

are initialized.

• At Ri, data flow values of only the fol-

lowing forms are valid: �∗,α� and �ci,α�.

• Our method can construct �c j,b� at Ri but

not �c j,a�.

FIGURE 9.4

Difficulty in reconstructing contexts for possibly uninitialized variables analysis.

see why propagating �⊥ values using this method is not sufficient in the presence of

non-separability, consider the problem of performing possibly uninitialized variables

analysis as illustrated in Figure 9.4. A pair �ψ, x� indicates that variable x is possibly

uninitialized and this fact has been discovered along the context ψ. The assignment

a = b dictates that amust be considered possibly uninitialized in all contexts in which

b has been discovered to be possibly uninitialized. Even if we generate the pair

�ci,a� from the pair �ci,b� after encountering the assignment statement a = b, there

is no context information about a at Ci. Further, this method cannot handle general

constraints that copy the context of b into the context of a whenever a context of b is

reconstructed.

For the qualified data flow value X, the� is ∅. In order to establish that this method

computes MFP assignment in terms of X, we only need to argue about the termina-

tion. It follows from the fact that at each call node, the incoming context information

is overwritten by the call site. During analysis, the number of tuples representing the

synthesized data flow information at any node in procedure r can at most be |Gvar|

and the number of tuples representing the inherited data flow information is bounded

by |CallsTor| × |Gvar|.

Since Equations (9.1) and (9.2) cover all paths, they cover all interprocedurally

valid ifps also. This ensures safety of data flow analysis. The precision follows from

the fact that data flow analysis is restricted to interprocedurally valid paths only.

9.3 Interprocedural Analysis Using Unrestricted Contexts

The main limitation of interprocedural data flow analysis using a restricted context

is that it requires reconstruction of context. This restricts the method to bit vector

frameworks only. In this section we generalize the method to use unrestricted con-

© 2009 by Taylor & Francis Group, LLC

302 Data Flow Analysis: Theory and Practice

text. This not only eliminates the need of reconstruction of contexts but also of the

special context ∗ to represent synthesized data flow information. Further it allows

propagation of any data flow value.

In the presence of recursion, unrestricted context could result in an infinite num-

ber of unbounded length call strings. Thus the main issue in unrestricted context

approach is how to bound the length and the number of contexts. We first present the

method without any concern for bounding the contexts. Then we present a general

method of bounding contexts based on data flow values for data flow frameworks

with finite lattices.

9.3.1 Using Call Strings to Represent Unrestricted Contexts

The call strings method uses X = �σ,x� as a qualified data flow value where σ is a

call string representing a calling context. Special symbol λ denotes the empty call

string. Concatenation λ · ci results in the call string ci.

The computation and propagation of qualified data flow value X is simpler in this

method than in the previous method:

• If a pair �σ,x� reaches Ci, the context σ is extended and the pair �σ · ci,x� is

propagated further.

• If a pair �σ,x� reaches Ri, there are two possibilities:

– If the last call site in σ is ci, i.e. σ = σ� · ci, it indicates a matchingCi and

Ri and thus represents an interprocedurally valid path. In such a situation,

the pair �σ�,x� is propagated further. Note that σ� could be λ.

– If the last call site inσ is not ci, orσ is λ, it indicates an interprocedurally

invalid path and the pair �σ,x� should not be propagated further.

• If a pair �σ,x� reaches an intraprocedural node n, the context does not change,

only the data flow value changes. Let the flow function for block n be fn. Then

the pair �σ, fn
�
x
�
� should be propagated further.

There is no need of the special context ∗ because a call string remembers the call sites

corresponding to all unfinished calls. This makes it possible to propagate synthesized

data flow information to appropriate callers without the need of reconstructing con-

texts. Note that the above description does not guarantee termination of call strings

in recursive programs; we address this issue independently.

Since this method propagates all values in L rather than only �⊥, multiple qualified

data flow values reaching a node cannot be combined by plain set union. Instead,

the data flow values associated with the same context must be merged. Thus the

confluence of qualified data flow values is defined as follows:

X �Y =
�
�σ,x�y� | �σ,x� ∈ X, �σ,y� ∈ Y

�
∪

�
�σ,x� | �σ,x� ∈ X, ∀z ∈ L, �σ,z� � Y

�
∪

�
�σ,y� | �σ,y� ∈ Y, ∀z ∈ L, �σ,z� � X

�

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 303

The resulting data flow equations computing the qualified data flow values INn and

OUTn are as defined below:

INn =



�λ,BI� n is a Startmain�

p∈pred(n)

OUTp otherwise

OUTn = ConstGENn ∪ DepGENn(INn) −

(X− (ConstKILLn−DepKILLn(INn)))

where ConstGENn = ConstKILLn = DepKILLn(X) = ∅ and

DepGENn(X) =



�
�σ · ci,x� | �σ,x� ∈ X

�
n is Ci

�
�σ,x� | �σ · ci,x� ∈ X

�
n is Ri

�
�σ, fn(x)� | �σ,x� ∈ X

�
otherwise

The above data flow equations should be taken as a specification of the computation

to be performed. In practice, we use a work list based iterative algorithm for com-

puted INn and OUTn rather than a round-robin iterative algorithm. This is because

the effect of a change does not affect the entire supergraph directly.

The final data flow values at a node n are:

Inn =
�σ,x�∈INn

x (9.5)

Outn =
�σ,x�∈OUTn

x (9.6)

Example 9.2

Consider the program in Figure 9.1 on page 298 for call strings based in-
terprocedural liveness analysis. A partial result of this analysis is shown in
Figure 9.5 on the next page. It is complete in the sense that it includes all live
variables at all program points. However, it is partial in the sense that it does
not enumerate all call strings. For example, �c2c3c4,1010� and �c1c4,0011�

contained in INStartq could be propagated to OUTC2 , only to be ignored at
C2 because these call strings do not end with c2. However, some pairs that
will not be ignored by the algorithm are �c2c3c4c3,1110� and �c1c4c3,0111� that
should be propagated from INEndp to OUTR4 where new pairs �c2c3c4c3c4,1110�

and �c1c4c3c4,0111� would be created. This will further result in call strings
c2c3c4c3c4c3 and c1c4c3c4c3 and the construction of call strings will not ter-
minate in spite of the fact that no new data flow information is generated.

Observe that in OUTStartp , the data flow information has been shown as
1100+1010 and 0101+0011 to highlight the fact that it is a merge of the data
flow information propagated from the two successors of Startp.

© 2009 by Taylor & Francis Group, LLC

304 Data Flow Analysis: Theory and Practice

Block OUTn INn

Endm �λ,0000� �λ,1010�

R2 �λ,1010� �c2,1010�

C2 �c2,1010� �λ,1010�

n2 �λ,1010� �λ,1110�

n1 �λ,1110� �λ,0111�

R1 �λ,0111� �c1,0111�

C1 �c2c3,1010�, �c1,0011� �λ,0011�

Startm �λ,0011� �λ,1111�

Endq �c2,1010�, �c2c3c4,1110�, �c1c4,0111� �c2,1100�, �c2c3c4,1100�, �c1c4,0101�

R3
�c2,1100�, �c2c3c4,1100�,
�c1c4,0101�

�c2c3,1100�, �c2c3c4c3,1100�,
�c1c4c3,0101�

C3
�c2c3,1010�, �c1,0011�,
�c2c3c4c3,1010�, �c1c4c3,0011�

�c2,1010�,
�c2c3c4,1010�, �c1c4,0011�

Startq �c2,1010�, �c2c3c4,1010�, �c1c4,0011� �c2,1010�, �c2c3c4,1010�, �c1c4,0011�

Endp
�c2c3,1100�, �c1,0111�,
�c2c3c4c3,1100�, �c1c4c3,0101�

�c2c3,1110�, �c1,0111�,
�c2c3c4c3,1110�, �c1c4c3,0111�

n3
�c2c3,1110�, �c1,0111�,
�c2c3c4c3,1110�, �c1c4c3,0111�

�c2c3,1100�, �c1,0101�,
�c2c3c4c3,1100�, �c1c4c3,0101�

R4 �c2c3,1110�, �c1,0111� �c2c3c4,1110�, �c1c4,0111�

C4

�c2,1010�, �c2c3c4c3,1110�,
�c1c4c3,0111�, �c2c3c4,1010�,
�c1c4,0011�

�c2c3,1010�, �c1,0011�

Startp
�c2c3,1100+1010�, �c1,0101+0011�,
�c2c3c4c3,1100�, �c1c4c3,0101�

�c2c3,1010�, �c1,0011�,
�c2c3c4c3,1010�, �c1c4c3,0011�

FIGURE 9.5

Some call strings and associated values for interprocedural live variables analysis of

our example program Figure 9.1 on page 298.

Example 9.3

Figure 9.6 on the facing page provides a recursive procedure r that reverses a
linked list pointed to by the head pointer. Every call to r reverses the pointer
of the head node by assigning the previous pointer and then moves the three
pointers forward. As the recursion unwinds, the same operations are repeated
nullifying the effect of the operations carried out before a recursive call was
made. Thus, at the end of every call to r, regardless of the depth of recursion,
the list is identical to what it was before the call.

Figure 9.7 on page 306 shows the points-to graphs for some contexts dis-
covered by the call strings method. Call site c1 represents a call from main,
whereas c2 represents the recursive call. The points-to graph associated with

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 305

0. void r()

1. { /* Reverse the list */

2. n = *h;

3. *h = p;

4. p = h;

5. if (n != NULL)

6. { h = n;

7. r();

8. }

9. else

10. { /* Reversed */

11. { p = NULL;

12. n = NULL;

13. /* Process it */

14. }

15. /* Reverse it again */

16. n = *h;

17. *h = p;

18. p = h;

19. h = n;

20. }

aa ∗bStartr

n = ∗h
∗h = p
p = h

n1

h = n n2

p = null
n = null

n3
ca ∗b C2

ca ∗b R2

n = ∗h
∗h = p
p = h
h = n

n4

aa ∗bEndr

FIGURE 9.6

Example program for interprocedural points-to analysis. Pointer h is the head

pointer, p is the previous pointer, and n is the next pointer.

Endr for the call string c1 represents the data flow information returned to
the main procedure confirming that two reversals of the list have restored the
list to its original structure. This is possible because the call strings method
remembers the history of calls. This ensures that the method traverses inter-
procedurally valid paths only: In every path reaching the main procedure, for
every occurrence of Startr there is a matching Endr and vice-versa. Thus the
number of times the flow function representing a single step of list reversal is
applied remains equal for the control flow path entering the recursion and the
control flow path leaving the recursion.

9.3.2 Issues in Termination of Call String Construction

In non-recursive programs, only a finite number of call strings can be constructed

and the termination of the method is governed solely by the convergence of data

flow values associated with the call strings. In recursive programs, termination of

call string construction needs to be ensured explicitly. Once the termination of call

strings is ensured, the usual fixed point criterion of data flow values can be applied

© 2009 by Taylor & Francis Group, LLC

306 Data Flow Analysis: Theory and Practice

Node
Points-to graphs at node exists for the input list a b c d

c1 c1c2 c1c2c2 c1c2c2c2

n1 a b c d

h

p n

a b c d

h

p n

a b c d

h

p n

a b c d

h

p n

n2 a b c d

h

p n

a b c d

h

p n

a b c d

h

p n

a b c d

h

p n

C2 a b c d

h

p n

a b c d

h

p n

a b c d

h

p n

n4 a b c d

h

pn

a b c d

h

pn

a b c d

h

pn

a b c d

h

pn

R2 a b c d

h

pn

a b c d

h

pn

a b c d

h

pn

FIGURE 9.7

Points-to graphs in selected calling contexts. The head pointer points to variable a

in the linked list.

to ensure the termination of analysis exactly as in iterative intraprocedural analysis.

A natural question that needs to be answered is whether call string construction

can be terminated based on convergence of data flow values. In particular, we need

to ascertain whether we need to continue constructing new call strings even when no

new data flow information is generated for the new call strings. We have observed

that in the case of intraprocedural analysis it is possible to compute the data flow val-

ues by a fixed point computation of the data flow variables associated with the nodes

in a loop. The main difference between recursive contexts and loops is separation of

data space. However, if we restrict ourselves to global variables only, is it possible

to perform a fixed point computation of call strings? The next example shows that if

call strings construction is stopped when data flow values reach a fixed point, it may

result in an unsafe solution.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 307

0. int a,b,c;

1.

2. void main()

3. { c = a*b;

4. p();

5. }

6.

7. void p()

8. { if (...)

9. { p();

10. a = a*b;

11. }

12. }

a = a ∗bStartmain

c = a ∗bn1

c = a ∗bC1

c = a ∗bR1

c = a ∗bEndmain

a = a ∗bStartp

c = a ∗bC2

c = a ∗bR2

a = a ∗bn2

c = a ∗bEndp

Constructed
call strings Block

Iteration #1 Iteration #2

INn OUTn INn OUTn

�c1,1�,
�c1c2,1�

R2
�c1,1�,
�c1c2,1�

�c1,1�
�c1,0�,
�c1c2,1�

�c1,1�

n2 �c1,1� �c1,0� �c1,1� �c1,0�

Endp
�c1,0�,
�c1c2,1�

�c1,0�,
�c1c2,1�

�c1,0�,
�c1c2,1�

�c1,0�,
�c1c2,0�

�c1,1�,
�c1c2,1�,
�c1c2c2,1�

R2

�c1,1�,
�c1c2,1�,
�c1c2c2,1�

�c1,1�,
�c1c2,1�

�c1,0�,
�c1c2,0�,
�c1c2c2,1�

�c1,0�,
�c1c2,1�

n2
�c1,1�,
�c1c2,1�

�c1,0�,
�c1c2,0�

�c1,0�,
�c1c2,1�

�c1,0�,
�c1c2,0�

Endp

�c1,0�,
�c1c2,0�,
�c1c2c2,1�

�c1,0�,
�c1c2,0�,
�c1c2c2,1�

�c1,0�,
�c1c2,0�,
�c1c2c2,1�

�c1,0�,
�c1c2,0�,
�c1c2c2,1�

FIGURE 9.8

Available expressions analysis using call strings approach. Unless call string c1c2c2

is constructed, it is not possible to find out that a ∗b is not available at Entry(n2).

Example 9.4

Consider the program in Figure 9.8. Since variable a is modified in n2 and
is a global variable, the expression a ∗b is not available at the entry of n2 in
any call of procedure p except for the most deeply nested call from which the
recursion starts unwinding. When the call strings based method constructs
call string c1c2, the expression is available. When the pair �c1c2,1� reaches
R2, call site c2 is removed and the data flow value is passed on through the
pair �c1,1�. At the exit of n2, the qualified data flow value becomes �c1,0� and
is propagated to both R1 and R2. However since the last call site c1 does not

© 2009 by Taylor & Francis Group, LLC

308 Data Flow Analysis: Theory and Practice

Sp

Ci Sq

C j

SrCk

Cyclic call

sequence

Ep

Rk Er

R j

EqRi

Cyclic return

sequence

u

v

Sp

Ci Sq

C j

SrCk

fc

fc
�

Ep

Rk Er

R j

EqRi

fr

fr
�

fh

u

v

(a) Control flow (b) Flow functions

FIGURE 9.9

Modelling recursion. Startr and Endr for procedure r are abbreviated by Sr and Er.

correspond to R2, this qualified value is ignored at R2. Thus the only way
we can get the data flow value 0 at Entry(n2) is by ensuring that the cycle
(R2,n2,Endp,R2) is traversed at least once more. This is not possible unless
call string c1c2c2 is constructed in the cycle (C2,Startp,C2).

In terms of information flow paths, our analysis must cover the following
ifp : On2

→ IEndp →OEndp → IR2 → OR2 → In2
where Ini and Oni denote Entry(ni)

and Exit(ni) respectively. Observe that node n2 can be reached only via R2 and
the two occurrence of R2 require at least two occurrences of C2. The shortest
interprocedurally valid path that covers this ifp is:

(Startm,n1,C1,Startp,C2,Startp,C2,Startp,Endp,R2,n2,Endp,R2,n2)

The call string corresponding to this ifp is c1c2c2.

This situation arises because a recursive call sequence in a program consists of

two loops rather than one as illustrated in Figure 9.9. The first loop represents the

control flow entering the recursive call while the other loop represents the control

flow leaving the recursive calls. We call them as cyclic call sequence and cyclic

return sequence respectively. We denote the flow functions associated with them by

fc and fr respectively. The dashed line from Startq to Endq represents the recursion

ending control flow path and the flow function associated with it is denoted by fh.

Since we do not require the call sites along a cyclic call sequence to be distinct, this

figure models a general recursive path. In the most general case, there could be a path

from the cyclic return sequence to the cyclic call sequence if there exists a recursive

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 309

TC0 TC1
. . . TCκc−1 TCκc . . . TCm−κr TCm−κr+1 . . . TCm−1 TCm

fc fc fc fc fc fc fc fc fc fc

Same values

TR0 TR1
. . . TRκc−1 TRκc . . . TRm−κr TRm−κr+1 . . . TRm−1 TRm

fr fr fr fr fr fr fr fr fr fr

Same values

fh fh fh fh fh fh fh fh

FIGURE 9.10

Computation of data flow values along recursive paths. Dashed arrows indicate func-

tion applications.

call within a loop. Since we do not require fc, fr, and fh to be independent, this does

not affect our Modelling.

In a valid interprocedural path from u to any program point in the recursive proce-

dures, the cyclic call sequence must be traversed at least as many times as the cyclic

return sequence. For a valid interprocedural path from u to v, the cyclic call sequence

must be traversed exactly as least as many times as the cyclic return sequence.

For forward data flow problems, call strings are constructed when the cyclic call

sequence is traversed. Let the sequence of call sites (. . .ci . . .c j . . .ck . . .) along the

cyclic call sequence from Startq back to Startq be represented by σc. Each appli-

cation of fc suffixes σc to every call string reaching Startq. These call strings are

consumed when the corresponding cyclic return sequence is traversed. Each appli-

cation of fr requires traversing the cyclic return sequence once. In the process, the

last occurrence of σc is removed from every call string. Thus, fr can be applied only

as many times as the maximum number of σc in any call string reaching the entry of

Endp. Note that the application of fc does not have such a requirement because the

call strings are constructed rather than consumed while applying fc.

In order to guarantee safety of interprocedural data flow analysis, the call strings

should be long enough to allow computation of all possible data flow values in both

cyclic call and return sequences. We quantify this length in terms of a fixed point

closure bound. A fixed point closure bound of a function h is the smallest number

n > 0 such that ∀x,hn+1(x) = hn(x).

Let the fixed point closure bound of fc be κc and that of fr be κr. Let the number

of occurrences of σc in the longest call string be m > κc. Let the qualified data flow

value reaching Startq in Figure 9.9 on the facing page be �σ,x�. Let the sequence

of the qualified data flow values computed at Startq be denoted by �σ ·σic,TCi�. We

© 2009 by Taylor & Francis Group, LLC

310 Data Flow Analysis: Theory and Practice

know that

TCi =


x i = 0

fc(TCi−1) 1 ≤ i ≤ m

This recurrence trivially reduces to:

TCi =


fc
i(x) 0 ≤ i < κc

fc
κc(x) κc ≤ i ≤ m

Let the sequence of the qualified data flow values computed at Endq be denoted by

�σ ·σic,TRi�. Then,

TRi =


fh(TCi) � fr(TRi+1) 0 ≤ i < m

fh(TCi) i = m

The first term of � represents the data flow value along the path from Startq to Endq
whereas the second term represents the data flow value computed along the cyclic

return sequence. On substituting the values of TCi, we get

TRi =



TRi � fr(TRi+1) 0 ≤ i < κc

TRm � fr(TRi+1) κc ≤ i < m

fh(fc
κc(x)) i = m

(9.7)

Since TRi depends on TRi+1, the final computation in cyclic return sequence starts

from the last call string as illustrated in Figure 9.10 on the previous page. Clearly, m

should be at least κc+ κr. If m < κc+ κr, then some data flow values corresponding to

unbounded recursion may not be computed. However, the values of κc and κr are not

known a priori, and there should be some way of terminating the construction of call

strings.

Example 9.5

Consider the program of Figure 9.6 on page 305. Flow function fc is the
composition of the flow functions for n1 and n2, fh is the composition of the
flow functions for n1, n3, and n4, whereas fr is the flow function for block n4.
If we ignore the head pointer which is conditionally advanced in the cyclic call
sequence, fr

i(fh
i(x)) = x. Further, for the given input value x (consisting of a

linked list of 4 elements), κc = κr = 4. Because of these reasons, it is sufficient to
use m = 4 in this special case and stop call string construction when c1c2c2c2c2

is created. This can be readily verified from Figure 9.7 on page 306. In the
general case, m should be larger then κc+ κr for all values of κc and κr.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 311

9.4 Bounding Unrestricted Contexts Using Data Flow Values

A simple approach of allowing unrestricted call strings and yet bounding the overall

set of call strings is to maintain in each procedure r, a single representative call

string for each possible value in the lattice. This technique is deceptively simple and

requires elaborate explanation. We outline the basis of this simple idea in terms of

the following fundamental invariants of the call strings method:

• We observe that the same set of call strings reaches all program points in a

procedure although they may have different values associated with them. As

a consequence, if a mechanism is devised to ignore some call strings in a

procedure (e.g., to represent them by other call strings), it would be possible

to reconstruct them wherever they are required.

• If the call strings reaching a procedure are partitioned on the basis of data flow

values, the equivalence classes remain unchanged in the procedure (the data

flow value associated with an equivalence class may be different at different

program point). More call strings may be included in an equivalence class

across procedure calls because of construction of additional call strings.

• Finally, if there is a way of computing the correct value of σ ·σκcc at Endp, call

strings σ ·σi, κc < i ≤ m need not be constructed. Further, there is not need

to regenerate them explicitly; their implicit regeneration can be simulated by

iterative computation of data flow values.

9.4.1 Call String Invariants

This section proves the call string invariants; the actual details of the method are

presented in Section 9.4.2.

DEFINITION 9.5 A context defining path from program point u to pro-
gram point v is a valid interprocedural path from u to v that consists of only
intraprocedural segments, call segments, or symmetric segments.

If a context defining path contains return segments, they are suffixes of symmetric

segments. For the purpose of our discussion, we restrict a context defining path to

the significant nodes appearing in it. Thus each adjacent pair of nodes in a context

defining path may correspond to many distinct intraprocedural segments.

DEFINITION 9.6 A program point v is context dependent on program
point u, denoted v ∈ Cd(u), if there is a context defining path from u to v.

© 2009 by Taylor & Francis Group, LLC

312 Data Flow Analysis: Theory and Practice

Given procedure r, Cd(Startr) contains all program points within r and all pro-

gram points within all callees in every call chain starting in r. For v ∈ Cd(u), we

use Cdp(u,v) to denote the set of context defining paths from u to v and Cs(u,v) to

denote the set of call strings corresponding to paths in Cdp(u,v).

Let dfVal(σ,u) denote the value associated with call string σ at program point u.

DEFINITION 9.7 Call strings σ1 and σ2 are equivalent at program point

u, denoted σ1
u
= σ2, if {σ1,σ2} ⊆ Cs(Startmain,u) and dfVal(σ1,u) = dfVal(σ2,u).

We assume that the work list based interprocedural analysis traverses interpro-

cedural paths such that all intraprocedural segments are processed completely be-

fore propagating data flow information from a significant node to another significant

node. This can be achieved by maintaining two separate work lists: One for intrapro-

cedural nodes and the other for significant nodes. A significant node is selected for

processing only after ensuring that the work list of intraprocedural nodes is empty.

We call such an interprocedural analysis algorithm as being intraprocedurally eager.

LEMMA 9.1

The calling contexts of all intraprocedural program points in a procedure are
identical.

PROOF Obvious.

Calling contexts of a procedure depend on the callers so they cannot be different

for different program points within the procedure. For a given call site ci ∈ CallsInr,

Exit(Ci) and Entry(Ri) are assumed to logically belong to the callee procedure rather

than r.

The following lemma shows that if σ1 and σ2 are transformed in the same manner

by following the same set of paths, the values associated with them will also be

transformed in the same manner and will continue to remain equal.

LEMMA 9.2

Consider a program point v ∈ Cd(u). Assume that the recursive paths in
Cdp(u,v) are unbounded. When the work list of intraprocedural nodes is empty
in an intraprocedurally eager call strings based method,

σ1
u
= σ2 ⇒∀σ ∈ Cs(u,v), (σ1 ·σ)

v
= (σ2 ·σ)

PROOF There are two cases to consider:

1. There is only one context defining path in Cdp(u,v) leading to a single
sequence σ of call nodes that can be suffixed to both σ1 and σ2.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 313

u
�σ1,d� �σ2,d�

Cx Cy

�σ1 ·σ,d
�
x�

�σ2 ·σ,d
�
x�

�σ1 ·σ,d
�
y�

�σ2 ·σ,d
�
y�

Rx Ry

�σ1 ·σ · cx,dx�

�σ2 ·σ · cx,dx�

�σ1 ·σ · cy,dy�

�σ2 ·σ · cy,dy�

v

�σ1 ·σ,dx�dy� �σ2 ·σ,dx�dy�

FIGURE 9.11

Case 2 for Lemma 9.2.

In this case, the eager interprocedural analysis algorithm traverses ex-
actly the same set of paths from u to v for computing the data flow
information associated with the call strings σ1 ·σ and σ2 ·σ. Thus the
data flow values along the call strings σ1 ·σ and σ2 ·σ undergo the same
change. Clearly,

dfVal(σ1,u) = dfVal(σ2,u) ⇒ dfVal(σ1 ·σ,v) = dfVal(σ2 ·σ,v)

2. Cdp(u,v) contains multiple context defining paths corresponding to σ.

We prove this case by induction on the length of the maximal common
suffix of all paths in Cdp(u,v) which correspond to σ.

• Basis. The basis is the case when there is no common suffix.

For simplicity, assume that we have only two paths corresponding
to σ as illustrated in Figure 9.11. Without any loss of generality,
assume that Rx and Ry are the last nodes which are different.∗ Since
both the paths from u to v correspond to a common call string
σ, Cs(u,Entry(Rx)) contains a call string σ · cx and Cs(u,Entry(Ry))

contains a call string σ · cy.

Let dfVal(σ1,u) = dfVal(σ2,u) = d. Assume that the path segment
from u to Entry(Rx) changes this value to dx and the path segment
from u to Entry(Ry) changes this value to dy.

∗If two context defining paths differ in call nodes which are not followed by matching return nodes, then

the two paths would not correspond to the same call string.

© 2009 by Taylor & Francis Group, LLC

314 Data Flow Analysis: Theory and Practice

Since σ1 and σ2 reach u, σ1 ·σ · cx and σ2 ·σ · cx reach Entry(Rx).
Thus,

dfVal(σ1 ·σ · cx,Entry(Rx)) = dfVal(σ2 ·σ · cx,Entry(Rx)) = dx

Similarly,

dfVal(σ1 ·σ · cy,Entry(Ry)) = dfVal(σ2 ·σ · cy,Entry(Ry)) = dy

At the exit of the return nodes, the two call sites are removed.
Hence at v, we get the pairs �σ1 ·σ,dx� and �σ2 ·σ,dx� along one
path whereas along the other path we get the pairs �σ1 ·σ,dy� and
�σ2 ·σ,dy.� The data flow values for same call strings from different
paths are merged and hence

dfVal(σ1 ·σ,v) = dfVal(σ2 ·σ,v) = dx�dy

This proves the basis case for two paths. Extending it to more than
two paths is easy due to the finiteness of L. If there is a recursive
call in a path from u to v, there will be infinitely many context
defining paths corresponding to σ, each with a different number
of matchings of some call and return nodes. However, since L is
finite, these paths can be partitioned based on the data flow values
corresponding to the call strings σ1 ·σ and σ2 ·σ. Thus we will have
a finite merge and inducting on the number of values (or number
of partitions of paths from u to v) serves the purpose.

• Inductive step. Assume that all paths in Cdp(u,v) which correspond
to σ have a non-empty common suffix. Assume further that the
lemma holds for a maximal common suffix consisting of k nodes.
To show that it holds for a common suffix of k+ 1 nodes, observe
that since all call strings traverse essentially the same path segment
from node k to node k+1, the data flow values associated with the
call string will be modified in the same way. Since the data flow
values are equal after k nodes, they remain equal after k+1 nodes.

Note that this lemma assumes unbounded recursion. If call string construction is

terminated after some repetition of cyclic call sequence (say m), then as illustrated

in Figure 9.10 on page 309, the values of TRi for (m− κr +1) ≤ i ≤ m are likely to

be different in spite of the fact that the values of TCi for the same range of i are

identical (fc
κc (x)). The lemma holds for the values of TRi for κc ≤ i < (m− κr +1).

However, this exception arising due to bounded call strings does not matter because

the associated values follow a strictly descending chain and converge on the least

value. Hence the result of the merge of TRi, κc ≤ i ≤ m is the same as the values in

those ranges of i for which the above lemma holds.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 315

Intuitively, the values of TRi for (m− κr +1) ≤ i ≤ m follow a strictly descending

chain because they are repeatedly computed using the same function and are merged

with the same value (fc
κc(x) in our case) at each step. We prove this in the following

lemma.

LEMMA 9.3

Assume that the call strings method constructs call strings long enough so that
all call strings σ ·σic, 0 ≤ i ≤ m are constructed where m ≥ κc+ κr for all possible
values of κc and κr. Then,

∀κr, TRm−κr � TRi, m− κr ≤ i ≤ m

PROOF We prove this by inducting on the distance of i from m by rewrit-
ing TRi, m− κr ≤ i ≤ m as TRm− j,0 ≤ j ≤ κr and by showing that

TRm−(j+1) � TRm− j, 0 ≤ j < κr

The basis of induction is j = 0. Since TRm−1 = TRm� fr(TRm) it trivially follows
that TRm−1 � TRm. For the inductive hypothesis, assume that TRm−(j+1) � TRm− j.
We need to show that TRm−(j+2) � TRm−(j+1). From the definition of TRi,

TRm−(j+2) = TRm� fr(TRm−(j+1)) 0 ≤ j ≤ κr, m > κc+ κr (9.8)

TRm−(j+1) = TRm� fr(TRm− j) 0 ≤ j ≤ κr, m > κc+ κr (9.9)

From the inductive hypothesis and monotonicity of flow functions,

TRm−(j+1) � TRm− j ⇒ fr(TRm−(j+1)) � fr(TRm− j)

The inductive step follows by comparing the right hand sides of Equations (9.8)

and (9.9).

Observe the role of κc in the above proof. Since TRκc−1 does not have the first term

as fh(fc
κc(x)) unlike TRκc , a partial order relation between TRκc−1 and TRκc cannot

be established and lemma may not hold.

We have defined TCi and TRi for Startq and Endq in Figure 9.9 on page 308.

In particular, the term TRi for Endq involves a merge of the data flow values along

the recursion ending path and the cyclic return sequence. For some other pair of

program points, say Startr and Endr, the term TRi may not be a merge of data flow

values along two paths. However, the data flow values at all program point in the

cyclic return sequence must converge. When the computation of a data flow value

converges at a program point in a cycle, it must converge at each program point in the

cycle. Further, the direction of convergence must be same for each program point.

This convergence immediately suggests that the data flow values associated with

call strings σ ·σic, κc ≤ i ≤ m are not required for the final data flow value in cyclic

return sequences. This happens because when the data flow values that are being

© 2009 by Taylor & Francis Group, LLC

316 Data Flow Analysis: Theory and Practice

a = ∗a

x x = {a {b},b {c},c {b}}

f 1(x) = {a {c},b {c},c {b}}

f 2(x) = {a {b},b {c},c {b}}

f 3(x) = {a {c},b {c},c {b}}

a ∅ (��)

a {a} a {b} a {c}

a {a,b} a {a,c} a {b,c}

a {a,b,c} (�⊥)

(a) x is a periodic point with a period 2 for the flow

function for pointer assignment a = ∗a.

(b) Lattice of may points-to

information for variable a

FIGURE 9.12

Flow functions in Points-to analysis. Data flow value v S indicates that variable v

may point to the variables contained in S .

merged follow a descending chain, only the last value in the chain matters in the

overall merge and since our lattices are finite, all descending chains are finite and

such a last value is guaranteed to exist.

THEOREM 9.1

Assume that the call strings method constructs call strings long enough so that
all call strings σ ·σic, 0 ≤ i ≤ m constructed where m ≥ κc+ κr for all possible
values of κc and κr. Then for each program point v in a return sequence

m

i=0
dfVal(σ ·σic,v) =

max(κc)

i=0
dfVal(σ ·σic,v)

PROOF The values dfVal(σ ·σic,v), 0 ≤ i < κc may be different. However,
due to the convergence of data flow values for subsequent call strings,

dfVal(σ ·σic,v) = dfVal(σ ·σi+1
c ,v), κc ≤ i < m− κr

Thus dfVal(σ ·σκcc ,v) is the least value for κc ≤ i ≤ m. Hence it is sufficient to

merge the values of all call strings up to κc number of occurrence of σc.

An aside on flow function with periodic points

For a given function h and a value x, if hn(x) = x and hi(x) � x, 0 < i < n, then x is a

periodic point of h with period n. A fixed point is a periodic point of period one. In

general, flow functions can have periodic points of larger periods even if the func-

tions are monotonic. This is possible only when functions compute incomparable

values. Figure 9.12 shows an example of such a flow function from may Points-to

analysis. x is the data flow information reaching statement n from outside of the

loop. Observe that fn computes incomparable values in all successive applications.

We have restricted the discussion in this chapter to flow functions with period

one. Extending the arguments to functions of larger periods is easy. Consider a flow

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 317

Startp

�σ1,x� �σ2,x�

�σ1,x� �σ2,x�

Endp

�σ1,x
�� �σ2,x

��

�σ1,x
�� �σ2,x

��

Startp

�σ1,x� �σ2,x�

�σ1,x�

Endp

�σ1,x
��

�σ1,x
�� �σ2,x

��

Represent
σ2 by σ1

Regenerate
σ2 from σ1

(a) Using unbounded contexts (c) Bounding contexts using data flow values

FIGURE 9.13

Representation and regeneration of equivalent call strings.

function which has period n for the incoming data flow value. Then, there are n

periodic points instead of 1. In such a situation, instead of

dfVal(σ ·σi+1,Startp) = dfVal(σ ·σi,Startp), κc ≤ i ≤ m

we have

dfVal(σ ·σi+n,Startp) = dfVal(σ ·σi,Startp), κc ≤ i ≤ m−n

The convergence holds for call strings corresponding to each periodic point indepen-

dently. For periodic point i, Lemma 9.3 can be proved by inducting on the distance

of the call string from the call string σ ·σm−i.

9.4.2 Value-Based Termination of Call String Construction

Given a set of cyclic call strings, Theorem 9.1 allows us to distinguish between two

types of call strings:

• The call strings whose data flow values are relevant for the final result of data

flow analysis. These call strings involve up to κ occurrences of any cyclic call

sequence where κ is the largest possible value of κc.

• The call strings which facilitate a sufficient number of traversal over return

segment to allow convergence of data flow values. These are the call strings

© 2009 by Taylor & Francis Group, LLC

318 Data Flow Analysis: Theory and Practice

�σ ·σ
κc
c , fh(y) = TRm�

Endp

�σ ·σ
κc
c , fr(z)�

�σ ·σ
κc
c ,z = TRm� fr(z)� �σ ·σ

κc+1
c ,z = TRm� fr(z)�

Regenerate

σ ·σ
κc+1
c from σ ·σκc

�σ ·σ
κc
c , fc

κc(x) = y�

Startp

�σ ·σ
κc+1
c , fc

κc+1(x) = y�

�σ ·σ
κc
c ,y�

Represent

σ ·σ
κc+1
c by σ ·σκc

FIGURE 9.14

Representation and regeneration of cyclic call strings whose data flow values reach

convergence in a cyclic call sequence. These call strings are used for convergence of

data flow values in the corresponding cyclic return sequence.

that contain κ� additional occurrences of cyclic return sequences where κ� is

the largest possible value of κr.

If there is some way of allowing traversal of a cyclic return sequence as many

times as may be required, we may be able to terminate construction of redundant

call strings in the corresponding cyclic call sequence. This is achieved as follows:

A single representative call string for an equivalence class within the

scope of a maximal context dependent region is maintained and at the

end of the region, all call strings belonging to each equivalence class are

reconstructed. Some of them are constructed explicitly while some of

them are constructed implicitly.

For procedure p, the decision of representation is taken at Startp. This represen-

tation remains valid at all program points which are context dependent on Startp.

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 319

Endp is the last such point and the call strings must be regenerated so that appropri-

ate data flow values can be propagated to different callers of p. Similar to the scope

of variables in a program, this representation may be “shadowed” by other context

dependent regions created by procedure calls in the outer context dependent region.

Let representative(x,Startp) denote a uniquely selected call string which has

value x at Startp. The selection can be made based on some well defined crite-

rion and the choice of this criterion is immaterial so long as it identifies a unique

call string. One example of selecting a unique call string is to select the shortest call

string from among the set of call strings that have the same data flow value. Another

criterion could be to select the first call string that is listed in the associated data

structure. The representation of call strings at Startp is defined as follows:

∀�σ,x� ∈ INStartp : represent(σ,Startp) = representative(x,Startp)

The regeneration at Endp is performed as follows:

OUTStartp =
�
�represent(σ,Startp),x� | �σ,x� ∈ INStartp

�

regenerate(σ,Endp) = {�σ
�,y� | represent(σ�,Startp) = σ, �σ,y� ∈ INEndp }

OUTEndp =
�

�σ,y�∈INEndp

regenerate(σ,Endp)

Regeneration copies the same data flow value to all call strings belonging to the

same equivalence class. For general call strings this process has been illustrated in

Figure 9.13 on page 317. For call strings in recursive programs, this process facil-

itates iterative computation of data flow values in cyclic return sequences without

having to construct redundant call strings in the corresponding cyclic call sequence.

This has been illustrated in Figure 9.14 on the preceding page.

The call string invariants presented in Section 9.4.1 are based on the following

assumptions that should be honoured by work list based method used for call strings

based interprocedural data flow analysis:

• The work list algorithm is assumed to be intraprocedurally eager. Hence data

flow information should be propagated across procedure boundaries only when

no further intraprocedural propagation is possible.

This can be handled by maintaining separate work lists for intraprocedural

nodes and significant nodes. A significant node should be selected by the

method only when there is no pending intraprocedural node.

• It is assumed that the functions in cyclic return sequence are applied only after

the data flow values in the corresponding cyclic call sequence have reached

a convergence. This matters only in those cases when there is a path from a

cyclic return sequence to a cyclic call sequence e.g., when a function call is

contained in a loop.

This can be handled by maintaining the following invariant in the work list of

significant nodes: A call node always precedes any return node in the work

list, regardless of when it is included in the work list.

© 2009 by Taylor & Francis Group, LLC

320 Data Flow Analysis: Theory and Practice

Step

No.

Selected

Node

Qualified Data Flow Value Remaining Work List

INn OUTn
Intraproc.

Nodes

Significant

Nodes

1 Startp �c1,1� �c1,1� Endp C2

2 Endp �c1,1� �c1,1� C2, R2

3 C2 �c1,1� �c1c2,1� Startp R2

4 Startp
�c1,1� �c1c2,1� �c1,1� Endp C2, R2(c1c2 is represented by c1)

5 Endp
�c1,1� �c1,1� �c1c2,1�

C2, R2(c1c2 is regenerated from c1)

6 C2 No change No change R2

7 R2 �c1,1� �c1c2,1� �c1,1� n2

8 n2 �c1,1� �c1,0� Endp

9 Endp
�c1,0� �c1,0� �c1c2,0�

R2(c1c2 is regenerated from c1)

10 R2 �c1,0� �c1c2,0� �c1,0� n2

11 n2 �c1,0� No change

FIGURE 9.15

Interprocedural data flow analysis of example program in Figure 9.8 on page 307

using value-based termination of call string construction.

• When representation is performed, it is assumed that the corresponding regen-

eration is guaranteed to be performed.

This can be ensured by adding Endr to the work list whenever representation

is performed at Startr; this includes the situation when an equivalence class

remains same but the data flow value associated with the call strings in that

equivalence class changes. It is possible that the data flow values do not change

within procedure r after representation and hence Endr may never be added to

the work list. In such a case, the new qualified data flow value may not be

generated at Endp.

Example 9.6

Call strings based interprocedural data flow analysis using representation and
regeneration of call strings for the example program in Figure 9.8 on page 307
has been illustrated in Figure 9.15. Observe that in step 2, R2 is inserted in
the work list after C2 rather than before it. In step 4, �c1c2,1� ∈ INStartp is
not propagated to OUTStartp as it is represented by �c1,1�. At Endp �c1c2,1� is
regenerated. This reaches R2 where c2 is removed and the resulting qualified
data flow value �c1,1� is propagated to n2. Due to the assignment to a in
n2, this data flow value changes to �c1,0� and is propagated to Endp where
it is merged with �c1,1� arriving from Startp. This causes the value 0 to be

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 321

propagated as �c1c2,0� and �c1,0�. A subsequent traversal over the return
sequence ensures that the data flow value become 0 at Entry(n2) also.

Representation and regeneration discards only those call strings which contain

redundant values and performs the desired computation iteratively.

Recall that for the points-to analysis of program of Figure 9.6 on page 305, addi-

tional call strings are not required for convergence in cyclic return sequence. This

does not influence our algorithm in any way; we leave it for the reader to verify that

this method computes identical result as in Figure 9.7 on page 306.

THEOREM 9.2

The final data flow values computed by representing and regenerating call
strings are identical to the values computed by a call strings method with an
unbounded length call strings.

PROOF Regeneration explicitly constructs all acyclic call strings and
all cyclic call strings containing κc+1 occurrences of σc. At Endp, σ ·σ

κc+1
c is

regenerated and the data flow value associated with σ ·σκcc is propagated to it.
From Equation (9.7) and Figure 9.14 on page 318, this value is TRm. This value

is then propagated as �σ ·σκc+1
c ,z = TRm� along the cyclic return sequence. This

traversal removes the last occurrence of σc from σ ·σκc+1
c , computes fr(z),

which is merged with the value of σ ·σκcc along the recursion ending path.
Thus dfVal(σ ·σκcc ,Endp) = TRm� fr(TRm) after one traversal. This is same as
the value associated with call string σ ·σm−1

c where m ≥ κc+ κr. At Endp, this

is again copied to the call string σ ·σκc+1
c overwriting the previous value and

the pair �σ ·σκc+1
c ,z = TRm� fr(TRm)� is propagated along the cyclic return

sequence. The process repeats as long as new values are computed for σ ·σκcc ;
effectively, traversal i over the cyclic return sequence computes the value Tm−i
for σ ·σκcc . The process terminates after κr traversals. This computes the

desired value for σ ·σκcc .

After the convergence of data flow values in a cyclic call sequence has been

reached, this method replaces construction of the subsequent call strings by itera-

tively computing the data flow values in the corresponding cyclic return sequence

using a pair of last two call strings.

Observe that representation is performed afresh every time any Start node is vis-

ited. On a subsequent visit to Startp of procedure p, representation could change

because of the following reasons:

• A new call string with the value of an existing call string reaches Startp.

• A new call string with a new value reaches Startp.

• A call string that had reached Startp with a value x now reaches Startp with a

different value x�.

© 2009 by Taylor & Francis Group, LLC

322 Data Flow Analysis: Theory and Practice

0. int a,b,c;

1.

2. void main()

3. { c = a*b;

4. p();

5. }

6.

7. void p()

8. { while (...)

9. { p();

10. a = a*b;

11. }

12. }

a = a ∗bStartmain

c = a ∗bn1

c = a ∗bC1

c = a ∗bR1

c = a ∗bEndmain

a = a ∗bStartp

a = a ∗bn3

c = a ∗bC2

c = a ∗bR2

a = a ∗bn2

c = a ∗bEndp

FIGURE 9.16

Modified program of Figure 9.8 on page 307. Expression a ∗b is not available any-

where in procedure p.

In either case, Endp will be added to the work list. Thus all call strings will get

regenerated with appropriate data flow values at Endp.

Example 9.7

Figure 9.16 contains a modified version of the program in Figure 9.8 on
page 307. Since now the recursive call is in the loop, expression a ∗ b is un-
available in nodes Startp and C2 also. A trace of the call strings method using
value-based termination has been provided below.

Step
No.

Selected
node

Qualified data flow value Remaining work list

INn OUTn
Intra.
nodes

Sig.
nodes

1 Startp �c1,1� �c1,1� n3

2 n3 �c1,1� �c1,1� Endp C2

3 Endp �c1,1� �c1,1� C2, R2

4 C2 �c1,1� �c1c2,1� Startp R2

5 Startp
�c1,1� �c1c2,1� �c1,1� n3, Endp R2(c1c2 is represented by c1)

6 n3 �c1,1� �c1,1� Endp C2, R2

7 Endp
�c1,1� �c1,1� �c1c2,1� C2, R2(c1c2 is regenerated from c1)

8 C2 No change No change R2

9 R2 �c1,1� �c1c2,1� �c1,1� n2

10 n2 �c1,1� �c1,0� n3

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 323

Step
No.

Selected
node

Qualified data flow value Remaining work list

INn OUTn
Intra.
nodes

Sig.
nodes

11 n3 �c1,0� �c1,0� Endp C2

12 Endp
�c1,0� �c1,0� �c1c2,0� C2, R2(c1c2 is regenerated from c1)

13 C2 �c1,0� �c1c2,0� Startp R2

14 Startp
�c1,1� �c1c2,0� �c1,1� �c1c2,0� n3 R2(Representation has changed)

15 n3 �c1,0� �c1c2,0� �c1,0� �c1c2,0� Endp C2, R2

16 Endp �c1,0� �c1c2,0� No change C2, R2

17 C2 �c1,0� �c1c2,0� �c1c2,0� �c1c2c2,0� Startp R2

18 Startp

�c1,1� �c1c2,0�

�c1c2c2,0�
No change

Endp R2

(c1c2c2 is represented by c1c2)

19 Endp
No change

�c1,0� �c1c2,0�

�c1c2c2,0� R2

(c1c2c2 is regenerated from c1c2)

20 R2
�c1,0� �c1c2,0�

�c1c2c2,0�
�c1,0� �c1c2,0� n2

21 n2 �c1,0� �c1c2,0� �c1,0� �c1c2,0� n3

22 n3 No change No change

Observe that first the call string c1c2 is represented by c1 but since the call
is in a loop, after unwinding the recursion once, the data flow value 0 reaches
C2 along the call string c1. This changes the representation at Startp and the
call string c1c2 must be explicitly propagated further. Eventually, call string
c1c2c2 has the same value as c1c2. This results in a different representation
and the data flow analysis terminates after a few steps.

THEOREM 9.3

Using the value-based termination of call strings, the maximum number of call
strings at any internal program point is |L|.

PROOF At Exit(Startp) for any procedure p, the call strings are parti-
tioned by the data flow values associated with them and there can be at most
|L| distinct data flow values.

THEOREM 9.4

Let the maximum number of call sites in any acyclic call chain be K. Then,
using the value-based termination of call strings, the maximum length of any

© 2009 by Taylor & Francis Group, LLC

324 Data Flow Analysis: Theory and Practice

call string is K× (|L|+1).

PROOF Consider a call string σ = . . . (Ci)
1 . . . (Ci)

2 . . . (Ci)
3 . . . (Ci)

j . . . where
(Ci)

j denotes j th occurrence of Ci. Let j ≥ |L|+ 1 and let Ci call procedure
p. The set of call strings reaching p is prefix closed in the following sense:
All prefixes of σ ending in Ci must reach entry Startp. Since only |L| distinct
values are possible, by the pigeon hole principle, at least two prefixes ending
with Ci will carry the same data flow value to Startp and the longer prefix will
get represented by the shorter prefix. Since one more Ci is suffixed to discover
fixed point, j ≤ |L|+1. In the worst case, all call sites may occur in σ thus the

worst case length of any call string is K × (|L|+1).

9.5 The Motivating Example Revisited

It is appropriate that our explanation of data flow analysis in this book should end

with the example that it began with. This section presents context sensitive interpro-

cedural liveness analysis of the program in Section 1.1.

The examples in this part have considered programs with global variables. How-

ever, our motivating example from Figure 1.1 on page 2 contains local pointer vari-

ables that are passed as actual parameters. As observed in Section 7.5, this requires

data flow information to be propagated between the actual parameters and formal

parameters. We model this using a couple of assignments and a special edge in the

supergraph as illustrated in Figure 9.17 on the facing page.

For correct Modelling of local pointer variables as actual parameters, we need to

assign them to formal variables in the call node (C2 in our case) and restore them

in the return node (R2 in our case). The assignment in C2 indicates that the heap

memory reachable from succ is reachable from n in a recursive call. The assign-

ment in R2 indicates that the heap memory reachable from n in a recursive call is

reachable from succ in an outer call. Besides, we need to bypass the call by an edge

because the local variables are available in the program fragment beyond the call due

to call by copy semantics. We have achieved this by adding edge n2 → n4. In the

absence of this edge, if formal parameter n is made null in procedure dfTraverse

our assignment in R2 will make succ null in node n4. Since the pointer has been

passed by copy, this is incorrect. The assignment is required because the heap cells

reachable from succ could be influenced by n but the address contained in succ is

not modified because succ is a local variable and is not passed by reference.

Liveness analysis is a backward analysis. Hence we interchange the roles of call

nodes and return nodes. Now a call site is appended and call strings grow when a

return node is visited. Call sites are removed at the call nodes. By the same token,

representation is performed at Endr of procedure r and regeneration is performed

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 325

n1 succ=n->child n1

StartpStartp

n2 if (succ!=NULL) n2

C2 n=succ C2

R2 succ=n R2

n4 next=succ->sib 4

n5 succ=next n5

printf(”%d\n”,n->num)n6

EndpEndp

TF

C1 n=tree C1

R1 tree=n R1

FIGURE 9.17

Supergraph for procedure dfTraverse from the program in Figure 1.1 on page 2.

Observe the assignments in call and return nodes and the edge n3 → n4 for handling

parameters.

at Startr. Besides, a return node always precedes the corresponding call node in the

work list of significant nodes. Note that the recursive call in this example is contained

in a loop and hence we can expect the representation made at Endp to change.

Our data flow values are access graphs as defined in Section 4.4.3. We use the data

flow equations defined in Section 4.4.4 for computing the effect of intraprocedural

nodes on access graphs representing explicit liveness. Since field name sib is deref-

erenced only in node n4, summarization can be achieved without subscripting this

field name with the node number. Similar remarks apply to the field name child.

Hence, we drop the subscripts of field names.

The final data flow information is provided in Figure 9.18 on page 327. Below we

list some path fragments to show the flow of information:

• ρ = (Endp,n6,n2,n5,n4,n2,n5,n4,R2,n6,n2)

The data flow value at the start of ρ is �c1,EG� and the data flow value at the

© 2009 by Taylor & Francis Group, LLC

326 Data Flow Analysis: Theory and Practice

end of ρ is

�
c1c2, n sib

�
.

• Further traversal of n2,n1 results in the data flow value

�
c1c2, n

child

sib

�
.

• Traversal of n2,n5,n4 creates the liveness graph succ sib . A further

traversal of n2,n1 results in the graph n child sib . When this com-

bines with the data flow value at n1 obtained in the previous step, we get the

qualified data flow value

�
c1c2, n

child

sib

�
.

• The above data flow value reaches n2 along the path n1,Startp,C2,n1 after

removing the call string suffix c2 as

�
c1, n

child

sib

�
. Further, it reaches

Endp along the path n2,n5,n4,R2,Endp as

�
c1c2, n

child

sib

�
.

We leave it for the reader to find out how the other edges get included in the above

liveness graph and how the graphs are propagated to various nodes in the supergraph.

Observe that in the liveness graphs at the entry of n4, there is no edge from succ

to child. Further, there is no graph rooted at succ at the entry of n5. This confirms

our conclusion in Section 1.1 that the pointer succ can be freed between n4 and n5.

Also note that the access path n child is not live in nodes n2, n4, n5, and n6 in the

data flow information in Figure 9.18. However, it is live in the same nodes in the

data flow information computed with conservative interprocedural summarization in

Section 4.4.5. This is because n child is not explicitly live; it is only implicitly live

in that it is aliased to an access path that is explicitly live.

9.6 Summary and Concluding Remarks

This chapter has explored the approach of computing distinct values for distinct con-

texts instead of constructing context independent functions. Bit vector frameworks

are amenable to such an analysis when the context is restricted to immediate caller.

This method overwrites the context at every call and recovers it after the call is over.

A natural generalization of this method is to remember the entire call history in

the form of a call string. This method is attractive because it is simple and general.

Beside, it is context sensitive and hence computes precise data flow information. The

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 327

Node
Liveness Graphs at the Entry of Nodes

c1 c1c2 c1c2c2

Startp n child sib n
child

sib

n
child

sib

n1 n child sib n
child

sib

n2

n

succ
child

sib

n sib child

succ
child

sib

C2 succ
child

sib

succ
child

sib

R2 n sib child n sib child

n4

n

succ
child

sib

n sib child

succ
child

sib

n5

n

next
child

sib

n sib child

next
child

sib

n6 n
n sib child

Endp EG n sib child

c1c2c2 is represented

by c1c2

FIGURE 9.18

Interprocedural liveness analysis of heap data for the program in Figure 9.17.

main difficulty in this method is that the number and length of call strings could be

exponentially large. Further, in the case of recursive programs, the termination of

the construction of call strings must be explicitly ensured. This can be achieved by

adapting the “overwrite-and-recover” technique from the method that uses restricted

© 2009 by Taylor & Francis Group, LLC

328 Data Flow Analysis: Theory and Practice

contexts. This adaptation results in call strings with equivalent values being repre-

sented by a single call string at Start of a procedure and regenerating the represented

call string at the End.

The value-based termination criterion presented in this chapter is different from

the original termination criterion of constructing all call strings up to the length of

K × (| L | +1)2 where K is the maximum number of call sites and L is the lattice. This

number reduces to 3K for bit vector frameworks. This termination length results

in a combinatorially large number of call strings. From Theorem 9.4, when value-

based termination criterion is used, the worst case length of a call string reduces to

K × (|L|+1). Empirical measurements show a dramatic reduction in the number and

maximum length of call strings compared to those in the original method.

9.7 Bibliographic Notes

The restricted context based analysis presented in this chapter is based on the work

by Myers [79]. The call strings method was proposed by Sharir and Pnueli [93].

The termination criterion using convergence of data flow values has been proposed

by Khedker and B. Karkare [61]. An orthogonal approach of reducing the space

requirements in a context sensitive value-based interprocedural analysis is to use

BDDs to encode data flow information. This has been proposed by Whaley and

Lam [104]. They have found that this makes the method scalable. Although their

approach is context insensitive in recursive contexts, the key idea of using BDDs to

increase scalability seems very useful.

Since ifps in bit vector frameworks consist only of identity functions, it is possible

to use an alternative method of terminating call string construction. As shown by B.

Karkare and Khedker [54], it is sufficient to construct all call strings in which a call

site appears at most three times. Note that this is different from Sharir and Pnueli’s

termination length of 3K. In Sharir and Pnueli’s method, if the length of a call string

is smaller than 3K, it is extended even if it results in four occurrences of a call cite.

Although the worst case length in B. Karkare and Khedker’s method is same, empiri-

cal measurements of interprocedural reaching definitions analysis shows a significant

reduction in the number and maximum length of call strings.

Sharir and Pnueli [93] also present an approximate call strings method in which

call string suffix of a fixed length k is remembered. This retains context sensitivity

for call depths of k but for the call sequences beyond this depth, the method essen-

tially becomes context insensitive. Effectiveness of this method has been empirically

measured by Martin [72] who concluded that a value of k > 2 did not increase the

precision significantly for constant propagation. Khedker and B. Karkare [61] have

also presented an approximate version where the imprecision can be adjusted on de-

mand. The basic idea is to allow say k occurrences of a call site in a call string and

use representation and regeneration for all such call strings. When the call string

© 2009 by Taylor & Francis Group, LLC

Value-Based Approach to Interprocedural Data Flow Analysis 329

grows and the number of occurrences of a call site exceeds k, the data flow values

are computed iteratively by retaining the same call string instead of extending it. Un-

like Sharir and Pnueli’s approximate method, this method is context sensitive until k

unfoldings of recursive calls.

The interprocedural points-to analysis by Emami, Ghiya and Hendren [34] can be

viewed as a value-based approach. It uses a variant of call graph called an invocation

graph in which recursive invocations of procedures result in creating two nodes for

a procedure: One node is recursive whereas the other node is approximate. Thus it

is context sensitive in the first unfolding of recursion but context insensitive beyond

that. We leave it for the reader to verify that the Emami’s method computes imprecise

points-to graphs for the program in Figure 9.6 on page 305 compared to the points-to

graphs in Figure 9.7 on page 306 computed using call strings method.

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

Part III

Implementing Data Flow

Analysis

331
© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

10

Implementing Data Flow Analysis in GCC

This chapter presents a generic data f low analyzer for per function (i.e., intraproce-

dural) bit vector data f low analysis in GCC 4.3.0. We call this infrastructure gdfa.

The analyzers implemented using gdfa are called pfbvdfa. gdfa has been used to

implement several bit vector data flow analyses.

The design and implementation of gdfa is motivated by the following objectives:

• Demonstrating the practical significance of the following important general-

ization: Instead of implementing specific analyses directly, it is useful to im-

plement a generic driver that is based on a carefully chosen set of abstractions.

The task of implementing a particular analyzer then reduces to merely speci-

fying the analysis by instantiating these abstractions to concrete values.

• Providing an easy to use and easy to extend data flow analysis infrastructure.

The goal is to facilitate experimentation in terms of studying existing analyses,

defining new analyses, and exploring different analysis algorithms.

Section 10.1 describes the specification mechanism of gdfa and shows how the re-

sulting pass can be included in GCC 4.3.0. We illustrate it for the bit vector analyses

implemented using gdfa. Section 10.2 demonstrates how pfbvdfa can be used. Sec-

tion 10.3 describes the implementation of gdfa. This section also shows how local

property computation can be driven by specifications. Finally Section 10.4 suggests

some possible enhancements to gdfa.

The GCC related details in this chapter are interleaved with the description of

gdfa. Appendix A provides a short introduction to GCC, its installation, and how

to obtain its patch for gdfa.∗ The code presented in this chapter is a slightly edited

version of the original code. This was required to fit a page size constraints.

10.1 Specifying a Data Flow Analysis

In this section we look at how we can use the generic data flow analysis driver to im-

plement a data flow analysis pass in GCC. The implemented pass has to be registered

∗We use GCC to denote the GNU compiler generation framework using which a compiler can be built for

a given processor. The compiler so generated is denoted by gcc.

333
© 2009 by Taylor & Francis Group, LLC

334 Data Flow Analysis: Theory and Practice

with the pass manager in GCC so that it can be executed by the compiler.

10.1.1 Registering a Pass With the Pass Manager in GCC

gdfa works on the gimple version of the intermediate representation used by GCC.

We have included pfbvdfa passes such that they are invoked by default when gcc is

used for compiling a program. When gcc is built, this causes pfbvdfa passes to run

on the entire source of gcc which consists of over a million lines of C code. This

helps in ensuring that these do not cause any exception in the compilation sequence.

After constructing the gimple representation, gcc views the rest of the compilation

as sequential execution of various passes. This is carried out by traversing a linked

list whose nodes contain pointers to the entry functions of these passes. A pass is

registered with the pass manager through the following steps:

• Instantiating a variable as an instance of struct tree_opt_pass in some

file.

• Declaring this variable as an extern variable in header file tree-pass.h.

• Inserting this variable in the linked list of passes using the macro NEXT_PASS

in function init_optimization_passes in file passes.c.

Here is the declaration of struct tree_opt_pass. For convenience comments

have been removed and are used in the explanation that follows.

0 struct tree_opt_pass
1 {

2 const char *name;

3 bool (*gate) (void);
4 unsigned int (*execute) (void);

5 struct tree_opt_pass *sub;
6 struct tree_opt_pass *next;

7 int static_pass_number;

8 unsigned int tv_id;
9 unsigned int properties_required;

10 unsigned int properties_provided;

11 unsigned int properties_destroyed;
12 unsigned int todo_flags_start;

13 unsigned int todo_flags_finish;

14 char letter;
15 };

The name of the pass (line 2) is used as a fragment of the dump file name. We have

used the names like gdfa_ave. The gate function (line 3) is used to check whether

this pass and all its sub-passes should be executed or not. They are executed only if

this function returns true. If no such checking is required, this function pointer can

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 335

be NULL. The execute function (line 4) is entry function of the pass. If this function

pointer is NULL, there should be sub-passes otherwise this pass does nothing. The

return value tells gcc what more needs to be done. The variable sub (line 5) is a list

of sub-passes that should be executed depending upon the gate predicate. If there

are sub-passes that must be executed unconditionally, then they are listed in next

(line 6). The static pass number (line 7) is used as a fragment of the dump file name.

If it is specified as 0, the pass manager computes its value depending on the position

of the pass. It is this that generated numbers 15, 16, 17, 18, and 19 for our data flow

analyses. Variable tv_id is the variable that can be used as a time variable. The rest

of the variables are self-explanatory. The last variable letter is used to annotate

RTL code that is emitted.

We have registered available expressions analysis by creating a structure variable

called pass_gimple_pfbv_ave_dfa as shown below.

struct tree_opt_pass pass_gimple_pfbv_ave_dfa =

{

"gdfa_ave", /* name */
NULL, /* gate */

gimple_pfbv_ave_dfa, /* execute */

NULL, /* sub */
NULL, /* next */

0, /* static_pass_number */

0, /* tv_id */
0, /* properties_required */

0, /* properties_provided */

0, /* properties_destroyed */
0, /* todo_flags_start */

0, /* todo_flags_finish */

0 /* letter */
};

This variable is declared as follows in file tree-pass.h

extern struct tree_opt_pass pass_gimple_pfbv_ave_dfa;

The next step in registering this pass is to include it in the list of passes. We show

below the relevant code fragment from function init optimization passes in

file passes.c:

© 2009 by Taylor & Francis Group, LLC

336 Data Flow Analysis: Theory and Practice

NEXT_PASS (pass_build_cfg);
/* Intraprocedural dfa passes begin */

NEXT_PASS (pass_init_gimple_pfbvdfa);

NEXT_PASS (pass_gimple_pfbv_ave_dfa);
NEXT_PASS (pass_gimple_pfbv_pav_dfa);

NEXT_PASS (pass_gimple_pfbv_ant_dfa);

NEXT_PASS (pass_gimple_pfbv_lv_dfa);
NEXT_PASS (pass_gimple_pfbv_rd_dfa);

NEXT_PASS (pass_gimple_pfbv_pre_dfa);

/* Intraprocedural dfa passes end */

Finally, we need to include the new file names in the GCC build system. This

is done by listing the file names and their dependencies in Makefile.in in the

gcc-4.3.0/gcc directory. Appendix A provides the steps for building gcc.

10.1.2 Specifying Available Expressions Analysis

The specification mechanism supported by gdfa is simple and succinct. It follows

the GCC mechanism of specification by using a struct as a hook and by requiring

the user to create a variable by instantiating the members of the struct defined for

the purpose.

For available expressions analysis, we define a variable called gdfa_ave which is

of the type struct gimple_pfbv_dfa_spec gdfa_ave.

0 struct gimple_pfbv_dfa_spec gdfa_ave =
1 {

2 entity_expr, /* entity */

3 ONES, /* top_value */
4 ZEROS, /* entry_info */

5 ONES, /* exit_info */

6 FORWARD, /* traversal_order */
7 INTERSECTION, /* confluence */

8 entity_use, /* gen_effect */

9 down_exp, /* gen_exposition */
10 entity_mod, /* kill_effect */

11 any_where, /* kill_exposition */

12 global_only, /* preserved_dfi */
13 identity_forward_edge_flow, /* forward_edge_flow */

14 stop_flow_along_edge, /* backward_edge_flow */

15 forward_gen_kill_node_flow, /* forward_node_flow */
16 stop_flow_along_node /* backward_node_flow */

17 };

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 337

Before we explain the above, we present the rest of the code required to complete

the specification.

18 pfbv_dfi ** AV_pfbv_dfi = NULL;
19

20 static unsigned int

21 gimple_pfbv_ave_dfa(void)
22 {

23

24 AV_pfbv_dfi = gdfa_driver(gdfa_ave);
25

26 return 0;

27 }

Nothing more is required for specifying available expressions analysis apart from

registering it with the pass manager with function gimple_pfbv_ave_dfa as its

entry point as described in Section 10.1.1. This function calls the gdfa driver passing

the specification variable gdfa_ave as actual parameter. The data flow information

computed by the driver is stored in a pointer to an array called AV_pfbv_dfi; each

element of this array represents the data flow information for a basic block and is an

instance of the following type defined by gdfa.

typedef struct pfbv_dfi
{

dfvalue gen;

dfvalue kill;
dfvalue in;

dfvalue out;

} pfbv_dfi;

The semantics expressed by struct gimple_pfbv_dfa_spec gdfa_ave is as

described below: Line 2 declares that the relevant entities for this analysis are expres-

sions (entity_expr). Line 3 specifies that � is “all ONES” implying the universal

set Expr. The specification “all ZEROS” on line 4 initializes the BIStart to ∅ whereas

ONES on line 5 renders BIEnd irrelevant because it is same as �. Line 6 declares the

direction of traversal to be FORWARD. Note that this is independent of the direction

of flow and only influences the number of iterations. If we choose the direction of

traversal as BACKWARD, the resulting data flow information will remain same except

that it may take a much larger number of iterations. Line 7 declares the � to be ∩.

Line 12 directs the driver to preserve only the global data flow information (In and

Out); the driver can reclaim the space occupied by the local data flow information

(Gen and Kill).

The most interesting elements of the specification are the specifications of local

© 2009 by Taylor & Francis Group, LLC

338 Data Flow Analysis: Theory and Practice

properties and flow functions:

• Local property specification.

Lines 8 to 11 define the Gen and Kill kill sets for a block. Observe that this

mechanism closely follows the description in Section 2.2.

– Lines 8 and 9 say that when a downwards exposed (down_exp) use of an

entity (entity_use) is found in a basic block, it is included in the Gen

set of the block. From line 2 we know that the entity under consideration

is an expression (entity_expr).

– Lines 10 and 11 say that when a modification of an entity (entity_mod)

is found in a basic block, it is included in the Kill set of the block. This

modification need not be upwards exposed or downwards exposed, it can

appear any_where.

This is possible because the gdfa driver is aware of the fact that the use of an

entity could be affected by its modification and hence the notion of exposition

of an entity is explicated in the specification.

• Flow function specification.

Lines 13 to 16 specify the flow functions for available expressions analysis

as required by the generic data flow Equations (5.1) and (5.2). The forward

edge flow function
−→
f n→m in available expressions analysis is φid (line 13)

whereas the forward node flow function
−→
f n is the conventional Gen-Kill func-

tion f (X) = Gen ∪ (In −Kill). Further, there is no backward flow i.e.,
←−
fn and

←−
fn→m are φ� (Section 5.1). This is specified by lines 14 and 16. All these func-

tions are supported by gdfa and it is enough to associate the function pointers

with appropriate functions.

When the nature of data flow is different from the default flows, it is also possi-

ble to write custom functions—we show how it is done for partial redundancy

elimination in Section 10.1.3.

10.1.3 Specifying Other Bit Vector Data Flow Analyses

Given the specification of available expressions analysis, it is easy to visualize spec-

ifications for other bit vector frameworks. We describe the required changes in the

following:

• Partially available expressions analysis.

Confluence should be UNION, � and BIEnd should be ZEROS.

• Reaching definitions analysis.

Entity should be entity_defn, confluence should be UNION, � and BIEnd

should be ZEROS.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 339

• Anticipable expressions analysis.

The data flow equations for anticipable expressions analysis are Equations (2.9)

and (2.10). In this case it is desirable, though not necessary, to choose the di-

rection of traversal as BACKWARD. The exposition for Gen should be changed

to up_exp. BIStart should be ONES and BIEnd should be ZEROS. Flow functions

would change as follows:

– forward edge flow function
−→
f n→m should be stop_flow_along_edge,

– forward node flow function
−→
f n should be stop_flow_along_node, and

– backward node flow function
←−
fn should be the default Gen-Kill function

backward_gen_kill_node_flow.

• Live variables analysis.

This specification would be similar to that of anticipable expressions analysis

except that the entity should be entity_var, confluence should be UNION, �

and BIEnd should be ZEROS.

• Partial redundancy elimination.

Here it would useful to change the gate function to this pass to check that

available expressions analysis and partially available expressions analysis has

been performed.

The specification of data flow analysis would be similar to that of antici-

pable expressions analysis except that the flow functions would change. The

data flow equations for anticipable expressions analysis are Equations (2.9)

and (2.10) whereas the data flow equations for partial redundancy elimina-

tion are Equations (2.11) and (2.15). Clearly, the change is only in the flow

function in the equation for Inn. In particular, the forward edge flow function
−→
f n→m and the backward node flow function

←−
fn cannot be chosen from the de-

fault functions supported by gdfa. We define the required functions as shown

below.

dfvalue

forward_edge_flow_pre(basic_block src, basic_block dest)
{

dfvalue temp;

temp = union_dfvalues (OUT(AV_pfbv_dfi,src),

CURRENT_OUT(src));

return temp;

}

© 2009 by Taylor & Francis Group, LLC

340 Data Flow Analysis: Theory and Practice

In this function, src and dest indicate the source and destination of an edge.

Since this flow function is used in computing Inn, dest represents n and src repre-

sents the given predecessor node p. Under the assumption that the data flow infor-

mation of available expressions analysis is stored in the variable AV_pfbv_dfi, the

term OUT(AV_pfbv_dfi,src) represents AvOut p whereas the Out p is represented

by the term CURRENT_OUT(src). Thus this flow function computes AvOut p∪Out p
for a given predecessor p.

The definition of backward node flow is similar to that of the default node flow

except that we need to include the value of PavInn. This is easily achieved by the

function defined below:

dfvalue
backward_node_flow_pre(basic_block bb)

{

dfvalue temp1, temp2;

temp1 = backward_gen_kill_node_flow(bb);

temp2 = intersect_dfvalues (IN(PAV_pfbv_dfi,bb),

temp1);

if (temp1)

free_dfvalue_space(temp1);

return temp2;

}

Here bb is the current node n. The default backward node flow function is used to

compute the data flow information in the variable temp1. Under the assumption that

the data flow information of partially available expressions analysis is stored in the

variable PAV_pfbv_dfi, the term IN(PAV_pfbv_dfi,bb) represents PavInn. All

that further needs to be done is to intersect them.

This completes the specification of partial redundancy elimination.

10.2 An Example of Data Flow Analysis

We use the example program from Figure 2.1 on page 27 in Chapter 2 to demonstrate

the use of analyzer implemented using gdfa. We show the result of live variables

analysis and available expressions analysis. A C program that represents the CFG in

Figure 2.1 is given below.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 341

0 int x, y, z;
1

2 int exmp(void)

3 { int a, b, c, d;
4

5 b = 4;

6 a = b + c;
7 d = a * b;

8 if (x < y)

9 b = a -c;
10 else

11 { do

12 { c = b + c;
13 if (y > x)

14 { do

15 { d = a + b;
16 f(b + c);

17 } while(y > x);

18 }
19 else

20 { c = a * b;

21 f(a - b);
22 }

23 g (a + b);

24 } while(z > x);
25 }

26 h(a-c);

27 f(b+c);
28 }

Since the original example does not show conditions explicitly, we have used

global variables in conditions; these variables are ignored by intraprocedural data

flow analysis. Further, the functions f, g, and h are unspecified. Since C uses call by

value mechanism, we have ignored the effects of function calls under the assumption

that arrays and addresses of variables are not passed as parameters.

10.2.1 Executing the Data Flow Analyzer

Our example program is not a complete program hence we cannot compile it into an

executable program. For such programs we must use the -c option that creates only

an object file for the given input C file. Alternatively, we can use the -S option that

stops the compilation after generating the corresponding assembly file. We use the

following command to generate text files that provide the results of our passes.

$ gcc -S -fdump-tree-all -fgdfa exmp.c

© 2009 by Taylor & Francis Group, LLC

342 Data Flow Analysis: Theory and Practice

The option -fdump-tree-all enables generation of the dump files for passes

implemented on gimple representation. The option -fgdfa emits the results of our

data flow analysis passes in respective dump files. The dump files that are of interest

to us are:

Name Description of the output

exmp.c.013t.cfg CFG

exmp.c.015t.gdfa_ave available expressions analysis

exmp.c.016t.gdfa_pav partially available expression analysis

exmp.c.017t.gdfa_ant anticipable expressions analysis

exmp.c.018t.gdfa_lv live variables analysis

exmp.c.018t.gdfa_rd reaching definitions analysis

exmp.c.019t.gdfa_pre partial redundancy elimination

The numbers indicate the position of the pass in the sequence of passes. Pass

number 014 processes the CFG to discover the entities of interest to us and per-

forms depth first numbering of basic blocks so that post order or reverse post order

traversal can be used by our data flow analysis passes. These numbers would change

depending upon the exact sequence of passes in a given version of GCC.

10.2.2 Examining the Gimple Version of CFG

The gimple representation used by GCC consists of three address code statements.

The CFG version of gimple representation identifies basic blocks and explicates con-

trol flow between basic blocks. It also shows the declarations of temporary variables.

There are two categories of temporary variables in gimple:

• Artificial variables. These variables are created to store the values of global

variables. Subsequently, these variables are used in expressions. Any assign-

ment to a global variable uses the original global variable so that the latest

value can be read into a new artificial variable for a subsequent use.

Artificial variables are also created for those instances of local variables that

are assigned a value returned by a function call. The value of these artificial

variables is then assigned to the local variables.

• Temporary variables. These are the traditional temporary variables which hold

the intermediate results of expression computations. The parameters passed to

functions are also represented by temporary variables.

The declaration part of gimple CFG in exmp.c.013t.cfg is:

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 343

0
1 ;; Function exmp (exmp)

2

3 exmp ()
4 {

5 int d;

6 int c;
7 int b;

8 int a;

9 int D.1205;
10 int D.1204;

11 int x.7;

12 int z.6;
13 int D.1201;

14 int D.1200;

15 int x.5;
16 int y.4;

17 int D.1197;
18 int x.3;

19 int y.2;

20 int y.1;
21 int x.0;

The gimple representation of our program initially contains eight artificial vari-

ables: x.7, z.6, x.5, y.4, x.3, y.2, y.1, and x.0. Each use of a global variable

causes a distinct number to be suffixed to the variable. The temporary variables

are: D.1205, D.1204, D.1201, D.1200, and D.1197. They represent the param-

eters of the five calls made in our program. There are no temporary variables for

holding intermediate results of computations because our expressions consist of a

single operation—temporaries are created for expressions containing more than one

operation.

The CFG contains a unique ENTRY block which does not contain any computation

and does not have any predecessor block. Similarly, there is an EXIT block which

does not contain any computation and does not have any successor. An unconditional

control transfer from a block to another block is recorded as fallthru whereas a

conditional transfer is labeled true or false. All auxiliary information about a

block e.g., block number, list of successors and predecessors, nature of control flow

etc. is shown with a # mark as the first symbol on a line.

ENTRY and EXIT blocks are not listed explicitly in the dump. Internally they are

numbered block 0 and block 1 respectively. Hence the first block that appears in the

CFG is block 2 as shown below. It corresponds to block n1 in Figure 2.1 on page 27.

Observe the use of artificial variables x.0 and y.1 in the block.

© 2009 by Taylor & Francis Group, LLC

344 Data Flow Analysis: Theory and Practice

22 # BLOCK 2
23 # PRED: ENTRY (fallthru)

24 b = 4;

25 a = b + c;
26 d = a * b;

27 x.0 = x;

28 y.1 = y;
29 if (x.0 < y.1)

30 goto <bb 3>;

31 else
32 goto <bb 4>;

33 # SUCC: 3 (true) 4 (false)

This block has a conditional control transfer at the end of it. Its successor blocks

are blocks 3 and 4 which correspond to blocks n2 and n3 respectively in the CFG

in Figure 2.1. Note that the predecessors of a block are also labeled to indicate the

nature of control transfer (i.e., fallthru, true, or false).

34 # BLOCK 3

35 # PRED: 2 (true)
36 b = a - c;

37 goto <bb 9>;

38 # SUCC: 9 (fallthru)
39

40 # BLOCK 4

41 # PRED: 2 (false) 8 (true)
42 c = b + c;

43 y.2 = y;

44 x.3 = x;
45 if (y.2 > x.3)

46 goto <bb 5>;

47 else
48 goto <bb 7>;

49 # SUCC: 5 (true) 7 (false)

The structure of the control flow between the remaining blocks is a little different

from the CFG shown in Figure 2.1. Block 5 in the gcc generated CFG combines

blocks n5 and n6 of Figure 2.1 because there is a strictly sequential control flow

between them. Block 6 consists of a single goto that will be optimized away later.

Figure 2.1 does not have this block. Block 7 corresponds to block n4 and block 8

corresponds to block n7 in Figure 2.1. The last block containing some program code

is block 9 which corresponds to n8 in Figure 2.1. Observe that it has EXIT as its

successor. The details of these blocks are as follows:

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 345

50 # BLOCK 5
51 # PRED: 4 (true) 5 (true)

52 d = a + b;

53 D.1197 = b + c;
54 f (D.1197);

55 y.4 = y;

56 x.5 = x;
57 if (y.4 > x.5)

58 goto <bb 5>;

59 else
60 goto <bb 6>;

61 # SUCC: 5 (true) 6 (false)

62
63 # BLOCK 6

64 # PRED: 5 (false)

65 goto <bb 8>;
66 # SUCC: 8 (fallthru)

67

68 # BLOCK 7
69 # PRED: 4 (false)

70 c = a * b;

71 D.1200 = a - b;
72 f (D.1200);

73 # SUCC: 8 (fallthru)

74
75 # BLOCK 8

76 # PRED: 6 (fallthru) 7 (fallthru)

77 D.1201 = a + b;
78 g (D.1201);

79 z.6 = z;

80 x.7 = x;
81 if (z.6 > x.7)

82 goto <bb 4>;

83 else
84 goto <bb 9>;

85 # SUCC: 4 (true) 9 (false)

86
87 # BLOCK 9

88 # PRED: 3 (fallthru) 8 (false)

89 D.1204 = a - c;
90 h (D.1204);

91 D.1205 = b + c;

92 f (D.1205);
93 return;

94 # SUCC: EXIT

95
96 }

© 2009 by Taylor & Francis Group, LLC

346 Data Flow Analysis: Theory and Practice

In essence, the CFGs constructed by gcc are quite similar to the CFGs that we

have seen in the earlier parts of the book.

10.2.3 Examining the Result of Data Flow Analysis

The results of an analysis are available in internal data structures in a ready to use

form. Section 10.1.3 shows how they can be used when we describe the implementa-

tion of partial redundancy elimination which needs the result of available expressions

analysis and partially available expressions analysis. Here we present the textual

dump of the results produced by the options -fdump-tree-all and -gdfa.

File exmp.c.018t.gdfa_lv contains the result of liveness analysis. It indicates

that for this example Var = {a,b,c,d} intraprocedural liveness analysis. It also indi-

cates the bit position for each variable. Variable d is the first to be considered. This

is because internally, the variables are added to the head of the list of variables rather

than its tail. Observe that the other three category of variables (global, artificial, and

local) have been eliminated from consideration.†

0 ;; Function exmp (exmp)

1
2 Number of relevant entities: 4

3

4 Bit position and entity mapping is ********************
5 0:(d),1:(c),2:(b),3:(a)

6
7 Initial values **************************************

8

9 Basic Block 2. Preds: ENTRY. Succs: 3 4
10 ----------------------------

11 GEN Bit Vector: 0100

12 GEN Entities: (c)
13 ------------------------------

14 KILL Bit Vector: 1011

15 KILL Entities: (d),(b),(a)
16 ------------------------------

17 IN Bit Vector: 0000

18 IN Entities:
19 ------------------------------

20 OUT Bit Vector: 0000

21 OUT Entities:
22 ------------------------------

The Inn and Outn properties have been initialized to ∅which is � for live variables

analysis. In the following, we produce only the lines that enumerate the Genn and

†At the moment, our implementation does not consider formal parameters.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 347

Killn in terms of entity names rather than bit vectors.

Basic Block 2. Preds: ENTRY. Succs: 3 4

GEN Entities: (c)

KILL Entities: (d),(b),(a)

Basic Block 3. Preds: 2. Succs: 9

GEN Entities: (c),(a)
KILL Entities: (b)

Basic Block 4. Preds: 2 8. Succs: 5 7

GEN Entities: (c),(b)

KILL Entities: (c)

Basic Block 5. Preds: 4 5. Succs: 5 6

GEN Entities: (c),(b),(a)

KILL Entities: (d)

Basic Block 6. Preds: 5. Succs: 8

GEN Entities:
KILL Entities:

Basic Block 7. Preds: 4. Succs: 8

GEN Entities: (b),(a)

KILL Entities: (c)

Basic Block 8. Preds: 6 7. Succs: 4 9

GEN Entities: (b),(a)

KILL Entities:

Basic Block 9. Preds: 3 8. Succs: EXIT

GEN Entities: (c),(b),(a)
KILL Entities:

It can be readily verified from the table in Example 2.3 on page 27 that the local

data flow values given below are identical to the values discovered earlier.

The final values are also generated in the same format. We show selected lines

from the final result of liveness analysis of our example program:

© 2009 by Taylor & Francis Group, LLC

348 Data Flow Analysis: Theory and Practice

Total Number of Iterations = 2 *********

Basic Block 2. Preds: ENTRY. Succs: 3 4

IN Entities: (c)

OUT Entities: (c),(b),(a)

Basic Block 3. Preds: 2. Succs: 9

IN Entities: (c),(a)
OUT Entities: (c),(b),(a)

Basic Block 4. Preds: 2 8. Succs: 5 7

IN Entities: (c),(b),(a)

OUT Entities: (c),(b),(a)

Basic Block 5. Preds: 4 5. Succs: 5 6

IN Entities: (c),(b),(a)

OUT Entities: (c),(b),(a)

Basic Block 6. Preds: 5. Succs: 8

IN Entities: (c),(b),(a)
OUT Entities: (c),(b),(a)

Basic Block 7. Preds: 4. Succs: 8

IN Entities: (b),(a)

OUT Entities: (c),(b),(a)

Basic Block 8. Preds: 6 7. Succs: 4 9

IN Entities: (c),(b),(a)

OUT Entities: (c),(b),(a)

Basic Block 9. Preds: 3 8. Succs: EXIT

IN Entities: (c),(b),(a)
OUT Entities:

We leave it for the reader to verify that these values are identical to the values in

the table in Example 2.3 on page 27.

If the option -fgdfa is replaced by -fgdfa-details, data flow values after each

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 349

iteration are generated.

The result of data flow analyses involving expressions is produced much the same

way. File exmp.c.015t.gdfa_ave. contains the details of available expressions

analysis. The initial information in this file is:

0 ;; Function exmp (exmp)
1

2 Number of relevant entities: 5

3
4 Bit position and entity mapping is **********************

5 0:(b + c),1:(a * b),2:(a - c),3:(a + b),4:(a - b)

6
7 Initial values **************************************

8

9 Basic Block 2. Preds: ENTRY. Succs: 3 4
10 ----------------------------

11 GEN Bit Vector: 11000

12 GEN Entities: (b + c),(a * b)
13 ----------------------------

14 KILL Bit Vector:11111

15 KILL Entities: (b + c),(a * b),(a - c),(a + b),(a - b)
16 ----------------------------

17 IN Bit Vector: 11111

18 IN Entities: (b + c),(a * b),(a - c),(a + b),(a - b)
19 ----------------------------

20 OUT Bit Vector: 11111

21 OUT Entities: (b + c),(a * b),(a - c),(a + b),(a - b)
22 ----------------------------

Unlike live variables analysis for which bit vectors of four bits are created, gdfa

has created a bit vector of five bits for available expressions analysis of our example

because our example has five expressions that qualify as local expressions. Observe

that the expressions have been numbered in a different order compared to the order in

Figure 2.1 on page 27. This is because gdfa forms the set Expr by making a forward

pass over the program.

The initialization for available expressions analysis uses the entire Expr set which

represents the � value. The value of BI is ∅. Although basic block 2 corresponds to

block n1 for which we had chosen In as BI for initialization, for the CFG constructed

by gcc, BI is associated with the fictitious blocks ENTRY and EXIT as the case may

be.

The local data flow properties for available expressions analysis of our example

program for all blocks are:

© 2009 by Taylor & Francis Group, LLC

350 Data Flow Analysis: Theory and Practice

Basic Block 2. Preds: ENTRY. Succs: 3 4

GEN Entities: (b + c),(a * b)

KILL Entities: (b + c),(a * b),(a - c),(a + b),(a - b)

Basic Block 3. Preds: 2. Succs: 9

GEN Entities: (a - c)

KILL Entities: (b + c),(a * b),(a + b),(a - b)

Basic Block 4. Preds: 2 8. Succs: 5 7

GEN Entities:
KILL Entities: (b + c),(a - c)

Basic Block 5. Preds: 4 5. Succs: 5 6

GEN Entities: (b + c),(a + b)

KILL Entities:

Basic Block 6. Preds: 5. Succs: 8

GEN Entities:

KILL Entities:

Basic Block 7. Preds: 4. Succs: 8

GEN Entities: (a * b),(a - b)
KILL Entities: (b + c),(a - c)

Basic Block 8. Preds: 6 7. Succs: 4 9

GEN Entities: (a + b)

KILL Entities:

Basic Block 9. Preds: 3 8. Succs: EXIT

GEN Entities: (b + c),(a - c)

KILL Entities:

Since block 6 consists of only an unconditional goto statement, Gen6 = Kill6 = ∅.

For other block, the Gen and Kill values are same as in Example 2.9 on page 34. The

final data flow values for available expressions analysis have been shown below.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 351

Total Number of Iterations = 3 *********

Basic Block 2. Preds: ENTRY. Succs: 3 4

IN Entities:
OUT Entities: (b + c),(a * b)

Basic Block 3. Preds: 2. Succs: 9

IN Entities: (b + c),(a * b)

OUT Entities: (a - c)

Basic Block 4. Preds: 2 8. Succs: 5 7

IN Entities: (a * b)

OUT Entities: (a * b)

Basic Block 5. Preds: 4 5. Succs: 5 6

IN Entities: (a * b)

OUT Entities: (b + c),(a * b),(a + b)

Basic Block 6. Preds: 5. Succs: 8

IN Entities: (b + c),(a * b),(a + b)
OUT Entities: (b + c),(a * b),(a + b)

Basic Block 7. Preds: 4. Succs: 8

IN Entities: (a * b)

OUT Entities: (a * b),(a - b)

Basic Block 8. Preds: 6 7. Succs: 4 9

IN Entities: (a * b)

OUT Entities: (a * b),(a + b)

Basic Block 9. Preds: 3 8. Succs: EXIT

IN Entities:
OUT Entities: (b + c),(a - c)

We leave it for the reader to verify that these values are identical to the values

obtained in Example 2.9 on page 34.

© 2009 by Taylor & Francis Group, LLC

352 Data Flow Analysis: Theory and Practice

10.3 Implementing the Generic Data Flow Analyzer gdfa

We describe the implementation in terms of the specification primitives, interface

with GCC, the generic functions for global property computation, and generic func-

tions for local property computation.

10.3.1 Specification Primitives

The main data structure used for specification is:

0 struct gimple_pfbv_dfa_spec

1 {

2 entity_name entity;
3 initial_value top_value_spec;

4 initial_value entry_info;

5 initial_value exit_info;
6 traversal_direction traversal_order;

7 meet_operation confluence;

8 entity_manipulation gen_effect;
9 entity_occurrence gen_exposition;

10 entity_manipulation kill_effect;

11 entity_occurrence kill_exposition;
12 dfi_to_be_preserved preserved_dfi;

13

14 dfvalue (*forward_edge_flow)(basic_block src,
15 basic_block dest);

16 dfvalue (*backward_edge_flow)(basic_block src,

17 basic_block dest);
18 dfvalue (*forward_node_flow)(basic_block bb);

19 dfvalue (*backward_node_flow)(basic_block bb);

20
21 };

The types appearing on lines 2 to 12 are defined as enumerated types with the

following possible values.

Enumerated Type Possible Values

entity_name entity_expr, entity_var, entity_defn

initial_value ONES, ZEROS

traversal_direction FORWARD, BACKWARD, BIDIRECTIONAL

meet_operation UNION, INTERSECTION

entity_manipulation entity_use, entity_mod

entity_occurrence up_exp, down_exp, any_where

dfi_to_be_preserved all, global_only, no_value

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 353

The type dfvalue is just another name for the type sbitmap supported by GCC.

We have used a different name to allow for the possibility of extending gdfa to other

kinds of data flow values.

The entry point of each data flow analysis invokes the driver with its specification.

The driver creates space for current data flow values in current data flow analysis in

a variable current_pfbv_dfiwhich is declared as shown below:

typedef struct pfbv_dfi

{
dfvalue gen;

dfvalue kill;

dfvalue in;
dfvalue out;

} pfbv_dfi;

pfbv_dfi ** current_pfbv_dfi ;

For a basic block bb, different members of the data flow information are accessed

using the following macros:

Data flow variable current_pfbv_dfi Given dfi

Gen CURRENT_GEN(bb) GEN(dfi,bb)

Kill CURRENT_KILL(bb) KILL(dfi,bb)

In CURRENT_IN(bb) IN(dfi,bb)

Out CURRENT_OUT(bb) OUT(dfi,bb)

Now we can describe the default functions that can be assigned to the function

pointers on lines 14 to 19 in struct gimple_pfbv_dfa_spec. Alternatively, the

users can define their own functions which have the same interface. The default

functions supported by gdfa are:

Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value

identity_forward_node_flow(bb) CURRENT_IN(bb)

identity_backward_node_flow(bb) CURRENT_OUT(bb)

stop_flow_along_node(bb) top_value

forward_gen_kill_node_flow(bb)

CURRENT_GEN(bb)∪

(CURRENT_IN(bb) -

CURRENT_KILL(bb))

backward_gen_kill_node_flow(bb)

CURRENT_GEN(bb)∪

(CURRENT_OUT(bb) -

CURRENT_KILL(bb))

© 2009 by Taylor & Francis Group, LLC

354 Data Flow Analysis: Theory and Practice

where top_value is of the type initial_value and is constructed based on the

value of top_value_spec (line 3 in struct gimple_pfbv_dfa_spec).

This completes the description of the specification primitives.

10.3.2 Interface with GCC

The top level interface of gdfa with GCC is through the pass manager as described in

Section 10.1.1. At the lower level, gdfa uses the support provided by GCC for traver-

sals over CFGs, basic blocks etc.; discovering relevant features of statements, expres-

sions, variables etc.; constructing and manipulating data flow values; and printing

entities appearing in statements.

Traversal Over CFG and Basic Blocks

In a round-robin iterative traversal, the basic blocks in a CFG are usually visited in

the order of along control flow or against the order of control flow. In GCC, this is

achieved as follows:

basic_block bb;

FOR_EACH_BB_FWD(ENTRY_BLOCK_PTR)

{ /* process bb */
}

FOR_EACH_BB_BKD(EXIT_BLOCK_PTR)

{ /* process bb */
}

In the above code, basic_block is a type supported by GCC. ENTRY_BLOCK_PTR

and EXIT_BLOCK_PTR point to ENTRY and EXIT blocks of the current function being

compiled. These macros have been defined by GCC. The two other macros used

above are defined as follows:

#define FOR_EACH_BB_FWD(entry_bb) \

for(bb=entry_bb->next_bb; \
bb->next_bb!=NULL; \

bb=bb->next_bb)

#define FOR_EACH_BB_BKD(exit_bb) \
for(bb=exit_bb->prev_bb; \

bb->prev_bb!=NULL; \

bb=bb->prev_bb)

Given a basic block bb, its predecessor and successor blocks are traversed using

an edge_iterator variable, an edge variable, and the macro FOR_EACH_EDGE as

described below. All these are directly supported by GCC.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 355

edge_iterator ei ;
edge e ;

basic_block succ_bb, pred_bb;

FOR_EACH_EDGE(e,ei,bb->preds)

{ pred_bb = e->src;

/* process the predecessor pred_bb */
}

FOR_EACH_EDGE(e,ei,bb->succs)

{ succ_bb = e->dest;
/* process successor succ_bb */

}

A statement is of the type tree. Further, all entities appearing in a statement

are also of the type tree. All statements in a basic block can be traversed using a

block_statement_iterator variable.

basic_block bb;

block_stmt_iterator bsi;

tree stmt;

FOR_EACH_STMT_FWD
{ stmt = bsi_stmt(bsi);

/* process stmt */

}
FOR_EACH_STMT_BKD

{ stmt = bsi_stmt(bsi);

/* process stmt */
}

The macros used in the above code are defined as follows:

#define FOR_EACH_STMT_FWD \
for(bsi=bsi_start(bb); \

!bsi_end_p(bsi); \

bsi_next(&bsi))

#define FOR_EACH_STMT_BKD \

for(bsi=bsi_last(bb); \
bsi.tsi.ptr!=NULL; \

bsi_prev(&bsi))

© 2009 by Taylor & Francis Group, LLC

356 Data Flow Analysis: Theory and Practice

Discovering the Entities in a Statement

Statements can be of many types but only a few types are relevant to local data flow

analysis. The lvalue and rvalue of a given statement stmt are of the type tree and

are extracted as shown below:

tree expr=NULL, lval=NULL;

switch(TREE_CODE(stmt))

{ case COND_EXPR:

expr = TREE_OPERAND(stmt,0);
break;

case MODIFY_EXPR:

lval = TREE_OPERAND(stmt,0);
expr = TREE_OPERAND(stmt,1);

case GIMPLE_MODIFY_STMT:

lval = GIMPLE_STMT_OPERAND(stmt,0);
expr = GIMPLE_STMT_OPERAND(stmt,1);

break;

default:
break;

}

The operands of relevant expressions are extracted as shown below:

tree op0=NULL, op1=NULL;

switch(TREE_CODE(expr))

{ case MULT_EXPR:

case PLUS_EXPR:
case MINUS_EXPR:

case LT_EXPR:

case LE_EXPR:
case GT_EXPR:

case GE_EXPR:

case NE_EXPR:
case EQ_EXPR:

op1 = TREE_OPERAND(stmt,1);

op0 = TREE_OPERAND(stmt,0);
break;

default:

break;
}

Observe that this covers the set of expressions that is currently supported by gdfa.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 357

Clearly, extending this set is easy.

Local variables are discovered by traversing cfun->unexpanded_var_list us-

ing TREE_VALUE and TREE_CHAINmacros supported by GCC. Here cfun represents

the current function being compiled.

tree var,list;

list = cfun->unexpanded_var_list;
while (list)

{ var = TREE_VALUE (list);

/* process variables *
list = TREE_CHAIN(list);

}

Discovering definitions is easy: A statement with TREE_CODE as MODIFY_EXR or

GIMPLE_MODIFY_STMT is detected as a definition.

Constructing and Manipulating Data Flow Values

We define the type dfvalue as follows:

typedef sbitmap dfvalue;

sbitmap is a type supported by GCC to represent sets. We use the following

sbitmap functions to construct and manipulate bitmaps. Note that these functions

are not directly used in gdfa. Instead, gdfa code calls dfvalue functions that are

defined in terms of these functions.

Name of the Function Action

sbitmap_equal(v_a,v_b) is v_a equal to v_b?

sbitmap_a_and_b(t, v_a, v_b) t = v_a ∩ v_b

sbitmap_union_of_diff(t, v_a, v_b, v_c) t = v_a ∪ (v_b − v_c)

sbitmap_a_or_b(t, v_a, v_b) t = v_a ∪ v_b

sbitmap_ones(v) set every bit in v to 1

sbitmap_zero(v) set every bit in v to 0

sbitmap_alloc(n) allocate a bitmap of n bits

sbitmap_free(v) free the space occupied by v

Facilities for Printing Entities

We use the function dump_sbitmap to print bitmaps. For printing a statement, the

function print_generic_stmt is used whereas function print_generic_expr

prints an expression expr.

© 2009 by Taylor & Francis Group, LLC

358 Data Flow Analysis: Theory and Practice

10.3.3 The Preparatory Pass

Before the gdfa driver is invoked, some preparatory work has to be performed by an

earlier pass. The top level function of this pass is:

static unsigned int

init_gimple_pfbvdfa_execute (void)
{

local_var_count=0;

local_expr_count=0;
number_of_nodes = n_basic_blocks+2;

assign_indices_to_var();
assign_indices_to_exprs();

assign_indices_to_defns();

dfs_ordered_basic_blocks = NULL;

dfs_numbering_of_bb();

return 0;

}

Function assign_indices_to_var assigns a unique index to each local variable

by traversing cfun->unexpanded_var_list as explained in Section 10.3.2. These

indices represent the bit position of a local variable. This requires adding an integer

field to the tree data structure. The variables which are not interesting are assigned

index -1. Function assign_indices_to_defns assigns a unique index to each

statement that is a definition.

Function assign_indices_to_exprs assigns a unique index to each expression

whose operands are restricted to constants and variables that have been assigned a

valid index. These indices represent the bit position of relevant expressions. Other

expressions are assigned index -1. Unlike local variables, there is no ready list of

expressions. Hence function assign_indices_to_exprs traverses the CFG visit-

ing each statement and examining the expressions appearing in relevant statements.

If the expression used in a statement qualifies as a local expression, it is first checked

whether an index has already been assigned to it. This could happen because an

expression could appear multiple times in a program.

Finally, function dfs_numbering_of_bb performs depth first numbering of the

blocks in a CFG.

10.3.4 Local Data Flow Analysis

In production compilers, implementing global data flow analyzers is much easier

compared to implementing local data flow analyzers. This is because local data

flow analysis has to deal with the lower level intricate details of the intermediate

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 359

representation and intermediate representation are the most complex data structures

in practical compilers. Global data flow analyzers are insulated from these lower

level details; they just need to know CFGs in terms of basic blocks. Thus most data

flow analysis engines require the local property computation to be implemented by

the user of the engine.

This situation can change considerably if we view local data flow analysis as a

special case of global data flow analysis. The objective of local data flow analysis

is to compute Genn and Killn of a block n. This computation can be performed by

traversing statements in block n in a manner similar to traversing blocks in a CFG.

The only difference is that statements in a block cannot have multiple predecessors

of successors.

The way InStart (or OutEnd) is computed by incorporating the effect of blocks in a

CFG, Genn and Killn can also be computed by incorporating the effects of individual

statements in block n. The effect of statement s can be defined in terms of Gens and

Kill s. However, we need to overcome the following conceptual difficulty: When we

compute Genn for block n, Gens of a statement s must be added to the cumulative

effect of the statements processed so far. However, when we compute Killn, Kill s of

statement s should be added to the cumulative effect instead of being removed. This

deviates from the normal meaning of Kill which represents the entities to be removed.

We overcome this conceptual difficulty by renaming Gens and Kill s as Add s and

Remove s respectively. Now local data flow analysis does not depend on knowing

whether the data flow property being computed is Genn or Killn. Given a local prop-

erty specification such as below:

typedef struct lop_specs

{

entity_name entity;
entity_manipulation stmt_effect;

entity_occurrence exposition;

} lp_specs;

Local data flow analysis searches for the effect of a given statement specified

through stmt_effect and stores it in add_entities. If the specified stmt_effect

is entity_use, the entities that qualify for entity_mod are stored in the variable

remove_entities. Depending upon the exposition, the final decision of removal

is taken.

Thus computation of Genn and Killn depends upon setting up a variable of the type

lp_specs and the solving the following recurrence

accumulated_entities = (accumulated_entities − remove_entities)

∪ add_entities

Function effect_of_a_statement performs the above computation for a given

© 2009 by Taylor & Francis Group, LLC

360 Data Flow Analysis: Theory and Practice

statement. It is called by the top level function local_dfa_of_bb. The relevant

code fragment for downwards exposed entities is:

FOR_EACH_STMT_FWD

{ stmt = bsi_stmt(bsi);
accumulated_entities = effect_of_a_statement(lps_given,

stmt, accumulated_entities);

}

For upwards exposed entities, the accumulation is against the control flow and the

above traversal is performed using the macro FOR_EACH_STMT_BKD.

The main limitation of this approach is that it requires independent traversal of a

basic block for computing Gen and Kill . However, by using a slightly more compli-

cated data structure that passes both Gen and Kill to function local_dfa_of_bb,

will solve this problem. The other limitation is that due to the generality, there are

many checks that are done in the underlying functions. There are two possible solu-

tions to this problem of efficiency:

• This is used as a rapid prototyping tool for a given data flow analysis. Once

the details are fixed, one could spend time writing a more efficient data flow

analyzer.

• Instead of interpreting the specifications, a program can generate a customized

C code that is compiled with GCC source.

10.3.5 Global Data Flow Analysis

As observed earlier, implementation of global data flow analyzer is much simpler

once local data flow analysis and interface with the underlying compiler infrastruc-

ture is in place. The fact that gdfa use generic data flow Equations (5.1) and (5.2)

makes it possible to execute a wide variety of specifications without having to know

the name of a particular analysis being performed. In other words, gdfa driver is not

a collection of data flow analysis implementations but is capable of executing any

specification within the limits of the possible values of specification primitives.

At the top level, the gdfa driver needs to perform the following tasks:

• Create special values like �, BIStart , and BIEnd .

• Create space for data flow values

• Perform local data flow analysis

• Select flow functions

• Perform global data flow analysis

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 361

Function gdfa_driver performs the above tasks:

0 pfbv_dfi **

1 gdfa_driver(struct gimple_pfbv_dfa_spec dfa_spec)
2 {

3 if (find_entity_size(dfa_spec) == 0)

4 return NULL;
5 initialize_special_values(dfa_spec);

6 create_dfi_space();

7 traversal_order = dfa_spec.traversal_order;
8 confluence = dfa_spec.confluence;

9

10 local_dfa(dfa_spec);
11

12 forward_edge_flow = dfa_spec.forward_edge_flow;

13 backward_edge_flow = dfa_spec.backward_edge_flow;
14 forward_node_flow = dfa_spec.forward_node_flow;

15 backward_node_flow = dfa_spec.backward_node_flow;
16

17 perform_pfbvdfa();

18
19 preserve_dfi(dfa_spec.preserved_dfi);

20 return current_pfbv_dfi;

21 }

Lines 12 to 15 select the flow functions from the specifications. Below we show

the code fragment of function perform_pfbvdfa when the direction of traversal is

FORWARD.

do
{ iteration_number++;

change = false;

FOR_EACH_BB_IN_SPECIFIED_TRAVERSAL_ORDER
{ bb = VARRAY_BB(dfs_ordered_basic_blocks,visit_bb);

if(bb)

{ if (traversal_order == FORWARD)
{ change_at_in = compute_in_info(bb);

change_at_out = compute_out_info(bb);

change = change||change_at_out||change_at_in;
}

else /* compute in the opposite order */

}
}

} while(change);

© 2009 by Taylor & Francis Group, LLC

362 Data Flow Analysis: Theory and Practice

The main code fragment of function compute_in_info is as shown below. It

calls function backward_node_flowwhich is extracted from the specification.

if (!bb->preds)

temp = combine(entry_info, backward_node_flow(bb));

else
temp = combine(combined_forward_edge_flow(bb),

backward_node_flow(bb));

old = CURRENT_IN(bb);
change = is_new_info(temp,old);

if (change)
{

CURRENT_IN(bb) = temp;
if (old)

free_dfvalue_space(old);

}
return change;

Function combined_forward_edge_flow computes the following term

p∈pred(n)

−→
f p→n(Out p)

Its main code fragment is shown below. It calls function forward_edge_flow

which is extracted from the specification.

edge_vec = bb->preds;

temp = make_initialized_dfvalue(top_value_spec);

if (forward_edge_flow == &stop_flow_along_edge)

return temp;

FOR_EACH_EDGE(e,ei,edge_vec)
{ pred_bb = e->src;

new = combine(temp,forward_edge_flow(pred_bb,bb));

if (temp)
free_dfvalue_space(temp);

temp = new;

}
return temp;

The code sequence corresponding to function compute_out_info is an exact

dual of the above code sequence. This completes the description of generic global

data flow analysis in gdfa.

© 2009 by Taylor & Francis Group, LLC

Implementing Data Flow Analysis in GCC 363

10.4 Extending the Generic Data Flow Analyzer gdfa

Many extensions and enhancements of gdfa are possible. We suggest some of them

by dividing them into the following categories.

• Extensions that do not require changing the architecture of gdfa.

– Include space and time measurement of analyses.

– Consider scalar formal parameters for analysis.

– Support a work list based driver.

– Extend gdfa to support other entities such as statements (e.g., for data

flow analysis based program slicing), and basic blocks (e.g., for data

flow analysis based dominator computation). Both these problems are

bit vector problems.

– Improve the implementation of gdfa to make it more space and time ef-

ficient. This may require compromising on the simplicity of the imple-

mentation but generality should not be compromised.

• Extensions that may require minor changes to the architecture of gdfa.

– Implement incremental data flow analysis and measure its effectiveness

by invoking in just before gimple is expanded into RTL.

This would require a variant of a work list based driver.

– Explore the possibility of extending gdfa to the data flow frameworks

where data flow information can be represented using bit vectors but

the frameworks are not bit vector frameworks because they are non-

separable e.g., faint variables analysis, possibly undefined variables, anal-

ysis, strongly live variables analysis.

This would require changing the local data flow analysis. One possible

option is using matrix based local property computation [53]. The other

option is to treat a statement as an independent basic block.

• Extensions that may require major changes to the architecture of gdfa.

– Extend gdfa to non-separable frameworks in which data flow information

cannot be represented by bit vectors e.g., constant propagation, signs

analysis, points-to analysis, alias analysis, heap reference analysis etc.

Although the main driver would remain same, this would require making

fundamental changes to the architecture.

– Extend gdfa to support some variant of context and flow sensitive inter-

procedural data flow analysis.

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

A

An Introduction to GCC

A.1 About GCC

GCC is an acronym for GNU Compiler Collection (http://gcc.gnu.org) which

is the de-facto standard compiler generation framework for a number on GNU/Linux

and many other variants of Unix/Linux on a wide variety of machines and is one of

the most dominant softwares in the free software community.

GCC started as C compiler, and was the acronym forGNU C Compiler in the early

days. Over the years, it has been continuously upgraded to support a number of back

end machines. Similarly, on the front end side, it has grown to support a number of

front end languages like C++, Objective C, Java, and FORTRAN to name a few. As

a consequence, it has been renamed as GNU Compiler Collection.

As of 2008, GCC supports six front end languages, and 34 back end machines.

This results in a quite huge code base, and GCC has earned a reputation of being

one of the most complex and major free software/open source projects. A rough line

count of all the C source files (including header files) of just the compiler code (i.e.,

only the gcc directory) with the major block comments removed is about 1440336

lines. This does not include the code that describes the supported back end machines,

as well as code for other purposes like the build system, libraries etc.

GCC generates production quality optimizing compilers from descriptions of tar-

get platforms. It supports a wide variety of source languages and target machines

(including operating system specific variants) in a ready-to-deploy form. Besides,

new machines can be added by describing instruction set architectures and some

other information e.g., calling conventions. This retargetability requirement implies

that target information is incorporated into the compiler at build time rather than at

design time. The GCC sources consist of

• Language dependent front end.

• Language and target independent modules.

• Target architecture specification.

A compiler for specific language-target pair is generated by selecting front end for

desired language and generating back end for specified target.

365
© 2009 by Taylor & Francis Group, LLC

366 Data Flow Analysis: Theory and Practice

A.2 Building GCC

There are four directories that are useful to describe the user level building of GCC.

They are not required to be defined in practice.

• The directory where we have downloaded the compressed sources. We denote

this by $DOWNLOADDIR

• The directory where we extract the downloaded sources. We denote this by

$GCCHOME

• The directory where we build the compiler for the chosen source language and

target machine. We denote this by $BUILDDIR

• The directory where the built compiler is installed for use. We denote this by

$INSTALLDIR

The GCC build instructions in $GCCHOME/INSTALL/index.html recommend the

use of a distinct build directory and discourages building GCC in $GCCHOME. Any

directory with suitable permissions that is different from $GCCHOME may be used.

The binaries, libraries, headers and documentation that is built is installed as a

directory tree under $INSTALLDIR. This is any convenient directory with suitable

permissions, and usually distinct from the others. The default is a system wide in-

stallation directory e.g., /usr/local, but can be specified when GCC is configured

for building.

There are four steps to building the compiler.

• change to the $BUILDDIR,

• configure the pristine GCC sources,

• build the compiler binaries, libraries etc., and

• install the compiler.

In the description below, unless otherwise stated, we assume a GNU/Linux system

running on an i386 with the GNU Bourne Again SHell (bash) as the command shell.

All commands are issued at the bash shell prompt, and shell commands or scripts are

bash scripts.

Configuring GCC

The pristine GCC sources must be informed about some details like the system on

which it will eventually run. A shell script called configure is used for this. Most

pieces of required information have reasonable default values, and the usual way is

to simply issue the configure command, which uses the defaults. However, spe-

cific non default values can be given to the configure command through command

© 2009 by Taylor & Francis Group, LLC

An Introduction to GCC 367

line switches. Being a retargetable compiler that supports a number of high level

languages (HLLs), the sources need to be informed about the particular source lan-

guage and the target hardware on which the built compiler is to be used. By default,

GCC is configured to build a compiler for the target on which it is being compiled. If

a compiler for a specific language is desired, then the switch --enable-languages

can be used. The install directory defaults to /usr/local, but can also be specified

using the --prefix switch. The configure --help command lists out various such

options whose details are documented in $GCCHOME/INSTALL/index.html.

To build only a C compiler for a i386 for running on a GNU/Linux operating

system and /home/gcc/gcc-trial-install as the installation directory, we con-

figure as follows:

1. Change to the build directory

cd $BUILDDIR

2. Specify that we need only the C compiler, to run on an i386 machine running

GNU/Linux and /home/gcc/gcc-trial-install as the installation direc-

tory (each option is shown on a separate line for clarity, but is one single

command line)

$GCCHOME/configure

--enable-languages=c

--target=i386-linux-gnu

--prefix=/home/gcc/gcc-trial-install

The configure program makes a number of checks for a successful build and

generates a Makefile (as $BUILDDIR/Makefile) if all checks pass. It is useful to

redirect the output of configure to some file for later study as follows:

$GCCHOME/configure > configure.log 2> configure.errors

Compiling GCC

Once the configuration successfully generates the Makefile, the GCC source is

compiled by issuing the make command. The steps are:

1. cd $BUILDDIR

2. make

Compiling GCC involves building the compiler for each source language, the driver

program gcc, the associated header files, support libraries, and the documentation.

The driver program gcc so generated is the command that users use to compile their

source programs. The driver takes the user’s source file to be compiled and invokes

a sequence of programs (the compiler, the assembler and the linker) that generate its

binary.

It is useful to redirect the output of make to some file for later study as follows:

$BUILDDIR/make > make.log 2> make.errors

© 2009 by Taylor & Francis Group, LLC

368 Data Flow Analysis: Theory and Practice

Installing GCC

Final installation installs various components of the compiler like the driver, the

compiler, libraries, the documentation etc., in a well-defined directory structure in

the $INSTALLDIR directory. The following structure is typically used:

• $INSTALLDIR/bin: Directory where the various executables are installed.

• $INSTALLDIR/include: Directory where the various headers are installed.

• $INSTALLDIR/lib: Directory where the various libraries are installed.

• $INSTALLDIR/man: Directory where the various online manual pages are in-

stalled.

• $INSTALLDIR/info: Directory where the various online info pages are in-

stalled.

To install the built sources, use the following command:

$BUILDDIR/make install

It is useful to redirect the output of install to some file for later study as follows:

$BUILDDIR/make install > install.log 2> install.errors

Downloading and Installing gdfa

A patch of GCC 4.3.0 for gdfa is available at the following URL. Patches for later

versions will be made available on this page whenever possible.

http://www.cse.iitb.ac.in/uday/dfaBook-web

Following steps patch up GCC with gdfa code.

1. cd $GCCHOME

2. patch -p0 < patch_file_with_path

Now GCC can be configured, compiled, and installed.

A.3 Further Readings in GCC

Here we list further resources for learning about GCC.

© 2009 by Taylor & Francis Group, LLC

An Introduction to GCC 369

• GCC Internals

http://gcc.gnu.org/onlinedocs/gccint.html

This is the official internals document which exhaustively describes most de-

tails and is a part of the documentation distributed with the compiler code.

• GCC Internals documents developed at IIT Bombay

http://www.cse.iitb.ac.in/grc/

This is the website of GCC Resource Center at IIT Bombay. It hosts the GCC

documents developed at IIT Bombay.

• The GCC Wiki

http://gcc.gnu.org/wiki/

The official GCC Wiki pages where the various aspects of GCC, including

some description of the internals, are being developed by the GCC developers

and others.

• The GCC Internals workshop held at IIT Bombay

http://www.cse.iitb.ac.in/˜uday/gcc-workshop/

This workshop that focused mainly on the machine descriptions was held at

IIT Bombay in June 2007. The slides and some associated software is available

on the Downloads page of the workshop.

• The GCC on Wikipedia

http://en.wikipedia.org/wiki/GNU_Compiler_Collection

• The GCC Internals on Wikipedia

http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

References

[1] O. Agesen, D. Detlefs, and J. E. Moss. Garbage collection and local variable

type-precision and liveness in Java virtual machines. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 269–279. ACM, 1998.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, 1974.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, and Tools (2/e). Addison-Wesley Longman Publishing Co., Inc.,

2006.

[4] F. E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19, 1970.

[5] F. E. Allen. A basis for program optimization. In IFIP Congress (1), pages

385–390. North Holland Publishing Company, 1971.

[6] F. E. Allen. Interprocedural data flow analysis. In Proceedings of IFIP

Congress 74, pages 398–408. North Holland Publishing Company, 1974.

[7] F. E. Allen and J. Cocke. A program data flow analysis procedure. Commu-

nications of the ACM, 19(3):137–147, 1976.

[8] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables

in programs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pages 1–11. ACM, 1988.

[9] L. O. Andersen. Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[10] A. W. Appel and M. Ginsburg. Modern Compiler Implementation in C. Cam-

bridge University Press, 1998.

[11] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN Notices,

33(4):17–20, 1998.

[12] J. Banning. An efficient way to find the side effects of procedure calls and

aliases of variables. In Proceedings of the ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 29–41. ACM, 1979.

[13] J. M. Barth. An interprocedural data flow analysis algorithm. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 119–131. ACM, 1977.

371
© 2009 by Taylor & Francis Group, LLC

372 References

[14] Jeffrey M. Barth. A practical interprocedural data flow analysis algorithm.

Communications of the ACM, 21(9):724–736, 1978.

[15] B. Blanchet. Escape analysis for object-oriented languages: application to

Java. In Proceedings of the ACM SIGPLAN Conference on Object-oriented

Programming Systems, Languages, and Applications, pages 20–34. ACM,

1999.

[16] B. Blanchet. Escape analysis for JavaTM: Theory and practice. ACM Trans-

actions on Programming Languages and Systems, 25(6):713–775, 2003.

[17] R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of redundant compu-

tations. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 1–14. ACM, 1998.

[18] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical improve-

ments to the construction and destruction of static single assignment form.

Software—Practice and Experience, 28(8):859–881, 1998.

[19] D. Callahan. The program summary graph and flow-sensitive interprocedural

data flow analysis. In Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 47–56. ACM, 1988.

[20] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy. Constructing the

procedure call multigraph. IEEE Transactions on Software Engineering,

16(4):483–487, 1990.

[21] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural

computation of pointer-induced aliases and side effects. In Proceedings of

the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 232–245. ACM, 1993.

[22] J. Choi, R. Cytron, and J. Ferrante. Automatic construction of sparse data flow

evaluation graphs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 55–66. ACM, 1991.

[23] J. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape anal-

ysis for Java. In Proceedings of the ACM SIGPLAN Conference on Object-

oriented Programming Systems, Languages, and Applications, pages 1–19.

ACM, 1999.

[24] J. Cocke. Global common subexpression elimination. ACM SIGPLAN No-

tices, 5(7):20–24, 1970.

[25] K. Cooper. Analyzing aliases of reference formal parameters. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 281–290. ACM, 1985.

[26] K. D. Cooper and K. Kennedy. Fast interprocedural alias analysis. In Pro-

ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pages 49–59. ACM, 1989.

© 2009 by Taylor & Francis Group, LLC

Data Flow Analysis: Theory and Practice 373

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, (2/e). The MIT Press and McGraw-Hill Book Company, 2001.

[28] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.

Efficiently computing static single assignment form and the control depen-

dence graph. ACM Transactions on Programming Languages and Systems,

13(4):451–490, 1991.

[29] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2/e).

Cambridge University Press, 2002.

[30] D. M. Dhamdhere and U. P. Khedker. Complexity of bidirectional data flow

analysis. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 397–408. ACM, 1993.

[31] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large

programs efficiently and informatively. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

212–223. ACM, 1992.

[32] E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of

interprocedural data flow. In Proceedings of the ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 37–48. ACM,

1995.

[33] E. Duesterwald, R. Gupta, and M. L. Soffa. A practical framework for

demand-driven interprocedural data flow analysis. ACM Transactions on Pro-

gramming Languages and Systems, 19(6):992–1030, 1997.

[34] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural

points-to analysis in the presence of function pointers. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 242–256. ACM, 1994.

[35] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial online cycle elimi-

nation in inclusion constraint graphs. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

85–96. ACM, 1998.

[36] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow analysis

using instantiation constraints. In Proceedings of the ACM SIGPLAN Confer-

ence on Programming LanguageDesign and Implementation, pages 253–263.

ACM, 2000.

[37] S. Graham and M. Wegman. A fast and usually linear algorithm for global

data flow analysis. Journal of ACM, 23(1):172–202, 1976.

[38] D. Grove and C. Chambers. A framework for call graph construction al-

gorithms. ACM Transactions on Programming Languages and Systems,

23(6):685–746, 2001.

© 2009 by Taylor & Francis Group, LLC

374 References

[39] D. Grove and L. Torczon. Interprocedural constant propagation: a study of

jump function implementation. In Proceedings of the ACM SIGPLANConfer-

ence on Programming Language Design and Implementations, pages 90–99.

ACM, 1993.

[40] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendoen. Modern Com-

piler Design. John Wiley & Sons, 2000.

[41] S. Hack. Register Allocation for Programs in SSA Form. PhD thesis, Univer-

sität Karlsruhe, 2007.

[42] S. Hack, D. Grund, and G. Goos. Register allocation for programs in SSA-

form. In Proceedings of the International Conference on Compiler Construc-

tion, pages 247–262. Springer-Verlag, 2006.

[43] M. W. Hall and K. Kennedy. Efficient call graph analysis. ACM Letters on

Programming Languages and Systems, 1(3):227–242, 1992.

[44] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland

Inc., 1977.

[45] M. S. Hecht and J. D. Ullman. Flow graph reducibility. In Proceedings of the

ACM Symposium on Theory of Computing, pages 238–250. ACM, 1972.

[46] M. S. Hecht and J. D. Ullman. Characterization of reducible flow graphs.

Journal of ACM, 21(3):367–375, 1974.

[47] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Pro-

ceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, pages 54–61. ACM, 2001.

[48] M. Hind, M. Burke, P. Carini, and J. Choi. Interprocedural pointer alias analy-

sis. ACM Transactions on Programming Languages and Systems, 21(4):848–

894, 1999.

[49] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algo-

rithms. Journal of ACM, 23(1):158–171, 1976.

[50] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta

Informatica, 7(3):305–317, 1977.

[51] A. Kanade, U. P. Khedker, and A. Sanyal. Heterogeneous fixed points with

application to points-to analysis. In Proceedings of the Asian Symposium

on Programming Languages and Systems, pages 298–314. Springer-Verlag,

2005.

[52] A. Karkare, A. Sanyal, and U. P. Khedker. Effectiveness of garbage collection

in MIT/GNU Scheme. CoRR, abs/cs/0611093, 2006.

[53] B. Karkare. Complexity and Efficiency Issues in Data Flow Analysis. PhD

thesis, Indian Institute of Technology, Bombay, 2007.

© 2009 by Taylor & Francis Group, LLC

Data Flow Analysis: Theory and Practice 375

[54] B. Karkare and U. P. Khedker. An improved bound for call-strings based

interprocedural analysis of bit vector frameworks. ACM Transactions on Pro-

gramming Languages and Systems, 29(6):38, 2007.

[55] K. Kennedy. A global flow analysis algorithm. International Journal of Com-

puter Mathematic, 3(1):5–15, 1971.

[56] K. Kennedy. Node listings applied to data flow analysis. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 10–21. ACM, 1975.

[57] K. Kennedy. A survey of data flow analysis techniques, 1981. In [77].

[58] R. Kennedy, S. Chan, S. Liu, R. Lo, P. Tu, and F. Chow. Partial redundancy

elimination in SSA form. ACM Transactions on Programming Languages

and Systems, 21(3):627–676, 1999.

[59] U. P. Khedker. Data flow analysis. In Y. N. Srikant and Priti Shankar, editors,

The Compiler Design Handbook: Optimizations & Machine Code Genera-

tion. CRC Press, 2002.

[60] U. P. Khedker and D. M. Dhamdhere. A generalized theory of bit vector data

flow analysis. ACM Transactions on Programming Languages and Systems,

16(5):1472–1511, 1994.

[61] U. P. Khedker and B. Karkare. Efficiency, precision, simplicity, and gen-

erality in interprocedural data flow analysis: Resurrecting the classical call

strings method. In Proceedings of the International Conference on Compiler

Construction, pages 213–228. Springer-Verlag, 2008.

[62] U. P. Khedker, A. Sanyal, and A. Karkare. Heap reference analysis using

access graphs. ACM Transactions on Programming Languages and Systems,

30(1):1, 2007.

[63] G. Kildall. A unified approach to global program optimization. In Proceed-

ings of the ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 194–206. ACM, 1973.

[64] K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. In

Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, pages 107–120. ACM, 1998.

[65] J. Knoop, O. Rüthing, and B. Steffen. Lazy code motion. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 224–234. ACM, 1992.

[66] W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedu-

ral pointer aliasing. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 235–248. ACM,

1992.

© 2009 by Taylor & Francis Group, LLC

376 References

[67] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural side effect analysis with

pointer aliasing. In Proceedings of the ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 56–67. ACM, 1993.

[68] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in

a flowgraph. ACM Transactions on Programming Languages and Systems,

1(1):121–141, 1979.

[69] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it worth

it? In Proceedings of the International Conference on Compiler Construction,

pages 47–64. Springer-Verlag, 2006.

[70] E. S. Lowry and C. W. Medlock. Object code optimization. Communications

of the ACM, 12(1):13–22, 1969.

[71] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks. Acta

Informatica, 28(2):121–163, 1990.

[72] F. Martin. Experimental comparison of call string and functional approaches

to interprocedural analysis. In Proceedings of the International Conference

on Compiler Construction, pages 63–75. Springer-Verlag, 1999.

[73] C. E. McDowell. Reducing garbage in java. ACM SIGPLAN Notices,

33(9):84–86, 1998.

[74] E. Morel and C. Renvoise. Global optimization by suppression of partial

redundancies. Communications of the ACM, 22(2):96–103, 1979.

[75] R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

[76] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufmann Publishing Co., 1997.

[77] S. S. Muchnick and N. D. Jones. Program Flow Analysis : Theory and Appli-

cations. Prentice-Hall Inc., 1981.

[78] M. Müller-Olm and O. Rüthing. On the complexity of constant propagation.

In Proceedings of the European Symposium on Programming Languages and

Systems, pages 190–205. Springer-Verlag, 2001.

[79] E. M. Myers. A precise inter-procedural data flow algorithm. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 219–230. ACM, 1981.

[80] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.

Springer-Verlag, 1998.

[81] A. Reid, J. McCorquodale, J. Baker, W. Hsieh, and J. Zachary. The need

for predictable garbage collection. In Proceedings of the ACM SIGPLAN

Workshop on Compiler Support for System Software. ACM, 1999.

[82] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow anal-

ysis via graph reachability. In Proceedings of the ACM SIGPLAN-SIGACT

© 2009 by Taylor & Francis Group, LLC

Data Flow Analysis: Theory and Practice 377

Symposium on Principles of Programming Languages, pages 49–61. ACM,

1995.

[83] S. E. Richardson and M. Ganapathi. Interprocedural optimizations : Experi-

mental results. Software Practice and Experience, 19(2):149–169, 1989.

[84] B. K. Rosen. Monoids for rapid data flow analysis. SIAM Journal of Comput-

ing, 9(1):159–196, 1980.

[85] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and

redundant computations. In Proceedings of the ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 12–27. ACM, 1988.

[86] B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis.

ACM Computing Surveys, 18(3):277–316, 1986.

[87] M. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis

with applications to constant propagation. Theoretical Computer Science,

167(1–2):131–170, 1996.

[88] S. Sagiv, T. W. Reps, and R. Wilhelm. Parametric shape analysis via 3-

valued logic. ACM Transactions on Programming Languages and Systems,

24(3):217–298, 2002.

[89] R. Shaham, E. K. Kolodner, and M. Sagiv. On effectiveness of GC in Java.

In International Symposium on Memory Management, pages 12–17. ACM,

2000.

[90] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-efficient

java. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 104–113. ACM, 2001.

[91] R. Shaham, E. K. Kolodner, and M. Sagiv. Estimating the impact of heap

liveness information on space consumption in Java. In Proceedings of the In-

ternational Symposium on Memory Management, pages 64–75. ACM, 2002.

[92] R. Shaham, E. Yahav, E. K. Kolodner, and S. Sagiv. Establishing local tempo-

ral heap safety properties with applications to compile-time memory manage-

ment. In Proceedings of the International Static Analysis Symposium, pages

483–503. Springer-Verlag, 2003.

[93] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow anal-

ysis. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis :

Theory and Applications. Prentice-Hall Inc., 1981.

[94] T. C. Spillman. Exposing side effects in a PL/I optimizing compiler. In

Proceedings of IFIP Congress 71, pages 376–381. North Holland Publishing

Company, 1971.

[95] V. C. Sreedhar and G. R. Gao. A linear time algorithm for placing φ-nodes.

In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 62–73. ACM, 1995.

© 2009 by Taylor & Francis Group, LLC

Data Flow Analysis: Theory and Practice 378

[96] V. C. Sreedhar, R. Dz-Ching Ju, D. M. Gillies, and V. Santhanam. Translat-

ing out of static single assignment form. In Proceedings of the International

Symposium on Static Analysis, pages 194–210, 1999.

[97] B. Steensgaard. Points-to analysis in almost linear time. In Proceedings

of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 32–41. ACM, 1996.

[98] R. E. Tarjan. Fast algorithms for solving path problems. Journal of ACM,

28(3):594–614, 1981.

[99] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

Journal of Mathematics, 5(2):285–309, 1955.

[100] J. D. Ullman. Fast algorithms for the elimination of common subexpressions.

Acta Informatica, 2(3):191–213, 1973.

[101] V. Vyssotsky and P. Wegner. A graph theoretical FORTRAN source language

analyzer. AT & T Bell Laboratories, Murray Hill, N. J., 1963. (Manuscript).

[102] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems,

13(2):181–210, 1991.

[103] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional

branches. ACM Transactions on Programming Languages and Systems,

13(2):181–210, 1991.

[104] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias anal-

ysis using binary decision diagrams. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation. ACM,

2004.

[105] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

[106] R. Wilhelm, T. W. Reps, and S. Sagiv. Shape analysis and applications. In

Y. N. Srikant and Priti Shankar, editors, The Compiler Design Handbook: Op-

timizations & Machine Code Generation, pages 175–218. CRC Press, 2002.

[107] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C

programs. In Proceedings of the ACM SIGPLANConference on Programming

Language Design and Implementation, pages 1–12. ACM, 1995.

378
© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

© 2009 by Taylor & Francis Group, LLC

