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xiv Guided tour

DESIGN PROCESS

In this part, we concentrate on how design practice
addresses the critical feature of an interactive system –
usability from the human perspective. The chapters in 
this part promote the purposeful design of more usable
interactive systems. We begin in Chapter 5 by introducing
the key elements in the interaction design process. These
elements are then expanded in later chapters.

Chapter 6 discusses the design process in more detail,
specifically focussing on the place of user-centered design
within a software engineering framework. Chapter 7 high-
lights the range of design rules that can help us to specify
usable interactive systems, including abstract principles,
guidelines and other design representations.

In Chapter 8, we provide an overview of implementa-
tion support for the programmer of an interactive system.
Chapter 9 is concerned with the techniques used to evalu-
ate the interactive system to see if it satisfies user needs.
Chapter 10 discusses how to design a system to be univer-
sally accessible, regardless of age, gender, cultural background
or ability. In Chapter 11 we discuss the provision of user
support in the form of help systems and documentation.

P A R T

2 MODELING RICH

INTERACTION

OV E RV I E W

We operate within an ecology of people, physical artifacts
and electronic systems, and this rich ecology has recently
become more complex as electronic devices invade the
workplace and our day-to-day lives. We need methods 
to deal with these rich interactions.

n Status–event analysis is a semi-formal, easy to apply
technique that:
– classifies phenomena as event or status
– embodies naïve psychology
– highlights feedback problems in interfaces.

n Aspects of rich environments can be incorporated into
methods such as task analysis:
– other people
– information requirements
– triggers for tasks
– modeling artifacts
– placeholders in task sequences.

n New sensor-based systems do not require explicit
interaction; this means:
– new cognitive and interaction models
– new design methods
– new system architectures.

18

19.3 Computer-mediated communication 675

CuSeeMe

Special-purpose video conferencing is still relatively expensive, but low-fidelity desktop
video conferencing is now within the reach of many users of desktop computers. Digital video 
cameras are now inexpensive and easily obtainable. They often come with pre-packaged video
phone or video conferencing software. However, the system which has really popularized 
video conferencing is a web-based tool. CuSeeMe works over the internet allowing participants
across the world owning only a basic digital video camera to see and talk to one another. The soft-
ware is usually public domain (although there are commercial versions) and the services allowing
connection are often free. The limited bandwidth available over long-distance internet links means
that video quality and frame rates are low and periodic image break-up may occur. In fact, it is
sound break-up which is more problematic. After all, we can talk to one another quite easily with-
out seeing one another, but find it very difficult over a noisy phone line. Often participants may
see one another’s video image, but actually discuss using a synchronous text-based ‘talk’ program.

CuSeeMe – video conferencing on the internet. Source: Courtesy of Geoff Ellis

440 Chapter 12 n Cognitive models

Worked exercise Do a keystroke-level analysis for opening up an application in a visual desktop interface using
a mouse as the pointing device, comparing at least two different methods for performing the
task. Repeat the exercise using a trackball. Consider how the analysis would differ for various
positions of the trackball relative to the keyboard and for other pointing devices.

Answer We provide a keystroke-level analysis for three different methods for launching an
application on a visual desktop. These methods are analyzed for a conventional one-
button mouse, a trackball mounted away from the keyboard and one mounted close to
the keyboard. The main distinction between the two trackballs is that the second one
does not require an explicit repositioning of the hands, that is there is no time required
for homing the hands between the pointing device and the keyboard.

Method 1 Double clicking on application icon

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Double click 2B[click] 0.400 0.400 0.400
4. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 1.864 2.313 1.513

Method 2 Using an accelerator key

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Return to keyboard H[kbd] 0.400 0.400 0.000
6. Press accelerator K 0.200 0.200 0.200
Total times 3.214 3.663 2.763

Method 3 Using a menu

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Mouse to file menu P 0.664 1.113 1.113
6. Pop-up menu B[down] 0.100 0.100 0.100
7. Drag to open P[drag] 0.713 1.248 1.248
8. Release mouse B[up] 0.100 0.100 0.100
9. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 4.591 6.024 5.224

The part structure separates out introductory and more
advanced material, with each part opener giving a simple
description of what its constituent chapters cover

Bullet points at the start of each chapter highlight the
core coverage

Worked exercises within chapters provide step-by-step
guidelines to demonstrate problem-solving techniques

Boxed asides contain descriptions of particular tasks or
technologies for additional interest, experimentation
and discussion
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732 Chapter 20 n Ubiquitous computing and augmented realities

within these environments. Much of our understanding of work has developed from
Fordist and Taylorist principles on the structuring of activities and tasks. Evaluation
within HCI reflects these roots and is often predicated on notions of task and the
measurement of performance and efficiency in meeting these goals and tasks.

However, it is not clear that these measures can apply universally across activities
when we move away from structured and paid work to other activities. For example,

DESIGN FOCUS

Shared experience

You are in the Mackintosh Interpretation Centre in an arts center in Glasgow, Scotland. You notice a
man wearing black wandering around looking at the exhibits and then occasionally at a small PDA he is
holding. As you get closer he appears to be talking to himself, but then you realize he is simply talking
into a head-mounted microphone. ‘Some people can never stop using their mobile phone’, you think.
As you are looking at one exhibit, he comes across and suddenly cranes forward to look more closely,
getting right in front of you. ‘How rude’, you think.

The visitor is taking part in the City project – a mixed-reality experience. He is talking to two other
people at remote sites, one who has a desktop VR view of the exhibition and the other just a website.
However, they can all see representations of each other. The visitor is being tracked by ultrasound and
he appears in the VR world. Also, the web user’s current page locates her in a particular part of the
virtual exhibition. All of the users see a map of the exhibitiion showing where they all are.

You might think that in such an experiment the person actually in the museum would take the lead, but
in fact real groups using this system seemed to have equal roles and really had a sense of shared experi-
ence despite their very different means of seeing the exhibition.

See the book website for a full case study: /e3/casestudy/city/

City project: physical presence, VR interfaces and web interface. Source: Courtesy of 
Matthew Chalmers, note: City is an Equator project

Recommended reading 509

RECOMMENDED READING

J. Carroll, editor, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary
Science, Morgan Kaufmann, 2003.
See chapters by Perry on distributed cognition, Monk on common ground and
Kraut on social psychology.

L. A. Suchman, Plans and Situated Actions: The Problem of Human–Machine
Communication, Cambridge University Press, 1987.
This book popularized ethnography within HCI. It puts forward the viewpoint
that most actions are not pre-planned, but situated within the context in which
they occur. The principal domain of the book is the design of help for a photo-
copier. This is itself a single-user task, but the methodology applied is based on
both ethnographic and conversational analysis. The book includes several chap-
ters discussing the contextual nature of language and analysis of conversation
transcripts.

T. Winograd and F. Flores, Understanding Computers and Cognition: A New
Foundation for Design, Addison-Wesley, 1986.
Like Suchman, this book emphasizes the contextual nature of language and the
weakness of traditional artificial intelligence research. It includes an account of
speech act theory as applied to Coordinator. Many people disagree with the
authors’ use of speech act theory, but, whether by application or reaction, this
work has been highly influential.

S. Greenberg, editor, Computer-supported Cooperative Work and Groupware,
Academic Press, 1991.
The contents of this collection originally made up two special issues of the
International Journal of Man–Machine Studies. In addition, the book contains
Greenberg’s extensive annotated bibliography of CSCW, a major entry point for
any research into the field. Updated versions of the bibliography can be obtained
from the Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada.

Communications of the ACM, Vol. 34, No. 12, special issue on ‘collaborative com-
puting’, December 1991.

Several issues of the journal Interacting with Computers from late 1992 through early
1993 have a special emphasis on CSCW.

Computer-Supported Cooperative Work is a journal dedicated to CSCW. See also back
issues of the journal Collaborative Computing. This ran independently for a while,
but has now merged with Computer-Supported Cooperative Work.

See also the recommended reading list for Chapter 19, especially the conference 
proceedings.

Exercises 393

SUMMARY

Universal design is about designing systems that are accessible by all users in all 
circumstances, taking account of human diversity in disabilities, age and culture.
Universal design helps everyone – for example, designing a system so that it can be
used by someone who is deaf or hard of hearing will benefit other people working in
noisy environments or without audio facilities. Designing to be accessible to screen-
reading systems will make websites better for mobile users and older browsers.

Multi-modal systems provide access to system information and functionality
through a range of different input and output channels, exploiting redundancy. 
Such systems will enable users with sensory, physical or cognitive impairments to
make use of the channels that they can use most effectively. But all users benefit 
from multi-modal systems that utilize more of our senses in an involving interactive
experience.

For any design choice we should ask ourselves whether our decision is excluding
someone and whether there are any potential confusions or misunderstandings in
our choice.

10.5

EXERCISES

10.1 Is multi-modality always a good thing? Justify your answer.

10.2 What are (i) auditory icons and (ii) earcons? How can they be used to benefit both visually
impaired and sighted users?

10.3 Research your country’s legislation relating to accessibility of technology for disabled people.
What are the implications of this to your future career in computing?

10.4 Take your university website or another site of your choice and assess it for accessibility using
Bobby. How would you recommend improving the site?

10.5 How could systems be made more accessible to older users?

10.6 Interview either (i) a person you know over 65 or (ii) a child you know under 16 about their 
experience, attitude and expectations of computers. What factors would you take into account 
if you were designing a website aimed at this person?

10.7 Use the screen reader simulation available at www.webaim.org/simulations/screenreader to 
experience something of what it is like to access the web using a screen reader. Can you find 
the answers to the test questions on the site?

Annotated further reading encourages readers to
research topics in depth

Design Focus mini case studies highlight practical
applications of HCI concepts

Frequent links to the
book website for
further information

Chapter summaries reinforce student learning.
Exercises at the end of chapters can be used by
teachers or individuals to test understanding



FOREWORD

Human–computer interaction is a difficult endeavor with glorious rewards.
Designing interactive computer systems to be effective, efficient, easy, and enjoyable to
use is important, so that people and society may realize the benefits of computation-
based devices. The subtle weave of constraints and their trade-offs – human,
machine, algorithmic, task, social, aesthetic, and economic – generates the difficulty.
The reward is the creation of digital libraries where scholars can find and turn the
pages of virtual medieval manuscripts thousands of miles away; medical instruments
that allow a surgical team to conceptualize, locate, and monitor a complex neuro-
surgical operation; virtual worlds for entertainment and social interaction, respon-
sive and efficient government services, from online license renewal to the analysis of 
parliamentary testimony; or smart telephones that know where they are and under-
stand limited speech. Interaction designers create interaction in virtual worlds and
embed interaction in physical worlds.

Human–computer interaction is a specialty in many fields, and is therefore multi-
disciplinary, but it has an intrinsic relationship as a subfield to computer science.
Most interactive computing systems are for some human purpose and interact with
humans in human contexts. The notion that computer science is the study of algo-
rithms has virtue as an attempt to bring foundational rigor, but can lead to ignoring
constraints foundational to the design of successful interactive computer systems. 
A lesson repeatedly learned in engineering is that a major source of failure is the 
narrow optimization of a design that does not take sufficient account of contextual
factors. Human users and their contexts are major components of the design 
problem that cannot be wished away simply because they are complex to address. In
fact, that largest part of program code in most interactive systems deals with user
interaction. Inadequate attention to users and task context not only leads to bad user
interfaces, it puts entire systems at risk.

The problem is how to take into account the human and contextual part of a sys-
tem with anything like the rigor with which other parts of the system are understood
and designed – how to go beyond fuzzy platitudes like ‘know the user’ that are true,
but do not give a method for doing or a test for having done. This is difficult to do,
but inescapable, and, in fact, capable of progress. Over the years, the need to take
into account human aspects of technical systems has led to the creation of new fields
of study: applied psychology, industrial engineering, ergonomics, human factors,
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man–machine systems. Human–computer interaction is the latest of these, more
complex in some ways because of the breadth of user populations and applications,
the reach into cognitive and social constraints, and the emphasis on interaction. The
experiences with other human-technical disciplines lead to a set of conclusions about
how a discipline of human–computer interaction should be organized if it is to be
successful.

First, design is where the action is. An effective discipline of human–computer
interaction cannot be based largely on ‘usability analysis’, important though that
may be. Usability analysis happens too late; there are too few degrees of freedom; and
most importantly, it is not generative. Design thrives on understanding constraints,
on insight into the design space, and on deep knowledge of the materials of the
design, that is, the user, the task, and the machine. The classic landmark designs in
human–computer interaction, such as the Xerox Star and the Apple Lisa/Macintosh,
were not created from usability analysis (although usability analysis had important
roles), but by generative principles for their designs by user interface designers who
had control of the design and implementation.

Second, although the notion of ‘user-centered design’ gets much press, we should
really be emphasizing ‘task-centered design’. Understanding the purpose and con-
text of a system is key to allocating functions between people and machines and to
designing their interaction. It is only in deciding what a human–machine system
should do and the constraints on this goal that the human and technical issues can
be resolved. The need for task-centered design brings forward the need for methods
of task analysis as a central part of system design.

Third, human–computer interaction needs to be structured to include both 
analytic and implementation methods together in the same discipline and taught
together as part of the core. Practitioners of the discipline who can only evaluate, but
not design and build are under a handicap. Builders who cannot reason analytically
about the systems they build or who do not understand the human information pro-
cessing or social contexts of their designs are under a handicap. Of course, there will
be specialists in one or another part of human–computer interaction, but for there
to be a successful field, there must be a common core.

Finally, what makes a discipline is a set of methods for doing something. A field
must have results that can be taught and used by people other than their originators
to do something. Historically, a field naturally evolves from a set of point results to
a set of techniques to a set of facts, general abstractions, methods, and theories. In
fact, for a field to be cumulative, there must be compaction of knowledge by crunch-
ing the results down into methods and theories; otherwise the field becomes fad-
driven and a collection of an almost unteachably large set of weak results. The most
useful methods and theories are generative theories: from some task analysis it is
possible to compute some insightful property that constrains the design space of a
system. In a formula: task analysis, approximation, and calculation. For example, 
we can predict that if a graphics system cannot update the display faster than 10
times/second then the illusion of animation will begin to break down. This con-
straint worked backwards has architectural implications for how to guarantee the
needed display rate under variable computational load. It can be designed against.



xviii Foreword

This textbook, by Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale, 
represents how far human–computer interaction has come in developing and 
organizing technical results for the design and understanding of interactive 
systems. Remarkably, by the light of their text, it is pretty far, satisfying all the just-
enumerated conclusions. This book makes an argument that by now there are many
teachable results in human–computer interaction by weight alone! It makes an argu-
ment that these results form a cumulative discipline by its structure, with sections
that organize the results systematically, characterizing human, machine, interaction,
and the design process. There are analytic models, but also code implementation 
examples. It is no surprise that methods of task analysis play a prominent role in 
the text as do theories to help in the design of the interaction. Usability evaluation
methods are integrated in their proper niche within the larger framework.

In short, the codification of the field of human–computer interaction in this 
text is now starting to look like other subfields of computer science. Students by
studying the text can learn how to understand and build interactive systems.
Human–computer interaction as represented by the text fits together with other
parts of computer science. Moreover, human–computer interaction as presented is
a challenge problem for advancing theory in cognitive science, design, business, or
social-technical systems. Given where the field was just a few short years ago, the 
creation of this text is a monumental achievement. The way is open to reap the 
glorious rewards of interactive systems through a markedly less difficult endeavor,
both for designer and for user.

Stuart K. Card
Palo Alto Research Center, Palo Alto, California



PREFACE TO THE THIRD EDITION

It is ten years since the first edition of this book was published and much has
changed. Ubiquitous computing and rich sensor-filled environments are finding
their way out of the laboratory, not just into films and fiction, but also into our
workplaces and homes. Now the computer really has broken its bounds of plastic
and glass: we live in networked societies where personal computing devices from
mobile phones to smart cards fill our pockets, and electronic devices surround us at
home and at work. The web too has grown from a largely academic network into the
hub of business and everyday lives. As the distinctions between physical and digital,
work and leisure start to break down, human–computer interaction is also radically
changing.

We have tried to capture some of the excitement of these changes in this revised
edition, including issues of physical devices in Chapters 2 and 3, discussion of 
web interfaces in Chapter 21, ubiquitous computing in Chapters 4 and 20, and new
models and paradigms for interaction in these new environments in Chapters 17 and
18. We have reflected aspects of the shift in use of technology from work to leisure
in the analysis of user experience in Chapter 3, and in several of the boxed examples
and case studies in the text. This new edition of Human–Computer Interaction is not
just tracking these changes but looking ahead at emerging areas.

However, it is also rooted in strong principles and models that are not dependent
on the passing technologies of the day. We are excited both by the challenges of the
new and by the established foundations, as it is these foundations that will be the
means by which today’s students understand tomorrow’s technology. So we make no
apology for continuing the focus of previous editions on the theoretical and con-
ceptual models that underpin our discipline. As the use of technology has changed,
these models have expanded. In particular, the insular individual focus of early 
work is increasingly giving way to include the social and physical context. This is
reflected in the expanded treatment of social and organizational analysis, including
ethnography, in Chapter 13, and the analysis of artifacts in the physical environment
in Chapter 18.
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STRUCTURE

The structure of the new edition has been completely revised. This in part reflects the
growth of the area: ten years ago HCI was as often as not a minority optional sub-
ject, and the original edition was written to capture the core material for a standard
course. Today HCI is much expanded: some areas (like CSCW) are fully fledged dis-
ciplines in their own right, and HCI is studied from a range of perspectives and at
different levels of detail. We have therefore separated basic material suitable for intro-
ductory courses into the first two parts, including a new chapter on interaction
design, which adds new material on scenarios and navigation design and provides an
overview suitable for a first course. In addition, we have included a new chapter on
universal design, to reflect the growing emphasis on design that is inclusive of all,
regardless of ability, age or cultural background. More advanced material focussing
on different HCI models and theories is presented in Part 3, with extended cover-
age of social and contextual models and rich interaction. It is intended that these 
sections will be suitable for more advanced HCI courses at undergraduate and 
postgraduate level, as well as for researchers new to the field. Detailed coverage of the
particular domains of web applications, ubiquitous computing and CSCW is given
in Part 4.

New to this edition is a full color plate section. Images flagged with a camera icon
in the text can be found in color in the plate section.

WEBSITE AND SUPPORT MATERIALS

We have always believed that support materials are an essential part of a textbook of
this kind. These are designed to supplement and enhance the printed book – phys-
ical and digital integration in practice. Since the first edition we have had exercises, 
mini-case studies and presentation slides for all chapters available electronically. 
For the second edition these were incorporated into a website including links and 
an online search facility that acts as an exhaustive index to the book and mini-
encyclopedia of HCI. For visually disabled readers, access to a full online electronic
text has also been available. The website is continuing to develop, and for the third
edition provides all these features plus more, including WAP search, multi-choice
questions, and extended case study material (see also color plate section). We will use
the book website to bring you new exercises, information and other things, so do
visit us at www.hcibook.com (also available via www.booksites.net/dix). Throughout
the book you will find shorthand web references of the form /e3/a-page-url/. Just
prepend http://www.hcibook.com to find further information. To assist users of the
second edition, a mapping between the structures of the old and new editions is
available on the web at: http://www.hcibook.com/e3/contents/map2e/
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STYLISTIC CONVENTION

As with all books, we have had to make some global decisions regarding style and 
terminology. Specifically, in a book in which the central characters are ‘the user’ 
and ‘the designer’, it is difficult to avoid the singular pronoun. We therefore use the
pronoun ‘he’ when discussing the user and ‘she’ when referring to the designer. In
other cases we use ‘she’ as a generic term. This should not be taken to imply anything
about the composition of any actual population.

Similarly, we have adopted the convention of referring to the field of ‘Human–
Computer Interaction’ and the notion of ‘human–computer interaction’. In many
cases we will also use the abbreviation HCI.

ACKNOWLEDGEMENTS

In a book of this size, written by multiple authors, there will always be myriad 
people behind the scenes who have aided, supported and abetted our efforts. We
would like to thank all those who provided information, pictures and software that
have enhanced the quality of the final product. In particular, we are indebted to
Wendy Mackay for the photograph of EVA; Wendy Hall and her colleagues at the
University of Southampton for the screen shot of Microcosm; Saul Greenberg for 
the reactive keyboard; Alistair Edwards for Soundtrack; Christina Engelbart for the
photographs of the early chord keyset and mouse; Geoff Ellis for the screen shot of
Devina and himself using CuSeeMe; Steve Benford for images of the Internet Foyer;
and Tony Renshaw who provided photographs of the eye tracking equipment.
Thanks too to Simon Shum for information on design rationale, Robert Ward who
gave us material on psycho-physiology, and Elizabeth Mynatt and Tom Rodden who
worked with Gregory on material adapted in Chapter 20. Several of the boxed case
studies are based on the work of multi-institution projects, and we are grateful 
to all those from the project teams of CASCO, thePooch SMART-ITS, TOWER,
AVATAR-Conference and TEAM-HOS for boxes and case studies based on their
work; and also to the EQUATOR project from which we drew material for the boxes
on cultural probes, ‘Ambient Wood’ and ‘City’. We would also like to thank all the
reviewers and survey respondents whose feedback helped us to select our subject
matter and improve our coverage; and our colleagues at our respective institutions
and beyond who offered insight, encouragement and tolerance throughout the revi-
sion. We are indebted to all those who have contributed to the production process 
at Pearson Education and elsewhere, especially Keith Mansfield, Anita Atkinson,
Lynette Miller, Sheila Chatten and Robert Chaundy.

Personal thanks must go to Fiona, Esther, Miriam, Rachel, Tina, Meghan, Aidan
and Blaise, who have all endured ‘The Book’ well beyond the call of duty and over
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many years, and Bruno and ‘the girls’ who continue to make their own inimitable
contribution.

Finally we all owe huge thanks to Fiona for her continued deep personal support
and for tireless proofreading, checking of figures, and keeping us all moving. We
would never have got beyond the first edition without her.

The efforts of all of these have meant that the book is better than it would other-
wise have been. Where it could still be better, we take full responsibility.
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INTRODUCTION

WHY HUMAN–COMPUTER INTERACTION?

In the first edition of this book we wrote the following:

This is the authors’ second attempt at writing this introduction. Our first attempt 
fell victim to a design quirk coupled with an innocent, though weary and less than
attentive, user. The word-processing package we originally used to write this intro-
duction is menu based. Menu items are grouped to reflect their function. The ‘save’
and ‘delete’ options, both of which are correctly classified as file-level operations, are
consequently adjacent items in the menu. With a cursor controlled by a trackball it 
is all too easy for the hand to slip, inadvertently selecting delete instead of save. Of
course, the delete option, being well thought out, pops up a confirmation box allow-
ing the user to cancel a mistaken command. Unfortunately, the save option produces
a very similar confirmation box – it was only as we hit the ‘Confirm’ button that we
noticed the word ‘delete’ at the top . . .

Happily this word processor no longer has a delete option in its menu, but unfortu-
nately, similar problems to this are still an all too common occurrence. Errors such
as these, resulting from poor design choices, happen every day. Perhaps they are not
catastrophic: after all nobody’s life is endangered nor is there environmental damage
(unless the designer happens to be nearby or you break something in frustration!).
However, when you lose several hours’ work with no written notes or backup and 
a publisher’s deadline already a week past, ‘catastrophe’ is certainly the word that
springs to mind.

Why is it then that when computers are marketed as ‘user friendly’ and ‘easy to
use’, simple mistakes like this can still occur? Did the designer of the word processor
actually try to use it with the trackball, or was it just that she was so expert with the
system that the mistake never arose? We hazard a guess that no one tried to use it
when tired and under pressure. But these criticisms are not levied only on the design-
ers of traditional computer software. More and more, our everyday lives involve pro-
grammed devices that do not sit on our desk, and these devices are just as unusable.
Exactly how many VCR designers understand the universal difficulty people have
trying to set their machines to record a television program? Do car radio designers
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actually think it is safe to use so many knobs and displays that the driver has to 
divert attention away from the road completely in order to tune the radio or adjust
the volume?

Computers and related devices have to be designed with an understanding that
people with specific tasks in mind will want to use them in a way that is seamless with
respect to their everyday work. To do this, those who design these systems need to
know how to think in terms of the eventual users’ tasks and how to translate that
knowledge into an executable system. But there is a problem with trying to teach the
notion of designing computers for people. All designers are people and, most prob-
ably, they are users as well. Isn’t it therefore intuitive to design for the user? Why
does it need to be taught when we all know what a good interface looks like? As a
result, the study of human–computer interaction (HCI) tends to come late in the
designer’s training, if at all. The scenario with which we started shows that this is a
mistaken view; it is not at all intuitive or easy to design consistent, robust systems

DESIGN FOCUS

Things don’t change

It would be nice to think that problems like those described at the start of the Introduction would
never happen now. Think again! Look at the MacOS X ‘dock’ below. It is a fast launch point for applica-
tions; folders and files can be dragged there for instant access; and also, at the right-hand side, there
sits the trash can. Imagine what happens as you try to drag a file into one of the folders. If your finger
accidentally slips whilst the icon is over the trash can – oops!

Happily this is not quite as easy in reality as it looks in the screen shot, since the icons in the dock con-
stantly move around as you try to drag a file into it. This is to make room for the file in case you want
to place it in the dock. However, it means you have to concentrate very hard when dragging a file over
the dock. We assume this is not a deliberate feature, but it does have the beneficial side effect that
users are less likely to throw away a file by accident – whew!

In fact it is quite fun to watch a new user trying to throw away a file. The trash can keeps moving as if
it didn’t want the file in it. Experienced users evolve coping strategies. One user always drags files into
the trash from the right-hand side as then the icons in the dock don’t move around. So two lessons:

n designs don’t always get better
n but at least users are clever.

Screen shot reprinted by permission from Apple Computer, Inc.



that will cope with all manner of user carelessness. The interface is not something
that can be plugged in at the last minute; its design should be developed integrally
with the rest of the system. It should not just present a ‘pretty face’, but should sup-
port the tasks that people actually want to do, and forgive the careless mistakes. We
therefore need to consider how HCI fits into the design process.

Designing usable systems is not simply a matter of altruism towards the eventual
user, or even marketing; it is increasingly a matter of law. National health and safety
standards constrain employers to provide their workforce with usable computer sys-
tems: not just safe but usable. For example, EC Directive 90/270/EEC, which has been
incorporated into member countries’ legislation, requires employers to ensure the
following when designing, selecting, commissioning or modifying software:

n that it is suitable for the task
n that it is easy to use and, where appropriate, adaptable to the user’s knowledge

and experience
n that it provides feedback on performance
n that it displays information in a format and at a pace that is adapted to the user
n that it conforms to the ‘principles of software ergonomics’.

Designers and employers can no longer afford to ignore the user.

WHAT IS HCI?

The term human–computer interaction has only been in widespread use since the early
1980s, but has its roots in more established disciplines. Systematic study of human
performance began in earnest at the beginning of the last century in factories, with
an emphasis on manual tasks. The Second World War provided the impetus for
studying the interaction between humans and machines, as each side strove to pro-
duce more effective weapons systems. This led to a wave of interest in the area among
researchers, and the formation of the Ergonomics Research Society in 1949. Tradi-
tionally, ergonomists have been concerned primarily with the physical characteristics
of machines and systems, and how these affect user performance. Human Factors
incorporates these issues, and more cognitive issues as well. The terms are often used
interchangeably, with Ergonomics being the preferred term in the United Kingdom
and Human Factors in the English-speaking parts of North America. Both of these
disciplines are concerned with user performance in the context of any system, whether
computer, mechanical or manual. As computer use became more widespread, an
increasing number of researchers specialized in studying the interaction between
people and computers, concerning themselves with the physical, psychological and
theoretical aspects of this process. This research originally went under the name man–
machine interaction, but this became human–computer interaction in recognition of
the particular interest in computers and the composition of the user population!

Another strand of research that has influenced the development of HCI is infor-
mation science and technology. Again the former is an old discipline, pre-dating the
introduction of technology, and is concerned with the management and manipulation

What is HCI? 3
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of information within an organization. The introduction of technology has had a
profound effect on the way that information can be stored, accessed and utilized 
and, consequently, a significant effect on the organization and work environment.
Systems analysis has traditionally concerned itself with the influence of technology
in the workplace, and fitting the technology to the requirements and constraints of
the job. These issues are also the concern of HCI.

HCI draws on many disciplines, as we shall see, but it is in computer science and
systems design that it must be accepted as a central concern. For all the other discip-
lines it can be a specialism, albeit one that provides crucial input; for systems design
it is an essential part of the design process. From this perspective, HCI involves the
design, implementation and evaluation of interactive systems in the context of the
user’s task and work.

However, when we talk about human–computer interaction, we do not necessarily
envisage a single user with a desktop computer. By user we may mean an individual
user, a group of users working together, or a sequence of users in an organization,
each dealing with some part of the task or process. The user is whoever is trying to
get the job done using the technology. By computer we mean any technology ranging
from the general desktop computer to a large-scale computer system, a process 
control system or an embedded system. The system may include non-computerized
parts, including other people. By interaction we mean any communication between
a user and computer, be it direct or indirect. Direct interaction involves a dialog 
with feedback and control throughout performance of the task. Indirect interaction
may involve batch processing or intelligent sensors controlling the environment. 
The important thing is that the user is interacting with the computer in order to
accomplish something.

WHO IS INVOLVED IN HCI?

HCI is undoubtedly a multi-disciplinary subject. The ideal designer of an interactive
system would have expertise in a range of topics: psychology and cognitive science 
to give her knowledge of the user’s perceptual, cognitive and problem-solving 
skills; ergonomics for the user’s physical capabilities; sociology to help her under-
stand the wider context of the interaction; computer science and engineering to 
be able to build the necessary technology; business to be able to market it; graphic
design to produce an effective interface presentation; technical writing to produce
the manuals, and so it goes on. There is obviously too much expertise here to be held
by one person (or indeed four!), perhaps even too much for the average design team.
Indeed, although HCI is recognized as an interdisciplinary subject, in practice peo-
ple tend to take a strong stance on one side or another. However, it is not possible to
design effective interactive systems from one discipline in isolation. Input is needed
from all sides. For example, a beautifully designed graphic display may be unusable
if it ignores dialog constraints or the psychological limitations of the user.
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In this book we want to encourage the multi-disciplinary view of HCI but we too
have our ‘stance’, as computer scientists. We are interested in answering a particular
question. How do principles and methods from each of these contributing dis-
ciplines in HCI help us to design better systems? In this we must be pragmatists
rather than theorists: we want to know how to apply the theory to the problem 
rather than just acquire a deep understanding of the theory. Our goal, then, is to be
multi-disciplinary but practical. We concentrate particularly on computer science,
psychology and cognitive science as core subjects, and on their application to design;
other disciplines are consulted to provide input where relevant.

THEORY AND HCI

Unfortunately for us, there is no general and unified theory of HCI that we can 
present. Indeed, it may be impossible ever to derive one; it is certainly out of our
reach today. However, there is an underlying principle that forms the basis of our
own views on HCI, and it is captured in our claim that people use computers to
accomplish work. This outlines the three major issues of concern: the people, the
computers and the tasks that are performed. The system must support the user’s
task, which gives us a fourth focus, usability: if the system forces the user to adopt an
unacceptable mode of work then it is not usable.

There are, however, those who would dismiss our concentration on the task, 
saying that we do not even know enough about a theory of human tasks to support
them in design. There is a good argument here (to which we return in Chapter 15).
However, we can live with this confusion about what real tasks are because our
understanding of tasks at the moment is sufficient to give us direction in design. The
user’s current tasks are studied and then supported by computers, which can in 
turn affect the nature of the original task and cause it to evolve. To illustrate, word
processing has made it easy to manipulate paragraphs and reorder documents,
allowing writers a completely new freedom that has affected writing styles. No longer
is it vital to plan and construct text in an ordered fashion, since free-flowing prose
can easily be restructured at a later date. This evolution of task in turn affects the
design of the ideal system. However, we see this evolution as providing a motivating
force behind the system development cycle, rather than a refutation of the whole idea
of supportive design.

This word ‘task’ or the focus on accomplishing ‘work’ is also problematic when we
think of areas such as domestic appliances, consumer electronics and e-commerce.
There are three ‘use’ words that must all be true for a product to be successful; it
must be:

useful – accomplish what is required: play music, cook dinner, format a document;

usable – do it easily and naturally, without danger of error, etc.;

used – make people want to use it, be attractive, engaging, fun, etc.
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The last of these has not been a major factor until recently in HCI, but issues of 
motivation, enjoyment and experience are increasingly important. We are certainly
even further from having a unified theory of experience than of task.

The question of whether HCI, or more importantly the design of interactive sys-
tems and the user interface in particular, is a science or a craft discipline is an inter-
esting one. Does it involve artistic skill and fortuitous insight or reasoned methodical
science? Here we can draw an analogy with architecture. The most impressive struc-
tures, the most beautiful buildings, the innovative and imaginative creations that
provide aesthetic pleasure, all require inventive inspiration in design and a sense of
artistry, and in this sense the discipline is a craft. However, these structures also have
to be able to stand up to fulfill their purpose successfully, and to be able to do this
the architect has to use science. So it is for HCI: beautiful and/or novel interfaces are
artistically pleasing and capable of fulfilling the tasks required – a marriage of art and
science into a successful whole. We want to reuse lessons learned from the past about
how to achieve good results and avoid bad ones. For this we require both craft and
science. Innovative ideas lead to more usable systems, but in order to maximize the
potential benefit from the ideas, we need to understand not only that they work, but
how and why they work. This scientific rationalization allows us to reuse related con-
cepts in similar situations, in much the same way that architects can produce a bridge
and know that it will stand, since it is based upon tried and tested principles.

The craft–science tension becomes even more difficult when we consider novel
systems. Their increasing complexity means that our personal ideas of good and bad
are no longer enough; for a complex system to be well designed we need to rely on
something more than simply our intuition. Designers may be able to think about
how one user would want to act, but how about groups? And what about new media?
Our ideas of how best to share workloads or present video information are open to
debate and question even in non-computing situations, and the incorporation of one
version of good design into a computer system is quite likely to be unlike anyone
else’s version. Different people work in different ways, whilst different media color
the nature of the interaction; both can dramatically change the very nature of the
original task. In order to assist designers, it is unrealistic to assume that they can rely
on artistic skill and perfect insight to develop usable systems. Instead we have to pro-
vide them with an understanding of the concepts involved, a scientific view of the
reasons why certain things are successful whilst others are not, and then allow their
creative nature to feed off this information: creative flow, underpinned with science;
or maybe scientific method, accelerated by artistic insight. The truth is that HCI is
required to be both a craft and a science in order to be successful.

HCI IN THE CURRICULUM

If HCI involves both craft and science then it must, in part at least, be taught.
Imagination and skill may be qualities innate in the designer or developed through
experience, but the underlying theory must be learned. In the past, when computers
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were used primarily by expert specialists, concentration on the interface was a lux-
ury that was often relinquished. Now designers cannot afford to ignore the interface
in favour of the functionality of their systems: the two are too closely intertwined. If
the interface is poor, the functionality is obscured; if it is well designed, it will allow
the system’s functionality to support the user’s task.

Increasingly, therefore, computer science educators cannot afford to ignore HCI.
We would go as far as to claim that HCI should be integrated into every computer
science or software engineering course, either as a recurring feature of other modules
or, preferably, as a module itself. It should not be viewed as an ‘optional extra’
(although, of course, more advanced HCI options can complement a basic core
course). This view is shared by the ACM SIGCHI curriculum development group,
who propose a curriculum for such a core course [9]. The topics included in this
book, although developed without reference to this curriculum, cover the main
emphases of it, and include enough detail and coverage to support specialized
options as well.

In courses other than computer science, HCI may well be an option specializing
in a particular area, such as cognitive modeling or task analysis. Selected use of the
relevant chapters of this book can also support such a course.

HCI must be taken seriously by designers and educators if the requirement for
additional complexity in the system is to be matched by increased clarity and usabil-
ity in the interface. In this book we demonstrate how this can be done in practice.

DESIGN FOCUS

Quick fixes

You should expect to spend both time and money on interface design, just as you would with other
parts of a system. So in one sense there are no quick fixes. However, a few simple steps can make a
dramatic improvement.

Think ‘user’
Probably 90% of the value of any interface design technique is that it forces the designer to remember
that someone (and in particular someone else) will use the system under construction.

Try it out
Of course, many designers will build a system that they find easy and pleasant to use, and they find 
it incomprehensible that anyone else could have trouble with it. Simply sitting someone down with 
an early version of an interface (without the designer prompting them at each step!) is enormously 
valuable. Professional usability laboratories will have video equipment, one-way mirrors and other
sophisticated monitors, but a notebook and pencil and a home-video camera will suffice (more about
evaluation in Chapter 9).

Involve the users
Where possible, the eventual users should be involved in the design process. They have vital know-
ledge and will soon find flaws. A mechanical syringe was once being developed and a prototype was
demonstrated to hospital staff. Happily they quickly noticed the potentially fatal flaw in its interface. 



The doses were entered via a numeric keypad: an accidental keypress and the dose could be out by a
factor of 10! The production version had individual increment/decrement buttons for each digit (more
about participatory design in Chapter 13).

Iterate
People are complicated, so you won’t get it right first time. Programming an interface can be a very
difficult and time-consuming business. So, the result becomes precious and the builder will want 
to defend it and minimize changes. Making early prototypes less precious and easier to throw away is
crucial. Happily there are now many interface builder tools that aid this process. For example, mock-
ups can be quickly constructed using HyperCard on the Apple Macintosh or Visual Basic on the PC.
For visual and layout decisions, paper designs and simple models can be used (more about iterative
design in Chapter 5).

8 Introduction

Figure 0.1 Automatic syringe: setting the dose to 1372. The effect of one key slip before and after
user involvement
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1FOUNDATIONS

In this part we introduce the fundamental components of 
an interactive system: the human user, the computer system
itself and the nature of the interactive process. We then
present a view of the history of interactive systems by look-
ing at key interaction paradigms that have been significant.

Chapter 1 discusses the psychological and physiological
attributes of the user, providing us with a basic overview of
the capabilities and limitations that affect our ability to use
computer systems. It is only when we have an understand-
ing of the user at this level that we can understand what
makes for successful designs. Chapter 2 considers the 
computer in a similar way. Input and output devices are
described and explained and the effect that their individual
characteristics have on the interaction highlighted. The
computational power and memory of the computer is
another important component in determining what can be
achieved in the interaction, whilst due attention is also paid
to paper output since this forms one of the major uses 
of computers and users’ tasks today. Having approached
interaction from both the human and the computer side,
we then turn our attention to the dialog between them 
in Chapter 3, where we look at models of interaction. In
Chapter 4 we take a historical perspective on the evolution
of interactive systems and how they have increased the
usability of computers in general.
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OV E RV I E W

n Humans are limited in their capacity to process
information. This has important implications for design.

n Information is received and responses given via a
number of input and output channels:
– visual channel
– auditory channel
– haptic channel
– movement.

n Information is stored in memory:
– sensory memory
– short-term (working) memory
– long-term memory.

n Information is processed and applied:
– reasoning
– problem solving
– skill acquisition
– error.

n Emotion influences human capabilities.

n Users share common capabilities but are individuals
with differences, which should not be ignored.



12 Chapter 1 n The human

INTRODUCTION

This chapter is the first of four in which we introduce some of the ‘foundations’ of
HCI. We start with the human, the central character in any discussion of interactive
systems. The human, the user, is, after all, the one whom computer systems are de-
signed to assist. The requirements of the user should therefore be our first priority.

In this chapter we will look at areas of human psychology coming under the general
banner of cognitive psychology. This may seem a far cry from designing and building
interactive computer systems, but it is not. In order to design something for some-
one, we need to understand their capabilities and limitations. We need to know if
there are things that they will find difficult or, even, impossible. It will also help us to
know what people find easy and how we can help them by encouraging these things.
We will look at aspects of cognitive psychology which have a bearing on the use of com-
puter systems: how humans perceive the world around them, how they store and
process information and solve problems, and how they physically manipulate objects.

We have already said that we will restrict our study to those things that are relev-
ant to HCI. One way to structure this discussion is to think of the user in a way that
highlights these aspects. In other words, to think of a simplified model of what is
actually going on. Many models have been proposed and it useful to consider one of
the most influential in passing, to understand the context of the discussion that is to
follow. In 1983, Card, Moran and Newell [56] described the Model Human Processor,
which is a simplified view of the human processing involved in interacting with 
computer systems. The model comprises three subsystems: the perceptual system,
handling sensory stimulus from the outside world, the motor system, which controls
actions, and the cognitive system, which provides the processing needed to connect
the two. Each of these subsystems has its own processor and memory, although 
obviously the complexity of these varies depending on the complexity of the tasks 
the subsystem has to perform. The model also includes a number of principles of
operation which dictate the behavior of the systems under certain conditions.

We will use the analogy of the user as an information processing system, but in 
our model make the analogy closer to that of a conventional computer system.
Information comes in, is stored and processed, and information is passed out. We
will therefore discuss three components of this system: input–output, memory and
processing. In the human, we are dealing with an intelligent information-processing
system, and processing therefore includes problem solving, learning, and, con-
sequently, making mistakes. This model is obviously a simplification of the real 
situation, since memory and processing are required at all levels, as we have seen in
the Model Human Processor. However, it is convenient as a way of grasping how
information is handled by the human system. The human, unlike the computer, is
also influenced by external factors such as the social and organizational environ-
ment, and we need to be aware of these influences as well. We will ignore such 
factors for now and concentrate on the human’s information processing capabilities
only. We will return to social and organizational influences in Chapter 3 and, in
more detail, in Chapter 13.

1.1



1.2 Input–output channels 13

In this chapter, we will first look at the human’s input–output channels, the senses
and responders or effectors. This will involve some low-level processing. Secondly,
we will consider human memory and how it works. We will then think about how
humans perform complex problem solving, how they learn and acquire skills, and
why they make mistakes. Finally, we will discuss how these things can help us in the
design of computer systems.

INPUT–OUTPUT CHANNELS

A person’s interaction with the outside world occurs through information being
received and sent: input and output. In an interaction with a computer the user
receives information that is output by the computer, and responds by providing
input to the computer – the user’s output becomes the computer’s input and vice
versa. Consequently the use of the terms input and output may lead to confusion so
we shall blur the distinction somewhat and concentrate on the channels involved.
This blurring is appropriate since, although a particular channel may have a primary
role as input or output in the interaction, it is more than likely that it is also used in
the other role. For example, sight may be used primarily in receiving information
from the computer, but it can also be used to provide information to the computer,
for example by fixating on a particular screen point when using an eyegaze system.

Input in the human occurs mainly through the senses and output through the
motor control of the effectors. There are five major senses: sight, hearing, touch, taste
and smell. Of these, the first three are the most important to HCI. Taste and smell
do not currently play a significant role in HCI, and it is not clear whether they could
be exploited at all in general computer systems, although they could have a role to
play in more specialized systems (smells to give warning of malfunction, for example)
or in augmented reality systems. However, vision, hearing and touch are central.

Similarly there are a number of effectors, including the limbs, fingers, eyes, head
and vocal system. In the interaction with the computer, the fingers play the primary
role, through typing or mouse control, with some use of voice, and eye, head and
body position.

Imagine using a personal computer (PC) with a mouse and a keyboard. The appli-
cation you are using has a graphical interface, with menus, icons and windows. In
your interaction with this system you receive information primarily by sight, from
what appears on the screen. However, you may also receive information by ear: for
example, the computer may ‘beep’ at you if you make a mistake or to draw attention
to something, or there may be a voice commentary in a multimedia presentation.
Touch plays a part too in that you will feel the keys moving (also hearing the ‘click’)
or the orientation of the mouse, which provides vital feedback about what you have
done. You yourself send information to the computer using your hands, either 
by hitting keys or moving the mouse. Sight and hearing do not play a direct role 
in sending information in this example, although they may be used to receive 

1.2
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information from a third source (for example, a book, or the words of another per-
son) which is then transmitted to the computer.

In this section we will look at the main elements of such an interaction, first con-
sidering the role and limitations of the three primary senses and going on to consider
motor control.

1.2.1 Vision

Human vision is a highly complex activity with a range of physical and perceptual
limitations, yet it is the primary source of information for the average person. 
We can roughly divide visual perception into two stages: the physical reception of 
the stimulus from the outside world, and the processing and interpretation of that
stimulus. On the one hand the physical properties of the eye and the visual system
mean that there are certain things that cannot be seen by the human; on the other
the interpretative capabilities of visual processing allow images to be constructed
from incomplete information. We need to understand both stages as both influence
what can and cannot be perceived visually by a human being, which in turn directly
affects the way that we design computer systems. We will begin by looking at the 
eye as a physical receptor, and then go on to consider the processing involved in 
basic vision.

The human eye

Vision begins with light. The eye is a mechanism for receiving light and transform-
ing it into electrical energy. Light is reflected from objects in the world and their
image is focussed upside down on the back of the eye. The receptors in the eye 
transform it into electrical signals which are passed to the brain.

The eye has a number of important components (see Figure 1.1) which we will
look at in more detail. The cornea and lens at the front of the eye focus the light into
a sharp image on the back of the eye, the retina. The retina is light sensitive and con-
tains two types of photoreceptor: rods and cones.

Rods are highly sensitive to light and therefore allow us to see under a low level of
illumination. However, they are unable to resolve fine detail and are subject to light
saturation. This is the reason for the temporary blindness we get when moving from
a darkened room into sunlight: the rods have been active and are saturated by the
sudden light. The cones do not operate either as they are suppressed by the rods. We
are therefore temporarily unable to see at all. There are approximately 120 million
rods per eye which are mainly situated towards the edges of the retina. Rods there-
fore dominate peripheral vision.

Cones are the second type of receptor in the eye. They are less sensitive to light
than the rods and can therefore tolerate more light. There are three types of cone,
each sensitive to a different wavelength of light. This allows color vision. The eye has
approximately 6 million cones, mainly concentrated on the fovea, a small area of the
retina on which images are fixated.
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Although the retina is mainly covered with photoreceptors there is one blind spot
where the optic nerve enters the eye. The blind spot has no rods or cones, yet our visual
system compensates for this so that in normal circumstances we are unaware of it.

The retina also has specialized nerve cells called ganglion cells. There are two types:
X-cells, which are concentrated in the fovea and are responsible for the early detec-
tion of pattern; and Y-cells which are more widely distributed in the retina and are
responsible for the early detection of movement. The distribution of these cells
means that, while we may not be able to detect changes in pattern in peripheral
vision, we can perceive movement.

Visual perception

Understanding the basic construction of the eye goes some way to explaining the
physical mechanisms of vision but visual perception is more than this. The informa-
tion received by the visual apparatus must be filtered and passed to processing ele-
ments which allow us to recognize coherent scenes, disambiguate relative distances
and differentiate color. We will consider some of the capabilities and limitations of
visual processing later, but first we will look a little more closely at how we perceive
size and depth, brightness and color, each of which is crucial to the design of effective
visual interfaces.

Figure 1.1 The human eye
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Perceiving size and depth Imagine you are standing on a hilltop. Beside you on the
summit you can see rocks, sheep and a small tree. On the hillside is a farmhouse with
outbuildings and farm vehicles. Someone is on the track, walking toward the 
summit. Below in the valley is a small market town.

Even in describing such a scene the notions of size and distance predominate. Our
visual system is easily able to interpret the images which it receives to take account
of these things. We can identify similar objects regardless of the fact that they appear
to us to be of vastly different sizes. In fact, we can use this information to judge 
distances.

So how does the eye perceive size, depth and relative distances? To understand this
we must consider how the image appears on the retina. As we noted in the previous
section, reflected light from the object forms an upside-down image on the retina.
The size of that image is specified as a visual angle. Figure 1.2 illustrates how the
visual angle is calculated.

If we were to draw a line from the top of the object to a central point on the front
of the eye and a second line from the bottom of the object to the same point, the
visual angle of the object is the angle between these two lines. Visual angle is affected
by both the size of the object and its distance from the eye. Therefore if two objects
are at the same distance, the larger one will have the larger visual angle. Similarly, 
if two objects of the same size are placed at different distances from the eye, the 

DESIGN FOCUS

Getting noticed

The extensive knowledge about the human visual system can be brought to bear in practical design. For
example, our ability to read or distinguish falls off inversely as the distance from our point of focus
increases. This is due to the fact that the cones are packed more densely towards the center of our
visual field. You can see this in the following image. Fixate on the dot in the center. The letters on the
left should all be equally readable, those on the right all equally harder.

This loss of discrimination sets limits on the amount that can be seen or read without moving one’s
eyes. A user concentrating on the middle of the screen cannot be expected to read help text on the
bottom line.

However, although our ability to discriminate static text diminishes, the rods, which are concentrated
more in the outer parts of our visual field, are very sensitive to changes; hence we see movement well
at the edge of our vision. So if you want a user to see an error message at the bottom of the screen it
had better be flashing! On the other hand clever moving icons, however impressive they are, will be
distracting even when the user is not looking directly at them.
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furthest one will have the smaller visual angle. The visual angle indicates how much
of the field of view is taken by the object. The visual angle measurement is given in
either degrees or minutes of arc, where 1 degree is equivalent to 60 minutes of arc, 
and 1 minute of arc to 60 seconds of arc.

So how does an object’s visual angle affect our perception of its size? First, if 
the visual angle of an object is too small we will be unable to perceive it at all. Visual
acuity is the ability of a person to perceive fine detail. A number of measurements
have been established to test visual acuity, most of which are included in standard
eye tests. For example, a person with normal vision can detect a single line if it has a
visual angle of 0.5 seconds of arc. Spaces between lines can be detected at 30 seconds
to 1 minute of visual arc. These represent the limits of human visual acuity.

Assuming that we can perceive the object, does its visual angle affect our per-
ception of its size? Given that the visual angle of an object is reduced as it gets 
further away, we might expect that we would perceive the object as smaller. In fact,
our perception of an object’s size remains constant even if its visual angle changes.
So a person’s height is perceived as constant even if they move further from you. 
This is the law of size constancy, and it indicates that our perception of size relies on
factors other than the visual angle.

One of these factors is our perception of depth. If we return to the hilltop scene
there are a number of cues which we can use to determine the relative positions and
distances of the objects which we see. If objects overlap, the object which is partially
covered is perceived to be in the background, and therefore further away. Similarly,
the size and height of the object in our field of view provides a cue to its distance. 

Figure 1.2 Visual angle
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A third cue is familiarity: if we expect an object to be of a certain size then we can
judge its distance accordingly. This has been exploited for humour in advertising:
one advertisement for beer shows a man walking away from a bottle in the fore-
ground. As he walks, he bumps into the bottle, which is in fact a giant one in the
background!

Perceiving brightness A second aspect of visual perception is the perception of
brightness. Brightness is in fact a subjective reaction to levels of light. It is affected by
luminance which is the amount of light emitted by an object. The luminance of an
object is dependent on the amount of light falling on the object’s surface and its
reflective properties. Luminance is a physical characteristic and can be measured
using a photometer. Contrast is related to luminance: it is a function of the luminance
of an object and the luminance of its background.

Although brightness is a subjective response, it can be described in terms of the
amount of luminance that gives a just noticeable difference in brightness. However,
the visual system itself also compensates for changes in brightness. In dim lighting,
the rods predominate vision. Since there are fewer rods on the fovea, objects in low
lighting can be seen less easily when fixated upon, and are more visible in peripheral
vision. In normal lighting, the cones take over.

Visual acuity increases with increased luminance. This may be an argument 
for using high display luminance. However, as luminance increases, flicker also
increases. The eye will perceive a light switched on and off rapidly as constantly 
on. But if the speed of switching is less than 50 Hz then the light is perceived to
flicker. In high luminance flicker can be perceived at over 50 Hz. Flicker is also 
more noticeable in peripheral vision. This means that the larger the display (and
consequently the more peripheral vision that it occupies), the more it will appear 
to flicker.

Perceiving color A third factor that we need to consider is perception of color.
Color is usually regarded as being made up of three components: hue, intensity and
saturation. Hue is determined by the spectral wavelength of the light. Blues have short
wavelengths, greens medium and reds long. Approximately 150 different hues can be
discriminated by the average person. Intensity is the brightness of the color, and 
saturation is the amount of whiteness in the color. By varying these two, we can 
perceive in the region of 7 million different colors. However, the number of colors
that can be identified by an individual without training is far fewer (in the region 
of 10).

The eye perceives color because the cones are sensitive to light of different wave-
lengths. There are three different types of cone, each sensitive to a different color
(blue, green and red). Color vision is best in the fovea, and worst at the periphery
where rods predominate. It should also be noted that only 3–4% of the fovea is
occupied by cones which are sensitive to blue light, making blue acuity lower.

Finally, we should remember that around 8% of males and 1% of females suffer
from color blindness, most commonly being unable to discriminate between red and
green.
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The capabilities and limitations of visual processing

In considering the way in which we perceive images we have already encountered
some of the capabilities and limitations of the human visual processing system.
However, we have concentrated largely on low-level perception. Visual processing
involves the transformation and interpretation of a complete image, from the light
that is thrown onto the retina. As we have already noted, our expectations affect the
way an image is perceived. For example, if we know that an object is a particular size,
we will perceive it as that size no matter how far it is from us.

Visual processing compensates for the movement of the image on the retina 
which occurs as we move around and as the object which we see moves. Although
the retinal image is moving, the image that we perceive is stable. Similarly, color and
brightness of objects are perceived as constant, in spite of changes in luminance.

This ability to interpret and exploit our expectations can be used to resolve ambi-
guity. For example, consider the image shown in Figure 1.3. What do you perceive?
Now consider Figure 1.4 and Figure 1.5. The context in which the object appears

Figure 1.3 An ambiguous shape?

Figure 1.4 ABC
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allows our expectations to clearly disambiguate the interpretation of the object, as
either a B or a 13.

However, it can also create optical illusions. For example, consider Figure 1.6.
Which line is longer? Most people when presented with this will say that the top 
line is longer than the bottom. In fact, the two lines are the same length. This may be
due to a false application of the law of size constancy: the top line appears like a con-
cave edge, the bottom like a convex edge. The former therefore seems further away
than the latter and is therefore scaled to appear larger. A similar illusion is the Ponzo
illusion (Figure 1.7). Here the top line appears longer, owing to the distance effect,
although both lines are the same length. These illusions demonstrate that our per-
ception of size is not completely reliable.

Another illusion created by our expectations compensating an image is the proof-
reading illusion. Read the text in Figure 1.8 quickly. What does it say? Most people
reading this rapidly will read it correctly, although closer inspection shows that the
word ‘the’ is repeated in the second and third line.

These are just a few examples of how the visual system compensates, and some-
times overcompensates, to allow us to perceive the world around us.

Figure 1.5 12 13 14

Figure 1.6 The Muller–Lyer illusion – which line is longer?



1.2 Input–output channels 21

Figure 1.7 The Ponzo illusion – are these the same size?

Figure 1.8 Is this text correct?
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Reading

So far we have concentrated on the perception of images in general. However, 
the perception and processing of text is a special case that is important to interface
design, which invariably requires some textual display. We will therefore end 
this section by looking at reading. There are several stages in the reading process.
First, the visual pattern of the word on the page is perceived. It is then decoded 
with reference to an internal representation of language. The final stages of lan-
guage processing include syntactic and semantic analysis and operate on phrases or
sentences.

We are most concerned with the first two stages of this process and how they
influence interface design. During reading, the eye makes jerky movements called
saccades followed by fixations. Perception occurs during the fixation periods, which
account for approximately 94% of the time elapsed. The eye moves backwards over
the text as well as forwards, in what are known as regressions. If the text is complex
there will be more regressions.

Adults read approximately 250 words a minute. It is unlikely that words are
scanned serially, character by character, since experiments have shown that words can
be recognized as quickly as single characters. Instead, familiar words are recognized
using word shape. This means that removing the word shape clues (for example, by
capitalizing words) is detrimental to reading speed and accuracy.

The speed at which text can be read is a measure of its legibility. Experiments have
shown that standard font sizes of 9 to 12 points are equally legible, given pro-
portional spacing between lines [346]. Similarly line lengths of between 2.3 and 5.2
inches (58 and 132 mm) are equally legible. However, there is evidence that reading
from a computer screen is slower than from a book [244]. This is thought to be 
due to a number of factors including a longer line length, fewer words to a page, 

DESIGN FOCUS

Where’s the middle?

Optical illusions highlight the differences between the way things are and the way we perceive them –
and in interface design we need to be aware that we will not always perceive things exactly as they are.
The way that objects are composed together will affect the way we perceive them, and we do not per-
ceive geometric shapes exactly as they are drawn. For example, we tend to magnify horizontal lines and
reduce vertical. So a square needs to be slightly increased in height to appear square and lines will
appear thicker if horizontal rather than vertical.

Optical illusions also affect page symmetry. We tend to see the center of a page as being a little above
the actual center – so if a page is arranged symmetrically around the actual center, we will see it as too
low down. In graphic design this is known as the optical center – and bottom page margins tend to be
increased by 50% to compensate.
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orientation and the familiarity of the medium of the page. These factors can of
course be reduced by careful design of textual interfaces.

A final word about the use of contrast in visual display: a negative contrast (dark
characters on a light screen) provides higher luminance and, therefore, increased
acuity, than a positive contrast. This will in turn increase legibility. However, it will
also be more prone to flicker. Experimental evidence suggests that in practice negat-
ive contrast displays are preferred and result in more accurate performance [30].

1.2.2 Hearing

The sense of hearing is often considered secondary to sight, but we tend to under-
estimate the amount of information that we receive through our ears. Close your eyes
for a moment and listen. What sounds can you hear? Where are they coming from?
What is making them? As I sit at my desk I can hear cars passing on the road outside,
machinery working on a site nearby, the drone of a plane overhead and bird song.
But I can also tell where the sounds are coming from, and estimate how far away they
are. So from the sounds I hear I can tell that a car is passing on a particular road near
my house, and which direction it is traveling in. I know that building work is in
progress in a particular location, and that a certain type of bird is perched in the tree
in my garden.

The auditory system can convey a lot of information about our environment. But
how does it work?

The human ear

Just as vision begins with light, hearing begins with vibrations in the air or sound
waves. The ear receives these vibrations and transmits them, through various stages,
to the auditory nerves. The ear comprises three sections, commonly known as the
outer ear, middle ear and inner ear.

The outer ear is the visible part of the ear. It has two parts: the pinna, which is 
the structure that is attached to the sides of the head, and the auditory canal, along
which sound waves are passed to the middle ear. The outer ear serves two purposes.
First, it protects the sensitive middle ear from damage. The auditory canal contains
wax which prevents dust, dirt and over-inquisitive insects reaching the middle ear. 
It also maintains the middle ear at a constant temperature. Secondly, the pinna and
auditory canal serve to amplify some sounds.

The middle ear is a small cavity connected to the outer ear by the tympanic
membrane, or ear drum, and to the inner ear by the cochlea. Within the cavity are the
ossicles, the smallest bones in the body. Sound waves pass along the auditory canal
and vibrate the ear drum which in turn vibrates the ossicles, which transmit the
vibrations to the cochlea, and so into the inner ear. This ‘relay’ is required because,
unlike the air-filled outer and middle ears, the inner ear is filled with a denser
cochlean liquid. If passed directly from the air to the liquid, the transmission of the
sound waves would be poor. By transmitting them via the ossicles the sound waves
are concentrated and amplified.
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The waves are passed into the liquid-filled cochlea in the inner ear. Within 
the cochlea are delicate hair cells or cilia that bend because of the vibrations in the
cochlean liquid and release a chemical transmitter which causes impulses in the
auditory nerve.

Processing sound

As we have seen, sound is changes or vibrations in air pressure. It has a number of
characteristics which we can differentiate. Pitch is the frequency of the sound. A low
frequency produces a low pitch, a high frequency, a high pitch. Loudness is propor-
tional to the amplitude of the sound; the frequency remains constant. Timbre relates
to the type of the sound: sounds may have the same pitch and loudness but be made
by different instruments and so vary in timbre. We can also identify a sound’s loca-
tion, since the two ears receive slightly different sounds, owing to the time difference
between the sound reaching the two ears and the reduction in intensity caused by the
sound waves reflecting from the head.

The human ear can hear frequencies from about 20 Hz to 15 kHz. It can distin-
guish frequency changes of less than 1.5 Hz at low frequencies but is less accurate at
high frequencies. Different frequencies trigger activity in neurons in different parts
of the auditory system, and cause different rates of firing of nerve impulses.

The auditory system performs some filtering of the sounds received, allowing us
to ignore background noise and concentrate on important information. We are
selective in our hearing, as illustrated by the cocktail party effect, where we can pick
out our name spoken across a crowded noisy room. However, if sounds are too loud,
or frequencies too similar, we are unable to differentiate sound.

As we have seen, sound can convey a remarkable amount of information. It is
rarely used to its potential in interface design, usually being confined to warning
sounds and notifications. The exception is multimedia, which may include music,
voice commentary and sound effects. However, the ear can differentiate quite subtle
sound changes and can recognize familiar sounds without concentrating attention
on the sound source. This suggests that sound could be used more extensively in
interface design, to convey information about the system state, for example. This is
discussed in more detail in Chapter 10.

Worked exercise Suggest ideas for an interface which uses the properties of sound effectively.

Answer You might approach this exercise by considering how sound could be added to an appli-
cation with which you are familiar. Use your imagination. This is also a good subject for
a literature survey (starting with the references in Chapter 10).

Speech sounds can obviously be used to convey information. This is useful not only for
the visually impaired but also for any application where the user’s attention has to be
divided (for example, power plant control, flight control, etc.). Uses of non-speech
sounds include the following:

n Attention – to attract the user’s attention to a critical situation or to the end of a
process, for example.
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n Status information – continuous background sounds can be used to convey status
information. For example, monitoring the progress of a process (without the need
for visual attention).

n Confirmation – a sound associated with an action to confirm that the action has
been carried out. For example, associating a sound with deleting a file.

n Navigation – using changing sound to indicate where the user is in a system. For
example, what about sound to support navigation in hypertext?

1.2.3 Touch

The third and last of the senses that we will consider is touch or haptic perception.
Although this sense is often viewed as less important than sight or hearing, imagine
life without it. Touch provides us with vital information about our environment. 
It tells us when we touch something hot or cold, and can therefore act as a warning. It
also provides us with feedback when we attempt to lift an object, for example. Con-
sider the act of picking up a glass of water. If we could only see the glass and not 
feel when our hand made contact with it or feel its shape, the speed and accuracy of
the action would be reduced. This is the experience of users of certain virtual reality
games: they can see the computer-generated objects which they need to manipulate
but they have no physical sensation of touching them. Watching such users can be
an informative and amusing experience! Touch is therefore an important means of
feedback, and this is no less so in using computer systems. Feeling buttons depress is
an important part of the task of pressing the button. Also, we should be aware that,
although for the average person, haptic perception is a secondary source of informa-
tion, for those whose other senses are impaired, it may be vitally important. For such
users, interfaces such as braille may be the primary source of information in the
interaction. We should not therefore underestimate the importance of touch.

The apparatus of touch differs from that of sight and hearing in that it is not local-
ized. We receive stimuli through the skin. The skin contains three types of sensory
receptor: thermoreceptors respond to heat and cold, nociceptors respond to intense
pressure, heat and pain, and mechanoreceptors respond to pressure. It is the last of
these that we are concerned with in relation to human–computer interaction.

There are two kinds of mechanoreceptor, which respond to different types of 
pressure. Rapidly adapting mechanoreceptors respond to immediate pressure as the
skin is indented. These receptors also react more quickly with increased pressure.
However, they stop responding if continuous pressure is applied. Slowly adapting
mechanoreceptors respond to continuously applied pressure.

Although the whole of the body contains such receptors, some areas have greater
sensitivity or acuity than others. It is possible to measure the acuity of different areas
of the body using the two-point threshold test. Take two pencils, held so their tips are
about 12 mm apart. Touch the points to your thumb and see if you can feel two
points. If you cannot, move the points a little further apart. When you can feel two
points, measure the distance between them. The greater the distance, the lower the
sensitivity. You can repeat this test on different parts of your body. You should find
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that the measure on the forearm is around 10 times that of the finger or thumb. The
fingers and thumbs have the highest acuity.

A second aspect of haptic perception is kinesthesis: awareness of the position of 
the body and limbs. This is due to receptors in the joints. Again there are three 
types: rapidly adapting, which respond when a limb is moved in a particular direc-
tion; slowly adapting, which respond to both movement and static position; and
positional receptors, which only respond when a limb is in a static position. This 
perception affects both comfort and performance. For example, for a touch typist,
awareness of the relative positions of the fingers and feedback from the keyboard are
very important.

1.2.4 Movement

Before leaving this section on the human’s input–output channels, we need to 
consider motor control and how the way we move affects our interaction with com-
puters. A simple action such as hitting a button in response to a question involves 
a number of processing stages. The stimulus (of the question) is received through 
the sensory receptors and transmitted to the brain. The question is processed and a
valid response generated. The brain then tells the appropriate muscles to respond.
Each of these stages takes time, which can be roughly divided into reaction time and
movement time.

Movement time is dependent largely on the physical characteristics of the subjects:
their age and fitness, for example. Reaction time varies according to the sensory
channel through which the stimulus is received. A person can react to an auditory

Handling the goods

E-commerce has become very successful in some areas of sales, such as travel services,
books and CDs, and food. However, in some retail areas, such as clothes shopping, e-commerce
has been less successful. Why?

When buying train and airline tickets and, to some extent, books and food, the experience of shop-
ping is less important than the convenience. So, as long as we know what we want, we are happy
to shop online. With clothes, the experience of shopping is far more important. We need to be
able to handle the goods, feel the texture of the material, check the weight to test quality. Even if
we know that something will fit us we still want to be able to handle it before buying.

Research into haptic interaction (see Chapter 2 and Chapter 10) is looking at ways of solving this
problem. By using special force feedback and tactile hardware, users are able to feel surfaces 
and shape. For example, a demonstration environment called TouchCity allows people to walk
around a virtual shopping mall, pick up products and feel their texture and weight. A key problem
with the commercial use of such an application, however, is that the haptic experience requires
expensive hardware not yet available to the average e-shopper. However, in future, such immer-
sive e-commerce experiences are likely to be the norm. (See www.novint.com/)
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signal in approximately 150 ms, to a visual signal in 200 ms and to pain in 700 ms.
However, a combined signal will result in the quickest response. Factors such as skill
or practice can reduce reaction time, and fatigue can increase it.

A second measure of motor skill is accuracy. One question that we should ask is
whether speed of reaction results in reduced accuracy. This is dependent on the task
and the user. In some cases, requiring increased reaction time reduces accuracy. This
is the premise behind many arcade and video games where less skilled users fail at
levels of play that require faster responses. However, for skilled operators this is not
necessarily the case. Studies of keyboard operators have shown that, although the
faster operators were up to twice as fast as the others, the slower ones made 10 times
the errors.

Speed and accuracy of movement are important considerations in the design 
of interactive systems, primarily in terms of the time taken to move to a particular
target on a screen. The target may be a button, a menu item or an icon, for example.
The time taken to hit a target is a function of the size of the target and the distance
that has to be moved. This is formalized in Fitts’ law [135]. There are many vari-
ations of this formula, which have varying constants, but they are all very similar.
One common form is

Movement time = a + b log2(distance/size + 1)

where a and b are empirically determined constants.
This affects the type of target we design. Since users will find it more difficult 

to manipulate small objects, targets should generally be as large as possible and 
the distance to be moved as small as possible. This has led to suggestions that pie-
chart-shaped menus are preferable to lists since all options are equidistant. However,
the trade-off is increased use of screen estate, so the choice may not be so simple. 
If lists are used, the most frequently used options can be placed closest to the user’s
start point (for example, at the top of the menu). The implications of Fitts’ law in
design are discussed in more detail in Chapter 12.

HUMAN MEMORY

Have you ever played the memory game? The idea is that each player has to recount
a list of objects and add one more to the end. There are many variations but the
objects are all loosely related: ‘I went to the market and bought a lemon, some
oranges, bacon . . .’ or ‘I went to the zoo and saw monkeys, and lions, and tigers . . .’
and so on. As the list grows objects are missed out or recalled in the wrong order and
so people are eliminated from the game. The winner is the person remaining at the
end. Such games rely on our ability to store and retrieve information, even seemingly
arbitrary items. This is the job of our memory system.

Indeed, much of our everyday activity relies on memory. As well as storing all our
factual knowledge, our memory contains our knowledge of actions or procedures. 

1.3
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It allows us to repeat actions, to use language, and to use new information received
via our senses. It also gives us our sense of identity, by preserving information from
our past experiences.

But how does our memory work? How do we remember arbitrary lists such as
those generated in the memory game? Why do some people remember more easily
than others? And what happens when we forget?

In order to answer questions such as these, we need to understand some of the
capabilities and limitations of human memory. Memory is the second part of our
model of the human as an information-processing system. However, as we noted
earlier, such a division is simplistic since, as we shall see, memory is associated with
each level of processing. Bearing this in mind, we will consider the way in which
memory is structured and the activities that take place within the system.

It is generally agreed that there are three types of memory or memory function:
sensory buffers, short-term memory or working memory, and long-term memory. There
is some disagreement as to whether these are three separate systems or different
functions of the same system. We will not concern ourselves here with the details 
of this debate, which is discussed in detail by Baddeley [21], but will indicate the 
evidence used by both sides as we go along. For our purposes, it is sufficient to note
three separate types of memory. These memories interact, with information being
processed and passed between memory stores, as shown in Figure 1.9.

1.3.1 Sensory memory

The sensory memories act as buffers for stimuli received through the senses. A 
sensory memory exists for each sensory channel: iconic memory for visual stimuli,
echoic memory for aural stimuli and haptic memory for touch. These memories are
constantly overwritten by new information coming in on these channels.

We can demonstrate the existence of iconic memory by moving a finger in front
of the eye. Can you see it in more than one place at once? This indicates a persistence
of the image after the stimulus has been removed. A similar effect is noticed most
vividly at firework displays where moving sparklers leave a persistent image.
Information remains in iconic memory very briefly, in the order of 0.5 seconds.

Similarly, the existence of echoic memory is evidenced by our ability to ascertain
the direction from which a sound originates. This is due to information being
received by both ears. However, since this information is received at different times,
we must store the stimulus in the meantime. Echoic memory allows brief ‘play-back’

Figure 1.9 A model of the structure of memory
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of information. Have you ever had someone ask you a question when you are 
reading? You ask them to repeat the question, only to realize that you know what was
asked after all. This experience, too, is evidence of the existence of echoic memory.

Information is passed from sensory memory into short-term memory by atten-
tion, thereby filtering the stimuli to only those which are of interest at a given time.
Attention is the concentration of the mind on one out of a number of competing
stimuli or thoughts. It is clear that we are able to focus our attention selectively,
choosing to attend to one thing rather than another. This is due to the limited capa-
city of our sensory and mental processes. If we did not selectively attend to the 
stimuli coming into our senses, we would be overloaded. We can choose which stimuli
to attend to, and this choice is governed to an extent by our arousal, our level of
interest or need. This explains the cocktail party phenomenon mentioned earlier: 
we can attend to one conversation over the background noise, but we may choose 
to switch our attention to a conversation across the room if we hear our name 
mentioned. Information received by sensory memories is quickly passed into a more
permanent memory store, or overwritten and lost.

1.3.2 Short-term memory

Short-term memory or working memory acts as a ‘scratch-pad’ for temporary recall
of information. It is used to store information which is only required fleetingly. For
example, calculate the multiplication 35 × 6 in your head. The chances are that you
will have done this calculation in stages, perhaps 5 × 6 and then 30 × 6 and added 
the results; or you may have used the fact that 6 = 2 × 3 and calculated 2 × 35 = 70
followed by 3 × 70. To perform calculations such as this we need to store the inter-
mediate stages for use later. Or consider reading. In order to comprehend this 
sentence you need to hold in your mind the beginning of the sentence as you read
the rest. Both of these tasks use short-term memory.

Short-term memory can be accessed rapidly, in the order of 70 ms. However, it
also decays rapidly, meaning that information can only be held there temporarily, in
the order of 200 ms.

Short-term memory also has a limited capacity. There are two basic methods for
measuring memory capacity. The first involves determining the length of a sequence
which can be remembered in order. The second allows items to be freely recalled in
any order. Using the first measure, the average person can remember 7 ± 2 digits.
This was established in experiments by Miller [234]. Try it. Look at the following
number sequence:

265397620853

Now write down as much of the sequence as you can remember. Did you get it all
right? If not, how many digits could you remember? If you remembered between five
and nine digits your digit span is average.

Now try the following sequence:

44 113 245 8920
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Did you recall that more easily? Here the digits are grouped or chunked. A general-
ization of the 7 ± 2 rule is that we can remember 7 ± 2 chunks of information.
Therefore chunking information can increase the short-term memory capacity. The
limited capacity of short-term memory produces a subconscious desire to create
chunks, and so optimize the use of the memory. The successful formation of a chunk
is known as closure. This process can be generalized to account for the desire to com-
plete or close tasks held in short-term memory. If a subject fails to do this or is pre-
vented from doing so by interference, the subject is liable to lose track of what she is
doing and make consequent errors.

DESIGN FOCUS

Cashing in

Closure gives you a nice ‘done it’ when we complete some part of a task. At this point our minds have
a tendency to flush short-term memory in order to get on with the next job. Early automatic teller
machines (ATMs) gave the customer money before returning their bank card. On receiving the money
the customer would reach closure and hence often forget to take the card. Modern ATMs return the
card first! 

The sequence of chunks given above also makes use of pattern abstraction: it is
written in the form of a UK telephone number which makes it easier to remember.
We may even recognize the first sets of digits as the international code for the UK
and the dialing code for Leeds – chunks of information. Patterns can be useful as aids
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to memory. For example, most people would have difficulty remembering the fol-
lowing sequence of chunks:

HEC ATR ANU PTH ETR EET

However, if you notice that by moving the last character to the first position, you get
the statement ‘the cat ran up the tree’, the sequence is easy to recall.

In experiments where subjects were able to recall words freely, evidence shows that
recall of the last words presented is better than recall of those in the middle [296].
This is known as the recency effect. However, if the subject is asked to perform
another task between presentation and recall (for example, counting backwards) the
recency effect is eliminated. The recall of the other words is unaffected. This suggests
that short-term memory recall is damaged by interference of other information.
However, the fact that this interference does not affect recall of earlier items provides
some evidence for the existence of separate long-term and short-term memories. The
early items are held in a long-term store which is unaffected by the recency effect.

Interference does not necessarily impair recall in short-term memory. Baddeley asked
subjects to remember six-digit numbers and attend to sentence processing at the same
time [21]. They were asked to answer questions on sentences, such as ‘A precedes B:
AB is true or false?’. Surprisingly, this did not result in interference, suggesting that
in fact short-term memory is not a unitary system but is made up of a number of
components, including a visual channel and an articulatory channel. The task of sen-
tence processing used the visual channel, while the task of remembering digits used
the articulatory channel, so interference only occurs if tasks utilize the same channel.

These findings led Baddeley to propose a model of working memory that incorp-
orated a number of elements together with a central processing executive. This is
illustrated in Figure 1.10.

Figure 1.10 A more detailed model of short-term memory
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1.3.3 Long-term memory

If short-term memory is our working memory or ‘scratch-pad’, long-term memory
is our main resource. Here we store factual information, experiential knowledge,
procedural rules of behavior – in fact, everything that we ‘know’. It differs from
short-term memory in a number of significant ways. First, it has a huge, if not unlim-
ited, capacity. Secondly, it has a relatively slow access time of approximately a tenth
of a second. Thirdly, forgetting occurs more slowly in long-term memory, if at all.
These distinctions provide further evidence of a memory structure with several parts.

Long-term memory is intended for the long-term storage of information.
Information is placed there from working memory through rehearsal. Unlike work-
ing memory there is little decay: long-term recall after minutes is the same as that
after hours or days.

Long-term memory structure

There are two types of long-term memory: episodic memory and semantic memory.
Episodic memory represents our memory of events and experiences in a serial form.
It is from this memory that we can reconstruct the actual events that took place at a
given point in our lives. Semantic memory, on the other hand, is a structured record
of facts, concepts and skills that we have acquired. The information in semantic
memory is derived from that in our episodic memory, such that we can learn new
facts or concepts from our experiences.

Semantic memory is structured in some way to allow access to information, 
representation of relationships between pieces of information, and inference. One
model for the way in which semantic memory is structured is as a network. Items are

DESIGN FOCUS

7 ± 2 revisited

When we looked at short-term memory, we noted the general rule that people can hold 7 ± 2 items
or chunks of information in short-term memory. It is a principle that people tend to remember but it
can be misapplied. For example, it is often suggested that this means that lists, menus and other groups
of items should be designed to be no more than 7 items long. But use of menus and lists of course has
little to do with short-term memory – they are available in the environment as cues and so do not need
to be remembered.

On the other hand the 7 ± 2 rule would apply in command line interfaces. Imagine a scenario where a
UNIX user looks up a command in the manual. Perhaps the command has a number of parameters of
options, to be applied in a particular order, and it is going to be applied to several files that have long
path names. The user then has to hold the command, its parameters and the file path names in short-
term memory while he types them in. Here we could say that the task may cause problems if the num-
ber of items or chunks in the command line string is more than 7.
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associated to each other in classes, and may inherit attributes from parent classes.
This model is known as a semantic network. As an example, our knowledge about
dogs may be stored in a network such as that shown in Figure 1.11.

Specific breed attributes may be stored with each given breed, yet general dog
information is stored at a higher level. This allows us to generalize about specific
cases. For instance, we may not have been told that the sheepdog Shadow has four
legs and a tail, but we can infer this information from our general knowledge about
sheepdogs and dogs in general. Note also that there are connections within the net-
work which link into other domains of knowledge, for example cartoon characters.
This illustrates how our knowledge is organized by association.

The viability of semantic networks as a model of memory organization has been
demonstrated by Collins and Quillian [74]. Subjects were asked questions about 
different properties of related objects and their reaction times were measured. The
types of question asked (taking examples from our own network) were ‘Can a collie
breathe?’, ‘Is a beagle a hound?’ and ‘Does a hound track?’ In spite of the fact that the
answers to such questions may seem obvious, subjects took longer to answer ques-
tions such as ‘Can a collie breathe?’ than ones such as ‘Does a hound track?’ The 
reason for this, it is suggested, is that in the former case subjects had to search fur-
ther through the memory hierarchy to find the answer, since information is stored 
at its most abstract level.

A number of other memory structures have been proposed to explain how we 
represent and store different types of knowledge. Each of these represents a different

Figure 1.11 Long-term memory may store information in a semantic network



34 Chapter 1 n The human

aspect of knowledge and, as such, the models can be viewed as complementary rather
than mutually exclusive. Semantic networks represent the associations and relation-
ships between single items in memory. However, they do not allow us to model the
representation of more complex objects or events, which are perhaps composed of 
a number of items or activities. Structured representations such as frames and scripts
organize information into data structures. Slots in these structures allow attribute
values to be added. Frame slots may contain default, fixed or variable information. 
A frame is instantiated when the slots are filled with appropriate values. Frames 
and scripts can be linked together in networks to represent hierarchical structured
knowledge.

Returning to the ‘dog’ domain, a frame-based representation of the knowledge
may look something like Figure 1.12. The fixed slots are those for which the attribute
value is set, default slots represent the usual attribute value, although this may be
overridden in particular instantiations (for example, the Basenji does not bark), and
variable slots can be filled with particular values in a given instance. Slots can also
contain procedural knowledge. Actions or operations can be associated with a slot
and performed, for example, whenever the value of the slot is changed.

Frames extend semantic nets to include structured, hierarchical information. They
represent knowledge items in a way which makes explicit the relative importance of
each piece of information.

Scripts attempt to model the representation of stereotypical knowledge about situ-
ations. Consider the following sentence:

John took his dog to the surgery. After seeing the vet, he left.

From our knowledge of the activities of dog owners and vets, we may fill in a 
substantial amount of detail. The animal was ill. The vet examined and treated the
animal. John paid for the treatment before leaving. We are less likely to assume the
alternative reading of the sentence, that John took an instant dislike to the vet on
sight and did not stay long enough to talk to him!

Figure 1.12 A frame-based representation of knowledge
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A script represents this default or stereotypical information, allowing us to inter-
pret partial descriptions or cues fully. A script comprises a number of elements,
which, like slots, can be filled with appropriate information:

Entry conditions Conditions that must be satisfied for the script to be activated.

Result Conditions that will be true after the script is terminated.

Props Objects involved in the events described in the script.

Roles Actions performed by particular participants.

Scenes The sequences of events that occur.

Tracks A variation on the general pattern representing an alternative scenario.

An example script for going to the vet is shown in Figure 1.13.
A final type of knowledge representation which we hold in memory is the repre-

sentation of procedural knowledge, our knowledge of how to do something. A com-
mon model for this is the production system. Condition–action rules are stored 
in long-term memory. Information coming into short-term memory can match a
condition in one of these rules and result in the action being executed. For example,
a pair of production rules might be

IF dog is wagging tail
THEN pat dog

IF dog is growling
THEN run away

If we then meet a growling dog, the condition in the second rule is matched, and we
respond by turning tail and running. (Not to be recommended by the way!)

Figure 1.13 A script for visiting the vet
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Long-term memory processes

So much for the structure of memory, but what about the processes which it uses?
There are three main activities related to long-term memory: storage or remember-
ing of information, forgetting and information retrieval. We shall consider each of
these in turn.

First, how does information get into long-term memory and how can we improve
this process? Information from short-term memory is stored in long-term memory by
rehearsal. The repeated exposure to a stimulus or the rehearsal of a piece of informa-
tion transfers it into long-term memory.

This process can be optimized in a number of ways. Ebbinghaus performed
numerous experiments on memory, using himself as a subject [117]. In these experi-
ments he tested his ability to learn and repeat nonsense syllables, comparing his
recall minutes, hours and days after the learning process. He discovered that the
amount learned was directly proportional to the amount of time spent learning. 
This is known as the total time hypothesis. However, experiments by Baddeley and
others suggest that learning time is most effective if it is distributed over time [22].
For example, in an experiment in which Post Office workers were taught to type, 
those whose training period was divided into weekly sessions of one hour performed
better than those who spent two or four hours a week learning (although the former
obviously took more weeks to complete their training). This is known as the distribu-
tion of practice effect.

However, repetition is not enough to learn information well. If information is 
not meaningful it is more difficult to remember. This is illustrated by the fact that 
it is more difficult to remember a set of words representing concepts than a set of
words representing objects. Try it. First try to remember the words in list A and test
yourself.

List A: Faith Age Cold Tenet Quiet Logic Idea Value Past Large

Now try list B.

List B: Boat Tree Cat Child Rug Plate Church Gun Flame Head

The second list was probably easier to remember than the first since you could 
visualize the objects in the second list.

Sentences are easier still to memorize. Bartlett performed experiments on remem-
bering meaningful information (as opposed to meaningless such as Ebbinghaus
used) [28]. In one such experiment he got subjects to learn a story about an un-
familiar culture and then retell it. He found that subjects would retell the story
replacing unfamiliar words and concepts with words which were meaningful to
them. Stories were effectively translated into the subject’s own culture. This is related
to the semantic structuring of long-term memory: if information is meaningful and
familiar, it can be related to existing structures and more easily incorporated into
memory.
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So if structure, familiarity and concreteness help us in learning information, what
causes us to lose this information, to forget? There are two main theories of forget-
ting: decay and interference. The first theory suggests that the information held in
long-term memory may eventually be forgotten. Ebbinghaus concluded from his
experiments with nonsense syllables that information in memory decayed logarith-
mically, that is that it was lost rapidly to begin with, and then more slowly. Jost’s law,
which follows from this, states that if two memory traces are equally strong at a given
time the older one will be more durable.

The second theory is that information is lost from memory through interference.
If we acquire new information it causes the loss of old information. This is termed
retroactive interference. A common example of this is the fact that if you change tele-
phone numbers, learning your new number makes it more difficult to remember
your old number. This is because the new association masks the old. However, some-
times the old memory trace breaks through and interferes with new information.
This is called proactive inhibition. An example of this is when you find yourself driv-
ing to your old house rather than your new one.

Forgetting is also affected by emotional factors. In experiments, subjects given
emotive words and non-emotive words found the former harder to remember in 
the short term but easier in the long term. Indeed, this observation tallies with our
experience of selective memory. We tend to remember positive information rather
than negative (hence nostalgia for the ‘good old days’), and highly emotive events
rather than mundane.

Memorable or secure?

As online activities become more widespread, people are having to remember more and
more access information, such as passwords and security checks. The average active internet user
may have separate passwords and user names for several email accounts, mailing lists, e-shopping
sites, e-banking, online auctions and more! Remembering these passwords is not easy.

From a security perspective it is important that passwords are random. Words and names are very
easy to crack, hence the recommendation that passwords are frequently changed and constructed
from random strings of letters and numbers. But in reality these are the hardest things for people to
commit to memory. Hence many people will use the same password for all their online activities
(rarely if ever changing it) and will choose a word or a name that is easy for them to remember,
in spite of the obviously increased security risks. Security here is in conflict with memorability!

A solution to this is to construct a nonsense password out of letters or numbers that will have
meaning to you but will not make up a word in a dictionary (e.g. initials of names, numbers from
significant dates or postcodes, and so on). Then what is remembered is the meaningful rule for
constructing the password, and not a meaningless string of alphanumeric characters.
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It is debatable whether we ever actually forget anything or whether it just becomes
increasingly difficult to access certain items from memory. This question is in some
ways moot since it is impossible to prove that we do forget: appearing to have for-
gotten something may just be caused by not being able to retrieve it! However, there
is evidence to suggest that we may not lose information completely from long-term
memory. First, proactive inhibition demonstrates the recovery of old information
even after it has been ‘lost’ by interference. Secondly, there is the ‘tip of the tongue’
experience, which indicates that some information is present but cannot be satisfac-
torily accessed. Thirdly, information may not be recalled but may be recognized, or
may be recalled only with prompting.

This leads us to the third process of memory: information retrieval. Here we need
to distinguish between two types of information retrieval, recall and recognition. In
recall the information is reproduced from memory. In recognition, the presentation
of the information provides the knowledge that the information has been seen
before. Recognition is the less complex cognitive activity since the information is
provided as a cue.

However, recall can be assisted by the provision of retrieval cues, which enable 
the subject quickly to access the information in memory. One such cue is the use of
categories. In an experiment subjects were asked to recall lists of words, some of
which were organized into categories and some of which were randomly organized.
The words that were related to a category were easier to recall than the others [38].
Recall is even more successful if subjects are allowed to categorize their own lists of
words during learning. For example, consider the following list of words:

child red plane dog friend blood cold tree big angry

Now make up a story that links the words using as vivid imagery as possible. Now try
to recall as many of the words as you can. Did you find this easier than the previous
experiment where the words were unrelated?

The use of vivid imagery is a common cue to help people remember information.
It is known that people often visualize a scene that is described to them. They can
then answer questions based on their visualization. Indeed, subjects given a descrip-
tion of a scene often embellish it with additional information. Consider the follow-
ing description and imagine the scene:

The engines roared above the noise of the crowd. Even in the blistering heat people
rose to their feet and waved their hands in excitement. The flag fell and they were off.
Within seconds the car had pulled away from the pack and was careering round the
bend at a desperate pace. Its wheels momentarily left the ground as it cornered.
Coming down the straight the sun glinted on its shimmering paint. The driver gripped
the wheel with fierce concentration. Sweat lay in fine drops on his brow.

Without looking back to the passage, what color is the car?
If you could answer that question you have visualized the scene, including the

car’s color. In fact, the color of the car is not mentioned in the description 
at all.
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THINKING: REASONING AND PROBLEM SOLVING

We have considered how information finds its way into and out of the human 
system and how it is stored. Finally, we come to look at how it is processed and
manipulated. This is perhaps the area which is most complex and which separates

1.4

Improve your memory

Many people can perform astonishing feats of memory: recalling the sequence of cards in a
pack (or multiple packs – up to six have been reported), or recounting π to 1000 decimal places,
for example. There are also adverts to ‘Improve Your Memory’ (usually leading to success, or
wealth, or other such inducement), and so the question arises: can you improve your memory 
abilities? The answer is yes; this exercise shows you one technique.

Look at the list below of numbers and associated words:

1 bun 6 sticks
2 shoe 7 heaven
3 tree 8 gate
4 door 9 wine
5 hive 10 hen

Notice that the words sound similar to the numbers. Now think about the words one at a time
and visualize them, in as much detail as possible. For example, for ‘1’, think of a large, sticky iced
bun, the base spiralling round and round, with raisins in it, covered in sweet, white, gooey icing.
Now do the rest, using as much visualization as you can muster: imagine how things would look,
smell, taste, sound, and so on.

This is your reference list, and you need to know it off by heart.

Having learnt it, look at a pile of at least a dozen odd items collected together by a colleague. The
task is to look at the collection of objects for only 30 seconds, and then list as many as possible
without making a mistake or viewing the collection again. Most people can manage between five
and eight items, if they do not know any memory-enhancing techniques like the following.

Mentally pick one (say, for example, a paper clip), and call it number one. Now visualize it inter-
acting with the bun. It can get stuck into the icing on the top of the bun, and make your fingers all
gooey and sticky when you try to remove it. If you ate the bun without noticing, you’d get a
crunched tooth when you bit into it – imagine how that would feel. When you’ve really got a
graphic scenario developed, move on to the next item, call it number two, and again visualize it
interacting with the reference item, shoe. Continue down your list, until you have done 10 things.

This should take you about the 30 seconds allowed. Then hide the collection and try and recall the
numbers in order, the associated reference word, and then the image associated with that word.
You should find that you can recall the 10 associated items practically every time. The technique
can be easily extended by extending your reference list.
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humans from other information-processing systems, both artificial and natural.
Although it is clear that animals receive and store information, there is little evid-
ence to suggest that they can use it in quite the same way as humans. Similarly,
artificial intelligence has produced machines which can see (albeit in a limited way)
and store information. But their ability to use that information is limited to small
domains.

Humans, on the other hand, are able to use information to reason and solve 
problems, and indeed do these activities when the information is partial or unavail-
able. Human thought is conscious and self-aware: while we may not always be 
able to identify the processes we use, we can identify the products of these processes,
our thoughts. In addition, we are able to think about things of which we have 
no experience, and solve problems which we have never seen before. How is this
done?

Thinking can require different amounts of knowledge. Some thinking activities
are very directed and the knowledge required is constrained. Others require vast
amounts of knowledge from different domains. For example, performing a subtrac-
tion calculation requires a relatively small amount of knowledge, from a constrained
domain, whereas understanding newspaper headlines demands knowledge of pol-
itics, social structures, public figures and world events.

In this section we will consider two categories of thinking: reasoning and problem
solving. In practice these are not distinct since the activity of solving a problem may
well involve reasoning and vice versa. However, the distinction is a common one and
is helpful in clarifying the processes involved.

1.4.1 Reasoning

Reasoning is the process by which we use the knowledge we have to draw conclusions
or infer something new about the domain of interest. There are a number of differ-
ent types of reasoning: deductive, inductive and abductive. We use each of these types
of reasoning in everyday life, but they differ in significant ways.

Deductive reasoning

Deductive reasoning derives the logically necessary conclusion from the given pre-
mises. For example,

If it is Friday then she will go to work
It is Friday
Therefore she will go to work.

It is important to note that this is the logical conclusion from the premises; it does
not necessarily have to correspond to our notion of truth. So, for example,

If it is raining then the ground is dry
It is raining
Therefore the ground is dry.
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is a perfectly valid deduction, even though it conflicts with our knowledge of what is
true in the world.

Deductive reasoning is therefore often misapplied. Given the premises

Some people are babies
Some babies cry

many people will infer that ‘Some people cry’. This is in fact an invalid deduction
since we are not told that all babies are people. It is therefore logically possible that
the babies who cry are those who are not people.

It is at this point, where truth and validity clash, that human deduction is poorest.
One explanation for this is that people bring their world knowledge into the reason-
ing process. There is good reason for this. It allows us to take short cuts which make
dialog and interaction between people informative but efficient. We assume a certain
amount of shared knowledge in our dealings with each other, which in turn allows
us to interpret the inferences and deductions implied by others. If validity rather
than truth was preferred, all premises would have to be made explicit.

Inductive reasoning

Induction is generalizing from cases we have seen to infer information about cases
we have not seen. For example, if every elephant we have ever seen has a trunk, we
infer that all elephants have trunks. Of course, this inference is unreliable and cannot
be proved to be true; it can only be proved to be false. We can disprove the inference
simply by producing an elephant without a trunk. However, we can never prove it
true because, no matter how many elephants with trunks we have seen or are known
to exist, the next one we see may be trunkless. The best that we can do is gather evid-
ence to support our inductive inference.

In spite of its unreliability, induction is a useful process, which we use constantly
in learning about our environment. We can never see all the elephants that have ever
lived or will ever live, but we have certain knowledge about elephants which we are
prepared to trust for all practical purposes, which has largely been inferred by induc-
tion. Even if we saw an elephant without a trunk, we would be unlikely to move from
our position that ‘All elephants have trunks’, since we are better at using positive
than negative evidence. This is illustrated in an experiment first devised by Wason
[365]. You are presented with four cards as in Figure 1.14. Each card has a number
on one side and a letter on the other. Which cards would you need to pick up to test
the truth of the statement ‘If a card has a vowel on one side it has an even number
on the other’?

A common response to this (was it yours?) is to check the E and the 4. However,
this uses only positive evidence. In fact, to test the truth of the statement we need to
check negative evidence: if we can find a card which has an odd number on one side
and a vowel on the other we have disproved the statement. We must therefore check
E and 7. (It does not matter what is on the other side of the other cards: the state-
ment does not say that all even numbers have vowels, just that all vowels have even
numbers.)
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Abductive reasoning

The third type of reasoning is abduction. Abduction reasons from a fact to the action
or state that caused it. This is the method we use to derive explanations for the events
we observe. For example, suppose we know that Sam always drives too fast when she
has been drinking. If we see Sam driving too fast we may infer that she has been
drinking. Of course, this too is unreliable since there may be another reason why she
is driving fast: she may have been called to an emergency, for example.

In spite of its unreliability, it is clear that people do infer explanations in this way,
and hold onto them until they have evidence to support an alternative theory or
explanation. This can lead to problems in using interactive systems. If an event
always follows an action, the user will infer that the event is caused by the action
unless evidence to the contrary is made available. If, in fact, the event and the action
are unrelated, confusion and even error often result.

Figure 1.14 Wason’s cards

Filling the gaps

Look again at Wason’s cards in Figure 1.14. In the text we say that you only need to check
the E and the 7. This is correct, but only because we very carefully stated in the text that ‘each
card has a number on one side and a letter on the other’. If the problem were stated without that
condition then the K would also need to be examined in case it has a vowel on the other side. In
fact, when the problem is so stated, even the most careful subjects ignore this possibility. Why?
Because the nature of the problem implicitly suggests that each card has a number on one side and
a letter on the other.

This is similar to the embellishment of the story at the end of Section 1.3.3. In fact, we constantly
fill in gaps in the evidence that reaches us through our senses. Although this can lead to errors in
our reasoning it is also essential for us to function. In the real world we rarely have all the evid-
ence necessary for logical deductions and at all levels of perception and reasoning we fill in details
in order to allow higher levels of reasoning to work.
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1.4.2 Problem solving

If reasoning is a means of inferring new information from what is already known,
problem solving is the process of finding a solution to an unfamiliar task, using the
knowledge we have. Human problem solving is characterized by the ability to adapt
the information we have to deal with new situations. However, often solutions seem
to be original and creative. There are a number of different views of how people 
solve problems. The earliest, dating back to the first half of the twentieth century, is
the Gestalt view that problem solving involves both reuse of knowledge and insight.
This has been largely superseded but the questions it was trying to address remain
and its influence can be seen in later research. A second major theory, proposed in
the 1970s by Newell and Simon, was the problem space theory, which takes the view
that the mind is a limited information processor. Later variations on this drew on the
earlier theory and attempted to reinterpret Gestalt theory in terms of information-
processing theories. We will look briefly at each of these views.

Gestalt theory

Gestalt psychologists were answering the claim, made by behaviorists, that prob-
lem solving is a matter of reproducing known responses or trial and error. This
explanation was considered by the Gestalt school to be insufficient to account for
human problem-solving behavior. Instead, they claimed, problem solving is both pro-
ductive and reproductive. Reproductive problem solving draws on previous experi-
ence as the behaviorists claimed, but productive problem solving involves insight and
restructuring of the problem. Indeed, reproductive problem solving could be a hind-
rance to finding a solution, since a person may ‘fixate’ on the known aspects of the
problem and so be unable to see novel interpretations that might lead to a solution.

Gestalt psychologists backed up their claims with experimental evidence. Kohler
provided evidence of apparent insight being demonstrated by apes, which he
observed joining sticks together in order to reach food outside their cages [202].
However, this was difficult to verify since the apes had once been wild and so could
have been using previous knowledge.

Other experiments observed human problem-solving behavior. One well-known
example of this is Maier’s pendulum problem [224]. The problem was this: the 
subjects were in a room with two pieces of string hanging from the ceiling. Also in
the room were other objects including pliers, poles and extensions. The task set was 
to tie the pieces of string together. However, they were too far apart to catch hold 
of both at once. Although various solutions were proposed by subjects, few chose 
to use the weight of the pliers as a pendulum to ‘swing’ the strings together. How-
ever, when the experimenter brushed against the string, setting it in motion, this
solution presented itself to subjects. Maier interpreted this as an example of produc-
tive restructuring. The movement of the string had given insight and allowed the
subjects to see the problem in a new way. The experiment also illustrates fixation:
subjects were initially unable to see beyond their view of the role or use of a pair 
of pliers.
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Although Gestalt theory is attractive in terms of its description of human problem
solving, it does not provide sufficient evidence or structure to support its theories. 
It does not explain when restructuring occurs or what insight is, for example. How-
ever, the move away from behaviorist theories was helpful in paving the way for the
information-processing theory that was to follow.

Problem space theory

Newell and Simon proposed that problem solving centers on the problem space. The
problem space comprises problem states, and problem solving involves generating
these states using legal state transition operators. The problem has an initial state 
and a goal state and people use the operators to move from the former to the latter.
Such problem spaces may be huge, and so heuristics are employed to select appro-
priate operators to reach the goal. One such heuristic is means–ends analysis. In
means–ends analysis the initial state is compared with the goal state and an oper-
ator chosen to reduce the difference between the two. For example, imagine you are
reorganizing your office and you want to move your desk from the north wall of the
room to the window. Your initial state is that the desk is at the north wall. The goal
state is that the desk is by the window. The main difference between these two is the
location of your desk. You have a number of operators which you can apply to mov-
ing things: you can carry them or push them or drag them, etc. However, you know
that to carry something it must be light and that your desk is heavy. You therefore
have a new subgoal: to make the desk light. Your operators for this may involve
removing drawers, and so on.

An important feature of Newell and Simon’s model is that it operates within the
constraints of the human processing system, and so searching the problem space is
limited by the capacity of short-term memory, and the speed at which information
can be retrieved. Within the problem space framework, experience allows us to solve
problems more easily since we can structure the problem space appropriately and
choose operators efficiently.

Newell and Simon’s theory, and their General Problem Solver model which is based
on it, have largely been applied to problem solving in well-defined domains, for
example solving puzzles. These problems may be unfamiliar but the knowledge that
is required to solve them is present in the statement of the problem and the expected
solution is clear. In real-world problems finding the knowledge required to solve 
the problem may be part of the problem, or specifying the goal may be difficult.
Problems such as these require significant domain knowledge: for example, to solve
a programming problem you need knowledge of the language and the domain in
which the program operates. In this instance specifying the goal clearly may be a
significant part of solving the problem.

However, the problem space framework provides a clear theory of problem 
solving, which can be extended, as we shall see when we look at skill acquisition in
the next section, to deal with knowledge-intensive problem solving. First we will look
briefly at the use of analogy in problem solving.
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Worked exercise Identify the goals and operators involved in the problem ‘delete the second paragraph of the
document’ on a word processor. Now use a word processor to delete a paragraph and note
your actions, goals and subgoals. How well did they match your earlier description?

Answer Assume you have a document open and you are at some arbitrary position within it.
You also need to decide which operators are available and what their preconditions and
results are. Based on an imaginary word processor we assume the following operators
(you may wish to use your own WP package):

Operator Precondition Result

delete_paragraph Cursor at start of paragraph Paragraph deleted
move_to_paragraph Cursor anywhere in document Cursor moves to start of  

next paragraph (except 
where there is no next 
paragraph when no effect)

move_to_start Cursor anywhere in document Cursor at start of document

Goal: delete second paragraph in document
Looking at the operators an obvious one to resolve this goal is delete_paragraph which
has the precondition ‘cursor at start of paragraph’. We therefore have a new subgoal:
move_to_paragraph. The precondition is ‘cursor anywhere in document’ (which we can
meet) but we want the second paragraph so we must initially be in the first.

We set up a new subgoal, move_to_start, with precondition ‘cursor anywhere in docu-
ment’ and result ‘cursor at start of document’. We can then apply move_to_paragraph
and finally delete_paragraph.

We assume some knowledge here (that the second paragraph is the paragraph after the
first one).

Analogy in problem solving

A third element of problem solving is the use of analogy. Here we are interested in
how people solve novel problems. One suggestion is that this is done by mapping
knowledge relating to a similar known domain to the new problem – called analo-
gical mapping. Similarities between the known domain and the new one are noted
and operators from the known domain are transferred to the new one.

This process has been investigated using analogous stories. Gick and Holyoak
[149] gave subjects the following problem:

A doctor is treating a malignant tumor. In order to destroy it he needs to blast 
it with high-intensity rays. However, these will also destroy the healthy tissue sur-
rounding the tumor. If he lessens the rays’ intensity the tumor will remain. How does
he destroy the tumor?
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The solution to this problem is to fire low-intensity rays from different directions
converging on the tumor. That way, the healthy tissue receives harmless low-
intensity rays while the tumor receives the rays combined, making a high-intensity
dose. The investigators found that only 10% of subjects reached this solution with-
out help. However, this rose to 80% when they were given this analogous story and
told that it may help them:

A general is attacking a fortress. He can’t send all his men in together as the roads are
mined to explode if large numbers of men cross them. He therefore splits his men into
small groups and sends them in on separate roads.

In spite of this, it seems that people often miss analogous information, unless it is
semantically close to the problem domain. When subjects were not told to use the
story, many failed to see the analogy. However, the number spotting the analogy rose
when the story was made semantically close to the problem, for example a general
using rays to destroy a castle.

The use of analogy is reminiscent of the Gestalt view of productive restructuring
and insight. Old knowledge is used to solve a new problem.

1.4.3 Skill acquisition

All of the problem solving that we have considered so far has concentrated on 
handling unfamiliar problems. However, for much of the time, the problems that 
we face are not completely new. Instead, we gradually acquire skill in a particular
domain area. But how is such skill acquired and what difference does it make to our
problem-solving performance? We can gain insight into how skilled behavior works,
and how skills are acquired, by considering the difference between novice and expert
behavior in given domains.

Chess: of human and artificial intelligence

A few years ago, Deep Blue, a chess-playing computer, beat Gary Kasparov, the world’s top
Grand Master, in a full tournament. This was the long-awaited breakthrough for the artificial 
intelligence (AI) community, who have traditionally seen chess as the ultimate test of their art.
However, despite the fact that computer chess programs can play at Grand Master level against
human players, this does not mean they play in the same way. For each move played, Deep Blue
investigated many millions of alternative moves and counter-moves. In contrast, a human chess
player will only consider a few dozen. But, if the human player is good, these will usually be the
right few dozen. The ability to spot patterns allows a human to address a problem with far less
effort than a brute force approach. In chess, the number of moves is such that finally brute force,
applied fast enough, has overcome human pattern-matching skill. In Go, which has far more pos-
sible moves, computer programs do not even reach a good club level of play. Many models of the
mental processes have been heavily influenced by computation. It is worth remembering that
although there are similarities, computer ‘intelligence’ is very different from that of humans.
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A commonly studied domain is chess playing. It is particularly suitable since it
lends itself easily to representation in terms of problem space theory. The initial state
is the opening board position; the goal state is one player checkmating the other;
operators to move states are legal moves of chess. It is therefore possible to examine
skilled behavior within the context of the problem space theory of problem solving.

Studies of chess players by DeGroot, Chase and Simon, among others, produced
some interesting observations [64, 65, 88, 89]. In all the experiments the behavior of
chess masters was compared with less experienced chess players. The first observa-
tion was that players did not consider large numbers of moves in choosing their
move, nor did they look ahead more than six moves (often far fewer). Masters con-
sidered no more alternatives than the less experienced, but they took less time to
make a decision and produced better moves.

So what makes the difference between skilled and less skilled behavior in chess? 
It appears that chess masters remember board configurations and good moves 
associated with them. When given actual board positions to remember, masters 
are much better at reconstructing the board than the less experienced. However,
when given random configurations (which were unfamiliar), the groups of players
were equally bad at reconstructing the positions. It seems therefore that expert 
players ‘chunk’ the board configuration in order to hold it in short-term memory.
Expert players use larger chunks than the less experienced and can therefore re-
member more detail.

This behavior is also seen among skilled computer programmers. They can also
reconstruct programs more effectively than novices since they have the structures
available to build appropriate chunks. They acquire plans representing code to solve
particular problems. When that problem is encountered in a new domain or new
program they will recall that particular plan and reuse it.

Another observed difference between skilled and less skilled problem solving is 
in the way that different problems are grouped. Novices tend to group problems
according to superficial characteristics such as the objects or features common to
both. Experts, on the other hand, demonstrate a deeper understanding of the prob-
lems and group them according to underlying conceptual similarities which may not
be at all obvious from the problem descriptions.

Each of these differences stems from a better encoding of knowledge in the expert:
information structures are fine tuned at a deep level to enable efficient and accurate
retrieval. But how does this happen? How is skill such as this acquired? One model
of skill acquisition is Anderson’s ACT* model [14]. ACT* identifies three basic 
levels of skill:

1. The learner uses general-purpose rules which interpret facts about a problem.
This is slow and demanding on memory access.

2. The learner develops rules specific to the task.
3. The rules are tuned to speed up performance.

General mechanisms are provided to account for the transitions between these 
levels. For example, proceduralization is a mechanism to move from the first to the
second. It removes the parts of the rule which demand memory access and replaces
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variables with specific values. Generalization, on the other hand, is a mechanism
which moves from the second level to the third. It generalizes from the specific cases
to general properties of those cases. Commonalities between rules are condensed to
produce a general-purpose rule.

These are best illustrated by example. Imagine you are learning to cook. Initially
you may have a general rule to tell you how long a dish needs to be in the oven, and
a number of explicit representations of dishes in memory. You can instantiate the
rule by retrieving information from memory.

IF cook[type, ingredients, time]
THEN

cook for: time
cook[casserole, [chicken,carrots,potatoes], 2 hours]
cook[casserole, [beef,dumplings,carrots], 2 hours]
cook[cake, [flour,sugar,butter,eggs], 45 mins]

Gradually your knowledge becomes proceduralized and you have specific rules for
each case:

IF type is casserole
AND ingredients are [chicken,carrots,potatoes]
THEN

cook for: 2 hours
IF type is casserole
AND ingredients are [beef,dumplings,carrots]
THEN

cook for: 2 hours
IF type is cake
AND ingredients are [flour,sugar,butter,eggs]
THEN

cook for: 45 mins

Finally, you may generalize from these rules to produce general-purpose rules, which
exploit their commonalities:

IF type is casserole
AND ingredients are ANYTHING
THEN

cook for: 2 hours

The first stage uses knowledge extensively. The second stage relies upon known
procedures. The third stage represents skilled behavior. Such behavior may in fact
become automatic and as such be difficult to make explicit. For example, think of 
an activity at which you are skilled, perhaps driving a car or riding a bike. Try to
describe to someone the exact procedure which you go through to do this. You will
find this quite difficult. In fact experts tend to have to rehearse their actions mentally
in order to identify exactly what they do. Such skilled behavior is efficient but may
cause errors when the context of the activity changes.
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1.4.4 Errors and mental models

Human capability for interpreting and manipulating information is quite impres-
sive. However, we do make mistakes. Some are trivial, resulting in no more than
temporary inconvenience or annoyance. Others may be more serious, requiring 
substantial effort to correct. Occasionally an error may have catastrophic effects, as
we see when ‘human error’ results in a plane crash or nuclear plant leak.

Why do we make mistakes and can we avoid them? In order to answer the latter
part of the question we must first look at what is going on when we make an error.
There are several different types of error. As we saw in the last section some errors
result from changes in the context of skilled behavior. If a pattern of behavior has
become automatic and we change some aspect of it, the more familiar pattern may
break through and cause an error. A familiar example of this is where we intend to
stop at the shop on the way home from work but in fact drive past. Here, the activ-
ity of driving home is the more familiar and overrides the less familiar intention.

Other errors result from an incorrect understanding, or model, of a situation or
system. People build their own theories to understand the causal behavior of sys-
tems. These have been termed mental models. They have a number of characteristics.
Mental models are often partial: the person does not have a full understanding of the
working of the whole system. They are unstable and are subject to change. They can
be internally inconsistent, since the person may not have worked through the logical
consequences of their beliefs. They are often unscientific and may be based on super-
stition rather than evidence. Often they are based on an incorrect interpretation of
the evidence.

DESIGN FOCUS

Human error and false memories

In the second edition of this book, one of the authors added the following story:

During the Second World War a new cockpit design was introduced for Spitfires. The pilots were trained
and flew successfully during training, but would unaccountably bail out when engaged in dog fights. The new
design had exchanged the positions of the gun trigger and ejector controls. In the heat of battle the old
responses resurfaced and the pilots ejected. Human error, yes, but the designer’s error, not the pilot’s.

It is a good story, but after the book was published we got several emails saying ‘Spitfires didn’t have
ejector seats’. It was Kai-Mikael Jää-Aro who was able to find what may have been the original to the
story (and incidentally inform us what model of Spitfire was in our photo and who the pilot was!). He
pointed us to and translated the story of Sierra 44, an S35E Draken reconnaissance aircraft.1 The full
story involves just about every perceptual and cognitive error imaginable, but the point that links to 

1. Pej Kristoffersson, 1984. Sigurd 44 – Historien om hur man gör bort sig så att det märks by, Flygrevyn 2/1984, pp. 44–6.



Assuming a person builds a mental model of the system being dealt with, errors
may occur if the actual operation differs from the mental model. For example, on
one occasion we were staying in a hotel in Germany, attending a conference. In the
lobby of the hotel was a lift. Beside the lift door was a button. Our model of the sys-
tem, based on previous experience of lifts, was that the button would call the lift. We
pressed the button and the lobby light went out! In fact the button was a light switch
and the lift button was on the inside rim of the lift, hidden from view.

the (false) Spitfire story is that in the Draken the red buttons for releasing the fuel ‘drop’ tanks and for
the canopy release differed only in very small writing. In an emergency (burning fuel tanks) the pilot
accidentally released the canopy and so ended up flying home cabriolet style.

There is a second story of human error here – the author’s memory. When the book was written he
could not recall where he had come across the story but was convinced it was to do with a Spitfire. It
may be that he had been told the story by someone else who had got it mixed up, but it is as likely that
he simply remembered the rough outline of the story and then ‘reconstructed’ the rest. In fact that is
exactly how our memories work. Our brains do not bother to lay down every little detail, but when
we ‘remember’ we rebuild what the incident ‘must have been’ using our world knowledge. This pro-
cess is completely unconscious and can lead to what are known as false memories. This is particularly
problematic in witness statements in criminal trials as early questioning by police or lawyers can unin-
tentionally lead to witnesses being sure they have seen things that they have not. Numerous controlled
psychological experiments have demonstrated this effect which furthermore is strongly influenced by
biasing factors such as the race of supposed criminals.

To save his blushes we have not said here which author’s failing memory was responsible for the Spitfire
story, but you can read more on this story and also find who it was on the book website at:
/e3/online/spitfire/
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Although both the light switch and the lift button were inconsistent with our men-
tal models of these controls, we would probably have managed if they had been
encountered separately. If there had been no button beside the lift we would have
looked more closely and found the one on the inner rim. But since the light switch
reflected our model of a lift button we looked no further. During our stay we
observed many more new guests making the same error.

This illustrates the importance of a correct mental model and the dangers of
ignoring conventions. There are certain conventions that we use to interpret the
world and ideally designs should support these. If these are to be violated, explicit
support must be given to enable us to form a correct mental model. A label on the
button saying ‘light switch’ would have been sufficient.

EMOTION

So far in this chapter we have concentrated on human perceptual and cognitive abil-
ities. But human experience is far more complex than this. Our emotional response
to situations affects how we perform. For example, positive emotions enable us to
think more creatively, to solve complex problems, whereas negative emotion pushes
us into narrow, focussed thinking. A problem that may be easy to solve when we are
relaxed, will become difficult if we are frustrated or afraid.

Psychologists have studied emotional response for decades and there are many
theories as to what is happening when we feel an emotion and why such a response
occurs. More than a century ago, William James proposed what has become known
as the James–Lange theory (Lange was a contemporary of James whose theories 
were similar): that emotion was the interpretation of a physiological response, rather
than the other way around. So while we may feel that we respond to an emotion,
James contended that we respond physiologically to a stimulus and interpret that as 
emotion:

Common sense says, we lose our fortune, are sorry and weep; we meet a bear, are
frightened and run; we are insulted by a rival, are angry and strike. The hypothesis 
here . . . is that we feel sorry because we cry, angry because we strike, afraid because we
tremble.

(W. James, Principles of Psychology, page 449. Henry Holt, New York, 1890.)

Others, however, disagree. Cannon [54a], for example, argued that our physio-
logical processes are in fact too slow to account for our emotional reactions, and that 
the physiological responses for some emotional states are too similar (e.g. anger 
and fear), yet they can be easily distinguished. Experience in studies with the use of 
drugs that stimulate broadly the same physiological responses as anger or fear seems 
to support this: participants reported physical symptoms but not the emotion, 
which suggests that emotional response is more than a recognition of physiological
changes.

1.5
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Schachter and Singer [312a] proposed a third interpretation: that emotion results
from a person evaluating physical responses in the light of the whole situation. So
whereas the same physiological response can result from a range of different situ-
ations, the emotion that is felt is based on a cognitive evaluation of the circumstance
and will depend on what the person attributes this to. So the same physiological
response of a pounding heart will be interpreted as excitement if we are in a com-
petition and fear if we find ourselves under attack.

Whatever the exact process, what is clear is that emotion involves both physical
and cognitive events. Our body responds biologically to an external stimulus and we
interpret that in some way as a particular emotion. That biological response – known
as affect – changes the way we deal with different situations, and this has an impact
on the way we interact with computer systems. As Donald Norman says:

Negative affect can make it harder to do even easy tasks; positive affect can make it 
easier to do difficult tasks.

(D. A. Norman, Emotion and design: attractive things work better. 
Interactions Magazine, ix(4): 36–42, 2002.)

So what are the implications of this for design? It suggests that in situations of
stress, people will be less able to cope with complex problem solving or managing
difficult interfaces, whereas if people are relaxed they will be more forgiving of 
limitations in the design. This does not give us an excuse to design bad interfaces 
but does suggest that if we build interfaces that promote positive responses – for
example by using aesthetics or reward – then they are likely be more successful.

INDIVIDUAL DIFFERENCES

In this chapter we have been discussing humans in general. We have made the
assumption that everyone has similar capabilities and limitations and that we 
can therefore make generalizations. To an extent this is true: the psychological 
principles and properties that we have discussed apply to the majority of people.
Notwithstanding this, we should remember that, although we share processes in
common, humans, and therefore users, are not all the same. We should be aware of
individual differences so that we can account for them as far as possible within our
designs. These differences may be long term, such as sex, physical capabilities and
intellectual capabilities. Others are shorter term and include the effect of stress 
or fatigue on the user. Still others change through time, such as age.

These differences should be taken into account in our designs. It is useful to 
consider, for any design decision, if there are likely to be users within the target
group who will be adversely affected by our decision. At the extremes a decision may
exclude a section of the user population. For example, the current emphasis on visual
interfaces excludes those who are visually impaired, unless the design also makes use
of the other sensory channels. On a more mundane level, designs should allow for

1.6



1.7 Psychology and the design of interactive systems 53

users who are under pressure, feeling ill or distracted by other concerns: they should
not push users to their perceptual or cognitive limits.

We will consider the issues of universal accessibility in more detail in Chapter 10.

PSYCHOLOGY AND THE DESIGN OF 
INTERACTIVE SYSTEMS

So far we have looked briefly at the way in which humans receive, process and 
store information, solve problems and acquire skill. But how can we apply what we
have learned to designing interactive systems? Sometimes, straightforward conclu-
sions can be drawn. For example, we can deduce that recognition is easier than recall
and allow users to select commands from a set (such as a menu) rather than input
them directly. However, in the majority of cases, application is not so obvious 
or simple. In fact, it may be dangerous, leading us to make generalizations which are
not valid. In order to apply a psychological principle or result properly in design, 
we need to understand its context, both in terms of where it fits in the wider field 
of psychology and in terms of the details of the actual experiments, the measures
used and the subjects involved, for example. This may appear daunting, particularly
to the novice designer who wants to acknowledge the relevance of cognitive psy-
chology but does not have the background to derive appropriate conclusions.
Fortunately, principles and results from research in psychology have been distilled
into guidelines for design, models to support design and techniques for evaluating
design. Parts 2 and 3 of this book include discussion of a range of guidelines, 
models and techniques, based on cognitive psychology, which can be used to support
the design process.

1.7.1 Guidelines

Throughout this chapter we have discussed the strengths and weaknesses of human
cognitive and perceptual processes but, for the most part, we have avoided attempt-
ing to apply these directly to design. This is because such an attempt could only 
be partial and simplistic, and may give the impression that this is all psychology 
has to offer.

However, general design principles and guidelines can be and have been derived
from the theories we have discussed. Some of these are relatively straightforward: 
for instance, recall is assisted by the provision of retrieval cues so interfaces should
incorporate recognizable cues wherever possible. Others are more complex and con-
text dependent. In Chapter 7 we discuss principles and guidelines further, many of
which are derived from psychological theory. The interested reader is also referred to
Gardiner and Christie [140] which illustrates how guidelines can be derived from
psychological theory.

1.7
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1.7.2 Models to support design

As well as guidelines and principles, psychological theory has led to the development
of analytic and predictive models of user behavior. Some of these include a specific
model of human problem solving, others of physical activity, and others attempt 
a more comprehensive view of cognition. Some predict how a typical computer 
user would behave in a given situation, others analyze why particular user behavior
occurred. All are based on cognitive theory. We discuss these models in detail in
Chapter 12.

1.7.3 Techniques for evaluation

In addition to providing us with a wealth of theoretical understanding of the human
user, psychology also provides a range of empirical techniques which we can employ
to evaluate our designs and our systems. In order to use these effectively we need to
understand the scope and benefits of each method. Chapter 9 provides an overview
of these techniques and an indication of the circumstances under which each should
be used.

Worked exercise Produce a semantic network of the main information in this chapter.

Answer This network is potentially huge so it is probably unnecessary to devise the whole thing!
Be selective. One helpful way to tackle the exercise is to approach it in both a top-down
and a bottom-up manner. Top-down will give you a general overview of topics and how
they relate; bottom-up can fill in the details of a particular field. These can then be

Top-down view
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‘glued’ together to build up the whole picture. You may be able to tackle this problem
in a group, each taking one part of it. We will not provide the full network here but will
give examples of the level of detail anticipated for the overview and the detailed ver-
sions. In the overview we have not included labels on the arcs for clarity.

SUMMARY

In this chapter we have considered the human as an information processor, re-
ceiving inputs from the world, storing, manipulating and using information, and
reacting to the information received. Information is received through the senses,
particularly, in the case of computer use, through sight, hearing and touch. It is
stored in memory, either temporarily in sensory or working memory, or perman-
ently in long-term memory. It can then be used in reasoning and problem solving.
Recurrent familiar situations allow people to acquire skills in a particular domain, as
their information structures become better defined. However, this can also lead to
error, if the context changes.

Human perception and cognition are complex and sophisticated but they are not
without their limitations. We have considered some of these limitations in this chap-
ter. An understanding of the capabilities and limitations of the human as informa-
tion processor can help us to design interactive systems which support the former
and compensate for the latter. The principles, guidelines and models which can be
derived from cognitive psychology and the techniques which it provides are invalu-
able tools for the designer of interactive systems.

1.8
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EXERCISES

1.1 Devise experiments to test the properties of (i) short-term memory, (ii) long-term
memory, using the experiments described in this chapter to help you. Try out your experiments
on your friends. Are your results consistent with the properties described in this chapter?

1.2 Observe skilled and novice operators in a familiar domain, for example touch and ‘hunt-and-peck’
typists, expert and novice game players, or expert and novice users of a computer application.
What differences can you discern between their behaviors?

1.3 From what you have learned about cognitive psychology devise appropriate guidelines for use by
interface designers. You may find it helpful to group these under key headings, for example visual
perception, memory, problem solving, etc., although some may overlap such groupings.

1.4 What are mental models, and why are they important in interface design?

1.5 What can a system designer do to minimize the memory load of the user?

1.6 Human short-term memory has a limited span. This is a series of experiments to determine what
that span is. (You will need some other people to take part in these experiments with you – they
do not need to be studying the course – try it with a group of friends.)

(a) Kim’s game
Divide into groups. Each group gathers together an assortment of objects – pens, pencils, paper-
clips, books, sticky notes, etc. The stranger the object, the better! You need a large number of
them – at least 12 to 15. Place them in some compact arrangement on a table, so that all items
are visible. Then, swap with another group for 30 seconds only and look at their pile. Return to
your table, and on your own try to write down all the items in the other group’s pile.

Compare your list with what they actually have in their pile. Compare the number of things you
remembered with how the rest of your group did. Now think introspectively: what helped you
remember certain things? Did you recognize things in their pile that you had in yours? Did that
help? Do not pack the things away just yet.

Calculate the average score for your group. Compare that with the averages from the other
group(s).

Questions: What conclusions can you draw from this experiment? What does this indicate
about the capacity of short-term memory? What does it indicate that helps improve the capa-
city of short-term memory?

(b) ‘I went to market . . .’
In your group, one person starts off with ‘I went to market and I bought a fish’ (or some other
produce, or whatever!). The next person continues ‘I went to market and I bought a fish and 
I bought a bread roll as well’. The process continues, with each person adding some item to 
the list each time. Keep going around the group until you cannot remember the list accurately.
Make a note of the first time someone gets it wrong, and then record the number of items 
that you can successfully remember. Some of you will find it hard to remember more than a few,
others will fare much better. Do this a few more times with different lists, and then calculate your
average score, and your group’s average score.
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THE COMPUTER

OV E RV I E W

A computer system comprises various elements, each of which affects the
user of the system.

n Input devices for interactive use, allowing text entry, drawing and
selection from the screen:
– text entry: traditional keyboard, phone text entry, speech and

handwriting
– pointing: principally the mouse, but also touchpad, stylus and others
– 3D interaction devices.

n Output display devices for interactive use:
– different types of screen mostly using some form of bitmap display
– large displays and situated displays for shared and public use
– digital paper may be usable in the near future.

n Virtual reality systems and 3D visualization which have special interaction
and display devices.

n Various devices in the physical world:
– physical controls and dedicated displays
– sound, smell and haptic feedback
– sensors for nearly everything including movement, temperature, 

bio-signs.

n Paper output and input: the paperless office and the less-paper office:
– different types of printers and their characteristics, character styles 

and fonts
– scanners and optical character recognition.

n Memory:
– short-term memory: RAM
– long-term memory: magnetic and optical disks
– capacity limitations related to document and video storage
– access methods as they limit or help the user.

n Processing:
– the effects when systems run too slow or too fast, the myth of the

infinitely fast machine
– limitations on processing speed
– networks and their impact on system performance.

2
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INTRODUCTION

In order to understand how humans interact with computers, we need to have an
understanding of both parties in the interaction. The previous chapter explored
aspects of human capabilities and behavior of which we need to be aware in the 
context of human–computer interaction; this chapter considers the computer and
associated input–output devices and investigates how the technology influences the
nature of the interaction and style of the interface.

We will concentrate principally on the traditional computer but we will also look
at devices that take us beyond the closed world of keyboard, mouse and screen. As
well as giving us lessons about more traditional systems, these are increasingly
becoming important application areas in HCI.

2.1

Exercise: how many computers?

In a group or class do a quick survey:

n How many computers do you have in your home?
n How many computers do you normally carry with you in your pockets or bags?

Collate the answers and see who the techno-freaks are!

Discuss your answers.

After doing this look at /e3/online/how-many-computers/

When we interact with computers, what are we trying to achieve? Consider what
happens when we interact with each other – we are either passing information to
other people, or receiving information from them. Often, the information we receive
is in response to the information that we have recently imparted to them, and we
may then respond to that. Interaction is therefore a process of information transfer.
Relating this to the electronic computer, the same principles hold: interaction is a
process of information transfer, from the user to the computer and from the com-
puter to the user.

The first part of this chapter concentrates on the transference of information from
the user to the computer and back. We begin by considering a current typical com-
puter interface and the devices it employs, largely variants of keyboard for text entry
(Section 2.2), mouse for positioning (Section 2.3) and screen for displaying output
(Section 2.4).

Then we move on to consider devices that go beyond the keyboard, mouse and
screen: entering deeper into the electronic world with virtual reality and 3D interaction
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(Section 2.5) and outside the electronic world looking at more physical interactions
(Section 2.6).

In addition to direct input and output, information is passed to and fro via 
paper documents. This is dealt with in Section 2.7, which describes printers and
scanners. Although not requiring the same degree of user interaction as a mouse 
or keyboard, these are an important means of input and output for many current
applications.

We then consider the computer itself, its processor and memory devices and 
the networks that link them together. We note how the technology drives and
empowers the interface. The details of computer processing should largely be irrelev-
ant to the end-user, but the interface designer needs to be aware of the limitations 
of storage capacity and computational power; it is no good designing on paper a
marvellous new interface, only to find it needs a Cray to run. Software designers
often have high-end machines on which to develop applications, and it is easy to 
forget what a more typical configuration feels like.

Before looking at these devices and technology in detail we’ll take a quick 
bird’s-eye view of the way computer systems are changing.

2.1.1 A typical computer system

Consider a typical computer setup as shown in Figure 2.1. There is the computer
‘box’ itself, a keyboard, a mouse and a color screen. The screen layout is shown
alongside it. If we examine the interface, we can see how its various characteristics
are related to the devices used. The details of the interface itself, its underlying prin-
ciples and design, are discussed in more depth in Chapter 3. As we shall see there are
variants on these basic devices. Some of this variation is driven by different hardware
configurations: desktop use, laptop computers, PDAs (personal digital assistants).
Partly the diversity of devices reflects the fact that there are many different types of

Window

Window

Figure 2.1 A typical computer system
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data that may have to be entered into and obtained from a system, and there are also
many different types of user, each with their own unique requirements.

2.1.2 Levels of interaction – batch processing

In the early days of computing, information was entered into the computer in a 
large mass – batch data entry. There was minimal interaction with the machine: the
user would simply dump a pile of punched cards onto a reader, press the start 
button, and then return a few hours later. This still continues today although now
with pre-prepared electronic files or possibly machine-read forms. It is clearly the
most appropriate mode for certain kinds of application, for example printing pay
checks or entering the results from a questionnaire.

With batch processing the interactions take place over hours or days. In contrast
the typical desktop computer system has interactions taking seconds or fractions of
a second (or with slow web pages sometimes minutes!). The field of Human–
Computer Interaction largely grew due to this change in interactive pace. It is easy to
assume that faster means better, but some of the paper-based technology discussed
in Section 2.7 suggests that sometimes slower paced interaction may be better.

2.1.3 Richer interaction – everywhere, everywhen

Computers are coming out of the box! Information appliances are putting internet
access or dedicated systems onto the fridge, microwave and washing machine: to
automate shopping, give you email in your kitchen or simply call for maintenance
when needed. We carry with us WAP phones and smartcards, have security systems
that monitor us and web cams that show our homes to the world. Is Figure 2.1 really
the typical computer system or is it really more like Figure 2.2?

Figure 2.2 A typical computer system? Photo courtesy Electrolux
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TEXT ENTRY DEVICES

Whether writing a book like this, producing an office memo, sending a thank you
letter after your birthday, or simply sending an email to a friend, entering text is 
one of our main activities when using the computer. The most obvious means of 
text entry is the plain keyboard, but there are several variations on this: different 
keyboard layouts, ‘chord’ keyboards that use combinations of fingers to enter let-
ters, and phone key pads. Handwriting and speech recognition offer more radical 
alternatives.

2.2.1 The alphanumeric keyboard

The keyboard is still one of the most common input devices in use today. It is used
for entering textual data and commands. The vast majority of keyboards have a stand-
ardized layout, and are known by the first six letters of the top row of alphabetical
keys, QWERTY. There are alternative designs which have some advantages over the
QWERTY layout, but these have not been able to overcome the vast technological
inertia of the QWERTY keyboard. These alternatives are of two forms: 26 key layouts
and chord keyboards. A 26 key layout rearranges the order of the alphabetic keys,
putting the most commonly used letters under the strongest fingers, or adopting
simpler practices. In addition to QWERTY, we will discuss two 26 key layouts, 
alphabetic and DVORAK, and chord keyboards.

The QWERTY keyboard

The layout of the digits and letters on a QWERTY keyboard is fixed (see Figure 2.3),
but non-alphanumeric keys vary between keyboards. For example, there is a differ-
ence between key assignments on British and American keyboards (in particular,
above the 3 on the UK keyboard is the pound sign £, whilst on the US keyboard 
there is a dollar sign $). The standard layout is also subject to variation in the place-
ment of brackets, backslashes and suchlike. In addition different national keyboards
include accented letters and the traditional French layout places the main letters in
different locations – the top line starts AZERTY.

2.2

Figure 2.3 The standard QWERTY keyboard
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The QWERTY arrangement of keys is not optimal for typing, however. The 
reason for the layout of the keyboard in this fashion can be traced back to the days
of mechanical typewriters. Hitting a key caused an arm to shoot towards the carriage,
imprinting the letter on the head on the ribbon and hence onto the paper. If two
arms flew towards the paper in quick succession from nearly the same angle, 
they would often jam – the solution to this was to set out the keys so that common
combinations of consecutive letters were placed at different ends of the keyboard,
which meant that the arms would usually move from alternate sides. One appealing
story relating to the key layout is that it was also important for a salesman to be able 
to type the word ‘typewriter’ quickly in order to impress potential customers: the 
letters are all on the top row!

The electric typewriter and now the computer keyboard are not subject to the
original mechanical constraints, but the QWERTY keyboard remains the dominant
layout. The reason for this is social – the vast base of trained typists would be reluct-
ant to relearn their craft, whilst the management is not prepared to accept an initial
lowering of performance whilst the new skills are gained. There is also a large invest-
ment in current keyboards, which would all have to be either replaced at great cost,
or phased out, with the subsequent requirement for people to be proficient on both
keyboards. As whole populations have become keyboard users this technological
inertia has probably become impossible to change.

How keyboards work

Current keyboards work by a keypress closing a connection, causing a character code to
be sent to the computer. The connection is usually via a lead, but wireless systems also exist. One
aspect of keyboards that is important to users is the ‘feel’ of the keys. Some keyboards require a
very hard press to operate the key, much like a manual typewriter, whilst others are featherlight.
The distance that the keys travel also affects the tactile nature of the keyboard. The keyboards that
are currently used on most notebook computers are ‘half-travel’ keyboards, where the keys travel
only a small distance before activating their connection; such a keyboard can feel dead to begin
with, but such qualitative judgments often change as people become more used to using it. By mak-
ing the actual keys thinner, and allowing them a much reduced travel, a lot of vertical space can be
saved on the keyboard, thereby making the machine slimmer than would otherwise be possible.

Some keyboards are even made of touch-sensitive buttons, which require a light touch and 
practically no travel; they often appear as a sheet of plastic with the buttons printed on them. 
Such keyboards are often found on shop tills, though the keys are not QWERTY, but specific to
the task. Being fully sealed, they have the advantage of being easily cleaned and resistant to dirty
environments, but have little feel, and are not popular with trained touch-typists. Feedback is
important even at this level of human–computer interaction! With the recent increase of repetit-
ive strain injury (RSI) to users’ fingers, and the increased responsibilities of employers in these 
circumstances, it may be that such designs will enjoy a resurgence in the near future. RSI in fingers
is caused by the tendons that control the movement of the fingers becoming inflamed owing to
overuse and making repeated unnatural movements.
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Ease of learning – alphabetic keyboard

One of the most obvious layouts to be produced is the alphabetic keyboard, in which
the letters are arranged alphabetically across the keyboard. It might be expected that
such a layout would make it quicker for untrained typists to use, but this is not the
case. Studies have shown that this keyboard is not faster for properly trained typists,
as we may expect, since there is no inherent advantage to this layout. And even for
novice or occasional users, the alphabetic layout appears to make very little differ-
ence to the speed of typing. These keyboards are used in some pocket electronic per-
sonal organizers, perhaps because the layout looks simpler to use than the QWERTY
one. Also, it dissuades people from attempting to use their touch-typing skills on a
very small keyboard and hence avoids criticisms of difficulty of use!

Ergonomics of use – DVORAK keyboard and split designs

The DVORAK keyboard uses a similar layout of keys to the QWERTY system, but
assigns the letters to different keys. Based upon an analysis of typing, the keyboard is
designed to help people reach faster typing speeds. It is biased towards right-handed
people, in that 56% of keystrokes are made with the right hand. The layout of the
keys also attempts to ensure that the majority of keystrokes alternate between hands,
thereby increasing the potential speed. By keeping the most commonly used keys on
the home, or middle, row, 70% of keystrokes are made without the typist having 
to stretch far, thereby reducing fatigue and increasing keying speed. The layout also

There are a variety of specially shaped keyboards to relieve the strain of typing or to allow 
people to type with some injury (e.g. RSI) or disability. These may slope the keys towards the
hands to improve the ergonomic position, be designed for single-handed use, or for no hands at
all. Some use bespoke key layouts to reduce strain of finger movements. The keyboard illustrated
is produced by PCD Maltron Ltd. for left-handed use. See www.maltron.com/

Source: www.maltron.com, reproduced courtesy of PCD Maltron Ltd.
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aims to minimize the number of keystrokes made with the weak fingers. Many 
of these requirements are in conflict, and the DVORAK keyboard represents one
possible solution. Experiments have shown that there is a speed improvement of
between 10 and 15%, coupled with a reduction in user fatigue due to the increased
ergonomic layout of the keyboard [230].

Other aspects of keyboard design have been altered apart from the layout of the
keys. A number of more ergonomic designs have appeared, in which the basic tilted
planar base of the keyboard is altered. Moderate designs curve the plane of the key-
board, making it concave, whilst more extreme ones split the keys into those for the
left and right hand and curve both halves separately. Often in these the keys are also
moved to bring them all within easy reach, to minimize movement between keys.
Such designs are supposed to aid comfort and reduce RSI by minimizing effort, but
have had practically no impact on the majority of systems sold.

2.2.2 Chord keyboards

Chord keyboards are significantly different from normal alphanumeric keyboards.
Only a few keys, four or five, are used (see Figure 2.4) and letters are produced by
pressing one or more of the keys at once. For example, in the Microwriter, the pat-
tern of multiple keypresses is chosen to reflect the actual letter shape.

Such keyboards have a number of advantages. They are extremely compact: 
simply reducing the size of a conventional keyboard makes the keys too small and
close together, with a correspondingly large increase in the difficulty of using it. The

Figure 2.4 A very early chord keyboard (left) and its lettercodes (right)
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learning time for the keyboard is supposed to be fairly short – of the order of a few
hours – but social resistance is still high. Moreover, they are capable of fast typing
speeds in the hands (or rather hand!) of a competent user. Chord keyboards can 
also be used where only one-handed operation is possible, in cramped and confined
conditions.

Lack of familiarity means that these are unlikely ever to be a mainstream form of
text entry, but they do have applications in niche areas. In particular, courtroom
stenographers use a special form of two-handed chord keyboard and associated
shorthand to enter text at full spoken speed. Also it may be that the compact size and
one-handed operation will find a place in the growing wearables market.

DESIGN FOCUS

Numeric keypads

Alphanumeric keyboards (as the name suggests) include numbers as well as letters. In the QWERTY
layout these are in a line across the top of the keyboard, but in most larger keyboards there is also a
separate number pad to allow faster entry of digits. Number keypads occur in other contexts too,
including calculators, telephones and ATM cash dispensers. Many people are unaware that there are
two different layouts for numeric keypads: the calculator style that has ‘123’ on the bottom and the
telephone style that has ‘123’ at the top.

It is a demonstration of the amazing adaptability of humans that we move between these two styles
with such ease. However, if you need to include a numeric keypad in a device you must consider which
is most appropriate for your potential users. For example, computer keyboards use calculator-style 
layout, as they are primarily used for entering numbers for calculations.

One of the authors was caught out by this once when he forgot the PIN number of his cash card. He
half remembered the digits, but also his fingers knew where to type, so he ‘practiced’ on his calculator.
Unfortunately ATMs use telephone-style layout!

calculator ATM phone
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2.2.3 Phone pad and T9 entry

With mobile phones being used for SMS text messaging (see Chapter 19) and WAP
(see Chapter 21), the phone keypad has become an important form of text input.
Unfortunately a phone only has digits 0–9, not a full alphanumeric keyboard.

To overcome this for text input the numeric keys are usually pressed several times
– Figure 2.5 shows a typical mapping of digits to letters. For example, the 3 key has
‘def ’ on it. If you press the key once you get a ‘d’, if you press 3 twice you get an ‘e’,
if you press it three times you get an ‘f ’. The main number-to-letter mapping is stand-
ard, but punctuation and accented letters differ between phones. Also there needs to
be a way for the phone to distinguish, say, the ‘dd’ from ‘e’. On some phones you
need to pause for a short period between successive letters using the same key, for
others you press an additional key (e.g. ‘#’).

Most phones have at least two modes for the numeric buttons: one where the keys
mean the digits (for example when entering a phone number) and one where they
mean letters (for example when typing an SMS message). Some have additional
modes to make entering accented characters easier. Also a special mode or setting is
needed for capital letters although many phones use rules to reduce this, for ex-
ample automatically capitalizing the initial letter in a message and letters following
full stops, question marks and exclamation marks.

This is all very laborious and, as we will see in Chapter 19, experienced mobile
phone users make use of a highly developed shorthand to reduce the number of
keystrokes. If you watch a teenager or other experienced txt-er, you will see they

Figure 2.5 Mobile phone keypad. Source: Photograph by Alan Dix (Ericsson phone)

Typical key mapping:
1 – space, comma, etc. (varies)
2 – a b c
3 – d e f
4 – g h i
5 – j k l
6 – m n o
7 – p q r s
8 – t u v
9 – w x y z
0 – +, &, etc.
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often develop great typing speed holding the phone in one hand and using only 
their thumb. As these skills spread through society it may be that future devices 
use this as a means of small format text input. For those who never develop this
physical dexterity some phones have tiny plug-in keyboards, or come with fold-out
keyboards.

Another technical solution to the problem is the T9 algorithm. This uses a large
dictionary to disambiguate words by simply typing the relevant letters once. For
example, ‘3926753’ becomes ‘example’ as there is only one word with letters that
match (alternatives like ‘ewbosld’ that also match are not real words). Where there
are ambiguities such as ‘26’, which could be an ‘am’ or an ‘an’, the phone gives a
series of options to choose from.

2.2.4 Handwriting recognition

Handwriting is a common and familiar activity, and is therefore attractive as a
method of text entry. If we were able to write as we would when we use paper, but
with the computer taking this form of input and converting it to text, we can see that
it is an intuitive and simple way of interacting with the computer. However, there are
a number of disadvantages with handwriting recognition. Current technology is 
still fairly inaccurate and so makes a significant number of mistakes in recognizing
letters, though it has improved rapidly. Moreover, individual differences in hand-
writing are enormous, and make the recognition process even more difficult. The
most significant information in handwriting is not in the letter shape itself but in the
stroke information – the way in which the letter is drawn. This means that devices
which support handwriting recognition must capture the stroke information, not
just the final character shape. Because of this, online recognition is far easier than
reading handwritten text on paper. Further complications arise because letters
within words are shaped and often drawn very differently depending on the actual
word; the context can help determine the letter’s identity, but is often unable to pro-
vide enough information. Handwriting recognition is covered in more detail later in
the book, in Chapter 10. More serious in many ways is the limitation on speed; it is
difficult to write at more than 25 words a minute, which is no more than half the
speed of a decent typist.

The different nature of handwriting means that we may find it more useful in 
situations where a keyboard-based approach would have its own problems. Such 
situations will invariably result in completely new systems being designed around 
the handwriting recognizer as the predominant mode of textual input, and these 
may bear very little resemblance to the typical system. Pen-based systems that use
handwriting recognition are actively marketed in the mobile computing market,
especially for smaller pocket organizers. Such machines are typically used for taking
notes and jotting down and sketching ideas, as well as acting as a diary, address book
and organizer. Using handwriting recognition has many advantages over using a
keyboard. A pen-based system can be small and yet still accurate and easy to use,
whereas small keys become very tiring, or even impossible, to use accurately. Also the
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pen-based approach does not have to be altered when we move from jotting down
text to sketching diagrams; pen-based input is highly appropriate for this also.

Some organizer designs have dispensed with a keyboard completely. With such
systems one must consider all sorts of other ways to interact with the system that are
not character based. For example, we may decide to use gesture recognition, rather
than commands, to tell the system what to do, for example drawing a line through a
word in order to delete it. The important point is that a different input device that
was initially considered simply as an alternative to the keyboard opens up a whole
host of alternative interface designs and different possibilities for interaction.

Signature authentication

Handwriting recognition is difficult principally because of the great differences between dif-
ferent people’s handwriting. These differences can be used to advantage in signature authentication
where the purpose is to identify the user rather than read the signature. Again this is far easier
when we have stroke information as people tend to produce signatures which look slightly differ-
ent from one another in detail, but are formed in a similar fashion. Furthermore, a forger who has
a copy of a person’s signature may be able to copy the appearance of the signature, but will not
be able to reproduce the pattern of strokes.

2.2.5 Speech recognition

Speech recognition is a promising area of text entry, but it has been promising for a
number of years and is still only used in very limited situations. There is a natural
enthusiasm for being able to talk to the machine and have it respond to commands,
since this form of interaction is one with which we are very familiar. Successful
recognition rates of over 97% have been reported, but since this represents one let-
ter in error in approximately every 30, or one spelling mistake every six or so words,
this is stoll unacceptible (sic)! Note also that this performance is usually quoted only
for a restricted vocabulary of command words. Trying to extend such systems to the
level of understanding natural language, with its inherent vagueness, imprecision
and pauses, opens up many more problems that have not been satisfactorily solved
even for keyboard-entered natural language. Moreover, since every person speaks
differently, the system has to be trained and tuned to each new speaker, or its per-
formance decreases. Strong accents, a cold or emotion can also cause recognition
problems, as can background noise. This leads us on to the question of practicality
within an office environment: not only may the background level of noise cause
errors, but if everyone in an open-plan office were to talk to their machine, the level
of noise would dramatically increase, with associated difficulties. Confidentiality
would also be harder to maintain.

Despite its problems, speech technology has found niche markets: telephone
information systems, access for the disabled, in hands-occupied situations (especially



2.3 Positioning, pointing and drawing 71

military) and for those suffering RSI. This is discussed in greater detail in Chapter 10,
but we can see that it offers three possibilities. The first is as an alternative text entry
device to replace the keyboard within an environment and using software originally
designed for keyboard use. The second is to redesign a system, taking full advantage
of the benefits of the technique whilst minimizing the potential problems. Finally, it
can be used in areas where keyboard-based input is impractical or impossible. It is in
the latter, more radical areas that speech technology is currently achieving success.

POSITIONING, POINTING AND DRAWING

Central to most modern computing systems is the ability to point at something on
the screen and thereby manipulate it, or perform some function. There has been a
long history of such devices, in particular in computer-aided design (CAD), where
positioning and drawing are the major activities. Pointing devices allow the user to
point, position and select items, either directly or by manipulating a pointer on the
screen. Many pointing devices can also be used for free-hand drawing although the
skill of drawing with a mouse is very different from using a pencil. The mouse is still
most common for desktop computers, but is facing challenges as laptop and hand-
held computing increase their market share. Indeed, these words are being typed on
a laptop with a touchpad and no mouse.

2.3.1 The mouse

The mouse has become a major component of the majority of desktop computer sys-
tems sold today, and is the little box with the tail connecting it to the machine in our
basic computer system picture (Figure 2.1). It is a small, palm-sized box housing a
weighted ball – as the box is moved over the tabletop, the ball is rolled by the table
and so rotates inside the housing. This rotation is detected by small rollers that are
in contact with the ball, and these adjust the values of potentiometers. If you remove
the ball occasionally to clear dust you may be able to see these rollers. The changing
values of these potentiometers can be directly related to changes in position of the
ball. The potentiometers are aligned in different directions so that they can detect
both horizontal and vertical motion. The relative motion information is passed 
to the computer via a wire attached to the box, or in some cases using wireless or
infrared, and moves a pointer on the screen, called the cursor. The whole arrange-
ment tends to look rodent-like, with the box acting as the body and the wire as the
tail; hence the term ‘mouse’. In addition to detecting motion, the mouse has typically
one, two or three buttons on top. These are used to indicate selection or to initiate
action. Single-button mice tend to have similar functionality to multi-button mice,
and achieve this by instituting different operations for a single and a double button
click. A ‘double-click’ is when the button is pressed twice in rapid succession. Multi-
button mice tend to allocate one operation to each particular button.

2.3
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The mouse operates in a planar fashion, moving around the desktop, and is an
indirect input device, since a transformation is required to map from the horizontal
nature of the desktop to the vertical alignment of the screen. Left–right motion is
directly mapped, whilst up–down on the screen is achieved by moving the mouse
away–towards the user. The mouse only provides information on the relative move-
ment of the ball within the housing: it can be physically lifted up from the desktop
and replaced in a different position without moving the cursor. This offers the
advantage that less physical space is required for the mouse, but suffers from being
less intuitive for novice users. Since the mouse sits on the desk, moving it about is
easy and users suffer little arm fatigue, although the indirect nature of the medium
can lead to problems with hand–eye coordination. However, a major advantage of
the mouse is that the cursor itself is small, and it can be easily manipulated without
obscuring the display.

The mouse was developed around 1964 by Douglas C. Engelbart, and a photo-
graph of the first prototype is shown in Figure 2.6. This used two wheels that 
slid across the desktop and transmitted x–y coordinates to the computer. The hous-
ing was carved in wood, and has been damaged, exposing one of the wheels. The
original design actually offers a few advantages over today’s more sleek versions: 
by tilting it so that only one wheel is in contact with the desk, pure vertical or hori-
zontal motion can be obtained. Also, the problem of getting the cursor across the 
large screens that are often used today can be solved by flicking your wrist to get 
the horizontal wheel spinning. The mouse pointer then races across the screen with
no further effort on your behalf, until you stop it at its destination by dropping the
mouse down onto the desktop.

Figure 2.6 The first mouse. Photograph courtesy of Douglas Engelbart and
Bootstrap Institute
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Although most mice are hand operated, not all are – there have been experiments
with a device called the footmouse. As the name implies, it is a foot-operated device,
although more akin to an isometric joystick than a mouse. The cursor is moved by
foot pressure on one side or the other of a pad. This allows one to dedicate hands to
the keyboard. A rare device, the footmouse has not found common acceptance!

Interestingly foot pedals are used heavily in musical instruments including pianos,
electric guitars, organs and drums and also in mechanical equipment including cars,
cranes, sewing machines and industrial controls. So it is clear that in principle this is
a good idea. Two things seem to have limited their use in computer equipment
(except simulators and games). One is the practicality of having foot controls in the
work environment: pedals under a desk may be operated accidentally, laptops with
foot pedals would be plain awkward. The second issue is the kind of control being
exercised. Pedals in physical interfaces are used predominantly to control one or
more single-dimensional analog controls. It may be that in more specialized interfaces
appropriate foot-operated controls could be more commonly and effectively used.

2.3.2 Touchpad

Touchpads are touch-sensitive tablets usually around 2–3 inches (50–75 mm)
square. They were first used extensively in Apple Powerbook portable computers but
are now used in many other notebook computers and can be obtained separately to
replace the mouse on the desktop. They are operated by stroking a finger over their
surface, rather like using a simulated trackball. The feel is very different from other
input devices, but as with all devices users quickly get used to the action and become
proficient.

Because they are small it may require several strokes to move the cursor across the
screen. This can be improved by using acceleration settings in the software linking
the trackpad movement to the screen movement. Rather than having a fixed ratio of
pad distance to screen distance, this varies with the speed of movement. If the finger

Optical mice

Optical mice work differently from mechanical mice. A light-emitting diode emits a weak
red light from the base of the mouse. This is reflected off a special pad with a metallic grid-like pat-
tern upon which the mouse has to sit, and the fluctuations in reflected intensity as the mouse is
moved over the gridlines are recorded by a sensor in the base of the mouse and translated into
relative x, y motion. Some optical mice do not require special mats, just an appropriate surface,
and use the natural texture of the surface to detect movement. The optical mouse is less suscept-
ible to dust and dirt than the mechanical one in that its mechanism is less likely to become blocked
up. However, for those that rely on a special mat, if the mat is not properly aligned, movement of
the mouse may become erratic – especially difficult if you are working with someone and pass the
mouse back and forth between you.
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moves slowly over the pad then the pad movements map to small distances on the
screen. If the finger is moving quickly the same distance on the touchpad moves the
cursor a long distance. For example, on the trackpad being used when writing this
section a very slow movement of the finger from one side of the trackpad to the other
moves the cursor less than 10% of the width of the screen. However, if the finger is
moved very rapidly from side to side, the cursor moves the whole width of the screen.

In fact, this form of acceleration setting is also used in other indirect positioning
devices including the mouse. Fine settings of this sort of parameter makes a great dif-
ference to the ‘feel’ of the device.

2.3.3 Trackball and thumbwheel

The trackball is really just an upside-down mouse! A weighted ball faces upwards and
is rotated inside a static housing, the motion being detected in the same way as for 
a mechanical mouse, and the relative motion of the ball moves the cursor. Because
of this, the trackball requires no additional space in which to operate, and is there-
fore a very compact device. It is an indirect device, and requires separate buttons 
for selection. It is fairly accurate, but is hard to draw with, as long movements are
difficult. Trackballs now appear in a wide variety of sizes, the most usual being about
the same as a golf ball, with a number of larger and smaller devices available. The size
and ‘feel’ of the trackball itself affords significant differences in the usability of the
device: its weight, rolling resistance and texture all contribute to the overall effect.

Some of the smaller devices have been used in notebook and portable computers,
but more commonly trackpads or nipples are used. They are often sold as altern-
atives to mice on desktop computers, especially for RSI sufferers. They are also 
heavily used in video games where their highly responsive behavior, including being
able to spin the ball, is ideally suited to the demands of play.

Thumbwheels are different in that they have two orthogonal dials to control the
cursor position. Such a device is very cheap, but slow, and it is difficult to manipu-
late the cursor in any way other than horizontally or vertically. This limitation can
sometimes be a useful constraint in the right application. For instance, in CAD the
designer is almost always concerned with exact verticals and horizontals, and a
device that provides such constraints is very useful, which accounts for the appear-
ance of thumbwheels in CAD systems. Another successful application for such a
device has been in a drawing game such as Etch-a-Sketch in which straight lines can
be created on a simple screen, since the predominance of straight lines in simple
drawings means that the motion restrictions are an advantage rather than a handi-
cap. However, if you were to try to write your signature using a thumbwheel, the 
limitations would be all too apparent. The appropriateness of the device depends on
the task to be performed.

Although two-axis thumbwheels are not heavily used in mainstream applications,
single thumbwheels are often included on a standard mouse in order to offer an
alternative means to scroll documents. Normally scrolling requires you to grab the
scroll bar with the mouse cursor and drag it down. For large documents it is hard to
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be accurate and in addition the mouse dragging is done holding a finger down which
adds to hand strain. In contrast the small scroll wheel allows comparatively intuitive
and fast scrolling, simply rotating the wheel to move the page.

2.3.4 Joystick and keyboard nipple

The joystick is an indirect input device, taking up very little space. Consisting of a
small palm-sized box with a stick or shaped grip sticking up from it, the joystick is a
simple device with which movements of the stick cause a corresponding movement
of the screen cursor. There are two types of joystick: the absolute and the isometric.
In the absolute joystick, movement is the important characteristic, since the position
of the joystick in the base corresponds to the position of the cursor on the screen. 
In the isometric joystick, the pressure on the stick corresponds to the velocity of 
the cursor, and when released, the stick returns to its usual upright centered position.
This type of joystick is also called the velocity-controlled joystick, for obvious 
reasons. The buttons are usually placed on the top of the stick, or on the front like a
trigger. Joysticks are inexpensive and fairly robust, and for this reason they are often
found in computer games. Another reason for their dominance of the games market
is their relative familiarity to users, and their likeness to aircraft joysticks: aircraft are
a favorite basis for games, leading to familiarity with the joystick that can be used 
for more obscure entertainment ideas.

A smaller device but with the same basic characteristics is used on many laptop
computers to control the cursor. Some older systems had a variant of this called the
keymouse, which was a single key. More commonly a small rubber nipple projects in
the center of the keyboard and acts as a tiny isometric joystick. It is usually difficult
for novices to use, but this seems to be related to fine adjustment of the speed set-
tings. Like the joystick the nipple controls the rate of movement across the screen
and is thus less direct than a mouse or stylus.

2.3.5 Touch-sensitive screens (touchscreens)

Touchscreens are another method of allowing the user to point and select objects 
on the screen, but they are much more direct than the mouse, as they detect the 
presence of the user’s finger, or a stylus, on the screen itself. They work in one of 
a number of different ways: by the finger (or stylus) interrupting a matrix of light
beams, or by capacitance changes on a grid overlaying the screen, or by ultrasonic
reflections. Because the user indicates exactly which item is required by pointing to
it, no mapping is required and therefore this is a direct device.

The touchscreen is very fast, and requires no specialized pointing device. It is 
especially good for selecting items from menus displayed on the screen. Because 
the screen acts as an input device as well as an output device, there is no separate
hardware to become damaged or destroyed by dirt; this makes touchscreens suitable
for use in hostile environments. They are also relatively intuitive to use and have
been used successfully as an interface to information systems for the general public.
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They suffer from a number of disadvantages, however. Using the finger to point is
not always suitable, as it can leave greasy marks on the screen, and, being a fairly
blunt instrument, it is quite inaccurate. This means that the selection of small
regions is very difficult, as is accurate drawing. Moreover, lifting the arm to point to
a vertical screen is very tiring, and also means that the screen has to be within about
a meter of the user to enable it to be reached, which can make it too close for com-
fort. Research has shown that the optimal angle for a touchscreen is about 15 degrees
up from the horizontal.

2.3.6 Stylus and light pen

For more accurate positioning (and to avoid greasy screens), systems with touch-
sensitive surfaces often emply a stylus. Instead of pointing at the screen directly a
small pen-like plastic stick is used to point and draw on the screen. This is particu-
larly popular in PDAs, but they are also being used in some laptop computers.

An older technology that is used in the same way is the light pen. The pen is con-
nected to the screen by a cable and, in operation, is held to the screen and detects 
a burst of light from the screen phosphor during the display scan. The light pen 
can therefore address individual pixels and so is much more accurate than the 
touchscreen.

Both stylus and light pen can be used for fine selection and drawing, but both 
can be tiring to use on upright displays and are harder to take up and put down 
when used together with a keyboard. Interestingly some users of PDAs with fold-out
keyboards learn to hold the stylus held outwards between their fingers so that they
can type whilst holding it. As it is unattached the stylus can easily get lost, but a
closed pen can be used in emergencies.

Stylus, light pen and touchscreen are all very direct in that the relationship
between the device and the thing selected is immediate. In contrast, mouse, touch-
pad, joystick and trackball all have to map movements on the desk to cursor move-
ment on the screen.

However, the direct devices suffer from the problem that, in use, the act of point-
ing actually obscures the display, making it harder to use, especially if complex
detailed selections or movements are required in rapid succession. This means that
screen designs have to take into account where the user’s hand will be. For example,
you may want to place menus at the bottom of the screen rather than the top. Also
you may want to offer alternative layouts for right-handed and left-handed users.

2.3.7 Digitizing tablet

The digitizing tablet is a more specialized device typically used for freehand drawing,
but may also be used as a mouse substitute. Some highly accurate tablets, usually
using a puck (a mouse-like device), are used in special applications such as digitizing
information for maps.

The tablet provides positional information by measuring the position of some
device on a special pad, or tablet, and can work in a number of ways. The resistive
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tablet detects point contact between two separated conducting sheets. It has advant-
ages in that it can be operated without a specialized stylus – a pen or the user’s finger
is sufficient. The magnetic tablet detects current pulses in a magnetic field using a
small loop coil housed in a special pen. There are also capacitative and electrostatic
tablets that work in a similar way. The sonic tablet is similar to the above but requires
no special surface. An ultrasonic pulse is emitted by a special pen which is detected
by two or more microphones which then triangulate the pen position. This device
can be adapted to provide 3D input, if required.

Digitizing tablets are capable of high resolution, and are available in a range of
sizes. Sampling rates vary, affecting the resolution of cursor movement, which gets
progressively finer as the sampling rate increases. The digitizing tablet can be used to
detect relative motion or absolute motion, but is an indirect device since there is a
mapping from the plane of operation of the tablet to the screen. It can also be used
for text input; if supported by character recognition software, handwriting can be
interpreted. Problems with digitizing tablets are that they require a large amount of
desk space, and may be awkward to use if displaced to one side by the keyboard.

2.3.8 Eyegaze

Eyegaze systems allow you to control the computer by simply looking at it! Some sys-
tems require you to wear special glasses or a small head-mounted box, others are
built into the screen or sit as a small box below the screen. A low-power laser is shone
into the eye and is reflected off the retina. The reflection changes as the angle of the
eye alters, and by tracking the reflected beam the eyegaze system can determine the
direction in which the eye is looking. The system needs to be calibrated, typically by
staring at a series of dots on the screen, but thereafter can be used to move the screen
cursor or for other more specialized uses. Eyegaze is a very fast and accurate device,
but the more accurate versions can be expensive. It is fine for selection but not for
drawing since the eye does not move in smooth lines. Also in real applications it 
can be difficult to distinguish deliberately gazing at something and accidentally
glancing at it.

Such systems have been used in military applications, notably for guiding air-to-
air missiles to their targets, but are starting to find more peaceable uses, for disabled
users and for workers in environments where it is impossible for them to use their
hands. The rarity of the eyegaze is due partly to its novelty and partly to its expense,
and it is usually found only in certain domain-specific applications. Within HCI it is
particularly useful as part of evaluation as one is able to trace exactly where the user
is looking [81]. As prices drop and the technology becomes less intrusive we may see
more applications using eyegaze, especially in virtual reality and augmented reality
areas (see Chapter 20).

2.3.9 Cursor keys and discrete positioning

All of the devices we have discussed are capable of giving near continuous 2D 
positioning, with varying degrees of accuracy. For many applications we are only
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interested in positioning within a sequential list such as a menu or amongst 2D cells
as in a spreadsheet. Even for moving within text discrete up/down left/right keys can
sometimes be preferable to using a mouse.

Cursor keys are available on most keyboards. Four keys on the keyboard are used
to control the cursor, one each for up, down, left and right. There is no standardized
layout for the keys. Some layouts are shown in Figure 2.7, but the most common now
is the inverted ‘T’.

Cursor keys used to be more heavily used in character-based systems before 
windows and mice were the norm. However, when logging into remote machines
such as web servers, the interface is often a virtual character-based terminal within a
telnet window. In such applications it is common to find yourself in a 1970s world
of text editors controlled sometimes using cursor keys and sometimes by more
arcane combinations of control keys!

Small devices such as mobile phones, personal entertainment and television
remote controls often require discrete control, either dedicated to a particular func-
tion such as volume, or for use as general menu selection. Figure 2.8 shows examples
of these. The satellite TV remote control has dedicated ‘+/–’ buttons for controlling
volume and stepping between channels. It also has a central cursor pad that is used
for on-screen menus. The mobile phone has a single central joystick-like device. 
This can be pushed left/right, up/down to navigate within the small 3 × 3 array of
graphical icons as well as select from text menus.

DISPLAY DEVICES

The vast majority of interactive computer systems would be unthinkable with-
out some sort of display screen, but many such systems do exist, though usually 
in specialized applications only. Thinking beyond the traditional, systems such as
cars, hi-fis and security alarms all have different outputs from those expressible on a
screen, but in the personal computer and workstation market, screens are pervasive.

2.4

Figure 2.7 Various cursor key layouts
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In this section, we discuss the standard computer display in detail, looking at the
properties of bitmap screens, at different screen technologies, at large and situated
displays, and at a new technology, ‘digital paper’.

2.4.1 Bitmap displays – resolution and color

Virtually all computer displays are based on some sort of bitmap. That is the display
is made of vast numbers of colored dots or pixels in a rectangular grid. These pixels
may be limited to black and white (for example, the small display on many TV
remote controls), in grayscale, or full color.

Figure 2.8 Satellite TV remote control and mobile phone. Source: Photograph left by Alan Dix with
permission from British Sky Broadcasting Limited, photograph right by Alan Dix (Ericsson phone)
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The color or, for monochrome screens, the intensity at each pixel is held by the
computer’s video card. One bit per pixel can store on/off information, and hence only
black and white (the term ‘bitmap’ dates from such displays). More bits per pixel
give rise to more color or intensity possibilities. For example, 8 bits/pixel give rise to
28 = 256 possible colors at any one time. The set of colors make up what is called the
colormap, and the colormap can be altered at any time to produce a different set of
colors. The system is therefore capable of actually displaying many more than the
number of colors in the colormap, but not simultaneously. Most desktop computers
now use 24 or 32 bits per pixel which allows virtually unlimited colors, but devices such
as mobile phones and PDAs are often still monochrome or have limited color range.

As well as the number of colors that can be displayed at each pixel, the other measure
that is important is the resolution of the screen. Actually the word ‘resolution’ is used
in a confused (and confusing!) way for screens. There are two numbers to consider:

n the total number of pixels: in standard computer displays this is always in a 4:3
ratio, perhaps 1024 pixels across by 768 down, or 1600 × 1200; for PDAs this will
be more in the order of a few hundred pixels in each direction.

n the density of pixels: this is measured in pixels per inch. Unlike printers (see
Section 2.7 below) this density varies little between 72 and 96 pixels per inch.

To add to the confusion, a monitor, liquid crystal display (LCD) screen or other
display device will quote its maximum resolution, but the computer may actually
give it less than this. For example, the screen may be a 1200 × 900 resolution with 96
pixels per inch, but the computer only sends it 800 × 600. In the case of a cathode ray
tube (CRT) this typically will mean that the image is stretched over the screen sur-
face giving a lower density of 64 pixels per inch. An LCD screen cannot change its
pixel size so it would keep 96 pixels per inch and simply not use all its screen space,
adding a black border instead. Some LCD projectors will try to stretch or reduce
what they are given, but this may mean that one pixel gets stretched to two, or two
pixels get ‘squashed’ into one, giving rise to display ‘artifacts’ such as thin lines dis-
appearing, or uniform lines becoming alternately thick or thin.

Although horizontal and vertical lines can be drawn perfectly on bitmap screens,
and lines at 45 degrees reproduce reasonably well, lines at any other angle and curves
have ‘jaggies’, rough edges caused by the attempt to approximate the line with pixels.

When using a single color jaggies are inevitable. Similar effects are seen in bitmap
fonts. The problem of jaggies can be reduced by using high-resolution screens, or by
a technique known as anti-aliasing. Anti-aliasing softens the edges of line segments,
blurring the discontinuity and making the jaggies less obvious.

Look at the two images in Figure 2.9 with your eyes slightly screwed up. See how
the second anti-aliased line looks better. Of course, screen resolution is much higher,
but the same principle holds true. The reason this works is because our brains are
constantly ‘improving’ what we see in the world: processing and manipulating the
raw sensations of the rods and cones in our eyes and turning them into something
meaningful. Often our vision is blurred because of poor light, things being out of
focus, or defects in our vision. Our brain compensates and tidies up blurred images.
By deliberately blurring the image, anti-aliasing triggers this processing in our brain
and we appear to see a smooth line at an angle.
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2.4.2 Technologies

Cathode ray tube

The cathode ray tube is the television-like computer screen still most common as 
we write this, but rapidly being displaced by flat LCD screens. It works in a similar
way to a standard television screen. A stream of electrons is emitted from an electron
gun, which is then focussed and directed by magnetic fields. As the beam hits the
phosphor-coated screen, the phosphor is excited by the electrons and glows (see
Figure 2.10). The electron beam is scanned from left to right, and then flicked back
to rescan the next line, from top to bottom. This is repeated, at about 30 Hz (that is,
30 times a second), per frame, although higher scan rates are sometimes used to
reduce the flicker on the screen. Another way of reducing flicker is to use interlacing,
in which the odd lines on the screen are all scanned first, followed by the even lines.
Using a high-persistence phosphor, which glows for a longer time when excited, also
reduces flicker, but causes image smearing especially if there is significant animation.

Black and white screens are able to display grayscale by varying the intensity of the
electron beam; color is achieved using more complex means. Three electron guns 
are used, one each to hit red, green and blue phosphors. Combining these colors can

Figure 2.9 Magnified anti-aliased lines

Figure 2.10 CRT screen
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produce many others, including white, when they are all fully on. These three phosphor
dots are focussed to make a single point using a shadow mask, which is imprecise and
gives color screens a lower resolution than equivalent monochrome screens.

An alternative approach to producing color on the screen is to use beam penetra-
tion. A special phosphor glows a different color depending on the intensity of the
beam hitting it.

The CRT is a cheap display device and has fast enough response times for rapid
animation coupled with a high color capability. Note that animation does not neces-
sarily mean little creatures and figures running about on the screen, but refers in 
a more general sense to the use of motion in displays: moving the cursor, opening
windows, indicating processor-intensive calculations, or whatever. As screen resolu-
tion increases, however, the price rises. Because of the electron gun and focussing
components behind the screen, CRTs are fairly bulky, though recent innovations
have led to flatter displays in which the electron gun is not placed so that it fires
directly at the screen, but fires parallel to the screen plane with the resulting beam
bent through 90 degrees to hit the screen.

Health hazards of CRT displays

Most people who habitually use computers are aware that screens can often cause eyestrain
and fatigue; this is usually due to flicker, poor legibility or low contrast. There have also been many
concerns relating to the emission of radiation from screens. These can be categorized as follows:

n X-rays which are largely absorbed by the screen (but not at the rear!)
n ultraviolet and infrared radiation from phosphors in insignificant levels
n radio frequency emissions, plus ultrasound (approximately 16 kHz)
n electrostatic field which leaks out through the tube to the user. The intensity is dependent on

distance and humidity. This can cause rashes in the user
n electromagnetic fields (50 Hz to 0.5 MHz) which create induction currents in conductive 

materials, including the human body. Two types of effects are attributed to this: in the visual
system, a high incidence of cataracts in visual display unit (VDU) operators, and concern over
reproductive disorders (miscarriages and birth defects).

Research into the potentially harmful effect of these emissions is generally inconclusive, in that it
is difficult to determine precisely what the causes of illness are, and many health scares have been
the result of misinformed media opinion rather than scientific fact. However, users who are preg-
nant ought to take especial care and observe simple precautions. Generally, there are a number of
common-sense things that can be done to relieve strain and minimize any risk. These include

n not sitting too close to the screen
n not using very small fonts
n not looking at the screen for a long time without a break
n working in well-lit surroundings
n not placing the screen directly in front of a bright window.
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Liquid crystal display

If you have used a personal organizer or notebook computer, you will have seen 
the light, flat plastic screens. These displays utilize liquid crystal technology and are
smaller, lighter and consume far less power than traditional CRTs. These are also
commonly referred to as flat-panel displays. They have no radiation problems asso-
ciated with them, and are matrix addressable, which means that individual pixels can
be accessed without the need for scanning.

Similar in principle to the digital watch, a thin layer of liquid crystal is sandwiched
between two glass plates. The top plate is transparent and polarized, whilst the bot-
tom plate is reflective. External light passes through the top plate and is polarized,
which means that it only oscillates in one direction. This then passes through the
crystal, reflects off the bottom plate and back to the eye, and so that cell looks white.
When a voltage is applied to the crystal, via the conducting glass plates, the crystal
twists. This causes it to turn the plane of polarization of the incoming light, rotating
it so that it cannot return through the top plate, making the activated cell look black.
The LCD requires refreshing at the usual rates, but the relatively slow response of the
crystal means that flicker is not usually noticeable. The low intensity of the light
emitted from the screen, coupled with the reduced flicker, means that the LCD is less
tiring to use than standard CRT ones, with reduced eyestrain.

This different technology can be used to replace the standard screen on a desktop
computer, and this is now common. However, the particular characteristics of com-
pactness, light weight and low power consumption have meant that these screens
have created a large niche in the computer market by monopolizing the notebook
and portable computer systems side. The advent of these screens allowed small, light
computers to be built, and created a large market that did not previously exist. Such
computers, riding on the back of the technological wave, have opened up a different
way of working for many people, who now have access to computers when away
from the office, whether out on business or at home. Working in a different location
on a smaller machine with different software obviously represents a different style 
of interaction and so once again we can see that differences in devices may alter 
the human–computer interaction considerably. The growing notebook computer
market fed back into an investment in developing LCD screen technology, with
supertwisted crystals increasing the viewing angle dramatically. Response times have
also improved so that LCD screens are now used in personal DVD players and even
in home television.

When the second edition of this book was being written the majority of LCD
screens were black and white or grayscale, We wrote then ‘it will be interesting to see
whether color LCD screens supersede grayscale by the time the third edition of this
book is prepared’. Of course, this is precisely the case. Our expectation is that by the
time we produce the next edition LCD monitors will have taken over from CRT
monitors completely.
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Special displays

There are a number of other display technologies used in niche markets. The one 
you are most likely to see is the gas plasma display, which is used in large screens 
(see Section 2.4.3 below).

The random scan display, also known as the directed beam refresh, or vector display,
works differently from the bitmap display, also known as raster scan, that we dis-
cussed in Section 2.4.1. Instead of scanning the whole screen sequentially and hori-
zontally, the random scan draws the lines to be displayed directly. By updating the
screen at at least 30 Hz to reduce flicker, the direct drawing of lines at any angle
means that jaggies are not created, and higher resolutions are possible, up to 4096 ×
4096 pixels. Color on such displays is achieved using beam penetration technology,
and is generally of a poorer quality. Eyestrain and fatigue are still a problem, and
these displays are more expensive than raster scan ones, so they are now only used in
niche applications.

The direct view storage tube is used extensively as the display for an analog 
storage oscilloscope, which is probably the only place that these displays are used in
any great numbers. They are similar in operation to the random scan CRT but the
image is maintained by flood guns which have the advantage of producing a stable
display with no flicker. The screen image can be incrementally updated but not 
selectively erased; removing items has to be done by redrawing the new image on 
a completely erased screen. The screens have a high resolution, typically about 
4096 × 3120 pixels, but suffer from low contrast, low brightness and a difficulty in
displaying color.

2.4.3 Large displays and situated displays

Displays are no longer just things you have on your desktop or laptop. In Chapter 19
we will discuss meeting room environments that often depend on large shared
screens. You may have attended lectures where the slides are projected from a com-
puter onto a large screen. In shops and garages large screen adverts assault us from
all sides.

There are several types of large screen display. Some use gas plasma technology 
to create large flat bitmap displays. These behave just like a normal screen except
they are big and usually have the HDTV (high definition television) wide screen 
format which has an aspect ratio of 16:9 instead of the 4:3 on traditional TV and
monitors.

Where very large screen areas are required, several smaller screens, either LCD or
CRT, can be placed together in a video wall. These can display separate images, or a
single TV or computer image can be split up by software or hardware so that each
screen displays a portion of the whole and the result is an enormous image. This 
is the technique often used in large concerts to display the artists or video images
during the performance.
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Possibly the large display you are most likely to have encountered is some sort of
projector. There are two variants of these. In very large lecture theatres, especially
older ones, you see projectors with large red, green and blue lenses. These each scan
light across the screen to build a full color image. In smaller lecture theatres and in
small meetings you are likely to see LCD projectors. Usually the size of a large book,
these are like ordinary slide projectors except that where the slide would be there is
a small LCD screen instead. The light from the projector passes through the tiny
screen and is then focussed by the lens onto the screen.

The disadvantage of projected displays is that the presenter’s shadow can often fall
across the screen. Sometimes this is avoided in fixed lecture halls by using back pro-
jection. In a small room behind the screen of the lecture theatre there is a projector
producing a right/left reversed image. The screen itself is a semi-frosted glass so that
the image projected on the back can be seen in the lecture theatre. Because there are
limits on how wide an angle the projector can manage without distortion, the size of
the image is limited by the depth of the projection room behind, so these are less
heavily used than front projection.

As well as for lectures and meetings, display screens can be used in various public
places to offer information, link spaces or act as message areas. These are often called
situated displays as they take their meaning from the location in which they are 
situated. These may be large screens where several people are expected to view or
interact simultaneously, or they may be very small. Figure 2.11 shows an example 
of a small experimental situated display mounted by an office door to act as an 
electronic sticky note [70].

Figure 2.11 Situated door display. Source: Courtesy of Keith Cheverst
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2.4.4 Digital paper

A new form of ‘display’ that is still in its infancy is the various forms of digital paper.
These are thin flexible materials that can be written to electronically, just like a com-
puter screen, but which keep their contents even when removed from any electrical
supply.

There are various technologies being investigated for this. One involves the whole
surface being covered with tiny spheres, black one side, white the other. Electronics
embedded into the material allow each tiny sphere to be rotated to make it black 
or white. When the electronic signal is removed the ball stays in its last orientation.
A different technique has tiny tubes laid side by side. In each tube is light-absorbing
liquid and a small reflective sphere. The sphere can be made to move to the top sur-
face or away from it making the pixel white or black. Again the sphere stays in its last
position once the electronic signal is removed.

Probably the first uses of these will be for large banners that can be reprogrammed
or slowly animated. This is an ideal application, as it does not require very rapid
updates and does not require the pixels to be small. As the technology matures, the
aim is to have programmable sheets of paper that you attach to your computer to get
a ‘soft’ printout that can later be changed. Perhaps one day you may be able to have
a ‘soft’ book that appears just like a current book with soft pages that can be turned
and skimmed, but where the contents and cover can be changed when you decide to
download a new book from the net!

DESIGN FOCUS

Hermes: a situated display

Office doors are often used as a noticeboard with messages from the occupant such as ‘just gone 
out’ or ‘timetable for the week’ and from visitors ‘missed you, call when you get back’. The Hermes
system is an electronic door display that offers some of the functions of sticky notes on a door [70].
Figure 2.11(i) shows an installed Hermes device fixed just beside the door, including the socket to 
use a Java iButton to authenticate the occupant. The occupant can leave messages that others can read
(Figure 2.11(ii) ) and people coming to the door can leave messages for the occupant. Electronic notes
are smaller than paper ones, but because they are electronic they can be read remotely using a web
interface (Figure 2.11(iii) ), or added by SMS (see Chapter 19, Section 19.3.2).

The fact that it is situated – by a person’s door – is very important. It establishes a context, ‘Alan’s
door’, and influences the way the system is used. For example, the idea of anonymous messages left on
the door, where the visitor has had to be physically present, feels different from, say, anonymous emails.

See the book website for the full case study: /e3/casestudy/hermes/
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DEVICES FOR VIRTUAL REALITY AND 3D INTERACTION

Virtual reality (VR) systems and various forms of 3D visualization are discussed in
detail in Chapter 20. These require you to navigate and interact in a three-dimensional
space. Sometimes these use the ordinary controls and displays of a desktop computer
system, but there are also special devices used both to move and interact with 3D
objects and to enable you to see a 3D environment.

2.5.1 Positioning in 3D space

Virtual reality systems present a 3D virtual world. Users need to navigate through
these spaces and manipulate the virtual objects they find there. Navigation is not
simply a matter of moving to a particular location, but also of choosing a particular
orientation. In addition, when you grab an object in real space, you don’t simply
move it around, but also twist and turn it, for example when opening a door. Thus
the move from mice to 3D devices usually involves a change from two degrees of
freedom to six degrees of freedom, not just three.

Cockpit and virtual controls

Helicopter and aircraft pilots already have to navigate in real space. Many arcade
games and also more serious applications use controls modeled on an aircraft 
cockpit to ‘fly’ through virtual space. However, helicopter pilots are very skilled and
it takes a lot of practice for users to be able to work easily in such environments.

In many PC games and desktop virtual reality (where the output is shown on 
an ordinary computer screen), the controls are themselves virtual. This may be a
simulated form of the cockpit controls or more prosaic up/down left/right buttons.
The user manipulates these virtual controls using an ordinary mouse (or other 2D
device). Note that this means there are two levels of indirection. It is a tribute to the
flexibility of the human mind that people can not only use such systems but also
rapidly become proficient.

The 3D mouse

There are a variety of devices that act as 3D versions of a mouse. Rather than just
moving the mouse on a tabletop, you can pick it up, move it in three dimensions,
rotate the mouse and tip it forward and backward. The 3D mouse has a full six
degrees of freedom as its position can be tracked (three degrees), and also its
up/down angle (called pitch), its left/right orientation (called yaw) and the amount
it is twisted about its own axis (called roll) (see Figure 2.12). Various sensors are used
to track the mouse position and orientation: magnetic coils, ultrasound or even
mechanical joints where the mouse is mounted rather like an angle-poise lamp.

With the 3D mouse, and indeed most 3D positioning devices, users may experi-
ence strain from having to hold the mouse in the air for a long period. Putting the

2.5
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3D mouse down may even be treated as an action in the virtual environment, that is
taking a nose dive.

Dataglove

One of the mainstays of high-end VR systems (see Chapter 20), the dataglove is a 3D
input device. Consisting of a lycra glove with optical fibers laid along the fingers, it
detects the joint angles of the fingers and thumb. As the fingers are bent, the fiber
optic cable bends too; increasing bend causes more light to leak from the fiber, and
the reduction in intensity is detected by the glove and related to the degree of bend
in the joint. Attached to the top of the glove are two sensors that use ultrasound to
determine 3D positional information as well as the angle of roll, that is the degree of
wrist rotation. Such rich multi-dimensional input is currently a solution in search 
of a problem, in that most of the applications in use do not require such a compre-
hensive form of data input, whilst those that do cannot afford it. However, the avail-
ability of cheaper versions of the dataglove will encourage the development of more
complex systems that are able to utilize the full power of the dataglove as an input
device. There are a number of potential uses for this technology to assist disabled
people, but cost remains the limiting factor at present.

The dataglove has the advantage that it is very easy to use, and is potentially very
powerful and expressive (it can provide 10 joint angles, plus the 3D spatial informa-
tion and degree of wrist rotation, 50 times a second). It suffers from extreme
expense, and the fact that it is difficult to use in conjunction with a keyboard.
However, such a limitation is shortsighted; one can imagine a keyboard drawn onto
a desk, with software detecting hand positions and interpreting whether the virtual
keys had been hit or not. The potential for the dataglove is vast; gesture recognition
and sign language interpretation are two obvious areas that are the focus of active
research, whilst less obvious applications are evolving all the time.

Figure 2.12 Pitch, yaw and roll
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Virtual reality helmets

The helmets or goggles worn in some VR systems have two purposes: (i) they display
the 3D world to each eye and (ii) they allow the user’s head position to be tracked.
We will discuss the former later when we consider output devices. The head tracking
is used primarily to feed into the output side. As the user’s head moves around the
user ought to see different parts of the scene. However, some systems also use the
user’s head direction to determine the direction of movement within the space and
even which objects to manipulate (rather like the eyegaze systems). You can think of
this rather like leading a horse in reverse. If you want a horse to go in a particular
direction, you use the reins to pull its head in the desired direction and the horse 
follows its head.

Whole-body tracking

Some VR systems aim to be immersive, that is to make the users feel as if they are
really in the virtual world. In the real world it is possible (although not usually wise)
to walk without looking in the direction you are going. If you are driving down 
the road and glance at something on the roadside you do not want the car to do a
sudden 90-degree turn! Some VR systems therefore attempt to track different kinds
of body movement. Some arcade games have a motorbike body on which you can
lean into curves. More strangely, small trampolines have been wired up so that the
user can control movement in virtual space by putting weight on different parts of
the trampoline. The user can literally surf through virtual space. In the extreme the
movement of the whole body may be tracked using devices similar to the dataglove,
or using image-processing techniques. In the latter, white spots are stuck at various
points of the user’s body and the position of these tracked using two or more cam-
eras, allowing the location of every joint to be mapped. Although the last of these
sounds a little constraining for the fashion conscious it does point the way to less
intrusive tracking techniques.

2.5.2 3D displays

Just as the 3D images used in VR have led to new forms of input device, they 
also require more sophisticated outputs. Desktop VR is delivered using a standard
computer screen and a 3D impression is produced by using effects such as shadows,
occlusion (where one object covers another) and perspective. This can be very 
effective and you can even view 3D images over the world wide web using a VRML
(virtual reality markup language) enabled browser.

Seeing in 3D

Our eyes use many cues to perceive depth in the real world (see also Chapter 1). It is
in fact quite remarkable as each eye sees only a flattened form of the world, like 
a photograph. One important effect is stereoscopic vision (or simply stereo vision).
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Because each eye is looking at an object from a slightly different angle each sees a 
different image and our brain is able to use this to assess the relative distance of dif-
ferent objects. In desktop VR this stereoscopic effect is absent. However, various
devices exist to deliver true stereoscopic images.

The start point of any stereoscopic device is the generation of images from differ-
ent perspectives. As the computer is generating images for the virtual world anyway,
this just means working out the right positions and angles corresponding to the typ-
ical distance between eyes on a human face. If this distance is too far from the natural
one, the user will be presented with a giant’s or gnat’s eye view of the world!

Different techniques are then used to ensure that each eye sees the appropriate
image. One method is to have two small screens fitted to a pair of goggles. A differ-
ent image is then shown to each eye. These devices are currently still quite cumber-
some and the popular image of VR is of a user with head encased in a helmet with
something like a pair of inverted binoculars sticking out in front. However, smaller
and lighter LCDs are now making it possible to reduce the devices towards the size
and weight of ordinary spectacles.

An alternative method is to have a pair of special spectacles connected so that each
eye can be blanked out by timed electrical signals. If this is synchronized with the
frame rate of a computer monitor, each eye sees alternate images. Similar techniques
use polarized filters in front of the monitor and spectacles with different polarized
lenses. These techniques are both effectively using similar methods to the red–green
3D spectacles given away in some breakfast cereals. Indeed, these red–green spectacles
have been used in experiments in wide-scale 3D television broadcasts. However, 
the quality of the 3D image from the polarized and blanked eye spectacles is sub-
stantially better.

The ideal would be to be able to look at a special 3D screen and see 3D images just
as one does with a hologram – 3D television just like in all the best sci-fi movies! 
But there is no good solution to this yet. One method is to inscribe the screen with
small vertical grooves forming hundreds of prisms. Each eye then sees only alternate
dots on the screen allowing a stereo image at half the normal horizontal resolution.
However, these screens have very narrow viewing angles, and are not ready yet for
family viewing.

In fact, getting stereo images is not the whole story. Not only do our eyes see dif-
ferent things, but each eye also focusses on the current object of interest (small mus-
cles change the shape of the lens in the pupil of the eye). The images presented to the
eye are generated at some fixed focus, often with effectively infinite depth of field.
This can be confusing and tiring. There has been some progress recently on using
lasers to detect the focal depth of each eye and adjust the images correspondingly,
similar to the technology used for eye tracking. However, this is not currently used
extensively.

VR motion sickness

We all get annoyed when computers take a long time to change the screen, pop up 
a window, or play a digital movie. However, with VR the effects of poor display 
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performance can be more serious. In real life when we move our head the image our
eyes see changes accordingly. VR systems produce the same effect by using sensors in
the goggles or helmet and then using the position of the head to determine the right
image to show. If the system is slow in producing these images a lag develops
between the user moving his head and the scene changing. If this delay is more than
a hundred milliseconds or so the feeling becomes disorienting. The effect is very 
similar to that of being at sea. You stand on the deck looking out to sea, the boat 
gently rocking below you. Tiny channels in your ears detect the movement telling
your brain that you are moving; your eyes see the horizon moving in one direction
and the boat in another. Your brain gets confused and you get sick. Users of VR can
experience similar nausea and few can stand it for more than a short while. In fact,
keeping laboratories sanitary has been a major push in improving VR technology.

Simulators and VR caves

Because of the problems of delivering a full 3D environment via head-mounted 
displays, some virtual reality systems work by putting the user within an environ-
ment where the virtual world is displayed upon it. The most obvious examples of this
are large flight simulators – you go inside a mock-up of an aircraft cockpit and the
scenes you would see through the windows are projected onto the virtual windows.
In motorbike or skiing simulators in video arcades large screens are positioned to fill
the main part of your visual field. You can still look over your shoulder and see your
friends, but while you are engaged in the game it surrounds you.

More general-purpose rooms called caves have large displays positioned all
around the user, or several back projectors. In these systems the user can look all
around and see the virtual world surrounding them.

PHYSICAL CONTROLS, SENSORS AND SPECIAL DEVICES

As we have discussed, computers are coming out of the box. The mouse keyboard
and screen of the traditional computer system are not relevant or possible in 
applications that now employ computers such as interactive TV, in-car navigation
systems or personal entertainment. These devices may have special displays, may use
sound, touch and smell as well as visual displays, may have dedicated controls and
may sense the environment or your own bio-signs.

2.6.1 Special displays

Apart from the CRT screen there are a number of visual outputs utilized in com-
plex systems, especially in embedded systems. These can take the form of analog 
representations of numerical values, such as dials, gauges or lights to signify a certain
system state. Flashing light-emitting diodes (LEDs) are used on the back of some
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computers to signify the processor state, whilst gauges and dials are found in process
control systems. Once you start in this mode of thinking, you can contemplate
numerous visual outputs that are unrelated to the screen. One visual display that has
found a specialized niche is the head-up display that is used in aircraft. The pilot is
fully occupied looking forward and finds it difficult to look around the cockpit to get
information. There are many different things that need to be known, ranging from
data from tactical systems to navigational information and aircraft status indicators.
The head-up display projects a subset of this information into the pilot’s line 
of vision so that the information is directly in front of her eyes. This obviates the
need for large banks of information to be scanned with the corresponding lack 
of attention to what is happening outside, and makes the pilot’s job easier. Less
important information is usually presented on a smaller number of dials and gauges
in the cockpit to avoid cluttering the head-up display, and these can be monitored
less often, during times of low stress.

2.6.2 Sound output

Another mode of output that we should consider is that of auditory signals. Often
designed to be used in conjunction with screen displays, auditory outputs are poorly
understood: we do not yet know how to utilize sound in a sensible way to achieve
maximum effect and information transference. We have discussed speech previ-
ously, but other sounds such as beeps, bongs, clanks, whistles and whirrs are all used
to varying effect. As well as conveying system output, sounds offer an important level
of feedback in interactive systems. Keyboards can be set to emit a click each time 
a key is pressed, and this appears to speed up interactive performance. Telephone
keypads often sound different tones when the keys are pressed; a noise occurring
signifies that the key has been successfully pressed, whilst the actual tone provides
some information about the particular key that was pressed. The advantage of audit-
ory feedback is evident when we consider a simple device such as a doorbell. If we
press it and hear nothing, we are left undecided. Should we press it again, in case 
we did not do it right the first time, or did it ring but we did not hear it? And if we
press it again but it actually did ring, will the people in the house think we are very
rude, ringing insistently? We feel awkward and a little stressed. If we were using a
computer system instead of a doorbell and were faced with a similar problem, we
would not enjoy the interaction and would not perform as well. Yet it is a simple
problem that could be easily rectified by a better initial design, using sound. Chap-
ter 10 will discuss the use of the auditory channel in more detail.

2.6.3 Touch, feel and smell

Our other senses are used less in normal computer applications, but you may have
played computer games where the joystick or artificial steering wheel vibrated, per-
haps when a car was about to go off the track. In some VR applications, such as the
use in medical domains to ‘practice’ surgical procedures, the feel of an instrument
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moving through different tissue types is very important. The devices used to emulate
these procedures have force feedback, giving different amounts of resistance depend-
ing on the state of the virtual operation. These various forms of force, resistance and
texture that influence our physical senses are called haptic devices.

Haptic devices are not limited to virtual environments, but are used in specialist
interfaces in the real world too. Electronic braille displays either have pins that rise
or fall to give different patterns, or may involve small vibration pins. Force feedback
has been used in the design of in-car controls.

In fact, the car gives a very good example of the power of tactile feedback. If 
you drive over a small bump in the road the car is sent slightly off course; however,
the chances are that you will correct yourself before you are consciously aware of the
bump. Within your body you have reactions that push back slightly against pressure
to keep your limbs where you ‘want’ them, or move your limbs out of the way when
you brush against something unexpected. These responses occur in your lower 
brain and are very fast, not involving any conscious effort. So, haptic devices can
access very fast responses, but these responses are not fully controlled. This can be
used effectively in design, but of course also with caution.

Texture is more difficult as it depends on small changes between neighboring
points on the skin. Also, most of our senses notice change rather than fixed stimuli,
so we usually feel textures when we move our fingers over a surface, not just when
resting on it. Technology for this is just beginning to become available

There is evidence that smell is one of the strongest cues to memory. Various 
historical recreations such as the Jorvik Centre in York, England, use smells to create
a feeling of immersion in their static displays of past life. Some arcade games also
generate smells, for example, burning rubber as your racing car skids on the track.
These examples both use a fixed smell in a particular location. There have been 
several attempts to produce devices to allow smells to be recreated dynamically in
response to games or even internet sites. The technical difficulty is that our noses do
not have a small set of basic smells that are mixed (like salt/sweet/sour/bitter/savoury
on our tongue), but instead there are thousands of different types of receptor
responding to different chemicals in the air. The general pattern of devices to gener-
ate smells is to have a large repertoire of tiny scent-containing capsules that are
released in varying amounts on demand – rather like a printer cartridge with 
hundreds of ink colors! So far there appears to be no mass market for these devices,
but they may eventually develop from niche markets.

Smell is a complex multi-dimensional sense and has a peculiar ability to trigger
memory, but cannot be changed rapidly. These qualities may prove valuable in areas
where a general sense of location and awareness is desirable. For example, a project
at the Massachusetts Institute of Technology explored the use of a small battery 
of scent generators which may be particularly valuable for ambient displays and 
background awareness [198, 161].
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2.6.4 Physical controls

Look at Figure 2.13. In it you can see the controls for a microwave, a washing
machine and a personal MiniDisc player. See how they each use very different phys-
ical devices: the microwave has a flat plastic sheet with soft buttons, the washing
machine large switches and knobs, and the MiniDisc has small buttons and an inter-
esting multi-function end.

A desktop computer system has to serve many functions and so has generic keys
and controls that can be used for a variety of purposes. In contrast, these dedicated
control panels have been designed for a particular device and for a single use. This is
why they differ so much.

Looking first at the microwave, it has a flat plastic control panel. The buttons on
the panel are pressed and ‘give’ slightly. The choice of the smooth panel is probably
partly for visual design – it looks streamlined! However, there are also good prac-
tical reasons. The microwave is used in the kitchen whilst cooking, with hands that
may be greasy or have food on them. The smooth controls have no gaps where food
can accumulate and clog buttons, so it can easily be kept clean and hygienic.

When using the washing machine you are handling dirty clothes, which may be
grubby, but not to the same extent, so the smooth easy-clean panel is less important
(although some washing machines do have smooth panels). It has several major 

DESIGN FOCUS

Feeling the road

In the BMW 7 Series you will find a single haptic feedback control for many of the functions that would
normally have dedicated controls. It uses technology developed by Immersion Corporation who are
also behind the force feedback found in many medical and entertainment haptic devices. The iDrive
control slides backwards and forwards and rotates to give access to various menus and lists of options.
The haptic feedback allows the user to feel ‘clicks’ appropriate to the number of items in the various
menu lists.

See: www.immersion.com/ and www.bmw.com/ Picture courtesy of BMW AG
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settings and the large buttons act both as control and display. Also the dials for 
dryer timer and the washing program act both as a means to set the desired time or
program and to display the current state whilst the wash is in progress.

Finally, the MiniDisc controller needs to be small and unobtrusive. It has tiny 
buttons, but the end control is most interesting. It twists from side to side and 
also can be pulled and twisted. This means the same control can be used for two 
different purposes. This form of multi-function control is common in small 
devices.

We discussed the immediacy of haptic feedback and these lessons are also import-
ant at the level of creating physical devices; do keys, dials, etc., feel as if they have
been pressed or turned? Getting the right level of resistance can make the device
work naturally, give you feedback that you have done something, or let you know
that you are controlling something. Where for some reason this is not possible,
something has to be done to prevent the user getting confused, perhaps pressing but-
tons twice; for example, the smooth control panel of the microwave in Figure 2.13
offers no tactile feedback, but beeps for each keypress. We will discuss these design
issues further when we look at user experience in Chapter 3 (Section 3.9).

Figure 2.13 Physical controls on microwave, washing machine and MiniDisc. Source: Photograph bottom
right by Alan Dix with permission from Sony (UK)
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Whereas texture is difficult to generate, it is easy to build into materials. This can
make a difference to the ease of use of a device. For example, a touchpad is smooth,
but a keyboard nipple is usually rubbery. If they were the other way round it would
be hard to drag your finger across the touchpad or to operate the nipple without 
slipping. Texture can also be used to disambiguate. For example, most keyboards
have a small raised dot on the ‘home’ keys for touch typists and some calculators and
phones do the same on the ‘5’ key. This is especially useful in applications when the
eyes are elsewhere.

2.6.5 Environment and bio-sensing

In a public washroom there are often no controls for the wash basins, you simply put
your hands underneath and (hope that) the water flows. Similarly when you open
the door of a car, the courtesy light turns on. The washbasin is controlled by a small
infrared sensor that is triggered when your hands are in the basin (although it is

DESIGN FOCUS

Smart-Its – making using sensors easy

Building systems with physical sensors is no easy task. You need a soldering iron, plenty of experience
in electronics, and even more patience. Although some issues are unique to each sensor or project,
many of the basic building blocks are similar – connecting simple microprocessors to memory and 
networks, connecting various standard sensors such as temperature, tilt, etc.

The Smart-Its project has made this job easier by creating a collection of components and an 
architecture for adding new sensors. There are a number of basic Smart-It boards – the photo on 
the left shows a microprocessor with wireless connectivity. Onto these boards are plugged a variety of
modules – in the center is a sensor board including temperature and light, and on the right is a power
controller.

See: www.smart-its.org/ Source: Courtesy of Hans Gellersen



sometimes hard to find the ‘sweet spot’ where this happens!). The courtesy lights are
triggered by a small switch in the car door.

Although we are not always conscious of them, there are many sensors in our 
environment – controlling automatic doors, energy saving lights, etc. and devices
monitoring our behavior such as security tags in shops. The vision of ubiquitous
computing (see Chapters 4 and 20) suggests that our world will be filled with such
devices. Certainly the gap between science fiction and day-to-day life is narrow; 
for example, in the film Minority Report (20th Century Fox) iris scanners identify
each passer-by to feed them dedicated advertisements, but you can buy just such an
iris scanner as a security add-on for your home computer.

There are many different sensors available to measure virtually anything: temper-
ature, movement (ultrasound, infrared, etc.), location (GPS, global positioning, in
mobile devices), weight (pressure sensors). In addition audio and video information
can be analyzed to identify individuals and to detect what they are doing. This 
all sounds big brother like, but is also used in ordinary applications, such as the
washbasin.

Sensors can also be used to capture physiological signs such as body temperature,
unconscious reactions such as blink rate, or unconscious aspects of activities such 
as typing rate, vocabulary shifts (e.g. modal verbs). For example, in a speech-based
game, Tsukahara and Ward use gaps in speech and prosody (patterns of rhythm,
pitch and loudness in speech) to infer the user’s emotional state and thus the nature
of acceptable responses [350] and Allanson discusses a variety of physiological 
sensors to create ‘electrophysiological interactive computer systems’ [12].

PAPER: PRINTING AND SCANNING

Some years ago, a recurrent theme of information technology was the paperless office.
In the paperless office, documents would be produced, dispatched, read and filed
online. The only time electronic information would be committed to paper would be
when it went out of the office to ordinary customers, or to other firms who were lag-
gards in this technological race. This vision was fuelled by rocketing property prices,
and the realization that the floor space for a wastepaper basket could cost thousands
in rent each year. Some years on, many traditional paper files are now online, but the
desire for the completely paperless office has faded. Offices still have wastepaper bas-
kets, and extra floor space is needed for the special computer tables to house 14-inch
color monitors.

In this section, we will look at some of the available technology that exists to get
information to and from paper. We will look first at printing, the basic technology,
and issues raised by it. We will then go on to discuss the movement from paper back
into electronic media. Although the paperless office is no longer seen as the goal, the
less-paper office is perhaps closer, now that the technologies for moving between
media are better.

2.7

2.7 Paper: printing and scanning 97
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2.7.1 Printing

If anything, computer systems have made it easier to produce paper documents. It is
so easy to run off many copies of a letter (or book), in order to get it looking ‘just
right’. Older printers had a fixed set of characters available on a printhead. These var-
ied from the traditional line printer to golf-ball and daisy-wheel printers. To change
a typeface or the size of type meant changing the printhead, and was an awkward,
and frequently messy, job, but for many years the daisy-wheel printer was the only
means of producing high-quality output at an affordable price. However, the drop in
the price of laser printers coupled with the availability of other cheap high-quality
printers means that daisy-wheels are fast becoming a rarity.

All of the popular printing technologies, like screens, build the image on the paper
as a series of dots. This enables, in theory, any character set or graphic to be printed,

Common types of dot-based printers

Dot-matrix printers
These use an inked ribbon, like a typewriter, but instead of a single character-shaped head striking
the paper, a line of pins is used, each of which can strike the ribbon and hence dot the paper.
Horizontal resolution can be varied by altering the speed of the head across the paper, and ver-
tical resolution can be improved by sending the head twice across the paper at a slightly different
position. So, dot-matrix printers can produce fast draft-quality output or slower ‘letter’-quality
output. They are cheap to run, but could not compete with the quality of jet and laser printers for
general office and home printing. They are now only used for bulk printing, or where carbon paper
is required for payslips, check printing, etc.)

Ink-jet and bubble-jet printers
These operate by sending tiny blobs of ink from the printhead to the paper. The ink is squirted at
pressure from an ink-jet, whereas bubble-jets use heat to create a bubble. Both are quite quiet in
operation. The ink from the bubble-jet (being a bubble rather than a droplet) dries more quickly
than the ink-jet and so is less likely to smear. Both approach laser quality, but the bubble-jet dots
tend to be more accurately positioned and of a less broken shape.

Laser printer
This uses similar technology to a photocopier: ‘dots’ of electrostatic charge are deposited on a
drum, which then picks up toner (black powder). This is then rolled onto the paper and cured by
heat. The curing is why laser printed documents come out warm, and the electrostatic charge is
why they smell of ozone! In addition, some toner can be highly toxic if inhaled, but this is more a
problem for full-time maintenance workers than end-users changing the occasional toner cartridge.

Laser printers give nearly typeset-quality output, with top-end printers used by desktop publishing
firms. Indeed, many books are nowadays produced using laser printers. The authors of this book
have produced camera-ready copy for other books on 300 and 600 dpi laser printers, although this
book required higher quality and the first edition was typeset at 1200 dpi onto special bromide
paper.
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limited only by the resolution of the dots. This resolution is measured in dots per inch
(dpi). Imagine a sheet of graph paper, and building up an image by putting dots at
the intersection of each line. The number of lines per inch in each direction is the
resolution in dpi. For some mechanical printers this is slightly confused: the dots
printed may be bigger than the gaps, neighboring printheads may not be able to 
print simultaneously and may be offset relative to one another (a diamond-shaped
rather than rectangular grid). These differences do not make too much difference to
the user, but mean that, given two printers at the same nominal resolution, the out-
put of one looks better than that of the other, because it has managed the physical
constraints better.

The most common types of dot-based printers are dot-matrix printers, ink-jet
printers and laser printers. These are listed roughly in order of increasing resolution
and quality, where dot-matrix printers typically have a resolution of 80–120 dpi ris-
ing to about 300–600 dpi for ink-jet printers and 600–2400 dpi for laser printers. By
varying the quantity of ink and quality of paper, ink-jet printers can be used to print
photo-quality prints from digital photographs.

Printing in the workplace

Although ink-jet and laser printers have the lion’s share of the office and home printer mar-
ket, there are many more specialist applications that require different technology.

Most shop tills use dot-matrix printing where the arrangement is often very clever, with one print-
head serving several purposes. The till will usually print one till roll which stays within the machine,
recording all transactions for audit purposes. An identical receipt is printed for the customer. 
In addition, many will print onto the customer’s own check or produce a credit card slip for the
customer to sign. Sometimes the multiple copies are produced using two or more layers of paper
where the top layer receives the ink and the lower layers use pressure-sensitive paper – not 
possible using ink-jet or laser technology. Alternatively, a single printhead may move back and 
forth over several small paper rolls within the same machine, as well as moving over the slot for
the customer’s own check.

As any printer owner will tell you, office printers are troublesome, especially as they age. Dif-
ferent printing technology is therefore needed in harsh environments or where a low level of
supervision is required. Thermal printers use special heat-sensitive paper that changes color when
heated. The printhead simply heats the paper where it wants a dot. Often only one line of dots 
is produced per pass, in contrast to dot-matrix and ink-jet printers, which have several pins or 
jets in parallel. The image is then produced using several passes per line, achieving a resolution 
similar to a dot-matrix. Thermal paper is relatively expensive and not particularly nice to look 
at, but thermal printers are mechanically simple and require little maintenance (no ink or toner
splashing about). Thermal printers are used in niche applications, for example industrial equipment,
some portable printers, and fax machines (although many now use plain paper).
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As well as resolution, printers vary in speed and cost. Typically, office-quality ink-
jet or laser printers produce between four and eight pages per minute. Dot-matrix
printers are more often rated in characters per second (cps), and typical speeds may
be 200 cps for draft and 50 cps for letter-quality print. In practice, this means no
more than a page or so per minute. These are maximum speeds for simple text, and
printers may operate much more slowly for graphics.

Color ink-jet printers are substantially cheaper than even monochrome laser
printers. However, the recurrent costs of consumables may easily dominate this 
initial cost. Both jet and laser printers have special-purpose parts (print cartridges,
toner, print drums), which need to be replaced every few thousand sheets; and they
must also use high-grade paper. It may be more difficult to find suitable grades of
recycled paper for laser printers.

2.7.2 Fonts and page description languages

Some printers can act in a mode whereby any characters sent to them (encoded in
ASCII, see Section 2.8.5) are printed, typewriter style, in a single font. Another case,
simple in theory, is when you have a bitmap picture and want to print it. The dots 
to print are sent to the printer, and no further interpretation is needed. However, in
practice, it is rarely so simple.

Many printed documents are far more complex – they incorporate text in many
different fonts and many sizes, often italicized, emboldened and underlined. Within
the text you will find line drawings, digitized photographs and pictures generated
from ‘paint’ packages, including the ubiquitous ‘clip art’. Sometimes the computer
does all the work, converting the page image into a bitmap of the right size to be sent
to the printer. Alternatively, a description of the page may be sent to the printer. 
At the simplest level, this will include commands to set the print position on the
page, and change the font size.

More sophisticated printers can accept a page description language, the most com-
mon of which is PostScript. This is a form of programming language for printing. It
includes some standard programming constructs, but also some special ones: paths
for drawing lines and curves, sophisticated character and font handling and scaled
bitmaps. The idea is that the description of a page is far smaller than the associated
bitmap, reducing the time taken to send the page to the printer. A bitmap version 
of an A4 laser printer page at 300 dpi takes 8 Mbytes; to send this down a standard
serial printer cable would take 10 minutes! However, a computer in the printer has
to interpret the PostScript program to print the page; this is typically faster than 10
minutes, but is still the limiting factor for many print jobs.

Text is printed in a font with a particular size and shape. The size of a font is 
measured in points (pt). The point is a printer’s measure and is about 1/72 of an
inch. The point size of the font is related to its height: a 12 point font has about 
six lines per inch. The shape of a font is determined by its font name, for example
Times Roman, Courier or Helvetica. Times Roman font is similar to the type of
many newspapers, such as The Times, whereas Courier has a typewritten shape.
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Some fonts, such as Courier, are fixed pitch, that is each character has the 
same width. The alternative is a variable-pitched font, such as Times Roman or 
Gill Sans, where some characters, such as the ‘m’, are wider than others, such as 
the ‘i’. Another characteristic of fonts is whether they are serif or sans-serif. A serif
font has fine, short cross-lines at the ends of the strokes, imitating those found on cut
stone lettering. A sans-serif font has square-ended strokes. In addition, there are 
special fonts looking like Gothic lettering or cursive script, and fonts of Greek letters
and special mathematical symbols.

This book is set in 10 point Minion font using PostScript. Minion is a variable-
pitched serif font. Figure 2.14 shows examples of different fonts.

A mathematics font: αβξ±π∈∀∞⊥≠ℵ∂√∃
Figure 2.14 Examples of different fonts

DESIGN FOCUS

Readability of text

There is a substantial body of knowledge about the readability of text, both on screen and on paper.
An MSc student visited a local software company and, on being shown some of their systems, remarked
on the fact that they were using upper case throughout their displays. At that stage she had only com-
pleted part of an HCI course but she had read Chapter 1 of this book and already knew that WORDS
WRITTEN IN BLOCK CAPITALS take longer to read than those in lower case. Recall that this is largely
because of the clues given by word shapes and is the principle behind ‘look and say’ methods of teach-
ing children to read. The company immediately recognized the value of the advice and she instantly rose
in their esteem!

However, as with many interface design guidelines there are caveats. Although lower-case words are
easier to read, individual letters and nonsense words are clearer in upper case. For example, one writes
flight numbers as ‘BA793’ rather than ‘ba793’. This is particularly important when naming keys to press
(for example, ‘Press Q to quit’) as keyboards have upper-case legends.

Font shapes can also make a difference; for printed text, serif fonts make it easier to run one’s eye 
along a line of text. However, they usually reproduce less well on screen where the resolution is
poorer.
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2.7.3 Screen and page

A common requirement of word processors and desktop publishing software is that
what you see is what you get (see also Chapters 4 and 17), which is often called by its
acronym WYSIWYG (pronounced whizz-ee-wig). This means that the appearance 
of the document on the screen should be the same as its eventual appearance on 
the printed page. In so far as this means that, for example, centered text is displayed
centered on the screen, this is reasonable. However, this should not cloud the fact
that screen and paper are very different media.

A typical screen resolution is about 72 dpi compared with a laser printer at over
600 dpi. Some packages can show magnified versions of the document in order to
help in this. Most screens use an additive color model using red, green and blue light,
whereas printers use a subtractive color model with cyan, magenta, yellow and black
inks, so conversions have to be made. In addition, the sizes and aspect ratios are very
different. An A4 page is about 11 inches tall by 8 wide (297 × 210 mm), whereas a
screen is often of similar dimensions, but wider than it is tall.

These differences cause problems when designing software. Should you try to
make the screen image as close to the paper as possible, or should you try to make
the best of each? One approach to this would be to print only what could be dis-
played, but that would waste the extra resolution of the printer. On the other 
hand, one can try to make the screen as much like paper as possible, which 
is the intention behind the standard use of black text on a white background, 
rotatable A4 displays, and tablet PCs. This is a laudable aim, but cannot get rid of 
all the problems.

A particular problem lies with fonts. Imagine we have a line of ‘m’s, each having a
width of 0.15 inch (4 mm). If we print them on a 72 dpi screen, then we can make
the screen character 10 or 11 dots wide, in which case the screen version will be 
narrower or wider than the printed version. Alternatively, we can print the screen
version as near as possible to where the printed characters would lie, in which case
the ‘m’s on the screen would have different spaces between them: ‘mm mm mm mm
m’. The latter looks horrible on the screen, so most software chooses the former
approach. This means that text that aligns on screen may not do so on printing.
Some systems use a uniform representation for screen and printer, using the same
font descriptions and even, in the case of the Next operating system, PostScript 
for screen display as well as printer output (also PDF with MacOS X). However, 
this simply exports the problem from the application program to the operating 
system.

The differences between screen and printer mean that different forms of graphic
design are needed for each. For example, headings and changes in emphasis are made
using font style and size on paper, but using color, brightness and line boxes on
screen. This is not usually a problem for the display of the user’s own documents as
the aim is to give the user as good an impression of the printed page as possible, given
the limitations. However, if one is designing parallel paper and screen forms, then
one has to trade off consistency between the two representations with clarity in each.
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An overall similar layout, but with different forms of presentation for details, may be
appropriate.

2.7.4 Scanners and optical character recognition

Printers take electronic documents and put them on paper – scanners reverse this
process. They start by turning the image into a bitmap, but with the aid of optical
character recognition can convert the page right back into text. The image to be con-
verted may be printed, but may also be a photograph or hand-drawn picture.

There are two main kinds of scanner: flat-bed and hand-held. With a flat-bed
scanner, the page is placed on a flat glass plate and the whole page is converted 
into a bitmap. A variant of the flat-bed is where sheets to be scanned are pulled
through the machine, common in multi-function devices (printer/fax/copier). Many
flat-bed scanners allow a small pile of sheets to be placed in a feed tray so that 
they can all be scanned without user intervention. Hand-held scanners are pulled
over the image by hand. As the head passes over an area it is read in, yielding 
a bitmap strip. A roller at the ends ensures that the scanner knows how fast it is 
being pulled and thus how big the image is. The scanner is typically only 3 or 4 inches
(80 or 100 mm) wide and may even be the size of a large pen (mainly used for 
scanning individual lines of text). This means at least two or three strips must be
‘glued’ together by software to make a whole page image, quite a difficult process 
as the strips will overlap and may not be completely parallel to one another, as 
well as suffering from problems of different brightness and contrast. However, 
for desktop publishing small images such as photographs are quite common, and 
as long as one direction is less than the width of the scanner, they can be read in 
one pass.

Scanners work by shining a beam of light at the page and then recording the intens-
ity and color of the reflection. Like photocopiers, the color of the light that is shone
means that some colors may appear darker than others on a monochrome scanner.
For example, if the light is pure red, then a red image will reflect the light completely
and thus not appear on the scanned image.

Like printers, scanners differ in resolution, commonly between 600 and 2400 dpi,
and like printers the quoted resolution needs careful interpretation. Many have a
lower resolution scanhead but digitally interpolate additional pixels – the same is
true for some digital cameras. Monochrome scanners are typically only found in
multi-function devices, but color scanners usually have monochrome modes for
black and white or grayscale copying. Scanners will usually return up to 256 levels 
of gray or RGB (red, green, blue) color. If a pure monochrome image is required 
(for instance, from a printed page), then it can threshold the grayscale image; that is,
turn all pixels darker than some particular value black, and the rest white.

Scanners are used extensively in desktop publishing (DTP) for reading in hand-
drawn pictures and photographs. This means that cut and paste can be performed
electronically rather than with real glue. In addition, the images can be rotated,
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scaled and otherwise transformed, using a variety of image manipulation software
tools. Such tools are becoming increasingly powerful, allowing complex image trans-
formations to be easily achieved; these range from color correction, through the
merging of multiple images to the application of edge-detection and special effects
filters. The use of multiple layers allows photomontage effects that would be imposs-
ible with traditional photographic or paper techniques. Even where a scanned image
is simply going to be printed back out as part of a larger publication, some process-
ing typically has to be performed to match the scanned colors with those produced
during printing. For film photographs there are also special film scanners that can
scan photographic negatives or color slides. Of course, if the photographs are digital
no scanning is necessary.

Another application area is in document storage and retrieval systems, where
paper documents are scanned and stored on computer rather than (or sometimes as
well as) in a filing cabinet. The costs of maintaining paper records are enormous, and
electronic storage can be cheaper, more reliable and more flexible. Storing a bitmap
image is neither most useful (in terms of access methods), nor space efficient (as we
will see later), so scanning may be combined with optical character recognition to
obtain the text rather than the page image of the document.

Optical character recognition (OCR) is the process whereby the computer can
‘read’ the characters on the page. It is only comparatively recently that print could be
reliably read, since the wide variety of typefaces and print sizes makes this more
difficult than one would imagine – it is not simply a matter of matching a character
shape to the image on the page. In fact, OCR is rather a misnomer nowadays as,
although the document is optically scanned, the OCR software itself operates on the
bitmap image. Current software can recognize ‘unseen’ fonts and can even produce
output in word-processing formats, preserving super- and subscripts, centering, 
italics and so on.

Another important area is electronic publishing for multimedia and the world
wide web. Whereas in desktop publishing the scanned image usually ends up (after
editing) back on paper, in electronic publishing the scanned image is destined to be
viewed on screen. These images may be used simply as digital photographs or may
be made active, whereby clicking on some portion of the image causes pertinent
information to be displayed (see Chapter 3 for more on the point-and-click style 
of interaction). One big problem when using electronic images is the plethora of 
formats for storing graphics (see Section 2.8.5). Another problem is the fact that 
different computers can display different numbers of colors and that the appearance
of the same image on different monitors can be very different.

The importance of electronic publishing and also the ease of electronically manip-
ulating images for printing have made the digital camera increasingly popular.
Rather than capturing an image on film, a digital camera has a small light-sensitive
chip that can directly record an image into memory.
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Worked exercise What input and output devices would you use for the following systems? For each, compare
and contrast alternatives, and if appropriate indicate why the conventional keyboard, mouse
and CRT screen may be less suitable.

(a) portable word processor
(b) tourist information system
(c) tractor-mounted crop-spraying controller

Paper-based interaction

Paper is principally seen as an output medium. You type in some text, format it, print it and
read it. The idea of the paperless office was to remove the paper from the write–read loop entirely,
but it didn’t fundamentally challenge its place in the cycle as an output medium. However, this view of
paper as output has changed as OCR technology has improved and scanners become commonplace.

Workers at Xerox Palo Alto Research Center (also known as Xerox PARC) capitalized on this by
using paper as a medium of interaction with computer systems [195]. A special identifying mark is
printed onto forms and similar output. The printed forms may have check boxes or areas for writ-
ing numbers or (in block capitals!) words. The form can then be scanned back in. The system reads
the identifying mark and thereby knows what sort of paper form it is dealing with. It doesn’t have
to use OCR on the printed text of the form as it printed it, but can detect the check boxes that
have been filled in and even recognize the text that has been written. The identifying mark the
researchers used is composed of backward and forward slashes, ‘\’ and ‘/’, and is called a glyph. 
An alternative would have been to use bar codes, but the slashes were found to fax and scan 
more reliably. The research version of this system was known as XAX, but it is now marketed as
Xerox PaperWorks.

One application of this technology is mail order catalogs. The order form is printed with a glyph.
When completed, forms can simply be collected into bundles and scanned in batches, generating
orders automatically. If the customer faxes an order the fax-receiving software recognizes the
glyph and the order is processed without ever being handled at the company end. Such a paper
user interface may involve no screens or keyboards whatsoever.

Some types of paper now have identifying marks micro-printed like a form of textured water-
mark. This can be used both to identify the piece of paper (as the glyph does), and to identify the
location on the paper. If this book were printed on such paper it would be possible to point at 
a word or diagram with a special pen-like device and have it work out what page you are on 
and where you are pointing and thus take you to appropriate web materials . . . perhaps the fourth
edition . . .

It is paradoxical that Xerox PARC, where much of the driving work behind current ‘mouse and
window’ computer interfaces began, has also developed this totally non-screen and non-mouse
paradigm. However, the common principle behind each is the novel and appropriate use of differ-
ent media for graceful interaction.
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(d) air traffic control system
(e) worldwide personal communications system
(f ) digital cartographic system.

Answer In the later exercise on basic architecture (see Section 2.8.6), we focus on ‘typical’ 
systems, whereas here the emphasis is on the diversity of different devices needed for
specialized purposes. You can ‘collect’ devices – watch out for shop tills, bank tellers,
taxi meters, lift buttons, domestic appliances, etc.

(a) Portable word processor
The determining factors are size, weight and battery power. However, remember
the purpose: this is a word processor not an address book or even a data entry
device.
(i) LCD screen – low-power requirement
(ii) trackball or stylus for pointing
(iii) real keyboard – you can’t word process without a reasonable keyboard and

stylus handwriting recognition is not good enough
(iv) small, low-power bubble-jet printer – although not always necessary, this

makes the package stand alone. It is probably not so necessary that the printer
has a large battery capacity as printing can probably wait until a power point is
found.

(b) Tourist information system
This is likely to be in a public place. Most users will only visit the system once, so
the information and mode of interaction must be immediately obvious.
(i) touchscreen only – easy and direct interaction for first-time users (see also

Chapter 3)
(ii) NO mice or styluses – in a public place they wouldn’t stay long!

(c) Tractor-mounted crop-spraying controller
A hostile environment with plenty of mud and chemicals. Requires numerical input
for flow rates, etc., but probably no text
(i) touch-sensitive keypad – ordinary keypads would get blocked up
(ii) small dedicated LED display (LCDs often can’t be read in sunlight and large

screens are fragile)
(iii) again no mice or styluses – they would get lost.

(d) Air traffic control system
The emphasis is on immediately available information and rapid interaction. The
controller cannot afford to spend time searching for information; all frequently used
information must be readily available.
(i) several specialized displays – including overlays of electronic information on

radar
(ii) light pen or stylus – high-precision direct interaction
(iii) keyboard – for occasional text input, but consider making it fold out of the way.

(e) Worldwide personal communications system
Basically a super mobile phone! If it is to be kept on hand all the time it must be
very light and pocket sized. However, to be a ‘communications’ system one would
imagine that it should also act as a personal address/telephone book, etc.
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(i) standard telephone keypad – the most frequent use
(ii) small dedicated LCD display – low power, specialized functions
(iii) possibly stylus for interaction – it allows relatively rich interaction with the

address book software, but little space
(iv) a ‘docking’ facility – the system itself will be too small for a full-sized key-

board(!), but you won’t want to enter in all your addresses and telephone num-
bers by stylus!

(f) Digital cartographic system
This calls for very high-precision input and output facilities. It is similar to CAD in
terms of the screen facilities and printing, but in addition will require specialized
data capture.
(i) large high-resolution color VDU (20 inch or bigger) – these tend to be enor-

mously big (from back to front). LCD screens, although promising far thinner
displays in the long term, cannot at present be made large enough

(ii) digitizing tablet – for tracing data on existing paper maps. It could also double
up as a pointing device for some interaction

(iii) possibly thumbwheels – for detailed pointing and positioning tasks
(iv) large-format printer – indeed very large: an A2 or A1 plotter at minimum.

MEMORY

Like human memory, we can think of the computer’s memory as operating at dif-
ferent levels, with those that have the faster access typically having less capacity. By
analogy with the human memory, we can group these into short-term and long-term
memories (STM and LTM), but the analogy is rather weak – the capacity of the com-
puter’s STM is a lot more than seven items! The different levels of computer mem-
ory are more commonly called primary and secondary storage.

The details of computer memory are not in themselves of direct interest to the
user interface designer. However, the limitations in capacity and access methods are
important constraints on the sort of interface that can be designed. After some fairly
basic information, we will put the raw memory capacity into perspective with the
sort of information which can be stored, as well as again seeing how advances in
technology offer more scope for the designer to produce more effective interfaces. In
particular, we will see how the capacity of typical memory copes with video images as
these are becoming important as part of multimedia applications (see Chapter 21).

2.8.1 RAM and short-term memory (STM)

At the lowest level of computer memory are the registers on the computer chip, but
these have little impact on the user except in so far as they affect the general speed of

2.8
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the computer. Most currently active information is held in silicon-chip random
access memory (RAM). Different forms of RAM differ as to their precise access times,
power consumption and characteristics. Typical access times are of the order of 
10 nanoseconds, that is a hundred-millionth of a second, and information can be
accessed at a rate of around 100 Mbytes (million bytes) per second. Typical storage
in modern personal computers is between 64 and 256 Mbytes.

Most RAM is volatile, that is its contents are lost when the power is turned off.
However, many computers have small amount of non-volatile RAM, which retains its
contents, perhaps with the aid of a small battery. This may be used to store setup
information in a large computer, but in a pocket organizer will be the whole mem-
ory. Non-volatile RAM is more expensive so is only used where necessary, but with
many notebook computers using very low-power static RAM, the divide is shrink-
ing. By strict analogy, non-volatile RAM ought to be classed as LTM, but the import-
ant thing we want to emphasize is the gulf between STM and LTM in a traditional
computer system.

In PDAs the distinctions become more confused as the battery power means that
the system is never completely off, so RAM memory effectively lasts for ever. Some
also use flash memory, which is a form of silicon memory that sits between fixed
content ROM (read-only memory) chips and normal RAM. Flash memory is relat-
ively slow to write, but once written retains its content even with no power whatso-
ever. These are sometimes called silicon disks on PDAs. Digital cameras typically
store photographs in some form of flash media and small flash-based devices are
used to plug into a laptop or desktop’s USB port to transfer data.

2.8.2 Disks and long-term memory (LTM)

For most computer users the LTM consists of disks, possibly with small tapes for
backup. The existence of backups, and appropriate software to generate and retrieve
them, is an important area for user security. However, we will deal mainly with those
forms of storage that impact the interactive computer user.

There are two main kinds of technology used in disks: magnetic disks and optical
disks. The most common storage media, floppy disks and hard (or fixed) disks, 
are coated with magnetic material, like that found on an audio tape, on which the
information is stored. Typical capacities of floppy disks lie between 300 kbytes and
1.4 Mbytes, but as they are removable, you can have as many as you have room for
on your desk. Hard disks may store from under 40 Mbytes to several gigabytes
(Gbytes), that is several thousand million bytes. With disks there are two access times
to consider, the time taken to find the right track on the disk, and the time to read
the track. The former dominates random reads, and is typically of the order of 10 ms
for hard disks. The transfer rate once the track is found is then very high, perhaps
several hundred kilobytes per second. Various forms of large removable media are
also available, fitting somewhere between floppy disks and removable hard disks, and
are especially important for multimedia storage.
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Optical disks use laser light to read and (sometimes) write the information on the
disk. There are various high capacity specialist optical devices, but the most common
is the CD-ROM, using the same technology as audio compact discs. CD-ROMs have
a capacity of around 650 megabytes, but cannot be written to at all. They are useful
for published material such as online reference books, multimedia and software 
distribution. Recordable CDs are a form of WORM device (write-once read-many)
and are more flexible in that information can be written, but (as the name suggests)
only once at any location – more like a piece of paper than a blackboard. They are
obviously very useful for backups and for producing very secure audit information.
Finally, there are fully rewritable optical disks, but the rewrite time is typically much
slower than the read time, so they are still primarily for archival not dynamic storage.
Many CD-ROM reader/writers can also read DVD format, originally developed for
storing movies. Optical media are more robust than magnetic disks and so it is easier
to use a jukebox arrangement, whereby many optical disks can be brought online auto-
matically as required. This can give an online capacity of many hundreds of giga-
bytes. However, as magnetic disk capacities have grown faster than the fixed standard
of CD-ROMs, some massive capacity stores are moving to large disk arrays.

2.8.3 Understanding speed and capacity

So what effect do the various capacities and speeds have on the user? Thinking of our
typical personal computer system, we can summarize some typical capacities as in
Table 2.1.

We think first of documents. This book is about 320,000 words, or about 2
Mbytes, so it would hardly make a dent in 256 Mbytes of RAM. (This size – 2 Mbytes
– is unformatted and without illustrations; the actual size of the full data files is an
order of magnitude bigger, but still well within the capacity of main memory.) To
take a more popular work, the Bible would use about 4.5 Mbytes. This would still
consume only 2% of main memory, and disappear on a hard disk. However, it might
look tight on a smaller PDA. This makes the memory look not too bad, so long as
you do not intend to put your entire library online. However, many word processors
come with a dictionary and thesaurus, and there is no standard way to use the same
one with several products. Together with help files and the program itself, it is not

Table 2.1 Typical capacities of different storage media

STM small/fast LTM large/slower

Media: RAM Hard disk
Capacity: 256 Mbytes 100 Gbytes
Access time: 10 ns 7 ms
Transfer rate: 100 Mbyte/s 30 Mbyte/s
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unusual to find each application consuming tens or even hundreds of megabytes of
disk space – it is not difficult to fill a few gigabytes of disk at all!

Similarly, although 256 Mbytes of RAM are enough to hold most (but not all) sin-
gle programs, windowed systems will run several applications simultaneously, soon
using up many megabytes. Operating systems handle this by paging unused bits of
programs out of RAM onto disk, or even swapping the entire program onto disk.
This makes little difference to the logical functioning of the program, but has a
significant effect on interaction. If you select a window, and the relevant application
happens to be currently swapped out onto the disk, it has to be swapped back in. The
delay this causes can be considerable, and is both noticeable and annoying on many
systems.

The delays due to swapping are a symptom of the von Neumann bottleneck
between disk and main memory. There is plenty of information in the memory, but
it is not where it is wanted, in the machine’s RAM. The path between them is limited
by the transfer rate of the disk and is too slow. Swapping due to the operating system
may be difficult to avoid, but for an interactive system designer some of these prob-
lems can be avoided by thinking carefully about where information is stored and
when it is transferred. For example, the program can be lazy about information
transfer. Imagine the user wants to look at a document. Rather than reading in the
whole thing before letting the user continue, just enough is read in for the first page
to be displayed, and the rest is read during idle moments.

Returning to documents, if they are scanned as bitmaps (and not read using
OCR), then the capacity of our system looks even less impressive. Say an 11 × 8 inch
(297 × 210 mm) page is scanned with an 8 bit grayscale (256 levels) setting at 1200 dpi.
The image contains about one billion bits, that is about 128 Mbyte. So, our 100 Gbyte
disk could store 800 pages – just OK for this book, but not for the Bible.

If we turn to video, things are even worse. Imagine we want to store moving 
video using 12 bits for each pixel (4 bits for each primary color giving 16 levels of
brightness), each frame is 512 × 512 pixels, and we store at 25 frames per second.

Technological change and storage capacity

Most of the changes in this book since the first and second editions have been additions
where new developments have come along. However, this portion has had to be scrutinized line
by line as the storage capacities of high-end machines when this book was first published in 1993
looked ridiculous as we revised it in 1997 and then again in 2003. One of our aims in this chapter
was to give readers a concrete feel for the capacities and computational possibilities in standard
computers. However, the pace of advances in this area means that it becomes out of date almost
as fast as it is written! This is also a problem for design; it is easy to build a system that is sensible
given a particular level of technology, but becomes meaningless later. The solution is either to issue
ever more frequent updates and new versions, or to exercise a bit of foresight . . .
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This is by no means a high-quality image, but each frame requires approximately 
400 kbytes giving 10 Mbytes per second. Our disk will manage about three hours 
of video – one good movie. Lowering our sights to still photographs, good digital
cameras usually take 2 to 4 mega pixels at 24 bit color; that is 10 Mbytes of raw
uncompressed image – you’d not get all your holiday snaps into main memory!

2.8.4 Compression

In fact, things are not quite so bad, since compression techniques can be used to
reduce the amount of storage required for text, bitmaps and video. All of these things
are highly redundant. Consider text for a moment. In English, we know that if we use
the letter ‘q’ then ‘u’ is almost bound to follow. At the level of words, some words
like ‘the’ and ‘and’ appear frequently in text in general, and for any particular work
one can find other common terms (this book mentions ‘user’ and ‘computer’ rather
frequently). Similarly, in a bitmap, if one bit is white, there is a good chance the next
will be as well. Compression algorithms take advantage of this redundancy. For
example, Huffman encoding gives short codes to frequent words [182], and run-
length encoding represents long runs of the same value by length value pairs. Text 
can easily be reduced by a factor of five and bitmaps often compress to 1% of their
original size.

For video, in addition to compressing each frame, we can take advantage of the
fact that successive frames are often similar. We can compute the difference between
successive frames and then store only this – compressed, of course. More sophistic-
ated algorithms detect when the camera pans and use this information also. These
differencing methods fail when the scene changes, and so the process periodically has
to restart and send a new, complete (but compressed) image. For storage purposes
this is not a problem, but when used for transmission over telephone lines or net-
works it can mean glitches in the video as the system catches up.

With these reductions it is certainly possible to store low-quality video at 
64 kbyte/s; that is, we can store five hours of highly compressed video on our 1 Gbyte
hard disk. However, it still makes the humble video cassette look very good value.

Probably the leading edge of video still and photographic compression is fractal
compression. Fractals have been popularized by the images of the Mandelbrot set (that
swirling pattern of computer-generated colors seen on many T-shirts and posters).
Fractals refer to any image that contains parts which, when suitably scaled, are sim-
ilar to the whole. If we look at an image, it is possible to find parts which are approx-
imately self-similar, and these parts can be stored as a fractal with only a few numeric
parameters. Fractal compression is especially good for textured features, which cause
problems for other compression techniques. The decompression of the image can 
be performed to any degree of accuracy, from a very rough soft-focus image, to 
one more detailed than the original. The former is very useful as one can produce
poor-quality output quickly, and better quality given more time. The latter is rather
remarkable – the fractal compression actually fills in details that are not in the 
original. These details are not accurate, but look convincing!
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2.8.5 Storage format and standards

The most common data types stored by interactive programs are text and bitmap
images, with increasing use of video and audio, and this subsection looks at the
ridiculous range of file storage standards. We will consider database retrieval in the
next subsection.

The basic standard for text storage is the ASCII (American standard code for 
information interchange) character codes, which assign to each standard printable
character and several control characters an internationally recognized 7 bit code
(decimal values 0–127), which can therefore be stored in an 8 bit byte, or be transmit-
ted as 8 bits including parity. Many systems extend the codes to the values 128–255,
including line-drawing characters, mathematical symbols and international letters such
as ‘æ’. There is a 16 bit extension, the UNICODE standard, which has enough room
for a much larger range of characters including the Japanese Kanji character set.

As we have already discussed, modern documents consist of more than just characters.
The text is in different fonts and includes formatting information such as centering,
page headers and footers. On the whole, the storage of formatted text is vendor specific,
since virtually every application has its own file format. This is not helped by the fact
that many suppliers attempt to keep their file formats secret, or update them fre-
quently to stop others’ products being compatible. With the exception of bare ASCII,
the most common shared format is rich text format (RTF), which encodes formatting
information including style sheets. However, even where an application will import
or export RTF, it may represent a cut-down version of the full document style.

RTF regards the document as formatted text, that is it concentrates on the appear-
ance. Documents can also be regarded as structured objects: this book has chapters
containing sections, subsections . . . paragraphs, sentences, words and characters. There
are ISO standards for document structure and interchange, which in theory could be
used for transfer between packages and sites, but these are rarely used in practice.
Just as the PostScript language is used to describe the printed page, SGML (standard
generalized markup language) can be used to store structured text in a reasonably
extensible way. You can define your own structures (the definition itself in SGML),
and produce documents according to them. XML (extensible markup language), a
lightweight version of SGML, is now used extensively for web-based applications.

For bitmap storage the range of formats is seemingly unending. The stored image
needs to record the size of the image, the number of bits per pixel, possibly a color
map, as well as the bits of the image itself. In addition, an icon may have a ‘hot-spot’
for use as a cursor. If you think of all the ways of encoding these features, or leaving
them implicit, and then consider all the combinations of these different encodings,
you can see why there are problems. And all this before we have even considered 
the effects of compression! There is, in fact, a whole software industry producing
packages that convert from one format to another.

Given the range of storage standards (or rather lack of standards), there is no easy
advice as to which is best, but if you are writing a new word processor and are about
to decide how to store the document on disk, think, just for a moment, before
defining yet another format.
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2.8.6 Methods of access

Standard database access is by special key fields with an associated index. The user
has to know the key before the system can find the information. A telephone direct-
ory is a good example of this. You can find out someone’s telephone number if you
know their name (the key), but you cannot find the name given the number. This is
evident in the interface of many computer systems. So often, when you contact an
organization, they can only help you if you give your customer number, or last order
number. The usability of the system is seriously impaired by a shortsighted reliance
on a single key and index. In fact, most database systems will allow multiple keys and
indices, allowing you to find a record given partial information. So these problems
are avoidable with only slight foresight.

There are valid reasons for not indexing on too many items. Adding extra indices
adds to the size of the database, so one has to balance ease of use against storage cost.
However, with ever-increasing disk sizes, this is not a good excuse for all but extreme
examples. Unfortunately, brought up on lectures about algorithmic efficiency, it is
easy for computer scientists to be stingy with storage. Another, more valid, reason
for restricting the fields you index is privacy and security. For example, telephone
companies will typically hold an online index that, given a telephone number, would
return the name and address of the subscriber, but to protect the privacy of their cus-
tomers, this information is not divulged to the general public.

It is often said that dictionaries are only useful for people who can spell. Bad
spellers do not know what a word looks like so cannot look it up to find out. Not only
in spelling packages, but in general, an application can help the user by matching
badly spelt versions of keywords. One example of this is do what I mean (DWIM)
used in several of Xerox PARC’s experimental programming environments. If a
command name is misspelt the system prompts the user with a close correct name.
Menu-based systems make this less of an issue, but one can easily imagine doing 
the same with, say, file selection. Another important instance of this principle is
Soundex, a way of indexing words, especially names. Given a key, Soundex finds
those words which sound similar. For example, given McCloud, it would find
MacCleod. These are all examples of forgiving systems, and in general one should aim
to accommodate the user’s mistakes. Again, there are exceptions to this: you do not
want a bank’s automated teller machine (ATM) to give money when the PIN num-
ber is almost correct!

Not all databases allow long passages of text to be stored in records, perhaps set-
ting a maximum length for text strings, or demanding the length be fixed in advance.
Where this is the case, the database seriously restricts interface applications where
text forms an important part. At the other extreme, free text retrieval systems are cen-
tered on unformatted, unstructured text. These systems work by keeping an index 
of every word in every document, and so you can ask ‘give me all documents with
the words “human” and “computer” in them’. Programs, such as versions of the
UNIX ‘grep’ command, give some of the same facilities by quickly scanning a list of
files for a certain word, but are much slower. On the web, free text search is of course
the standard way to find things using search engines.
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Worked exercise What is the basic architecture of a computer system?

Answer In an HCI context, you should be assessing the architecture from the point of view of
the user. The material for this question is scattered throughout the chapter. Look too
at personal computer magazines, where adverts and articles will give you some idea of
typical capabilities . . . and costs. They may also raise some questions: just what is the
difference to the user between an 8 ms and a 10 ms disk drive?

The example answer below gives the general style, although more detail would be
expected of a full answer. In particular, you need to develop a feel for capacities 
either as ball-park figures or in terms of typical capabilities (seconds of video, pages 
of text).

Example
The basic architecture of a computer system consists of the computer itself (with asso-
ciated memory), input and output devices for user interaction and various forms of
hard-copy devices. (Note, the ‘computer science’ answer regards output to the user
and output to a printer as essentially equivalent. This is not an acceptable user-centered
view.)

A typical configuration of user input–output devices would be a screen with a keyboard
for typing text and a mouse for pointing and positioning. Depending on circumstance,
different pointing devices may be used such as a stylus (for more direct interaction) or
a touchpad (especially on portable computers).

The computer itself can be considered as composed of some processing element and
memory. The memory is itself divided into short-term memory which is lost when the
machine is turned off and permanent memory which persists.

PROCESSING AND NETWORKS

Computers that run interactive programs will process in the order of 100 million
instructions per second. It sounds a lot and yet, like memory, it can soon be used up.
Indeed, the first program written by one of the authors (some while ago) ‘hung’ and
all attempts to debug it failed. Later calculation showed that the program would have
taken more than the known age of the universe to complete! Failures need not be as
spectacular as that to render a system unusable. Consider, for example, one drawing
system known to the authors. To draw a line you press down the mouse button at
one end, drag the mouse and then release the mouse button at the other end of the
line – but not too quickly. You have to press down the button and then actually hold
your hand steady for a moment, otherwise the line starts half way! For activities
involving the user’s hand–eye coordination, delays of even a fraction of a second can
be disastrous.

2.9
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2.9.1 Effects of finite processor speed

As we can see, speed of processing can seriously affect the user interface. These effects
must be taken into account when designing an interactive system. There are two
sorts of faults due to processing speed: those when it is too slow, and those when it
is too fast!

We saw one example of the former above. This was a functional fault, in that the
program did the wrong thing. The system is supposed to draw lines from where the
mouse button is depressed to where it is released. However, the program gets it
wrong – after realizing the button is down, it does not check the position of the
mouse fast enough, and so the user may have moved the mouse before the start 
position is registered. This is a fault at the implementation stage of the system rather
than of the design. But to be fair, the programmer may not be given the right sort of
information from lower levels of system software.

A second fault due to slow processing is where, in a sense, the program does the
right thing, but the feedback is too slow, leading to strange effects at the interface. In
order to avoid faults of the first kind, the system buffers the user input; that is, it
remembers keypresses and mouse buttons and movement. Unfortunately, this leads
to problems of its own. One example of this sort of problem is cursor tracking, which
happens in character-based text editors. The user is trying to move backwards on the
same line to correct an error, and so presses the cursor-left key. The cursor moves
and when it is over the correct position, the user releases the key. Unfortunately, the
system is behind in responding to the user, and so has a few more cursor-left keys 

Moore’s law

Everyone knows that computers just get faster and faster. However, in 1965 Gordon
Moore, co-founder of Intel, noticed a regularity. It seemed that the speed of processors, related
closely to the number of transistors that could be squashed on a silicon wafer, was doubling every
18 months – exponential growth. One of the authors bought his first ‘proper’ computer in 1987;
it was a blindingly fast 1.47 MHz IBM compatible (Macs were too expensive). By 2002 a system
costing the same in real terms would have had a 1.5 GHz processor – 1000 times faster or 210 in
15 years, that is 10 × 18 months.

There is a similar pattern for computer memory, except that the doubling time for magnetic stor-
age seems to be closer to one year. For example, when the first edition of this book was written
one of the authors had a 20 Mbyte hard disk; now, 11 years later, his disk is 30 Gbytes – around
210 times more storage in just 10 years.

The effects of this are dramatic. If you took a young baby today and started recording a full audio
video diary of every moment, day and night, of that child’s life, by the time she was an old lady her
whole life experience would fit into memory the size of a small grain of dust.

For more on Moore’s law and life recording see: /e3/online/moores-law/
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to process – the cursor then overshoots. The user tries to correct this by pressing the
cursor-right key, and again overshoots. There is typically no way for the user to tell
whether the buffer is empty or not, except by interacting very slowly with the system
and observing that the cursor has moved after every keypress.

A similar problem, icon wars, occurs on window systems. The user clicks the
mouse on a menu or icon, and nothing happens; for some reason the machine is
busy or slow. So the user clicks again, tries something else – then, suddenly, all 
the buffered mouse clicks are interpreted and the screen becomes a blur of flashing
windows and menus. This time, it is not so much that the response is too slow – it is
fast enough when it happens – but that the response is variable. The delays due to
swapping programs in and out of main memory typically cause these problems.

Furthermore, a style of interaction that is optimal on one machine may not be 
so on a slower machine. In particular, mouse-based interfaces cannot tolerate delays
between actions and feedback of more than a fraction of a second, otherwise the
immediacy required for successful interaction is lost. If these responses cannot be
met then a more old-fashioned, command-based interface may be required.

Whereas it is immediately obvious that slow responses can cause problems for the
user, it is not so obvious why one should not always aim for a system to be as fast 
as possible. However, there are exceptions to this – the user must be able to read and
understand the output of the system. For example, one of the authors was once given
a demonstration disk for a spreadsheet. Unfortunately, the machine the demo was
written on was clearly slower than the author’s machine, not much, at worst half the
speed, but different enough. The demo passed in a blur over the screen with nothing
remaining on the screen long enough to read. Many high-resolution monitors suf-
fer from a similar problem when they display text. Whereas older character-based 
terminals scrolled new text from the bottom of the screen or redrew from the top,
bitmap screens often ‘flash’ up the new page, giving no indication of direction of
movement. A final example is the rate of cursor flashing: the rate is often at a fixed

DESIGN FOCUS

The myth of the infinitely fast machine

The adverse effects of slow processing are made worse because the designers labor under the myth 
of the infinitely fast machine [93]. That is, they design and document their systems as if response will be
immediate. Rather than blithely hoping that the eventual machine will be ‘fast enough’, the designer
ought to plan explicitly for slow responses where these are possible. A good example, where buffer-
ing is clear and audible (if not visible) to the user, is telephones. Even if the user gets ahead of the 
telephone when entering a number, the tones can be heard as they are sent over the line. Now this is
probably an accident of the design rather than deliberate policy, as there are so many other problems
with telephones as interfaces. However, this type of serendipitous feedback should be emulated in
other areas.



frequency, so varying the speed of the processor does not change the screen display.
But a rate which is acceptable for a CRT screen is too fast for an LCD screen, which
is more persistent, and the cursor may become invisible or a slight gray color.

In some ways the solution to these problems is easier: the designer can demand
fixed delays (dependent on media and user preference) rather than just going as fast
as the machine allows. To plan for the first problem, that of insufficient speed, the
designer needs to understand the limitations of the computer system and take
account of these at all stages in the design process.

2.9.2 Limitations on interactive performance

There are several factors that can limit the speed of an interactive system:

Computation bound This is rare for an interactive program, but possible, for
example when using find/replace in a large document. The system should be
designed so that long delays are not in the middle of interaction and so that the
user gets some idea of how the job is progressing. For a very long process try to
give an indication of duration before it starts; and during processing an indication
of the stage that the process has reached is helpful. This can be achieved by hav-
ing a counter or slowly filling bar on the screen that indicates the amount done,
or by changing the cursor to indicate that processing is occurring. Many systems
notice after they have been computing for some time and then say ‘this may take
some time: continue (Y/N)?’. Of course, by the time it says this the process may
be nearly finished anyway!

Storage channel bound As we discussed in the previous section, the speed of 
memory access can interfere with interactive performance. We discussed one
technique, laziness, for reducing this effect. In addition, if there is plenty of raw
computation power and the system is held up solely by memory, it is possible to
trade off memory against processing speed. For example, compressed data take
less space to store, and is faster to read in and out, but must be compressed before
storage and decompressed when retrieved. Thus faster memory access leads to
increased processing time. If data is written more often than it is read, one can
choose a technique that is expensive to compress but fairly simple to decompress.
For many interactive systems the ability to browse quickly is very important, but
users will accept delays when saving updated information.

Graphics bound For many modern interfaces, this is the most common bottle-
neck. It is easy to underestimate the time taken to perform what appear to be 
simple interface operations. Sometimes clever coding can reduce the time taken
by common graphics operations, and there is tremendous variability in per-
formance between programs running on the same hardware. Most computers
include a special-purpose graphics card to handle many of the most common
graphics operations. This is optimized for graphics operations and allows the
main processor to do other work such as manipulating documents and other 
user data.

2.9 Processing and networks 117
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Network capacity Most computers are linked by networks. At the simplest this can
mean using shared files on a remote machine. When accessing such files it can be
the speed of the network rather than that of the memory which limits perform-
ance. This is discussed in greater detail below.

2.9.3 Networked computing

Computer systems in use today are much more powerful than they were a few years
ago, which means that the standard computer on the desktop is quite capable 
of high-performance interaction without recourse to outside help. However, it is
often the case that we use computers not in their standalone mode of operation, but
linked together in networks. This brings added benefits in allowing communication
between different parties, provided they are connected into the same network, as well
as allowing the desktop computer to access resources remote from itself. Such net-
works are inherently much more powerful than the individual computers that make
up the network: increased computing power and memory are only part of the story,
since the effects of allowing people much more extensive, faster and easier access to
information are highly significant to individuals, groups and institutions.

One of the biggest changes since the first edition of this book has been the explos-
ive growth of the internet and global connectivity. As well as fixed networks it is 
now normal to use a high bandwidth modem or wireless local area network (LAN)
to connect into the internet and world wide web from home or hotel room anywhere
in the world. The effects of this on society at large can only be speculated upon 
at present, but there are already major effects on computer purchases and perhaps
the whole face of personal computation. As more and more people buy computers
principally to connect to the internet the idea of the network computer has arisen – a
small computer with no disks whose sole purpose is to connect up to networks.

The internet

The internet has its roots back in 1969 as DARPANET when the US Government’s
Department of Defense commissioned research into networking. The initial four mainframe com-
puters grew to 23 in 1971 and the system had been renamed ARPANET. Growth has accelerated
ever since: in 1984 there were over a thousand machines connected, in 1989 the 100,000 mark
had been reached, and the latest estimates are in the millions. All the computers on the system,
now known as the internet, speak a set of common languages (protocols); the two most import-
ant of these are Transmission Control Protocol (TCP) which moves data from A to B, and the Internet
Protocol (IP) which specifies which B is being referred to so that the data goes to the correct place.
Together these protocols are known as TCP/IP. Thus, at its most basic level, the internet is simply
millions of computers connected together and talking to each other. Other protocols then build
on these low-level capabilities to provide services such as electronic mail, in which participants
send messages to each other; news, where articles of interest are posted to a special interest
group and can be read by anyone subscribing to that group; and of course the world wide web.
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Such networked systems have an effect on interactivity, over and above any addi-
tional access to distant peripherals or information sources. Networks sometimes
operate over large distances, and the transmission of information may take some
appreciable time, which affects the response time of the system and hence the nature
of the interactivity. There may be a noticeable delay in response, and if the user is not
informed of what is going on, he may assume that his command has been ignored,
or lost, and may then repeat it. This lack of feedback is an important factor in the
poor performance and frustration users feel when using such systems, and can be
alleviated by more sensible use of the capabilities of the desktop machine to inform
users of what is happening over the network.

Another effect is that the interaction between human and machine becomes 
an open loop, rather than a closed one. Many people may be interacting with the
machine at once, and their actions may affect the response to your own. Many users
accessing a single central machine will slow its response; database updates carried out
by one user may mean that the same query by another user at slightly different times
may produce different results. The networked computer system, by the very nature
of its dispersal, distribution and multi-user access, has been transformed from a fully
predictable, deterministic system, under the total control of the user, into a non-
deterministic one, with an individual user being unaware of many important things
that are happening to the system as a whole. Such systems pose a particular problem
since ideals of consistency, informative feedback and predictable response are viol-
ated (see Chapter 7 for more on these principles). However, the additional power
and flexibility offered by networked systems means that they are likely to be with us
for a long time, and these issues need to be carefully addressed in their design.

Worked exercise How do you think new, fast, high-density memory devices and quick processors have influenced
recent developments in HCI? Do they make systems any easier to use? Do they expand the
range of applications of computer systems?

Answer Arguably it is not so much the increase in computer power as the decrease in the cost
of that power which has had the most profound effect. Because ‘ordinary’ users have
powerful machines on their desktops it has become possible to view that power as
available for the interface rather than hoarded for number-crunching applications.

Modern graphical interaction consumes vast amounts of processing power and would
have been completely impossible only a few years ago. There is an extent to which sys-
tems have to run faster to stay still, in that as screen size, resolution and color range
increase, so does the necessary processing power to maintain the ‘same’ interaction.
However, this extra processing is not really producing the same effect; screen quality is
still a major block on effective interaction.

The increase in RAM means that larger programs can be written, effectively allowing the
programmer ‘elbow room’. This is used in two ways: to allow extra functionality and to
support easier interaction. Whether the former really improves usability is debatable –
unused functionality is a good marketing point, but is of no benefit to the user. The 
ease of use of a system is often determined by a host of small features, such as the
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appropriate choice of default options. These features make the interface seem ‘simple’,
but make the program very complex . . . and large. Certainly the availability of elbow room,
both in terms of memory and processing power, has made such features possible.

The increase in both short-term (RAM) and long-term (disks and optical storage) mem-
ory has also removed many of the arbitrary limits in systems: it is possible to edit docu-
ments of virtually unlimited size and to treat the computer (suitably backed up) as one’s
primary information repository.

Some whole new application areas have become possible because of advances in mem-
ory and processing. Most applications of multimedia including voice recognition and
online storage and capture of video and audio, require enormous amounts of process-
ing and/or memory. In particular, large magnetic and optical storage devices have been
the key to electronic document storage whereby all paper documents are scanned and
stored within a computer system. In some contexts such systems have completely
replaced paper-based filing cabinets.

SUMMARY

In Sections 2.2 and 2.3, we described a range of input devices. These performed 
two main functions: text entry and pointing. The principal text entry device is the
QWERTY keyboard, but we also discussed alternative keyboards, chord keyboards,
the telephone keypad and speech input. Pointing devices included the mouse, 
touchpad, trackball and joystick, as well as a large array of less common alternatives
including eyegaze systems.

Section 2.4 dealt mainly with the screen as a direct output device. We discussed
several different technologies, in particular CRT and LCD screens and the common
properties of all bitmap display devices. We considered some more recent display
methods including large displays, situated displays and digital paper.

Section 2.5 looked at the devices used for manipulating and seeing virtual reality
and 3D spaces. This included the dataglove, body tracking, head-mounted displays
and cave environments.

In Section 2.6 we moved outside the computer entirely and looked at physical
devices such as the special displays, knobs and switches of electronic appliances. We
also briefly considered sound, touch and smell as outputs from computer systems
and environmental and bio-sensing as inputs. These are topics that will be revisited
later in the book.

Section 2.7 discussed various forms of printer and scanner. Typical office printers
include ink-jet, bubble-jet and laser printers. In addition, dot-matrix and thermal
printers are used in specialized equipment. We also discussed font styles and page
description languages. Scanners are used to convert printed images and documents
into electronic form. They are particularly valuable in desktop publishing and for
electronic document storage systems.

2.10
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In Section 2.8, we considered the typical capacities of computer memory, both of
main RAM, likened to human short-term memory, and long-term memory stored
on magnetic and optical disks. The storage capacities were compared with document
sizes and video images. We saw that a typical hard disk could only hold about two
minutes of moving video, but that compression techniques can increase the capacity
dramatically. We also discussed storage standards – or rather the lack of them –
including the ASCII character set and markup languages. The user ought to be able
to access information in ways that are natural and tolerant of small slips. Techniques
which can help this included multiple indices, free text databases, DWIM (do what 
I mean) and Soundex.

Section 2.9 showed how processing speed, whether too slow or too fast, can affect
the user interface. In particular, we discussed the effects of buffering: cursor tracking
and icon wars. Processing speed is limited by various factors: computation, memory
access, graphics and network delays.

The lesson from this chapter is that the interface designer needs to be aware of the
properties of the devices with which a system is built. This includes not only input
and output devices, but all the factors that influence the behavior of the interface,
since all of these influence the nature and style of the interaction.

EXERCISES

2.1 Individually or in a group find as many different examples as you can of physical con-
trols and displays.

(a) List them.
(b) Try to group them, or classify them.
(c) Discuss whether you believe the control or display is suitable for its purpose (Section 3.9.3

may also help).

Exercises 2.2 and 2.3 involve you examining a range of input and output devices in order to understand
how they influence interaction.

2.2 A typical computer system comprises a QWERTY keyboard, a mouse and a color screen. There
is usually some form of loudspeaker as well. You should know how the keyboard, mouse and
screen work – if not, read up on it.

What sort of input does the keyboard support? What sort of input does the mouse support? 
Are these adequate for all possible applications? If not, to which areas are they most suited? 
Do these areas map well onto the typical requirements for users of computer systems?

If you were designing a keyboard for a modern computer, and you wanted to produce a faster,
easier-to-use layout, what information would you need to know and how would that influence 
the design?

2.3 Pick a couple of computer input devices that you are aware of (joystick, light pen, touchscreen,
trackball, eyegaze, dataglove, etc.) and note down how each has different attributes that support
certain forms of interaction. You ought to know a little about all of these devices – if you don’t,
research them.
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2.4 What is the myth of the infinitely fast machine?

2.5 Pick one of the following scenarios, and choose a suitable combination of input and output devices
to best support the intended interaction. It may help to identify typical users or classes of user,
and identify how the devices chosen support these people in their tasks. Explain the major prob-
lems that the input and output devices solve.

(a) Environmental database
A computer database is under development that will hold environmental information. This ranges
from meteorological measurements through fish catches to descriptions of pollution, and will
include topographical details and sketches and photographs. The data has to be accessed only by
experts, but they want to be able to describe and retrieve any piece of data within a few seconds.

(b) Word processor for blind people
A word processor for blind users is needed, which can also be operated by sighted people. It has
to support the standard set of word-processing tasks.

2.6 Describe Fitts’ law (see Chapter 1). How does Fitts’ law change for different physical selection
devices, such as a three-button mouse, a touchpad, or a pen/stylus? (You’ll need to do some
research for this.)
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THE INTERACTION

OV E RV I E W

n Interaction models help us to understand what is going
on in the interaction between user and system. They
address the translations between what the user wants
and what the system does.

n Ergonomics looks at the physical characteristics of the
interaction and how these influence its effectiveness.

n The dialog between user and system is influenced by
the style of the interface.

n The interaction takes place within a social and
organizational context that affects both user and
system.

3
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INTRODUCTION

In the previous two chapters we have looked at the human and the computer respect-
ively. However, in the context of this book, we are not concerned with them in 
isolation. We are interested in how the human user uses the computer as a tool to
perform, simplify or support a task. In order to do this the user must communicate
his requirements to the computer.

There are a number of ways in which the user can communicate with the system.
At one extreme is batch input, in which the user provides all the information to the
computer at once and leaves the machine to perform the task. This approach does
involve an interaction between the user and computer but does not support many
tasks well. At the other extreme are highly interactive input devices and paradigms,
such as direct manipulation (see Chapter 4) and the applications of virtual reality
(Chapter 20). Here the user is constantly providing instruction and receiving feed-
back. These are the types of interactive system we are considering.

In this chapter, we consider the communication between user and system: the
interaction. We will look at some models of interaction that enable us to identify and
evaluate components of the interaction, and at the physical, social and organiza-
tional issues that provide the context for it. We will also survey some of the different
styles of interaction that are used and consider how well they support the user.

MODELS OF INTERACTION

In previous chapters we have seen the usefulness of models to help us to under-
stand complex behavior and complex systems. Interaction involves at least two par-
ticipants: the user and the system. Both are complex, as we have seen, and are very
different from each other in the way that they communicate and view the domain
and the task. The interface must therefore effectively translate between them to allow
the interaction to be successful. This translation can fail at a number of points and
for a number of reasons. The use of models of interaction can help us to understand
exactly what is going on in the interaction and identify the likely root of difficulties.
They also provide us with a framework to compare different interaction styles and 
to consider interaction problems.

We begin by considering the most influential model of interaction, Norman’s 
execution–evaluation cycle; then we look at another model which extends the ideas 
of Norman’s cycle. Both of these models describe the interaction in terms of the 
goals and actions of the user. We will therefore briefly discuss the terminology 
used and the assumptions inherent in the models, before describing the models
themselves.

3.2

3.1
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3.2.1 The terms of interaction

Traditionally, the purpose of an interactive system is to aid a user in accomplishing
goals from some application domain. (Later in this book we will look at alternative
interactions but this model holds for many work-oriented applications.) A domain
defines an area of expertise and knowledge in some real-world activity. Some ex-
amples of domains are graphic design, authoring and process control in a factory. 
A domain consists of concepts that highlight its important aspects. In a graphic
design domain, some of the important concepts are geometric shapes, a drawing 
surface and a drawing utensil. Tasks are operations to manipulate the concepts of a
domain. A goal is the desired output from a performed task. For example, one task
within the graphic design domain is the construction of a specific geometric shape
with particular attributes on the drawing surface. A related goal would be to produce
a solid red triangle centered on the canvas. An intention is a specific action required
to meet the goal.

Task analysis involves the identification of the problem space (which we discussed
in Chapter 1) for the user of an interactive system in terms of the domain, goals,
intentions and tasks. We can use our knowledge of tasks and goals to assess the inter-
active system that is designed to support them. We discuss task analysis in detail 
in Chapter 15. The concepts used in the design of the system and the description of
the user are separate, and so we can refer to them as distinct components, called the
System and the User, respectively. The System and User are each described by means
of a language that can express concepts relevant in the domain of the application.
The System’s language we will refer to as the core language and the User’s language 
we will refer to as the task language. The core language describes computational
attributes of the domain relevant to the System state, whereas the task language
describes psychological attributes of the domain relevant to the User state.

The system is assumed to be some computerized application, in the context of this
book, but the models apply equally to non-computer applications. It is also a com-
mon assumption that by distinguishing between user and system we are restricted to
single-user applications. This is not the case. However, the emphasis is on the view
of the interaction from a single user’s perspective. From this point of view, other
users, such as those in a multi-party conferencing system, form part of the system.

3.2.2 The execution–evaluation cycle

Norman’s model of interaction is perhaps the most influential in Human–Computer
Interaction, possibly because of its closeness to our intuitive understanding of the
interaction between human user and computer [265]. The user formulates a plan of
action, which is then executed at the computer interface. When the plan, or part of
the plan, has been executed, the user observes the computer interface to evaluate the
result of the executed plan, and to determine further actions.

The interactive cycle can be divided into two major phases: execution and evalu-
ation. These can then be subdivided into further stages, seven in all. The stages in
Norman’s model of interaction are as follows:
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1. Establishing the goal.
2. Forming the intention.
3. Specifying the action sequence.
4. Executing the action.
5. Perceiving the system state.
6. Interpreting the system state.
7. Evaluating the system state with respect to the goals and intentions.

Each stage is, of course, an activity of the user. First the user forms a goal. This is the
user’s notion of what needs to be done and is framed in terms of the domain, in the
task language. It is liable to be imprecise and therefore needs to be translated into 
the more specific intention, and the actual actions that will reach the goal, before 
it can be executed by the user. The user perceives the new state of the system, after
execution of the action sequence, and interprets it in terms of his expectations. If the
system state reflects the user’s goal then the computer has done what he wanted and
the interaction has been successful; otherwise the user must formulate a new goal
and repeat the cycle.

Norman uses a simple example of switching on a light to illustrate this cycle.
Imagine you are sitting reading as evening falls. You decide you need more light; 
that is you establish the goal to get more light. From there you form an intention 
to switch on the desk lamp, and you specify the actions required, to reach over and
press the lamp switch. If someone else is closer the intention may be different – you
may ask them to switch on the light for you. Your goal is the same but the intention
and actions are different. When you have executed the action you perceive the result,
either the light is on or it isn’t and you interpret this, based on your knowledge of 
the world. For example, if the light does not come on you may interpret this as 
indicating the bulb has blown or the lamp is not plugged into the mains, and you will 
formulate new goals to deal with this. If the light does come on, you will evaluate 
the new state according to the original goals – is there now enough light? If so, the
cycle is complete. If not, you may formulate a new intention to switch on the main
ceiling light as well.

Norman uses this model of interaction to demonstrate why some interfaces cause
problems to their users. He describes these in terms of the gulfs of execution and the
gulfs of evaluation. As we noted earlier, the user and the system do not use the same
terms to describe the domain and goals – remember that we called the language 
of the system the core language and the language of the user the task language. The
gulf of execution is the difference between the user’s formulation of the actions to
reach the goal and the actions allowed by the system. If the actions allowed by the
system correspond to those intended by the user, the interaction will be effective.
The interface should therefore aim to reduce this gulf.

The gulf of evaluation is the distance between the physical presentation of the 
system state and the expectation of the user. If the user can readily evaluate the 
presentation in terms of his goal, the gulf of evaluation is small. The more effort 
that is required on the part of the user to interpret the presentation, the less effective
the interaction.
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Norman’s model is a useful means of understanding the interaction, in a way that
is clear and intuitive. It allows other, more detailed, empirical and analytic work 
to be placed within a common framework. However, it only considers the system as
far as the interface. It concentrates wholly on the user’s view of the interaction. 
It does not attempt to deal with the system’s communication through the interface.
An extension of Norman’s model, proposed by Abowd and Beale, addresses this
problem [3]. This is described in the next section.

3.2.3 The interaction framework

The interaction framework attempts a more realistic description of interaction by
including the system explicitly, and breaks it into four main components, as shown
in Figure 3.1. The nodes represent the four major components in an interactive sys-
tem – the System, the User, the Input and the Output. Each component has its own
language. In addition to the User’s task language and the System’s core language,
which we have already introduced, there are languages for both the Input and Output
components. Input and Output together form the Interface.

As the interface sits between the User and the System, there are four steps in the
interactive cycle, each corresponding to a translation from one component to
another, as shown by the labeled arcs in Figure 3.2. The User begins the interactive
cycle with the formulation of a goal and a task to achieve that goal. The only way 
the user can manipulate the machine is through the Input, and so the task must be
articulated within the input language. The input language is translated into the core

Human error – slips and mistakes

Human errors are often classified into slips and mistakes. We can distinguish these using
Norman’s gulf of execution.

If you understand a system well you may know exactly what to do to satisfy your goals – you have
formulated the correct action. However, perhaps you mistype or you accidentally press the mouse
button at the wrong time. These are called slips; you have formulated the right action, but fail to
execute that action correctly.

However, if you don’t know the system well you may not even formulate the right goal. For ex-
ample, you may think that the magnifying glass icon is the ‘find’ function, but in fact it is to magnify
the text. This is called a mistake.

If we discover that an interface is leading to errors it is important to understand whether they are
slips or mistakes. Slips may be corrected by, for instance, better screen design, perhaps putting
more space between buttons. However, mistakes need users to have a better understanding of the
systems, so will require far more radical redesign or improved training, perhaps a totally different
metaphor for use.
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language as operations to be performed by the System. The System then transforms
itself as described by the operations; the execution phase of the cycle is complete and
the evaluation phase now begins. The System is in a new state, which must now 
be communicated to the User. The current values of system attributes are rendered
as concepts or features of the Output. It is then up to the User to observe the Output
and assess the results of the interaction relative to the original goal, ending the evalu-
ation phase and, hence, the interactive cycle. There are four main translations
involved in the interaction: articulation, performance, presentation and observation.

The User’s formulation of the desired task to achieve some goal needs to be articu-
lated in the input language. The tasks are responses of the User and they need to be
translated to stimuli for the Input. As pointed out above, this articulation is judged
in terms of the coverage from tasks to input and the relative ease with which the
translation can be accomplished. The task is phrased in terms of certain psycholo-
gical attributes that highlight the important features of the domain for the User. If
these psychological attributes map clearly onto the input language, then articulation
of the task will be made much simpler. An example of a poor mapping, as pointed

Figure 3.1 The general interaction framework

Figure 3.2 Translations between components
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out by Norman, is a large room with overhead lighting controlled by a bank of
switches. It is often desirable to control the lighting so that only one section of the
room is lit. We are then faced with the puzzle of determining which switch controls
which lights. The result is usually repeated trials and frustration. This arises from the
difficulty of articulating a goal (for example, ‘Turn on the lights in the front of the
room’) in an input language that consists of a linear row of switches, which may or
may not be oriented to reflect the room layout.

Conversely, an example of a good mapping is in virtual reality systems, where
input devices such as datagloves are specifically geared towards easing articulation 
by making the user’s psychological notion of gesturing an act that can be directly
realized at the interface. Direct manipulation interfaces, such as those found on 
common desktop operating systems like the Macintosh and Windows, make the
articulation of some file handling commands easier. On the other hand, some tasks,
such as repetitive file renaming or launching a program whose icon is not visible, are
not at all easy to articulate with such an interface.

At the next stage, the responses of the Input are translated to stimuli for the
System. Of interest in assessing this translation is whether the translated input lan-
guage can reach as many states of the System as is possible using the System stimuli
directly. For example, the remote control units for some compact disc players do not
allow the user to turn the power off on the player unit; hence the off state of the
player cannot be reached using the remote control’s input language. On the panel of
the compact disc player, however, there is usually a button that controls the power.
The ease with which this translation from Input to System takes place is of less import-
ance because the effort is not expended by the user. However, there can be a real
effort expended by the designer and programmer. In this case, the ease of the trans-
lation is viewed in terms of the cost of implementation.

Once a state transition has occurred within the System, the execution phase of 
the interaction is complete and the evaluation phase begins. The new state of the
System must be communicated to the User, and this begins by translating the System
responses to the transition into stimuli for the Output component. This presentation
translation must preserve the relevant system attributes from the domain in the lim-
ited expressiveness of the output devices. The ability to capture the domain concepts
of the System within the Output is a question of expressiveness for this translation.

For example, while writing a paper with some word-processing package, it is 
necessary at times to see both the immediate surrounding text where one is currently
composing, say, the current paragraph, and a wider context within the whole paper
that cannot be easily displayed on one screen (for example, the current chapter).

Ultimately, the user must interpret the output to evaluate what has happened. The
response from the Output is translated to stimuli for the User which trigger assess-
ment. The observation translation will address the ease and coverage of this final
translation. For example, it is difficult to tell the time accurately on an unmarked
analog clock, especially if it is not oriented properly. It is difficult in a command 
line interface to determine the result of copying and moving files in a hierarchical 
file system. Developing a website using a markup language like HTML would be 
virtually impossible without being able to preview the output through a browser.
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Assessing overall interaction

The interaction framework is presented as a means to judge the overall usability 
of an entire interactive system. In reality, all of the analysis that is suggested by the
framework is dependent on the current task (or set of tasks) in which the User is
engaged. This is not surprising since it is only in attempting to perform a particular
task within some domain that we are able to determine if the tools we use are 
adequate. For example, different text editors are better at different things. For 
a particular editing task, one can choose the text editor best suited for interaction 
relative to the task. The best editor, if we are forced to choose only one, is the 
one that best suits the tasks most frequently performed. Therefore, it is not too 
disappointing that we cannot extend the interaction analysis beyond the scope of 
a particular task.

DESIGN FOCUS

Video recorder

A simple example of programming a VCR from a remote control shows that all four translations in the
interaction cycle can affect the overall interaction. Ineffective interaction is indicated by the user not
being sure the VCR is set to record properly. This could be because the user has pressed the keys on
the remote control unit in the wrong order; this can be classified as an articulatory problem. Or maybe
the VCR is able to record on any channel but the remote control lacks the ability to select channels,
indicating a coverage problem for the performance translation. It may be the case that the VCR display
panel does not indicate that the program has been set, a presentation problem. Or maybe the user does
not interpret the feedback properly, an observational error. Any one or more of these deficiencies
would give rise to ineffective interaction.

FRAMEWORKS AND HCI

As well as providing a means of discussing the details of a particular interaction,
frameworks provide a basis for discussing other issues that relate to the interaction.
The ACM SIGCHI Curriculum Development Group presents a framework similar to
that presented here, and uses it to place different areas that relate to HCI [9].

In Figure 3.3 these aspects are shown as they relate to the interaction framework.
In particular, the field of ergonomics addresses issues on the user side of the interface,
covering both input and output, as well as the user’s immediate context. Dialog
design and interface styles can be placed particularly along the input branch of the
framework, addressing both articulation and performance. However, dialog is most
usually associated with the computer and so is biased to that side of the framework.

3.3
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Presentation and screen design relates to the output branch of the framework. The
entire framework can be placed within a social and organizational context that also
affects the interaction. Each of these areas has important implications for the design
of interactive systems and the performance of the user. We will discuss these in brief
in the following sections, with the exception of screen design which we will save until
Chapter 5.

ERGONOMICS

Ergonomics (or human factors) is traditionally the study of the physical character-
istics of the interaction: how the controls are designed, the physical environment in
which the interaction takes place, and the layout and physical qualities of the screen.
A primary focus is on user performance and how the interface enhances or detracts
from this. In seeking to evaluate these aspects of the interaction, ergonomics will 
certainly also touch upon human psychology and system constraints. It is a large 
and established field, which is closely related to but distinct from HCI, and full 
coverage would demand a book in its own right. Here we consider a few of the issues
addressed by ergonomics as an introduction to the field. We will briefly look at the
arrangement of controls and displays, the physical environment, health issues and
the use of color. These are by no means exhaustive and are intended only to give an

3.4

Figure 3.3 A framework for human–computer interaction. Adapted from ACM
SIGCHI Curriculum Development Group [9]
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indication of the types of issues and problems addressed by ergonomics. For more
information on ergonomic issues the reader is referred to the recommended reading
list at the end of the chapter.

3.4.1 Arrangement of controls and displays

In Chapter 1 we considered perceptual and cognitive issues that affect the way 
we present information on a screen and provide control mechanisms to the user. 
In addition to these cognitive aspects of design, physical aspects are also important.
Sets of controls and parts of the display should be grouped logically to allow rapid
access by the user (more on this in Chapter 5). This may not seem so important
when we are considering a single user of a spreadsheet on a PC, but it becomes vital
when we turn to safety-critical applications such as plant control, aviation and air
traffic control. In each of these contexts, users are under pressure and are faced with
a huge range of displays and controls. Here it is crucial that the physical layout of
these be appropriate. Indeed, returning to the less critical PC application, inappro-
priate placement of controls and displays can lead to inefficiency and frustration. 
For example, on one particular electronic newsreader, used by one of the authors,
the command key to read articles from a newsgroup (y) is directly beside the com-
mand key to unsubscribe from a newsgroup (u) on the keyboard. This poor design
frequently leads to inadvertent removal of newsgroups. Although this is recover-
able it wastes time and is annoying to the user. We saw similar examples in the
Introduction to this book including the MacOS X dock. We can therefore see that
appropriate layout is important in all applications.

We have already touched on the importance of grouping controls together logic-
ally (and keeping opposing controls separate). The exact organization that this will
suggest will depend on the domain and the application, but possible organizations
include the following:

functional controls and displays are organized so that those that are functionally
related are placed together;

sequential controls and displays are organized to reflect the order of their use in a
typical interaction (this may be especially appropriate in domains where a particu-
lar task sequence is enforced, such as aviation);

frequency controls and displays are organized according to how frequently they are
used, with the most commonly used controls being the most easily accessible.

In addition to the organization of the controls and displays in relation to each
other, the entire system interface must be arranged appropriately in relation to 
the user’s position. So, for example, the user should be able to reach all controls 
necessary and view all displays without excessive body movement. Critical displays
should be at eye level. Lighting should be arranged to avoid glare and reflection dis-
torting displays. Controls should be spaced to provide adequate room for the user to
manoeuvre.
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DESIGN FOCUS

Industrial interfaces

The interfaces to office systems have changed dramatically since the 1980s. However, some care is
needed in transferring the idioms of office-based systems into the industrial domain. Office information
is primarily textual and slow varying, whereas industrial interfaces may require the rapid assimilation of
multiple numeric displays, each of which is varying in response to the environment. Furthermore, the
environmental conditions may rule out certain interaction styles (for example, the oil-soaked mouse).
Consequently, industrial interfaces raise some additional design issues rarely encountered in the office.

Glass interfaces vs. dials and knobs
The traditional machine interface consists of dials and knobs directly wired or piped to the equipment.
Increasingly, some or all of the controls are replaced with a glass interface, a computer screen through
which the equipment is monitored and controlled. Many of the issues are similar for the two kinds of
interface, but glass interfaces do have some special advantages and problems. For a complex system, a
glass interface can be both cheaper and more flexible, and it is easy to show the same information in
multiple forms (Figure 3.4). For example, a data value might be given both in a precise numeric field and
also in a quick to assimilate graphical form. In addition, the same information can be shown on several
screens. However, the information is not located in physical space and so vital clues to context are
missing – it is easy to get lost navigating complex menu systems. Also, limited display resolution often
means that an electronic representation of a dial is harder to read than its physical counterpart; in some
circumstances both may be necessary, as is the case on the flight deck of a modern aircraft.

Figure 3.4 Multiple representations of the same information

Indirect manipulation
The phrase ‘direct manipulation’ dominates office system design (Figure 3.5). There are arguments
about its meaning and appropriateness even there, but it is certainly dependent on the user being in
primary control of the changes in the interface. The autonomous nature of industrial processes makes
this an inappropriate model. In a direct manipulation system, the user interacts with an artificial world
inside the computer (for example, the electronic desktop).

In contrast, an industrial interface is merely an intermediary between the operator and the real 
world. One implication of this indirectness is that the interface must provide feedback at two levels



3.4.2 The physical environment of the interaction

As well as addressing physical issues in the layout and arrangement of the machine
interface, ergonomics is concerned with the design of the work environment itself.
Where will the system be used? By whom will it be used? Will users be sitting, stand-
ing or moving about? Again, this will depend largely on the domain and will be more
critical in specific control and operational settings than in general computer use.
However, the physical environment in which the system is used may influence how
well it is accepted and even the health and safety of its users. It should therefore be
considered in all design.

The first consideration here is the size of the users. Obviously this is going to vary
considerably. However, in any system the smallest user should be able to reach all the
controls (this may include a user in a wheelchair), and the largest user should not be
cramped in the environment.

In particular, all users should be comfortably able to see critical displays. For long
periods of use, the user should be seated for comfort and stability. Seating should
provide back support. If required to stand, the user should have room to move
around in order to reach all the controls.

(Figure 3.6). At one level, the user must receive immediate feedback, generated by the interface, that
keystrokes and other actions have been received. In addition, the user’s actions will have some effect
on the equipment controlled by the interface and adequate monitoring must be provided for this.

The indirectness also causes problems with simple monitoring tasks. Delays due to periodic sampling,
slow communication and digital processing often mean that the data displayed are somewhat out 
of date. If the operator is not aware of these delays, diagnoses of system state may be wrong. These
problems are compounded if the interface produces summary information displays. If the data com-
prising such a display are of different timeliness the result may be misleading.
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Figure 3.5 Office system – direct manipulation

Figure 3.6 Indirect manipulation – two kinds of feedback
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3.4.3 Health issues

Perhaps we do not immediately think of computer use as a hazardous activity but we
should bear in mind possible consequences of our designs on the health and safety
of users. Leaving aside the obvious safety risks of poorly designed safety-critical sys-
tems (aircraft crashing, nuclear plant leaks and worse), there are a number of factors
that may affect the use of more general computers. Again these are factors in the
physical environment that directly affect the quality of the interaction and the user’s
performance:

Physical position As we noted in the previous section, users should be able to reach
all controls comfortably and see all displays. Users should not be expected to
stand for long periods and, if sitting, should be provided with back support. 
If a particular position for a part of the body is to be adopted for long periods 
(for example, in typing) support should be provided to allow rest.

Temperature Although most users can adapt to slight changes in temperature
without adverse effect, extremes of hot or cold will affect performance and, in
excessive cases, health. Experimental studies show that performance deteriorates
at high or low temperatures, with users being unable to concentrate efficiently.

Lighting The lighting level will again depend on the work environment. However,
adequate lighting should be provided to allow users to see the computer screen
without discomfort or eyestrain. The light source should also be positioned to
avoid glare affecting the display.

Noise Excessive noise can be harmful to health, causing the user pain, and in acute
cases, loss of hearing. Noise levels should be maintained at a comfortable level in
the work environment. This does not necessarily mean no noise at all. Noise can
be a stimulus to users and can provide needed confirmation of system activity.

Time The time users spend using the system should also be controlled. As we saw
in the previous chapter, it has been suggested that excessive use of CRT displays
can be harmful to users, particularly pregnant women.

3.4.4 The use of color

In this section we have concentrated on the ergonomics of physical characteristics 
of systems, including the physical environment in which they are used. However,
ergonomics has a close relationship to human psychology in that it is also con-
cerned with the perceptual limitations of humans. For example, the use of color 
in displays is an ergonomics issue. As we saw in Chapter 1, the visual system has
some limitations with regard to color, including the number of colors that are dis-
tinguishable and the relatively low blue acuity. We also saw that a relatively high 
proportion of the population suffers from a deficiency in color vision. Each of these
psychological phenomena leads to ergonomic guidelines; some examples are dis-
cussed below.
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Colors used in the display should be as distinct as possible and the distinction
should not be affected by changes in contrast. Blue should not be used to display 
critical information. If color is used as an indicator it should not be the only cue:
additional coding information should be included.

The colors used should also correspond to common conventions and user expecta-
tions. Red, green and yellow are colors frequently associated with stop, go and
standby respectively. Therefore, red may be used to indicate emergency and alarms;
green, normal activity; and yellow, standby and auxiliary function. These conven-
tions should not be violated without very good cause.

However, we should remember that color conventions are culturally determined.
For example, red is associated with danger and warnings in most western cultures,
but in China it symbolizes happiness and good fortune. The color of mourning is
black in some cultures and white in others. Awareness of the cultural associations of
color is particularly important in designing systems and websites for a global market.
We will return to these issues in more detail in Chapter 10.

3.4.5 Ergonomics and HCI

Ergonomics is a huge area, which is distinct from HCI but sits alongside it. 
Its contribution to HCI is in determining constraints on the way we design systems
and suggesting detailed and specific guidelines and standards. Ergonomic factors are 
in general well established and understood and are therefore used as the basis for
standardizing hardware designs. This issue is discussed further in Chapter 7.

INTERACTION STYLES

Interaction can be seen as a dialog between the computer and the user. The choice of
interface style can have a profound effect on the nature of this dialog. Dialog design
is discussed in detail in Chapter 16. Here we introduce the most common interface
styles and note the different effects these have on the interaction. There are a num-
ber of common interface styles including

n command line interface
n menus
n natural language
n question/answer and query dialog
n form-fills and spreadsheets
n WIMP
n point and click
n three-dimensional interfaces.

As the WIMP interface is the most common and complex, we will discuss each of its
elements in greater detail in Section 3.6.

3.5
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3.5.1 Command line interface

The command line interface (Figure 3.7) was the first interactive dialog style to be
commonly used and, in spite of the availability of menu-driven interfaces, it is still
widely used. It provides a means of expressing instructions to the computer directly,
using function keys, single characters, abbreviations or whole-word commands. In
some systems the command line is the only way of communicating with the system,
especially for remote access using telnet. More commonly today it is supplementary
to menu-based interfaces, providing accelerated access to the system’s functionality
for experienced users.

Command line interfaces are powerful in that they offer direct access to system
functionality (as opposed to the hierarchical nature of menus), and can be combined
to apply a number of tools to the same data. They are also flexible: the command
often has a number of options or parameters that will vary its behavior in some way,
and it can be applied to many objects at once, making it useful for repetitive tasks.
However, this flexibility and power brings with it difficulty in use and learning.
Commands must be remembered, as no cue is provided in the command line to
indicate which command is needed. They are therefore better for expert users than
for novices. This problem can be alleviated a little by using consistent and meaning-
ful commands and abbreviations. The commands used should be terms within the
vocabulary of the user rather than the technician. Unfortunately, commands are
often obscure and vary across systems, causing confusion to the user and increasing
the overhead of learning.

3.5.2 Menus

In a menu-driven interface, the set of options available to the user is displayed 
on the screen, and selected using the mouse, or numeric or alphabetic keys. Since 
the options are visible they are less demanding of the user, relying on recognition
rather than recall. However, menu options still need to be meaningful and logic-
ally grouped to aid recognition. Often menus are hierarchically ordered and the
option required is not available at the top layer of the hierarchy. The grouping 

sable.soc.staffs.ac.uk> javac HelloWorldApp

javac: invalid argument: HelloWorldApp

use: javac [-g][-O][-classpath path][-d dir] file.java…

sable.soc.staffs.ac.uk> javac HelloWorldApp.java

sable.soc.staffs.ac.uk> java HelloWorldApp

Hello world!!

sable.soc.staffs.ac.uk>

Figure 3.7 Command line interface



138 Chapter 3 n The interaction

and naming of menu options then provides the only cue for the user to find the
required option. Such systems either can be purely text based, with the menu 
options being presented as numbered choices (see Figure 3.8), or may have a 
graphical component in which the menu appears within a rectangular box and
choices are made, perhaps by typing the initial letter of the desired selection, or 
by entering the associated number, or by moving around the menu with the arrow
keys. This is a restricted form of a full WIMP system, described in more detail
shortly.

3.5.3 Natural language

Perhaps the most attractive means of communicating with computers, at least at first
glance, is by natural language. Users, unable to remember a command or lost in a
hierarchy of menus, may long for the computer that is able to understand instruc-
tions expressed in everyday words! Natural language understanding, both of speech
and written input, is the subject of much interest and research. Unfortunately, 
however, the ambiguity of natural language makes it very difficult for a machine 
to understand. Language is ambiguous at a number of levels. First, the syntax, or
structure, of a phrase may not be clear. If we are given the sentence

The boy hit the dog with the stick

we cannot be sure whether the boy is using the stick to hit the dog or whether the
dog is holding the stick when it is hit.

Even if a sentence’s structure is clear, we may find ambiguity in the meaning of 
the words used. For example, the word ‘pitch’ may refer to a sports field, a throw, 
a waterproofing substance or even, colloquially, a territory. We often rely on the con-
text and our general knowledge to sort out these ambiguities. This information is
difficult to provide to the machine. To complicate matters more, the use of pronouns
and relative terms adds further ambiguity.

PAYMENT DETAILS P3-7

please select payment method: 

1. cash

2. check

3. credit card

4. invoice

9. abort transaction

Figure 3.8 Menu-driven interface
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Given these problems, it seems unlikely that a general natural language inter-
face will be available for some time. However, systems can be built to understand
restricted subsets of a language. For a known and constrained domain, the system
can be provided with sufficient information to disambiguate terms. It is important
in interfaces which use natural language in this restricted form that the user is aware
of the limitations of the system and does not expect too much understanding.

The use of natural language in restricted domains is relatively successful, but 
it is debatable whether this can really be called natural language. The user still has 
to learn which phrases the computer understands and may become frustrated if 
too much is expected. However, it is also not clear how useful a general natural 
language interface would be. Language is by nature vague and imprecise: this gives 
it its flexibility and allows creativity in expression. Computers, on the other hand,
require precise instructions. Given a free rein, would we be able to describe our
requirements precisely enough to guarantee a particular response? And, if we could,
would the language we used turn out to be a restricted subset of natural language
anyway?

3.5.4 Question/answer and query dialog

Question and answer dialog is a simple mechanism for providing input to an applica-
tion in a specific domain. The user is asked a series of questions (mainly with yes/no
responses, multiple choice, or codes) and so is led through the interaction step by
step. An example of this would be web questionnaires.

These interfaces are easy to learn and use, but are limited in functionality and
power. As such, they are appropriate for restricted domains (particularly informa-
tion systems) and for novice or casual users.

Query languages, on the other hand, are used to construct queries to retrieve
information from a database. They use natural-language-style phrases, but in fact
require specific syntax, as well as knowledge of the database structure. Queries 
usually require the user to specify an attribute or attributes for which to search 
the database, as well as the attributes of interest to be displayed. This is straight-
forward where there is a single attribute, but becomes complex when multiple
attributes are involved, particularly if the user is interested in attribute A or attribute
B, or attribute A and not attribute B, or where values of attributes are to be com-
pared. Most query languages do not provide direct confirmation of what was
requested, so that the only validation the user has is the result of the search. The
effective use of query languages therefore requires some experience. A specialized
example is the web search engine.

3.5.5 Form-fills and spreadsheets

Form-filling interfaces are used primarily for data entry but can also be useful in 
data retrieval applications. The user is presented with a display resembling a paper
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form, with slots to fill in (see Figure 3.9). Often the form display is based upon 
an actual form with which the user is familiar, which makes the interface easier to
use. The user works through the form, filling in appropriate values. The data are 
then entered into the application in the correct place. Most form-filling interfaces
allow easy movement around the form and allow some fields to be left blank. They
also require correction facilities, as users may change their minds or make a mistake
about the value that belongs in each field. The dialog style is useful primarily for 
data entry applications and, as it is easy to learn and use, for novice users. How-
ever, assuming a design that allows flexible entry, form filling is also appropriate for
expert users.

Spreadsheets are a sophisticated variation of form filling. The spreadsheet com-
prises a grid of cells, each of which can contain a value or a formula (see Figure 3.10).
The formula can involve the values of other cells (for example, the total of all cells 
in this column). The user can enter and alter values and formulae in any order 
and the system will maintain consistency amongst the values displayed, ensuring 
that all formulae are obeyed. The user can therefore manipulate values to see the
effects of changing different parameters. Spreadsheets are an attractive medium 
for interaction: the user is free to manipulate values at will and the distinc-
tion between input and output is blurred, making the interface more flexible and
natural.

Figure 3.9 A typical form-filling interface. Screen shot frame reprinted by
permission from Microsoft Corporation
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3.5.6 The WIMP interface

Currently many common environments for interactive computing are examples of
the WIMP interface style, often simply called windowing systems. WIMP stands for
windows, icons, menus and pointers (sometimes windows, icons, mice and pull-down
menus), and is the default interface style for the majority of interactive computer sys-
tems in use today, especially in the PC and desktop workstation arena. Examples of
WIMP interfaces include Microsoft Windows for IBM PC compatibles, MacOS for
Apple Macintosh compatibles and various X Windows-based systems for UNIX.

Figure 3.10 A typical spreadsheet

Mixing styles

The UNIX windowing environments are interesting as the contents of many of the windows
are often themselves simply command line or character-based programs (see Figure 3.11). In fact,
this mixing of interface styles in the same system is quite common, especially where older legacy
systems are used at the same time as more modern applications. It can be a problem if users
attempt to use commands and methods suitable for one environment in another. On the Apple
Macintosh, HyperCard uses a point-and-click style. However, HyperCard stack buttons look 
very like Macintosh folders. If you double click on them, as you would to open a folder, your two
mouse clicks are treated as separate actions. The first click opens the stack (as you wanted), but
the second is then interpreted in the context of the newly opened stack, behaving in an apparently
arbitrary fashion! This is an example of the importance of consistency in the interface, an issue we
shall return to in Chapter 7.
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3.5.7 Point-and-click interfaces

In most multimedia systems and in web browsers, virtually all actions take only a 
single click of the mouse button. You may point at a city on a map and when you click
a window opens, showing you tourist information about the city. You may point at
a word in some text and when you click you see a definition of the word. You may
point at a recognizable iconic button and when you click some action is performed.

This point-and-click interface style is obviously closely related to the WIMP style.
It clearly overlaps in the use of buttons, but may also include other WIMP elements.
However, the philosophy is simpler and more closely tied to ideas of hypertext. 
In addition, the point-and-click style is not tied to mouse-based interfaces, and is
also extensively used in touchscreen information systems. In this case, it is often
combined with a menu-driven interface.

The point-and-click style has been popularized by world wide web pages, which
incorporate all the above types of point-and-click navigation: highlighted words,
maps and iconic buttons.

3.5.8 Three-dimensional interfaces

There is an increasing use of three-dimensional effects in user interfaces. The most
obvious example is virtual reality, but VR is only part of a range of 3D techniques
available to the interface designer.

Figure 3.11 A typical UNIX windowing system – the OpenLook system. 
Source: Sun Microsystems, Inc.
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The simplest technique is where ordinary WIMP elements, buttons, scroll bars, etc.,
are given a 3D appearance using shading, giving the appearance of being sculpted out
of stone. By unstated convention, such interfaces have a light source at their top
right. Where used judiciously, the raised areas are easily identifiable and can be used
to highlight active areas (Figure 3.12). Unfortunately, some interfaces make indis-
criminate use of sculptural effects, on every text area, border and menu, so all sense
of differentiation is lost.

A more complex technique uses interfaces with 3D workspaces. The objects 
displayed in such systems are usually flat, but are displayed in perspective when at an
angle to the viewer and shrink when they are ‘further away’. Figure 3.13 shows one
such system, WebBook [57]. Notice how size, light and occlusion provide a sense of

Figure 3.12 Buttons in 3D say ‘press me’

Figure 3.13 WebBook – using 3D to make more space (Card S.K., Robertson G.G.
and York W. (1996). The WebBook and the Web Forager: An Information workspace
for the World-Wide Web. CHI96 Conference Proceedings, 111–17. Copyright © 1996
ACM, Inc. Reprinted by permission)
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distance. Notice also that as objects get further away they take up less screen space.
Three-dimensional workspaces give you extra space, but in a more natural way than
iconizing windows.

Finally, there are virtual reality and information visualization systems where the
user can move about within a simulated 3D world. These are discussed in detail in
Chapter 20.

These mechanisms overlap with other interaction styles, especially the use of
sculptured elements in WIMP interfaces. However, there is a distinct interaction
style for 3D interfaces in that they invite us to use our tacit abilities for the real world,
and translate them into the electronic world. Novice users must learn that an oval
area with a word or picture in it is a button to be pressed, but a 3D button says ‘push
me’. Further, more complete 3D environments invite one to move within the virtual
environment, rather than watch as a spectator.

DESIGN FOCUS

Navigation in 3D and 2D

We live in a three-dimensional world. So clearly 3D interfaces are good . . . or are they? Actually, our
3D stereo vision only works well close to us and after that we rely on cruder measures such as ‘this is
in front of that’. We are good at moving obects around with our hands in three dimensions, rotating,
turning them on their side. However, we walk around in two dimensions and do not fly. Not surpris-
ingly, people find it hard to visualize and control movement in three dimensions.

Normally, we use gravity to give us a fixed direction in space. This is partly through the channels in the
inner ear, but also largely through kinesthetic senses – feeling the weight of limbs. When we lose these
senses it is easy to become disoriented and we can lose track of which direction is up: divers are trained
to watch the direction their bubbles move and if buried in an avalanche you should spit and feel which
direction the spittle flows.

Where humans have to navigate in three dimensions they need extra aids such as the artificial horizon
in an airplane. Helicopters, where there are many degrees of freedom, are particularly difficult.

Even in the two-dimensional world of walking about we do not rely on 
neat Cartesian maps in our head. Instead we mostly use models of location
such as ‘down the road near the church’ that rely on approximate topolo-
gical understanding and landmarks. We also rely on properties of normal
space, such as the ability to go backwards and the fact that things that are
close can be reached quickly. When two-dimensional worlds are not like 
this, for example in a one-way traffic system or in a labyrinth, we have great
difficulty [98].

When we design systems we should take into account how people navigate in the real world and use
this to guide our navigation aids. For example, if we have a 3D interface or a virtual reality world we
should normally show a ground plane and by default lock movement to be parallel to the ground. In
information systems we can recruit our more network-based models of 2D space by giving landmarks
and making it as easy to ‘step back’ as to go forwards (as with the web browser ‘back’ button).

See the book website for more about 3D vision: /e3/online/seeing-3D/
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ELEMENTS OF THE WIMP INTERFACE

We have already noted the four key features of the WIMP interface that give it its
name – windows, icons, pointers and menus – and we will now describe these in
turn. There are also many additional interaction objects and techniques commonly
used in WIMP interfaces, some designed for specific purposes and others more 
general. We will look at buttons, toolbars, palettes and dialog boxes. Most of these
elements can be seen in Figure 3.14.

Together, these elements of the WIMP interfaces are called widgets, and they com-
prise the toolkit for interaction between user and system. In Chapter 8 we will
describe windowing systems and interaction widgets more from the programmer’s
perspective. There we will discover that though most modern windowing systems
provide the same set of basic widgets, the ‘look and feel’ – how widgets are physically
displayed and how users can interact with them to access their functionality – of dif-
ferent windowing systems and toolkits can differ drastically.

3.6.1 Windows
Windows are areas of the screen that behave as if they were independent terminals
in their own right. A window can usually contain text or graphics, and can be moved

3.6

Figure 3.14 Elements of the WIMP interface – Microsoft Word 5.1 on an Apple Macintosh. Screen shot
reprinted by permission from Apple Computer, Inc.
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or resized. More than one window can be on a screen at once, allowing separate 
tasks to be visible at the same time. Users can direct their attention to the different
windows as they switch from one thread of work to another.

If one window overlaps the other, the back window is partially obscured, and 
then refreshed when exposed again. Overlapping windows can cause problems 
by obscuring vital information, so windows may also be tiled, when they adjoin 
but do not overlap each other. Alternatively, windows may be placed in a cascading
fashion, where each new window is placed slightly to the left and below the previous
window. In some systems this layout policy is fixed, in others it can be selected by the
user.

Usually, windows have various things associated with them that increase their use-
fulness. Scrollbars are one such attachment, allowing the user to move the contents
of the window up and down, or from side to side. This makes the window behave as
if it were a real window onto a much larger world, where new information is brought
into view by manipulating the scrollbars.

There is usually a title bar attached to the top of a window, identifying it to the
user, and there may be special boxes in the corners of the window to aid resizing,
closing, or making as large as possible. Each of these can be seen in Figure 3.15.

In addition, some systems allow windows within windows. For example, in
Microsoft Office applications, such as Excel and Word, each application has its own
window and then within this each document has a window. It is often possible to
have different layout policies within the different application windows.

Figure 3.15 A typical window. Screen shot reprinted by permission from 
Apple Computer, Inc.
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3.6.2 Icons

Windows can be closed and lost for ever, or they can be shrunk to some very reduced
representation. A small picture is used to represent a closed window, and this repre-
sentation is known as an icon. By allowing icons, many windows can be available on
the screen at the same time, ready to be expanded to their full size by clicking on the
icon. Shrinking a window to its icon is known as iconifying the window. When a user
temporarily does not want to follow a particular thread of dialog, he can suspend
that dialog by iconifying the window containing the dialog. The icon saves space on
the screen and serves as a reminder to the user that he can subsequently resume the
dialog by opening up the window. Figure 3.16 shows a few examples of some icons
used in a typical windowing system (MacOS X).

Icons can also be used to represent other aspects of the system, such as a waste-
basket for throwing unwanted files into, or various disks, programs or functions that
are accessible to the user. Icons can take many forms: they can be realistic represen-
tations of the objects that they stand for, or they can be highly stylized. They can even
be arbitrary symbols, but these can be difficult for users to interpret.

3.6.3 Pointers

The pointer is an important component of the WIMP interface, since the interaction
style required by WIMP relies very much on pointing and selecting things such as
icons. The mouse provides an input device capable of such tasks, although joysticks
and trackballs are other alternatives, as we have previously seen in Chapter 2. The
user is presented with a cursor on the screen that is controlled by the input device. 
A variety of pointer cursors are shown in Figure 3.17.

Figure 3.16 A variety of icons. Screen shot reprinted by permission from 
Apple Computer, Inc.
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The different shapes of cursor are often used to distinguish modes, for example the
normal pointer cursor may be an arrow, but change to cross-hairs when drawing a
line. Cursors are also used to tell the user about system activity, for example a watch
or hour-glass cursor may be displayed when the system is busy reading a file.

Pointer cursors are like icons, being small bitmap images, but in addition all cur-
sors have a hot-spot, the location to which they point. For example, the three arrows
at the start of Figure 3.17 each have a hot-spot at the top left, whereas the right-
pointing hand on the second line has a hot-spot on its right. Sometimes the hot-spot
is not clear from the appearance of the cursor, in which case users will find it hard to
click on small targets. When designing your own cursors, make sure the image has
an obvious hot-spot.

3.6.4 Menus

The last main feature of windowing systems is the menu, an interaction technique
that is common across many non-windowing systems as well. A menu presents a
choice of operations or services that can be performed by the system at a given time.
In Chapter 1, we pointed out that our ability to recall information is inferior to our
ability to recognize it from some visual cue. Menus provide information cues in the
form of an ordered list of operations that can be scanned. This implies that the
names used for the commands in the menu should be meaningful and informative.

The pointing device is used to indicate the desired option. As the pointer moves
to the position of a menu item, the item is usually highlighted (by inverse video, 
or some similar strategy) to indicate that it is the potential candidate for selection.
Selection usually requires some additional user action, such as pressing a button on
the mouse that controls the pointer cursor on the screen or pressing some special 
key on the keyboard. Menus are inefficient when they have too many items, and so
cascading menus are utilized, in which item selection opens up another menu adja-
cent to the item, allowing refinement of the selection. Several layers of cascading
menus can be used.

Figure 3.17 A variety of pointer cursors. Source: Sun Microsystems, Inc.
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The main menu can be visible to the user all the time, as a menu bar and submenus
can be pulled down or across from it upon request (Figure 3.18). Menu bars are
often placed at the top of the screen (for example, MacOS) or at the top of each 
window (for example, Microsoft Windows). Alternatives include menu bars along
one side of the screen, or even placed amongst the windows in the main ‘desktop’
area. Websites use a variety of menu bar locations, including top, bottom and either
side of the screen. Alternatively, the main menu can be hidden and upon request it
will pop up onto the screen. These pop-up menus are often used to present context-
sensitive options, for example allowing one to examine properties of particular 
on-screen objects. In some systems they are also used to access more global actions
when the mouse is depressed over the screen background.

Pull-down menus are dragged down from the title at the top of the screen, by
moving the mouse pointer into the title bar area and pressing the button. Fall-down
menus are similar, except that the menu automatically appears when the mouse
pointer enters the title bar, without the user having to press the button. Some menus
are pin-up menus, in that they can be ‘pinned’ to the screen, staying in place until
explicitly asked to go away. Pop-up menus appear when a particular region of the
screen, maybe designated by an icon, is selected, but they only stay as long as the
mouse button is depressed.

Another approach to menu selection is to arrange the options in a circular 
fashion. The pointer appears in the center of the circle, and so there is the same 
distance to travel to any of the selections. This has the advantages that it is easier to
select items, since they can each have a larger target area, and that the selection time
for each item is the same, since the pointer is equidistant from them all. Compare
this with a standard menu: remembering Fitts’ law from Chapter 1, we can see that
it will take longer to select items near the bottom of the menu than at the top.
However, these pie menus, as they are known [54], take up more screen space and are
therefore less common in interfaces.

Figure 3.18 Pull-down menu
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The major problems with menus in general are deciding what items to include 
and how to group those items. Including too many items makes menus too long or
creates too many of them, whereas grouping causes problems in that items that relate
to the same topic need to come under the same heading, yet many items could be
grouped under more than one heading. In pull-down menus the menu label should
be chosen to reflect the function of the menu items, and items grouped within menus
by function. These groupings should be consistent across applications so that the
user can transfer learning to new applications. Menu items should be ordered in the
menu according to importance and frequency of use, and opposite functionalities
(such as ‘save’ and ‘delete’) should be kept apart to prevent accidental selection of the
wrong function, with potentially disastrous consequences.

3.6.5 Buttons

Buttons are individual and isolated regions within a display that can be selected 
by the user to invoke specific operations. These regions are referred to as buttons
because they are purposely made to resemble the push buttons you would find on 
a control panel. ‘Pushing’ the button invokes a command, the meaning of which 
is usually indicated by a textual label or a small icon. Buttons can also be used to 
toggle between two states, displaying status information such as whether the current
font is italicized or not in a word processor, or selecting options on a web form. Such
toggle buttons can be grouped together to allow a user to select one feature from a
set of mutually exclusive options, such as the size in points of the current font. These
are called radio buttons, since the collection functions much like the old-fashioned
mechanical control buttons on car radios. If a set of options is not mutually exclus-
ive, such as font characteristics like bold, italics and underlining, then a set of 
toggle buttons can be used to indicate the on/off status of the options. This type of
collection of buttons is sometimes referred to as check boxes.

Keyboard accelerators

Menus often offer keyboard accelerators, key combinations that have the same effect as selecting
the menu item. This allows more expert users, familiar with the system, to manipulate things with-
out moving off the keyboard, which is often faster. The accelerators are often displayed alongside
the menu items so that frequent use makes them familiar. Unfortunately most systems do not
allow you to use the accelerators while the menu is displayed. So, for example, the menu might say

However, when the user presses function key F3 nothing happens. F3 only works when the menu
is not displayed – when the menu is there you must press ‘F’ instead! This is an example of an inter-
face that is dishonest (see also Chapter 7).
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3.6.6 Toolbars

Many systems have a collection of small buttons, each with icons, placed at the top
or side of the window and offering commonly used functions. The function of this
toolbar is similar to a menu bar, but as the icons are smaller than the equivalent 
text more functions can be simultaneously displayed. Sometimes the content of the
toolbar is fixed, but often users can customize it, either changing which functions are
made available, or choosing which of several predefined toolbars is displayed.

DESIGN FOCUS

Learning toolbars

Although many applications now have toolbars, they are often underused because users simply do not
know what the icons represent. Once learned the meaning is often relatively easy to remember, but
most users do not want to spend time reading a manual, or even using online help to find out what
each button does – they simply reach for the menu.

There is an obvious solution – put the icons on the menus in the same way that accelerator keys are
written there. So in the ‘Edit’ menu one might find the option

Imagine now selecting this. As the mouse drags down through the menu selections, each highlights in
turn. If the mouse is dragged down the extreme left, the effect will be very similar to selecting the icon
from the toolbar, except that it will be incidental to selecting the menu item. In this way, the toolbar
icon will be naturally learned from normal menu interaction.

Selecting the menu option = selecting the icon

This trivial fix is based on accepted and tested knowledge of learning and has been described in more
detail by one of the authors elsewhere [95]. Given its simplicity, this technique should clearly be used
everywhere, but until recently was rare. However, it has now been taken up in the Office 97 suite and
later Microsoft Office products, so perhaps will soon become standard.
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3.6.7 Palettes

In many application programs, interaction can enter one of several modes. The
defining characteristic of modes is that the interpretation of actions, such as
keystrokes or gestures with the mouse, changes as the mode changes. For example,
using the standard UNIX text editor vi, keystrokes can be interpreted either as 
operations to insert characters in the document (insert mode) or as operations to
perform file manipulation (command mode). Problems occur if the user is not
aware of the current mode. Palettes are a mechanism for making the set of possible
modes and the active mode visible to the user. A palette is usually a collection of
icons that are reminiscent of the purpose of the various modes. An example in a
drawing package would be a collection of icons to indicate the pixel color or pattern
that is used to fill in objects, much like an artist’s palette for paint.

Some systems allow the user to create palettes from menus or toolbars. In the case
of pull-down menus, the user may be able ‘tear off ’ the menu, turning it into a palette
showing the menu items. In the case of toolbars, he may be able to drag the toolbar
away from its normal position and place it anywhere on the screen. Tear-off menus
are usually those that are heavily graphical anyway, for example line-style or color
selection in a drawing package.

3.6.8 Dialog boxes

Dialog boxes are information windows used by the system to bring the user’s atten-
tion to some important information, possibly an error or a warning used to prevent
a possible error. Alternatively, they are used to invoke a subdialog between user and
system for a very specific task that will normally be embedded within some larger
task. For example, most interactive applications result in the user creating some 
file that will have to be named and stored within the filing system. When the user or
system wants to save the file, a dialog box can be used to allow the user to name 
the file and indicate where it is to be located within the filing system. When the save
subdialog is complete, the dialog box will disappear. Just as windows are used to 
separate the different threads of user–system dialog, so too are dialog boxes used to
factor out auxiliary task threads from the main task dialog.

INTERACTIVITY

When looking at an interface, it is easy to focus on the visually distinct parts (the but-
tons, menus, text areas) but the dynamics, the way they react to a user’s actions, are
less obvious. Dialog design, discussed in Chapter 16, is focussed almost entirely on
the choice and specification of appropriate sequences of actions and corresponding
changes in the interface state. However, it is typically not used at a fine level of detail
and deliberately ignores the ‘semantic’ level of an interface: for example, the valida-
tion of numeric information in a forms-based system.

3.7
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It is worth remembering that interactivity is the defining feature of an interactive
system. This can be seen in many areas of HCI. For example, the recognition rate 
for speech recognition is too low to allow transcription from tape, but in an airline
reservation system, so long as the system can reliably recognize yes and no it can
reflect back its understanding of what you said and seek confirmation. Speech-based
input is difficult, speech-based interaction easier. Also, in the area of information
visualization the most exciting developments are all where users can interact with a
visualization in real time, changing parameters and seeing the effect.

Interactivity is also crucial in determining the ‘feel’ of a WIMP environment. All
WIMP systems appear to have virtually the same elements: windows, icons, menus,
pointers, dialog boxes, buttons, etc. However, the precise behavior of these elements
differs both within a single environment and between environments. For example,
we have already discussed the different behavior of pull-down and fall-down menus.
These look the same, but fall-down menus are more easily invoked by accident (and
not surprisingly the windowing environments that use them have largely fallen into
disuse!). In fact, menus are a major difference between the MacOS and Microsoft
Windows environments: in MacOS you have to keep the mouse depressed through-
out menu selection; in Windows you can click on the menu bar and a pull-down
menu appears and remains there until an item is selected or it is cancelled. Similarly
the detailed behavior of buttons is quite complex, as we shall see in Chapter 17.

In older computer systems, the order of interaction was largely determined by the
machine. You did things when the computer was ready. In WIMP environments, the
user takes the initiative, with many options and often many applications simultan-
eously available. The exceptions to this are pre-emptive parts of the interface, where
the system for various reasons wrests the initiative away from the user, perhaps
because of a problem or because it needs information in order to continue.

The major example of this is modal dialog boxes. It is often the case that when a
dialog box appears the application will not allow you to do anything else until the
dialog box has been completed or cancelled. In some cases this may simply block the
application, but you can perform tasks in other applications. In other cases you can
do nothing at all until the dialog box has been completed. An especially annoying
example is when the dialog box asks a question, perhaps simply for confirmation of
an action, but the information you need to answer is hidden by the dialog box!

There are occasions when modal dialog boxes are necessary, for example when 
a major fault has been detected, or for certain kinds of instructional software.
However, the general philosophy of modern systems suggests that one should mini-
mize the use of pre-emptive elements, allowing the user maximum flexibility.

Interactivity is also critical in dealing with errors. We discussed slips and mistakes
earlier in the chapter, and some ways to try to prevent these types of errors. The other
way to deal with errors is to make sure that the user or the system is able to tell when
errors have occurred. If users can detect errors then they can correct them. So, even
if errors occur, the interaction as a whole succeeds. Several of the principles in
Chapter 7 deal with issues that relate to this. This ability to detect and correct is
important both at the small scale of button presses and keystrokes and also at the
large scale. For example, if you have sent a client a letter and expect a reply, you can
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put in your diary a note on the day you expect a reply. If the other person forgets 
to reply or the letter gets lost in the post you know to send a reminder or ring when
the due day passes.

THE CONTEXT OF THE INTERACTION

We have been considering the interaction between a user and a system, and how this
is affected by interface design. This interaction does not occur within a vacuum. We
have already noted some of the physical factors in the environment that can directly
affect the quality of the interaction. This is part of the context in which the interac-
tion takes place. But this still assumes a single user operating a single, albeit complex,
machine. In reality, users work within a wider social and organizational context. This
provides the wider context for the interaction, and may influence the activity and
motivation of the user. In Chapter 13, we discuss some methods that can be used to
gain a fuller understanding of this context, and, in Chapter 14, we consider in more
detail the issues involved when more than one user attempts to work together on a
system. Here we will confine our discussion to the influence social and organiza-
tional factors may have on the user’s interaction with the system. These may not be
factors over which the designer has control. However, it is important to be aware of
such influences to understand the user and the work domain fully.

3.8

Bank managers don’t type . . .

The safe in most banks is operated by at least two keys, held by different employees of the
bank. This makes it difficult for a bank robber to obtain both keys, and also protects the bank
against light-fingered managers! ATMs contain a lot of cash and so need to be protected by sim-
ilar measures. In one bank, which shall remain nameless, the ATM had an electronic locking device.
The machine could not be opened to replenish or remove cash until a long key sequence had been
entered. In order to preserve security, the bank gave half the sequence to one manager and half
to another, so both managers had to be present in order to open the ATM. However, these were
traditional bank managers who were not used to typing – that was a job for a secretary! So they
each gave their part of the key sequence to a secretary to type in when they wanted to gain entry
to the ATM. In fact, they both gave their respective parts of the key sequence to the same secret-
ary. Happily the secretary was honest, but the moral is you cannot ignore social expectations and
relationships when designing any sort of computer system, however simple it may be.

The presence of other people in a work environment affects the performance of
the worker in any task. In the case of peers, competition increases performance, at
least for known tasks. Similarly the desire to impress management and superiors
improves performance on these tasks. However, when it comes to acquisition of 
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new skills, the presence of these groups can inhibit performance, owing to the fear 
of failure. Consequently, privacy is important to allow users the opportunity to
experiment.

In order to perform well, users must be motivated. There are a number of pos-
sible sources of motivation, as well as those we have already mentioned, including
fear, allegiance, ambition and self-satisfaction. The last of these is influenced by the
user’s perception of the quality of the work done, which leads to job satisfaction. If 
a system makes it difficult for the user to perform necessary tasks, or is frustrating to
use, the user’s job satisfaction, and consequently performance, will be reduced.

The user may also lose motivation if a system is introduced that does not match
the actual requirements of the job to be done. Often systems are chosen and intro-
duced by managers rather than the users themselves. In some cases the manager’s
perception of the job may be based upon observation of results and not on actual
activity. The system introduced may therefore impose a way of working that is unsat-
isfactory to the users. If this happens there may be three results: the system will be
rejected, the users will be resentful and unmotivated, or the user will adapt the
intended interaction to his own requirements. This indicates the importance of
involving actual users in the design process.

DESIGN FOCUS

Half the picture?

When systems are not designed to match the way people actually work, then users end up having 
to do ‘work arounds’. Integrated student records systems are becoming popular in universities in the
UK. They bring the benefits of integrating examination systems with enrolment and finance systems so
all data can be maintained together and cross-checked. All very useful and time saving – in theory.
However, one commonly used system only holds a single overall mark per module for each student,
whereas many modules on UK courses have multiple elements of assessment. Knowing a student’s
mark on each part of the assessment is often useful to academics making decisions in examination
boards as it provides a more detailed picture of performance. In many cases staff are therefore 
supplementing the official records system with their own unofficial spreadsheets to provide this 
information – making additional work for staff and increased opportunity for error.

On the other hand, the introduction of new technology may prove to be a motiva-
tion to users, particularly if it is well designed, integrated with the user’s current
work, and challenging. Providing adequate feedback is an important source of motiva-
tion for users. If no feedback is given during a session, the user may become bored,
unmotivated or, worse, unsure of whether the actions performed have been success-
ful. In general, an action should have an obvious effect to prevent this confusion and
to allow early recovery in the case of error. Similarly, if system delays occur, feedback
can be used to prevent frustration on the part of the user – the user is then aware of
what is happening and is not left wondering if the system is still working.
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EXPERIENCE, ENGAGEMENT AND FUN

Ask many in HCI about usability and they may use the words ‘effective’ and
‘efficient’. Some may add ‘satisfaction’ as well. This view of usability seems to stem
mainly from the Taylorist tradition of time and motion studies: if you can get the
worker to pull the levers and turn the knobs in the right order then you can shave
10% off production costs.

However, users no longer see themselves as cogs in a machine. Increasingly, 
applications are focussed outside the closed work environment: on the home, leisure,
entertainment, shopping. It is not sufficient that people can use a system, they must
want to use it.

Even from a pure economic standpoint, your employees are likely to work better
and more effectively if they enjoy what they are doing!

In this section we’ll look at these more experiential aspects of interaction.

3.9.1 Understanding experience

Shopping is an interesting example to consider. Most internet stores allow you 
to buy things, but do you go shopping? Shopping is as much about going to the
shops, feeling the clothes, being with friends. You can go shopping and never intend
to spend money. Shopping is not about an efficient financial transaction, it is an
experience.

But experience is a difficult thing to pin down; we understand the idea of a 
good experience, but how do we define it and even more difficult how do we design
it?

Csikszentimihalyi [82] looked at extreme experiences such as climbing a rock face
in order to understand that feeling of total engagement that can sometimes happen.
He calls this flow and it is perhaps related to what some sportspeople refer to as being
‘in the zone’. This sense of flow occurs when there is a balance between anxiety 
and boredom. If you do something that you know you can do it is not engaging; you
may do it automatically while thinking of something else, or you may simply become
bored. Alternatively, if you do something completely outside your abilities you 
may become anxious and, if you are half way up a rock face, afraid. Flow comes when
you are teetering at the edge of your abilities, stretching yourself to or a little beyond
your limits.

In education there is a similar phenomenon. The zone of proximal development is
those things that you cannot quite do yourself, but you can do with some support,
whether from teachers, fellow pupils, or electronic or physical materials. Learning is
at its best in this zone. Notice again this touching of limits.

Of course, this does not fully capture the sense of experience, and there is an active
subfield of HCI researchers striving to make sense of this, building on the work of
psychologists and philosophers on the one hand and literary analysis, film making
and drama on the other.

3.9
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3.9.2 Designing experience

Some of the authors were involved in the design of virtual Christmas crackers. These
are rather like electronic greetings cards, but are based on crackers. For those who
have not come across them, Christmas crackers are small tubes of paper between 8
and 12 inches long (20–30 cm). Inside there are a small toy, a joke or motto and a
paper hat. A small strip of card is threaded through, partly coated with gunpowder.
When two people at a party pull the cracker, it bursts apart with a small bang from
the gunpowder and the contents spill out.

The virtual cracker does not attempt to fully replicate each aspect of the physical
characteristics and process of pulling the cracker, but instead seeks to reproduce 
the experience. To do this the original crackers experience was deconstructed and
each aspect of the experience produced in a similar, but sometimes different, way in
the new media. Table 3.1 shows the aspects of the experience deconstructed and
reconstructed in the virtual cracker.

For example, the cracker contents are hidden inside; no one knows what toy or
joke will be inside. Similarly, when you create a virtual cracker you normally cannot
see the contents until the recipient has opened it. Even the recipient initially sees 
a page with just an image of the cracker; it is only after the recipient has clicked 
on the ‘open’ icon that the cracker slowly opens and you get to see the joke, web toy
and mask.

The mask is also worth looking at. The first potential design was to have a picture
of a face with a hat on it – well, it wouldn’t rank highly on excitement! The essential
feature of the paper hat is that you can dress up. An iconic hat hardly does that.

Table 3.1 The crackers experience [101]

Real cracker Virtual cracker

Surface elements
Design Cheap and cheerful Simple page/graphics
Play Plastic toy and joke Web toy and joke
Dressing up Paper hat Mask to cut out

Experienced effects
Shared Offered to another Sent by email, message
Co-experience Pulled together Sender can’t see content until 

opened by recipient
Excitement Cultural connotations Recruited expectation
Hiddenness Contents inside First page – no contents
Suspense Pulling cracker Slow . . . page change
Surprise Bang (when it works) WAV file (when it works)
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Instead the cracker has a link to a web page with a picture of a mask that you 
can print, cut out and wear. Even if you don’t actually print it out, the fact that you
could changes the experience – it is some dressing up you just happen not to have
done yet.

A full description of the virtual crackers case study is on the book website at:
/e3/casestudy/crackers/

3.9.3 Physical design and engagement

In Chapter 2 we talked about physical controls. Figure 2.13 showed controllers for a
microwave, washing machine and personal MiniDisc player. We saw then how cer-
tain physical interfaces were suited for different contexts: smooth plastic controls for
an easy clean microwave, multi-function knob for the MiniDisc.

Designers are faced with many constraints:

Ergonomic You cannot physically push buttons if they are too small or too close.

Physical The size or nature of the device may force certain positions or styles of con-
trol, for example, a dial like the one on the washing machine would not fit on the
MiniDisc controller; high-voltage switches cannot be as small as low-voltage ones.

Legal and safety Cooker controls must be far enough from the pans that you do not
burn yourself, but also high enough to prevent small children turning them on.

Context and environment The microwave’s controls are smooth to make them
easy to clean in the kitchen.

Aesthetic The controls must look good.

Economic It must not cost too much!

These constraints are themselves often contradictory and require trade-offs to 
be made. For example, even within the safety category front-mounted controls are
better in that they can be turned on or off without putting your hands over the pans
and hot steam, but back-mounted controls are further from children’s grasp. The
MiniDisc player is another example; it physically needs to be small, but this means
there is not room for all the controls you want given the minimum size that can 
be manipulated. In the case of the cooker there is no obvious best solution and so
different designs favor one or the other. In the case of the MiniDisc player the end
knob is multi-function. This means the knob is ergonomically big enough to turn
and physically small enough to fit, but at the cost of a more complex interaction
style.

To add to this list of constraints there is another that makes a major impact on the
ease of use and also the ability of the user to become engaged with the device, for it
to become natural to use:

Fluidity The extent to which the physical structure and manipulation of the device
naturally relate to the logical functions it supports.
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This is related closely to the idea of affordances, which we discuss in Section 5.7.2.
The knob at the end of the MiniDisc controller affords turning – it is an obvious
thing to do. However, this may not have mapped naturally onto the logical func-
tions. Two of the press buttons are for cycling round the display options and for
changing sound options. Imagine a design where turning the knob to clockwise
cycled through the display options and turning it anti-clockwise cycled through the
sound options. This would be a compact design satisfying all the ergonomic, physi-
cal and aesthetic constraints, but would not have led to as fluid an interaction. The
physically opposite motions lead to logically distinct effects. However, the designers
did a better job than this! The twist knob is used to move backwards and forwards
through the tracks of the MiniDisc – that is, opposite physical movements produce
opposite logical effects. Holding the knob out and twisting turns the volume up and
down. Again, although the pull action is not a natural mapping, the twist maps very
naturally onto controlling the sound level.

As well as being fluid in action, some controls portray by their physical appearance
the underlying state they control. For example, the dial on the washing machine 
both sets the program and reflects the current stage in the washing cycle as it turns.
A simple on/off switch also does this. However, it is also common to see the power
on computers and hifi devices controlled by a push button – press for on, then 
press again for off. The button does not reflect the state at all. When the screen is on
this is not a problem as the fact that there is something on the screen acts as a very
immediate indicator of the state. But if the screen has a power save then you might
accidentally turn the machine off thinking that you are turning it on! For this reason,
this type of power button often has a light beside it to show you the power is on. 
A simple switch tells you that itself !

3.9.4 Managing value

If we want people to want to use a device or application we need to understand their
personal values. Why should they want to use it? What value do they get from using
it? Now when we say value here we don’t mean monetary value, although that may
be part of the story, but all the things that drive a person. For some people this may
include being nice to colleagues, being ecologically friendly, being successful in their
career. Whatever their personal values are, if we ask someone to do something or use
something they are only likely to do it if the value to them exceeds the cost.

This is complicated by the fact that for many systems the costs such as purchase
cost, download time of a free application, learning effort are incurred up front,
whereas often the returns – faster work, enjoyment of use – are seen later. In eco-
nomics, businesses use a measure called ‘net present value’ to calculate what a future
gain is worth today; because money can be invested, £100 today is worth the same as
perhaps £200 in five years’ time. Future gain is discounted. For human decision mak-
ing, future gains are typically discounted very highly; many of us are bad at saving
for tomorrow or even keeping the best bits of our dinner until last. This means that
not only must we understand people’s value systems, but we must be able to offer
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gains sooner as well as later, or at least produce a very good demonstration of poten-
tial future gains so that they have a perceived current value.

When we were preparing the website for the second edition of this book we
thought very hard about how to give things that were of value to those who had the
book, and also to those who hadn’t. The latter is partly because we are all academics
and researchers in the field and so want to contribute to the HCI community, but
also of course we would like lots of people to buy the book. One option we thought
of was to put the text online, which would be good for people without the book, 
but this would have less value to people who have the book (they might even be
annoyed that those who hadn’t paid should have access). The search mechanism was
the result of this process (Figure 3.19). It gives value to those who have the book
because it is a way of finding things. It is of value to those who don’t because it 
acts as a sort of online encyclopedia of HCI. However, because it always gives the
chapter and page number in the book it also says to those who haven’t got the book:
‘buy me’. See an extended case study about the design of the book search on the 
website at /e3/casestudy/search/

SUMMARY

In this chapter, we have looked at the interaction between human and computer,
and, in particular, how we can ensure that the interaction is effective to allow the user
to get the required job done. We have seen how we can use Norman’s execution–
evaluation model, and the interaction framework that extends it, to analyze the

3.10

Figure 3.19 The web-based book search facility. Screen shot frame reprinted by
permission from Microsoft Corporation
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interaction in terms of how easy or difficult it is for the user to express what he wants
and determine whether it has been done.

We have also looked at the role of ergonomics in interface design, in analyzing 
the physical characteristics of the interaction, and we have discussed a number of
interface styles. We have considered how each of these factors can influence the
effectiveness of the interaction.

Interactivity is at the heart of all modern interfaces and is important at many 
levels. Interaction between user and computer does not take place in a vacuum, but
is affected by numerous social and organizational factors. These may be beyond 
the designer’s control, but awareness of them can help to limit any negative effects
on the interaction.

EXERCISES

3.1 Choose two of the interface styles (described in Section 3.5) that you have experience
of using. Use the interaction framework to analyze the interaction involved in using these inter-
face styles for a database selection task. Which of the distances is greatest in each case?

3.2 Find out all you can about natural language interfaces. Are there any successful systems? For what
applications are these most appropriate?

3.3 What influence does the social environment in which you work have on your interaction with the
computer? What effect does the organization (commercial or academic) to which you belong have
on the interaction?

3.4 (a) Group the following functions under appropriate headings, assuming that they are to form the
basis for a menu-driven word-processing system – the headings you choose will become the
menu titles, with the functions appearing under the appropriate one. You can choose as many
or as few menu headings as you wish. You may also alter the wordings of the functions slightly
if you wish.

save, save as, new, delete, open mail, send mail, quit, undo, table, glossary, preferences,
character style, format paragraph, lay out document, position on page, plain text, bold text,
italic text, underline, open file, close file, open copy of file, increase point size, decrease
point size, change font, add footnote, cut, copy, paste, clear, repaginate, add page break,
insert graphic, insert index entry, print, print preview, page setup, view page, find word,
change word, go to, go back, check spelling, view index, see table of contents, count words,
renumber pages, repeat edit, show alternative document, help

(b) If possible, show someone else your headings, and ask them to group the functions under your
headings. Compare their groupings with yours. You should find that there are areas of great
similarity, and some differences. Discuss the similarities and discrepancies.

Why do some functions always seem to be grouped together?
Why do some groups of functions always get categorized correctly?
Why are some less easy to place under the ‘correct’ heading?
Why is this important?
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A classic text, which discusses psychological issues in designing everyday objects and
addresses why such objects are often so difficult to use. Discusses the execution–
evaluation cycle. Very readable and entertaining. See also his more recent books
Turn Signals are the Facial Expressions of Automobiles [267], Things That Make Us
Smart [268] and The Invisible Computer [269].
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Detailed coverage of human factors and ergonomics issues, with plenty of examples.

3.5 Using your function groupings from Exercise 3.4, count the number of items in your menus.

(a) What is the average?
What is the disadvantage of putting all the functions on the screen at once?
What is the problem with using lots of menu headings?
What is the problem of using very few menu headings?

Consider the following: I can group my functions either into three menus, with lots of func-
tions in each one, or into eight menus with fewer in each. Which will be easier to use? Why?

(b) Optional experiment
Design an experiment to test your answers. Perform the experiment and report on your
results.

3.6 Describe (in words as well as graphically) the interaction framework introduced in Human–
Computer Interaction. Show how it can be used to explain problems in the dialog between a user
and a computer.

3.7 Describe briefly four different interaction styles used to accommodate the dialog between user
and computer.

3.8 The typical computer screen has a WIMP setup (what does WIMP stand for?). Most common
WIMP arrangements work on the basis of a desktop metaphor, in which common actions are
likened to similar actions in the real world. For example, moving a file is achieved by selecting it
and dragging it into a relevant folder or filing cabinet. The advantage of using a metaphor is that
the user can identify with the environment presented on the screen. Having a metaphor allows
users to predict the outcome of their actions more easily.

Note that the metaphor can break down, however. What is the real-world equivalent of format-
ting a disk? Is there a direct analogy for the concept of ‘undo’? Think of some more examples
yourself.
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PARADIGMS

OV E RV I E W

n Examples of effective strategies for building interactive
systems provide paradigms for designing usable
interactive systems.

n The evolution of these usability paradigms also provides
a good perspective on the history of interactive
computing.

n These paradigms range from the introduction of time-
sharing computers, through the WIMP and web, to
ubiquitous and context-aware computing.

4
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INTRODUCTION

As we noted in Chapter 3, the primary objective of an interactive system is to allow
the user to achieve particular goals in some application domain, that is, the inter-
active system must be usable. The designer of an interactive system, then, is posed
with two open questions:

1. How can an interactive system be developed to ensure its usability?
2. How can the usability of an interactive system be demonstrated or measured?

One approach to answering these questions is by means of example, in which suc-
cessful interactive systems are commonly believed to enhance usability and, there-
fore, serve as paradigms for the development of future products.

We believe that we now build interactive systems that are more usable than those
built in the past. We also believe that there is considerable room for improvement in
designing more usable systems in the future. As discussed in Chapter 2, the great
advances in computer technology have increased the power of machines and enhanced
the bandwidth of communication between humans and computers. The impact of
technology alone, however, is not sufficient to enhance its usability. As our machines
have become more powerful, the key to increased usability has come from the creative
and considered application of the technology to accommodate and augment the
power of the human. Paradigms for interaction have for the most part been dependent
upon technological advances and their creative application to enhance interaction.

In this chapter, we investigate some of the principal historical advances in inter-
active designs. What is important to notice here is that the techniques and designs
mentioned are recognized as major improvements in interaction, though it is some-
times hard to find a consensus for the reason behind the success. It is even harder 
to predict ahead what the new paradigms will be. Often new paradigms have arisen
through exploratory designs that have then been seen, after the fact, to have created
a new base point for future design.

We will discuss 15 different paradigms in this chapter. They do not provide mutu-
ally exclusive categories, as particular systems will often incorporate ideas from more
than one of the following paradigms. In a way, this chapter serves as a history of
interactive system development, though our emphasis is not so much on historical
accuracy as on interactive innovation. We are concerned with the advances in inter-
action provided by each paradigm.

PARADIGMS FOR INTERACTION

4.2.1 Time sharing
In the 1940s and 1950s, the significant advances in computing consisted of new hard-
ware technologies. Mechanical relays were replaced by vacuum electron tubes. Tubes
were replaced by transistors, and transistors by integrated chips, all of which meant

4.2

4.1
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that the amount of sheer computing power was increasing by orders of magnitude.
By the 1960s it was becoming apparent that the explosion of growth in computing
power would be wasted if there was not an equivalent explosion of ideas about how
to channel that power. One of the leading advocates of research into human-centered
applications of computer technology was J. C. R. Licklider, who became the director
of the Information Processing Techniques Office of the US Department of Defense’s
Advanced Research Projects Agency (ARPA). It was Licklider’s goal to finance vari-
ous research centers across the United States in order to encourage new ideas about
how best to apply the burgeoning computing technology.

One of the major contributions to come out of this new emphasis in research was
the concept of time sharing, in which a single computer could support multiple users.
Previously, the human (or more accurately, the programmer) was restricted to batch
sessions, in which complete jobs were submitted on punched cards or paper tape to
an operator who would then run them individually on the computer. Time-sharing
systems of the 1960s made programming a truly interactive venture and brought
about a subculture of programmers known as ‘hackers’ – single-minded masters of
detail who took pleasure in understanding complexity. Though the purpose of the
first interactive time-sharing systems was simply to augment the programming cap-
abilities of the early hackers, it marked a significant stage in computer applications for
human use. Rather than rely on a model of interaction as a pre-planned activity that
resulted in a complete set of instructions being laid out for the computer to follow,
truly interactive exchange between programmer and computer was possible. The
computer could now project itself as a dedicated partner with each individual user
and the increased throughput of information between user and computer allowed
the human to become a more reactive and spontaneous collaborator. Indeed, with
the advent of time sharing, real human–computer interaction was now possible.

4.2.2 Video display units

As early as the mid-1950s researchers were experimenting with the possibility of 
presenting and manipulating information from a computer in the form of images 
on a video display unit (VDU). These display screens could provide a more suitable
medium than a paper printout for presenting vast quantities of strategic information
for rapid assimilation. The earliest applications of display screen images were 
developed in military applications, most notably the Semi-Automatic Ground
Environment (SAGE) project of the US Air Force. It was not until 1962, however,
when a young graduate student at the Massachusetts Institute of Technology (MIT),
Ivan Sutherland, astonished the established computer science community with his
Sketchpad program, that the capabilities of visual images were realized. As described
in Howard Rheingold’s history of computing book Tools for Thought [305]:

Sketchpad allowed a computer operator to use the computer to create, very rapidly,
sophisticated visual models on a display screen that resembled a television set. The
visual patterns could be stored in the computer’s memory like any other data, and
could be manipulated by the computer’s processor. . . . But Sketchpad was much more
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than a tool for creating visual displays. It was a kind of simulation language that
enabled computers to translate abstractions into perceptually concrete forms. And it
was a model for totally new ways of operating computers; by changing something on the
display screen, it was possible, via Sketchpad, to change something in the computer’s
memory.

Sketchpad demonstrated two important ideas. First, computers could be used for
more than just data processing. They could extend the user’s ability to abstract away
from some levels of detail, visualizing and manipulating different representations of
the same information. Those abstractions did not have to be limited to representa-
tions in terms of bit sequences deep within the recesses of computer memory. Rather,
the abstractions could be made truly visual. To enhance human interaction, the
information within the computer was made more amenable to human consumption.
The computer was made to speak a more human language, instead of the human
being forced to speak more like a computer. Secondly, Sutherland’s efforts demon-
strated how important the contribution of one creative mind (coupled with a dogged
determination to see the idea through) could be to the entire history of computing.

4.2.3 Programming toolkits

Douglas Engelbart’s ambition since the early 1950s was to use computer technology
as a means of complementing human problem-solving activity. Engelbart’s idea as a
graduate student at the University of California at Berkeley was to use the computer
to teach humans. This dream of naïve human users actually learning from a com-
puter was a stark contrast to the prevailing attitude of his contemporaries that com-
puters were a purposely complex technology that only the intellectually privileged
were capable of manipulating. Engelbart’s dedicated research team at the Stanford
Research Institute in the 1960s worked towards achieving the manifesto set forth in
an article published in 1963 [124]:

By ‘augmenting man’s intellect’ we mean increasing the capability of a man to
approach a complex problem situation, gain comprehension to suit his particular
needs, and to derive solutions to problems. . . . We refer to a way of life in an integrated
domain where hunches, cut-and-try, intangibles, and the human ‘feel for the situation’
usefully coexist with powerful concepts, streamlined terminology and notation,
sophisticated methods, and high-powered electronic aids.

Many of the ideas that Engelbart’s team developed at the Augmentation Research
Center – such as word processing and the mouse – only attained mass commercial
success decades after their invention. A live demonstration of his oNLine System
(NLS, also later known as NLS/Augment) was given in the autumn of 1968 at the Fall
Joint Computer Conference in San Francisco before a captivated audience of computer
sceptics. We are not so concerned here with the interaction techniques that were pre-
sent in NLS, as many of those will be discussed later. What is important here is the
method that Engelbart’s team adopted in creating their very innovative and power-
ful interactive systems with the relatively impoverished technology of the 1960s.
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Engelbart wrote of how humans attack complex intellectual problems like a car-
penter who produces beautifully complicated pieces of woodwork with a good set of
tools. The secret to producing computing equipment that aided human problem-
solving ability was in providing the right toolkit. Taking this message to heart, 
his team of programmers concentrated on developing the set of programming tools
they would require in order to build more complex interactive systems. The idea of
building components of a computer system that will allow you to rebuild a more
complex system is called bootstrapping and has been used to a great extent in all of
computing. The power of programming toolkits is that small, well-understood com-
ponents can be composed in fixed ways in order to create larger tools. Once these
larger tools become understood, they can continue to be composed with other tools,
and the process continues.

4.2.4 Personal computing

Programming toolkits provide a means for those with substantial computing skills 
to increase their productivity greatly. But Engelbart’s vision was not exclusive to the
computer literate. The decade of the 1970s saw the emergence of computing power
aimed at the masses, computer literate or not. One of the first demonstrations that
the powerful tools of the hacker could be made accessible to the computer novice
was a graphics programming language for children called LOGO. The inventor,
Seymour Papert, wanted to develop a language that was easy for children to use. 
He and his colleagues from MIT and elsewhere designed a computer-controlled
mechanical turtle that dragged a pen along a surface to trace its path. A child could
quite easily pretend they were ‘inside’ the turtle and direct it to trace out simple 
geometric shapes, such as a square or a circle. By typing in English phrases, such as 
Go forward or Turn left, the child/programmer could teach the turtle to draw
more and more complicated figures. By adapting the graphical programming lan-
guage to a model which children could understand and use, Papert demonstrated 
a valuable maxim for interactive system development – no matter how powerful a
system may be, it will always be more powerful if it is easier to use.

Alan Kay was profoundly influenced by the work of both Engelbart and Papert. 
He realized that the power of a system such as NLS was only going to be successful
if it was as accessible to novice users as was LOGO. In the early 1970s his view of 
the future of computing was embodied in small, powerful machines which were 
dedicated to single users, that is personal computers. Together with the founding 
team of researchers at the Xerox Palo Alto Research Center (PARC), Kay worked on
incorporating a powerful and simple visually based programming environment,
Smalltalk, for the personal computing hardware that was just becoming feasible. 
As technology progresses, it is now becoming more difficult to distinguish between
what constitutes a personal computer, or workstation, and what constitutes a main-
frame. Kay’s vision in the mid-1970s of the ultimate handheld personal computer –
he called it the Dynabook – outstrips even the technology we have available today
[197].
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4.2.5 Window systems and the WIMP interface

With the advent and immense commercial success of personal computing, the
emphasis for increasing the usability of computing technology focussed on address-
ing the single user who engaged in a dialog with the computer in order to complete
some work. Humans are able to think about more than one thing at a time, and 
in accomplishing some piece of work, they frequently interrupt their current train of
thought to pursue some other related piece of work. A personal computer system
which forces the user to progress in order through all of the tasks needed to achieve
some objective, from beginning to end without any diversions, does not correspond
to that standard working pattern. If the personal computer is to be an effective dia-
log partner, it must be as flexible in its ability to ‘change the topic’ as the human is.

But the ability to address the needs of a different user task is not the only require-
ment. Computer systems for the most part react to stimuli provided by the user, so
they are quite amenable to a wandering dialog initiated by the user. As the user
engages in more than one plan of activity over a stretch of time, it becomes difficult
for him to maintain the status of the overlapping threads of activity. It is therefore
necessary for the computer dialog partner to present the context of each thread of
dialog so that the user can distinguish them.

One presentation mechanism for achieving this dialog partitioning is to separate
physically the presentation of the different logical threads of user–computer con-
versation on the display device. The window is the common mechanism associated
with these physically and logically separate display spaces. We discussed windowing
systems in detail in Chapter 3.

Interaction based on windows, icons, menus and pointers – the WIMP interface –
is now commonplace. These interaction devices first appeared in the commercial
marketplace in April 1981, when Xerox Corporation introduced the 8010 Star
Information System. But many of the interaction techniques underlying a window-
ing system were used in Engelbart’s group in NLS and at Xerox PARC in the 
experimental precursor to Star, the Alto.

4.2.6 The metaphor

In developing the LOGO language to teach children, Papert used the metaphor of a
turtle dragging its tail in the dirt. Children could quickly identify with the real-world
phenomenon and that instant familiarity gave them an understanding of how they
could create pictures. Metaphors are used quite successfully to teach new concepts in
terms of ones which are already understood, as we saw when looking at analogy in
Chapter 1. It is no surprise that this general teaching mechanism has been successful
in introducing computer novices to relatively foreign interaction techniques. We
have already seen how metaphors are used to describe the functionality of many
interaction widgets, such as windows, menus, buttons and palettes. Tremendous
commercial successes in computing have arisen directly from a judicious choice 
of metaphor. The Xerox Alto and Star were the first workstations based on the
metaphor of the office desktop. The majority of the management tasks on a standard
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workstation have to do with file manipulation. Linking the set of tasks associated
with file manipulation to the filing tasks in a typical office environment makes the
actual computerized tasks easier to understand at first. The success of the desktop
metaphor is unquestionable. Another good example in the personal computing
domain is the widespread use of the spreadsheet metaphor for accounting and 
financial modeling.

Very few will debate the value of a good metaphor for increasing the initial 
familiarity between user and computer application. The danger of a metaphor is 
usually realized after the initial honeymoon period. When word processors were 
first introduced, they relied heavily on the typewriter metaphor. The keyboard of 
a computer closely resembles that of a standard typewriter, so it seems like a good
metaphor from which to start. However, the behavior of a word processor is differ-
ent from any typewriter. For example, the space key on a typewriter is passive, 
producing nothing on the piece of paper and just moving the guide further along the
current line. For a typewriter, a space is not a character. However, for a word pro-
cessor, the blank space is a character which must be inserted within a text just as any
other character is inserted. So an experienced typist is not going to be able to predict
correctly the behavior of pressing the spacebar on the keyboard by appealing to 
his experience with a typewriter. Whereas the typewriter metaphor is beneficial 
for providing a preliminary understanding of a word processor, the analogy is 
inadequate for promoting a full understanding of how the word processor works. In
fact, the metaphor gets in the way of the user understanding the computer.

A similar problem arises with most metaphors. Although the desktop metaphor is
initially appealing, it falls short in the computing world because there are no office
equivalents for ejecting a floppy disk or printing a document. When designers try 
too hard to make the metaphor stick, the resulting system can be more confusing.
Who thinks it is intuitive to drag the icon of a floppy disk to the wastebasket in 
order to eject it from the system? Ordinarily, the wastebasket is used to dispose of
things that we never want to use again, which is why it works for deleting files. We
must accept that some of the tasks we perform with a computer do not have real-
world equivalents, or if they do, we cannot expect a single metaphor to account 
for all of them.

Another problem with a metaphor is the cultural bias that it portrays. With the
growing internationalization of software, it should not be assumed that a metaphor
will apply across national boundaries. A meaningless metaphor will only add another
layer of complexity between the user and the system.

A more extreme example of metaphor occurs with virtual reality systems. In a VR
system, the metaphor is not simply captured on a display screen. Rather, the user 
is also portrayed within the metaphor, literally creating an alternative, or virtual,
reality. Any actions that the user performs are supposed to become more natural and
so more movements of the user are interpreted, instead of just keypresses, button
clicks and movements of an external pointing device. A VR system also needs 
to know the location and orientation of the user. Consequently, the user is often
‘rigged’ with special tracking devices so that the system can locate them and interpret
their motion correctly.
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4.2.7 Direct manipulation

In the early 1980s as the price of fast and high-quality graphics hardware was steadily
decreasing, designers were beginning to see that their products were gaining popu-
larity as their visual content increased. As long as the user–system dialog remained
largely unidirectional – from user command to system command line prompt –
computing was going to stay within the minority population of the hackers who 
revelled in the challenge of complexity. In a standard command line interface, the
only way to get any feedback on the results of previous interaction is to know that
you have to ask for it and to know how to ask for it. Rapid visual and audio feedback
on a high-resolution display screen or through a high-quality sound system makes it
possible to provide evaluative information for every executed user action.

Rapid feedback is just one feature of the interaction technique known as direct
manipulation. Ben Shneiderman [320, 321] is attributed with coining this phrase in
1982 to describe the appeal of graphics-based interactive systems such as Sketchpad
and the Xerox Alto and Star. He highlights the following features of a direct manip-
ulation interface:

n visibility of the objects of interest
n incremental action at the interface with rapid feedback on all actions
n reversibility of all actions, so that users are encouraged to explore without severe

penalties
n syntactic correctness of all actions, so that every user action is a legal operation
n replacement of complex command languages with actions to manipulate directly

the visible objects (and, hence, the name direct manipulation).

The first real commercial success which demonstrated the inherent usability of
direct manipulation interfaces for the general public was the Macintosh personal
computer, introduced by Apple Computer, Inc. in 1984 after the relatively unsuc-
cessful marketing attempt in the business community of the similar but more pricey
Lisa computer. We discussed earlier how the desktop metaphor makes the computer
domain of file management, usually described in terms of files and directories, easier
to grasp by likening it to filing in the typical office environment, usually described in
terms of documents and folders. The direct manipulation interface for the desktop
metaphor requires that the documents and folders are made visible to the user 
as icons which represent the underlying files and directories. An operation such as
moving a file from one directory to another is mirrored as an action on the visible
document which is ‘picked up and dragged’ along the desktop from one folder to the
next. In a command line interface to a filing system, it is normal that typographical
errors in constructing the command line for a move operation would result in a 
syntactically incorrect command (for example, mistyping the file’s name results in an
error if you are fortunate enough not to spell accidentally the name of another file in
the process). It is impossible to formulate a syntactically incorrect move operation
with the pick-up-and-drag style of command. It is still possible for errors to occur at
a deeper level, as the user might move a document to the wrong place, but it is relat-
ively easy to detect and recover from those errors. While the document is dragged,
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continual visual feedback is provided, creating the illusion that the user is actually
working in the world of the desktop and not just using the metaphor to help him
understand.

Ed Hutchins, Jim Hollan and Donald Norman [187] provide a more psycho-
logical justification in terms of the model-world metaphor for the directness that 
the above example suggests. In Norman and Draper’s collection of papers on user-
centered design [270] they write:

In a system built on the model-world metaphor, the interface is itself a world where
the user can act, and which changes state in response to user actions. The world of
interest is explicitly represented and there is no intermediary between user and world.
Appropriate use of the model-world metaphor can create the sensation in the user of
acting upon the objects of the task domain themselves. We call this aspect of directness
direct engagement.

In the model-world metaphor, the role of the interface is not so much one of medi-
ating between the user and the underlying system. From the user’s perspective, the
interface is the system.

A consequence of the direct manipulation paradigm is that there is no longer a
clear distinction between input and output. In the interaction framework in Chap-
ter 3 we talked about a user articulating input expressions in some input language
and observing the system-generated output expressions in some output language. 
In a direct manipulation system, the output expressions are used to formulate 
subsequent input expressions. The document icon is an output expression in the 
desktop metaphor, but that icon is used by the user to articulate the move operation.
This aggregation of input and output is reflected in the programming toolkits, as
widgets are not considered as input or output objects exclusively. Rather, widgets
embody both input and output languages, so we consider them as interaction objects.

Somewhat related to the visualization provided by direct manipulation is the
WYSIWYG paradigm, which stands for ‘what you see is what you get’. What you see
on a display screen, for example when you are using a word processor, is not the
actual document that you will be producing in the end. Rather, it is a representation
or rendering of what that final document will look like. The implication with a
WYSIWYG interface is that the difference between the representation and the final
product is minimal, and the user is easily able to visualize the final product from the
computer’s representation. So, in the word-processing example, you would be able
to see what the overall layout of your document would be from its image on screen,
minimizing any guesswork on your part to format the final printed copy.

With WYSIWYG interfaces, it is the simplicity and immediacy of the mapping
between representation and final product that matters. In terms of the interaction
framework, the observation of an output expression is made simple so that assess-
ment of goal achievement is straightforward. But WYSIWYG is not a panacea for
usability. What you see is all you get! In the case of a word processor, it is difficult to
achieve more sophisticated page design if you must always see the results of the lay-
out on screen. For example, suppose you want to include a picture in a document
you are writing. You design the picture and then place it in the current draft of your
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document, positioning it at the top of the page on which it is first referenced. As you
make changes to the paper, the position of the picture will change. If you still want
it to appear at the top of a page, you will no doubt have to make adjustments to the
document. It would be easier if you only had to include the picture once, with a
directive that it should be positioned at the top of the printed page, whether or not
it appears that way on screen. You might sacrifice the WYSIWYG principle in order
to make it easier to incorporate such floatable objects in your documents.

Worked exercise Discuss the ways in which a full-page word processor is or is not a direct manipulation interface
for editing a document using Shneiderman’s criteria. What features of a modern word processor
break the metaphor of composition with pen (or typewriter) and paper?

Answer We will answer the first point by evaluating the word processor relative to the criteria
for direct manipulation given by Shneiderman.

Visibility of the objects of interest
The most important objects of interest in a word processor are the words themselves.
Indeed, the visibility of the text on a continual basis was one of the major usability
advances in moving from line-oriented to display-oriented editors. Depending on the
user’s application, there may be other objects of interest in word processing that may
or may not be visible. For example, are the margins for the text on screen similar to
the ones which would eventually be printed? Is the spacing within a line and the line
breaks similar? Are the different fonts and formatting characteristics of the text visible
(without altering the spacing)? Expressed in this way, we can see the visibility criterion
for direct manipulation as very similar to the criteria for a WYSIWYG interface.

Incremental action at the interface with rapid feedback on all actions
We expect from a word processor that characters appear in the text as we type them
in at the keyboard, with little delay. If we are inserting text on a page, we might also
expect that the format of the page adjust immediately to accommodate the new changes.
Various word processors do this reformatting immediately, whereas with others
changes in page breaks may take some time to be reflected. One of the other import-
ant actions which requires incremental and rapid feedback is movement of the window
using the scroll button. If there is a significant delay between the input command to
move the window down and the actual movement of the window on screen, it is quite
possible that the user will ‘overshoot’ the target when using the scrollbar button.

Reversibility of all actions, so that users are encouraged to explore without
severe penalties
Single-step undo commands in most word processors allow the user to recover from
the last action performed. One problem with this is that the user must recognize the
error before doing any other action. More sophisticated undo facilities allow the user
to retrace back more than one command at a time. The kind of exploration this revers-
ibility provides in a word processor is best evidenced with the ease of experimentation
that is now available for formatting changes in a document (font types and sizes and
margin changes). One problem with the ease of exploration is that emphasis may move
to the look of a document rather than what the text actually says (style over content).
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Syntactic correctness of all actions, so that every user action is 
a legal operation
WYSIWYG word processors usually provide menus and buttons which the user uses
to articulate many commands. These interaction mechanisms serve to constrain the
input language to allow only legal input from the user. Document markup systems, 
such as HTML and LaTeX, force the user to insert textual commands (which may be
erroneously entered by the user) to achieve desired formatting effects.

Replacement of complex command languages with actions to manipulate
directly the visible objects
The case for word processors is similar to that described above for syntactic correct-
ness. In addition, operations on portions of text are achieved many times by allowing
the user to highlight the text directly with a mouse (or arrow keys). Subsequent action
on that text, such as moving it or copying it to somewhere else, can then be achieved
more directly by allowing the user to ‘drag’ the selected text via the mouse to its new
location.

To answer the second question concerning the drawback of the pen (or typewriter)
metaphor for word processing, we refer to the discussion on metaphors in Section
4.2.6. The example there compares the functionality of the space key in typewriting ver-
sus word processing. For a typewriter, the space key is passive; it merely moves the
insertion point one space to the right. In a word processor, the space key is active, 
as it inserts a character (the space character) into the document. The functionality of
the typewriter space key is produced by the movement keys for the word processor
(typically an arrow key pointing right to move forward within one line). In fact, much of
the functionality that we have come to expect of a word processor is radically different
from that expected of a typewriter, so much so that the typewriter as a metaphor for
word processing is not all that instructive. In practice, modern typewriters have begun
to borrow from word processors when defining their functionality!

4.2.8 Language versus action

Whereas it is true that direct manipulation interfaces make some tasks easier to per-
form correctly, it is equally true that some tasks are more difficult, if not impossible.
Contrary to popular wisdom, it is not generally true that actions speak louder than
words. The image we projected for direct manipulation was of the interface as a
replacement for the underlying system as the world of interest to the user. Actions
performed at the interface replace any need to understand their meaning at any
deeper, system level. Another image is of the interface as the interlocutor or medi-
ator between the user and the system. The user gives the interface instructions and it
is then the responsibility of the interface to see that those instructions are carried out.
The user–system communication is by means of indirect language instead of direct
actions.

We can attach two meaningful interpretations to this language paradigm. The first
requires that the user understands how the underlying system functions and the
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interface as interlocutor need not perform much translation. In fact, this inter-
pretation of the language paradigm is similar to the kind of interaction which 
existed before direct manipulation interfaces were around. In a way, we have come
full circle!

The second interpretation does not require the user to understand the underlying
system’s structure. The interface serves a more active role, as it must interpret
between the intended operation as requested by the user and the possible system
operations that must be invoked to satisfy that intent. Because it is more active, some
people refer to the interface as an agent in these circumstances. We can see this kind
of language paradigm at work in an information retrieval system. You may know
what kind of information is in some internal system database, such as the UK high-
way code, but you would not know how that information is organized. If you had a
question about speed limits on various roads, how would you ask? The answer in this
case is that you would ask the question in whatever way it comes to mind, typing in
a question such as, ‘What are the speed limits on different roads?’ You then leave it
up to the interface agent to reinterpret your request as a legal query to the highway
code database.

Whatever interpretation we attach to the language paradigm, it is clear that it has
advantages and disadvantages when compared with the action paradigm implied by
direct manipulation interfaces. In the action paradigm, it is often much easier to per-
form simple tasks without risk of certain classes of error. For example, recognizing
and pointing to an object reduces the difficulty of identification and the possibility
of misidentification. On the other hand, more complicated tasks are often rather
tedious to perform in the action paradigm, as they require repeated execution of the
same procedure with only minor modification. In the language paradigm, there is
the possibility of describing a generic procedure once (for example, a looping con-
struct which will perform a routine manipulation on all files in a directory) and then
leaving it to be executed without further user intervention.

The action and language paradigms need not be completely separate. In the above
example, we distinguished between the two paradigms by saying that we can describe
generic and repeatable procedures in the language paradigm and not in the action
paradigm. An interesting combination of the two occurs in programming by example
when a user can perform some routine tasks in the action paradigm and the system
records this as a generic procedure. In a sense, the system is interpreting the user’s
actions as a language script which it can then follow.

4.2.9 Hypertext

In 1945, Vannevar Bush, then the highest-ranking scientific administrator in the US
war effort, published an article entitled ‘As We May Think’ in The Atlantic Monthly.
Bush was in charge of over 6000 scientists who had greatly pushed back the frontiers
of scientific knowledge during the Second World War. He recognized that a major
drawback of these prolific research efforts was that it was becoming increasingly
difficult to keep in touch with the growing body of scientific knowledge in the 
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literature. In his opinion, the greatest advantages of this scientific revolution were to
be gained by those individuals who were able to keep abreast of an ever-increasing
flow of information. To that end, he described an innovative and futuristic informa-
tion storage and retrieval apparatus – the memex – which was constructed with 
technology wholly existing in 1945 and aimed at increasing the human capacity to
store and retrieve connected pieces of knowledge by mimicking our ability to create
random associative links.

The memex was essentially a desk with the ability to produce and store a massive
quantity of photographic copies of documented information. In addition to its huge
storage capacity, the memex could keep track of links between parts of different docu-
ments. In this way, the stored information would resemble a vast interconnected
mesh of data, similar to how many perceive information is stored in the human
brain. In the context of scientific literature, where it is often very difficult to keep
track of the origins and interrelations of the ever-growing body of research, a device
which explicitly stored that information would be an invaluable asset.

We have already discussed some of the contributions of ‘disciples’ of Bush’s vision
– Douglas Engelbart and Alan Kay. One other follower was equally influenced by the
ideas behind the memex, though his dreams have not yet materialized to the extent
of Engelbart’s and Kay’s. Ted Nelson was another graduate student/dropout whose
research agenda was forever transformed by the advent of the computer. An unsuc-
cessful attempt to create a machine language equivalent of the memex on early 1960s
computer hardware led Nelson on a lifelong quest to produce Xanadu, a potentially
revolutionary worldwide publishing and information retrieval system based on the
idea of interconnected, non-linear text and other media forms. A traditional paper is
read from beginning to end, in a linear fashion. But within that text, there are often
ideas or footnotes that urge the reader to digress into a richer topic. The linear for-
mat for information does not provide much support for this random and associated
browsing task. What Bush’s memex suggested was to preserve the non-linear brows-
ing structure in the actual documentation. Nelson coined the phrase hypertext in the
mid-1960s to reflect this non-linear text structure.

It was nearly two decades after Nelson coined the term that the first hypertext sys-
tems came into commercial use. In order to reflect the use of such non-linear and
associative linking schemes for more than just the storage and retrieval of textual
information, the term hypermedia (or multimedia) is used for non-linear storage of
all forms of electronic media. We will discuss these systems in Part 4 of this book (see
Chapter 21). Most of the riches won with the success of hypertext and hypermedia
were not gained by Nelson, though his project Xanadu survives to this day.

4.2.10 Multi-modality

The majority of interactive systems still use the traditional keyboard and a pointing
device, such as a mouse, for input and are restricted to a color display screen with
some sound capabilities for output. Each of these input and output devices can 
be considered as communication channels for the system and they correspond to
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certain human communication channels, as we saw in Chapter 1. A multi-modal
interactive system is a system that relies on the use of multiple human communica-
tion channels. Each different channel for the user is referred to as a modality of inter-
action. In this sense, all interactive systems can be considered multi-modal, for
humans have always used their visual and haptic (touch) channels in manipulating
a computer. In fact, we often use our audio channel to hear whether the computer is
actually running properly.

However, genuine multi-modal systems rely to a greater extent on simultaneous
use of multiple communication channels for both input and output. Humans quite
naturally process information by simultaneous use of different channels. We point
to someone and refer to them as ‘you’, and it is only by interpreting the simultan-
eous use of voice and touch that our directions are easily articulated and understood.
Designers have wanted to mimic this flexibility in both articulation and observation
by extending the input and output expressions an interactive system will support. 
So, for example, we can modify a gesture made with a pointing device by speaking,
indicating what operation is to be performed on the selected object.

Multi-modal, multimedia and virtual reality systems form a large core of current
research in interactive system design. These are discussed in more detail in Chapters
10, 20 and 21.

4.2.11 Computer-supported cooperative work

Another development in computing in the 1960s was the establishment of the first
computer networks which allowed communication between separate machines.
Personal computing was all about providing individuals with enough computing
power so that they were liberated from dumb terminals which operated on a 
time-sharing system. It is interesting to note that as computer networks became
widespread, individuals retained their powerful workstations but now wanted to
reconnect themselves to the rest of the workstations in their immediate working
environment, and even throughout the world! One result of this reconnection 
was the emergence of collaboration between individuals via the computer – called
computer-supported cooperative work, or CSCW.

The main distinction between CSCW systems and interactive systems designed 
for a single user is that designers can no longer neglect the society within which any
single user operates. CSCW systems are built to allow interaction between humans via
the computer and so the needs of the many must be represented in the one product.
A fine example of a CSCW system is electronic mail – email – yet another metaphor
by which individuals at physically separate locations can communicate via electronic
messages which work in a similar way to conventional postal systems. One user can
compose a message and ‘post’ it to another user (specified by his electronic mail
address). When the message arrives at the remote user’s site, he is informed that a
new message has arrived in his ‘mailbox’. He can then read the message and respond
as desired. Although email is modeled after conventional postal systems, its major
advantage is that it is often much faster than the traditional system (jokingly referred
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to by email devotees as ‘snail mail’). Communication turnarounds between sites
across the world are in the order of minutes, as opposed to weeks.

Electronic mail is an instance of an asynchronous CSCW system because the par-
ticipants in the electronic exchange do not have to be working at the same time in
order for the mail to be delivered. The reason we use email is precisely because of 
its asynchronous characteristics. All we need to know is that the recipient will 
eventually receive the message. In contrast, it might be desirable for synchronous
communication, which would require the simultaneous participation of sender and
recipient, as in a phone conversation.

CSCW is a major emerging topic in current HCI research, and so we devote much
more attention to it later in this book. CSCW systems built to support users work-
ing in groups are referred to as groupware. Chapter 19 discusses groupware systems
in depth. In Chapter 14 the more general issues and theories arising from CSCW are
discussed.

4.2.12 The world wide web
Probably the most significant recent development in interactive computing is the
world wide web, often referred to as just the web, or WWW. The web is built on 
top of the internet, and offers an easy to use, predominantly graphical interface 
to information, hiding the underlying complexities of transmission protocols,
addresses and remote access to data.

The internet (see Section 2.9) is simply a collection of computers, each linked 
by any sort of data connection, whether it be slow telephone line and modem or
high-bandwidth optical connection. The computers of the internet all communic-
ate using common data transmission protocols (TCP/IP) and addressing systems 
(IP addresses and domain names). This makes it possible for anyone to read anything
from anywhere, in theory, if it conforms to the protocol. The web builds on this with
its own layer of network protocol (http), a standard markup notation (such as
HTML) for laying out pages of information and a global naming scheme (uniform
resource locators or URLs). Web pages can contain text, color images, movies, sound
and, most important, hypertext links to other web pages. Hypermedia documents
can therefore be ‘published’ by anyone who has access to a computer connected to
the internet.

The world wide web project was conceived in 1989 by Tim Berners-Lee, work-
ing at CERN, the European Particle Physics Laboratory at Geneva, as a means to
enable the widespread distribution of scientific data generated at CERN and to share
information between physicists worldwide. In 1991 the first text-based web browser
was released. This was followed in early 1993 by several graphical web browsers, 
most significantly Mosaic developed by Marc Andreesen at the National Center for
Supercomputer Applications (NCSA) at Champaign, Illinois. This was the defining
moment at which the meteoric growth of the web began, rapidly growing to domin-
ate internet traffic and change the public view of computing. Of all the ‘heroes’ of
interactive computing named in this chapter, it is only Berners-Lee who has achieved
widespread public fame.
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Whilst the internet has been around since 1969, it did not become a major para-
digm for interaction until the advent and ease of availability of well-designed graphical
interfaces (browsers) for the web. These browsers allow users to access multimedia
information easily, using only a mouse to point and click. This shift towards the integ-
ration of computation and communication is transparent to users; all they realize is
that they can get the current version of published information practically instantly.
In addition, the language used to create these multimedia documents is relatively
simple, opening the opportunity of publishing information to any literate, and con-
nected, person. However, there are important limitations of the web as a hypertext
medium and in Chapter 21 we discuss some of the special design issues for the web.
Interestingly, the web did not provide any technological breakthroughs; all the
required functionality previously existed, such as transmission protocols, distributed
file systems, hypertext and so on. The impact has been due to the ease of use of both the
browsers and HTML, and the fact that critical mass (see Chapter 13) was established,
first in academic circles, and then rapidly expanded into the leisure and business
domains. The burgeoning interest led to service providers, those providing connec-
tions to the internet, to make it cheap to connect, and a whole new subculture was born.

Currently, the web is one of the major reasons that new users are connecting to
the internet (probably even buying computers in the first place), and is rapidly
becoming a major activity for people both at work and for leisure. It is much more 
a social phenomenon than anything else, with users attracted to the idea that com-
puters are now boxes that connect them with interesting people and exciting places
to go, rather than soulless cases that deny social contact. Computing often used to be
seen as an anti-social activity; the web has challenged this by offering a ‘global village’
with free access to information and a virtual social environment. Web culture has
emphasized liberality and (at least in principle) equality regardless of gender, race
and disability. In practice, the demographics of web users are only now coming close
to equal proportions in terms of gender, and, although internet use is increasing
globally, the vast majority of websites are still hosted in the United States. Indeed, the
web is now big business; corporate images and e-commerce may soon dominate the
individual and often zany aspects of the web.

4.2.13 Agent-based interfaces
In the human world agents are people who work on someone’s behalf: estate agents
buy and sell property for their customers, literary agents find publishers for authors,
travel agents book hotels and air tickets for tourists and secret agents obtain infor-
mation (secretly) for their governments. Software agents likewise act on behalf of
users within the electronic world. Examples include email agents which filter your
mail for you and web crawlers which search the world wide web for documents you
might find interesting. Agents can perform repetitive tasks, watch and respond to
events when the user is not present and even learn from the user’s own actions.

Some agents simply do what they are told. For example, many email systems allow
you to specify filters, simple if then rules, which determine the action to perform on
certain kinds of mail message:
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If Sender: is bank manager
Then Urgency: is high

A major problem with such agents is developing a suitable language between human
and agent which allows the user to express intentions. This is especially important
when the agent is going to act in the user’s absence. In this case, the user may not
receive feedback of any mistake until long after the effects have become irreversible;
hence the instructions have to be correct, and believed to be correct.

Other agents use artificial intelligence techniques to learn based on the user’s
actions. An early example of this was Eager [83]. Eager watches users while they work
on simple HyperCard applications. When it notices that the user is repeating similar
actions a small icon appears (a smiling cat!), suggesting the next action. The user is
free either to accept the suggestion or to ignore it. When the user is satisfied that
Eager knows what it is doing, it can be instructed to perform all the remaining
actions in a sequence.

Eager is also an example of an agent, which has a clear embodiment, that is, there
is a representation of Eager (the cat icon) in the interface. In contrast, consider
Microsoft Excel which incorporates some intelligence in its sum (Σ) function. If the
current cell is directly below a column of numbers, or if there is a series of numbers
to the left of the current cell, the sum range defaults to be the appropriate cells. It is
also clever about columns of numbers with subtotals so that they are not included
twice in the overall total. As around 80% of all spreadsheet formulae are simple sums
this is a very useful feature. However, the intelligence in this is not embodied, it 
is diffuse, somewhere in ‘the system’. Although embodiment is not essential to an
agent-based system it is one of the key features which enable users to determine
where autonomy and intelligence may lie, and also which parts are stable [107].

We have already discussed the relationship between language and action
paradigms in human–computer interaction. To some extent agent-based systems
include aspects of both. Old command-based systems acted as intermediaries: you
asked them to do something, they did what you wanted (if you were lucky), and then
reported the results back to you. In contrast, direct manipulation emphasizes the
user’s own actions, possibly augmented by tools, on the electronic world. Agents act
on the user’s behalf, possibly, but not necessarily, instructed in a linguistic fashion.
But unlike the original intermediary paradigm, an agent is typically acting within a
world the user could also act upon. The difference is rather like that between a tradi-
tional shopkeeper who brings items to you as opposed to a shop assistant in a super-
market who helps you as you browse amongst the aisles. The latter does not prevent
you from selecting your own items from the shelves, but aids you when asked.

In fact, the proponents of direct manipulation and agent-based systems do not see
the paradigms as being quite as complementary as we have described them above.
Although amicable, the positions on each side are quite entrenched.

4.2.14 Ubiquitous computing

Where does computing happen, and more importantly, where do we as users go to
interact with a computer? The past 50 years of interactive computing show that we



4.2 Paradigms for interaction 181

still think of computers as being confined to a box on a desk or in an office or lab.
The actual form of the physical interface has been transformed from a noisy teletype
terminal to a large, graphical display with a WIMP or natural language interface, but
in all cases the user knows where the computer is and must walk over to it to begin
interacting with it.

In the late 1980s, a group of researchers at Xerox PARC, led by Mark Weiser, ini-
tiated a research program with the goal of moving human–computer interaction
away from the desktop and out into our everyday lives. Weiser observed:

The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.

These words have inspired a new generation of researchers in the area of ubiquitous
computing [369, 370]. Another popular term for this emerging paradigm is pervasive
computing, first coined by IBM. The intention is to create a computing infrastruc-
ture that permeates our physical environment so much that we do not notice the
computer any longer. A good analogy for the vision of ubiquitous computing is the
electric motor. When the electric motor was first introduced, it was large, loud and
very noticeable. Today, the average household contains so many electric motors 
that we hardly ever notice them anymore. Their utility led to ubiquity and, hence,
invisibility.

How long in the future will it be before we no longer notice the interactive com-
puter? To some extent, this is already happening, since many everyday items, such as
watches, microwaves or automobiles, contain many microprocessors that we don’t
directly notice. But, to a large extent, the vision of Weiser, in which the computer is
hardly ever noticed, is a long way off.

To pursue the analogy with the electric motor a little further, one of the motor’s
characteristics is that it comes in many sizes. Each size is suited to a particular use.
Weiser thought that it was also important to think of computing technology in dif-
ferent sizes. The original work at PARC looked at three different scales of comput-
ing: the yard, the foot and the inch. In the middle of the scale, a foot-sized computer
is much like the personal computers we are familiar with today. Its size is suitable for
every individual to have one, perhaps on their desk or perhaps in their bedroom 
or in their briefcase. A yard-sized computer, on the other hand, is so large that it
would be suitable for wide open public spaces, and would be shared by a group of
people. Perhaps there would be one of these in every home, or in a public hallway or
auditorium. On the opposite side of the scale, an inch-sized computer would be 
a truly personal computing device that could fit in the palm of a hand. Everyone
would have a number of these at their disposal, and they would be as prevalent and
unremarkable as a pen or a pad of sticky notes.

There is an increasing number of examples of computing devices at these differ-
ent scales. At the foot scale, laptop computers are, of course, everywhere, but more
interesting examples of computing at this scale are commercially available tablet
computers or research prototypes, such as an interactive storybook (see Figure 4.1).
At the yard scale, there are various forms of high-resolution large screens and pro-
jected displays as we discussed in Chapter 2 (Section 2.4.3). These are still mainly
used as output-only devices showing presentations or fixed messages, but there is
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increasing use of more interactive shared public displays, such as the Stanford
Interactive Mural shown in Figure 4.2. At the inch scale, there are many examples,
from powerful, pocket-sized personal organizers or personal digital assistants (PDAs)
to even smaller cellular phones or pagers, and many pocket electronic devices such
as electronic dictionaries and translators (see Figure 4.3). There are even badges
whose position can be automatically tracked.

Figure 4.1 Examples of computing devices at the foot scale. On the left is a tablet
computer – a Tablet PC from MotionComputing (Source: Motion Computing, Inc.).
On the right is a research prototype, the Listen Reader, an interactive storybook
developed at Palo Alto Research Center (picture courtesy Palo Alto Research Center)

Figure 4.2 The Stanford Interactive Mural, an example of a yard-scale interactive
display surface created by tiling multiple lower-resolution projectors. Picture courtesy
François Guimbretière
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Figure 4.3 Example inch-scale devices. From left to right, a PDA, a mobile phone and pocket-sized
electronic bible. Source: Top left photograph by Alan Dix (Palm Pilot Series V), bottom left photograph by
Alan Dix with permission from Franklin Electronic Publishers, photograph right by Alan Dix (Ericsson phone)
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This influx of diverse computing devices represents the third wave of computing, 
in which the ratio of computers to human drastically changes. In the first wave of
computing, one large mainframe computer served many people. In the second wave,
the PC revolution, computing devices roughly equalled the number of people using
them. In the third wave, the devices far outnumber the people. It is precisely because
of the large ratio of devices to people that Weiser and others note the importance of
minimizing the attention demands of any single device.

Many different technologies are converging to make the dream of ubiquitous
computing possible. These technologies include wireless networking, voice recogni-
tion, camera and vision systems, pen-based computing and positioning systems, 
to name a few. What all of these technologies provide is the ability to move the 
computer user away from a desktop, allow interaction in a number of modes (voice,
gesture, handwriting) in addition to a keyboard, and make information about the
user (through vision, speech recognition or positioning information) available to a
computational device that may be far removed from the actual user.

Ubiquitous computing is not simply about nifty gadgets, it is what can be 
done with those gadgets. As Weiser pointed out, it is the applications that make
ubiquitous computing revolutionary. In Chapter 20, we discuss some examples of
the applications that ubiquitous computing makes possible, including the way this 
is becoming part of everyday life in places as diverse as the home, the car and even
our own bodies. The vision of ubiquitous computing – first expressed by Weiser and
grounded in experimental work done at Xerox PARC – is now starting to become
reality.

4.2.15 Sensor-based and context-aware interaction

The yard-scale, foot-scale and inch-scale computers are all still clearly embodied
devices with which we interact, whether or not we consider them ‘computers’. There
are an increasing number of proposed and existing technologies that embed com-
putation even deeper, but unobtrusively, into day-to-day life. Weiser’s dream was
computers that ‘permeate our physical environment so much that we do not notice
the computers anymore’, and the term ubiquitous computing encompasses a wide
range from mobile devices to more pervasive environments.

We can consider the extreme situation in which the user is totally unaware of
interaction taking place. Information can be gathered from sensors in the environ-
ment (pressure mats, ultrasonic movement detectors, weight sensors, video cam-
eras), in our information world (web pages visited, times online, books purchased
online), and even from our own bodies (heart rate, skin temperature, brain signals).
This information is then used by systems that make inferences about our past 
patterns and current context in order to modify the explicit interfaces we deal with
(e.g., modify default menu options) or to do things in the background (e.g., adjust
the air conditioning).

We already encounter examples of this: lights that turn on when we enter a room,
suggestions made for additional purchases at online bookstores, automatic doors
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and washbasins. For elderly and disabled people, assistive technologies already
embody quite radical aspects of this. However, the vision of many is a world in which
the whole environment is empowered to sense and even understand the context of
activities within it.

Previous interactive computation has focussed on the user explicitly telling the
computer exactly what to do and the computer doing what it is told. In context-aware
computing the interaction is more implicit. The computer, or more accurately the
sensor-enhanced environment, is using heuristics and other semi-intelligent means
to predict what would be useful for the user. The data used for this inference and the
inference itself are both fuzzy, probabilistic and uncertain. Automatically sensing
context is, and will likely always remain, an imperfect activity, so it is important that
the actions resulting from these ‘intelligent’ predictions be made with caution.
Context-aware applications should follow the principles of appropriate intelligence:

1. Be right as often as possible, and useful when acting on these correct predictions.
2. Do not cause inordinate problems in the event of an action resulting from a

wrong prediction.

The failure of ‘intelligent’ systems in the past resulted from following the first 
principle, but not the second. These new applications, which impinge so closely on
our everyday lives, demand that the second principle of appropriate intelligence is
upheld. (There is more on using intelligence in interfaces on the book website at
/e3/online/intelligence/)

Arguably this is a more radical paradigm shift than any other since the introduc-
tion of interactive computing itself. Whereas ubiquitous computing challenges the
idea of where computers are and how apparent they are to us, context-aware com-
puting challenges what it means to interact with a computer. It is as if we have 
come full circle from the early days of computing. Large mainframes were placed 
in isolation from the principle users (programmers) and interaction was usually
done through an intermediary operator. Half a century later, the implicit nature of
interaction implied by sensing creates a human–computer relationship that becomes
so seamless there is no conscious interaction at all.

This shift is so radical that one could even say it does not belong in this chapter
about paradigms for interaction! In fact, this shift is so dramatic that it is unclear
whether the basic models of interaction that have proved universal across techno-
logies, for example Norman’s execution–evaluation cycle (Chapter 3, Section 3.2.2),
are applicable at all. We will return to this issue in Chapter 18.

SUMMARY

In this chapter, we have discussed paradigms that promote the usability of inter-
active systems. We have seen that the history of computing is full of examples of 
creative insight into how the interaction between humans and computers can be

4.3
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enhanced. While we expect never to replace the input of creativity in interactive 
system design, we still want to maximize the benefit of one good idea by repeating its
benefit in many other designs. The problem with these paradigms is that they are
rarely well defined. It is not always clear how they support a user in accomplishing
some tasks. As a result, it is entirely possible that repeated use of some paradigm will
not result in the design of a more usable system. The derivation of principles and 
theoretical models for interaction has often arisen out of a need to explain why 
a paradigm is successful and when it might not be. Principles can provide the
repeatability that paradigms in themselves cannot provide. However, in defining
these principles, it is all too easy to provide general and abstract definitions that are
not very helpful to the designer. Therefore, the future of interactive system design
relies on a complementary approach. The creativity that gives rise to new paradigms
should be strengthened by the development of a theory that provides principles to
support the paradigm in its repeated application. We will consider such principles
and design rules in detail in Chapter 7 and more theoretical perspectives in Part 3.

EXERCISES

4.1. Choose one of the people mentioned in this chapter, or another important figure in
the history of HCI, and create a web page biography on them. Try to get at least one picture of
your subject, and find out about their life and work, with particular reference to their contribu-
tion to HCI.

4.2. Choose one paradigm of interaction and find three specific examples of it, not included in this
chapter. Compare these three – can you identify any general principles of interaction that are
embodied in each of your examples (see Chapter 7 for example principles)?

4.3. What new paradigms do you think may be significant in the future of interactive computing?

4.4. A truly ubiquitous computing experience would require the spread of computational capabilities
literally everywhere. Another way to achieve ubiquity is to carry all of your computational needs
with you everywhere, all the time. The field of wearable computing explores this interaction
paradigm. How do you think the first-person emphasis of wearable computing compares with the
third-person, or environmental, emphasis of ubiquitous computing? What impact would there be
on context-aware computing if all of the sensors were attached to the individual instead of embed-
ded in the environment?
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DESIGN PROCESS

In this part, we concentrate on how design practice
addresses the critical feature of an interactive system –
usability from the human perspective. The chapters in 
this part promote the purposeful design of more usable
interactive systems. We begin in Chapter 5 by introducing
the key elements in the interaction design process. These
elements are then expanded in later chapters.

Chapter 6 discusses the design process in more detail,
specifically focussing on the place of user-centered design
within a software engineering framework. Chapter 7 high-
lights the range of design rules that can help us to specify
usable interactive systems, including abstract principles,
guidelines and other design representations.

In Chapter 8, we provide an overview of implementa-
tion support for the programmer of an interactive system.
Chapter 9 is concerned with the techniques used to evalu-
ate the interactive system to see if it satisfies user needs.
Chapter 10 discusses how to design a system to be univer-
sally accessible, regardless of age, gender, cultural background
or ability. In Chapter 11 we discuss the provision of user
support in the form of help systems and documentation.

P A R T
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INTERACTION DESIGN

BASICS

OV E RV I E W

Interaction design is about creating interventions in often
complex situations using technology of many kinds including PC
software, the web and physical devices.

n Design involves:
– achieving goals within constraints and trade-off between

these
– understanding the raw materials: computer and human
– accepting limitations of humans and of design.

n The design process has several stages and is iterative and
never complete.

n Interaction starts with getting to know the users and their
context:
– finding out who they are and what they are like . . .

probably not like you!
– talking to them, watching them.

n Scenarios are rich design stories, which can be used and
reused throughout design:
– they help us see what users will want to do
– they give a step-by-step walkthrough of users’ interactions:

including what they see, do and are thinking.

n Users need to find their way around a system. This involves:
– helping users know where they are, where they have been

and what they can do next
– creating overall structures that are easy to understand and

fit the users’ needs
– designing comprehensible screens and control panels.

n Complexity of design means we don’t get it right first time:
– so we need iteration and prototypes to try out and

evaluate
– but iteration can get trapped in local maxima, designs that

have no simple improvements, but are not good
– theory and models can help give good start points.

5
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INTRODUCTION

Some of HCI is focussed on understanding: the academic study of the way people
interact with technology. However, a large part of HCI is about doing things and
making things – design.

In this chapter we will think about interaction design. Note that we are not just
thinking about the design of interactive systems, but about the interaction itself. 
An office has just got a new electric stapler. It is connected to the mains electricity
and is hard to move around, so when you want to staple papers together you go 
to the stapler. In the past when someone wanted to staple things they would take 
the stapler to their desk and keep it until someone else wanted it. You might write a
letter, print it, staple it, write the next letter, staple it, and so on. Now you have to
take the letters to be stapled across the office, so instead you write–print, write–print
until you have a pile of things to staple and then take them across. The stapler
influences the whole pattern of interaction.

So, interaction design is not just about the artifact that is produced, whether 
a physical device or a computer program, but about understanding and choosing
how that is going to affect the way people work. Furthermore, the artifacts we give to
people are not just these devices and programs, but also manuals, tutorials, online
help systems. In some cases we may realize that no additional system is required at
all, we may simply suggest a different way of using existing tools.

Because of this it may be better not to think of designing a system, or an artifact,
but to think instead about designing interventions. The product of a design exercise 
is that we intervene to change the situation as it is; we hope, of course, changing it
for the better!

In the next section we will ask ‘what is design?’ which sets the spirit for the rest of
the chapter. Section 5.3 looks at the design process as a whole and this gives a frame-
work for the following sections. Section 5.4 looks at aspects of the requirements-
gathering phase of design focussed on getting to know and understand the user. 
This is followed in Section 5.5 by a look at scenarios, which are a way of recording
existing situations and examining proposed designs. We then look at the details of
designing the overall application structure in Section 5.6 and individual screen
design in Section 5.7. Because design is never perfect first time (or ever!), most inter-
action design involves several cycles of prototyping and evaluation. The chapter ends
with an examination of the limits of this and why this emphasizes the importance of
deep knowledge of more general theories and models of interaction.

This chapter also functions as an introduction to much of Part 2 and Part 3 of this
book. In particular, Section 5.3 puts many of the succeeding chapters into the con-
text of the overall design process. Many of the individual sections of this chapter give
early views, or simple techniques, for issues and areas dealt with in detail later in the
book.

5.1
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WHAT IS DESIGN?

So what is design? A simple definition is:

achieving goals within constraints

This does not capture everything about design, but helps to focus us on certain
things:

Goals What is the purpose of the design we are intending to produce? Who is it
for? Why do they want it? For example, if we are designing a wireless personal
movie player, we may think about young affluent users wanting to watch the lat-
est movies whilst on the move and download free copies, and perhaps wanting to
share the experience with a few friends.

Constraints What materials must we use? What standards must we adopt? How
much can it cost? How much time do we have to develop it? Are there health and
safety issues? In the case of the personal movie player: does it have to withstand
rain? Must we use existing video standards to download movies? Do we need to
build in copyright protection?

Of course, we cannot always achieve all our goals within the constraints. So perhaps
one of the most important things about design is:

Trade-off Choosing which goals or constraints can be relaxed so that others can be
met. For example, we might find that an eye-mounted video display, a bit like
those used in virtual reality, would give the most stable image whilst walking
along. However, this would not allow you to show friends, and might be danger-
ous if you were watching a gripping part of the movie as you crossed the road.

Often the most exciting moments in design are when you get a radically different
idea that allows you to satisfy several apparently contradictory constraints. However,
the more common skill needed in design is to accept the conflict and choose the
most appropriate trade-off. The temptation is to focus on one or other goal and opti-
mize for this, then tweak the design to make it just satisfy the constraints and other
goals. Instead, the best designs are where the designer understands the trade-offs and
the factors affecting them. Paradoxically, if you focus on the trade-off itself the more
radical solutions also become more apparent.

5.2.1 The golden rule of design

Part of the understanding we need is about the circumstances and context of the par-
ticular design problem. We will return to this later in the chapter. However, there are
also more generic concepts to understand. The designs we produce may be different,
but often the raw materials are the same. This leads us to the golden rule of design:

understand your materials

5.2
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In the case of a physical design this is obvious. Look at a chair with a steel frame and
one with a wooden frame. They are very different: often the steel frames are tubular
or thin L or H section steel. In contrast wooden chairs have thicker solid legs. If you
made a wooden chair using the design for a metal one it would break; if you made
the metal one in the design for the wooden one it would be too heavy to move.

For Human–Computer Interaction the obvious materials are the human and the
computer. That is we must:

n understand computers
– limitations, capacities, tools, platforms

n understand people
– psychological, social aspects, human error.

Of course, this is exactly the focus of Chapters 1 and 2. This is why they came first;
we must understand the fundamental materials of human–computer interaction in
order to design. In Chapters 3 and 4 we also looked at the nature of interaction itself.
This is equally important in other design areas. For example, the way you fit seats
and windows into an airplane’s hull affects the safety and strength of the aircraft as
a whole.

5.2.2 To err is human

It might sound demeaning to regard people as ‘materials’, possibly even dehumaniz-
ing. In fact, the opposite is the case: physical materials are treated better in most
designs than people. This is particularly obvious when it comes to failures.

The news headlines: an aircrash claims a hundred lives; an industrial accident
causes millions of pounds’ worth of damage; the discovery of systematic mistreat-
ment leads to thousands of patients being recalled to hospital. Some months later the
public inquiries conclude: human error in the operation of technical instruments.
The phrase ‘human error’ is taken to mean ‘operator error’, but more often than 
not the disaster is inherent in the design or installation of the human interface. Bad
interfaces are slow or error-prone to use. Bad interfaces cost money and cost lives.

People make mistakes. This is not ‘human error’, an excuse to hide behind in 
accident reports, it is human nature. We are not infallible consistent creatures, 
but often make slips, errors and omissions. A concrete lintel breaks and a building
collapses. Do the headlines read ‘lintel error’? No. It is the nature of concrete lintels
to break if they are put under stress and it is the responsibility of architect and engi-
neer to ensure that a building only puts acceptable stress on the lintel. Similarly it is
the nature of humans to make mistakes, and systems should be designed to reduce
the likelihood of those mistakes and to minimize the consequences when mistakes
happen.

Often when an aspect of an interface is obscure and unclear, the response is to add
another line in the manual. People are remarkably adaptable and, unlike concrete
lintels, can get ‘stronger’, but better training and documentation (although necessary)
are not a panacea. Under stress, arcane or inconsistent interfaces will lead to errors.
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If you design using a physical material, you need to understand how and where
failures would occur and strengthen the construction, build in safety features 
or redundancy. Similarly, if you treat the human with as much consideration as a
piece of steel or concrete, it is obvious that you need to understand the way human
failures occur and build the rest of the interface accordingly.

5.2.3 The central message – the user

In this book you will find information on basic psychology, on particular techno-
logies, on methods and models. However, there is one factor that outweighs all 
this knowledge. It is about attitude. Often it is said that the success of the various
methods used in HCI lies not in how good they are, but in that they simply focus the
mind of the designer on the user.

This is the core of interaction design: put the user first, keep the user in the center
and remember the user at the end.

THE PROCESS OF DESIGN

Often HCI professionals complain that they are called in too late. A system has been
designed and built, and only when it proves unusable do they think to ask how to do
it right! In other companies usability is seen as equivalent to testing – checking
whether people can use it and fixing problems, rather than making sure they can
from the beginning. In the best companies, however, usability is designed in from 
the start.

In Chapter 6 we will look in detail at the software development process and how
HCI fits within it. Here we’ll take a simplified view of four main phases plus an 
iteration loop, focussed on the design of interaction (Figure 5.1).

5.3

Figure 5.1 Interaction design process
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Requirements – what is wanted The first stage is establishing what exactly is
needed. As a precursor to this it is usually necessary to find out what is currently
happening. For example, how do people currently watch movies? What sort of
personal appliances do they currently use?

There are a number of techniques used for this in HCI: interviewing people,
videotaping them, looking at the documents and objects that they work with,
observing them directly. We don’t have a chapter dedicated to this, but aspects
will be found in various places throughout the book. In particular, ethnography,
a form of observation deriving from anthropology, has become very influential
and is discussed in Chapter 13. We will look at some ways of addressing this stage
in Section 5.4.

Analysis The results of observation and interview need to be ordered in some way
to bring out key issues and communicate with later stages of design. Chapter 15
and part of Chapter 18 deal with task models, which are a means to capture how
people carry out the various tasks that are part of their work and life. In this chap-
ter (Section 5.5), we will look at scenarios, rich stories of interaction, which can
be used in conjunction with a method like task analysis or on their own to record
and make vivid actual interaction. These techniques can be used both to represent
the situation as it is and also the desired situation.

Design Well, this is all about design, but there is a central stage when you move
from what you want, to how to do it. There are numerous rules, guidelines and
design principles that can be used to help with this and Chapter 7 discusses these
in detail; whilst Chapter 10 looks at how to design taking into account many dif-
ferent kinds of user. We need to record our design choices in some way and there
are various notations and methods to do this, including those used to record the
existing situation. Chapters 16, 17 and 18 deal with ways of modeling and describ-
ing interaction. In this chapter, Section 5.6 will look at some simple notations 
for designing navigation within a system and some basic heuristics to guide the
design of that navigation. Section 5.7 will look more closely at the layout of indi-
vidual screens. It is at this stage also where input from theoretical work is most
helpful, including cognitive models, organizational issues and understanding
communication (Chapters 12, 13 and 14).

Iteration and prototyping Humans are complex and we cannot expect to get
designs right first time. We therefore need to evaluate a design to see how well 
it is working and where there can be improvements. We will discuss some 
techniques for evaluation in Chapter 9. Some forms of evaluation can be done
using the design on paper, but it is hard to get real feedback without trying it 
out. Most user interface design therefore involves some form of prototyping, 
producing early versions of systems to try out with real users. We’ll discuss this 
in Section 5.8.

Implementation and deployment Finally, when we are happy with our design, 
we need to create it and deploy it. This will involve writing code, perhaps making
hardware, writing documentation and manuals – everything that goes into a real 
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system that can be given to others. Chapter 8 will deal with software architec-
tures for user interfaces and there are details about implementing groupware in
Chapter 19 and web interfaces in Chapter 21.

If you read all the chapters and look at all the techniques you might think 
‘help! how can I ever do all this?’. Of course the answer is you can’t. Your time is 
limited – there is a trade-off between the length of the design period and the 
quality of the final design. This means one sometimes has to accept a design as final
even if it is not perfect: it is often better to have a product that is acceptable but on
time and to cost than it is to have one that has perfect interaction but is late and 
over budget.

It is easy to think that the goal, especially of the iterative stages, is to find usability
problems and fix them. As you experience real designs, however, you soon find that
the real problem is not to find faults – that is easy; nor to work out how to fix them
– that may not be too difficult; instead the issue is: which usability problems is it
worth fixing?

In fact, if you ever come across a system that seems to be perfect it is a badly
designed system – badly designed not because the design is bad, but because too
much effort will have been spent in the design process itself. Just as with all trade-
offs, it may be possible to find radically different solutions that have a major effect
but are cheap to implement. However, it is best not to plan assuming such bolts of
inspiration will strike when wanted!

USER FOCUS

As we’ve already said, the start of any interaction design exercise must be the
intended user or users. This is often stated as:

know your users

Because this sounds somewhat like a commandment it is sometimes even written
‘know thy user’ (and originally ‘know the user’ [162]). Note, too, a little indecision
about user/users – much of traditional user interface design has focussed on a single
user. We will discuss issues of collaboration extensively in Chapters 13 and 19, but
even at this stage it is important to be aware that there is rarely one user of a system.
This doesn’t mean that every system is explicitly supporting collaboration like email
does. However, almost every system has an impact beyond the person immediately
using it.

Think about a stock control system. The warehouse manager queries the system
to find out how many six-inch nails are in stock – just a single user? Why did he do
this? Perhaps a salesperson has been asked to deliver 100,000 six-inch nails within a
fortnight and wants to know if the company is able to fulfill the order in time. So the
act of looking at the stock control system involves the warehouse manager, the sales-
person and the client. The auditors want to produce a valuation of company assets

5.4
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including stock in hand, the assistant warehouse manager needs to update the stock
levels while his boss is on holiday.

Over time many people are affected directly or indirectly by a system and these
people are called stakeholders (see also Chapter 13). Obviously, tracing the tenuous
links between people could go on for ever and you need to draw boundaries as to
whom you should consider. This depends very much on the nature of the systems
being designed, but largely requires plain common sense.

So, how do you get to know your users?

n Who are they?

Of course, the first thing to find out is who your users are. Are they young or old,
experienced computer users or novices? As we saw with the stock control system, it
may not be obvious who the users are, so you may need to ask this question again as
you find out more about the system and its context. This question becomes harder
to answer if you are designing generic software, such as a word processor, as there are
many different users with different purposes and characteristics. A similar problem
arises with many websites where the potential visitors are far from homogenous. 
It may be tempting to try to think of a generic user with generic skills and generic
goals; however, it is probably better, either instead or in addition, to think of several
specific users.

n Probably not like you!

When designing a system it is easy to design it as if you were the main user: you
assume your own interests and abilities. So often you hear a designer say ‘but 
it’s obvious what to do’. It may be obvious for her! This is not helped by the fact 
that many software houses are primarily filled with male developers. Although 
individuals differ a lot there is a tendency for women to have better empathetic 
skills.

n Talk to them.

It is hard to get yourself inside someone else’s head, so the best thing is usually to 
ask them. This can take many forms: structured interviews about their job or life,
open-ended discussions, or bringing the potential users fully into the design process.
The last of these is called participatory design (see Chapter 13, Section 13.3.4). By
involving users throughout the design process it is possible to get a deep knowledge
of their work context and needs. The obvious effect of this is that it produces better
designs. However, there is a second motivational effect, perhaps at least as important
as the quality of the design. By being involved, users come to ‘own’ the design and
become champions for it once deployed. Recall that a system must be not only use-
ful and usable, but also used.

People may also be able to tell you about how things really happen, not just how
the organization says they should happen. To encourage users to tell you this, you
will need to win their trust, since often the actual practices run counter to corporate
policy. However it is typically these ad hoc methods that make organizations work,
not the official story!
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n Watch them.

Although what people tell you is of the utmost importance, it is not the whole 
story.

When black-belt judo players are asked how they throw an opponent, their explana-
tions do not match what they actually do. Think about walking – how do your legs
and arms move? It is harder than you would think! Although people have run since
the earliest times, it was only with Eadweard Muybridge’s pioneering time-lapse
photography in the 1870s that the way people actually walk, run and move became
clear (see Figure 5.2). This is even more problematic with intellectual activities as it
is notoriously difficult to introspect.

A professional in any field is very practiced and can do things in the domain. An
academic in the same field may not be able to do things, but she knows about the
things in the domain. These are different kinds of knowledge and skill. Sometimes
people know both, but not necessarily so. The best sports trainers may not be the best
athletes, the best painters may not be the best art critics.

Because of this it is important to watch what people do as well as hear what they
say. This may involve sitting and taking notes of how they spend a day, watching 
particular activities, using a video camera or tape recorder. It can be done in an
informal manner or using developed methods such as ethnography or contextual
inquiry, which we will discuss in Chapter 13.

Sometimes users can be involved in this; for example, asking them to keep a diary
or having a 15-minute buzzer and asking them to write down what they are doing
when the buzzer sounds. Although this sounds just like asking the users what they
do, the structured format helps them give a more accurate answer.

Another way to find out what people are doing is to look at the artifacts they are
using and creating. Look at a typical desk in an office. There are papers, letters, files,
perhaps a stapler, a computer, sticky notes . . . Some of these carry information, but
if they were only important for the information in them they could equally well be

Figure 5.2 Eadweard Muybridge’s time-lapse photography. Source for top plate 
and middle plate: Kingston Museum and Heritage Service; source for bottom plate:
V&A Images, The Victoria and Albert Museum, London
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in the filing cabinet and just taken out when needed. The sticky note on the edge of
Brian’s screen saying ‘book table’ is not just information that he needs to book a
restaurant table. The fact that it is on his screen is reminding him that something
needs to be done. In Chapter 18 we will look at the role of artifacts in detail.

DESIGN FOCUS

Cultural probes

Traditional ethnography has involved watching people and being present. There is always a disruptive
effect when someone is watching, but in, say, an office, after a while the ethnographer becomes ‘part
of the wallpaper’ and most activities carry on as normal. However, in some environments, for example
the home or with psychiatric patients, it is hard to go and watch people for long periods if at all.
Cultural probes have been used as one way to gather rich views of an area without intrusion. These
were originally developed as prompts for design [146], but have also been adopted as an added method
for ethnography [170].

Source: Photograph courtesy of William W. Gaver

Cultural probes are small packs of items designed to provoke and record comments in various ways.
They are given to people to take away and to open and use in their own environment. For example,
one probe pack for the domestic environment includes a glass with a paper sleeve. You use the glass
to listen to things and then write down what you hear. The same probe pack contains a repackaged
disposable camera and a small solid-state voice recorder. When the packs are returned, the notes,
recordings, photos, etc., are used as a means of understanding what is significant and important for the
people in the environment and as a means of enculturing designers.

For more see /e3/online/cultural-probes/ and www.crd.rca.ac.uk/equator/domestic_probes.html
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In all these observational methods one should not just stop at the observation, but
go back and discuss the observations with the users. Even if they were not previously
aware of what they were doing, they are likely to be able to explain when shown. The
observations tell you what they do, they will tell you why.

n Use your imagination.

Even if you would like to involve many users throughout your design exercise this
will not always be possible. It may be too costly, it may be hard to get time with them
(e.g. hospital consultant), it may be that there are just too many (e.g. the web).
However, even if you cannot involve actual users you can at least try to imagine their
experiences.

Now this is very dangerous! It would be easy to think, ‘if I were a warehouse man-
ager I would do this’. The issue is not what you would do in the user’s shoes but what
they would do. This requires almost a kind of method acting. Imagine being a ware-
house manager. What does the word ‘undo’ in the menu mean to him?

One method that has been quite successful in helping design teams produce user-
focussed designs is the persona. A persona is a rich picture of an imaginary person
who represents your core user group. Figure 5.3 gives an example persona of Betty
the warehouse manager. A design team will have several of these personae covering
different types of intended users and different roles. The personae will themselves be
based on studies of actual users, observation, etc. When a design solution is proposed
the team can ask, ‘how would Betty react to this?’. The detail is deliberately more
than is strictly necessary, but this is essential. It is only by feeling that Betty is a real
person that the team can start to imagine how she will behave.

SCENARIOS

Scenarios are stories for design: rich stories of interaction. They are perhaps the 
simplest design representation, but one of the most flexible and powerful. Some scen-
arios are quite short: ‘the user intends to press the “save” button, but accidentally

5.5

Betty is 37 years old. She has been Warehouse Manager for five years and has worked
for Simpkins Brothers Engineering for 12 years. She didn’t go to university, but has
studied in her evenings for a business diploma. She has two children aged 15 and 7 and
does not like to work late. She did part of an introductory in-house computer course
some years ago, but it was interrupted when she was promoted and could no longer
afford to take the time. Her vision is perfect, but her right-hand movement is slightly
restricted following an industrial accident three years ago. She is enthusiastic about 
her work and is happy to delegate responsibility and take suggestions from her staff.
However, she does feel threatened by the introduction of yet another new computer
system (the third in her time at SBE).

Figure 5.3 Persona – a rich description of Betty the Warehouse Manager
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presses the “quit” button so loses his work’. Others are focussed more on describing
the situation or context.

Figure 5.4 gives an example of a scenario for the personal movie player. Like the
persona it is perhaps more detailed than appears necessary, but the detail helps make
the events seem real. The figure shows plain text, but scenarios can be augmented by
sketches, simulated screen shots, etc. These sketches and pictures are called story-
boards and are similar to the techniques used in film making to envisage plot-lines.

Where the design includes physical artifacts the scenarios can be used as a script
to act out potential patterns of use. For example, we might imagine a digital Swiss
army knife, which has a small LCD screen and uses the toothpick as a stylus. 
The knife connects to the internet via a wireless link through your phone and gives
interesting tips from other Swiss army knife users. Try getting two together at a party
– you will see this would appeal! It sounds like a great design idea – but wait, try act-
ing out the use. If you have a Swiss army knife, use it, or use something penknife-
sized if you don’t. The tip on the LCD says, ‘open the stone remover’: a small LED
glows near the right blade – you open it. ‘Now push the blade into the rubber of the
grommet’, it says. You do this and then look for the next instruction. Look at the
knife in your hand . . . oops, your thumb is covering where the screen would be.
Perhaps a voice interface would be better.

You can see already how scenarios force you to think about the design in detail
and notice potential problems before they happen. If you add more detail you can
get to a blow-by-blow account of the user–system interactions and then ask ‘what is
the user intending now?’; ‘what is the system doing now?’. This can help to verify that

Brian would like to see the new film Moments of Significance and wants to invite Alison,
but he knows she doesn’t like ‘arty’ films. He decides to take a look at it to see if she
would like it and so connects to one of the movie-sharing networks. He uses his work
machine as it has a higher bandwidth connection, but feels a bit guilty. He knows he 
will be getting an illegal copy of the film, but decides it is OK as he is intending to 
go to the cinema to watch it. After it downloads to his machine he takes out his new
personal movie player. He presses the ‘menu’ button and on the small LCD screen he
scrolls using the arrow keys to ‘bluetooth connect’ and presses the ‘select’ button. 
On his computer the movie download program now has an icon showing that it has
recognized a compatible device and he drags the icon of the film over the icon for the
player. On the player the LCD screen says ‘downloading now’, with a per cent done
indicator and small whirling icon.

During lunchtime Brian takes out his movie player, plugs in his earphones and starts 
to watch. He uses the arrow keys to skip between portions of the film and decides that,
yes, Alison would like it. Then he feels a tap on his shoulder. He turns round. It is Alison.
He had been so absorbed he hadn’t noticed her. ‘What are you watching’, she says. ‘Here,
listen’, he says and flicks a small switch. The built-in directional speaker is loud enough
for both Brian and Alison to hear, but not loud enough to disturb other people in the
canteen. Alison recognizes the film from trailers, ‘surprised this is out yet’ she says. ‘Well
actually . . .’, Brian confesses, ‘you’d better come with me to see it and make an honest
man of me’. ‘I’ll think about it’, she replies.

Figure 5.4 Scenario for proposed movie player
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the design would make sense to the user and also that proposed implementation
architectures would work.

In addition scenarios can be used to:

Communicate with others – other designers, clients or users. It is easy to misunder-
stand each other whilst discussing abstract ideas. Concrete examples of use are far
easier to share.

Validate other models A detailed scenario can be ‘played’ against various more
formal representations such as task models (discussed in Chapter 15) or dialog
and navigation models (Chapter 16 and below).

Express dynamics Individual screen shots and pictures give you a sense of what a
system would look like, but not how it behaves.

In the next section we will discuss ways of describing the patterns of interaction 
with a system. These are more complex and involve networks or hierarchies. In 
contrast scenarios are linear – they represent a single path amongst all the potential
interactions.

This linearity has both positive and negative points:

Time is linear Our lives are linear as we live in time and so we find it easier to
understand simple linear narratives. We are natural storytellers and story listeners.

But no alternatives Real interactions have choices, some made by people, some by
systems. A simple scenario does not show these alternative paths. In particular, it
is easy to miss the unintended things a person may do.

Scenarios are a resource that can be used and reused throughout the design pro-
cess: helping us see what is wanted, suggesting how users will deal with the potential
design, checking that proposed implementations will work, and generating test cases
for final evaluation.

For more examples of scenarios see: /e3/online/scenario/

NAVIGATION DESIGN

As we stressed, the object of design is not just a computer system or device, but the
socio-technical intervention as a whole. However, as design progresses we come to a
point where we do need to consider these most tangible outputs of design.

Imagine yourself using a word processor. You will be doing this in some particu-
lar social and physical setting, for a purpose. But now we are focussing on the com-
puter system itself. You interact at several levels:

Widgets The appropriate choice of widgets and wording in menus and buttons will
help you know how to use them for a particular selection or action.

Screens or windows You need to find things on the screen, understand the logical
grouping of buttons.

5.6
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Navigation within the application You need to be able to understand what will
happen when a button is pressed, to understand where you are in the interaction.

Environment The word processor has to read documents from disk, perhaps some
are on remote networks. You swap between applications, perhaps cut and paste.

You can see similar levels in other types of application and device, as Table 5.1 shows.
There are differences; for example, in the web we have less control of how people
enter a site and on a physical device we have the same layout of buttons and displays
no matter what the internal state (although we may treat them differently).

We discussed graphical user interface widgets in Chapter 3 and in the next section
we will look at details of screen design. In this section we will look mainly at naviga-
tion design, that is the main screens or modes within a system and how they inter-
connect. We will also briefly consider how this interacts with the wider environment.

Just in case you haven’t already got the idea, the place to start when considering
the structure of an application is to think about actual use:

n who is going to use the application?
n how do they think about it?
n what will they do with it?

This can then drive the second task – thinking about structure. Individual screens or
the layout of devices will have their own structure, but this is for the next section.
Here we will consider two main kinds of issue:

n local structure
– looking from one screen or page out

n global structure
– structure of site, movement between screens.

5.6.1 Local structure

Much of interaction involves goal-seeking behavior. Users have some idea of what
they are after and a partial model of the system. In an ideal world if users had perfect
knowledge of what they wanted and how the system worked they could simply 
take the shortest path to what they want, pressing all the right buttons and links.
However, in a world of partial knowledge users meander through the system. The

Table 5.1 Levels of interaction

PC application

Widgets
Screen design
Navigation design
Other apps and 
operating system

Physical device

Buttons, dials, lights, displays
Physical layout
Main modes of device
The real world!

Website

Form elements, tags and links
Page design
Site structure
The web, browser, 
external links
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important thing is not so much that they take the most efficient route, but that 
at each point in the interaction they can make some assessment of whether they are
getting closer to their (often partially formed) goal.

To do this goal seeking, each state of the system or each screen needs to give the
user enough knowledge of what to do to get closer to their goal. In Chapter 7 we will
look at various design rules, some of which address this issue. To get you started,
here are four things to look for when looking at a single web page, screen or state of
a device.

n knowing where you are
n knowing what you can do
n knowing where you are going – or what will happen
n knowing where you’ve been – or what you’ve done.

The screen, web page or device displays should make clear where you are in terms 
of the interaction or state of the system. Some websites show ‘bread crumbs’ at the
top of the screen, the path of titles showing where the page is in the site (Figure 5.5).
Similarly, in the scenario in Figure 5.4, the personal movie player says ‘downloading
now’, so Brian knows that it is in the middle of downloading a movie from the PC.

It is also important to know what you can do – what can be pressed or clicked to go
somewhere or do something. Some web pages are particularly bad in that it is unclear
which images are pure decoration and which are links to take you somewhere.

On the web the standard underlined links make it clear which text is clickable and
which is not. However, in order to improve the appearance of the page many sites
change the color of links and may remove the underline too. This is especially con-
fusing if underline is then used as simple emphasis on words that are not links! The

Figure 5.5 Breadcrumbs. Screen shot frame reprinted by permission from
Microsoft Corporation
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trade-off between appearance and ease of use may mean that this is the right thing
to do, but you should take care before confusing the user needlessly.

Chic design is also a problem in physical devices. One of the authors was once in
a really high-class hotel and found he could not locate the flush in the toilet. Only after
much fumbling did he discover that one of the tiles could be pressed. The ‘active’ tile
was level with the rest of the tiled wall – a very clean design, but not very usable!

You then need to know where you are going when you click a button or what 
will happen. Of course you can try clicking the button to see. In the case of a website
or information system this may mean you then have to use some sort of ‘back’ mech-
anism to return, but that is all; however, in an application or device the action 
of clicking the button may already have caused some effect. If the system has an easy
means to undo or reverse actions this is not so bad, but it is better if users do 
not have to use this ‘try it and see’ interaction. Where response times are slow this is
particularly annoying.

Remember too that icons are typically not self-explanatory and should always be ac-
companied by labels or at the very least tooltips or some similar technique. A picture
paints a thousand words, but typically only when explained first using fifteen hundred!

DESIGN FOCUS

Beware the big button trap

Public information systems often have touchscreens and so have large buttons. Watch someone using
one of these and see how often they go to the wrong screen and have to use ‘back’ or ‘home’ to try
again. If you look more closely you will find that each button has only one or two words on it giving
the title of the next screen, and possibly some sort of icon. Quite rightly, the button label will be in a
large font as users may have poor eyesight.

It is hard to choose appropriate labels that mean the same for everyone, especially when the breadth
of the screen hierarchy is fixed by the maximum number of buttons. So it is no wonder that people 
get confused. However, there is usually plenty of room for additional explanation in a smaller font, 
possibly just the next level of button labels, or a sentence of explanation. It may not look as pretty, but
it may mean that people actually find the information they are looking for.



Special care has to be taken if the same command or button press means some-
thing different in different contexts. These different contexts that change the inter-
pretation of commands are called modes. Many older text editors would interpret
pressing ‘x’ to mean ‘enter me into the text’ in a normal typing mode, but ‘exit’ in a
special command mode. If modes are clearly visible or audible this is less of a prob-
lem and in Chapter 3 (Section 3.6.7) we saw how palettes are one way to achieve this.
In general, modes are less of a problem in windowed systems where the mode is
made apparent by the current window (if you remember which it is). However,
physical devices may have minimal displays and may be operated without visual
attention.

Finally, if you have just done some major action you also want some sort of
confirmation of what you’ve done. If you are faultless and have perfect knowledge, 
of course you will be sure that you have hit the right key and know exactly what 
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DESIGN FOCUS

Modes

Alan’s mobile phone has a lock feature to prevent accidental use. To remove the lock he has to press
the ‘C’ (cancel) button which then asks for an additional ‘yes’ to confirm removing the lock. So, in
‘locked’ mode, ‘C’ followed by ‘yes’ means ‘turn off lock’ and these are the most frequent actions when
Alan takes the phone from his pocket.

However, Alan is forgetful and sometimes puts the phone in his pocket unlocked. This leads to occa-
sional embarrassing phone calls and also to another problem.

The ‘yes’ button is quite big and so this is often pressed while in his pocket. This puts the phone into
‘dial recent numbers’ mode with a list of recent calls on screen. In this mode, pressing ‘C’ gives a
prompt ‘delete number’ and pressing ‘yes’ then deletes the number from the phone’s address book.
Unhappily, this often means he takes the phone from his pocket, automatically presses ‘C’, ‘yes’ only to
see as he looks down to the handset the fatal words ‘number deleted’. Of course there is no undo!



will happen. Remember, too, that to know what will happen, you would need to
know everything about the internal state of the system and things outside, like the
contents of files, networked devices, etc., that could affect it. In other words, if you
were omniscient you could do it. For lesser mortals the system needs to give some
feedback to say what has happened.

In an information system, there is a related but slightly different issue, which is to
know where you have been. This helps you to feel in control and understand your
navigation of the information space. The feeling of disorientation when you do not
have sufficient means to know where you are and where you have been has been
called ‘lost in hyperspace’. Most web browsers offer a history system and also a ‘back’
button that keeps a list of recently visited pages.

5.6.2 Global structure – hierarchical organization

We will now look at the overall structure of an application. This is the way the 
various screens, pages or device states link to one another.

One way to organize a system is in some form of hierarchy. This is typically 
organized along functional boundaries (that is, different kinds of things), but may 
be organized by roles, user type, or some more esoteric breakdown such as modules
in an educational system.

The hierarchy links screens, pages or states in logical groupings. For example,
Figure 5.6 gives a high-level breakdown of some sort of messaging system. This 
sort of hierarchy can be used purely to help during design, but can also be used 
to structure the actual system. For example, this may reflect the menu structure of 
a PC application or the site structure on the web.
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Figure 5.6 Application functional hierarchy
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Any sort of information structuring is difficult, but there is evidence that people
find hierarchies simpler than most. One of the difficulties with organizing informa-
tion or system functionality is that different people have different internal structures
for their knowledge, and may use different vocabulary. This is one of the places
where a detailed knowledge of the intended users is essential: it is no good creating a
hierarchy that the designers understand, but not the users . . . and all too commonly
this is exactly what happens.

However much you think you have got the wording and categories right, because
there are different users it is inevitable that not everyone will understand it perfectly.
This is where clear guidance as suggested in Section 5.6.1 (knowing where you are
going – or what will happen) is essential, as well as the means to allow users to change
their mind if they make the wrong decisions.

There is also evidence that deep hierarchies are difficult to navigate, so it is 
better to have broad top-level categories, or to present several levels of menu on one
screen or web page. Miller’s magic number of 7 ± 2 for working memory capacity
(see Chapter 1, Section 1.3.2) is often misused in this context. Many guidelines 
suggest that menu breadth, that is the number of choices available at each level in 
the menu, should be around seven. However, Miller’s result applies only to working
memory, not visual search. In fact, optimal breadth can be quite large, perhaps 60 
or more items for a web index page if the items are organized in such a way that 
the eye can easily find the right one [206]. (See /e3/online/menu-breadth/ for more
on optimal menu breadth.) Of course, to organize the items on the page requires 
further classification. However, here the critical thing is the naturalness of the
classification, which itself may depend on the user’s purpose. For example, if the 
user wants to look up information on a particular city, an alphabetical list of all 
city names would be fast, but for other purposes a list by region would be more
appropriate.

5.6.3 Global structure – dialog

In a pure information system or static website it may be sufficient to have a fully 
hierarchical structure, perhaps with next/previous links between items in the same
group. However, for any system that involves doing things, constantly drilling down
from one part of the hierarchy to another is very frustrating. Usually there are ways
of getting more quickly from place to place. For example, in a stock control system
there may be a way of going from a stock item to all orders outstanding on that item
and then from an order to the purchase record for the customer who placed the
order. These would each be in a very different part of a hierarchical view of the 
application, yet directly accessible from one another.

As well as these cross-links in hierarchies, when you get down to detailed interac-
tions, such as editing or deleting a record, there is obviously a flow of screens and
commands that is not about hierarchy. In HCI the word ‘dialog’ is used to refer to
this pattern of interactions between the user and a system.
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Consider the following fragment from a marriage service:

Minister: Do you name take this woman . . .
Man: I do
Minister: Do you name take this man . . .
Woman: I do
Minister: I now pronounce you man and wife

Notice this describes the general flow of the service, but has blanks for the names of
the bride and groom. So it gives the pattern of the interaction between the parties,
but is instantiated differently for each service. Human–computer dialog is just the
same; there are overall patterns of movement between main states of a device or 
windows in a PC application, but the details differ each time it is run.

Recall that scenarios gave just one path through the system. To describe a full 
system we need to take into account different paths through a system and loops
where the system returns to the same screen. There are various ways to do this, and
in Chapter 16 we will expand on the wedding example and look at several different
types of dialog model.

A simple way is to use a network diagram showing the principal states or screens
linked together with arrows. This can:

n show what leads to what
n show what happens when
n include branches and loops
n be more task oriented than a hierarchy.

Figure 5.7 shows a network diagram illustrating the main screens for adding or delet-
ing a user from the messaging system in Figure 5.6. The arrows show the general flow
between the states. We can see that from the main screen we can get to either the
‘remove user’ screen or the ‘add user’ screen. This is presumably by selecting buttons
or links, but the way these are shown we leave to detailed screen design. We can also
see that from the ‘add user’ screen the system always returns to the main screen, but
after the ‘remove user’ screen there is a further confirmation screen.

Figure 5.7 Network of screens/states
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5.6.4 Wider still

Donne said ‘No man is an Iland, intire of it selfe’. This is also true of the things we
design. Each sits amongst other devices and applications and this in turn has to be
reflected within our design.

This has several implications:

Style issues We should normally conform to platform standards, such as positions
for menus on a PC application, to ensure consistency between applications. For
example, on our proposed personal movie player we should make use of standard
fast-forward, play and pause icons.

Functional issues On a PC application we need to be able to interact with files, read
standard formats and be able to handle cut and paste.

Navigation issues We may need to support linkages between applications, for 
example allowing the embedding of data from one application in another, or, in
a mail system, being able to double click an attachment icon and have the right
application launched for the attachment.

On the web we have the added difficulty that other sites and applications may
include links that bypass our ‘home page’ and other pages and go direct into the heart
of our site or web application. Also, when we link to other sites, we have no control
over them or the way their content may change over time.

SCREEN DESIGN AND LAYOUT

We have talked about the different elements that make up interactive applications,
but not about how we put them together. A single screen image often has to present
information clearly and also act as the locus for interacting with the system. This is
a complex area, involving some of the psychological understanding from Chapter 1
as well as aspects of graphical design.

The basic principles at the screen level reflect those in other areas of interaction
design:

Ask What is the user doing?

Think What information is required? What comparisons may the user need to
make? In what order are things likely to be needed?

Design Form follows function: let the required interactions drive the layout.

5.7.1 Tools for layout

We have a number of visual tools available to help us suggest to the user appropriate
ways to read and interact with a screen or device.

5.7



212 Chapter 5 n Interaction design basics

Grouping and structure

If things logically belong together, then we should normally physically group them
together. This may involve multiple levels of structure. For example, in Figure 5.8 we
can see a potential design for an ordering screen. Notice how the details for billing
and delivery are grouped together spatially; also note how they are separated from
the list of items actually ordered by a line as well as spatially. This reflects the fol-
lowing logical structure:

Order:
Administrative information

Billing details
Delivery details

Order information
Order line 1
Order line 2
. . .

Order of groups and items

If we look at Figure 5.8 again we can see that the screen seems to naturally suggest
reading or filling in the billing details first, followed by the delivery details, followed
by the individual order items. Is this the right order?

In general we need to think: what is the natural order for the user? This should
normally match the order on screen. For data entry forms or dialog boxes we should
also set up the order in which the tab key moves between fields.

Occasionally we may also want to force a particular order; for example we may
want to be sure that we do not forget the credit card details!

Decoration

Again looking at Figure 5.8, we can see how the design uses boxes and a separating
line to make the grouping clear. Other decorative features like font style, and text or
background colors can be used to emphasize groupings. Look at the microwave control

Figure 5.8 Grouping related items in an order screen
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panel in Figure 5.9. See how the buttons differ in using the foreground and back-
ground colors (green and gold) so that groups are associated with one another. See
also how the buttons are laid out to separate them into groups of similar function.

Alignment

Alignment of lists is also very important. For users who read text from left to right,
lists of text items should normally be aligned to the left. Numbers, however, should

Figure 5.9 Microwave control panel
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normally be aligned to the right (for integers) or at the decimal point. This is because
the shape of the column then gives an indication of magnitude – a sort of mini-
histogram. Items like names are particularly difficult. Consider list (i) in Figure 5.10.
It is clearly hard to look someone up if you only know their surname. To make 
it easy, such lists should be laid out in columns as in (ii), or have forename and 
surname reversed as in (iii). (The dates in Figure 5.13, Section 5.7.3, pose similar
problems, as the years do not align, even when the folder is sorted by date.)

Figure 5.10 Looking up surnames

DESIGN FOCUS

Alignment and layout matter

Look quickly at these two columns of numbers and try to find the biggest number in each column.

532.56 627.865
179.3 1.005763

256.317 382.583
15 2502.56

73.948 432.935
1035 2.0175
3.142 652.87

497.6256 56.34

Multiple column lists require more care. Text columns have to be wide enough for
the largest item, which means you can get large gaps between columns. Figure 5.11
shows an example of this (i), and you can see how hard this makes it for your eye to
scan across the rows. There are several visual ways to deal with this including: (ii)
‘leaders’ – lines of dots linking the columns; and (iii) using soft tone grays or colors
behind rows or columns. This is also a time when it may be worth breaking other
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alignment rules, perhaps right aligning some text items as in (iv). This last alternat-
ive might be a good solution if you were frequently scanning the numbers and only
occasionally scanning the names of items, but not if you needed frequently to look
up names (which anyway are not sorted in this figure!). You can also see that this is
an example of a design trade-off – good alignment for individual columns versus
ability to see relationship across rows.

White space

In typography the space between the letters is called the counter. In painting this is
also important and artists may focus as much on the space between the foreground
elements such as figures and buildings as on the elements themselves. Often the
shape of the counter is the most important part of the composition of a painting and
in calligraphy and typography the balance of a word is determined by giving an even
weight to the counters. If one ignores the ‘content’ of a screen and instead concen-
trates on the counter – the space between the elements – one can get an overall feel
for the layout. If elements that are supposed to be related look separate when you
focus on the counter, then something is wrong. Screwing up your eyes so that the
screen becomes slightly blurred is another good technique for taking your attention
away from the content and looking instead at the broad structure.

Space can be used in several ways. Some of these are shown in Figure 5.12. The 
colored areas represent continuous areas of text or graphics. In (i) we can see space
used to separate blocks as you often see in gaps between paragraphs or space between 
sections in a report. Space can also be used to create more complex structures. In 
(ii) there are clearly four main areas: ABC, D, E and F. Within one of these are three
further areas, A, B and C, which themselves are grouped as A on its own, followed by
B and C together. In Figure 5.12 (iii), we can see space used to highlight. This is a
technique used frequently in magazines to highlight a quote or graphic.

Figure 5.11 Managing multiple columns
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5.7.2 User action and control

Entering information

Some of the most complicated and difficult screen layouts are found in forms-based
interfaces and dialog boxes. In each case the screen consists not only of information
presented to the user, but also of places for the user to enter information or select
options. Actually, many of the same layout issues for data presentation also apply to
fields for data entry. Alignment is still important. It is especially common to see the
text entry boxes aligned in a jagged fashion because the field names are of different
lengths. This is an occasion where right-justified text for the field labels may be best
or, alternatively, in a graphical interface a smaller font can be used for field labels and
the labels placed just above and to the left of the field they refer to.

For both presenting and entering information a clear logical layout is important.
The task analysis techniques in Chapter 15 can help in determining how to group
screen items and also the order in which users are likely to want to read them or fill
them in. Knowing also that users are likely to read from left to right and top to bot-
tom (depending on their native language!) means that a screen can be designed so
that users encounter items in an appropriate order for the task at hand.

Knowing what to do

Some elements of a screen are passive, simply giving you information; others are
active, expecting you to fill them in, or do something to them. It is often not even
clear which elements are active, let alone what the effect is likely to be when you
interact with them!

This is one of the reasons for platform and company style guides. If everyone
designs buttons to look the same and menus to look the same, then users will be able
to recognize them when they see them. However, this is not sufficient in itself. It is
important that the labels and icons on menus are also clear. Again, standards can
help for common actions such as save, delete or print. For more system-specific
actions, one needs to follow broader principles. For example, a button says ‘bold’:
does this represent the current state of a system or the action that will be performed
if the button is pressed?

Figure 5.12 Using white space in layout
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Affordances

These are especially difficult problems in multimedia applications where one may
deliberately adopt a non-standard and avant-garde style. How are users supposed 
to know where to click? The psychological idea of affordance says that things may
suggest by their shape and other attributes what you can do to them: a handle 
affords pulling or lifting; a button affords pushing. These affordances can be 
used when designing novel interaction elements. One can either mimic real-world
objects directly, or try to emulate the critical aspects of those objects. What you must
not do is depict a real-world object in a context where its normal affordances do 
not work!

Note also that affordances are not intrinsic, but depend on the background and
culture of users. Most computer-literate users will click on an icon. This is not
because they go around pushing pictures in art galleries, but because they have
learned that this is an affordance of such objects in a computer domain. Similarly,
such experienced users may well double click if a single click has no effect, yet
novices would not even think of double clicking – after all, double clicking on most
real buttons turns them off again!

5.7.3 Appropriate appearance

Presenting information

The way of presenting information on screen depends on the kind of information:
text, numbers, maps, tables; on the technology available to present it: character dis-
play, line drawing, graphics, virtual reality; and, most important of all, on the pur-
pose for which it is being used. Consider the window in Figure 5.13. The file listing
is alphabetic, which is fine if we want to look up the details of a particular file, but
makes it very difficult to find recently updated files. Of course, if the list were ordered
by date then it would be difficult to find a particular file. Different purposes require
different representations. For more complex numerical data, we may be considering
scatter graphs, histograms or 3D surfaces; for hierarchical structures, we may con-
sider outlines or organization diagrams. But, no matter how complex the data, the
principle of matching presentation to purpose remains.

The issue of presentation has been around for many years, long before computers,
interactive systems or HCI! Probably the best source for this issue is Tufte’s book
[351]. It is targeted principally at static presentations of information, as in books, but
most design principles transfer directly.

We have an advantage when presenting information in an interactive system in
that it is easy to allow the user to choose among several representations, thus mak-
ing it possible to achieve different goals. For example, with Macintosh folder windows
(as in Figure 5.13) the user can click on a column heading and the file list is
reordered, so one can look at the files by, say, name or date. This is not an excuse for
ignoring the user’s purpose, but means that we can plan for a range of possible uses.



218 Chapter 5 n Interaction design basics

Aesthetics and utility

Remember that a pretty interface is not necessarily a good interface. Ideally, as 
with any well-designed item, an interface should be aesthetically pleasing. Indeed,
good graphic design and attractive displays can increase users’ satisfaction and thus
improve productivity.

However, beauty and utility may sometimes be at odds. For example, an industrial
control panel will often be built up of the individual controls of several subsystems,
some designed by different teams, some bought in. The resulting inconsistency in
appearance may look a mess and suggest tidying up. Certainly some of this inconsist-
ency may cause problems. For example, there may be a mix of telephone-style and
calculator-style numeric keypads. Under stress it would be easy to mis-key when
swapping between these. However, the diversity of controls can also help the oper-
ator keep track of which controls refer to which subsystem – any redesign must 
preserve this advantage.

The conflict between aesthetics and utility can also be seen in many ‘well-
designed’ posters and multimedia systems. In particular, the backdrop behind text
must have low contrast in order to leave the text readable; this is often not the case
and graphic designers may include excessively complex and strong backgrounds
because they look good. The results are impressive, perhaps even award winning, but
completely unusable!

On a more positive note, careful application of aesthetic concepts can also aid
comprehensibility. An example of this is the idea of the counter and use of space that

Figure 5.13 Alphabetic file listing. Screen shot reprinted by permission from 
Apple Computer, Inc.
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we discussed earlier. In consumer devices these aesthetic considerations may often be
the key differentiator between products, for example, the sleek curves of a car. This
is not missed by designers of electronic goods: devices are designed to be good to
touch and feel as well as look at and this is certainly one of the drivers for the futur-
istic shapes of the Apple iMac family.

Making a mess of it: color and 3D

One of the worst features in many interfaces is their appalling use of color. This is
partly because many monitors only support a limited range of primary colors and
partly because, as with the overuse of different fonts in word processors, the designer
got carried away. Aside from issues of good taste, an overuse of color can be dis-
tracting and, remembering from Chapter 1 that a significant proportion of the 
population is color blind, may mean that parts of the text are literally invisible to
some users. In general, color should be used sparingly and not relied upon to give
information, but rather to reinforce other attributes.

The increasing use of 3D effects in interfaces has posed a whole new set of 
problems for text and numerical information. Whilst excellent for presenting phys-
ical information and certain sorts of graphs, text presented in perspective can be 
very difficult to read and the all too common 3D pie chart is all but useless. We will
discuss ways to make 3D actually useful for visualization in Chapter 20.

DESIGN FOCUS

Checking screen colors

Even non-color-blind users will find it hard to read text where the intensity of the text and background
are similar. A good trick is to adjust the color balance on your monitor so that it is reduced to grays,
or to print screens on a black and white printer. If your screen is unreadable in grayscale then it is prob-
ably difficult to read in full color.

Localization / internationalization

If you are working in a different country, you might see a document being word 
processed where the text of the document and the file names are in the local 
language, but all the menus and instructions are still in English. The process of mak-
ing software suitable for different languages and cultures is called localization or
internationalization.

It is clear that words have to change and many interface construction toolkits
make this easy by using resources. When the program uses names of menu items,
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error messages and other text, it does not use the text directly, but instead uses a
resource identifier, usually simply a number. A simple database is constructed separ-
ately that binds these identifiers to particular words and phrases. A different resource
database is constructed for each language, and so the program can be customized to
use in a particular country by simply choosing the appropriate resource database.

However, changing the language is only the simplest part of internationalization.
Much of the explicit guidance on alignment and layout is dependent on a left-to-
right, top-to-bottom language such as English and most European languages. This
obviously changes completely for other types of language. Furthermore, many 
icons and images are only meaningful within a restricted cultural context. Despite
the apparent international hegemony of Anglo-American culture, one cannot 
simply assume that its symbols and norms will be universally understood. A good
example of this is the use of ticks 3 and crosses 7. In Anglo-American culture 
these represent opposites, positive and negative, whereas in most of Europe the two
are interchangeable.

ITERATION AND PROTOTYPING

Because human situations are complex and designers are not infallible it is likely that
our first design will not be perfect! For this reason, almost all interaction design
includes some form of iteration of ideas. This often starts early on with paper designs
and storyboards being demonstrated to colleagues and potential users. Later in 
the design process one might use mockups of physical devices or tools such as
Shockwave or Visual Basic to create prototype versions of software.

Any of these prototypes, whether paper-based or running software, can then be
evaluated to see whether they are acceptable and where there is room for improve-
ment. This sort of evaluation, intended to improve designs, is called formative evalu-
ation. This is in contrast to summative evaluation, which is performed at the end to
verify whether the product is good enough. Chapter 9 considers evaluation in detail.
One approach is to get an expert to use a set of guidelines, for example the ‘knowing
where you are’ list above, and look screen by screen to see if there are any violations.
The other main approach is to involve real users either in a controlled experimental
setting, or ‘in the wild’ – a real-use environment.

The result of evaluating the system will usually be a list of faults or problems 
and this is followed by a redesign exercise, which is then prototyped, evaluated . . .
Figure 5.14 shows this process. The end point is when there are no more problems 
that can economically be fixed.

So iteration and prototyping are the universally accepted ‘best practice’ approach
for interaction design. However, there are some major pitfalls of prototyping, rarely
acknowledged in the literature.

Prototyping is an example of what is known as a hill-climbing approach. Imagine
you are standing somewhere in the open countryside. You walk uphill and keep
going uphill as steeply as possible. Eventually you will find yourself at a hill top. This

5.8
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is exactly how iterative prototyping works: you start somewhere, evaluate it to see
how to make it better, change it to make it better and then keep on doing this until
it can’t get any better.

However, hill climbing doesn’t always work. Imagine you start somewhere near
Cambridge, UK. If you keep moving uphill (and it is very difficult to work out which
direction that is because it is very flat!), then eventually you would end up at the 
top of the Gog Magog hills, the nearest thing around . . . all of 300 feet. However, if
you started somewhere else you might end up at the top of the Matterhorn. Hill-
climbing methods always have the potential to leave you somewhere that is the best
in the immediate area, but very poor compared with more distant places. Figure 5.15
shows this schematically: if you start at A you get trapped at the local maximum at B,
but if you start at C you move up through D to the global maximum at E.

This problem of getting trapped at local maxima is also possible with interfaces. If
you start with a bad design concept you may end at something that is simply a tidied
up version of that bad idea!

From this we can see that there are two things you need in order for prototyping
methods to work:

1. To understand what is wrong and how to improve.
2. A good start point.

The first is obvious; you cannot iterate the design unless you know what must be
done to improve it. The second, however, is needed to avoid local maxima. If you

Figure 5.14 Role of prototyping

Figure 5.15 Moving little by little . . . but to where?
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wanted to climb as high as you could, you would probably book a plane to the
Himalayas, not Cambridgeshire.

A really good designer might guess a good initial design based on experience and
judgment. However, the complexity of interaction design problems means that this
insight is hard. Another approach, very common in graphical design, is to have 
several initial design ideas and drop them one by one as they are developed further.
This is a bit like parachuting 10 people at random points of the earth. One of them
is perhaps likely to end up near a high mountain.

One of the things that theoretical methods and models, as found in Part 3 of this
book, can do is to help us with both (1) and (2).

SUMMARY

We have seen that design in HCI is not just about creating devices or software, but
instead is about the whole interaction between people, software and their environ-
ment. Because of this it is good to see the product of design not just as the obvious
artifacts but as the whole intervention that changes the existing situation to a new one.

In Section 5.2, design was defined as ‘achieving goals within constraints’. In 
the case of interaction design the goals are about improving some aspect of work,
home or leisure using technology. The constraints remind us that the final design
will inevitably involve trade-offs between different design issues and furthermore
should never be ‘perfect’ as cost and timeliness should prevent indefinite tinkering.
To achieve good design we must understand our materials and in the case of inter-
action design these materials include not just the computers and technical devices,
but also humans. If we treated humans in design with only as much care as physical
materials it is clear that ‘human error’ after accidents would be regarded as ‘design
error’ – a good designer understands the natural limitations of ordinary people.

Section 5.3 gave a bird’s-eye view of the design process, which gives a context for
much of the rest of this book.

The process starts with understanding the situation as it is and the requirements
for change. Section 5.4 provided some simple techniques for dealing with this: get-
ting to know your users, who they are, remembering that they are different from you,
but trying to imagine what it is like for them. You can talk to users, but you should
also observe them in other ways, as we are all bad at articulating what we do. One
way to help retain a user focus in design is to use personae – detailed word pictures
of imaginary but typical users.

Section 5.5 introduced scenarios and rich stories about design, which can help us
explore the design space and to discuss potential designs with other designers and
potential users. Both scenarios and personae need to be vivid and to include rich
contextual details – not just a record of user actions on the system!

The details of potential designs need to be worked out and in Section 5.6 we
looked at the overall navigation design of the system. We started by looking at 
local structure, the way one screen, page or state of an application relates to those it

5.9
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immediately links to. The users need to know where they are, what they can do, what
will happen when they do things, and what has happened in the past. This can aid
users as they goal seek, or move closer towards their goals without having to neces-
sarily understand completely the whole route there. The global structure of the appli-
cation is also important. We saw how hierarchy diagrams can give a logical view 
of an application, which can be used to design menu or site structures. In contrast,
the user dialog focusses on the flow of user and system actions. One way to do this is
using network diagrams of screens or states of the system and how they link to one
another. Any designed system must also relate to its environment: other applica-
tions, other websites, other physical devices.

In Section 5.7 we looked at screen design and layout. We saw that there were 
various visual tools that could help us to ensure that the physical structure of our
screen emphasized the logical structure of the user interaction. These tools included
physical grouping, ordering of items, decoration such as fonts, lines and color, align-
ment and the use of white space. These are important both for appropriate display
of information and to lay out controls and data entry fields for ease of use. It is 
also important that controls have appropriate affordances – that is have visual and
tactile attributes that suggest their use. Information presented on screen, whether
individual items, tabular or graphical, should be appropriate to the user’s purpose
and this may mean allowing interactions to change the layout, for example re-sort
tables by different columns. Aesthetics are also important, but may conflict with util-
ity. Depending on the context you may need to make different trade-offs between
these. Good graphical design is an area and a skill all of its own, but some features
such as bad use of color and 3D effects are bad for both aesthetics and usability!

Finally, in Section 5.8, we saw that iteration is an essential part of virtually any
interaction design process because we cannot get things right first time. However,
iterative methods may get trapped in local maxima. To make iterative processes
work, we need either extensive personal experience or theoretical understanding to
help us get better initial designs.

EXERCISES

5.1 Use a pocket alarm clock or wristwatch to set yourself alarms every 15 minutes one
working day. Write down exactly what you are doing. How surprising is it?

Exercises 5.2, 5.3, 5.4 and 5.5 are based around a nuclear reactor scenario on the book website at:
/e3/scenario/nuclear/ You will need to read the scenario in order to answer these exercises.

5.2 Comment on the user of color in the Alarm Control, Emergency Shutdown and Emergency
Confirm panels (Figure CS.2 – for figures, see the web scenario).

5.3 Comment on the use of layout and other elements in the control panels (Figures CS.1, CS.2 and CS.3),
including the way in which various visual elements support or hinder logical grouping and sequence.

5.4 Working through the accident scenario, explain why the various problems arise.

5.5 Suggest potential ways of improving the interface to avoid a similar problem recurring.
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HCI IN THE SOFTWARE

PROCESS

OV E RV I E W

n Software engineering provides a means of
understanding the structure of the design process, and
that process can be assessed for its effectiveness in
interactive system design.

n Usability engineering promotes the use of explicit
criteria to judge the success of a product in terms 
of its usability.

n Iterative design practices work to incorporate crucial
customer feedback early in the design process to
inform critical decisions which affect usability.

n Design involves making many decisions among
numerous alternatives. Design rationale provides an
explicit means of recording those design decisions 
and the context in which the decisions were made.

6
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INTRODUCTION

In Chapter 4 we concentrated on identifying aspects of usable interactive systems 
by means of concrete examples of successful paradigms. The design goal is to pro-
vide reliable techniques for the repeated design of successful and usable interactive 
systems. It is therefore necessary that we go beyond the exercise of identifying
paradigms and examine the process of interactive system design. In the previous
chapter we introduced some of the elements of a user-centered design process. 
Here we expand on that process, placing the design of interactive systems within the
established frameworks of software development.

Within computer science there is already a large subdiscipline that addresses the
management and technical issues of the development of software systems – called
software engineering. One of the cornerstones of software engineering is the software
life cycle, which describes the activities that take place from the initial concept 
formation for a software system up until its eventual phasing out and replacement.
This is not intended to be a software engineering textbook, so it is not our major
concern here to discuss in depth all of the issues associated with software engineer-
ing and the myriad life-cycle models.

The important point that we would like to draw out is that issues from HCI affect-
ing the usability of interactive systems are relevant within all the activities of the 
software life cycle. Therefore, software engineering for interactive system design is
not simply a matter of adding one more activity that slots in nicely with the existing
activities in the life cycle. Rather, it involves techniques that span the entire life cycle.

We will begin this chapter by providing an introduction to some of the important
concepts of software engineering, in Section 6.2. Specifically, we will describe the
major activities within the traditional software life cycle and discuss the issues raised
by the special needs of interactive systems. We will then describe some specific
approaches to interactive system design, which are used to promote product usabil-
ity throughout the life cycle. In Section 6.3, we will discuss a particular methodology
called usability engineering in which explicit usability requirements are used as goals
for the design process. In Section 6.4, we consider iterative design practices that
involve prototyping and participative evaluation. We conclude this chapter with a
discussion of design rationale. Design is a decision-making activity and it is import-
ant to keep track of the decisions that have been made and the context in which they
were made. Various design rationale techniques, presented in Section 6.5, are used
to support this critical activity.

THE SOFTWARE LIFE CYCLE

One of the claims for software development is that it should be considered as an
engineering discipline, in a way similar to how electrical engineering is considered for
hardware development. One of the distinguishing characteristics of any engineering

6.2
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discipline is that it entails the structured application of scientific techniques to the
development of some product. A fundamental feature of software engineering,
therefore, is that it provides the structure for applying techniques to develop soft-
ware systems. The software life cycle is an attempt to identify the activities that occur
in software development. These activities must then be ordered in time in any devel-
opment project and appropriate techniques must be adopted to carry them through.

In the development of a software product, we consider two main parties: the 
customer who requires the use of the product and the designer who must provide the
product. Typically, the customer and the designer are groups of people and some
people can be both customer and designer. It is often important to distinguish
between the customer who is the client of the designing company and the customer
who is the eventual user of the system. These two roles of customer can be played 
by different people. The group of people who negotiate the features of the intended
system with the designer may never be actual users of the system. This is often par-
ticularly true of web applications. In this chapter, we will use the term ‘customer’ to
refer to the group of people who interact with the design team and we will refer to
those who will interact with the designed system as the user or end-user.

6.2.1 Activities in the life cycle

A more detailed description of the life cycle activities is depicted in Figure 6.1. The
graphical representation is reminiscent of a waterfall, in which each activity naturally
leads into the next. The analogy of the waterfall is not completely faithful to the real
relationship between these activities, but it provides a good starting point for dis-
cussing the logical flow of activity. We describe the activities of this waterfall model
of the software life cycle next.1

Requirements specification

In requirements specification, the designer and customer try to capture a description
of what the eventual system will be expected to provide. This is in contrast to deter-
mining how the system will provide the expected services, which is the concern of
later activities. Requirements specification involves eliciting information from the
customer about the work environment, or domain, in which the final product will
function. Aspects of the work domain include not only the particular functions that
the software product must perform but also details about the environment in which
it must operate, such as the people whom it will potentially affect and the new pro-
duct’s relationship to any other products which it is updating or replacing.

Requirements specification begins at the start of product development. Though
the requirements are from the customer’s perspective, if they are to be met by the

1 Some authors distinguish between the software development process and the software life cycle, the
waterfall model being used to describe the former and not the latter. The main distinction for our pur-
poses is that operation and maintenance of the product is not part of the development process.
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software product they must be formulated in a language suitable for implementa-
tion. Requirements are usually initially expressed in the native language of the cus-
tomer. The executable languages for software are less natural and are more closely
related to a mathematical language in which each term in the language has a precise
interpretation, or semantics. The transformation from the expressive but relatively
ambiguous natural language of requirements to the more precise but less expressive
executable languages is one key to successful development. In Chapter 15 we discuss
task analysis techniques, which are used to express work domain requirements in a
form that is both expressive and precise.

Architectural design

As we mentioned, the requirements specification concentrates on what the system 
is supposed to do. The next activities concentrate on how the system provides the 
services expected from it. The first activity is a high-level decomposition of the sys-
tem into components that can either be brought in from existing software products
or be developed from scratch independently. An architectural design performs this
decomposition. It is not only concerned with the functional decomposition of the
system, determining which components provide which services. It must also describe

Figure 6.1 The activities in the waterfall model of the software life cycle
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the interdependencies between separate components and the sharing of resources
that will arise between components.

There are many structured techniques that are used to assist a designer in deriving
an architectural description from information in the requirements specification
(such as CORE, MASCOT and HOOD). Details of these techniques are outside the
scope of this book, but can be found in any good software engineering textbook.
What we will mention here is that the majority of these techniques are adequate for
capturing the functional requirements of the system – the services the system must
provide in the work domain – but do not provide an immediate way to capture other
non-functional requirements – features of the system that are not directly related to
the actual services provided but relate to the manner in which those services must be
provided. Some classic examples of non-functional requirements are the efficiency,
reliability, timing and safety features of the system. Interactive features of the system,
such as those that will be described by the principles in Chapter 7, also form a large
class of non-functional requirements.

Detailed design

The architectural design provides a decomposition of the system description that
allows for isolated development of separate components which will later be integ-
rated. For those components that are not already available for immediate integra-
tion, the designer must provide a sufficiently detailed description so that they may 
be implemented in some programming language. The detailed design is a refinement
of the component description provided by the architectural design. The behavior
implied by the higher-level description must be preserved in the more detailed
description.

Typically, there will be more than one possible refinement of the architectural
component that will satisfy the behavioral constraints. Choosing the best refinement
is often a matter of trying to satisfy as many of the non-functional requirements of
the system as possible. Thus the language used for the detailed design must allow
some analysis of the design in order to assess its properties. It is also important to
keep track of the design options considered, the eventual decisions that were made
and the reasons why, as we will discuss in Section 6.5 on design rationale.

Coding and unit testing

The detailed design for a component of the system should be in such a form that it
is possible to implement it in some executable programming language. After coding,
the component can be tested to verify that it performs correctly, according to some
test criteria that were determined in earlier activities. Research on this activity within
the life cycle has concentrated on two areas. There is plenty of research that is geared
towards the automation of this coding activity directly from a low-level detailed
design. Most of the work in formal methods operates under the hypothesis that, in
theory, the transformation from the detailed design to the implementation is from
one mathematical representation to another and so should be able to be entirely
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automated. Other, more practical work concentrates on the automatic generation of
tests from output of earlier activities which can be performed on a piece of code to
verify that it behaves correctly.

Integration and testing

Once enough components have been implemented and individually tested, they
must be integrated as described in the architectural design. Further testing is done 
to ensure correct behavior and acceptable use of any shared resources. It is also pos-
sible at this time to perform some acceptance testing with the customers to ensure
that the system meets their requirements. It is only after acceptance of the integrated
system that the product is finally released to the customer.

It may also be necessary to certify the final system according to requirements
imposed by some outside authority, such as an aircraft certification board. As of
1993, a European health and safety act requires that all employers provide their staff
with usable systems. The international standards authority, ISO, has also produced a
standard (ISO 9241) to define the usability of office environment workstations.
Coupled together, the health and safety regulations and ISO 9241 provide impetus
for designers to take seriously the HCI implications of their design.

Maintenance

After product release, all work on the system is considered under the category 
of maintenance, until such time as a new version of the product demands a total
redesign or the product is phased out entirely. Consequently, the majority of the 
lifetime of a product is spent in the maintenance activity. Maintenance involves the
correction of errors in the system which are discovered after release and the revision
of the system services to satisfy requirements that were not realized during previous
development. Therefore, maintenance provides feedback to all of the other activities
in the life cycle, as shown in Figure 6.2.

6.2.2 Validation and verification

Throughout the life cycle, the design must be checked to ensure that it both satisfies
the high-level requirements agreed with the customer and is also complete and 
internally consistent. These checks are referred to as validation and verification,
respectively. Boehm [36a] provides a useful distinction between the two, charac-
terizing validation as designing ‘the right thing’ and verification as designing ‘the
thing right’. Various languages are used throughout design, ranging from informal 
natural language to very precise and formal mathematical languages. Validation and
verification exercises are difficult enough when carried out within one language; they
become much more difficult, if not impossible, when attempted between languages.

Verification of a design will most often occur within a single life-cycle activity or
between two adjacent activities. For example, in the detailed design of a component



6.2 The software life cycle 231

of a payroll accounting system, the designer will be concerned with the correctness
of the algorithm to compute taxes deducted from an employee’s gross income. The
architectural design will have provided a general specification of the information
input to this component and the information it should output. The detailed descrip-
tion will introduce more information in refining the general specification. The
detailed design may also have to change the representations for the information and
will almost certainly break up a single high-level operation into several low-level
operations that can eventually be implemented. In introducing these changes to
information and operations, the designer must show that the refined description is 
a legal one within its language (internal consistency) and that it describes all of the
specified behavior of the high-level description (completeness) in a provably correct
way (relative consistency).

Validation of a design demonstrates that within the various activities the cus-
tomer’s requirements are satisfied. Validation is a much more subjective exercise
than verification, mainly because the disparity between the language of the require-
ments and the language of the design forbids any objective form of proof. In inter-
active system design, the validation against HCI requirements is often referred to as
evaluation and can be performed by the designer in isolation or in cooperation with
the customer. We discuss evaluation in depth in Chapter 9.

Figure 6.2 Feedback from maintenance activity to other design activities



232 Chapter 6 n HCI in the software process

An important question, which applies to both verification and validation, asks
exactly what constitutes a proof. We have repeatedly mentioned the language used 
in any design activity and the basis for the semantics of that language. Languages
with a mathematical foundation allow reasoning and proof in the objective sense. 
An argument based entirely within some mathematical language can be accepted or
refuted based upon universally accepted measures. A proof can be entirely justified
by the rules of the mathematical language, in which case it is considered a formal
proof. More common is a rigorous proof, which is represented within some mathem-
atical language but which relies on the understanding of the reader to accept 
its correctness without appeal to the full details of the argument, which could be 
provided but usually are not. The difference between formality and rigour is in the
amount of detail the prover leaves out while still maintaining acceptance of the
proof.

Proofs that are for verification of a design can frequently occur within one lan-
guage or between two languages which both have a precise mathematical semantics.
Time constraints for a design project and the perceived economic implications of the
separate components usually dictate which proofs are carried out in full formality
and which are done only rigorously (if at all). As research in this area matures and
automated tools provide assistance for the mechanical aspects of proof, the cost of
proof should decrease.

Validation proofs are much trickier, as they almost always involve a transforma-
tion between languages. Furthermore, the origin of customer requirements arises 
in the inherent ambiguity of the real world and not the mathematical world. This
precludes the possibility of objective proof, rigorous or formal. Instead, there will
always be a leap from the informal situations of the real world to any formal and
structured development process. We refer to this inevitable disparity as the formality
gap, depicted in Figure 6.3.

The formality gap means that validation will always rely to some extent on sub-
jective means of proof. We can increase our confidence in the subjective proof by
effective use of real-world experts in performing certain validation chores. These
experts will not necessarily have design expertise, so they may not understand the

Figure 6.3 The formality gap between the real world and structured design
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design notations used. Therefore, it is important that the design notations narrow
the formality gap, making clear the claims that the expert can then validate. For
interactive systems, the expert will have knowledge from a cognitive or psycholo-
gical domain, so the design specification must be readily interpretable from a psy-
chological perspective in order to validate it against interactive requirements of the
system. We will discuss design techniques and notations that narrow the formality
gap for validation of interactive properties of systems in Part 3.

6.2.3 Management and contractual issues

The life cycle described above concentrated on the more technical features of 
software development. In a technical discussion, managerial issues of design, such as
time constraints and economic forces, are not as important. The different activities
of the life cycle are logically related to each other. We can see that requirements 
for a system precede the high-level architectural design which precedes the detailed
design, and so on. In reality, it is quite possible that some detailed design is
attempted before all of the architectural design. In management, a much wider 
perspective must be adopted which takes into account the marketability of a system,
its training needs, the availability of skilled personnel or possible subcontractors, and
other topics outside the activities for the development of the isolated system.

As an example, we will take the development of a new aircraft on which there 
will be many software subsystems. The aircraft company will usually go through a
concept evaluation period of up to 10 years before making any decision about actual
product development. Once it has been decided to build a certain type of aircraft,
loosely specified in the case of commercial aircraft in terms of passenger capacity 
and flight range, more explicit design activity follows. This includes joint analysis 
for both the specification of the aircraft and determination of training needs. It is
only after the architectural specification of the aircraft is complete that the separate
systems to be developed are identified. Some of these systems will be software sys-
tems, such as the flight management system or the training simulator, and these will
be designed according to the life cycle described earlier. Typically, this will take four
to five years. The separate aircraft systems are then integrated for ground and flight
testing and certification before the aircraft is delivered to any customer airlines. The
operating lifetime of an aircraft model is expected to be in the range of 20–40 years,
during which time maintenance must be provided. The total lifetime of an aircraft
from conception to phasing out is up to 55 years, only 4–5 years (excluding mainten-
ance) of which contain the software life cycle which we are discussing in this chapter.

In managing the development process, the temporal relationship between the 
various activities is more important, as are the intermediate deliverables which 
represent the technical content, as the designer must demonstrate to the customer
that progress is being made. A useful distinction, taken from McDermid [232], is
that the technical perspective of the life cycle is described in stages of activity, whereas
the managerial perspective is described in temporally bound phases. A phase is 
usually defined in terms of the documentation taken as input to the phase and the
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documentation delivered as output from the phase. So the requirements phase will
take any marketing or conceptual development information, identifying potential
customers, as input and produce a requirements specification that must be agreed
upon between customer and designer.

This brings up another important issue from the management perspective. As the
design activity proceeds, the customer and the designer must sign off on various docu-
ments, indicating their satisfaction with progress to date. These signed documents
can carry a varying degree of contractual obligation between customer and designer.
A signed requirements specification indicates both that the customer agrees to limit
demands of the eventual product to those listed in the specification and also that the
designer agrees to meet all of the requirements listed. From a technical perspective,
it is easy to acknowledge that it is difficult, if not impossible, to determine all of the
requirements before embarking on any other design activity. A satisfactory require-
ments specification may not be known until after the product has been in operation!
From a management perspective, it is unacceptable to both designer and customer
to delay the requirements specification that long.

So contractual obligation is a necessary consequence of managing software 
development, but it has negative implications on the design process as well. It is very
difficult in the design of an interactive system to determine a priori what require-
ments to impose on the system to maximize its usability. Having to fix on some
requirements too early will result either in general requirements that are very little
guide for the designer or in specific requirements that compromise the flexibility 
of design without guaranteeing any benefits.

6.2.4 Interactive systems and the software life cycle

The traditional software engineering life cycles arose out of a need in the 1960s and
1970s to provide structure to the development of large software systems. In those
days, the majority of large systems produced were concerned with data-processing
applications in business. These systems were not highly interactive; rather, they were
batch-processing systems. Consequently, issues concerning usability from an end-
user’s perspective were not all that important. With the advent of personal comput-
ing in the late 1970s and its huge commercial success and acceptance, most modern
systems developed today are much more interactive, and it is vital to the success of
any product that it be easy to operate for someone who is not expected to know
much about how the system was designed. The modern user has a great amount 
of skill in the work that he performs without necessarily having that much skill in
software development.

The life cycle for development we described above presents the process of design
in a somewhat pipeline order. In reality, even for batch-processing systems, the
actual design process is iterative, work in one design activity affecting work in any
other activity both before or after it in the life cycle. We can represent this iterative
relationship as in Figure 6.4, but that does not greatly enhance any understanding 
of the design process for interactive systems. You may ask whether it is worth the 
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intellectual effort to understand the interactive system design process. Is there really
much design effort spent on the interactive aspects of a system to warrant our atten-
tion? A classic survey in 1978 by Sutton and Sprague at IBM resulted in an estimate
that 50% of the designer’s time was spent on designing code for the user interface
[338]. A more recent and convincing survey by Myers and Rosson has confirmed
that that finding holds true for the 1990s [247]. So it is definitely worth the effort 
to provide structure and techniques to understand, structure and improve the inter-
active design process! In this section, we will address features of interactive system
design which are not treated properly by the traditional software life cycle.

The traditional software life cycle suits a principled approach to design; that is, if
we know what it is we want to produce from the beginning, then we can structure
our approach to design in order to attain the goal. We have already mentioned how,
in practice, designers do not find out all of the requirements for a system before they
begin. Figure 6.4 depicts how discovery in later activities can be reflected in iterations
back to earlier stages. This is an admission that the requirements capture activity 
is not executed properly. The more serious claim we are making here is that all of 
the requirements for an interactive system cannot be determined from the start, 
and there are many convincing arguments to support this position. The result is that
systems must be built and the interaction with users observed and evaluated in order
to determine how to make them more usable.

Figure 6.4 Representing iteration in the waterfall model
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Our models of the psychology and sociology of the human and human cognition,
whether in isolation or in a group, are incomplete and do not allow us to predict 
how to design for maximum usability. There is much research on models of human
users that allow prediction of their performance with interactive systems, which we
will discuss in Chapter 12. These models, however, either rely on too much detail of
the system to be useful at very early and abstract stages of design (see the section 
in Chapter 12 on the keystroke-level model) or they only apply to goal-oriented
planned activity and not highly interactive WIMP systems (refer to the discussion at
the end of Chapter 12).

This dearth of predictive psychological theory means that in order to test certain
usability properties of their designs, designers must observe how actual users inter-
act with the developed product and measure their performance. In order for the
results of those observations to be worthwhile, the experiments must be as close to a
real interaction situation as possible. That means the experimental system must be
very much like it would be in the final product whose requirements the designer 
is trying to establish! As John Carroll has pointed out, the very detail of the actual
system can crucially affect its usability, so it is not worthwhile to experiment on
crude estimates of it, as that will provide observations whose conclusions will not
necessarily apply to the real system [59].

One principled approach to interactive system design, which will be important 
in later chapters, relies on a clear understanding early on in the design of the tasks
that the user wishes to perform. One problem with this assumption is that the tasks
a user will perform are often only known by the user after he is familiar with the 
system on which he performs them. The chicken-and-egg puzzle applies to tasks and
the artifacts on which he performs those tasks. For example, before the advent of
word processors, an author would not have considered the use of a contracting and
expanding outlining facility to experiment easily and quickly with the structure of 
a paper while it was being typed. A typewriter simply did not provide the ability 
to perform such a task, so how would a designer know to support such a task in
designing the first word processor?

Also, some of the tasks a user performs with a system were never explicitly
intended as tasks by its designer. Take the example of a graphics drawing package
that separates the constructed picture into separate layers. One layer is used to build
graphical pictures which are entire objects – a circle or a square, for instance – and
can be manipulated as those objects and retain their object identity. The other layer
is used to paint pictures which are just a collection of pixels. The user can switch
between the layers in order to create very complex pictures which are part object,
part painted scene. But because of the complex interplay between overlapping
images between the two layers, it is also possible to hide certain parts of the picture
when in one layer and reveal them in the other layer. Such a facility will allow 
the user to do simple simulations, such as showing the effect of shadowing when
switching a light on and off. It is very doubtful that the designers were think-
ing explicitly of supporting such simulation or animation tasks when they were
designing these graphics systems, which were meant to build complex, but static, 
pictures.
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A final point about the traditional software life cycle is that it does not promote
the use of notations and techniques that support the user’s perspective of the inter-
active system. We discussed earlier the purpose of validation and the formality gap.
It is very difficult for an expert on human cognition to predict the cognitive demands
that an abstract design would require of the intended user if the notation for the
design does not reflect the kind of information the user must recall in order to inter-
act. The same holds for assessing the timing behavior of an abstract design that does
not explicitly mention the timing characteristics of the operations to be invoked 
or their relative ordering. Though no structured development process will entirely
eliminate the formality gap, the particular notations used can go a long way towards
making validation of non-functional requirements feasible with expert assistance.

In the remaining sections of this chapter, we will describe various approaches to
augment the design process to suit better the design of interactive systems. These
approaches are categorized under the banner of user-centered design.

USABILITY ENGINEERING

One approach to user-centered design has been the introduction of explicit usability
engineering goals into the design process, as suggested by Whiteside and colleagues at
IBM and Digital Equipment Corporation [377] and by Nielsen at Bellcore [260,
261]. Engineering depends on interpretation against a shared background of mean-
ing, agreed goals and an understanding of how satisfactory completion will be
judged. The emphasis for usability engineering is in knowing exactly what criteria
will be used to judge a product for its usability.

The ultimate test of a product’s usability is based on measurements of users’ experi-
ence with it. Therefore, since a user’s direct experience with an interactive system 
is at the physical interface, focus on the actual user interface is understandable. 
The danger with this limited focus is that much of the work that is accomplished 
in interaction involves more than just the surface features of the systems used to 
perform that work. In reality, the whole functional architecture of the system and the
cognitive capacity of the users should be observed in order to arrive at meaningful
measures. But it is not at all simple to derive measurements of activity beyond 
the physical actions in the world, and so usability engineering is limited in its 
application.

In relation to the software life cycle, one of the important features of usability
engineering is the inclusion of a usability specification, forming part of the require-
ments specification, that concentrates on features of the user–system interaction
which contribute to the usability of the product. Various attributes of the system are
suggested as gauges for testing the usability. For each attribute, six items are defined
to form the usability specification of that attribute. Table 6.1 provides an example of
a usability specification for the design of a control panel for a video cassette recorder
(VCR), based on the technique presented by Whiteside, Bennett and Holtzblatt [377].

6.3
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In this example, we choose the principle of recoverability, described fully in
Chapter 7, as the particular usability attribute of interest. Recoverability refers to the
ability to reach a desired goal after recognition of some error in previous interaction.
The recovery procedure can be in either a backward or forward sense. Current VCR
design has resulted in interactive systems that are notoriously difficult to use; the
redesign of a VCR provides a good case study for usability engineering. In designing
a new VCR control panel, the designer wants to take into account how a user might
recover from a mistake he discovers while trying to program the VCR to record some
television program in his absence. One approach that the designer decides to follow
is to allow the user the ability to undo the programming sequence, reverting the state
of the VCR to what it was before the programming task began.

The backward recoverability attribute is defined in terms of a measuring concept,
which makes the abstract attribute more concrete by describing it in terms of the
actual product. So in this case, we realize backward recoverability as the ability 
to undo an erroneous programming sequence. The measuring method states how 
the attribute will be measured, in this case by the number of explicit user actions
required to perform the undo, regardless of where the user is in the programming
sequence.

The remaining four entries in the usability specification then provide the agreed
criteria for judging the success of the product based on the measuring method. The
now level indicates the value for the measurement with the existing system, whether
it is computer based or not. The worst case value is the lowest acceptable measure-
ment for the task, providing a clear distinction between what will be acceptable and
what will be unacceptable in the final product. The planned level is the target 
for the design and the best case is the level which is agreed to be the best possible 
measurement given the current state of development tools and technology.

In the example, the designers can look at their previous VCR products and those
of their competitors to determine a suitable now level. In this case, it is determined
that no current model allows an undo which returns the state of the VCR to what it
was before the programming task. For example, if a VCR allows you three separate
recording programs, once you begin entering a new program in the number 1 pro-
gram slot, the VCR forgets the previous contents of that slot and so you cannot
recover it unless you remember what it was and then reprogram it.

Table 6.1 Sample usability specification for undo with a VCR

Attribute: Backward recoverability

Measuring concept: Undo an erroneous programming sequence
Measuring method: Number of explicit user actions to undo current program
Now level: No current product allows such an undo
Worst case: As many actions as it takes to program in mistake
Planned level: A maximum of two explicit user actions
Best case: One explicit cancel action
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Determining the worst case value depends on a number of things. Usually, it
should be no lower than the now level. The new product should provide some
improvement on the current state of affairs, and so it seems that at least some of the
usability attributes should provide worst case values that are better than the now
level. Otherwise, why would the customer bother with the new system (unless it can
be shown to provide the same usability at a fraction of the cost)? The designers in the
example have determined that the minimal acceptable undo facility would require
the user to perform as many actions as he had done to program in the mistake. 
This is a clear improvement over the now level, since it at least provides for the pos-
sibility of undo. One way to provide such a capability would be by including an undo
button on the control panel, which would effectively reverse the previous non-undo
action. The designers figure that they should allow for the user to do a complete
restoration of the VCR state in a maximum of two explicit user actions, though they
recognize that the best case, at least in terms of the number of explicit actions, would
require only one.

Tables 6.2 and 6.3, adapted from Whiteside, Bennett and Holtzblatt [377], provide
a list of measurement criteria which can be used to determine the measuring method
for a usability attribute and the possible ways to set the worst/best case and planned/
now level targets. Measurements such as those promoted by usability engineering are
also called usability metrics.

Table 6.2 Criteria by which measuring method can be determined (adapted from
Whiteside, Bennett and Holtzblatt [377], Copyright 1988, reprinted with permission 
from Elsevier)

1. Time to complete a task
2. Per cent of task completed
3. Per cent of task completed per unit time
4. Ratio of successes to failures
5. Time spent in errors
6. Per cent or number of errors
7. Per cent or number of competitors better than it
8. Number of commands used
9. Frequency of help and documentation use

10. Per cent of favorable/unfavorable user comments
11. Number of repetitions of failed commands
12. Number of runs of successes and of failures
13. Number of times interface misleads the user
14. Number of good and bad features recalled by users
15. Number of available commands not invoked
16. Number of regressive behaviors
17. Number of users preferring your system
18. Number of times users need to work around a problem
19. Number of times the user is disrupted from a work task
20. Number of times user loses control of the system
21. Number of times user expresses frustration or satisfaction
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The ISO standard 9241, described earlier, also recommends the use of usability
specifications as a means of requirements specification. Table 6.4 gives examples of
usability metrics categorized by their contribution towards the three categories of
usability: effectiveness, efficiency and satisfaction.

6.3.1 Problems with usability engineering

The major feature of usability engineering is the assertion of explicit usability 
metrics early on in the design process which can be used to judge a system once it is
delivered. There is a very solid argument which points out that it is only through
empirical approaches such as the use of usability metrics that we can reliably build

Table 6.3 Possible ways to set measurement levels in a usability specification (adapted
from Whiteside, Bennett and Holtzblatt [377], Copyright 1988, reprinted with permission
from Elsevier)

Set levels with respect to information on:

1. an existing system or previous version
2. competitive systems
3. carrying out the task without use of a computer system
4. an absolute scale
5. your own prototype
6. user’s own earlier performance
7. each component of a system separately
8. a successive split of the difference between best and worst values observed in user

tests

Table 6.4 Examples of usability metrics from ISO 9241

Usability objective

Suitability for the task

Appropriate for 
trained users

Learnability

Error tolerance

Effectiveness
measures

Percentage of goals
achieved
Number of power
features used

Percentage of
functions learned
Percentage of
errors corrected
successfully

Efficiency 
measures

Time to complete a
task
Relative efficiency
compared with an
expert user
Time to learn
criterion
Time spent on
correcting errors

Satisfaction
measures

Rating scale for
satisfaction
Rating scale for
satisfaction with
power features
Rating scale for
ease of learning
Rating scale for
error handling
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more usable systems. Although the ultimate yardstick for determining usability 
may be by observing and measuring user performance, that does not mean that 
these measurements are the best way to produce a predictive design process for
usability.

The problem with usability metrics is that they rely on measurements of very specific
user actions in very specific situations. When the designer knows what the actions
and situation will be, then she can set goals for measured observations. However, at
early stages of design, designers do not have this information. Take our example
usability specification for the VCR. In setting the acceptable and unacceptable levels
for backward recovery, there is an assumption that a button will be available to invoke
the undo. In fact, the designer was already making an implicit assumption that the
user would be making errors in the programming of the VCR. Why not address 
the origin of the programming errors, then maybe undo would not be necessary?

We should recognize another inherent limitation for usability engineering, that is
it provides a means of satisfying usability specifications and not necessarily usability.
The designer is still forced to understand why a particular usability metric enhances
usability for real people. Again, in the VCR example, the designer assumed that 
fewer explicit actions make the undo operation easier. Is that kind of assumption
warranted?

ITERATIVE DESIGN AND PROTOTYPING

A point we raised earlier is that requirements for an interactive system cannot be
completely specified from the beginning of the life cycle. The only way to be sure
about some features of the potential design is to build them and test them out on 
real users. The design can then be modified to correct any false assumptions that
were revealed in the testing. This is the essence of iterative design, a purposeful design
process which tries to overcome the inherent problems of incomplete requirements
specification by cycling through several designs, incrementally improving upon the
final product with each pass.

The problems with the design process, which lead to an iterative design philo-
sophy, are not unique to the usability features of the intended system. The problem
holds for requirements specification in general, and so it is a general software 
engineering problem, together with technical and managerial issues.

On the technical side, iterative design is described by the use of prototypes, artifacts
that simulate or animate some but not all features of the intended system. There are
three main approaches to prototyping:

Throw-away The prototype is built and tested. The design knowledge gained 
from this exercise is used to build the final product, but the actual prototype is
discarded. Figure 6.5 depicts the procedure in using throw-away prototypes 
to arrive at a final requirements specification in order for the rest of the design
process to proceed.

6.4
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Incremental The final product is built as separate components, one at a time.
There is one overall design for the final system, but it is partitioned into inde-
pendent and smaller components. The final product is then released as a series 
of products, each subsequent release including one more component. This is
depicted in Figure 6.6.

Evolutionary Here the prototype is not discarded and serves as the basis for the
next iteration of design. In this case, the actual system is seen as evolving from 
a very limited initial version to its final release, as depicted in Figure 6.7.
Evolutionary prototyping also fits in well with the modifications which must be
made to the system that arise during the operation and maintenance activity in
the life cycle.

Prototypes differ according to the amount of functionality and performance they
provide relative to the final product. An animation of requirements can involve no

Figure 6.5 Throw-away prototyping within requirements specification

Figure 6.6 Incremental prototyping within the life cycle
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real functionality, or limited functionality to simulate only a small aspect of the
interactive behavior for evaluative purposes. At the other extreme, full functionality
can be provided at the expense of other performance characteristics, such as speed 
or error tolerance. Regardless of the level of functionality, the importance of a pro-
totype lies in its projected realism. The prototype of an interactive system is used to
test requirements by evaluating their impact with real users. An honest appraisal of
the requirements of the final system can only be trusted if the evaluation conditions
are similar to those anticipated for the actual operation. But providing realism is
costly, so there must be support for a designer/programmer to create a realistic pro-
totype quickly and efficiently.

On the management side, there are several potential problems, as pointed out by
Sommerville [327]:

Time Building prototypes takes time and, if it is a throw-away prototype, it can be
seen as precious time taken away from the real design task. So the value of proto-
typing is only appreciated if it is fast, hence the use of the term rapid prototyping.
However, rapid development and manipulation of a prototype should not be mis-
taken for rushed evaluation which might lead to erroneous results and invalidate
the only advantage of using a prototype in the first place.

Planning Most project managers do not have the experience necessary for 
adequately planning and costing a design process which involves prototyping.

Non-functional features Often the most important features of a system will be
non-functional ones, such as safety and reliability, and these are precisely the
kinds of features which are sacrificed in developing a prototype. For evaluating
usability features of a prototype, response time – yet another feature often com-
promised in a prototype – could be critical to product acceptance. This problem
is similar to the technical issue of prototype realism.

Figure 6.7 Evolutionary prototyping throughout the life cycle
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Contracts The design process is often governed by contractual agreements between
customer and designer which are affected by many of these managerial and tech-
nical issues. Prototypes and other implementations cannot form the basis for a
legal contract, and so an iterative design process will still require documentation
which serves as the binding agreement. There must be an effective way of trans-
lating the results derived from prototyping into adequate documentation. A rapid
prototyping process might be amenable to quick changes, but that does not also
apply to the design process.

6.4.1 Techniques for prototyping

Here we will describe some of the techniques that are available for producing rapid
prototypes.

Storyboards

Probably the simplest notion of a prototype is the storyboard, which is a graphical
depiction of the outward appearance of the intended system, without any accom-
panying system functionality. Storyboards do not require much in terms of com-
puting power to construct; in fact, they can be mocked up without the aid of any
computing resource. The origins of storyboards are in the film industry, where a
series of panels roughly depicts snapshots from an intended film sequence in order
to get the idea across about the eventual scene. Similarly, for interactive system
design, the storyboards provide snapshots of the interface at particular points in the
interaction. Evaluating customer or user impressions of the storyboards can deter-
mine relatively quickly if the design is heading in the right direction.

Modern graphical drawing packages now make it possible to create storyboards
with the aid of a computer instead of by hand. Though the graphic design achievable
on screen may not be as sophisticated as that possible by a professional graphic
designer, it is more realistic because the final system will have to be displayed on a
screen. Also, it is possible to provide crude but effective animation by automated
sequencing through a series of snapshots. Animation illustrates the dynamic aspects
of the intended user–system interaction, which may not be possible with traditional
paper-based storyboards. If not animated, storyboards usually include annotations
and scripts indicating how the interaction will occur.

Limited functionality simulations

More functionality must be built into the prototype to demonstrate the work that the
application will accomplish. Storyboards and animation techniques are not sufficient
for this purpose, as they cannot portray adequately the interactive aspects of the system.
To do this, some portion of the functionality must be simulated by the design team.

Programming support for simulations means a designer can rapidly build graph-
ical and textual interaction objects and attach some behavior to those objects, which
mimics the system’s functionality. Once this simulation is built, it can be evaluated
and changed rapidly to reflect the results of the evaluation study with various users.
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For example, we might want to build a prototype for the VCR with undo described
earlier using only a workstation display, keyboard and mouse. We could draw a picture
of the VCR with its control panel using a graphics drawing package, but then we would
want to allow a subject to use the mouse to position a finger cursor over one of the
buttons to ‘press’ it and actuate some behavior of the VCR. In this way, we could
simulate the programming task and experiment with different options for undoing.

DESIGN FOCUS

Prototyping in practice

IBM supplied the computerized information and messaging booths for the 1984 Olympics in Los
Angeles. These booths were to be used by the many thousands of residents in the Olympic village who
would have to use them with no prior training (extensive instructions in several hundred languages
being impractical). IBM sampled several variants on the kiosk design of the telephone-based system,
using what they called the hallway and storefront methodology [152]. The final system was intended to
be a walk-up-and-use system, so it was important to get comments from people with no knowledge of
the process. Early versions of the kiosk were displayed as storyboards on a mock kiosk design in the
front hallway of the Yorktown Research Lab. Passers-by were encouraged to browse at the display
much as they would a storefront in the window. As casual comments were made and the kiosk was
modified according to those comments, more and more active evaluation was elicited. This procedure
helped to determine the ultimate positioning of display screens and telephones for the final design.

An Olympic Message System Kiosk (Gould J. D., Boies S. J., Levy S., Richards J. T. and Schoonard J. (1987).
The 1984 Olympic Message System: a test of behavioral principles of system design. Communications of
the ACM, 30(9), 758–69. Copyright © 1987 ACM, Inc. Reprinted by permission)
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There are now plenty of prototyping tools available which allow the rapid develop-
ment of such simulation prototypes. These simulation tools are meant to provide 
a quick development process for a very wide range of small but highly interactive
applications. A well-known and successful prototyping tool is HyperCard, a simula-
tion environment for the Macintosh line of Apple computers. HyperCard is similar
to the animation tools described above in that the user can create a graphical depic-
tion of some system, say the VCR, with common graphical tools. The graphical
images are placed on cards, and links between cards can be created which control the
sequencing from one card to the next for animation effects. What HyperCard pro-
vides beyond this type of animation is the ability to describe more sophisticated
interactive behavior by attaching a script, written in the HyperTalk programming
language, to any object. So for the VCR, we could attach a script to any control panel
button to highlight it or make an audible noise when the user clicks the mouse cur-
sor over it. Then some functionality could be associated to that button by reflecting
some change in the VCR display window. Similar functionality is provided through
tools such as Macromedia Flash and Director.

Most of the simulations produced are intended to be throw-away prototypes
because of their relatively inefficient implementation. They are not intended to sup-
port full-blown systems development and they are unsatisfactory in that role.
However, as more designers recognize the utility of prototyping and iterative design,
they are beginning to demand ways of incorporating the prototypes into the final
delivered systems – more along the lines of evolutionary prototyping. A good exam-
ple of this is in the avionics industry, where it has long been recognized that iterative
development via rapid prototyping and evaluation is essential for the design of flight
deck instrumentation and controls. Workstation technology provides sufficient
graphics capabilities to enable a designer to produce very realistic gauges, which can
be assessed and critiqued by actual pilots. With the advent of the glass cockpit – in
which traditional mechanical gauges are replaced by gauges represented on video
displays – there is no longer a technology gap between the prototype designs of flight
deck instruments and the actual instruments in flight. Therefore, it is a reasonable
request by these designers that they be able to reuse the functionality of the proto-
types in the actual flight simulators and cockpits, and this demand is starting to be
met by commercial prototyping systems which produce efficient code for use in such
safety-critical applications.

One technique for simulation, which does not require very much computer-
supported functionality, is the Wizard of Oz technique. With this technique, the
designers can develop a limited functionality prototype and enhance its functional-
ity in evaluation by providing the missing functionality through human interven-
tion. A participant in the evaluation of a new accounting system may not have any
computer training but is familiar with accounting procedures. He is asked to sit
down in front of the prototype accounting system and to perform some task, say 
to check the accounts receivable against some newly arrived payments. The naïve
computer user will not know the specific language of the system, but you do not
want him to worry about that. Instead, he is given instructions to type whatever
seems the most natural commands to the system. One of the designers – the wizard
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in this scenario – is situated in another room, out of sight of the subject, but she is
able to receive the subject’s input commands and translate them into commands that
will work on the prototype. By intervening between the user and system, the wizard
is able to increase the perceived functionality of the system so that evaluation can
concentrate on how the subject would react to the complete system. Examination of
how the wizard had to interpret the subject’s input can provide advice as to how the
prototype must be enhanced in its later versions.

High-level programming support

HyperTalk was an example of a special-purpose high-level programming language
which makes it easy for the designer to program certain features of an interactive sys-
tem at the expense of other system features like speed of response or space efficiency.
HyperTalk and many similar languages allow the programmer to attach functional
behavior to the specific interactions that the user will be able to do, such as position
and click on the mouse over a button on the screen. Previously, the difficulty of
interactive programming was that it was so implementation dependent that the 
programmer would have to know quite a bit of intimate detail of the hardware sys-
tem in order to control even the simplest of interactive behavior. These high-level
programming languages allow the programmer to abstract away from the hardware
specifics and think in terms that are closer to the way the input and output devices
are perceived as interaction devices.

Though not usually considered together with such simulation environments, 
a user interface management system – or UIMS (pronounced ‘you-imz’) – can be con-
sidered to provide such high-level programming support. The frequent conceptual
model put forth for interactive system design is to separate the application function-
ality from its presentation. It is then possible to program the underlying functional-
ity of the system and to program the behavior of the user interface separately. 
The job of a UIMS, then, is to allow the programmer to connect the behavior at the
interface with the underlying functionality. In Chapter 8 we will discuss in more
detail the advantages and disadvantages of such a conceptual model and concentrate
on the programming implementation support provided by a UIMS. What is of 
interest here is that the separation implied by a UIMS allows the independent 
development of the features of the interface apart from the underlying functionality.
If the underlying system is already developed, then various prototypes of its interface
can be quickly constructed and evaluated to determine the optimal one.

6.4.2 Warning about iterative design

Though we have presented the process of iterative design as not only beneficial but
also necessary for good interactive system design, it is important to recognize some
of its drawbacks, in addition to the very real management issues we have already
raised. The ideal model of iterative design, in which a rapid prototype is designed,
evaluated and modified until the best possible design is achieved in the given project
time, is appealing. But there are two problems.
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First, it is often the case that design decisions made at the very beginning of the
prototyping process are wrong and, in practice, design inertia can be so great as
never to overcome an initial bad decision. So, whereas iterative design is, in theory,
amenable to great changes through iterations, it can be the case that the initial pro-
totype has bad features that will not be amended. We will examine this problem
through a real example of a clock on a microwave oven.2 The clock has a numeric
display of four digits. Thus the display is capable of showing values in the range from
00:00 to 99:99. The functional model of time for the actual clock is only 12 hours,
so quite a few of the possible clock displays do not correspond to possible times (for
example, 63:00, 85:49), even though some of them are legal four-digit time desig-
nations. That poses no problem, as long as both the designer and the ultimate users
of the clock both share the knowledge of the discrepancy between possible clock dis-
plays and legal times. Such would not be the case for someone assuming a 24-hour
time format, in which case the displays 00:30 and 13:45 would represent valid
times in their model but not in the microwave’s model. In this particular example,
the subjects tested during the evaluation must have all shared the 12-hour time
model, and the mismatch with the other users (with a 24-hour model) was only dis-
covered after the product was being shipped. At this point, the only impact of iterat-
ive design was a change to the documentation alerting the reader to the 12-hour 
format, as it was too late to perform any hardware change.

The second problem is slightly more subtle, and serious. If, in the process of evalu-
ation, a potential usability problem is diagnosed, it is important to understand the
reason for the problem and not just detect the symptom. In the clock example, the
designers could have noticed that some subjects with a 24-hour time model were
having difficulty setting the time. Say they were trying to set the time for 14:45, but
they were not being allowed to do that. If the designers did not know the subject’s
goals, they might not detect the 24/12 hour discrepancy. They would instead notice
that the users were having trouble setting the time and so they might change the but-
tons used to set the time instead of other possible changes, such as an analog time
dial, or displaying AM or PM on the clock dial to make the 12-hour model more
obvious, or to change to a 24-hour clock.

The moral for iterative design is that it should be used in conjunction with 
other, more principled approaches to interactive system design. These principled
approaches are the subject of Part 3 of this book.

DESIGN RATIONALE

In designing any computer system, many decisions are made as the product 
goes from a set of vague customer requirements to a deliverable entity. Often it is
difficult to recreate the reasons, or rationale, behind various design decisions. Design

6.5

2 This example has been provided by Harold Thimbleby.
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rationale is the information that explains why a computer system is the way it is,
including its structural or architectural description and its functional or behavioral
description. In this sense, design rationale does not fit squarely into the software life
cycle described in this chapter as just another phase or box. Rather, design rationale
relates to an activity of both reflection (doing design rationale) and documentation
(creating a design rationale) that occurs throughout the entire life cycle.

It is beneficial to have access to the design rationale for several reasons:

n In an explicit form, a design rationale provides a communication mechanism
among the members of a design team so that during later stages of design and/or
maintenance it is possible to understand what critical decisions were made, what
alternatives were investigated (and, possibly, in what order) and the reason why
one alternative was chosen over the others. This can help avoid incorrect assump-
tions later.

n Accumulated knowledge in the form of design rationales for a set of products 
can be reused to transfer what has worked in one situation to another situation
which has similar needs. The design rationale can capture the context of a design
decision in order that a different design team can determine if a similar rationale
is appropriate for their product.

n The effort required to produce a design rationale forces the designer to deliberate
more carefully about design decisions. The process of deliberation can be assisted
by the design rationale technique by suggesting how arguments justifying or 
discarding a particular design option are formed.

In the area of HCI, design rationale has been particularly important, again for several
reasons:

n There is usually no single best design alternative. More often, the designer is faced
with a set of trade-offs between different alternatives. For example, a graphical
interface may involve a set of actions that the user can invoke by use of the mouse
and the designer must decide whether to present each action as a ‘button’ on the
screen, which is always visible, or hide all of the actions in a menu which must be
explicitly invoked before an action can be chosen. The former option maximizes
the operation visibility (see Chapter 7) but the latter option takes up less screen
space. It would be up to the designer to determine which criterion for evaluating
the options was more important and then communicating that information in a
design rationale.

n Even if an optimal solution did exist for a given design decision, the space of altern-
atives is so vast that it is unlikely a designer would discover it. In this case, it is
important that the designer indicates all alternatives that have been investigated.
Then later on it can be determined if she has not considered the best solution or
had thought about it and discarded it for some reason. In project management,
this kind of accountability for design is good.

n The usability of an interactive system is very dependent on the context of its use.
The flashiest graphical interface is of no use if the end-user does not have access
to a high-quality graphics display or a pointing device. Capturing the context in
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which a design decision is made will help later when new products are designed.
If the context remains the same, then the old rationale can be adopted without
revision. If the context has changed somehow, the old rationale can be re-
examined to see if any rejected alternatives are now more favorable or if any new
alternatives are now possible.

Lee and Lai [209] explain that various proponents of design rationale have differ-
ent interpretations of what it actually is. We will make use of their classification to
describe various design rationale techniques in this section. The first set of tech-
niques concentrates on providing a historical record of design decisions and is very
much tailored for use during actual design discussions. These techniques are referred
to as process-oriented design rationale because they are meant to be integrated in the
actual design process itself. The next category is not so concerned with historical or
process-oriented information but rather with the structure of the space of all design
alternatives, which can be reconstructed by post hoc consideration of the design
activity. The structure-oriented approach does not capture historical information.
Instead, it captures the complete story of the moment, as an analysis of the design
space which has been considered so far. The final category of design rationale con-
centrates on capturing the claims about the psychology of the user that are implied
by an interactive system and the tasks that are performed on them.

There are some issues that distinguish the various techniques in terms of their
usability within design itself. We can use these issues to sketch an informal rationale for
design rationale. One issue is the degree to which the technique impinges on the design
process. Does the use of a particular design rationale technique alter the decision pro-
cess, or does it just passively serve to document it? Another issue is the cost of using
the technique, both in terms of creating the design rationale and in terms of access-
ing it once created. A related issue is the amount of computational power the design
rationale provides and the level to which this is supported by automated tools. A design
rationale for a complex system can be very large and the exploration of the design space
changes over time. The kind of information stored in a given design rationale will
affect how that vast amount of information can be effectively managed and browsed.

6.5.1 Process-oriented design rationale

Much of the work on design rationale is based on Rittel’s issue-based information 
system, or IBIS, a style for representing design and planning dialog developed in 
the 1970s [308]. In IBIS (pronounced ‘ibbiss’), a hierarchical structure to a design
rationale is created. A root issue is identified which represents the main problem or
question that the argument is addressing. Various positions are put forth as potential
resolutions for the root issue, and these are depicted as descendants in the IBIS 
hierarchy directly connected to the root issue. Each position is then supported or
refuted by arguments, which modify the relationship between issue and position. The
hierarchy grows as secondary issues are raised which modify the root issue in some
way. Each of these secondary issues is in turn expanded by positions and arguments,
further sub-issues, and so on.
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A graphical version of IBIS has been defined by Conklin and Yakemovic [77],
called gIBIS (pronounced ‘gibbiss’), which makes the structure of the design ratio-
nale more apparent visually in the form of a directed graph which can be directly
edited by the creator of the design rationale. Figure 6.8 gives a representation of the
gIBIS vocabulary. Issues, positions and arguments are nodes in the graph and the
connections between them are labeled to clarify the relationship between adjacent
nodes. So, for example, an issue can suggest further sub-issues, or a position can
respond to an issue or an argument can support a position. The gIBIS structure can
be supported by a hypertext tool to allow a designer to create and browse various
parts of the design rationale.

There have been other versions of the IBIS notation, both graphical and textual,
besides gIBIS. Most versions retain the distinction between issues, positions and
arguments. Some add further nodes, such as Potts and Bruns’s [297] addition of
design artifacts which represent the intermediate products of a design that lead to the
final product and are associated with the various alternatives discussed in the design
rationale. Some add a richer vocabulary to modify the relationships between the
node elements, such as McCall’s Procedural Hierarchy of Issues (PHI) [231], which
expands the variety of inter-issue relationships. Interesting work at the University 
of Colorado has attempted to link PHI argumentation to computer-aided design
(CAD) tools to allow critique of design (in their example, the design of a kitchen) as
it occurs. When the CAD violates some known design rule, the designer is warned
and can then browse a PHI argument to see the rationale for the design rule.

Figure 6.8 The structure of a gIBIS design rationale
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The use of IBIS and any of its descendants is process oriented, as we described
above. It is intended for use during design meetings as a means of recording and
structuring the issues deliberated and the decisions made. It is also intended to 
preserve the order of deliberation and decision making for a particular product,
placing less stress on the generalization of design knowledge for use between dif-
ferent products. This can be contrasted with the structure-oriented technique 
discussed next.

6.5.2 Design space analysis

MacLean and colleagues [222] have proposed a more deliberative approach to design
rationale which emphasizes a post hoc structuring of the space of design alternatives
that have been considered in a design project. Their approach, embodied in the
Questions, Options and Criteria (QOC) notation, is characterized as design space
analysis (see Figure 6.9).

The design space is initially structured by a set of questions representing the major
issues of the design. Since design space analysis is structure oriented, it is not 
so important that the questions recorded are the actual questions asked during
design meetings. Rather, these questions represent an agreed characterization of the

Figure 6.9 The QOC notation
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issues raised based on reflection and understanding of the actual design activities.
Questions in a design space analysis are therefore similar to issues in IBIS except 
in the way they are captured. Options provide alternative solutions to the question.
They are assessed according to some criteria in order to determine the most 
favorable option. In Figure 6.9 an option which is favorably assessed in terms of 
a criterion is linked with a solid line, whereas negative links have a dashed line. 
The most favorable option is boxed in the diagram.

The key to an effective design space analysis using the QOC notation is deciding
the right questions to use to structure the space and the correct criteria to judge the
options. The initial questions raised must be sufficiently general that they cover a
large enough portion of the possible design space, but specific enough that a range
of options can be clearly identified. It can be difficult to decide the right set of 
criteria with which to assess the options. The QOC technique advocates the use of
general criteria, like the usability principles we shall discuss in Chapter 7, which are
expressed more explicitly in a given analysis. In the example of the action buttons
versus the menu of actions described earlier, we could contextualize the general 
principle of operation visibility as the criterion that all possible actions are displayed
at all times. It can be very difficult to decide from a design space analysis which
option is most favorable. The positive and negative links in the QOC notation 
do not provide all of the context for a trade-off decision. There is no provision for
indicating, for example, that one criterion is more important than any of the others
and the most favorable option must be positively linked.

Another structure-oriented technique, called Decision Representation Language
(DRL), developed by Lee and Lai, structures the design space in a similar fashion 
to QOC, though its language is somewhat larger and it has a formal semantics. 
The questions, options and criteria in DRL are given the names: decision problem,
alternatives and goals. QOC assessments are represented in DRL by a more complex
language for relating goals to alternatives. The sparse language in QOC used to assess
an option relative to a criterion (positive or negative assessment only) is probably
insufficient, but there is a trade-off involved in adopting a more complex vocabulary
which may prove too difficult to use in practice. The advantage of the formal seman-
tics of DRL is that the design rationale can be used as a computational mechanism
to help manage the large volume of information. For example, DRL can track the
dependencies between different decision problems, so that subsequent changes to
the design rationale for one decision problem can be automatically propagated to
other dependent problems.

Design space analysis directly addresses the claim that no design activity can hope
to uncover all design possibilities, so the best we can hope to achieve is to document
the small part of the design space that has been investigated. An advantage of the post
hoc technique is that it can abstract away from the particulars of a design meeting
and therefore represent the design knowledge in such a way that it can be of use in
the design of other products. The major disadvantage is the increased overhead such
an analysis warrants. More time must be taken away from the design activity to do
this separate documentation task. When time is scarce, these kinds of overhead costs
are the first to be trimmed.
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6.5.3 Psychological design rationale

The final category of design rationale tries to make explicit the psychological claims
of usability inherent in any interactive system in order better to suit a product for 
the tasks users have. This psychological design rationale has been introduced by
Carroll and Rosson [62], and before we describe the application of the technique it
is important to understand some of its theoretical background.

People use computers to accomplish some tasks in their particular work domain,
as we have seen before. When designing a new interactive system, the designers take
into account the tasks that users currently perform and any new ones that they may
want to perform. This task identification serves as part of the requirements for the
new system, and can be done through empirical observation of how people perform
their work currently and presented through informal language or a more formal 
task analysis language (see Chapter 15). When the new system is implemented, 
or becomes an artifact, further observation reveals that in addition to the required
tasks it was built to support, it also supports users in tasks that the designer never
intended. Once designers understand these new tasks, and the associated problems
that arise between them and the previously known tasks, the new task definitions can
serve as requirements for future artifacts.

Carroll refers to this real-life phenomenon as the task–artifact cycle. He provides a
good example of this cycle through the evolution of the electronic spreadsheet.
When the first electronic spreadsheet, VisiCalc, was marketed in the late 1970s, it was
presented simply as an automated means of supporting tabular calculation, a task
commonly used in the accounting world. Within little over a decade of its introduc-
tion, the application of spreadsheets had far outstripped its original intent within
accounting. Spreadsheets were being used for all kinds of financial analysis, ‘what-if ’
simulations, report formatting and even as a general programming language
paradigm! As the set of tasks expands, new spreadsheet products have flooded the
marketplace trying to satisfy the growing customer base. Another good example 
of the task–artifact cycle in action is with word processing, which was originally
introduced to provide more automated support for tasks previously achieved with a
typewriter and now provides users with the ability to carry out various authoring
tasks that they never dreamed possible with a conventional typewriter. And today,
the tasks for the spreadsheet and the word processor are intermingled in the same
artifact.

The purpose of psychological design rationale is to support this natural task–
artifact cycle of design activity. The main emphasis is not to capture the designer’s
intention in building the artifact. Rather, psychological design rationale aims to
make explicit the consequences of a design for the user, given an understanding of
what tasks he intends to perform. Previously, these psychological consequences were
left implicit in the design, though designers would make informal claims about their
systems (for example, that it is more ‘natural’ for the user, or easier to learn).

The first step in the psychological design rationale is to identify the tasks that the
proposed system will address and to characterize those tasks by questions that the
user tries to answer in accomplishing them. For instance, Carroll gives an example 
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of designing a system to help programmers learn the Smalltalk object-oriented 
programming language environment. The main task the system is to support is
learning how Smalltalk works. In learning about the programming environment, the
programmer will perform tasks that help her answer the questions:

n What can I do: that is, what are the possible operations or functions that this 
programming environment allows?

n How does it work: that is, what do the various functions do?
n How can I do this: that is, once I know a particular operation I want to perform,

how do I go about programming it?

For each question, a set of scenarios of user–system behavior is suggested to support
the user in addressing the question. For example, to address the question ‘What can
I do?’, the designers can describe a scenario whereby the novice programmer is first
confronted with the learning environment and sees that she can invoke some demo
programs to investigate how Smalltalk programs work. The initial system can then
be implemented to provide the functionality suggested by the scenarios (for example,
some demos would be made accessible and obvious to the user/programmer from
the very beginning). Once this system is running, observation of its use and some
designer reflection is used to produce the actual psychological design rationale for
that version of the system. This is where the psychological claims are made explicit.
For example, there is an assumption that the programmer knows that what she can
see on the screen relates to what she can do (if she sees the list of programs under a
heading ‘Demos’, she can click on one program name to see the associated demo).
The psychological claim of this demo system is that the user learns by doing, which
is a good thing. However, there may also be negative aspects that are equally import-
ant to mention. The demo may not be very interactive, in which case the user clicks
on it to initiate it and then just sits back and watches a graphic display, never really
learning how the demo application is constructed in Smalltalk. These negative
aspects can be used to modify later versions of the system to allow more interactive
demos, which represent realistic, yet simple, applications, whose behavior and struc-
ture the programmer can appreciate.

By forcing the designer to document the psychological design rationale, it is 
hoped that she will become more aware of the natural evolution of user tasks and the
artifact, taking advantage of how consequences of one design can be used to improve
later designs.

Worked exercise What is the distinction between a process-oriented and a structure-oriented design rationale
technique? Would you classify psychological design rationale as process or structure oriented?
Why?

Answer The distinction between a process- and structure-oriented design rationale resides in
what information the design rationale attempts to capture. Process-oriented design
rationale is interested in recording an historically accurate description of a design team
making some decision on a particular issue for the design. In this sense, process-
oriented design rationale becomes an activity concurrent with the rest of the design
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process. Structure-oriented design rationale is less interested in preserving the histor-
ical evolution of the design. Rather, it is more interested in providing the conclusions of
the design activity, so it can be done in a post hoc and reflective manner after the fact.

The purpose of psychological design rationale is to support the task–artifact cycle. Here,
the tasks that the users perform are changed by the systems on which they perform the
tasks. A psychological design rationale proceeds by having the designers of the system
record what they believe are the tasks that the system should support and then build-
ing the system to support the tasks. The designers suggest scenarios for the tasks which
will be used to observe new users of the system. Observations of the users provide the
information needed for the actual design rationale of that version of the system. The
consequences of the design’s assumptions about the important tasks are then gauged
against the actual use in an attempt to justify the design or suggest improvements.

Psychological design rationale is mainly a process-oriented approach. The activity of 
a claims analysis is precisely about capturing what the designers assumed about the 
system at one point in time and how those assumptions compared with actual use.
Therefore, the history of the psychological design rationale is important. The discipline
involved in performing a psychological design rationale requires designers to perform
the claims analysis during the actual design activity, and not as post hoc reconstruction.

SUMMARY

In this chapter, we have shown how software engineering and the design process
relate to interactive system design. The software engineering life cycle aims to struc-
ture design in order to increase the reliability of the design process. For interactive
system design, this would equate to a reliable and reproducible means of designing
predictably usable systems. Because of the special needs of interactive systems, it is
essential to augment the standard life cycle in order to address issues of HCI.

Usability engineering encourages incorporating explicit usability goals within the
design process, providing a means by which the product’s usability can be judged.
Iterative design practices admit that principled design of interactive systems alone
cannot maximize product usability, so the designer must be able to evaluate early
prototypes and rapidly correct features of the prototype which detract from the
product usability.

The design process is composed of a series of decisions, which pare down the 
vast set of potential systems to the one that is actually delivered to the customer.
Design rationale, in its many forms, is aimed at allowing the designer to manage the
information about the decision-making process, in terms of when and why design
decisions were made and what consequences those decisions had for the user in
accomplishing his work.

6.6
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RECOMMENDED READING

J. A. McDermid, editor, The Software Engineer’s Reference Book, Butterworth–
Heinemann, 1992.
A very good general reference book for all topics in software engineering. In 
particular, we refer you to Chapter 15 on software life cycles and Chapter 40 on
prototyping.

I. Sommerville, Software Engineering, 6th edition, Addison-Wesley, 2000.
This textbook is one of the few texts in software engineering that specifically treats
issues of interface design.

X. Faulkner, Usability Engineering, Macmillan, 2000.
An excellent and accessible introduction to usability engineering covering,
amongst other things, user requirements capture and usability metrics.

J. Whiteside, J. Bennett and K. Holtzblatt, Usability engineering: our experience and
evolution. In M. Helander, editor, Handbook for Human–Computer Interaction,
North-Holland, 1988.
The seminal work on usability engineering. More recent work on usability engi-
neering has also been published by Jakob Nielsen [260, 261].

J. M. Carroll and T. P. Moran, editors, Design Rationale: Concepts, Techniques and
Use, Lawrence Erlbaum, 1996.
Expanded from a double special journal issue, this provides comprehensive 
coverage of relevant work in the field.

EXERCISES

6.1 (a) How can design rationale benefit interface design and why might it be rejected by
design teams?

(b) Explain QOC design rationale using an example to illustrate.

6.2 Imagine you have been asked to produce a prototype for the diary system discussed in the worked
exercise in Section 7.2.3. What would be an appropriate prototyping approach to enable you to
test the design using the usability metrics specified, and why?
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OV E RV I E W

n Designing for maximum usability is the goal of
interactive systems design.

n Abstract principles offer a way of understanding
usability in a more general sense, especially if we can
express them within some coherent catalog.

n Design rules in the form of standards and guidelines
provide direction for design, in both general and more
concrete terms, in order to enhance the interactive
properties of the system.

n The essential characteristics of good design are often
summarized through ‘golden rules’ or heuristics.

n Design patterns provide a potentially generative
approach to capturing and reusing design knowledge.

7
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INTRODUCTION

One of the central problems that must be solved in a user-centered design process is
how to provide designers with the ability to determine the usability consequences of
their design decisions. We require design rules, which are rules a designer can follow
in order to increase the usability of the eventual software product. We can classify
these rules along two dimensions, based on the rule’s authority and generality. By
authority, we mean an indication of whether or not the rule must be followed in
design or whether it is only suggested. By generality, we mean whether the rule can
be applied to many design situations or whether it is focussed on a more limited
application situation. Rules also vary in their level of abstraction, with some abstract-
ing away from the detail of the design solution and others being quite specific. It is
also important to determine the origins of a design rule. We will consider a number
of different types of design rules. Principles are abstract design rules, with high gen-
erality and low authority. Standards are specific design rules, high in authority and
limited in application, whereas guidelines tend to be lower in authority and more
general in application.

Design rules for interactive systems can be supported by psychological, cognitive,
ergonomic, sociological, economic or computational theory, which may or may 
not have roots in empirical evidence. Designers do not always have the relevant 
background in psychology, cognitive science, ergonomics, sociology, business or
computer science necessary to understand the consequences of those theories in 
the instance of the design they are creating. The design rules are used to apply the
theory in practice. Often a set of design rules will be in conflict with each other,
meaning that strict adherence to all of them is impossible. The theory underlying the
separate design rules can help the designer understand the trade-off for the design
that would result in following or disregarding some of the rules. Usually, the more
general a design rule is, the greater the likelihood that it will conflict with other rules
and the greater the need for the designer to understand the theory behind it.

We can make another rough distinction between principles, standards and guide-
lines. Principles are derived from knowledge of the psychological, computational
and sociological aspects of the problem domains and are largely independent of the
technology; they depend to a much greater extent on a deeper understanding of the
human element in the interaction. They can therefore be applied widely but are not
so useful for specific design advice. Guidelines are less abstract and often more tech-
nology oriented, but as they are also general, it is important for a designer to know
what theoretical evidence there is to support them. A designer will have less of a need
to know the underlying theory for applying a standard. However, since standards
carry a much higher level of authority, it is more important that the theory under-
lying them be correct or sound.

The previous chapter was about the process of design, and we need to consider
when design rules can be of use within that process. Design rules are mechanisms for
restricting the space of design options, preventing a designer from pursuing design
options that would be likely to lead to an unusable system. Thus, design rules would

7.1
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be most effective if they could be adopted in the earliest stages of the life cycle, such
as in requirements specification and architectural design, when the space of possible
designs is still very large. We have already seen, for example, in Chapter 6, how
abstract principles can be applied in usability engineering.

However, if the designer does not understand the assumptions underlying a
design rule, it is quite possible that early application can prevent the best design
choice. For example, a set of design rules might be specific to a particular hardware
platform and inappropriate for other platforms (for example, color versus mono-
chrome screens, one- versus two- or three-button mouse). Such bias in some design
rules causes them to be applicable only in later stages of the life cycle.

We will first discuss abstract principles, then go on to consider in more depth
some examples of standards and guidelines for user-centered design. Finally, we will
consider some well-known heuristics or ‘golden rules’ which, it has been suggested,
provide a succinct summary of the essence of good design. We end the chapter 
with a discussion of design patterns, a relatively new approach to capturing design
knowledge in HCI.

PRINCIPLES TO SUPPORT USABILITY

The most abstract design rules are general principles, which can be applied to the
design of an interactive system in order to promote its usability. In Chapter 4 we
looked at the different paradigms that represent the development of interactive 
systems. Derivation of principles for interaction has usually arisen out of a need 
to explain why a paradigm is successful and when it might not be. Principles can 
provide the repeatability which paradigms in themselves cannot provide. In this sec-
tion we present a collection of usability principles. Since it is too bold an objective to 
produce a comprehensive catalog of such principles, our emphasis will be on struc-
turing the presentation of usability principles in such a way that the catalog can be
easily extended as our knowledge increases.

The principles we present are first divided into three main categories:

Learnability – the ease with which new users can begin effective interaction and
achieve maximal performance.

Flexibility – the multiplicity of ways in which the user and system exchange 
information.

Robustness – the level of support provided to the user in determining successful
achievement and assessment of goals.

In the following, we will subdivide these main categories into more specific prin-
ciples that support them. In most cases, we are able to situate these more specific
principles within a single category, but we have made explicit those cases when a
principle falls into two of the above categories.

7.2
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7.2.1 Learnability

Learnability concerns the features of the interactive system that allow novice users to
understand how to use it initially and then how to attain a maximal level of perform-
ance. Table 7.1 contains a summary of the specific principles that support learn-
ability, which we will describe below.

Predictability

Except when interacting with some video games, a user does not take very well to
surprises. Predictability of an interactive system means that the user’s knowledge of
the interaction history is sufficient to determine the result of his future interaction
with it. There are many degrees to which predictability can be satisfied. The knowledge
can be restricted to the presently perceivable information, so that the user need not
remember anything other than what is currently observable. The knowledge require-
ment can be increased to the limit where the user is actually forced to remember what
every previous keystroke was and what every previous screen display contained (and
the order of each!) in order to determine the consequences of the next input action.

Predictability of an interactive system is distinguished from deterministic 
behavior of the computer system alone. Most computer systems are ultimately deter-
ministic machines, so that given the state at any one point in time and the operation
which is to be performed at that time, there is only one possible state that can 
result. Predictability is a user-centered concept; it is deterministic behavior from the
perspective of the user. It is not enough for the behavior of the computer system to
be determined completely from its state, as the user must be able to take advantage
of the determinism.

Table 7.1 Summary of principles affecting learnability

Principle

Predictability

Synthesizability

Familiarity

Generalizability

Consistency

Related principles

Operation visibility

Immediate/eventual
honesty
Guessability,
affordance

–

–

Definition

Support for the user to determine the effect of
future action based on past interaction history
Support for the user to assess the effect of 
past operations on the current state
The extent to which a user’s knowledge and
experience in other real-world or computer-
based domains can be applied when interacting
with a new system
Support for the user to extend knowledge 
of specific interaction within and across
applications to other similar situations
Likeness in input–output behavior arising from
similar situations or similar task objectives
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For example, a common mathematical puzzle would be to present you with a
sequence of three or more numbers and ask you what would be the next number in
the sequence. The assumption in this puzzle (and one that can often be incorrect) is
that there is a unique function or algorithm that produces the entire sequence of
numbers and it is up you to figure it out. We know the function, but all you know
are the results it provides from the first three calculations. The function is certainly
deterministic; the test for you is a test of its predictability given the first three num-
bers in the sequence.

As another, possibly more pertinent, example, imagine you have created a com-
plex picture using a mouse-driven graphical drawing package. You leave the picture
for a few days and then go back to change it around a bit. You are allowed to select
certain objects for editing by positioning the mouse over the object and clicking a
mouse button to highlight it. Can you tell what the set of selectable objects is? Can
you determine which area of the screen belongs to which of these objects, especially
if some objects overlap? Does the visual image on the screen indicate what objects
form a compound object that can only be selected as a group? Predictability of selec-
tion in this example depends on how much of the history of the creation of the visual
image is necessary in order for you to determine what happens when you click on the
mouse button.

This notion of predictability deals with the user’s ability to determine the effect of
operations on the system. Another form of predictability has to do with the user’s
ability to know which operations can be performed. Operation visibility refers to how
the user is shown the availability of operations that can be performed next. If an
operation can be performed, then there may be some perceivable indication of this
to the user. This principle supports the superiority in humans of recognition over
recall. Without it, the user will have to remember when he can perform the opera-
tion and when he cannot. Likewise, the user should understand from the interface if
an operation he might like to invoke cannot be performed.

Synthesizability

Predictability focusses on the user’s ability to determine the effect of future inter-
actions. This assumes that the user has some mental model (see Chapter 1) of how
the system behaves. Predictability says nothing about the way the user forms a model
of the system’s behavior. In building up some sort of predictive model of the system’s
behavior, it is important for the user to assess the consequences of previous inter-
actions in order to formulate a model of the behavior of the system. Synthesis, there-
fore, is the ability of the user to assess the effect of past operations on the current
state.

When an operation changes some aspect of the internal state, it is important that
the change is seen by the user. The principle of honesty relates to the ability of the
user interface to provide an observable and informative account of such change. 
In the best of circumstances, this notification can come immediately, requiring no
further interaction initiated by the user. At the very least, the notification should
appear eventually, after explicit user directives to make the change observable. A
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good example of the distinction between immediacy and eventuality can be seen in
the comparison between command language interfaces and visual desktop interfaces
for a file management system. You have moved a file from one directory to another.
The principle of honesty implies that after moving the file to its new location in the
file system you are then able to determine its new whereabouts. In a command lan-
guage system, you would typically have to remember the destination directory and
then ask to see the contents of that directory in order to verify that the file has been
moved (in fact, you would also have to check that the file is no longer in its original
directory to determine that it has been moved and not copied). In a visual desktop
interface, a visual representation (or icon) of the file is dragged from its original
directory and placed in its destination directory where it remains visible (assuming
the destination folder is selected to reveal its contents). In this case, the user need 
not expend any more effort to assess the result of the move operation. The visual
desktop is immediately honest.

The problem with eventual honesty is that the user must know to look for the
change. In a situation in which the user is learning a new interactive system, it is
likely that he will not know to look for change. In earlier versions of the Apple
Macintosh Finder, performing the operation to create a new folder in another folder
did not necessarily result in that new folder’s icon being visible in the original folder.
New users (and even some experienced users) would often think that they had not
issued the new folder operations correctly and would ask for another new folder (and
another, and another, . . . ). They would not know to search through the entire open
folder for the latest addition. Then several minutes (hours, days) later, they would
notice that there were a number of empty and untitled folders lying around. The
eventual (accidental) discovery of the change brought about by the new folder 
operation was then difficult to associate to that operation. Fortunately, this problem
was addressed in Version 7 of the Finder.

As another example of the benefit of immediate over eventual honesty, let us
examine a typical global search and replace function in a word processor. Imagine
you have noticed in the past a tendency to repeat words in a document (for exam-
ple, you type ‘the the’ without noticing the error). In an attempt to automate your
proofreading, you decide to replace globally all occurrences of ‘the the’ with ‘the’.
The typical global search and replace function performs this substitution without
revealing the changes made to you. Suddenly, a careless typing error is transformed
into unacceptable grammar as the sentence

We will prove the theorem holds as a corollary of the following lemma.

is transformed to

We will prove theorem holds as a corollary of the following lemma.

Familiarity

New users of a system bring with them a wealth of experience across a wide number
of application domains. This experience is obtained both through interaction in the
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real world and through interaction with other computer systems. For a new user, 
the familiarity of an interactive system measures the correlation between the user’s
existing knowledge and the knowledge required for effective interaction. For ex-
ample, when word processors were originally introduced the analogy between the
word processor and a typewriter was intended to make the new technology more
immediately accessible to those who had little experience with the former but a 
lot of experience with the latter. Familiarity has to do with a user’s first impression
of the system. In this case, we are interested in how the system is first perceived and
whether the user can determine how to initiate any interaction. An advantage of 
a metaphor, such as the typewriter metaphor for word processing described above,
is precisely captured by familiarity. Jordan et al. refer to this familiarity as the guess-
ability of the system [196].

Some psychologists argue that there are intrinsic properties, or affordances, of any
visual object that suggest to us how they can be manipulated (see also Chapter 5,
Section 5.7.2). The appearance of the object stimulates a familiarity with its beha-
vior. For example, the shape of a door handle can suggest how it should be manipu-
lated to open a door, and a key on a keyboard suggests to us that it can be pushed.
In the design of a graphical user interface, it is implied that a soft button used in a
form’s interface suggests it should be pushed (though it does not suggest how it is to
be pushed via the mouse). Effective use of the affordances that exist for interface
objects can enhance the familiarity of the interactive system.

Generalizability

Users often try to extend their knowledge of specific interaction behavior to situations
that are similar but previously unencountered. The generalizability of an interactive
system supports this activity, leading to a more complete predictive model of the sys-
tem for the user. We can apply generalization to situations in which the user wants
to apply knowledge that helps achieve one particular goal to another situation where
the goal is in some way similar. Generalizability can be seen as a form of consistency.

Generalization can occur within a single application or across a variety of applica-
tions. For example, in a graphical drawing package that draws a circle as a con-
strained form of ellipse, we would want the user to generalize that a square can be
drawn as a constrained rectangle. A good example of generalizability across a variety
of applications can be seen in multi-windowing systems that attempt to provide
cut/paste/copy operations to all applications in the same way (with varying degrees
of success). Generalizability within an application can be maximized by any con-
scientious designer. One of the main advantages of standards and programming 
style guides, which we will discuss in Sections 7.3 and 7.4, is that they increase 
generalizability across a wide variety of applications within the same environment.

Consistency

Consistency relates to the likeness in behavior arising from similar situations or 
similar task objectives. Consistency is probably the most widely mentioned principle
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in the literature on user interface design. ‘Be consistent!’ we are constantly urged.
The user relies on a consistent interface. However, the difficulty of dealing with 
consistency is that it can take many forms. Consistency is not a single property of an
interactive system that is either satisfied or not satisfied. Instead, consistency must 
be applied relative to something. Thus we have consistency in command naming, or
consistency in command/argument invocation.

Another consequence of consistency having to be defined with respect to some
other feature of the interaction is that many other principles can be ‘reduced’ to
qualified instances of consistency. Hence, familiarity can be considered as consist-
ency with respect to past real-world experience, and generalizability as consistency
with respect to experience with the same system or set of applications on the same
platform. Because of this pervasive quality of consistency, it might be argued that
consistency should be a separate category of usability principles, on the same level as
learnability, flexibility and robustness. Rather than do that, we will discuss different
ways in which consistency can be manifested.

Consistency can be expressed in terms of the form of input expressions or output
responses with respect to the meaning of actions in some conceptual model of the
system. For example, before the introduction of explicit arrow keys, some word pro-
cessors used the relative position of keys on the keyboard to indicate directionality
for operations (for example, to move one character to the left, right, up or down).
The conceptual model for display-based editing is a two-dimensional plane, so the
user would think of certain classes of operations in terms of movements up, down,
left or right in the plane of the display. Operations that required directional infor-
mation, such as moving within the text or deleting some unit of text, could be 
articulated by using some set of keys on the keyboard that form a pattern consistent
with up, down, left and right (for example, the keys e, x, s and d, respectively). For
output responses, a good example of consistency can be found in a warnings system
for an aircraft. Warnings to the pilot are classified into three categories, depending
on whether the situation with the aircraft requires immediate recovery action, even-
tual but not immediate action, or no action at all (advisory) on the part of the crew.
These warnings are signalled to the crew by means of a centralized warnings panel 
in which the categories are consistently color coded (red for immediate, amber for
eventual and green for advisory).

Grudin has argued that because of the relative nature of consistency it can be 
a dangerous principle to follow [160]. A good example he gives is the development
and evolution of the standard typewriter keyboard. When keyboards for typewriters
were first made, the designers laid out the keys in alphabetical order. Then it was dis-
covered that such an arrangement of keys was both inefficient from the machine’s
perspective (adjacent typewriter keys pressed in succession caused jams in the 
mechanism, so the likelihood of this occurrence had to be designed out) and tiring
for the typist (a touch-typist would not have equal stress distributed over all fingers).
The resulting QWERTY and DVORAK keyboards have since been adopted to 
combat the problems of the ‘consistent’ keyboard layout.1

1 See Chapter 2 for a discussion of different keyboards.
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7.2.2 Flexibility

Flexibility refers to the multiplicity of ways in which the end-user and the system
exchange information. We identify several principles that contribute to the flexibil-
ity of interaction, and these are summarized in Table 7.2.

Dialog initiative

When considering the interaction between user and system as a dialog between 
partners (see Chapter 16), it is important to consider which partner has the initiative
in the conversation. The system can initiate all dialog, in which case the user simply
responds to requests for information. We call this type of dialog system pre-emptive.
For example, a modal dialog box prohibits the user from interacting with the system
in any way that does not direct input to the box. Alternatively, the user may be
entirely free to initiate any action towards the system, in which case the dialog is 
user pre-emptive. The system may control the dialog to the extent that it prohibits 
the user from initiating any other desired communication concerning the current
task or some other task the user would like to perform. From the user’s perspective,
a system-driven interaction hinders flexibility whereas a user-driven interaction
favours it.

In general, we want to maximize the user’s ability to pre-empt the system and
minimize the system’s ability to pre-empt the user. Although a system pre-emptive
dialog is not desirable in general, some situations may require it. In a cooperative
editor (in which two people edit a document at the same time) it would be impolite

Table 7.2 Summary of principles affecting flexibility

Principle

Dialog initiative

Multi-threading

Task migratability

Substitutivity

Customizability

Related principles

System/user 
pre-emptiveness

Concurrent vs.
interleaving, 
multi-modality
–

Representation
multiplicity, equal
opportunity
Adaptivity,
adaptability

Definition

Allowing the user freedom from artificial
constraints on the input dialog imposed
by the system
Ability of the system to support user
interaction pertaining to more than one 
task at a time
The ability to pass control for the
execution of a given task so that it
becomes either internalized by the user
or the system or shared between them
Allowing equivalent values of input and
output to be arbitrarily substituted for
each other
Modifiability of the user interface by the
user or the system
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for you to erase a paragraph of text that your partner is currently editing. For safety
reasons, it may be necessary to prohibit the user from the ‘freedom’ to do potentially
serious damage. A pilot about to land an aircraft in which the flaps have asymmetric-
ally failed in their extended position2 should not be allowed to abort the landing, as
this failure will almost certainly result in a catastrophic accident.

On the other hand, a completely user pre-emptive dialog allows the user to offer
any input action at any time for maximum flexibility. This is not an entirely desir-
able situation, since it increases the likelihood that the user will lose track of the tasks
that have been initiated and not yet completed. However, if the designers have 
a good understanding of the sets of tasks the user is likely to perform with a system
and how those tasks are related, they can minimize the likelihood that the user will
be prevented from initiating some task at a time when he wishes to do so.

Multi-threading

A thread of a dialog is a coherent subset of that dialog. In the user–system dialog, we
can consider a thread to be that part of the dialog that relates to a given user task.
Multi-threading of the user–system dialog allows for interaction to support more
than one task at a time. Concurrent multi-threading allows simultaneous commun-
ication of information pertaining to separate tasks. Interleaved multi-threading permits
a temporal overlap between separate tasks, but stipulates that at any given instant 
the dialog is restricted to a single task.

Multi-modality of a dialog is related to multi-threading. Coutaz has characterized
two dimensions of multi-modal systems [80]. First, we can consider how the separ-
ate modalities (or channels of communication) are combined to form a single input
or output expression. Multiple channels may be available, but any one expression
may be restricted to just one channel (keyboard or audio, for example). As an ex-
ample, to open a window the user can choose between a double click on an icon, 
a keyboard shortcut, or saying ‘open window’. Alternatively, a single expression 
can be formed by a mixing of channels. Examples of such fused modality are error
warnings, which usually contain a textual message accompanied by an audible 
beep. On the input side, we could consider chord sequences of input with a keyboard
and mouse (pressing the shift key while a mouse button is pressed, or saying ‘drop’
as you drag a file over the trash icon). We can also characterize a multi-modality 
dialog depending on whether it allows concurrent or interleaved use of multiple
modes.

A windowing system naturally supports a multi-threaded dialog that is interleaved
amongst a number of overlapping tasks. Each window can represent a different task,
for example text editing in one window, file management in another, a telephone
directory in another and electronic mail in yet another. A multi-modal dialog can
allow for concurrent multi-threading. A very simple example can occur in the 

2 Flaps increase the surface area and curvature of the aircraft’s wing, providing the extra lift necessary for,
among other things, a smooth touchdown. An asymmetric failure results in extreme instability and the
aircraft will not fly level.
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windowing system with an audible bell. You are editing a program when a beep 
indicates that a new electronic mail message has arrived. Even though at the level of
the system the audible beep has been interleaved with your requests from the key-
board to perform edits, the overlap between the editing task and the mail message
from your perspective is simultaneous.

Task migratability

Task migratability concerns the transfer of control for execution of tasks between
system and user. It should be possible for the user or system to pass the control of 
a task over to the other or promote the task from a completely internalized one to 
a shared and cooperative venture. Hence, a task that is internal to one can become
internal to the other or shared between the two partners.

Spell-checking a paper is a good example of the need for task migratability.
Equipped with a dictionary, you are perfectly able to check your spelling by reading
through the entire paper and correcting mistakes as you spot them. This mundane
task is perfectly suited to automation, as the computer can check words against 
its own list of acceptable spellings. It is not desirable, however, to leave this task 
completely to the discretion of the computer, as most computerized dictionaries do
not handle proper names correctly, nor can they distinguish between correct and
unintentional duplications of words. In those cases, the task is handed over to the
user. The spell-check is best performed in such a cooperative way.

In safety-critical applications, task migratability can decrease the likelihood of 
an accident. For example, on the flight deck of an aircraft, there are so many control
tasks that must be performed that a pilot would be overwhelmed if he had to 
perform them all. Therefore, mundane control of the aircraft’s position within its
flight envelope is greatly automated. However, in the event of an emergency, it must
be possible to transfer flying controls easily and seamlessly from the system to the
pilot.

Substitutivity

Substitutivity requires that equivalent values can be substituted for each other. For
example, in considering the form of an input expression to determine the margin 
for a letter, you may want to enter the value in either inches or centimeters. You 
may also want to input the value explicitly (say 1.5 inches) or you may want to enter
a calculation which produces the right input value (you know the width of the text
is 6.5 inches and the width of the paper is 8.5 inches and you want the left margin 
to be twice as large as the right margin, so you enter 2/3 (8.5 − 6.5) inches). This 
input substitutivity contributes towards flexibility by allowing the user to choose
whichever form best suits the needs of the moment. By avoiding unnecessary calcu-
lations in the user’s head, substitutivity can minimize user errors and cognitive
effort.

We can also consider substitutivity with respect to output, or the system’s render-
ing of state information. Representation multiplicity illustrates flexibility for state 
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rendering. For example, the temperature of a physical object over a period of time
can be presented as a digital thermometer if the actual numerical value is important
or as a graph if it is only important to notice trends. It might even be desirable to
make these representations simultaneously available to the user. Each representation
provides a perspective on the internal state of the system. At a given time, the user is
free to consider the representations that are most suitable for the current task.

Equal opportunity blurs the distinction between input and output at the interface.
The user has the choice of what is input and what is output; in addition, output can
be reused as input. Thimbleby describes this principle as, ‘If you can see it, you can
use it!’ It is a common belief that input and output are separate. Many have stressed
the significance of the link between input and output. Equal opportunity pushes 
that view to the extreme. For example, in spreadsheet programs, the user fills in some
cells and the system automatically determines the values attributed to some other
cells. Conversely, if the user enters values for those other cells, the system would
compute the values for the first ones. In this example, it is not clear which cells are
the inputs and which are the outputs. Furthermore, this distinction might not be
clear or useful to the user. In a drawing package, the user may draw a line by direct
manipulation and the system would compute the length of the line; or conversely,
the user may specify the line coordinates and the system would draw the line. Both
means of manipulating the line are equally important and must be made equally
available. Note that equal opportunity implies that the system is not pre-emptive
towards the user.

Customizability

Customizability is the modifiability of the user interface by the user or the system.
From the system side, we are not concerned with modifications that would be
attended to by a programmer actually changing the system and its interface during
system maintenance. Rather, we are concerned with the automatic modification that
the system would make based on its knowledge of the user. We distinguish between
the user-initiated and system-initiated modification, referring to the former as
adaptability and the latter as adaptivity.

Adaptability refers to the user’s ability to adjust the form of input and output. 
This customization could be very limited, with the user only allowed to adjust 
the position of soft buttons on the screen or redefine command names. This type 
of modifiability, which is restricted to the surface of the interface, is referred to as 
lexical customization. The overall structure of the interaction is kept unchanged. The
power given to the user can be increased by allowing the definition of macros to
speed up the articulation of certain common tasks. In the extreme, the interface can
provide the user with programming language capabilities, such as the UNIX shell or
the script language Hypertalk in HyperCard. Thimbleby points out that in these
cases it would be suitable to apply well-known principles of programming languages
to the user’s interface programming language.

Adaptivity is automatic customization of the user interface by the system.
Decisions for adaptation can be based on user expertise or observed repetition of 
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certain task sequences. The distinction between adaptivity and adaptability is that the
user plays an explicit role in adaptability, whereas his role in an adaptive interface 
is more implicit. A system can be trained to recognize the behavior of an expert or
novice and accordingly adjust its dialog control or help system automatically to
match the needs of the current user. This is in contrast with a system that would
require the user to classify himself as novice or expert at the beginning of a session.
We discuss adaptive systems further in the context of user support in Chapter 11.
Automatic macro construction is a form of programming by example, combining
adaptability with adaptivity in a simple and useful way. Repetitive tasks can be detected
by observing user behavior and macros can be automatically (or with user consent)
constructed from this observation to perform repetitive tasks automatically.

7.2.3 Robustness

In a work or task domain, a user is engaged with a computer in order to achieve 
some set of goals. The robustness of that interaction covers features that support the
successful achievement and assessment of the goals. Here, we describe principles that
support robustness. A summary of these principles is presented in Table 7.3.

Observability

Observability allows the user to evaluate the internal state of the system by means 
of its perceivable representation at the interface. As we described in Chapter 3, 
evaluation allows the user to compare the current observed state with his intention
within the task–action plan, possibly leading to a plan revision. Observability can be

Table 7.3 Summary of principles affecting robustness

Principle

Observability

Recoverability

Responsiveness

Task conformance

Related principles

Browsability, static/dynamic
defaults, reachability,
persistence, operation
visibility
Reachability, forward/
backward recovery,
commensurate effort
Stability

Task completeness, task
adequacy

Definition 

Ability of the user to evaluate the
internal state of the system from
its perceivable representation

Ability of the user to take
corrective action once an error
has been recognized
How the user perceives the rate
of communication with the system
The degree to which the system
services support all of the tasks
the user wishes to perform 
and in the way that the user
understands them
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discussed through five other principles: browsability, defaults, reachability, persist-
ence and operation visibility. Operation visibility was covered in Section 7.2.1 in
relation to predictability. The remaining four are discussed next.

Browsability allows the user to explore the current internal state of the system via
the limited view provided at the interface. Usually the complexity of the domain does
not allow the interface to show all of the relevant domain concepts at once. Indeed,
this is one reason why the notion of task is used, in order to constrain the domain
information needed at one time to a subset connected with the user’s current activ-
ity. While you may not be able to view an entire document’s contents, you may be
able to see all of an outline view of the document, if you are only interested in its
overall structure. Even with a restriction of concepts relevant to the current task, it is
probable that all of the information a user needs to continue work on that task is not
immediately perceivable. Or perhaps the user is engaged in a multi-threaded dialog
covering several tasks. There needs to be a way for the user to investigate, or browse,
the internal state. This browsing itself should not have any side-effects on that state;
that is, the browsing commands should be passive with respect to the domain-
specific parts of the internal state.

The availability of defaults can assist the user by passive recall (for example, a sug-
gested response to a question can be recognized as correct instead of recalled). It also
reduces the number of physical actions necessary to input a value. Thus, providing
default values is a kind of error prevention mechanism. There are two kinds of
default values: static and dynamic. Static defaults do not evolve with the session.
They are either defined within the system or acquired at initialization. On the other
hand, dynamic defaults evolve during the session. They are computed by the system
from previous user inputs; the system is then adapting default values.

Reachability refers to the possibility of navigation through the observable system
states. There are various levels of reachability that can be given precise mathematical
definitions (see Chapter 17), but the main notion is whether the user can navigate
from any given state to any other state. Reachability in an interactive system affects
the recoverability of the system, as we will discuss later. In addition, different levels
of reachability can reflect the amount of flexibility in the system as well, though we
did not make that explicit in the discussion on flexibility.

Persistence deals with the duration of the effect of a communication act and the
ability of the user to make use of that effect. The effect of vocal communication 
does not persist except in the memory of the receiver. Visual communication, on the
other hand, can remain as an object which the user can subsequently manipulate
long after the act of presentation. If you are informed of a new email message by a
beep at your terminal, you may know at that moment and for a short while later that
you have received a new message. If you do not attend to that message immediately,
you may forget about it. If, however, some persistent visual information informs you
of the incoming message (say, the flag goes up on your electronic mailbox), then that
will serve as a reminder that an unread message remains long after its initial receipt.3

3 Chapter 19 discusses notification mechanisms for email in more detail.
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Recoverability

Users make mistakes from which they want to recover. Recoverability is the ability
to reach a desired goal after recognition of some error in a previous interaction.
There are two directions in which recovery can occur, forward or backward. Forward
error recovery involves the acceptance of the current state and negotiation from that
state towards the desired state. Forward error recovery may be the only possibility for
recovery if the effects of interaction are not revocable (for example, in building a house
of cards, you might sneeze whilst placing a card on the seventh level, but you cannot
undo the effect of your misfortune except by rebuilding). Backward error recovery is
an attempt to undo the effects of previous interaction in order to return to a prior
state before proceeding. In a text editor, a mistyped keystroke might wipe out a large
section of text which you would want to retrieve by an equally simple undo button.

Recovery can be initiated by the system or by the user. When performed by the
system, recoverability is connected to the notions of fault tolerance, safety, reliability
and dependability, all topics covered in software engineering. However, in software
engineering this recoverability is considered only with respect to system functional-
ity; it is not tied to user intent. When recovery is initiated by the user, it is important
that it determines the intent of the user’s recovery actions; that is, whether he desires
forward (negotiation) or backward (using undo/redo actions) corrective action.

Recoverability is linked to reachability because we want to avoid blocking the user
from getting to a desired state from some other undesired state (going down a blind
alley).

In addition to providing the ability to recover, the procedure for recovery should
reflect the work being done (or undone, as the case may be). The principle of com-
mensurate effort states that if it is difficult to undo a given effect on the state, then it
should have been difficult to do in the first place. Conversely, easily undone actions
should be easily doable. For example, if it is difficult to recover files which have been
deleted in an operating system, then it should be difficult to remove them, or at least
it should require more effort by the user to delete the file than to, say, rename it.

Responsiveness

Responsiveness measures the rate of communication between the system and the
user. Response time is generally defined as the duration of time needed by the 
system to express state changes to the user. In general, short durations and instantan-
eous response times are desirable. Instantaneous means that the user perceives 
system reactions as immediate. But even in situations in which an instantaneous
response cannot be obtained, there must be some indication to the user that the 
system has received the request for action and is working on a response.

As significant as absolute response time is response time stability. Response time
stability covers the invariance of the duration for identical or similar computational
resources. For example, pull-down menus are expected to pop up instantaneously 
as soon as a mouse button is pressed. Variations in response time will impede 
anticipation exploited by motor skill.
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Task conformance

Since the purpose of an interactive system is to allow a user to perform various 
tasks in achieving certain goals within a specific application domain, we can ask
whether the system supports all of the tasks of interest and whether it supports these
as the user wants. Task completeness addresses the coverage issue and task adequacy
addresses the user’s understanding of the tasks.

It is not sufficient that the computer system fully implements some set of com-
putational services that were identified at early specification stages. It is essential 
that the system allows the user to achieve any of the desired tasks in a particular 
work domain as identified by a task analysis that precedes system specification 
(see Chapter 15 for a more complete discussion of task analysis techniques). Task 
completeness refers to the level to which the system services can be mapped onto all
of the user tasks. However, it is quite possible that the provision of a new computer-
based tool will suggest to a user some tasks that were not even conceivable before the
tool. Therefore, it is also desirable that the system services be suitably general so that
the user can define new tasks.

Discussion of task conformance has its roots in an attempt to understand the suc-
cess of direct manipulation interfaces. We can view the direct manipulation interface
as a separate world from that inside the system. Task completeness covers only one
part of the conformance. This separate world is understood and operated upon by
the user. With the intuition of the Hutchins, Hollan and Norman model-world meta-
phor discussed in Chapter 4, we require that the task, as represented by the world of
the interface, matches the task as understood by the user and supported by the sys-
tem. If the model-world metaphor satisfies the principle of task adequacy, then the
user will be directly on his task plan, minimizing the effort required in the articulation
and observation translations discussed in the interaction framework of Chapter 3.

Worked exercise Look at some of the principles outlined in this section, and use one or two to provide a usabil-
ity specification (see Chapter 6, Section 6.3) for an electronic meetings diary or calendar. First
identify some of the tasks that would be performed by a user trying to keep track of future
meetings, and then complete the usability specification assuming that the electronic system will
be replacing a paper-based system. What assumptions do you have to make about the user
and the electronic diary in order to create a reasonable usability specification?

Answer This exercise could be easily extended to a small project which would involve the design
of such an electronic diary or calendar. The purpose of this smaller usability engineer-
ing exercise is to show how usability goals can be formulated early on to drive the
design activity. We will select two of the usability principles from this chapter, which
will serve as attributes for separate usability specifications.

In the first example, we will consider the interaction principle of guessability, which con-
cerns how easy it is for new users to perform tasks initially. The measuring concept will
be how long it takes a new user, without any instruction on the new system, to enter
his first appointment in the diary. A sample usability specification is given below.
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Attribute: Guessability
Measuring concept: Ease of first use of system without training
Measuring method: Time to create first entry in diary

Now level: 30 seconds on paper-based system
Worst case: 1 minute

Planned level: 45 seconds
Best case: 30 seconds (equivalent to now)

The values in this usability specification might seem a little surprising at first, since we
are saying that the best case is only equivalent to the currently achievable now level.
The point in this example is that the new system is replacing a very familiar paper and
pencil system which requires very little training. The objective of this system is not so
much to improve guessability but to preserve it. Earlier, we discussed that the worst
case level should not usually be worse than the now level, but we are hoping for this
product to improve overall functionality of the system. The user will be able to do more
things with the electronic diary than he could with the conventional system. As a result,
we worry less about improving its guessability. Perhaps we could have been more ambi-
tious in setting the best case value by considering the potential for voice input or other
exotic input techniques that would make entry faster than writing.

As another example, we want to support the task migratability of the system. A fre-
quent sort of task for a diary is to schedule weekly meetings. The conventional system
would require the user to make an explicit entry for the meeting each week – the task
of the scheduling is the responsibility of the user. In the new system, we want to allow
the user to push the responsibility of scheduling over to the system, so that the user
need only indicate the desire to have a meeting scheduled for a certain time each week
and the system will take care of entering the meeting at all of the appropriate times.
The task of scheduling has thus migrated over to the system. The usability specification
for this example follows.

Attribute: Task migratability
Measuring concept: Scheduling a weekly meeting
Measuring method: Time it takes to enter a weekly meeting appointment

Now level: (Time to schedule one appointment) × (Number of weeks)
Worst case: Time to schedule two appointments

Planned level: 1.5 × (Time to schedule one appointment)
Best case: Time to schedule one appointment

In this specification, we have indicated that the now level is equivalent to the time 
it takes to schedule each appointment separately. The worst, planned and best case 
levels are all targeted at some proportion of the time it takes to schedule just a single
appointment – a dramatic improvement. The difference between the worst, planned
and best case levels is the amount of overhead it will take to indicate that a single
appointment is to be considered an example to be repeated at the weekly level.

What are the assumptions we have to make in order to arrive at such a usability
specification? One of the problems with usability specifications, discussed earlier, is that
they sometimes require quite specific information about the design. For example, had
we set one of our measuring methods to count keystrokes or mouse clicks, we would
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have had to start making assumptions about the method of interaction that the system
would allow. Had we tried to set a usability specification concerning the browsing of
the diary, we would have had to start making assumptions about the layout of the calen-
dar (monthly, weekly, daily) in order to make our estimates specific enough to measure.
In the examples we have provided above, we have tried to stay as abstract as possible,
so that the usability specifications could be of use as early in the design life cycle as pos-
sible. A consequence of this abstractness, particularly evident in the second example, is
that we run the risk in the usability specification of setting goals that may be completely
unrealistic, though well intentioned. If the usability specification were to be used as a
contract with the customer, such speculation could spell real trouble for the designer.

STANDARDS

Standards for interactive system design are usually set by national or international
bodies to ensure compliance with a set of design rules by a large community.
Standards can apply specifically to either the hardware or the software used to build
the interactive system. Smith [324] points out the differing characteristics between
hardware and software, which affect the utility of design standards applied to them:

Underlying theory Standards for hardware are based on an understanding of 
physiology or ergonomics/human factors, the results of which are relatively well
known, fixed and readily adaptable to design of the hardware. On the other hand,
software standards are based on theories from psychology or cognitive science,
which are less well formed, still evolving and not very easy to interpret in the 
language of software design. Consequently, standards for hardware can directly
relate to a hardware specification and still reflect the underlying theory, whereas
software standards would have to be more vaguely worded.

Change Hardware is more difficult and expensive to change than software, which
is usually designed to be very flexible. Consequently, requirements changes for
hardware do not occur as frequently as for software. Since standards are also 
relatively stable, they are more suitable for hardware than software.

Historically, for these reasons, a given standards institution, such as the British
Standards Institution (BSI) or the International Organization for Standardization (ISO)
or a national military agency, has had standards for hardware in place before any for
software. For example, the UK Ministry of Defence has published an Interim Defence
Standard 00–25 on Human Factors for Designers of Equipment, produced in 12 parts:

Part 1 Introduction
Part 2 Body Size
Part 3 Body Strength and Stamina
Part 4 Workplace Design
Part 5 Stresses and Hazards
Part 6 Vision and Lighting

7.3
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Part 7 Visual Displays
Part 8 Auditory Information
Part 9 Voice Communication
Part 10 Controls
Part 11 Design for Maintainability
Part 12 Systems

Only the last of these is concerned with the software design process. The inter-
national standard ISO 9241, entitled Ergonomic Requirements for Office Work with
Visual Display Terminals (VDT)s, has 17 parts. Seven of these are concerned with
hardware issues – requirements for visual display, keyboard layout, workstation lay-
out, environment, display with reflections, display colors and non-keyboard input
devices. Seven parts are devoted to software issues – general dialog principles, 
menu dialogs, presentation of information, user guidance, command dialogs, direct
manipulation dialogs and form-filling dialogs. However, standards covering soft-
ware issues are now being produced, for example, the draft standard ISO 14915 
covers software ergonomics for multimedia user interfaces.

Figure 7.1 provides examples of the language of standards for displays. Note the
increasing generality and vagueness of the language as we progress from the hard-
ware issues in a UK defence standard for pilot cockpit controls and instrumentation
through a German standard for user interface design of display workstations to a US
military standard for display contents.

11.3 Arrangement of displays
11.3.1 Vertical Grouping. The engine display parameters shall be arranged so that the
primary or most important display for a particular engine and airplane (thrust, torque,
RPM, etc.) be located at the top of the display group if a vertical grouping is provided.
The next most important display parameter shall be positioned under the primary display
progressing down the panel with the least important at the bottom.

(a) A typical example of a military standard

5.1 Subdivision of the display area
In consideration of a simple, fast and accurate visual acquisition, the display area shall be
divided into different sub-areas.
Such a division should be:
n Input area
n Output area
n Area for operational indications (such as status and alarms)

(b) From German standard DIN 66 234 Part 3 (1984), adapted from Smith [324]

5.15.3.2.1 Standardization
The content of displays within a system shall be presented in a consistent manner.

(c) From US military standard MIL-STD-1472C, revised (1983), adapted from Smith [324]

Figure 7.1 Sample design standards for displays. Adapted from Smith [324].
Copyright © 1986 IEEE
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One component of the ISO standard 9241, pertaining to usability specification,
applies equally to both hardware and software design. In the beginning of that 
document, the following definition of usability is given:

Usability The effectiveness, efficiency and satisfaction with which specified users
achieve specified goals in particular environments.

Effectiveness The accuracy and completeness with which specified users can
achieve specified goals in particular environments.

Efficiency The resources expended in relation to the accuracy and completeness of
goals achieved.

Satisfaction The comfort and acceptability of the work system to its users and
other people affected by its use.

The importance of such a definition in the standard is as a means of describing
explicit measurements for usability. Such metrics can support usability engineering,
as we saw in Chapter 6.

The strength of a standard lies in its ability to force large communities to abide –
the so-called authority we have referred to earlier. It should be noted that such
authority does not necessarily follow from the publication of a standard by a national
or international body. In fact, many standards applying to software design are put
forth as suggestive measures, rather than obligatory. The authority of a standard (or
a guideline, for that matter) can only be determined from its use in practice. Some
software products become de facto standards long before any formal standards docu-
ment is published (for example, the X windowing system).

There is a much longer history of standards in safety-critical domains, such as
nuclear power plants or aircraft design, where the consequences of poor design out-
weigh the expense of principled design. It is only as the perceived costs of unusable
software in less safety-critical domains have become less acceptable that there has
been a greater effort in developing standards for promoting usability.

GUIDELINES

We have observed that the incompleteness of theories underlying the design of inter-
active software makes it difficult to produce authoritative and specific standards. As
a result, the majority of design rules for interactive systems are suggestive and more
general guidelines. Our concern in examining the wealth of available guidelines is in
determining their applicability to the various stages of design. The more abstract the
guideline, the more it resembles the principles that we outlined in Section 7.2, which
would be most suited to requirements specification. The more specific the guideline,
the more suited it is to detailed design. The guidelines can also be automated to 
some extent, providing a direct means for translating detailed design specifications
into actual implementation. There are a vast amount of published guidelines for

7.4
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interactive system design (they are frequently referred to as guidelines for user inter-
face design). We will present only a few examples here to demonstrate the content of
guidelines in that vast literature.

Several books and technical reports contain huge catalogs of guidelines. A classic
example was a very general list compiled by Smith and Mosier in 1986 at the Mitre
Corporation and sponsored by the Electronic Systems Division of the US Air Force
[325]. The basic categories of the Smith and Mosier guidelines are:

1. Data Entry
2. Data Display
3. Sequence Control
4. User Guidance
5. Data Transmission
6. Data Protection

Each of these categories is further broken down into more specific subcategories
which contain the particular guidelines. Figure 7.2 provides an example of the 
information contained in the Smith and Mosier guidelines. A striking feature of this
compendium of guidelines is the extensive cross-referencing within the catalog, and
citation to published work that supports each guideline. The Mitre Corporation has
taken advantage of this structure and implemented the Smith and Mosier guidelines
on a hypertext system, which provides rapid traversal of the network of guidelines to
investigate the cross-references and citations.

1. Data Entry

1.1 Position Designation

1.1–1 Distinctive Cursor
For position designation on an electronic display, provide a movable cursor with distinct-
ive visual features (shape, blink, etc.).

Exception When position designation involves only selection among displayed
alternatives, highlighting selected items might be used instead of a separately displayed
cursor.

Comment When choosing a cursor shape, consider the general content of the display.
For instance, an underscore cursor would be difficult to see on a display of under-
scored text, or on a graphical display containing many other lines.

Comment If the cursor is changed to denote different functions (e.g. to signal deletion
rather than entry), then each different cursor should be distinguishable from the
others.

Comment If multiple cursors are used on the same display (e.g. one for alphanumeric
entry and one for line drawing), then each cursor should be distinguishable from the
others.

Reference Whitfield, Ball and Bird, 1983

See also 1.1–17 Distinctive multiple cursors
4.0–9 Distinctive cursor

Figure 7.2 Sample guideline from Smith and Mosier [325], courtesy of The MITRE
Corporation
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A more recent, equally comprehensive catalog of general guidelines has been 
compiled by Mayhew [230]. Though this catalog is only in book form, and so limits
the possibility of quick cross-referencing, this is one of the best sources for the 
experimental results which back the specific guidelines.

A major concern for all of the general guidelines is the subject of dialog styles,
which in the context of these guidelines pertains to the means by which the user
communicates input to the system, including how the system presents the commun-
ication device. Smith and Mosier identify eight different dialog styles and Mayhew
identifies seven (see Table 7.4 for a comparison). The only real difference is the
absence of query languages in Mayhew’s list, but we can consider a query language
as a special case of a command language. These interface styles have been described
in more detail in Chapter 3.

Most guidelines are applicable for the implementation of any one of these dialog
styles in isolation. It is also important to consider the possibility of mixing dialog
styles in one application. In contrasting the action and language paradigms in
Chapter 4, we concluded that it is not always the case that one paradigm wins over
the other for all tasks in an application and, therefore, an application may want to
mix the two paradigms. This equates to a mixing of dialog styles – a direct manipu-
lation dialog being suitable for the action paradigm and a command language being
suitable for the language paradigm. Mayhew provides guidelines and a technique for
deciding how to mix dialog styles.

In moving from abstract guidelines to more specific and automated ones, it is 
necessary to introduce assumptions about the computer platform on which the
interactive system is designed. So, for example, in Apple’s Human Interface
Guidelines: the Apple Desktop Interface, there is a clear distinction between the
abstract guidelines (or principles), independent of the specific Macintosh hard-
ware and software, and the concrete guidelines, which assume them. The abstract
guidelines provide the so-called philosophy of programming that Apple would like 
designers to adopt in programming applications for the Macintosh. The more con-
crete guidelines are then seen as more concrete manifestations of that philosophy.

As an example, one abstract principle espoused in the Apple guidelines is 
consistency:

Table 7.4 Comparison of dialog styles mentioned in guidelines

Smith and Mosier [325] Mayhew [230]

Question and answer Question and answer
Form filling Fill-in forms
Menu selection Menus
Function keys Function keys
Command language Command language
Query language –
Natural language Natural language
Graphic selection Direct manipulation
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Effective applications are both consistent within themselves and consistent with one
another.

We discussed consistency in Section 7.2 under the larger usability category of learn-
ability, and the meaning in this context is similar. A more concrete directive that
Apple provides is the ‘noun–verb’ ordering guideline: the user first selects an object
(the noun) from the visible set on the Desktop and then selects an operation (the
verb) to be applied to the object. For the sake of consistency, this ordering guideline
is to be followed for all operation invocation involving the explicit and separate 
indication of an operation and the object or arguments of that operation.

Another less straightforward example from the Apple guidelines refers to user
control:

The user, not the computer, initiates and controls all actions.

We considered issues of dialog initiative in Section 7.2 under the general usability
category of flexibility. As we mentioned there, the issue of dialog initiative involves 
a trade-off between user freedom and system protection. In general, single-user
computer systems operate in strict abidance of this guideline for user control; the
user is allowed to initiate any dialog at all with the computer, whether or not it will
have the intended result. Part of the success of direct manipulation interfaces lies 
in their ability to constrain user interaction to actions which are both syntactically
correct (for example, preventing errors due to slips in typing) and will probably 
correspond to the intended user tasks.

Other popular graphical user interface (GUI) systems have published guidelines
that describe how to adhere to abstract principles for usability in the narrower con-
text of a specific programming environment. These guidelines are often referred 
to as style guides to reflect that they are not hard and fast rules, but suggested con-
ventions for programming in that environment. Some examples are the OpenLook
and the Open Software Foundation (OSF) Motif graphical user interfaces, both of
which have published style guides [337, 275]. Programming in the style of these
GUIs involves the use of toolkits which provide high-level widgets, as we have 
mentioned earlier in this book and will discuss in more detail in Chapter 8. More
importantly, each of these GUIs has its own look and feel, which describes their
expected behavior. The style guides are intended to help a programmer capture the
elements of the look and feel of a GUI in her own programming. Therefore, style
guides for the look and feel of a GUI promote the consistency within and between
applications on the same computer platform.

We discussed menus in Chapter 3 as one of the major elements of the WIMP
interface. As one example of a guideline for the design of menus, the OpenLook style
guide suggests the following for grouping items in the same menu:

Use white space between long groups of controls on menus or in short groups when
screen real estate is not an issue.

The justification for such a guideline is that the more options (or controls, as the
term is used in the quoted guideline) on a menu, the longer it will take a user to
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locate and point to a desired item. As we discussed in Chapter 1, humans chunk
related information in the learning process and this can be used to increase the
efficiency of searching. Grouping of related items in a menu can supplement this
chunking procedure. But be warned! Remember the scenario described in the Intro-
duction to this book, in which we fell victim to closely grouped menu items which
had drastically different effects in our word processor. Saving and deleting files might
be considered logically similar since they both deal with operations on the file level.
But simple slips made in pointing (which are all too easy with trackball devices) can
change an intended save operation into an unintended and dangerous delete.

Worked exercise Look up and report back guidelines for the use of color. Be able to state the empirical psy-
chological evidence that supports the guidelines. Do the guidelines conflict with any other
known guidelines? Which principles of interaction do they support?

Answer There are many examples of guidelines for the use of color in the literature. Here are
three good sources:

n C. Marlin Brown, Human–Computer Interface Design Guidelines, Ablex, 1988.
n Deborah J. Mayhew, Principles and Guidelines in Software User Interface Design, Prentice

Hall, 1992.
n Sun Microsystems, Inc., OpenLook Graphical User Interface Application Style Guidelines,

Addison-Wesley, 1990.

Taking an example from Mayhew, we have the following design guideline for the use of
color as an informational cue for the user (for example, to inform the user that a string
of text is a warning or error message):

Do not use color without some other redundant cue.

Mayhew provides three reasons which empirically support this guideline:

1. Color may not be available on all machines on which the system is to be imple-
mented. Therefore, if use of color is the only means to convey some important
information to the user, then that information will be lost in a monochrome (no
color) system. Redundant color coding will allow for portability across different
computing platforms.

2. Empirical evidence shows that 8% of the (general) male population and 0.4% of the
female population has some color deficiency, so they cannot accurately recognize or
distinguish between various colors. Again, if color is the only means for conveying
some information, this significant portion of the user population will be slighted.

3. It has been shown that redundant color coding enhances user performance

This guideline supports several of the principles discussed in this chapter:

Substitutivity The system is able to substitute color-coded information and other
means (for example, text, sound) to represent some important information. We
could turn the argument around and suggest that the user be able to provide color
input (by selecting from a palette menu) or other forms of input to provide relevant
information to the system.
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Observability This principle is all about the system being able to provide the user
with enough information about its internal state to assist his task. Relying strictly on
color-coded information, as pointed out above, could reduce the observability of a
system for some users.

Synthesis If a change in color is used to indicate the changing status of some system
entity (perhaps a change in temperature above a threshold value is signalled by an
icon becoming red), those who cannot detect the change in color would be deprived
of this information. Synthesis is about supporting the user’s ability to detect such
significant changes, especially when they are a result of previous user actions.

There is no evidence of existing guidelines that this particular guideline for color violates.

Another example of a color guideline (found in all three of the above references) is the
demand to consider cultural information in the selection of particular colors. For example,
Mayhew states that western cultures tend to interpret green to mean go or safe; red
to mean stop, on, hot or emergency; and blue to mean cold or off. Using color to suggest
these kinds of meanings is in support of the familiarity principle within learnability.
However, in other cultures different meanings may be associated with these colors, as we
saw in Chapter 3, and consistent use of color (another guideline) might lead to confusion.
Hence, strict adherence to this guideline would suggest a violation of the consistency of
color application guideline. However, if consistency is applied relative to the meaning of
the color (as opposed to its actual color), this guideline would not have to conflict.

GOLDEN RULES AND HEURISTICS

So far we have considered a range of abstract principles and detailed guidelines,
which can be used to help designers produce more usable systems. But all of these
rules require a certain amount of commitment on the part of the designer, either to
track down appropriate guidelines or to interpret principles. Is there a simpler way?

A number of advocates of user-centered design have presented sets of ‘golden 
rules’ or heuristics. While these are inevitably ‘broad-brush’ design rules, which may
not be always be applicable to every situation, they do provide a useful checklist 
or summary of the essence of design advice. It is clear that any designer following
even these simple rules will produce a better system than one who ignores them.

There are many sets of heuristics, but the most well used are Nielsen’s ten heur-
istics, Shneiderman’s eight golden rules and Norman’s seven principles. Nielsen’s
heuristics are intended to be used in evaluation and will therefore be discussed in
Chapter 9. We will consider the other two sets here.

7.5.1 Shneiderman’s Eight Golden Rules of Interface Design

Shneiderman’s eight golden rules provide a convenient and succinct summary of 
the key principles of interface design. They are intended to be used during design but

7.5
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can also be applied, like Nielsen’s heuristics, to the evaluation of systems. Notice 
how they relate to the abstract principles discussed earlier.

1. Strive for consistency in action sequences, layout, terminology, command use and
so on.

2. Enable frequent users to use shortcuts, such as abbreviations, special key sequences
and macros, to perform regular, familiar actions more quickly.

3. Offer informative feedback for every user action, at a level appropriate to the 
magnitude of the action.

4. Design dialogs to yield closure so that the user knows when they have completed 
a task.

5. Offer error prevention and simple error handling so that, ideally, users are prevented
from making mistakes and, if they do, they are offered clear and informative
instructions to enable them to recover.

6. Permit easy reversal of actions in order to relieve anxiety and encourage 
exploration, since the user knows that he can always return to the previous state.

7. Support internal locus of control so that the user is in control of the system, which
responds to his actions.

8. Reduce short-term memory load by keeping displays simple, consolidating 
multiple page displays and providing time for learning action sequences.

These rules provide a useful shorthand for the more detailed sets of principles
described earlier. Like those principles, they are not applicable to every eventuality
and need to be interpreted for each new situation. However, they are broadly useful
and their application will only help most design projects.

7.5.2 Norman’s Seven Principles for Transforming Difficult Tasks
into Simple Ones

In Chapter 3 we discussed Norman’s execution–evaluation cycle, in which he elabor-
ates the seven stages of action. Later, in his classic book The Design of Everyday
Things, he summarizes user-centered design using the following seven principles:

1. Use both knowledge in the world and knowledge in the head. People work bet-
ter when the knowledge they need to do a task is available externally – either
explicitly or through the constraints imposed by the environment. But experts 
also need to be able to internalize regular tasks to increase their efficiency. So sys-
tems should provide the necessary knowledge within the environment and their
operation should be transparent to support the user in building an appropriate
mental model of what is going on.

2. Simplify the structure of tasks. Tasks need to be simple in order to avoid complex
problem solving and excessive memory load. There are a number of ways to sim-
plify the structure of tasks. One is to provide mental aids to help the user keep
track of stages in a more complex task. Another is to use technology to provide
the user with more information about the task and better feedback. A third
approach is to automate the task or part of it, as long as this does not detract from
the user’s experience. The final approach to simplification is to change the nature
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of the task so that it becomes something more simple. In all of this, it is import-
ant not to take control away from the user.

3. Make things visible: bridge the gulfs of execution and evaluation. The interface
should make clear what the system can do and how this is achieved, and should
enable the user to see clearly the effect of their actions on the system.

4. Get the mappings right. User intentions should map clearly onto system controls.
User actions should map clearly onto system events. So it should be clear what
does what and by how much. Controls, sliders and dials should reflect the task –
so a small movement has a small effect and a large movement a large effect.

5. Exploit the power of constraints, both natural and artificial. Constraints are things in
the world that make it impossible to do anything but the correct action in the cor-
rect way. A simple example is a jigsaw puzzle, where the pieces only fit together in one
way. Here the physical constraints of the design guide the user to complete the task.

6. Design for error. To err is human, so anticipate the errors the user could make and
design recovery into the system.

7. When all else fails, standardize. If there are no natural mappings then arbitrary
mappings should be standardized so that users only have to learn them once. It 
is this standardization principle that enables drivers to get into a new car and
drive it with very little difficulty – key controls are standardized. Occasionally 
one might switch on the indicator lights instead of the windscreen wipers, but the
critical controls (accelerator, brake, clutch, steering) are always the same.

Norman’s seven principles provide a useful summary of his user-centered design 
philosophy but the reader is encouraged to read the complete text of The Design of
Everyday Things to gain the full picture.

HCI PATTERNS

As we observed in Chapter 4, one way to approach design is to learn from examples
that have proven to be successful in the past: to reuse the knowledge of what made a
system – or paradigm – successful. Patterns are an approach to capturing and reusing
this knowledge – of abstracting the essential details of successful design so that these
can be applied again and again in new situations.

Patterns originated in architecture, where they have been used successfully, and they
are also used widely in software development to capture solutions to common pro-
gramming problems. More recently they have been used in interface and web design.

A pattern is an invariant solution to a recurrent problem within a specific 
context. Patterns address the problems that designers face by providing a ‘solution
statement’. This is best illustrated by example. Alexander, who initiated the pattern
concept, proposes a pattern for house building called ‘Light on Two Sides of Every
Room’. The problem being addressed here is that

When they have a choice, people will always gravitate to those rooms which have light
on two sides, and leave the rooms which are lit only from one side unused and empty.

The proposed solution is to provide natural light from two sides of every room:
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Locate each room so that it has outdoor space outside it on at least two sides, and then
place windows in these outdoor walls so that natural light falls into every room from
more than one direction [9a, pattern 159].

Note that the solution says nothing about where these windows should be located 
or at what angle they should be to each other. A room with windows on opposite
walls, or at right angles, or with a window and a skylight would all fulfill the pattern.
Patterns capture only the invariant properties of good design – the common ele-
ments that hold between all instances of the solution. The specific implementation
of the pattern will depend on the circumstance and the designer’s creativity.

There are many examples of HCI patterns, and the interested reader is referred 
to pattern collections and languages such as [345, 37, 356] and the Pattern Gallery,
which illustrates some of the various forms used in HCI patterns [132]. A well-
known example, ‘go back to a safe place’, adapted from Tidwell’s Common Ground
collection, is given as an illustration (Figure 7.3). This is quite a low-level interface
pattern, but patterns can also address high-level issues such as organizational struc-
tures or cooperative groups. As you can see, the pattern states the problem and the
solution but also includes a rationale, explaining where the pattern has come from
and in what context it applies, and examples to illustrate the pattern.

The pattern also has references to other patterns, indicating both the context 
in which it can be applied (the top references) and the patterns that may be needed
to complete it (the bottom references). This connects the patterns together into a
language. Patterns in isolation have limited use, but by traversing the hierarchy,
through these references, the user is assisted in generating a complete design.

Patterns and pattern languages are characterized by a number of features, which,
taken as a whole, distinguish them from other design rules:

n They capture design practice and embody knowledge about successful solutions:
they come from practice rather than psychological theory.

n They capture the essential common properties of good design: they do not tell the
designer how to do something but what needs to be done and why.

n They represent design knowledge at varying levels, ranging from social and organ-
izational issues through conceptual design to detailed widget design.

n They are not neutral but embody values within their rationale. Alexander’s 
language clearly expresses his values about architecture. HCI patterns can express
values about what is humane in interface design.

n The concept of a pattern language is generative and can therefore assist in the
development of complete designs.

n They are generally intuitive and readable and can therefore be used for commun-
ication between all stakeholders.

Patterns are a relatively recent addition to HCI representations, in which there are
still many research issues to resolve. For instance, it is not clear how patterns can best
be identified or how languages should be structured to reflect the temporal concerns
of interaction. However, the recent publication of a complete pattern language for
web design [356], aimed at commercial designers, may mark a turning point and see
a more widespread adoption of the approach in interface design.
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SUMMARY

We have seen how design rules can be used to provide direction for the design pro-
cess, although the more general and interesting the design rule is for promoting
usability, the further away it is from the actual language of design.

7.7

Figure 7.3 An example pattern ‘go back to a safe place’ adapted from Tidwell’s Common Ground
collection. Courtesy of Jenifer Tidwell
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We have considered abstract principles, standards and guidelines, golden rules
and heuristics, and patterns, and have looked at examples of each. The most abstract
design rules are principles, which represent generic knowledge about good design
practice. Standards and guidelines are more specific. Standards have the highest
authority, being set by national or international bodies to ensure compliance by a
large community. Guidelines are less authoritative but offer specific contextual
advice, which can inform detailed design. Heuristics and ‘golden rules’ are succinct
collections of design principles and advice that are easily assimilated by any designer.
Patterns capture design practice and attempt to provide a generative structure to
support the design process.

EXERCISES

7.1 What was the problem with the synthesis example comparing a command language
interface with a visual interface? Can you suggest a fix to make a visual interface really immedi-
ately honest?

7.2 It has been suggested in this chapter that consistency could be considered a major category of
interactive principles, on the same level as learnability, flexibility and robustness. If this was the
case, which principles discussed in this chapter would appear in support of consistency?

7.3 Find as much information as you can on ISO standards that relate to usability. (Hint: Many stan-
dards are discussed in terms of ergonomics.) How many different standards and draft standards
can you find?

7.4 Can you think of any instances in which the ‘noun–verb’ guideline for operations, as suggested in
the Apple human interface guidelines for the Desktop Interface, would be violated? Suggest other
abstract guidelines or principles besides consistency which support your example. (Hint: Think
about moving files around on the Desktop.)

7.5 Can you think of any instances in which the user control guideline suggested by Apple is not 
followed? (Hint: Think about the use of dialog boxes.)

7.6 Find a book on guidelines. List the guidelines that are provided and classify them in terms of the
activity in the software life cycle to which they would most likely apply.

7.7 (a) Distinguish between principles, guidelines and standards, using examples of each to illustrate.
(b) Why is context important in selecting and applying guidelines and principles for interface

design? Illustrate your answer with examples.

7.8 (a) Why are there few effective HCI standards?
(b) How do ‘golden rules’ and heuristics help interface designers take account of cognitive 

psychology? Illustrate your answer with examples.

7.9 Using the web design pattern language in The Design of Sites [356] produce a design for an 
e-commerce site for a small retail business. How well does the language support the design 
process?
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IMPLEMENTATION SUPPORT

OV E RV I E W

n Programming tools for interactive systems provide a
means of effectively translating abstract designs and
usability principles into an executable form. These tools
provide different levels of services for the programmer.

n Windowing systems are a central environment for both
the programmer and user of an interactive system,
allowing a single workstation to support separate
user–system threads of action simultaneously.

n Interaction toolkits abstract away from the physical
separation of input and output devices, allowing the
programmer to describe behaviors of objects at a level
similar to how the user perceives them.

n User interface management systems are the final level
of programming support tools, allowing the designer
and programmer to control the relationship between
the presentation objects of a toolkit with their
functional semantics in the actual application.

8
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INTRODUCTION

In this chapter, we will discuss the programming support that is provided for the
implementation of an interactive system. We have spent much effort up to this point
considering design and analysis of interactive systems from a relatively abstract per-
spective. We did this because it was not necessary to consider the specific details of
the devices used in the interaction. Furthermore, consideration of that detail was an
obstacle to understanding the interaction from the user’s perspective. But we cannot
forever ignore the specifics of the device. It is now time to devote some attention to
understanding just how the task of coding the interactive application is structured.

The detailed specification gives the programmer instructions as to what the inter-
active application must do and the programmer must translate that into machine
executable instructions to say how that will be achieved on the available hardware
devices. The objective of the programmer then is to translate down to the level of the
software that runs the hardware devices. At its crudest level, this software provides
the ability to do things like read events from various input devices and write primit-
ive graphics commands to a display. Whereas it is possible in that crude language to
produce highly interactive systems, the job is very tedious and highly error prone,
amenable to computer hackers who relish the intricacy and challenge but not neces-
sarily those whose main concern is the design of very usable interactive systems.

The programming support tools which we describe in this chapter aim to move
that executable language up from the crudely expressive level to a higher level in
which the programmer can code more directly in terms of the interaction objects of
the application. The emphasis here is on how building levels of abstraction on top 
of the essential hardware and software services allows the programmer to build the
system in terms of its desired interaction techniques, a term we use to indicate the
intimate relationship between input and output. Though there is a fundamental 
separation between input and output devices in the hardware devices and at the 
lowest software level, the distinction can be removed at the programming level with
the right abstractions and hiding of detail.

In the remainder of this chapter, we will address the various layers which consti-
tute the move from the low-level hardware up to the more abstract programming
concepts for interaction. We begin in Section 8.2 with the elements of a windowing
system, which provide for device independence and resource sharing at the pro-
gramming level. Programming in a window system frees the programmer from some
of the worry about the input and output primitives of the machines the application
will run on, and allows her to program the application under the assumption that it
will receive a stream of event requests from the window manager. In Section 8.3 we
describe the two fundamental ways this stream of events can be processed to link 
the interface with the application functionality: by means of a read–evaluation con-
trol loop internal to the application program or by a centralized notification-based
technique external to it. In Section 8.4, we describe the use of toolkits as mechanisms
to link input and output at the programming level. In Section 8.5, we discuss the
large class of development tools lumped under the categories of user interface man-
agement systems, or UIMS, and user interface development systems, UIDS.

8.1
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ELEMENTS OF WINDOWING SYSTEMS

In earlier chapters, we have discussed the elements of the WIMP interface but only
with respect to how they enhance the interaction with the end-user. Here we will
describe more details of windowing systems used to build the WIMP interface.

The first important feature of a windowing system is its ability to provide pro-
grammer independence from the specifics of the hardware devices. A typical work-
station will involve some visual display screen, a keyboard and some pointing device,
such as a mouse. Any variety of these hardware devices can be used in any interact-
ive system and they are all different in terms of the data they communicate and the
commands that are used to instruct them. It is imperative to be able to program an
application that will run on a wide range of devices. To do this, the programmer
wants to direct commands to an abstract terminal, which understands a more generic
language and can be translated to the language of many other specific devices.
Besides making the programming task easier, the abstract terminal makes portabil-
ity of application programs possible. Only one translation program – or device driver
– needs to be written for a particular hardware device and then any application pro-
gram can access it.

A given windowing system will have a fixed generic language for the abstract 
terminal which is called its imaging model. The imaging models are sufficient 
to describe very arbitrary images. For efficiency reasons, specific primitives are 
used to handle text images, either as specific pixel images or as more generic font
definitions.

8.2

Examples of imaging models

Pixels
The display screen is represented as a series of columns and rows of points – or pixels – which
can be explicitly turned on or off, or given a color. This is a common imaging model for personal
computers and is also used by the X windowing system.

Graphical kernel system (GKS)
An international standard which models the screen as a collection of connected segments, each of
which is a macro of elementary graphics commands.

Programmer’s hierarchical interface to graphics (PHIGS)
Another international standard, based on GKS but with an extension to model the screen as
editable segments.

PostScript
A programming language developed by Adobe Corporation which models the screen as a collec-
tion of paths which serve as infinitely thin boundaries or stencils which can be filled in with vari-
ous colors or textured patterns and images.
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Though these imaging models were initially defined to provide abstract languages
for output only, they can serve at least a limited role for input as well. So, for ex-
ample, the pixel model can be used to interpret input from a mouse in terms of the
pixel coordinate system. It would then be the job of the application to process the
input event further once it knows where in the image it occurred. The other models
above can provide even more expressiveness for the input language, because they can
relate the input events to structures that are identifiable by the application program.
Both PHIGS and PostScript have been augmented to include a more explicit model
of input.

When we discussed the WIMP interface as an interaction paradigm in Chapter 4,
we pointed out its ability to support several separate user tasks simultaneously.
Windowing systems provide this capability by sharing the resources of a single 
hardware configuration with several copies of an abstract terminal. Each abstract 
terminal will behave as an independent process and the windowing system will 
coordinate the control of the concurrent processes. To ease the programming task
again, this coordination of simultaneously active processes can be factored out of 
the individual applications, so that they can be programmed as if they were to oper-
ate in isolation. The window system must also provide a means of displaying the 
separate applications, and this is accomplished by dedicating a region of the dis-
play screen to each active abstract terminal. The coordination task then involves
resolving display conflicts when the visible screen regions of two abstract terminals
overlap.

In summary, we can see the role of a windowing system, depicted in Figure 8.1, 
as providing

independence from the specifics of programming separate hardware devices;

management of multiple, independent but simultaneously active applications.

Next, we discuss the possible architectures of a windowing system to achieve these
two tasks.

8.2.1 Architectures of windowing systems

Bass and Coutaz [29] identify three possible architectures for the software to imple-
ment the roles of a windowing system. All of them assume that device drivers are sep-
arate from the application programs. The first option is to implement and replicate
the management of the multiple processes within each of the separate applications.
This is not a very satisfactory architecture because it forces each application to con-
sider the difficult problems of resolving synchronization conflicts with the shared
hardware devices. It also reduces the portability of the separate applications. The 
second option is to implement the management role within the kernel of the oper-
ating system, centralizing the management task by freeing it from the individual
applications. Applications must still be developed with the specifics of the particu-
lar operating system in mind. The third option provides the most portability, as 
the management function is written as a separate application in its own right and 
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so can provide an interface to other application programs that is generic across all
operating systems. This final option is referred to as the client–server architecture, and
is depicted in Figure 8.2.

In practice, the divide among these proposed architectures is not so clear and 
any actual interactive application or set of applications operating within a window
system may share features with any one of these three conceptual architectures.
Therefore, it may have one component that is a separate application or process
together with some built-in operating system support and hand-tuned application

Figure 8.1 The roles of a windowing system
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support to manage the shared resources. So applications built for a window system
which is notionally based on the client–server model may not be as portable as one
would think.

A classic example of a window system based on the client–server architecture is the
industry-standard X Window System (Release 11), developed at the Massachusetts
Institute of Technology (MIT) in the mid-1980s. Figure 8.3 shows the software
architecture of X. X (or X11), as we mentioned earlier, is based on a pixel-based
imaging model and assumes that there is some pointing mechanism available. What
distinguishes X from other window systems, and the reason it has been adopted 
as a standard, is that X is based on a network protocol which clearly defines the
server–client communication. The X Protocol can be implemented on different com-
puters and operating systems, making X more device independent. It also means that
client and server need not even be on the same system in order to communicate to

Figure 8.2 The client–server architecture
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the server. Each client of the X11 server is associated to an abstract terminal or main
window. The X server performs the following tasks:

n allows (or denies) access to the display from multiple client applications;
n interprets requests from clients to perform screen operations or provide other

information;
n demultiplexes the stream of physical input events from the user and passes them

to the appropriate client;
n minimizes the traffic along the network by relieving the clients from having to

keep track of certain display information, like fonts, in complex data structures
that the clients can access by ID numbers.

A separate client – the window manager – enforces policies to resolve conflicting
input and output requests to and from the other clients. There are several different
window managers which can be used in X, and they adopt different policies. For
example, the window manager would decide how the user can change the focus of
his input from one application to another. One option is for the user to nominate
one window as the active one to which all subsequent input is directed. The other
option is for the active window to be implicitly nominated by the position of the
pointing device. Whenever the pointer is in the display space of a window, all input
is directed to it. Once the pointer is moved to a position inside another window, that
window becomes active and receives subsequent input. Another example of window
manager policy is whether visible screen images of the client windows can overlap or
must be non-overlapping (called tiling). As with many other windowing systems, the

Figure 8.3 The X Window System (Release 11) architecture
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client applications can define their own hierarchy of subwindows, each of which is
constrained to the coordinate space of the parent window. This subdivision of the
main client window allows the programmer to manage the input and output for a
single application similar to the window manager.

To aid in the design of specific window managers, the X Consortium has produced
the Inter-Client Communication Conventions Manual (ICCCM), which provides
conventions for various policy issues that are not included in the X definition. These
policies include:

n rules for transferring data between clients;
n methods for selecting the active client for input focus;
n layout schemes for overlapping/tiled windows as screen regions.

PROGRAMMING THE APPLICATION

We now concentrate our attention on programming the actual interactive applica-
tion, which would correspond to a client in the client–server architecture of Figure
8.2. Interactive applications are generally user driven in the sense that the action the
application takes is determined by the input received from the user. We describe two
programming paradigms which can be used to organize the flow of control within
the application. The windowing system does not necessarily determine which of
these two paradigms is to be followed.

The first programming paradigm is the read–evaluation loop, which is internal 
to the application program itself (see Figure 8.4). Programming on the Macintosh
follows this paradigm. The server sends user inputs as structured events to the client
application. As far as the server is concerned, the only importance of the event is the
client to which it must be directed. The client application is programmed to read any
event passed to it and determine all of the application-specific behavior that results
as a response to it. The logical flow of the client application is indicated in the left-
most box of Figure 8.4. In pseudocode the read–evaluation loop would look like the
following:

repeat

read-event(myevent)

case myevent.type

type_1 :

do type_1 processing

type_2 :

do type_2 processing

.

.

.

8.3
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type_n :

do type_n processing

end case

end repeat

The application has complete control over the processing of events that it receives.
The downside is that the programmer must execute this control over every possible
event that the client will receive, which could prove a very cumbersome task. On 
the Macintosh, this process can be aided somewhat by programming tools, such as
MacApp, which automate some of the tedium.

The other programming paradigm is notification based, in which the main con-
trol loop for the event processing does not reside within the application. Instead, 
a centralized notifier receives events from the window system and filters them to 
the application program in a way declared by the program (see Figure 8.5). The
application program informs the notifier what events are of interest to it, and for
each event declares one of its own procedures as a callback before turning control
over to the notifier. When the notifier receives an event from the window system, 
it sees if that event was identified by the application program and, if so, passes the
event and control over to the callback procedure that was registered for the event.
After processing, the callback procedure returns control to the notifier, either telling
it to continue receiving events or requesting termination.

Figure 8.4 The read–evaluate loop paradigm
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Figure 8.5 The notification-based programming paradigm

Control flow is centralized in the notifier, which relieves the application program
of much of the tedium of processing every possible event passed to it by the window
system. But this freedom from control does not come without a price. Suppose, for
example, that the application program wanted to produce a pre-emptive dialog box,
perhaps because it has detected an error and wants to obtain confirmation from 
the user before proceeding. The pre-emptive dialog effectively discards all sub-
sequent user actions except for ones that it requires, say selection by the user inside
a certain region of the screen. To do this in the read–evaluation paradigm is fairly
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1. /*
2. * quit.c -- simple program to display a panel button that says

"Quit".
3. * Selecting the panel button exits the program.
4. */
5. # include <xview/xview.h>
6. # include <xview/frame.h>
7. # include <xview/panel.h>

8. Frame frame;

9. main  (argc, argv)
10. int argc;
11. char *argv[];
12. {
13. Panel panel;
14. void quit();
15.
16. xv_init(XV_INIT_ARGC_PTR_ARGV, &argc, argv, NULL);

17. frame = (Frame) xv_create(NULL, FRAME,
18. FRAME_LABEL, argv[0],
19. XV_WIDTH, 200,
20. XV_HEIGHT, 100,
21. NULL);

22. panel = (Panel) xv_create(frame, PANEL, NULL);

23. (void) xv_create(panel, PANEL_BUTTON,
24. PANEL_LABEL_STRING, "Quit",
25. PANEL_NOTIFY_PROC, quit,
26. NULL);

27. xv_main_loop(frame);
28. exit(0);
29. }

30. void quit()
31. {
32. xv_destroy_safe(frame);
33. }

Figure 8.6 A simple program to demonstrate notification-based programming. Example taken
from Dan Heller [169], reproduced by permission of O’Reilly and Associates, Inc

Example: a notification-based program

Figure 8.6 provides an example of notification-based programming in C using the XView
toolkit (toolkits are described in the next section).
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straightforward. Suppose the error condition occurred during the processing of an
event of type type_2. Once the error condition is recognized, the application then
begins another read–evaluation loop contained within that branch of the case
statement. Within that loop, all non-relevant events can be received and discarded.
The pseudocode example given earlier would be modified in the following way:

repeat

read-event(myevent)

case myevent.type

type_1 :

do type_1 processing

type_2 :

. . .

if (error-condition) then

repeat

read-event(myevent2)

case myevent2.type

The program produces a window, or frame, with one button, labeled Quit, which when selected
by the pointer device causes the program to quit, destroying the window (see Figure 8.7 for 
the screen image produced by the sample program quit.c). Three objects are created in this
program: the outermost frame, a panel within that frame and the button in the panel. The pro-
cedure xv_create, used on lines 17, 22 and 23 in the source code of Figure 8.6, is used by 
the application program to register the objects with the XView notifier. In the last instance 
on line 23, the application programmer informs the notifier of the callback procedure to be
invoked when the object, a button, is selected. The application program then initiates the notifier
by the procedure call xv_main_loop. When the notifier receives a select event for the button,
control is passed to the procedure quit which destroys the outermost frame and requests 
termination.

Figure 8.7 Screen image produced by sample program quit.c
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type_1 :

.

.

.

type_n :

end case

until (end-condition2)

end if

. . .

.

.

.

type_n :

do type_n processing

end case

until (end-condition)

In the notification-based paradigm, such a pre-emptive dialog would not be so
simple, because the control flow is out of the hands of the application programmer.
The callback procedures would all have to be modified to recognize the situations in
which the pre-emptive dialog is needed and in those situations disregard all events
which are passed to them by the notifier. Things would be improved, however, if 
the application programmer could in such situations access the notifier directly to
request that previously acceptable events be ignored until further notice.

DESIGN FOCUS

Going with the grain

It is possible to use notification-based code to produce pre-emptive interface dialog such as a modal dia-
log box, but much more difficult than with an event-loop-based system. Similarly, it is possible to write
event-loop-based code which is not pre-emptive, but again it is difficult to do so. If you are not care-
ful, systems built using notification-based code will have lots of non-modal dialog boxes and vice versa.
Each programming paradigm has a grain, a tendency to push you towards certain kinds of interface.

If you know that the interface you require fits more closely to one paradigm or another then it is worth
selecting the programming paradigm to make your life easier! Often, however, you do not have a
choice. In this case you have to be very careful to decide what kind of interface dialog you want before
you (or someone else) start coding. Where the desired interface fits the grain of the paradigm you
don’t have to worry. Where the desired behavior runs against the grain you must be careful, both in
coding and testing as these are the areas where things will go wrong.

Of course, if you don’t explicitly decide what behavior you want or you specify it unclearly, then it 
is likely that the resulting system will simply run with the grain, whether or not that makes a good 
interface.
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USING TOOLKITS

As we discussed in Chapter 4, a key feature of WIMP interfaces from the user’s per-
spective is that input and output behaviors are intrinsically linked to independent
entities on the display screen. This creates the illusion that the entities on the screen
are the objects of interest – interaction objects we have called them – and that is 
necessary for the action world of a direct manipulation interface. A classic example
is the mouse as a pointing device. The input coming from the hardware device is 
separate from the output of the mouse cursor on the display screen. However, since
the visual movement of the screen cursor is linked with the physical movement of the
mouse device, the user feels as if he is actually moving the visual cursor. Even though
input and output are actually separate, the illusion causes the user to treat them 
as one; indeed, both the visual cursor and the physical device are referred to simply
as ‘the mouse’. In situations where this link is broken, it is easy to see the user’s 
frustration.

In Figure 8.8, we show an example of how input and output are combined for
interaction with a button object. As the user moves the mouse cursor over the but-
ton, it changes to a finger to suggest that the user can push it. Pressing the mouse
button down causes the button to be highlighted and might even make an audible
click like the keys on some keyboards, providing immediate feedback that the button
has been pushed. Releasing the mouse button unhighlights the button and moving
the mouse off the button changes the cursor to its initial shape, indicating that the
user is no longer over the active area of the button.

From the programmer’s perspective, even at the level of a windowing system,
input and output are still quite separate for everything except the mouse, and it 
takes quite a bit of effort in the application program to create the illusion of the 
interaction object such as the button we have just described. To aid the programmer
in fusing input and output behaviors, another level of abstraction is placed on top of
the window system – the toolkit. A toolkit provides the programmer with a set of
ready-made interaction objects – alternatively called interaction techniques, gadgets
or widgets – which she can use to create her application programs. The interaction

8.4

Figure 8.8 Example of behavior of a button interaction object
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objects have a predefined behavior, such as that described for the button, that comes
for free without any further programming effort. Toolkits exist for all windowing
environments (for example, OSF/Motif and XView for the X Window system, 
the Macintosh Toolbox and the Software Development Toolkit for Microsoft
Windows).

To provide flexibility, the interaction objects can be tailored to the specific 
situation in which they are invoked by the programmer. For example, the label on
the button could be a parameter which the programmer can set when a particular
button is created. More complex interaction objects can be built up from smaller,
simpler ones. Ultimately, the entire application can be viewed as a collection of 
interaction objects whose combined behavior describes the semantics of the whole
application.

The sample program quit.c in Figure 8.6 uses the XView toolkit. Programming
with toolkits is suited to the notification-based programming paradigm. As we can
see in the example, the button is created as a PANEL_BUTTON object (lines 23–26)
and registers the appropriate callback routine for when the notifier receives a selec-
tion event for the button object. The button interaction object in the toolkit already
has defined what actual user action is classified as the selection event, so the pro-
grammer need not worry about that when creating an instance of the button. The
programmer can think of the event at a higher level of abstraction, that is as a selec-
tion event instead of as a release of the left mouse button.

In Chapter 7 we discussed the benefits of consistency and generalizability for 
an interactive system. One of the advantages of programming with toolkits is that
they can enforce consistency in both input form and output form by providing 
similar behavior to a collection of widgets. For example, every button interaction
object, within the same application program or between different ones, by default
could have a behavior like the one described in Figure 8.8. All that is required is that
the developers for the different applications use the same toolkit. This consistency 
of behavior for interaction objects is referred to as the look and feel of the toolkit.
Style guides, which were described in the discussion on guidelines in Chapter 7, give
additional hints to a programmer on how to preserve the look and feel of a given
toolkit beyond that which is enforced by the default definition of the interaction
objects.

Two features of interaction objects and toolkits make them amenable to an object-
oriented approach to programming. First, they depend on being able to define a class
of interaction objects which can then be invoked (or instantiated) many times within
one application with only minor modifications to each instance. Secondly, building
complex interaction objects is made easier by building up their definition based on
existing simpler interaction objects. These notions of instantiation and inheritance
are cornerstones of object-oriented programming. Classes are defined as templates
for interaction objects. When an interaction object is created, it is declared as an
instance of some predefined class. So, in the example quit.c program, frame is
declared as an instance of the class FRAME (line 17), panel is declared as an instance
of the class PANEL (line 22) and the button (no name) is declared as an instance of
the class PANEL_BUTTON (line 23). Typically, a class template will provide default
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values for various attributes. Some of those attributes can be altered in any one
instance; they are sometimes distinguished as instance attributes.

In defining the classes of interaction objects themselves, new classes can be built
which inherit features of one or other classes. In the simplest case, there is a strict
class hierarchy in which each class inherits features of only one other class, its parent
class. This simple form of inheritance is called single inheritance and is exhibited in
the XView toolkit standard hierarchy for the window class in Figure 8.9. A more
complicated class hierarchy would permit defining new classes which inherit from
more than one parent class – called multiple inheritance.

DESIGN FOCUS

Java and AWT

The Java toolkit for developing windowed applications is called the Abstract Windowing Toolkit, AWT.
It maps interface objects such as buttons, menus and dialog boxes onto corresponding Java classes. 
The programmer builds an interface either by using these classes directly or by subclassing them, 
that is specializing the behavior of the object in some way. This subclassing means that new interaction
widgets can easily be added. The toolkit is notification based, but the mechanism has changed slightly
between versions. In AWT 1.0 the programmer needs to subclass a button in order to specify its beha-
vior when pressed. Since AWT 1.1 the programmer can use a method more like traditional callbacks,
but based on registering special Java objects rather than functions.

Figure 8.9 The single inheritance class hierarchy of the XView toolkit, after 
Heller [169], reproduced by permission of O’Reilly and Associates, Inc
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We should point out that though most toolkits are structured in an object-
oriented manner, that does not mean that the actual application programming 
language is object oriented. The example program quit.c was written in the C 
programming language, which is not an object-oriented language. It is best to think
of object orientation as yet another programming paradigm which structures the
way the programmer attacks the programming task without mandating a particular
syntax or semantics for the programming language.

The programmer can tailor the behavior and appearance of an interaction object
by setting the values of various instance attributes. These attributes must be set
before the application program is compiled. In addition, some windowing systems
allow various attributes of interaction objects to be altered without necessitating
recompilation, though they may have to be set before the actual program is run. 
This tailorability is achieved via resources which can be accessed by the application
program and change the compiled value of some attributes. For efficiency reasons,
this tailorability is often limited to a small set of attributes for any given class.

Worked exercise Scrolling is an effective means of browsing through a document in a window that is too small
to show the whole document. Compare the different interactive behavior of the following two
interaction objects to implement scrolling:

n A scrollbar is attached to the side of the window with arrows at the top and bottom. When
the mouse is positioned over the arrow at the top of the screen (which points up), the 
window frame is moved upwards to reveal a part of the document above/before what is
currently viewed. When the bottom arrow is selected, the frame moves down to reveal the
document below/after the current view.

n The document is contained in a textual interaction object. Pressing the mouse button in the
text object allows you to drag the document within the window boundaries. You drag up to
browse down in the document and you drag down to browse up.

The difference between the two situations can be characterized by noticing that, in the first
case, the user is actually manipulating the window (moving it up or down to reveal the con-
tents of the document), whereas, in the second case, the user is manipulating the document 
(pushing it up or down to reveal its contents through the windows). What usability principles
would you use to justify one method over the other (also consider the case when you want to
scroll from side to side as well as up and down)? What implementation considerations are
important?

Answer There are many usability principles that can be brought to bear on an examination of
scrolling principles. For example:

Observability The whole reason why scrolling is used is because there is too much
information to present all at once. Providing a means of viewing document contents
without changing the contents increases the observability of the system. Scrollbars
also increase observability because they help to indicate the wider context of the
information which is currently visible, typically by showing where the window of
information fits within the whole document. However, observability does not
address the particular design options put forth here.
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Predictability The value of a scrolling mechanism lies in the user being able to know
where a particular scrolling action will lead in the document. The use of arrows on
the scrollbar is to help the user predict the effect of the scrolling operation. If an
arrow points up, the question is whether that indicates the direction the window is
being moved (the first case) or the direction the actual text would have to move (the
second case). The empirical question here is: to what object do users associate the
arrow – the text or the text window? The arrow of the scrollbar is more closely
connected to the boundary of a text window, so the more usual interpretation
would be to have it indicate the direction of the window movement.

Synthesizability You might think that it does not matter which object the user asso-
ciates to the arrow. He will just have to learn the mapping and live with it. In this
case, how easy is it to learn the mapping, that is can the user synthesize the mean-
ing of the scrolling actions from changes made at the display? Usually, the movement
of a box within the scrollbar itself will indicate the result of a scrolling operation.

Familiarity/guessability It would be an interesting experiment to see whether
there was a difference in the performance of new users for the different scrolling
mechanisms. This might be the subject of a more extended exercise.

Task conformance There are some implementation limitations for these scrolling
mechanisms (see below). In light of these limitations, does the particular scrolling
task prefer one over the other? In considering this principle, we need to know what
kinds of scrolling activity will be necessary. Is the document a long text that will be
browsed from end to end, or is it possibly a map or a picture which is only slightly
larger than the actual screen so scrolling will only be done in small increments?

Some implementation considerations:

n What scroll mechanisms does a toolkit provide? Is it easy to access the two options
discussed above within the same toolkit?

n In the case of the second scrolling option, are there enough keys on the mouse to
allow this operation without interfering with other important mouse operations,
such as arbitrarily moving the insertion point or selecting a portion of text or select-
ing a graphical item?

n In the second option, the user places the mouse on a specific location within the 
window, and gestures to dictate the movement of the underlying document. What
kind of behavior is expected when the mouse hits the boundary of the window? Is the
scrolling limited in this case to steps bounded in size by the size of the window, so that
scrolling between two distant points requires many separate smaller scrolling actions?

USER INTERFACE MANAGEMENT SYSTEMS

Despite the availability of toolkits and the valuable abstraction they provide pro-
grammers, there are still significant hurdles to overcome in the specification, design
and implementation of interactive systems. Toolkits provide only a limited range 

8.5
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of interaction objects, limiting the kinds of interactive behavior allowed between
user and system. Toolkits are expensive to create and are still very difficult to use by
non-programmers. Even experienced programmers will have difficulty using them
to produce an interface that is predictably usable. There is a need for additional sup-
port for programmers in the design and use of toolkits to overcome their deficien-
cies. Also, none of the programming mechanisms we have discussed so far in this
chapter is appropriate for non-expert programmers, so we still have a long way to go
towards the goal of opening up interactive system implementation to those whose
main concerns are with HCI and not programming.

The set of programming and design techniques which are supposed to add
another level of services for interactive system design beyond the toolkit level are 
user interface management systems, or UIMS for short. The term UIMS is used quite
widely in both industrial and academic circles and has come to represent a variety of
topics. The main concerns of a UIMS, for our purposes, are:

n a conceptual architecture for the structure of an interactive system which con-
centrates on a separation between application semantics and presentation;

n techniques for implementing a separated application and presentation whilst 
preserving the intended connection between them;

n support techniques for managing, implementing and evaluating a run-time 
interactive environment.

We should acknowledge that some people feel that the term UIMS is inappropriate
for all of the above tasks, preferring the term user interface development systems, or
UIDS, to distinguish support tools which address many of the design activities that
precede the management of the run-time system.

8.5.1 UIMS as a conceptual architecture

A major issue in this area of research is one of separation between the semantics of
the application and the interface provided for the user to make use of that semantics.
There are many good arguments to support this separation of concerns:

Portability To allow the same application to be used on different systems it is best
to consider its development separate from its device-dependent interface.

Reusability Separation increases the likelihood that components can be reused in
order to cut development costs.

Multiple interfaces To enhance the interactive flexibility of an application, several
different interfaces can be developed to access the same functionality.

Customization The user interface can be customized by both the designer and the
user to increase its effectiveness without having to alter the underlying application.

Once we allow for a separation between application and presentation, we must
consider how those two partners communicate. This role of communication 
is referred to as dialog control. Conceptually, this provides us with the three major
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components of an interactive system: the application, the presentation and the dialog
control. In terms of the actual implementation, this separation may not be so clear.

In Section 8.3, we described the two basic approaches to programming the applica-
tion within an interactive system. In the read–evaluation loop, the control of the dia-
log is internal to the application. The application calls interface procedures when
input or output is required. In notification-based programming, the dialog control
resides external to the application. When the user performs some input action, the
notifier then invokes the correct application procedure to handle the event. Most
UIMS fall into this class of external dialog control systems, since they promote, to a
greater extent, the separation between presentation and application. They do not,
however, all use the technique of callbacks as was demonstrated in Section 8.4 for the
use of toolkits.

The first acknowledged instance of a development system that supported this
application–presentation separation was in 1968 with Newman’s Reaction Handler.
The term UIMS was coined by Kasik in 1982 [196a] after some preliminary research on
how graphical input could be used to broaden the scope of HCI. The first conceptual
architecture of what constituted a UIMS was formulated at a workshop in 1985 at
Seeheim, Germany [285]. The logical components of a UIMS were identified as:

Presentation The component responsible for the appearance of the interface,
including what output and input is available to the user.

Dialog control The component which regulates the communication between the
presentation and the application.

Application interface The view of the application semantics that is provided as the
interface.

Figure 8.10 presents a graphical interpretation of the Seeheim model. We have
included both application and user in Figure 8.10 to place the UIMS model more 
in the context of the interactive system (though you could argue that we have 
not provided enough of that context by mentioning only a single user and a single
application). The application and the user are not explicit in the Seeheim model

Figure 8.10 The Seeheim model of the logical components of a UIMS
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because it was intended only to model the components of a UIMS and not the entire
interactive system. By not making the application explicit in the model, external 
dialog control must have been assumed. From a programmer’s perspective, the
Seeheim model fits in nicely with the distinction between the classic lexical, syn-
tactic and semantic layers of a computer system, familiar from compiler design.

One of the main problems with the Seeheim model is that, whereas it served well
as a post hoc rationalization of how a UIMS was built up to 1985, it did not provide
any real direction for how future UIMS should be structured. A case in point can be
seen in the inclusion of the lowest box in Figure 8.10, which was intended to show
that for efficiency reasons it would be possible to bypass an explicit dialog control
component so that the application could provide greater application semantic 
feedback. There is no need for such a box in a conceptual architecture of the logical
components. It is there because its creators did not separate logical concerns from
implementation concerns.

Semantic feedback

One of the most ill-understood elements of the Seeheim model is the lower box: the bypass
or switch. This is there to allow rapid semantic feedback. Examples of semantic feedback include
freehand drawing and the highlighting of the trash bin on the Apple Macintosh when a file is
dragged over it. As with all notions of levels in interface design, the definition of semantic feedback
is not sharp, but it corresponds to those situations where it is impractical or impossible to use 
dialog-level abstractions to map application structures to screen representations.

The box represents the fact that in such circumstances the application component needs to
address the presentation component directly, often to achieve suitable performance. It thus
bypasses the dialog component. However, the box has an arrow from the dialog component which
represents not a data flow, but control. Although the dialog does not mediate the presentation of
information, it does control when and where the application is allowed to access the presentation;
hence the alternative name of switch.

In graphical and WIMP-based systems the Seeheim components seem restrictive as single entities,
and partly in response to this a later workshop developed the Arch–Slinky model [354]. This has
more layers than the Seeheim model and, more importantly, recognizes that the mapping of these
layers to components of a system may be more fluid than Seeheim suggests.

Another concern not addressed by the Seeheim model is how to build large and
complex interactive systems from smaller components. We have seen that object-
based toolkits are amenable to such a building blocks approach, and several other
conceptual architectures for interactive system development have been proposed to
take advantage of this. One of the earliest was the model–view–controller paradigm –
MVC for short – suggested in the Smalltalk programming environment [233, 203,
212]. Smalltalk was one of the earliest successful object-oriented programming sys-
tems whose main feature was the ability to build new interactive systems based on
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existing ones. Within Smalltalk, the link between application semantics and presenta-
tion can be built up in units by means of the MVC triad. The model represents the
application semantics; the view manages the graphical and/or textual output of the
application; and the controller manages the input (see Figure 8.11).

The basic behavior of models, views and controllers has been embodied in general
Smalltalk object classes, which can be inherited by instances and suitably modified.
Smalltalk, like many other window toolkits, prescribes its own look and feel on 
input and output, so the generic view and controller classes (called View and
Controller, respectively) do not need much modification after instantiation.
Models, on the other hand, are very general because they must be used to portray 
any possible application semantics. A single model can be associated with several
MVC triads, so that the same piece of application semantics can be represented by
different input–output techniques. Each view–controller pair is associated to only
one model.

Another so-called multi-agent architecture for interactive systems is the presenta-
tion–abstraction–control PAC model suggested by Coutaz [79]. PAC is based on a
collection of triads also: with application semantics represented by the abstraction
component; input and output combined in one presentation component; and an
explicit control component to manage the dialog and correspondence between
application and presentation (see Figure 8.12). There are three important differences
between PAC and MVC. First, PAC groups input and output together, whereas MVC
separates them. Secondly, PAC provides an explicit component whose duty it is to
see that abstraction and presentation are kept consistent with each other, whereas
MVC does not assign this important task to any one component, leaving it to the
programmer/designer to determine where that chore resides. Finally, PAC is not
linked to any programming environment, though it is certainly conducive to an
object-oriented approach. It is probably because of this last difference that PAC
could so easily isolate the control component; PAC is more of a conceptual architec-
ture than MVC because it is less implementation dependent.

Figure 8.11 The model–view–controller triad in Smalltalk
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8.5.2 Implementation considerations

We have made a point of distinguishing a conceptual architecture from any imple-
mentation considerations. It is, however, important to determine how components
in a conceptual architecture can be realized. Implementations based on the Seeheim
model must determine how the separate components of presentation, dialog con-
troller and application interface are realized. Window systems and toolkits provide
the separation between application and presentation. The use of callback procedures
in notification-based programming is one way to implement the application inter-
face as a notifier. In the standard X toolkit, these callbacks are directional as it is 
the duty of the application to register itself with the notifier. In MVC, callback pro-
cedures are also used for communication between a view or controller and its asso-
ciated model, but this time it is the duty of the presentation (the view or controller)
to register itself with the application (the model). Communication from the model
to either view or controller, or between a view and a controller, occurs by the 
normal use of method calls used in object-oriented programming. Neither of these
provides a means of separately managing the dialog.

Myers has outlined the various implementation techniques used to specify the 
dialog controller separately. Many of these will be discussed in Chapter 16 where we
explicitly deal with dialog notations. Some of the techniques that have been used in
dialog modeling in UIMS are listed here.

Menu networks The communication between application and presentation is
modeled as a network of menus and submenus. To control the dialog, the pro-
grammer must simply encode the levels of menus and the connections between
one menu and the next submenu or an action. The menu is used to embody all
possible user inputs at any one point in time. Links between menu items and the
next displayed menu model the application response to previous input. A menu
does not have to be a linear list of textual actions. The menu can be represented
as graphical items or buttons that the user can select with a pointing device.
Clicking on one button moves the dialog to the next screen of objects. In this way,
a system like HyperCard can be considered a menu network.

Figure 8.12 The presentation–abstraction–control model of Coutaz
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Grammar notations The dialog between application and presentation can be
treated as a grammar of actions and responses, and, therefore, described by means
of a formal context-free grammar notation, such as BNF (Backus–Naur form).
These are good for describing command-based interfaces, but are not so good for
more graphically-based interaction techniques. It is also not clear from a formal
grammar what directionality is associated to each event in the grammar; that is,
whether an event is initiated by the user or by the application. Therefore, it is
difficult to model communication of values across the dialog controller, and that
is necessary to maintain any semantic feedback from application to presentation.

State transition diagrams State transition diagrams can be used as a graphical
means of expressing dialog. Many variants on state transition diagrams will be
discussed in Chapter 16. The difficulty with these notations lies in linking dialog
events with corresponding presentation or application events. Also, it is not clear
how communication between application and presentation is represented.

Event languages Event languages are similar to grammar notations, except that they
can be modified to express directionality and support some semantic feedback.
Event languages are good for describing localized input–output behavior in terms
of production rules. A production rule is activated when input is received and it
results in some output responses. This control of the input–output relationship
comes at a price. It is now more difficult to model the overall flow of the dialog.

Declarative languages All of the above techniques (except for menu networks) are
poor for describing the correspondence between application and presentation
because they are unable to describe effectively how information flows between 
the two. They only view the dialog as a sequence of events that occur between 
two communicating partners. A declarative approach concentrates more on
describing how presentation and application are related. This relationship can be
modeled as a shared database of values that both presentation and application can
access. Declarative languages, therefore, describe what should result from the
communication between application and presentation, not how it should happen
in terms of event sequencing.

Constraints Constraints systems are a special subset of declarative languages.
Constraints can be used to make explicit the connection between independent
information of the presentation and the application. Implicit in the control com-
ponent of the PAC model is this notion of constraint between values of the applica-
tion and values of the presentation. Hill has proposed the abstraction–link–view,
or ALV (pronounced ‘AL-vee’), which makes the same distinctions as PAC [172].
However, Hill suggests an implementation of the communication between
abstraction and view by means of the link component as a collection of two-way
constraints between abstraction and view. Constraints embody dependencies
between different values that must always be maintained. For instance, an intelli-
gent piggy bank might display the value of its contents; there is the constraint that
the value displayed to the outside observer of the piggy bank is the same as the
value of money inside it. By using constraints, the link component is described
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separately from the abstraction and view. Hence, describing the link in terms of con-
straints is a way of achieving an independent description of the dialog controller.

Graphical specification These techniques allow the dialog specification to be pro-
grammed graphically in terms of the presentation language itself. This technique
can be referred to as programming by demonstration since the programmer is
building up the interaction dialog directly in terms of the actual graphical inter-
action objects that the user will see, instead of indirectly by means of some textual
specification language that must still be linked with the presentation objects. 
The major advantage of this graphical technique is that it opens up the dialog
specification to the non-programmer, which is a very significant contribution.

Ultimately, the programmer would want access to a variety of these techniques in
any one UIMS. For example, the Myers Garnet system combines a declarative con-
straints language with a graphical specification technique. There is an intriguing
trend we should note as we proceed away from internal control of dialog in the appli-
cation itself to external control in an independent dialog component to presentation
control in the graphical specification languages. When the dialog is specified internal
to the application, then it must know about presentation issues, which make the
application less generic. External control is about specifying the dialog independent
of the application or presentation. One of the problems with such an independent
description is that the intended link between application and presentation is imposs-
ible to describe without some information about each, so a good deal of informa-
tion of each must be represented, which may be both inefficient and cumbersome.
Presentation control describes the dialog in the language in terms of the objects the
user can see at the interface. Whereas this might provide a simple means of pro-
ducing a dialog specification and be more amenable to non-programmers, it is also
restrictive because the graphical language of a modern workstation is nowhere near
as expressive as programming languages.

In summary, components of a UIMS which allow the description of the application
separate from the presentation are advantageous from a software engineering per-
spective, but there has not yet been conclusive proof that they are as desirable in
designing for usability. There is currently a struggle between difficult-to-use but
powerful techniques for describing both the communication and the correspondence
between application and presentation and simple-to-use but limited techniques. Pro-
grammers will probably always opt for powerful techniques that provide the most
flexibility. Non-programmers will opt for simplicity despite the lack of expressiveness.

SUMMARY

In this chapter, we have concentrated on describing the programming support tools
that are available for implementing interactive systems. We began with a description
of windowing systems, which are the foundation of modern WIMP interfaces.

8.6
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Window systems provide only the crudest level of abstraction for the programmer,
allowing her to gain device independence and multiple application control. They 
do not, however, provide a means of separating the control of presentation and
application dialog. We described two paradigms for interactive programming, and
saw that these relate to two means of controlling that dialog – either internal to the
application by means of a read–evaluation loop or external to the application by
means of notification-based programming. Toolkits used with particular windowing
systems add another level of abstraction by combining input and output behaviors
to provide the programmer with access to interaction objects from which to build
the components of the interactive system. Toolkits are amenable to external dialog
control by means of callback procedures within the application. Other dialog control
techniques are provided with yet another level of abstraction in interactive system
development: user interface management systems. UIMS provide a conceptual archi-
tecture for dividing up the relationship between application and presentation, and
various techniques were described to implement the logical components of a UIMS.
An interesting additional means of dialog control can be seen to emerge in the use of
graphical specification languages which move dialog control all the way across the
spectrum to reside entirely within the presentation language. This presentation con-
trol opens up interactive programming to the non-expert programmer, but at the
cost of a loss of expressiveness.

EXERCISES

8.1 In contrasting the read–evaluation loop and the notification-based paradigm for inter-
active programs, construction of a pre-emptive dialog was discussed. How would a programmer
describe a pre-emptive dialog by purely graphical means? (Hint: Refer to the discussion in Sec-
tion 8.5 concerning the shift from external and independent dialog management to presentation
control of the dialog.)

8.2 Look ahead to the example of the state transition diagram for font characteristics presented 
in Chapter 16 (Section 16.3.3). Compare different interaction objects that could implement this
kind of dialog. Use examples from existing toolkits (pull-down menus or dialog boxes) or create
a novel interaction object.

8.3 This exercise is based on the nuclear reactor scenario on the book website at:
/e3/scenario/nuclear/

(a) In the Seeheim model: treating the Application Interface model and Application together,
there are three main layers:
(i) presentation/lexical
(ii) dialog/syntactic
(iii) application/semantic.
For each of these three layers, list at least two different items of the description of the nuclear
reactor control panel that are relevant to the level (that is, at least six items in total, two for
each level).
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(b) There are no items in the description that relate to the switch (rapid feedback) part of the
Seeheim model. Why do you think this is?

8.4 A user has a word processor and a drawing package open. The word processor’s window is
uppermost. The user then clicks on the drawing window (see figure below). The drawing window
pops to the front.

Describe in detail the things that the window manager and applications perform during the pro-
cessing of the mouse click in the above scenario. Explain any assumptions you make about the
kind of window manager or application toolkits that are being used.

Screen shot reprinted by permission from Apple Computer, Inc.

8.5 A designer described the following interface for a save operation.
The users initially see a screen with a box where they can type the file name (see Screen 1).

The screen also has a ‘list’ button that they can use to obtain a listing of all the files in the current
directory (folder). This list appears in a different window. When the user clicks the save button,
the system presents a dialog box to ask the user to confirm the save (see Screen 2).

Screen 1
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Screen 2

Two programmers independently coded the interface using two different window managers.
Programmer A used an event-loop style of program whereas programmer B used a notifier (call-
back) style.

(a) Sketch out the general structure of each program.
(b) Highlight any potential interface problems you expect from each programmer and how they

could attempt to correct them.

316 Chapter 8 n Implementation support



Recommended reading 317

B. A. Myers, User-interface tools: introduction and survey, IEEE Software, Vol. 6, 
No. 1, pp. 47–61, January 1989.
As well as providing a review of user interface tools, this article provides a good
set of references into the relevant literature.

G. F. Coulouris and H. W. Thimbleby, HyperProgramming, Addison-Wesley, 1993.
An introduction to programming HyperCard. Use of the programming facilities
of HyperTalk allows one to prototype substantial parts of the functionality as well
as the surface features of an interface.

P. H. Winston and S. Narasimhan, On to Java, 3rd edition, Addison-Wesley, 2001.
Java is another good way to get into user interface programming, as examples can
easily be embedded into web pages as applets. This is a good first book on Java
using the construction of an applet in AWT as its motivating example. For clear
reference books on aspects of the language, look at the O’Reilly series.

C. Gram and G. Cockton, editors, Design Principles for Interactive Software,
Chapman and Hall, 1996.
Produced by IFIP Working Group 2.7 (User Interface Engineering). This critically
discusses several user interface architectures and looks at the way architecture can
help or hinder the pursuit of principles similar to those in Chapter 7.



EVALUATION TECHNIQUES

OV E RV I E W

n Evaluation tests the usability, functionality and
acceptability of an interactive system.

n Evaluation may take place:
– in the laboratory
– in the field.

n Some approaches are based on expert evaluation:
– analytic methods
– review methods
– model-based methods.

n Some approaches involve users:
– experimental methods
– observational methods
– query methods.

n An evaluation method must be chosen carefully and
must be suitable for the job.

9
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WHAT IS EVALUATION?

In previous chapters we have discussed a design process to support the design of
usable interactive systems. However, even if such a process is used, we still need to
assess our designs and test our systems to ensure that they actually behave as we
expect and meet user requirements. This is the role of evaluation.

Evaluation should not be thought of as a single phase in the design process (still
less as an activity tacked on the end of the process if time permits). Ideally, evalu-
ation should occur throughout the design life cycle, with the results of the evaluation
feeding back into modifications to the design. Clearly, it is not usually possible to
perform extensive experimental testing continuously throughout the design, but
analytic and informal techniques can and should be used. In this respect, there is a
close link between evaluation and the principles and prototyping techniques we have
already discussed – such techniques help to ensure that the design is assessed con-
tinually. This has the advantage that problems can be ironed out before considerable
effort and resources have been expended on the implementation itself: it is much
easier to change a design in the early stages of development than in the later stages.
We can make a broad distinction between evaluation by the designer or a usability
expert, without direct involvement by users, and evaluation that studies actual use 
of the system. The former is particularly useful for assessing early designs and 
prototypes; the latter normally requires a working prototype or implementation.
However, this is a broad distinction and, in practice, the user may be involved in
assessing early design ideas (for example, through focus groups), and expert-based
analysis can be performed on completed systems, as a cheap and quick usability
assessment. We will consider evaluation techniques under two broad headings:
expert analysis and user participation.

Before looking at specific techniques, however, we will consider why we do evalu-
ation and what we are trying to achieve.

GOALS OF EVALUATION

Evaluation has three main goals: to assess the extent and accessibility of the system’s
functionality, to assess users’ experience of the interaction, and to identify any
specific problems with the system.

The system’s functionality is important in that it must accord with the user’s
requirements. In other words, the design of the system should enable users to per-
form their intended tasks more easily. This includes not only making the appro-
priate functionality available within the system, but making it clearly reachable by
the user in terms of the actions that the user needs to take to perform the task. It also
involves matching the use of the system to the user’s expectations of the task. For
example, if a filing clerk is used to retrieving a customer’s file by the postal address,

9.2

9.1
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the same capability (at least) should be provided in the computerized file system.
Evaluation at this level may also include measuring the user’s performance with the
system, to assess the effectiveness of the system in supporting the task.

In addition to evaluating the system design in terms of its functional capabilities,
it is important to assess the user’s experience of the interaction and its impact upon
him. This includes considering aspects such as how easy the system is to learn, its
usability and the user’s satisfaction with it. It may also include his enjoyment and
emotional response, particularly in the case of systems that are aimed at leisure or
entertainment. It is important to identify areas of the design that overload the user
in some way, perhaps by requiring an excessive amount of information to be remem-
bered, for example. A fuller classification of principles that can be used as evaluation
criteria is provided in Chapter 7. Much evaluation is aimed at measuring features
such as these.

The final goal of evaluation is to identify specific problems with the design. These
may be aspects of the design which, when used in their intended context, cause 
unexpected results, or confusion amongst users. This is, of course, related to both the
functionality and usability of the design (depending on the cause of the problem).
However, it is specifically concerned with identifying trouble-spots which can then
be rectified.

EVALUATION THROUGH EXPERT ANALYSIS

As we have noted, evaluation should occur throughout the design process. In 
particular, the first evaluation of a system should ideally be performed before any
implementation work has started. If the design itself can be evaluated, expensive mis-
takes can be avoided, since the design can be altered prior to any major resource
commitments. Typically, the later in the design process that an error is discovered,
the more costly it is to put right and, therefore, the less likely it is to be rectified.
However, it can be expensive to carry out user testing at regular intervals during the
design process, and it can be difficult to get an accurate assessment of the experience
of interaction from incomplete designs and prototypes. Consequently, a number of
methods have been proposed to evaluate interactive systems through expert analysis.
These depend upon the designer, or a human factors expert, taking the design and
assessing the impact that it will have upon a typical user. The basic intention is 
to identify any areas that are likely to cause difficulties because they violate known
cognitive principles, or ignore accepted empirical results. These methods can be 
used at any stage in the development process from a design specification, through
storyboards and prototypes, to full implementations, making them flexible evalu-
ation approaches. They are also relatively cheap, since they do not require user
involvement. However, they do not assess actual use of the system, only whether or
not a system upholds accepted usability principles.

We will consider four approaches to expert analysis: cognitive walkthrough,
heuristic evaluation, the use of models and use of previous work.

9.3
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9.3.1 Cognitive walkthrough

Cognitive walkthrough was originally proposed and later revised by Polson and col-
leagues [294, 376] as an attempt to introduce psychological theory into the informal
and subjective walkthrough technique.

The origin of the cognitive walkthrough approach to evaluation is the code walk-
through familiar in software engineering. Walkthroughs require a detailed review of
a sequence of actions. In the code walkthrough, the sequence represents a segment
of the program code that is stepped through by the reviewers to check certain char-
acteristics (for example, that coding style is adhered to, conventions for spelling 
variables versus procedure calls, and to check that system-wide invariants are not
violated). In the cognitive walkthrough, the sequence of actions refers to the steps
that an interface will require a user to perform in order to accomplish some known
task. The evaluators then ‘step through’ that action sequence to check it for poten-
tial usability problems. Usually, the main focus of the cognitive walkthrough is to
establish how easy a system is to learn. More specifically, the focus is on learning
through exploration. Experience shows that many users prefer to learn how to use a
system by exploring its functionality hands on, and not after sufficient training or
examination of a user’s manual. So the checks that are made during the walkthrough
ask questions that address this exploratory learning. To do this, the evaluators go
through each step in the task and provide a ‘story’ about why that step is or is not
good for a new user. To do a walkthrough (the term walkthrough from now on refers
to the cognitive walkthrough, and not to any other kind of walkthrough), you need
four things:

1. A specification or prototype of the system. It doesn’t have to be complete, but it
should be fairly detailed. Details such as the location and wording for a menu can
make a big difference.

2. A description of the task the user is to perform on the system. This should be a
representative task that most users will want to do.

3. A complete, written list of the actions needed to complete the task with the pro-
posed system.

4. An indication of who the users are and what kind of experience and knowledge
the evaluators can assume about them.

Given this information, the evaluators step through the action sequence
(identified in item 3 above) to critique the system and tell a believable story about its
usability. To do this, for each action, the evaluators try to answer the following four
questions for each step in the action sequence.

1. Is the effect of the action the same as the user’s goal at that point? Each user
action will have a specific effect within the system. Is this effect the same as what
the user is trying to achieve at this point? For example, if the effect of the action
is to save a document, is ‘saving a document’ what the user wants to do?

2. Will users see that the action is available? Will users see the button or menu item,
for example, that is used to produce the action? This is not asking whether they
will recognize that the button is the one they want. This is merely asking whether
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it is visible to them at the time when they will need to use it. Instances where 
the answer to this question might be ‘no’ are, for example, where a VCR remote
control has a covered panel of buttons or where a menu item is hidden away in a
submenu.

3. Once users have found the correct action, will they know it is the one they need?
This complements the previous question. It is one thing for a button or menu
item to be visible, but will the user recognize that it is the one he is looking for to
complete his task? Where the previous question was about the visibility of the
action, this one is about whether its meaning and effect is clear.

4. After the action is taken, will users understand the feedback they get? If you now
assume that the user did manage to achieve the correct action, will he know that
he has done so? Will the feedback given be sufficient confirmation of what has
actually happened? This is the completion of the execution–evaluation interac-
tion cycle (see Chapter 3). In order to determine if they have accomplished their
goal, users need appropriate feedback.

It is vital to document the cognitive walkthrough to keep a record of what is good
and what needs improvement in the design. It is therefore a good idea to produce
some standard evaluation forms for the walkthrough. The cover form would list the
information in items 1–4 in our first list above, as well as identifying the date and
time of the walkthrough and the names of the evaluators. Then for each action (from
item 3 on the cover form), a separate standard form is filled out that answers each of
the four questions in our second list above. Any negative answer for any of the ques-
tions for any particular action should be documented on a separate usability prob-
lem report sheet. This problem report sheet should indicate the system being built
(the version, if necessary), the date, the evaluators and a detailed description of the
usability problem. It is also useful to indicate the severity of the problem, that is
whether the evaluators think this problem will occur often, and how serious it will
be for the users. This information will help the designers to decide priorities for 
correcting the design, since it is not always possible to fix every problem.

Example: programming a video recorder by remote control

We can illustrate how the walkthrough method works using a simple example. Imagine we
are designing a remote control for a video recorder (VCR) and are interested in the task of pro-
gramming the VCR to do timed recordings. Our initial design is shown in Figure 9.1. The picture
on the left illustrates the handset in normal use, the picture on the right after the timed record
button has been pressed. The VCR allows the user to program up to three timed recordings in
different ‘streams’. The next available stream number is automatically assigned. We want to know
whether our design supports the user’s task. We begin by identifying a representative task.

Program the video to time-record a program starting at 18.00 and finishing at 19.15 on channel
4 on 24 February 2005.
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We will assume that the user is familiar with VCRs but not with this particular design.

The next step in the walkthrough is to identify the action sequence for this task. We specify this
in terms of the user’s action (UA) and the system’s display or response (SD). The initial display is
as the left-hand picture in Figure 9.1.

UA 1: Press the ‘timed record’ button
SD 1: Display moves to timer mode. Flashing cursor appears after ‘start:’
UA 2: Press digits 1 8 0 0
SD 2: Each digit is displayed as typed and flashing cursor moves to next position
UA 3: Press the ‘timed record’ button
SD 3: Flashing cursor moves to ‘end:’
UA 4: Press digits 1 9 1 5
SD 4: Each digit is displayed as typed and flashing cursor moves to next position
UA 5: Press the ‘timed record’ button
SD 5: Flashing cursor moves to ‘channel:’
UA 6: Press digit 4
SD 6: Digit is displayed as typed and flashing cursor moves to next position
UA 7: Press the ‘timed record’ button
SD 7: Flashing cursor moves to ‘date:’
UA 8: Press digits 2 4 0 2 0 5
SD 8: Each digit is displayed as typed and flashing cursor moves to next position
UA 9: Press the ‘timed record’ button
SD 9: Stream number in top right-hand corner of display flashes
UA 10: Press the ‘transmit’ button
SD 10: Details are transmitted to video player and display returns to normal mode

Figure 9.1 An initial remote control design
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9.3.2 Heuristic evaluation

A heuristic is a guideline or general principle or rule of thumb that can guide a design
decision or be used to critique a decision that has already been made. Heuristic
evaluation, developed by Jakob Nielsen and Rolf Molich, is a method for structuring
the critique of a system using a set of relatively simple and general heuristics.
Heuristic evaluation can be performed on a design specification so it is useful for
evaluating early design. But it can also be used on prototypes, storyboards and fully
functioning systems. It is therefore a flexible, relatively cheap approach. Hence it is
often considered a discount usability technique.

The general idea behind heuristic evaluation is that several evaluators inde-
pendently critique a system to come up with potential usability problems. It is
important that there be several of these evaluators and that the evaluations be done
independently. Nielsen’s experience indicates that between three and five evaluators
is sufficient, with five usually resulting in about 75% of the overall usability problems
being discovered.

Having determined our action list we are in a position to proceed with the walkthrough. For each
action (1–10) we must answer the four questions and tell a story about the usability of the system.
Beginning with UA 1:

UA 1: Press the ‘timed record’ button
Question 1: Is the effect of the action the same as the user’s goal at that point?
The timed record button initiates timer programming. It is reasonable to assume that a user
familiar with VCRs would be trying to do this as his first goal.
Question 2: Will users see that the action is available?
The ‘timed record’ button is visible on the remote control.
Question 3: Once users have found the correct action, will they know it is the one they need?
It is not clear which button is the ‘timed record’ button. The icon of a clock (fourth button
down on the right) is a possible candidate but this could be interpreted as a button to change
the time. Other possible candidates might be the fourth button down on the left or the filled
circle (associated with record). In fact, the icon of the clock is the correct choice but it is quite
possible that the user would fail at this point. This identifies a potential usability problem.
Question 4: After the action is taken, will users understand the feedback they get?
Once the action is taken the display changes to the timed record mode and shows familiar head-
ings (start, end, channel, date). It is reasonable to assume that the user would recognize these
as indicating successful completion of the first action.

So we find we have a potential usability problem relating to the icon used on the ‘timed record’
button. We would now have to establish whether our target user group could correctly distin-
guish this icon from others on the remote.

The analysis proceeds in this fashion, with a walkthrough form completed for each action. We will
leave the rest of the walkthrough for you to complete as an exercise. What other usability prob-
lems can you identify with this design?
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To aid the evaluators in discovering usability problems, a set of 10 heuristics are
provided. The heuristics are related to principles and guidelines (see Chapter 7). These
can be supplemented where required by heuristics that are specific to the particular
domain. So, for example, if the system is for synchronous group communication, one
might add ‘awareness of other users’ as a heuristic. Although Nielsen recommends
the use of these 10 as providing the most effective coverage of the most common us-
ability problems, other rules, such as those discussed in Chapter 7, could also be used.

Each evaluator assesses the system and notes violations of any of these heuristics
that would indicate a potential usability problem. The evaluator also assesses the
severity of each usability problem, based on four factors: how common is the prob-
lem, how easy is it for the user to overcome, will it be a one-off problem or a persist-
ent one, and how seriously will the problem be perceived? These can be combined
into an overall severity rating on a scale of 0–4:

0 = I don’t agree that this is a usability problem at all
1 = Cosmetic problem only: need not be fixed unless extra time is available on project
2 = Minor usability problem: fixing this should be given low priority
3 = Major usability problem: important to fix, so should be given high priority
4 = Usability catastrophe: imperative to fix this before product can be released (Nielsen)

Nielsen’s ten heuristics are:

1. Visibility of system status Always keep users informed about what is going on,
through appropriate feedback within reasonable time. For example, if a system
operation will take some time, give an indication of how long and how much is
complete.

2. Match between system and the real world The system should speak the user’s
language, with words, phrases and concepts familiar to the user, rather than 
system-oriented terms. Follow real-world conventions, making information
appear in natural and logical order.

3. User control and freedom Users often choose system functions by mistake 
and need a clearly marked ‘emergency exit’ to leave the unwanted state without
having to go through an extended dialog. Support undo and redo.

4. Consistency and standards Users should not have to wonder whether words,
situations or actions mean the same thing in different contexts. Follow platform
conventions and accepted standards.

5. Error prevention Make it difficult to make errors. Even better than good error
messages is a careful design that prevents a problem from occurring in the first
place.

6. Recognition rather than recall Make objects, actions and options visible. The
user should not have to remember information from one part of the dialog to
another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

7. Flexibility and efficiency of use Allow users to tailor frequent actions.
Accelerators – unseen by the novice user – may often speed up the interaction
for the expert user to such an extent that the system can cater to both inexperi-
enced and experienced users.
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8. Aesthetic and minimalist design Dialogs should not contain information that
is irrelevant or rarely needed. Every extra unit of information in a dialog competes
with the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose and recover from errors Error messages should
be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

10. Help and documentation Few systems can be used with no instructions so it
may be necessary to provide help and documentation. Any such information
should be easy to search, focussed on the user’s task, list concrete steps to be 
carried out, and not be too large.

Once each evaluator has completed their separate assessment, all of the problems
are collected and the mean severity ratings calculated. The design team will then
determine the ones that are the most important and will receive attention first.

9.3.3 Model-based evaluation

A third expert-based approach is the use of models. Certain cognitive and design
models provide a means of combining design specification and evaluation into the
same framework. These are discussed in detail in Chapter 12. For example, the
GOMS (goals, operators, methods and selection) model predicts user performance
with a particular interface and can be used to filter particular design options.
Similarly, lower-level modeling techniques such as the keystroke-level model pro-
vide predictions of the time users will take to perform low-level physical tasks.

Design methodologies, such as design rationale (see Chapter 6), also have a role to
play in evaluation at the design stage. Design rationale provides a framework in
which design options can be evaluated. By examining the criteria that are associated
with each option in the design, and the evidence that is provided to support these 
criteria, informed judgments can be made in the design.

Dialog models can also be used to evaluate dialog sequences for problems, such as
unreachable states, circular dialogs and complexity. Models such as state transition
networks are useful for evaluating dialog designs prior to implementation. These are
discussed in detail in Chapter 16.

9.3.4 Using previous studies in evaluation

Experimental psychology and human–computer interaction between them possess 
a wealth of experimental results and empirical evidence. Some of this is specific to a
particular domain, but much deals with more generic issues and applies in a variety
of situations. Examples of such issues are the usability of different menu types, the
recall of command names, and the choice of icons.

A final approach to expert evaluation exploits this inheritance, using previous
results as evidence to support (or refute) aspects of the design. It is expensive to
repeat experiments continually and an expert review of relevant literature can avoid
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the need to do so. It should be noted that experimental results cannot be expected 
to hold arbitrarily across contexts. The reviewer must therefore select evidence care-
fully, noting the experimental design chosen, the population of participants used, the
analyses performed and the assumptions made. For example, an experiment testing
the usability of a particular style of help system using novice participants may not
provide accurate evaluation of a help system designed for expert users. The review
should therefore take account of both the similarities and the differences between 
the experimental context and the design under consideration. This is why this is 
an expert review: expertise in the area is required to ensure that correct assumptions
are made.

EVALUATION THROUGH USER PARTICIPATION

The techniques we have considered so far concentrate on evaluating a design or 
system through analysis by the designer, or an expert evaluator, rather than testing
with actual users. However, useful as these techniques are for filtering and refining
the design, they are not a replacement for actual usability testing with the people 
for whom the system is intended: the users. In this section we will look at a number
of different approaches to evaluation through user participation. These include
empirical or experimental methods, observational methods, query techniques, and
methods that use physiological monitoring, such as eye tracking and measures of
heart rate and skin conductance.

User participation in evaluation tends to occur in the later stages of development
when there is at least a working prototype of the system in place. This may range
from a simulation of the system’s interactive capabilities, without its underlying
functionality (for example, the Wizard of Oz technique, which is discussed in
Chapter 6, through a basic functional prototype to a fully implemented system.
However, some of the methods discussed can also contribute to the earlier design
stages, such as requirements capture, where observation and surveying users are
important (see Chapter 13).

9.4.1 Styles of evaluation

Before we consider some of the techniques that are available for evaluation with
users, we will distinguish between two distinct evaluation styles: those performed
under laboratory conditions and those conducted in the work environment or ‘in the
field’.

Laboratory studies

In the first type of evaluation studies, users are taken out of their normal work envir-
onment to take part in controlled tests, often in a specialist usability laboratory

9.4
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(although the ‘lab’ may simply be a quiet room). This approach has a number of
benefits and disadvantages.

A well-equipped usability laboratory may contain sophisticated audio/visual
recording and analysis facilities, two-way mirrors, instrumented computers and the
like, which cannot be replicated in the work environment. In addition, the particip-
ant operates in an interruption-free environment. However, the lack of context – for
example, filing cabinets, wall calendars, books or interruptions – and the unnatural
situation may mean that one accurately records a situation that never arises in the
real world. It is especially difficult to observe several people cooperating on a task in
a laboratory situation, as interpersonal communication is so heavily dependent on
context (see Section 9.4.2).

There are, however, some situations where laboratory observation is the only
option, for example, if the system is to be located in a dangerous or remote loca-
tion, such as a space station. Also some very constrained single-user tasks may be
adequately performed in a laboratory. Finally, and perhaps most commonly, we may
deliberately want to manipulate the context in order to uncover problems or observe
less used procedures, or we may want to compare alternative designs within a con-
trolled context. For these types of evaluation, laboratory studies are appropriate.

Field studies

The second type of evaluation takes the designer or evaluator out into the user’s
work environment in order to observe the system in action. Again this approach has
its pros and cons.

High levels of ambient noise, greater levels of movement and constant inter-
ruptions, such as phone calls, all make field observation difficult. However, the 
very ‘open’ nature of the situation means that you will observe interactions between
systems and between individuals that would have been missed in a laboratory study.
The context is retained and you are seeing the user in his ‘natural environment’. 
In addition, some activities, such as those taking days or months, are impossible to
study in the laboratory (though difficult even in the field).

On balance, field observation is to be preferred to laboratory studies as it allows us
to study the interaction as it occurs in actual use. Even interruptions are important
as these will expose behaviors such as saving and restoring state during a task.
However, we should remember that even in field observations the participants are
likely to be influenced by the presence of the analyst and/or recording equipment, so
we always operate at a slight remove from the natural situation, a sort of Heisenberg
uncertainty principle.

This is, of course, a generalization: there are circumstances, as we have noted, in
which laboratory testing is necessary and desirable. In particular, controlled experi-
ments can be useful for evaluation of specific interface features, and must normally
be conducted under laboratory conditions. From an economic angle, we need to
weigh the costs of establishing recording equipment in the field, and possibly dis-
rupting the actual work situation, with the costs of taking one or more participants
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away from their jobs into the laboratory. This balance is not at all obvious and any
study must weigh the loss of contextual information against the increased costs and
difficulty of field studies.

9.4.2 Empirical methods: experimental evaluation

One of the most powerful methods of evaluating a design or an aspect of a design 
is to use a controlled experiment. This provides empirical evidence to support a 
particular claim or hypothesis. It can be used to study a wide range of different issues
at different levels of detail.

Any experiment has the same basic form. The evaluator chooses a hypothesis to
test, which can be determined by measuring some attribute of participant behavior.
A number of experimental conditions are considered which differ only in the values
of certain controlled variables. Any changes in the behavioral measures are attributed
to the different conditions. Within this basic form there are a number of factors that
are important to the overall reliability of the experiment, which must be considered
carefully in experimental design. These include the participants chosen, the variables
tested and manipulated, and the hypothesis tested.

Participants

The choice of participants is vital to the success of any experiment. In evaluation
experiments, participants should be chosen to match the expected user population
as closely as possible. Ideally, this will involve experimental testing with the actual
users but this is not always possible. If participants are not actual users, they should
be chosen to be of a similar age and level of education as the intended user group.
Their experience with computers in general, and with systems related to that being
tested, should be similar, as should their experience or knowledge of the task
domain. It is no good testing an interface designed to be used by the general public
on a participant set made up of computer science undergraduates: they are simply
not representative of the intended user population.

A second issue relating to the participant set is the sample size chosen. Often 
this is something that is determined by pragmatic considerations: the availability of
participants is limited or resources are scarce. However, the sample size must be large
enough to be considered to be representative of the population, taking into account
the design of the experiment and the statistical methods chosen.

Nielsen and Landauer [264] suggest that usability testing with a single participant
will find about a third of the usability problems, and that there is little to be gained
from testing with more than five. While this may be true of observational studies
where the aim is simply to uncover usability issues, it is not possible to discover
much about the extent of usability problems from such small numbers. Certainly, if
the intention is to run a controlled experiment and perform statistical analysis on the
results, at least twice this number is recommended.
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Variables

Experiments manipulate and measure variables under controlled conditions, in
order to test the hypothesis. There are two main types of variable: those that are
‘manipulated’ or changed (known as the independent variables) and those that are
measured (the dependent variables).

Independent variables are those elements of the experiment that are manipu-
lated to produce different conditions for comparison. Examples of independent 
variables in evaluation experiments are interface style, level of help, number of 
menu items and icon design. Each of these variables can be given a number of dif-
ferent values; each value that is used in an experiment is known as a level of the 
variable. So, for example, an experiment that wants to test whether search speed
improves as the number of menu items decreases may consider menus with five,
seven, and ten items. Here the independent variable, number of menu items, has
three levels.

More complex experiments may have more than one independent variable. For
example, in the above experiment, we may suspect that the speed of the user’s
response depends not only on the number of menu items but also on the choice of
commands used on the menu. In this case there are two independent variables. 
If there were two sets of command names (that is, two levels), we would require 
six experimental conditions to investigate all the possibilities (three levels of menu
size × two levels of command names).

Dependent variables, on the other hand, are the variables that can be measured in
the experiment, their value is ‘dependent’ on the changes made to the independent
variable. In the example given above, this would be the speed of menu selection. 
The dependent variable must be measurable in some way, it must be affected by the
independent variable, and, as far as possible, unaffected by other factors. Common
choices of dependent variable in evaluation experiments are the time taken to com-
plete a task, the number of errors made, user preference and the quality of the user’s
performance. Obviously, some of these are easier to measure objectively than others.
However, the more subjective measures can be applied against predetermined scales,
and can be very important factors to consider.

Hypotheses

A hypothesis is a prediction of the outcome of an experiment. It is framed in terms
of the independent and dependent variables, stating that a variation in the inde-
pendent variable will cause a difference in the dependent variable. The aim of the
experiment is to show that this prediction is correct. This is done by disproving the
null hypothesis, which states that there is no difference in the dependent variable
between the levels of the independent variable. The statistical measures described
below produce values that can be compared with various levels of significance. If 
a result is significant it shows, at the given level of certainty, that the differences 
measured would not have occurred by chance (that is, that the null hypothesis is
incorrect).



9.4 Evaluation through user participation 331

Experimental design

In order to produce reliable and generalizable results, an experiment must be care-
fully designed. We have already looked at a number of the factors that the experi-
menter must consider in the design, namely the participants, the independent and
dependent variables, and the hypothesis. The first phase in experimental design then
is to choose the hypothesis: to decide exactly what it is you are trying to demonstrate.
In doing this you are likely to clarify the independent and dependent variables, in
that you will have identified what you are going to manipulate and what change you
expect. If your hypothesis does not clearly identify these variables then you need to
rethink it. At this stage you should also consider your participants: how many are
available and are they representative of the user group?

The next step is to decide on the experimental method that you will use. There 
are two main methods: between-subjects and within-subjects. In a between-subjects
(or randomized) design, each participant is assigned to a different condition. There 
are at least two conditions: the experimental condition (in which the variable has
been manipulated) and the control, which is identical to the experimental condition
except for this manipulation. This control serves to ensure that it is the manipulation
that is responsible for any differences that are measured. There may, of course, be
more than two groups, depending on the number of independent variables and the
number of levels that each variable can take.

The advantage of a between-subjects design is that any learning effect resulting
from the user performing in one condition and then the other is controlled: each
user performs under only one condition. The disadvantages are that a greater num-
ber of participants are required, and that significant variation between the groups
can negate any results. Also, individual differences between users can bias the 
results. These problems can be handled by a careful selection of participants, ensur-
ing that all are representative of the population and by matching participants
between groups.

The second experimental design is within-subjects (or repeated measures). Here
each user performs under each different condition. This design can suffer from
transfer of learning effects, but this can be lessened if the order in which the condi-
tions are tackled is varied between users, for example, group A do first condition fol-
lowed by second and group B do second condition followed by first. Within-subjects
is less costly than between-subjects, since fewer users are required, and it can be 
particularly effective where learning is involved. There is also less chance of effects
from variation between participants.

The choice of experimental method will depend on the resources available, how
far learning transfer is likely or can be controlled, and how representative the particip-
ant group is considered to be. A popular compromise, in cases where there is more
than one independent variable, is to devise a mixed design where one variable is
placed between-groups and one within-groups. So, returning to our example of the
menu design, the participants would be split into two groups, one for each command
set, but each group would perform in three conditions, corresponding to the three
possible levels of the number of menu items.
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Once we have determined the hypothesis we are trying to test, the variables we are
studying, the participants at our disposal, and the design that is most appropriate, 
we have to decide how we are going to analyze the results we record. There are a
number of statistical tests available, and the choice of test is vital to the success of the
experiment. Different tests make different assumptions about the data and if an
inappropriate test is chosen, the results can be invalid. The next subsection discusses
the factors to consider in choosing a statistical test and surveys the most common
statistical measures available.

Statistical measures

The first two rules of statistical analysis are to look at the data and to save the data. 
It is easy to carry out statistical tests blindly when a glance at a graph, histogram 
or table of results would be more instructive. In particular, looking at the data 
can expose outliers, single data items that are very different from the rest. Outliers 
are often the result of a transcription error or a freak event not connected to the
experiment. For example, we notice that one participant took three times as long as
everyone else to do a task. We investigate and discover that the participant had been
suffering from flu on the day of the experiment. Clearly, if the participant’s data were
included it would bias the results.

Saving the data is important, as we may later want to try a different analysis
method. It is all too common for an experimenter to take some averages or other-
wise tabulate results, and then throw away the original data. At worst, the remaining
statistics can be useless for statistical purposes, and, at best, we have lost the ability
to trace back odd results to the original data, as, for example, we want to do for 
outliers.

Our choice of statistical analysis depends on the type of data and the questions we
want to answer. It is worth having important results checked by an experienced
statistician, but in many situations standard tests can be used.

Variables can be classified as either discrete variables or continuous variables. A 
discrete variable can only take a finite number of values or levels, for example, a
screen color that can be red, green or blue. A continuous variable can take any value
(although it may have an upper or lower limit), for example a person’s height or the
time taken to complete a task. A special case of continuous data is when they are pos-
itive, for example a response time cannot be negative. A continuous variable can be
rendered discrete by clumping it into classes, for example we could divide heights
into short (<5 ft (1.5 m)), medium (5–6 ft (1.5–1.8 m)) and tall (>6 ft (1.8 m)). In
many interface experiments we will be testing one design against another. In these
cases the independent variable is usually discrete.

The dependent variable is the measured one and subject to random experimental
variation. In the case when this variable is continuous, the random variation may
take a special form. If the form of the data follows a known distribution then special
and more powerful statistical tests can be used. Such tests are called parametric tests
and the most common of these are used when the variation follows the normal 
distribution. This means that if we plot a histogram of the random errors, they will
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form the well-known bell-shaped graph (Figure 9.2). Happily, many of these tests are
fairly robust, that is they give reasonable results even when the data are not precisely
normal. This means that you need not worry too much about checking normality
during early analysis.

There are ways of checking whether data are really normal, but for these the 
reader should consult a statistics book, or a professional statistician. However, as 
a general rule, if data can be seen as the sum or average of many small independ-
ent effects they are likely to be normal. For example, the time taken to complete a
complex task is the sum of the times of all the minor tasks of which it is composed.
On the other hand, a subjective rating of the usability of an interface will not be 
normal. Occasionally data can be transformed to become approximately normal. 
The most common is the log-transformation, which is used for positive data 
with near-zero values. As a log-transformation has little effect when the data are 
clustered well away from zero, many experimenters habitually log-transform.
However, this practice makes the results more difficult to interpret and is not 
recommended.

When we cannot assume that data are normally distributed, we must often resort
to non-parametric tests. These are statistical tests that make no assumptions about
the particular distribution and are usually based purely on the ranking of the data.
That is, each item of a data set (for example, 57, 32, 61, 49) is reduced to its rank 
(3, 1, 4, 2), before analysis begins. Because non-parametric tests make fewer assump-
tions about the data than parametric tests, and are more resistant to outliers, there 
is less danger of getting spurious results. However, they are less powerful than the
corresponding parametric tests. This means that, given the same set of data, a para-
metric test might detect a difference that the non-parametric test would miss.

A third sort of test is the contingency table, where we classify data by several 
discrete attributes and then count the number of data items with each attribute 
combination.

Table 9.1 lists some of the standard tests categorized by the form of independent
and dependent variables (discrete/continuous/normal). Normality is not an issue 

Figure 9.2 Histogram of normally distributed errors
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for the independent variable, but a special case is when it is discrete with only 
two values, for example comparing two systems. We cannot describe all the tech-
niques here; for this you should use a standard statistics text, such as one of those
recommended in the reading list. The table is only intended to guide you in your
choice of test.

An extensive and accurate analysis is no use if it answers the wrong question.
Examples of questions one might ask about the data are as follows:

Is there a difference? For example, is one system better than another? Techniques
that address this are called hypothesis testing. The answers to this question are not
simply yes/no, but of the form: ‘we are 99% certain that selection from menus of
five items is faster than that from menus of seven items’.

How big is the difference? For example, ‘selection from five items is 260 ms 
faster than from seven items’. This is called point estimation, often obtained by
averages.

How accurate is the estimate? For example, ‘selection is faster by 260 ± 30 ms’.
Statistical answers to this are in the form of either measures of variation such as
the standard deviation of the estimate, or confidence intervals. Again, the answers
one obtains are probabilistic: ‘we are 95% certain that the difference in response
time is between 230 and 290 ms’.

The experimental design issues we have discussed have been principally addressed 
at the first question. However, most of the statistical techniques listed above, both
parametric and non-parametric, give some answer to one or both of the other 
questions.

Table 9.1 Choosing a statistical technique

Independent Dependent 
variable variable

Parametric
Two valued Normal Student’s t test on difference of means
Discrete Normal ANOVA (ANalysis Of VAriance)
Continuous Normal Linear (or non-linear) regression factor analysis

Non-parametric
Two valued Continuous Wilcoxon (or Mann–Whitney) rank-sum test
Discrete Continuous Rank-sum versions of ANOVA
Continuous Continuous Spearman’s rank correlation

Contingency tests
Two valued Discrete No special test, see next entry
Discrete Discrete Contingency table and chi-squared test
Continuous Discrete (Rare) Group independent variable and then as above
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An example: evaluating icon designs

Imagine you are designing a new interface to a document-processing package, which
is to use icons for presentation. You are considering two styles of icon design and you
wish to know which design will be easier for users to remember. One set of icons uses
naturalistic images (based on a paper document metaphor), the other uses abstract
images (see Figure 9.3). How might you design an experiment to help you decide
which style to use?

The first thing you need to do is form a hypothesis: what do you consider to be the
likely outcome? In this case, you might expect the natural icons to be easier to recall
since they are more familiar to users. We can therefore form the following hypothesis:

Example of non-parametric statistics

We will not see an example of the use of non-parametric statistics later, so we will go
through a small example here. Imagine we had the following data for response times under two
conditions:

condition A: 33, 42, 25, 79, 52
condition B: 87, 65, 92, 93, 91, 55

We gather the data together and sort them into order: 25, 33, 42, . . . , 92, 93. We then substitute
for each value its rank in the list: 25 becomes 1, 33 becomes 2, etc. The transformed data are then

condition A: 2, 3, 1, 7, 4
condition B: 8, 6, 10, 11, 9, 5

Tests are then carried out on the data. For example, to test whether there is any difference
between the two conditions we can use the Wilcoxon test. To do this, we take each condition and
calculate the sum of ranks, and subtract the least value it could have (that is, 1 + 2 + 3 + 4 + 5 = 15
for condition A, 1 + 2 + 3 + 4 + 5 + 6 = 21 for condition B), giving the statistic U:

rank sum least U
condition A: (2 + 3 + 1 + 7 + 4) − 15 = 2
condition B: (8 + 6 + 10 + 11 + 9 + 5) − 21 = 28

In fact, the sum of these two U statistics, 2 + 28 = 30, is the product of the number of data values
in each condition 5 × 6. This will always happen and so one can always get away with calculating
only one of the U. Finally, we then take the smaller of two U values and compare it with a set of
critical values in a book of statistical tables, to see if it is unusually small. The table is laid out depend-
ent on the number of data values in each condition (five and six). The critical value at the 5% level
turns out to be 3. As the smallest statistic is smaller than this, we can reject the null hypothesis and
conclude that there is likely to be a difference between the conditions. To be precise, it says that
there is only a 1 in 20 (5%) chance that the data happened by chance. In fact the test is right – the
authors constructed random data in the range 1–100 and then subtracted 10 from each of the 
values in condition A.
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Users will remember the natural icons more easily than the abstract ones.

The null hypothesis in this case is that there will be no difference between recall of
the icon types.

This hypothesis clearly identifies the independent variable for our experiment: we
are varying the style of icon. The independent variable has two levels: natural and
abstract. However, when we come to consider the dependent variable, things are not
so obvious. We have expressed our hypothesis in terms of users being able to remem-
ber more easily. How can we measure this? First we need to clarify exactly what we
mean by the phrase more easily: are we concerned with the user’s performance in
terms of accurate recall or in terms of speed, for example, or are we looking at more
subjective measures like user preference? In this example, we will assume that the
speed at which a user can accurately select an icon is an indication of how easily it 
is remembered. Our dependent variables are therefore the number of mistakes in
selection and the time taken to select an icon.

Of course, we need to control the experiment so that any differences we observe
are clearly attributable to the independent variable, and so that our measurements of
the dependent variables are comparable. To do this, we provide an interface that 
is identical in every way except for the icon design, and a selection task that can be
repeated for each condition. The latter could be either a naturalistic task (such 
as producing a document) or a more artificial task in which the user has to select 
the appropriate icon to a given prompt. The second task has the advantage that it 
is more controlled (there is little variation between users as to how they will perform
the task) and it can be varied to avoid transfer of learning. Before performing the
selection task, the users will be allowed to learn the icons in controlled conditions:
for example, they may be given a fixed amount of time to learn the icon meanings.

The next stage is to decide upon an experimental method. This may depend on the
participants that are available, but in this case we will assume that we have sufficient
participants from the intended user group. A between-subjects experiment would
remove any learning effect for individual participants, but it would be more difficult

Figure 9.3 Abstract and concrete icons for file operations
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to control for variation in learning style between participants. On balance, therefore,
a within-subjects design is preferred, with order of presentation controlled.

So all that remains is to finalize the details of our experiment, given the constraints
imposed by these choices. We devise two interfaces composed of blocks of icons, one
for each condition. The user is presented with a task (say ‘delete a document’) and is
required to select the appropriate icon. The selection task comprises a set of such pre-
sentations. In order to avoid learning effects from icon position, the placing of icons
in the block can be randomly varied on each presentation. Each user performs the selec-
tion task under each condition. In order to avoid transfer of learning, the users are
divided into two groups with each group taking a different starting condition. For each
user, we measure the time taken to complete the task and the number of errors made.

Finally, we must analyze our results. Table 9.2 shows a possible set of results for 
ten participants.1 The first five had the abstract icons presented first (order AN), and
the last five had the natural icons presented first (order NA). Columns (1) and (2) in
the table show the completion times for the task using natural and abstract icons
respectively. As the times are the result of lots of presentations, we will assume that
they are normally distributed. The main independent variable, the icon type, is two
valued, suggesting we can use a simple difference of means with Student’s t test
(Table 9.1). In fact, because we have used a within-subjects design, there is another
independent variable we have to take into account – the participant. This means we

Table 9.2 Example experimental results – completion times

(1) (2) (3) (4) (5)
Participant Presentation Natural Abstract Participant Natural Abstract
number order (s) (s) mean (1)–(3) (2)–(3)

1 AN 656 702 679 −23 23
2 AN 259 339 299 −40 40
3 AN 612 658 635 −23 23
4 AN 609 645 627 −18 18
5 AN 1049 1129 1089 −40 40
6 NA 1135 1179 1157 −22 22
7 NA 542 604 573 −31 31
8 NA 495 551 523 −28 28
9 NA 905 893 899 6 −6

10 NA 715 803 759 −44 44
mean (μ) 698 750 724 −26 26
s.d. (σ) 265 259 262 14 14

s.e.d. 117 s.e. 4.55
Student’s t 0.32 (n.s.) 5.78 (p<1%, two tailed)

1 Note that these are fabricated results for the purposes of exposition and this is a rather small sample set
for real purposes.
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have more than one discrete independent variable, and referring again to Table 9.1,
we see that this implies we should use analysis of variance (ANOVA). A full analysis
of variance is quite complex, and is ideally done with the aid of a statistics package.
However, this experiment is particularly simple, so we can use a simplified analysis.

Look at columns (2) and (3) of Table 9.2. The completion times range from less
than 5 minutes (participant 2) to nearly 20 minutes (participant 6), showing a wide
variation between individuals. This wide variation emphasizes the importance of the
within-subjects design. To see how this affects the results, we will first try to analyze
them ignoring the fact that each participant performed under each condition. At 
the end of the table, the mean and standard deviation have been calculated for each
condition. These means can then be compared using Student’s t test. The difference
between the means is 52 seconds, but the standard error of the difference (s.e.d.) 
is 117. This is calculated as follows:

where σN and σA are the standard deviations (s.d.) of the two conditions, and nN

and nA are the number of data items in each condition (10 in each). The s.e.d. is 
a measure of the expected variability of the difference between the means, and as 
we see the actual difference is well within this random variation. Testing the ratio
52/117 against tables of Student’s t distribution indeed shows that this is not
significant.

However, if we glance down the table, we see that in almost every case the time
taken with the abstract icons is greater than the time taken for the natural icons. That
is, the data seem to support our claim that natural icons are better than abstract ones,
but the wide variation between individuals has hidden the effect.

A more sophisticated analysis, a special case of ANOVA, can expose the difference.
Looking back at the table, column (3) shows, for each participant, the average of 
the time they took under the two conditions. This participant mean is then sub-
tracted from the data for each condition, yielding columns (4) and (5). These
columns show the effect of the icon design once the differences between participants
have been removed. The two columns are redundant as they always add up to zero.
They show that in all but one case (participant 9) the natural icons are faster than the
abstract ones.

Even a non-parametric test would show this as a significant difference at the 5%
level, but the use of a t test is more precise. We can take either column and see 
that the column average 26 is much greater than the standard error (14.4/ ). The
ratio (mean/s.e.) is compared with the Student’s t table (in statistical tables) using
nine degrees of freedom (10 values minus 1 for the mean), and is indeed far greater
than the 1% level (3.250); that is, the likelihood of getting our results by chance is
less than 1 in 100. So, we reject the null hypothesis that there is no difference and
conclude that natural icons are more easily remembered than abstract ones.

In fact, the last statement is not quite correct. What we have shown is that in 
this experiment natural icons are more rapidly remembered. Possibly, if we go on to
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analyze the errors, these may present a different story. If these error figures were
quite large (say 15 errors or more per condition), then we may be able to assume
these are normal and use ANOVA. If not, we can either use non-parametric tests, or
make use of special tests based on the binomial distribution. We will not perform
these analyses here. Possibly, looking at the errors we may find that the natural icons 
have more errors – it could well be that they are more rapidly, but less accurately,
remembered. It is always worth keeping in mind the difference between the intended
purpose of the experiment (to see which is better remembered) and the actual meas-
urements (speed and accuracy).

Finally, one ought to look carefully at the experimental results to see whether 
there is any other effect that might confuse the results. The graphical presentation 
of results will help with this, possibly highlighting odd clumps in the data or other
irregularities. In this experiment we may want to check to see if there has been any
significant transfer effect between the first and second condition for each participant.
The second set may be faster as the participants are more practiced, or possibly the
second set may be slower as learning a second set of icons may be confusing. This will
not matter if the effect is uniform – say they always are 15 seconds slower on the sec-
ond test. But there may be systematic effects. For example, seeing the natural icons
first might make it more difficult to learn the abstract ones, but not vice versa. If this
were the case, our observed effect may be about the interference between the icon
sets, rather than that one is better than the other.

Worked exercise Design an experiment to test whether adding color coding to an interface will improve accur-
acy. Identify your hypothesis, participant group, dependent and independent variables, experi-
mental design, task and analysis approach.

Answer The following is only an example of the type of experiment that might be devised.

Participants Taken from user population.

Hypothesis Color coding will make selection more accurate.

IV (Independent Variable) Color coding.

DV (Dependent Variable) Accuracy measured as number of errors.

Design Between-groups to ensure no transfer of learning (or within-groups with
appropriate safeguards if participants are scarce).

Task The interfaces are identical in each of the conditions, except that, in the second,
color is added to indicate related menu items. Participants are presented with a
screen of menu choices (ordered randomly) and verbally told what they have to
select. Selection must be done within a strict time limit when the screen clears.
Failure to select the correct item is deemed an error. Each presentation places items
in new positions. Participants perform in one of the two conditions.

Analysis t test.
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Studies of groups of users

So far we have considered the experimental evaluation of single-user systems.
Experiments to evaluate elements of group systems bring additional problems. Given
the complexities of human–human communication and group working, it is hardly
surprising that experimental studies of groups and of groupware are more difficult
than the corresponding single-user experiments already considered. For the purpose
of discussion, let us assume that we are evaluating a shared application with video
connections between the participants and consider some of the problems we will
encounter.

The participant groups To organize, say, 10 experiments of a single-user system
requires 10 participants. For an experiment involving groups of three, we will, of
course, need 30 participants for the same number of experiments. In addition, experi-
ments in group working are often longer than the single-user equivalents as we must
allow time for the group to ‘settle down’ and some rapport to develop. This all means
more disruption for participants and possibly more expense payments.

Arranging a mutually convenient slot when both participants and the equipment
are available is no mean feat. Often the workstations being used in the experiment
will be colleagues’ personal systems, so we are trying to accommodate at least six
people, not to mention the experimenters themselves.

Not surprisingly, many reports of group working involve only three or four groups.
This is obviously a problem for statistical purposes, but not the primary obstacle.

The experimental task Choosing a suitable task is also difficult. We may want 
to test a variety of different task types: creative, structured, information passing, 
and so on. Also, the tasks must encourage active cooperation, either because the 
task requires consensus, or because information and control is distributed among
the participants. Obviously, the task also depends on the nature of the groupware 
system: if it has several available channels, we want to encourage broad use. For
example, in the case of shared application with video, it should not be possible (or at
least not easy) to perform the task without using the application, otherwise we are
simply investigating video conferencing.

Creative tasks such as ‘write a short report on . . .’ or ‘write a research proposal’
are often effective, in that the participants must reach agreement, and can be asked
to produce their final report using the shared application. Design tasks are also used.
For instance, in one experiment, users of the York Conferencer system (see Fig-
ure 14.2 in Section 14.4) were asked to redesign a bank layout. A picture of the 
current layout was used as a background for the spatially arranged electronic pin-
board, and the participants made use of this to arrange comments and suggestions
close to the features they referred to.

Decision games, as used in management courses, are designed to test and train
cooperative activity. They often rely for their success on group coordination, not
individual ability. An example of this is the desert survival task, where the particip-
ants are told that they have crashed in the desert. They are given a list of items to rank
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in order of importance for their survival: knife, plastic sheet, etc. The participants
must produce one list between them, a single knowledgeable participant cannot ‘go
it alone’. A computerized version of the game of Diplomacy has also been used (see
Figure 14.5 in Section 14.4) as it includes aspects of conflict as well as cooperation.

Finally, time-critical simulated process control tasks force a higher pace of inter-
action as the participants control different parts of the model. An example of this 
is ARKola [147], a simulated bottling plant, which was used at Xerox PARC to invest-
igate the importance of background noise in complex cooperative control tasks.

Often the chosen task will require extra implementation effort, and in the case 
of games this may be extensive. This is obviously a strong factor in the choice of a
suitable task.

Data gathering Even in a single-user experiment we may well use several video
cameras as well as direct logging of the application. In a group setting this is replic-
ated for each participant. So for a three-person group, we are trying to synchronize
the recording of six or more video sources and three keystroke logs. To compound
matters, these may be spread over different offices, or even different sites. The tech-
nical problems are clearly enormous. Four-into-one video recording is possible,
storing a different image in each quadrant of the screen, but even this is insufficient
for the number of channels we would like.

One way round this is to focus on the participants individually, recording, for each
one, the video images that are being relayed as part of the system (assuming there 
is a video connection) and the sounds that the participant hears. These can then 
be synchronized with the particular participant’s keystrokes and additional video
observations. Thus, we can recreate the situation as it appeared to the participant.
From this recording, we may not be able to interpret the other participants’ actions,
but at least we have a complete record for one.

Given sufficient recording equipment, this can be repeated for each participant.
Happily, the level of synchronization required between participants is not as great as
that required for each one individually. One can simply start the recorders’ clocks at
the same time, but not worry about sub-second accuracy between participants. The
important thing is that we can, as it were, relive the experience for each individual.

Analysis In true experimental tradition, we would like to see statistical differences
between experimental conditions. We saw earlier that individual differences made
this difficult in single-user experiments. If anything, group variation is more
extreme. Given randomly mixed groups, one group will act in a democratic fashion;
in another, a particular pair will dominate discussion; in a third, one of the parti-
cipants will act as coordinator, filtering the others’ contributions. The level of 
variation is such that even catastrophic failures under one condition and fabulous
successes in another may not always lead to statistically significant results.

As an example of this, imagine we have some quantitative measure of quality of
output. We will almost certainly have to use non-parametric tests, so imagine we
have found that all the groups under one condition obtained higher scores than any
group under the other condition. We would need at least four in each condition to
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obtain even 5% significance (one tailed). If our results were only slightly less good,
say one of the generally better groups performed poorly, we would then require at
least five in each condition.

Now this example only considered one condition, and assumed the best possible
results. In general, we would expect that the spread between groups within condi-
tions would be greater, and we may want to test more conditions at once. Our 10
groups will have to increase rapidly to stand any chance of statistically significant
results. However, we saw above that even gathering 10 experimental groups is a
significant problem.

There are three possible solutions to this problem. First, one can use within-group
experiments, having each group work under several conditions. We have, of course,
the normal problems of such analysis, transfer effects and the like, but we also have
more chance of cancelling out the group effect. Secondly, we can look to a micro-
analysis of features like gaps between utterances. Such measures are more likely to 
fit a standard distribution, and thus one can use more powerful parametric tests. In
addition, they may be more robust to the large-scale social differences between groups.

The third solution is to opt for a more anecdotal analysis, looking for critical 
incidents – for example, interesting events or breakdowns – in the data. The concepts
and methods for analyzing conversation in Chapter 14 can be used to drive such 
an analysis. The advantage of this approach is that instead of regarding group differ-
ences as a ‘problem’, they can be included in the analysis. That is, we can begin 
to look for the systematic ways in which different group structures interact with the
communications media and applications they use.

Of course, experiments can be analyzed using both quantitative and qualitative
methods. Indeed, any detailed anecdotal analysis of the logs will indicate fruitful
measures for statistical analysis. However, if the number of experimental groups is
limited, attempts at controlled experiments may not be productive, and may effect-
ively ‘waste’ the groups used in the control. Given the high costs of group-working
experiments, one must choose conditions that are likely to give interesting results,
even if statistical analysis proves impossible.

Field studies with groups There are, of course, problems with taking groups of
users and putting them in an experimental situation. If the groups are randomly
mixed, then we are effectively examining the process of group formation, rather than
that of a normal working group. Even where a pre-existent group is used, excluding
people from their normal working environment can completely alter their working
patterns. For a new system, there may be no ‘normal’ workplace and all we can do is
produce an artificial environment. However, even with a new system we have the
choice of producing a ‘good’ experiment or a naturalistic setting. The traditions 
of experimental psychology are at odds with those of more qualitative sociological
analysis.

It can be argued that group work can only be studied in context. Moving out of
the real situation will alter the very nature of the work that is studied. Alternative
approaches from the social sciences, such as ethnography, have therefore become
popular, particularly in relation to studying group interaction. Ethnography involves
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very detailed recording of the interactions between people, their environment 
and each other. The ethnographer attempts to remain outside the situation being
studied and does not impose a particular viewpoint on what is observed. This is very
different from the experimental perspective with its hypothesis testing. Ethnography
is discussed in more detail in Chapter 13.

9.4.3 Observational techniques

A popular way to gather information about actual use of a system is to observe users
interacting with it. Usually they are asked to complete a set of predetermined tasks,
although, if observation is being carried out in their place of work, they may be
observed going about their normal duties. The evaluator watches and records the
users’ actions (using a variety of techniques – see below). Simple observation is 
seldom sufficient to determine how well the system meets the users’ requirements
since it does not always give insight into the their decision processes or attitude.
Consequently users are asked to elaborate their actions by ‘thinking aloud’. In this
section we consider some of the techniques used to evaluate systems by observing
user behavior.

Think aloud and cooperative evaluation

Think aloud is a form of observation where the user is asked to talk through what 
he is doing as he is being observed; for example, describing what he believes is 
happening, why he takes an action, what he is trying to do.

Think aloud has the advantage of simplicity; it requires little expertise to perform
(though can be tricky to analyze fully) and can provide useful insight into problems
with an interface. It can also be employed to observe how the system is actually used.
It can be used for evaluation throughout the design process, using paper or simu-
lated mock-ups for the earlier stages. However, the information provided is often
subjective and may be selective, depending on the tasks provided. The process of
observation can alter the way that people perform tasks and so provide a biased view.
The very act of describing what you are doing often changes the way you do it – like
the joke about the centipede who was asked how he walked . . .

A variation on think aloud is known as cooperative evaluation [240] in which the
user is encouraged to see himself as a collaborator in the evaluation and not simply
as an experimental participant. As well as asking the user to think aloud at the begin-
ning of the session, the evaluator can ask the user questions (typically of the ‘why?’
or ‘what-if ?’ type) if his behavior is unclear, and the user can ask the evaluator for
clarification if a problem arises. This more relaxed view of the think aloud process
has a number of advantages:

n the process is less constrained and therefore easier to learn to use by the evaluator
n the user is encouraged to criticize the system
n the evaluator can clarify points of confusion at the time they occur and so maxim-

ize the effectiveness of the approach for identifying problem areas.
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The usefulness of think aloud, cooperative evaluation and observation in general
is largely dependent on the effectiveness of the recording method and subsequent
analysis. The record of an evaluation session of this type is known as a protocol, and
there are a number of methods from which to choose.

Protocol analysis

Methods for recording user actions include the following:

Paper and pencil This is primitive, but cheap, and allows the analyst to note inter-
pretations and extraneous events as they occur. However, it is hard to get detailed
information, as it is limited by the analyst’s writing speed. Coding schemes for
frequent activities, developed during preliminary studies, can improve the rate 
of recording substantially, but can take some time to develop. A variation of 
paper and pencil is the use of a notebook computer for direct entry, but then one
is limited to the analyst’s typing speed, and one loses the flexibility of paper 
for writing styles, quick diagrams and spatial layout. If this is the only record-
ing facility available then a specific note-taker, separate from the evaluator, is 
recommended.

Audio recording This is useful if the user is actively ‘thinking aloud’. However, it
may be difficult to record sufficient information to identify exact actions in later
analysis, and it can be difficult to match an audio recording to some other form
of protocol (such as a handwritten script).

Video recording This has the advantage that we can see what the participant is
doing (as long as the participant stays within the range of the camera). Choosing
suitable camera positions and viewing angles so that you get sufficient detail 
and yet keep the participant in view is difficult. Alternatively, one has to ask the
participant not to move, which may not be appropriate for studying normal
behavior! For single-user computer-based tasks, one typically uses two video
cameras, one looking at the computer screen and one with a wider focus includ-
ing the user’s face and hands. The former camera may not be necessary if the
computer system is being logged.

Computer logging It is relatively easy to get a system automatically to record user
actions at a keystroke level, particularly if this facility has been considered early in
the design. It can be more difficult with proprietary software where source code
is not available (although some software now provides built-in logging and play-
back facilities). Obviously, computer logging only tells us what the user is doing
on the system, but this may be sufficient for some purposes. Keystroke data are
also ‘semantics free’ in that they only tell us about the lowest-level actions, not
why they were performed or how they are structured (although slight pauses and
gaps can give clues). Direct logging has the advantages that it is cheap (except 
in terms of disk storage), unobtrusive and can be used for longitudinal studies,
where we look at one or more users over periods of weeks or months. Technical
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problems with it are that the sheer volume of data can become unmanageable
without automatic analysis, and that one often has to be careful to restore the
state of the system (file contents, etc.) before replaying the logs.

User notebooks The participants themselves can be asked to keep logs of activity/
problems. This will obviously be at a very coarse level – at most, records every 
few minutes and, more likely, hourly or less. It also gives us ‘interpreted’ records,
which have advantages and problems. The technique is especially useful in longit-
udinal studies, and also where we want a log of unusual or infrequent tasks and
problems.

In practice, one uses a mixture of recording methods as they complement one
another. For instance, we may keep a paper note of special events and circum-
stances, even when we have more sophisticated audio/visual recording. Similarly, 
we may use separate audio recording, even where a video recorder is used, as the
quality of specialist audio recording is better than most built-in video micro-
phones. In addition, we may use stereo audio recording, which helps us to locate
out-of-screen noises. If one is using a collection of different sources, say audio, 
video (×2) and keystroke logging, there is considerable difficulty in synchronizing
them during play-back. Most video recorders can superimpose an on-screen clock, 
which can help, but ideally one uses specialized equipment that can automatically
synchronize the different sources, possibly merging several video displays onto a 
single screen. Unfortunately, this sort of equipment is often only available in spe-
cialized laboratories.

With both audio and video recording, a major problem is transcription. Typing 
a transcript from a tape is not the same as taped dictation. The conversation will 
typically consist of part or broken sentences, mumbled words and inarticulated
noises. In addition, the transcript will need annotating with the different voices
(which may only be clear from context) and with non-verbal items such as 
pauses, emphases, equipment noises, phones ringing, etc. A good audio-typist will 
be accustomed to completing mumbled words and correcting ungrammatical 
sentences – typing exactly what is recorded may prove difficult. Some practitioners
say that the use of typists is not good practice anyway as the analyst will miss 
many nuances that are lost in the written transcript. However, if you wish to pro-
duce your own typed transcripts from tape, a course in touch-typing is highly 
recommended.

For video transcription, professional typists are not an option; there is no standard
way of annotating video recordings, and the analyst must invent notations to suit the
particular circumstances. The scale of this task is not to be underestimated. It is com-
mon to talk to practitioners who have tens or hundreds of hours of video recording,
but have only analyzed tiny fragments in detail. Of course, the fragments will have
been chosen after more extensive perusal of the material, but it certainly removes any
idea of comprehensive coverage.

Coding can be introduced to indicate particular events but it is sometimes difficult
to determine a suitable coding scheme and to use this consistently, particularly if
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more than one person is doing the coding. A range of transcribers should therefore
test coding schemes to ensure that they are being interpreted appropriately for a 
particular data set.

Automatic protocol analysis tools

Analyzing protocols, whether video, audio or system logs, is time consuming and
tedious by hand. It is made harder if there is more than one stream of data to 
synchronize. One solution to this problem is to provide automatic analysis tools to
support the task. These offer a means of editing and annotating video, audio and 
system logs and synchronizing these for detailed analysis.

EVA (Experimental Video Annotator) is a system that runs on a multimedia work-
station with a direct link to a video recorder [220]. The evaluator can devise a set of
buttons indicating different events. These may include timestamps and snapshots, as
well as notes of expected events and errors. The buttons are used within a recording
session by the evaluator to annotate the video with notes. During the session the user
works at a workstation and is recorded, using video and perhaps audio and system
logging as well. The evaluator uses the multimedia workstation running EVA. On the
screen is the live video record and a view of the user’s screen (see Figure 9.4). The
evaluator can use the buttons to tag interesting events as they occur and can record
additional notes using a text editor. After the session, the evaluator can ask to review
the tagged segments and can then use these and standard video controls to search 
the information. Links can be made with other types of record such as audio and 
system logs. A system such as EVA alleviates the burden of video analysis but it is 
not without its problems. The act of tagging and annotating events can prevent the
evaluator from actually concentrating on the events themselves. This may mean that
events are missed or tagged late.

Commercial systems such as Observer Pro from Noldus have similar functionality
to EVA; portable versions are now available for use in field studies (www.noldus.com).

Figure 9.4 EVA: an automatic protocol analysis tool. Source: Wendy Mackay
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The Workplace project at Xerox PARC [348] also includes a system to aid pro-
tocol analysis. The main emphasis here is to support the analysis of synchronized
information from different data streams, such as video, audio, notes and dia-
grams. Each data stream is viewed in an aligned display so that it is possible to 
compare the records of each for a given point in the interaction. The alignment 
may be based on timestamps or on an event or action and is implemented using
hypertext links.

A third example is DRUM [223], which also provides video annotation and tag-
ging facilities. DRUM is part of the MUSiC (Measuring the Usability of Systems in
Context/Metrics for Usability Standards in Computing) toolkit, which supports 
a complete methodology for evaluation, based upon the application of usability 
metrics on analytic metrics, cognitive workload, performance and user satisfaction.
DRUM is concerned particularly with measuring performance. The methodology
provides a range of tools as well as DRUM, including manuals, questionnaires, 
analysis software and databases.

Systems such as these are extremely important as evaluation tools since they offer
a means of handling the data that are collected in observational studies and allowing
a more systematic approach to the analysis. The evaluator’s task is facilitated and it
is likely that more valuable observations will emerge as a result.

Post-task walkthroughs

Often data obtained via direct observation lack interpretation. We have the basic
actions that were performed, but little knowledge as to why. Even where the particip-
ant has been encouraged to think aloud through the task, the information may be at
the wrong level. For example, the participant may say ‘and now I’m selecting the
undo menu’, but not tell us what was wrong to make undo necessary. In addition, 
a think aloud does not include information such as alternative, but not pursued,
actions.

A walkthrough attempts to alleviate these problems, by reflecting the participants’
actions back to them after the event. The transcript, whether written or recorded, 
is replayed to the participant who is invited to comment, or is directly questioned 
by the analyst. This may be done straightaway, when the participant may actually
remember why certain actions were performed, or after an interval, when the
answers are more likely to be the participant’s post hoc interpretation. (In fact, inter-
pretation is likely even in the former case.) The advantage of a delayed walkthrough
is that the analyst has had time to frame suitable questions and focus on specific 
incidents. The disadvantage is a loss of freshness.

There are some circumstances when the participant cannot be expected to talk
during the actual observation, for instance during a critical task, or when the task 
is too intensive. In these circumstances, the post-task walkthrough is the only way 
to obtain a subjective viewpoint on the user’s behavior. There is also an argument
that it is preferable to minimize non-task-related talk during direct observation in
order to get as natural a performance as possible. Again this makes the walkthrough
essential.
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9.4.4 Query techniques

Another set of evaluation techniques relies on asking the user about the interface
directly. Query techniques can be useful in eliciting detail of the user’s view of a 
system. They embody the philosophy that states that the best way to find out how a
system meets user requirements is to ‘ask the user’. They can be used in evaluation
and more widely to collect information about user requirements and tasks. The
advantage of such methods is that they get the user’s viewpoint directly and may
reveal issues that have not been considered by the designer. In addition, they are 
relatively simple and cheap to administer. However, the information gained is neces-
sarily subjective, and may be a ‘rationalized’ account of events rather than a wholly
accurate one. Also, it may be difficult to get accurate feedback about alternative
designs if the user has not experienced them, which limits the scope of the informa-
tion that can be gleaned. However, the methods provide useful supplementary mater-
ial to other methods. There are two main types of query technique: interviews and
questionnaires.

Interviews

Interviewing users about their experience with an interactive system provides a
direct and structured way of gathering information. Interviews have the advantages
that the level of questioning can be varied to suit the context and that the evaluator
can probe the user more deeply on interesting issues as they arise. An interview will
usually follow a top-down approach, starting with a general question about a task
and progressing to more leading questions (often of the form ‘why?’ or ‘what if ?’) to
elaborate aspects of the user’s response.

Interviews can be effective for high-level evaluation, particularly in eliciting 
information about user preferences, impressions and attitudes. They may also reveal
problems that have not been anticipated by the designer or that have not occurred
under observation. When used in conjunction with observation they are a useful
means of clarifying an event (compare the post-task walkthrough).

In order to be as effective as possible, the interview should be planned in advance,
with a set of central questions prepared. Each interview is then structured around
these questions. This helps to focus the purpose of the interview, which may, for
instance, be to probe a particular aspect of the interaction. It also helps to ensure a
base of consistency between the interviews of different users. That said, the evalu-
ator may, of course, choose to adapt the interview form to each user in order to 
get the most benefit: the interview is not intended to be a controlled experimental
technique.

Questionnaires

An alternative method of querying the user is to administer a questionnaire. This is
clearly less flexible than the interview technique, since questions are fixed in advance,
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and it is likely that the questions will be less probing. However, it can be used to
reach a wider participant group, it takes less time to administer, and it can be ana-
lyzed more rigorously. It can also be administered at various points in the design
process, including during requirements capture, task analysis and evaluation, in
order to get information on the user’s needs, preferences and experience.

Given that the evaluator is not likely to be directly involved in the completion of
the questionnaire, it is vital that it is well designed. The first thing that the evaluator
must establish is the purpose of the questionnaire: what information is sought? It is
also useful to decide at this stage how the questionnaire responses are to be analyzed.
For example, do you want specific, measurable feedback on particular interface fea-
tures, or do you want the user’s impression of using the interface?

There are a number of styles of question that can be included in the questionnaire.
These include the following:

General These are questions that help to establish the background of the user 
and his place within the user population. They include questions about age, sex,
occupation, place of residence, and so on. They may also include questions on
previous experience with computers, which may be phrased as open-ended,
multi-choice or scalar questions (see below).

Open-ended These ask the user to provide his own unprompted opinion on a
question, for example ‘Can you suggest any improvements to the interface?’. They
are useful for gathering general subjective information but are difficult to analyze
in any rigorous way, or to compare, and can only be viewed as supplementary.
They are also most likely to be missed out by time-conscious respondents!
However, they may identify errors or make suggestions that have not been con-
sidered by the designer. A special case of this type is where the user is asked for
factual information, for example how many commands were used.

Scalar These ask the user to judge a specific statement on a numeric scale, usually
corresponding to a measure of agreement or disagreement with the statement.
For example,

It is easy to recover from mistakes.
Disagree 1 2 3 4 5 Agree

The granularity of the scale varies: a coarse scale (say, from 1 to 3) gives a clear
indication of the meaning of the numbers (disagree, neutral and agree). However,
it gives no room for varying levels of agreement, and users may therefore be
tempted to give neutral responses to statements that they do not feel strongly
about but with which they mildly disagree or agree. A very fine scale (say 1 to 10)
suffers from the opposite problem: the numbers become difficult to interpret in 
a consistent way. One user will undoubtedly interpret the scale differently 
from another. A middle ground is therefore advisable. Scales of 1 to 5 or 1 to 7
have been used effectively. They are fine enough to allow users to differentiate
adequately but still retain clarity in meaning. It can help to provide an indication
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of the meaning of intermediate scalar values. Odd-numbered scales are used most
often but it is possible to use even-numbered scales (e.g. 1–6) if the ‘neutral’
option is not wanted. This does not allow for fence sitting – except decisively by
selecting 31/2!).

Multi-choice Here the respondent is offered a choice of explicit responses, and
may be asked to select only one of these, or as many as apply. For example,

How do you most often get help with the system (tick one)?
Online manual q
Contextual help system q
Command prompt q
Ask a colleague q

Which types of software have you used (tick all that apply)?
Word processor q
Database q
Spreadsheet q
Expert system q
Online help system q
Compiler q

These are particularly useful for gathering information on a user’s previous experi-
ence. A special case of this type is where the offered choices are ‘yes’ or ‘no’.

Ranked These place an ordering on items in a list and are useful to indicate a user’s
preferences. For example,

Please rank the usefulness of these methods of issuing a command (1 most useful,
2 next, 0 if not used).

Menu selection q
Command line q
Control key accelerator q

These question types are all useful for different purposes, as we have noted.
However, in order to reduce the burden of effort on the respondent, and so encour-
age a high response rate amongst users, it is best to use closed questions, such as
scalar, ranked or multi-choice, as much as possible. These provide the user with
alternative responses and so reduce the effort required. They also have the advantage
of being easier to analyze. Responses can be analyzed in a number of ways, from
determining simple percentages for each response, to looking at correlations and 
factor analysis. For more detail on available methods the reader is referred to the 
recommended reading list at the end of the chapter.

Whatever type of questionnaire is planned, it is wise to carry out a pilot study. 
This allows any problems with the questionnaire design to be ironed out before the
questionnaire is distributed to potentially hundreds of users! The questionnaire
should be tested on four or five users to see if the questions are comprehensible and
the results are as expected and can be used in the manner intended. If users seem to
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be misunderstanding a particular question, it can then be rephrased (and retested)
before the final version is sent out.

Distribution of questionnaires can also be problematic. It is important that the
respondents are representative of the user population but you also need to ensure
that you are able to reach as many potential respondents as possible. Return rate 
for questionnaires is quite low (often 25–30%) so many more need to be sent out to 
get a reasonable return. Questionnaires should ideally be distributed to a random
subset of the user population. So, for example, if the population is all workers in 
a company, one may choose to send a questionnaire to every fourth person on an
alphabetically ordered personnel list. However, questionnaires are now often dis-
tributed via the internet, either by email, where potential respondents can be selected
randomly, or via a website, where the respondents are limited to those who visit 
the site and who may not be representative. In practice, questionnaire respondents
are self-selecting anyway, in that only those who choose to respond are included in
the study; if the questionnaire is designed to capture demographic information
about each respondent then the level of representativeness (or otherwise) can be
determined from the responses.

Worked exercise You have been asked to compare user performance and preferences with two different learn-
ing systems, one using hypermedia (see Chapter 21), the other sequential lessons. Design a
questionnaire to find out what the users think of the system. How would you go about com-
paring user performance with these two systems?

Answer Assume that all users have used both systems.

Questionnaire
Consider the following questions in designing the questionnaire:

n what information is required?
n how is the questionnaire to be analyzed?

You are particularly interested in user preferences so questions should focus on differ-
ent aspects of the systems and try to measure levels of satisfaction. The use of scales
will make responses for each system easier to compare.

Table 9.3 shows an example questionnaire.

To test performance you would design an experiment where two groups of participants
learn the same material using the two systems, and test how well they have learned
(using a standard measurable test).

Participants User group

IV (Independent Variable) Style of learning system

DV (Dependent Variable) Performance (measured as test score)

Design Between-subjects design
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Table 9.3 Questionnaire to compare two systems

PART I: Repeat for each system
Indicate your agreement or disagreement with the following statements. (1 indicates complete
disagreement and 5 complete agreement.)

The system tells me what to do at every point.
Disagree 1 2 3 4 5 Agree

It is easy to recover from mistakes.
Disagree 1 2 3 4 5 Agree

It is easy to get help when needed.
Disagree 1 2 3 4 5 Agree

I always know what the system is doing.
Disagree 1 2 3 4 5 Agree

I always know where I am in the training material.
Disagree 1 2 3 4 5 Agree

I have learned the material well using the system.
Disagree 1 2 3 4 5 Agree

I could have learned the material more effectively using a book.
Disagree 1 2 3 4 5 Agree

I always know how well I am doing.
Disagree 1 2 3 4 5 Agree

PART II: Comparing both systems:

Which system (choose 1) was most:
Helpful to use A B
Efficient to use A B
Enjoyable to use A B

Please add any comments you have about either system:

9.4.5 Evaluation through monitoring physiological responses

One of the problems with most evaluation techniques is that we are reliant on obser-
vation and the users telling us what they are doing and how they are feeling. What if
we were able to measure these things directly? Interest has grown recently in the use
of what is sometimes called objective usability testing, ways of monitoring physi-
ological aspects of computer use. Potentially this will allow us not only to see more
clearly exactly what users do when they interact with computers, but also to measure
how they feel. The two areas receiving the most attention to date are eye tracking and
physiological measurement.



9.4 Evaluation through user participation 353

Eye tracking for usability evaluation

Eye tracking has been possible for many years, but recent improvements in hard-
ware and software have made it more viable as an approach to measuring usability.
The original eye trackers required highly invasive procedures where eye caps were
attached to the cornea under anaesthetic. Clearly inappropriate for usability testing!
Modern systems vary: some use a head-mounted camera to monitor the eye, but 
the most sophisticated do not involve any contact between the equipment and 
the participant, with the camera and light sources mounted in desk units (see 
Figures 9.5, 9.6) [112].

Furthermore, there have been rapid improvements in the software available both
for the control of eye-tracking equipment and the analysis and visualization of the
large volumes of data it produces.

Eye movements are believed to reflect the amount of cognitive processing a dis-
play requires and, therefore, how easy or difficult it is to process [150]. So measur-
ing not only where people look, but also their patterns of eye movement, may tell us
which areas of a screen they are finding easy or difficult to understand. Eye move-
ment measurements are based on fixations, where the eye retains a stable position 
for a period of time, and saccades, where there is rapid ballistic eye movement from
one point of interest to another. There are many possible measurements related to
usability evaluation including:

Number of fixations The more fixations the less efficient the search strategy.

Fixation duration Longer fixations may indicate difficulty with a display.

Figure 9.5 Eye-tracking equipment. Source: Courtesy of J. A. Renshaw
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Scan path indicating areas of interest, search strategy and cognitive load. Moving
straight to a target with a short fixation at the target is the optimal scan path but
plotting scan paths and fixations can indicate what people look at, how often and
for how long.

Eye tracking for usability is still very new and equipment is prohibitively expens-
ive for everyday use. However, it is a promising technique for providing insights 
into what really attracts the eye in website design and where problem areas are in 
system use. More research is needed to interpret accurately the meaning of the vari-
ous eye movement measurements, as well as to develop more accessible and robust
equipment. But, given the potential for gathering new data measurements relatively
unobtrusively, it is likely that eye tracking will become part of the standard equip-
ment for usability laboratories in the coming few years.

Figure 9.6 Calibrating the eye tracker. Source: Courtesy of J. A. Renshaw



9.4 Evaluation through user participation 355

Physiological measurements

As we saw in Chapter 1, emotional response is closely tied to physiological changes.
These include changes in heart rate, breathing and skin secretions. Measuring these
physiological responses may therefore be useful in determining a user’s emotional
response to an interface [288, 363]. Could we determine which interaction events
really cause a user stress or which promote relaxation?

Physiological measurement involves attaching various probes and sensors to the
user (see Figure 9.7). These measure a number of factors:

Figure 9.7 Data Lab Psychophysiology equipment showing some of the sensors
(above) and a typical experimental arrangement (below) with sensors attached to the
participant’s fingers and the monitoring software displayed on the evaluator’s machine.
Source: Courtesy of Dr R. D. Ward
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Heart activity, indicated by blood pressure, volume and pulse. These may respond
to stress or anger.

Activity of the sweat glands, indicated by skin resistance or galvanic skin response
(GSR). These are thought to indicate levels of arousal and mental effort.

Electrical activity in muscle, measured by the electromyogram (EMG). These appear
to reflect involvement in a task.

Electrical activity in the brain, measured by the electroencephalogram (EEG). These
are associated with decision making, attention and motivation.

Figure 9.8 illustrates the output obtained from such measurements.
One of the problems with applying these measurements to interaction events is

that it is not clear what the relationship between these events and measurements
might be. For example, if increased pulse rate is observed during an interactive task,
does that indicate frustration with the interface or stress at being unable to complete
the task? How will physiological changes differ in response to discrete events or to
continuous interface use? Is it possible to map patterns of physiological measure-
ment to specific emotional states?

These are still research questions but the approach is interesting, as it offers a
potential means of objectively capturing information about the user’s emotional

Figure 9.8 Output of monitoring pulse rate (above) and skin conductivity (below).
Source: Screen shot courtesy of Dr R. D. Ward; frame source: National Instruments
BioBench software
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state, which, as we saw in Chapter 1, impacts on our ability to solve problems and
perform tasks.

CHOOSING AN EVALUATION METHOD

As we have seen in this chapter, a range of techniques is available for evaluating an
interactive system at all stages in the design process. So how do we decide which
methods are most appropriate for our needs? There are no hard and fast rules in this
– each method has its particular strengths and weaknesses and each is useful if
applied appropriately. However, there are a number of factors that should be taken
into account when selecting evaluation techniques. These also provide a way of cat-
egorizing the different methods so that we can compare and choose between them.
In this final section we will consider these factors.

9.5.1 Factors distinguishing evaluation techniques

We can identify at least eight factors that distinguish different evaluation techniques
and therefore help us to make an appropriate choice. These are:

n the stage in the cycle at which the evaluation is carried out
n the style of evaluation
n the level of subjectivity or objectivity of the technique
n the type of measures provided
n the information provided
n the immediacy of the response
n the level of interference implied
n the resources required.

Design vs. implementation

The first factor to affect our choice of evaluation method is the stage in the design
process at which evaluation is required. As we saw earlier in this chapter, it is desir-
able to include evaluation of some sort throughout the design process. The main 
distinction between evaluation of a design and evaluation of an implementation is
that in the latter case a physical artifact exists. This may be anything from a paper
mock-up to a full implementation, but it is something concrete that can be tested.
Evaluation of a design, on the other hand, precedes this stage and seeks instead to
provide information to feed the development of the physical artifact.

Roughly speaking, evaluation at the design stage needs to be quick and cheap 
so might involve design experts only and be analytic, whereas evaluation of the
implementation needs to be more comprehensive, so brings in users as participants.
There are, of course, exceptions to this: participatory design (see Chapter 13)

9.5
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involves users throughout the design process, and techniques such as cognitive walk-
through are expert based and analytic but can be used to evaluate implementations
as well as designs.

Early evaluation, whether of a design or an early prototype or mock-up, will bring
the greatest pay-off since problems can be easily resolved at this stage. As more 
commitment is made to a particular design in the implementation, it becomes
increasingly difficult for changes to be made, no matter what the evaluation suggests.
Ironically, the most resources are often ploughed into late evaluations. This is less
profitable and should be avoided, although obviously some evaluation with users is
required with a complete, or almost complete, system, since some elements (such as
system performance) will only be evident in the working system.

Laboratory vs. field studies

We have already discussed the pros and cons of these two styles of evaluation.
Laboratory studies allow controlled experimentation and observation while losing
something of the naturalness of the user’s environment. Field studies retain the 
latter but do not allow control over user activity. Ideally the design process should
include both styles of evaluation, probably with laboratory studies dominating the
early stages and field studies conducted with the new implementation.

Subjective vs. objective

Evaluation techniques also vary according to their objectivity – some techniques 
rely heavily on the interpretation of the evaluator, others would provide similar
information for anyone correctly carrying out the procedure. The more subjective
techniques, such as cognitive walkthrough or think aloud, rely to a large extent on
the knowledge and expertise of the evaluator, who must recognize problems and
understand what the user is doing. They can be powerful if used correctly and will
provide information that may not be available from more objective methods.
However, the problem of evaluator bias should be recognized and avoided. One 
way to decrease the possibility of bias is to use more than one evaluator. Objective
techniques, on the other hand, should produce repeatable results, which are not
dependent on the persuasion of the particular evaluator. Controlled experiments 
are an example of an objective measure. These avoid bias and provide comparable
results but may not reveal the unexpected problem or give detailed feedback on user
experience. Ideally, both objective and subjective approaches should be used.

The extent to which the results are dependent on the subjective response of 
the user also varies. At one extreme is asking for the user’s opinions, which is highly
subjective; at the other is measuring physiological changes in the body, which are
outside the user’s control.

Qualitative vs. quantitative measures

The type of measurement provided by the evaluation technique is also an important
consideration. There are two main types: quantitative measurement and qualitative



9.5 Choosing an evaluation method 359

measurement. The former is usually numeric and can be easily analyzed using statist-
ical techniques. The latter is non-numeric and is therefore more difficult to analyze,
but can provide important detail that cannot be determined from numbers. The type
of measure is related to the subjectivity or objectivity of the technique, with subject-
ive techniques tending to provide qualitative measures and objective techniques,
quantitative measures. This is not a hard and fast rule, however. It is sometimes 
possible to quantify what is, in fact, qualitative information by mapping it onto a
scale or similar measure. A common example of this is in questionnaires where qual-
itative information is being sought (for example, user preferences) but a quantitative
scale is used. This is also common in experimental design where factors such as the
quality of the user’s performance are used as dependent variables, and measured on
a quantitative scale.

Information provided

The level of information required from an evaluation may also vary. The informa-
tion required by an evaluator at any stage of the design process may range from 
low-level information to enable a design decision to be made (for example, which
font is most readable) to higher-level information, such as ‘Is the system usable?’.
Some evaluation techniques, such as controlled experiments, are excellent at provid-
ing low-level information – an experiment can be designed to measure a particular
aspect of the interface. Higher-level information can be gathered using questionnaire
and interview techniques, which provide a more general impression of the user’s
view of the system.

Immediacy of response

Another factor distinguishing evaluation techniques is the immediacy of the
response they provide. Some methods, such as think aloud, record the user’s 
behavior at the time of the interaction itself. Others, such as post-task walkthrough,
rely on the user’s recollection of events. Such recollection is liable to suffer from 
bias in recall and reconstruction, with users interpreting events according to their 
preconceptions. Recall may also be incomplete. However, immediate techniques can
also be problematic, since the process of measurement can actually alter the way the
user works.

Intrusiveness

Related to the immediacy of the response is the intrusiveness of the technique itself.
Certain techniques, particularly those that produce immediate measurements, are
obvious to the user during the interaction and therefore run the risk of influencing
the way the user behaves. Sensitive activity on the part of the evaluator can help to
reduce this but cannot remove it altogether. Most immediate evaluation techniques
are intrusive, with the exception of automatic system logging. Unfortunately, this is
limited in the information that it can provide and is difficult to interpret.
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Resources

The final consideration when selecting an evaluation technique is the availability 
of resources. Resources to consider include equipment, time, money, participants,
expertise of evaluator and context. Some decisions are forced by resource limita-
tions: it is not possible to produce a video protocol without access to a video camera
(and probably editing facilities as well). However, other decisions are not so clear
cut. For example, time and money may be limited, forcing a choice between two pos-
sible evaluations. In these circumstances, the evaluator must decide which evaluation
tactic will produce the most effective and useful information for the system under
consideration. It may be possible to use results from other people’s experiments 
to avoid having to conduct new experiments.

Some techniques are more reliant on evaluator expertise than others, for example
the more formal analytic techniques. If evaluator expertise is limited, it may be more
practical to use more simple heuristic methods than methods that require under-
standing of user goal structures and so on.

Finally, the context in which evaluation can occur will influence what can be done.
For practical reasons it may not be possible to gain access to the intended users of 
a system (if it is a general system, for example). Or it may not be feasible to test the
system in its intended environment (for example, a system for a space station or a
defence system). In these circumstances simulations must be used.

9.5.2 A classification of evaluation techniques

Using the factors discussed in the previous section we can classify the evaluation
techniques we have considered in this chapter. This allows us to identify the tech-
niques that most closely fit our requirements. Table 9.4 shows the classification for

Table 9.4 Classification of analytic evaluation techniques

Cognitive Heuristic Review Model
walkthrough evaluation based based

Stage Throughout Throughout Design Design
Style Laboratory Laboratory Laboratory Laboratory
Objective? No No As source No
Measure Qualitative Qualitative As source Qualitative
Information Low level High level As source Low level
Immediacy N/A N/A As source N/A
Intrusive? No No No No
Time Medium Low Low–medium Medium
Equipment Low Low Low Low
Expertise High Medium Low High
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analytic techniques, Table 9.5 for experimental and query techniques, Table 9.6 for
observational and Table 9.7 for monitoring techniques.

The classification is intended as a rough guide only – some of the techniques do
not fit easily into such a classification since their use can vary considerably.

Table 9.5 Classification of experimental and query evaluation techniques

Experiment Interviews Questionnaire

Stage Throughout Throughout Throughout

Style Laboratory Lab/field Lab/field

Objective? Yes No No

Measure Quantitative Qualitative/ Qualitative/
quantitative quantitative

Information Low/high level High level High level

Immediacy Yes No No

Intrusive? Yes No No

Time High Low Low

Equipment Medium Low Low

Expertise Medium Low Low

Table 9.6 Classification of observational evaluation techniques

Think aloud1 Protocol analysis2 Post-task walkthrough

Stage Implementation Implementation Implementation

Style Lab/field Lab/field Lab/field

Objective? No No No

Measure Qualitative Qualitative Qualitative

Information High/low level High/low level High/low level

Immediacy Yes Yes No

Intrusive? Yes Yes3 No

Time High High Medium

Equipment Low High Low

Expertise Medium High Medium

1 Assuming a simple paper and pencil record
2 Including video, audio and system recording
3 Except system logs



362 Chapter 9 n Evaluation techniques

SUMMARY

Evaluation is an integral part of the design process and should take place through-
out the design life cycle. Its aim is to test the functionality and usability of the design
and to identify and rectify any problems. It can also try to determine the user’s 
attitude and response to the system. It can take place in a specialist laboratory or in
the user’s workplace, and may or may not involve active participation on the part of
the user.

A design can be evaluated before any implementation work has started, to min-
imize the cost of early design errors. Most techniques for evaluation at this stage 
are analytic and involve using an expert to assess the design against cognitive and
usability principles. Previous experimental results and modeling approaches can also
provide insight at this stage. Once an artifact has been developed (whether a pro-
totype or full system), experimental and observational techniques can be used to 
get both quantitative and qualitative results. Query techniques provide subjective
information from the user. If more objective information is required, physiological
monitoring can capture the user’s physical responses to the system.

The choice of evaluation method is largely dependent on what is required of the
evaluation. Evaluation methods vary in the stage at which they are commonly used
and where they can be used. Some are more subjective than others and provide 
qualitative rather than quantitative measures. Some provide immediate information
while others get feedback after the event. However, the more immediate methods
also tend to intrude most seriously on the interaction. Finally, some require more
resources in terms of time, equipment and expertise than others.

9.6

Table 9.7 Classification of monitoring evaluation techniques

Eye tracking Physiological 
measurement

Stage Implementation Implementation
Style Lab Lab
Objective? Yes Yes
Measure Quantitative Quantitative
Information Low level Low level
Immediacy Yes Yes
Intrusive? No1 Yes
Time Medium/high Medium/high
Equipment High High
Expertise High High

1 If the equipment is not head mounted
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EXERCISES

9.1 In groups or pairs, use the cognitive walkthrough example, and what you know about
user psychology (see Chapter 1), to discuss the design of a computer application of your choice
(for example, a word processor or a drawing package). (Hint: Focus your discussion on one or
two specific tasks within the application.)

9.2 What are the benefits and problems of using video in experimentation? If you have access to a
video recorder, attempt to transcribe a piece of action and conversation (it does not have to be
an experiment – a soap opera will do!). What problems did you encounter?

9.3 In Section 9.4.2, we saw that the observed results could be the result of interference. Can you
think of alternative designs that may make this less likely? Remember that individual variation was
very high, so you must retain a within-subjects design, but you may perform more tests on each
participant.

9.4 Choose an appropriate evaluation method for each of the following situations. In each case 
identify:

(i) the participants
(ii) the technique used
(iii) representative tasks to be examined
(iv) measurements that would be appropriate
(v) an outline plan for carrying out the evaluation.

(a) You are at an early stage in the design of a spreadsheet package and you wish to test what
type of icons will be easiest to learn.

(b) You have a prototype for a theatre booking system to be used by potential theatre-goers to
reduce queues at the box office.

(c) You have designed and implemented a new game system and want to evaluate it before
release.

(d) You have developed a group decision support system for a solicitor’s office.
(e) You have been asked to develop a system to store and manage student exam results and

would like to test two different designs prior to implementation or prototyping.

9.5 Complete the cognitive walkthrough example for the video remote control design.

9.6 In defining an experimental study, describe:

(a) how you as an experimenter would formulate the hypothesis to be supported or refuted by
your study;

(b) how you would decide between a within-groups or between-groups experimental design with
your subjects.

9.7 What are the factors governing the choice of an appropriate evaluation method for different inter-
active systems? Give brief details.
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UNIVERSAL DESIGN

OV E RV I E W

n Universal design is about designing systems so that they
can be used by anyone in any circumstance.

n Multi-modal systems are those that use more than one
human input channel in the interaction.

n These systems may, for example, use:
– speech
– non-speech sound
– touch
– handwriting
– gestures.

n Universal design means designing for diversity,
including:
– people with sensory, physical or cognitive

impairment
– people of different ages
– people from different cultures and backgrounds.

10
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INTRODUCTION

We have already discussed the importance of designing for the user, considering
human abilities and requirements. But is it possible to generalize about people and,
if not, how do we address the issue of human diversity in our designs?

The discussion that we had on human psychology in Chapter 1 talked about gen-
eral human abilities and, in reality, people are much more varied than the discussion
suggests. People have different abilities and weaknesses; they come from different
backgrounds and cultures; they have different interests, viewpoints and experiences;
they are different ages and sizes. All of these things have an impact on the way in
which an individual will use a particular computing application and, indeed, on
whether or not they can use it at all. Given such diversity, we cannot assume a 
‘typical’ user or design only for people like ourselves.

Universal design is the process of designing products so that they can be used by
as many people as possible in as many situations as possible. In our case, this means
particularly designing interactive systems that are usable by anyone, with any range
of abilities, using any technology platform. This can be achieved by designing systems
either to have built in redundancy or to be compatible with assistive technologies. An
example of the former might be an interface that has both visual and audio access 
to commands; an example of the latter, a website that provides text alternatives 
for graphics, so that it can be read using a screen reader.

In this chapter, we will look at universal design in more detail. We will begin by
examining seven principles of universal design. We will then look at multi-modal
technology and how it can help to provide redundancy in interaction. Having
identified some of the available technologies at our disposal, we will look in more
detail at the particular areas of human diversity that we need to address.

UNIVERSAL DESIGN PRINCIPLES

We have defined universal design as ‘the process of designing products so that they
can be used by as many people as possible in as many situations as possible’. But what
does that mean in practice? Is it possible to design anything so that anyone can use
it – and if we could, how practical would it be? Wouldn’t the cost be prohibitive? In
reality, we may not be able to design everything to be accessible to everyone, and we
certainly cannot ensure that everyone has the same experience of using a product,
but we can work toward the aim of universal design and try to provide an equivalent
experience.

Although it may seem like a huge task, universal design does not have to be com-
plex or costly. In fact, if you are observant, you will see many examples of design that
attempt to take account of user diversity. Next time you cross the road, look at the
pavement. The curb may be lowered, to enable people who use wheelchairs to cross
more easily. The paving near the curb may be of a different texture – with raised

10.2
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bumps or ridges – to enable people who cannot see to find the crossing point. Notice
how many modern buildings have automatic doors that open on approach. Or lifts
that offer both visual and auditory notification of the floor reached. And, whilst these
designs make the crossing, the building and the lift more accessible to people who
have disabilities, notice too how they also help other users. The parent with a child
in a buggy, or the traveller with wheeled luggage, can cross the road more easily; the
shopper with heavy bags, or the small child, can enter the building; and people are
less likely to miss their floor because they weren’t paying attention. Universal design
is primarily about trying to ensure that you do not exclude anyone through the
design choices you make but, by giving thought to these issues, you will invariably
make your design better for everyone.

In the late 1990s a group at North Carolina State University in the USA proposed
seven general principles of universal design [333]. These were intended to cover all
areas of design and are equally applicable to the design of interactive systems. These
principles give us a framework in which to develop universal designs.

Principle one is equitable use: the design is useful to people with a range of abil-
ities and appealing to all. No user is excluded or stigmatized. Wherever possible,
access should be the same for all; where identical use is not possible, equivalent use
should be supported. Where appropriate, security, privacy and safety provision
should be available to all.

Principle two is flexibility in use: the design allows for a range of ability and pref-
erence, through choice of methods of use and adaptivity to the user’s pace, precision
and custom.

Principle three is that the system be simple and intuitive to use, regardless of the
knowledge, experience, language or level of concentration of the user. The design
needs to support the user’s expectations and accommodate different language and
literacy skills. It should not be unnecessarily complex and should be organized 
to facilitate access to the most important areas. It should provide prompting and
feedback as far as possible.

Principle four is perceptible information: the design should provide effective 
communication of information regardless of the environmental conditions or the
user’s abilities. Redundancy of presentation is important: information should be
represented in different forms or modes (e.g. graphic, verbal, text, touch). Essential
information should be emphasized and differentiated clearly from the peripheral
content. Presentation should support the range of devices and techniques used to
access information by people with different sensory abilities.

Principle five is tolerance for error : minimizing the impact and damage caused 
by mistakes or unintended behavior. Potentially dangerous situations should be
removed or made hard to reach. Potential hazards should be shielded by warnings.
Systems should fail safe from the user’s perspective and users should be supported in
tasks that require concentration.

Principle six is low physical effort : systems should be designed to be comfortable 
to use, minimizing physical effort and fatigue. The physical design of the system
should allow the user to maintain a natural posture with reasonable operating effort.
Repetitive or sustained actions should be avoided.
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Principle seven requires size and space for approach and use: the placement of the
system should be such that it can be reached and used by any user regardless of body
size, posture or mobility. Important elements should be on the line of sight for both
seated and standing users. All physical components should be comfortably reachable
by seated or standing users. Systems should allow for variation in hand size and 
provide enough room for assistive devices to be used.

These seven principles give us a good starting point in considering universal
design. They are not all equally applicable to all situations, of course. For example,
principles six and seven would be vital in designing an information booth but less
important in designing word-processing software. But they provide a useful check-
list of considerations for designers, together with guidelines on how each principle
can be achieved. It is interesting to note that these principles are closely related to 
the ones we met in Chapter 7, in the context of general user-centered design rules,
indicating again that universal design is fundamentally good design for all.

MULTI-MODAL INTERACTION

As we have seen in the previous section, providing access to information through
more than one mode of interaction is an important principle of universal design.
Such design relies on multi-modal interaction.

As we saw in Chapter 1, there are five senses: sight, sound, touch, taste and smell.
Sight is the predominant sense for the majority of people, and most interactive

systems consequently use the visual channel as their primary means of presentation,
through graphics, text, video and animation.

However, sound is also an important channel, keeping us aware of our surround-
ings, monitoring people and events around us, reacting to sudden noises, providing
clues and cues that switch our attention from one thing to another. It can also have
an emotional effect on us, particularly in the case of music. Music is almost com-
pletely an auditory experience, yet is able to alter moods, conjure up visual images,
evoke atmospheres or scenes in the mind of the listener.

Touch, too, provides important information: tactile feedback forms an intrinsic
part of the operation of many common tools – cars, musical instruments, pens, 
anything that requires holding or moving. It can form a sensuous bond between
individuals, communicating a wealth of non-verbal information.

Taste and smell are often less appreciated (until they are absent) but they also 
provide useful information in daily life: checking if food is bad, detecting early signs
of fire, noticing that manure has been spread in a field, pleasure.

Examples of the use of sensory information are easy to come by (we looked at
some in Chapter 1), but the important point is that our everyday interaction with
each other and the world around us is multi-sensory, each sense providing differ-
ent information that informs the whole. Since our interaction with the world is
improved by multi-sensory input, it makes sense that interactive systems that utilize

10.3
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more than one sensory channel will also provide a richer interactive experience. 
In addition, such multi-sensory or multi-modal systems support the principle of
redundancy required for universal design, enabling users to access the system using
the mode of interaction that is most appropriate to their abilities.

The majority of interactive computer systems are predominantly visual in their
interactive properties; often WIMP based, they usually make use of only rudi-
mentary sounds while adding more and more visual information to the screen. As 
systems become more complex, the visual channel may be overloaded if too much
information is presented all at once. This may lead to frustration or errors in use. 
By utilizing the other sensory channels, the visual channel can be relieved of the pres-
sure of providing all the information required and so interaction should improve.
The use of multiple sensory channels increases the bandwidth of the interaction
between the human and the computer, and it also makes human–computer inter-
action more like the interaction between humans and their everyday environment,
perhaps making the use of such systems more natural. However, it should always be
remembered that multi-modal interaction is not just about enhancing the richness
of the interaction, but also about redundancy. Redundant systems provide the same
information through a range of channels, so, for example, information presented
graphically is also captioned in readable text or speech, or a verbal narrative is 
provided with text captions. The aim is to provide at least an equivalent experience
to all, regardless of their primary channel of interaction.

Usable sensory inputs

In computing, the visual channel is used as the predominant channel for communication, but
if we are to use the other senses we have to consider their suitability and the nature of the 
information that they can convey.

The use of sound is an obvious area for further exploitation. There is little doubt that we use hear-
ing a great deal in daily life, and so developing its application to the interface may be beneficial.
Sound is already used, to a limited degree, in many interfaces: beeps are used as warnings and
notification, recorded or synthesized speech and music are also used. Tactile feedback, as we have
already seen, is also important in improving interactivity and so this represents another sense that
we can utilize more effectively. However, taste and smell pose more serious problems for us. They
are the least used of our senses, and are used more for receiving information than for commun-
icating it. There are currently very few ways of implementing devices that can generate tastes and
smells, and so these two areas are not supported. Whether this is a serious omission remains to
be seen, but the tertiary nature of those senses tends to suggest that their incorporation, if it were
possible, would focus on specialist applications, for example, in enhancing virtual reality systems.

Even if we do not use other senses in our systems, it is certainly worth thinking about the nature
of these senses and what we gain from them as this will improve our understanding of the
strengths and weaknesses of visual communication [96].
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The next sections of this chapter will look at some of the alternative modes of
human–computer communication, concentrating particularly on sound, touch,
handwriting and gesture. We will consider how each mode can be used to create
richer interaction and provide redundancy.

10.3.1 Sound in the interface

Sound is an important contributor to usability. There is experimental evidence to
suggest that the addition of audio confirmation of modes, in the form of changes in
keyclicks, reduces errors [237]. Video games offer further evidence, since experts
tend to score less well when the sound is turned off than when it is on; they pick up
vital clues and information from the sound while concentrating their visual attention
on different things. The dual presentation of information through sound and vision
supports universal design, by enabling access for users with visual and hearing
impairments respectively. It also enables information to be accessed in poorly lit or
noisy environments. Sound can convey transient information and does not take up
screen space, making it potentially useful for mobile applications.

However, in spite of this, the auditory channel is comparatively little used in 
standard interfaces, and where it is used it is often peripheral to the interaction.
Information provision is predominantly visual. There is a danger that this will over-
load the visual channel, demanding that the user attend to too many things at once
and select appropriate information from a mass of detail in the display. Reliance on
visual information forces attention to remain focussed on the screen, and the per-
sistence of visual information means that even detail that is quickly out of date may
remain on display after it is required, cluttering the screen further. It also presents
significant problems for people with visual impairment, whose access to applications
can be severely restricted by solely visual output. More widespread effective use of
sound in the interface would alleviate these problems. There are two types of sound
that we could use: speech and non-speech.

Speech in the interface

Language is rich and complex. We learn speech naturally as children ‘by example’ –
by listening to and mimicking the speech of those around us. This process seems 
so effortless that we often do not appreciate its complex structures, and it is not 
until we attempt to learn a new language later in life, or to make explicit the rules of 
the one we speak, that the difficulties inherent in language understanding become
apparent. This complexity makes speech recognition and synthesis by computer very
difficult.

Structure of speech If we are fully to appreciate the problems involved with the
computer-based recognition and generation of speech, we need first to understand
the basic structure of speech. We will use English to illustrate but most other lan-
guages have similar issues.
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The English language is made up of 40 phonemes, which are the atomic elements
of speech. Each phoneme represents a distinct sound, there being 24 consonants and
16 vowel sounds. Language is more than simple sounds, however. Emphasis, stress,
pauses and pitch can all be used to alter the meaning and nature of an utterance, a
common example being the rise in pitch at the end of a sentence to indicate a ques-
tion in English. This alteration in tone and quality of the phonemes is termed prosody
and is used, in addition to the actual words, to convey a great deal of meaning and
emotion within a sentence. Prosodic information gives language its richness and 
texture, but is very difficult to quantify. Owing to the manner in which sound is 
produced in the vocal tract, mouth and nose of the speaker, the limitation in
response speed means that phonemes sound differently when preceded by different
phonemes. This is termed co-articulation, and the resulting differences in sound can
be used to construct a set of allophones, which represent all the different sounds
within the language. Ignoring prosodic information, the concatenation of allo-
phones together should produce intelligible, articulate speech. However, depending
on the analysis of language used, and the regional accent studied, there are between
120 and 130 allophones. These, in turn, can be formed into morphemes, which 
represent the smallest unit of language that has meaning. They are the basic building
blocks of language rather than of speech. Morphemes can be either parts of words 
or whole words, and they are built into sentences using the rules of grammar of the
language.

Even being able to decompose sentences into their basic parts does not mean 
that we can then understand them: the syntax (structure) only serves as a stand-
ard foundation upon which the semantics (meaning) is based. We are rarely aware 
of the complex structure of speech, and concentrate on extracting the meaning 
from the sentences we hear, rather than decomposing the sounds into their con-
stituent parts.

Speech recognition There have been many attempts at developing speech recogni-
tion systems, but, although commercial systems are now commonly and cheaply
available, their success is still limited to single-user systems that require considerable
training.

The complexity of language is one barrier to success, but there are other, more
practical, problems also associated with the automatic recognition of the spoken
word. Background noise can interfere with the input, masking or distorting the
information, while speakers can introduce redundant or meaningless noises into the
information stream by repeating themselves, pausing or using ‘continuation’ noises
such as ‘ummm’ and ‘errr’ to fill in gaps in their usual speech. Variations between
individuals also cause problems; people have unique voices, and systems that are 
successful are tuned to be sensitive to minute variations in tone and frequency of 
the speaker’s voice – new speakers present different inflections to the system, which
then fails to perform as well. A more serious problem is caused by regional accents,
which vary considerably. This strong variation upsets the trained response of the
recognition system. More serious still is the problem posed by different languages:
everything from phonemes up can be different.
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Speech recognition offers another mode of communication that may be used 
to supplement existing channels or be the primary one. When a user’s hands are
already occupied, such as in a factory, speech may prove to be the ideal input
medium. Speech input does not require the use of a cumbersome keyboard and 
so in lightweight mobile situations there is a potential role for such systems. It also
provides an alternative means of input for users with visual, physical and cognitive
impairment as we will see later. Single-user, limited vocabulary systems can work
satisfactorily, but the current success rate of recognition for general users and uncon-
strained language is still low.

The phonetic typewriter

One early successful speech-based system is the phonetic typewriter. This uses a neural net-
work that clusters similar sounds together (see Figure 10.1).

Designed to produce typed output from speech input in Finnish, it is trained on one particular
speaker, and then generalizes to others. However, its performance with speakers other than the
one on which it was trained is noticeably poorer, and it relies on a large dictionary of minute vari-
ations to supplement its general transcription mechanism. Without the dictionary, it achieves a
significantly lower recognition rate.

One reason that the phonetic typewriter was able to achieve acceptable levels of recognition and
transcription is that Finnish is a phonetic language, that is one which is spelt as it sounds. There
are other phonetic languages, for example Welsh, but most languages do not have such a straight-
forward mapping between sound and text. Think of English words such as ‘wait’ and ‘weight’ or
‘one’ and ‘won’, for example.

Puzzle: How do you pronounce ‘ghuti’? (Answer on the web pages!)

Figure 10.1 The phonetic typewriter
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Despite its limitations there are commercial systems employing speech recogni-
tion. Speech-based word processors are easily available and several computers use
speech input as a marketing feature. Telephone-based systems also use speech, but
they face a more difficult task as they must be speaker independent. At the simplest
end, some systems ask you to speak an extension number, but, as tone dialing
becomes universal, the advantage of this over typing the number is dubious! Other
systems make more active use of voice, including information systems for airline
bookings. These more sophisticated systems work because they are interactive: the
system reflects back to the user its interpretation of the speech input, allowing the
user to enter into a dialog to correct any errors. This is precisely what happens in
normal conversation – we don’t get it right all the time.

Speech synthesis Complementary to speech recognition is speech synthesis. The
notion of being able to converse naturally with a computer is an appealing one for
many users, especially those who do not regard themselves as computer literate, since
it reflects their natural, daily medium of expression and communication. However,
there are as many problems in speech synthesis as there are in recognition. The 
most difficult problem is that we are highly sensitive to variations and intonation in
speech, and are therefore intolerant of imperfections in synthesized speech. We are
so used to hearing natural speech that we find it difficult to adjust to the monotonic,
non-prosodic tones that synthesized speech can produce. In fact, most speech syn-
thesizers can deliver a degree of prosody, but in order to decide what intonation to
give to a word, the system must have an understanding of the domain. So an effect-
ive automatic reader would also need to be able to understand natural language,
which is difficult. However, for ‘canned’ messages and responses, the prosody can be
hand coded yielding much more acceptable speech.

Synthesized speech also brings other problems. Being transient, spoken output
cannot be reviewed or browsed easily. It is intrusive, requiring either an increase in
noise in the office environment or the use of headphones, either of which may be too
large a price to pay for the benefits the system may offer.

However, there are some application areas in which speech synthesis has been 
successful. For users who are blind or partially sighted, synthesized speech offers an
output medium which they can access. Screen readers are software packages that
read the contents of a computer screen, using synthesized speech. Modern screen
readers read more than simply the text on the screen. They read exactly what they
find including icons, menus, punctuation and controls. They also read events, such
as dialog boxes opening, so that they can be used with graphical interfaces.

Speech synthesis is also useful as a communication tool to assist people with 
physical disabilities that affect their speech. Here speech synthesis needs to produce
output that is as natural as possible with as little input effort from the user as pos-
sible, perhaps using a simple switch. Human conversation is rapid and complex,
making this a significant challenge. Most communication tools of this type use
predefined messages, enabling the user to select a message appropriate to the context
quickly and easily.



Used as a supplement to other output channels, speech can also enhance 
applications where the user’s visual attention is focussed elsewhere, such as warnings
in aircraft cockpits and, more recently, in cars. We will return to some of these 
applications later in the chapter.

Uninterpreted speech Speech does not have to be recognized by a computer to be
useful in the interface. Fixed pre-recorded messages can be used to supplement or
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DESIGN FOCUS

Designing websites for screen readers

While screen readers provide users with visual impairments access to standard interfaces and software,
web access can be more problematic. Screen readers can only read textual elements of web pages, so
graphics and scripts cannot be interpreted. It is therefore important that web designers take account
of these limitations and design sites to be accessible to people using screen readers. For example,
HTML ‘alt’ tags should always be used for necessary graphics, and text alternative menus and naviga-
tion controls provided.

In addition, most read text across the page, so text arranged in columns can become garbled. For 
example, consider text arranged in two columns, such as the opening lines of these nursery rhymes:

Jack and Jill went up the hill Mary had a little lamb
To fetch a pail of water Its fleece was white as snow

With some screen readers, this text would be read as ‘Jack and Jill went up the hill Mary had a little
lamb To fetch a pail of water Its fleece was white as snow’ – clearly nonsense. Where possible, text
should make sense when read across a page.

Users of screen readers may also find it difficult to follow links embedded in text, particularly where
there are several in a block of text. It can therefore be helpful to provide links to the main sections in
a clear location where they will be read horizontally, such as at the top of the page.

If you want to experience something of what it is like to access the web using a screen reader, try 
the simulation produced by the Web Accessibility in Mind project, available at www.webaim.org/
simulations/screenreader (accessed March 2003). Their site also contains a wealth of information about
web accessibility.

Another useful resource to help you design accessible websites is the Web Accessibility Initiative’s
(WAI) checklist for accessibility. This is available on their website www.w3.org (accessed March 2003).

A tool that you can use to test your websites for accessibility is Bobby from Watchfire (bobby.cast.org,
accessed March 2003). Bobby is a web-based accessibility evaluation tool that highlights problem areas
of a given website and encourages accessible solutions. It provides suggestions for improvement using
the guidelines provided by the WAI and the US Government’s Section 508 legislation. Using Bobby,
web designers can test their sites for accessibility and get advice for resolving any problems before the
site goes live.
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replace visual information. Recordings have natural human prosody and pronunci-
ation, although quality is sometimes low. Segments of speech can be used together to
construct messages, for example the announcements in many airports and railway
stations.

Recordings of users’ speech can also be very useful, especially in collaborative
applications, for example many readers will have used voicemail systems. Also,
recordings can be attached to other artifacts as audio annotations in order to com-
municate with others or to remind oneself at a later time. For example, audio 
annotations can be attached to Microsoft Word documents.

When recordings are replayed, they can be digitally speeded up. If you simply play
an audio recording faster, the pitch rises – and human speech ends up sounding
rather like Mickey Mouse. However, digital signal-processing techniques can acceler-
ate a recording while keeping the same pitch. Speech can be played back at up to
twice the normal rate without any loss of comprehensibility. This can be used in a
telephone help desk where a pre-recorded message asks the enquirer to state his
problem. The problem can then be replayed at an accelerated rate to the operator,
reducing the operator time per enquiry. The utility of such methods needs careful
analysis, however. The operator may often begin to act on a message while it is still
playing, hence reducing any gain from faster playback. Furthermore, reduced inter-
activity may lead to more misunderstandings, and the enquirer’s waiting time may
be increased.

DESIGN FOCUS

Choosing the right kind of speech

If you include speech input in an interface you must decide what level of speech interaction you wish
to support:

recording simply recording and replaying messages or annotations;

transcription turning speech into text as in a word processor;

control telling the computer what to do: for example, ‘print this file’.

Each level has its own problems and advantages; for example, control only requires a limited vocabu-
lary, but is more dangerous: ‘I said print not delete . . . !’ However, the biggest problem arises if you try
to mix these levels. In text we use quotes to make such distinctions, but they are hard in speech: ‘insert
the word “delete” before the word “before” ’.

In fact, for general interface use, speech is best mixed with other modes of communication as happens
in everyday life. For example, in a word processor you may use a tablet and pen to ring a word and
then say ‘move this word to here’ as you tap the pen at the target location. This is exactly what you
would do when talking through corrections to a document with someone.
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Non-speech sound

We have considered the use of speech in the interface, but non-speech sounds can
offer a number of advantages. As speech is serial, we have to listen to most of a 
sentence before we understand what is being said. Non-speech sounds can often be
assimilated much more quickly. Speech is language dependent – a speech-based sys-
tem requires translation for it to be used for another language group. The meaning
of non-speech sounds can be learned regardless of language. Speech requires the
user’s attention. Non-speech sound can make use of the phenomenon of auditory
adaptation: background sounds are ignored unless they change or cease. However, a
disadvantage is that non-speech sounds have to be learned, whereas the meaning of
a spoken message is obvious (at least to a user who is familiar with the language
used).

Non-speech sound can be used in a number of ways in interactive systems. It is
often used to provide transitory information, such as indications of network or sys-
tem changes, or of errors. It can also be used to provide status information on back-
ground processes, since we are able to ignore continuous sounds but still respond to
changes in those sounds. Users of early home computers with their noisy power sup-
plies, and computer operators listening to the chatter of the printer and the spinning
of disks and tape drives, both report that they are able to tell what stage a process is
at by the characteristic sounds that are made.

Non-speech sound can also be used to provide a second representation of 
actions and objects in the interface to support the visual mode and provide confirma-
tion for the user. It can be used for navigation round a system, either giving redund-
ant supporting information to the sighted user or providing the primary source of
information for the visually impaired. Experiments on auditory navigation [290]
have demonstrated that auditory clues are adequate for a user to locate up to eight
targets on a screen with reasonable speed and accuracy. This suggests that there is 
little reason for ignoring the role of sound in interfaces on the grounds that it may
be too vague or inaccurate.

But what kind of non-speech sounds should we use in the interface? There are two
alternatives: using sounds that occur naturally in the world and using more abstract
generated sounds. We will consider an example of each type.

Auditory icons Auditory icons [141] use natural sounds to represent different types
of objects and actions in the interface. The SonicFinder [142] for the Macintosh was
developed from these ideas, to enhance the interface through redundancy. Natural
sounds are used because people recognize the source of a sound and its behavior
rather than timbre and pitch [364]. For example, a noise will be identified as glass
breaking or a hollow pipe being tapped. Such recognition is quite sophisticated: we
can identify not only the source of a sound (e.g. tapping a pipe) but characteristics
of the sound source (e.g. whether the pipe is hollow or solid).

In the SonicFinder, auditory icons are used to represent desktop objects and
actions. So, for example, a folder is represented by a papery noise, and throwing
something in the wastebasket by the sound of smashing. This helps the user to learn
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the sounds since they suggest familiar actions from everyday life. However, this
advantage also creates a problem for auditory icons. Some objects and actions do not
have obvious, naturally occurring sounds that identify them. In these cases a sound
effect can be created to suggest the action or object but this moves away from the
ideal of using familiar everyday sounds that require little learning. For example,
copying has no immediate analog sound and in the SonicFinder it is indicated by the
sound of pouring a liquid into a receptacle, with the pitch rising to indicate the
progress of the copying.

SharedARK and ARKola

Natural sounds have been used to model environments such as a physics laboratory [145],
called SharedARK (Shared Alternate Reality Kit) and a virtual manufacturing plant, ARKola [147]. 
In SharedARK, multiple users could perform physics experiments in a virtual laboratory. Sound 
was used in three different ways: as confirmation of actions, for status information and as aids to
navigation. Confirmatory sounds use similar principles to the SonicFinder, providing redundant
information that increases feedback. Process and state information sounds exist on two levels,
global and local. Global sounds represent the state of the whole system and can be heard any-
where, while local sounds are specific to particular experiments and alter when the user changes
from one experiment to another. Navigational information is provided by soundholders, which are
auditory landmarks. They can be placed anywhere in the system and get louder as the user moves
towards them, decreasing in volume when moving away. This allows the user to wander through
an arena much greater than the size of the screen without getting lost and lets him return to
specific areas very easily by returning to the soundholder.

In ARKola, a soft drinks factory was modeled, with two users attempting to optimize the factory’s
output, working remotely from each other and using an audio/video link. Input machines supplied
raw materials while output machines capped the bottles and shipped them out. Each machine had
an on/off switch and a rate control, with a sound that indicated its status; for example, the bottle
dispenser made the sound of clinking glass, with a rhythm that indicated its operating speed.
Splashing sounds indicated spilled liquids, while breaking glass showed that bottles were being lost.
The users monitored the status of the plant by listening to the auditory clues, and were able 
to help each other more effectively, since they found it easier to monitor their own machines 
without having to spend time looking at them, and could hear when something had gone wrong
with their partner’s part of the system.

Non-speech sounds such as this can convey a lot of meaning very economically. A
file arrives in a mailbox and, being a large file, it makes a weighty sound. If it is a text
file it makes a rustling noise, whereas a compiled program may make a metallic
clang. The sound can be muffled or clear, indicating whether the mailbox is hidden
by other windows or not, while the direction of the sound would indicate the posi-
tion of the mailbox icon on the screen. If the sound then echoes, as it would in a
large, empty room, the system load is low. All this information can be presented in a
second or so.
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Worked exercise Think of a set of naturally occurring sounds to represent the operations in a standard drawing
package (for example, draw, move, copy, delete, rotate).

Answer This can exercise the imagination! Are there natural analogies? For example, does the
physical action, say, of drawing have a sound associated with it? The sound of a pencil
on paper may be appropriate but is it identifiable? Similarly, a photocopier whirring
could represent the copy operation, and tearing paper delete. Rotate and move are
more difficult since the physical operation is not associated with a sound. Perhaps direc-
tion and movement can be indicated by sounds becoming nearer or more distant?

Earcons

An alternative to using natural sounds is to devise synthetic sounds. Earcons [36] use
structured combinations of notes, called motives, to represent actions and objects
(see Figure 10.2). These vary according to rhythm, pitch, timbre, scale and volume.
There are two types of combination of earcon. Compound earcons combine different
motives to build up a specific action, for example combining the motives for ‘create’
and ‘file’. Family earcons represent compound earcons of similar types. As an ex-
ample, operating system errors and syntax errors would be in the ‘error’ family. In
this way, earcons can be hierarchically structured to represent menus. Earcons are
easily grouped and refined owing to their compositional and hierarchical nature, but
they require learning to associate with a specific task in the interface since there is an

Figure 10.2 Earcons (after Blattner [36], reprinted by permission of Lawrence
Erlbaum Associates, Inc.)
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arbitrary mapping. Conversely, auditory icons have a semantic relationship with the
function that they represent, but can suffer from there being no appropriate sound
for some actions.

Earcons provide a structured approach to designing sound for the interface, but
can users learn the sounds adequately, and what factors influence their use? Evidence
suggests that people can learn to recognize earcons, and that the most important 
element in distinguishing different sounds is timbre, the characteristic quality of 
the sound produced by different instruments and voices [47]. Other factors such as
pitch, rhythm and register should be used to supplement timbre in creating distinct-
ive sets of musical earcons. Interestingly, the user’s musical ability appears to have
little effect on his ability to remember earcons: users were able to identify around
80% of earcons from hierarchically ordered sets of 30 or more, regardless of their
musical background [45]. It is also possible to create compound earcons by playing
sounds in parallel as well as serially. This obviously reduces the time taken to hear
the sound but does not affect the user’s accuracy [45].

10.3.2 Touch in the interface

We have already considered the importance of touch in our interaction with our
environment, in Chapter 1. Touch is the only sense that can be used to both send and
receive information. Although it is not yet widely used in interacting with computers,
there is a significant research effort in this area and commercial applications are
becoming available.

The use of touch in the interface is known as haptic interaction. Haptics is a generic
term relating to touch, but it can be roughly divided into two areas: cutaneous 
perception, which is concerned with tactile sensations through the skin; and kin-
esthetics, which is the perception of movement and position. Both are useful in 
interaction but they require different technologies.

In Chapter 2, Section 2.6.3, we considered a number of examples of haptic devices,
including some based on vibration against the skin (cutaneous) and others on resist-
ance or force feedback (kinesthethic). They facilitate perception of properties such 
as shape, texture, resistance and temperature as well as comparative spatial pro-
perties such as size, height and position. This means haptics can provide information
on the character of objects in the interface, as well as more realistic simulations of
physical activities, either for entertainment or for training.

In this section, we will look in a little more detail at some of the different types of
haptic devices and consider, in particular, the role of haptics in universal design. As
we will see, touch can provide both a primary source of information for users with
visual impairments and a richer multi-modal experience for sighted users.

One example of a tactile device is an electronic – or soft – braille display. Braille
displays are made up of a number of cells (typically between 20 and 80), each con-
taining six or eight electronically controlled pins that move up and down to produce
braille representations of characters displayed on the screen. Whereas printed braille
normally has six dots per cell, electronic braille typically has eight pins, with the extra
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Figure 10.3 A PHANTOM Premium 1.5 haptic device. Source: Courtesy of
SensAble Technologies

two representing additional information about that cell, such as cursor position and
character case.

Electronic braille displays benefit from two factors: a well-established tactile nota-
tion (braille) and a user group with expertise in using this notation. But can similar
techniques be used to provide more generic tactile feedback, such as to display
graphics? The problem with using raised pins for this type of display is the resolu-
tion required. Braille requires only six or eight pins; a graphical display would
require many more, which raises the problem of fitting the necessary number of fast
actuators (to move the pins) into a few cubic centimeters. This presents a serious
engineering challenge.

The other main type of haptic device is the force feedback device, which provides
kinesthetic information back to the user, allowing him to feel resistance, textures,
friction and so on. One of the most commonly used examples is the PHANTOM
range, from SensAble Technologies. The PHANTOM provides three-dimensional
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DESIGN FOCUS

Apple Newton

The Apple Newton was the first popular pen-based computer. Other systems, such as the GO Pen-
Point computer, were available earlier, but did not achieve a significant breakthrough. One reason is
that the Newton targeted the organizer market where miniature keyboards were difficult to use (and
anyway managers don’t use them!). Also this niche market did not demand large amounts of text input,
and the graphical interface made it easy to do non-text-based tasks.

force feedback, allowing users to touch virtual objects. As well as offering the func-
tionality of the mouse, in addition, the user’s movement is monitored by optical sen-
sors on the device, and these, together with models of the virtual objects, are used to
calculate the forces applied back to the user. The user therefore can feel the outline
and resistance of objects, their texture and position. This type of device has potential
application for simulations and training situations where touch is important, such as
medicine. It can also be used to provide a haptic ‘image’ of an interface, providing
the user with information about the objects and their functionality based on how
they feel. This offers another channel of information, which enhances the richness of
the interaction and makes the design more universal.

At present, the hardware needed to support haptic interaction is prohibitively
expensive for most users. But this is liable to change as the applications become more
widespread and commercially viable.

10.3.3 Handwriting recognition

Like speech, we consider handwriting to be a very natural form of communication.
The idea of being able to interpret handwritten input is very appealing, and hand-
writing appears to offer both textual and graphical input using the same tools. There
are problems associated with the use of handwriting as an input medium, however,
and in this section we shall consider these. We will first look at the mechanisms for
capturing handwritten information, and then look at the problems of interpreting it.

Technology for handwriting recognition

The major piece of technology used to capture handwriting is the digitizing tablet,
explained in more detail in Chapter 2. Free-flowing strokes made with a pen are
transformed into a series of coordinates, approximately one every 1/50th of a second
(or at the sampling rate of the digitizer). Rapid movements produce widely spaced
dots, in comparison with slow movements: this introduces immediate errors into the
information, since the detail of the stroke between dots is lost, as is the pressure
information.



Digitizing tablets have been refined by incorporating a thin screen on top to 
display the information, producing electronic paper. Advances in screen technology
mean that such devices are small and portable enough to be realistically useful 
in handheld organizers such as the Apple Newton. Information written onto the 
digitizer can simply be redisplayed, or stored and redisplayed for further reference.
However, while this has limited use in itself, systems are most useful when they are
able to interpret the strokes received and produce text. It is this recognition that we
will look at next.

Recognizing handwriting

The variation between the handwriting of individuals is large (see Figure 10.4);
moreover, the handwriting of a single person varies from day to day, and evolves
over the years.

Handwriting recognition was acceptable for a number of reasons: the base algorithm achieved a reason-
able level of writer-independent recognition; the algorithm was adaptive – it learned the characteristics
of the owner during use; and it was word based, so that idiosyncrasies in connected writing could be
learnt for common words. But, most important, it was interactive. After a word was written, the
Newton printed its interpretation of the word; if it was wrong you could try again or correct it letter
by letter. This gave the system a chance to learn and meant that errors were not fatal!

In fact, although it has survived, the Apple Newton, like many devices employing novel input techniques,
did not achieve the level of success one might have envisaged. This may be because it arrived at the
same time as portable computers became really portable, and perhaps because the Apple Newton was
only suitable for large pockets (of both a sartorial and financial nature). Smaller organizers with both
pen-based input and small keyboards are now available, and it remains to be seen whether these achieve
the market breakthrough this technology promises.
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Figure 10.4 Handwriting varies considerably
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These problems are reminiscent of those already discussed in speech recognition,
and indeed the recognition problem is not dissimilar. The equivalent of co-articulation
is also prevalent in handwriting, since different letters are written differently accord-
ing to the preceding and successive ones. This causes problems for recognition 
systems, which work by trying to identify the lines that contain text, and then to 
segment the digitized image into separate characters. This is so difficult to achieve
reliably that there are no systems in use today that are good at general cursive script
recognition. However, when letters are individually written, with a small separation,
the success of systems becomes more respectable, although they have to be trained to
recognize the characteristics of the different users. If tested on an untrained person,
success is limited again. Many of the solutions that are being attempted in speech
recognition are also being tried in handwriting recognition systems, such as whole-
word recognition, the use of context to disambiguate characters, and neural net-
works, which learn by example.

10.3.4 Gesture recognition

Gesture is a component of human–computer interaction that has become the sub-
ject of attention in multi-modal systems. Being able to control the computer with
certain movements of the hand would be advantageous in many situations where
there is no possibility of typing, or when other senses are fully occupied. It could also
support communication for people who have hearing loss, if signing could be ‘trans-
lated’ into speech or vice versa. But, like speech, gesture is user dependent, subject to
variation and co-articulation. The technology for capturing gestures is expensive,
using either computer vision or a special dataglove (see Chapter 2). The dataglove
provides easier access to highly accurate information, but is a relatively intrusive
technology, requiring the user to wear the special Lycra glove. The interpretation of
the sampled data is very difficult, since segmenting the gestures causes problems. A
team from Toronto [131] has produced a gesture recognition system that translates
hand movements into synthesized speech, using five neural networks working in
parallel to learn and then interpret different parts of the inputs.

The Media Room at MIT uses a different approach in order to incorporate ges-
tures into the interaction. The Media Room has one wall that acts as a large screen,
with smaller touchscreens on either side of the user, who sits in a central chair. The
user can navigate through information using the touchscreens, or by joystick, or by
voice. Gestures are incorporated by using a position-sensing cube attached to a
wristband worn by the user. The put that there system uses this gestural information
coupled with speech recognition to allow the user to indicate what should be moved
where by pointing at it. This is a much more natural form of interaction than having
to specify verbally what it is that has to be moved and describing where it has to go,
as well has having the advantage of conciseness. Such a short, simple verbal state-
ment is much more easily interpreted by the speech recognition system than a long
and complex one, with the resolution of ambiguity done by interpreting the other
mode of interaction, the gesture. Each modality supports the other.
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DESIGNING FOR DIVERSITY

We noted in Chapter 1 that, although we can make general observations about
human capabilities, users in fact have different needs and limitations. Interfaces are
usually designed to cater for the ‘average’ user, but unfortunately this may exclude
people who are not ‘average’. As we saw in the introduction to this chapter, people
are diverse and there are many factors that must be taken into account if we are to
come close to universal design.

In this section, we will consider briefly some of these factors and the particular
challenges that each raises. We will consider three key areas: disability, age and 
culture.

10.4.1 Designing for users with disabilities

It is estimated that at least 10% of the population of every country has a disability
that will affect interaction with computers. Employers and manufacturers of com-
puting equipment have not only a moral responsibility to provide accessible products,
but often also a legal responsibility. In many countries, legislation now demands that
the workplace must be designed to be accessible or at least adaptable to all – the
design of software and hardware should not unnecessarily restrict the job prospects
of people with disabilities.

We will look briefly at sensory, physical and cognitive impairments and the issues
they raise for interface design.

Visual impairment

The sensory impairment that has attracted the most attention from researchers, per-
haps because it is potentially also one of the most debilitating as far as interaction is
concerned, is visual impairment. The rise in the use of graphical interfaces reduces
the possibilities for visually impaired users. In text-based interaction, screen readers
using synthesized speech or braille output devices provided complete access to com-
puters: input relied on touch-typing, with these mechanisms providing the output.
However, today the standard interface is graphical. Screen readers and braille output
are far more restricted in interpreting the graphical interface, as we saw in Section
10.3.1, meaning that access to computers, and therefore work involving computers,
has been reduced rather than expanded for visually impaired people.

There are two key approaches to extending access: the use of sound and the use of
touch. We have already considered these in Section 10.3 so we will summarize only
briefly here.

A number of systems use sound to provide access to graphical interfaces for 
people with visual impairment. In Section 10.3.1 we looked at a range of approaches
to the use of sound such as speech, earcons and auditory icons. All of these have been
used in interfaces for blind users.

10.4
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Soundtrack (see the box above) was an early example of the use of non-speech
sound to provide an auditory interface to a word processor. A major limitation of
this application was the fact that it was a specialized system; it could not be used to
augment commercially available software. Ideally, users with disabilities should have

Soundtrack

Soundtrack is an early example of a word processor with an auditory interface, designed for
users who are blind or partially sighted [118]. The visual items in the display have been given 
auditory analogs, made up of tones, with synthesized speech also being used. A two-row grid of
four columns is Soundtrack’s main screen (see Figure 10.5); each cell makes a different tone when
the cursor is in it, and by using these tones the user can navigate around the system. The tones
increase in pitch from left to right, while the two rows have different timbres. Clicking on a 
cell makes it speak its name, giving precise information that can reorient a user who is lost or 
confused. Double clicking on a cell reveals a submenu of items associated with the main screen
item. Items in the submenu also have tones; moving down the menu causes the tone to fall whilst
moving up makes it rise. A single click causes the cell to speak its name, as before, whilst double
clicking executes the associated action.

Soundtrack allows text entry by speaking the words or characters as they are entered, with the
user having control over the degree of feedback provided. It was found that users tended to count
the different tones in order to locate their position on the screen, rather than just listen to the
tones themselves, although one user with musical training did use the pitch.

Soundtrack provides an auditory solution to representing a visually based word processor, though
the results are not extensible to visual interfaces in general. However, it does show that the human
auditory system is capable of coping with the demands of highly interactive systems, and that the
notion of auditory interfaces is a reasonable one.

Figure 10.5 The screen division in Soundtrack. Source: Courtesy of Alistair D. N. Edwards
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DESIGN FOCUS

Mathematics for the blind

Solve the following equation: 3(x − 2) + 4 = 7 − 2(3 − x).

Did you do it in your head or use a piece of paper? When an equation is even slightly complex the
instant response of a sighted person is to reach for paper and pencil. The paper acts as an external mem-
ory, allowing you to record and recall previous steps in a calculation. Blind children learning mathem-
atics have to perform nearly all such calculations in their head, putting them at a severe disadvantage.

Mathtalk is a system developed as part of a European project to create a mathematics workstation 
for blind people [330]. It uses speech synthesis to speak formulae, and keyboard input to navigate 
and manipulate them. The first stage, simply speaking a formula out loud, is complex in itself. Given the
spoken equation ‘three x plus four equals seven’, how do you know whether this is ‘3x + 4 = 7’ or 
‘3(x + 4) = 7’? To make it unambiguous one could say the latter as ‘three open bracket x plus four close
bracket equals seven’, but this soon becomes very tedious. In fact, when reading mathematics people
use several cues in their speech: longer and shorter gaps between terms, and prosody: rising and 
falling pitch (see Figure 10.6). The Mathtalk system includes a set of rules for generating such patterns
suitable for most equations.

Figure 10.6 Pausing and pitch help distinguish between two expressions

Visual interaction with paper isn’t just at the level of reading and writing whole equations. Recall from
Chapter 1 that reading usually includes regressions where our eyes move backwards as well as forwards
through text. Also, when seeing graphical material (remember that mathematics makes heavy use 
of brackets, symbols, superscripts, etc.), we rely on getting a quick feel for the material at a glance
before examining it in detail. Both of these factors are crucial when reading an equation and so Mathtalk
supports rapid keyboard-based navigation within each equation, and algebra earcons, short motives based
on the rise and fall of the prosody of an equation.

Notice that Mathtalk uses keyboard input combined with speech output. Speech input is slow and 
error-prone compared with a keyboard. Braille output can also be used for mathematics, but only a
small percentage of blind people read braille. Choosing the right input and output devices requires a
deep knowledge of the user population and careful analysis of the intended tasks.



10.4 Designing for diversity 387

access to the same applications as anyone else. Outspoken is a Macintosh application
that uses synthetic speech to make other Macintosh applications available to visually
impaired users. A common problem with this and other screen readers and talking
browsers (see Section 10.3.1) is the sheer amount of information represented.
Browsing is difficult and all of the information must be held in the head of the user,
putting a heavy load on memory.

A more recent development is the use of touch in the interface. As we saw in
Section 10.3.2, there are two key approaches to this, both of which can be used to
support people with visual impairment. Tactile interaction is already widely used in
electronic braille displays, which represent what is on the screen through a dynamic
braille output. It could also be used to provide more information about graphics and
shape, if the engineering challenges of building higher resolution tactile devices can
be overcome. Force feedback devices also have the potential to improve accessibility
to users with visual impairment, since elements in the interface can be touched, and
edges, textures and behavior used to indicate objects and actions. A limitation of this
technology at present is that objects must be rendered using specialist software 
in order for the devices to calculate the appropriate force to apply back to the user.
This again represents a move away from use of generic applications to specialist
applications. However, it is likely that major applications will become ‘haptic
enabled’ in the near future.

Hearing impairment

Compared with a visual disability where the impact on interacting with a graphical
interface is immediately obvious, a hearing impairment may appear to have little
impact on the use of an interface. After all, it is the visual not the auditory channel
that is predominantly used. To an extent this is true, and computer technology can
actually enhance communication opportunities for people with hearing loss. Email
and instant messaging are great levellers and can be used equally by hearing and deaf
users alike.

Gesture recognition has also been proposed to enable translation of signing to
speech or text, again to improve communication particularly with non-signers.

However, the increase in multimedia and the use of sound in interfaces has, 
ironically, created some access difficulties for people with hearing problems. Many
multimedia presentations contain auditory narrative. If this is not supplemented by
textual captions, this information is lost to deaf users. Captioning audio content,
where there is not already a graphical or textual version, also has the advantage of
making audio files easier and more efficient to index and search, which in turn
enhances the experience of all users – a sure sign of good universal design!

Physical impairment

Users with physical disabilities vary in the amount of control and movement that
they have over their hands, but many find the precision required in mouse control
difficult. Speech input and output is an option for those without speech difficulties.
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An alternative is the eyegaze system (Chapter 2), which tracks eye movements to
control the cursor, or a keyboard driver that can be attached to the user’s head. If the
user is unable to control head movement, gesture and movement tracking can be
used to allow the user control. If the user has limited use of a keyboard, a predictive
system, such as the Reactive keyboard [157], can help, by anticipating the commands
that are being typed and offering them for execution. This can cut the typing require-
ment considerably. Predictions are based on what the user has typed in the current
session or a previous one. The predictions therefore anticipate within the context 
in which the user is currently working (for example, operating system commands,
programming text or free text). Figure 10.7 shows an interaction using the Reactive
keyboard.

Figure 10.7 An interaction using the Reactive keyboard. Source: Courtesy of 
Saul Greenberg
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Speech impairment

For users with speech and hearing impairments, multimedia systems provide a num-
ber of tools for communication, including synthetic speech (see Section 10.3.1) and
text-based communication and conferencing systems (see Chapter 19). Textual
communication is slow, which can lower the effectiveness of the communication.
Predictive algorithms have been used to anticipate the words used and fill them in,
to reduce the amount of typing required. Conventions can help to provide context,
which is lost from face-to-face communication, for example the ‘smilie’ :-), to 
indicate a joke. Facilities to allow turn-taking protocols to be established also help
natural communication [256]. Speech synthesis also needs to be rapid to reflect 
natural conversational pace, so responses can be pre-programmed and selected using
a single switch.

Dyslexia

Users with cognitive disabilities such as dyslexia can find textual information
difficult. In severe cases, speech input and output can alleviate the need to read and
write and allow more accurate input and output. In cases where the problem is 
less severe, spelling correction facilities can help users. However, these need to be
designed carefully: often conventional spelling correction programs are useless for
dyslexic users since the programs do not recognize their idiosyncratic word con-
struction methods. As well as simple transpositions of characters, dyslexic users may
spell phonetically, and correction programs must be able to deal with these errors.

Consistent navigation structure and clear signposting cues are also important to
people with dyslexia. Color coding information can help in some cases and provision
of graphical information to support textual can make the meaning of text easier to
grasp.

Autism

Autism affects a person’s ability to communicate and interact with people around
them and to make sense of their environment. This manifests itself in a range of ways
but is characterized by the triad of impairments:

1. Social interaction – problems in relating to others in a meaningful way or
responding appropriately to social situations.

2. Communication – problems in understanding verbal and textual language
including the use of gestures and expressions.

3. Imagination – problems with rigidity of thought processes, which may lead to
repetitive behavior and inflexibility.

How might universal design of technology assist people with autism? There are two
main areas of interest: communication and education.

Communication and social interaction are major areas of difficulty for people
with autism. Computers, on the other hand, are often motivating, perhaps because
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they are relatively consistent, predictable and impersonal in their responses. The 
user is in control. Computer-mediated communication and virtual environments
have been suggested as possible ways of enabling people with autism to communic-
ate more easily with others, by giving the user control over the situation. Some 
people with autism have difficulties with language and may be helped by graphical
representations of information and graphical input to produce text and speech.
Again this is supported by providing redundancy in the design.

Computers may also have a role to play in education of children with autism, 
particularly by enabling them to experience (through virtual environments and
games) social situations and learn appropriate responses. This can again provide 
a secure and consistent environment where the child is in control of his own 
learning. The use of computers to support people with autism in this way is still 
a new research area and it is likely that new software and tools will develop in the
next few years.

10.4.2 Designing for different age groups

We have considered how people differ along a range of sensory, physical and cognit-
ive abilities. However, there are other areas of diversity that impact upon the way we
design interfaces. One of these is age. In particular, older people and children have
specific needs when it comes to interactive technology.

Older people

The proportion of older people in the population is growing steadily. Contrary to
popular stereotyping, there is no evidence that older people are averse to using new
technologies, so this group represents a major and growing market for interactive
applications. People are living longer, have more leisure time and disposable income,
and older people have increased independence. These factors have all led to an
increase in older users.

But the requirements of the older population may differ significantly from other
population groups, and will vary considerably within the population group. The 
proportion of disabilities increases with age: more than half of people over 65 have
some kind of disability. Just as in younger people with disabilities, technology can
provide support for failing vision, hearing, speech and mobility. New communica-
tion tools, such as email and instant messaging, can provide social interaction in
cases where lack of mobility or speech difficulties reduce face-to-face possibilities.
Mobile technologies can be used to provide memory aids where there is age-related
memory loss.

Some older users, while not averse to using technology, may lack familiarity with
it and fear learning. They may find the terminology used in manuals and training
books difficult to follow and alien (words like ‘monitor’ and ‘boot’, for example, 
may have a completely different meaning to an older person than a young person).
Interests and concerns may also be different from younger users.
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Once again, basic universal design principles are important here. Access to infor-
mation must make use of redundancy and support the use of access technologies.
Designs must be clear and simple and forgiving of errors. In addition, thought 
needs to be given to sympathetic and relevant training aimed at the user’s current
knowledge and skills.

In spite of the potential benefits of interactive technology to older people, very 
little attention has been paid to this area until recently. Researchers are now beginning
to address issues such as how technology can best support older people, what the 
key design issues are, and how older people can be effectively included in the design
process [46], and this area is likely to grow in importance in the future.

Children

Like older people, children have distinct needs when it comes to technology, and
again, as a population, they are diverse. The requirements of a three year old will be
quite different from those of a 12 year old, as will be the methods that can be used 
to uncover them. Children are, however, different from adults, and have their own
goals and likes and dislikes. It is therefore important to involve them in the design of
interactive systems that are for their use, though this in itself can be challenging 
as they may not share the designer’s vocabulary or be able to verbalize what they
think. Design approaches have therefore been developed specifically to include 
children actively as members of the design team. Alison Druin’s Cooperative Inquiry
approach [110] is based on contextual inquiry and participatory design, which we
will consider in more detail in Chapter 13. Children are included in an intergenera-
tional design team that focusses on understanding and analyzing context. Team
members, including children, use a range of sketching and note-taking techniques 
to record their observations. Paper prototyping, using art tools familiar to children,
enables both adults and children to participate in building and refining prototype
designs on an equal footing. The approach has been used effectively to develop a
range of new technologies for children.

As well as their likes and dislikes, children’s abilities will also be different from
those of adults. Younger children may have difficulty using a keyboard for instance,
and may not have well-developed hand–eye coordination. Pen-based interfaces can
be a useful alternative input device [300]. Again, universal design principles guide us
in designing interfaces that children can use. Interfaces that allow multiple modes of
input, including touch or handwriting, may be easier for children than keyboard and
mouse. Redundant displays, where information is presented through text, graphics
and sound will also enhance their experience.

10.4.3 Designing for cultural differences

The final area of diversity we will consider is cultural difference. Cultural difference
is often used synonymously with national differences but this is too simplistic.
Whilst there are clearly important national cultural differences, such as those we saw
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in Chapter 5, other factors such as age, gender, race, sexuality, class, religion and
political persuasion, may all influence an individual’s response to a system. This is
particularly the case when considering websites where often the explicit intention is
to design for a particular culture or subculture.

Clearly, while all of these contribute to a person’s cultural identity, they will not
all always be relevant in the design of a given system. However, we can draw out
some key factors that we need to consider carefully if we are to practice universal
design. These include language, cultural symbols, gestures and use of color.

We encountered the problem of localization of software in Chapter 5. While
toolkits, with different language resource databases, facilitate the translation of menu
items, error messages and other text into the local language, this does not fully deal
with the language issue. Layouts and designs may reflect a language read from left 
to right and top to bottom, which will be unworkable with languages that do not 
follow this pattern.

Similarly, symbols have different meanings in different cultures. As we saw in
Chapter 5, ticks 3 and crosses 7 represent positive and negative respectively in some
cultures, and are interchangeable in others. The rainbow is a symbol of covenant
with God in Judeo–Christian religions, of diversity in the gay community and of
hope and peace in the cooperative movement. We cannot assume that everyone will
interpret symbols in the same way and should ensure that alternative meanings of
symbols will not create problems or confusion for the user. The study of the mean-
ing of symbols is known as semiotics and is a worthwhile diversion for the student of
universal design.

Another area where diversity can cause misunderstanding is in the use of gesture.
Recently, one of the authors was teaching a new class of international students 
and was disconcerted to see one sitting in the front row, smiling and shaking his
head. After the lecture this student came and asked a question. Every time the author
asked the student if he understood the explanation, he shook his head, so further
explanation ensued, much to the frustration of the student! It was only after a 
few minutes that it became clear: the student was from India and his gestural con-
vention was to shake his head in agreement, the opposite of the European inter-
pretation of the gesture. Use of gesture is quite common in video and animation and
care must be taken with differences such as this. As interactions begin to incorporate
gesture in virtual reality and avatars, issues such as this will become even more
significant.

Finally, colors are often used in interfaces to reflect ‘universal’ conventions, such
as red for danger and green for go. But how universal are these conventions? In fact,
red and green mean many different things in different countries. As well as danger,
red represents life (India), happiness (China) and royalty (France). Green is a 
symbol of fertility (Egypt) and youth (China) as well as safety (Anglo-American). 
It is difficult to assume any universal interpretation of color but the intended
significance of particular colors can be supported and clarified through redundancy
– providing the same information in another form as well.



Exercises 393

SUMMARY

Universal design is about designing systems that are accessible by all users in all 
circumstances, taking account of human diversity in disabilities, age and culture.
Universal design helps everyone – for example, designing a system so that it can be
used by someone who is deaf or hard of hearing will benefit other people working in
noisy environments or without audio facilities. Designing to be accessible to screen-
reading systems will make websites better for mobile users and older browsers.

Multi-modal systems provide access to system information and functionality
through a range of different input and output channels, exploiting redundancy. 
Such systems will enable users with sensory, physical or cognitive impairments to
make use of the channels that they can use most effectively. But all users benefit 
from multi-modal systems that utilize more of our senses in an involving interactive
experience.

For any design choice we should ask ourselves whether our decision is excluding
someone and whether there are any potential confusions or misunderstandings in
our choice.

10.5

EXERCISES

10.1 Is multi-modality always a good thing? Justify your answer.

10.2 What are (i) auditory icons and (ii) earcons? How can they be used to benefit both visually
impaired and sighted users?

10.3 Research your country’s legislation relating to accessibility of technology for disabled people.
What are the implications of this to your future career in computing?

10.4 Take your university website or another site of your choice and assess it for accessibility using
Bobby. How would you recommend improving the site?

10.5 How could systems be made more accessible to older users?

10.6 Interview either (i) a person you know over 65 or (ii) a child you know under 16 about their 
experience, attitude and expectations of computers. What factors would you take into account 
if you were designing a website aimed at this person?

10.7 Use the screen reader simulation available at www.webaim.org/simulations/screenreader to 
experience something of what it is like to access the web using a screen reader. Can you find 
the answers to the test questions on the site?
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USER SUPPORT

OV E RV I E W

n Users have different requirements for support at
different times.

n User support should be:
– available but unobtrusive
– accurate and robust
– consistent and flexible.

n User support comes in a number of styles:
– command-based methods
– context-sensitive help
– tutorial help
– online documentation
– wizards and assistants
– adaptive help.

n Design of user support must take account of:
– presentation issues
– implementation issues.

1 1
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INTRODUCTION

There is often an implicit assumption that if an interactive system is properly
designed it will be completely intuitive to use and the user will require little or no
help or training. This may be a grand ideal but it is far from true with even the best-
designed systems currently available. It is even perhaps an unhelpful ideal: a com-
puter is a complex piece of equipment – what other such equipment do we expect
people to use without instruction or help? A more helpful approach is to assume that
the user will require assistance at various times and design this help into the system.

The type of assistance users require varies and is dependent on many factors: their
familiarity with the system, the job they are trying to do, and so on. There are four
main types of assistance that users require:

n quick reference
n task-specific help
n full explanation
n tutorial.

Quick reference is used primarily as a reminder to the user of the details of tools he
is basically familiar with and has used before. It may, for example, be used to find a
particular command option, or to remind the user of the syntax of the command.
Task-specific help is required when the user has encountered a problem in perform-
ing a particular task or when he is uncertain how to apply the tool to his particular
problem. The help that is offered is directly related to what is being done. The more
experienced or inquisitive user may require a full explanation of a tool or command
to enable him to understand it more fully. This explanation will almost certainly
include information that the user does not need at that time. The fourth type of 
support required by users is tutorial help. This is particularly aimed at new users of
a tool and provides step-by-step instruction (perhaps by working through examples)
of how to use the tool.

Each of these types of user support is complementary – they are required at 
different points in the user’s experience with the system and fulfill distinct needs.
Within these types of required support there will be numerous pieces of information
that the user wants – definitions, examples, known errors and error recovery infor-
mation, command options and accelerators, to name but a few. Some of these may
be provided within the design of the interface itself but others must be included
within the help or support system. We will look at appropriate ways of supporting
these requirements. The different types of help required also imply the need for 
provision of different types of help system. In this chapter, we will look at a number
of different types of user support system and will try to determine how to design a
good user support system.

A distinction is often made between help systems and documentation. Help sys-
tems are problem oriented and specific, whereas documentation is system oriented
and generic. This is an artificial distinction when considering the design of such sys-
tems since the same principles apply to both, and indeed there is a lot of overlap

11.1
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between the two. Instead of drawing a fixed line between the two, we will consider
all types of user support in terms of the requirements they fulfill. We will also con-
centrate on online support, although much of what is said will be helpful in design-
ing paper documentation and tutorials. Before we look in more detail at the different
approaches to providing user support, we will think for a while about the general
requirements that the ideal help system should have.

REQUIREMENTS OF USER SUPPORT

If we were to design the ideal help system, what would it look like? This is a difficult
question to answer, but we can point to some features that we might like our help
system to have. Not every help system will have all of these features, sometimes 
for good reason, but they are useful as benchmarks against which we can test the sup-
port tools we design. Then, if our system does not have these features, it will be by
design and not by accident! Some of these terms have also been used in Chapter 7 
in discussing principles for usability. The use of the terms here is more constrained
but related.

11.2.1 Availability

The user needs to be able to access help at any time during his interaction with the
system. In particular, he should not have to quit the application he is working on 
in order to open the help application. Ideally, it should run concurrently with any
other application. This is obviously a problem for non-windowed systems if the help
system is independent of the application that is running. However, in windowed 
systems there is no reason why a help facility should not be available constantly, 
at the press of a button.

11.2.2 Accuracy and completeness

It may seem obvious to state that the assistance provided should be accurate and
complete. But in an age where applications are frequently updated, and different 
versions may be active at the same time, it is not a trivial problem. However, if the
assistance provided proves not to match the actual behavior of the system the user
will, at best, become disillusioned with the help facilities, and, at worst, get into
difficulties. As well as providing an accurate reflection of the current state of the 
system, help should cover the whole system. This completeness is very important 
if the help provided is to be used effectively. The designer cannot predict the parts of
the system the user will need help with, and must therefore assume that all parts
must be supported. Finding no help available on a topic of interest is guaranteed to
frustrate the user.

11.2
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11.2.3 Consistency

As we have noted, users require different types of help for different purposes. This
implies that a help system may incorporate a number of parts. The help provided by
each of these must be consistent with all the others and within itself. Online help
should also be consistent with paper documentation. It should be consistent in terms
of content, terminology and style of presentation. This is also an issue where applica-
tions have internal user support – these should be consistent across the system. 
It is unhelpful if a command is described in one way here and in another there, or if
the way in which help is accessed varies across applications. In fact, consistency itself
can be thought of as a means of supporting the user since it reinforces learning of
system usage.

11.2.4 Robustness

Help systems are often used by people who are in difficulty, perhaps because the 
system is behaving unexpectedly or has failed altogether. It is important then that 
the help system itself should be robust, both by correct error handling and pre-
dictable behavior. The user should be able to rely on being able to get assistance
when required. For these reasons robustness is even more important for help systems
than for any other part of the system.

11.2.5 Flexibility

Many help systems are rigid in that they will produce the same help message regard-
less of the expertise of the person seeking help or the context in which they are work-
ing. A flexible help system will allow each user to interact with it in a way appropriate
to his needs. This will range from designing a modularized interactive help system,
through context-sensitive help, to a full-blown adaptive help system, which will infer
the user’s expertise and task. We will look at context-sensitive and adaptive help 
in more detail later in the chapter. However, any help system can be designed to
allow greater interactivity and flexibility in the level of help presented. For example,
help systems built using hypertext principles allow the user to browse through 
the help, expanding topics as required. The top level provides a map of the subjects
covered by the help and the user can get back to this level at any point. Although
hypertext may not be appropriate for all help systems, the principle of flexible access
is a useful one.

11.2.6 Unobtrusiveness

The final principle for help system design is unobtrusiveness. The help system should
not prevent the user from continuing with normal work, nor should it interfere with
the user’s application. This is a problem at both ends of the spectrum. At one end the
textual help system on a non-windowed interface may interrupt the user’s work. A
possible solution to this if no alternative is available is to use a split-screen presentation.
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At the other end of the spectrum, an adaptive help system that can provide help
actively on its own initiative, rather than at the request of the user, can intrude on the
user and so become a hindrance rather than a help. It is important with these types
of system that the ‘suggest’ option can be overridden by the user and switched off !

APPROACHES TO USER SUPPORT

As we noted in the previous section, there are a number of different approaches 
to providing help, each of which meets a particular need. These vary from simple
captions to full adaptive help and tutoring systems. In this section we will concen-
trate on the styles of help provided rather than any particular help system (although
we will use real help systems for illustration). We will then go on to look at adaptive
help in more detail.

11.3.1 Command assistance

Perhaps the most basic approach to user support is to provide assistance at the 
command level – the user requests help on a particular command and is presented
with a help screen or manual page describing it. This is the approach used in the
UNIX man help system and the DOS help command, as well as through the search
in Windows help.

This type of help is simple and efficient if the user knows what he wants to know
about and is seeking either a reminder or more detailed information. However, it
assumes that the user does know what he is looking for, which is often not the case.
In any complex computer system there will be some commands that the user knows
well and can use and some of which he is aware but uses rarely. Command assistance
deals well with these. However, there will also be commands that the user does not
know about but needs, and even commands that the user thinks exist but which 
do not. Command assistance cannot provide the user with help for these two groups
of command.

11.3.2 Command prompts

In command line interfaces, command prompts provide help when the user en-
counters an error, usually in the form of correct usage prompts. Such prompts are
useful if the error is a simple one, such as incorrect syntax, but again they assume
knowledge of the command.

Another form of command prompting, which is not specifically intended to 
provide help but which supports the user to a limited degree, is the use of menus and
selectable icons. These provide an aid to memory as well as making explicit what
commands are available at a given time. However, they still assume a certain amount
of knowledge about what the commands are for, so additional support is still
required.

11.3
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11.3.3 Context-sensitive help

Some help systems are context sensitive. These range from those that have specific
knowledge of the particular user (which we will consider under adaptive help) to
those that provide a simple help key or function that is interpreted according to the
context in which it is called and will present help accordingly. Such systems are not
necessarily particularly sophisticated. However, they do move away from placing the
onus on the user to remember the command. They are often used in menu-based
systems to provide help on menu options. The Microsoft Office What’s This? option,
tool-tips and some kinds of web page rollover are examples of this. When enabled,
explanatory text is displayed when the cursor is over a screen widget (see Fig-
ure 11.1). The invocation of help is interpreted in terms of the context in which it 
is made.

11.3.4 Online tutorials

Online tutorials allow the user to work through the basics of an application within 
a test environment. The user can progress at his own speed and can repeat parts 
of the tutorial if needed. He will also get a feel for how the application works by
experimenting with examples, albeit small ones, or by watching an automated
demonstration of how to perform a task.

Most online tutorials have no intelligence: they know nothing about the user 
and his previous experience, nor about the domain nor even about teaching style.
Intelligent tutoring systems, which use similar techniques to adaptive help systems
(see Section 11.4), attempt to address this issue but, apart from tutoring pro-
gramming applications, are impractical as tutorials for most applications. Online

Figure 11.1 Context sensitive help on a web page using JavaScript rollovers
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tutorials are therefore inflexible and often unforgiving. Some will fail to recognize
the correct answer to a problem, simply because it is not formatted as expected.

An alternative to the traditional online tutorial is to allow the user to learn the 
system by exploring and experimenting with a version with limited functionality.
This is the idea behind the Training Wheels interface proposed by Carroll and his 
colleagues at IBM [60]. The user is presented with a version of the full interface in
which some of the functionality has been disabled. He can explore the rest of the 
system freely but if he attempts to use the blocked functionality he is told that it 
is unavailable. This approach allows the user freedom to investigate the system as 
he pleases but without risk. It was found that new users spent more time using this
system than they did the full version, spent less time recovering from errors and
gained a better understanding of the operation of the system.

11.3.5 Online documentation

Online documentation effectively makes the existing paper documentation available
on computer. This makes the material available continually (assuming the machine
is running!) in the same medium as the user’s work and, potentially, to a large num-
ber of users concurrently. However, it can be argued that the type of (usually large)
manuals that are appropriate as paper reference systems are less appropriate online.
Paper is a familiar medium to most of us, and it is still the case that people prefer
reading text on paper than on a computer screen. We have developed quite sophis-
ticated browsing skills with a paper medium and books are designed to provide 
cues to aid this, such as indexing, contents and page numbering, as well as having
physical cues such as position in the book. These features are not reproduced in most
documentation systems. But paper manuals get lost easily, are constrained to one
physical location, and are invariably somewhere else when you want them. Online
documentation is one way of avoiding these problems.

Documentation is designed to provide a full description of the system’s function-
ality and behavior in a systematic manner. It provides generic information that is 
not directed at any particular problem. The amount of information contained in
manual pages is usually high, which can in itself create problems for the user – there
is too much detail and this effectively ‘masks’ the information the user wants to find.
Perhaps for this reason, online documentation is often used by more expert users as
a resource or reference, sometimes to enable them to advise less experienced users.
The experts may not know the information off the top of their head but they know
where to find it and how to extract the details that are relevant to a given problem.

The use of hypertext can make online documentation more accessible to the 
inexperienced user (see Chapter 21 for more details of hypertext). Hypertext stores
text in a network and connects related sections of text using selectable links. By 
clicking on a link, the user can go to a related subject instantly. Documentation
structured using hypertext supports browsing and usually includes different media
(for example, diagrams and visual examples). An example is the help system shown
in Figure 11.2, and most Windows applications’ help systems.
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However, this does suffer from a problem common to hypertext systems – 
navigation. The user can get lost within the hypertext and lose track of where he is
and where he has been. A facility to return ‘home’ (to the top level) is usually pro-
vided but this may mean that the user wastes considerable time restarting his search.

An alternative approach which attempts to simplify online documentation and
make it more accessible to novice and casual users is the minimal manual [58]. This
simplifies the documentation by stripping out all but the bare essentials. The docu-
mentation that remains is focussed towards the user’s tasks and emphasizes error
recovery. Experiments with this manual showed that users learned to use the system
40% faster than with the full manual.

Figure 11.2 Screen shot of the online documentation for Macromedia’s
Dreamweaver Ultradev version 4.0. Courtesy of Macromedia, Inc.

Simple guidelines for online documentation

n Use clear structure with headings to provide signposting.
n Organize information according to user tasks.
n Keep sentences short, to the point and jargon free. Use simple but unpatronizing language.
n Set out procedures in order and number steps. Highlight important steps.
n Use examples where possible.
n Support searching via an index, contents, glossary and free search.
n Include a list of error messages.
n Include Frequently Asked Questions (FAQ) with clear answers.

(Adapted from Hobbs and Moore [177]).
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11.3.6 Wizards and assistants

A wizard is a task-specific tool that leads the user through the task, step by step, using
information supplied by the user in response to questions along the way. They are
distinct from demonstrations in that they allow the user actually to complete the
task. For example, if the user wishes to format a resumé, the Microsoft Word resumé
wizard will take him through a series of questions on the style and sections required,
and ask him to enter some basic personal data. The wizard then creates a resumé
matching the parameters submitted.

Wizards are common in modern applications and provide support for task com-
pletion. The user can perform quite complex tasks safely, quickly and accurately.
This is particularly helpful in the case of infrequent tasks where the learning cost 
of doing the task manually may be prohibitive or where there are many steps that
must be completed in a specific sequence. However, wizards can be unnecessarily
constraining, they may not offer the user the options he wants, or they may request
information that the user does not have. A well-designed wizard will allow the user
to move back a step as well as forward, will provide a progress indicator showing how
much of the task is completed and how many steps remain, and will offer sufficient
information to allow the user to answer the questions.

Another more recent development in user support is the assistant. Assistants are
software tools that monitor user behavior and offer suggestions or hints when they
recognize familiar sequences. An early example of this is Eager (see also Chapter 4),
a software agent that watches users as they work. When it notices the user repeating
a sequence of actions, a cat icon appears, suggesting the next action. The user can
accept or ignore the suggestion. Eager is unobtrusive and under user control at 
all times.

More recent examples of assistants have not been so successful. The Microsoft
Office Assistant, ‘Clippy’, the infamous animated paper clip with the expressive 
eyebrows, was introduced in Office 97 but scrapped just a few years later with the
introduction of XP. The official reason is that XP features make the need for the
Office Assistant redundant, but the underlying reason is clear from Microsoft’s own
self-deprecating ‘Clippy’ homepage – the paper clip assistant was universally despised 
as irritating and unhelpful. So what went wrong? Remember the requirements 
for online help that we outlined at the beginning? One of these states that online
assistance should be unobtrusive, and Clippy, with his long lists of suggestions, 
and continuous animations, was anything but. In addition, the suggestions made
were often inappropriate – ‘It looks like you’re writing a letter’ when you are in 
fact doing something completely different. Finally, the embodiment of the paper
clip, though intended to be ‘cute’, was perceived by many frequent users as simply
irritating.

Microsoft Office Assistant may have retired but he provides an important lesson
in online user support. Help must be under the user’s control and offers of help
should be unobtrusive – it should not be up to the user to switch off the assistant 
or to close it down. The replacement Microsoft XP features such as smart tags have
learned this lesson. Smart tags provide rapid access to actions associated with a 
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particular task (for instance formatting a table) much as Office Assistant did. But
smart tags are indicated by a small icon, which appears near the object of interest,
then disappears when the user performs another action. It is up to the user to select
the smart tag if it is of interest at that point, but the icon is small and unobtrusive
enough to be ignored if not required. It is interesting that the tags are offered
through a functional iconic representation – it seems that assistants with ‘attitude’
are out!

ADAPTIVE HELP SYSTEMS

In any large or complex computer system, users will be familiar with a subset of 
the available functionality, demonstrating expertise in some applications and 
having no experience with others, even to the point of being unaware of their 
existence. In addition, different users will have different needs and levels of under-
standing. Adaptive help systems attempt to address these problems by adapting 
the help that they provide to the individual user who is making the request and 
by actively suggesting alternative courses of action of which the user may not be
aware.

Adaptive help is a special case of a general class of interactive systems, known 
as intelligent systems. These include domain-specific expert systems, intelligent
tutoring systems and general adaptive interfaces. We will concentrate in this discus-
sion on adaptive help systems, since they are most relevant here, and incorporate
aspects of the others, but it should be noted that many of the techniques we will look
at can be applied in these other systems. Since these represent a significant class of
interactive system, we will cover the techniques in some detail.

Adaptive help systems operate by monitoring the activity of the user and con-
structing a model of him. This may include a model of his experience, preferences,
mistakes, or a combination of some or all of these. Using this knowledge, together
with knowledge of the domain in which the user is working, and, sometimes, general
advisory or tutorial strategies, the adaptive help system will present help relevant 
to the user’s current task and suited to his experience. That at least is the theory. 
In practice it is not as simple as it sounds. First, the knowledge requirements of 
such a system are considerable, and data on interaction are particularly difficult 
to interpret. Secondly, there is the issue of control and initiative within the inter-
action. Should the help system take an active role, removing some control from 
the user, and will the adaptivity confuse the user, if he perceives it as ‘shifting
ground’? Thirdly, what exactly should be adapted and what will be the result of 
the adaptivity? Finally, what is the scope of the modeling and adaptivity: does it
extend beyond the application level and, if so, how does it deal with the variation 
in expertise of a single user across an entire system? We will consider some of 
the developments and solutions, concentrating, in particular, on the knowledge
requirements.

11.4
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11.4.1 Knowledge representation: user modeling

Every interactive system that is built incorporates some model of the user for whom
it is intended. In many systems this model is the designer’s view of the user and is
implicit within the design. The designer has in mind a ‘typical’ user, and builds the
interface accordingly. If the designer has done her homework this model can be quite
effective. However, it does assume that all users are essentially the same and have the
same requirements.

Other systems allow the user to provide a model of himself around which the sys-
tem will be configured. Simple examples of this are browser or email preferences that
can adjust certain parameters of the system to the requirements of the user. Such sys-
tems are called adaptable, since the user is able to adapt his own environment to suit
his preferences. This increases the flexibility of the system but places the onus of the
customization on the user. The result of this is that users have access only to the
default system when they most need flexibility: that is, when they first start out. It is
only later that they have the know-how to construct the necessary model.

DESIGN FOCUS

It’s good to talk – help from real people

Although well-designed documentation and intelligent help systems are important, there is, perhaps,
nothing like talking to a real person! As we noted in Section 11.3.5, expert users are often more 
likely to consult documentation, as there is a skill in knowing how it is organized. Studies of UNIX help
found that novice users preferred not to look at man pages, instead they asked local experts who 
did look at the pages. This pattern of local experts has been found across all types of systems in many
environments.

In web-based systems there are many ways of linking more static documentation with dynamic inter-
personal support. There may be a link from the electronic to the personal: technical support sites often
have some sort of email query form for when you cannot find what you want online. There may also
be inter-personal to electronic links: a telephone support desk may email you a URL to guide you to
suitable information.

Other users of a product can also be a source of help, and many product sites, especially open-source
products, include some way for users to submit their tips or advice. For example, the online manual
pages for the PHP web scripting language have for each function a series of user tips that you can add
to yourself. There are important issues of community culture here as the tips are generally useful and
do not include extraneous comments.

User community and manufacturers’ technical support may be integrated. For example, Sun’s Java
developer support site includes a community area with online user forums and live chat with Sun staff,
authors and other experts.

See www.php.net/ and http://developer.java.sun.com/developer/community/
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The third approach to providing the system with a model of the user, and the 
one used in adaptive help systems, is to have the system construct and maintain 
a model of the user based on data gleaned from monitoring the user’s interaction.
This model can then be consulted when required. This automatic approach to user
modeling also has the problem of the setup time required, during which time the
user has a default system, but the onus to build the model is taken away from the
user. Various suggestions have been made as to how to deal with the setup time, 
including getting the user to choose an initial default model, and building a model
based on pre-use activity, such as game playing. The former is problematic in 
that again it makes the user decide on a model at a time when he may not have
sufficient experience to do so effectively. The latter may not produce a model that is
transferable to the actual domain. The most common approach is still to provide a
basic start-up default model and concentrate on rapidly updating this for the actual
user. The default model may be based on experimental or observational results
gleaned in evaluation.

So how are user models constructed and maintained? There are a number of
approaches. Some quantify user experience or classify users into stereotypes; some
compare the user’s behavior with some norm; others maintain a catalog of known
errors and compare user actions to these.

Quantification

This is one of the most simple approaches to user modeling. The system recognizes
a number of levels of expertise, which it will respond to in different ways. The user
is placed on one of these levels, and moves between them, based on a quantitative
measure of his expertise at that time. Different activities are given weightings, and
the user is scored according to the weightings of the activities he takes part in. If the
score exceeds a certain threshold, the user is moved to a different expertise level and
the system adapts accordingly.

This approach is simple and measures the user at a coarse level of granularity.
However, it is effective for simple adaptivity. For example, this method was used 
by Mason to adapt the presentation of command prompts to the user’s level of 
experience [228]. The system used a set of rules, which dictated when a user’s level
of expertise changed. For example,

Move from Level 1 to Level 2
If

the system has been used more than twice (0.25)
commands x and y have been used effectively (0.20)
help has not been accessed this session (0.25)
the system has been used in the last 5 days

Such a model can only give a rough approximation of the user’s expertise, but at the
same time requires little analysis to extract the required information from the system
logs. This approach can be used effectively in adaptive tutorials.
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Stereotypes

Another approach to automatic user modeling is to work with stereotypes. Rather
than attempting to build a truly individual model of the user, the system classifies 
the user as a member of a known category of users or stereotype. Stereotypes are
based on user characteristics and may be simple, such as making a distinction
between novice and expert users, or more complex, for example building a com-
pound stereotype based on more than one piece of information. There are several
ways of building stereotypes. One is to use information such as command use and
errors to categorize different types of user and then to use rules to identify the stereo-
type to which the user belongs. An alternative method is to use a machine learning
approach, such as neural networks, to learn examples of different types of user
behavior (from actual logs) and then to classify users according to their closeness to
the examples previously learned. Stereotypes are useful in that they represent the
user at the level of granularity at which most adaptive help systems work, and do 
not attempt to produce a sophisticated model, which will not be fully utilized. After
all, if the only information that is available about the user at any time is how he 
is interacting with the system, it is not possible to infer very much about the user
himself. However, what can be inferred may be exactly what is required to provide
the necessary level of help.

Overlay models

One of the most common techniques used is the overlay model. Here an idealized
model, often of an expert user, is constructed and the individual user’s behavior
compared with it. The resulting user profile may represent either the commonality
between the two models or the differences. An advantage of this style of modeling 
is that it allows a certain degree of diagnostic activity on the part of the system. Not
only is the system aware of what the user is doing, but it also has a representation 
of optimal behavior. This provides a benchmark against which to measure the user’s
performance, and, if the user does not take the optimal course of action, gives an
indication of the type of help or hint that is required.

A similar approach is used in error-based models where the system holds a record
of known user errors and the user’s actual behavior is compared with these. If 
this behavior matches an error in the catalog, then remedial action can be taken.
Potential errors may be matched when partially executed and help given to enable
the user to avoid the error, or recover more quickly. These types of modeling are also
useful in intelligent tutoring systems where diagnostic information is required in
order to decide how to proceed with the tutorial.

11.4.2 Knowledge representation: domain and task modeling

All adaptive help systems must have some knowledge of the system itself, in order to
provide relevant and appropriate advice. This knowledge may include command
use, common errors and common tasks. However, some help systems also attempt
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to build a model of the user’s current task or plan. The motivation behind this 
is that the user is engaged in a particular problem-solving task and requires help at 
that level. Generic help, even adapted to the expertise and preference of the user, 
is not enough.

One common approach to this problem is to represent user tasks in terms of the
command sequences that are required to execute them. As the user works, the com-
mands used are compared with the stored task sequences and matched sequences are
recovered. If the user’s command sequence does not match a recognized task, help 
is offered. This approach was used in the PRIAM system [85].

Although an attractive idea, task recognition is problematic. In large domains it 
is unlikely that every possible method for reaching every possible user goal could 
be represented. Users may reasonably approach a task in a non-standard way, and
inferring the user’s intention from command usage is not a trivial problem. As we
saw in Chapter 9, system logs do not always contain sufficient information for a
human expert to ascertain what the user was trying to do. The problem is far greater
for a computer.

Assistants and agents use task recognition at a basic level to monitor user beha-
vior and provide hints and macros when a familiar or repeated sequence is noticed
(see Section 11.3.6).

11.4.3 Knowledge representation: modeling advisory strategy

A third area of knowledge representation, which is sometimes included in adaptive
help, is modeling advisory or tutorial strategies. Providing a help system with this
type of information allows it not only to select appropriate advice for the user but
also to use an appropriate method of giving advice.

As we have already seen, people require different types of help depending on 
their knowledge and circumstances. These include reminders, task-specific help 
and tutorial help. There is evidence to indicate that human experts follow different
strategies when advising colleagues [293]. These include inferring the intention of
the person seeking help and advising at that level or providing a number of solutions
to the person’s problem. Alternatively they may attempt to place the problem in a
context and provide a ‘sample solution’ in that context.

Few adaptive help systems have attempted to model advisory strategy, and those
that do provide a limited choice. Ideally, it would be useful if the help system 
had access to a number of alternative strategies and was able to choose an appro-
priate style of guidance in each case. However, this is very ambitious – too little 
is known about what makes a guidance strategy appropriate in which contexts.
However, it is important that designers of adaptive help systems give some thought
to advisory strategies, if only to make an informed choice about the strategy that 
is to be used.

The EuroHelp adaptive help system adopts a model of teacher–pupil, in which the
system is envisaged as a teacher watching the user (pupil) work and offering advice
and suggestions in an ‘over-the-shoulder’ fashion [126, 44]. In this case, instruction
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may be high to begin with but will become less obtrusive as the user finds his feet.
The user is able to question the system at any point and responses are given in terms
of the current context.

This mixed-initiative dialog is also used in the Activist/Passivist help system,
which will accept requests from the user and actively offer suggestions and hints, par-
ticularly about areas of functionality that it infers the user is unfamiliar with [133].

11.4.4 Techniques for knowledge representation

All of the modeling approaches described rely heavily on techniques for knowledge
representation from artificial intelligence. This is a whole subject in its own right and
there is only room to outline the methods here (although some of the techniques 
are based on theories of memory and problem solving as discussed in Chapter 1).
The interested reader is also referred to the text on artificial intelligence in the 
recommended reading list.

There are four main groups of techniques used in knowledge representation 
for adaptive help systems: rule based, frame based, network based and example
based. Note that these general techniques are often combined to produce hybrid 
systems.

Rule-based techniques

Knowledge is represented as a set of rules and facts, which are interpreted using 
some inference mechanism. Predicate logic provides a powerful mechanism for 
representing declarative information, while production rules represent procedural
information. Rule-based techniques can be used in relatively large domains and 
can represent actions to perform as well as knowledge for inference. A user model
implemented using rule-based methods may include rules of the form

IF
command is EDIT file1

AND
last command is COMPILE file1

THEN
task is DEBUG
action is describe automatic debugger

Frame-based techniques

Frame-based systems are used to represent commonly occurring situations and
default knowledge. A frame is a structure that contains labeled slots, representing
related features. Each slot can be assigned a value or alternatively be given a default
value. User input is matched against the frame values and a successful match may
cause some action to be taken. They are useful in small domains. In user modeling
the frame may represent the current profile of the user:
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User
Expertise level: novice
Command: EDIT file1
Last command: COMPILE file1
Errors this session: 6
Action: describe automatic debugger

Network-based techniques

Networks represent knowledge about the user and system in terms of relationships
between facts. One of the most common examples is the semantic network. The net-
work is a hierarchy and children can inherit properties associated with their parents.
This makes it a relatively efficient representation scheme and is useful for linking
information clearly. Networks can also be used to link frame-based representations.

The compile example could be expanded within a semantic network:

CC is an instance of COMPILE
COMPILE is a command
COMPILE is related to DEBUG
COMPILE is related to EDIT
Automatic debugger facilitates DEBUG

Example-based techniques

Example-based techniques represent knowledge implicitly within a decision struc-
ture of a classification system. This may be a decision tree, in the case of an induct-
ive learning approach such as ID3 [298], or links in a network in the case of neural
networks. The decision structure is constructed automatically based on examples
presented to the classifier. The classifiers effectively detect recurrent features within
the examples and are able to use these to classify other input. An example may be a
trace of user activity:

EDIT file1
COMPILE file1

This would be trained as an example of a particular task, for example DEBUG.

11.4.5 Problems with knowledge representation and modeling

Knowledge representation is the central issue in adaptive help systems, but it is not
without its problems. Knowledge is often difficult to elicit, particularly if a domain
expert is not available. This is particularly true of knowledge of user behavior, owing
to its variability. It is especially difficult to ensure completeness and correctness 
of the knowledge base in these circumstances. Even if knowledge is available, the
amount of knowledge required is substantial, making adaptive help an expensive
option.
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A second problem is interpreting the information appropriately. Although the
knowledge base can be provided with detailed knowledge of the expected contexts
and the domain in advance, during the interaction the only information that is 
available is the system log of the user’s actions. As we saw in Chapter 9, interpreting
system logs is very difficult because it is stripped of much context and there is no
access to the user’s intention or goal (except by inference). However, this data is 
not arbitrary and does contain recurrent patterns of activity, which can be used with
care to infer task sequences and the like. However, it should be realized that these
represent approximations only.

11.4.6 Other issues

Other issues that should be considered in designing an adaptive help system are 
initiative, effect and scope.

Initiative A major issue in adaptive help system design is that of initiative and 
control: should the user retain complete control over the system; should the 
system direct the interaction; or should a mixed dialog be supported? System
activity can be intrusive to the user, particularly if badly handled. No user wants
to be constantly told he is not performing a task in the most efficient manner!
However, we know that there are normally large sections of system functional-
ity of which the user is simply not aware. Without some form of system activity
this problem will not be addressed. The solution seems to be to encourage 
mixed initiative in the interaction. The user should be able to question the sys-
tem at any time, and the system can offer hints to the user. However, the latter
should be offered sensitively and the user always allowed to continue as before 
if he wishes.

Effect Another issue that the designer should consider is the effect of the 
modeling and adaptivity: what exactly is going to be adapted and what informa-
tion is needed to do this? All too often modeling systems use vast resources pro-
ducing a detailed profile of the user, the bulk of which is never used. Modeling,
whether of the user, the domain or strategies, should be directed towards the
requirements of the help system. For example, if it is simply to offer different help
to novices and experts, the system does not need details of task execution. Such
considerations may reduce the overheads of adaptive help systems and make
them more viable.

Scope Finally, the designer must consider the scope of the help: is it to be offered
at an application level or system wide? The latter may be the ideal but is much
more complex. If users are to be modeled at a system level, the model should 
take into account the levels of activity in which they are engaged and be able to
distinguish actions at an application level. In many systems it would also have to
cope with interleaving of activities and concurrent execution. Each of these makes
the modeling activity more complex.
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DESIGNING USER SUPPORT SYSTEMS

There are many ways of providing user support and it is up to the designer to decide
which is most appropriate for any given system. However, there are a number of
things which the designer should take into account. First, the design of user support
should not be seen as an ‘add-on’ to system design. Ideally, the help system should
be designed integrally with the rest of the system. If this is done, the help system 
will be relevant and consistent with the rest of the system. The same modeling and
analytic techniques (for example, task analysis, see Chapter 15) used to design the
system can guide the design of support material as well. Secondly, the designer
should consider the content of the help and the context in which it will be used
before the technology that will be required. Obviously, available technology is an
important issue. However, concentrating on the task and the user will help to clarify
the type of help required within the constraints of technical resources. Viewing the
process in reverse may prevent the designer seeing beyond the technology she is
familiar with. Bearing in mind the expected user requirements, the designer of help
also needs to make decisions about how the help will be presented to the user and
how this will be affected by implementation issues.

11.5.1 Presentation issues

How is help requested?

The first decision the designer must make is how the user will access help. There are
a number of choices. Help may be a command, a button, a function which can be
switched on or off, or a separate application. A command (usually) requires the user
to specify a topic, and therefore assumes some knowledge, but may fit most consist-
ently within the rest of the interface. A help button is readily accessible and does not
interfere with existing applications, but may not always provide information specific
to the user’s needs. However, if the help button is a keyboard or mouse button, it can
support context sensitivity, as we saw earlier. The help function is flexible since it 
can be activated when required and disabled when not. The separate application
allows flexibility and multiple help styles but may interfere with the user’s current
application.

How is help displayed?

The second major decision that the designer must make is how the user will view the
help. In a windowed system it may be presented in a new window. In other systems
it may use the whole screen or part of the screen. Alternatively, help hints and
prompts can be given in pop-up boxes or at the command line level. The presenta-
tion style that is appropriate depends largely on the level of help being offered and

11.5
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the space that it requires. Obviously, opening a manual page line by line is unhelp-
ful, as is taking over the whole screen to give the user a hint. Some active help sys-
tems provide visual cues when they have a suggestion to make (for example, an icon
may be highlighted) – this gives the user the option of taking the suggestion without
forcing him to abandon or interrupt his work. Again this decision should take
account of the rest of the design, and aim to provide consistency.

Effective presentation of help

Help screens and documentation should be designed in much the same way as an
interface should be designed, taking into account the capabilities and task require-
ments of the user. No matter what technology is used to provide support, there are
some principles for writing and presenting it effectively. Help and tutorial material
should be written in clear, familiar language, avoiding jargon as much as possible. If
paper manuals and tutorials exist, the terminology should be consistent between
these and the online support material. Instructional material requires instructional
language, and a help system should tell the user how to use the system rather than
simply describing the system. It should not make assumptions about what the user
knows in advance. For example, a help message on the use of windows might read

To close the window, click on the box in the top right-hand corner of the
window.

rather than

Windows can be closed by clicking on the box in the top right-hand corner of
the window.

An exception to this is in documentation where the intention is not only to
instruct the user in how to use the system but to record a full description of the sys-
tem’s functionality. However, documentation should be presented so that informa-
tion is readily accessible, and should present both instructional and descriptive
information clearly. The physical layout of documentation can make a difference to
its usability. Large blocks of text are difficult to read on screen, for example. This can
be alleviated by breaking the documentation into clear logical sections, or by using
technology such as hypertext to organize it. A useful style is to provide a summary of
the key information prominently, with further information available if required.
This can be done either by devising a hierarchical help system where each layer in the
hierarchy provides increasing detail, or simply by using layout carefully. An index
can be used as a summary of available topics but should be organized to reflect the
functional relationships between the subjects rather than their alphabetic ordering.
Consistency is also important here – each topic in the documentation should be
described using the same format so that the user knows where to look for a particu-
lar type of information. Documentation and help may contain definitions, descrip-
tions, examples, details of error messages, options and instructions. These should be
clearly recognizable.
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11.5.2 Implementation issues

Alongside the presentation issues the designer must make implementation decisions.
Some of these may be forced by physical constraints, others by the choices made
regarding the user’s requirements for help. We have already considered how help
may be requested and how it appears to the user. Obviously each of these decisions
involves implementation questions: will help be an operating system command, 
a meta-command or an application? What physical constraints does the machine
impose in terms of screen space, memory capacity and speed? Speed is a very import-
ant consideration, since an unacceptably slow response time is liable to make the 
system unusable no matter how well it has been designed. It is better to provide 
a simple help facility that responds quickly than a sophisticated, intelligent one that
takes minutes to provide a solution.

Another issue the designer must decide is how the help data is to be structured: in
a single file, a file hierarchy, a database? Again this will depend on the type of help
that is required, but any structure should be flexible and extensible – systems are not
static and new topics will inevitably need to be added to the help system. The data
structure used will, to an extent, determine the type of search or navigation strategy
that is provided. Will users be able to browse through the system or only request help
on one topic at a time? The user may also want to make a hard copy of part of the
help system to study later (this is particularly true of manuals and documentation).
Will this facility be provided as part of the support system?

Finally, the designer should consider the authors of help material as well as its
users. It is likely that, even if the designer writes the initial help texts, these will be
extended by other authors at different times. Clear conventions and constraints on
the presentation and implementation of help facilitate the addition of new material.

SUMMARY

This chapter has been concerned with user support in the form of help and 
documentation. No interactive system of any complexity is so intuitive that the user
never requires help. Help should therefore be an integral part of the design. Users
require different types of help, depending on the context and circumstances, and the
user support facilities should support these. Different styles of help support different
requirements and different types of user. We have considered several types of help
system, including adaptive user support. It is important to select a support style 
and design user support with the user in mind, just as the design of the system is user
centered. In particular, the presentation of help should take into account usability
principles, and the language should be clear and instructional.

11.6
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EXERCISES

11.1 Write a manual page for making a cup of coffee. Assume your user has no experience
but will recognize a cup, a kettle, a spoon, etc. Swap your manual with a partner. Does your 
partner’s manual give you sufficient instruction to make the cup of coffee? Discuss improvements
with your partner and agree on a final version of the manual.

11.2 Find a computer application that you have never used before. Attempt to learn to use it using
only the online support. Is there enough information to allow you to use the application effect-
ively? Is the information easy to find? What improvements (if any) would you suggest?

11.3 What knowledge is needed to build an adaptive help system? Which do you think is most difficult
to provide and why?

11.4 Look at as many online support systems as you can. Which do you find most useful and why? 
Try to assess them using the requirements discussed in Section 11.2.

11.5 Using your library facilities and the world wide web, investigate the benefits and limitations of
adaptive help systems. What examples of adaptive and adaptable help are available and how 
useful are they?

11.6 What are the four main types of help that users may require? For each type, give an example of
a situation in which it would be appropriate.

11.7 Which usability principles are especially important in the design of help systems, and why?

11.8 Describe some of the different approaches to providing user support systems, with examples.

11.9 Applications are often supported by an online version of the paper documentation; in some cases
there is no paper documentation at all.

What are the advantages of online documentation? What are the disadvantages, and how can they
be overcome?

11.10 Discuss the presentation issues involved in the design of effective and relevant help systems.
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MODELS AND THEORIES

In all engineering disciplines, the designer recruits a selection
of models to contribute to the design process. If we were
building a new office block, for example, then we would use
models of air circulation to design the ventilation system,
structural models for the fabric and possibly social models for
the detailed design of the office layout.

Models are used in other disciplines too. We may analyze
the structure of a piece of music and decide that it is a rondo,
or say that a poem is in sonnet form. Further, we may delib-
erately set out to write a sonnet, thus imposing the model
upon the creative process. Craft is the art of design within con-
straint, and models help to formulate the constraints.

The chapters in Part 3 describe a range of models that can
be used during the interface design process. Just as in the
design of the office block several different types of model are
required for different aspects of the building, so in interface
design we would expect to use a whole selection of comple-
mentary methods.

Chapter 12 considers models with psychological or cognit-
ive origins, where the emphasis is on formulating aspects of
user behavior such as goal formation and problem solving.
Chapter 13 discusses socio-technical models that attempt to
describe the user within a social and organizational context,
while Chapter 14 looks at models of collaboration and group
interaction. Chapter 15 describes task analysis techniques for
determining the relevant actions a user performs in some work
domain. Chapter 16 is concerned with dialog description tech-
niques used to specify and analyze the communication between
user and system. Chapter 17 describes the use of general math-
ematical notations used in software engineering to specify 
and analyze abstract descriptions of interactive systems, and
Chapter 18 extends these notations to model rich interactions.

P A R T
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COGNITIVE MODELS

OV E RV I E W

Cognitive models represent users of interactive systems.

n Hierarchical models represent a user’s task and goal
structure.

n Linguistic models represent the user–system grammar.

n Physical and device models represent human motor
skills.

n Cognitive architectures underlie all of these cognitive
models.

12
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INTRODUCTION

The techniques and models in this chapter all claim to have some representation of
users as they interact with an interface; that is, they model some aspect of the user’s
understanding, knowledge, intentions or processing. The level of representation dif-
fers from technique to technique – from models of high-level goals and the results of
problem-solving activities, to descriptions of motor-level activity, such as keystrokes
and mouse clicks. The formalisms have largely been developed by psychologists, or
computer scientists, whose interest is in understanding user behavior.

One way to classify the models is in respect to how well they describe features of
the competence and performance of the user. Quoting from Simon [323]:

Competence models tend to be ones that can predict legal behaviour sequences but 
generally do this without reference to whether they could actually be executed by users.
In contrast, performance models not only describe what the necessary behaviour
sequences are but usually describe both what the user needs to know and how this is
employed in actual task execution.

Competence models, therefore, represent the kinds of behavior expected of a user,
but they provide little help in analyzing that behavior to determine its demands 
on the user. Performance models provide analytical power mainly by focussing on
routine behavior in very limited applications.

Another useful distinction between these models is whether they address the acquisi-
tion or formulation of a plan of activity or the execution of that plan. Referring 
back to the interaction framework presented in Chapter 3, this classification would
mean that some models are concerned with understanding the User and his associ-
ated task language while others are concerned with the articulation translation
between that task language and the Input language. The presentation of the cognitive
models in this chapter follows this classification scheme, divided into the following
categories:

n hierarchical representation of the user’s task and goal structure
n linguistic and grammatical models
n physical and device-level models.

The first category deals directly with the issue of formulation of goals and tasks. 
The second deals with the grammar of the articulation translation and how it is
understood by the user. The third category again deals with articulation, but at the
human motor level instead of at a higher level of human understanding.

Architectural assumptions about the user are needed in any of the cognitive models
discussed here. Some of the more basic architectural assumptions were covered in
Chapter 1, such as the distinction between long- and short-term memory. After dis-
cussing models in the three categories above, we will describe two additional cognitive
architectures and how they are relevant for analyzing interactive system design.

Many of these nominally cognitive models have a rather computational flavor.
This reflects the way that computational analogies are often used in cognitive 

12.1
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psychology. The similarity between the language describing the user and that
describing the computer has some advantages and some dangers. On the positive
side it makes communication and analysis of the combined human–computer sys-
tem easier. For instance, cognitive complexity theory (described later) produces
models of both user goals and the system grammar, and can reason about their inter-
action. On the other hand, there is a danger that this will encourage a mechanistic
view of the user.

GOAL AND TASK HIERARCHIES

Many models make use of a model of mental processing in which the user achieves
goals by solving subgoals in a divide-and-conquer fashion. We will consider two
models, GOMS and CCT, where this is a central feature. However, we will see sim-
ilar features in other models, such as TAG (Section 12.3.2) and when we consider
task analysis techniques (Chapter 15).

Imagine we want to produce a report on sales of introductory HCI textbooks. 
To achieve this goal we divide it into several subgoals, say gathering the data
together, producing the tables and histograms, and writing the descriptive material.
Concentrating on the data gathering, we decide to split this into further subgoals:
find the names of all introductory HCI textbooks and then search the book sales
database for these books. Similarly, each of the other subgoals is divided up into 
further subgoals, until some level of detail is found at which we decide to stop. We
thus end up with a hierarchy of goals and subgoals. The example can be laid out 
to expose this structure:

produce report

gather data

. find book names

. . do keywords search of names database

<<further subgoals>>

. . sift through names and abstracts by hand

<<further subgoals>>

. search sales database

<<further subgoals>>

layout tables and histograms

<<further subgoals>>

write description

<<further subgoals>>

Various issues arise as one attempts such analyses of computer use.
Where do we stop? We can go on decomposing tasks until we get down to the

individual hand and eye movements of the user, or we can stop at a more abstract
level. Where do we start? In a similar way, we can start our analyses at different

12.2
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points in the hierarchy of goals. At the extreme we could extend our analysis to larger
and larger goals: ‘light hob’ is a subgoal of ‘boil peas’ and so on to goals such as ‘have
my dinner’, ‘feed’ and ‘stay alive’.

These two questions are issues of granularity, and both of the methods described
below leave this to some extent in the hands of the designer. Different design issues
demand different levels of analysis. However, both methods operate at a relatively
low level; neither would attempt to start with such an abstract goal as ‘produce a
report’ which will involve real creativity and difficult problem solving. Instead they
confine themselves to more routine learned behavior. This most abstract task 
is referred to as the unit task. The unit task does not require any problem-solving
skills on the part of the user, though it frequently demands quite sophisticated 
problem-solving skills on the part of the designer to determine them.

What do we do when there are several ways of solving a problem, or if the solu-
tions to two subgoals interact? Users will often have more than one way to achieve 
a goal and there must be some way of representing how they select between com-
peting solutions.

Another important issue has to do with the treatment of error. Users are not 
perfect. A goal hierarchy may show how the perfect user would achieve a goal, but
what can it say about difficulties the user may have along the way? In general, pre-
diction of error behavior is poor amongst these hierarchical modeling techniques,
though some (cognitive complexity theory (CCT), for example) can represent error
behavior.

12.2.1 GOMS

The GOMS model of Card, Moran and Newell is an acronym for Goals, Operators,
Methods and Selection [56]. A GOMS description consists of these four elements:

Goals These are the user’s goals, describing what the user wants to achieve.
Further, in GOMS the goals are taken to represent a ‘memory point’ for the user,
from which he can evaluate what should be done and to which he may return
should any errors occur.

Operators These are the lowest level of analysis. They are the basic actions that 
the user must perform in order to use the system. They may affect the system 
(for example, press the ‘X’ key) or only the user’s mental state (for example, read
the dialog box). There is still a degree of flexibility about the granularity of 
operators; we may take the command level ‘issue the SELECT command’ or be
more primitive: ‘move mouse to menu bar, press center mouse button . . .’.

Methods As we have already noted, there are typically several ways in which a goal
can be split into subgoals. For instance, in a certain window manager a currently
selected window can be closed to an icon either by selecting the ‘CLOSE’ option
from a pop-up menu, or by hitting the ‘L7’ function key. In GOMS these two goal
decompositions are referred to as methods, so we have the CLOSE-METHOD and
the L7-METHOD:
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GOAL: ICONIZE-WINDOW

. [select GOAL: USE-CLOSE-METHOD

. . MOVE-MOUSE-TO-WINDOW-HEADER

. . POP-UP-MENU

. . CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

. . PRESS-L7-KEY]

The dots are used to indicate the hierarchical level of goals.

Selection From the above snippet we see the use of the word select where the
choice of methods arises. GOMS does not leave this as a random choice, but
attempts to predict which methods will be used. This typically depends both on
the particular user and on the state of the system and details about the goals. 
For instance, a user, Sam, never uses the L7-METHOD, except for one game,
‘blocks’, where the mouse needs to be used in the game until the very moment
the key is pressed. GOMS captures this in a selection rule for Sam:

User Sam:
Rule 1: Use the CLOSE-METHOD unless another rule applies.
Rule 2: If the application is ‘blocks’ use the L7-METHOD.

The goal hierarchies described in a GOMS analysis are almost wholly below the level
of the unit task defined earlier. A typical GOMS analysis would therefore consist of
a single high-level goal, which is then decomposed into a sequence of unit tasks, all
of which can be further decomposed down to the level of basic operators:

GOAL: EDIT-MANUSCRIPT

. GOAL: EDIT-UNIT-TASK repeat until no more unit tasks

The goal decomposition between the overall task and the unit tasks would involve
detailed understanding of the user’s problem-solving strategies and of the applica-
tion domain. These are side-stepped entirely by the method as originally proposed.
It would be possible to use the general notation in order to describe this subgoal
structure (as for instance in the book report example above). This form of high-level
goal description is adopted during task analysis which will be discussed in Chap-
ter 15. In particular, the aim of hierarchical task analysis is to produce task decom-
positions, which would be similar (but in a different notation) to that in the book
report example.

Analysis of the GOMS goal structure can yield measures of performance. The
stacking depth of a goal structure can be used to estimate short-term memory
requirements. The model of the users’ mental processes implied by this is, of course,
very idealized. Also, the selection rules can be tested for accuracy against user traces,
and changed in response to discrepancies. In early experiments on the technique, the
inventors were able to achieve on average a 90% correct prediction rate of user com-
mands. Further, a very simple method of predicting times (basically assuming that
each operator takes a constant time) was able to predict actual times with an error 
of 33%.
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The original GOMS model has served as the basis for much of the cognitive model-
ing research in HCI. It was good for describing how experts perform routine tasks.
Coupled with the physical device models discussed later, it can be used to predict the
performance of these users in terms of execution times. It was never intended to pro-
vide the kind of information about the user’s knowledge that could be compared
across different tasks in order to predict things like training or transfer times.

DESIGN FOCUS

GOMS saves money

Some years ago the US telephone company NYNEX were intending to install a new computer system
to support their operators. Before installation a detailed GOMS analysis was performed taking into
account the cognitive and physical processes involved in dealing with a call. The particular technique
was rather different from the original GOMS notation as described here. Because an operator performs
several activities in parallel a PERT-style GOMS description was constructed [192, 154]. The PERT ana-
lysis was used to determine the critical path, and hence the time to complete a typical task. It was 
discovered that rather than speeding up operations, the new system would take longer to process each
call. The new system was abandoned before installation, leading to a saving of many millions of dollars.

Worked exercise Create a GOMS description of the task of photocopying an article from a journal. Discuss the
issue of closure (see Chapter 1) in terms of your GOMS description.

Answer One possible GOMS description of the goal hierarchy for this task is given below.
Answers will vary depending on assumptions about the photocopier used as the model
for the exercise. In this example, we will assume that the article is to be copied one
page at a time and that a cover over the imaging surface of the copier has to be in place
before the actual copy can be made.

GOAL: PHOTOCOPY-PAPER

. GOAL: LOCATE-ARTICLE

. GOAL: PHOTOCOPY-PAGE repeat until no more pages

. . GOAL: ORIENT-PAGE

. . . OPEN-COVER

. . . SELECT-PAGE

. . . POSITION-PAGE

. . . CLOSE-COVER

. . GOAL: PRESS-COPY-BUTTON

. . GOAL: VERIFY-COPY

. . . LOCATE-OUT-TRAY

. . . EXAMINE-COPY

. GOAL: COLLECT-COPY

. . LOCATE-OUT-TRAY
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. . REMOVE-COPY (outer goal satisfied!)

. GOAL: RETRIEVE-JOURNAL

. . OPEN-COVER

. . REMOVE-JOURNAL

. . CLOSE-COVER

The closure problem which appears in this example occurs when the copy of the article
is removed from the photocopier out tray, satisfying the overall goal for the task. In the
above description, however, the original journal article is still on the imaging surface of
the photocopier, and the cover is closed. The user could easily forget to remove the
journal. How could the photocopying procedure be revised to eliminate this prob-
lem? One answer is to force the goal RETRIEVE-JOURNAL to be satisfied before
COLLECT-COPY.

12.2.2 Cognitive complexity theory

Cognitive complexity theory, introduced by Kieras and Polson [199], begins with 
the basic premises of goal decomposition from GOMS and enriches the model to
provide more predictive power. CCT has two parallel descriptions: one of the user’s
goals and the other of the computer system (called the device in CCT). The descrip-
tion of the user’s goals is based on a GOMS-like goal hierarchy, but is expressed 
primarily using production rules. We introduced production rules in Chapter 1 and
we further describe their use in CCT below. For the system grammar, CCT uses 
generalized transition networks, a form of state transition network. This will not be
described here, but state transition networks will be discussed in detail in Chapter 16.

The production rules are a sequence of rules:

if condition then action

where condition is a statement about the contents of working memory. If the condi-
tion is true then the production rule is said to fire. An action may consist of one or
more elementary actions, which may be either changes to the working memory, 
or external actions such as keystrokes. The production rule ‘program’ is written in a
LISP-like language.

As an example, we consider an editing task using the UNIX vi text editor. The task
is to insert a space where one has been missed out in the text, for instance if we
noticed that in the above paragraph we had written ‘cognitivecomplexity theory’.
This is a reasonably frequent typing error and so we assume that we have developed
good procedures to perform the task. We consider a fragment of the associated CCT
production rules.

(SELECT-INSERT-SPACE

IF (AND (TEST-GOAL perform unit task)

(TEST-TEXT task is insert space)

(NOT (TEST-GOAL insert space))

(NOT (TEST-NOTE executing insert space)) )
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THEN ( (ADD-GOAL insert space)

(ADD-NOTE executing insert space)

(LOOK-TEXT task is at %LINE %COL) ))

(INSERT-SPACE-DONE

IF (AND (TEST-GOAL perform unit task)

(TEST-NOTE executing insert space)

(NOT (TEST-GOAL insert space)) )

THEN ( (DELETE-NOTE executing insert space)

(DELETE-GOAL perform unit task)

(UNBIND %LINE %COL) ))

(INSERT-SPACE-1

IF (AND (TEST-GOAL insert space)

(NOT (TEST-GOAL move cursor))

(NOT (TEST-CURSOR %LINE %COL)) )

THEN ( (ADD-GOAL move cursor to %LINE %COL) ))

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)

(TEST-CURSOR %LINE %COL) )

THEN ( (DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

(DO-KEYSTROKE ESC)

(DELETE-GOAL insert space) ))

To see how these rules work, imagine that the user has just seen the typing mis-
take and thus the contents of working memory (w.m.) are

(GOAL perform unit task)

(TEXT task is insert space)

(TEXT task is at 5 23)

(CURSOR 8 7)

TEXT refers to the text of the manuscript that is being edited and CURSOR refers to
the insertion cursor on the screen. Of course, these items are not actually located in
working memory – they are external to the user – but we assume that knowledge
from observing them is stored in the user’s working memory.

The location (5,23) is the line and column of the typing mistake where the space
is required. However, the current cursor position is at line 8 and column 7. This is 
of course acquired into the user’s working memory by looking at the screen. Look-
ing at the four rules above (SELECT-INSERT-SPACE, INSERT-SPACE-DONE,
INSERT-SPACE-1 and INSERT-SPACE-2), only the first can fire. The condition
for SELECT-INSERT-SPACE is:

(AND (TEST-GOAL perform unit task)

true because (GOAL perform unit task) is in w.m.
(TEST-TEXT task is insert space)

true because (TEXT task is insert space) is in w.m.
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(NOT (TEST-GOAL insert space))

true because (GOAL insert space) is not in w.m.
(NOT (TEST-NOTE executing insert space)) )

true because (NOTE executing insert space)
is not in w.m.

So, the rule fires and its action is performed. This action has no external effect in
terms of keystrokes, but adds extra information to working memory. The (LOOK-
TEXT task is at %LINE %COL) looks for a corresponding entry and binds LINE
and COL to 5 and 23 respectively. These are variables, somewhat as in a normal 
programming language, which are referred to again in other rules.

The contents of working memory after the firing of rule SELECT-INSERT-SPACE
are as follows (note that the order of elements of working memory is arbitrary):

(GOAL perform unit task)

(TEXT task is insert space)

(TEXT task is at 5 23)

(NOTE executing insert space)

(GOAL insert space)

(LINE 5)

(COL 23)

(CURSOR 8 7)

At this point neither rule SELECT-INSERT-SPACE nor INSERT-SPACE-DONE
will fire as the entry (GOAL insert space) will make their conditions false. As
LINE is bound to 5 and COL is bound to 23, the condition (TEST-CURSOR %LINE
%COL) will be false also, and hence only rule INSERT-SPACE-1 can fire.

After this rule’s actions have been performed, the working memory will include
the entry (GOAL move cursor to 5 23). The rules for moving the cursor are 
not included here, but would be quite extensive, moving up/down and right/left
depending on the relative positions of the cursor and the target location. Eventually,
assuming the cursor movement is successful, the cursor would be at (5,23) whence
rule INSERT-SPACE-2 would be able to fire. This would perform the keystrokes: 
I, SPACE and ESC, which in vi puts the editor into insert mode, types the space 
and then leaves insert mode. The action also removes the insert space goal from
working memory as this goal has been achieved.

Now the goal has been removed, the second rule INSERT-SPACE-DONE is free to
fire, which ‘tidies up’ working memory. In particular, it ‘unbinds’ the variables LINE
and COL, that is it removes the bindings for them from working memory.

Notice that the rules did not fire in the order they were written. Although they
look somewhat like the if–then–else commands one would get in a standard pro-
gramming language, they behave very differently. The rules are all active and at each
moment any rule that has its conditions true may fire. Some rules may never fire; 
for instance, if the cursor is at the correct position the third rule would not fire.
Furthermore, the same rule may fire repeatedly; for example, if we were to write out
the production rules for moving the cursor, one rule may well be
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(MOVE-UP

IF (AND (TEST-GOAL move-up)

(TEST-CURSOR-BELOW %LINE) )

THEN ( ( DO-KEYSTROKE ‘K’) ))

This rule is to type ‘K’ (the vi command to move the cursor up one line) while 
the cursor is below the desired line. It will, of course, be constantly refired until the
cursor is at the correct line.

Notice that the keystrokes for actually inserting the space, once you are at the 
right position, have been proceduralized. That is, the user does not go through the
subgoals ‘enter insert mode’, ‘type space’, ‘leave insert mode’. For a complex 
insertion, it is quite likely that the user will perform exactly these goals. However, 
the act of inserting a single space is assumed to be so well rehearsed that it is 
stored as a single chunk. That is, the rules above represent expert knowledge of 
the vi editor.

Of course, novices may well do exactly the same keystrokes as the experts, but 
the way they store the knowledge will be different. To cope with this, CCT has a set
of ‘style’ rules for novices. These limit the form of the conditions and actions in the
production rules. Basically, novices are expected to test constantly all the rules in
their working memory and to check for feedback from the system after every
keystroke. Thus a set of ‘novice’ rules would not include the proceduralized form of
insert space. Bovair, Kieras and Polson provide a list of many style rules which can
be used to embody certain psychological assumptions about the user (novice/expert
distinction is only one) in a CCT description [39].

The rules in CCT need not represent error-free performance. They can be used 
to explain error phenomena, though they cannot predict them. For instance, the
rules above for inserting a space are ‘buggy’ – they do not check the editor’s mode.
Imagine you had just been typing the ‘cognitive’ in ‘cognitivecomplexity theory’
(with the space missing), you think for a few minutes and then look again at the
screen and notice that the space is missing. The cursor is at the correct position for
the space, so rule INSERT-SPACE-1 never gets fired and we go directly through 
the sequence: SELECT-INSERT-SPACE, INSERT-SPACE-2 then INSERT-
SPACE-DONE. You type ‘i’, a space and then escape. However, the ‘i’ assumes that
you are in vi’s command mode, and is the command to move the editor into insert
mode. If, however, after typing ‘cognitive’ you had not typed escape, to get you back
into command mode, the whole sequence would be done in insert mode. The text
would read: ‘cognitiveI complexity theory’.

The CCT rules are closely related to GOMS-like goal hierarchies; the rules may be
generated from such a hierarchy, or alternatively, we may analyze the production
rules to obtain the goal tree:

GOAL: insert space

. GOAL: move cursor – if not at right position

. PRESS-KEY-I

. PRESS-SPACE

. PRESS-ESCAPE
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The stacking depth of this goal hierarchy (as described for GOMS) is directly related
to the number of (GOAL ...) terms in working memory.

In fact, the CCT rules can represent more complex plans than the simple sequen-
tial hierarchies of GOMS. The continuous activity of all production rules makes it
possible to represent concurrent plans. For example, one could have one set of pro-
duction rules representing the goal of writing a book, and another set representing
the goal of drinking tea. These rules could both be active simultaneously, thus allow-
ing an author to drink tea whilst typing. Despite this apparent flexibility, CCT is not
normally used in this way. It is not clear why this is, except that CCT, like GOMS, 
is aimed at low-level, proceduralized goals – that is, the unit task. It is reasonable 
that successive unit tasks be chosen from different activities: the author may delete 
a word, have a drink, do a word search, but each time a complete unit task would be
performed – the author does not take a drink of tea in the middle of deleting a word.

We have seen how CCT rules may be informally analyzed to discuss issues of 
proceduralization and error behavior, and how we can relate them to GOMS-like
goal hierarchies. However, the main aim of CCT is (as its name suggests) to be able
to measure the complexity of an interface.

Basically, the more production rules in the CCT description the more difficult the
interface is to learn. This claim rests on the assumption that the production rules
represent reasonably accurately the way knowledge is stored and therefore that the
time taken to learn an interface is roughly proportional to the number of rules you
have to learn.

We have only discussed the user side of CCT here. If the cognitive user descrip-
tion is complemented by a description of the system, it is claimed that one can pre-
dict the difficulty of the mapping between the user’s goals and the system model. 
The generalized transition networks that describe the system grammar themselves
have a hierarchical structure. Thus both the description of the user and that of 
the system can be represented as hierarchies. These can then be compared to find
mismatches and to produce a measure of dissonance.

There are various problems with CCT. As with many ‘rich’ description methods,
the size of description for even a part of an interface can be enormous. Furthermore,
there may be several ways of representing the same user behavior and interface
behavior, yielding different measures of dissonance. To some extent this is catered for
by the novice style rules, but there is no such set of rules for the system description.

Another problem is the particular choice of notations. Production rules are often
suggested as a good model of the way people remember procedural knowledge, but
there are obvious ‘cludges’ in the CCT description given above. In particular, the
working memory entry (NOTE executing insert space) is there purely to allow
the INSERT-SPACE-DONE rule to fire at the appropriate time. It is not at all clear
that it has any real cognitive significance. One may also question whether the particu-
lar notation chosen for the system is critical to the method. One might choose to 
represent the system using any one of the dialog description notations in Chapter 16.
Different notations would probably yield slightly different measures of dissonance.

However, one should regard CCT as an engineering tool giving one a rough measure
of learnability and difficulty combined with a detailed description of user behavior.
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This can then be used by analysts employing their professional expertise. Arguably,
the strength of the central idea of CCT lies beyond the particular notations used.

12.2.3 Problems and extensions of goal hierarchies

The formation of a goal hierarchy is largely a post hoc technique and runs a very real
risk of being defined by the computer dialog rather than the user. One way to rectify
this is to produce a goal structure based on pre-existing manual procedures and thus
obtain a natural hierarchy [201]. To be fair, GOMS defines its domain to be that of
expert use, and thus the goal structures that are important are those which users
develop out of their use of the system. However, such a natural hierarchy may be par-
ticularly useful as part of a CCT analysis, representing a very early state of knowledge.

On the positive side, the conceptual framework of goal hierarchies and user goal
stacks can be used to express interface issues, not directly addressed by the notations
above. For instance, we can use this to examine in more detail the closure problem with
early automated teller machines (ATMs) mentioned in the Design Focus box in Chap-
ter 1, Section 1.3.2. These early ATMs gave the customers the money before returning
their cards. Unfortunately, this led to many customers leaving their cards behind. This
was despite on-screen messages telling them to wait. This is referred to as a problem
of closure. The user’s principal goal is to get money; when that goal is satisfied, the
user does not complete or close the various subtasks which still remain open:

GOAL: GET-MONEY

. GOAL: USE-ATM

. . INSERT-CARD

. . ENTER-PIN

. . ENTER-AMOUNT

. . COLLECT-MONEY

<< outer goal now satisfied goal stack popped >>

. . COLLECT-CARD – subgoal operators missed

Banks (at least some of them) soon changed the dialog order so that the card was
always retrieved before the money was dispensed. A general rule that can be applied
to any goal hierarchy from this is that no higher-level goal should be satisfied until
all subgoals have been satisfied. However, it is not always easy to predict when the
user will consider a goal to have been satisfied. For instance, one of the authors has
been known to collect his card and forget the money!

LINGUISTIC MODELS

The user’s interaction with a computer is often viewed in terms of a language, so it
is not surprising that several modeling formalisms have developed centered around
this concept. Several of the dialog notations described in Chapter 16 are also based

12.3
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on linguistic ideas. Indeed, BNF grammars are frequently used to specify dialogs. 
The models here, although similar in form to dialog design notations, have been 
proposed with the intention of understanding the user’s behavior and analyzing the
cognitive difficulty of the interface.

12.3.1 BNF

Representative of the linguistic approach is Reisner’s use of Backus–Naur Form (BNF)
rules to describe the dialog grammar [301]. This views the dialog at a purely syntactic
level, ignoring the semantics of the language. BNF has been used widely to specify 
the syntax of computer programming languages, and many system dialogs can be
described easily using BNF rules. For example, imagine a graphics system that has a
line-drawing function. To select the function the user must select the ‘line’ menu option.
The line-drawing function allows the user to draw a polyline, that is a sequence of
line arcs between points. The user selects the points by clicking the mouse button in
the drawing area. The user double clicks to indicate the last point of the polyline.

draw-line ::= select-line + choose-points 

+ last-point

select-line ::= position-mouse + CLICK-MOUSE

choose-points ::= choose-one

| choose-one + choose-points

choose-one ::= position-mouse + CLICK-MOUSE

last-point ::= position-mouse + DOUBLE-CLICK-MOUSE

position-mouse ::= empty | MOVE-MOUSE + position-mouse

The names in the description are of two types: non-terminals, shown in lower case,
and terminals, shown in upper case. Terminals represent the lowest level of user
behavior, such as pressing a key, clicking a mouse button or moving the mouse.
Non-terminals are higher-level abstractions. The non-terminals are defined in terms
of other non-terminals and terminals by a definition of the form

name ::= expression

The ‘::=’ symbol is read as ‘is defined as’. Only non-terminals may appear on the
left of a definition. The right-hand side is built up using two operators ‘+’ (sequence)
and ‘|’ (choice). For example, the first rule says that the non-terminal draw-line
is defined to be select-line followed by choose-points followed by last-
point. All of these are non-terminals, that is they do not tell us what the basic user
actions are. The second rule says that select-line is defined to be position-
mouse (intended to be over the ‘line’ menu entry) followed by CLICK-MOUSE. This
is our first terminal and represents the actual clicking of a mouse.

To see what position-mouse is, we look at the last rule. This tells us that there
are two possibilities for position-mouse (separated by the ‘|’ symbol). One
option is that position-mouse is empty – a special symbol representing no
action. That is, one option is not to move the mouse at all. The other option is to do
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a MOVE-MOUSE action followed by position-mouse. This rule is recursive, and
this second position-mouse may itself either be empty or be a MOVE-MOUSE
action followed by position-mouse, and so on. That is, position-mouse may
be any number of MOVE-MOUSE actions whatsoever.

Similarly, choose-points is defined recursively, but this time it does not have
the option of being empty. It may be one or more of the non-terminal choose-one
which is itself defined to be (like select-line) position-mouse followed by
CLICK-MOUSE.

The BNF description of an interface can be analyzed in various ways. One mea-
sure is to count the number of rules. The more rules an interface requires to use it,
the more complicated it is. This measure is rather sensitive to the exact way the inter-
face is described. For example, we could have replaced the rules for choose-
points and choose-one with the single definition

choose-points ::= position-mouse + CLICK-MOUSE

| position-mouse + CLICK-MOUSE + choose-points

A more robust measure also counts the number of ‘+’ and ‘|’ operators. This
would, in effect, penalize the more complex single rule. Another problem arises with
the rule for select-line. This is identical to the choose-one rule. However, 
the acts of selecting a menu option and choosing a point on a drawing surface 
are obviously so different that they must surely be separated. Decisions like this
about the structure of a BNF description are less of a problem in practice than the
corresponding problems we had with CCT.

In addition to these complexity measures for the language as a whole, we can use
the BNF definition to work out how many basic actions are required for a particular
task, and thus obtain a crude estimate of the difficulty of that task.

The BNF description above only represented the user’s actions, not the user’s 
perception of the system’s responses. This input bias is surprisingly common
amongst cognitive models, as we will discuss in Section 12.4. Reisner has developed
extensions to the basic BNF descriptions, which attempt to deal with this by adding
‘information-seeking actions’ to the grammar.

12.3.2 Task–action grammar

Measures based upon BNF have been criticized as not ‘cognitive’ enough. They
ignore the advantages of consistency both in the language’s structure and in its 
use of command names and letters. Task–action grammar (TAG) [284] attempts 
to deal with some of these problems by including elements such as parametrized
grammar rules to emphasize consistency and encoding the user’s world knowledge
(for example, up is the opposite of down).

To illustrate consistency, we consider the three UNIX commands: cp (for copying
files), mv (for moving files) and ln (for linking files). Each of these has two possible
forms. They either have two arguments, a source and destination filename, or have
any number of source filenames followed by a destination directory:
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copy ::= ‘cp’ + filename + filename

| ‘cp’ + filenames + directory

move ::= ‘mv’ + filename + filename

| ‘mv’ + filenames + directory

link ::= ‘ln’ + filename + filename

| ‘ln’ + filenames + directory

Measures based upon BNF could not distinguish between these consistent com-
mands and an inconsistent alternative – say if ln took its directory argument 
first. Task–action grammar was designed to reveal just this sort of consistency. Its
description of the UNIX commands would be

file-op[Op] := command[Op] + filename + filename

| command[Op] + filenames + directory

command[Op=copy] := ‘cp’

command[Op=move] := ‘mv’

command[Op=link] := ‘ln’

This captures the consistency of the commands and closely resembles the original
textual description. One would imagine that a measure of the complexity of the 
language based on the TAG description would be better at predicting actual learning
and performance than a simple BNF one.

As well as handling consistency well, TAG has features for talking about ‘world
knowledge’. For example, imagine we have two command line interfaces for moving
a mechanical turtle around the floor.

Command interface 1
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction=forward] := ‘go 395’

command[Direction=backward] := ‘go 013’

command[Direction=left] := ‘go 712’

command[Direction=right] := ‘go 956’

Command interface 2
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction=forward] := ‘FORWARD’

command[Direction=backward] := ‘BACKWARD’

command[Direction=left] := ‘LEFT’

command[Direction=right] := ‘RIGHT’

The first interface may not be as silly as it seems; the command ‘go 395’ could
refer to the address of a machine-code routine, which performs the appropriate
movement. However, it is absolutely clear that the second interface is preferable to
the first. TAG includes a special form known-item, which is used to denote infor-
mation that the user will already know, and thus not need to learn in order to use the
system. Using this form, the TAG rules for the second interface are rewritten
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Command interface 2
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction]:= known-item[Type=word,Direction]

* command[Direction=forward] := ‘FORWARD’

* command[Direction=backward] := ‘BACKWARD’

* command[Direction=left] := ‘LEFT’

* command[Direction=right] := ‘RIGHT’

The starred rules can be generated from the second rule using the user’s world
knowledge. They are included in any TAG description for completeness, but are not
counted in any measure of complexity.

Sometimes it may not be clear what the appropriate command is, but once we
know one, the rest become obvious. For example, consider a simple database dis-
playing a list of records. We are expecting two commands, one to move up the list to
the previous record, and another to move down the list to the next record. There are
several options for the commands, for instance UP/DOWN, PREVIOUS/NEXT,
possibly in upper or lower case, possibly also just the first letter of the relevant 
word. In addition, one might have mixed-up command sets such as UP/NEXT or
N/previous. The fact that any of the former set of commands is easier to learn than
the mixed-up commands is called congruence. TAG has a notation to describe the
congruence of an interface. The notation F(‘next’) is used to denote the feature
set related to the word ‘next’. That is, next/previous. With this notation a congruent
grammar requires only one ‘real’ rule, such as

browse[Direction] := F(‘next’) + return

* browse[Direction=up] := ‘previous’ + return

* browse[Direction=down] := ‘next’ + return

We have seen that the notation allows one to say that the commands RIGHT and
LEFT are consistent for opposite actions. How do we know that the user regards the
opposite of RIGHT to be LEFT rather than WRONG? Obviously, the inclusion of
world knowledge depends upon the user of the system – the above certainly assumes
that the user’s language is English. The designer is responsible for the input of this
world knowledge into the TAG description and its validity will depend on the pro-
fessional judgment of the designer. However, TAG will make these assumptions clear
and thus, by highlighting them, hold them up for inspection.

THE CHALLENGE OF DISPLAY-BASED SYSTEMS

Both goal hierarchical and grammar-based techniques were initially developed when
most interactive systems were command line, or at most, keyboard and cursor based.
There are significant worries, therefore, about how well these approaches can gener-
alize to deal with more modern windowed and mouse-driven interfaces.

12.4
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Both families of techniques largely ignore system output – what the user sees. 
The implicit assumption is that the users know exactly what they want to do and 
execute the appropriate command sequences blindly. There are exceptions to this.
We have already mentioned how Reisner’s BNF has been extended to include asser-
tions about output. In addition, TAG has been extended to include information
about how the display can affect the grammar rules [180].

Another problem for grammars is the lowest-level lexical structure. Pressing a 
cursor key is a reasonable lexeme, but moving a mouse one pixel is less sensible. 
In addition, pointer-based dialogs are more display oriented. Clicking a cursor at a
particular point on the screen has a meaning dependent on the current screen con-
tents. This problem can be partially resolved by regarding operations such as ‘select
region of text’ or ‘click on quit button’ as the terminals of the grammar. If this
approach is taken, the detailed mouse movements and parsing of mouse events in
the context of display information (menus, etc.) are abstracted away.

Goal hierarchy methods have different problems, as more display-oriented 
systems encourage less structured methods for goal achievement. Instead of hav-
ing well-defined plans, the user is seen as performing a more exploratory task, 
recognizing fruitful directions and backing out of others. Typically, even when this
exploratory style is used at one level, we can see within it and around it more 
goal-oriented methods. So, for example, we might consider the high-level goal 
structure

WRITE_LETTER

. FIND_SIMILAR_LETTER

. COPY_IT

. EDIT_COPY

However, the task of finding a similar letter would be exploratory, searching through
folders, etc. Such recognition-based searching is extremely difficult to represent 
as a goal structure. Similarly, the actual editing would depend very much on 
non-planned activities: ‘ah yes, I want to reuse that bit, but I’ll have to change that’.
If we then drop to a lower level again, goal hierarchies become more applicable. 
For instance, during the editing stage we might have the ‘delete a word’ subdialog:

DELETE_WORD

. SELECT_WORD

. . MOVE_MOUSE_TO_WORD_START

. . DEPRESS_MOUSE_BUTTON

. . MOVE_MOUSE_TO_WORD_END

. . RELEASE_MOUSE_BUTTON

. CLICK_ON_DELETE

. . MOVE_MOUSE_TO_DELETE_ICON

. . CLICK_MOUSE_BUTTON

Thus goal hierarchies can partially cope with display-oriented systems by an
appropriate choice of level, but the problems do emphasize the rather prescriptive
nature of the cognitive models underlying them.
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These problems have been one of the factors behind the growing popularity of 
situated action [334] and distributed cognition [208, 185] in HCI (see also Chap-
ter 14). Both approaches emphasize the way in which actions are contingent upon
events and determined by context, rather than being pre-planned. At one extreme,
protagonists of these approaches seem to deny any planned actions or long-term
goals. On the other hand, traditional cognitive modelers are modeling display-based
cognition using production rules and similar methods, which include sensory data
within the models.

At a low level, chunked expert behavior is modeled effectively using hierarchical
or linguistic models, and is where the keystroke-level model (discussed in Section
12.5.1 below) has proved effective. In contrast, it is clear that no amount of cognitive
modeling can capture the activity during the writing of a poem. Between these two,
cognitive models will have differing levels of success and utility. Certainly, models at all
but the lowest levels must take into account the user’s reactions to feedback from the
system, otherwise they cannnot address the fundamental issue of interactivity at all.

PHYSICAL AND DEVICE MODELS

12.5.1 Keystroke-level model

Compared with the deep cognitive understanding required to describe problem-
solving activities, the human motor system is well understood. KLM (Keystroke-Level
Model [55]) uses this understanding as a basis for detailed predictions about user
performance. It is aimed at unit tasks within interaction – the execution of simple
command sequences, typically taking no more than 20 seconds. Examples of this
would be using a search and replace feature, or changing the font of a word. It does
not extend to complex actions such as producing a diagram. The assumption is that
these more complex tasks would be split into subtasks (as in GOMS) before the user
attempts to map them into physical actions. The task is split into two phases:

acquisition of the task, when the user builds a mental representation of the task;

execution of the task using the system’s facilities.

KLM only gives predictions for the latter stage of activity. During the acquisition
phase, the user will have decided how to accomplish the task using the primitives of
the system, and thus, during the execution phase, there is no high-level mental activ-
ity – the user is effectively expert. KLM is related to the GOMS model, and can be
thought of as a very low-level GOMS model where the method is given.

The model decomposes the execution phase into five different physical motor
operators, a mental operator and a system response operator:

K Keystroking, actually striking keys, including shifts and other modifier keys.

B Pressing a mouse button.

P Pointing, moving the mouse (or similar device) at a target.

12.5
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H Homing, switching the hand between mouse and keyboard.

D Drawing lines using the mouse.

M Mentally preparing for a physical action.

R System response which may be ignored if the user does not have to wait for it, as
in copy typing.

The execution of a task will involve interleaved occurrences of the various oper-
ators. For instance, imagine we are using a mouse-based editor. If we notice a single
character error we will point at the error, delete the character and retype it, and then
return to our previous typing point. This is decomposed as follows:

1. Move hand to mouse H[mouse]
2. Position mouse after bad character PB[LEFT]
3. Return to keyboard H[keyboard]
4. Delete character MK[DELETE]
5. Type correction K[char]
6. Reposition insertion point H[mouse]MPB[LEFT]

Notice that some operators have descriptions added to them, representing which
device the hand homes to (for example, [mouse]) and what keys are hit (for example,
LEFT – the left mouse button).

The model predicts the total time taken during the execution phase by adding the
component times for each of the above activities. For example, if the time taken for
one keystroke is tK, then the total time doing keystrokes is

TK = 2tK

Similar calculations for the rest of the operators give a total time of

Texecute = TK + TB + TP + TH + TD + TM + TR

= 2tK + 2tB + tP + 3tH + 0 + 2tM + 0

In this example, the system response time was zero. However, if the user had to
wait for the system then the appropriate time would be added. In many typing tasks,
the user can type ahead anyway and thus there is no need to add response times.
Where needed, the response time can be measured by observing the system.

The times for the other operators are obtained from empirical data. The keying
time obviously depends on the typing skill of the user, and different times are thus
used for different users. Pressing a mouse button is usually quicker than typing
(especially for two-finger typists), and a more accurate time prediction can be made
by separating out the button presses B from the rest of the keystrokes K. The point-
ing time can be calculated using Fitts’ law (see Chapter 1), and thus depends on the
size and position of the target.1 Alternatively, a fixed time based on average within

1 The form of Fitts’ law used with the original KLM is K log2(D/S + 0.5), where D is the distance to the
target and S is the target size. We will use this form for calculations in this subsection, but revert to the
form a + b log2(D/S + 1) in the next subsection when we consider Buxton’s three-state model, as this form
was used for these experiments.
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screen pointing can be used. Drawing time depends on the number and length of the
lines drawn, and is fairly domain specific, but one can easily use empirical data for
more general drawing tasks. Finally, homing time and mental preparation time are
assumed constant. Typical times are summarized in Table 12.1.

The mental operator is probably the most complex part of KLM. Remember that
the user is assumed to have decided what to do, and how to do it. The mental pre-
paration is thus just the slight pauses made as the user recalls what to do next. 
There are complicated heuristics for deciding where to put M operators, but they all
boil down to the level of chunking (see Chapter 1 for a discussion of chunking). 
If the user types a word, or a well-known command name, this will be one chunk,
and hence only require one mental operator. However, if a command name was an
acronym which the user was recalling letter by letter, then we would place one M
operator per letter.

The physical operator times all depend on the skills of the user. Also, the mental
operator depends on the level of chunking, and hence the expertise of the user. You
must therefore decide before using KLM predictions just what sort of user you are
thinking about. You cannot even work out the operators and then fill in the times
later, as different users may choose different methods and have different placings of
M operators due to chunking. This sounds rather onerous, but the predictions made
by KLM are only meant to be an approximation, and thus reasonable guesses about
levels of expertise are enough.

Individual predictions may be interesting, but the power of KLM lies in compar-
ison. Given several systems, we can work out the methods to perform key tasks, and
then use KLM to tell us which system is fastest. This is considerably cheaper than

Table 12.1 Times for various operators in the keystroke-level model (adapted from
Card, Moran and Newell [56], published and reprinted by permission of Lawrence Erlbaum
Associates, Inc.)

Operator Remarks Time (s)

K Press key
good typist (90 wpm) 0.12
poor typist (40 wpm) 0.28
non-typist 1.20

B Mouse button press
down or up 0.10
click 0.20

P Point with mouse
Fitts’ law 0.1 log2(D/S + 0.5)
average movement 1.10

H Home hands to and from keyboard 0.40
D Drawing – domain dependent –
M Mentally prepare 1.35
R Response from system – measure –

wpm = words per minute
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conducting lengthy experiments (levels of individual variation would demand vast
numbers of trials – see Chapter 9). Furthermore, the systems need not even exist.
From a description of a proposed system, we can predict the times taken for tasks.
As well as comparing systems, we can compare methods within a system. This can be
useful in preparing training materials, as we can choose to teach the faster methods.

Using the keystroke-level model

As an example, we compare the two methods for iconizing a window given in Section
12.2.1. One used the ‘L7’ function key, and the other the ‘CLOSE’ option from the window’s 
pop-up menu. The latter is obtained by moving to the window’s title bar, depressing the left mouse
button, dragging the mouse down the pop-up menu to the ‘CLOSE’ option, and then releasing the
mouse button. We assume that the user’s hand is on the mouse to begin with, and hence only the
L7-METHOD will require a homing operator. The operators for the two methods are as follows:

L7-METHOD H[to keyboard] MK[L7 function key]
CLOSE-METHOD P[to menu bar] B[LEFT down] MP[to option] B[LEFT up]

The total times are thus

L7-METHOD = 0.4 + 1.35 + 0.28
= 2.03 seconds

CLOSE-METHOD = 1.1 + 0.1 + 1.35 + 1.1 + 0.1
= 3.75 seconds

The first calculation is quite straightforward, but the second needs a little unpacking. The button
presses are separate down and then up actions and thus each is timed at only 0.1 of a second,
rather than 0.2 for a click, or 0.28 for typing. We have also used the simplified average of 1.1 sec-
onds for the pointing task. From these predictions, we can see that the L7-METHOD is far faster.
In Section 12.2.1, Sam’s selection rule was to use the L7-METHOD when playing blocks. To do so,
he can go on playing the game using the mouse in his right hand whilst moving his left hand over
the key. Thus the real time for Sam, from when he takes his attention from the game to when the
command is given, is less: 2.03 seconds minus the homing time, that is 1.63 seconds. Given the
method is so fast, why does Sam not use it all the time?

Perhaps the average estimates for pointing times have biased our estimate. We can be a little more 
precise about the CLOSE-METHOD timing if we use Fitts’ law instead of the average 1.1 seconds.
The mouse will typically be in the middle of a 25 line high window. The title bar is 1.25 lines high.
Thus the distance to target ratio for the first pointing task is 10:1. The ‘CLOSE’ option is four items
down on the pop-up menu; hence the ratio for the second pointing task is 4:1. Thus we can calcu-
late the pointing times:

P[to menu bar] = 0.1 log2(10.5) = 0.339
P[to option] = 0.1 log2(4.5) = 0.217

With these revised timings, KLM predicts the CLOSE-METHOD will take 2.1 seconds. So Sam’s
selection rule is not quite as bad as it initially seemed!
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Worked exercise Do a keystroke-level analysis for opening up an application in a visual desktop interface using
a mouse as the pointing device, comparing at least two different methods for performing the
task. Repeat the exercise using a trackball. Consider how the analysis would differ for various
positions of the trackball relative to the keyboard and for other pointing devices.

Answer We provide a keystroke-level analysis for three different methods for launching an
application on a visual desktop. These methods are analyzed for a conventional one-
button mouse, a trackball mounted away from the keyboard and one mounted close to
the keyboard. The main distinction between the two trackballs is that the second one
does not require an explicit repositioning of the hands, that is there is no time required
for homing the hands between the pointing device and the keyboard.

Method 1 Double clicking on application icon

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Double click 2B[click] 0.400 0.400 0.400
4. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 1.864 2.313 1.513

Method 2 Using an accelerator key

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Return to keyboard H[kbd] 0.400 0.400 0.000
6. Press accelerator K 0.200 0.200 0.200
Total times 3.214 3.663 2.763

Method 3 Using a menu

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Mouse to file menu P 0.664 1.113 1.113
6. Pop-up menu B[down] 0.100 0.100 0.100
7. Drag to open P[drag] 0.713 1.248 1.248
8. Release mouse B[up] 0.100 0.100 0.100
9. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 4.591 6.024 5.224
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Card, Moran and Newell empirically validated KLM against a range of systems,
both keyboard and mouse based, and a wide selection of tasks. The predictions were
found to be remarkably accurate (an error of about 20%). KLM is thus one of the few
models capable of giving accurate quantitative predictions about performance.
However, the range of applications is correspondingly small. It tells us a lot about the
micro-interaction, but not about the larger-scale dialog.

We have seen that you have to be quite careful, as the approximations you make
can radically change the results – KLM is a guide, not an oracle. We should also add
a word of caution about the assumption that fastest is best. There are certainly situ-
ations where this is so, for example highly repetitive tasks such as telephony or data
entry. However, even expert users will often not use the fastest method. For exam-
ple, the expert may have a set of general-purpose, non-optimal methods, rather than
a few task-specific methods.

12.5.2 Three-state model

In Chapter 2, we saw that a range of pointing devices exists in addition to the mouse.
Often these devices are considered logically equivalent, if the same inputs are avail-
able to the application. That is, so long as you can select a point on the screen, they
are all the same. However, these different devices – mouse, trackball, light pen – feel
very different. Although the devices are similar from the application’s viewpoint,
they have very different sensory–motor characteristics.

Buxton has developed a simple model of input devices [53], the three-state model,
which captures some of these crucial distinctions. He begins by looking at a mouse.
If you move it with no buttons pushed, it normally moves the mouse cursor about.
This tracking behavior is termed state 1. Depressing a button over an icon and then
moving the mouse will often result in an object being dragged about. This he calls
state 2 (see Figure 12.1).

If instead we consider a light pen with a button, it behaves just like a mouse when
it is touching the screen. When its button is not depressed, it is in state 1, and when
its button is down, state 2. However, the light pen has a third state, when the light
pen is not touching the screen. In this state the system cannot track the light pen’s
position. This is called state 0 (see Figure 12.2).

A touchscreen is like the light pen with no button. While the user is not touching
the screen, the system cannot track the finger – that is, state 0 again. When the user
touches the screen, the system can begin to track – state 1. So a touchscreen is a state
0–1 device whereas a mouse is a state 1–2 device. As there is no difference between a
state 0–2 and a state 0–1 device, there are only the three possibilities we have seen.

Figure 12.1 Mouse transitions: states 1 and 2



442 Chapter 12 n Cognitive models

The only additional complexity is if the device has several buttons, in which case we
would have one state for each button: 2left, 2middle, 2right.

One use of this classification is to look at different pointing tasks, such as icon
selection or line drawing, and see what state 0–1–2 behavior they require. We can
then see whether a particular device can support the required task. If we have to use
an inadequate device, it is possible to use keyboard keys to add device states. For
example, with a touchscreen, we may nominate the escape key to be the ‘virtual’
mouse button whilst the user’s finger is on the screen. Although the mixing of key-
board and mouse keys is normally a bad habit, it is obviously necessary on occasions.

At first, the model appears to characterize the states of the device by the inputs
available to the system. So, from this perspective, state 0 is clearly different 
from states 1 and 2. However, if we look at the state 1–2 transaction, we see that it 
is symmetric with respect to the two states. In principle, there is no reason why a 
program should not decide to do simple mouse tracking whilst in state 2 and drag
things about in state 1. That is, there is no reason until you want to type something!
The way we can tell state 1 from state 2 is by the activity of the user. State 2 requires
a button to be pressed, whereas state 1 is one of relative relaxation (whilst still requir-
ing hand–eye coordination for mouse movement). There is a similar difference in
tension between state 0 and state 1.

It is well known that Fitts’ law has different timing constants for different devices.
Recall that Fitts’ law says that the time taken to move to a target of size S at a distance
D is:

a + b log2(D/S + 1)

The constants a and b depend on the particular pointing device used and the skill of
the user with that device. However, the insight given by the three-state model is that
these constants also depend on the device state. In addition to the timing, the final
accuracy may be affected.

These observations are fairly obvious for state 0–1 devices. With a touchscreen, or
light pen, a cursor will often appear under the finger or pen when it comes in con-
tact with the screen. The accuracy with which you can move the cursor around will
be far greater than the accuracy with which you can point in the first place. Also it is
reasonable to expect that the Fitts’ law constant will be different, although not so
obvious which will be faster.

There is a similar difference between states 1 and 2. Because the user is holding a
button down, the hand is in a state of tension and thus pointing accuracy and speed
may be different. Experiments to calculate Fitts’ law constants in states 1 and 2 have

Figure 12.2 Light pen transitions: three states
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shown that these differences do exist [221]. Table 12.2 shows the results obtained for
a mouse and trackball.

We can recalculate the KLM prediction for the CLOSE-METHOD using these data.
Recall that the method had two pointing operators, one to point to the window’s title
bar (with a distance to target size ratio of 10:1), the second to drag the selection down
to ‘CLOSE’ on the pop-up menu (4:1). Thus the first pointing operator is state 1 and
the second is state 2. The times are thus

Mouse
P[to menu bar] = −107 + 223 log2(11) = 664 ms
P[to option] = 135 + 249 log2(5) = 713 ms

Trackball
P[to menu bar] = 75 + 300 log2(11) = 1113 ms
P[to option] = −349 + 688 log2(5) = 1248 ms

giving a further revised time for the CLOSE-METHOD of 2.93 seconds using a mouse
and 3.91 seconds using a trackball.

COGNITIVE ARCHITECTURES

The formalisms we have seen so far have some implicit or explicit model of how the
user performs the cognitive processing involved in carrying out a task. For instance,
the concept of taking a problem and solving it by divide and conquer using subgoals
is central to GOMS. CCT assumes the distinction between long- and short-term
memory, with production rules being stored in long-term memory and ‘matched’
against the contents of short-term (or working) memory to determine which ‘fire’.
The values for various motor and mental operators in KLM were based on the Model
Human Processor (MHP) architecture of Card, Moran and Newell [56]. Another
common assumption, which we have not discussed in this chapter, is the distinction
between linguistic levels – semantic, syntactic and lexical – as an architectural model
of the user’s understanding.

12.6

Table 12.2 Fitts’ law coefficients (after MacKenzie, Sellen and Buxton [221], © 1991
ACM, Inc. Reprinted by permission)

Device a (ms) b (ms/bit)

Pointing (state 1)
Mouse −107 223
Trackball 75 300

Dragging (state 2)
Mouse 135 249
Trackball −349 688
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In Chapter 1, we discussed some of these architectural descriptions of the user as
an information-processing machine. Our emphasis in this section will be to describe
a couple more architectural models that are quite distinct from those described in
Chapter 1 and assumed in the earlier parts of this chapter. Here we will see that the
architectural assumptions are central to the description of the cognitive modeling
that these approaches offer.

There are interesting differences of emphasis between these architectural models
and the previous models. The hierarchical and linguistic notations tend to assume
perfect dialog on the user’s part. They may measure the complexity of that perfect
dialog, but tend not to consider diversions from the optimal command sequences.
However, for the architectural models in this section the prediction and under-
standing of error is central to their analyses.

12.6.1 The problem space model

Rational behavior is characterized as behavior that is intended to achieve a specific
goal. This element of rationality is often used to distinguish between intelligent and
machine-like behavior. In the field of artificial intelligence (AI), a system exhibiting
rational behavior is referred to as a knowledge-level system. A knowledge-level system
contains an agent behaving in an environment. The agent has knowledge about 
itself and its environment, including its own goals. It can perform certain actions 
and sense information about its changing environment. As the agent behaves in its
environment, it changes the environment and its own knowledge. We can view the
overall behavior of the knowledge-level system as a sequence of environment and
agent states as they progress in time. The goal of the agent is characterized as a 
preference over all possible sequences of agent/environment states.

Contrast this rational behavior with another general computational model for 
a machine, which is not rational. In computer science, it is common to describe a
problem as the search through a set of possible states, from some initial state to 
a desired state. The search proceeds by moving from one state to another possible
state by means of operations or actions, the ultimate goal of which is to arrive at one
of the desired states. This very general model of computation is used in the ordinary
task of the programmer. Once she has identified a problem and a means of arriving
at the solution to the problem (the algorithm), the programmer then represents 
the problem and algorithm in a programming language, which can be executed on a
machine to reach the desired state. The architecture of the machine only allows the
definition of the search or problem space and the actions that can occur to traverse
that space. Termination is also assumed to happen once the desired state is reached.
Notice that the machine does not have the ability to formulate the problem space
and its solution, mainly because it has no idea of the goal. It is the job of the pro-
grammer to understand the goal and so define the machine to achieve it.

We can adapt the state-based computational model of a machine in order to real-
ize the architecture of a knowledge-level system. The new computational model is
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the problem space model, based on the problem-solving work of Newell and Simon 
at Carnegie–Mellon University (see Chapter 1). A problem space consists of a set of
states and a set of operations that can be performed on the states. Behavior in a 
problem space is a two-step process. First, the current operator is chosen based on
the current state and then it is applied to the current state to achieve the new state.
The problem space must represent rational behavior, and so it must characterize the
goal of the agent. A problem space represents a goal by defining the desired states 
as a subset of all possible states. Once the initial state is set, the task within the prob-
lem space is to find a sequence of operations that form a path within the state space
from the initial state to one of the desired states, whereupon successful termination
occurs.

From the above description, we can highlight four different activities that occur
within a problem space: goal formulation, operation selection, operation application
and goal completion. The relationship between these problem space processes and
knowledge-level activity is key. Perception that occurs at the knowledge level is 
performed by the goal formulation process, which creates the initial state based on
observations of the external environment. Actions at the knowledge level are opera-
tions in the problem space which are selected and applied. The real knowledge 
about the agent and its environment and goals is derived from the state/operator
information in the problem space. Because of the goal formulation process, the set
of desired states indicates the knowledge-level goal within the problem space. The
operation selection process selects the appropriate operation at a given point in time
because it is deemed the most likely to transform the state in the problem space to
one of the desired states; hence rational behavior is implied.

The cycle of activity within the problem space is as follows. Some change in the
external environment, which is relevant to the goal of the agent, is sensed by the 
goal formulation process, which in turn defines the set of desired states for the agent
and its initial state for the following task. The operation selection process suggests 
an operation that can act on that state and transform it ‘closer’ to a desired state. The
operation application process executes the operation, changing the current state and
surrounding environment. If the new state is a desired state, then the goal has been
achieved and the goal completion process reverts the agent to inactive.

The real power of the problem space architecture is in recursion. The activity of
any of the processes occurs only when the knowledge it needs to complete its chore
is immediately available. For example, to decide which operation is most likely to
lead to a desired state, the problem space will need to know things about its current
state and that of the environment. If that information is not immediately available,
then activity cannot continue. In that case, another problem space is invoked with
the goal of finding out the information that was needed by the parent problem space.
In this way, we can see the evolution of problems spaces as a stack-like structure, new
spaces being invoked and placed on the problem space stack only to be popped off
the stack once they achieve their goal.

Though the problem space model described briefly above is not directly imple-
mentable, it is the basis for at least one executable cognitive architecture, called Soar.
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We shall not discuss the details of Soar’s implementation here; instead we refer 
you to Laird, Newell and Rosenbloom [205]. An interesting application of the 
Soar implementation of problem spaces has been done by Young and colleagues on
programmable user models (or PUMs) [386]. Given a designer’s description of an
intended procedure or task that is to be carried out with an interactive system, 
an analysis of that procedure produces the knowledge that would be necessary and
available for any user attempting the task. That knowledge is encoded in the prob-
lem space architecture of Soar, producing a ‘programmed’ user model (the PUM) 
to accomplish the goal of performing the task. By executing the PUM, the stacking
and unstacking of problem spaces needed to accomplish the goal can be analyzed 
to measure the cognitive load of the intended procedure. More importantly, if 
the PUM cannot achieve the goal because it cannot find some knowledge necessary
to complete the task, this indicates to the designer that there is a problem with 
the intended design. In this way, erroneous behavior can be predicted before 
implementation.

12.6.2 Interacting cognitive subsystems

Barnard has proposed a very different cognitive architecture, called interacting cog-
nitive subsystems (ICS) [24, 25, 27]. ICS provides a model of perception, cognition
and action, but unlike other cognitive architectures, it is not intended to produce 
a description of the user in terms of sequences of actions that he performs. ICS 
provides a more holistic view of the user as an information-processing machine. The
emphasis is on determining how easy particular procedures of action sequences
become as they are made more automatic within the user.

ICS attempts to incorporate two separate psychological traditions within one 
cognitive architecture. On the one hand is the architectural and general-purpose
information-processing approach of short-term memory research. On the other
hand is the computational and representational approach characteristic of psycho-
linguistic research and AI problem-solving literature.

The architecture of ICS is built up by the coordinated activity of nine smaller 
subsystems: five peripheral subsystems are in contact with the physical world and
four are central, dealing with mental processes. Each subsystem has the same gen-
eric structure. A subsystem is described in terms of its typed inputs and outputs 
along with a memory store for holding typed information. It has transformation
functions for processing the input and producing the output and permanently stored
information. Each of the nine subsystems is specialized for handling some aspect of
external or internal processing. For example, one peripheral subsystem is the visual
system for describing what is seen in the world. An example of a central subsystem
is one for the processing of propositional information, capturing the attributes and
identities of entities and their relationships with each other (a particular example is
that propositional information represents ‘“knowing” that a particular word has four
syllables, begins with “P” and refers to an area in central London’ [27]).
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ICS is another example of a general cognitive architecture that can be applied 
to interactive design. One of the features of ICS is its ability to explain how a user
proceduralizes action. Remember in the discussion of CCT we distinguished
between novice and expert use of an interactive system. Experts can perform com-
plicated sequences of actions as if without a thought, whereas a novice user must
contemplate each and every move (if you do not believe this distinction is accurate,
observe users at an ATM and see if you can tell the expert from the novice). The
expert recognizes the task situation and recalls a ‘canned’ procedure of actions
which, from experience, results in the desired goal being achieved. They do not have
to think beyond the recognition of the task and consequent invocation of the correct
procedure. Such proceduralized behavior is much less prone to error. A good
designer will aid the user in proceduralizing his interaction with the system and will
attempt to design an interface that suggests to the user a task for which he already
has a proceduralized response. It is for this reason that ICS has been suggested as 
a design tool that can act as an expert system to advise a designer in developing 
an interface.

SUMMARY

In this chapter, we have discussed a wide selection of cognitive models of the 
users of interactive systems. Cognitive models attempt to represent the users as 
they interact with a system, modeling aspects of their understanding, knowledge,
intentions or processing. We divided cognitive models into three categories. The 
first described the hierarchical structuring of the user’s task and goal structures. 
The GOMS model and CCT were examples of cognitive models in this category. 
The second category was concerned with linguistic and grammatical models, which
emphasized the user’s understanding of the user–system dialog. BNF and TAG were
described as examples in this category. Most of these cognitive models have focussed
on the execution activity of the user, neglecting his perceptive ability and how 
that might affect less planned and natural interaction strategies. The third category
of cognitive models was based on the more solid understanding of the human motor
system, applicable in situations where the user does no planning of behavior and 
executes actions automatically. KLM was used to provide rough measures of user
performance in terms of execution times for basic sequences of actions. Buxton’s
three-state model for pointing devices allowed for a finer distinction between execu-
tion times than with KLM. We concluded this chapter with a discussion of cognitive
architectures, the assumptions of which form the foundation for any cognitive 
models. In addition to the basic architectural distinction between long- and short-
term memory, we discussed two other cognitive architectures – the problem space
model and ICS – which apply different assumptions to the analysis of interactive 
systems.

12.7
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EXERCISES

12.1 Recall the CCT description of the rule INSERT-SPACE-2 discussed in Section 12.2.2:

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)

(TEST-CURSOR %LINE %COL) )

THEN ( (DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

(DO-KEYSTROKE ESC)

(DELETE-GOAL insert space) ))

As we discussed, this is already proceduralized; that is, the rule is an expert rule. Write 
new ‘novice’ rules where the three keystrokes are not proceduralized. That is, you should have
separate rules for each keystroke and suitable goals (such as GET-INTO-INSERT-MODE) to fire
them.

12.2 One of the assumptions underlying the programmable user model approach is that it is possible
to provide an algorithm to describe the user’s behavior in interacting with a system. Taking 
this position to the extreme, choose some common task with a familiar interactive system (for
example, creating a column of numbers in a spreadsheet and calculating their sum, or any other
task you can think of) and describe the algorithm needed by the user to accomplish this task.
Write the description in pseudocode. Does this exercise suggest any improvements in the 
system?
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A good description of TAG with several extended examples based on the
Macintosh interface. The authors provide a good comparative analysis of TAG
versus other cognitive modeling techniques.

A. Newell, G. Yost, J. E. Laird, P. S. Rosenbloom and E. Altmann, Formulating the
problem-space computational model. In R. F. Rashid, editor, CMU Computer
Science: A 25th Anniversary Commemorative, Chapter 11, ACM Press, 1991.
The description of the problem space cognitive architecture was informed by this
article, which also contains references to essential work on the Soar platform.

J. Carroll, editor, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary
Science, Morgan Kaufmann, 2003.
See chapters by Scott MacKenzie on motor behavior models (Fitts’ law and
beyond), Bonnie John on information processing and skilled behavior (GOMS
and related models) and Stephen Payne on cognitive and mental models.



SOCIO-ORGANIZATIONAL

ISSUES AND STAKEHOLDER

REQUIREMENTS

OV E RV I E W

n There are several organizational issues that affect the
acceptance of technology by users and that must
therefore be considered in system design:
– systems may not take into account conflict and

power relationships
– those who benefit may not do the work
– not everyone may use systems.

n In addition to generic issues, designers must identify
specific stakeholder requirements within their
organizational context.

n Socio-technical models capture both human and
technical requirements.

n Soft systems methodology takes a broader view of
human and organizational issues.

n Participatory design includes the user directly in the
design process.

n Ethnographic methods study users in context,
attempting to take an unbiased perspective.

13
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INTRODUCTION

As we saw in Chapter 3, technology does not exist in a vacuum. It is used within a
specific context, and is influenced by many factors within that context. The different
people affected by the introduction of a system are known as stakeholders and their
needs can be both complex and conflicting. In addition, we need to understand how
the introduction of the system might actually change the organizational and work
practices that are currently in place and what the impact of this might be.

In this chapter we look in more detail at the socio-organizational context of use
and discuss some of the generic issues that can affect the acceptance of technology 
in organizations. We then look at a number of approaches to modeling the socio-
organizational context and the requirements of the stakeholders within it.

Requirements capture is an important part of all software engineering methodo-
logies but often this activity focusses primarily on the functional requirements of the
system – what the system must be able to do – with less emphasis on non-functional
human issues such as usability and acceptability. Even where such matters are 
considered, they may reflect only the management’s view of the user’s needs rather
than gathering information from the users themselves. Stakeholder requirements
modeling redresses this balance by identifying the needs of all stakeholders, includ-
ing the user and anyone else affected by the system, within the context in which it
will be used.

We will begin this chapter by discussing some of the organizational issues that
arise when new technological solutions are introduced. We then outline a number of
models and methods that can be used to capture this broader view of stakeholder
requirements, including socio-technical models, soft systems methodology, particip-
atory design and the ethnographic approach.

ORGANIZATIONAL ISSUES

In this section, we shall look at some of the organizational issues that affect the
acceptance and relevance of information and communication systems. These factors
often sit ‘outside’ the system as such, and may involve individuals who never use it.
Yet it is often these factors more than any other that determine the success or failure
of computer systems. Many systems supporting work in organizations are support-
ing groups of workers, but this may be through specialist groupware systems (see
Chapter 19) or through shared data or processes.

13.2.1 Cooperation or conflict?

The term ‘computer-supported cooperative work’ (CSCW) seems to assume that
groups will be acting in a cooperative manner. This is obviously true to some extent;

13.2

13.1
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even opposing football teams cooperate to the extent that they keep (largely) within
the rules of the game, but their cooperation only goes so far. People in organiza-
tions and groups have conflicting goals, and systems that ignore this are likely to fail
spectacularly.

Imagine that an organization is already highly computerized, the different depart-
ments all have their own systems and the board decides that an integrated informa-
tion system is needed. The production manager can now look directly at stocks 
when planning the week’s work, and the marketing department can consult the sales
department’s contact list to send out marketing questionnaires. All is rosy and the
company will clearly run more efficiently – or will it?

The storekeeper always used to understate stock levels slightly in order to keep 
an emergency supply, or sometimes inflate the quoted levels when a delivery was due
from a reliable supplier. Also, requests for stock information allowed the storekeeper
to keep track of future demands and hence plan future orders. The storekeeper has
now lost a sense of control and important sources of information. Members of the
sales department are also unhappy: their contacts are their livelihood. The last thing
they want is someone from marketing blundering in and spoiling a relationship with
a customer built up over many years. Some of these people may resort to subverting
the system, keeping ‘sanitized’ information online, but the real information in per-
sonal files. The system gradually loses respect as the data it holds is incorrect, 
morale in the organization suffers and productivity drops. The board gets worried
and meets to consider upgrading the computer system!

Before installing a new computer system, whether explicitly ‘cooperative’ or not,
one must identify the stakeholders who will be affected by it. These are not just the
immediate users, but anyone whose jobs will be altered, who supplies or gains infor-
mation from it, or whose power or influence within the organization will increase or
decrease. It will frequently be the case that the formal ‘client’ who orders the system
falls very low on the list of those affected. Be very wary of changes that take power,
influence or control from some stakeholders without returning something tangible
in their place.

13.2.2 Changing power structures

The identification of stakeholders will uncover information transfer and power rela-
tionships that cut across the organizational structure. Indeed, all organizations have
these informal networks that support both social and functional contacts. However,
the official lines of authority and information tend to flow up and down through line
management. New communications media may challenge and disrupt these formal
managerial structures.

The physical layout of an organization often reflects the formal hierarchy: each
department is on a different floor, with sections working in the same area of an
office. If someone from sales wants to talk to someone from marketing then one of
them must walk to the other’s office. Their respective supervisors can monitor the
contact. Furthermore, the physical proximity of colleagues can foster a sense of
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departmental loyalty. An email system has no such barriers; it is as easy to ‘chat’ to
someone in another department as in your own. This challenges the mediating and
controlling role of the line managers.

Furthermore, in face-to-face conversation, the manager can easily exert influence
over a subordinate: both know their relative positions and this is reflected in the 
patterns of conversation and in other non-verbal cues. Email messages lose much 
of this sense of presence and it is more difficult for a manager to exercise authority.
The ‘levelling’ effect even makes it possible for subordinates to direct messages 
‘diagonally’ across the hierarchy, to their manager’s peers, or, even worse, to their
manager’s manager!

Many organizations are moving toward flatter management structures anyway, so
from a strategic viewpoint these effects may be acceptable. But can the organization
cope with a disaffected junior management during the transition? For other organ-
izations the effects may be less welcome and the system dropped or heavily regulated.
In one case, an email system was introduced and was agreed to be functioning well,
but the management, feeling a loss of control and suspicion over their subordinates’
communications, introduced logging so that all email messages could be monitored.
The system quickly fell into disuse. Logging of email is becoming more widespread
with employers using it to identify cases of system ‘abuse’ by employees. But such
activity must be handled carefully: it is as likely to backfire on the management by
reducing the productive use of email as it is to have the desired effect.

Technology can be an important vector of social change, but if violent reaction is
to be avoided, the impact of the technology must be assessed before it is introduced.
In the short term, solutions must be carefully matched to the existing social and
organizational structures.

13.2.3 The invisible worker

The ability to work and collaborate at a distance can allow functional groups 
to be distributed over different sites. This can take the form of cross-functional
neighbourhood centers, where workers from different departments do their jobs in 
electronic contact with their functional colleagues. Alternatively, distributed group-
ware can allow the true home-based teleworker to operate on similar terms to an
office-based equivalent. The ecological and economic advantages of such working
practices are now becoming well established, and it seems that communications and
CSCW technology can overcome many of the traditional barriers.

In fact, a closer examination reveals that the barriers to such working are not 
technological but managerial. First of all, management style may make remote 
working all but impossible. If the approach in an organization is ‘management by
presence’, that is you know someone is working because they are in the office, then
there is no way a remote worker is going to be trusted. If, on the other hand, the style
is ‘management by objectives’, that is you know your subordinates are working
because they are doing their jobs and producing results, then remote working is 
not so problematical. Even where remote working is accepted, the lack of physical
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presence can be a problem. When the time comes for promotion, the present
employee may seem more worthy than the distant one – not because of any object-
ive criteria, but because presence increases perceived worth.

We can see that, again, social and managerial relationships completely dominate
technological considerations. Many video-based groupware systems are intended to
create a sense of engagement, of active participation and social presence. Whether
this will be sufficient to overcome ingrained attitudes remains to be seen.

13.2.4 Who benefits?

One frequent reason for the failure of information systems is that the people who get
the benefits from the system are not the same as those who do the work. One ex-
ample, which we discuss in more detail in Chapter 19, is structured message systems
such as Lens. In these systems the sender has to do work in putting information into
fields appropriately, but it is the recipient who benefits. Another example is shared
calendars. The beneficiary of the system is a manager who uses the system to arrange
meeting times, but whose personal secretary does the work of keeping the calendar
up to date. Subordinates are less likely to have secretarial support, yet must keep up
the calendar with little perceived benefit. Of course, chaos results when a meeting is
automatically arranged and the subordinates may have to rearrange commitments
that have not been recorded on the system. The manager may force use by edict or
the system may simply fall into disuse. Many such groupware systems are introduced
on a ‘see if it works’ basis, and so the latter option is more likely.

The lesson is that information systems should aim for some level of symmetry. 
If you have to do work for the system, you should obtain some benefit from it. 
For the shared calendar, this might involve improving the personal user interface, so
that there are definite advantages in using the online system to plan your time rather
than using paper (it could even print out Filofax pages). In addition, if people use
electronic organizers one could consider integrating these into the system.

13.2.5 Free rider problem

Even where there is no bias toward any particular people, a system may still not 
function symmetrically, which may be a problem, particularly with shared com-
munication systems. One issue is the free rider problem. Take an electronic con-
ferencing system. If there is plenty of discussion of relevant topics then there are
obvious advantages to subscribing and reading the contributions. However, when
considering writing a contribution, the effort of doing so may outweigh any benefits.
The total benefit of the system for each user outweighs the costs, but for any particu-
lar decision the balance is overturned.

To see this situation in a different context imagine an eccentric philanthropist who
has gathered three strangers into a room. They are invited to throw money into a pot
in the center. When they have done so, the philanthropist will double the money 
in the pot and then divide it up between them and send them on their way. Each
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stranger reasons ‘If I put in three pennies, then our benefactor will double this to six.
These will be distributed between three of us, so I will have only two returned to me.’
Clearly, unless the strangers can come to some understanding none of them will put
any money in the pot, and none will benefit.

A few free riders in a conference system are often not a problem, as the danger is
more likely from too much activity. In addition, in electronic conferences the pat-
terns of activity and silence may reflect other factors such as expertise. However, it is
easy for the number of free riders gradually to increase and the system slide into dis-
use. It is hard to enforce equal use, except by restrictive schemes such as round-robin
contributions (everyone contributes something however short). In the real world,
such problems are often solved by social pressure, and the free rider reacts to the col-
lective censure of the group. Increasing the visibility of participants’ contributions
might also help these social mechanisms. For example, one could display an activity
meter showing the number of contributions from each subscriber. Of course, people
may then choose not to subscribe in the first place!

13.2.6 Critical mass

Another issue related to the free rider problem is the need to develop a critical mass.
When telephones were only in public places, their use as a form of pervasive inter-
personal communication was limited. However, once a large number of people 
have telephones in their homes it becomes worthwhile paying to have a telephone
installed. In cost/benefit terms, the early subscribers probably have a smaller benefit
than the cost. Only when the number of subscribers increases beyond the critical
mass does the benefit for all dominate the cost (see Figure 13.1). The situation for
conferencing systems and email is, of course, very similar.

We can learn something from the lessons of the telephone system and other 
successful technologies (but remember, telephones took the best part of 100 years 
to become pervasive in affluent countries). The telephone was useful for sub-
groups before it became beneficial for all. Even when only a small proportion of the

Figure 13.1 Cost/benefit of system use
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population had personal telephones, they still formed a significant proportion of
their social group, so these cliques of use could grow gradually over time.

The same is true of email. Even a group of two or three people in an organization
can use email effectively between themselves. If an organization consists of widening
circles of highly connected subgroups, then take-up can grow from the core to the
wider group. Of course, the benefits increase as it becomes pervasive, but even a tiny
user group ensures that the benefits outweigh the costs. Clearly, we must design any
new system so that it has benefits even when its user population is small.

13.2.7 Automating processes – workflow and BPR

The major task in many organizations is moving pieces of paper around. An order 
is received by phone and an order form filled in by the sales executive. The order
form is passed to accounts who check the credit rating and if all is okay it is passed
on to stores who check availability and collect the order together at the picking line.
When the order is dispatched, a delivery note is packed with the order and a copy is
returned to accounts, who send an invoice to the customer.

Organizations have many such processes, and workflow systems aim to automate
much of the process using electronic forms, which are forwarded to the relevant 
person based on pre-coded rules. Some workflow systems are built using special-
purpose groupware, often based on a notation for describing the desired workflow.
Coordinator (see Section 14.3.6) is an example of a workflow system where the rules
are heavily influenced by speech act theory. In addition, workflow systems may be
implemented using more general structured message systems, including Lotus Notes
(see the Design Focus in this section).

The rigid form of a typical workflow system is an example of global structuring
(see Chapter 19 for more details). The danger with any form of global structuring is
that it may conflict with or inhibit more informal and less structured patterns of
activity which also contribute to the organization’s free running.

A more radical approach to organizational processes is found in business process
re-engineering (BPR). Traditionally, organizations have been structured around
functions: sales, accounts, stores, manufacturing. However, the purpose of an organ-
ization can be seen in terms of key business processes. The ordering/delivery pro-
cess described above is a typical and important example. In BPR these processes 
are recorded and analyzed. Problems in the current process are noted and the 
whole process may be redesigned in order to make the path of the process more
efficient. For example, instead of sending an order to the accounts department to
approve, a list of customer credit limits could be given to the sales executives. They
could then check the credit rating of the customer whilst on the phone and only 
forward the order to accounts if there are any unusual problems. Finally, and most
radically, the whole structure of the organization may be modified to reflect and
support the key processes more closely. Typically, this involves stripping layers of
middle management. BPR as an issue engenders zealots and reactionaries in equal
measure.
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13.2.8 Evaluating the benefits

We have seen several problems that can arise from the mismatch between informa-
tion systems and organizational and social factors. Let us assume that we have a sys-
tem in place – and it has not fallen apart at the seams. Everyone seems happy with it
and there are no secret resentments. Now it is time to count the cost – it was an
expensive system to buy and install, but was it worth it?

This is an almost impossible question to answer. The benefits from cooperative
systems, especially organization-wide systems such as email or electronic conferen-
cing, are in terms of job satisfaction or more fluid information flow. Some, such as 
the video wall (see Chapter 19), are expected primarily to help social contact within
the organization. It may be possible to measure contentment and job satisfaction

DESIGN FOCUS

Implementing workflow in Lotus Notes

Lotus Notes can be used to implement workflow systems in a straightforward manner. The sales execut-
ive fills in an electronic form which is automatically emailed to the accounts department. When it is
approved the order form is automatically emailed to stores, and so on.

However, interruptions due to email can be disruptive and reduce efficiency. An alternative is actively
not to mail items for action to people, but instead to make them available within their electronic envir-
onment. This is like the difference between having a form for approval pushed in front of you to sign
compared with having a pile of order forms sitting in your in-tray. In the latter case you can organize
your own work, but cannot forget to process the forms as they sit as a permanent reminder – an 
environmental cue.

Within the electronic world of Notes such environmental cues can be implemented using its views
mechanism. Each database can have associated several views, lists of items in the database. The
definition of the view specifies which fields of each item should be listed and also which items should
be included in the list, based on various criteria. The simplest filtering criterion is the type of the mes-
sage, but more complex criteria can include the state of various fields.

In the ordering process example, there can be a single database. When an order is received, the sales
executive creates a new order item and fills in the details of the customer and required products.
However, the sales executive does not have write permission for the ‘approved’ field. The accounts
department has a view of the same database. This view lists only those orders which have completed
customer details, but a blank ‘approved’ field. Thus all orders received appear in this listing until they
have the ‘approved’ field completed, at which point they disappear from the view (but not the
database). Similarly, the stores department has a view whose rule only shows orders with a completed
‘approved’ field. Thus the views act as a sort of to-do list.

In the first scenario, the workflow is automated and control rests in the system. In the second scenario,
the workflow is supported leaving control to the users.
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using attitude questionnaires (see Chapter 9), but any hard economic benefit will 
be so diffuse as to be unquantifiable.

However, a similar argument could be (and has been) framed for computer use 
in general. The benefits are difficult to quantify, but, over time, it has become clear
that the competitive edge of information technology is necessary for survival in the
modern world. Perhaps the same will be said of cooperative systems in a few years.

CAPTURING REQUIREMENTS

As we have already seen, problems can arise when a system is introduced without 
a full understanding of all the people who will be affected by it. But how can we 
better understand and support complex organizational structures, workgroups and
potentially conflicting stakeholder needs? We begin by capturing and analyzing
requirements, but we need to do this within the work context, taking account of the
complex mix of concerns felt by different stakeholders and the structures and pro-
cesses operating in the workgroups.

In this section we consider several approaches: socio-technical modeling, soft 
systems methodology, participatory design, ethnographic methods and contextual
inquiry. All are aimed at understanding the reality of work contexts and the per-
spectives of different stakeholders. All recognize that technology can be successfully
deployed only if it is done with an understanding of the context of use, but each takes
a slightly different approach to the problem. Before we look in more detail at these
approaches we need to clarify what we mean when we talk about ‘stakeholders’.

13.3.1 Who are the stakeholders?

Understanding stakeholders is key to many of the approaches to requirements cap-
ture, since in an organizational setting it is not simply the end-user who is affected
by the introduction of new technology. Imagine that a new billing system is to be
introduced by a local gas supplier. Who will be affected by this decision? Obviously,
the people who are responsible for producing and sending out bills – they will be 
the ones using the system directly. But where do they get the information from 
to produce the bills? To whom do they send the bills? Who determines the level 
of charging and on what grounds? Who stands to make a profit from increased 
revenue? Who will suffer if customers choose to switch supplier due to the improved
service? Meter readers, customers, managers, regulators, shareholders and com-
petitors are all stakeholders in the system. We need approaches that will capture the
complexity of their concerns, which may be in conflict with each other.

A stakeholder, therefore, can be defined as anyone who is affected by the success
or failure of the system. It can be useful to distinguish different categories of stake-
holder, and the following categorization from the CUSTOM approach (see [200]) is
helpful for this:

13.3
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Primary stakeholders are people who actually use the system – the end-users.

Secondary stakeholders are people who do not directly use the system, but receive
output from it or provide input to it (for example, someone who receives a report
produced by the system).

Tertiary stakeholders are people who do not fall into either of the first two categories
but who are directly affected by the success or failure of the system (for example,
a director whose profits increase or decrease depending on the success of the 
system).

Facilitating stakeholders are people who are involved with the design, development
and maintenance of the system.

The aim of the design team is to meet the needs of as many stakeholders as pos-
sible. However, the reality is that usually stakeholder needs are in conflict with each
other. Sometimes this does not matter: a company is unlikely to be too concerned
that its competitors’ requirement to maintain advantage over it is under threat by 
the new system (though they need to be aware to monitor how effectively they are
maintaining their advantage). However, sometimes it does matter. In the example
above, the airline booking system must be usable by travel agency staff but must 
also fulfill the customer need to find an appropriate ticket at the right price. If it 
fails in this, the whole system will fail, as the customer will go elsewhere and business
will be lost.

As a general rule, the priority of stakeholder needs diminishes as you go down the
categories. So primary stakeholders usually take priority over the others. However,
this is not always the case. Imagine designing the control panel of a hospital life sup-
port machine. The primary stakeholders will be medical staff monitoring a patient’s
condition. But who, in fact, has the greatest interest in this system working? Surely it
is the patient, whose life is dependent on the system’s success? In this case the tertiary
stakeholder is of vital importance.

All of the approaches we are considering here are concerned with understanding
stakeholders within their organizational context.

Classifying stakeholders – an airline booking system

An international airline is considering introducing a new booking system for use by associ-
ated travel agents to sell flights directly to the public. The stakeholders can be classified as follows:

n Primary stakeholders: travel agency staff, airline booking staff
n Secondary stakeholders: customers, airline management
n Tertiary stakeholders: competitors, civil aviation authorities, customers’ traveling compan-

ions, airline shareholders
n Facilitating stakeholders: design team, IT department staff
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13.3.2 Socio-technical models

Early in the twentieth century, studies of work focussed on how humans needed 
to adapt to technical innovations. Technological determinism, the view that social
change is primarily dictated by technology, with human and social factors being 
secondary concerns, was prevalent. The socio-technical systems view came about 
to counter this technology-centric position, by stressing that work systems were
composed of both human and machine elements and that it was the interrelation-
ship between these that should be central.

Socio-technical models for interactive systems are therefore concerned with tech-
nical, social, organizational and human aspects of design. They recognize the fact
that technology is not developed in isolation but as part of a wider organizational
environment. It is important to consider social and technical issues side by side 
so that human issues are not overruled by technical considerations.

The key focus of the socio-technical approach is to describe and document the
impact of the introduction of a specific technology into an organization. Methods
vary but most attempt to capture certain common elements:

n The problem being addressed: there is a need to understand why the technology
is being proposed and what problem it is intended to solve.

n The stakeholders affected, including primary, secondary, tertiary and facilitating,
together with their objectives, goals and tasks.

n The workgroups within the organization, both formal and informal.
n The changes or transformations that will be supported.
n The proposed technology and how it will work within the organization.
n External constraints and influences and performance measures.

Information is gathered using methods such as interviews, observation, focus groups
and document analysis. The methods guide this information-gathering process and
help the analyst to make sense of what is discovered. By attempting to understand
these issues, socio-technical approaches aim to provide a detailed view of the role
technology will play and the requirements of successful deployment.

We will compare two approaches to illustrate how this may work in practice.

CUSTOM methodology

CUSTOM is a socio-technical methodology designed to be practical to use in 
small organizations [200]. It is based on the User Skills and Task Match (USTM)
approach, developed to allow design teams to understand and fully document user
requirements [219]. CUSTOM focusses on establishing stakeholder requirements: 
all stakeholders are considered, not just the end-users.

It is applied at the initial stage of design when a product opportunity has been
identified, so the emphasis is on capturing requirements. It is a forms-based methodo-
logy, providing a set of questions to apply at each of its stages.

There are six key stages to carry out in a CUSTOM analysis:
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1. Describe the organizational context, including its primary goals, physical charac-
teristics, political and economic background.

2. Identify and describe stakeholders. All stakeholders are named, categorized (as
primary, secondary, tertiary or facilitating) and described with regard to personal
issues, their role in the organization and their job. For example, CUSTOM
addresses issues such as stakeholder motivation, disincentives, knowledge, skills,
power and influence within the organization, daily tasks and so on.

3. Identify and describe work-groups. A work-group is any group of people who work
together on a task, whether formally constituted or not. Again, work-groups are
described in terms of their role within the organization and their characteristics.

4. Identify and describe task–object pairs. These are the tasks that must be performed,
coupled with the objects that are used to perform them or to which they are applied.

5. Identify stakeholder needs. Stages 2–4 are described in terms of both the current
system and the proposed system. Stakeholder needs are identified by considering
the differences between the two. For example, if a stakeholder is identified as cur-
rently lacking a particular skill that is required in the proposed system then a need
for training is identified.

6. Consolidate and check stakeholder requirements. Here the stakeholder needs list
is checked against the criteria determined at earlier stages.

Stages 2 to 4 are described in terms of the current situation (before the new techno-
logy is introduced) and the proposed situation (after deployment). Stakeholders are
asked to express their views not only of their current role and position but of their
expectations in the light of the changes that will be made. In this way, stakeholder
concerns and goals are elaborated. In addition, the impact of the technology on
working practices is considered (Stage 3) and the transformations that will be sup-
ported by the system specified (Stage 4).

A shorter version of CUSTOM stakeholder analysis

CUSTOM questions investigate a range of stakeholder characteristics, such as the following:

n What does the stakeholder have to achieve and how is success measured?
n What are the stakeholder’s sources of job satisfaction? What are the sources of dissatisfaction

and stress?
n What knowledge and skills does the stakeholder have?
n What is the stakeholder’s attitude toward work and computer technology?
n Are there any work-group attributes that will affect the acceptability of the product to the

stakeholder?
n What are the characteristics of the stakeholder’s task in terms of frequency, fragmentation and

choice of actions?
n Does the stakeholder have to consider any particular issues relating to responsibility, security

or privacy?
n What are the physical conditions in which the stakeholder is working?
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The changes from the current position to the proposed position represent the
issues that need to be addressed to ensure successful deployment, and these are made
explicit during Stages 5 and 6.

CUSTOM provides a useful framework for considering stakeholder requirements
and the use of forms and questions (a ‘manual’ for its use is available [200]) makes
it relatively straightforward, if somewhat time consuming, to apply. For less complex
situations, a shortened version of CUSTOM stakeholder analysis is available (see the
boxed text above). This also provides a checklist for investigations for stages 2–4.

Open System Task Analysis (OSTA)

OSTA [116] is an alternative socio-technical approach, which attempts to describe
what happens when a technical system is introduced into an organizational work
environment. Like CUSTOM, OSTA specifies both social and technical aspects of the
system. However, whereas in CUSTOM these aspects are framed in terms of stake-
holder perspectives, in OSTA they are captured through a focus on tasks.

OSTA has eight main stages:

1. The primary task which the technology must support is identified in terms of
users’ goals.

2. Task inputs to the system are identified. These may have different sources and
forms that may constrain the design.

3. The external environment into which the system will be introduced is described,
including physical, economic and political aspects.

4. The transformation processes within the system are described in terms of actions
performed on or with objects.

5. The social system is analyzed, considering existing work-groups and relationships
within and external to the organization.

6. The technical system is described in terms of its configuration and integration
with other systems.

7. Performance satisfaction criteria are established, indicating the social and tech-
nical requirements of the system.

8. The new technical system is specified.

OSTA uses notations familiar to designers, such as data flow diagrams and textual
descriptions.

13.3.3 Soft systems methodology

The socio-technical models we have looked at focus on identifying requirements
from both human and technical perspectives, but they assume a technological solu-
tion is being proposed. Soft systems methodology (SSM) arises from the same tradi-
tion but takes a view of the organization as a system of which technology and people
are components. There is no assumption of a particular solution: the emphasis is
rather on understanding the situation fully. SSM was developed by Checkland [66]
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to help designers reach an understanding of the context of technological develop-
ments and the influences and concerns that exist within the system under consider-
ation. SSM has seven stages (see Figure 13.2). A distinction is made between the
‘real-world’ stages (1–2, 5–7) and the systems stages (3–4).

We will outline the stages here but will focus on those that help capture require-
ments. The first stage of SSM is the recognition of the problem and initiation of 
analysis. This is followed by a detailed description of the problem situation: develop-
ing a rich picture. This will include all the stakeholders, the tasks they carry out and
the groups they work in, the organizational structure and its processes and the issues
raised by each stakeholder. Any knowledge elicitation techniques can be used to
gather the information to build the rich picture, including observation (and video
and audio recording), structured and unstructured interviews and questionnaires,
and workshops incorporating such activities as role play, simulations and critical
incident analysis. In general, less structured approaches are used initially to avoid
artificially constraining the description. The rich picture can be in any style – there
are no right or wrong answers – but it should be clear and informative to the
designer. Certain conventions are widely accepted, however. Speech balloons are
used to represent stakeholder issues; crossed swords represent conflicts within the
system; and the eye represents external influences or observers. Figure 13.3 shows an
example of a rich picture with all of these elements.

Rich pictures are in themselves useful tools to aid understanding of a situation.
The rich picture is informal and relatively intuitive. It captures succinctly the poten-
tially conflicting interests of the various stakeholders and the other influences on a

Figure 13.2 The seven stages of soft systems methodology. (Adapted from
Checkland [66], p.163)
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design situation. It provides an understandable summary of the designer’s under-
standing that can be easily checked with stakeholders, and it can even be developed
collaboratively with stakeholders as part of the consultation process – allowing all
parties to contribute to the rich picture sketch. These benefits have led to a number
of researchers in HCI proposing their use (outside the full SSM methodology) to
inform the design process (see, for example, [239]).

At the next stage in SSM we move from the real world to the systems world and
attempt to generate root definitions for the system, which define the essence of what
the system is about. There may be several root definitions of a system, representing
different stakeholder perspectives, for example. Root definitions are described in
terms of specific elements, summarized using the acronym, CATWOE:

Clients – those who receive output or benefit from the system.

Actors – those who perform activities within the system.

Transformations – the changes that are effected by the system. This is a critical part
of the root definition as it leads to the activities that need to be included in the
next stage. These ‘transform’ the inputs of the system into the required outputs.

Weltanschauung – (from the German) meaning world view. This is how the system
is perceived in a particular root definition.

Owner – those to whom the system belongs, to whom it is answerable and who can
authorize changes to it.

Environment – the world in which the system operates and by which it is influenced.

Root definition for airline management: 
an airline booking system

Revisiting our earlier example, an international airline is considering introducing a new booking 
system for use by associated travel agents to sell flights directly to the public. That is, a system
owned by the airline management; operated by associated travel agency staff; working in associated
travel agency offices worldwide; operating within regulations specified by international civil aviation
authorities and national contract legislation; to sell flights to and reserve seats for customers; and
to generate a profit for the company.

n Client: customer
n Actor: travel agency staff
n Transformation: customer’s intention and request to travel transformed into sale of seat on

flight and profit for organization
n Weltanschauung: profits can be optimized by more efficient sales
n Owner: airline management
n Environment: Regulations of international civil aviation authorities and national contract leg-

islation. Local agency policies worldwide
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Once the root definitions have been developed, the conceptual model is devised.
The conceptual model defines what the system has to do to fulfill the root
definitions. It includes identifying the transformations and activities in the system
and modeling them hierarchically in terms of what is achieved and how it is
achieved. This process is iterative and is likely to take several cycles before it is 
complete and accurate.

Next we return to the real world with our systems descriptions and compare the
actual system with the conceptual model, identifying discrepancies and thereby 
highlighting any necessary changes or potential problems. For example, a particular
activity may have more processes in the real world than in the conceptual model,
which may suggest that a reduction of processes for that activity is needed.

In the final stages, we determine which changes are necessary and beneficial to the
system as a whole – changes may be structural, procedural or social, for example –
and decide on the actions required to effect those changes.

SSM is a flexible approach, which supports detailed consideration of the design
context. However, it takes practice to use effectively. There is no single right (or
wrong) answer – the SSM is successful if it aids the designer’s understanding of the
wider system.

13.3.4 Participatory design

Participatory design is a philosophy that encompasses the whole design cycle. It is
design in the workplace, where the user is involved not only as an experimental 
subject or as someone to be consulted when necessary but as a member of the 
design team. Users are therefore active collaborators in the design process, rather
than passive participants whose involvement is entirely governed by the designer.
The argument is that users are experts in the work context and a design can only 
be effective within that context if these experts are allowed to contribute actively 
to the design process. In addition, introduction of a new system is liable to change
the work context and organizational processes, and will only be accepted if these
changes are acceptable to the user. Participatory design therefore aims to refine sys-
tem requirements iteratively through a design process in which the user is actively
involved.

Participatory design has three specific characteristics. It aims to improve the work
environment and task by the introduction of the design. This makes design and 
evaluation context or work oriented rather than system oriented. Secondly, it is char-
acterized by collaboration: the user is included in the design team and can contribute
to every stage of the design. Finally, the approach is iterative: the design is subject to
evaluation and revision at each stage.

The participatory design process utilizes a range of methods to help convey infor-
mation between the user and designer. They include

Brainstorming This involves all participants in the design pooling ideas. This is
informal and relatively unstructured although the process tends to involve ‘on-
the-fly’ structuring of the ideas as they materialize. All information is recorded



13.3 Capturing requirements 467

without judgment. The session provides a range of ideas from which to work.
These can be filtered using other techniques.

Storyboarding This has been discussed in more detail in Chapter 6. Storyboards
can be used as a means of describing the user’s day-to-day activities as well as the
potential designs and the impact they will have.

Workshops These can be used to fill in the missing knowledge of both user and
designer and provide a more focussed view of the design. They may involve
mutual enquiry in which both parties attempt to understand the context of the
design from each other’s point of view. The designer questions the user about 
the work environment in which the design is to be used, and the user can query
the designer on the technology and capabilities that may be available. This estab-
lishes common ground between the user and designer and sets the foundation for
the design that is to be produced. The use of role play can also allow both user and
designer to step briefly into one another’s shoes.

Pencil and paper exercises These allow designs to be talked through and evaluated
with very little commitment in terms of resources. Users can ‘walk through’ typ-
ical tasks using paper mock-ups of the system design. This is intended to show up
discrepancies between the user’s requirements and the actual design as proposed.
Such exercises provide a simple and cheap technique for early assessment of 
models. PICTIVE [242] is one such approach to paper prototyping, which includes
representative stakeholders in a video recorded design session. Each participant
prepares ‘homework’ focussing on the requirements of the system from their par-
ticular perspective, which is then used to introduce and orientate the PICTIVE
session. Materials such as sticky notes, highlighters, plastic labels, paper and scis-
sors are used on a shared design surface to produce a low-tech prototype of the
proposed system, which is finally tested by the group against the tasks identified.

Such methods are not exclusively used in participatory design, of course, and can be
used more widely to promote clearer understanding between designer and stakeholders.

Participatory design originated in Scandinavia, where it is now promoted by law
and in accepted work practices, but it has not been widely practiced, at least in its
fullest form, elsewhere. This may be due to the time and cost involved in what is, by
definition, a context-specific design, as well as the organizational implications of 
the shift of power and responsibility.

However, principles from the participatory design approach have been incorp-
orated in a number of widely used methodologies. We outline one of them – to 
show how a participatory philosophy can be integrated into organizational and
stakeholder analysis.

Effective Technical and Human Implementation of Computer-based Systems
(ETHICS)

ETHICS [243] is a method developed by Enid Mumford within the socio-technical
tradition, but it is distinct in its view of the role of stakeholders in the process. In the
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DESIGN FOCUS

Tomorrow’s hospital – using participatory design

The nurse walks around the ward to a patient’s bedside. She takes her PDA from her pocket and 
enters the patient’s name. Her PDA is connected via a wireless network to the central patient 
treatment database and the patient’s information comes on screen including reminders of treatments
needed. First is a blood pressure and heart rate check. She does these checks and enters the results.
A mild painkiller is also prescribed. She gets the tablet, which is individually wrapped in a bar coded
packet. Her PDA has a built-in bar code reader and she scans this across the tablet. The system 
registers the drug’s use and removes it from the to-do list as she gives the patient the tablet with a glass
of water.

A picture of tomorrow’s hospital? In fact, this is exactly the day-to-day activity in Hospital da Trofa, just
outside Porto, Portugal. There have been numerous attempts to use PDA-based systems in hospitals.
But most have failed. So why is this one being used? The hospital is part of a European Commission
funded project Team-HOS and the system was designed using a methodology that has a strong particip-
atory focus [316]. From the beginning, nurses, doctors, pharmacologists and dieticians were involved 
in and in control of the design. It has benefited from their knowledge and experience, which is why it
does the right things for the context. Furthermore, the pride with which the hospital staff describe the
system shows that they really feel it is their system, not one imposed from above.

See the book website for an extended case study: /e3/casestudy/trofa/

See: www.ieeta.pt/team-hos/ Source: Courtesy of Professor J. Artur Vale Serrano
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ETHICS methodology, stakeholders are included as participants in the decision-
making process. ETHICS considers the process of system development as one of
managing change: conflicts will occur and must be negotiated to ensure acceptance
and satisfaction with the system. If any party is excluded from the decision-making
process then their knowledge and contribution is not utilized and they are more
likely to be dissatisfied. However, participation is not always complete. Mumford
recognizes three levels of participation:

Consultative – the weakest form of participation where participants are asked for
their opinions but are not decision makers.

Representative – a representative of the participant group is involved in the decision-
making process.

Consensus – all stakeholders are included in the decision-making process.

The usual practice is that design groups are set up to include representatives from
each stakeholder group and these groups make the design decisions, overseen by 
a steering committee of management and employee representatives. The design
groups then address the following issues and activities:

1. Make the case for change. Change for its own sake is inappropriate. If a case can-
not be made for changing the current situation then the process ends and the
system remains as it is.

2. Identify system boundaries. This focusses on the context of the current system
and its interactions with other systems, in terms of business, existing techno-
logy, and internal and external organizational elements. How will the change
impact upon each of these?

3. Describe the existing system, including a full analysis of inputs and outputs and the
various other activities supported, such as operations, control and coordination.

4. Define key objectives, identifying the purpose and function of each area of the
organization.

5. Define key tasks: what tasks need to be performed to meet these objectives?
6. Define key information needs, including those identified by analysis of the exist-

ing system and those highlighted by definition of key tasks.
7. Diagnose efficiency needs, those elements in the system that cause it to under-

perform or perform incorrectly. If these are internal they can be redesigned out
of the new system; if they are external then the new system must be designed to
cope with them.

8. Diagnose job satisfaction needs, with a view to increasing job satisfaction where it
is low.

9. Analyze likely future changes, whether in technology, external constraints (such
as legal requirements), economic climate or stakeholder attitudes. This is neces-
sary to ensure that the system is flexible enough to cope with change.

10. Specify and prioritize objectives based on efficiency, job satisfaction and future
needs. All stakeholders should be able to contribute here as it is a critical stage
and conflicting priorities need to be negotiated. Objectives are grouped as either
primary (must be met) or secondary (desirable to meet).
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The final stages of the ETHICS approach focus on the actual design and evaluation
of the system. Necessary organizational changes are designed alongside the technical
system. These are then specified in detail, implemented and evaluated.

The ETHICS approach attempts to reach a solution that meets both user and task
requirements by having specialist teams negotiate objectives and rank potential solu-
tions. The emphasis is on reaching a solution that ranks highly on job satisfaction to
ensure that the solution is acceptable.

It ensures participation at every stage through representative design teams, but
can be expensive and time consuming to carry out. However, the benefits in terms of
job satisfaction and higher productivity may balance out the initial investment.

13.3.5 Ethnographic methods

All of the approaches considered so far have included some level of consultation 
and observation of the stakeholders. However, the focus of this has been on 
gathering stakeholder perspectives rather than specifically studying actual work
practice. It can be argued that work can only be understood and studied in context.
This is consonant with the ideas of distributed cognition. Taking a worker away 
from the workplace changes the very nature of the worker’s actions. Real action 
is situated action; it occurs in interaction with the materials and people of the 
workplace [334]. In extremis, it is claimed that an action can only be understood 
in the place, in the social situation, and at the time at which it occurred. Such a 
level of contextualization is obviously useless for design, and its advocates will 
in practice generalize from their observations, even if they ostensibly eschew such
generalization.

Even if one does not wish to take such an extreme view, it is clear that studying
workers in their own situations is extremely worthwhile.

Many branches of sociology and anthropology have long recognized that one 
cannot study people divorced from their social and cultural context. In particular,
ethnography has become very influential, particularly in the study of group systems.
We were introduced to ethnography briefly in Chapter 9 but here we will consider 
it in a little more detail, and discuss an approach to contextual requirements cap-
ture that reflects the ethnographic tradition but has been developed to be highly
practical.

Ethnography is based on very detailed recording of the interactions between 
people and between people and their environment. It has a special focus on social
relationships and how they affect the nature of work. The ethnographer does not
enter actively into the situation, and does not see things from a particular person’s
viewpoint. However, an aim is to be encultured, to understand the situation from
within its own cultural framework. Culture here means that of the particular work-
group or organization, rather than that of society as a whole. Ethnographers try 
to take an unbiased and open-ended view of the situation. They report and do not
like to speculate, so it is often unclear how well their approach can contribute to the
design of new systems.



13.3 Capturing requirements 471

We now look briefly at an approach that takes a pragmatic rather than purist
ethnographic perspective, contextual inquiry.

Contextual inquiry

Contextual inquiry has much in common with the ethnographic tradition: it studies
the user in context, trying to capture the reality of his work culture and practice.
However, it is also an approach rooted in practice and it differs in a number of
significant ways from pure ethnographic study: the intention is to understand and to
interpret the data gathered, and rather than attempting to take an open-ended view,
the investigator acknowledges and challenges her particular focus. In addition, the
explicit aim is to design a new system, whereas in a pure ethnographic study, it would
be open ended.

The model of contextual inquiry is of the investigator being apprenticed to the
user to learn about his work. Interviews take place in the workplace so that the
objects, artifacts and relationships of the work can be better understood. Examples
of work are collected and both verbal and non-verbal communication is studied. The
idea is to be as comprehensive in the data gathering as possible and to be concrete.
Another central notion of contextual inquiry is that of partnership: the user is the
expert in the workplace and is therefore encouraged to lead the investigation.
However, the investigator is not a passive observer. Her objective is to gain a shared
understanding of how the work happens and, to do so, she questions meaning and
offers interpretations of what she observes. The aim is to draw out the implications
of comments and actions and understand (rather than assume) what they really
mean. In order to do this honestly and effectively the investigator must know her
focus – her pre-existing beliefs and assumptions about the situation – and be pre-
pared to challenge and adjust them in the face of new information.

Contextual inquiry focusses on a 2–3 hour interview with the user in the work-
place. The idea is to capture and record as much detail as possible, including what
the user says and does (step by step), how he communicates and coordinates with

Ethnography and participatory design

The ethnographic approach differs markedly from the approach of participatory design. 
In participatory design the workers come out of their work situation, either physically or mentally,
and share the design task with the professional designers – effectively the workers become 
designers. The participatory designer enters into the subjective experience of the workplace.
Ethnographic and other situated approaches take the analyst into the workplace, while retaining a
level of objectivity. The advantage is that the analyst sees the whole group’s perspective, rather
than that of involved individuals, but the analyst, however much in tune with the workers, is still
‘out there’. On the other hand, involving the workers in the design process in itself increases their
motivation and acceptance whether or not the resulting design is ‘optimal’.
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others, his feelings and responses to the situation, and a shared understanding of the
meaning of actions and artifacts. In addition, objects, examples and artifacts of work
are collected and annotated, and the physical work environment is sketched and
annotated to show how it is used.

A number of models of the work are developed to capture what is important in the
user’s work situation:

n The sequence model elaborates the steps required to complete a specific task, as
well as the triggers that initiate that sequence of steps.

n The physical model maps the physical work environment and how it impacts
upon work practice, for example, an office plan showing where different work
activities happen.

n The flow model shows the lines of coordination and communication between the
user and other participants within and outside the workplace.

n The cultural model reflects the influences of work culture and policy and shows
the scope of these influences. This may include official or unofficial codes of
behavior, common expectations (which may or may not be explicit) and value
systems.

n The artifact model describes the structure and use of a particular artifact within
the work process.

Once the interview is complete, the data must be consolidated with those from
other users and stakeholders. There is not space here to elaborate the whole process
(see [35] for details) but interviews are transcribed and interpreted as soon as pos-
sible after the event by the design team. The team comes together to consider the
interview data and to identify commonalities across stakeholders. Affinity diagrams
are used to group related information by posting notes on the wall representing a
particular comment or observation and grouping these into a hierarchy of related
themes. The themes are not pre-determined but arise from the data as they are 
examined.

Each of the models above is also consolidated across users to provide a common
view of the situation. The result is a representation of the required task sequences,
artifacts and communication channels that must be supported in the new system as
well as the physical and cultural constraints that must be taken into account.

SUMMARY

We have seen that organizational factors can make or break the deployment of 
information and communications technology. Any computer system may interfere
with the existing authority and social relationships within an organization. There
may be a mismatch between those who benefit, and those who do the work. Even
where there is no in-built bias, the free rider may put in little personal effort,
benefiting from the work of the rest of the group.

13.4
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We need to identify stakeholders who will be affected directly or indirectly. In 
particular, junior and middle management may feel they lose control and authority
by the introduction of electronic communications. Another example is teleworking,
which is made easier by advances in telecommunications, but which makes the
worker less visible to management. Even where a system is perceived to be useful, it
is hard to quantify its benefits as they are diffused throughout the organization.

In this chapter, we have discussed a selection of socio-organizational approaches
to capturing stakeholder requirements, including socio-technical models, soft 
systems methodology, participatory design and ethnographic approaches. Socio-
technical models focus on representing both the human and technical sides of the
system in parallel to reach a solution that is compatible with each. SSM models 
the organization, of which the user is part, as a system. Participatory design sees the
user as active not only in using the technology but in designing it. Ethnography, on
the other hand, views the user in context, attempting to collect an unbiased view of
the user’s work culture and practice.

EXERCISES

13.1 A group of universities has decided to collaborate to produce an information system to
help potential students find appropriate courses. The system will be distributed free to schools
and careers offices on CD-ROM and will provide information about course contents and
requirements, university and local facilities, fees and admissions procedures. Identify the main stake-
holders for this system, categorize them and describe them and their activities, currently and with
regard to the proposed system, using the CUSTOM framework.

13.2 For the scenario proposed above:

(i) Produce a rich picture showing the problem situation (you can use any format that you find
helpful).

(ii) Produce a root definition, using CATWOE, of the system from the viewpoint of the 
university.

What transformations or activities are required to make sure that the root definition is 
supported?

13.3 The example in Section 13.3.2 (soft systems methodology) provides a root definition for an 
airline booking system from the perspective of the airline owner. How would this change if it was
presented from the perspective of the customer?

13.4 Find case studies of participatory design in action and use these to provide a critique of the
approach. What are the benefits and weaknesses of participatory design and how might any weak-
nesses be addressed?

13.5 You are designing a new system to help people manage their ‘to do’ lists. Use the contextual
inquiry approach to interview a colleague to see how they make use of such lists. Make sure you
interview them in context – in their study or workplace for example. Produce sequence, flow,
artifact, cultural and physical models of the activity.
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COMMUNICATION AND

COLLABORATION MODELS

OV E RV I E W

All computer systems, single-user or multi-user, interact
with the work-groups and organizations in which they are
used.

n We need to understand normal human–human
communication:
– face-to-face communication involves eyes, face and

body
– conversation can be analyzed to establish its detailed

structure.

n This can then be applied to text-based conversation,
which has:
– reduced feedback for confirmation
– less context to disambiguate utterances
– slower pace of interaction
but is more easily reviewed.

n Group working is more complex than that of a single
person:
– it is influenced by the physical environment
– experiments are more difficult to control and record
– field studies must take into account the social

situation.

14
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INTRODUCTION

No man is an Iland, intire of it selfe; every man is a peece of the Continent, a part of
the maine.

John Donne1

It is clear that groupware systems, such as email or conferencing systems, involve
more than one person. However, to some extent all systems influence and are
influenced by the groups and social situations in which they are placed. The field of
computer-supported cooperative work (CSCW) encompasses both specific group-
ware systems and the effects of computers on cooperative working in general.

We begin this chapter by looking at human communication. Effective commun-
ication clearly underlies much collaborative work and many systems aim to support
communication at a distance. Face-to-face communication is often seen as the ideal
to which computer-mediated communication should aim. Section 14.2 describes
some of its features, and shows how even video-based communications lose many 
of the subtle cues. Body language, tone of voice and eye contact are all crucial in
enabling smooth conversation. We then look at a slightly higher level in Section 14.3,
at the structure of conversation. In particular, we will see that typical utterances are
ambiguous and dependent on the context in which they are spoken. This section
concludes by looking at speech act theory and the Coordinator system which has
been both influential and controversial in CSCW. Understanding spoken conversa-
tion gives some clues as to the effective design of text-based communication such 
as email systems or electronic conferencing. Section 14.4 discusses text-based com-
munication in this context, including a discussion of the relative merits and features
of linear text and hypertext systems.

In Section 14.5 we move away from computer-mediated communication and look
at the wider issues of group working. Groups are dynamic both in composition and
behavior, and effective group working is dependent on the work environment.
Because of these and other factors, the study of group behavior, and therefore 
evaluating groupware, is far more complex than that of single-user systems.

FACE-TO-FACE COMMUNICATION

Face-to-face contact is the most primitive form of communication – primitive, that
is, in terms of technology. If, on the other hand, we consider the style of commun-
ication, the interplay between different channels and productivity, we instead find
that face-to-face is the most sophisticated communication mechanism available.

14.2

14.1

1 Devotions upon Emergent Occasions, XVII, 1624.
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The first thing to note is that face-to-face communication involves not just speech
and hearing, but also the subtle use of body language and eyegaze. We will discuss a
range of these phenomena, and how they influence our use of computer-mediated
communications. We will concentrate on two-person conversations as group
dynamics are discussed later in Section 14.5. Also, we will principally compare face-
to-face with video and audio channels and we will address the special problems of
text-based communications in Section 14.4.

14.2.1 Transfer effects and personal space

When we come to use computer-mediated forms of communication, we carry forward
all our expectations and social norms from face-to-face communication. People are
very adaptable and can learn new norms to go with new media (for example, the use
of ‘over’ for turn-taking when using a walkie-talkie). However, success with new
media is often dependent on whether the participants can use their existing norms.
Furthermore, the rules of face-to-face conversation are not conscious, so, when they
are broken, we do not always recognize the true problem. We may just have a 
feeling of unease, or we may feel that our colleague has been rude.

An example of these problems concerns personal space. When we converse with
one another we tend to stand with our heads a fairly constant distance apart. If 
people start to converse at opposite ends of a room, they will quickly move toward
one another until they are a few feet apart. The exact distance depends somewhat 
on context; a high level of noise may make people come closer just to be heard.
However, even in crowded rooms, conversants will dip their heads toward one
another whilst speaking and then straighten up to restore their personal distance.
Direction is also important. We can accept people closer to us if they are at our sides
or behind than if we are facing them. Because of this, passengers on tube trains,
forced to be close, will incline their faces at an angle to one another whilst talking.

Personal space also differs across cultures: North Americans get closer than
Britons, and southern Europeans and Arabs closer still. This can cause considerable
problems during cross-cultural meetings. Imagine a Briton, Eustace Warbuck-
Smyth, and an American, Bud Sterton, conversing. After a few minutes Eustace 
is bent backwards over a table, trying to maintain his personal distance, whilst 
Bud stands almost knee to knee trying to get close enough. Eustace feels Bud is 
either rather aggressive, or possibly over-friendly. Bud, on the other hand, feels
Eustace is rather distant and uninterested. Unless the situation gets extreme, or the
participants are trained in non-verbal skills, they will be unaware of why they feel
uncomfortable.

A similar problem can occur in a video conference. Imagine Eustace and Bud 
have monitors with cameras mounted above, so that their offices are connected. The
zoom on each camera is adjustable and Bud’s camera is set with a wide focus, whilst
Eustace’s is set with a high level of zoom. So, if Bud and Eustace are the same dis-
tance from their cameras and monitors, then Bud sees Eustace’s whole face filling the
screen, whereas Eustace sees Bud sat on his chair in the middle of his office. Eustace
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moves closer to the monitor to see Bud more clearly, while Bud pushes his chair back
to get away from Eustace’s 2 foot (60 cm) high face – touché. Of course, the problem
gets worse if the cameras are positioned in different places relative to the monitors,
or if the monitors are different sizes. Ideally, Bud ought to be able to adjust the zoom
on Eustace’s camera and vice versa. In fact, there is some evidence that the ‘glass wall’
afforded by the video screen makes the precise distance less important, which could
have a positive effect during cross-cultural meetings. However, gross distortions, as
described above, need to be avoided.

14.2.2 Eye contact and gaze

Long-term gazing into one another’s eyes is usually reserved for lovers. However,
normal conversation uses eye contact extensively, if not as intently. Our eyes tell us
whether our colleague is listening or not; they can convey interest, confusion or
boredom. Sporadic direct eye contact (both looking at one another’s eyes) is import-
ant in establishing a sense of engagement and social presence. People who look 
away when you look at them may seem shifty and appear to be hiding something.
Furthermore, relative frequency of eye contact and who ‘gives way’ from direct eye
contact is closely linked to authority and power.

Naturally, all these clues are lost if we have no visual contact. However, the mis-
leading clues via a video connection can be worse. In Chapter 19 (Section 19.3.4) 
we discuss the problems of obtaining effective eye contact with standard video
equipment. If the camera is strapped to the top of the monitor (a common arrange-
ment) both participants will look as if their eyes are slightly dropped. We will look at
some technical solutions to this in Chapter 19.

Despite these problems with direct eye contact, many signals can be easily read
through a video channel. You can see whether your colleague looks quizzical or
bored, confused or excited. This involves not just the eyes, but the whole facial
expression, and this is apparent even on poor-quality video or very small (pocket-
TV-sized) monitors. Experiments have shown that remotely working participants
experience a greater sense of social presence if video is used in addition to an audio
link.

As well as having a role in establishing rapport between the participants, eyegaze
is useful in establishing the focus of the conversation. If you say ‘now where does this
screw go?’, there may be many screws, but your colleague can see which one you are
looking at. Video connections are unlikely to show enough of your office for your
colleague to be able to interpret such clues, but a focus that just catches the corner of
the monitor and desk can help.

14.2.3 Gestures and body language

In a similar but more direct way, we use our hands to indicate items of interest. This
may be conscious and deliberate as we point to the item, or may be a slight wave of
the hand or alignment of the body. Again, a video connection may not be sufficient
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to allow our colleagues to read our movements. This can be a serious problem since
our conversation is full of expressions such as ‘let’s move this one there’, where the
‘this’ and ‘there’ are indicated by gestures (or eyegaze). This is called deictic reference
(see Chapter 19, Sections 19.4 and 19.6 for more details).

Several groupware systems attempt to compensate for these losses. In Section
19.4.2, we discuss the idea of a group pointer, a mouse-controlled icon which can 
be used to point to things on a shared screen. Somewhat more esoteric, but more
immediate, are the shared work surfaces (Section 19.4.3) which mix an image of the
participants’ hands with the electronic screen. The participants can then simply
point at the relevant item on the screen, as they would face-to-face.

Of course, the group pointer, although used in remote groupware, is also used in
synchronous co-located groupware such as meeting rooms. That is, even though the
participants can converse face-to-face, they still need deictic aids. One reason for this
is that their electronic screens, although logically shared (they can all see the same
thing), are not physically shared (they are in different places). So, if Jemima points
to her own screen, her colleagues do not know what she is pointing at.

Even when the participants are in the same room, the existence of electronic
equipment can interfere with the body language used in normal face-to-face com-
munication. The fact that attention is focused on keyboard and screen can reduce the
opportunities for eye contact. Also, large monitors may block participants’ views of
one another’s bodies, reducing their ability to interpret gestures and body position.
Most computer-supported meeting rooms recess monitors into the desks to reduce
these problems.

14.2.4 Back channels, confirmation and interruption

It is easy to think of conversation as a sequence of utterances: A says something, then
B says something, then back to A. This process is called turn-taking and is one of the
fundamental structures of conversation. However, each utterance is itself the result
of intricate negotiation and interaction. Consider the following transcript:

Alison: Do you fancy that film . . . er . . . ‘The Green’ um . . . it starts at eight.
Brian: Great!

Alison has asked Brian whether he wants to go to the cinema (or possibly to watch
the television at home). She is a bit vague about the film, but Brian obviously does
not mind! However, if we had listened to the conversation more closely and watched
Alison and Brian we would have seen more exchanges. As Alison says ‘that film 
er . . .’, she looks at Brian. From the quizzical look on his face he obviously does not
know which film she is talking about. She begins to expand ‘The Green um . . .’, 
and light dawns; she can see it in his eyes and he probably makes a small affirmative
sound ‘uh huh’.

The nods, grimaces, shrugs of the shoulder and small noises are called back 
channels. They feed information back from the listener to the speaker at a level below
the turn-taking of the conversation. The existence of back channels means that the
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speaker can afford to be slightly vague, adding details until it is obvious that the 
listener understands. Imagine making no response as someone talks to you, no little
‘yes’es, no nods or raised eyebrows. You could answer questions and speak in turn,
but not use back channels. It is likely that your colleague would soon become very
uncomfortable, possibly rambling on with ever more detailed explanations, looking
for some sign of understanding:2

Do you fancy that film . . . er . . . ‘The Green’ um . . . the one with Charles Dermot in
. . . you know with that song, er and the black cat on the poster . . . uhh

These back channel responses use a range of sensory channels. So, as we restrict
the forms of communication we lose the back channels. Even video communications
tend to use, at most, head and shoulder shots, so we lose some body movement and
gestures. On the other hand, a larger view means reduced detail, so we lose informa-
tion whatever focus we choose. Audio-only links (such as the telephone) have 
to rely on purely verbal back channel responses – the little ‘yes’es. Surprisingly,
despite the loss of many back channels, people still cope well with these restricted
media, and communication is still reasonably effective. However, you may have had
the experience, when speaking to someone on the telephone, of suddenly getting 
the feeling that they have gone away, or the line has gone dead. This is likely to 
be when you have received insufficient back channel responses (and perhaps you
have been going on a bit). Transcontinental telephones are especially problematic 
as they are often only half duplex, that is the sound only goes in one direction at a
time. So, while you are speaking, you can hear none of your partner’s back channel
responses.

Text-based communication, in electronic conferencing, usually has no back chan-
nels whatsoever. Any confirmation must be given explicitly in the listener’s next
utterance. This may confuse an analysis of text-based conversation as the utterances
do not correspond simply to utterances in speech.

14.2.5 Turn-taking

As well as giving confirmation to the speaker that you understand, and indications
when you do not, back channels can be used to interrupt politely. Starting to speak
in the middle of someone’s utterance can be rude, but one can say something like
‘well uh’ accompanied by a slight raising of the hands and a general tensing of 
the body and screwing of the eyes. This tells the speaker that you would like to inter-
rupt, allowing a graceful transition. In this case, the listener requested the floor. 
Turn-taking is the process by which the roles of speaker and listener are exchanged.
Back channels are often a crucial part of this process.

2 Don’t try this as an experiment on your friends, or you may end up without any! Instead try it with a
colleague who knows what is going on. Even when you both know not to expect back channel responses
the experience can be disconcerting. Furthermore, you will both find it very difficult to refrain from back
channel responses.
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In other cases, the speaker may explicitly offer the floor to the other participant.
This may be in the form of a direct question, ‘what do you think?’, or simply a very
strong change of tone.

More often the speaker will offer the floor to the listener by leaving a small gap in
speech. These gaps are typically no more than a fraction of a second; indeed gaps 
of even a few seconds give completely different signals and interrupt the flow of 

DESIGN FOCUS

Looking real – Avatar Conference

Avatars, artificial representations of people, are used in various forms of online communication. Often
these are based on some form of cartoon image, but the Avatar Conference project has produced 
a virtual meeting environment with photo-realistic avatars. These are produced by photographing 
participants from several angles and then using the photographs to texture map an artificial figure. This
is then rendered in a 3D virtual meeting room.

Participants can use internet phone or simple text chat and the latter has translation options to 
aid international meetings. The avatar for the current speaker moves its mouth and makes other 
animations, but is not synchronized with the actual speech. The aim is to make the participants more
engaged in the online meeting.

The screen shots show two views of the conference application. One with the virtual meeting room
central (left), the other with the currently displayed presentation materials central (right). People found
the 3D avatars exciting and an initial ‘hook’ – this is very important, remember in the Introduction, the
need for a system to be actually used.

However, the participant response after using the application for even a short time was in favor of the
more presentation-centered rather than avatar-centered view. It may be that current avatars are not
quite realistic enough to warrant the central position, or it may reflect the fact that in a real meeting
the focus is on the presentation rather than on the other participants.

See: www.exodus.gr/Avatar_Conference/ and www.avatame.com/ Screen shot frame reprinted by 
permission from Microsoft Corporation. Screen shots courtesy of AVATAR-Conference project team
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conversation. The gap is often at some point which may require clarification, or
where the listener may want to comment. So, Alison may well have waited for 
half a second after saying ‘Do you fancy that film’, in case Brian were to respond 
‘Oh you mean the one with the black cat on the poster’. As he did not say anything,
she continued with her turn.

The role of ‘um’s and ‘ah’s is very important. They can be used by either particip-
ant during the gap to claim the turn. So, if Brian wanted to respond in the middle 
of the utterance, but had not yet framed his utterance, he might begin ‘um the 
one . . .’. As it was, Brian did not respond, so Alison starts ‘er’ which says to Brian
‘I’m going to continue, but I’m thinking’. Alternatively, Alison could have started 
to ‘er’ as soon as she had said the word ‘film’. This would have told Brian not to 
interrupt.

These turn-offering gaps are just the places where the speaker expects some back
channel response even if no turn exchange takes place. A total lack of response will
be taken, depending on the circumstances, as assent to the speaker, or perhaps as 
lack of understanding.

As we can see, turn-offering gaps form a central part in the eliciting of back 
channel responses and in negotiating turn-taking. They are obviously connected
principally with the audio channel (although some gestures may be used to maintain
or claim the floor). Half-duplex channels (such as intercontinental phone calls) are
volume sensitive in order to track the speaker. Unfortunately, some of the ‘um’s 
and ‘er’s used to maintain or claim the floor may fall below the volume threshold 
and thus not be transmitted. This may lead to apparent rude interruptions or snub-
bing of one party by the other.

An even more serious problem is encountered during long-distance, satellite-
based communications due to the time lags. To transmit a signal, it must go up to
the satellite and then back down to the earth. A geostationary satellite is at a height
of approximately 100,000 km above the earth – a quarter of the distance to the
moon. Radio waves will take about 700 milliseconds to go up to the satellite and 
back down again. This time, together with the processing delays on the ground and
in the satellite, add up to about a 2 second lag. There is thus a 4 second gap between
one participant doing or saying something and when the effects of that upon the
other participant become evident.

We now imagine Alison and Brian talking via satellite. Alison pauses for half a 
second after the words ‘that film’, 2 seconds later Brian hears the end of the word
‘film’, after a few hundred milliseconds he notices the gap and begins to say ‘Oh’; 
by this time Alison has waited 21/2 seconds, and the gap is getting embarrassing, so
she continues ‘The Green um . . . the one with Charles Dermot in’. Then, 2 seconds
into this, that is over 4 seconds since she began to pause, she hears Brian try to cut
in (how rude!), but he stops talking again when he hears her continuing.

The above scenario is not contrived. Tapes of video conferences show just this
behavior, with a single speaker going on and on as all her attempts to pass on the
floor fail. There is no obvious solution to this problem, except the technological 
one of using high-bandwidth land or sub-ocean lines, when these become available,
rather than satellite.
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CONVERSATION

We have looked at the low-level issues of speech and gesture during face-to-face 
conversation. We now turn to the structure of the conversation itself. Most analysis
of conversation focusses on two-person conversations, but this can range from 
informal social chat over the telephone to formal courtroom cross-examination. 
As well as the discipline of conversational analysis, there are other sociological and
psychological understandings of conversation. However, the techniques, as ‘bor-
rowed’ and used to study computer-mediated conversation, would not always find
favor with the purist from the discipline from which they originated!

There are three uses for theories of conversation in CSCW. First, they can be used
to analyze transcripts, for example from an electronic conference. This can help us
to understand how well the participants are coping with electronic communication.
Secondly, they can be used as a guide for design decisions – an understanding of 
normal human–human conversation can help avoid blunders in the design of elec-
tronic media. Thirdly, and most controversially, they can be used to drive design –
structuring the system around the theory.

We will concentrate mainly on the first goal, although this will have implications
throughout for design. Only when we consider speech act theory and Coordinator in
Section 14.3.6 will we see an example of a theory-driven system.

14.3.1 Basic conversational structure

Imagine we have a transcript of a conversation, recalling from Chapter 9 that the
production of such a transcript is not a simple task. For example, a slightly different
version of Alison and Brian’s conversation may look like this:

Alison: Do you fancy that film?
Brian: The uh (500 ms) with the black cat – ‘The Green whatsit’?
Alison: Yeah, go at uh . . . (looks at watch – 1.2 s) . . . 20 to?
Brian: Sure.

This transcript is quite heavily annotated with the lengths of pauses and even
Alison’s action of looking at her watch. However, it certainly lacks the wealth of 
gesture and back channel activity that were present during the actual conversation.
Transcripts may be less well documented, perhaps dropping the pause timings, or
more detailed, adding more actions, where people were looking and some back
channelling. Whilst thinking about the structure of conversation, the transcript
above is sufficient.

As we have noted previously, the most basic conversational structure is turn-
taking. On the whole we have an alternating pattern: Alison says something, then
Brian, then Alison again. The speech within each turn is called an utterance. There
can be exceptions to this turn-taking structure even within two-party conversation.
For example, if there is a gap in the conversation, the same party may pick up the

14.3



484 Chapter 14 n Communication and collaboration models

thread, even if she was the last speaker. However, such gaps are normally of short
duration, enough to allow turn-claiming if required, but short enough to consider
the speech a single utterance.

Often we can group the utterances of the conversation into pairs: a question and
an answer, a statement and an agreement. The answer or response will normally 
follow directly after the question or statement and so these are called adjacency pairs.
We can look at Alison and Brian’s conversation above as two adjacency pairs, one
after the other. First, Alison asks Brian whether he knows about the film and he
responds. Second, she suggests a time to go and he agrees. We can codify this struc-
ture as: A-x, B-x, A-y, B-y, where the first letter denotes the speaker (Alison or Brian)
and the second letter labels the adjacency pair.

The requirement of adjacency can be broken if the pair is interposed with other
pairs for clarification, etc.:

Brian: Do you want some gateau?
Alison: Is it very fattening?
Brian: Yes, very.
Alison: And lots of chocolate?
Brian: Masses.
Alison: I’ll have a big slice then.

This conversation can be denoted: B-x, A-y, B-y, A-z, B-z, A-x. Adjacency pair ‘x’
(‘Do you want some gateau?’–‘I’ll have a big slice then’) is split by two other pairs ‘y’
and ‘z’. One would normally expect the interposed pairs to be relevant to the outer
pair, seeking clarification or determining information needed for the response.

Some would say that the adjacency pair is not just a basic structure of conversa-
tion but the fundamental structure. It is clearly true that we normally respond to the
most recent utterance. However, it is less clear whether a simple pairing up of utter-
ances is always possible or useful.

For an example of this difficulty, let us look back to the transcript at the beginning
of the section. We see that the pair structure is not completely clear. Alison’s second
utterance begins a new pair, ‘go at 20 to?’, but it began with ‘yeah’ responding to
Brian’s previous utterance. Indeed, Brian’s first response ‘the uh . . . with the black
cat . . .’ could be seen as a request for clarification. That is, we are now looking at the
conversation as having a structure of A-x, B-y, A-yz, B-z, where Alison’s second
utterance serves as both a response to Brian’s request for clarification (‘y’) and starts
a new pair concerning the time (‘z’). But in this case, what happens to the second half
of the original ‘x’ pair? We are forced to regard it as implicit in one of Brian’s utter-
ances. Alison’s ‘go at 20 to?’ clearly suggests that Brian has committed himself, so 
we assume that the tone of Brian’s description of the film suggested acceptance. 
So, Brian’s first utterance, like Alison’s second, serves a dual purpose: A-x, B-xy, 
A-yz, B-z.

Despite these difficulties, we see that the search for adjacency pairs forces us to
examine closely the structure of the conversation. Whether such structures are really
part of the conversation, or imposed by us upon it, is less clear. Later we shall see far
more complex conversational structures.
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14.3.2 Context

Take a single utterance from a conversation, and it will usually be highly ambiguous
if not meaningless: ‘the uh with the black cat – “The Green whatsit”’. Each utterance and
each fragment of conversation is heavily dependent on context, which must be used to
disambiguate the utterance. We can identify two types of context within conversation:

internal context – dependence on earlier utterances. For example, when Brian says
‘masses’ in the last transcript, this is meaningful in the light of Alison’s question
‘and lots of chocolate?’. This in turn is interpreted in the context of Brian’s 
original offer of gateau.

external context – dependence on the environment. For example, if Brian had said
simply ‘do you want one?’, this could have meant a slice of gateau, or, if he had
been holding a bottle, a glass of wine, or, if accompanied by a clenched fist, a
punch on the nose.

Arguably, even a complete conversation is heavily context dependent – without
knowing the situation and the social relations between the participants, how can 
we understand their words? Taking a more pragmatic approach, the importance of
external context has implications for system design and for data collection. From 
a design perspective, we will look for groupware which both maximizes shared 
context and which makes the level of sharing clear.

Turning to data collection, we can see the importance of annotating transcripts
with gestures, eyegaze and details of the environment. However, if one noted 
everything down, 90% would be irrelevant to the conversational level of analysis.
Recording the interesting details without flooding the transcript is clearly a skilled
job. If one has rich recordings, say from several video sources, then a simple verbal
transcript may be sufficient as it will be possible to refer back to the video when 
interesting incidents are found in the written transcript.

When collecting data from groupware systems, it is also very important to have
synchronized records of the participants’ conversation (whether audio, video or text
based) and their electronic workspaces. We need to know what the participants 
can see on their screens in order to interpret their remarks to one another. In the 
case where participants may have different views at the same time, we are likely to see
breakdowns in the conversation, where one participant makes an utterance depend-
ing on his screen, whereas his colleague sees something different on her screen.

A specific form of context dependence is deictic reference (Section 14.2.3). When
accompanied by a pointed finger, an expression like ‘that post is leaning a bit’ 
is clearly dependent on external context. However, there are very similar uses of
internal context:

Brian: (Points) That post is leaning a bit.
Alison: That’s the one you put in.

Brian’s utterance uses external context, whereas Alison’s very similar utterance uses
internal context. Her ‘that’ refers to the post Brian was talking about, not the one he
is pointing at. To see this, consider the similar fragment:
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Brian: The corner post is leaning a bit.
Alison: That’s the one you put in.

Real speech, probably more than the written word, is full of indexicals, words like
‘that’, ‘this’, ‘he’, ‘she’ and ‘it’. Obviously when used in written text, like this, words
such as these make use of purely internal context. In spoken speech any of the above
words can be accompanied by gestures or eyegaze for external context, or simply
used, as Alison did, to refer to previous things in the conversation. Some of the
words tend to be more likely to be external (‘that’, ‘this’) than others (‘he’, ‘she’), but
you can easily think of cases of both forms of use. Furthermore, the attachment of
pronouns and other indexicals to the things they denote may depend on the seman-
tics of a sentence: ‘Oh no! Eustace has hit Bud. He’ll kill him, I know he will.’ Does
the speaker mean that Eustace will kill Bud, or vice versa? The answer depends on the
speaker’s knowledge of Eustace and Bud. If Bud is a 22 stone (138 kg) trucker and
Eustace has trouble lifting cans of beans then we interpret the sentence one way. If,
on the other hand, Eustace has a black belt in karate . . .

One consequence of the use of context in speech is the fragmentary nature 
of utterances. The example transcripts are, if anything, atypically grammatical.
Although there is evidence of rules of grammar for the spoken word, these are very
different, and much more relaxed, than the written equivalent.

14.3.3 Topics, focus and forms of utterance

Given that conversation is so dependent on context, it is important that the particip-
ants have a shared focus. We have addressed this in terms of the external focus – the
objects that are visible to the participants – but it is also true of the internal focus of
the conversation.

Alison: Oh, look at your roses . . .
Brian: Mmm, but I’ve had trouble with greenfly.
Alison: They’re the symbol of the English summer.
Brian: Greenfly?
Alison: No roses silly!

Alison began the conversation with the topic of roses. Brian shifts to the related, but
distinct, topic of greenfly. However, for some reason Alison has missed this shift in
focus, so when she makes her second utterance, her focus and Brian’s differ, leading
to the breakdown in communication. The last two utterances are a recovery which 
re-establishes a shared dialog focus.

In general, we can go through a transcript annotating the utterances by the topics
to which they refer. The identification of topics and assigning utterances to them is
a somewhat subjective affair, and one may want to use several levels of topic categor-
ization. Of course, those points where such a labeling is difficult are interesting in
themselves. They may either represent potential points of breakdown (as above), 
or show where external context is needed to disambiguate the conversation. Also 
of interest is the way that the participants negotiate changes in dialog focus, either
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because they recognize a divergence, or because one party wants to shift the focus of
the conversation.

This sort of analysis can be pursued for its own sake, but has a more pragmatic
interest in the analysis of computer-mediated conversation and design of groupware.
We want to know where breakdowns occur in order to see whether these are due 
to the electronic medium. We also want to understand the shifts in focus and the
reliance on external context and compare these with the shared objects available
through the computer system.

Another way of classifying utterances is by their relation to the task in hand. At
one extreme the utterance may have no direct relevance at all, either a digression 
or purely social. Looking at the task-related conversation, the utterances can be
classified into three kinds [335]:

substantive directly relevant to the development of the topic;

annotative points of clarification, elaborations, etc.;

procedural talking about the process of collaboration itself.

In addition, the procedural utterances may be related to the structure of collabora-
tion itself, or may be about the technology supporting the collaboration. The latter
is usually in response to a breakdown where the technology has intruded into the
communication.

Alison and Brian are now discussing the best way to get to the cinema. Alison is
using a whiteboard to draw a map.

1. Alison: You go along this road until you get to the river.
2. Brian: Do you stop before the river or after you cross it?
3. Alison: Before.
4. Brian: Draw the river in blue and the roads black . . .
5. Alison: So, you turn right beside the river.
6. Brian: Past the pub.
7. Alison: Yeah . . . Is there another black pen, this one’s gone dry?

Alison’s first utterance, turn 1, is substantive. Brian then interrupts with an annotat-
ive utterance, asking a question of clarification, which is answered by Alison at 3.
Brian then makes a procedural point (perhaps prompted by his confusion at 2). 
In turns 5 and 6, the conversation again becomes substantive, but then the pen 
runs out, and utterance 7 is a procedural remark concerning the communication 
technology (pen and whiteboard).

The last form of utterance (procedural technological) is most interesting when
analyzing transcripts of computer-mediated conversation as it represents points
where the system became apparent to the participants. However, it is also interesting
to compare the forms of conversation used in, say, an electronic conference with
those in normal speech. For example, a hypertext-oriented conference will allow
digressions without any danger of losing the flow of the conference, thus encourag-
ing annotative and procedural utterances.
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14.3.4 Breakdown and repair

We have already seen an example of breakdown in conversation. When Alison and
Brian were talking about Brian’s roses, they failed to maintain a shared focus. Brian
tried to interpret Alison’s utterance in terms of his focus and failed, or rather the
meaning in that focus was unusual – greenfly are the symbol of the English summer?
He then questioned Alison and the confusion was cleared. This correction after
breakdown is called repair.

If we look at transcripts of computer-mediated conversations, and see many
breakdowns, we should not be surprised: face-to-face and spoken conversations are
full of it. We may see breakdowns at many levels. The divergence of topic focus is 
a quite high level of breakdown. It often becomes apparent when we find failures 
to identify the referrent of an indexical or deictic reference. Alternatively, such a 
failure may be due to the speaker using an ambiguous indexical: ‘Eustace has just 
hit Bud . . . he’s bleeding’ – that is, Eustace is bleeding, Bud was wearing a crash 
helmet.

At a lower level, we may see breakdown due to incorrectly read gestures or eye-
gaze, and through missed or inappropriate back channel responses. For instance, 
in Section 14.2.5, we described the problems in turn-taking during satellite-based
video conferences. It may be difficult to interpret just where a breakdown occurred,
as the breakdown may take some time to come to light, and be apparent at a differ-
ent level from which it began. Alison and Brian are enjoying a day out at a country
park:

Alison: Isn’t that beautiful?
She points at a stag standing beside a large tree; Brian sees the tree.

Brian: The symmetry of the branches.
Alison: How some people can dislike them I can’t understand.
Brian: Yes, the rangers ought to cull those deer, they strip the bark terribly 

in winter.
Alison: (Silence)

The breakdown began with a confused gesture, but led to a divergence of dialog
focus. Unfortunately, Brian’s remark about the branching (of the tree) could be
interpreted in terms of Alison’s focus (the stag’s antlers) and thus the breakdown did
not become apparent until Brian had well and truly put his foot in it. Happily, most
breakdowns are detected more quickly, but the deeper the breakdown, and the
longer it lasts, the more difficult it is to recover.

Despite the frequency of breakdowns in normal speech, our communication is not
usually significantly affected because we are so efficient at repair. (Although Brian
may have some difficulty.) Redundancy, frequency of turn-taking and back channels,
all contribute to the detection of breakdown and its rapid repair. Electronic com-
munications often reduce redundancy (a single channel), reduce the frequency of
turn-taking and reduce back channels. The problem is thus not so much breakdowns
in communication, but a reduced ability to recover from them.
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14.3.5 Constructing a shared understanding

We have seen that human conversation is in itself inherently ambiguous, relying on
context and shared understanding between the parties to disambiguate the utter-
ances. In some spheres, such as legal contracts, the precise meaning out of context
becomes very important and thus highly stylized language is used to reduce ambigu-
ity.3 However, even the legal profession depends on a large body of shared knowledge
and understanding about legal terms, case law, etc. Similarly, a book, such as this,
attempts to use less ambiguous language and only commonly available knowledge.

The major difference between a book and conversation is that the latter is inter-
active. The shared knowledge used in a book is static, whereas that used during a
conversation is dynamic, as the participants increase their understanding of one
another and as they shift their focus from topic to topic.

When participants come to a conversation, they may come from different back-
grounds and bring different knowledge. Even close colleagues will have different
recent experiences, and as we have seen in previous examples, have different foci.
The participants do not try to unify their knowledge and background – indeed, 
they could not fully do so without living one another’s lives. Instead, they seek to
obtain a common ground, a shared understanding sufficient for the task in hand.
Establishing this common ground will involve negotiating the meanings of words
and constructing shared interpretations of the world. Clark and Schaefer [72] refer
to this process as grounding.

A consequence of this model of conversation is that the participants are aware, at
various levels both conscious and subconscious, that their common ground is
incomplete. Their conversation is not then just an exchange of information about
their task, but involves continual testing and cross-checking of the other party’s
understanding. Consider again a fragment from Alison’s conversation about the way
to the cinema:

Alison: So, you turn right beside the river.
Brian: Past the pub.
Alison: Yeah . . .

Alison makes an utterance concerning the way to the cinema. Brian interprets 
this utterance given his current understanding of the conversation and the world.
However, in order to check this understanding he makes the statement ‘past the
pub’. Now this is not a question of clarification like his earlier question about the
bridge; instead it merely echoes back some evidence that he has correctly interpreted
Alison’s utterance. Alison is happy with this and so confirms it ‘yeah’.

Such exchanges can be more protracted: for instance, if Brian’s reply does not 
satisfy Alison she may reflect Brian’s evidence back to him: ‘you mean the Black
Bull’, or attempt to re-present her original utterance: ‘along the road on this side of
the river’. Alternatively, the exchange may be much shorter: rather than explicitly
presenting evidence, Brian could have simply continued the conversation, making

3 Or left deliberately ambiguous.
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his understanding implicit in his future utterances. If these utterances were not com-
patible with Alison’s original utterance, she could then initiate repair. This was the
course adopted in their conversation in the country park, although, in that case, with
unfortunate results. Finally, the evidence of understanding may often be presented
via back channels, little ‘yes’es, or simply a continued look of comprehension.

Common ground is always partial, and thus any utterance will have a different
meaning for the speaker and the listener. The aim of grounding is to construct a
meaning in the conversation which is sufficient for the task. For example, Brian’s
understanding of the Black Bull may be of pleasant evenings sitting on its river ter-
race. Alison may never have visited the pub, but has seen its distinctive sign hanging
over the road. These different understandings are not important: for the purpose of
finding directions the pub is merely a way of identifying the road they are to follow.

In a conversation, we know that our partner does not share our knowledge of the
world. In addition, we know that our partner will attempt to interpret our utterances.
We thus frame our utterances based on this knowledge. Two guiding principles for
our utterances are that they should be relevant and helpful.

To be relevant an utterance should further the current topic. This is because our
partner is expecting an utterance in this context and any sudden shift in our topic
focus will make it more difficult for our partner to make sense of the utterance. 
Such shifts happen in a conversation, but require less ambiguous utterances (as the
common ground for that particular utterance is lower).

To be helpful, an utterance should be understandable to the listener and be
sufficiently unambiguous given the listener’s understanding. This requires the
speaker to have a model of the listener’s understanding and vice versa. So assuming
he is being helpful, in saying ‘past the pub’, Brian implicitly assumes that there is a
particular pub, which Alison will recognize as being significant. It is no good the pub
being significant to Brian alone; he must know that it will carry its intended
significance to Alison.

The ability to build such models is part of our social maturing. One of the key
developmental steps for a child is from an egocentric world view, where things are
interpreted in relation to the child, to a social one where the child recognizes others’
viewpoints. At the age of 21/2, one of the authors’ children was interviewed by a lin-
guistics researcher. At one stage the conversation proceeded:

Child: We went to the doctor.
Researcher: Where was the doctor?
Child: Up the steps.

The researcher was clearly (in the context and to an adult) wanting to know whether
the doctor was in a hospital or not. The child’s answer would have been instantly
meaningful to any local parent as the steps to the local doctor were a constant prob-
lem for people with prams. However, the child was at that stage unable to phrase the
utterance in a way suited to her listener’s understanding. At a certain age children
assume you know everything they know.4

4 To be fair, adults often make the same assumption of children!
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So, we see that conversation is an inherently social activity, based on a constructed
shared understanding, and relying on the participants’ models of one another. In
addition, it depends on continuous interaction to correct misinterpretations and to
confirm understanding.

14.3.6 Speech act theory

A particular form of conversational analysis, speech act theory, has been both influen-
tial and controversial in CSCW. Not only is it an analytic technique, but it has been
used as the guiding force behind the design of a commercial system, Coordinator.
Speech act theory has origins going back over 25 years, but was popularized by
Winograd and Flores in the design of Coordinator [381].

The basic premise of speech act theory is that utterances can be characterized 
by what they do. If you say ‘I’m hungry’, this has a certain propositional meaning –
that you are feeling hungry. However, depending on who is talking and to whom,
this may also carry the meaning ‘get me some food’ – the intent of the statement is
to evoke an action on the part of the hearer. Speech act theory concerns itself with
the way utterances interact with the actions of the participants.

Some speech acts actually cause a significant effect by the act of being said. The
classic example is when a minister says ‘I pronounce you husband and wife’. This 
is not simply a statement that the minister is making about the couple. The act of
saying the words changes the state of the couple. Other acts include promises by the
speaker to do something and requests that the hearer do something. These basic acts
are called illocutionary points.

Individual speech acts can contribute to a conversation. The basic structure of
conversations can then be seen as instances of generic conversations. One example
of such a generic structure is a conversation for action (CfA). This is shown as a 
state diagram in Figure 14.1. It represents the stages two participants go through in

Figure 14.1 Conversation for action. Source: Understanding Computers and
Cognition: A New Foundation for Design by Terry Winograd/Fernando Flores, © 1986.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ
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initiating an external action that one of them should perform. There are two 
variants, the one shown representing a conversation where the first speaker (A) is
requesting that the other participant (B) does something. The other, similar, variant
is where the first speaker begins with an offer.

The numbered circles in Figure 14.1 are ‘states’ of the conversation, and the
labeled arcs represent the speech acts, which move the conversation from state to
state. Note that the speech acts are named slightly differently in different sources (by
the same author even!), but the structure of a CfA is the same. The simplest route
through the diagram is through states 1–5.

Alison: Have you got the market survey on chocolate mousse?
Brian: Sure.

Rummages in filing cabinet and hands it to Alison
Brian: There you are.
Alison: Thanks.

Alison makes a request for the survey (although it is phrased as a question). Brian
promises to fulfill the request (‘sure’). After he feels he has done so (by handing it to
Alison), Brian asserts that the request has been fulfilled (‘there you are’) and Alison
declares her satisfaction that Brian has completed her request (‘thanks’).

More complex routes may involve some negotiating between the parties. For
example, the conversation might have begun:

Alison: Have you got the market survey on chocolate mousse?
Brian: I’ve only got the summary figures.
Alison: That’ll do.

In this Alison’s request is met by a counter from Brian, that is Brian attempts to 
modify Alison’s request. This brings us to state 6 in the diagram. Alison then accepts
Brian’s counter, bringing the conversation back to state 3.

The network has some nodes marked with a double circle. These are the comple-
tion nodes, and at these points neither party expects any more acts by the other as
part of this conversation. So the fragment above which left Alison and Brian in state
3 must continue. Of these completion nodes only state 5 represents conclusions
where the request has been satisfied. For example, Alison’s initial request could have
been answered with ‘it’s confidential’ (meaning ‘you can’t have it’). This is the action
of Brian rejecting Alison’s request, leaving the conversation in state 8 and complete.

Not all speech acts need be spoken! Often a silence or an unspoken action forms
a speech act. For example, let us imagine that the market survey had not been handy
and so Brian answers Alison’s request with ‘sure, I’ll get it later’. Later in the day he
finds an electronic copy of the report and then emails it to Alison. His action will be
interpreted as asserting completion. If Alison does not respond within a short time,
her silence will be read as declaring satisfaction and the conversation will be com-
pleted.

There are other generic conversation forms as well as CfA. These include:

conversation for clarification usually embedded within a CfA to clarify the required
action (different from countering a request);
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conversation for possibilities looking toward future actions;

conversation for orientation building up a shared understanding.

In addition, the participants may indulge in meta-conversation, discussing the acts
themselves, perhaps questioning the legitimacy of an act: ‘I’m hungry’ . . . ‘well 
I’m not your skivvy, get your own food’. Also CfA is the most extensive and well
developed of the conversational forms. For example, the ‘creative’ conversation for
possibilities will have a much less structured form.

The importance of CfA is that actions are central to organizational administration.
In the words of Terry Winograd [380]:

Conversations for action are the central coordinating structure for human 
organizations.

This belief in the importance of CfA, together with the assumption that making
speech acts explicit will aid communication, prompted the design of the tool
Coordinator. Coordinator is a form of structured email system. When sending a 
message, the participants must say what kind of illocutionary act they are perform-
ing and what part it plays in a conversation. The tool knows about CfA and a few
other conversational forms. In addition, it allows time limits to be put on messages.
Together these facilities allow the participants to keep track of their own commit-
ments and those of others.

As an example, imagine Alison wishes to use Coordinator to request the market
survey from Brian. She selects a menu option saying that she wants to initiate a CfA.
The system then offers her two possibilities, a request or an offer. She chooses 
to make a request and from now on the system knows that a CfA is in progress. 
She then types ‘have you got the market survey on chocolate mousse’ into the text
area of the message. Note that the system does not try to structure or interpret the
natural language content of the utterance, but only demands that the sender declares
the illocutionary point of it. Brian receives Alison’s message and is told by the system
that it is a request. He is then offered the various conversational moves that can 
follow: promise, counter-offer or decline (reject), plus a few more not on Figure 14.1.
If he chooses promise, the system fills the message area with the default words 
‘I promise to do as you request’, which can be altered (to ‘sure’) if Brian desires, or
sent as it is. The intention is that many simple acts can be completed by the defaults.

Coordinator, being one of the earlier CSCW systems, has had plenty of criticism.
Indeed, ‘Coordinator bashing’ has become so common in CSCW circles that it (the
bashing) is coming under criticism itself. There are three main problems: reserva-
tions about speech act theory itself and CfA in particular, that people dislike using
Coordinator, and whether the whole concept of making intentions explicit is a 
good idea.

The first criticism is that speech acts do not adequately describe conversations. For
example, Alison walks into Brian’s office while he is on the phone, he picks a report
from the table and gives it to her, she walks out. Speech act theory would regard this
as a conversation for action. The request is implicit; presumably Brian knows what
Alison wants from some previous context. Then when Brian hands over the report,
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he is, by complying with her request, both implicitly promising to fulfill and asserting
completion of the request. Finally, by going out of the office Alison implicitly declares
completion. There seems to be an awful lot of squeezing to get the interchange to fit
the CfA! Indeed, this is recognized in part within Coordinator as a valid response to
a request is a report of completion (assert), that is taking the promise as read.

There have been mixed responses as to the usefulness of Coordinator, but most
(certainly the most vocal) have been negative. The conversational forms basically do
not do what people want. Those users who continued to use it ended up using ‘free-
form’ messages – a non-interpreted action. Effectively, they used Coordinator as a
standard email. It has been claimed that the only organizations that have used
Coordinator successfully are those with strong authoritarian managerial structures
where the employees have been ordered to use it. Coordinator has even been dubbed
‘the world’s first fascist computer system’5 – which was certainly not the intention 
of the designers. As you can see, emotions tend to run high when discussing
Coordinator!

The fundamental approach of Coordinator is different from any previous system,
and from most since. Rather than starting with technology – build it and play with 
it – Coordinator started with a theory of communication and then used this to 
drive design. Such theory-led design is a thoroughly proper design approach. The
debatable issue is the way in which the theory was incorporated into the tool.

Coordinator expects its users to make explicit what is normally implicit in our
utterances. We hope the reader will have realized by now just how rich human 
conversation is, and how effective people are at communication. However, one of
the fundamental lessons learnt by the expert systems community is that experts do
things, they do not know how they do them. Forcing expert communicators (people)
to think about their communication is rather like asking a centipede to think about
walking. This all suggests that theory should be used to guide the design, but should
not be embedded explicitly within it.

There is a counter-argument, however. First of all, there is some evidence to sug-
gest that teaching managers to recognize their speech acts improves their commun-
ication. The extrapolation is that making the acts explicit improves communication,
but that is a major extrapolation. A more measured claim would be that explicit 
representation is at least a good tool for training communication skills. The second
argument concerns the nature of electronic communication. Although we are all
experts at face-to-face communication with all its subtleties, our expertise is sorely
challenged when faced with a blank screen. We lack the facilities to make our inten-
tions implicit in our communications and thus explicit means will help.

Whatever the rights and wrongs of Coordinator’s design, the evidence is that its
users have largely voted with their feet. More recent systems have included a much
greater level of user control, allowing users to build conversational structures of their
own. Possibly, the structures they build are merely special cases of CfA and other
speech act structures, but users clearly prefer to feel that they have the power over the
system.

5 Even if one agreed with the sentiment, it would certainly not be the first.
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TEXT-BASED COMMUNICATION

For asynchronous groupware (and even some synchronous systems), the major form
of direct communication is text based. There are exceptions to this, for instance voice
messaging systems and answerphones, and other media may be used in addition to
text such as graphics, voice annotation or even video clips. But despite these, text is
still the dominant medium.

Text-based communication is familiar to most people, in that they will have 
written and received letters. However, the style of letter writing and that of face-to-
face communication are very different. The text-based communication in groupware
systems is acting as a speech substitute, and, thus, there are some problems adapting
between the two media.

There are four types of textual communication in current groupware:

discrete – directed message as in email. There is no explicit connection between dif-
ferent messages, except in so far as the text of the message refers to a previous one.

linear – participants’ messages are added in (usually temporal) order to the end of a
single transcript.

non-linear – when messages are linked to one another in a hypertext fashion.

spatial – where messages are arranged on a two-dimensional surface.

In addition, the communication may be connected to other shared computer 
artefacts, which will be described further in Chapter 19 (Section 19.6). In the case
where the communication is an annotation, the annotation itself may be structured
in any of the ways listed above.

A special case of a linear transcript is structured message systems such as
Coordinator, where not only the order but also the function of each message is deter-
mined. The other extreme is where the transcript is presented as a single stream, with
no special fields except the name of the contributor. Figure 14.2 shows a screen shot
of the York Conferencer system showing such a transcript on the left of the screen.
On the right is an electronic pin-board, an example of spatially organized text.

In this section, we will discuss some of the differences between face-to-face con-
versation and text-based communications. We will use several of the concepts intro-
duced during our discussion of face-to-face communication and conversational
structure in Sections 14.2 and 14.3.

14.4.1 Back channels and affective state

One of the most profound differences between face-to-face and text-based com-
munication is the lack of fine-grained channels. Much of the coordination of 
face-to-face conversation depends on back channels and interpretation of the 
listener’s expressions. Text-based communication loses these back channels com-
pletely. Consider the effect of this on even a two-party conversation. Where the

14.4
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speaker would pause to seek back channel confirmation or to offer the floor, the text
‘speaker’ must either continue regardless, or finish the message, effectively passing
the turn. One consequence of the lack of interruptions and more measured pace 
of interaction is that the utterances are more grammatical than speech – but still 
not Queen’s English!

In addition to this loss of back channels, the speaker’s tone of voice and body 
language are of course absent. These normally convey the affective state of the 
speaker (happy, sad, angry, humorous) and the illocutionary force of the message (an
important and urgent demand or a deferential request). Email users have developed
explicit tokens of their affective state by the use of ‘flaming’ and ‘smilies’, using 
punctuation and acronyms; for example:

:-) – smiling face, happy
:-( – sad face, upset or angry
;-) – winking face, humorous
LOL – laughing out loud.

People tend to use stronger language in email than in face-to-face conversation,
for example they are more likely to be highly and emotively critical. On the other
hand, they are less likely to get emotionally charged themselves. These apparently
contradictory findings make sense when you take into account the lack of implicit
affective communication. The participants have to put this explicitly into their 

Figure 14.2 Conferencer screen shot showing text transcript and pin-board
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messages – thus accounting for their stronger language. At the same time, they are
emotionally ‘distanced’ by the text from their conversants and have the conversation
spread out over time. In addition, they do not have to express their affective state by
acting emotionally. Together these factors contribute to a more heated conversation
by calmer conversants!

14.4.2 Grounding constraints

In Section 14.3.5, we discussed the process by which conversants obtain common
ground. This grounding process is linked strongly with the types of channels through
which the conversants communicate. Clark and Brennan [71] describe the proper-
ties of these channels in terms of grounding constraints. These include:

The culture of electronic mail

We use or receive many different kinds of paper messages: formal letters, memos, handwrit-
ten notes, pre-printed letters and postcards. In addition, we communicate by voice: in meetings
and lectures, by telephone and as we pass in the corridor. The same message delivered by differ-
ent media has a different meaning for us. Someone asks us to do something as we pass them in the
corridor, but we forget. We don’t feel too guilty. But if the same request came by formal letter
we would be expected to respond.

These communication mechanisms have been around a long time and we largely understand the
social force of different media. That is, we have a shared culture for paper and voice media. The
situation for electronic media is far less clear.

In the past, email used to be very unreliable. So, if someone sent you a mail and you were slow 
to respond or didn’t respond at all, you didn’t feel too guilty. After all, for all the sender knew, 
you might never have received the message! That is, the unreliable nature of the medium built up
a culture where the social force of email was weak – rather like the comment while passing in the
corridor.

However, increasingly email is used within organizations for passing critical information or making
important decisions. The expectation is that email will be treated with the same force as a formal
letter or memo.

Imagine what happens when the two cultures meet . . . Sending a message to someone asking them
to come to a meeting in half an hour will obviously only have its intended effect if the sender and
recipient have a shared culture of use.

Often you cannot know when you send a message what the email culture of the recipient is. It
varies between organizations and even between groups and individuals within an organization. The
medium itself gives few clues. Even more frightening, many people do not even realize that there
are such cultural differences.
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cotemporality – an utterance is heard as soon as it is said (or typed);

simultaneity – the participants can send and receive at the same time;

sequence – the utterances are ordered.

These are all constraints which are weaker in text-based compared with face-to-face
interaction. For example, simultaneity in face-to-face conversation allows back
channel responses. Even where, say, two participants can see each other’s typed mes-
sages as they are produced, the nature of typing makes it all but impossible to type
your message whilst looking for your colleague’s ‘back channel’ response.

In a text-based system, different participants can compose simultaneously, but
they lack cotemporality. As we saw, even if the messages appear as they are pro-
duced, they will not be read in real time. In addition, the messages may only be 
delivered when complete and even then may be delayed by slow communications
networks.

Linear transcripts obviously have some idea of sequence, but this is confused by
the overlap and interleaving caused by the lack of cotemporality and simultaneity.
Consider this typical interchange during the use of the York Conferencer system:

1. Bethan: How many should be in the group?
2. Rowena: Maybe this could be one of the four strongest reasons?
3. Rowena: Please clarify what you mean.
4. Bethan: I agree.
5. Rowena: Hang on.
6. Rowena: Bethan what did you mean?

Rowena and Bethan composed their first utterances simultaneously. When Rowena
looks up to the transcript area, she sees Bethan’s message and does not under-
stand it, so she enters the canned phrase ‘Please clarify what you mean’ which is 
generated by a button marked ‘Clarify’. Simultaneously, Bethan reads Rowena’s
message (2) and hits her canned phrase button ‘Agree’. Rowena is then confused
about what Bethan means by ‘I agree’ as the preceding message was her request for
clarification.

In a spoken conversation, Rowena and Bethan would have quickly corrected
themselves if they began to speak at once, and the linearity would have reflected a
common experience. The trouble is that the participants in the text-based conference
each experienced the messages in a different order:

Rowena: 2 1 3 4 5 6
Bethan: 1 2 4 3 5 6

We will discuss these problems of interleaving and overlapped messages further in
the following sections.

Altogether, the lack of grounding constraints in text-based communication makes
it more difficult to obtain a common ground. It has also been found that email 
and text-based meetings are less effective at resolving conflicts than a face-to-face
meeting.
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14.4.3 Turn-taking

We saw that one of the fundamental structures of conversation was turn-taking
(Section 14.2.5). The last transcript was an example of a breakdown in turn-taking.
In fact, such breakdowns are quite rare in two-party electronic conversations and are
quickly corrected. What is more surprising is that such breakdowns so rarely occur
during letter writing, which is in some ways similar. However, when conversing by
letter, one has an objective timescale with which to work out whether one’s fellow
conversant ought to have replied. One therefore does not send a second letter unless
the conversant is very remiss in replying to the first missive. However, in synchronous
text-based conversation, the time taken to compose a message (from 30 seconds to
several minutes) is far greater than the few seconds which feel ‘immediate’ on a com-
puter system, but is too short to be able to reason about rationally. The replies always
seem a long time coming and hence one is tempted to send a ‘follow-on’ message.

Despite the occasional breakdown, most observers of two-party text-based inter-
action report an overall turn-taking protocol, which exhibits many of the structures
of normal conversation including adjacency pairs. However, when we look at three
or more participants, turn-taking and adjacency pair structure begin to break down
completely.

In a pair of participants, turn-taking is simple; first one person says something,
then the other. The only problem is deciding exactly when the exchange should happen.
With three or more participants, turn-taking is more complex. They must decide
who should have the next turn. This is resolved by face-to-face groups in a number
of ways. First, the conversation may, for a period, be focused on two of the parties,
in which case normal two-party turn-taking holds. Secondly, the speaker may
specifically address another participant as the utterance is finished, either implicitly
by body position, or explicitly: ‘what do you think Alison?’ Finally, the next speaker
may be left open, but the cotemporality of the audio channel allows the other particip-
ants to negotiate the turn. Basically, whoever speaks first, or most strongly, gets in.

These mechanisms are aided by back channels, as one of the listeners may make 
it clear that she wants to speak. In this case, either the speaker will explicitly pass the
turn (the second option above), or at least the other listeners are expecting her 
to speak. In addition, the movement between effective two-party conversation (the
first option) and open discussion will be mediated by back channel messages from
the other participants.

In an unstructured text-based conversation the third option is not available, 
nor, of course, are the back channels. Paired conversation is quite common and the
second option, explicitly naming the next speaker, is possible. However, this naming
is not particularly natural unless a direct question is being asked. In both options, 
the absence of back channels makes it difficult for another listener to interrupt the
conversation. Some systems use more structured mechanisms to get round these
problems, perhaps having a round-robin protocol (each participant ‘speaks’ in turn)
or having a queue of turn-requests. Whether the strictures of such mechanisms 
are worse than the problems of occasional breakdown depends very much on the
context and is a matter of opinion.
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14.4.4 Context and deixis

We have seen how important context is in ordinary speech. Utterances are highly
ambiguous and are only meaningful with respect to external context, the state of the
world, and internal context, the state of the conversation. Both of these are problems
in text-based communication.

The very fact that the participants are not co-present makes it more difficult to 
use external context to disambiguate utterances. This is why many groupware sys-
tems strive so hard to make the participants’ views the same; that is, to maintain
WYSIWIS (‘what you see is what I see’). In Chapter 19 we will look at an example
that shows that this is an issue even when the participants have audio/video com-
munications or are in the same room!

Whatever the means of direct communication, remote participants have diffi-
culty in using deictic reference. They cannot simply say ‘that one’, but must usu-
ally describe the referrant: ‘the big circle in the corner’. If their displays are not
WYSIWIS then they must also ensure that their colleague’s display includes the object
referred to and that the description is unambiguous. Asynchronous participants
have even more problems with deixis as there is no opportunity for their colleagues
to clarify a reference (without extremely lengthy exchanges). Furthermore, the
objects referred to by a message may have changed by the time someone comes to
read it! Similarly, group pointers are not really an option, but one can use methods
of linking the conversation to its context, either by embedding it within the objects
as annotations or by having hypertext links between the conversation and the object.

The trouble does not end with external context; there are also problems with 
deictic reference to internal context. In speech, the context is intimately connected
to linear sequence and adjacency. As we have seen, even in linear text transcripts,
overlap breaks the strict sequentiality of the conversation, and thus causes problems
with indexicals and with context in general.

1. Alison: Brian’s got some lovely roses.
2. Brian: I’m afraid they’re covered in greenfly.
3. Clarise: I’ve seen them, they’re beautiful.

Brian and Clarise both reply to Alison’s message at the same time. However, in 
the transcript, where Clarise says ‘they’ this appears, at first, to refer to the greenfly.
Brian is expecting a consoling reply like ‘I’ve seen them. Have you tried companion
planting?’ Of course, the breakdown quickly becomes apparent in this case. The
problem is not so much that people cannot recover from such breakdowns, as in the
extra burden the recovery puts on the participants. If these messages are being sent, 
say, between continents, network delays and time differences may limit exchanges 
to once a day. Even one or two messages recovering from breakdown are then a
major disaster.

Most email systems and some bulletin boards lack any implied sequentiality 
and thus any context to the messages. The users (ever inventive) get round this by
including copies of previous messages in their replies. This is only partially effective
and, of course, incredibly clumsy.
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Hypertext-based systems avoid the implied sequentiality of a linear transcript. 
In the above example, both Brian and Clarise replied to Alison’s message at the 
same time. In a hypertext these would form parallel conversations. This is shown in
Figure 14.3, where in addition Clarise has sent a second message offering advice on
Brian’s greenfly. The use of ‘they’ in Clarise’s message (3) is now perfectly clear.

14.4.5 Pace and granularity

In a spoken conversation, the turns are often only a few tens of seconds long. If 
we take into account minor confirmations and back channels, the pace is still faster,
perhaps a turn or back channel response every few seconds. Compared with this, the
pace of email is very slow: messages can take from a few seconds to hours to deliver.
Even synchronous text-based conversations are limited by the participants’ typing
speed and have a pace of at most one turn every minute or so.

The term pace is being used in a precise sense above. Imagine a message being
composed and sent, the recipient reading (or hearing) the message and then com-
posing and sending a reply. The pace of the conversation is the rate of such a
sequence of connected messages and replies. Clearly, as the pace of a conversation
reduces, there is a tendency for the granularity to increase. To get the same informa-
tion across, you must send more per message. However, it is not as easy as that. We
have seen the importance of feedback from listener to speaker in clarifying meaning
and negotiating common ground. Even most monologs are interactive in the sense
that the speaker is constantly looking for cues of comprehension in the listener.
Reducing the pace of a conversation reduces its interactivity.

As well as at the small scale of clarifying individual utterances, interactivity is im-
portant in determining the direction of a conversation. Imagine that the conversation

Figure 14.3 Hypertext conversation structure
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is a little like a game, where the participants can make moves. In Figure 14.4, we 
can see some of the moves Alison and Brian can make whilst talking in the garden
(Clarise has gone home). At each turn of the conversation, Alison or Brian can
choose to say one thing which continues the discussion. That is, they gradually work
out a path from the top of the tree downwards. A particularly promising conversa-
tion path is shown with bold lines.

In a hypertext-based system one can expand several branches of a conversation
tree, but in speech or in a linear text transcript the conversation follows one branch.
Whatever medium is used, you cannot normally progress down the tree faster than
the pace of the conversation. To overcome these limitations, people adopt several
coping strategies.

The simplest strategy is just to avoid conversation. This can be done by delegating
parts of a task to the different participants. Each participant can then perform much
of the task without communication. They must still communicate for large-scale
strategic decisions, but have significantly reduced the normal communications. 
Of course, this approach reduces communication by reducing collaboration.

More interesting in a cooperative work setting are two coping strategies which
increase the chunk size of messages in order to reduce the number of interactions
required to complete a task. These strategies are frequently seen in both text-based
conferences and in letter writing.

The first of these coping strategies is multiplexing. Basically, the conversants hold
several conversations in parallel, each message referring to several topics. In terms of the
conversation tree, this corresponds to going down several branches at once. For an
example, consider the transcript in Figure 14.5 taken during a computer-mediated

Figure 14.4 The conversation ‘game’
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game of Diplomacy as part of the TMPI (theories of multi-party interaction) project
[171]. The turn by England (E) introduces two topics: the forming of an alliance (for
subversive purposes), and a particular line of attack (through Holland).

The second coping strategy for increasing the size of message chunks is eagerness.
The participants can foresee the possible course of the interaction and frame com-
munications which encompass many of the possibilities: for example, ‘If you don’t
pay within seven days we will take you to court’. Thinking of the conversation tree,
eagerness is a sort of depth-first strategy. The participant explores a branch of the
tree guessing the other participant’s responses.

If we compare spoken with written communication we find that letters are far
more eager than speech. When writing a letter, one takes more care that the points
are stated clearly, and one may even consider alternative responses of the recipient
and state one’s position on each. For instance, a letter may say ‘if you marry me I will
be happy for ever, but if not, life will lie like bitter herbs upon my tongue’ (lovers
have a tradition of being overeager). In extremis one frames a communication which
describes one’s reaction in all possible situations.

One can find similar incidents of eagerness in electronic conversations, for ex-
ample the messages in Figure 14.6 from Severinson Eklundh’s corpus [317], quoted
by Bowers and Churcher [42], both exhibit eagerness, the contingent part of each
message being introduced by the key phrase ‘In that case’.

Eagerness is less likely to lead to breakdown, except where the message tries to
foresee too great a breadth of possibilities and becomes confusing. However, there
are various circumstances: for instance, in many process control tasks, where the
number of possibilities at each stage of the tree is large. In this case eagerness cannot
solve the communication problems.

E: I don’t like the other three being in
cahoots – shall I form an alliance with
one to stitch them up? I’ll move to
Holland first.

Figure 14.5 Excerpt of transcript from Hewitt et al. [171]. Source: Courtesy of
Professor Nigel Gilbert

A: Subject: Report C 123660
The above mentioned report is out of stock. 
The remaining ones are C 12366 + C 123660. 
What to do? Reprint? In that case, do you have 
any changes to suggest?

· · · · · ·
A: Subject: SIGSIM meeting

Are you going to Linkoping tomorrow?
In that case when are you leaving?
Does SIGSIM pay for the trip or what?

Figure 14.6 Excerpt from Severinson Eklundh’s corpus [317]. Source: Courtesy of
Kerstin Severinson Eklundh
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A potential problem of eagerness is that by following a particular branch of the
conversation, other branches, which your colleague would have liked to explore, are
missed. In spoken conversations it is quite difficult to return to a previous point. 
It is possible to say ‘going back to . . .’, but this can form a potentially rude break in
the conversation. In text-based communications, the reviewability of the medium
reduces this effect. It is easier to return to a missed point as both participants 
can refer to the conversation up to that point. In addition, the break in the line of
conversation is less rude as both participants know that the current topic can itself
be picked up again. Finally, there is even the option of multiplexing the current topic
with the lost point.

Reviewability is another grounding constraint of communication, but this time
one where text-based communication has the advantage over speech. You can of
course tape speech, but it is far from easy to use this as a review mechanism.

14.4.6 Linear text vs. hypertext

Considerations of potential overlap suggest that hypertext-based communica-
tions may be better suited as a text-based communication medium. Similarly, the
problems of pace may be partially solved in a hypertext. Multiplexed messages 
can be represented as updates to several parts of the hypertext, thus reducing the
likelihood of breakdown and lost topics. In addition, if the messages themselves can
be mini-hypertexts, then eager messages listing several possible courses of action can
be explicitly represented by the message.

On the other hand, hypertext has its disadvantages. Even static hypertexts, which
have been carefully crafted by their authors, can be difficult to navigate. A hypertext
that is created ‘on the fly’ is unlikely to be comprehensible to any but those involved
in its creation. Conklin and Begeman, themselves associated with the hypertext-
based argumentation tool gIBIS, conclude that ‘traditional linear text provides a
continuous, unwinding thread of context as ideas are proposed and discussed’ [76].
For the asynchronous reader trying to catch up with a conversation, a linear 
transcript is clearly easier, but it is precisely in more asynchronous settings where
overlap in linear text is most likely to cause confusion.

We can see that there is no best solution, with possibly the best course in many 
situations being linear transcripts arranged by topic, with some automatically gener-
ated indication of overlap.

GROUP WORKING

So far we have been principally looking at the properties of direct communication,
and largely two-party conversations. Group behavior is more complex still as we
have to take into account the dynamic social relationships during group working.
We will begin by looking at several factors which affect group working, and then 

14.5
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discuss the problems of studying group working. This section deals with groups that
are actively working together, rather than the organizational issues considered in 
the previous chapter, which are primarily concerned with the long-term structures
within which people work.

14.5.1 Group dynamics

Whereas organizational relationships such as supervisor/supervisee are relatively 
stable, the roles and relationships within a group may change dramatically within the
lifetime of a task and even within a single work session. For example, studies of joint
authoring have found that roles such as author, co-author and commentator change
throughout the lifetime of a document [254, 295]. This means that systems, such as
co-authoring systems, which use a formal concept of role, must allow these roles to
change together with the socially defined roles.

Even the naming of roles can cause problems. A person may be an author of a
book or paper, but never write the words in it, acting instead as a source of ideas and
comments. A particular case of this is the biographical story where the individual
concerned and a professional writer co-author the book, but only the professional
author writes. A co-authoring system such as Quilt would call the non-writing
author a ‘commentator’ or a ‘reviewer’, but not an ‘author’. One can imagine some
of the social friction such naming will cause.

Within the microcosm of group interaction, authority roles can be entirely
inverted. For example, if the managing director of a coal mining company visits the
coal face, he should act under the authority of the supervisor at the face, for his own
safety and that of the mine. These inversions can cause problems even in computer-
free situations – it is hard for the supervisor to say ‘No’ to the MD. But, if a system
demands an explicit controlling role, it is even harder for the manager to relinquish
this explicit role, even if in the context the subordinate should be in control.

Not only do the social relationships within the group change, but the group 
membership and structure can change in time. A member leaving or a new member
joining can cause dramatic changes in the behavior of the group. For example, if a
very dominant member leaves, the group may change from a leader–follower to 
a democratic structure. New members have special problems adapting to the par-
ticular group subculture, which can develop very quickly among close colleagues. 
In addition to this social adaptation, the new member must ‘catch up’ with the 
substantive work of the group. Groupware systems, for example argumentation tools,
can help in that they record the history of the group. Groupware designers should in
general be aware that new members can and will enter the group and should design
their software accordingly. For example, a latecomer to a synchronous conference
should be able to review all past contributions, not just the new ones.

The group may also divide into subgroups for detailed discussion and then
reform. Tools must be able to support this. For example, early versions of CoLab’s
software only catered for a single WYSIWIS screen – that is, they only supported a
single group. Later versions were forced to allow subgroups to work independently
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and then share results. Note that the CoLab meeting room only has room for six 
persons; in larger meeting rooms subgroup working is the norm.

14.5.2 Physical layout

In Section 14.2, we discussed the importance of eyegaze and gesture in face-to-face
communication and how these help to mediate turn-taking. In particular, we noted
in Section 14.2.3 that we must ensure that monitors do not block the participants’
views of one another. In general, the physical layout of a room has a profound effect
upon the working relationship of those in it. This is particularly obvious for meeting
rooms, but should be considered in any group-working environment.

As well as being unobtrusive, the orientation of computing equipment can affect
group working. If we wish to encourage conversation, as we do in a meeting room,
the participants must be encouraged to look toward one another. Meeting rooms
have a natural focus toward the screen at the front of the room, but inward-facing
terminals can counteract this focus and thus encourage eye contact [226].

The designers of Capture Lab, an eight-person meeting room, considered all these
features and many other subtle effects. However, the users still had some difficulty 
in adapting to the power positions in the electronic meeting room. At first sight, the
electronic meeting room is not unlike a normal conference room. If the shared
screen is a whiteboard or an overhead projector, then the most powerful position is
toward the front of the room (seats 1 or 6 in Figure 14.7). Managers would normally
take this seat as they can then easily move to the whiteboard or overhead projector
to point out some item and draw the group’s attention.

Unless primed beforehand, managers of groups using Capture Lab took one 
of these seats, but quickly became uncomfortable and moved. In the electronic 
meeting room, there is no advantage to being at the front, because the screen can be
controlled from any terminal. Instead, the power seat is at the back of the room
(seats 3 or 4), as from here the manager can observe other people whilst still seeing
the screen. Also, the other participants have to turn round when the manager speaks,
adding to the manager’s authority over the meeting.

14.5.3 Distributed cognition

In Chapter 1, we discussed human cognition, but the emphasis was, as in all tradi-
tional psychology, upon the activity within the person’s head. A school of thinking
has recently developed which regards thinking as happening not just within the head,
but in the external relationships with things in the world and with other people. This
viewpoint is called distributed cognition [208, 185].

In fact, this viewpoint is not as radical as it first appears. Traditional views 
talk about the movement of information between working memory and long-term
memory: it is not so difficult then to regard bits of paper, books and computer 
systems as extensions to these internal memory systems. Similarly, many models of
human cognition regard the mind as a set of interacting subsystems (see Chapter 12):
the step to regarding several people as involved in joint thinking is not difficult.
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Remember that this is a view of cognition, that is thinking; it says nothing about
awareness, personality or individuality.

Distributed cognition has profound effects on the way we look at group working
and even individual work. It emphasizes the importance of mediating representations,
for example the drawings on a whiteboard. These are no longer just a means of 
communicating between the parties, but can be a concrete embodiment of group
knowledge. Furthermore, it constantly reminds us that communication is not just
about getting knowledge from one person’s head to another, but about the creation
of new group knowledge, not necessarily grasped in totality by any single member.

The emphasis on external forms is encouraging for a designer. It is not necessary
to understand completely the individual’s cognitive processing in order to design
effective groupware. That is an impossible task. Instead, we can focus our analysis of
existing group situations and design of groupware on the external representations
used by the participants.

SUMMARY

Face-to-face communication is extremely complex. People maintain precise dis-
tances, which can be disrupted through video links. Each utterance is mediated by
subtle back channel responses signifying agreement, or on attempting to interrupt.

14.6

Figure 14.7 Meeting room layout
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Body movement, facial expression, eye contact and eyegaze are all used for these back
channels and also to establish context.

At a higher level, the structure of conversation can be seen as a sequence of turns,
usually alternating between the participants. Context is important in disambiguat-
ing utterances, especially when deictic reference is also used. This also depends on
the participants establishing a common understanding during the conversation.
Breakdowns do occur in conversation, but conversational repair is very effective.
Speech act theory, a detailed analysis of conversational structure, has been used 
to drive the design of Coordinator, a highly controversial, commercial, structured
messaging system.

Text-based communication loses most of the low-level feedback of face-to-face
conversation. This, and the possibility of overlapping turns, makes it more difficult
to establish the context of a textual utterance, and therefore to disambiguate deixis.
The reduced pace of text-based conversation means that participants are forced to
increase the granularity of their messages. They may achieve this by multiplexing
messages or by being eager, predicting their colleagues’ responses.

Group dynamics make it very difficult to predict how a particular group will
behave. In particular, small things, such as the layout of chairs in a room, can have a
major effect. We can see the thinking in a group as being distributed, not locked in
any individual, but being within the whole group and the physical representations
they use.

EXERCISES

14.1 In Section 14.3.2, we discussed the highly contextual nature of the spoken word, includ-
ing the use of deictic reference and indexicals, and the (officially) ungrammatical and fragmentary
use of sentences. Try listening to social chat over cups of tea – collect examples of different forms
of contextual utterance.

14.2 Go into an office or other place where several people are working together. Try to note down
in as much detail as possible what they are doing and when. Do this with different foci: focus on
the direct interpersonal communications, focus on the shared objects such as a calendar or docu-
ment, or focus on one worker at a time. Whilst collecting data and when ordering your notes,
look for breakdowns and misunderstandings, and for implicit communication through objects.
Look also at a particular task over a period of time, and note the number of interruptions as a
worker performs the task, or the way a single task is contributed to by several workers.

14.3 What is speech act theory? Describe positive and negative issues that have arisen when it has been
embodied in a specific system.

14.4 Compare turn-taking, round-robin and free-for-all as floor control mechanisms. When might each
be effective?
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RECOMMENDED READING

J. Carroll, editor, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary
Science, Morgan Kaufmann, 2003.
See chapters by Perry on distributed cognition, Monk on common ground and
Kraut on social psychology.

L. A. Suchman, Plans and Situated Actions: The Problem of Human–Machine
Communication, Cambridge University Press, 1987.
This book popularized ethnography within HCI. It puts forward the viewpoint
that most actions are not pre-planned, but situated within the context in which
they occur. The principal domain of the book is the design of help for a photo-
copier. This is itself a single-user task, but the methodology applied is based on
both ethnographic and conversational analysis. The book includes several chap-
ters discussing the contextual nature of language and analysis of conversation
transcripts.

T. Winograd and F. Flores, Understanding Computers and Cognition: A New
Foundation for Design, Addison-Wesley, 1986.
Like Suchman, this book emphasizes the contextual nature of language and the
weakness of traditional artificial intelligence research. It includes an account of
speech act theory as applied to Coordinator. Many people disagree with the
authors’ use of speech act theory, but, whether by application or reaction, this
work has been highly influential.

S. Greenberg, editor, Computer-supported Cooperative Work and Groupware,
Academic Press, 1991.
The contents of this collection originally made up two special issues of the
International Journal of Man–Machine Studies. In addition, the book contains
Greenberg’s extensive annotated bibliography of CSCW, a major entry point for
any research into the field. Updated versions of the bibliography can be obtained
from the Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada.

Communications of the ACM, Vol. 34, No. 12, special issue on ‘collaborative com-
puting’, December 1991.

Several issues of the journal Interacting with Computers from late 1992 through early
1993 have a special emphasis on CSCW.

Computer-Supported Cooperative Work is a journal dedicated to CSCW. See also back
issues of the journal Collaborative Computing. This ran independently for a while,
but has now merged with Computer-Supported Cooperative Work.

See also the recommended reading list for Chapter 19, especially the conference 
proceedings.



TASK ANALYSIS

OV E RV I E W

Task analysis is the study of the way people perform tasks
with existing systems.

n Techniques for task analysis:
– decomposition of tasks into subtasks
– taxonomic classification of task knowledge
– listing things used and actions performed.

n Sources of information:
– existing documentation
– observation
– interviews.

n Using task analysis to design:
– manuals and documentation
– new systems.

15
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INTRODUCTION

Task analysis is the process of analyzing the way people perform their jobs: the things
they do, the things they act on and the things they need to know. For example, if we
were considering the job of housekeeping, we would want to say things like:

in order to clean the house
get the vacuum cleaner out
fix the appropriate attachment
clean the rooms
when the dust bag gets full, empty it
put the vacuum cleaner and tools away

To perform such a task, we need to know about vacuum cleaners, their attachments,
dust bags (if used), cupboards (in which the vacuum cleaner is kept), rooms (to be
cleaned) and so on.

We will consider three different approaches to task analysis, which overlap but
which lay their emphases on slightly different areas. These are as follows:

Task decomposition which looks at the way a task is split into subtasks, and the
order in which these are performed.

Knowledge-based techniques which look at what users need to know about the
objects and actions involved in a task, and how that knowledge is organized.

Entity–relation-based analysis which is an object-based approach where the emphasis
is on identifying the actors and objects, the relationships between them and the
actions they perform.

Task analysis is about existing systems and procedures; its main tools are those of
observation in various forms. We will discuss these sources of information later. One
of the purposes of task analysis is to help in the production of training materials and
documentation. For this purpose, analysis of existing systems is sufficient.

However, where a new computer system is required, the task analysis also con-
tributes to the statement of requirements of this system. We will see how it can be
applied in a fairly straightforward way to menu design. The process of designing a
new system based on an analysis of an existing system will involve a considerable
amount of professional insight and the contribution of task analysis to this is princip-
ally one of clarifying and organizing one’s knowledge about the current situation.

DIFFERENCES BETWEEN TASK ANALYSIS AND 
OTHER TECHNIQUES

The scope of task analysis is quite wide. In addition to those tasks which directly
involve a computer, the task analyst will typically model aspects of the world that 
are not, and are not expected to be, part of a computer system. So a task analysis of

15.2

15.1
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word processing would include activities such as fetching documents from the filing
cabinet, changing the printer ribbon and putting floppy disks in and out of the com-
puter as well as the more obvious interaction with the machine.

So, like traditional systems analysis, task analysis is not limited to activities includ-
ing a computer, although (again like systems analysis) the intention is usually that 
a computer system will be installed. In fact, it is often hard to differentiate many
modern task analysis techniques from their older cousins. The main difference is 
one of emphasis; task analysis is there specifically to recognize the importance of 
the user.

Some aspects of task analysis will look very like the goal-oriented cognitive 
models discussed in Chapter 12. Indeed, there would be little to prevent one using a
GOMS-like notation to represent a task decomposition such as the vacuum cleaning
above. The difference between the two lies in the intention of the models. The pur-
pose of the goal-oriented models is to understand the internal cognitive processes as
a person performs a task – the granularity is thus usually rather small. The emphasis
of task analysis is more one of observing the user from the outside and will include
actions, such as retrieval of a document from a filing cabinet, which would never 
be included in a GOMS analysis.

Task analysis therefore tends to look more at the observable behavior of users than
their internal mental state. Some practitioners would say that task analysis should be
restricted to precisely this objective observable behavior – you should be interested
in what, not why. However, even the most objective analysis will include some infer-
ences about the user’s internal goals, and this will often be evident in the names 
used in task decomposition. Furthermore, other practitioners explicitly state that
their intention is to build a conceptual model – the way the user views the system and
the task. This latter approach will be particularly evident in the knowledge-based
approaches.

Sometimes task analysis will produce quite low-level task decompositions which
are identical to those one would expect from a goal-oriented analysis. However, for
task analysis this would tend to be the end of the process, to be used, for instance, by
the interface designer in structuring the dialog. For goal-oriented cognitive models,
such a goal hierarchy is the central feature, to be further analyzed for complexity,
learnability and the like.

In terms of the design life cycle (Chapter 6), task analysis belongs at the beginning
in requirements capture, whereas the cognitive models are normally used toward the
end of the process during evaluation.

TASK DECOMPOSITION

The example above of vacuum cleaning showed how a task, ‘clean the house’, was
decomposed into several subtasks: ‘get the vacuum cleaner out’ and so on. Most task
analysis techniques involve some form of task decomposition to express this sort of

15.3
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behavior. Hierarchical task analysis (HTA) is typical of such an approach [15, 318].
The outputs of HTA are a hierarchy of tasks and subtasks and also plans describing
in what order and under what conditions subtasks are performed.

For example, we could express the house-cleaning example as in Figure 15.1, fur-
ther decomposing the subtask ‘clean rooms’. Indentation is used to denote the levels
in the task hierarchy, and the tasks are also numbered to emphasize this hierarchy.
The plans are labeled by the task to which they correspond. So plan 0 refers to the
way in which we perform the subtasks 1–5 of task 0. Similarly plan 3 refers to the way
in which we perform 3.1–3.3. There are no plans for subtasks 1, 2, 4 and 5 as these
have not been decomposed.

Reading the plans, we see that not all the subtasks need be performed, and not
necessarily in the order presented. Looking first at plan 0, subtask 4 ‘empty the dust
bag’ need only be performed when the dust bag is found to be full. As this is put in
plan 0, we assume that we may empty the dust bag at any stage including when we
first get the vacuum cleaner out or when we put it away. If we know that we only ever
notice the bag is full when we are actively using the machine, we might choose to put
this subtask within 3 ‘clean the rooms’. This sort of restructuring, finding the appro-
priate and meaningful hierarchy, is part of the process of HTA.

Looking now at plan 3, how to clean the rooms, we see that we are allowed to 
clean the rooms in any order. If the task had been varnishing the floors rather than
cleaning them, we would presumably do the hall after the rest of the rooms!
Furthermore, we only clean those rooms which need vacuuming. The bedrooms 
will not get dirty as fast as the hall, so we need not clean them so often. If we wanted
to be more precise about when the rooms are cleaned, we could produce a more
specific plan:

Plan 3: do 3.1 every day
3.2 once a week
when visitors are due 3.3

Figure 15.1 How to clean a house

0. in order to clean the house
1. get the vacuum cleaner out
2. fix the appropriate attachment
3. clean the rooms

3.1. clean the hall
3.2. clean the living rooms
3.3. clean the bedrooms

4. empty the dust bag
5. put the vacuum cleaner and attachments away

Plan 0: do 1 – 2 – 3 – 5 in that order.
when the dust bag gets full do 4

Plan 3: do any of 3.1, 3.2 or 3.3 in any order
depending on which rooms need cleaning
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How does one produce such a hierarchy with attendant rules? The process is 
iterative. Assume for the moment that we have some overall task in mind, such as
house cleaning. We then ask, what subtasks must be accomplished in order to per-
form the main task? To answer this question we refer to various sources: direct
observation, expert opinion, documentation and so on. These sources will be dis-
cussed later in Section 15.6. We then look at each subtask and seek to subdivide it,
and so on.

One could go on with this process indefinitely, so one applies some form of 
stopping rule in order to decide when the tasks are basic enough. The level at which
we do this will, of course, depend on the purpose of the task analysis. For example,
imagine we were looking at a chemical plant and had produced a first-level decom-
position of what to do in an emergency:

0. in an emergency
1. read the alarms
2. work out appropriate corrective action
3. perform corrective action

If our ultimate aim is to install computer monitoring of the plant, we would be inter-
ested in expanding tasks 1 and 3. On the other hand, if the aim is to produce online
operations manuals, then it is task 2 which would require expansion. In fact, at this
high level of task description the analyst would probably expand all the subtasks as
she ought to take a somewhat larger view. However, one would obviously put more
effort into those subtasks which are directly relevant to the intended purpose.

A rule, which is particularly appropriate when the aim is to design training mater-
ials, is the P × C rule. This says that if the probability of making a mistake in the task
(P) multiplied by the cost of the mistake (C) is below a threshold, then stop expand-
ing. That is, simple tasks need not be expanded (because no one needs training),
unless they are critical.

Another obvious stopping point is where the task contains complex motor
responses (like mouse movement) or where it involves internal decision making. 
In the first case, decomposition would not be productive; explaining how such
actions are performed is unlikely to be either accurate or useful. In the second case,
we would expand if the decision making were related to external actions, such as
looking up documentation or reading instruments, but not where the activity is
purely cognitive. A possible exception to this would be if we were planning to build
a decision support system, in which case we may want to understand the way some-
one thought about a problem in order to build tools to help. However, it is debatable
whether HTA is the appropriate technique in this case.

The task hierarchy can be represented diagrammatically as well as textually. Fig-
ure 15.2 shows a task hierarchy for making a cup of tea. The main task, ‘make a 
cup of tea’, is decomposed into six subtasks. Of these only the first, ‘boil water’, 
is expanded further. The remaining tasks 2–6 and the subtasks of 1.1–1.4 are 
underlined showing that the analysis has been deliberately stopped at that point. 
This obviously denotes the same information as the textual form, but may be more
accessible at a glance.
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Having produced a first stab at a task hierarchy, one would examine it for errors
or omissions. One way of approaching this would be to describe the steps in the task
hierarchy to a domain expert. This would quickly show that the plan for making 
tea has a significant error – it forgets to warm the pot. This has to be added between
tasks 2 and 3.

It is the nature of expert knowledge that obvious things get missed for a task
description. One way the analyst can search for such omissions is by examining the
form of the subtasks. For example, 1.4 says ‘turn off gas’, but nowhere does it say 
to turn the gas on! Probably, this was implicit in ‘put kettle on hob’, but it should 
be added between tasks 1.2 and 1.3. At this point we might notice that the task 
hierarchy is a little unbalanced. This might be right, but we may have included too
many detailed tasks at the highest level. We choose to add a new top-level node
‘make pot’ which would encompass the tasks 3 and 4 and also the new ‘warm pot’
task.

The top-level tasks would now be

0. make a cup of tea
1. boil water
2. empty pot
3. make pot
4. wait 4 or 5 minutes
5. pour tea

Figure 15.2 Hierarchical task analysis: making a cup of tea
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Plan 0. do 1
at the same time, if the pot is full 2
then 3 – 4
after four or five minutes 5

This is almost there: the actions ‘empty pot’ and ‘wait 4 or 5 minutes’ are pretty
basic and clearly do not need expansion. Neither do they need to be included within
one of the other tasks. We might think that ‘empty pot’ should be in with ‘make pot’,
but we can empty the pot whilst the kettle is boiling whereas we have to wait for the
kettle to boil to do any of the other tea-making tasks. Similarly, the ‘wait’ node
belongs at the top as the pouring of the tea depends on it.

The ‘pour tea’ node is a little anomalous. Is it really so much simpler than, say,
making the pot? Perhaps we should expand this node too. We could decompose it
into three parts:

5. pour tea
5.1. put milk in cup
5.2. fill cup with tea
5.3. add sugar to taste

Plan 5. 5.1 – 5.2
if desired 5.3

However, the mention of cups makes us wonder: do we really only want to
describe the making of a single cup of tea? Perhaps we ought to allow several cups 
of tea to be made. To do this we modify the plan to allow repetitions of steps 1–3 
for each cup. We could describe this plan in words, or use a simple diagram as in
Figure 15.3.

The analyst can choose to use a more formal method of describing the plans, such
as one of the dialog notations described in Chapter 16, a simple self-explanatory 
diagram, or plain text. The choice is very much a matter of taste, except that it would
be unwise to use too formal a representation until late in the process.

The modified HTA after all this analysis is given in Figure 15.4. In addition, adding
the sugar has been expanded to include asking the guests whether or not sugar is
required. Also note that the main goal has been altered from ‘make a cup of tea’ to
‘make cups of tea’.

Figure 15.3 Plan for pouring tea
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We have now seen all the types of plan that are commonly found, most of them in
Figure 15.4:

Fixed sequence In plan 3, we always do the same sequence of subtasks.

Optional tasks In plan 0 ‘empty pot’ and in plan 5.3 ‘add sugar’ may or may not
be performed depending on circumstances. Sometimes, there will be a choice
between several options.

Waiting for events In plan 1, we had to wait for the kettle to boil, and in plan 0 
we waited 4 or 5 minutes. The latter, waiting a certain time, is probably more
common in real-world tasks, such as process control or office procedures, than in
the use of computer software.

Figure 15.4 Modified task hierarchy for making lots of cups of tea
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Cycles In plan 5, we repeatedly perform tasks 5.1 and 5.2 until a condition is
reached (no more empty cups).

Time sharing Tasks 1 and 2 could be done at the same time (or at the very least
they can be intermingled).

Discretionary For this we have to go back to the vacuum-cleaning example in
Figure 15.1. The person is allowed to clean the rooms (plan 3), in any order and
whether or not they need it. Basically, you can keep your house as clean or as dirty
as you like!

Mixtures Most plans are a mixture of these elements. For instance, plan 1 for ‘boil-
ing water’ is largely a fixed sequence but split by a wait.

As we can see, the process is far from straightforward. In common with other task
analysis techniques, the quality and form of the final output depends very much on
the skill of the analyst. Furthermore, different analysts are likely to produce different
results, especially as regards the level of detail. Remember also that there is no single
‘right’ answer – the output of the task analysis should reflect the purpose to which
the analysis will be put.

Waiting . . .

In the HTAs in Figures 15.2 and 15.4, there are tasks labeled ‘wait 4 or 5 minutes’, but also
in the plan ‘after 4 or 5 minutes’. This is clearly repetitive. The explicit subtask was added because
the waiting during tea making is often a ‘busy wait’, perhaps chatting while the tea brews. If the task
had been more like sending an email and waiting for the reply, we would not have included the
waiting as an explict subtask and only had ‘when reply arrives’ in the plan. Arguably for the tea
making we could have left the ‘wait 4 or 5 minutes’ out of the plan. However, the issue of the 
timing seems critical for the task sequence, hence belonged also in the plan – task analysis is not
an exact science! The fact that tasks often have gaps in them is something we will return to in
Chapter 19.

Worked exercise Produce a high-level hierarchical task analysis showing how you would find information on a
website. Assume the site has a search facility as well as normal links.

Answer This HTA just shows the main stages. Subtask 1.1 only works if the page needed is one
level below the top page. Really, one would like to add a task 1.1.3 to say something
like ‘if the information required is not on the new page found through the link then
repeat the steps of 1.1 on the current page’.
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Can you fix this? See our solution on the web at /e3/exercises/ch15/

KNOWLEDGE-BASED ANALYSIS

Knowledge-based task analysis begins by listing all the objects and actions involved
in the task, and then building taxonomies of them. Taxonomies are similar to the
sort of hierarchical descriptions we often find in biology: animals are invertebrates
or vertebrates, vertebrates are fish, birds, reptiles, amphibians or mammals, etc. 
The aim is to understand the knowledge needed to perform a task and thus to help
in the production of teaching materials and in assessing the amount of common
knowledge between different tasks.

We will begin by looking at simple hierarchies of objects. Consider first the con-
trols in a (non-automatic) motor car. An example taxonomic structure is given in
Figure 15.5; every control has exactly one place in the hierarchy.

Look at the figure for a moment: do you think it is a good one? We will discuss
this shortly. Consider how we might have produced such a hierarchy, and how to use
it. The car controls are particularly simple, as we can simply get in and look for them
all. If we extended our analysis to driving a car in general, we would have to consider
more objects: the instruments (speedometer, etc.), the car keys, seat-belts, road signs,

15.4
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other cars, etc. Just as with HTA it can be hard to know when to stop. However, with
any such procedure it is best to start by listing everything you can, later removing
items which are felt to be unnecessary. Other sources for forming a list of objects
include manuals, transcripts and observation, and will be discussed in Section 15.6.

Having got an exhaustive list of objects, how do we go about forming the taxo-
nomy? The analyst could ask a domain expert directly – often a classification may
already exist for some of the domain objects. Another approach is to use a sorting
task. Give a user cards with the objects listed on them and ask the user to sort the
cards into piles of ‘similar’ objects. The user can then be asked to name the piles, or
further sort the piles. This kind of sorting gives you the user’s view of the structure.

Depending on the expected use of the task analysis, we may require different
structures. If we were aiming to produce a car repair manual, we would almost cer-
tainly use a radically different taxonomy. For example, from a driver’s viewpoint the
accelerator and the brake perform related functions, but they have no connection
mechanically.

Let us assume that our purpose is to produce an owner’s manual for the car. It is
likely that having produced a first attempt at an object taxonomy, we will examine 
it and find faults. Let us look again at Figure 15.5. The hand brake has been put with
the door locks as an aspect of parking, but it should also be used as part of ordinary
driving. Perhaps it would be better to put it in a separate ‘braking’ category with the
foot brake. This shift might suggest a whole new superordinate classification into
those controls needed for driving, namely steering, speed, brakes, most lights, as
against those purely for comfort and security. With this classification, the courtesy
lamp would get separated from the rest of the external lighting.

These decisions could be justified based on particular purposes, but others are
purely arbitrary. We could just have easily classified the washers/wipers into front
and rear first:

motor controls
steering steering wheel, indicators
engine/speed

direct ignition, accelerator, foot brake
gearing clutch, gear stick

lights
external headlights, hazard lights
internal courtesy light

wash/wipe
wipers front wipers, rear wipers
washers front washers, rear washers

heating temperature control, air direction, fan, rear screen heater
parking hand brake, door lock
radio

numerous!

Figure 15.5 First attempt at taxonomy of car controls
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wash/wipe
front

front wipers, front washers
rear

rear wipers, rear washers

This better reflects the way they are positioned on most cars, but has no more logic
to it than the classification in Figure 15.5. Really, there are two attributes: ‘function’
(wash or wipe) and ‘position’ (front or rear). One technique, task analysis for know-
ledge description (TAKD), uses a special form of taxonomy called task descriptive 
hierarchy (TDH). TAKD is discussed in detail by Diaper [92] in the recommended
reading list at the end of this chapter. The branches in the simple taxonomy are
either/or branches – a car control is either a steering control or an engine/speed 
control or a lighting control. As well as these XOR branches TDH also uses AND 
and OR branches. The AND branches are used where an object must have a place 
in several categories. For instance, the washer/wiper example could be shown as

wash/wipe AND
function XOR

wipe
front wipers, rear wipers

wash
front washers, rear washers

position XOR
front

front wipers, front washers
rear

rear wipers, rear washers

Notice that each control in the category ‘wash/wipe’ is mentioned both under ‘func-
tion’ and under ‘position’.

The OR branches arise where the object could fall into more than one of the 
categories, but not necessarily all. For example, if we were considering kitchen
objects, we might want to say that they were for preparing food, cooking or dining.
However, a plate may be used both for eating off (dining) and for chopping food on
(preparation). Thus we have an OR branch:

kitchen item OR
preparation

mixing bowl, plate, chopping board
cooking

frying pan, casserole, saucepan
dining

plate, soup bowl, casserole, glass

Note that plate occurs under preparation and dining, but not under cooking
(although one may cook a pie on a plate). The casserole is under cooking and under
dining as a stew is often served in the casserole in which it was cooked.
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TAKD has a uniqueness rule, which demands that a completed TDH can dis-
tinguish any two specific objects. The kitchen hierarchy above fails this test. We can
distinguish, say, the plate from the soup bowl, because the plate is in categories
preparation and dining, whereas the bowl is only under dining. However, we cannot
distinguish the soup bowl from the glass. TAKD would demand that we further
refine this hierarchy until all pairs can be distinguished from one another:

kitchen item AND
/___ shape XOR
/ |___ dished
/ | mixing bowl, casserole, saucepan, soup bowl, glass
/ |___ flat
/ plate, chopping board, frying pan
/___ function OR

{___ preparation
{ mixing bowl, plate, chopping board
{___ cooking
{ frying pan, casserole, saucepan
{___ dining XOR

|___ for food
| plate, soup bowl, casserole
|___ for drink

glass

Notice that the tree has been drawn using the characters: ‘/|{’. These are a character-
istic of TDH and represent AND, XOR and OR branches respectively. The explicit
labels AND, etc., are not used in a normal TDH as these are implied by the way the
tree is drawn.

At this point, each object can be represented by a unique path(s) in the hier-
archy and thus by a term in the knowledge representation grammar (KRG). The KRG
term is built up using ‘/’ for AND branches, ‘()’ for XOR branches and ‘{}’ for OR
branches, similar to the diagram. For example, we could refer to the plate as

kitchen item/shape(flat)/function{preparation,dining(for food)}/

Translating, this says: a kitchen item whose shape is flat AND its function is prepara-
tion OR dining for food.

Strict application of the uniqueness rule is not always necessary. Other similar
techniques cope quite happily without it, but they normally adopt simple hier-
archies, rather than the more complex AND/OR/XOR TDH trees.

The test is perhaps most important when a tree has a lot of AND or OR branches
rather than for simple hierarchies. In these cases, it is often difficult to see whether
the classification scheme is suitably precise. Finding two simple objects which are not
differentiated can be a good way of generating new classifiers. The lack of distinction
between glasses and soup bowls in the original kitchen item classification is a case 
in point. These are so clearly different, and one can ask the question ‘how can I 
tell the difference between a soup bowl and a glass?’ yielding the obvious food/drink
distinction.
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However, there are other examples where attempting to follow the rule is less 
useful. In a more extensive list of items, with a more complex classification tree, it
was found that a corkscrew and a tin opener were not distinguished. Although it 
is possible to distinguish these, the categories introduced were not of ‘general’ use,
that is they did not help one to differentiate anything else. In general, then, the
uniqueness rule is perhaps best viewed as an informative check, rather than adopted
slavishly.

The production of a simple taxonomy, or a TDH, for actions is similar to that 
for objects. Imagine we have a list of specific actions which may occur in a kitchen:
beating, mixing, pouring, frying, boiling, baking, eating and drinking. We may look
at these and start to build a hierarchy. For example, we may use the same classes:
preparation, cooking and dining as we did for the objects:

kitchen job OR
|___ preparation
| beating, mixing
|___ cooking
| frying, boiling, baking
|___ dining

pouring, eating, drinking

We may subject this to the same analysis that we used for objects. For example,
pouring has been put under dining, for instance pouring wine. However, we might
also pour milk into a bowl to beat with eggs for an omelette. This would mean
putting pouring into both categories, or possibly a second look at the specific actions
called pouring. Perhaps we should distinguish those of pouring drinks and pouring
ingredients?

Note the difference between this taxonomy of actions and that in HTA. The 
hierarchy above is one of genericity, whereas that in HTA was a ‘how to do it’ decom-
position. HTA is about the sequencing of simple tasks to perform a single high-level
task, whereas a taxonomy is about the similarity of simple tasks to one another.
However, there will often be a relationship between the taxonomy of actions and 
the HTA descriptions of tasks. For example, having an omelette would consist of
beating, frying and then eating, or having a cake would consist of mixing, baking 
and eating. In general, these tasks consist of one or more preparation and/or cook-
ing actions followed by dining actions. It is precisely when we can begin to make
these general task statements that the power and usefulness of object and action 
taxonomies becomes apparent.

Looking back and forth between the objects and the actions will suggest omissions
or restructuring on one side or another: What action do we do with a chopping
board? Clearly we should add chopping as an action. The action of baking may 
suggest that we include baking trays and bread tins under the objects. This cross-
checking is particularly important for capturing all actions as it is often easier to 
see what people are using for their job than to work out what they are doing.
Furthermore objects are often grouped naturally under their function, so the object
groupings may suggest action groupings and vice versa. In addition, we can apply the
TAKD uniqueness rule to the action TDH, which would mean performing some
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more subdivisions, perhaps adding distinctions between those actions concerned
with liquids and those with solids.

Having produced object and action taxonomies, we can use these in order to 
produce generic descriptions of simple tasks. For an example, we are considering
particular kitchen tasks, and we shall assume that we have extended the object 
taxonomy to include foods. Consider the task of eating a fried egg off a plate. This
can be regarded as doing a ‘kitchen job(dining)’ using a ‘kitchen item/shape(flat)/
function{dining,preparation}/’ to a ‘food(dairy)’. If we observed a kitchen for a day,
we could describe each simple task as it is performed using similar terms. In TAKD
this is called a sentence in KRG.

Notice that the KRG terms do not use the complete KRG description of each
action and object, but instead opt for a generic description. Choosing the appropri-
ate generic description is an art, but there are guidelines to help. One way is to take
the TDH tree and to annotate it with the number of times each object or action is
mentioned by an expert, or used or performed during our day’s observation. If the
number of occurrences of objects below a node is small then one does not bother to
use the lower-level distinctions. So, for example, in the above we have not bothered
with the ‘for food/for drink’ distinction among dining items. This process is called
generification.

The choice of an appropriate level to ‘cut’ the tree is also influenced by the num-
ber of different KRG sentences we get for simple tasks. If there are an unmanageable
number of different sentences, then it suggests that more generification is required.
If, on the other hand, we found that all the observed tasks were represented by only
two or three sentences, then this would suggest that the level of abstraction is too
great. Of course, what constitutes an appropriate number of different sentences
depends on the circumstances, the complexity of the job we are analyzing and
(again) the purpose of the analysis.

In addition, the appropriate generic categories chosen for actions and objects are
linked. If we consider the task of beating an egg in a mixing bowl (to make an
omelette?), we could describe it as

kitchen job(preparation)
using a kitchen item/shape(dished)/function{preparation}/

However, the levels of detail of the action and object are not well matched. The 
detail about the mixing bowl – that it is dished – is needed for beating, but not for
preparation in general. We should either be more specific about the action

kitchen job(preparation(beating))
using a kitchen item/shape(dished)/function{preparation}/

or more generic in the description of the object:

kitchen job(preparation)
using a kitchen item/function{preparation}/

Possibly, if we observe the cook beating eggs in a soup bowl, we might generalize
in a different direction to
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kitchen job(preparation(beating))
using a kitchen item/shape(dished)/

It is possible to go further, looking at generic task sequences; that is, looking at 
frequently occurring sequences of simple tasks and their representation in KRG 
sentences. The sequences may be derived from independent observations or from an
HTA type of analysis. We have already had an example of this when we described a
general kitchen task as consisting of one or more preparation and/or cooking actions
followed by a dining action.

The utility of both KRG sentences and sequences is not proven, but they add 
to our tools for analysis. However, even when the more complex parts of TAKD 
are inappropriate, the process of producing taxonomies and generification can be
employed. In particular, they are especially useful for teaching purposes, where the
taxonomy can be used to structure the presentation and description of the objects
and actions to the student.

ENTITY–RELATIONSHIP-BASED TECHNIQUES

Entity–relationship modeling is an analysis technique usually associated with data-
base design and more recently object-oriented programming. When adopted for 
task analysis the major differences are in the kinds of entities modeled. In database
and object-oriented design, the entities chosen for analysis will be those which are
expected to be represented in the resulting computer system. However, in task ana-
lysis, we are interested in a wide range of non-computer entities including physical
objects, the actions performed on them and the people who perform them.

Like knowledge-based approaches, the cataloging and examination of objects and
actions is central to the analysis, but the emphasis is on the relationships between actions
and objects, rather than on the similarity between different objects and the resulting
taxonomic structure. For example, we might look at the three objects ‘gardener’, ‘soil’
and ‘spade’, and the action ‘dig’ and see how they are related. We would record that
it is the gardener who performs the digging acting upon the soil using the spade. Par-
ticular importance is attached to the linking of actions with the objects which perform
them, and thus the technique can rightly be seen as an object-based methodology.

As an example, we will consider a task analysis of the market gardening firm
‘Vera’s Veggies’. Imagine we have talked to Vera Bradshaw, the owner/manager of
Vera’s Veggies, and have walked around the premises.

We begin by listing all the objects in the domain of interest. In the tool shed, 
we see a spade, a garden fork, a hoe and a small Ferguson tractor (called ‘Fergie’)
with implements, plough and spring-tine harrow. There are two employees, Sam
Gummage and Tony Peagreen, and Vera herself works the land as well as acting as
manager. From our conversation with her, we have found that there are two main
growing fields, ‘One Hundred Acre’ and ‘Parker’s Patch’, and also a large glasshouse.
She also, rather proudly, demonstrated the new computer-controlled irrigation 
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system she has just had installed; this has pumps for each field and the glasshouse,
and, in addition, has a humidity sensor in the glasshouse. During the interview, we
notice that Vera often refers to ‘the kit’, meaning all contents of the tool shed, and
‘the men’, meaning Sam and Tony. However, Vera has recently been on a manage-
ment training course and so (when she remembers) she also uses the term ‘the team’
referring to the complete staff including herself.

We can classify the objects into three basic types: concrete objects, actors and com-
posite objects. First of all there are simple concrete objects such as the spade, plough
and glasshouse, that is all the ‘things’. The human actors are obvious, Vera, Sam and
Tony, but we may need to exercise some caution where things, such as Fergie, have
been given names. One frequently finds that computers, cars and vegetable varieties
are named after people. On the other hand, human actors may be named imperson-
ally, indirectly or not at all, for example ‘the seed merchant’, ‘the contractor’s digger’
or ‘we sell a lot at the farm shop’ (to whom?).

We may also want to discuss non-human actors, concrete objects which in some
sense act autonomously, which can ‘do’ something. In the case of Vera’s Veggies, we
would place the irrigation computer in this category. It may not be clear whether 
or not to regard an object as an actor; we will see that consideration of the actions
(below) helps to make this distinction clear.

Finally, we have composite objects such as ‘the team’, which consists of three 
other objects (Sam, Tony and Vera), and ‘the kit’. These are both examples of a ‘set ’
composite object; we may also come across ‘tuple’ composite objects. For example,
during the interview, we may notice that a lot of times when ‘the tractor’ is 
mentioned Vera does not mean Fergie alone, but Fergie together with one or other
implement, that is <Fergie, plough> or <Fergie, harrow>.

Composite objects need not always be named; for example, Vera may often say
simply ‘Sam and Tony’ rather than ‘the men’. Furthermore, it may sometimes be
useful to regard an entity such as ‘the team’ as an abstract object in its own right, and
link it to the (unnamed) composite object {Vera, Sam, Tony} by a relationship such
as consists_of (‘the team’, {Vera, Sam, Tony}).

We may wish to list some of the attributes of each object, for instance

Object Pump3 simple – irrigation pump
Attributes:

status: on/off/faulty
capacity: 100 litres/minute

We need not strive to be as complete in the listing of attributes as we would for
object-oriented programming. Remember, the intention is not to produce machine
representations of the objects, but to describe their participation in human and com-
puter tasks. For example, it is likely we will want to discuss the turning on and off of
irrigation pumps, so it is natural to record the status as an attribute. The relevance 
of the pump’s capacity is less obvious, and we may decide to drop it as we proceed
with the analysis. As with all the task analysis techniques, it is often best to be slightly
overinclusive during early phases, as it is easier to drop unwanted items than to add
them later.
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We now move on to actions. Typically actions change the state of something, called
the patient, and are performed by someone or something, the agent, for example
‘Sam (agent) planted (action) the leeks (patient)’. There may be other attributes 
associated with an action, for example if there is an instrument used to perform 
the action, as in our earlier example: ‘the gardener dug the soil with the spade’.
Frequently, accounts of activities are written in an impersonal manner: ‘Parker’s
Patch was ploughed’ which really means ‘Sam ploughed Parker’s Patch’. Taking such
an account and uncovering the agent responsible is an important job for the analyst
as one of the goals of this analysis is to produce, for each object, a comprehensive list
of the actions it can perform.

Tracing the agent performing an action is a good way of classifying the actors.
Normally, the agent will be an actor. For example, consider ‘the glasshouse irrigation
is turned on when humidity drops below 25%’. The agent doing this action is the
irrigation controller. This verifies our original statement that the controller is a non-
human agent. Sometimes the agency is indirect. For instance, it is often better to
water at night to reduce evaporation, so Vera may program the irrigation controller
to come on at midnight. Is the controller an agent turning on the water, or an instru-
ment being used by Vera to turn it on (although she is asleep when it happens!)?
There is an element of judgment here, but the condition is not that much different
from Vera telling Sam to dig the carrots. In the latter case, we would definitely regard
Sam as the agent of the digging.

One special sort of action is a message. The last example is better thought of as 
two actions: the first a message, Vera tells Sam (to dig), the second the digging itself
(assuming Sam complies). In any situation involving several people, messages and
communication will be a major part of their jobs. This communication is of par-
ticular interest in the field of computer-supported cooperative work which was dis-
cussed in detail in Chapter 14.

As we analyze the actions people (or even non-human actors) perform, we will
often find that they can be listed under several roles. For example, when Vera plants
marrow seed, she is acting as worker, but when she tells Sam to dig the carrots, she is
acting as manager. Identifying roles can be very important in a large organization as
the result of introducing new systems may be to shift whole roles (not just specific
tasks) between individuals or from humans to the computer.

At this stage of analysis, having identified the principal objects and actions, we can
begin to build object/action descriptions of the form

Object Sam human actor
Actions:

S1: drive tractor
S2: dig the carrots

Object Vera human actor – the proprietor
Actions: as worker

V1: plant marrow seed
V2: program irrigation controller

Actions: as manager
V3: tell Sam to dig the carrots
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Object the men composite
Comprises: {Sam, Tony}

Object glasshouse simple
Attribute:

humidity: 0–100%
Object Irrigation Controller non-human actor

Actions:
IC1: turn on Pump1
IC2: turn on Pump2
IC3: turn on Pump3

Closely allied to actions is the idea of an event. Events are anything which happens.
The performing of an action is an event, but we may also encounter spontaneous
events such as the germination of a marrow seed. There is no agent performing the
germination and it should be listed as a spontaneous action of the marrow itself, but
not implying that the marrow is in any sense an actor. Some spontaneous events,
such as ‘the humidity drops below 25%’, have no associated object at all. A third type
of event is timed, such as ‘at midnight’.

Finally, we consider the relationships between objects, actions and events. The 
simplest relationships are object–object ones, such as the fact that Sam is sub-
ordinate to Vera, or that irrigation pump 3 is situated in the glasshouse. There are
also action–object relationships. The relationship between the agent performing an
action and the action itself is implicit, as the actions are listed under the object
responsible. However, we may want to record explicitly the patient and instrument
of an action. In addition, we may want to record relationships between actions and
events, such as temporal order and causality:

Object Marrow simple
Actions:

M1: germinate
M2: grow

Events
Ev1: humidity drops below 25%
Ev2: midnight

Relations: object–object
location (Pump3, glasshouse)
location (Pump1, Parker’s Patch)

Relations: action–object
patient (V3, Sam)

– Vera tells Sam to dig
patient (S2, the carrots)

– Sam digs the carrots . . .
instrument (S2, spade)

– . . . with the spade
Relations: action–event

before (V1, M1)
– the marrow must be sown before it can germinate
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before (M1, M2)
– the marrow must germinate before it can grow

triggers (Ev1, IC3)
– when humidity drops below 25%,

the controller turns on pump 3
triggers (Ev2, IC1)

– when it is midnight, the controller turns on pump 1
causes (V2, IC1)

– the controller turns on the pump
because Vera programmed it

causes (V3, S2)
– Sam digs the carrots because Vera told him to

Rather than express all the ordering of events and actions using relationships, 
this form of analysis would normally be combined with some representation of 
the sequence between actions. For example, the ATOM method (Analysis for Task
Object Modeling method) [360], upon which much of the above description is based,
uses JSD diagrams to represent this (JSD diagrams are described in Chapter 16).
Alternatively, one might use HTA diagrams, or one of the other dialog notations in
Chapter 16.

This form of analysis can be applied in two ways. For a specific task, say growing
marrows, we may analyze the order of subtasks and actions annotated by the objects
involved. Using HTA we might have

0. in order to grow marrows
1. Vera sows the marrow seed
2. marrow germinates
3. Vera programs controller
4. controller waters field
5. marrow grows
6. Sam hoes
7. Tony harvests marrows

Plan 0: 1 – 2 – 5 – when crop is mature 7
when rainfall is low 3 – 4
when weeds grow 6

Notice that even though this task is centered on the marrow, there are several actions
(for example, 3) which do not include the marrow, in any capacity.

Alternatively, we can produce for any particular object a ‘life cycle’ diagram 
representing all the actions in which it participates. Typically, this would cross 
over several tasks. For example, the irrigation controller would water the fields and
glasshouse in any order determined by its program and humidity. This is obviously
more in keeping with an object-based approach, but both types of action sequence
are important. Figure 15.6 shows an HTA diagram for the actions in which the 
tractor is involved. One is perhaps typically more interested in the life cycles of the
agents, but in this example they are rather unstructured.
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This form of analysis also fits very well with the sort of taxonomic analysis dis-
cussed previously – object-oriented methods usually include some notion of class or
inheritance hierarchy. Indeed, looking at the commonality of actions and relation-
ships can help us to find useful generic categories. For example, we may see that the
two fields are treated very similarly, or that Sam, Tony and Vera perform many tasks
in common.

Worked exercise Consider the activity of making a telephone call. Record the actions in an HTA diagram or tex-
tually. Start off simply, assuming you know the number to dial, but then add more complicated
situations: finding the number in an address book, or what to do when the number is engaged.

Answer As with most of these exercises, this is an open-ended question. Here is a simple ver-
sion with some expansion, but one can look at alternatives such as public payphones.

0. make phone call
1. pick up receiver
2. dial number
3. wait for reply
4. talk
5. replace receiver

Figure 15.6 Life cycle of tractor
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Plan 0: 1 – 2 – 3
when answered – 4
when finished – 5

We now add looking up the number. The form this takes depends on whether we 
find the number in an address book or a telephone directory. If both fail, say if the call
is long distance to someone not in a local directory, the telephone operator must be
consulted. Note that contacting the telephone operator involves making a phone call,
but the steps for this are not repeated in full!

0. make phone call
1. find number

1.1. look in address book
1.2. look in phone directory
1.3. ask operator

1.3.1. pick up receiver
. . .

2. actually call
2.1. pick up receiver
2.2. dial number
2.3. wait for reply
2.4. talk
2.5. replace receiver

Plan 0: if number unknown – 1
when number found – 2

Plan 1: if phoning friend – 1.1
if local call – 1.2
if 1.1 or 1.2 fail – 1.3

Plan 2: 2.1 – 2.2 – 2.3
when answered – 2.4
when finished – 2.5

Finally, we add the case when the phone is engaged. The simplest way to do this is sim-
ply to change Plan 2.

Plan 2: 2.1 – 2.2 – 2.3
if answered – 2.4 then when finished 2.5
if engaged – 2.5

However, looking at the second line it might suggest that we modify 2.4 to have two
parts:

0. make phone call
. . .

2. actually call
. . .

2.4. successful call
2.4.1. talk
2.4.2. replace receiver
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2.5. failed call
2.5.1. replace receiver

Plan 2: 2.1 – 2.2 – 2.3
if answered – 2.4
if engaged – 2.5

Plan 2.4: 2.4 then when finished 2.5

SOURCES OF INFORMATION AND DATA COLLECTION

The different task analysis methods allow you to structure data about tasks.
However, the resulting task analysis can only be as good as the original data.

The process of task analysis is not a simple one of collect data, analyze and organ-
ize and present results. Instead, the process of analysis will often throw you back 
to your original sources with new questions and insights. Ideally, the process then
should be iterative with periods of data collection interspersed with analysis. In prac-
tice, limitations of time and cost will cut this short, so the skill of the analyst lies in
foreseeing possible problems in analysis and obtaining relevant data as quickly and
economically as possible. The extreme cost of direct observation suggests that, where
possible, the analyst ought to make maximum use of cheap sources of information
such as manuals or pilot studies before embarking on more costly collection exercises.

15.6.1 Documentation

The easiest source of data for the analyst is the existing manuals, instruction book-
lets, training materials, etc., for the task. These are most likely to be focussed on
specific items of equipment or computer software, but this is often the focus anyway.
Furthermore, there may be corporate rule books and job descriptions which may be
used to obtain information about tasks in a wider context. It should be remembered
that these sources typically tell you how people are supposed to perform tasks, not
what they actually do. In addition, equipment-specific manuals are likely to tell you
about the functions of the device rather than the way it is used to perform a specific
task. For example, a word processor may describe a centering menu option, but this
would be used as part of specific tasks such as writing a chapter title or producing a
figure caption.

Although the structure of material in these sources may be misleading, they are
useful for providing basic actions and objects involved in a task. These lists may 
be incomplete, as they will often ignore non-device actions. For example, the word-
processor manual may not mention the use of physical filing cabinets. However,
manuals form a starting point for future analysis, and may be used to structure
experimental studies, or interviews; one can ask questions such as ‘when do you use
the centering option?’ Also the lists obtained from manuals may be compared with
those of direct observation – unused facilities or objects may indicate either that the

15.6
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facility is redundant, or that it is part of a rare procedure. It is, of course, just these
rare procedures which may be missed entirely by direct observation.

Rule books and job descriptions can be used as part of an interviewing process –
‘your job description says . . . is that right?’, or may be compared against observation
and then reflected back to the subject – ‘according to the instructions you do . . . but
actually you did . . .’. Of course, for such questions to be useful it is essential that the
subjects are not put on the defensive or believe that their bending of the rules will be
reported back to management. This sort of issue is central to analyses for computer-
supported cooperative work as we saw in Chapter 14.

15.6.2 Observation

Some form of direct observation, whether formal or informal, is essential if the ana-
lyst is to get an understanding of the task situation. At the simplest level, the analyst
can simply spend time watching people and chatting, just to get the ‘feel’ of the task.
Together with the reading of existing documentation, this can form a good first stage
before going on to more extensive and formal observation.

Formal observation can occur in the field or in the laboratory. The advantages 
and disadvantages of each approach were discussed in detail in Chapter 9. Arguably,
observation in the field is the ideal as this is the ‘real’ task. However, there may be
better recording facilities in the laboratory (video, two-way mirrors, and so on) 
and we may want more control of the environment. Our observation can be passive
(simply listening and watching) or active (asking questions). Especially where the
observation is passive, we may want to perform a post-task walkthrough; that is, 
discuss the observations with the subject. This allows us to find out the reasons why
the subject performed certain actions. We discussed different recording methods and
post-task walkthroughs in Chapter 9.

Worked exercise The act of searching is quite complicated. Look up a person in an address book or telephone
directory. Get several friends to look up words in a dictionary. Observe their methods closely.
You will probably have to develop shorthand notations to keep track of what pages they visit.
Compare the strategies used by the different people. If they differ, try to abstract out the 
common parts of the task and the variable parts. If you have a computing background, try to
classify their methods in relation to known search algorithms: binary chop, linear search, etc.

Answer In order to see the range of possible search strategies, the authors asked two subjects
to look up words in a dictionary. One was a literate, but young, child and the other an
erudite English graduate.

To obtain any sort of useful record, the subjects had to be asked to work slowly and
even then keeping track of the search was difficult. We noted down the page numbers
they paused at, but often searches included thumbing through a sequence of pages, at
which point some form of specific notation would be useful. As an alternative to noting
down the page numbers, noting the words at the top of the page could be used.

The English graduate was also asked to talk aloud through the exercise. We discussed
in Chapter 9 the possible effects this might have on the user’s performance, but it is
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extremely difficult to keep track of the reader’s focus on the page otherwise. The notes
in the tables have been tidied up considerably from our original handwritten scrawl and
the notes in italics were added afterwards. Unfortunately, in typesetting the notes, some
of the spatial layout is lost. They do, however, retain the scrappiness of the original
observations. Use of video can of course allow one to replay tasks at a slower rate and
thus improve the detail of note taking.

The English graduate was asked to find unfamiliar words: ‘daltonism’ (Table 15.1) and
‘parclose’ (Table 15.2). The child was asked to look up simpler words: ‘dig’ (Table 15.3)
and ‘orange’ (Table 15.4). The transcripts do not include timings – the whole process
took no more than 30 seconds. To give an idea of relative timings: whereas the English
graduate homed quickly onto the correct page, this took the child somewhat longer,
but, once they were on the right page, both were so quick that it is hard to give judg-
ment on relative speed.

Table 15.1 Adult looking up the word ‘daltonism’

???? note illegible, intended to convey that she turned the dictionary on 
its side and then opened it

283 dog said that first cut was based on the position of ‘d’ in the alphabet
flick backward
overshoot to ‘C’
forward one page to ‘daltonism’ on this page

beginning of ‘D’
quick skim over page
places finger on word

Table 15.2 Adult looking up the word ‘parclose’

right of center comment by subject on position of ‘p’ in dictionary
729 O gets to page in the middle of ‘O’ section
turn over forward
741 page begins with ‘para’ words
? C or K subject says unsure whether spelt with c or k

says she’ll look for ‘c’ first
scan with finger
sequential she explains that the presence of the ‘para’ words made the task confusing

Table 15.3 Child looking up the word ‘dig’

525 near middle of book
429 these first pages were quite rapid
297 page headed ‘dualism’
266 correct page – luck!
scan down and up sequential search item by item
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Table 15.4 Child looking up the word ‘orange’

236 last page of ‘c’
266
flick forward too fast to note pages
800 overshoot
flick back
700, 690, 699 start of ‘O’
sequential pages
703
flick forward page by page
717 right page
sequential search through page

From this evidence, about the best general description we could have is

0. look up word in dictionary
1. find right page
2. find word on page

Plan 0: 1 – 2

The performance of subtask 1 was far more efficient for the adult as she used a heur-
istic to find the approximate position based on her knowledge of the alphabet. The 
child knew the relative position of words in the alphabet, but not enough to be able to
say ‘o’ is just after the middle, in the way the adult did with ‘p’. The difference in sub-
task 2 was less marked, but mainly because it was too rapid to annotate. There was
some evidence that the adult used a more direct method than the child who simply 
(but quickly) scanned the page entry by entry.

If you carry out this observation with more subjects, or pool observations and compare
notes, you may be able to abstract more specific, but still general, search strategies. For
example, you may see something akin to binary chop. You should not look for a single
strategy used by all people, but instead look for a small set of strategies, and then look
for ways of telling how people choose one strategy or another.

Really, two observations, as described above, are only sufficient for a pilot study in order
to sharpen up thinking. Looking at the notes may suggest shorthands, for instance arrows
to represent different kinds of scanning. It also prompts one to ask questions. What
happens if, when they scan the page at step 2, the subjects discover that they are still
on the wrong page? Presumably this leads to a new ‘find the right page’ step. However,
this subtask, essentially a fine correction, will be very different from the original search.

0. look up word in dictionary
1. find right page
2. find word on page
3. adjust page

Plan 0: 1 – 2
if still wrong page 3 – 2
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Unlike the first HTA, this one is not based on observation, but on the authors’ imagina-
tion, however. Given such refined expectations, you must return to observation in
order to explore further. Perhaps you could deliberately choose words close to page
boundaries in order to confuse the subjects. Alternatively, you could ask your subjects
‘What would you do if you’d got the wrong page?’ Note that there is a difference
between a psychological experiment in problem solving and a task analysis observation.
For the former, we would be simply trying to verify our guess/theory. For the latter,
we might have an idea, but our observations should be open ended as we want to find
out what really happens, whether or not it agrees with our theories.

Although the question is clearly oriented toward procedural analysis, one could also 
do some form of knowledge-based analysis. Clearly concepts such as ‘position in the
alphabet’ and ‘word at the top of the page’ are important. Indeed, if we were designing
an electronic dictionary such concepts may be more useful than emulating paper.

Indeed, one could extend this question into a design exercise – how to design the 
electronic dictionary. Assuming that we are not interested in totally automatic lookup,
how would we design the interaction? Whereas in a book, one’s normal action is to
turn over one page backwards or forwards, in dictionary lookup one jumps into the
middle, turns over several pages at a time and flicks through pages at high speed. This
can emphasize that a question like ‘how do we design an electronic book?’ cannot be
answered until we know for what purposes that book is to be used.

15.6.3 Interviews

Questioning domain experts is often a direct and quick way to get information about
a task. Remember that the expert is not necessarily the manager or supervisor who
knows about the job, but the worker who actually does it – although there may 
be advantages to interviewing both sorts of expert, as the views of the manager or
professional instructor are based on years of experience even if they are likely to be
‘idealized’ versions of the task.

It may be particularly appropriate to interview the ‘professional’ experts after
doing some formal or informal direct observation. It is then possible to ask them to
reflect on the various expected and unexpected behaviors; this can become a form of
third-party walkthrough.

More normally, one would begin with a general set of questions, possibly asking
the expert to describe a typical day, or task. This can then be followed with more
leading questions such as ‘Why do you do that?’ or ‘What if this develops a fault?’
The aim is both to uncover detail and to increase the range of behavior discussed.

Where appropriate, the expert can be asked to produce lists of objects/actions
associated with the task, although it may be unwise to demand too structured infor-
mation during a first interview, as this may limit the range of material discussed. 
The exception to this would be HTA where one often starts with a top-down decom-
position. In this case one can begin by asking the expert ‘What do you do to make a
cup of tea?’ and then successively expand the explanation.
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15.6.4 Initial analysis

We assume we have got some sort of written transcript, whether from manuals,
observation or interviews. The detailed analysis, of course, depends on the analysis
method employed, but most start by trying to build up lists of elementary objects
and actions. A simple device is to go through the transcript highlighting the nouns
(which will be objects) and the verbs (which will be associated with actions). If the
transcript is online this process can even be automated with the help of an online
dictionary.

However, this simple association is rarely enough on its own. Some words may be
either a verb or a noun, for instance in chess ‘castle’ is both a noun (the piece) and
also a verb (a particular move). Technical language is often full of ‘verbed’ nouns and
even ‘nouned’ verbs, although the latter are often names for processes, so are not as
great a problem. In addition, the objects or actions may be implicit. This problem
may be better dealt with by checking consistency between lists, within the particular
task analysis method employed.

Context is often important in interpreting words. For instance, we may have the
two verb phrases

‘beat the eggs in the bowl ’
‘ate the porridge from the bowl ’

It is only by looking at the context that we see the former is a mixing bowl and the
latter is a soup bowl. Similar problems arise with verbs:

‘the rain poured’
‘she poured the mixture into the pan’
‘I poured the tea’

The first is clearly a different sort of pouring from the rest. Also, the second sort of
pouring may well be considered different from the last, as the pouring of the mixture
is an action during the preparation of food. Clearly, this second distinction is some-
what debatable and hence one should attempt to leave such decisions till later in the
analysis process. To do this the object and action lists can be annotated, for example
‘pour (the tea)’.

15.6.5 Sorting and classification

Several of the techniques include the production of hierarchies and sorting of entries
by various attributes. Some of this is carried out by the analyst, but some requires
subjective assessments by domain experts.

Several techniques can be used to obtain the relevant information. This has been
discussed briefly before in Section 15.4.

One way is to take the list of, say, task objects, and write each one on a slip of paper
or card. The expert is then asked to sort them into piles of similar objects. Depending
on the size of the piles the expert can be asked to subdivide the piles further, or to
group the piles into larger ones. If desired, the piles and groups of piles can be tied
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together with elastic bands or put in envelopes and labeled by the expert by the com-
mon characteristic. This process can be repeated several times, each time asking the
expert to perform a different grouping. Also, different experts can be asked and their
groupings compared.

Alternatively, one can ask the expert to arrange the cards on a tabletop. This allows
the expert to cluster the cards (showing similarity) and to use the spatial arrange-
ment in order to give a classification by two attributes. Again, the expert can be ques-
tioned after the event as to why the particular arrangement was used.

A range of similar techniques can be used to elicit the user’s or expert’s knowledge
about a task. Each object/action can be ranked against each task depending on how
important the expert thinks they are for that task. Perhaps on a scale 0 (never used) to
10 (essential). So, for example, if the task were ‘making an omelette’ eggs would be
scored 10, but the fork to beat the eggs may only be scored 5. Alternatively, the expert can
simply be asked to rank the objects, as this may be easier than an absolute judgment.

However the classification and production of hierarchies is performed, the job of
producing possibly large taxonomies and hierarchy diagrams is not trivial. This can
be done by hand on paper or using a standard word processor, but is easier if an out-
liner is used. There are several commercial outlining tools, and most word proces-
sors and many spreadsheets have outlining facilities. These outliners make it easy to
shift partially sorted groups as we refine the classification. They also allow us to hide
unwanted information, say when we want to look at the top levels of decomposition
of a task hierarchy, or if we want to ‘cut’ a TDH taxonomy to look at generic objects
or actions.

USES OF TASK ANALYSIS

The output of task analysis is some breakdown of the tasks people perform and,
depending on the techniques chosen, the things that are employed and the plans and
sequences of actions used to perform the tasks. The way this information is utilized
depends very much on the use to which it is put. Three such uses will be described
briefly: the production of manuals and tuition material; requirements capture and
high-level systems design; and detailed interface design. Of these uses, only the first
is aimed at the actual system analyzed; the latter two use the analysis of the existing
system in order to suggest the design of a new one.

15.7.1 Manuals and tuition

Some of the earliest techniques in task analysis were aimed at teaching novices 
how to perform a task. In particular, this was important for military training, for
example how to disassemble and clean a rifle. Training had to be quick and efficient
as conscripts in peacetime may only serve a few years before returning to civilian life,
or in wartime may only survive a few months.

15.7
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The use of task analysis as part of the discipline of HCI is somewhat different, but
training is still an important application. The hierarchical structure of HTA can 
be used to structure manuals or course material. For example, we want to write a
beginner’s manual on tea making based on the hierarchical task analysis in Fig-
ure 15.4. We base each page on one level of task decomposition and its associated
plan (Figure 15.7).

This kind of ‘how to do it’ manual is often useful for initial training, but for struc-
turing a course, or for more advanced training material, a more conceptual structure
is better. This is precisely where the knowledge-based techniques are strong. The tax-
onomic structure can be used directly; for example, our course on cars may start with
a lecture on steering controls, then have a lecture on controlling the engine speed
and gears, etc. This is most likely to be useful when the taxonomy is a strict either/or
tree. More generally, we can produce the shortened list of generic objects and actions
by ‘cutting’ the taxonomic tree, and use these as the structuring principle. Given
such a ‘cut’ of the taxonomy of kitchen tools and jobs in Section 15.4, we may struc-
ture a cookery course as follows:

Cookery in eight easy lessons
lecture 1. preparation – dished utensils
lecture 2. preparation – flat utensils
lecture 3. jobs for food preparation
lecture 4. cooking – dished utensils

. . .
lecture 8. dining – graceful eating and drinking

(followed by four course dinner)

In addition to teaching totally new material, task analysis can be used to help a user
transfer from one system to another. Assuming we have performed a task analysis 
of both systems, a comparison of these will highlight areas for training. A simple

Figure 15.7 Instruction manual for tea making

To make cups of tea

boil water – see page 2
empty pot
make pot – see page 3
wait 4 or 5 minutes
pour tea – see page 4

– page 1 –

Make pot of tea
once water has boiled

warm pot
put tea leaves in pot
pour in boiling water

– page 3 –
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comparison of functionality is not sufficient as the crucial differences may be in pro-
cedures. On the other hand, two systems may seem completely different in terms of
detailed commands and presentation, but have similar high-level concepts or sim-
ilar patterns of use. These common features should be brought out and can be used
to help the user transfer knowledge from one system to another.

15.7.2 Requirements capture and systems design

Task analysis can be used to guide the design of new (although possibly not novel)
systems. Recall (from Chapter 6) that requirements capture is the process of eliciting
what a new system should do. Task analysis in itself is not a form of requirements
capture as it refers to the existing system, not the planned system, and it includes
many elements which are not part of the system. However, it makes a strong contribu-
tion toward the complete statement of requirements. Typically, the original state-
ment of requirements given by a client will mention the new elements required and
possibly refer to the existing system and its functionality. Further information elicited
by a system developer may well concentrate on what the system should do but may
forget how it will be used.

The task analysis of an existing system can help in two ways. First, the analyst can
ask ‘Which of the existing objects, tasks, etc., should be in the new system?’. Secondly,
the formalized presentation of the existing state of affairs may help the client to 
clarify what the novel features are to be. It may be decided to automate whole tasks
or roles, or simply specific subtasks.

As the high-level design of the system progresses, task analysis continues to play 
a role. The structuring provided by, for instance, TDH taxonomies can help the
designer to choose an internal model for the system which matches the existing
expectations of the users. This may, of course, be modified to accommodate novel
features, but gives a reasonable first structure.

We may also make some predictions about the use of the new system. Given the
parts that are to be included and the planned behavior of the system, we may see how
this will interact with existing procedures, including how information will move 
in and out of the new system. Some of the procedures may be able to continue 
as before, especially if the system has been designed to mimic the old, possibly non-
automated, system, but some may need to be retaught completely.

15.7.3 Detailed interface design

In a similar manner to the manual design, taxonomies of tasks or objects may be
used in the design of menus. The TDH trees are obviously most useful in this respect.
Top-level menus can be labeled after the top-level decomposition, and submenus
after the next level, etc. For this, the tree may be first reduced to a simple either/or
tree, thus guaranteeing that each object/action is under exactly one menu. Altern-
atively, more complex trees allowing AND and OR as well as XOR branches can be
used. In this case, an object/action may be found by several paths through the menus.
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An alternative menu layout could be based around roles and then tasks in roles.
Again, for such a layout, it is likely that a particular action is found under several
roles/tasks. There is a tendency for users to find new tasks to perform with new sys-
tems, and, for such a new task, the required actions on the system may be difficult 
to find and be widely dispersed. So this sort of layout is only sensible if the possible
set of tasks is very well defined, but where this is true, such a layout and system
design can be highly efficient.

If an object-oriented paradigm is being used in the interface, then the association
of objects with actions may be particularly useful. For each object, a menu of pos-
sible actions, based on those for which it is the agent or patient, can be displayed.
Default actions for each object may be chosen based on the frequency of actions 
(for efficiency) but informed by the generic classification scheme (for learnability).
In most systems, the generic action associated with a double click is to ‘open’ the
object for editing. However, in specialist domains a different choice may be more
appropriate.

Task sequences obtained from a task decomposition can be used when designing
the system’s dialog (see Chapter 16). The order in which subtasks are performed in
the system can be made to mirror that of the original job. Even where the interface
style is more user directed, and hence the dialog sequence is not defined by the
designer, the task decomposition and plans are useful. If we know that a certain task
is frequently performed, then we want it to be easy for the user to perform the sub-
tasks in the appropriate order. If, for example, it involves constantly swapping
modes, or moving between widely different parts of a menu-based interface, this
would be unacceptable.

Task analysis is never complete and hence it should not be the sole arbiter of the
style and structure of an interface. However, the insights from a well-executed task
analysis can make an interface that easily supports the way people want to work.

SUMMARY

We have seen several task analysis methods. Hierarchical task analysis decomposes 
a task into subtasks. These can be recorded either in a textual outline format or in 
a tree diagram. Knowledge-based techniques build taxonomies of the objects used
during a task and the actions performed upon them. Cutting the taxonomy at some
level gives us a set of generic objects and actions. Finally, we can again look at 
objects and actions, but concentrate on different kinds of object: passive object and
active human and non-human agents, and the relationships between the objects and
actions.

Information for task analysis can be drawn from existing documentation, obser-
vation of workers doing the tasks, or from interviews with workers and domain
experts. Observations can be recorded in a variety of forms, from handwritten 
notes to video recording and computer logging. The early analysis may involve the

15.8
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subjects, asking them to ‘relive’ the task in a post-task walkthrough, or sort lists of
task objects and actions for knowledge elicitation.

Analysis can be used to structure manuals and training courses. In this case, the
system studied will be the ‘target’ system for the documentation. Alternatively, an
existing system (or systems) can be studied and the task analysis used to structure a
new design. This can guide the choice of functionality and the objects and actions
implemented within the system. It can also be used to guide the detailed design of
dialog so that frequent tasks are easy to perform.

EXERCISES

15.1 The following is a list of objects found in one of the authors’ kitchens:

teapot, mug, soup bowl, plate, spoon, table knife, cook’s knife, fork, saucepan, frying pan, 
kettle, casserole, fish slice, tin opener, baking tray, scales, mixing bowl, glasses, jugs, corkscrew,
rolling pin, ladle, egg cup, chopping board

Produce a taxonomy using the TDH notation of these objects. Does it obey the TAKD unique-
ness rule? Compare your answer with someone else’s. (Note: the authors had great difficulty 
with items like the corkscrew, which did not fit easily into any generic category – perhaps you did
better.)

15.2 Complete the tea-making manual in Figure 15.7. Do you think it would be useful? Think of situ-
ations where such a manual would be helpful and where a more conceptual manual would be 
better.

15.3 Figure 15.1 shows a textual representation of an HTA description of vacuum cleaning. Present the
same information in a diagrammatic form.

15.4 (Converse to above) Figure 15.6 uses an HTA diagram to show the actions in which a tractor is
involved; show the same information textually.

15.5 Observe an office, note the actions performed and the objects used depending on the available
equipment; use different recording techniques as described in Chapter 9. Then use the different
task analysis techniques to structure your findings. (Note: this could be a group project.)

15.6 This exercise is based on the mobile phone scenario on the book website at: /e3/scenario/phone/

A user interface designer analyzes Andy’s behavior with his original phone and realizes that both
scenarios A and B are part of a general pattern, as shown in the hierarchical task analysis (HTA)
in Figure 15.8.

(i) Complete the HTA for phoning using the original phone taking into account scenarios A and
B only and briefly describe your solution.

(ii) Do a complete HTA for phoning using the new phone based on scenario C only.

You will find that scenario C (and hence your solution to part (ii)) does not quite fit into the gen-
eral pattern in Figure 15.8. Discuss whether the solutions to (i) and (ii) can be modified to emphas-
ize their common features and whether this would clarify the overall task description.
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DIALOG NOTATIONS

AND DESIGN

OV E RV I E W

Dialog is the syntactic level of human–computer
interaction; it is rather like the script of a play, except the
user, and sometimes the computer, has more choices.

n Notations used for dialog description can be:
– diagrammatic: easy to read at a glance
– textual: easier for formal analysis.

n The dialog is linked:
– to the semantics of the system, what it does
– to the presentation of the system, how it looks.

n Formal descriptions can be analyzed:
– for inconsistent actions
– for difficult to reverse actions
– for missing items
– for potential miskeying errors.

16
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WHAT IS DIALOG?

Dialog, as opposed to a monolog, is a conversation between two or more parties. 
It has also come to imply a level of cooperation or at least intent to resolve conflict.
In the design of user interfaces, the dialog has a more specific meaning, namely the
structure of the conversation between the user and the computer system.

We can look at computer language at three levels:

Lexical The lowest level: the shape of icons on the screen and the actual keys
pressed. In human language, the sounds and spellings of words.

Syntactic The order and structure of inputs and outputs. In human language, the
grammar of sentence construction.

Semantic The meaning of the conversation in terms of its effect on the computer’s
internal data structures and/or the external world. In human language, the mean-
ing ascribed by the different participants to the conversation.

In user interfaces, the term dialog is often taken to be almost synonymous with the
syntactic level. However, the lexical/syntactic barrier is somewhat fuzzy and actual
use of dialog description often includes some lexical features.

In Sections 16.2–16.4 we will see why specific notations are required for dialog
design, and review a range of diagrammatic and textual dialog notations. Having got
a formal representation of the dialog, what do we do with it? Section 16.5 discusses
the links between these dialog notations acting at the syntactic level and the detailed
semantics of the system. Finally, in Section 16.6, we will see how a description of the
dialog can be analyzed to discover potential faults and problems.

In the rest of this section, we will look at structured human–human dialogs which
will demonstrate several features which we will later see in human–computer dialog.

16.1.1 Structured human dialogs

In contrast to most human conversation, dialog with computers is relatively struc-
tured and constrained. It is only on Star Trek that one can freely chat to the 
computer and expect a response (although not as far from the truth as all that, 
see Chapter 10). So, whereas in human conversation the grammar rules often stop
once we get to the level of a sentence (and allow a lot of latitude even in sentence con-
struction), those for computer dialogs may encompass the whole of the interaction.

There are, of course, more structured forms of human conversation. Consider the
following fragment from a marriage service:

Minister: Do you man’s name, take this woman . . .
Man: I do.
Minister: Do you woman’s name, take this man . . .
Woman: I do.
Man: With this ring, I thee wed . . . (places ring on woman’s finger)

16.1
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Woman: With this ring, I thee wed . . . (places ring on man’s finger)
Minister: I now pronounce you husband and wife.

This is a sort of script for the three participants to follow. It demonstrates several
important features which we will see in computer dialogs. The participants must 
say certain things in a specific order. Some of their contributions are entirely pre-
determined, for instance the phrase ‘I do’. However, the minister must vary some
words, substituting in the names of the husband- and wife-to-be. The instructions
concerning the ring can be regarded as an annotation to the dialog, or part of the 
dialog. Different notations for describing computer dialog will similarly differ on
precisely what actions are considered part of the dialog. Assuming the placing of the
ring is included, we note that this happens at the same time as the marriage partners
speak the words ‘with this ring’. That is, parts of the dialog are performed concur-
rently. Again we shall see later that different notations differ in their ability to handle
concurrent dialog.

Although the minister must substitute the man’s name and the woman’s name,
this has no effect on the rest of the service. This dialog description makes no provi-
sion for alternative responses – ‘I don’t’!

However, typically, the future course of a dialog does depend on the responses of
the participants, for example in a criminal trial:

Judge: How do you plead, guilty or not guilty?
Defendant: either Guilty or Not guilty.

If the defendant pleads not guilty then the trial will proceed with evidence and cross-
examination. If, on the other hand, the defendant pleads guilty, the trial will move
directly to the sentencing. Because of the formalized nature of judicial processes, we
could develop these court scripts further. But they would still be normative; there is
always the chance that the judge may address the court with a chorus of ‘Somewhere
over the rainbow’, or, like the Queen of Hearts, ‘Off with her head!’. The verdict of
such an improper trial is likely to be overturned by a higher court, but is not ruled
out because the human participants do not always behave as expected. Similarly,
descriptions of computer dialogs may not cover all eventualities. Hitting the save
option on a word processor’s menu is expected to save the file and then give control
back to the user. Occasionally, the computer may instead respond with a ‘core
dumped’ or ‘unrecoverable application error’ message. Should the dialog description
include such improper system responses? The answer is unclear and depends very
much on the intended use.

Returning to the marriage service, the script given refers only to the words spoken.
It does not directly address the meaning of those words: the legal nature of the cere-
mony, the fidelity of the partners or even whether the minister gets the partners’
names right! We have noted that computer dialog descriptions are usually aimed at
the syntactic level of language, not the semantics (meaning). Similarly, the marriage
ceremony does not directly address the semantics of marriage; for instance, the mar-
riage may be acted out as part of a television program, and the actor and actress
would not expect to be really married at the end of it. However, an important issue
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for computer dialogs is how the syntax links into the semantics of the application.
For instance, if I type ‘print fred’, I expect the file fred to be printed, not
deleted.

DIALOG DESIGN NOTATIONS

In this section we shall look at some of the notations which have been used for
describing human–computer dialogs. Some may be familiar to the computer scient-
ist as they have their roots in other branches of computing and have been ‘appro-
priated’ by the user interface developer.

But why bother to use a special notation? We already have programming lan-
guages, why not use them? Let us look at a simple financial advice program to 
calculate mortgage repayments. (This is not supposed to be an example of good 
dialog design.)

rate = 10

term = 25

print “Our current interest rate is 10%”

print “What is your annual salary?”

input salary

max_loan = 3 * salary

print “How much do you want to borrow?”

input amount

if amount > max_loan

then print “That is too much money”

print “Please consult our financial advisor”

goto finish

end if

repeat forever

print “Our standard term is 25 years.”

print “Do you want this (yes/no)?”

input answer

if answer == “yes” goto calc

if answer == “no” goto rd_trm

print “You must answer yes or no”

end repeat

rd_trm: print “What term do you require (years)?”

input term

calc: r = ( 100 + rate ) / 100

payment = r^term * ( r - 1 )

* amount / ( r^(term-1) - 1 )

print “Monthly repayment is ”, payment

finish: stop

16.2
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Notice how the dialog with the user is mixed up with the rest of the program; 
calculations are interspersed with input–output. Some of the if then statements
represent the system’s choices (amount > max_loan), others represent choices of
the user (answer == “yes”). If you are a programmer, you will also have noticed
the poor program structure and the use of goto. This is not because the authors are
bad programmers. It would be possible to rewrite the program using only structured
programming constructs. However, the resulting program would be equally obtuse,
and, in general, programs which have to parse are full of nasty structures. In this 
program, the biggest complication is the check that the answer is either ‘yes’ or ‘no’.
Error checking and correction often dominate interactive programs.

Imagine now you have been asked to analyze the dialog in some way: for instance,
to list all the possible sequences of user inputs and system responses, or to tell the user
how to get the repayments on a 15-year loan. The mixing of user and system choices
and the convoluted nature of the program structure make this surprisingly difficult.

Alternatively, you may be asked to change the interface style or fit the program
with a mouse- and window-based interface – is this difficult? Remember, this is a
short program which is almost all interaction with the user and should be relatively
easy. Imagine a program of 10,000 or 100,000 lines. Various commercial applica-
tions began their life on traditional text-based terminals, but are now available on
Windows or Macintosh platforms. The ancestry of such programs is often all too
obvious – not really surprising.

This gives us two reasons for using a separate dialog description notation: ease 
of analysis and separation of the interface elements of the program from the actual
calculations (semantics). These reasons both presuppose the program exists already
– a third reason for using a special notation is to write down the dialog before a 
program is written. This allows the designer to analyze the proposed structure, or
perhaps use a prototyping tool to execute the dialog. A dialog notation is also a way
for members of a design team to talk about the design and eventually for the designer
to pass on the intended dialog to the programmer of the actual application. Thus 
dialog notations often form an integral part of prototyping methodologies and tools
(which were discussed in Chapter 6).

DIAGRAMMATIC NOTATIONS

Diagrammatic notations are heavily used in dialog design. At their best they allow
the designer to see at a glance the structure of the dialog. However, they often have
trouble coping with more extensive or complex dialog structures. Sections 16.3.1–
16.3.4 describe variants of state transition networks, which are the most heavily used
diagrammatic notation. As part of this description, several issues will be discussed
which are shared by other diagrammatic and textual notations, in particular the
treatment of concurrent dialogs and pre-emptive features. Sections 16.3.5–16.3.8
describe other diagrammatic notations: Petri nets, Harel’s state charts, traditional
flow diagrams and JSD diagrams.

16.3
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16.3.1 State transition networks

State transition networks (STNs) have long been used for dialog description, the first
uses for specification dating back to the late 1960s [258, 279] with executable tools
developed from the late 1970s on [366, 367].

Consider a simple mouse-based drawing tool. It has a menu with two options,
‘circle’ and ‘line’, and a drawing surface. If you select circle you are allowed to click
on two further points on the drawing surface. The first of these is the circle’s center
and the second any point on the circumference. After the first point is selected, 
the system draws a ‘rubber band’ line between the center and the current mouse
position. After the second point is chosen, the circle is drawn.

The ‘line’ option in the menu is to draw a polyline. That is, the user can select any
number of points on the drawing surface which the system connects with straight
lines. The last point is denoted by a double click on the mouse. Again the system
‘rubber bands’ between successive mouse positions.

Figure 16.1 shows an STN describing the tool. Each circle denotes a ‘state’ the sys-
tem can be in. For example, Menu is the state where the system is waiting for the user
to select either ‘circle’ or ‘line’ from the menu, and Circle 2 is the state after the user
has entered the circle center and is waiting for the point on the circumference.

Between the states are arrows, the transitions. These are labeled with the user
actions that triggered the particular transition and the response the system makes.
For instance, state Circle 1 is where the system is waiting for the user to select the 
circle’s center. If the user clicks on a point, the system moves into state Circle 2 and
responds by drawing the rubber band between the point and the current mouse posi-
tion. From this state, the user can click on another point, upon which the system
draws the circle and then moves into the special Finish state. We can see from this
that the STN is able to represent a sequence of user actions and system responses.

When in state Circle 1, the user has no other options: there is only one arc coming
from it, corresponding to selecting a point. In other states, the user has several
options. For example, from state Menu the user can select ‘circle’ from the menu,
upon which the system moves into state Circle 1 and highlights the ‘circle’ option on

Figure 16.1 State transition network for menu-driven drawing tool
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the menu, or alternatively, the user can select ‘line’ from where the system moves
into state Line 1. That is, the STN is able to describe user choice.

There is a choice from state Line 2 also: the user can double click on a point and
finish the polyline, moving to the Finish state, or he can single click, which adds 
a new point to the polyline. In the latter case, the transition points back into state
Line 2. This represents iteration – the system stays in state Line 2 accepting any 
number of points on the polyline, until the user double clicks on a point.

Iterations need not involve just one state. The dialog as it stands only allows you
to draw one circle. You presumably have to go through the menu selection again 
for each circle drawn. We could imagine altering the dialog to allow any number of
circles to be drawn. To do this, we would make the arc from state Circle 2 loop back
to state Circle 1. This is shown in Figure 16.2. There are some problems with this
arrangement as it stands which we will discuss later. However, note that already we
are using the STN to discuss different dialog options.

16.3.2 Hierarchical state transition nets

The Start and Finish states are not real states, but are there merely to let us glue 
this bit of dialog into a bigger dialog. For example, the drawing tool may have a 
main menu, from which we can select one of three submenus: a graphics menu (as
described for circles and lines), a text menu (for adding labels) and a paint menu (for
freehand drawing). We could describe this complete system using the hierarchical
STN in Figure 16.3. This is like the previous STNs, but has additional composite
states represented as rectangles with a picture of a little STN in them. Each of these
rectangles denotes the whole STN for the relevant submenu. We assume that the
STN in Figure 16.1 is the Graphics submenu. In a large specification this may be 
represented by a caption for the STN or by putting the label Graphics submenu in the
Start state.

To read this diagram, we start in state Main menu and follow the relevant transi-
tion from it as before. Imagine the user has selected ‘graphics’ from the main menu.
The system responds by ‘popping’ the graphics submenu and then going into state
Graphics submenu. However, this is not really a single state, but corresponds to the
STN described in Figure 16.1. We therefore enter this subdialog at the state pointed to

Figure 16.2 Portion of STN allowing multiple circles to be drawn



16.3 Diagrammatic notations 551

DESIGN FOCUS

Using STNs in prototyping

Producing a state transition network can be a good start for prototyping. In the simplest case you 
can use paper-based prototypes. For each state in the chart, draw and label a representative screen 
on paper, either by hand or printed from a computer drawing package. You can then run through 
example scenarios with a potential user or client. If the user asks what happens if a particular button
or key is pressed, you can simply consult the STN, look up the current state on the chart, see what
the next state ought to be and then show the relevant piece of paper.

Figure 16.3 Hierarchical STN for complete drawing tool

by its special Start state, that is the Menu state. We then follow through the graphics
menu STN, drawing either a circle or a polyline. When we get to a Finish state we
revert to the main diagram in Figure 16.3 and follow the (single) arrow from the
Graphics submenu state which leads us back to the Main menu.

The use of hierarchical elements does not change the power of the basic notation
as one can simply imagine gluing the subdiagrams into the main diagram. However,
it makes it far simpler to specify large systems; it would not be unreasonable to spe-
cify a whole system dialog in this fashion, from the highest level down to individual
keystrokes and mouse clicks.



There are other ways of making STNs hierarchical. Each variant has its own 
rules for tying the high-level STN with the detailed STNs. In addition, the conditions
which enable a transition and the system’s responses may be attached to a low-level
STN. Generalized transition networks are probably the most well known of such 
variants as they are used to describe the computer system’s behavior in CCT
(Chapter 12, Section 12.2.2).

Alternatively, you can get the computer to do the work for you! Using a multimedia authoring tool or
prototyping tool such as HyperCard or Macromedia Director draw each state as a separate screen, but
leave a blank area for annotation and additional controls (see Figure 16.4). Name the screens using the
same labels that you used in the STN. Now add buttons or active areas to each screen corresponding
to the buttons on the intended final system and simply link them to the corresponding screen. (This is
particularly easy to do in HyperCard.) Some user actions do not correspond to clicking areas of the
screen. For these add extra buttons on the blank area and label them suitably, for example ‘user types
some text’.

Now you give this to your prospective users; they can click on buttons and see for themselves what
will happen. Remember to warn them that this is a series of fixed screens not a functioning prototype.
In particular, if you return to the same point in the dialog, the screen will be the same as the first time
you were there.

Figure 16.4 shows an example of this sort of prototype based on the STN in Figure 16.1. It is built using
HyperCard and can be downloaded from our website.

Figure 16.4 Prototyping using STNs – notice there are two mouse pointers: the hand is the real
pointer, the arrow is a simulated one drawn onto the prototype

552 Chapter 16 n Dialog notations and design
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16.3.3 Concurrent dialogs and combinatorial explosion of states

We have seen that STNs can be very good at representing the sequential, choice and
iterative parts of a dialog. Where they fail, quite dismally, is in describing a dialog
consisting of several concurrent parts. Take, for example, a simple dialog box for
describing text style as one might find in a word processor (Figure 16.5). The box
contains three toggles, one each for bold, italic and underline styles. A piece of text
can be emboldened, italicized, underlined or any combination of these three. To
select, say, emboldening, the user clicks over the bold toggle. To deselect it, the user
simply clicks again.

If we look at each toggle individually, we have simple two-state STNs as in 
Figure 16.6. The arrows have been drawn with two heads, as the same user action
moves you in either direction between the states. We have also omitted the system
responses, which would be to invert the highlighting of the toggle, and possibly to
change the style of any currently selected text in the document.

Figure 16.5 Simple dialog box with three toggles

Figure 16.6 Individual bold, italic and underline state transition diagrams
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However, this does not tell us what happens if, say, the user clicks over the italic
toggle and then the bold one. To do this we need to combine the diagrams. We’ll do
this first for just the bold and italic options. This is shown in Figure 16.7. This has
four states: one with neither style selected, one for bold only, one for italic only and
one for both. You can verify that each user action performs as expected: for example,
clicking over ‘italic’ whilst in Bold Italic would get you to the Bold Only state.

Finally, we add in the underline style in Figure 16.8. This time we have written 
the user actions simply as ‘B’ for ‘click over “bold”’, and so on, as the diagram has

Figure 16.7 Combined bold and italic state transition diagram

Figure 16.8 Combined bold, italic and underline state transition diagram
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become cluttered enough as it is! Again, you can verify that the user actions perform
as expected: for example, ‘U’ in state Bold Italic takes you to state Underlined Bold
Italic.

The STN with two toggles had four states, the STN with three toggles had eight
states and, in general, if we had had n toggles, we would have had a diagram with 2n

states in it – not particularly easy to read! The problem is that the user is effectively
operating the toggles concurrently; he can perform an action on any of them, and 
the actions on one are independent of the actions on the others. If we have two 
STNs with m and n states respectively, then the STN representing the two acting 
concurrently will have m × n states. Furthermore, the resulting diagram would hide
the regularity of the interface.

This inability of STNs to handle concurrent dialogs is particularly a problem with
direct manipulation interfaces. These are often full of toggles, option switches, style
sheets, etc., all of which can be operated independently of one another. This seriously
calls into question their usefulness under these circumstances.

One suggestion, particularly associated with Jacob [191], is that STNs should 
be used to model the microdialog of direct manipulation systems. That is, each inter-
face element (menu, toggle, dialog box) would have an associated STN. However, 
the way that these are put together would use some alternative notation. Thus, for
example, the above dialog box would be represented as consisting of three STNs, as
we originally had in Figure 16.6.

16.3.4 Escapes and help

Escapes and help systems pose problems that are similar to the combinatorial 
explosion from concurrent dialogs. Imagine that we have been observing the use of
the drawing tool. We have noticed that users often find they have wrongly selected
some option and want to get back to the menu. As the dialog is currently specified,
once they select, say, the circle option, they must select two points before they are
allowed to continue. As the current system does not have any deletion at present, this
was found to be particularly irksome.

As a solution to this problem, we want to add an escape key, which, wherever you
are, cancels what you are doing and returns you to the main menu. This seems quite
a simple addition – it only took a sentence to say. However, to add it to the STN
describing the system would require an arc from every state back to the main menu.
Furthermore, this would make a complete mess of the hierarchical structure of the
dialog description.

Some forms of hierarchical STN explicitly cater for this by saying that if a com-
posite state has a labeled arc coming from it, then this acts as an escape from the 
subdialog. For example, we could redraw the overall system description as in Fig-
ure 16.9. Each submenu state now has two arcs coming from it. One arc is labeled
‘normal Finish’ and represents the path taken when the subdialog reaches its Finish
state. This arc has a little state circle added to it in order to emphasize that it is tied
to the Finish state within the subdialog. The other arc from the submenu state is
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labeled ‘ESC’ and this represents the user hitting the escape key. The difference is 
that this arc is ‘active’ at all times during the subdialog. Even when the user is in the
middle of drawing a circle or a line, if the escape key is pressed, the subdialog is
immediately aborted and the arc labeled ‘ESC’ is taken. In this case, both the ‘ESC’
and the ‘normal Finish’ arcs go to the same place. In general, this need not be so, and
one may have several escapes activated by different user actions.

Help systems are similar to escapes in some ways, in that they may be invoked at
any stage during the dialog. However, unlike escapes, when you have finished using
the help system, you expect to return to the same point in the dialog that you left.
That is, you can think of the help system as being a little subdialog hanging off every
state in the network. Figure 16.10 shows this for two states of the dialog: as you can
imagine, it would get a little tedious for the whole thing!

The case of a help system is very similar to concurrent dialogs (in fact, it is an
embedded dialog), and the total number of states in the full diagram is again the pro-
duct of the number of states in the help system times the number in the original system.

16.3.5 Petri nets

One of the oldest formalisms in computing science is the Petri net. It is a graphical
formalism designed for reasoning about concurrent activities. In recent years it has
been used by several researchers to specify aspects of single-user [276] and multi-
user systems [277]. In an STN the system is always at exactly one state. Indeed, you

Figure 16.9 STN for drawing tool with escapes
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can simulate the behavior of the system by moving a counter around the STN fol-
lowing arcs. A Petri net is similar except that the system has several ‘states’ at once.
These are depicted as several black counters in Figure 16.11.

The figure shows a Petri net for a system having two near independent bold/italic
toggles. The circles are called places (like states) and the thin rectangles are called
transitions. There are three counters: one in the ‘Bold On’ place, showing that the
bold toggle is currently on; one in the ‘Italic Off ’ place showing that the italic toggle
is currently off; and one in the slightly elliptic ‘user presses Bold’ place showing that
the user has just pressed the bold toggle. The slightly elliptic places represent those
where user input can occur. The rule is that if all the places with arcs going into a
transition have a counter then the transition can fire and all the counters from the
input places are removed and new counters placed on the outputs of the transition.
So, in Figure 16.11, there are counters in both the input places of transition ‘T1’
which will therefore fire leaving a single counter in place ‘Bold Off ’.

The italic side is similar except it has an extra arc coming from the ‘Bold On’ place
to the transition ‘T3’, but with a small circle rather than an arrowhead. This is an
inhibition arc and means that the transition ‘T3’ cannot fire if there is a counter in

Figure 16.10 Portion of STN with help system

Figure 16.11 Petri net for Bold/Italic selection
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place ‘Bold On’. This corresponds to a dialog where if the italic toggle is on it cannot
be turned off while bold is on. More useful conditions can be represented, for example
Petri nets can be used to describe the interactions of users with web-based systems.

An object-oriented variant of Petri nets called Interactive Cooperative Objects
(ICO) has been used extensively by the HCI Group at the University of Toulouse
[276]. The group has focussed especially on safety critical applications and in par-
ticular air traffic control. A tool, the PetShop development environment, has been
developed to aid in the verification and prototyping of ICO specifications [253].

16.3.6 State charts

Harel’s state charts can be seen as a form of STN. They were developed as a way 
of visually specifying complex reactive systems and address many of the problems
described above, for example concurrency and escapes, while still retaining a dia-
grammatic representation. They are characterized by a hierarchical structure, but not
used as we have seen before to split a diagram up. The hierarchy in state charts is
used within a single diagram to add structure, and to show which parts represent
alternative states (like simple STNs) and which represent concurrent activity.

Figure 16.12 is a state chart of a television control panel. The controller has five
buttons labeled ‘ON’, ‘OFF’, ‘MUTE’, ‘SEL’ and ‘RESET’. The television can either

Figure 16.12 State chart for television control panel
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be on, or in standby mode. Imagine we start at Standby. Pressing ON or RESET will
turn the television on (TV_on); then when it is on, pressing OFF puts it back into
standby mode. When the television is on, the user can control the sound with the
MUTE button and the channel with the SEL button. Using MUTE turns the sound
on or off, whereas SEL cycles between four channels (this is a rather cheap TV).

The Sound and Channel subdialogs each look somewhat like normal STNs. They
are both part of the TV_on composite state – this is an example of hierarchical
grouping. However, the dashed line between them, together with the AND keyword,
says that the two subdialogs operate concurrently – that is, we can press MUTE or
SEL in any order we like.

The Sound subdialog has a black blob with an arc going to the On state. This cor-
responds to the Start node in the earlier STNs and represents the default start state.
Each time the TV is turned on, the sound will be on. The channel’s selection is
slightly different: its start arc is marked with an ‘H’, short for history. This says that
the channel subdialog remembers where it last was – the first time you turn the TV
on it will start in channel 1, but subsequently when you turn it on it will be set to the
last channel you were watching. Unlike the ON arc the RESET arc overrides these
default start states. Whereas ON is targeted at the TV_on box generally, RESET is
directed to specific states within TV_on. Thus whenever the RESET button is pressed
from standby mode, the television is turned on with the channel set to 1 and the
sound on.

Notice also that the OFF button acts as an escape to the TV_on dialog. No 
matter where the Sound and Channel dialogs are, simply pressing OFF will put 
the TV in standby mode. A judicious use of the ‘history’ feature would allow one to
specify a help system, but even with the expressiveness of state charts this would look
clumsy.

16.3.7 Flow charts

Although somewhat out of fashion now, flow charts in various forms are perhaps the
most widely used of any diagrammatic notation for programming. They can also 
be a simple, but useful, tool for dialog design. In expressive power, they differ little
from STNs and share the problems of concurrency, escapes and so on. However,
within the area of simple dialogs, they have the advantage of simplicity and the added
benefit that most programmers will know what they mean.

The boxes in a flow chart represent processes or decisions and are thus not equi-
valent to the states of an STN. For example, in an STN, the act of accepting a user’s
input is attached to an arc (and is often difficult to read), whereas in a flow chart it
is in one of the boxes.

Flow charts employ a wide range of box shapes to represent different activities, but
these reflect a programmer-centered rather than a user-centered view: for example,
the use of a parallelogram for input–output, whether this is interaction with the user
or with a database or file. If you use flow charts for dialog specification, it is prob-
ably best to employ a set of box types which reflect user-oriented actions.
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Figure 16.13 shows a flow chart as used by one of the authors, some years ago, for
specifying dialogs for forms-based COBOL programs. The dialog shown is a portion
of a personnel database update system and is the subdialog for deletion of records.
The chart employs two main types of boxes: the rectangular boxes are ‘screen images’
of the forms used to communicate with the user. The angular boxes are the processes
and decisions made by the system. In addition, there is an elliptical ‘finish’ box,
where the user is returned to the main menu, and little ‘tape’ symbols which repre-
sent where the system reads or updates the database.

The dialog starts with a form D1, which asks the user for an employee number.
When this has been given the system reads in the relevant record, and displays it 
to the user for confirmation (form D2). If the user responds ‘Y’ to the question

Figure 16.13 Flow chart of deletion subdialog
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‘delete? (Y/N)’ the record is deleted. If the user does not answer ‘Y’ or ‘N’, the
record is redisplayed (form D3) with the error message ‘Please enter Y or N’. 
Of course, in a real system there would be a similar loop around form D1 if the 
user entered a non-existent employee number.

The big difference between using a flow chart for dialog design and using it for
program design is the level of detail on the program side. If, for example, reading the
employee record involved a sequential search through the file to find the relevant
record, a program flow chart would include this loop. For the dialog, this would nei-
ther be necessary, nor appropriate. That is, the actual program flow chart would look
nothing like this dialog flow chart.

It works!

Formal notations are often criticized for the amount of work required. However, the
authors’ own experience counters this. Flow diagrams such as in Figure 16.13 were used to 
specify dialogs within a transaction-processing environment. For various technical reasons the actual
programs in such environments are very complex, being, like most windowing environments, event
driven. Simple systems developed in this environment typically took many person-months to 
complete.

However, starting with these flow diagrams the same process could be completed in days, with
changes accomplished within hours (no mean feat within such an environment!). This is because
diagrams were converted by hand, but in a mechanical fashion, into COBOL programs. The com-
plex structures needed to work under the transaction-processing environment were constructed
automatically. Furthermore, the flow diagrams allowed systematic testing and also were a useful
aid in talking through design alternatives with end-users.

The productivity improvement over ad hoc design in this context was well over 1000%. Although
it might be nice to think this was due to the authors’ superior programming skills(!), this could in
no way account for an order of magnitude difference in productivity. That is, the adoption of a for-
mal notation did not waste valuable time, but on the contrary made phenomenal time savings.

16.3.8 JSD diagrams

Of course, virtually any diagrammatic (or textual) notation employed in pro-
gramming or system design can be recruited for dialog design. Jackson structured
design (JSD), while not as old as flow charts, has been around for many years. During
this time it has developed significantly; however, it is one of the older parts of 
this methodology, the JSD diagram, which has been used for various aspects of task
analysis and dialog design. As with flow charts, there may be an advantage to using
JSD diagrams if they are already familiar to the programmers who will implement
the dialog.

Figure 16.14 shows a JSD diagram for the top-level structure of an employee per-
sonnel system. The system allows the user to update the personnel record in various
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ways: adding new employees, displaying, altering and removing existing ones. The
diagram looks rather like the hierarchical task analysis diagrams we saw in Section
15.3. However, the basic JSD diagram is somewhat more precise in its meaning. If we
look at the top of the diagram, we see that the personnel system is decomposed into
three parts: login, transactions and logout. These are implicitly in sequence left to
right. That is, you are not allowed to do any transactions until you log in!

The login and logout are assumed to be quite simple, so the diagram only expands
the transaction node. Under this are listed the various transaction types: add, change,
display and delete.

Some of the boxes have a little asterisk or ‘o’ in their top right-hand corner.
Without these decorations the diagram would represent a system which allowed you
to log in, then add, change, display and delete once each in that order, and then log
out. The decorations change this meaning. The asterisk represents iteration – any
number of repetitions. That is, the dialog can consist of a login followed by any 
number of transactions before the logout. The little ‘o’ represents optional elements.
That is, a transaction may be any one of the four options.

Taking the decorations into account, the diagram describes what we would expect
of such a system: a login followed by any number of add, change, display or delete
transactions, and finally a logout.

The class of dialogs which can be represented by simple JSD diagrams is rather
limited, but includes many basic menu-driven information systems. Arguably, the
simple form of such dialogs could be regarded as a positive asset, especially if the dia-
gram sticks to the higher levels of dialog specification.

Figure 16.14 JSD diagram for personnel system
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DESIGN FOCUS

Digital watch – documentation and analysis

Some diagrammatic notations may be clear enough to be used in user documentation as well as in
design. Figure 16.15 shows a state transition diagram for the major modes of a digital watch, taken from
the instruction booklet. The booklet goes on to use some similar diagrams and some tabular descrip-
tions of each of the modes (using the other two buttons).

The watch has only three buttons, and only one of these, button A, is used to move between modes.
As the diagram is being used in documentation, the states are denoted by representations of the watch
in the appropriate mode. This is a useful approach for any stage in the design process, and is similar to
the use of screen images in the flow diagram in Figure 16.13.

There are four modes, and pressing the button A moves between them. The most common modes are
the time display and stop watch. So the dialog is designed to make it easy to switch between these
modes and difficult to slip accidentally into the time- or alarm-setting modes. To achieve this aim, press-
ing ‘A’ usually toggles between the two main modes. However, the watch’s owner will want to set the
time eventually, and the designer does not want another button to be used (buttons cost money and
the watch only costs £2). Therefore, the setting modes are achieved by holding the button down for
two seconds or more. So, a quick press does one thing, whereas a long one does something else. The
semi-formal nature of a state transition diagram makes this real-time behavior easy to denote. It is
merely added as textual commentary.

But this documentation diagram does not have all the information one would require for design pur-
poses. If you are in the time-setting mode and press ‘A’, what happens? Do you go to the time display
or to the stop watch? Also, when going from time display to alarm setting, what do you see during the
two seconds you hold down button A?

A

A A
Depress
  button A
    for 2 seconds

A

Time setting Alarm setting

Time display Stop watch

SET

S M T W T F S

ALM

S M T W T F S

AM

S M T W T F S

STP

S M T W T F S

Figure 16.15 Instructions for digital watch



After a little experimentation, one can generate the complete diagram, suitable for giving to the imple-
mentor of the watch electronics (Figure 16.16).

Notice that in order to deal adequately with the real-time behavior, it is necessary to separate the
depress and release events on button A. This shows us that the toggle between time display and stop
watch happens when the button is pressed down, but that each of these modes corresponds to two
states, as the behavior differs depending on the state of the button. From the diagram you can see that
if you are in the time-setting mode, then pressing ‘A’ will get you back to the time display, not to the
stop watch. However, unexpectedly, if you do not release the button soon enough, you get back into
the alarm-setting mode.

Is this getting a little complicated? In fact it only represents about 10% of the instructions. This kind of
time-dependent behavior is rare in computer software, but common in interfaces to consumer goods
(watches, video controllers, control panels on white goods). This is because the number of buttons
tends to be small compared with the number of functions. As we can see, in the presence of real-time
behavior even simple dialogs become complex. That is all the more reason for such dialogs to be
planned. It is probably the case that the detailed design decisions above were taken as the watch was
being programmed, not by the watch’s designer. It is not surprising that many people cannot set the
alarms or even change the time on their watches.

Figure 16.16 Design diagram for digital watch
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TEXTUAL DIALOG NOTATIONS

16.4.1 Grammars

As the images used for computer dialog are linguistic, it is not surprising that formal
grammars have been used as a dialog notation.

BNF (Backus–Naur Form) is widely used to describe programming language syntax
and we have already seen in Chapter 12 how descriptions of an interface can be used
to measure its difficulty. The same description can be used to describe the dialog for
other purposes. In particular, there are several parser generators based upon BNF,
such as the UNIX ‘yacc’ tool, which are suitable for producing crude prototypes.

As the BNF notation has been described in detail in Chapter 12, we will not 
repeat the description here. But in order to compare it with other dialog description
notations, we recall that BNF has two connectives to denote sequence and choice.
Note that the use of ‘+’ as a symbol for sequence in Chapter 12 is not standard –
sequence is often simply represented by juxtaposition, and this convention will be
followed in the examples below.

The definitions of named non-terminals gave a natural structure to the interface
description. In addition, recursive definitions of non-terminals allowed the dialog to
represent iteration. However, BNF has no way of representing concurrent dialogs,
nor can it easily deal with pervasive commands like escapes or help systems. Note,
however, that both BNF and regular expressions (described below) are focussed upon
the user’s actions, as opposed to the concentration upon the state in STNs.

Regular expressions are heavily used in editors to describe complex textual search
criteria, and also in the lexical analysis of programming languages. They are similar
to BNF but are slightly less powerful. However, their terseness and more easily com-
puted behavior make them very suitable for the above purposes. Unfortunately, the
notation used within regular expressions differs from that used for similar concepts
in BNF, and, to make matters worse, there are many different types of regular expres-
sion with many different notations. For example, when using the tools supplied with
the UNIX operating system, there are at least three different notations. This may be
particularly confusing, if, say, you are used to a particular editor’s regular expression
syntax, and then find a different syntax.

In text editors and lexical analyzers, the basic unit is the character. Often choice is
only available at this level (for example, [+-*/] represents any single arithmetic
operator), and the whole notation is geared to rapid (for the expert), terse expression
of relatively simple patterns. For example, ‘Fred[.!?]’ finds the name Fred when
used at the end of a sentence. However, where regular expressions have been used in
dialog design, different criteria apply. The notation is less terse and tends to employ
named subexpressions (like non-terminals in BNF) for clarity. Unfortunately, this
notation is slightly different again from both BNF and from other regular expressions.

As an example, we consider again the polyline drawing from Figure 16.1. This can
be represented by the regular expression

select-line click click* double-click

16.4
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This says that you must select the line option from the menu, click somewhere with
the mouse, then click as many times as you like on intermediate points, and finally
double click. It is assumed that the low-level terms select-line, click and
double-click either are primitives, or have been defined elsewhere. The only
other two notational forms that are used are sequencing, denoted by juxtaposition,
and iteration, denoted by the Kleene star operator ‘*’. The former is similar to
sequencing in BNF; it is the Kleene star operator which is characteristic of regular
expressions.

In general, a regular expression of the form ‘thing*’ means any number of thing,
including none at all. To obtain the same effect in BNF, one would have to write

some-things ::= thing + some-things

That is, BNF obtains the effect of iteration by using recursion. In regular expressions,
iteration is primitive. However, this is the only way it can be obtained; even where
regular expression-based notations allow named non-terminals, these are not allowed
to be recursively defined. This means that there are some forms of pattern which it is
possible to represent in BNF, but not in regular expressions, for instance bracketing:

sentence ::= empty

| word sentence

| ‘(‘ sentence ’)’ sentence

No regular expression using Kleene star can express that the brackets must 
match. The best that you can do is say that the sentence is any number of words,
open brackets or close brackets. In fact, regular expressions are as powerful in what
they can express as STNs, it is just that BNF is more expressive. Whether that 
matters or not depends on whether the dialogs you want to represent include 
complex recursive elements such as bracket matching. Like STNs, neither BNF nor
regular expressions can handle concurrent dialogs or escapes.

Where regular expressions have been used as a dialog notation, they are confined
to low levels of the dialog, either the parsing of single lines of textual input, or the
description of individual interface widgets. This is similar to the reflection that 
STNs are best used at this low level with different notation being used for high-level
description.

One advantage of using BNF or regular expressions is that they are readily exec-
uted using existing tools. We have already mentioned the UNIX ‘yacc’ tool for BNF;
there is also a tool ‘lex’ for compiling regular expressions. These tools are now 
also readily available on PCs. The tools are probably more suitable for parsing text
commands than for graphical input. However, the execution techniques are so well
understood that it is easy to write a prototyping tool if required.

16.4.2 Production rules

We have already encountered production rules as part of CCT in Chapter 12. They
have also been used extensively to describe the dialog component of UIMS (see
Chapter 8). Recall that production rules are of the general form
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if condition then action

These rules are represented in various forms, for instance

condition → action
condition: action

All rules are normally active and the system constantly matches the condition part 
of the rules against the user-initiated events which have occurred and its own 
memory. When the conditions of a rule become true, the rule is said to fire and the
action part is executed. The action may take the form of a response to the user, or a
change to the system’s memory. Note especially that the order in which the rules are
written is not important; any rule can fire at any time, so long as its condition part 
is true.

Production rule systems may be event or state oriented, or a mixture. We will con-
sider first an event-oriented system, and describe again the polyline drawing part of
Figure 16.1:

Sel-line → start-line <highlight ‘line’>

C-point start-line → rest-line <rubber band on>

C-point rest-line → rest-line <draw line>

D-point rest-line → <draw line> <rubber band off>

Notice that in this example the condition and action parts of the production rules
take the simple form of a set of event names (again, the order of events does not 
matter). These events are of three types:

user events which begin in upper case. These are Sel-line (user selects the ‘line’
option from the menu), C-point and D-point which represent the user single
and double clicking on the drawing surface.

internal events which begin in lower case. These are used by the dialog to keep track
of the dialog state, for example rest-line is the state after the first point on the
polyline has been selected.

system response events enclosed in angle brackets, such as <draw line>. These are
the visible or audible effects of the system.

The dialog manager which executes this form of production rule has a memory
consisting of a set of events. A rule fires if the events named in its condition are 
all present in the memory. All interaction with the user is mediated by this 
event memory: user events, such as a mouse click, are added to the memory, and sys-
tem responses, such as <draw line>, are removed and acted upon by the display
controller.

When a rule fires, all the events named in the condition are removed from the sys-
tem’s memory, and the events named in the action are added to it. For example, 
if the user has just selected the line option from the menu, the system’s memory 
will contain Sel-line. This means that the first rule can fire. Sel-line is 
then removed from the memory and replaced by start-line and <highlight
‘line’>. Finally, the display controller removes the <highlight ‘line’> and
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performs the action. This leaves the system memory with only start-line in it,
and so no more rules can fire until the user does something more.

The event-oriented nature of these production rules is evident in the way that
events are removed from memory if they are used in the condition of a rule. The
event has been ‘dealt with’ and can therefore be forgotten. This makes permanent
status information difficult to represent. Notice in the third rule how the event
rest-line is mentioned in both condition and action. It represents the state where
additional points on the line are being selected after the first point. The rule is fired
by a single click, which means that more points remain to be selected. The system
must therefore continue in the same state. However, because the rest-line event
has been mentioned in the condition it will be removed and therefore it must be 
re-established in the action part.

State-oriented production rules have a very different behavior. The system’s 
memory is again a set of named values, but these are not removed by default when 
a rule is fired; instead they must be removed explicitly by the action part of a rule.
The production rules in CCT operate in this fashion, as evidenced by actions such as
(DELETE-GOAL insert space). A specific example of a state-oriented produc-
tion system, slightly different from CCT rules, is Olsen’s propositional production 
system (PPS) [272]. In PPS, the system’s state is divided into a finite set of attributes,
each of which can take one of a set of values. Some of the attributes are set as the
result of user actions, and others have an effect on the system’s display.

In the polyline drawing example we could have five attributes:

Mouse: { mouse-off, select-line, click-point, double-click }
Line-state: { menu, start-line, rest-line }
Rubber-band: { rubber-band-off, rubber-band-on }
Menu: { highlight-off, highlight-line, highlight-circle }
Draw: { draw-nothing, draw-line }

The first attribute, Mouse, is set automatically whenever the user performs the 
relevant action; the second attribute is used by the dialog to keep track of its state,
and the last three are for controlling system responses. Again, we assume a display
controller which acts appropriately upon these.

The PPS rules for polyline are somewhat similar to the previous event-based rules:

select-line → mouse-off start-line highlight-line
click-point start-line → mouse-off rest-line rubber-band-on
click-point rest-line → mouse-off draw-line
double-click rest-line → mouse-off menu draw-line rubber-band-off

The rules are executed again, when the condition matches the state, but, this time,
the attributes are not changed by this alone. Only when a new value is set for a 
particular attribute is the old value lost. For example, in the second rule, the action
‘rest-line’ sets the Line-state attribute, thus removing the previous value of ‘start-
line’. Notice, that in the third rule, the value ‘rest-line’ of the attribute Line-state
need not be mentioned in the action as it was in the event-based rules. This is
because it persists by default.
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The persistence of attributes has some rather odd effects on the user’s input
events. Each rule has to reset the Mouse attribute explicitly. Consider what would
happen if this was not done. If the second rule fired, but did not have the ‘mouse-
off ’ action, then the system’s memory would include the attribute binding
Mouse=click-point (as it has not been reset) and Line-state=rest-line (set in the
action of the second rule). This means that the third rule would be able to fire 
immediately, and, if it also did not reset Mouse, would continue to fire indefinitely
without any further user actions whatsoever.

An appeal to formal simplicity would demand one used either purely event-
oriented or purely state-oriented production rules, as it is always possible to get any
effect with either. However, we can see from these two examples that some aspects
of the dialog are best described using events and others are best described using
attributes. Hence a mixed notation involving both events and state is to be preferred.
Several variants of production rules (and some STNs) allow both, for example,
allowing rules of the form

event: condition → action

The event (or possibly events) triggers the rule, but the rule does not fire unless the
condition, which checks the state part of the system’s memory, is also true. The event
is reset by default, but the state attributes are unchanged, unless they are explicitly set
by the action. As well as changing the memory state, the action may itself generate
new events, which may then trigger further rules.

Concurrent dialog elements may be represented easily using production systems
as many rules may be active at the same time. For example, we can describe the
bold/italic/underline dialog box of Figure 16.5, using mixed event/state production
rules. We have three attributes:

Bold: { off, on }
Italic: { off, on }
Underline: { off, on }

There are also three possible events, depending on which style the user clicks over:
select-bold, select-italic, select-under. The six rules defining the dialog box are then

select-bold: Bold=off → Bold=on
select-bold: Bold=on → Bold=off
select-italic: Italic=off → Italic=on
select-italic: Italic=on → Italic=off
select-under: Underline=off → Underline=on
select-under: Underline=on → Underline=off

These are (although somewhat uninteresting) exactly what one would expect, and,
unlike STNs, the number of rules only increases linearly with the number of toggles.
If there are n toggles, then there will be 2n rules – substantially better than networks
with 2n states!

Also, escapes can be handled by having a rule of the form

escape-key: → reset-action
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where ‘reset-action’ involves setting all state attributes to some standard value.
Because of the continuous activity of each rule, this escape rule can fire at any stage
of the dialog, whenever the user hits the escape key.

Although production rules are good at handling concurrency, they are not so good
at sequential dialogs. The polyline drawing is a case in point. We want the user 
to perform actions in order: select ‘line’, click at first point, click at any number 
of intermediate points (including none) and then double click at the end point.
However, to represent this simple sequence using a production system, we need to
keep track of the current place in the sequence using some ‘state’ variable. In the
examples this was the state attribute Line-state in the PPS description and the events
start-line and rest-line in the event-oriented rules. This representation of
sequence is both awkward to ‘code’ and difficult to analyze.

Where production rules are used as the dialog description within a UIMS or 
other prototyping tool, various extensions to the simple forms described are used.
Variables are added to the state to describe numeric values such as the mouse 
position. We saw this in CCT with the ‘binding’ of the variables %LINE and %COL.
Different precedence rules are used to decide which of several production rules,
which could potentially fire, will fire first. This enables help systems and pre-emptive
dialog boxes to be programmed. For example, in a word processor, we may give 
rules for the help system higher priority than those for the normal system. Hence an
event, such as a cursor movement, which would normally refer to the movement 
of the cursor in the document, would instead be ‘caught’ by the rules for the help 
system.

16.4.3 CSP and event algebras

We have seen notations such as STNs which are very good at handling sequential
dialog, but weak on concurrency, and production rules which are good at the 
opposite. The problem of dealing with both sequential and concurrent behavior is
common to many other areas of computing, such as telecommunications protocols
and concurrent programming. We have already seen how one notation, Harel’s 
state charts, which was designed with such complex systems in mind, has been used 
in interface design. Process algebras are a class of formal notations which have 
been developed to handle similar situations. One of these, CSP (Communicating
Sequential Processes), has been adopted for dialog specification as part of several 
formalisms, including Alexander’s SPI [10] and Abowd’s Agents [1].

The CSP notation is used because it is able to specify concurrency and sequence
equally well, and because of its readability. We consider again the drawing tool from
Figure 16.1, which demonstrates sequence and choice. The CSP description is as 
follows:

Draw-menu = ( select-circle? → Do-circle

[] select-line? → Do-line )

Do-circle = click? → set-center → click?

→ draw-circle → skip
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Do-line = Start-line ; Rest-line

Start-line = click? → first-point → skip

Rest-line = ( click? → next-point → Rest-line

[] double-click? → last-point → skip )

The events marked with a question mark are the user’s mouse actions, the rest being
internal system events. The description is built using four symbols ‘=’ meaning
definition, ‘→’ event sequence (or guard), ‘;’ process sequence and [] choice. The
names in the dialog denote events (all lower case) or processes (initial upper case).
The processes roughly correspond to non-terminals in a grammar and are used both
for structuring the dialog description and also to give named points to go back to in
recursion (for example, Rest-line).

The definition of Do-circle is a pure sequence. When the system executes Do-
circle, it first takes a user mouse click, then does an internal event, set-centre,
to record the mouse position, accepts a second click, draws the circle and is finished
(shown by the special process symbol skip). Do-line is a sequence too, but has
been written using the process sequencing symbol ‘;’. This is used between two 
processes, as opposed to ‘→’ which is used after an event.

For an example of choice, look at the first line: Draw-menu is defined to be a
choice of two options, a circle or a line. The choice is made by considering the events
that start the sequences either side of the choice ([]), select-circle? and
select-line?. The first event to happen determines the choice. If the user 
does select-circle?, that is selects the ‘circle’ option on the menu, then the 
Do-circle process is executed. Alternatively, if the user selects the line option
(select-line?), the system executes Do-line.

The Do-line process begins by executing Start-line, which gets the initial
point on the line, and then executes Rest-line getting one or more further points 
for the polyline. Rest-line is the only recursive definition. If we read through its
definition, we have a choice. If the user double clicks, then the polyline is drawn and
the process is finished. Alternatively, if the point is only single clicked, then it is 
processed (next-point) and the system repeats Rest-line.

So far this is pretty much like a BNF description but with slightly different 
operator symbols and names for things. The new operator is || indicating parallel
composition. If we have two processes P and Q then P||Q is the interleaving of P
and Q. To see the use of this operator, we consider again the dialog box example. 
We code the individual toggles:

Bold-toggle = select-bold? → bold-on

→ select-bold? → bold-off

→ Bold-toggle

Italic-toggle = select-italic? → italic-on

→ select-italic? → italic-off

→ Italic-toggle

Under-toggle = select-under? → under-on

→ select-under? → under-off

→ Under-toggle
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The event select-bold? represents the user selecting the bold toggle with a mouse.
So, the process Bold-toggle then turns the bold style on and off with alternate
selections. The italic and underline options behave similarly. The dialog box as a
whole can then be represented as the parallel composition of the individual toggles:

Dialog-box

= Bold-toggle || Italic-toggle || Under-toggle

Concurrent processes can also be used as a way of organizing the internal struc-
ture of the interface. For example, returning to the drawing tool, we may decide that 
we would like to allow keyboard shortcuts activated by the Alt key. As the line and
circle options can be operated by the mouse or by the keyboard, we have a process
for each. The mouse process simply waits for the user to select one or other menu
option, and then performs an internal event depending on the choice. The keyboard
process monitors the Alt key, and performs the same internal events depending on
whether the user enters ‘Alt-C’ or ‘Alt-L’:

Mouse = ( select-circle? → int-sel-circle → Mouse

[] select-line? → int-sel-line → Mouse )

Keyboard = alt-key-down? → ( Alt ; Keyboard )

Alt = ( alt-key-up? → skip

[] c-key? → int-sel-circle → Alt

[] l-key? → int-sel-line → Alt )

So an int-sel-circle event may occur either because the circle option is
selected from the menu or because the user typed Alt-C. The existing definition of
Draw-menu expects to be activated by the user’s mouse selections directly, so this
must be modified to accept these new internal events:

Draw-menu = ( int-sel-circle → Do-circle

[] int-sel-line → Do-line )

The three processes can now be run in parallel:

Mouse || Keyboard || Draw-menu

Note that the events int-sel-circle and int-sel-line are used to com-
municate, sending messages from the Mouse and Keyboard processes to the 
Draw-menu process. However, although this direction of causality is obvious from
the context, it is not immediately apparent from the notation. The only clue is that
the events form the guards of the choice operator in the Draw-menu process, but
that is not an infallible indication. The reason for this ambiguity is that CSP does 
not recognize causality; events are simply synchronization points. There are times
when such an interpretation is useful, but in most dialog descriptions the causality is
important. One way to avoid this problem is to match events in pairs, as is done in
some other process algebras writing, for instance, int-sel-line! for the sending
of an event and int-sel-line? for the receiving of it. This loses us the special
decoration for direct user input, but these may be listed separately. Alternatively, if
the notation is to be typeset rather than in straight ASCII, one can use other pairs,
such as x ↑ and x ↓ for send and receive.
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16.4.4 Parametrized and dynamic interleaved dialog structure

In many interfaces, the possible screen displays can be easily enumerated. The order
in which such screens are produced and the detailed contents of fields may differ, 
but the basic screen designs are finite. Other systems are more anarchic, especially
multi-windowed interfaces where user interaction may dynamically cause the cre-
ation of new windows. Thus there is a clear difference between static and dynamic
screen presentations.

A similar and related issue arises at the level of the dialog structure. Some dialogs
can be described by a finite set of dialog states between which the user may move,
whereas others are far more complex. Clearly, multi-windowed systems will have a
correspondingly dynamic dialog structure. Perhaps the dialogs within each window
have a fairly static structure, but the number of such interleaved dialogs varies at 
run time.

The notations we have discussed can only address structurally static dialogs. 
Such notations would not (without modification) allow the expression of general
multi-windowed dialogs. However, many WIMP-based systems do not require this
level of generality. In addition, many run-time systems may only allow essentially
static structures, for instance prototypes programmed in HyperCard (except for 
very complex scripts) or under most forms-based systems.

This issue of dynamic dialog structure is often linked with that of parametrization.
An instantiation of a parametrized dialog often involves the creation of new screen
resources. For example, we could imagine extending CSP to allow

Multi-window-editor

= new-name(name) →
( Edit-window(name) [] Multi-window-editor )

The instantiation of Edit_window(name) implies that a new window and dialog
within that window would be initiated.

Both parametrization and dynamic dialog structures make it more difficult to 
analyze the dialog. A static notation has a sparser (and fundamentally less expressive)
domain of application but allows a far greater degree of automatic or manual 
manipulation.

Thus, even where a notation allows parametrized or dynamic dialogs, they should
be used sparingly. If there is a choice, the dialog should be encoded using the more
static forms of representation.

DIALOG SEMANTICS

If the purpose of a dialog description is simply to communicate between designers,
or as a ‘tool for thought’ early in design, it may be sufficient to annotate the formal
dialog with the intended meaning of the actions, or to leave it to the reader to infer
the semantics. However, if the dialog description is to serve as a formal specification,

16.5
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perhaps part of a contract, or for running as a prototype, there must be some way to
describe formally the semantics of the dialog. The dialog notations we have seen
more or less clearly describe the structure of the dialog. We must now move on to
meaning.

There are two aspects to the dialog semantics, inward toward the application, 
and outward toward the presentation. The semantic part of the dialog should serve
as a link between the two, performing as little as possible itself. Look back through
the examples in this chapter and ask yourself how one knows that, for example, 
the lines drawn by the drawing tool are at the points indicated by the user’s mouse
location.

We will discuss three different approaches to linking dialog and semantics:

notation-specific semantics – special-purpose semantic forms designed as part of a
dialog notation;

links to programming languages – attaching pieces of programming language code
to the dialog;

links to specification notations – similar, but where a formal specification notation
is used.

We will also discuss some issues which arise concerning the link between dialog and
semantics.

16.5.1 Notation-specific semantics

Augmented transition networks (ATNs) are a form of state transition network (see
Section 16.3.1). In the ATN, the system is assumed to hold a set of registers, storage
locations which the transition network can set and test. Recall that the arcs in an STN
may be labeled with the event that causes the transition and the system response. In
an ATN this is extended. The arcs have a condition as well as the event; the condi-
tion can refer to the system’s registers and the arc is only followed if the condition is
true and the event occurs. The system response is augmented to include not only
feedback and display, but also the setting of registers. These registers can be used
simply to describe more complex dialogs, for example a cash dispenser which retains
your card after three wrong numbers. They may also be used to communicate with
the application and to hold values from the mouse.

Production rules come in many variants and the link to the semantics is equally
varied. Often the system’s memory contains variables which can be used by the 
system to store input values such as the mouse position, and can then be examined
by the conditions and actions of the rules. These variables may also be used to com-
municate with the underlying application, or the functions of this may be invoked
directly by special forms of action. For instance, the following is a production rule
which, when the user clicks within a target region, puts a dot at the mouse location
and invokes the application routine ‘another_point’:

click_at(x,y) → dot_at(x,y), call another_point(x,y)
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16.5.2 Links to programming languages

Often dialog notations are ‘attached’ to a conventional programming language. 
For example, input tools, a regular expression-based notation, uses C to express the
dialog semantics [355]. The input tool description consists of ‘tool’ definitions,
including regular expressions intermingled with normal C code. For example, the
tool to read a number (from Plasmeijer [292]) begins as follows:

tool number

{ char buf[80];

int index;

int positive;

input { ( digit* + sign; digit; digit* ) ; return }

tool digit

{ input { key:| key_c>=‘0’ && key_c<=‘9’ | }

if ( index < 79 ) /* append character to string */

{ buf[index] = key_c;

index = index + 1;

echo(key_c);

}

}

tool sign

...

tool return

{ input { key:| key_c == ‘\n’ | }

...

}

...

}

Input tools uses its own regular expression syntax and has additional operators.
Sequencing is denoted by semi-colon ‘;’ rather than simple juxtaposition, and the
‘+’ symbol is used for choice (like ‘|’ in BNF). The expression ‘key:|condition|’ is
a postfix guard: the expression only matches if the condition is true.

The specific input tools’ expressions are as follows. The keyword tool introduces
a new tool, which is similar to a non-terminal in a BNF grammar, and the regular
expression which it denotes is enclosed in the input statement. The tools are
arranged in a scoped hierarchy, so that the digit, sign and return tools are pri-
vate to the number tool. The call to echo simply echoes the character back to the
user. Finally, key is a primitive tool which matches a single character read from the
keyboard; the actual character read is stored in the global variable key_c.

Notice how the subtool digit communicates its results back to the main tool
using shared variable buf. This and the way it accepts values from the key tool 
are rather untidy. Such messiness is not just an aspect of this particular notation:
alternative regular expression-based notations are even worse!
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16.5.3 Links to formal specification

Alexander’s executable specification/prototyping language SPI (Specifying and
Prototyping Interaction) is divided into two parts: eventCSP, a dialog notation based
closely on CSP, and eventISL, which describes the dialog semantics. The CSP part is
as described in Section 16.4.3, but for each event there is a corresponding event
definition in eventISL. EventISL is partly standardized and partly dependent on the
‘host’ language chosen. The first host language was me-too, a formal specification
notation based on VDM, but a C variant is also available. The part which is inde-
pendent of the host language consists of several elements: a clause giving the global
variables used and updated by the event, a precondition expressing when the event
can occur, and output and input parts. The host language part simply describes the
updates and the precise outputs.

Consider the following eventCSP description of a login sequence:

Login = login-mess → get-name → Passwd
Passwd = passwd-mess → ( invalid → Login

[ ] valid → Session)
Session = ( logout → Login

[ ] command → execute → Session )

A typical unsuccessful login sequence might be

login: fred

passwd: b9fGk (invisible)
Sorry bad user-id/password

We will not consider the detailed semantics for the commands during the session,
but will give the eventISL descriptions of the other events. The two events login-mess
and get-name handle the first line of the above dialog:

event: login-mess =
prompt: true
out: “login:”

event: get-name =
uses: input

set: user-id = input

The first event prints the prompt ‘login:’ (the out: clause) and says that user input is
required (the prompt: clause). This user input is stored in a special variable called
‘input’. The second event uses the input (which will be set to the name the user
enters) and merely sets the variable ‘user-id’ to it. Note that ‘user-id’ is set to a new
value by the event, but any previous value is not used.

The sequence for getting the password is similar except that there are two options
depending on whether the user has typed a valid password or not:

event: passwd-mess =
prompt: invis
out: “passwd:”
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event: valid =
uses: input, user-id, passwd-db 

when: passwd-id = passwd-db(user-id)
event: invalid =
uses: input, user-id, passwd-db 

when: passwd-id ≠ passwd-db(user-id)
out: “Sorry bad user-id/password”

The password prompt is identical to the login prompt except that no echoing is
required. However, the last two events demonstrate two additional features. As well
as the user input variable, they also use the variable ‘user-id’, which was set by the
get-name event, and the variable ‘passwd-db’. This is assumed to be a database of
passwords, so that ‘passwd-db(user-id)’ is the correct password for the user. The two
events also have a ‘when’ clause. This is a precondition, which specifies what must 
be true for the event to occur. So the ‘valid’ event can only occur when the user has
typed a correct password and ‘invalid’ only occurs when it is incorrect.

Notice that, like input tools, eventISL is heavily dependent on the use of global
variables to pass information between events. This reliance on global variables in
many dialog notations strikes against all good software engineering practice. At least
in SPI the globals used and updated are made explicit and make tracing the effects 
of events somewhat easier, but still not straightforward. Dialog notations often
include effective structuring mechanisms (hierarchical networks, non-terminals in
grammars, processes in CSP); it is a pity that these are not mirrored in their semantic
effects.

Worked exercise Using CSP, construct a dialog for one user with an application in one window of a multi-window
system. Using this first general CSP description, provide a CSP description for a multi-window
interaction using the parallel operator (||). How does this approach handle interference and
information sharing between windows?

Answer The intention of this exercise is not so much to produce a clean description, but to
show how complex the business of talking about multi-window applications is. Most
interface designers and programmers do not have to worry about designing the win-
dowing system itself. However, it does help one to appreciate why areas like cut–paste
buffers can behave oddly.

First of all, we will give two simple applications, a calculator and a database, and then
we will look at putting them together.

Calculator
In fact, calculator is a bit pretentious – this is really an adder! The user types in either
‘quit’ which exits the application, ‘zero’ which resets the adder to zero or a number
which is added to the running total.

Adder = add-prompt → ( quit? → skip
[ ] zero? → show-sum → Adder
[ ] number? → show-sum → Adder )
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The semantic description is given in eventISL (Section 16.5.3).

event: add-prompt =
prompt: true
out: “next number”

event: quit? =
uses: input

when: input = “quit”
event: zero? =
uses: input

when: input = “zero”
set: sum = 0
out: “reset”

event: number? =
uses: input, sum

when: is-number(input)
set: sum = sum + input

event: show-sum =
uses: sum

out: sum

Database
Another simple application could be a database, where the user actions are either ‘quit’,
‘set key value’, or ‘find key’.

Database = db-prompt → ( quit? → skip
[ ] set? → Get-key; Get-val
[ ] get? → Get-key; print-val )

Get-key = set-key-prompt → get-key?
Get-val = set-val-prompt → get-val?

We will not bother with the semantic descriptions of the prompt events, or quit which
is the same as for the adder. The descriptions of ‘set?’ and ‘get?’ are also similar to those
for ‘quit?’, so are omitted.

event: get-key? =
uses: input

set: key = input
event: get-val? =
uses: input, dbase, key

set: dbase = db-update(dbase,key,input)
event: print-val =
uses: dbase, key

out: db-lookup(dbase,key)

The functions ‘db-update’ and ‘db-lookup’ are assumed to add a new key-value pair and
to look up the value associated with a particular key, respectively.

Multiple windows
Having got these two descriptions, putting them together is quite simple:

Window-system = Adder || Database
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However, it would be considerably more complex if we wanted two adders. Although
this sounds a bit odd, if it were two text-editing windows or two spreadsheet windows,
this would be quite reasonable. We might attempt to do it simply as

Window-system = Adder || Adder

But this would not work as the event names and the variables in the semantic descrip-
tion are global. The windows would both add to the same sum and it would be random
as to which window responded to particular user events. This is an example of uninten-
tional interference. The only way around this is to copy completely the description of
Adder with new names for most of the events and variables.

You might also look for ways of addressing deliberate sharing. For example, a common
cut–paste buffer can be achieved using shared variables, and explicit dependencies
between dialogs can use internal events, as described in Section 16.4.3.

The modified dialog below has an extra command ‘copy’ in the database, which is like
‘get’ except it also puts the value from the database into a shared buffer and invokes the
‘buffer-ready’ event, which tells the adder to add the value in the buffer to its running
total.

Database = db-prompt → ( quit? → skip
[ ] set? → Get-key; Get-val
[ ] get? → Get-key; print-val
[ ] copy? → Get-key; Send-val )

Get-key = set-key-prompt → get-key?
Get-val = set-val-prompt → get-val?
Send-val = set-buffer → buffer-ready

The event ‘copy?’ is again a simple test of the input and ‘buffer-ready’ is described below
with the modified adder.

event: set-buffer =
uses: dbase, key

set: val-buffer = db-lookup(dbase,key)
out: db-lookup(dbase,key)

The adder is modified to respond to the event from the database window.

Adder = add-prompt →
( quit? → skip
[ ] zero? → show-sum → Adder
[ ] number? → show-sum → Adder )
[ ] buffer-ready → show-sum → Adder )

event: buffer-ready =
uses: val-buffer, sum

set: sum = sum + val-buffer

If you are working in a group, you could discuss further issues, such as how to represent
the changes in keyboard focus. (This would probably require an extra keyboard multi-
plexer process.)
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16.5.4 Distributed and centralized dialog description

If the dialog is described by a pure grammar, with no semantic element, then it is easy
to look at the dialog syntax in isolation, and understand and evaluate it. At the other
extreme, if we take a typical interactive program, aspects of the dialog will be distri-
buted throughout the code, making it difficult to trace the course of a typical interaction.

A notation that wishes to describe the semantics of dialog as well as its syntax 
can try to retain the advantages of a simple syntactic description, by separating the
semantic and syntactic parts, allowing the dialog designer to examine the dialog syn-
tax in isolation. This is a centralized dialog description. Alexander’s SPI is exemplary
of this approach to the extent that it has separate sublanguages for the two parts. 
This also demonstrates another advantage of this approach. The same form of the
syntactic dialog description may often be suitable both for high-level analysis 
and automatic coding (or run-time interpretation). The semantic description, on the
other hand, is likely to have a different form when generated for specification or 
prototyping than for inclusion in a production system. Separating the two allows
reuse of the dialog description with different semantic parts, reflecting differing uses
of the specification.

Alternatively, the notation can choose to put associated parts of the syntax and
semantics together, as in input-tools. This has the advantage that parts of the inter-
action can be examined in detail, allowing the evaluation of the syntax and seman-
tics in tandem. It also has advantages of abstraction: associated semantics and syntax
can be packaged together. Its disadvantage is that, like the typical program, it has a
distributed dialog description. One has to examine diverse pieces of the specification
in order to obtain an understanding of the large-scale flow of the interaction.

The two approaches are not fundamentally incompatible. Given a notation of the
former type, it would be quite easy to separate parts of the dialog syntax and present
them with the associated parts of the semantic description. Similarly, with some 
distributed notations it is possible to go through extracting the parts specifying the
dialog syntax and look at these together. For instance, with input-tools one could
extract all the input clauses which contain the regular expression subtool syntax.
These would then form the centralized dialog for analysis.

16.5.5 Maximizing syntactic description

Extracting the dialog structure is only possible with some notations. The reason 
why it is not always possible, and is not usually possible for general interactive pro-
grams, is itself an important issue. Usually it is possible to isolate the parts that are
responsible for input and output (identifiable by print, read, etc.). However, 
how these fit together into a dialog is masked by the surrounding code. In particu-
lar, what would be syntactic in a dedicated dialog grammar description may be coded
semantically. For instance, in eventCSP, one could write

Text-editor = mouse-press → set-selection

[] key-press → add-char-to-text
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In a programming language one might have

ev = read_event();

if ( ev.type == EV_mouse_press )

set_selection(ev.pos);

else add_char_to_text(ev.char);

In the second version an analyzer would have to recognize that the boolean expres-
sion ev.type == EV_mouse_press corresponded to a simple dialog decision
rather than a deep semantic decision in the application.

Even more problems may arise in production systems, window managers or
UIMS with external control, that is where the application is invoked on each event
from the user (see Chapter 8). In these systems, the most obvious form of dialog 
is completely user controlled. If the designer wishes to provide any control over 
the input syntax then a ‘program counter’ must be explicitly coded. So, for 
instance, if we were operating under a window manager that calls a user routine 
process_event, we might have the following code for text editor selection (writ-
ten in C):

enum { normal, selected } mode;

process_event( event ev )

{

switch ( ev.type ) {

case button_down:

...

if ( in_text ( ev.pos ) ) {

mode = selecting;

mark_selection_start(ev.pos);

}

...

case button_up:

...

if ( in_text ( ev.pos ) && mode == selecting ) {

mode = normal;

mark_selection_end(ev.pos);

}

...

case mouse_move:

...

if ( mode == selecting ) {

extend_selection(ev.pos);

}

...

} /* end of switch */

} /* end of process_event */
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The dialog for the selection is distributed widely over the event loop, and further it
is only by keeping track of the mode variable that we can see that they are linked at
all. The code is for a mythical but quite typical window manager.

In each case, the problem is that elements of the dialog can be given either a 
syntactic or a semantic form. Obviously, more complex elements of the dialog 
will require complex computed decisions, but where possible, the more syntactic the
dialog description, the easier it will be to analyze. This concept underlies much of
database normalization procedures which try to move the decision as to whether an
update is acceptable from the semantic realm to the syntactic.

DIALOG ANALYSIS AND DESIGN

In this section, we will look at several ways in which dialogs can be analyzed in 
order to discover potential usability problems, considering principles such as those
described in Chapter 7. We will discuss these dialog properties under three headings.
The first focusses on user actions and whether they are adequately specified and con-
sistent. The second concerns the dialog states, including those you want to get to 
and those you do not. Finally, we will look at presentation and lexical issues, what
things look like and what keys do what. Some of these properties have equivalents in
Chapters 17 and 18, where we discuss models of interactive systems that include
semantics.

16.6.1 Action properties

Look back to the STNs describing a graphics program (Figures 16.1–16.3) at the
beginning of Section 16.3. There are four types of user action in these diagrams:
selecting from the main menu (graphics, text or paint), selecting a pop-up menu
choice (circle or line), clicking on a point on the drawing surface and double 
clicking a point on the drawing surface.

If we look at the different dialog states, we see that for any state only one or two
actions are mentioned. Sometimes this is because some actions are impossible. 
For example, the pop-up menu choices can only happen while a pop-up menu is 
displayed. So, we do not need to worry about the user doing ‘select “line”’ from the
Main menu or while in state Line 1. But what happens if we click on the drawing 
surface whilst at the Main menu, or try to select something from the main menu
whilst in the middle of the drawing a circle, say in state Circle 2? The dialog descrip-
tion is not complete.

If you take an actual system and try such odd combinations it is likely that the 
dialog description starts to explode in complexity, just as in the example of the 
digital watch. It was reasonable to have a partial description for the purposes of
instruction, and for discussing the general dialog structure. But we need to make sure
that these odd chains of events do not have disastrous consequences. Unfortunately,

16.6
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in practice, it is at best the implementor and, at worst, the user who discovers such
behavior. This is wrong. It is the responsibility of the designer to foresee just how the
system behaves in unforeseen circumstances.

Surely it is a contradiction in terms to design for behavior under unforeseen
circumstances? Yes, but the presence of a dialog description can make previously
unforeseen events become apparent. Just as with the graphics STNs, we can, in 
general, list all the possible actions and then at each dialog state look for ‘forgotten
events’. This can be done with any notation, but some are easier than others. In par-
ticular, it may be extremely difficult to perform such an analysis of a production rule
system without automatic help. Furthermore, the structure of production rules may
mean that you accidentally specify behavior – what you say may not be what you mean.

For each unforeseen state/action pair, the designer ought to decide (or at least
check during testing) what the behavior will be. The simplest rule is to decide that all
unspecified behavior will have no effect (except possibly a warning) – ‘when in doubt
do nowt’. If this rule is not followed, more care is required. Imagine the user is 
drawing a polyline, but, before double clicking on the last point, selects a new option
from the main menu. One option is to discard the partially completed line. If the
user had clicked on only one point, this would be the only sensible option. However,
if he had just carefully selected 20 points and simply forgotten to double click on the
last one, tempers may get frayed. A better option would be to treat the new selection
as confirming the partially completed shape whenever this is at all sensible.

As well as finding that some states have forgotten actions, we may discover that
some states have several arcs labeled with the same action. That is, the specification
is not deterministic for that action. This can happen in several ways. It may be an
accident. For example, if we are using a hierarchical STN with escapes, as in Figure
16.9, we may find that we have used an action as an escape at a high level, and for
some other purpose at a lower level. Similarly, when using production rules, one may
accidentally find that two rules are active at the same time triggered by the same
event. The formalism may have default rules to deal with such eventualities. For
example, both production rules may fire, or there may be a precedence between
rules, the one with the highest precedence being chosen. Similarly, the STN may take
the innermost arc. However, this is precisely where you should check that this default
behavior is what you want.

Sometimes, this non-determinism reflects semantic decisions in the system. For
example, a grammar for a bank automated teller machine (ATM) might look like

atm ::= put-in-card get-number

get-number ::= digit digit digit digit

get-money return-card atm

| digit digit digit digit return-card atm

| digit digit digit digit atm

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

get-money ::= ...

The two different options depend on whether the digits entered are the correct 
PIN. In the first case they are and the user gets some money out. In the second, the
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number is wrong and the card is returned. In the last case, too many wrong numbers 
have been used and the card is retained. Deciding which of the branches to take is a
semantic issue, not one of dialog structure.

Both completeness and determinism can be automatically checked in a dialog
description. However, the designer must go through the warnings thrown up by such
an analysis and decide whether they represent a problem or are deliberate.

A third property, which cannot be automatically checked as easily, is consistency.
We expect the same action in different circumstances to do roughly the same thing.
For example, a user may get used to the ‘tab’ key moving the cursor eight spaces 
to the right. However, in a text entry area of a dialog box, most text-editing keys 
may behave as normal, but ‘tab’ may move to the next dialog box entry. Such ex-
amples of inconsistency can cause obvious problems for the user. It is not possible 
to automate checks for consistency on a dialog description. First, this is because 
consistency also involves the semantics: similar actions should do similar things.
Secondly, the interpretation of similar involves an understanding of what the user
regards as similar.

However, by listing all dialog states and actions, a dialog description can help the
analyst to go through the various combinations. In particular, the analyst can divide
the states into major modes where actions may have different effects or be inactive.
For example, in a word processor, the search/replace key may not be active in the
‘print’ dialog box.

16.6.2 State properties

The states in a dialog represent points where the user has obtained information or
where the system has done something useful. So, the user wants at least to be able to
get to a desired dialog state and ideally to be able to get there easily. In general, we
can think of properties of this sort as reachability.

A basic check of any dialog is whether it is fully connected. That is, for any two
states is there a sequence of actions which will take the user from the first state to the
second? Looking once more at Figures 16.1 and 16.3, we can see that, in so far as it
is defined, the dialog is connected. For example, suppose we were in state Circle 1,
but wished we were back at the graphics submenu (state Menu). We can click and
then double click anywhere on the drawing surface, taking us to the end of the
graphics submenu STN and back to the Main menu. From here, we can select the
‘graphics’ option and get to where we want.

However, one suggested ‘improvement’ was to alter the circle drawing to allow
multiple circles. The amendment was shown in Figure 16.2. Unfortunately, this
destroys the connectivity of the dialog. There is no way out of the circle dialog; one
can only fill up the screen with zillions of circles. This is a fairly obvious problem, but
it is easy for more complex cases to slip through. For example, one of the authors was
once shown a form-based financial planning system. Some inconsistent information
was entered on one page of the form, which was allowed by the system. But, because
of this, a later page was repeatedly rejected. There was no valid user input for that
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page, but the system would not allow you to return to the incorrectly filled page until
the later one was accepted – impasse.

Reachability checking can be entirely automatic, but care must be taken to distin-
guish which choices are user controlled and which are system controlled. This is one
reason why we emphasized the importance of maximizing syntactic description in 
a dialog notation. In general, we cannot assume that the system will take the paths
that we wish. So, for example, given the ATM dialog, we cannot assume that the user
can get from the atm state to the get-money state, as this depends on the system
accepting the PIN. An automatic tool can show where such unreachable points are,
but the designer must say whether or not these are acceptable.

A special case of reachability is reversability, a form of undo. That is, the user 
wants to get to the previous state. For various reasons, some evident in Chapter 17,
a dedicated ‘undo’ button or command is probably best dealt with as a meta-dialog
feature. However, we can analyze the existing commands to see how easy it is to
recover one’s position in the dialog using standard commands. In effect, this is 
what we described at the beginning of this subsection. We were on the Circle 1 state
of Figure 16.1, and wanted to get back to the graphics pop-up menu. Indeed, this was
possible, but rather long winded. Any fully reachable dialog will be able to reverse
actions, but it may not be easy to do so. One form of reversability analysis is to take
each action and label it with the number of arcs that must be traversed in order 
to get back. Actions with large reversing costs are worthy of closer scrutiny: perhaps
the dialog ought to be redesigned to allow easier return paths, or possibly we may
rely on a generic undo mechanism.

Note that this dialog-level reversability is not a true undo. For example, when the
user goes from the Circle 1 state back to the graphics menu, this leaves a circle behind
on the screen. Thus the dialog state has been undone, but the full system state has
not. Reasoning about undo at this level requires a model of the system, and will be
discussed in Chapter 17. There is also a corresponding more complete form of reach-
ability in this setting.

So, there are some states that the user wants to be in, movement to which the 
dialog ought to make easy. But there are other states, such as that where the hard disk
is being formatted, which should be deliberately difficult to reach. Again, knowing
which states are ‘dangerous’ cannot be determined automatically; it depends on the
system semantics and the designer’s judgment. However, having labeled the danger-
ous states (colored them red), we can perform analyses on the dialog to determine
how easy it is to get to these dangerous states. This labeling process may involve
duplicating states which otherwise appear similar at the dialog level.

If we discover that a dangerous state is too easily reached, then we can attempt 
to prevent accidents. To do this, many systems initiate a dialog with the user when a
lot of information may be lost, for example

C>del test\*.*

Are you sure (Y/N)?

This in itself is not enough to prevent mistakes as frequent requests for confirmation
may make the user habitually type ‘Y’ after every command. The moves to dangerous
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Automatic analysis

Checking dialog properties by hand is likely to be tedious and error prone. Although some
properties require judgment, others can be verified using automatic analysis tools.

One such support tool is HyperDoc [344], shown in Figure 16.17. The screen shows part of the
description for a JVC video recorder. The top half of the screen is a drawing of the interface. The
buttons on the drawing are active – the simulation runs when they are pressed. On the bottom
left, we can see part of the dialog description. This describes the transitions from the state ‘playPause’.
For example, if the user presses the ‘Operate’ button, the state will change to ‘offTapeIn’.

The designer can simply use this as a prototyping tool, by constructing the dialog description and
then experimenting by clicking buttons on the top part of the screen. In addition, the tool can con-
struct a graph of states and transitions from the dialog descriptions of each state. This graph is then
analyzed using standard graph algorithms for properties such as reachability.

One problem with HyperDoc is that it constructs the complete graph of all states. However, recall
the way combinatorial explosion can occur, meaning that quite a simple interface can have enormous
numbers of states. This can exceed not only our ability to draw the states on paper, but also the
ability of a computer to compute properties of the states. To avoid this problem other researchers
have worked with symbolic verification which checks properties based on descriptions of states and
transitions, rather than enumerating every state [8].

A tool similar to HyperDoc is available on our website, so you can try it out for yourself.

Figure 16.17 HyperDoc. Courtesy of Harold Thimbleby
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states must be different from other sequences – that is, not consistent! The moves
between safe states and dangerous states really need detailed examination by the 
analyst, as one must decide whether a particular path can easily be taken by accident
or not. We will see in the remaining discussion that this is intimately connected to
the presentation and lexical design of the system.

16.6.3 Presentation and lexical properties

It is often claimed that dialog design should be independent of the detailed design 
of the presentation and lexical details of the interface. That is, one begins by decid-
ing on the functionality of the system, and then, possibly making use of cognitive
models or task analysis, one designs the dialog to perform those functions. Finally, 
one designs the visual presentation of the system and the lexical bindings between
keypresses and mouse movement and the more abstract dialog actions.

In fact, the dialogs described in this chapter have often involved detailed key 
bindings on their labels. For example, the STN for the graphics system in Figure 16.1
has arcs with labels such as ‘click on point’ or ‘double click’. It could be argued that
this is a fault in these descriptions. They should instead say things like ‘enter a point’,
‘enter last point’. These actions could then be achieved with mouse clicks, or by 
typing coordinates.

For higher-level descriptions, such as the JSD diagram in Figure 16.14, this form
of argument is valid; it would be inappropriate, at least in early design, to decide
what keys or menu selections will move you to the ‘add employee record’ subdialog.
However, later in design, and when we consider detailed dialog, such a position
becomes less tenable.

In Section 16.6.1, we discussed the labeling of modes in which user actions may
have different interpretations. It is generally regarded as good practice to minimize
the number of modes. However, where modes are used they should be visually dis-
tinct. That is, one ought to be able to tell which mode one is in from the computer
display. So, the visual presentation and the form of the dialog are intimately con-
nected. As well as major modes, one can compare any two dialog states, and ask
whether they can be distinguished from the display. If not, this may indicate a poten-
tial trouble-spot where the user can get confused. These are both visibility require-
ments, and similar issues of observability and predictability will arise in Chapter 17.

The visibility issues are, in principle, one way the dialog can be designed indepen-
dently of the presentation, but can constrain the form of it. In practice, the two are
more intermingled. However, there are further areas where the dialog is even more
intimately tied to presentation.

Different types of interfaces have very different dialog styles. The normal dialog
form of a command-based interface is verb–object, for example ‘print fred’. How-
ever, mouse-based systems often have an object–verb syntax, for example select a file
icon and then select ‘print’ from a menu. Although it is possible to mingle these
styles, it is inadvisable as users expect to find a certain interface style with a particu-
lar medium. So, detailed dialog design must be dependent on the type of interface.
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Furthermore, physical limitations may prohibit certain dialog structures. For
example, the dialog for the digital watch (Figures 16.15 and 16.16) is designed with
the restriction of only three buttons. A similar design for an on-screen alarm clock
could make use of a full keyboard and thus have a completely different dialog.
Similarly, the range of outputs, visual and aural, will restrict the dialog. If modes and
states should be visually distinct, then the device’s display must be able to distinguish
these modes. Unfortunately, restricted input leads to a highly moded dialog. For
example, for three buttons to control all the functions of a digital watch with alarm
and stop watch requires many modes, of which the four major modes are only the
beginning. But it is precisely those interfaces which have a limited input set which
also have limited output, in particular consumer goods. It is thus no wonder that
users often have trouble knowing what mode their video controller is in.

Dangerous states and key layout

The text editor being used for this passage has two main modes: an editing screen where
you type and edit the document, and a menu screen, obtained by pressing the F1 function key. The
STN for these modes is shown in Figure 16.18. The menu screen has several options including F2
to exit (and save), and F1 to return to the editing screen. Exiting will automatically save the text if
it has been changed. However, this can be overriden by pressing the escape key in the main menu.
This makes the system pretend that the text has not been changed until the next alteration.

Pressing the escape key in the main menu has no effect on the dialog, but the state of the system
after this point can be thought of as dangerous. If the key has been pressed deliberately then all is
well, but if there is any mistake, the user may lose the updated text. Figure 16.19 shows an STN
with the dialog states duplicated to show the dangerous states (hatched). We want the dangerous
states to be reachable, but they should be difficult to get to by accident. In fact, the really danger-
ous state is when we go to the hatched exit: if we return to the hatched edit state, then we 
are most likely to type a further editing command and the system becomes ‘safe’ again. Therefore
we can see that the particularly dangerous sequence is ‘F1–Esc–F2’. The question then is: can this
be typed by accident? It is very similar to the standard exit and save sequence ‘F1–F2’, but users
are unlikely to hit the escape key by accident – or are they?

Even knowing that you have a full keyboard and standard screen is not sufficient to design the 
dialog. The precise positioning can affect the usability of a particular dialog style. The text editor
described above (Figures 16.18 and 16.19) was originally used on a computer with a separate 

Figure 16.18 Main modes of text editor



16.7 Summary 589

SUMMARY

We saw, by example, how the dialog of a user interface can become unmanageable,
and impossible to analyze, if we do not have a separate description. We have looked
at two main classes of description: diagrammatic and textual. Diagrammatic nota-
tions included various forms of state transition network, Petri nets, Harel state
charts, flow charts and JSD diagrams. Under textual notations, we considered gram-
mars (regular expressions and BNF), production rules (event based and state based)
and CSP.

16.7

function keypad on the left of the keyboard. No problems were encountered with the ‘dangerous’
states of the system. However, the editor was later used on a system with a different keyboard
layout. The function keys are set out in a line along the top of the keyboard, as in Figure 16.20,
with the escape key right next to function keys F1 and F2! As we saw, the dangerous mistake is to
hit the sequence ‘F1–Esc–F2’, which is similar to the exit and save sequence ‘F1–F2’. With the orig-
inal keyboard layout, this was an all but impossible mistake to make. However, on the new layout
it is possible to hit the escape with the edge of your finger as you press down the function key F1.
If this happens as you type the sequence ‘F1–F2’, then disaster. This scenario is easily predictable
from the dialog structure and the physical layout – and it can happen, as the authors know!

Figure 16.19 Revised STN with dangerous states

Figure 16.20 Dangerous function key layout
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We found that some very different notations were essentially equivalent: for
example, JSD diagrams and regular expressions can describe exactly the same
dialogs. However, we also saw that there were major differences in expressive power
between different formalisms. For example, BNF grammars are able to deal with
recursively nested dialogs and are thus more powerful than regular expressions or
state transition networks.

One important difference in expressive power is whether or not the formalism can
handle concurrent dialogs. We found that some notations favor sequential dialogs
(for example, STNs) and some concurrent (for example, production rules), but 
few could handle both (the exceptions being Harel state charts and CSP). However,
increased expressive power is not always desirable as it may mean a more com-
plex and less easily understood description. The important point is to match the
notation to the form of the desired dialog. Another important distinction was
between state-oriented and event-oriented descriptions. This will be picked up in the
next chapter.

Once we had a dialog description, we considered the connection between that dia-
log description and the description of the system semantics. We looked at examples
where the dialog description is linked closely to a programming language and where
it is linked to a more formal description. Two issues arose in this discussion. One was
whether we want a centralized or a distributed dialog description; that is, should 
all the dialog be in one place and the semantics separate, or should the dialog be
spread out with the associated semantics? The second issue concerned maximizing
syntactic description. Where there is a choice, we should put things into the dialog
description, where they can be analyzed automatically, rather than in the semantic
description.

Finally, we looked at properties of dialogs. Action properties focus on user actions,
and under this heading we considered completeness – are there any missing actions?;
determinism – do any actions appear twice?; and consistency – do similar actions do
similar things? The first two of these are amenable to partial automatic checking.
State properties concern the ability of the user to move between dialog states. We
considered reachability – whether we can reach any desired state – and reversability
– a special case, whether we can get back to the last state. We noted that reversabil-
ity at the dialog level is not undo as this involves the whole semantics of the system.
Finally under state properties, we considered dangerous states, that is those we do
not want to get into accidentally.

We found that presentation and lexical issues are not (as is commonly supposed)
a separable issue from dialog design. We need to consider the visibility of modes and
the style of interaction. Even the layout of keys and menu items can influence the
likelihood of making serious errors.
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EXERCISES

16.1 Complete the drawing tool STN in Figures 16.1 and 16.3 by writing dialog descriptions
for the text and paint submenus. For the text submenu assume that there are three options: 
centered, left and right justified. The text is entered by clicking at a location in the drawing 
surface and then typing. You may initially assume that typing a line of text can be regarded as a
single user action. But later try regarding each character typed as an action. The paint submenu
has two options: a pencil for freehand drawing and a paint pot for flood filling. The former is 
performed by holding the mouse button down whilst moving the mouse about to draw the line.
The paint pot is activated by simply clicking the mouse over the area to be filled.

16.2 Repeat the above exercise using different notations, grammars, production rules, JSD or CSP. You
will need to specify the whole system from the main menu to the individual submenu selections
such as circle drawing. Note the problems you have with each notation.

16.3 Develop the JSD diagram in Figure 16.14, expanding the various nodes until you get to basic 
operations such as ‘prompt “login”’ or ‘user types in password’. Expand the ‘delete employee’
node using the dialog style as described in Figure 16.13, and use your imagination for the rest.

16.4 In the example of the digital watch in Section 16.3.8, what would be the dangerous states? Relate
the lexical issues of the buttons for a digital watch to these dangerous states and provide some
design advice. Does your own digital watch satisfy these criteria?

16.5 This exercise is based on the nuclear reactor scenario on the book website at: /e3/scenario/nuclear/

(a) Looking only at the STN diagrams in Figures 16.21 and 16.22 (that is, ignoring for now the
meaning of the various actions), identify missing elements from the STNs. Taking into account
the meaning of the actions, suggest possible corrections.

Figure 16.21 STN for alarm state

Figure 16.22 STN for revised alarm state
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Probably the best recent additional reading for this subject are Paternó’s Model-
Based Design and Evaluation of Interactive Applications and Dix’s ‘Upside down As
and algorithms – computational formalisms and theory’, referenced in the recom-
mended reading lists in Chapters 18 and 17 respectively. In preparing the third edi-
tion of this book, we have found it hard to find good recent reading in specification
and implementation chapters and some of the titles we suggest are hard to obtain,
for example Alexander (below) is out of print and only available in some libraries. As
multi-platform user interfaces begin to become more important we predict a growth
in this area, so we hope that by the time we are writing a fourth edition there will be
a greater choice.

(b) Taking into account now the meaning of the various states and actions, explain why you
believe the consultant suggested the change from the behavior in Figure 16.21 to that in 
Figure 16.22.

16.6 This exercise is based on the mobile phone scenario on the book website at: /e3/scenario/phone/

Figure 16.23 shows an STN for the simple mobile phone described in scenarios A and B on the web.

(a) Identify any missing transitions and suggest possible behavior that would be sensible for the
user.

(b) Scenarios C and D demonstrate the additional behavior of the new phone. Update the STN
in Figure 16.23 to add the new store and recall facilities of the new phone. Where there 
is not sufficient information in the scenarios choose suitable behavior. You can use ellipses 
( . . . ) where you would expect major additional functionality (e.g. storing numbers); don’t
attempt to fully specify such additional functions. List and briefly describe and justify any such
design decisions that are required or any other design issues that become apparent.

Figure 16.23 STN for original phone
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H. Alexander, Formally-based Tools and Techniques for Human–Computer Dialogs,
Ellis Horwood, 1987.
This book is dedicated to the CSP-based notation, SPI (see Sections 16.4.3 
and 16.5).

G. Cockton, Designing abstractions for communication control. In M. D. Harrison
and H. W. Thimbleby, editors, Formal Methods in Human–Computer Interaction,
Chapter 10, Cambridge University Press, 1990.
Describes generative transition networks, a form of state transition network
which has many features of an event-based production system. In particular, it
attempts to solve some of the problems that STNs have with concurrent dialogs.

D. R. Olsen, Propositional production systems for dialog description. In J. C. Chew
and J. Whiteside, editors, Empowering People – CHI’90 Conference Proceedings, 
pp. 57–63, Human Factors in Computing Systems, ACM Press, 1990.
Original paper on propositional production systems, including examples and
analysis.

H. R. Hartson, A. C. Siochi and D. Hix, The UAN: a user-oriented representation 
for direct manipulation, ACM Transactions on Information Systems, Vol. 8, No. 3,
pp. 181–203, July 1990.
User Action Notation (UAN) is not a dialog notation as such, but operates at the
dialog level. UAN is scenario based in the sense that it considers small snippets of
user behavior, for example the deletion of a file. It describes the actions the user
must perform and the system feedback.

See also the reading list for Chapter 8 since the greatest use of dialog description
notations has been as the dialog control portion of user interface management
systems.



MODELS OF THE SYSTEM

OV E RV I E W

We need to know what a system does in order to assess
its usability.

n Standard software engineering formalisms can be used
to specify an interactive system. These are of various
types:
– model based, such as Z, which describe the system’s

state and operations
– algebraic formalisms, which describe the effects of

sequences of actions
– temporal and deontic logics, which describe when

things happen and who is responsible.

n Special interaction models are designed specifically to
describe usability properties, including:
– predictability and observability – what you can tell

about the system from looking at it
– reachability and undo – what you can do with it.

n Most formal models and notations focus on events and
changes that happen when they occur, but we need
richer models to deal with:
– interstitial behavior – the things that happen

between events such as dragging an icon
– physical objects in ubiquitous computing or virtual

reality
– the tension between precise time and more fuzzy

human ideas of time.

17
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INTRODUCTION

In the previous chapter we looked at the specification of dialog. In this chapter we
will look at ways of modeling the semantics of an interactive system. The dialog just
tells us about what user actions are legal at any point, but here we will be interested
in what the user’s actions do to the system.

There is some overlap. In the previous chapter we discussed some of the ways dia-
log is linked to semantics. Also, definitions of system semantics tend to define the
acceptable dialog. However, a system-oriented description will not describe the dia-
log as well as a dedicated dialog notation, and a dialog notation may hardly define
the system at all.

In Section 17.2, we will describe how standard formalisms can be used to specify
interactive systems. Such formalisms are becoming part of software engineering
practice and can be a way for interface designers to articulate their ideas and com-
municate them to system developers. These formal notations are used to specify the
functionality and presentation of specific systems.

Section 17.3 looks at interaction models, formal models that describe general 
properties of systems. We will demonstrate how one such model, the PIE model, can
be used to investigate generic principles such as WYSIWYG and undo.

Finally, in Section 17.4, we will discuss ways to model phenomena that involve
more continuous interactions such as dragging an icon and also issues of time such
as what we mean by ‘let’s meet this afternoon’.

Each modeling technique takes the view that it is not enough to design the 
‘interface’ as a thin layer between the user and the system. Usability is affected by the
whole system functionality: what is there, what can be done to it, and how it is 
presented at the interface.

STANDARD FORMALISMS

In this section we will discuss ‘off-the-shelf ’ formalisms which can be used to specify
interactive systems. The purpose of a formal specification is twofold: communica-
tion and analysis. Sections 17.2.1 and 17.2.2 will show how this influences their use
for interface design.

We will then look at three brands of formalism. First we will look at model-
oriented notations, Z in particular. We will use a graphics program as an example
throughout this subsection and also Section 17.2.5 on algebraic specification. Finally,
Section 17.2.6 looks at temporal and other logics. Another major brand of notation
is the process algebras, such as CSP. However, these are most suited to dialog design
and have been discussed in Chapter 16.

17.2

17.1
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17.2.1 Formal notations for communication

A specification can be used as a common language within a design team, or between
the designers and system developers. In the latter case it can also form a sort of 
contract between the parties. Ideas for screen layout can easily be visualized with the
help of drawings or painting packages, but the dynamics and deeper behavior of 
the system are more difficult to communicate. It is easy to discuss ideas with other
developers or with a programmer without ever being sure you are talking about the
same thing.

The claim is frequently made that a formal specification gets rid of ambiguity
completely and provides a precise unambiguous description of the system. However,
this claim is false. The symbols used and the manipulations of them have defined
meanings within the formal systems, but the interpretation of those symbols can still
vary from person to person. For example, if a specification of a screen defines the
color of pixels at any position (x,y), then one designer may think the coordinates
have (0,0) at the bottom left and another may think that they start at the top left. 
The internal geometry of the screen is unambiguous, but the interpretation of one
designer is upside down! These ambiguities tend to be of a different kind from those
of the spoken and written word (and are often as silly as the above). This is why it is
crucial that any formal specification is accompanied by extensive commentary and a
parallel written description.

In a small group, where a specification is developed in cooperation, the needs 
for extensive documentation are less strong. The group can build up a shared inter-
pretation of the symbols used. In such a setting, formal statements can be a succinct
and precise mode of communication. However familiar the formalisms become, 
the group must remember that they are using an esoteric language, which must be
interpreted to outsiders.

17.2.2 Formal notations for analysis

Formal specifications can be analyzed in a variety of ways. First, they can be checked
for internal consistency; that is, to see if any statement made in one part of it con-
tradicts another. For example, we shall see in Section 17.3.3 that some of the require-
ments one might have for an undo command are, in fact, incompatible. It would, in
theory and in practice, be impossible to build a system satisfying all the properties.

Secondly, a specification can be checked for external consistency with respect to
the eventual program. This task of verification, previously discussed in Chapter 6, 
is one of the chief benefits of a formal specification, from a software engineering 
perspective. However, this is not the primary benefit for HCI.

Finally, a specification can be checked for external consistency with respect to
requirements. Some of these requirements will be nothing to do with HCI (although
still important), for example security properties. Other requirements will be about
the particular system: for example, that any function can be accessed within no more
than three keystrokes. In addition, there are generic usability requirements which
cover a range of systems, for example the usability principles discussed in Chapter 7.
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The model in Section 17.3 is aimed at defining this last sort of generic requirement.
As the requirements are themselves formally stated, they can be checked for internal
consistency among themselves.

17.2.3 Model-oriented notations

Model-oriented notations were developed in the late 1970s and 1980s to provide
software engineers with the ability to describe and reason about software compon-
ents using precisely defined mathematical constructs, which mirror the kinds of con-
structs used in real programming languages. These mathematical notations provide
a means of describing the behavior of a software system in a way closely related to
how they are programmed but in a more abstract language. This abstractness allows
the designer to forget about machine or implementation bias at early stages of design
and also allows the design, or specification, to be reasoned about rigorously.

The two major model-oriented specification notations in use today are Z and
VDM. Both have been used for interface specifications. For example, Z has been used
to specify editors [336], a window manager and a graphics toolkit called Presenter
[347]. In the following description, we will follow the conventions defined in the 
Z notation. We do not assume any prior knowledge of Z; however, this chapter 
does not serve as a tutorial for the notation (interested readers should consult the 
Z reference manual for more details [328]).

Simple sets

Model-oriented notations are based on the use of sets and functions. The simplest
sets correspond to standard types in programming languages, like reals R, integers Z
and the positive integers, or natural numbers N. Non-standard types can be defined
as new sets by explicitly listing the finite number of possible values in that set. For
example, we can define a set that contains all possible types of geometric shapes used
in a graphics package (line, ellipse and rectangle) and we can define another set of
the possible keystrokes:

Shape_type == Line | Ellipse | Rectangle
Keystroke == a | b | . . . | z | A | . . . | 9 | Cursor_left | . . .

In some instances, it is not necessary to give an exhaustive list of the members of
a set; it simply suffices to know of the set’s existence and worry about its detailed
contents later. To signal the existence of such a set without providing a definition of
its contents, we assert it as a given set and enclose it in square brackets. We could have
introduced the set Keystroke in this manner:

[Keystroke]

From these base sets we can build more complex ones. These include ordered
tuples, named and unordered tuples (like records in a programming language such
as Pascal) called schemas in Z, sequences (or lists) and functions. For example, a
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point in space requires an x and a y coordinate. That is, it is a 2-tuple (or ordered
pair) of real numbers, and we can define it using the cross-product-type constructor
× as shown below:

Point == R × R

A typical value of type Point would be written (1.2, −3.0). A geometric shape
might be defined by its width and height, a point (Point) for its center and a tag
describing what sort of shape it is (from Shape_type). This could be defined either as
a 4-tuple Shape_type × R × R × Point, or using a Z schema, as we have done below.
The schema type is named (Shape) and its constituent components are also identified
by a name and their associated type.

» Shape __________________________________
Æ type : Shape_type
Æ wid : R
Æ ht : R
Æ center : Point–______________________________________

If we use the schema declaration, then given a shape s, we can talk directly about
the width or center of s by writing s.wid or s.center. The schema type corresponds to
record types in Pascal or ‘struct’s in C.

A sequence type can be used to represent the history of a user’s keystrokes:

History == seq Keystroke

This says that an object of type History consists of any number (including zero) of
Keystrokes. A sequence may have a fixed length, in which case it is rather like a Pascal
array type. The mathematical sequence is more flexible than the Pascal array type as
it may have a varying length. Two sequences a and b can be tied together end to end
to give a new sequence, written a ^ b. When used like this a sequence is most like a
list type as found in the LISP language.

Finally, we have functions that both play the role of standard calculation functions
in a programming language, such as sqrt or log, and also act like a ‘lookup dic-
tionary’. Depending on the context of its use, a function in a specification may be
implemented (if it is implemented at all) by a program-level function or a data struc-
ture. This is perhaps most strange to a programmer, but is an important abstraction.

We can demonstrate the use of a function in the graphics example. The schema
type which defines any one shape does not allow us to single out any one shape or a
collection of shapes, as we would need to do to represent the set of shapes that the
user creates in any one session with the graphics editor. We can represent a group of
identifiable shapes by naming a function that maps identifiers to particular shapes:

[Id]
Shape_dict == Id ß Shape

The set Id is some set of identifiers which will be used to label the shape. We are not
particularly interested in what the identifiers are – they could be natural numbers,



17.2 Standard formalisms 599

for instance – so we just assert Id as a given set for the moment. An object shapes of
type Shape_dict is a function mapping labels to shapes. If id were a particular label,
then the shape dictionary shapes might map it to a rectangle with width 2.3, height
1.4 and center (1.2, −3). We could write this formally as

shapes(id).type = Rectangle
shapes(id).wid = 2.3
shapes(id).height = 1.4
shapes(id).center = (1.2, −3)

Shape_dict is only defined to be a set of partial functions. Functions map elements
in one set to elements in another set. A partial function does not have to map every
possible element in the source set to an element in the destination set. Therefore, 
not everything in Id is a valid argument for shapes. The set of values that are valid is
called the domain of shapes and is written ‘dom shapes’. For example, we might have

dom shapes = { 5, 1, 7, 4 }

So shapes(5), shapes(1), shapes(7) and shapes(4) would all be valid, but nothing else.

Zdraw – the state and invariants

Although it is not necessarily the case, model-oriented specifications tend to be writ-
ten in an imperative fashion. One defines the state of the system, and then defines
operators in terms of their effect on the state. In Z, this state and the operators are
written using the schema notation. For example, the state of a simple graphics sys-
tem, called Zdraw and depicted in Figure 17.1, would include a dictionary of shapes
which have been created by the user and an indication of the currently selected
shapes. The schema State below gives this definition:

» State ___________________________________
Æ shapes : Shape_dict
Æ selection : P Id«________
Æ selection z dom shapes–______________________________________

Figure 17.1 Zdraw – ellipse option has just been selected
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The schema State is divided into two parts, above and below the middle line. 
Above the line we have the definition of components of the state of the graphics 
system. This part is similar to the component identification used to define the set
Shape. Below the line is the state invariant, a condition which must always be
satisfied by the components of the state. Predicates on separate lines are assumed 
to be joined by logical ‘and’ unless otherwise indicated. It says that the set of cur-
rently selected objects must always be contained in the set of created objects in the
system. We will not allow a selected object to be one that has not been created by 
the user. Any operator which changes the state must ensure that it maintains this
invariant.

What is the start state of the geometric modeling system? A reasonable assump-
tion would be the state without any created or selected shapes. The initial state is
defined by the schema Init:

» Init ___________________________________
Æ State«________
Æ dom shapes = { }
Æ selection = { }–______________________________________

Above the line we have included the previously defined schema State. Schema inclu-
sion in Z is a mechanism to assist the gradual definition of a complex system in a
series of simpler steps. Including the schema State above includes the declaration 
of all of its components (above the line in its original definition) and invariants
(below the line). The additional invariants added in this initialization schema further
restrict the initialized state, stipulating that the shape dictionary has no elements in
its domain (there are no created shapes) and no currently selected shapes. The last
predicate about the selected shapes was unnecessary, since it is already guaranteed by
the invariant of State; that is, that the set of selected shapes is a subset of the created
ones. So an equivalent definition of the start state would remove that predicate and
leave it to the reader to deduce from the state invariant.

» Init ___________________________________
Æ State«________
Æ dom shapes = { }–______________________________________

Defining operations

Finally, we shall define two operations. The system is going to operate as follows. 
To create a new shape, say a circle, the user goes to the menu option ‘Ellipse’ and
selects it. A fixed-size circle appears in the middle of the screen. The user is then 
free to move and resize this to the desired position and shape. Figure 17.1 shows 
a representation of the screen just after the user has selected the ellipse option. 
The details of the menu are not presented here, but the basic functionality of the
NewEllipse and Unselect operation is defined as schemas below.
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To define an operation, we need to describe the state of the graphics system before
and after the operation is invoked. To do this in the schema language, we include two
copies of the state description, called State (the ‘before’ copy) and State′ (the ‘after’
copy). If an operation requires input or provides output, these are marked with a
question mark for input (?) and an exclamation point for output (!). The NewEllipse
operation is defined next:

» NewEllipse ________________________________
Æ State
Æ State ′
Æ newid ? : Id
Æ newshape ? : Shape«_________
Æ newid ? ‰ dom shapes
Æ newshape ?.type = Ellipse
Æ newshape ?.wid = 1
Æ newshape ?.ht = 1
Æ newshape ?.center = (0,0)
Æ shapes ′ = shapes U { newid ? → newshape ? }
Æ selection ′ = { newid ? }–______________________________________

This operation results in the creation of a new ellipse of a fixed size in the center
of the coordinate space (assumed to be the point (0,0)). The result of the operation
is that the shape dictionary is updated to include a mapping from some ‘fresh’
identifier (one that is not already used to point to an existing shape) to the new
ellipse shape defined by newshape?. We do not indicate how this fresh identifier is
provided to the operation – that is left as an issue for the implementor to settle. In
addition, we have stipulated that the new object becomes the only selected object.

Note that the last part of the specification is quite an important interface choice
and would not appear in a dialog specification. We could just as easily have left 
the selection as it was (selection ′ = selection). Possibly, we have made our choice
because a (trivial) task analysis shows that users will normally want to move or 
resize a new object. This design decision may be wrong, but it is explicit and thus
open to challenge. In an implementation such a decision would be deeply buried 
in the code.

The Unselect operation makes the set of currently selected objects empty. From
this natural language description, we can derive an explicit formal description below:

» Unselect _________________________________
Æ State
Æ State ′«________
Æ selection ′ = { }
Æ shapes ′ = shapes–______________________________________ 

Notice that we chose to make explicit that the dictionary of shapes remained the same
after the operation. This may seem obvious, but if the last predicate were removed
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from the definition of Unselect, then we would leave open the possibility that the
shape dictionary could be anything at all after the operation, and that is certainly not
intended. This becomes an even more important issue when the specification is used
to judge the external consistency of the eventual program, as we discussed earlier.

17.2.4 Issues for model-oriented notations

The above is just a small sample of the method formally used to specify an interact-
ive system with a model-oriented notation such as Z. But even this small example
raises some important issues for interactive systems and formal specifications.

Recall in the definition Init of the initialized state that we did not have to mention
explicitly that the set of selected shapes was empty. This fact is implied by the state
invariant stipulating that the set of selected shapes is always a subset of the set of 
created shapes. However, in the definition of the Unselect operation, it was import-
ant that we explicitly state that the shape dictionary remains the same after the 
operation. This behavior, though probably understood by the person who provides
the natural language description of the operation, is not implied by the state invari-
ant. If we do not make it explicit, then we have defined an operation far different
from the one intended.

This issue is called the framing problem and comes up in a variety of areas both 
in interface design and elsewhere. As readers, we are quite good at inferring what
should happen when things are not stated explicitly, but it is hard to formalize. One
general rule is that if something is not mentioned, we assume it is unchanged.
However, this simple rule cannot be used when we are dealing with a state with
invariants. Imagine we were defining a delete operation and said that the shapes com-
ponent stayed the same except for the selected object which was removed. If we do
not explicitly mention what happens to the set of selected objects after the operation,
what can we infer? Does it remain unchanged? No, because that would break the
invariant that selection was in the domain of shapes. Normally such design decisions
get missed until the implementor either deliberately or accidentally chooses one
option or another.

Another issue which is generally ignored in such model-oriented specifications 
is the separation between system functionality and presentation. In the above speci-
fication, we identified a dictionary of shapes which have been created, but we have
said nothing about how those shapes are presented on the user’s display. It is quite
possible that the user will want to create an image larger than the display coordinate
space, so not all of the created objects will be visible at once. Furthermore, how 
do we indicate which objects are selected? Adding this kind of information to the
above specification would make it more complete, but also more complicated. The
presentation information is not necessary to define how the system works internally,
but it is necessary to be just as precise about presentation issues as we have been
about system functionality.

To address this issue of separation formally, we will need to provide more struc-
ture to the formal specification than the model-oriented approach provides. We will
discuss this additional structure in Section 17.3.
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17.2.5 Algebraic notations

There are a wide number of algebraic specification notations including OBJ, Larch
and ACT-ONE. In particular, ACT-ONE has been used as the functional part of the
ISO standard language LOTOS.

In principle, an algebraic specification does not try to build up a picture of the
components of an object, but merely describes what the object is like from the 
outside. For an interface specification this sounds like a good thing, as we want to talk
about the behavior of a system from the user’s viewpoint, not the way it is built.
However, algebraic notations are more difficult to ‘get into’. They have a specific
mindset which, once understood, is very clear, but takes some getting used to.

An algebraic version of Zdraw

If we continue the graphics example, we could imagine in Z having gone on to define
the actions of resizing an object, and deleting it. In addition, we have an operation
select which, given a point, makes the nearest object to it the current selection, and
an operation unselect which clears the current selection. We will instead define these
operations algebraically. As we have mentioned, an algebraic specification does not
provide an explicit representation (or model) of the system. Rather, the types of
interest in the state are declared along with the set of operations which manipulate
those types. A set of axioms then implicitly defines the system state. An algebraic
specification for the graphics system is given below:

Algebraic–draw =
types

State, Pt
operations

init : → State
new_ellipse, new_rectangle, new_line : Pt × State → State
move, resize, select : Pt × State → State
unselect : State → State
delete : State → State

axioms
for all st e State; p, p′ e Pt •
1. delete(new_ellipse(st)) = unselect(st)
2. delete(new_rectangle(st)) = unselect(st)
3. delete(new_line(st)) = unselect(st)
4. move(p, unselect(st)) = unselect(st)
5. resize(p, unselect(st)) = unselect(st)
6. move(p, move(p′, st)) = move(p, st)
7. resize(p, resize(p′, st)) = resize(p, st)
8. delete(delete(st)) = delete(st)

The specification is in a generic algebraic notation that captures the main features of
most real notations. We first declare the types of interest in the specification – points,
Pt, which will serve as arguments for some of the operations, and the overall graphics
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system state, State. No further information is provided about the construction of
these types. The operations are then listed and are defined in terms of their input 
and output. For example, the operation new_ellipse is defined to take a point and 
the current state as arguments and returns a new state. The operation init takes no
argument and produces a state. The types and operations together form the signature
of the specification Algebraic–draw.

After the individual operations have been declared, the algebraic specification
describes the relationships between the various operations by means of axioms.
Axioms indicate how the operations interact with one another. The first three
axioms tell us that creating any object and then immediately deleting it has no net
effect other than unselecting the current object. This is an important safety property
for the user saying that there are no unexpected side-effects.

The next two axioms say that attempts to move or resize when there is no selected
object do nothing at all. Axioms 6 and 7 say that both move and resize are ‘forgetful’
in the sense that if you do two resizes in a row the second overrides the first as 
if the first had never happened. This forgetful behavior of the move operation is 
very different from the behavior defined in the model-oriented specification. In 
the model-oriented approach, it would be easier to specify that a move operation 
is cumulative – two successive moves are the same as doing one move equal to the
sum of the two moves. Finally, the last axiom says that the action of delete is even
more forgetful: it is idempotent – doing a second delete achieves nothing.

Reading time order in algebraic formulae

Note that the algebraic notation reads from the inside out. So the first thing done 
is in the middle of the expression. For example, if an axiom reads

resize(p, move (p′, new_rectangle(st)))

then this corresponds to doing first a new_rectangle, then a move and then a resize.
This becomes more clear if we put in the temporary results:

st1 = new_rectangle(st)
st2 = move(p′, st1)
st3 = resize(p, st2)

Some algebraic notations are more imperative having an implicit state. In such a
notation, the first and fifth axioms of Algebraic–draw would be written

new_ellipse ; delete = unselect
unselect ; resize(p) = unselect

Such a format is easier to read as ‘time’ goes from left to right, but is less flexible.

Completeness and observation

If we look back at the full set of axioms, we see that they are nowhere near enough 
to specify the behavior of Algebraic–draw. That is, they are not complete. As far as the



17.2 Standard formalisms 605

axioms are concerned there is no difference between move and resize, or between
new_ellipse and new_rectangle. Now we could add some more axioms, for instance
adding an axiom to say that a move, resize or unselect after a delete has no effect.

There is a more fundamental problem, however. We are told nothing about 
the internal structure of State or Point. Presumably Point is generated from the
mouse position, so we would really know something about it. We can put inputs 
into the system, but what do we get out? There are no observation operators. A sys-
tem which cannot be observed can easily (and it is the simplest solution) do nothing
at all. To be useful, this specification would have to be extended to include the 
presentation of a screen image or something similar. This screen image would be
more concrete than the abstract internal state, and would be related to State by
observation operators. This is a similar problem, concerning the relation between
functionality and presentation, as was raised in the previous section with model-
oriented notations.

17.2.6 Temporal and other logics

Many readers will be familiar with standard propositional logic, where letters are
used to represent logical statements. For example, if one of the authors says

(p v q) ¶ r

where p = ‘my nose is green’
q = ‘I’ve got ears like a donkey’
r = ‘I’m called Alan’

then you can conclude that either the author in question is Alan, or he or she will
stand out in a crowd.

In fact propositional logic and predicate logic (which allows parametrized log-
ical formulae such as P(x) v Q(x)) are used as part of many other formalisms, for
instance in the model-oriented specification of the graphics drawing package.

However, propositional and predicate logic are only the simplest of vast families
of logics developed as part of philosophy and mathematical logic. Of these special-
ized logics, several have been adopted and developed within computer science and
have operators which are particularly useful for specifying properties of interactive
systems.

Temporal logic

Temporal logics augment predicate logics with operators to reason about time. There
are many different brands of temporal logic, but most share the basic symbols p
and , which are read as ‘always’ and ‘eventually’. These are the temporal equival-
ents of the quantifiers A (universal quantification, read ‘for all’) and E (existential
quantification, read ‘there exists’). So the statement

p (rains on Tuesday)
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says that it ‘always rains on Tuesday.’ The statement p(!p) says that it is always not
true that p. In other words, p never happens. So we can always read the combination
p! as ‘never’:

p! (computer explodes)

We can see that temporal operators are useful at specifying safety properties. More
complex properties can also be given, for example

p (user types ‘print fred’ fi the laser printer prints the file ‘fred’)

This statement says that at all times, if the user types the command ‘print fred’, then
eventually the file ‘fred’ will be printed on the laser printer. Whereas it is easy with a
model-oriented specification like Z to say what will happen immediately after a user
action, this sort of delayed response property is very difficult indeed.

Further temporal operators

In fact, the above statement was quite weak; ‘eventually’ could mean in a thousand
years’ time. To cope with this, temporal logics introduce additional operators. These
vary a bit more from logic to logic. Some reason over bounded time intervals, so 
that the meaning of ‘eventually’ becomes ‘before the end of this interval’. A more
popular approach is to use operators such as until and before.

p until q – p must remain true until q becomes true
p before q – p must be true at some time before q becomes true

We can think of until and before as bounded versions of p and respectively, where
the second argument q marks the end of the interval over which they act. Note that
p until q is weaker than pp as the latter demands that p remain true for ever, whereas
the former only until q becomes true. On the other hand, p before q is stronger than
p as the former guarantees a timescale in which p must occur.

As well as being used to specify systems in abstract, temporal and similar logics
have been used to prototype interactive systems. To do this, special executable forms
have to be used, as in general a temporal logic formula can look arbitrarily far into
the future. Consider, for example,

( user types ‘print fred’) fi the laser printer prints the file ‘fred’

This formula says that if at any time in the future the user types ‘print fred’, then 
the system ought to print the file ‘fred’ now. Such clairvoyant systems are hard to
produce, and thus the executable forms have to restrict the types of specification the
user can enter.

Unfortunately, restricting oneself to executable formulae can also prevent the expres-
sion of useful requirements. Obviously all requirements should be consistent with being
executed (we want to produce a system eventually), but they need not be sufficiently
precise to be executable. This tension between executability and expressiveness is 
evident throughout the use of formal methods in computer science, but is especially
pertinent to user interface design with its focus on a rapid prototyping cycle.
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Real time

Temporal logics only deal with time in the sense that they represent the succession
of events – one thing happens before another. They do not represent actual dura-
tions and times in hours, minutes and seconds. Clearly, there are important user
interface aspects which require a real-time statement such as the following:

When the ellipse option is selected it must be highlighted within 100 ms and the
new object must appear on the screen within 1 second

Programming, specifying and reasoning about real-time behavior is a very active
research area, and a variety of notations have been developed, such as real-time logic
and timed versions of the process algebras (CSP and CCS). However, as yet, none has
been extensively used within HCI. One barrier to effective use is that general prop-
erties are difficult to state exactly – we usually want a response time of ‘around’ 100
milliseconds. Also, the real-time notations have often been developed with time-
critical applications in mind, whereas, for many human response time issues, there
is a gradual degradation in performance as the time increases, rather than a critical time
after which the system might as well not bother. On the other hand, there are some
timing issues where critical bounds do occur: for example, in hand–eye coordination
tasks, delays of even a few hundred milliseconds can destroy performance totally.

Whether or not we use a formalism to describe real-time properties of a design,
we must always remember that these issues are important, and we are not using an
‘infinitely fast machine’ (see Chapter 2 and [93]).

Deontics – responsibility and freedom

Specifications say what the designer thinks should happen. Specifications of the 
system say what it should do, but real requirements are often about the world – ‘the
system should have a secure backup every week’. One could write a formal version
of this statement using some form of temporal logic, but when we come to design a
system to satisfy it we have trouble. We can design a ‘backup’ program which puts
all the data onto tape, and which uses sophisticated error checking and redundancy
to make sure the saved data are secure. We can even design a user interface which is
resilient to mistakes on the operator’s part, but which is so clear that such mistakes
never happen. But all this is to no avail if the operator does not put the backup tape
into the system! Traditional specifications say what happens, but do not mention
who is responsible for making it happen.

Consider the following statements:

Hotel rules: the guests are to be in the hotel by midnight
Prison rules: the inmates are to be locked in their cells from 9pm to 6am

The two statements are similar in form, and their propositional meanings are almost
identical. If we swap a few words they transform into one another. However, from
context we know that the first statement expresses a requirement on the hotel guests,
whereas the second expresses a requirement on the prison warders.
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Deontic logics address these issues by including the concept of responsible agents
(human, corporate and computer) and the mutual responsibilities between them.
The most common deontic operators are permission (per) and obligation (obl).
These both take two arguments: the first is who has the permission or obligation, and
the second what it is they are permitted or obliged to make true. For example, we can
refine the temporal logic statement about printing including these operators. The
agents are the user ‘Jane’ and the laser printer ‘lp3’:

owns(Jane, file ‘fred’) fi per(Jane, request(Jane, ‘print fred’))
request(Jane, ‘print fred’) fi obl(lp3, prints the file ‘fred’)

The first formula says that if Jane owns the file ‘fred’ then she is permitted to request
the command ‘print fred’. The second says that if she requests the command, then the
printer is obliged to print ‘fred’. The first statement is a little clumsy because it has
to be phrased in terms of the proposition request(Jane, ‘print fred’). If we also include
the idea of actions, such as request(‘print fred’), which can be performed (performs) by
agents, then the requirements can be rephrased using a modified obligation operator:

owns(Jane, file ‘fred’) fi per(Jane, request(‘print fred’))
performs(Jane, request(‘print fred’)) fi obl(lp3, print (the file ‘fred’))

Such a statement is not far different from the statement of the requirements in
English, and makes quite clear the balance of responsibility.

Deontic logics are becoming popular in requirements engineering. It is thus pos-
sible that as an interface designer, you may be asked to produce a system which
satisfies some (suitably explained) deontic specification. Even if this is not the case,
it is worth noting, formally or informally, exactly what expectations you have of your
users. In practice, one ought to work with several levels of expectation. For example,
if you are designing an automatic bank teller, it may be true that customers are
obliged to use only their own cards, and to use them in a particular fashion.
However, you do not want the system to crash too terribly if a customer does not
behave in this fashion. As interactive systems begin to involve more than a single 
user (see Chapters 14 and 19), it becomes more important to keep track of these
responsibilities and freedoms, who must do what and who can do what. If the user
of a single-user system does not behave in the ‘obliged’ fashion then the impact is
personal (although not necessarily acceptable). However, in a multi-user system, we
want to restrict the bad effect on others – the system should still maintain its obliga-
tions to them and allow them to perform those things they are permitted to do.

INTERACTION MODELS

Interactive systems ought to be ‘what you see is what you get’ (WYSIWYG), consistent,
have a universal undo facility . . . the list goes on. But, if a supplier says that its word
processor ‘Sludge-Word’ is WYSIWYG, how do we test this? The screen fonts look
very impressive, but are they the same as on the page? Perhaps the system appears

17.3
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WYSIWYG for simple jobs but this breaks down when things become more com-
plex. What does WYSIWYG really mean?

It was to address these issues that the methodology described in this section was
developed. Whereas the formal notations described in Section 17.2 describe specific
systems, the aim in this section is to define interaction models, which are generic, 
formal models of interactive systems. Using such a generic model, one can define
principles in a formal way which are then applicable to a range of systems. In particu-
lar, by regarding Sludge-Word as an instance of the general model we can verify 
(or refute) some of its supplier’s claims.

The particular model we will describe, the PIE model, was designed to attack
WYSIWYG-like properties. It would be nice to say that after reading this section, you
will know exactly what WYSIWYG means. Unfortunately, it is too wide and varied a
term to be formalized. However, we will describe several principles from Chapter 7,
more limited in scope, which can be formalized. Of these some cover areas within the
general area of WYSIWYG, namely observability – what you can tell about the cur-
rent state of the system from the display – and predictability – what you can tell about
its future behavior. In addition, we will define principles concerning the control of
the system by the user, such as reachability – you can get anywhere from anywhere –
and undo – the ability to perform backwards error recovery.

As we mentioned in Chapter 7, we certainly cannot define ‘usability’ totally; we
cannot say that if a system obeys a set of formal principles then it will be usable.
Nevertheless, some of the formal principles are necessary for usability: any system
which breaks them is bound to have problems. The formal principles form a ‘safety
net’ to prevent some of the worst mistakes in an interactive system, but do not ensure
a good design. That depends on a good designer.

This ‘safety net’, although valuable, is not the principal benefit of using interaction
models. Their chief value lies in the insights gained by considering properties of
interaction, away from the surface clutter of real or imagined systems. These insights
become part of the background with which you approach new areas, whether or not
a formal approach is explicitly taken there. Furthermore, some of these insights can
be abstracted into informal principles, which, though derived by formal analyses,
can, once stated, be justified in their own right. It is a strange paradox that some of
the informal concepts, which are obtained by such formal analysis, are not them-
selves fully formalizable.

17.3.1 The PIE model

The PIE model is a black-box model. It does not try to represent the internal archi-
tecture and construction of a computer system, but instead describes it purely 
in terms of its inputs from the user and outputs to the user. For a simple single-user
system, typical inputs would be from the keyboard and mouse, and outputs would
be the computer’s display screen and the eventual printed output (Figure 17.2).

The difference between the ephemeral display of a system and the permanent
result is central to the PIE model. We will call the set of possible displays D and the
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set of possible results R. In order to express principles of observability, we will want
to talk about the relation between display and result. Basically, can we determine the
result (what you will get) from the display (what you see)?

For a formal statement of predictability it helps (but is not essential) to talk about
the internal state of the system. This does not counter our claim to have a black-box
model. First, the state we define will be opaque; we will not look at its structure,
merely postulate it is there. Secondly, the state we will be discussing is not the actual
state of the system, but an idealization of it. It will be the minimal state required to
account for the future external behavior. We will call this the effect (E). Functions dis-
play and result obtain the current outputs from this minimal state:

display : E → D
result : E → R

The current display will be literally what is now visible. The current result is actually
not what is available, but what the result would be if the interaction were finished.
For example, with a word processor, it is the pages that would be obtained if one
printed the current state of the document.

A single-user action we will call a command (from a set C). The history of all the
user’s commands is called the program (P = seq C), and the current effect can be 
calculated from this history using an interpretation function:

I : P → E

Arguably the input history would be better labeled H, but then the PIE model would
lose its acronym! If we put together all the bits, we obtain a diagram of sets and 
functions (Figure 17.3), which looks rather like the original illustration.

In principle, one can express all the properties one wants in terms of the inter-
pretation function, I. However, this often means expressing properties quantified
over all possible past histories. To make some of the properties easier to express, we
will also use a state transition function doit :

doit : E × P → E

Figure 17.2 Inputs and outputs of a single-user system
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The function doit takes the present state e and some user commands p, and gives 
the new state after the user has entered the commands doit(e, p). It is related to the
interpretation function I by the following axioms:

doit(I(p), q) = I(p ^ q)
doit(doit(e, p), q) = doit(e, p ^ q)

The PIE diagram can be read at different levels of abstraction. One can take a
direct analogy with Figure 17.2. The commands set C is the keystrokes and mouse
clicks, the display set D is the physical display, and the result R is the printed output:

C = {‘a’, ‘b’, ... , ‘0’, ‘1’, ... , ‘*’, ‘&’, ... }

D = Pixel_coord → RGB_value
R = ink on paper

This is a physical/lexical level of interpretation. One can produce a similar mapping
for any system, in terms of the raw physical inputs and outputs. It is often more use-
ful to apply the model at the logical level. Here, the user commands are higher-level
actions such as ‘select bold font’, which may be invoked by several keystrokes and/or
mouse actions. Similarly, we can describe the screen at a logical level in terms of 
windows, buttons, fields and so on. Also, for some purposes, rather than dealing with
the final physical result, we may regard, say, the document on disk as the result.

The power of the PIE model is that it can be applied at many levels of abstraction.
Some properties may only be valid at one level, but many should be true at all levels
of system description. It is even possible to apply the PIE model just within the user,
in the sense that the commands are the user’s intended actions, and the display, the
perceived response.

When applying the PIE model at different levels it is possible to map between 
the levels. This leads to level conformance properties, which say, for example, that the
changes one sees at the interface level should correspond to similar changes at the
level of application objects.

17.3.2 Predictability and observability

WYSIWYG is clearly related to what can be inferred from the display (what you see).
Harold Thimbleby has pointed out that WYSIWYG can be given two interpretations

Figure 17.3 The PIE model
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[342]. One is what you see is what you will get at the printer. This corresponds to
how well you can determine the result from the display. The second interpretation is
what you see is what you have got in the system. For this we will ask what the display
can tell us about the effect. These can both be thought of as observability principles.

A related issue is predictability. Imagine you have been using a drawing package
and in the middle you get thirsty and go to get a cup of tea. On returning, you are faced
with the screen – do you know what to do next? If there are two shapes one on top
of the other, the graphics package may interpret mouse clicks as operating on the ‘top’
shape. However, there may be no visual indication of which is topmost. The screen
image does not tell you what the effect of your actions will be; you need to remember
how you got there, your command history. This has been called the ‘gone away for a
cup of tea problem’. In fact, the state of the system determines the effects of any future
commands, so if we have a system, which is observable in the sense that the display
determines the state, it is also predictable. Predictability is a special case of observability.

We will attempt to formalize these properties. To say that we can determine the
result from the display is to say that there exists a function transparentR from displays
to results:

E transparentR : D → R •
A e e E • transparentR(display(e)) = result(e)

It is no good having any old function from the display to the result; the second half
of the above says that the function gives us exactly the result we would get from the
system. We can call this property result transparency.

We can do a similar thing for the effect, that is the system state:

E transparentE : D → E •
A e e E • transparentE(display(e)) = (e)

We can call this property simply transparency.
What would it mean for a system to be transparent in one of these senses? If the

system were result transparent, when we come back from our cup of tea, we can look
at the display and then work out in our head (using transparentR) exactly what the
printed drawing would look like. Whether we could do this in our heads is another
matter. For most drawing packages the function would be simply to ignore the
menus and ‘photocopy’ the screen.

Simple transparency is stronger still. It would say that there is nothing in the state
of the system that cannot be inferred from the display. If there are any modes, then
these must have a visual indication; if there are any differences in behavior between
the displayed shapes, then there must be some corresponding visual difference. Even
forgetting the formal principles, this is a strong and useful design heuristic.

Unfortunately, these principles are both rather too strong. If we imagine a word
processor rather than a drawing package, the contents of the display will be only a bit
of the document. Clearly, we cannot infer the contents of the rest of the document
(and hence the printed result) from the display. Similarly, to give a visual indication
of, say, object grouping within a complex drawing package might be impossible (and
this can cause the user problems).
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When faced with a document on a word processor, the user can simply scroll the
display up and down to find out what is there. You cannot see from the current display
everything about the system, but you can find out. The process by which the user ex-
plores the current state of the system is called a strategy. The formalization of a strategy
is quite complex, even ignoring cognitive limitations. These strategies will differ from
user to user, but the documentation of a system should tell the user how to get at per-
tinent information. For example, how to tell what objects in the drawing tools are
grouped. This will map out a set of effective strategies with which the user can work.

Ideally, a strategy for observing the system should not disrupt the state of the
application objects, that is the strategy should be passive. For example, a strategy 
for looking at a document which involved deleting it would not be very useful. 
This seems almost too obvious, but consider again grouping in drawing tools. Often
the only way to find out how a grouped object is composed is to ungroup it piece 
by piece. You then have to remember how to put it back together. The advantage of 
a passive strategy becomes apparent.

Using such a strategy then gives one a wider view of the system than the display.
This is called the observable effect (O). In a word processor this would be the com-
plete view of the document obtained by scrolling plus any current mode indicators
and a quick peek at the state of the cut/paste buffer. The observable effect contains
strictly more information than the display, and hence sits before it in a functional
diagram (Figure 17.4).

We can now reformulate principles in terms of the observable effect. First of all the
system is result observable if the result can be determined from the observable effect:

E predictR : O → R •
A e e E • predictR(observe(e)) = result(e)

This says that the observable effect contains at least as much information as the
result. However, it will also contain additional information about the interactive
state of the system. For example, you will observe the current cursor position, but
this has no bearing on the printed document.

So you know what will happen if you hit the print button now. Refreshed from your
cup of tea, you return to work. You press a function key which, unknown to you, is
bound to a macro intended for an entirely different application. The screen rolls, the

Figure 17.4 The observable effect
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disk whirrs and, to your horror, your document and the entire disk contents are
trashed. You leave the computer and go for another drink . . . not necessarily of tea.

A stronger condition is that the system be fully predictable:

E transparentE : O → E •
A e e E • predict(observe(e)) = (e)

This says that you can observe the complete state of the system. You can then (in 
theory) predict anything the system will do. If the system were fully predictable, 
you would be able to tell what the bindings of the function keys were and hence
(again in theory) would have been able to avoid your disaster.

This is as far as this bit of the formal story goes in this book. However, there are
more sophisticated principles of observability and predictability which take into
account aspects of user attention, and issues like keyboard buffers. Formalisms such
as the PIE model have been used to portray other usability principles discussed in
Chapter 7. Principles of predictability do not stand on their own; even if you had
known what was bound to the function key, you might still have hit it by accident,
or simply forgotten. Other protective principles like commensurate effort need to be
applied. Also, although it is difficult to formalize completely, one prefers a system
that behaves in most respects like the transparency principles, rather than requiring
complicated searching to discover information. This is a sort of commensurate effort
for observation.

Worked exercise A two-function calculator has the following buttons: 0–9, +, − and =. These would comprise
the command set (C) of a PIE model of the calculator. The state (E) would consist of three
components: the two current numbers being entered, the last number (to be operated on) and
the pending operation (+ or −). The display (D) is simply a signed number. For this example,
ignore the result.

Write down (semi-formally) the doit function updating the state for each user command and
the display function relating the state (E) to the current display (D). To check your definitions:
what does the display have on it after the user has entered ‘2 + 3 +’? Most calculators would
show 5; does yours?

Consider the displays after the sequences ‘2 + 2’ and ‘2 +’ and the effect on each of the addi-
tional user input of 3. Does the calculator satisfy the transparency property?

Answer The definition of the doit function could proceed as follows. We will use the Z notation
in this sample answer. The character set is defined as

C == 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | + | − | =

It will be useful to distinguish the digits and operations (+ and −):

ÆDigit : PC
ÆOp : PC«__________________
ÆDigit = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }
ÆOp = { +, − } 
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The state is defined as an ordered 4-tuple, consisting of the current number being
entered, the last number (to be operated on) and the pending operation:

E == seq Digit × seq Digit × Op

The display is simply a projection of the current number being entered:

D == seq Digit
Ædisplay : E → D«________________ 
ÆA (current,last,op) : E •
Æ display(current,last,op) = current

The doit function is defined below by case exhaustion. The notation o(c, l ) means to
apply operation o to the arguments c and l, so that 2 + 3 would be written + (2, 3), with
o = +, c = 2 and l = 3.

Ædoit : E × C → E«__________________________
ÆA c, l : seq Digit; d, d ′ : Digit; o, o′ : Op •
Æ doit((c, l, o), =) = (o(c, l ), 0, o)
Æ doit((c, l, o), d ) = (d, c, o) if lastkey e {+, −, =}
Æ (10c + d, l, o) otherwise
Æ doit((c, l, o), o′) = (o(c, l ), c, o′)

The following table traces the execution of the calculator:

C E D

(0,0,+) 0
2 (2,0,+) 2
+ (2,2,+) 2
3 (3,2,+) 3
+ (5,3,+) 5

Compare the trace tables for the ‘programs’ 2 + 3 and 2 + 23:

Notice that the display after the program 2 + is the same as it is after the program 2 + 3,
yet the behavior of the subsequent 3 command is different. Therefore, the calculator as
defined does not satisfy the transparency property. Can you do better?

C E D

(0,0,+) 0
2 (2,0,+) 2
+ (2,2,+) 2
2 (2,2,+) 2
3 (23,2,+) 23

C E D

(0,0,+) 0
2 (2,0,+) 2
+ (2,2,+) 2
3 (3,2,+) 3
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17.3.3 Reachability and undo

In Chapter 16, we discussed connectivity issues for dialogs. We could check a dialog
description to see if there were any blind alleys, which once you had chosen them,
would never let you back to the rest of the dialog. Systems can have similar problems
at a semantic level.

In a commercial program debugger used by one of the authors, there is a window
listing all the variables. If a variable is a complex structure, then hitting the ‘insert’
key while the cursor is over the variable will expand the variable showing all its 
fields. If you only want a few of the fields to be displayed, you can move the cursor
over the unwanted fields and press the ‘delete’ key and the field is removed. These
operations can be repeated over complex hierarchical structures. If you remove 
a field and then wish you had not, you can always press ‘insert’ again over the 
main variable and all the fields will be redisplayed. Even this breaks somewhat the
principle of commensurate effort, but worse is to come. The ‘delete’ key also works 
for top-level variables, but once one of these is removed from the display there is
nothing you can do to get it back, short of exiting the debugger and rerunning it 
from scratch.

A principle that stops this type of behavior is reachability. A system is reachable if
from any state the system is in, you can get to any other state. The formal statement
of this is as follows:

Ae, e′ e E • (E p e P • doit(e, p) = e′)

Unlike the predictability principles, there are no awkward caveats. The only pro-
blem is that, if anything, it is too weak. For instance, a word processor could have 
a delete key, but no way to move the cursor about, so you always type at the end of
the document. Now you can, of course, get from any document state to any other,
you simply delete the whole text and retype what you want. However, if you had 
just typed in a whole letter and then noticed a mistake on the first line, you would
not be pleased! So, ideally, one wants an independent idea of ‘distance’ between
states and to make the difficulty of the path between them commensurate with the
distance – small changes should be easy. Despite this, the principle on its own would
have been strong enough to prevent the behavior of the debugger!

One special case of reachability is when the state you want to get to is the one you
have just been in, that is undo. We expect undo to be easy, and ideally have a single
undo button that will always undo the effect of the last command. We can state this
requirement very easily:

Ac e C • doit(e, c ^ undo) = e

This says exactly what we wanted. We start in a state e. We then do any command 
c and follow it by the special command undo. The state is then the same as we 
began in.

Stop! Before patting ourselves on the back for so clearly defining undo, we should
check that this requirement for undo is consistent. Indeed, it is consistent – so long
as there are at most two states. That is, the above undo requirement is only possible
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for systems which do virtually nothing! The reason for this is that undo is itself a
command and can undo itself. Take any state e and choose any command x. Let ex

be the state you get to after command x. That is ex = doit(e, x). Now we can apply the
undo requirement to state ex:

doit(ex, undo) = doit(e, x ^ undo) = e

So, the undo command in state ex gets us back to e. That is as expected. But what does
undo do if we are in state e? Again we can employ the undo principle remembering
that e = doit(ex, undo):

doit(e, undo) = doit(ex, undo ^ undo) = ex

This uses the undo principle when the command c is undo itself. However, our
choice of command x was arbitrary, so if we had chosen another command, say y, 
we would have concluded that doit(e, undo) = ey . This means that ex = ey, and in 
general anything we do from state e gets us to the same state. So at most we have 
two states, a toggle, with all the commands flipping back and forth between them.
The only alternative is that the system does nothing.

We will not go on to describe the details of better undo requirements, the inter-
ested reader can find that elsewhere. The basis of most workable undo systems is that
undo is not just any old command, but is treated differently. The simplest fix to the
above undo principle is to restrict the commands to anything except undo!

The lesson from the above is clear. It is easy to say you want something which
sounds quite reasonable. A formal description of the requirement may well reveal
that, as in the case of undo, it is inconsistent – that is, no system could be built which
satisfies the requirement.

17.3.4 Other interaction models

The PIE model was the inspiration for a wide variety of different models. Some 
of these are similar, but take a slightly different standpoint. For example, one model
has results only available at some states. This actually corresponds to the intuition
that a printed document is only available when you invoke the print function, or 
that an updated file is only available in the file system when you ask the editor to
save. However, that model also only had the display available at some states – less
intuitive.

There is also a range of models focussed at specific domain areas. The PIE model
is a very general model of deterministic single-user systems. Other models address
areas including:

Windowed systems This model describes the interference properties between 
windows. The distinctive feature is that the user is effectively regarded as having
different personae when interacting with different windows. This reflects the
observation that when swapping between tasks (associated with windows), the
user should not have to keep track of dependencies and is therefore acting like
several users.
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Timing What happens when the system is not fast enough and the user’s actions
get ahead of the system’s responses? The formal model describes the relationship
between the steady state behavior – what would happen if the machine was
infinitely fast and there were no delays – and the actual temporal behavior. 
This analysis has highlighted deficiencies in the input–output model of window
managers and operating systems.

Attention This looks at ways of describing which parts of the display and result are
used during any particular task. It uses templates for both, which model the select-
ive attention during the task. The designer states what the expected templates are
for any task, and then salience of the templates can be verified by experiment.
These can then be tested using psychological experiments.

Non-determinism If you are ignorant of certain information in a system, it may
appear to behave non-deterministically. Many properties of different models, for
example the predictability of PIEs, map onto problems of non-determinism.
Methods of handling this non-determinism from one domain can then suggest
similar methods in what would otherwise appear disparate areas. The fact 
that supposedly deterministic interfaces often appear random suggests that,
where it is helpful for other purposes, the interface can be made deliberately 
non-deterministic.

Dynamic pointers Interface objects often have special positions, such as the cursor
or marked blocks. They may also have pointers into them, such as hypertext links.
Dynamic pointers are a formalism that describes such positional information in a
uniform manner. In particular, they help to manage the changes in pointers as the
underlying object is updated. They also describe the mapping between positional
information at different levels, for example when mapping mouse positions on
the screen to their appropriate positions in application objects.

These are all principally single-user models. However, there has been some work
in applying these formal models to group systems (such as those in Chapter 19). In
particular, this has led to significant new insight into the meaning of undo in a group
context.

CONTINUOUS BEHAVIOR

Although many of the systems and interfaces studied in rich media and in novel
interfaces embody continuous real-time interaction, there are few models of this in
the HCI literature. Possibly this is because of the conceptual dominance of discrete
models. At a low level, computer systems are clearly discrete with step-by-step pro-
grams and users’ actions being converted into streams of events. Even apparently
smooth actions like dragging a mouse are treated as a series of individual ‘mouse has
moved’ events.

17.4
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There are two types of continuity:

continuous values – for example, the measurement of a weight;

continuous time – for example, a switch that could be sampled at any time.

Many sensors have both these properties: for example, the temperature of a room 
is both a continuous value and can be sampled at any time. It is the latter of these
that we will consider in this section, as many standard notations such as Z deal with
continuous values, whereas continuous time is less common.

In this section we will first look again at the PIE model and see how it can be
extended to deal with mouse location.

17.4.1 Dealing with the mouse

The PIE model is very asymmetric between input and output. Some sorts of out-
put are difficult to deal with, for example a beep used when something goes wrong.
This is not clear in the formalism itself, but if we look at the principles, it is obvious
that the display is expected to be persistent. If you go away and have a cup of tea, the
display is still there when you get back. The beep is not. On the input side, mouse
movement is not easy: one can regard each movement as being a command in C, 
but this is unnatural. Certainly, the user would not be conscious of each pixel 
movement!

A beep is similar to a keystroke: each is an event. The mouse’s position is similar
to the screen: they both have an observable value at any moment – we say each of
them is a status. The PIE model is then an event-in/status-out model: the user does
events (from C) and the system responds with a status (display). This suggests vari-
ations of the PIE model that have different combinations of event and status.

One version has events and status for its input, but still a purely status output
(any-in/status-out). The (single command) state transition function then depends
on both the command and the current mouse position (M):

doit : E × C × M → E

The display function is now not just a function of the state, but it too depends on the
mouse position:

display : E × M → D

This allows for the display to include the mouse cursor, which moves with the mouse
(pretty obvious really) and also allows for the change in the display when the mouse
drags an object.

This model only describes a special subclass of systems, those that are trajectory
independent. The mouse position only has a permanent effect at the moment a 
command (keystroke or mouse button) happens; the intermediate positions are 
forgotten. For example, the model cannot describe freehand drawing. It is possible
to extend the model to include more general systems; however, the subclass is 
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interesting in itself. With the exception of drawing and similar tasks, such as 
‘air-brush’ painting, most mouse-based systems are trajectory independent.
Furthermore, the few that are not exhibit usability problems, suggesting that 
trajectory dependency is itself a general usability principle for all but exceptional 
situations.

17.4.2 Formal aspects of status–event analysis

Probably the earliest continuous time models in the formal user interface literature
are the variants of status–event analysis [94,102] of which the variant of the PIE
model above is a simple example. Status–event analysis (S–E) distinguishes events
that occur at specific moments of time from status phenomena that have (typically
changing) values over a period of time. Examples of events include keystrokes, 
beeps, and the stroke of midnight in the story of Cinderella. Examples of status 
phenomena include the current computer display, the location of the mouse pointer,
the internal state of the computer and the weather. We will discuss status–event 
analysis in more detail in Chapter 18; here we will just look at the more formal
aspects.

Perhaps one of the most significant features of S–E is its treatment of interstitial
behavior. Whereas discrete models focus solely on what happens at the moments
when events occur, S–E puts equal emphasis on the more fluid interaction between
events. In many GUI systems this is what gives the ‘feel’ of interaction, for example,
dragging, scrolling, etc., and in rich media this is likely to be the main purpose of
interaction!

Status–event analysis is really a conceptual framework for viewing interaction, 
but does have several concrete models, both descriptive models (variants of the PIE)
and specification notations. These all have the general form of a state-transition style
description of events and a more continuous description of interstitial behavior:

action:
user-event × (current/history of) input-status × state

→ response-event × (new) state
interstitial behavior:

(current/history of) input-status × state → output-status

The treatment of the input status at events and during interstitial behavior distin-
guishes interactions of markedly different kinds, for example, the trajectory depend-
ency described above (Section 17.4.1).

Another crucial aspect of S–E, which is not apparent in discrete systems, is status-
change events. These occur when a status phenomenon crosses some form of trigger
threshold. For example, when a temperature reaches some value, or the time (on the
clock) is a certain time. The nature of these thresholds is application dependent and
may be dynamic. Furthermore, there are a whole range of issues about how status-
change events become system-level events: polling, active sensors, etc. Typically, at
an abstract level of specification one would just say ‘when this happens . . .’, but as
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this becomes operationalized these issues of mechanism surface. We will see more of
how these status-change events propagate in Chapter 18.

17.4.3 Making everything continuous

In engineering and physics, the idea of modeling continuous behavior being a 
special problem would seem strange. In those fields, and in real life, continuous 
phenomena are normal – discrete things are the exception. For example, you may
recall, from high school physics, the equations of an object moving under gravity:

Objects in virtual worlds have to have similar behavior, and Wüthrich [384] has used
general versions of this kind of equation from cybernetic systems theory to model
virtual reality systems:

statet = φ ( t, t0, statet0, inputs during [t0,t) )
outputt = η ( statet )

The difference between this and the S–E description is largely representational,
although it should be noted that the state is different. In the S–E description the
‘state’ attempts to ignore the ephemeral changes during the interstices, whereas 
the systems theory model incorporates this (for example, that the mouse is at a 
particular position now). Both forms of state seem appropriate depending on the 
circumstances and can be incorporated as alternative views or levels of description.

Notice that the systems theory definition treats events on a par with status phe-
nomena; both are merely part of an ‘inputs at time t’ and there is no equivalent of
the action description when an event occurs. However, when viewed as functions 
of time, event phenomena have values only at a few points of time and for most of
the time have some sort of special ‘not happening now’ value. There is a history of
dealing with event phenomena in this way in applied mathematics where ‘impulse’
events, such as a voltage spike or collision, are modeled using Dirac delta functions,
functions that are infinitely large for an infinitesimally short time.

This ‘treat everything as continuous’ leads to more complicated and less clear 
ways of expressing things, just as solely event-based formalisms do. The natural way
of describing the world includes both status and event phenomena. In fact, when
applying systems theory to a real example Wüthrich finds it more convenient to
describe event phenomena as timestamped values – that is, even if the model has no
events you are forced to invent them to deal with real examples!

17.4.4 Hybrid models

This problem of merging event-based and continuous status behavior arises in 
other areas of computing where control systems interact with real physical sys-
tems such as industrial controllers or fly-by-wire aircraft. There is a whole range 
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of notations and methods for dealing with these ‘hybrid systems’ [158]. On the
whole, this community has a largely dualist model of the world, with discrete 
computer systems interfacing with a continuous environment defined by differential
equations.

This sort of model has been adopted by a few researchers in HCI. For example, 
the TACIT project [339] studied a variety of continuous-time interactive systems
and also considered modeling using hybrid high-level Petri nets [229]. As we saw in
Chapter 16, Petri nets allow us to express concurrent behavior, but have discrete
behavior with tokens moving between places at transitions (event points). The
hybrid Petri nets include ‘continuous transitions’, which are effectively a form of
interstitial behavior.

A similar variant of hybrid Petri nets has been used to develop component/
interactor models (see Figure 17.5) intended to model objects in virtual environ-
ments [379]. These interactors have both discrete and continuous output and input
and a threshold on discrete input, which produces status-change events. Less clear
from the figure, but evident in the Petri net specifications, is that there can be direct
continuous connections between continuous input and output (status–status rela-
tions) controlled by the enable/disable switch.

17.4.5 Broad issues: granularity and Gestalt

It is clear that time can be divided almost arbitrarily (at least to the Planck time 
of about 10− 43 of a second). However, we constantly divide it into discrete units:
Monday, Tuesday, July, yesterday, today, next year. We talk about things happen-
ing at a particular time (the clock struck at noon), but, of course, nothing happens
instantaneously (how long do the chimes last?). In day-to-day speech we manage
these ambiguities, but as we formalize time, whether in computer tools or in formal 
notations, we have to try to make these precise.

Studies of the use of electronic calendar systems highlight this problem [283].
Although users think in terms of ‘let’s meet in the afternoon’, the system forces 

Figure 17.5 Continuous interactor from [379]. Source: © Springer-Verlag Berlin
Heidelberg 2001
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you to give meetings precise start and end times ‘3pm–4:30pm’. In addition, many
calendar systems regard time as being made of discrete days with continuous times
within. Try creating an agenda item for an overnight plane flight! There has been
some work on formalizing times like ‘I’ll do this today’ (in the next 24 hours, before
midnight), but it is still in its infancy [204].

The issue of things happening at precise times means that we have to be constantly
careful when we talk about an interval of time such as 3pm to 4pm; do we mean 
to include both 3pm and 4pm, or do we mean from 3pm up to but not including
4pm? In mathematics these are called closed (when the end point is included) 
or open (when the end point is not included) intervals. Note that in the systems 
theory equations in Section 17.4.3 the formulae included ‘inputs during [t0,t)’. The
square and round brackets are conventionally used to distinguish these boundaries
where square brackets mean ‘including the end’ and round brackets mean ‘exclud-
ing the end’. So the interval ‘[t0,t)’ means ‘all times including t0 and up to, but not
including, t ’.

This precision is needed to ensure that when we describe things we do not acci-
dentally ‘leave out’ the moment of time between two intervals, or accidentally have
intervals overlap by one moment when we mean them to be disjoint. For example,
in Section 17.4.3, if the definition had been ‘inputs during [t0,t]’ it would have meant
that the state and output of a system at a particular moment depended on the inputs
at that precise moment. This would have allowed a causal cycle if two such systems
were interacting where the output of one depended on the current output of the
other and vice versa. The definition given cuts this potential knot by saying that the
state depends only on past inputs, but can take into account those arbitrarily recently
in the past.

The ambiguity of end points is also problematic if we need to ‘parse’ continuous
media, for example in speech interfaces, gesture recognition, or determination of
context in ubiquitous computing. In all these cases, we find that continuous media
exhibit temporal Gestalt phenomena: the higher-level units such as words, or con-
texts, only have meaning over time and do not have clear boundaries. Consider 
gesture recognition – the movement only has meaning once complete; music – the
melody is only a melody whilst being played; even graphics get meaning through
movement [19]. This is rather like the fact that the typed characters ‘d’, ‘i’, ‘r’, 
‘carriage-return’ only mean ‘list directory’ when considered as a whole. The main
difference is that the boundaries are clearer in the case of discrete phenomena – the
gesture has no definitive start or end, although an end point would be made concrete
by actual recognition software.

One final thing to note about the notations and models for continuous interaction
is how similar they are. This is perhaps because the physical world is largely continu-
ous and so there are fewer ‘choices’ to be made in modeling it. However, at another
level human discourse and language is discrete: we use a finite lexicon of words and
sentences. So at some level the sorts of difficulties discussed above merely reflect the
tension between the world of physical actions and the fundamental nature of human
language.
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SUMMARY

This chapter has focussed on modeling the deeper semantic behavior of an interac-
tive system. To design a usable system one needs to know what it does!

We began by looking at different kinds of software engineering formalisms that
can be used to specify the behavior of specific systems. These specifications can 
be used for communication between designer and implementor, and for analysis.
Model-based specifications define the state of the system, the invariants, which 
must always be true, and the operations that change the state (usually as the result 
of user actions). Algebraic specifications describe the system in terms of the rela-
tionships between operations. Both can suffer from incompleteness, where one has
not specified enough to determine the behavior. In particular, it is as important 
to say what does not change as what does – the framing problem. Both of these 
concentrate on step-by-step changes that the user can perform on the system.
Temporal logics allow you to specify properties such as ‘it is always possible to quit’,
and deontic logics allow you to talk about permitted actions and other issues of
responsibility.

In Section 17.3 we considered interaction models, in particular the PIE model.
This type of model addresses classes of system rather than specific designs, allowing
us to describe general properties such as predictability (the ‘gone away for a cup of
tea problem’), observability (what can we tell about the state of the system from 
its display?) and reachability (whether there are any dead ends from which we can
never return). We looked at the issue of undo and how the PIE model allowed us to
discover that the apparently obvious meaning of undo was, in fact, inconsistent. As
well as the very general PIE model, more specific interaction models address issues
such as timing properties and user attention.

Finally, we looked at continuous time phenomena. This included a variant of the
PIE model for dealing with dragging and similar mouse-based interactions. At a
more general level, the formal concepts of status–event analysis show that both
major changes at events and the more continuous interstitial behavior between
events are important. Other models based on systems theory and hybrid systems
either have similar constructs, or are forced to create them when dealing with real
problems. We need to deal with the relationship between the ‘soft’ ideas of time in
day-to-day life (‘let’s meet this afternoon’) and the hard-edged formal ideas of time
(‘starting at 3pm and continuing until, but not including, 4:30pm’), but this is still
largely an open problem.

17.5
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EXERCISES

17.1 Using the model-oriented approach with the example graphics program described in
Section 17.2.3, specify the move operation as a schema which acts on the currently selected
objects. Is the operation you have defined cumulative (two successive moves can be done as one
move which is the sum of the other two) or is it ‘forgetful’? Discuss the implications of the fram-
ing problem in your definition.

17.2 Write a similar schema for Resize. It should have the following informal semantics. The width and
height attributes are of the shapes bounding box. The resize operation should make one corner
of the bounding box be at the current mouse position (supplied as the argument current_pos?).

Hint: The width of a box is twice the difference between the x coordinate of the center and the
x coordinate of any corner:

wid = 2 × | center.x − corner.x |

17.3 In Section 17.2.5, we said that the specification Algebraic–draw could be extended to say that a
move, resize or unselect after a delete has no effect. The axiom for unselect looks like this:

(9) unselect(delete(g)) = delete(g)

Write two more axioms (10) and (11) which say the same about move and resize. Now use
axioms (4) and (5) to show that (9) implies both your new axioms.

17.4 Imagine a normal calculator except that it displays A for 0, B for 1, up to J for 9. So the number
372 would appear as DHC. Does this affect the formal transparency of the calculator? Should it?

17.5 To some extent undo is similar to the ‘back’ command or button found in many web browsers,
help systems and hypertext systems. Is the ‘back’ button on a browser just like undo?

Hint: Consider scenarios where the pages are web forms updating a database.

17.6 Experiment with the ‘back’ button on different browsers, help systems, etc. Record systematically
the behavior as you visit pages and use the ‘back’ button, and try to build a model (informal or
formal) of the system. Pay particular attention to what happens if you revisit the same page during
the same ‘drill down’ and the behavior in systems with multiple windows/frames. (Note that this
behavior does differ dramatically even between different versions of the same web browser.)

17.7 Sections 17.2.1 and 17.2.2 give two reasons for using formal methods in HCI: communication and
analysis. These are focussed on the sort of mathematical models found in this chapter. However,
there are other sorts of ‘formal’ modeling in HCI: dialog notations are formal models of the 
syntax of the human–computer conversation, hierarchical task analysis is a formalization of the
task structure, some cognitive models are effectively formal models of the user’s mind.

(a) Are communication and analysis reasons for using these other sorts of formalism?
(b) Can you think of other reasons why you would or would not use formalisms?
(c) Try to use these pros and cons to formulate issues in the choice of appropriate forms of 

formal model and analysis.

17.8 This exercise is based on the mobile phone scenario on the book website at: /e3/scenario/phone/

List the main elements of the state of the phone (you can use programming language variable 
declarations for this) and then write down a step-by-step walkthrough of the state as the user
accesses a shortcut at position ‘3’ as in steps C.1–C.10 of scenario C.
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17.9 This exercise is based on the nuclear reactor scenario on the book website at: /e3/scenario/nuclear/
You will need to refer to this while completing the exercise.

The exercise is in four parts, but you will probably find it easier to work on them in parallel. As
you try to define actions you will find state elements you have missed, and as you work through
the scenarios you will probably find problems that you need to go back and change in the state
and actions.

(a) Complete the following partial description of the state of the nuclear control panel.
»____________________________________________
ÆÆAlarm_State: {Green, Amber, TempRed, Red}

ÆÆConfirm_Needed: Boolean [ that is true or false]

ÆÆTarget_Pressure: Nat [ that is { 0, 1, 2, ... } ]

ÆÆTarget_Temp: Nat

ÆÆTarget_Flow: Nat

ÆÆManual_Override_Value:  Nat
ÆÆ...
–Æ____________________________________________

(b) Here is a description of the state change for two actions: when a digit is pressed on the key-
pad and when the ‘−’ key is pressed. Note we have not written it in ‘proper’ Z, but in a form
of pseudo code.

keypad_digit(d)
»____________________________________________
ÆÆadd d to the right-hand end of Manual_Override_Value
–Æ____________________________________________

alarm_lower [minus key is pressed]
»____________________________________________
ÆÆif ( Alarm_State is Red or Alarm State is TempRed )
ÆÆthen set Alarm_State to Amber
ÆÆif ( Alarm_State is Amber or Alarm_State is Green)
ÆÆthen set Alarm_State to Green
–Æ____________________________________________

Using these to guide you, complete the following two partial descriptions of the state changes
for the CONFIRM and CANCEL buttons on the Emergency Confirm control panel.

confirm
»____________________________________________
ÆÆset Confirm_Needed to false
ÆÆif ( Alarm_State is TempRed )
ÆÆthen set Alarm_State to Red
ÆÆ... something about emergency shutdown too

ÆÆ...
–Æ____________________________________________

cancel
»____________________________________________
ÆÆset Confirm_Needed to false
ÆÆif ( Alarm_State is TempRed )
ÆÆthen set Alarm_State to Amber
ÆÆ... something about emergency shutdown too

ÆÆ...
–Æ____________________________________________
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the Emergency Shutdown panel;
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Æ Confirm_Needed = True

ÆStep 4 button glows because Confirm_Needed = True

ÆStep 5 no system action
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MODELING RICH

INTERACTION

OV E RV I E W

We operate within an ecology of people, physical artifacts
and electronic systems, and this rich ecology has recently
become more complex as electronic devices invade the
workplace and our day-to-day lives. We need methods 
to deal with these rich interactions.

n Status–event analysis is a semi-formal, easy to apply
technique that:
– classifies phenomena as event or status
– embodies naïve psychology
– highlights feedback problems in interfaces.

n Aspects of rich environments can be incorporated into
methods such as task analysis:
– other people
– information requirements
– triggers for tasks
– modeling artifacts
– placeholders in task sequences.

n New sensor-based systems do not require explicit
interaction; this means:
– new cognitive and interaction models
– new design methods
– new system architectures.

18
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INTRODUCTION

The majority of more detailed models and theories in HCI are focussed on the 
‘normal’ situation of a single user interacting with traditional applications using a
keyboard and screen. The models focus predominantly on the effects of individual
planned user actions. In fact, this ‘normal’ situation is increasingly looking like the
exception. As we noted in the last chapter (Section 17.4), much of interaction is
about more continuous phenomena both in the computer (e.g. mouse movement)
and in more ubiquitous computing environments, such as smart homes, that sense
movement, temperature, etc. Even traditional computer systems are used not in 
isolation, but in office and other work settings that involve different people and
physical objects. Normal human–computer interaction usually includes looking at
pieces of paper, walking around rooms, talking to people. Finally, the more ubiquit-
ous environments deeply challenge the idea of intention behind human–computer
interaction: increasingly things simply happen to us.

In this chapter we look at several ways in which this ‘normal’ situation can be
modeled either by new methods or by adapting existing ones.

In Section 18.2, we will demonstrate how a semi-formal technique, status–event
analysis, can be used to understand the interplay between more instantaneous events
and more continuous status phenomena. The examples in this section will be mainly
focussed on more traditional computer systems, but unlike the models in previous
chapters, status–event analysis is used to describe a ‘slice’ of the system at all levels of
abstraction, rather than the whole system at a specific level. Also, by dealing with
both more ‘computer-ish’ events and more ‘world-ish’ status phenomena it lays 
the ground for thinking about these increasingly rich interactions as the chapter 
progresses.

Section 18.3 is still focussed on traditional computer systems, but where the
emphasis is on the physical and social environment in which they are based. We 
will be considering how aspects of the rich workplace ecology can be captured in
more formal techniques, in particular task analysis. We will look at representing 
collaboration – who is doing what; information requirements – what do we need to
know when; triggers – what makes things happen when they do; artifacts – how to
model their behavior; and placeholders – how we keep track of where we are in 
a task.

Finally, Section 18.4 will explode the traditional model completely! The types 
of systems discussed in ubiquitous computing, and now beginning to be deployed,
often do not require explicit interaction. There is a range of levels of intention, from
fully intentional systems to those where the system observes and responds to actions
of the user performed possibly for some completely different purposes. We will find
that these incidental interactions require new ways of thinking about interaction,
new ways to design systems and new ways to construct them.

The latter parts of this chapter, especially, involve areas where theory is struggling
to keep up with technology and where there is still little idea of where eventually the
technology will be used in practice.

18.1
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STATUS–EVENT ANALYSIS

In Chapter 16 we saw that some dialog notations were state oriented, whereas others
were event oriented. Each type of notation had trouble describing some phenomena,
but was good with others. Similarly, in Section 17.4 we found that formal models 
of interactive systems need to be able to deal with both status and event input and
output.

Note that the word ‘status’ is chosen rather than ‘state’, as the term will be used 
to refer to any phenomenon with a persistent value. This includes the position of a
mouse on a table and the current screen contents, as well as the internal state of the
system. The word ‘state’ has connotations of the complete state of the system, rather
than the selective particular views meant here by status.

18.2

Note on pronunciation

Note that the plural of status is not statuses or even stati. Like salmon and sheep, the plural
of status is simply status. However, according to the Oxford English Dictionary these are pronounced
differently: the ‘u’ in the singular is as the ‘u’ in datum, whereas the plural has an ‘u’ as in tune.

The distinction between status and event is between being and doing. Status phe-
nomena always have a value one could consult. For example, you can ask the ques-
tion ‘what was the position of the mouse on the tabletop at 3:27pm?’. An event, 
on the other hand, happens at a particular moment. Here the relevant question is 
‘at what time did the user press the mouse button?’.

This section describes status–event analysis, an ‘engineering’-level technique which
makes use of the status–event distinction. The label ‘engineering’ is used in a similar
way to the way it is applied to the keystroke-level model (Chapter 12, Section 12.5.1).
An engineering approach is built upon theoretical principles, but does not require a
deep theoretical background on the part of the designer. Status–event analysis is
built upon two theoretical foundations. On the one side, it is derived from work on
formal models of interaction (as described briefly in Section 17.3.4). However, a
designer using the method does not need to use, or even know about, these founda-
tions. On the other side, status–event analysis makes use of fairly naïve psycholo-
gical knowledge, to predict how particular interface features affect the user.

The strength of the method is that a single descriptive framework can be applied
at a range of levels from the application, through the interface, to the user’s per-
ception. Indeed, the same descriptive framework can describe even the low-level
electrical signals and logic in the microseconds from when a user hits a key to that
key being ‘noticed’ by the system.

We will first consider an example of clocks and calendars, which demonstrates
some of the important properties of events and status and how they interrelate. The
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design implications of this are discussed in Section 18.2.2. In particular, we will see
that events generated by applications have an associated timescale which tells us
when we want them to be perceived by the user. Section 18.2.3 discusses a few 
simple psychological facts which help us to predict when interface events become
salient for the user.

Status–event analysis looks at different layers of the system, such as user, screen
(presentation), dialog and application. It looks for the events perceived at each level
and the status changes at each level. This, combined with the naïve psychological
analysis of the presentation/user boundary, allows the designer to predict failures
and more importantly suggest improvements. This approach is demonstrated in two
examples: the ‘mail has arrived’ interface to an email system and the behavior of an
on-screen button.

18.2.1 Properties of events: clocks and calendars

Brian is due to meet Alison to go to the cinema at 20 to 8. He decides he will stop
work at 25 to, and keeps an eye on his watch. Every few minutes he looks at it,
increasingly frequently as the time draws nigh. Eventually, he looks and it is 24 min-
utes to, so he quickly puts his coat on and leaves.

In fact Brian had an alarm on his watch. He could have set it for 7:35, and waited
for it to ring. Unfortunately, he has never worked out how to set the alarm (nor how
to stop it beeping every hour).

A few days later Alison is sitting in her office. In an idle moment she consults her
calendar to see what is happening tomorrow. She sees that it is Brian’s birthday, 
so decides to buy him the soundtrack of the film they recently saw.

From these scenarios, we can abstract many of the important properties of status
and events:

Status Brian’s watch is a status – it always tells the time – so is Alison’s calendar.
Moreover, assuming Brian’s watch is analog, this demonstrates that status phe-
nomena may be both discrete (the calendar) or continuous (the watch face).

Events The passing of the time 7:35, when Brian wanted to stop work, was an
event. A different, but related, event was when Brian got up to go. The alarm 
on Brian’s watch (if he could use it) would have caused an event, showing that
Brian’s watch is capable of both status and event outputs. Alison also experienced
an event when she noticed it was Brian’s birthday the next day, and of course, his
birthday will also be an event.

Polling Given Brian only had a status – the watch face – and he wanted an event –
7:35 – he looked periodically at his watch. In computing terms, Brian polled his
watch. Polling is a normal activity that people do as well as machines. It is a stand-
ard way to turn a status into an event.

Actual vs. perceived The event Brian was awaiting was when the watch said 7:35.
This event happened, but Brian obviously did not look at his watch at just the
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right moment. Instead, this actual event became a perceived event for Brian a
minute later when he next looked at his watch. If one looks at a fine enough
timescale there are almost always gaps between actual and perceived events. Of
course, there can be similar lags between actual and perceived status too.

Granularity The watch showing 7:35 and Brian’s birthday are both events, but 
they operate at completely different timescales. The interpretation of events and
status may differ depending on the timescale one uses. In particular, the idea of
immediacy changes.

These same properties all emerge during the analysis of interactive systems.

18.2.2 Design implications

Applications want to cause events for users and use various presentation techniques
to do this. However, these techniques must be matched to the timescale of the desired
event. For example, if a stock of 6 mm bolts is running low, this requires reordering
within days or weeks. On the other hand, a coolant failure in a nuclear power plant
may require action within seconds.

The presented form of the event for the user must match these timescales – both
causing events too fast or too slow is wrong. It is fairly obvious that too slow an event
is wrong. An email message to the power plant operator would be ineffectual; the
operator and the computer would both be so much radioactive waste. However, 
the opposite fault can be equally damaging. Red flashing lights and alarm bells when
the last box of 6 mm bolts is opened would be annoying, and could also distract the
operator from more important tasks, such as dealing with that coolant.

A less extreme example would be an electronic alarm and calendar. Imagine 
we have an online alarm function, which can be set to sound a buzzer and put a 
message in the middle of the screen at any time we like. This would obviously 
have been useful for Brian who could have set it to say ‘cinema with Alison’ at 7:35.
However, if Alison wanted to remind herself of Brian’s birthday, she would be 
forced to set an alarm for a specific time, say noon on the day before. This would
have been disruptive when it rang, and not in keeping with the timescale of 
birthdays.

In order to cause a perceived event for the user at the appropriate timescale, we
must be able to predict the event timescale of various interface techniques. Simply
presenting information on the screen, or causing an event at the interface, is no 
guarantee that that event will become a perceived event for the user.

18.2.3 Naïve psychology

In order to predict the effect of interface techniques, we need to employ some naïve
psychology. This can tell us what sort of stimuli are salient and where the user’s
attention will be focussed.

First, we can sometimes predict where the user will be looking:
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Mouse When the user is positioning the mouse pointer over a target, his attention
will be focussed on that target. This is guaranteed in all but a few situations by the
feedback requirements of hand–eye coordination. However, this attention may
not stay long after the target has been successfully ‘hit’.

Text insertion point While typing text, the user will intermittently look at the 
text just typed and hence the current insertion point. However, because of touch-
typing, this is less certain than the mouse except when moving the insertion point
over large distances using cursor keys – another positioning task.

Screen It is reasonably safe to assume that the user will look at the screen inter-
mittently. However, there is no guarantee that any particular message or icon on
the screen will be noticed, only that very large messages spread across a large part
of the screen will probably be noticed.

If we know where the user is looking, then we can put information there (not in 
a status line at the top where no one ever looks). Also, changes at the user’s visual
focus will be salient and become a perceived event for the user. An example, where
the mouse pointer itself is used for information, is the egg-timer or ticking watch
icon used when a system is busy.

Secondly, immediate events can be caused even when we do not know where the user
is looking. The most common are audible events: beeps, buzzers, bells and whistles.
These cause perceived events even when the user is not looking at the screen. In addi-
tion, our peripheral vision is good at detecting movement (see Chapter 1). Whereas
we might not notice a small change unless it is in our visual focus, we will notice
something moving out of the corner of our eye. We will see an interesting example
of this in the next section, but a common example of large change (rather than move-
ment) is the use of a screen flash as a silent bell. Not only does this cause an event
when you are looking anywhere on the screen, but even if you are looking at the key-
board or at a document beside the screen. The only proviso is that the duration of
the flash must be timed suitably to avoid it being mistaken for normal screen flicker.

Finally, recall from Chapter 1 that when people complete some goal, they experi-
ence closure. This means that they have a feeling of completeness and go on to the
next thing. Closure has implications both on perception and actions. It is why in the
mouse positioning task, the user’s eye may stray from the target as soon as the target
is perceived as ‘hit’. In addition, the user may begin some of the actions for the next
task, while certain automatic actions terminating the last task are still going on. For
example, it is easy to knock a glass from the table by beginning to turn round before
fully letting go of the glass.

We will see examples of each of these three effects in the succeeding subsections.

18.2.4 Example – email interface

Brian wants to thank Alison for his birthday present, which she left on his desk. He
sends her a message by email. Consider the stages the message goes through, from
when the message first arrives in Alison’s system until Alison realizes it is there.
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To make life easy we will assume that Brian is on the same network as Alison.
When he hits the ‘SEND’ button on his machine, the message is sent – this is an
event. The way that many systems handle internal mail is simply to append it to the
recipient’s mailbox file, for example ‘/usr/spool/mail/Alison’. The event of receiving
mail is therefore reflected in a change of status in the file system. You can see this
event depicted as the first arrow in Figure 18.1. This figure shows timelines for vari-
ous components in the interface, where time flows downwards. Events are denoted
by arrows between the components’ timelines.

On Alison’s workstation runs a mailtool. When not in use, the mailtool is depicted
by an ‘empty mailbox’ icon. The mailtool does not notice the change in the mailbox
file immediately, but periodically it checks the file to see if it has changed – that is, it
polls. So, after a while, the mailtool polls the file and sees that it has indeed changed.
At this point the change in status of the file system has become a perceived event for
the mailtool. Notice that we are using the term perceived event of computer agents
as well as of the user. Obviously, the final perceived event for the user is what is
important, but we are also interested in similar phenomena at different levels.

Having noticed the event, the mailtool now knows that mail has arrived, and must
try to make this event a perceived event for the user. To do this it changes its icon to
denote a mailbox with a letter sticking out. That is, we again see an event giving rise
to a change in status, this time on the screen.

Finally, we come to the user, Alison. She is sitting at her workstation busy on 
a report she must finish. She gets to the end of a difficult section and breaks in her
typing for a moment. During such breaks, her eyes wander over the screen, and in
particular she occasionally glances at the mailtool’s icon to see if any mail has arrived
– she polls it. This time when she looks up, she sees that mail has indeed arrived – the
mail arrival has at last become a perceived event for Alison.

If we look at Figure 18.1, we see that a number of active agents (Brian, the mail-
tool and Alison) cause events for one another mediated by status elements (the
filestore and screen). This is a very common scenario, especially if you look at fine

Figure 18.1 Inputs and outputs of a single-user system
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details of interaction. However, it is also possible to have direct event-based connec-
tions (which we will see in the next example), or even status–status connections. 
An example of the latter is the linkage between the mouse on the table and the mouse
pointer on the screen. Even this is mediated by events in its implementation, but this
is not apparent to the user.

Having analyzed the event–status dynamics of the system, we can ask whether it is
functioning as it should. In fact, for this particular message and context it functioned
well enough, but let us consider a few alternative scenarios.

If the message had been ‘Fire! Get out quick’ Alison might now be dead. Forgetting
the interface design, the mailtool probably does not poll the file system often enough
to respond within the timescale of such a message. If the system were required 
to support messages of such urgency, we would need to redesign the mail arrival
mechanism so that the mailtool would receive a direct event, rather than wait to poll.
Assuming this were done, would it have saved Alison? Probably not, because 
she would not have looked at the mailtool icon sufficiently often to see the crucial
message.

On the other hand, the message may have been information about a forthcoming
conference. Alison need not have read this message when she did. The perceived
event is now at too fine a timescale, and it is an unwanted interruption.

Finally, if at 12:30 Brian sent the message ‘Thanks for the gift, see you for lunch at
1 o’clock?’, then the timescale may be appropriate, but the guarantee of delivery of
the current system is too weak. Alison usually glances at the icon every few minutes,
but occasionally, when engrossed in a task, she may miss it for hours. Alison has at
least survived, but is getting hungry.

Split-second requests are not normally sent by email and so the last form of mes-
sage is the most urgent encountered in typical email traffic. The timescale required
is of the order of a few minutes. But we saw that the current interface, although of
the appropriate timescale, does not carry sufficient guarantees. There are other inter-
faces available, so we shall see how they fare:

Explicit examination The traditional email interface required the user to exam-
ine the mailbox explicitly, say in the morning and evening. This was a form of
polling, but at a much reduced timescale. This would obviously be useless for
Brian’s message, but would have been much more appropriate for the conference
announcement.

Audible bell The existing mailtool can be set to sound a bell when mail arrives.
This would cause an instant perceived event for Alison – if she was there. To avoid
being missed entirely when Alison is out of the room, the bell has to be combined
with a status indicator, such as the icon. However, even if Alison were there, the
interruption caused to her work would not merit the normal timescales of email
messages – unless it said ‘Fire!’, that is.

Moving faces Finally, there is a second mail-watcher available, which when mail
arrives sees who it is from and slowly moves a bitmap picture of the sender into a
sort of ‘hall of fame’ at the bottom of the screen. Whereas normally the mailtool
icon is not noticed as it suddenly changes, this movement is noticed at once as it is



18.2 Status–event analysis 637

in Alison’s peripheral vision. Furthermore, it leaves a status indicator behind (the
sender’s face). It thus does the job of the buzzer and icon combined. However, the
guaranteed event is still too quick.

What is really wanted is a guaranteed event at a timescale of minutes. None of the
available options supplies this. However, knowing what is wanted one can suggest
designs to supply the need. For example, we could automatically notice gaps in 
typing, and notify the user (aurally or visually) during a gap on the assumption that
this will be less obtrusive. Alternatively, we can use a non-guaranteed technique of
the appropriate timescale, such as the existing mailtool icon, but if the mail is not
examined within a certain time we can use a more salient alarm.

Ideally, such mechanisms should be tuned to the particular timescale of the 
application and, if anything, email is one of the most difficult examples as the time-
scale depends on the message. Other applications, particularly command and control
tasks, will have more well-defined timescales making the matching job easier.

18.2.5 Example – screen button feedback

The last example used status–event analysis to suggest an improved interface to
email. However, email is, as we admitted, a complex example, so it is not surprising
that improvements can be found. In the following example, we find that status–event
analysis is even able to suggest improvements in something as simple and heavily
used as an on-screen button.

Screen buttons activated by clicking the mouse over them are a standard widget 
in any interface toolkit and are found in most modern application interfaces. The
application developer has little control over the detailed user interaction as this is
fixed by the toolkit. So, the specific results of this example are most relevant to the
toolkit designer, but the general techniques are more widely applicable.

A common problem with many on-screen buttons is that the user thinks the 
button has been pressed, but in fact it has not been. As an example, imagine Alison
at work again on her word processor. The report is too long and so when she notices
a superfluous paragraph, she selects it and then moves her button up to the ‘delete’
button. She clicks over the button and thinks it has had an effect, but actually as she
lifted her finger from the button, the mouse slipped from the button and the click
was ignored (the button is activated by the mouse up event). Unfortunately, she does
not notice until having, with difficulty, pared the report down to 1000 words, she
notices that the unwanted paragraph remains.

We have two questions: why is this mistake so frequent, and why didn’t she notice?
To answer these we use status–event analysis to look at two scenarios, the first where
she successfully selects ‘delete’, and the one where she does not. There are four 
elements in the analysis: the application (word processor), the button’s dialog (in the
toolkit), the screen image and the user (Alison). Figures 18.2 and 18.3 depict the two
scenarios, the first when successful – a hit – and the second when not – a miss.

Consider first the successful case in Figure 18.2, the hit. The first significant event
is Alison’s depression of the mouse button over the on-screen ‘delete’ button. This
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event goes directly to the toolkit dialog, which responds by highlighting the ‘delete’
button. The next event is as Alison lifts her finger from the button. Again this is
received by the dialog which this time does two things: it removes the highlight from
the ‘delete’ button, and also causes an event ‘delete’ for the application. The applica-
tion then performs the action, deleting the paragraph. The effects of this change in
the text are reflected in the screen content.

The unsuccessful case (Figure 18.3, the miss) starts similarly. Alison depresses the
mouse button and receives feedback. However, this time, before releasing the mouse
button, she accidentally moves the mouse off the button. The toolkit dialog responds
to this by removing the highlight from ‘delete’ – the same feedback as in the first scen-
ario. Alison’s release of the mouse button has no further effect.

The two scenarios are very different in their effect: in one the application deletes
some text, in the other it does not. However, Alison does not notice the difference.

Figure 18.2 Screen button – hit

Figure 18.3 Screen button – miss
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Her feedback from the toolkit dialog is identical. In theory, she could have seen that
the text did not change as she expected. However, after hitting the ‘delete’ button,
she reaches closure on that operation and moves on to the next task. Her attention is
not focussed on the text to be deleted and so there is no perceived event for the user
corresponding to the application event of the text being deleted.

Furthermore, this closure makes the mistake not just a possibility, but highly
likely. Consider the moment when Alison has just pressed down the mouse button
and the on-screen ‘delete’ button has been highlighted. She has done what she
wanted and attains closure, and the remaining release of the mouse button is initi-
ated. She now starts to look for the next action and begins to move the mouse to the
location of next interaction. However, the two actions, releasing the mouse and
moving it, are not synchronized with one another. There is no particular reason why
one should happen before the other. It is, of course, a particularly dangerous point
in a dialog where the order of two unsynchronized user actions makes a crucial 
difference to behavior.

It is quite difficult to see how to avoid the problem occurring. It is not that the 
current feedback is not salient; it is at the focus of the pointing task. However, all the
feedback concerns events at the dialog level. The most important event, the ‘delete’
to the application, has no corresponding perceived event. The toolkit assumes that
the user will see some feedback from the application and therefore does not supply
any feedback of its own. But, as we saw, the application’s feedback is very likely to be
missed.

The solution is fairly obvious: the dialog should itself supply an event, which will
be perceived by the user, corresponding to the application-level event. This could 
be visual, but would have to be very salient as the user’s eyes are beginning to move
toward the next task. Alternatively, it could be aural, either with a keyboard-like
‘click’ as the button is successfully pressed, or with a beep if the mouse slips off. 
This improved feedback could be combined with some dynamic mechanism, such as
making the screen button ‘magnetic’ and difficult to move out of.

It is interesting to note that, if Alison were a novice user, she would be more likely
to check her actions and thus notice the mistake – an unnoticed button miss is an expert
slip. As all but the most extensive user testing of a new device must, by definition, be
with novices, there is no way this would be detected – which is perhaps why most 
on-screen buttons have this problem. We hope this demonstrates how, on occasions,
semi-formal hand analysis may even be more effective than real user testing.

RICH CONTEXTS

Formalized methods such as task analysis adopt a systemized, almost Taylorist view
of the workplace – people working to achieve well-defined goals following regular
procedures.

However, even the earliest systems analysis texts took into account the richness of
the work environment. One text, written in the late 1960s, described a printshop

18.3
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where productivity was lower than predicted after the installation of new machinery.
The analyst was asked to advise on automating the equipment. After observing the
workplace he asked for a small budget of a few hundred pounds and the productiv-
ity dramatically rose. What did he do? He bought white overalls. The equipment was
oily and the operators, mostly young women, were reluctant to work too quickly for
fear of damaging their own clothes. The overalls protected their clothes and obviated
the need for a computer.

This is not a unique story. Again and again those studying real workplaces find
that they have a rich ecology involving different people, the structure of the spaces
they work in and the physical artifacts in the workplace. Observations of real photo-
copier use led to the ideas of situated action (see also Chapter 13, Section 13.3.5)
challenging simplistic models of pre-planned human action and proposing instead
that real interaction is not pre-planned, but rather acted out in response to the actual
work situation [334]. Numerous ethnographic studies emphasize the incredible 
richness of human interaction and, often, the inability of formalized processes to
incorporate it. For example, in a study of a printshop (yes, another) Bowers et al.
[41] found that the operators constantly had to work around the job management
software as it assumed linear patterns of work that did not reflect the contingent and
dynamic re-planning necessary on the shopfloor.

In a philosophically different strand of work, the distributed cognition literature
has challenged the model of cognition ‘in the head’ and instead suggests that real
cognition happens in interaction with the environment and with each other (see
Chapter 14, Section 14.5.3). One classic study showed how Polynesian sailors were
able to navigate without formal charts and without the requisite experience in any
one individual’s head [185].

One could say that the lessons of situated action and of distributed cognition are
about the parity in relationship between the ‘actor’ and the world. We do not just act
on the world, but act with the world. We are driven by what we see and hear from
other people, from automated systems and from the physical objects in the world. 
In response, our actions, words and sometimes gestures and demeanour speak back
into that rich world.

In day-to-day life we understand about dialog with other people. In HCI we are
used to thinking about dialog between users and the computer system. However, 
in a full ecological analysis we must also accept that users are in dialog with the 
physical environment. We use the information stored in artifacts and their physical
disposition to trigger and guide our actions, and the physical properties of the world
limit and constrain our actions on it.

In the rest of this section we will look at several phenomena of this dialog with the
environment and see how they can be grafted onto more traditional methods.

18.3.1 Collaboration – doing it together

In Chapter 14, we discussed issues of communication and collaboration. However,
you may notice that this is rarely mentioned in the other models in Part 3.
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In fact, several notations and methods do handle collaboration explicitly. There
are two ways in which this can be done. One is where the process as a whole is
mapped out and parts assigned to each person (common in function allocation,
workflow and process methods). The other is where several role-oriented models
interact. These are complementary representations and can be handled together with
suitable tool support.

One example is ConcurTaskTrees (CTT) which are a form of hierarchical task 
analysis (HTA) [280]. CTT adds to HTA in two main ways. The first is that instead
of the loosely described plans of HTA it includes a much more formal way of spe-
cifying the temporal relationships between subtasks using operators based on the
LOTOS formal notation. A CTT task tree can be produced for each person involved
in the task. It is, however, the second difference from HTA that is significant here.
Where several people collaborate on a task, a larger task tree is produced where 
each subtask can be labeled as belonging to a specific individual, being automated,
or being collaborative (see Figure 18.4).

It is interesting to note that the roles identified in CTT include both humans and
automated systems, but not aspects of the physical environment. However, it is only
a small step to imagine treating the environment or parts of it as dialog partners
alongside the human and computer.

Another method that takes collaboration seriously is GroupWare Task Analysis
(GTA), which includes a broad-ranging conceptual framework, elicitation tech-
niques and toolset [357]. GTA has a rich taxonomy including agents and roles for
modeling collaboration and objects both physical and electronic (see Figure 18.5). 
It aims to build a rich model of the situation in which tasks are performed.

18.3.2 Information – what you need to know and when you need
to know it

When writing the first edition of this book, we bemoaned the fact that cognitive
models took a view of human cognition that was almost totally dominated by output

Figure 18.4 ConcurTaskTree [280]. Source: Icons reproduced courtesy of Fabio Paternò



642 Chapter 18 n Modeling rich interaction

and action (see Section 12.4). We have goals, which translate into subgoals, and so
on, until we perform actions – an entirely head-outward flow of control. In a sim-
ilar vein, Lucy Suchman’s theories of situated action were particularly critical of the
artificial intelligence inspired views of human planning. These models of planning
are largely based on creating internal plans based on internal models of the world,
which are then ‘blindly’ executed. We use the word ‘blindly’ here quite carefully, 
as these are models of human action which ignore the human senses entirely. In con-
trol engineering, these output-only models would be described as open-loop control
(Figure 18.6) as opposed to closed-loop control (Figure 18.7), which constantly
monitors the effects of its outputs on the environment and uses these to modify
future behavior.

In general, closed-loop control is more robust and it is not surprising that 
both internal physiological processes and external human behavior are typically
closed-loop systems. Indeed, the user interface literature is full of the importance of

Figure 18.5 GTA ontology

Figure 18.6 Open-loop control

Figure 18.7 Closed-loop control
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feedback and effective information display; it is just that the early formal models
have often left this out.

There are several examples of cognitive models that do take this feedback loop
seriously. As noted in Chapter 12 (Section 12.4), there is a display-based version of
task action grammar [180], and there have been several other variants of display-
based models. Also, interacting cognitive subsystems (ICS) (Section 12.6.2) is
focussed strongly on the transformations of representation during the perception-
to-action cognitive cycle [26]. The earliest papers on cognitive complexity theory
(CCT) included perceptual operators on the production-rule-based cognitive model
component, but strangely it was the actions only that were matched against the 
system dialog model (Section 12.2.2).

It is not uncommon to see references to information seeking in the names of tasks
in task models, but this is normally where the information-seeking activity is regarded
as a substantive task. In practice, information is used throughout task execution. For
example, in the simple tea-making task (Figure 18.8), the ‘boil kettle’ subtask does
not require any information, but the ‘get out cups’ task requires the actor to know
how many are required. Does he remember, or does it need to be written down?

Information is central to several task analysis methods, such as TAKD (Chap-
ter 15, Section 15.4); however, these are focussed on what kinds of things the user
needs to know in general – ontology and domain modeling – not on what the user
needs to know at a particular moment.

It is a simple matter to add an information analysis stage to any task analysis
method or notation. Note that some tasks have no information requirements – other
than the fact that they are to happen. For example, the ‘make pot of tea’ subtask
requires no information other than the fact that the kettle has boiled. However,
information is required whenever:

(a) a subtask involves inputting (or outputting) information
(b) there is some kind of choice
(c) a subtask is repeated a number of times that is not prespecified.

Note that (c) is a special case of (b). To detect (a) one needs to look at the kind of
task, whereas (b) and (c) are evident from the temporal structure of the task (for
example, in the case of HTA, this would be in the plan).

Figure 18.8 Tea-making task
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Having discovered that information is required it may come from several sources:

(i) It is part of the task (e.g., in the case of a phone call, whom one is going to
phone).

(ii) The user remembers it (e.g. remembering the number after ringing directory
enquiries).

(iii) It is on a computer/device display (e.g. using a PDA address book and then dial-
ing the number).

(iv) It is in the environment: either pre-existing (e.g. number in phone directory),
or created as part of the task (e.g. number written on piece of paper).

Reducing memory load is part of standard usability guidelines. Knowing what 
information is required during a task allows us to design or redesign the task so that
information is available when required. An infamous example of this is those all too
common modal dialog boxes that ask you some question but hide the window con-
taining the information you need to answer the question!

In most multi-windowed GUIs it has been possible for user interface designers to
be quite careless about information requirements. One can make so much informa-
tion available and let the user arrange different windows to perform the task. In con-
trast industrial control design is far more careful about knowing what is required, as
there are often very many possible values to display. Industrial operators may have
very little time to respond to an alarm and so cannot browse complex menu systems
to find information. As user interaction moves away from the computer screen to
dedicated devices, WAP phones, interactive television screens and smart appliances,
these issues of careful information requirements analysis will become significant for
all applications.

18.3.3 Triggers – why things happen when they happen

Workflows and process diagrams decompose processes into smaller activities and
then give the order between them. Similarly, plans in HTA give some specification of
the order of subtasks and, as noted earlier, in CTT these temporal orders are made
more specific using operators derived from LOTOS.

Figure 18.9 shows a simple example, perhaps the normal pattern of activity for 
an office worker dealing with daily post. Notice the simple dependency that the post
must be collected from the pigeonhole before it can be brought to the desk and
before it can be opened. However, look again at the activity ‘open post’ – when does
it actually happen? The work process says it doesn’t happen before the ‘bring post 
to desk’ activity is complete, but does it happen straightaway after this or some time
later?

Figure 18.9 Simple work process
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Trigger analysis [108] looks in detail at the triggers that cause activities to happen
when they happen. In the case of opening post, this could easily be something like 
‘at coffee time’ rather than straightaway. It identifies a number of common triggers:

immediate – straight after previous task;

temporal – at a particular time or after a particular delay;

sporadic – when someone thinks about it;

external event – some event occurs, such as a phone call;

environmental cue – something in the environment prompts action.

We can augment the work process with triggers for each activity (Figure 18.10).
Notice how we have examples of different types of trigger: two temporal and one
environmental (letters in the office worker’s hand prompting her to carry them to
her desk).

Triggers are important not only for understanding the temporal behavior of the
task, but also because they tell us about potential failure modes. If two environmental
triggers are similar, one might do parts of the task out of sequence; if a trigger may
not occur, or may be missed (likely for sporadic triggers), activities may be omitted
entirely. Triggers also help us assess the likelihood of problems caused by interrup-
tions – for example, immediate ‘just after’ sequences are disrupted badly, whereas
environmental cues tend to be robust (because they are still there).

Sometimes triggers are seen in the plans of HTAs, and sometimes ‘waiting’ sub-
tasks are included for external events, but these are both exceptions; the normal
assumption is that tasks are uninterrupted. However, it is straightforward to add a
trigger analysis stage to most task analysis methods.

In addition, you may have noticed that the ontology of GTA in Figure 18.5
includes events and triggers. However, the word ‘trigger’ in GTA is usually used only
for events that originally set a task in motion (e.g. a customer making an order) and
events that make major changes (e.g. the customer ringing to cancel the order).

In terms of the ecology of interaction, triggers remind us that tasks are not 
typically performed uninterrupted and continuously from start to finish. In practice, 
tasks are interleaved with other unrelated tasks or, potentially more confusingly,
with different instances of the same tasks, and may be interrupted and disrupted by
other activities and events. Furthermore, the performance of the tasks is dependent
both on a host of interactions with the environment – and these may be fragile – and
on apparently unconnected events.

Figure 18.10 Triggers for activities



646 Chapter 18 n Modeling rich interaction

18.3.4 Artifacts – things we act on and act with

Notice that one of the trigger types is environmental cues – things in the environ-
ment that prompt us to action. Some years ago one of the authors got a telephone
call reminding him to respond to a letter. He couldn’t recall having received it at all,
but searching through a pile on his desk he found it, and several other letters from a
period of several weeks unopened and unread. What had happened? His practice was
to bring the post upstairs to his desk, but not always to read it straightaway. Not
being a coffee drinker, it was not coffee time that prompted him to open the post 
but just the fact that there was unopened post lying on his desk. This process had
worked perfectly well until there was a new office cleaner. The new cleaner didn’t
move things around on his desk, but did ‘tidy’: straightening up higgledy-piggledy
piles of paper. However, he had unconsciously been using the fact that the bundle of
unopened post was not straight as a reminder that it needed dealing with. But since
the arrival of the new cleaner post that for some reason was not opened one day
would look the next morning as if it was tidily ‘filed’ in a pile on his desk.

This story is not unique. The ethnographic literature is full of accounts of artifacts
being used to manage personal work and mediating collaborative work. Some of 
that purpose is to do with the content of the artifacts – what is written on the paper
– but much of it uses the physical disposition: by orienting a piece of paper toward
a colleague you say ‘please read it’. In the case of the author’s desk, the cue that 
said ‘post needs to be opened’ was purely in the physical orientation (not even the
position).

Of course, artifacts also carry information, and are often the inputs or products of
intellectual work. Furthermore, in physical processes the transformation of artifacts
is the purpose of work.

One example that has been studied in detail in the ethnographic literature is air
traffic control, in which all these uses of artifacts are apparent [183]. Flight strips are
central (Figure 18.11) – small slips of card for each aircraft recording information
about the aircraft (flight number, current height, heading, etc.). This information is
important both for the controller managing the aircraft, and also as an at-a-glance
representation of the state of the airspace for other controllers. However, the con-
trollers also slightly pull out those strips corresponding to aircraft that have some
issue or problem. This acts partly as a reminder and partly as an implicit communica-
tion with nearby controllers. Finally, the strips in some way represent the aircraft for
the controllers, but, of course, the real purpose of the process is the movement 
of the aircraft themselves.

Figure 18.11 Air traffic control flight strip
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Task models often talk about objects, either implicitly in the description of 
subtasks or explicitly in the task model. However, the objects are always ‘second
class’ – users act on them, but they are not ‘part of ’ the task. CTT and most work 
process notations do talk about automated tasks, but not about the artifacts, 
whether electronic or physical, included within the interaction.

In object-oriented design methods it is common to give life-cycle descriptions of
‘objects’; however, this is usually because we are intending to store and automate the
object electronically. And though workflow analysts do study document life cycles,
this again is largely because of the intention to automate.

The entity–relationship style task analysis in Chapter 15 (Section 15.5), based
largely on the ATOM method [360], does treat physical objects as ‘first class’, but this
type of method has not gained widespread acceptance.

There is no reason why most task analysis methods should not adopt some form
of artifact tracking. This may be as simple as recording which artifacts are triggers
for, used by, modified by, or produced by any particular subtask. For tasks where
artifacts are particularly central, more sophisticated artifact life cycles could sit
alongside the task description. These life cycles may be mundane (letter closed – let-
ter open), but this is the point; users recruit their everyday knowledge and physical
properties of the world to coordinate their activity.

18.3.5 Placeholders – knowing what happens next

It is half past five in the evening. The busy office building is beginning to quiet as
people pack up to go home. One or two work late in their offices, but as the evening
wears on they too go home. Soon there is only the hum of vacuum cleaners and 
the clatter of wastebins as the office cleaners do their work, until eventually, the last
light goes out and the building sleeps. A few have taken papers and laptops home and
continue to work, but eventually they too put aside their work and sleep.

It is three o’clock in the morning. In the darkness and silence of the office and the
deep sleep of all the employees, where is the memory of the organization? The next
morning at nine o’clock the office is a flurry of activity; it has not forgotten and has
restarted its activities, but how?

We have already discussed two aspects of this memory: information required 
to perform tasks, and triggers that remind us that something needs to happen.
However, there is one last piece of this puzzle that we have hinted at several times
already. As well as knowing that we need to do something, we need to know what
to do next. In the complex web of tasks and subtasks that comprise our job – where
are we?

In fact, in looking at triggers we have already seen examples of this. The untidy
post on the author’s desk said ‘something needs to happen’, but the fact that it was
also unopened said, ‘it needs to be opened’. We already noted that similar triggers
may cause subtasks to be performed out of sequence. If we have only a small num-
ber of dissimilar tasks this is unlikely to happen, since we can remember where 
we are in each task. However, as the number of tasks increases, especially if we are
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performing the same task on different things, it becomes harder to remember where
we are.

Let’s look again at air traffic control. One of the controller’s tasks is to manage the
flight level of aircraft. A much-simplified model of this activity is shown in Figure
18.12. Because this is a shared task between the controller and the pilot, each box 
is labeled with the main actor (although tasks 2 and 3 are both communications).
Recalling earlier parts of this section, we might ask what information is required at
each stage; for example, task 1 would depend on radar, locations of other planes,
planned take-off and landings, and new planes expected to enter the airspace.

Note that box 5 is not really a task, more a ‘state of the world’ that signifies task
completion; however, it is important, as the controller will need to take alternative
actions if it doesn’t happen. Of course, without appropriate placeholders the con-
troller might forget that a plane has not achieved its target level, causing problems
later because the old level is still occupied and allowing potential conflicts between
aircraft.

In fact, the flight strips encode just such a placeholder (see Figure 18.13). When
the controller informs the pilot of the new height he writes the new level on the flight
strip (i). When the pilot confirms she has understood the request the controller

Figure 18.12 Flight level management task

Figure 18.13 Flight strip annotated during task



18.4 Low intention and sensor-based interaction 649

crosses out the old level (ii). Finally when the new level has actually been reached the
new level is ticked (iii).

Virtually all task-modeling notations treat the placeholder as implicit. The
sequence of actions is recorded, but not why the user should do things in the way
proposed. Of course, one purpose of task analysis has been to produce training – that
is, to help people learn what the appropriate processes are, but this doesn’t help them
actually to remember where they are in the process.

Just like other forms of information, placeholders may be stored in different ways:

(a) in people’s heads – remembering what to do next
(b) explicitly in the environment – to-do lists, planning charts, flight strips,

workflow systems
(c) implicitly in the environment – is the letter open yet?

Although often forgotten, placeholders are crucial in ensuring that tasks are carried
out effectively and in full. At a fine scale it is rare to find explicit records because the
overhead would be too high. Instead (a) and (c) predominate. As users’ memories
may be unreliable when faced with multiple tasks and interruptions, it is not sur-
prising to find that various forms of environmental cue are common in the workplace.
However, electronic environments do not have the same affordances to allow informal
annotations or fine ‘tweaking’ of the disposition of artifacts.

LOW INTENTION AND SENSOR-BASED INTERACTION

In traditional computer applications a user was expected to approach the system
with a clear intention to perform some activity or achieve some goal. The actions
were purposeful and direct and the results were explicitly attended to and evaluated.
The design emphasis is on making the affordances of interaction unambiguous and
available and ensuring that system feedback and state are clearly visible.

However, in many areas of human–computer interaction we have seen a growing
number of systems and interaction paradigms where user attention and intention 
is lower. In CSCW the concept of awareness has been central for many years, and,
similarly, ambient interfaces emphasize low salience displays of background infor-
mation. A number of terms have been used to refer to interfaces that include less
explicit interactions: calm interfaces, tacit and implicit interaction. All emphasize
output that is non-intrusive, and ecologically natural forms of input/control.

Whereas the traditional interface was based around controls and input devices,
these low attention and natural input paradigms are more closely related to sensing
technologies and contextual interpretations. Furthermore, human physiology may
be sensed to influence interaction; for example the 2002 Commonwealth Games
baton had an electronic ‘flame’ that flashed depending on the bearer’s heart rate.

At the extreme end of the spectrum are incidental interactions, where an actor
(user) performs an action for some purpose (say opening a door to enter a room),

18.4
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and the system senses this and incidentally uses it for some purpose of which the
actor is unaware (perhaps adjusting the air conditioning), but which affects their
future interactions with the environment or system.

In this section we’ll look at some examples of incidental interaction and see how
it fits within a spectrum of different levels of intention. We’ll then see how this chal-
lenges major areas of traditional interaction design: the fundamental execution–
evaluation cycle implicit in much of HCI, and the limits of our innate cognitive 
abilities. Finally, we’ll consider how to design and implement this sort of system,
although these are still areas with no established best practice or standards.

18.4.1 Examples

Car courtesy lights operate differently depending on the model of car. They may 
turn on when the doors are unlocked or when the doors are opened. They may turn
off after some fixed time, or when the doors are closed or the engine is started.
Underlying this is some designer’s model of the task of getting into a car – perhaps
sorting out belongings in the car, looking at a map, etc., before setting off. The 
sensors are unreliable means of detecting the user’s intentions, but the incidental
interactions with the lights are designed to support the task. Note that the driver’s
purpose is to get into the car and incidentally the lights come on.

In the Pepys project at Xerox EuroPARC, all staff wore an ‘active badge’ that
detected their location in the building using infrared sensors [361]. At the end of
each day, the Pepys system analyzed the logs of people’s location and used these 
to produce a personal diary for each person [259]. Because Pepys knew about the
layout of the offices, and who was where when, it was able to detect when two or
more people were in the same location and create a diary entry for all of them, e.g.
for Brian – ‘had meeting with Alison and Clarise’. Again, Alison and Clarise’s pur-
pose is to visit Brian’s office and incidentally a diary entry is created for each of them.

The MediaCup [148, 33] also facilitates incidental interaction.
It is a base unit that can be attached to an ordinary coffee mug
and detects movement (when drinking, walking around, etc.),
pressure (for fullness), temperature (fresh coffee versus old) and
location. The information gathered by this gives some indica-
tion of the drinker’s current activity and location, which can
then be used for community awareness. Brian’s purpose in filling
the mug is to have a drink of coffee and incidentally his col-
leagues become aware he is taking a break.

Incidental interactions can also take place entirely within the
electronic domain. In many electronic shopping sites, the sys-
tem keeps track of the items you have purchased or examined
and then suggests additional products based on your inferred
tastes. Your purpose is to buy product X and incidentally the sys-
tem infers your tastes and suggests product Y.

One system some of the authors have worked on personally is onCue. This is an
‘intelligent’ toolbar that sits on the side of the user’s screen. When the user cuts or

Courtesy of
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copies any text, onCue examines the clipboard. It analyzes the
content and, depending on the type of material, changes the tool
items to reflect it. If the copied text is a postcode, onCue sug-
gests internet mapping services; if it looks like a name (initial
capitals, etc.), onCue suggests internet directory services; if the
text is a list or table of numbers, onCue suggests spreadsheet 
or graphing applications. As well as the triggering event being
implicit, the ‘suggestion’ is deliberately low salience; the cur-
rently suggested services slowly fade in as small icons in the tool-
bar. Note again, the user’s purpose is to copy the text somewhere
else and incidentally potential useful services are offered. (See
the onCue case study at /e3/casestudy/onCue/)

18.4.2 The intentional spectrum

If we look back at these examples and think of related ones, we can see that they dif-
fer in just how ‘incidental’ the results are. If you get into the car and the courtesy light
does not come on you may notice. Even though you didn’t explicitly ask for the lights
to turn on, you still expect them to do so.

In fact, there is a continuum of intentionality (Figure 18.14). At one extreme are
‘normal’ intentional interactions such as pressing the computer key or pressing a
light switch and expecting the light to come on. This would also include, for example,
a gesture recognition system. Imagine a complex image recognition system that
watches your hand movements so that you can point at a particular light bulb and
say ‘light on’ or ‘light off ’. Although this would be far from a traditional computer
system, it is clearly intentional – the user wants the light on and deliberately does
something that will have the desired effect.

The automatic lights that are found in some public toilets fit somewhere in
between. They are based on infrared or ultrasonic sensors that detect movement. 
If there is movement they come on; if not they turn off. These are more like the car
courtesy light. When you walk in you expect the light to go on and would be
unhappy if, as the door closed behind you, you found yourself in darkness.

Figure 18.14 The continuum of intentionality
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The automatic central heating controller that detects who is in the room and
adjusts the temperature accordingly is at the extreme end of incidental interaction.
Unless the users consult the manuals in detail they may have no idea that this is 
happening behind the scenes. Certainly, when they walk into the room it is no part
of their model of what the act of entering means.

The automatic room lights are quite interesting as a small design change can turn
them from an expected interaction to an incidental one. Imagine a house that has
real light switches, but (for energy saving) always switches off the lights in rooms that
no one is in. When you approach the room the lights automatically turn on, so that
you are never aware that they switch off. Fridge lights and doors that automatically
unlock when an active badge is near are another example.

In addition, there may be changes between these caused
by the user’s understanding of the system. The continuum
from intentional, through expected, to incidental inter-
action is largely about purpose – what the user thinks – not
the actual system itself. Of course, certain types of system
will suggest more or less strongly one mode of inter-
action, but there is some fluidity depending on the user’s
experience, awareness, etc. As users become more aware 
of the interactions happening around them, they may 
move through the continuum toward more purposeful
interaction.

Comprehension: incidental → expected If users notice, consciously or uncon-
sciously, that incidental interactions are taking place they may come to expect or
rely upon them. For example, if you realize that the courtesy lights come on when
you get into the car you may leave checking your route until you get in, knowing
that the car will be lit then.

Co-option: expected → intended When users know that something will happen
when they perform an action, they may deliberately perform the action to cause
the effect. For example, you may deliberately open and close the car door to 
trigger the courtesy light mechanism.

The opposite can happen as well. Imagine you use a gesture recognition system to
open the door. Placing your palm open in front of you when you approach the door
means ‘open the door now’. After a while this action becomes proceduralized and
you may no longer be conscious that you do it. For you, it is as if the door always
opens when you approach it. One day you approach the door, but you are carrying
a box . . .

18.4.3 Challenging our models

As well as being an interesting interaction paradigm in its own right, incidental inter-
action really pushes our fundamental assumptions about interaction and our ways of
modeling it. This will require a rethinking of HCI theory and practice more funda-
mental than that of the 1980s when GUI interfaces replaced character terminals.
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Interaction models

The explicit or implicit model behind nearly all interaction is some form of inten-
tional cycle such as the Norman execution–evaluation loop [266]. The user has some
goal (intention), formulates some action that he believes will act toward that goal,
performs the action and then reformulates future actions based on the feedback.

In traditional cognitive modeling, this is seen as very plan-driven, with goal stacks,
hierarchies, etc. In these accounts, the intentional cycle is seen as starting with the
user, even to the point that the effects of feedback are often ignored. In more con-
textual accounts of interaction, such as situated action [334] or distributed cognition
[185], the goals or intentions are more at the level of overall motivations or end-state
aspirations. The focus tends to shift to a cycle of activity starting with the state of the
world and recent system ‘responses’, with the user acting on the world in response to
the current state. However, this is still clearly purposeful activity.

Incidental interaction and, to a lesser extent, expected interactions do not fit this
picture. The user and system share the experience of the user’s actions, but the pur-
poseful activity of the user is distinct from the intended outcomes of the system.

This is not just a theoretical issue: it is an underlying assumption that cuts through
nearly every usability guideline, principle and method. For example, the importance
of rapid and visible feedback is based on the assumption that users need to under-
stand fully the effect of their actions. In incidental interaction and low awareness
applications the opposite is often true; feedback may be unobtrusive (and not expli-
citly noticed) or delayed (e.g. the heating level slowly changing). Even expected inter-
actions are more likely to be noticed when they don’t happen than when they do.

Cognition

Natural inanimate physical things have a set of properties intrinsic to their physicality:

Directness of effect You push something a little and it moves a little, you push hard
and it moves a lot.

Locality of effect Effects are here and now. If you pushed a rock and then two sec-
onds later it moved you would be disturbed.

Visibility of state Solid objects have a small number of relevant parameters that
define their dynamic state: location, orientation. We have some difficulty with
invisible properties such as velocity and even more when physical things have hid-
den states, for example the joke balls that have a ball bearing inside and so do not
move in a straight line. Of course, this example is not natural but constructed.

We have evolved as creatures to cope with physical things and other creatures, not
technological devices. Although we have higher-level reasoning that enables us to
cope – the same reasoning that enables us to create technology – this is only signific-
ant when we ‘think about’ things; our more innate cognitive abilities are shaped by
the natural.

Computer systems (and other complex technology such as electrical and pneumatic
systems) break these intrinsic properties of physical objects. Computation creates
complexity of effect, networks introduce non-locality in space, memory non-locality
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in time, and a computer has a vast number of invisible variables in its hidden 
internal state.

We cope (just) with this, because either we rationalize and use higher-level think-
ing to make sense and to make models of these complex non-physical interactions,
or we treat the computer as animate. In addition, one of the reasons for the develop-
ment of the GUI interface style is that it makes the electronic world more like real
(inanimate) things.

In incidental, expected and low awareness interactions the design is such that the
user is not paying attention to, or is unaware of, the system’s activities. That is, we
are not able to bring our higher cognitive abilities to bear and are dependent on our
more innate intelligences, which are, of course, ill prepared for unphysicality. To
make matters worse, the system activities are often triggered by physical actions and
movements of the user and are manifest in the physical world. In a computer system
we are able to re-frame ourselves to expect odd or apparently magical actions to
occur. In the real world these are deeply disturbing.

18.4.4 Designing for incidental interaction

Traditional task analysis is also highly purposeful, although debatably less wedded to
this than cognitive models. Certainly, to cope with more contextual interactions task
analysis methods need to evolve to include or link to representations that are more
about the physical world and the rich ecology of lived work or domestic life. In the
previous section we examined some of the potential issues and extensions that may
be necessary for this.

However, incidental interaction poses a more fundamental question – what task do
we need to model? In incidental interaction, we have two ‘tasks’ that are occurring:

1. The user’s primary task – their purposeful activity.
2. The task that the incidental interaction is attempting to support or achieve.

Often, as in the case of the courtesy light, the two are the same task, but it is used in
different ways. The user’s purposeful activity is assumed to occur, to a large extent,
independently of the system’s actions. We need to model it in order to computa-
tionally interpret the user’s actions as activity. In contrast, we need to model (2) in
order to understand how to facilitate or progress it.

In addition, low intention and sensor-based systems often include uncertain 
inferences. In traditional interfaces there is intended to be no ambiguity – the user
presses the ‘x’ key and an ‘x’ appears in the document. Of course, the user may have
mistyped, or may not realize the system is in a mode where ‘x’ means ‘exit’, but these
are ‘errors’ or misdesigns; if all is going well there is no ambiguity. In contrast, a 
sensor-based system may ‘think’ that you are resting because you are not moving
about much and turn down the music volume, but you may simply be sitting still 
listening to the strident sounds of Beethoven’s Fifth Symphony. Happily, the things
controlled or intended to be controlled by these interactions are often less critical.
You might like the heating a little warmer or colder, but it is not absolutely essential
whether the system gets it right.
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At the time of writing, there are no developed methods for dealing with these low
intention interactions, although there are some proposals [111, 319]. However, we
can begin to see how more traditional methods may change to accommodate these
new interaction styles.

Clearly any design for low attention must identify two things:

input – what is going to be sensed (e.g. body heat, pressure pad)

output – what is going to be controlled (e.g. light, heating).

Once we know these we can look at scenarios or task models and label them to see
what we would like to happen at each step. In some cases there will be a definite
requirement (e.g., the car courtesy lights must not be on when the car is moving), in

DESIGN FOCUS

Designing a car courtesy light

The first step in designing a sensor-based system is to work out what you would like to control. In this
case the car’s interior light. Next we look through some scenarios and label the steps. At each stage
we note whether the lights should be on (more pluses) or off (more minuses). Here is one such scenario:

1. deactivate alarm 0
2. walk up to car M is this safe?, advertises presence
3. key in door −
4. open door and remove key +
5. get in + +
6. close door 0
7. adjust seat +
8. find road atlas + +
9. look up route + + +

10. find right key +
11. key in ignition −
12. start car 0
13. seat belt light flashes 0
14. fasten seat belt +
15. drive off – – – – illegal !

Step 2 is interesting, if you ask different people you get different responses. Some like to see the lights
go on when the alarm is disarmed. However, others fear it advertises their presence and leaves them
vulnerable to attack.

Note, too, that we have assumed the alarm remote control does not actually unlock the car. This was
partly so that we could have step 3 where the lighted interior makes it slightly more difficult to put the
key in the car door.

At this stage, we can either work a full task analysis and mark this up similarly so that each task and
subtask has a desired lighting attached. Alternatively we could move forward to a more detailed design.

See the book website for the full case study: /e3/casestudy/car-lights/
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others there may be simply a desire (e.g., it would be good for the light to be on to
put the key in the ignition). Of course, the steps in the task or scenario may involve
user intentions or other aspects of context not immediately available to the computer
system – that is why we need to be able to infer this context. To do this, we can look
at the available sensors and see how certain we can be of the current context based
on their data. This can then be used both to verify whether we can be certain of the
context at points at which there is a definite requirement (and add explicit controls
if not), and also to be able to control the output at other times so that the users usu-
ally (but not always) get what they want.

18.4.5 Implementing sensor-based systems
In incidental interactions it is very likely that sensors are not used solely for their
original purpose. This suggests the need for quite open architectures. For example,
onCue uses a very open blackboard-style architecture for exchanging information
between self-discovering and self-configuring components [106]. Unfortunately, 
at the level of individual applications it is far harder to get contextual information
without writing special code for each potential application. This is one of the reasons
for using copy/cut to the clipboard as the main trigger – it is one of the few cross-
application standards.

Furthermore, many of the contextual interactions envisaged in this area occur in
domestic or other private environments. If we are not careful, architectural openness
could violate privacy – imagine if the can of beans (with intelligent food label) you
just bought communicated back to the manufacturer the contents of your food 
cupboard.

Highly contextual interactions must also take on board the fact that many of 
the most important phenomena are not events (things that happen at specific
moments), but status (things that always have some measurable value). Status–event
analysis highlights common phenomena that can be used to understand such 
systems, but this also impacts on the underlying system architectures [94, 102].

Although there are many research and commercial systems being produced using
sensors, there are no clear ‘standard’ architectures like the Seeheim model or MVC
(see Section 8.5.1) developed for traditional interfaces. However, there are some fea-
tures that are likely to be present in many systems (see Figure 18.15).

Some sensor-based systems may employ quite simple sensors, for example the
door open/closed sensor for car courtesy lights. However, where the raw sensors 
are capturing richer data it may well be that there is too much data to process fully.
In these cases, the sensors may have to somehow filter or pre-process their outputs
before passing on their data. For example, the MediaCup senses the temperature of
the cup and pressure on the bottom of the cup, and has ball bearing sensors to give
approximate tip in two x–y directions, all of which could be sensed many times per
second and at high resolution. However, only a small bit-mask with indicators such
as hot/cold, moving/still is sent via the infrared link to the network.

Often the results from several sensors may need to be processed together to give 
a usable output. For example, several heat sensors may be averaged. This is a form 
of data fusion – bringing together multiple data sources to build a more accurate 
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picture. This data fusion stage may also reduce the information; for example, the 
single average from 10 individual temperature readings.

These processed sensor readings are then used to drive some form of inference.
This may be a few hand-coded rules: ‘when Alison’s MediaCup is moving she is in
the office’; more sophisticated rule-based systems; or some form of neural network.
This inference will typically interact with some form of model of the users’ context
built up over time. For example, if in the past the ultrasound sensors have detected
movement in a room and the pressure sensors under the doormat have not been
triggered, then the system ‘knows’ there is likely to be someone there, even though
the ultrasound sensors currently detect no movement.

Finally, this contextual information has to be used. It may be used directly to 
drive some controlled output, for example, the lights in the car or room heater.
Alternatively, it may be used to modify the effects of users’ actions based on the
inferred context. For example, depending on who is believed to be in the house and
the time of day, the TV may default to different channels when it is turned on.

SUMMARY

Real interaction is not simply pressing a button and seeing something happen on
screen. In this chapter we have looked at some of the ways to model and understand
rich aspects of interaction.

We looked at status–event analysis, an ‘engineering’-level technique that encom-
passes formal methods, semi-formal analysis and naïve psychology, allowing us to
consider issues that bridge system and user behavior. Whereas most formal notations
focus on the state changes occurring at particular moments (events), status–event
analysis puts equal weight on status phenomena, such as computer screens, which
always have a value. Important properties of status–event descriptions include the

18.5

Figure 18.15 Potential architecture of sensor-based system
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difference between actual and perceived events, polling to discover status change and
the granularity of time. Timeline diagrams showing events and status in human–
computer interaction allowed us to examine the delays in notification of email
arrival and errors using on-screen buttons.

In Section 18.3 we looked at the way existing task models could be extended to
encompass rich contexts including other people and physical artifacts. Several exist-
ing techniques including CTT and GTA already include ways to allocate subtasks for
different human and machine roles. In contrast, few methods deal well with the
information required at each stage, although this is not difficult to add. In order 
to keep tasks operating in the right order at the right time, we saw that physical arti-
facts as well as other external events act as triggers that make things happen when
they happen, and placeholders implicitly record where people are in a process.

Finally, we looked at the way that some recent ubiquitous computing applications
have radically new modes of interaction. We considered a continuum based on the
level of intentionality. At one extreme were traditional intentional acts. At the other
extreme was incidental interaction where the user acts for one purpose and incident-
ally the system interprets the action to aid or help the user. In between is behavior
that the user does not explicitly request, but which is expected to occur. These 
low intention interactions cannot easily be understood within standard models of
interaction. As yet there are no established design techniques or implementation
architectures, but we saw that there are promising early methods.

EXERCISES

18.1 Can you suggest any improvements to the screen button feedback problem discussed
in Section 18.2.5 that would distinguish at the interface between the two cases of hitting or miss-
ing the button? Is there any guarantee with your solution that the user will notice the distinction?

18.2 Brian wants to make a dinner date with Alison. He knows she will not be able to read email, as
she is away for a few days, and he doesn’t have her hotel number. He types and prints a letter,
which he puts in her pigeonhole. Alison’s secretary always checks the pigeonhole several times a
day, and when she finds the letter she reads it and rings Alison and tells her.

Analyze this story using a status–event description.

18.3 Look again at the tea-making task analysis in Chapter 15 (Figure 15.4). Go through this and look
for triggers and placeholders. You will need to make assumptions (e.g. is the kettle the kind that
whistles when it boils?) so document these.

18.4 Rank the following in terms of levels of intention or consciousness:

automatic doors into hotel, automatic water taps in washbasin, reversing lights in a car, ultra-
sonic burglar alarm, auto-numbering lists in a word processor, web page counter, font menu
in word processor that shows recent fonts at the top of the list

If you are working in a group, you could each rank them separately and then discuss your answers.

Why are some more consciously considered than others?

Think of more examples.
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OUTSIDE THE BOX

In this part, we look in more detail at interactive applications
that go beyond a single user with a desk-based computer. In
Chapter 19 we revisit group interaction, this time focussing
on groupware technology itself: what it can support, how 
it can be classified, and what particular implementation 
challenges it presents. In Chapter 20 we look at systems
that link the real world with electronic worlds, examining 
ubiquitous and context-aware computing and virtual reality,
including its use in information visualization. Chapter 21
looks at the design and use of hypertext and multimedia
systems. In particular, it examines the role of the world
wide web in popularizing hypertext and examines some
specific design issues for the web.
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GROUPWARE

OV E RV I E W

Groupware is a term for applications written to support
the collaboration of several users.

n Groupware can support different activities:
– direct interpersonal communication
– ideas generation and decision making
– sharing computer objects.

n It can be classified in several ways:
– by where and when it happens
– by the sort of information shared
– by the aspects of cooperations supported.

n Implementing groupware is more difficult than single-
user applications:
– because of network delays
– because there are so many components to go wrong
– because graphical toolkits assume a single user.

19
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INTRODUCTION

Much of the discussion in this book concerns a single user with a computer.
However, in Chapter 14 we met computer-supported cooperative work (CSCW ),
which is about groups of users – how to design systems to support their work as a
group and how to understand the effect of technology on their work patterns. Both
HCI and CSCW draw on knowledge from a wide range of disciplines, but whereas
the principal axis in HCI is psychology–computing, the equivalent axis in CSCW is
sociology–computing. If we allow the human in HCI to be plural, we can regard
CSCW to be within the general sphere of HCI, which is why it is present in this 
book and in conferences and journals on HCI. However, CSCW is now a field in
itself, and would require a book of its own to do it justice. We looked at models 
of collaboration in Chapter 14; here we turn our attention to the technology that
supports group working.

One major area within CSCW is the provision of computer systems to support
group working. These products are often called groupware. As the reader may not
have come across any but the most common of such systems, this chapter describes
the range of such groupware systems and the associated architectural and imple-
mentation issues. In addition, we shall discuss frameworks that classify groupware
systems and that describe how they fit into the wider area of cooperative working.
Many of these applications are research systems; however, the number of commer-
cial systems with a groupware component has risen significantly over recent years.

Any computer system, whether or not it is specifically groupware, will have an
effect on the work-groups within an organization and upon the organization as a
whole. It is not possible to cover the full sociological and anthropological back-
ground that is being brought to bear on these issues, but it is important that the
reader is aware of these knock-on effects of even individual computer systems. 
In Chapter 14, we described some of the theory of human communication and the
group and organizational factors that influence the design of groupware.

GROUPWARE SYSTEMS

In this chapter, Sections 19.3–19.5 describe a range of groupware systems, from
email and video conferencing to shared editors and co-authoring systems. Section
19.6 uses several frameworks that help us to analyze groupware systems, and which
will give some structure to the issues that arise during the previous three sections.
Section 19.7 discusses some of the implementation problems facing a groupware
developer.

Groupware can be classified in several ways. One of these is by where and when the
participants are performing the cooperative work. This is summarized in a time/space
matrix. Another classification is by the function of the system, for example meeting

19.2

19.1
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support or group authoring. The subsections on specific areas of groupware follow
this functional classification. However, there are at least 10 such categories here and 
the list could extend as fast as one could think up new application areas. To give a
broader categorization for the sections, we follow a framework that classifies group-
ware by the aspect of cooperative work which it supports.

The rest of this section describes briefly the time/space matrix and cooperative
work framework, both in terms of non-computerized ‘real-world’ examples. We will
return to these and other frameworks in Section 19.6, once the reader is familiar with
the range of groupware systems currently available. As with analysis techniques 
for single-user systems, these frameworks can help to structure the design of new 
systems, or to suggest possible application areas.

The time/space matrix is a very useful shorthand to refer to the particular circum-
stances a groupware system aims to address. Basically, we look at the participants
and ask whether they are in the same place or not, and whether they are operating at
the same time or not. Figure 19.1 shows how various non-computer communication
technologies fit into the time/space matrix.

The axes are given different names by different authors. The space dimension is
also called the geographical dimension and is divided into co-located (same place)
and remote (different place). Many of the earliest groupware systems were aimed 
at overcoming the barriers of distance, for example email and video conferencing.
More recently, systems have arisen which aim to augment face-to-face meetings and
other co-located cooperation.

The time axis is often divided into synchronous and asynchronous systems; so we
would refer to a telephone as a synchronous remote communication mechanism,
whereas sticky notes are asynchronous co-located. These terms are used heavily 
in the CSCW literature; often the intended geographical location is obvious from
context, or the application domain, and thus synchronous/asynchronous becomes
the principal distinction. However, there are some problems with this simple 

Figure 19.1 Time/space matrix
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distinction, which we will return to in Section 19.6.1. As we discuss each groupware 
system, it will be placed in its appropriate time/space category.

The framework used to organize Sections 19.3–19.5 is based on the entities
involved in cooperative work, that is the participants themselves and the things upon
which they work. Figure 19.2 summarizes these relationships. Implicit in the term
‘cooperative work’ is that there are two or more participants. These are denoted 
by the circles labeled ‘P’. They are engaged in some common work, and to do so
interact with various tools and products. Some of these are physically shared (for
example, two builders holding the ends of a measuring tape), but all are shared in the
sense that they contribute to the cooperative purpose. These tools and other objects
are denoted by the circle labeled ‘A’ – the artifacts of work.

The participants communicate with one another as they work, denoted by the
arrow between them. In real life this may be by speech (the builders with the tape),
or letter (a lawyer and client); in fact, this direct communication may be in any of 
the categories of the time/space matrix. Part of the purpose of communication is 
to establish a common understanding of the task the participants are engaged in.
This understanding may be implicit in the conversation, or may be made explicit in
diagrams or text.

For some jobs, such as research and aspects of management, the development 
of understanding and ideas constitutes the primary task. Where this is not the case,
the participants will interact with the tools and work objects to perform their job.
This is shown by the arrows between the participants and the artifacts of work. This
arrow represents a two-way flow of information: of control from the participants to
the artifacts, and feedback from the artifacts to the participants. In real-world tasks,
these two hardly seem distinct: as you wield a hammer, you feel the weight of it.
However, as should be evident from the previous discussion of single-user interfaces,
this will not necessarily be the case for computer systems.

Figure 19.2 Cooperative work framework
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We will classify groupware systems by the function in this framework which they
primarily support:

computer-mediated communication supporting the direct communication between
participants;

meeting and decision support systems capturing common understanding;

shared applications and artifacts supporting the participants’ interaction with
shared work objects – the artifacts of work.

Of course, many systems may support more than one of these functions, and indeed
this can be seen as a sign of good groupware. Furthermore, there are some further
relationships between these functions. Both these aspects will be developed in
Section 19.6.3.

COMPUTER-MEDIATED COMMUNICATION

Implicit in the terms groupware and CSCW is that we have two or more participants
and that they are communicating with one another. We begin by looking at systems
which support this direct communication. This is called computer-mediated commun-
ication (CMC), and is an important part of CSCW. However, good communication
is not sufficient – the participants must be able to cooperate about their work.
Improving communications may help this, but not necessarily.

Under the heading of computer-mediated communication we will look at email
and bulletin boards, well-established, largely text-based means of asynchronous remote
communication, structured message systems, developed from simple email, instant
messaging and SMS, and various video-based systems, which support synchronous
remote communication.

19.3.1 Email and bulletin boards

Most readers of this book will have used some form of email system. Many will also
have used some form of bulletin board or electronic conferencing system such as
Usenet News or Yahoo! Groups. Although among the simplest groupware systems,
they are most certainly the most popular and successful.

Consider the stages during the sending of a simple email message:

1. Preparation You type a message at your computer, possibly adding a subject
header.

2. Dispatch You then instruct the email program to send it to the recipient.
3. Delivery At some time later, anything from a few seconds (for LAN-based email)

to hours (for some international email via slow gateways) it will arrive at the
recipient’s computer.

19.3
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4. Notification If the recipient is using the computer a message may be displayed,
saying that mail has arrived, or the terminal may beep.

5. Receipt The recipient reads the message using an email program, possibly differ-
ent from that of the sender.

These stages differ slightly from tool to tool, but are essentially similar. For example,
preparation may take place within the mail tool itself, or the tool may import an
externally prepared document. Although email systems are so well known and simple,
they have been the springboard for several more advanced groupware applications.

In theory, from the user’s perspective we need not worry about the exact delivery
mechanism – it should be hidden – just as we do not worry about the details of 
telephone exchanges. However, with email these mechanisms become only too
apparent, most obviously in the varying delays we may experience and in the reli-
ability of different channels. These factors are not always predictable as they may
depend on faults and loadings of computers used to relay the message. Furthermore,
error messages and even the forms of addressing relate directly to the path from
computer to computer which the message takes.

In the simple email example, there was just one recipient. However, most email
systems also allow a set of recipients to be named, all of whom receive the message
(see Figure 19.3). Like letters, these recipients may be divided into the direct recipi-
ents (often denoted by a To: field) and those who receive copies (Cc:). These two
types of recipient are treated no differently by the computer systems – the distinction
serves a social purpose for the participants. This is a frequent observation about any
groupware system – the system should support people in their cooperation.

Often users will be able to set up distribution lists, named groups of other users 
to whom mail is often sent. There is only a small difference between the use of such
lists and fully fledged bulletin boards or electronic conferencing systems. In these
systems you address your message (or contribution) to a particular conference or
newsgroup, and then anyone who has subscribed to that newsgroup receives the
message.

It is to be expected that the differences between email and electronic conferencing,
especially within the interface, will blur over time. However, there are important 
differences for the participants. First, they vary in terms of who controls the 

Figure 19.3 Simple email message

To: janet, abowd
From: alan
Subject: HCI book
Cc: R.Beale@cs.brum.ac.uk

How are your chapters getting on?
Could one of you meet me over lunch?
I’m having trouble using the minipage
environment doing illustrations of email messages.
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distribution list. Some email distribution lists are private to the sender, that is the
sender can vary the list at will, and knows exactly who is on it. Alternatively, a distribu-
tion list may be shared, in which case it is often added to and updated by the system
administrator. Finally, in a bulletin board or news systems, it is the recipient who
decides which newsgroups to subscribe to. For example, Usenet News sends all news
items to all connected computers. Users may well read contributions posted before
they subscribed, and certainly the sender will have no idea as to who will read the
contribution. We can see this progression in two ways. One is control which moves
from the sender, to the administrator and then to the recipient. The second is the
nature of the recipient, from specific individuals in email, through organizational or
social groups, to topic areas. Again these different emphases have important social
implications – communication is about people, not systems.

Although email between sites takes from several minutes to hours to arrive, LAN-
based email within a single site will often arrive within seconds. It is thus possible 
to have email ‘conversations’. Typically email interfaces are not designed to deal with
this form of exchange, but it is relatively easy to have a sequence of exchanges, say
every minute or so. Many computer systems also allow a form of synchronous text-
based communication, whereby two (or more) participants can instantly see each
other’s contributions. Examples of this are the UNIX ‘talk’ program or VAX ‘phone’.
In these, the participants’ screens are divided into two and while your typing goes to
the bottom half, your colleague’s goes into the top. The typing is usually echoed
character by character, so you can see your colleague’s half-typed phrases, deletions,
etc. A variant of this concept, used as part of several groupware systems, is to have a
single transcript. The participants have a separate composition area and when they
hit the return key (or click on a special button), their contribution is added to the
end of the transcript. Notice the difference in granularity : the ‘talk’ program works
with a grain size of characters, whereas the transcript acts on contributions (often 
a single line, or at most a short paragraph). The granularity of standard email and
bulletin boards tends to be greater again, as people may send quite large messages
(although some interfaces discourage this).

The ether never sleeps

One advantage of asynchronous messages is that they do not interrupt your work and allow
you to pursue tasks in your own way, giving you greater autonomy and personal control.

Because of the ubiquity of internet mail and personal access via modems, it is increasingly the case
that people (especially in the US) assume that you read email every day, either at the office or at
home – including weekends and when you are on holiday! You may arrive back after a weekend
or week away at a conference and find messages which expect you to have done something yes-
terday . . . autonomy and personal control?
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19.3.2 Structured message systems

A common problem with email and electronic conferencing systems is overload
for the recipient. As distribution lists become longer, the number of email messages
received begins to explode. This is obvious: if each message you send goes to, on
average, 10 people, then everyone will receive, on average, 10 messages for each one
sent. The problem is similar to that caused for paper mail by photocopiers and mail
merge programs. If we consider that newsgroups may have hundreds of subscribers,
the problem becomes extreme. Happily, most newsgroups have only a few active
contributors and many passive readers, but still the piles of unread electronic mail
grow. Various forms of structured message system have been developed to help deal
with this overload, perhaps the most well known being the Information Lens [225].
This adopts some form of filtering in order to sort items into different categories,
either by importance or by subject matter. As well as a text message, normal email
has several named fields: To, From, Subject. Structured message systems have far
more, domain-specific, fields. The sender of the message chooses the appropriate
message type, say a notification of a seminar. The system then presents a template
which includes blank fields pertinent to the message type, for example Time, Place,
Speaker and Title. Figure 19.4 shows a typical structured message similar to
those in Lens.

The named fields make the message more like a typical database record than a 
normal email message. Thus the recipient can filter incoming mail using database-
like queries. This can be used during normal reading – ‘show me all messages From
“abowd” or with Status “urgent”’. Alternatively, users may set up filtering agents
to act on their behalf. Such an agent is a sort of electronic secretary; it is programmed
with rules based on the field contents and can perform actions such as moving the
message into a specific mailbox, deleting the message or informing the user.

The problem with such systems is that they put a great burden on the sender 
to fill in the fields accurately, but it is the recipient who benefits. This problem of 

Figure 19.4 Structured message

Type: Seminar announcement
To: all
From: Alan Dix
Subject: departmental seminar

Time: 2:15 Wednesday
Place: D014
Speaker: W.T. Pooh
Title: The Honey Pot
Text: Recent research on socially constructed

meaning has focussed on the image of the
Honey Pot and its dialectic interpretation
within an encultured hermeneutic. 
This talk …
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disproportionate benefit recurs throughout CSCW. In order to make the job of the
sender as easy as possible, message types will often be created with easy defaults for
fields, and perhaps menus of alternatives. Also, in order to make finding appropriate
message templates easier, they may be arranged in a type hierarchy.

Until recently these structured message systems were only found in academic and
research centers, but simpler forms are now available in commercial PC-based email
products.

More complex structured message systems are based on models of conversation.
So, for example, if I am sent a message of type ‘request for information’, I am obliged
to return either a message of type ‘informative reply’ or of type ‘don’t know’. There
is a variety of such systems differing in the models used and the rigidity with which
they are applied. In the most rigid, you are only allowed one of the pre-programmed
replies, whereas more flexible systems merely suggest possibilities. We discussed one
such system, Coordinator, in Chapter 14 (Section 14.3.6), in the context of models of
conversation.

There is, in fact, considerable debate between those who feel that messaging 
systems should impose conversational structures and constraints, and those who
believe they should supply systems within which the participants can develop their
own structures. It is argued that such user-defined structures are more likely to meet
users’ needs, and the systems will be more flexible to accommodate changes in group
working. The message systems based upon conversational models are the most con-
strained. Those offering structured messages, as we have described above, are toward
the middle of the spectrum. The original email and bulletin board systems were at
the other, unstructured, extreme, but lack sufficient features for the users to define
their own structure. More modern systems from the ‘user-structured’ arena are
developed from the bulletin board concept, but are more like a shared hypertext. The
structure allowed by links and cross-references allows users to have subconferences
and digressions, to annotate each other’s messages and to post follow-on messages.
An example of such a system is the Amsterdam Conversation Environment [113].

This conflict between global structuring by the designers and local structuring by
the participants in their own situation arises within many areas of CSCW and has
similarities to issues of user control in HCI in general (see Chapter 7).

19.3.3 txt is gr8

While groupware developers produce more and more complex structured message
systems, in the wider world people have voted with their fingers and adopted
unstructured informal text messaging systems: instant messaging while online and
SMS or paging through mobile phones.

In November 1996 a small Israeli start-up company, Mirabilis, launched a program,
ICQ, that allowed registered users to send short text messages to one another. By
2003 this had grown to over 100 million users. Other large internet companies soon
noticed this rapidly growing phenomenon, including AOL and Yahoo! who launched
their own, incompatible, messaging systems based on their existing user groups.
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Many readers will have accounts with one or more of the instant messaging 
(IM) clients. Compared with email, messaging is more lightweight and instant. Users
can send a message, usually a single line of text, to any other registered user of the
system. If the other user is currently logged into the system they receive an instant
notification of the message and can start a chat-style session. If the other user is not
logged in, the central system remembers the messages and when the user next logs
on they receive any messages stored for them. So IM systems are unusual in that they
allow a fluid movement between asynchronous and synchronous use.

Whereas email is more like an exchange of letters, IM is more like conversation
with short exchanges, often not even complete sentences.

Hi, u there
yeh, had a good night last night?
uhu
want to meet later

Because of the conversational style there is extensive use of emoticons or smilies (see
Section 14.4.1). Whereas in traditional email these were simply a text convention
such as ‘:-)’, messaging systems (and now many email systems too) substitute small
icons (like the face above) and allow easy insertions of faces using drop-down lists.

SMS stands for Short Message Systems, but few users know this or care – they 
simply send an ‘SMS’ or ‘text’ a friend. The SMS phenomenon is a salutary lesson 
to any of us who believe we can design the future. It was originally an ‘extra’ service,
making use of a technical fix that allowed mobile phone companies to send messages
to mobile phones to inform of voicemail or update internal settings. However, in
many countries SMS has overtaken voice calls in its use of airtime.

Like IM, SMS messages are short plain text messages – limited to 160 characters in
the original system. However, the potential recipient is anyone with a mobile phone.
SMS was able to break the critical mass problem (see Chapter 13) because even when
only a few phones were able to send SMS messages, many existing phones were able
to receive them. The real surprise of SMS was not just that it grew, but that the group
who adopted it as their own were not business people wanting the latest stock
update, or sales representatives sending an order, but teenagers. From being an 
add-on service, text messaging became the reason people bought mobile phones and
pricing plans are often focussed on the number of free text messages per month.

Perhaps the defining feature of SMS text messages is the fact that they are 
entered via a telephone keypad. To type ‘hello’ you typically need to type
‘4433555pause555666’ using multiple number keys to produce the letters. SMS users
soon ‘lrnt 2 txt usng shrt wds’, both to reduce the effort of typing so many letters and
also to allow longer messages within the same 160 character limit. Belatedly, tech-
nology caught up and text entry was made easier using the T9 algorithm (T9 is a
trademark of Tegic Communications), which matches single number strokes against
a dictionary: so ‘43556’ becomes ‘hello’, as other matches to the digits such as ‘gfjkn’
are not proper words. Paradoxically, many experienced txt-ers turn this off as it
makes the messages longer (and so fits less into 160 characters) and also looks 
less cool!
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Another paradox of SMS is that it is an area where the United States lags behind
due to the fragmented nature of its mobile telecoms industry. Dedicated devices such
as pagers with small keyboards are used, but not with the same penetration that 
SMS has achieved elsewhere.

Both IM and SMS have gradually become more ‘functional’, adding features such
as file sharing with IM and links between IM, email and SMS services. Also there 
are IM clients for PDAs allowing users to keep messaging even when away from 
their computers. As countries adopt higher bandwidth mobile phone networks, the
potential for new services has increased. Japan has led the world here with several
(incompatible) services. This was partly a technical issue and partly demand driven
due to long commute times and high fixed-line telephone costs. Some of the services are
likely to be closer to traditional broadcast media, but messaging is becoming multi-
media with voice and image messages based on the MMS (Multimedia Messaging
Service) standard. Many phones now include a digital camera so that it is possible to
take a photograph whilst at a party and instantly send it to all your friends.

DESIGN FOCUS

SMS in action

SMS is not just for teenagers to hear the latest gossip or arrange to meet at the local night club. In 
the north of England the Croftlands Charitable Trust is using an SMS-based system called SPAM to
coordinate the activities of its staff in a hostel and associated semi-independent living accommodation
for former psychiatric patients [70]. Staff and patients can send SMS messages to a central number
which are then displayed on touchscreens in the staff offices. As staff spend a considerable amount of
time off site this is used extensively, for example when meetings over-run or people encounter traffic
delays. Also, they can leave messages without tying up the phone during busy times of the day.

See the book website for a full case study: /e3/casestudy/spam/

One of the SPAM displays showing messages received. Source: Courtesy of Mark Rouncefield
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In contrast with email, IM grew as an informal communication medium. There
has been some concern in the business community that it would add to internet
surfing and private email as a drain on employees’ time. However, several studies
seem to indicate that the opposite is true and that IM is being used to facilitate 
group working and business contacts. SMS, too, is being used for ‘serious’ uses, from
paying for goods at vending machines to coordinating staff activity in a residential
facility for former psychiatric patients.

19.3.4 Video conferences and communication

The idea of video phones has been around for a long time, from Flash Gordon’s 
days onwards, and early video phones have been available for at least 20 years. Until
recently, pervasive person-to-person video has been impossible without special and
very expensive cabling. However, the introduction of ISDN changes this dramatically.
ISDN (integrated services digital network) is a form of moderately high-bandwidth 
(64 kbaud) digital telephone connection. It is available in major cities across the
world and enables, amongst other things, LAN-type connections between com-
puters and real-time video connections. The need for this becomes apparent if you
calculate the bandwidth required for a typical video image. If we consider an 8 bit
600 × 400 pixel image being sent at 25 frames a second, this amounts to 24 million
bits per second. This is not high video quality and yet requires a vast bandwidth far
in excess of a normal telephone line. It is also far greater than the capacity of ISDN
lines. However, recent (and expensive) video compression techniques can reduce the
required capacity to a level within the range of ISDN. Pervasive video communica-
tion is clearly a technology coming of age.

As these hardware developments are quite recent, most experimental and com-
mercial video systems use existing technology and lots of wire. There are three broad
uses of video: video conferences, pervasive video for enhancing social communication
and video integrated with another shared application. These are all synchronous
remote facilities.

Video conferences sit rather oddly in CSCW in that they typically do not use 
computers at all! However, computers and telecommunications are becoming 
so interlinked that it is widely considered an appropriate area of CSCW. Video con-
ference facilities are readily available commercially using dedicated telecommunica-
tions lines and satellites for transcontinental conferences. The quality of a video
conference compared with a face-to-face meeting is appalling, but, when faced with
the costs of, say, flying executives across an ocean or even across the American con-
tinent, the inconveniences are often accepted.

One set of problems is connected with the small field of view of a television cam-
era, and the size and quality of the resulting images. Even with a one-to-one video
conversation, we need to decide whether to take a simple head and shoulders shot,
the whole torso, or head to foot. If there is a group at either end, even just two or
three people, the problems magnify enormously. If you view all three people at once,
then the image of the speaker may become so small that it is hard to see the body 
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CuSeeMe

Special-purpose video conferencing is still relatively expensive, but low-fidelity desktop
video conferencing is now within the reach of many users of desktop computers. Digital video 
cameras are now inexpensive and easily obtainable. They often come with pre-packaged video
phone or video conferencing software. However, the system which has really popularized 
video conferencing is a web-based tool. CuSeeMe works over the internet allowing participants
across the world owning only a basic digital video camera to see and talk to one another. The soft-
ware is usually public domain (although there are commercial versions) and the services allowing
connection are often free. The limited bandwidth available over long-distance internet links means
that video quality and frame rates are low and periodic image break-up may occur. In fact, it is
sound break-up which is more problematic. After all, we can talk to one another quite easily with-
out seeing one another, but find it very difficult over a noisy phone line. Often participants may
see one another’s video image, but actually discuss using a synchronous text-based ‘talk’ program.

CuSeeMe – video conferencing on the internet. Source: Courtesy of Geoff Ellis
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gestures. These gestures are one of the big advantages of video conferences over the
much cheaper telephone conference. However, you need a skilled camera technician
to follow the speaker, zooming in and out as necessary. Furthermore, zooming in 
to the speaker runs the risk of losing the sense of presence. The participants at the 
far end do not know whether the speaker’s colleagues are nodding in agreement 
or falling asleep!

Video conferences support specific planned meetings. However, one of the losses
of working in a different site from a colleague is the chance meetings whilst walking
down a corridor or drinking tea. Several experimental systems aim to counter this,
giving a sense of social presence at a distance. One solution is the video window or
video wall, a very large television screen set into the wall of common rooms at 
different sites [134]. The idea is that as people wander about the common room 
at one site they can see and talk to people at the other site – the video wall is almost
like a window or doorway between the sites.

The problems of camera positioning and focussing are, if anything, worse for the
video wall than for the simple video conference. At least in a video conference the
participants stay relatively still, probably seated at a table, whereas in a common
room the participants are likely to wander about. It is quite easy to move out of the
range of the camera, whilst still being able to see your colleague. That is, there is a
lack of reciprocity compared with normal face-to-face conversation. In addition,
positioning the camera is a nightmare. To give the ‘window’ illusion, the camera
must be positioned very close to the video wall and must be focussed to get a full-
depth shot of the conversants. Even then, because of the camera’s restricted field of
view, you must not stand too close or your colleague will get a 6 foot (1.8 m) high
view of your navel!

A stereo audio channel for the video wall, and indeed for any video connection,
can help the participants orient to the speaker and also filter out unwanted noises
(see Chapter 1 for a discussion of selective attention to sound). However, a problem
with communicating using loudspeakers in a common room is a lack of privacy.
Normally, people just move closer and lower their voice, but this is not effective with
the video wall.

Similar facilities have been made available within individual offices at several
research sites. For example, at Xerox EuroParc in Cambridge, UK, every office is
wired up with video cameras and monitors. Typically, one has a camera strapped to
the top of one’s monitor, or on an angle-poise-like arm, and an image on a separate
monitor, or even in a window on the computer screen. Participants may have 
two-way or multi-way video conversations, or set up virtual rooms – a constant
video connection.

Even with the camera strapped just above a monitor, it is very difficult for the 
participants to get eye contact. In normal face-to-face conversation, participants 
periodically look one another straight in the eye. If the camera is just above the 
monitor, your partner will always see you looking slightly downwards, and vice
versa. For strictly one-to-one conversation, a technique called the video tunnel can 
be used (Figure 19.5). A half-silvered mirror is used so that the camera can view the
user as if it were in the middle of the screen. The feeling of engagement between the
participants is reported to be far greater than more standard video arrangements
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[326]. Unfortunately, the sheer bulk of the video tunnel means that it is not really
practical for large-scale use. However, frequent users of less optimal camera/monitor
configurations eventually get used to the rather odd visual angles involved.

19.3.5 Virtual collaborative environments

Virtual reality techniques are now being used to allow participants to meet within a
virtual world. Each participant views a virtual world using desktop or immersive VR.
Within the virtual worlds the other participants appear, often rendered as a simple
cube-based figure perhaps with a fixed or even video image texture mapped onto it.
The representation of a participant in virtual space is called an embodiment.

As participants move around in virtual space then their embodiments move cor-
respondingly. Thus one can approach another within the virtual environment, initi-
ate discussion and focus on common objects within the virtual environment. These
systems attempt to mimic as much as possible of the real world in order to allow the
participants to use their existing real-world social skills within the virtual world. For
example, when other people speak, the volume may be adjusted so that those a long
way away or behind you (in virtual space) are quieter than those close and in front.
This is clearly very important in a heavily populated virtual environment.

Given the virtual environment is within a computer, it makes sense to allow 
participants to bring other computer-based artifacts into the virtual environment.
However, many of these are not themselves 3D objects, but simple text or diagrams.
It is possible to map these onto flat virtual surfaces within the 3D virtual world 
(or even have virtual computer screens!). Text is especially difficult to read when
rendered in perspective and so some environments take advantage of the fact that
this is a virtual world to present such surfaces face on to all participants. But now we
have a world the appearance of which is participant dependent.

Imagine you and a colleague are facing each other and looking at the same text
object. It will be rather like having a piece of paper held up between you with the
same text printed on both sides. Your colleague points at the left-hand side of the
text and refers to it. What should you see – a virtual finger pointing at the wrong side
of the text, a disembodied hand tear off from your colleague’s arm and point at the

Figure 19.5 Video tunnel
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correct place on your side of the paper? This is similar to the problems of shared
focus which we shall discuss in the next section, but perhaps worse in this context 
as the users are lulled into a false sense that the world they are dealing with is truly
like the normal real world.

Although collaborative virtual environments are still mainly research systems, it 
is possible to sample some of the features by visiting ‘virtual places’ on the web [84],
also known as MUDs (Multi-User Domains). When you visit the page, you are
allowed to specify an icon or image which becomes your embodiment or avatar
within the pages. Your own avatar and those of other visitors appear within the page.
Although these are 2D worlds, many of the same possibilities arise. You can bump
into people within the virtual world, who, as they are visiting the same place as you,
may share common interests and you can also usually initiate text-based or even
audio conversations.

Real and virtual worlds meet

The video wall allows people from remote locations to meet. In a sense it extends the nor-
mal physical space of the participants as they can see the remote room, but the image rendered is
a real physical space, albeit on a video screen.

Virtual collaborative environments also allow remote participants to meet one another, this time
within a purely virtual space.

The Nottingham Internet Foyer merges these two worlds. In a real physical foyer at Nottingham
University there is a large video screen. However, what you see when you look at it is not a room
in a remote building (as with a video wall), but a fixed view of a virtual space. The virtual space that
is seen is itself a collaborative virtual environment, a sort of virtual foyer, which participants can
enter over the internet using either desktop or immersive VR systems. The embodiments of the
electronic participants are visible to those at the real foyer. In addition, the video image of the real
foyer is also projected onto a surface in the virtual foyer. Thus the physical foyer and the virtual
foyer are linked by a virtual video wall!

The real foyer and the electronic foyer. Source: Courtesy of Steve Benford, The Mixed Reality
Laboratory, The University of Nottingham



19.4 Meeting and decision support systems 679

MEETING AND DECISION SUPPORT SYSTEMS

In any conversation, the participants must establish a common understanding about
the task they are to perform, and generate ideas. In some areas this is a second-
ary activity: you are discussing the job you are doing, the ideas support that job.
However, there is a class of activities where the job is itself generating ideas and
understanding. This is typically the case in a research environment, in design tasks,
in management meetings and brainstorming sessions.

We will discuss three types of system where the generation and recording of ideas
and decisions is the primary focus.

Argumentation tools which record the arguments used to arrive at a decision and
support principally asynchronous co-located design teams.

Meeting rooms which support face-to-face groups (synchronous co-located) in brain-
storming and management meetings.

Shared drawing surfaces which can be used for synchronous remote design meetings.

19.4.1 Argumentation tools

In Chapter 6, we discussed design rationale, methods of recording decisions and the
arguments that lead to those decisions. We saw that design rationale could fulfill two
roles: recording design decisions for future references and clarifying the available
options during design. Both of these have a potential CSCW impact. One reason 
to record your design decisions is so that a future designer can understand why 
you made the decisions you did and hence be in a better position to modify or learn
from your design. That is, you are communicating with someone possibly years in
advance. However, the one-way nature of the communication makes it information
passing rather than collaboration.

More important from a CSCW viewpoint is when the design argument is used 
to communicate decisions between a group of designers. Here the communication 
is two way – the designers may both add to the design argument and look at each
other’s contributions. Argumentation support tools often have a hypertext-like
structure, and may easily be used to support design teams as well as individuals. At
the simplest level, the designers can use the tool one at a time, rather like writing a
co-authored document by taking turns to use the word processor. As the detailed
design of, say, a piece of software may take many months it is unlikely that two 
people will want to use the tool at exactly the same moment, and if they do . . . well
it is a chance for an impromptu design meeting!

Sophisticated tools also have facilities to allow several designers to use the system
simultaneously. To allow this, the tool must have mechanisms to stop the different
designers’ work interfering with that of another. This problem is called concurrency
control. Happily, this is particularly easy with hypertext – so long as people work on
different nodes, there is no conflict. To ensure this, a node must be locked; that is,
when one participant starts to edit the node, no other participant is allowed to edit

19.4
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or update the same node. Given that there are typically hundreds of nodes in a design
rationale, with only a short text description in each, the chances of two participants
wanting to work on the same node are small. However, if they do, the system will
refuse permission to one or the other. In addition to these locking mechanisms, the
systems have notification mechanisms to let the participants know which nodes have
been edited. For example, changed nodes may be highlighted until the participant
has examined them or marked them as read. This highlighting must, of course, be 
on a per user basis – if Jane edits a node and Sam marks it as read, then when Mary
comes to the system she should still see the node highlighted.

A good example of argumentation tools is the family of tools developed to sup-
port the argumentation model called issue-based information system (IBIS), the best
known being gIBIS [76] (which we met in Chapter 6). This system has node types
including ‘issues’, ‘positions’ and ‘arguments’, and these are linked together by rela-
tionships such as ‘argument supports position’.

Notice that argumentation tools may allow a range of interaction styles from 
asynchronous, when the designers use it one at a time, to fully synchronous, when
several use it at once. Although there is no reason why the systems should not 
be used for distant collaboration they are typically used by groups within the same
office, and in the case of one-at-a-time use, on one machine. They are thus largely,
but not solely, asynchronous co-located groupware systems.

19.4.2 Meeting rooms

The advantages of email, bulletin boards and video conferences are obvious – if you
are a long way apart, you cannot have a face-to-face meeting. Similarly, it is obvious
why one should want to record decisions during a long-lived design process. The
need for meeting rooms is less obvious. These are specially constructed rooms, with
extensive computer equipment designed to support face-to-face meetings. Given
face-to-face meetings work reasonably well to start with, such rooms must be very
well designed if the equipment is to enhance rather than disrupt the meeting.

Early examples of such rooms, catering for groups of between four and 30 particip-
ants, included Xerox PARC’s CoLab [329], Project Nick [32] and Capture Lab [226].
The general layout consists of a large screen, regarded as an electronic whiteboard, 
at one end of the room, with chairs and tables arranged so that all the participants
can see the screen. This leads to a U- or C-shaped arrangement around the screen,
and in the biggest room even several tiers of seating. In addition, all the participants
have their own terminals, which may be recessed into the tabletop to reduce their
visual effect. Figure 19.6 shows a computer-supported meeting using NLS, a very
early groupware system [125]. Obviously, changes in display technology have made
the displays less obtrusive, but the basic principle remains.

Such systems will support various forms of working, including private use of the
terminals and subgroup working on a teleconferencing or email basis. However, the
characteristic mode of operation is where all the participants’ screens and the central
screen show the same image. This is termed WYSIWIS (‘what you see is what I see’).
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The screen then takes the form of an electronic whiteboard, similar to a simple
graphics drawing package, on which the participants can all write. One advantage 
of such an arrangement over a normal whiteboard is the ease with which data can 
be moved to and from the participants’ normal computer files. As more work is 
prepared online this will increase in importance. Also, the electronic whiteboard 
has some advantages over the real thing. Whereas on a real whiteboard you can only
write and rub out, on the electronic version you can move items around just as you
would with a drawing tool, and, of course, you can get a printout of the results rather
than just hoping the cleaners do not wipe it all off.

There are potential problems if several participants decide to write at the same
time, so different systems adopt different floor control policies to determine which
participant can write at any moment.

The simplest policy to implement is to use locking, similar to that described previ-
ously. When a participant, say Jane, wants to write to the screen she presses a key, 
or clicks on an on-screen button to request the floor. If no one else has the floor, 
she may go ahead and type on the screen, or if it supports graphics draw a diagram.
When she has finished, she relinquishes the floor, using some other key or mouse
selection. However, if some other participant, say Sam, already has the floor when
Jane requests it, she must wait until Sam relinquishes the floor. There will be some
sort of status indicator to say who has the floor at any moment, so Jane can ask Sam
to relinquish, just as you might ask for the pen to write on a whiteboard.

In practice, such meetings tend to be punctuated with far too many requests 
such as ‘Sam have you finished yet?’, as often a participant will forget to relinquish
the floor after writing. Also, it can be a pain to request the floor explicitly from the
system – with a whiteboard you simply pick up your pen and write. Various more

Figure 19.6 A computer-supported meeting. Photograph courtesy of 
Douglas Engelbart and Bootstrap Institute



682 Chapter 19 n Groupware

lenient locking mechanisms are used to reduce these problems. A lock may be 
implicitly requested when you begin to type or draw. If no one else has the floor, 
then the floor is implicitly granted. If someone else has the floor, then your writing
will be blocked. There is also implicit relinquishing: the lock may be automatically
released after several seconds of inactivity. This may, of course, happen during a
pause, rather than when the floor holder has finished, but the ease with which the
floor can be regained does not make it a nuisance.

A conceptually simpler idea is to let everyone write to the screen at the same time
– just as people may use several pens to write on a whiteboard at the same time. This
sounds like a recipe for chaos, with people forever writing on top of one another.
However, with reasonably small groups there is little problem. Try going to the
whiteboard as someone is writing on it, and writing on top of what they write. It is
possible, but it does not make you many friends. Similarly in the electronic version,
as soon as two people begin to write on the same part of the screen they say ‘oops!’
and start to write elsewhere.

The various forms of locking constitute a software protocol for floor control. 
The way that people negotiate for screen space in the free-for-all situation is a social
protocol. The reason that this is possible is because the participants are in the same
room and are able to talk to one another.

If there is only one floor holder, then the screens can all show the floor holder’s
cursor. However, as soon as several participants are active at once, it is less clear what
to do. One option is to display all the users’ cursors. These may be accompanied by
the user’s name so that you can tell who is entering what. With large numbers of par-
ticipants this can become distracting, and it is costly in terms of network traffic. The
alternative is to show none of the cursors. If the participants are talking as they write,
it is usually obvious who is writing what. In addition, during brainstorming phases,
anonymity is an advantage – people are more likely to put up an ‘off-the-wall’ sug-
gestion, thus stimulating more ideas and discussion.

If you are using a real whiteboard, you may go up to a diagram on the board and
say ‘I think that should go there’. As you say the words ‘that’ and ‘there’, you point 
at the relevant parts of the diagram. This is called deictic reference or simply deixis. If
the participants’ cursors are invisible to one another, then this form of pointing is
impossible. Indeed, in such a meeting, even where the cursors are visible, the particip-
ants may momentarily forget and point at their own screen. Obviously, the particip-
ant can get up and point at the shared screen as you would at a whiteboard, but 
that is rather intrusive and precludes writing at the same time. To allow this deictic
reference a group pointer may be supplied. This is an icon visible on all the screens,
perhaps in the form of a pointing finger. Any participant can pick it up with his 
own mouse and use it to gesture on the screen. The control of the group pointer
poses similar problems to those of floor control. However, the most lenient locking
policies work well since the use of the pointer is usually synchronized with speaking,
and thus it is easy to avoid and resolve conflicts.

The design and building of meeting rooms is both expensive and time consum-
ing, but less sophisticated facilities are more widely available. The simplest is the
hardcopy whiteboard, which has some of the advantages of an electronic whiteboard
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(and with greater resolution). If these were more closely coupled to a computer sys-
tem, they would have even more scope. LCD projectors or transparent LCD screens
for putting on top of an overhead projector can give any computer a vast screen
image. In the simplest case this can just be manipulated by one person, but if several
computers are networked together and use commercial shared screen software (see
below in Section 19.5.1), one can obtain a similar effect to that of the more expensive
conferencing facilities (Figure 19.7). However, experience of the various meeting
room projects has shown that the social dynamics are very fragile and the difference
between a successful meeting environment and a complete disaster is narrow.

These lower cost and more readily available technologies have made it possible to
capture the results of ordinary meetings (see also Chapter 20). A number of devices
are available commercially to turn an ordinary whiteboard into an electronic surface.
Ordinary pens are placed in some sort of holder so that fixed detectors around the
board can track the location of the pen on the whiteboard. This can then be used to
record the strokes produced on the whiteboard and so keep an electronic copy. If
instead an LCD projector is used to project a computer screen onto the whiteboard,
then inkless pens can be used to act as a mouse pointer and so allow interaction with
applications. Both of these can be combined with audio recording to allow rich cap-
ture of meetings for future review, aiding minute making and so on.

19.4.3 Shared work surfaces

The idea of a shared screen forming an electronic whiteboard is not confined to 
face-to-face meetings. One can easily imagine using the same software which runs in

Figure 19.7 Meeting capture at the whiteboard
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a meeting room, working between several sites. That is, we can take the synchronous
co-located meeting room software and use it for synchronous remote meetings. As
before, each participant’s screen shows the same image, and the participants can
write on the screen with the same sort of floor control policies as discussed earlier.
There are additional problems. First, the participants will also require at least an
audio link to one another and quite likely video as well. Remember that the social
protocols used during lenient floor control, not to mention the discussion one 
has during a meeting, are difficult or impossible without additional channels of
communication. As well as the person-to-person communications, the computer
networks may have trouble handling the information. If there are delays between one
person writing something on the board and another seeing it, the second participant
may write to the same location. A situation which is easily avoided in the co-located
meeting could become a major problem when remote. Many researchers in the 
area blithely assume that such problems will be solved by cheaper high-bandwidth
telecommunications, such as ISDN.

In order to make the whiteboard effect more realistic, several systems are arranged
so that participants write by hand directly onto large screens. The writing is either
filmed by camera (using complex arrangements of mirrors), or captured digitally
using a sensitive screen. The image of one participant’s writing is then displayed 
on the others’ screens. The effect is very like all being able to write at once on the
same screen, except that the other participants’ writing will be slightly less distinct
than your own because of the resolution of the TV image. You may also experience
problems of parallax as your own writing is on the outer surface of the screen and
the projected image on the inside.

One system, VideoWhiteboard [340], arranges its lighting and cameras such that
you can see not only the other participants’ writing, but also shadowy images of 
their hands and bodies, getting gradually dimmer and more out of focus as they
move away from the screen. For two participants, it is rather as if your colleague is
writing on the other side of a smoked glass panel. When used by more than two 
participants, your ghostly colleagues can appear to occupy the same space and move
through one another! This sounds rather disconcerting, but the users soon get 
used to the effect and are able to interpret one another’s body language, even as a
soft-focus shadow.

A third variation of the shared work surface is where the participants write on a
sheet of paper on their desktop, which is then filmed from above. The images from
each participant are then mixed and displayed on a screen in each participant’s 
work area. By looking at the screen while they point and write, the participants can
refer to one another’s work. The advantage of such a system is that the participants’
individual paperwork is easily integrated into their shared environment. The desk-
top images can also be mixed with a shared computer screen, so that paper and 
computer work can be mixed. One such system, the TeamWorkStation [188], has
been used for the remote teaching of Japanese calligraphy. The student is able 
to paint letters on paper or on the computer screen and see these strokes overlaid
with the teacher’s strokes. In this system, the participants also have a face-to-face
video link.



19.5 Shared applications and artifacts 685

SHARED APPLICATIONS AND ARTIFACTS

The things that were being shared in the previous section were ephemera; they were
there to support the meeting or design process, but were not the end purpose. In this
section we will look at systems where the focus of sharing is the participants’ work
domain itself. These include the computers people are using, applications on those
computers, and the documents they are working with. Some of these systems are
similar in technology to the various shared work surfaces above, but the focus in this
section is on work.

19.5.1 Shared PCs and shared window systems

Most of the groupware tools we have discussed require special collaboration-aware
applications to be written. However, shared PCs and shared window systems allow
ordinary applications to be the focus of cooperative work. Of course, you can co-
operate simply by sitting together at the same computer, passing the keyboard and
mouse between you and your colleague. The idea of a shared PC is that you have 
two (or more) computers which function as if they were one. What is typed on one
appears on all the rest. This sounds at first just like a meeting room without the large
shared screen. The difference is that the meeting rooms have special shared drawing
tools, but the shared PC is just running your ordinary program. The sharing software
monitors your keystrokes and mouse movements and sends them to all the other
computers, so that their systems behave exactly like yours. Their keystrokes and
movements are similarly relayed to you. As far as the application is concerned there
is one keyboard and one mouse.

Imagine two users type at once. As the application does not know about the 
multiple users it will merely interleave the keystrokes, or should we say 
‘inkeytersltreaokevetshe’? Interleaved mouse movements are, if anything, more
meaningless. The sharing software therefore imposes some form of lenient locking.
For the mouse, this will be an automatic lock while the mouse is being moved, with
the lock being relinquished after a very short period of inactivity. The keyboard lock
will have a longer period as natural gaps in typing are greater than gaps in mousing.
Alternatively, the keyboard may have no lock, the users being left to sort out the 
control with their own social protocol.

A shared window system is similar except, rather than the whole screen, it is 
individual windows which are shared. While the user works with unshared windows,
the system behaves as normal, but when the user selects a shared window the shared
windowing system intervenes. As with the shared PC, all the user’s keystrokes and
mouse movements within the window are broadcast to the other computers sharing
the window.

These facilities may be used within the same room, as originally suggested, in
which case we have a synchronous co-located system. Alternatively, they may be used
in conjunction with telephone or video connections at a distance, that is synchronous

19.5
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remote. The extra audio or video channel is necessary when used remotely as the 
systems in themselves offer no direct communication. It is just possible to use such
systems, without additional channels, by writing messages in the application’s work-
space (document, drawing surface, etc.). However, the social protocols needed to
mediate the mouse and keyboard cannot be achieved by this channel.

Shared PCs and window systems have two main uses. One is where the focus is on
the documents being processed, for example if the participants are using a spread-
sheet together to solve a financial problem. The other is technical support: if you
have a problem with an application, you can ring up your local (or even remote)
technical guru, who will connect to your computer, examine where you are and 
offer advice. Compare this scenario with trying to explain over the phone why your
column is not formatting as you want.

19.5.2 Shared editors

A shared editor is an editor (for text or graphics) which is collaboration aware, that 
is it knows that it is being shared. It can thus provide several insertion points or 
locking protocols more tuned to the editor’s behavior. The software used in meeting
rooms can be thought of as a form of shared editor and many of the issues are the
same, but the purpose of a shared editor is to collaborate over normal documents.
Just as with shared PCs and windows, the users are expected to have some additional
means of communication, such as face-to-face (co-located), audio or video channels,
or at the very least textual communications.

Shared editors may be text based or include graphics. For simplicity, we shall just
consider text. Even so, there are a wide range of design options. Should you have a
single insertion point with some form of floor control to avoid interleaving, or should
you have one insertion point per participant? Assuming you have several insertion
points, do you just see your own, or do you see your colleagues’ insertion points 
as well, and if you can see them should they be identified by the user’s name or be
anonymous? In addition to the insertion point options, there is the issue about what
you should see. Do all the participants see the same part of the screen, so if one 
participant scrolls, so do all the rest? Or do we allow different views on the document
so that one participant can edit the beginning of the document while another edits
the end?

There is not a right answer to these questions; different policies are useful for dif-
ferent purposes – close cooperation on a single sentence, or writing separate sections.
Even within a single editing session the appropriate policy will vary. Unfortunately,
in the past, these policy decisions were usually enshrined in the various shared editors,
rather than being configured by the users. However, there is a growing recognition
that more adaptable systems are needed to allow for the wide variation between
groups, and within the same group over time. We will look at some of the options
and how they affect the style of cooperation.

Thinking about the shared view versus different view options, it at first seems
obvious that we should allow people to edit different parts of a document. This is
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certainly true while they are working effectively independently. However, as soon as
they begin to discuss the text together – that is, really collaborate synchronously –
problems arise: ‘I don’t really like that line at the top’ you say; ‘I just wrote that, I
think it’s really good’ your colleague replies. Possibly the end of your good working
relationship, and, sadly, unnecessary. Your screens show different parts of the docu-
ment and so the line at the top of your screen (which you disliked) is not the one
your colleague has just written (Figure 19.8). Of course, the participants know they
do not necessarily see the same screen, but you naturally use terms which relate to
the context you can see, called indexical expressions. One reason given for the Charge
of the Light Brigade is that the commander gave the order ‘take the position on the
hill’. Unfortunately the hill the commander could see was not the one in front of 
the Light Brigade. Paradoxically, the better the impression of a shared environment,
the more likely it is that participants will accidentally use indexical expressions.

These problems are precisely why the principle of WYSIWIS – what you see is
what I see – is used in meeting rooms. Even minor differences between displays, such
as lags between the appearance of one participant’s typing on the others’ screens, 
can cause severe problems – no wonder different views cause trouble. Of course,
WYSIWIS is not always appropriate, for example if we want to edit different parts of
a document. Neither is it a solution to all problems. For example, if two people try
to scroll the shared view at the same time, we have scroll wars. People find this
conflict harder to resolve than typing clashes. This is probably because scrolling is a
less direct and less predictable action anyway, and thus it is more difficult to dia-
gnose what is going wrong. This suggests that better locking of scrollbars and visual
clues are required. As we will discuss later (Section 19.7) graphics toolkits do not
make such modifications easy.

Separate views, of course, demand separate insertion points. Even with shared
views, it is not obvious why one should want a single insertion point with the attend-
ant floor control problems. However, a shared cursor offers a point of focus for 
close cooperation, and should perhaps be an option. Of course, a shared view with

Figure 19.8 Shared editor with separate insertion points and different views
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shared cursor is almost identical to a single-user editor in a shared window. Where
there is no shared cursor, a group pointer can be used to focus discussion. Indeed, one
could imagine using a group pointer with different views, but there are no extant 
systems which allow this.

As we have indicated, the differences between groups mean that some configura-
tion by the group is essential. That is, shared editors require some form of local struc-
turing. However, that does not mean that there will be no problems. Participants will
point at the screen with their fingers when in different rooms, and use indexical
expressions when they are in separate screen mode. The more their sense of engage-
ment, that is the more they feel as if they are working together, the more likely they
are to revert to natural forms of expression. We cannot prevent this entirely; as we
saw, mistakes can happen in ‘real life’ too.

19.5.3 Co-authoring systems

Shared text editing is a short-term activity, occurring over a timescale of, at most, 
a few hours. Co-authoring is much longer term, taking weeks or months. Whereas
shared editing is synchronous, co-authoring is largely asynchronous, with occasional
periods of synchronous work. This may involve shared editing, but even if it does
this is only one of the activities. Authors may work out some sort of plan together,
apportion work between them, and then exchange drafts commenting on one 
another’s work. In fact, this is only one scenario and if there is one consistent result
from numerous studies of individual and collaborative writing, it is this: everyone
and every group is different.

Fortunately, even though the details of writing differ, especially in the process,
there are enough similarities to produce systems which support co-authoring. The
majority of these are built around a hypertext model. The text itself is the basis and
comments and discussion of these comments are linked into this basic structure.
Although a general-purpose shared hypertext can be used, specific co-authoring 
systems are tuned to the writing task. The shape of the hypertext may be limited to 
a tree rather than the arbitrary graph of a hypertext. The document itself may be flat,
a linear list of sections or may be grouped into a hierarchical section–subsection 
tree. Comment nodes are then attached to the document nodes, and other follow-on
remarks attached to the comments. These are intended to emulate the scribblings 
on paper drafts during normal collaborative writing. Special facilities may be added
to inform one writer of another’s comments or additions.

As in previous systems, co-authoring systems must have some sort of concurrency
control to cater for times when two participants attempt to edit the same text at the
same time. This may take the form of locking, as described previously, or the system
may allow the users to enter into periods of synchronous activity. That is, the node
editor acts as a shared editor. However, this is not the dominant form of working and
most often co-authors will have divided up the work amongst themselves, so that 
a section will have only one principal author, and thus social protocols ensure that
writing clashes do not occur.
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These social protocols may be supported or enforced by the co-authoring system.
For example, in one system, Quilt [210], users are assigned roles, such as author,
commentator, reader, with respect to each document node. An author is allowed to
edit the text and add comments, a commentator is only allowed to add comments,
and a reader cannot alter it at all. These roles resemble access rights in a normal
filestore or database. However, both their naming and their particular semantics are
aimed at supporting the types of role which occur in co-authoring situations. Of
course, we are again into the territory of local versus global structuring. Who decides
on the roles and the associated access rights, and can they be changed during use?
These questions are not too much of a problem for Quilt, where the roles are on a
per node basis, but some systems have roles which apply to the whole document. 
It is often the case that a person who gives extensive constructive comments is asked 
to co-author a paper, or someone who originally was to be an author cannot find
sufficient time. Roles in real life have a degree of flexibility; those in groupware must
try to keep suit.

19.5.4 Shared diaries

We want to find a time for a meeting to discuss the book we are writing: when should
it be? Four diaries come out and we search for a mutually acceptable slot. We even-
tually find a free slot, but decide we had better double check with our desk diaries
and the departmental seminar program. This sort of scenario is repeated time and
again in offices across the world. The idea of a shared diary or shared calendar is 
simple. Each person uses a shared electronic diary, similar to that often found on PCs
and pocket organizers. When you want to arrange a meeting, the system searches
everyone’s diaries for one or more free slots.

There are technical problems, such as what to do if no slots are free (often the
norm). The system can return a set of slots with the least other arrangements, 
which can then form a basis for negotiation. Alternatively, the participants can mark
their appointments with levels of importance. The system can then assign costs to
breaking the appointments, and find slots with least cost. Mind you, someone may
regard all their appointments as critical.

This reminds us that whatever the technical sophistication, it is people who use
these systems and people who must cooperate. There are varying reports of success
and failure with shared diaries. Where they have failed it is invariably because they
have ignored the social needs and behavior of their users.

One such area is privacy. Are people allowed to look at your diary to find free
slots? If so, do they just see ‘busy’ or can they see exactly what you are doing? You
would be extremely annoyed if someone looked in your personal paper diary; is the
electronic one any different? There is a trade-off between privacy and cooperation.
In an office situation, one has a succession of diaries and calendars for specific pur-
poses: a private diary with personal information, a desk diary and possibly a parallel
desk diary with your secretary, and various forms of wall calendar showing periods
on vacation and similar major meetings. These vary in their visibility to other 
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members of the organization: your secretary can consult her copy of your diary 
but not your personal diary; anyone can look at the wall calendar. You choose your
level of privacy by where you put information. Of course, the problems of keeping
such diaries up to date with one another is one reason why electronic diaries are 
produced, but they must supply similar forms of privacy control or people will 
simply not use them. This is precisely what happens.

There are similar problems with the update of diaries. If someone wants to book
a meeting with you, can they fill in a slot, or must they ask you? Again you may want
to vary these rights according to who it is and the sort of appointment. Many systems
allow other users to ‘pencil in’ appointments, but require them to be confirmed by
the diary’s owner.

Many people use private electronic diaries and time management software. It 
is reasonable to expect that groupware versions of these will become commonly
available in the near future. The extent to which they work will be largely the extent
to which the design takes note of personal and social factors.

19.5.5 Communication through the artifact

In each of the last four systems – shared PCs and windows, shared editors, co-
authoring systems and shared diaries – the focus has been upon the artifacts on
which the participants are working. They act upon the artifacts and communicate
with one another about the artifacts. However, as well as observing their own actions
on the artifacts, the participants are aware of one another’s actions. This awareness
of one another’s actions is a form of communication through the artifact.

This can happen even where the shared artifact is not ‘real’ groupware. For
instance, shared files and databases can be a locus for cooperation. Sales figures may
be entered into the company database by a person in one department and then used
as part of a query by another employee. At a loose level, the two are cooperating in
jobs, but the database, and the information in it, may be their only means of com-
munication. Such communication is one-way, and is thus a weak form of collabora-
tion, but often important. For example, casework files are a central mechanism 
for communication and cooperation in many areas from taxation to social work.
However, the facilities for cooperation in a typical shared file store or database are
limited to locking, and even that may be rudimentary.

People may also explicitly pass documents, produced by single-user systems,
between themselves. For example, the cooperative use of spreadsheets has been 
studied. Some of this involves close working between the participants, but some
users simply pass the spreadsheet data between them with little, if any, comment. 
If you change a formula, then the intent is obvious – you thought it was wrong.

Of course, in most situations, direct communication is necessary as well, especially
where there is some conflict (your colleague thinks the original formula was right).
The lesson from these more extreme examples is that cooperation does not neces-
sarily involve direct communication and, even where it does, the indirect channel
through the artifact may be central to effective working.
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One shared database which is explicitly designed to promote cooperation is
Liveware [383]. This is a card-index-type database implemented over HyperCard,
designed to be updated by users at many sites, and spreading the information by
floppy disk as people meet during normal social contact. When different versions of
the Liveware database ‘meet’, they choose the newest version of each record. Each
record has a single owner, so problems of conflicting updates are avoided.

Lotus Notes

The most widely used groupware application, excepting email, is Lotus Notes. Notes has
aspects of a structured message system, a bulletin board and a shared database. At its simplest a
Notes database consists of a collection of items. Each item belongs to a particular type and depend-
ing on the type has different named fields – just like a structured message system. In addition, each
item may have responses and responses to responses, very like a bulletin board. The distinguish-
ing feature, however, is its ability to replicate and reconcile replicas. There may be several copies
of a single Notes database lodged on different servers. Users may connect to different servers and
add or edit items and responses. Later, when the servers connect via network or modem, they
update each other taking the most up-to-date version of each item just like Liveware. This has made
it particularly popular with users of portable computers working away from their central office.

Although Lotus Notes has been very successful, much of its use has been simply for email. How-
ever, it is also customizable and programmable so many bespoke applications have been produced
using it as a base platform. In particular, it can be used to implement or support workflow systems.

Notes’ key market is in corporate information and messaging systems. However, it is being 
challenged in this market by web-based intranet solutions, where the web’s cross-platform and
cross-vendor compatibility makes it an ideal candidate. Clearly aware of this threat, Lotus (now
part of IBM) has added web publishing features to Notes.

FRAMEWORKS FOR GROUPWARE

In this section we will discuss several frameworks for understanding the role of
groupware. One use for these is as a classification mechanism, which can help us 
discuss groupware issues. In addition, they both suggest new application areas and
can help structure the design of new systems.

19.6.1 Time/space matrix and asynchronous working

First of all we will look again at the time/space matrix. At the beginning of Sec-
tion 19.2, we placed familiar technologies in the matrix. Figure 19.9 shows the same
matrix, but populated with the groupware systems we have discussed.

19.6
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This matrix has become a common language amongst the CSCW community. 
It can also be useful during design as one of the earliest decisions is what sort of 
interaction you are planning. The design space for synchronous interaction is entirely
different from that for asynchronous.

However, the synchronous/asynchronous distinction is not as simple as it at first
seems. In Section 19.2 we simply said ‘whether [the participants] are operating at the
same time or not’. However, for an email system, it makes no difference whether or
not people are operating at the same time. Indeed, even in Figure 19.1, when we
classified letter writing as different time/different place, a similar objection could 
be brought.

The difference between email systems and (most) co-authoring systems is that 
the latter have a single shared database. Thus when people work together, they 
know they are working together, and, depending on the locking regime used, can 
see each other’s changes. An email system, on the other hand, may take some time 
to propagate changes. Perhaps, a better distinction is to look at the data store and
classify systems as synchronized when there is a real-time computer connection, or
unsynchronized when there is none.

For unsynchronized systems it makes little difference whether or not the parti-
cipants are operating at the same time. Also location is not very significant. (A 
co-located unsynchronized system is possible; imagine two computers in the same
room with no network, which are periodically brought up to date with one another
by floppy disk transfer.)

If we consider synchronized systems, then the actual time of use becomes more
important. If the participants are operating at the same time (concurrent access), we
have real-time interaction as seen in meeting rooms (co-located) or video confer-
ences (remote).

Figure 19.9 Groupware in the time/space matrix
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Alternatively, the system may prevent users working at the same time, by large-
scale locks, leading to non-concurrent synchronized working. Earlier argumentation
tools fall into this category. Because the participants are forced to use the system one
after another, we can call this serial access.

Finally, co-authoring systems like Quilt [210] allow fine-grained locking so that
participants can use the system at the same time or not. Therefore, they allow both
serial and concurrent synchronized access.

Figure 19.10 places the groupware systems into this refined matrix. This matrix 
is not widely used, but is far more accurate for placing a prospective design. This is
particularly obvious when one considers systems designed for users of mobile com-
puters or home computers. These may be totally unconnected to central computers,
except by occasional direct connection, floppy disk transfer or dial-up modem. The
only existing groupware systems which could support such users are email and mes-
sage systems, and Liveware. However, even email systems are rarely available except
when connected via a modem. Liveware is the only groupware system designed for
unsynchronized cooperation.

Systems, principally co-authoring tools, which describe themselves as operating 
in both synchronous and asynchronous modes are normally in class (a/b) in the 
diagram. That is, they have centralized data and allow users to operate in closely 
coupled modes like a group editor, or one at a time. No current system allows fluid
access across the synchronized/unsynchronized divide. The authors of this book are
operating from different sites and different continents and all often work at home.
So we can vouch for the need for such systems.

Figure 19.10 Refined time/space matrix



694 Chapter 19 n Groupware

Worked exercise Find out how many different forms of direct computer-mediated communication are available
on your system (start with email). Are they heavily used, and if so, where do they fit in the
time/space matrix (Figure 19.9) and its refinement (Figure 19.10)?

Answer Obviously the answer to this depends on your own particular facilities, but here are
some suggestions based on the authors’ sites.

The question says ‘start with email’. In fact, on many systems several email interfaces
are available. On one of the authors’ systems there are two command line interfaces as
well as various GUIs for different window managers (under X, on the Macintosh, etc.).
Although email is just one communication mechanism, it is used in a wide variety of
ways. Its ‘normal’ use is essentially asynchronous/remote, or in terms of the refined
matrix, unsynchronized. However, delivery over a LAN is often virtually instantaneous
and you can observe users engaging in effectively synchronous communication. The pos-
sibility of these modes of use is often determined by the style of the interface, as was
shown in Section 18.2.4. Clearly, the way in which new mail is notified and the speed
with which mail can be read both determine the pace at which the conversation can
proceed. A further complication in some sites is that internal and external email have
entirely different interfaces: sending mail off site may involve remotely logging into a
gateway machine and then using some obscure mailer there, rather than the familiar
workstation-based tools.

In addition to email, you may have one or more text-based synchronous communica-
tion tools. For example, many UNIX machines have two tools, ‘write’ and ‘talk’. The
command ‘write Alison’ followed by some text prints that text on Alison’s screen. She
can respond by doing a ‘write’ back to the sender. The ‘talk’ command establishes a
more continuous conversation, as described in Section 19.3.1, where both participants’
screens are split in two, each half displaying one of the participants’ contributions.
Although both can be seen as synchronous/remote, they operate at different levels of
sharing (Section 19.6.2). Whereas ‘write’ only sends the text after the contribution 
is completed, ‘talk’ sends each user’s contributions character by character as they 
are typed. That is, ‘talk’ sits further down toward the bottom left of the diagram in
Figure 19.11. Note also that ‘write’ can be used in a semi-asynchronous mode. If the
other user is logged in, but not at his terminal, the message waits there until his return.

Another asynchronous communication tool commonly available is bulletin boards, such
as Usenet News. As discussed in Section 19.3.1, these have different properties from
email, being rather less personal.

In addition to these standard tools, some of the authors’ colleagues have perman-
ent video connections between their offices. You may have similar facilities, or other
computer-augmented communications, perhaps video in a window on your worksta-
tion, or possibly CUSeeMe. Don’t forget apparently low-tech things such as computers
which automatically dial telephone calls.
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19.6.2 Shared information

Electronic conferences and shared workspaces share information primarily for com-
munication, whereas a document is shared for the purpose of working. Both raise
similar issues concerning the degree of sharing required.

Granularity

The groupware systems we have seen differ as to the granularity of sharing they allow,
in terms of both object chunk size and frequency of update.

Looking first at object chunk size, some systems operate at a very fine grain, 
allowing participants to edit the same sentence, or even the same word in a sentence.
At the other extreme, shared file systems may often have locks so that only one user
can edit a file at the same time. The granularity here is the document. The majority
of groupware systems, in particular argumentation and co-authoring tools, operate
somewhere between these extremes. They have some idea of a node or a section,
which only one person can update at once, but which is significantly smaller than a
whole document.

In the time dimension, systems may show participants’ updates to one another
immediately, within seconds, or when the user has finished editing the chunk. It is
usually the case that a fine-grained chunk size requires fine-grained updates. For
example, if you are allowed to edit the same word, it is not helpful if it takes a minute
to see your colleague’s typing! However, the converse is not necessarily true. Some
systems operate locks on largish chunks but show other participants the updates
immediately. Examples of this are some meeting rooms which have long-lived floor
holders. This means that groupware systems all reside in the hatched region of 
Figure 19.11.

Figure 19.11 Granularity of sharing
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In the figure, four points are plotted representing different grain size choices, as
typified by the examples we have discussed:

(a) shared editors
(b) co-authoring systems like Quilt
(c) network file systems with locking
(d) meeting system with floor holder.

Levels of sharing

As well as varying in terms of how much is shared, systems vary as to what is shared.
At one extreme are WYSIWIS systems, such as shared window systems and many
meeting rooms. In these, the participants all see exactly the same presentation of the
data. However, in other shared editors, such as Grove [121, 122], the participants can
edit different parts of the document at once. That is, they share the object, but not
the presentation.

There is an interesting middle ground which is rare in explicit groupware, but
common in the use of shared databases. That is, sharing a view, but not the pre-
sentation of that view. For example, two people may be viewing the same part of a
database, but one person sees it presented as a graph, and the other in tabular form.
We thus have three levels, as depicted in Figure 19.12.
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Figure 19.12 Levels of sharing
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In addition to this output-oriented sharing, we can also look at input. On the 
one hand there are those systems which have a single shared virtual keyboard, for
example the shared window systems. On the other, we have the majority where the
participants can input at different places. This can be characterized as single versus
multiple insertion points. There is no real middle ground here, but for those with
separate insertion points we have the issue of visibility: whether or not the particip-
ants can see each other’s insertion points or mouse pointers. Furthermore, if the
other participants’ cursors are not visible, we may have a group pointer, as discussed
in Section 19.4.2. This gives us four levels of input sharing:

single insertion point n shared virtual keyboard
multiple insertion points n other participants visible

n group pointer
n no visibility

Again, there are loose connections between the two levels of sharing. For example,
it makes little sense to have a single insertion point but different views. However, one
document annotation system has separate insertion points but a shared view. Any
user can choose to scroll the view of the document, but it then scrolls for all users.
To make matters worse, the other users’ insertion points stay at the same point on
the screen as the document moves. So if they are typing when the screen is scrolled,
their characters appear all over the document! It is a testimony to the power of social
protocols that this system is not only used successfully, but also enjoyed.

Types of object

The kind of object or data we are cooperating over obviously affects the way we share
them. This is particularly important in the unsynchronized case or where there is a
danger of race conditions. That is, where two participants perform updates simultan-
eously and there is confusion as to which comes first.

Consider first the text of a shared editor. Participants can add, edit or delete text
anywhere in the document. We thus have to worry about them interfering with one
another, for example one participant deleting the text that another participant is in
the middle of editing. Contrast this with a linear text transcript, as produced by some
electronic conferencing systems. The transcript is monotonic, that is one can only add
to it, never take away, and appending contributions are always added to the end. This
makes the job of handling updates much easier. Every time a participant completes
a contribution, it is simply added to the end.

However, the text transcript is inherently sequenced. This makes it best suited to
synchronized groupware. If we imagine two distant sites, with no fast communica-
tions, it is difficult to keep the transcripts similar. If each site adds any new items to
the end, the sites will show different transcripts. Imagine we have a user, Alison, at
site A, and a user, Brian, at site B. The transcript has two contributions ‘a1 b1’. Alison
and Brian both make a contribution at the same time, say ‘a2’ and ‘b2’ respectively.
So site A sees ‘a2’ first and site B sees ‘b2’ first. After a while the contributions are
transmitted from site to site, leaving at site A the transcript ‘a1 b1 a2 b2’ and at 
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site B the transcript ‘a1 b1 b2 a2’. The alternative is for the contributions to be 
timestamped, and to be ordered by time. However, this would mean that when a 
site received a contribution before the current time, it would have to insert it into the
conversation. That is, the transcript ceases to be appending. We saw in Chapter 14
some of the effects this has on the participants’ conversation.

Now, consider a shared hypertext, with no editing and deleting, just adding new
nodes. It is not only monotonic, but also unsequenced: the order in which contribu-
tions are added does not matter. They are structured explicitly by the links between
nodes, not by the order in which they occurred. It has a weaker appending property
in that all new contributions are toward the leaves of the hypertext, but there are of
course many leaves. A monotonic unsequenced data structure is ideally suited to
unsynchronized groupware; indeed several electronic conferencing systems adopt
just such a structure.

A shared whiteboard, again without an eraser, is also monotonic and unsequenced,
but the limited size of the display does not make it feasible for large-scale conferen-
cing. However, the properties are useful when implementing such a system. Basically,
one only needs to worry about synchronizing the participants’ systems when one 
of them is using an eraser. Another advantage of such spatially organized data is 
that the participants can use proximity to denote relationships and set aside areas 
for different purposes. The participants can create their own structure, rather than
use predefined structures.

Finally, imagine a complex structured object, such as a hypertext, or a shared file
system. What happens if someone moves a portion of the hypertext tree while you
are editing a node in it? This is similar to the problems of shared text, but the nature
of text makes it easier for social protocols to operate. Furthermore, it is even harder
to make sense of multiple structural updates than textual ones.

19.6.3 Integrating communication and work

In Section 19.2, we described the framework for cooperative work used to structure
Sections 19.3–19.5. Figure 19.13 shows the framework diagram, but with two extra
arcs added. Recall first the arcs that were in the original diagram in Section 19.2. Each
of the sections dealt with the computer support of one of these arcs:

direct communication supported by email, electronic conferences and video 
connections;

common understanding supported by argumentation tools, meeting rooms and
shared work surfaces;

control and feedback from shared artifacts supported by shared PCs and windows,
shared editors, co-authoring systems and shared diaries.

The first new arc represents deixis. Recall that we encountered deictic reference in the
context of meeting room software (Section 19.4.2). The participants needed to refer
to items on the shared screen, but could not use their fingers to point. In general,
direct communication about a task will refer to the artifacts used as part of that task.
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The other new arc runs between the participants, but through the artifact. This
reflects the feedthrough where one participant’s manipulation of shared objects 
can be observed by the other participants. As we discussed in Section 19.5.5, this
communication through the artifact can be as important as direct communication
between the participants.

Although systems have been classified by the arc which they most directly support,
many support several of these aspects of cooperative work. In particular, if the 
participants are not co-located, many systems will supply some alternative means 
of direct communication. For example, shared window systems are often used in
conjunction with audio or video communications. However, these channels are 
very obviously separate, compared with, say, the TeamWorkStation where the shared
work surface video images of hands are overlaid (see Section 19.4.3). In particular,
this close association of direct communication with the artifacts makes deixis more
fluid – the participants can simply point and gesture as normal.

In general, a test of a groupware product is how well it supports the whole of 
cooperative work. Another example of a system which does closely integrate direct
communication and shared artifacts is the co-authoring system Quilt. In Section
19.5.3, we emphasized the structure of the artifact, but this is integrated with com-
munication in two ways. First of all (and common to many similar systems), the
comments which are attached to the text are themselves a form of direct communica-
tion – embedded within the context of work. This embedding makes deixis particu-
larly easy. The comment itself may be attached to a particular point in the text, 
and also indexical terms like ‘the last sentence’ are easily interpreted. In addition,
directed messages can contain references to Quilt objects, aiding deictic reference in
that medium also.

Figure 19.13 Cooperative work framework



700 Chapter 19 n Groupware

Finally, note that a groupware system need not automate every aspect of commun-
ication and shared work, but it should be open to supporting cooperative work as 
a whole. As an example of this consider bar codes. A can of beans may be baked in
Boston and sold in a supermarket in Solihull, but the bar code printed on the can and
its packaging can be read by the staff at the supermarket. The bar code can be used
for stocktaking and can be read by laser at the checkout, both pricing the item and
keeping track of sales. These sales figures can then be used as part of stock control
and for marketing. This is possible because of international standards of bar coding.
The code identifies the manufacturer, factory, product and package size, and can
thus be used to identify the product at many stages in its journey from production
to consumption. That is, the bar code is a computerized form of deixis. However,
even though it only automates one aspect it aids very diffuse but large-scale cooper-
ative work, crossing national and organizational boundaries.

19.6.4 Awareness

An important issue in groupware and CSCW is awareness – generally having some
feeling for what other people are doing or have been doing. Awareness is usually used
to refer to systems that demand little conscious effort or attention as opposed to, say,
something that allows you to explicitly find out what others are doing.

There are a number of different kinds of awareness, summarized in Figure 19.14.
First we may want to know who is there (a) – are they available, at their desk, in the
building or busy? For example, instant messaging systems often have some form of
buddy list (Figure 19.15). Your friends are listed there and the messenger window
shows whether they are logged into the system, if they appear to be idle (not typed
for a while), or whether they have left some sort of status message (e.g. ‘gone for

Figure 19.14 Forms of awareness
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Figure 19.15 Awareness in Yahoo! Messenger

DESIGN FOCUS

TOWER – workspace awareness

Alison is sitting at her desk working on a spreadsheet. She has just finished a complicated formula and
as she sits back for a moment her eye drifts down the screen to a small window. It shows an electronic
landscape in which there are small avatars. She reaches for the phone. ‘Hi Brian’, she says. ‘Didn’t 
realize you were in’, ‘Just noticed you were looking at the year-end report. Don’t be alarmed if it looks
a little rough, still finalizing it’.

Alison and Brian are using TOWER (Theatre of Work Enabling Relationships), an architecture and 
set of components that allow workspace awareness. The system has a number of sensor modules for

lunch’). Always-on video or audio connections also give a sense of being ‘around’
your remote colleagues and effortlessly having a feeling for what they are doing,
whether they are busy or in a meeting.

You may also want to be aware of what is happening to shared objects (b). For
example, you might request that the system informs you when shared objects are
updated. Although knowing what has changed is important, ideally we would like 
to know why it has changed. Of course we could ask, but if we know how the change
happened (c), then we may be in a better position to infer the reasons for the change.
Actually, very few systems do this except in so far as they allow users to add annotations
to explain changes. These two together (b and c) are called workplace awareness.



IMPLEMENTING SYNCHRONOUS GROUPWARE

We have discussed a wide range of groupware systems, but there are formidable
problems with implementing such systems, particularly synchronous groupware.
Groupware systems are intrinsically more complicated than single-user systems.
Issues like handling updates from several users whilst not getting internal data struc-
tures or the users’ screens in a mess are just plain difficult. These are made more
complicated by the limited bandwidth and delays of the networks used to connect
the computers, and by the single-user assumptions built into graphics toolkits.

19.7.1 Feedback and network delays

When editing text, a delay of more than a fraction of a second between typing and the
appearance of characters is unacceptable. For text entry, a slightly greater delay is

19.7

detecting events, including watching for file system accesses, which can be linked to generic visualiza-
tion components such as a simulated world or treemap representations. These use different means to
show the structure of files/folders or other structures in the workspace and also to show activity on
the workspace: the virtual landscape shows avatars where people are working, the treemap highlights
changed areas in red (see the illustration).

One of the partners which developed TOWER is the Bonn Fraunhofer FIT Institute (previously GMD),
which also developed BSCW (Basic Support for Cooperative Work), one of the most widely used tools
for remote document sharing [34].

As well as graphical interfaces, various ambient interfaces (see Chapter 20) have been designed includ-
ing a fan that spins faster when there is activity on a website. New sensors and visualizations are easy
to add because of the generic event notification infrastructure (ENI) underlying TOWER. Getting the
right implementation architecture is very important.

See: http://tower.gmd.de/ Images courtesy of Wolfgang Prinz
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acceptable as you are able to type ahead without feedback from the screen. Drawing,
on the other hand, demands even faster feedback than text editing. Groupware sys-
tems usually involve several computers connected by a network. If the feedback loop
includes transmission over the network, it may be hard to achieve acceptable
response times. To see why, consider what happens when the user types a character:

1. The user’s application gets an event from the window manager.
2. It calls the operating system . . .
3. which sends a message over the network, often through several levels of 

protocol.
4. The message is received by the operating system at the remote machine,
5. which gives it to the remote application to process.
6–8. the reply returns (as steps 2–4)
9. and the feedback is given on the user’s screen.

This process requires two network messages and four context switches between oper-
ating system and application programs in addition to the normal communication
between window manager and application. However, even this is just a minimum
time and other factors can make the eventual figure far worse. Network protocols
with handshaking can increase the number of network messages to at least four 
(two messages plus handshakes). If the application is running on a multi-tasking
machine, it may need to wait for a time slice or even be swapped out! Furthermore,
the network traffic is unlikely to be just between two computers: in meeting rooms
we may have dozens of workstations. Clearly, any architectural design for cooperat-
ive systems must take the potential for network delays very seriously.

19.7.2 Architectures for groupware

There are two major architectural alternatives for groupware, centralized and replic-
ated, with variations upon them both. In a centralized or client–server architecture
each participant’s workstation has a minimal program (the client) which handles 
the screen and accepts the participant’s inputs. The real work of the application is
performed by the server, which runs on a central computer and holds all the applica-
tion’s data (Figure 19.16). Client–server architectures are probably the simplest to
implement as we have essentially one program, with several front ends. Furthermore,
if you use X Windows then there are standard facilities for one program to access
several screens1 (see also Chapter 8).

As a special case, the server may run on one of the users’ workstations and sub-
sume the client there. Typically, this would be the user who first invoked the shared
application. This arrangement is a master–slave architecture, the master being the
merged server–client and the slaves the remainder of the clients. The user of the 
master will have a particularly fast response compared with the other users.

1 But beware, X uses the terms client and server in the opposite sense. The X server is on the workstation
and the X client is the application program.
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The second major architecture is replicated. Each user’s workstation runs its own
copy of the application. These copies communicate with one another and attempt to
keep their data structures consistent with one another. Each replicate handles its own
user’s feedback, and must also update the screen in response to messages from other
replicates. The intention is often to give the impression of a centralized application,
but to obtain the performance advantages of distribution.

Compared with a client–server architecture, the replicated architecture is difficult
to program. In the last paragraph we deliberately wrote ‘attempt to keep their data
structures consistent’ as this is a major problem. If two users, say Jane and Sam, 
hit a key almost simultaneously, then Jane’s workstation will process Jane’s keystroke
first, and Sam’s second, but Sam’s workstation will process them the other way
round, and yet they must give the same result – help!

This race condition is a common problem in distributed computing. A standard
solution there is to roll back one or other replicate and re-execute the commands.
However, if the results have already been displayed on the user’s screen this is not
acceptable – standard computing algorithms often fail for groupware. Happily, many
of the concurrency control mechanisms, such as locking or floor holders, mean that
such races do not occur, or at worst occur only when users obtain locks or other large-
scale events. So, when rapid feedback is not required, standard mechanisms may be
applied, but, for real synchronous update, special-purpose algorithms are required.

The main advantage of a replicated architecture over the client–server is in the
local feedback. However, the clients are often not completely dumb and are able to
handle a certain amount of feedback themselves. Indeed, the server often becomes
merely a central repository for shared data with the clients having most of the applica-
tion’s functionality. On the other hand, a replicated architecture will rarely treat all
the replicates identically. If a user tries to load or save a document, that action does
not want to be replicated. Either one of the replicates is special, or there is a minimal
server handling movement of data in and out of the system. So we see that there is a
continuum between the client–server and the replicated architecture.

Figure 19.16 Client–server architecture
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Figure 19.17 Single-user application

19.7.3 Shared window architectures

Shared window systems have some similarities with general groupware architectures,
but also some special features. Recall that there is a single-user application which is
being shared by several participants on different workstations. The single-user applica-
tion normally interacts with the user via a window manager, say X (Figure 19.17).
The shared window manager works by intercepting the calls between the application
and X.

Where the application would normally send graphics calls to X, these are instead
routed to a special application stub. This then passes the graphics calls from the X
library (Xlib) on to a user stub on each participant’s workstation. A copy of X is 
running on each workstation and the user stub passes the graphics calls to the local
copy of X. Similarly the users’ keystrokes and other actions cause X events which are
passed to the user stub and thence through the application stub to the application
(Figure 19.18). In fact, the nature of X’s own client–server approach can make the
user stub unnecessary, the application stub talking directly to an X ‘server’ on each
workstation.

The input side has to include some form of floor control, especially for the mouse.
This can be handled by the application stub which determines how the users’ separ-
ate event streams are merged. For example, it can ignore any events other than those
of the floor holder, or can simply allow users’ keystrokes to intermingle. If key com-
binations are used to request and relinquish the floor, then the application stub 
can simply monitor the event streams for the appropriate sequences. Alternatively,
the user stub may add its own elements to the interface: a floor request button and
an indication of other participants’ activities, including the current floor holder.

The problem with a client–server-based shared window system is that graphics
calls may involve very large data structures and corresponding network delays. One
can have replicated versions where a copy of the application sits on each workstation
and stubs communicate between one another. But, because the application is not 
collaboration aware, problems such as race conditions and reading and saving files
become virtually intractable. For this reason, most shared window systems take a
master–slave approach where the application runs on the first user’s workstation and
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subsequent users get slave processes. The delays for other users are most noticeable
when starting up the application.

19.7.4 Feedthrough and network traffic

We have discussed the necessity of rapid feedback to the user who performs an
action, and we have seen how replication or partial replication can solve this.
However, we must also worry about feedthrough, the reflection of one user’s actions
on the other users’ screens. The requirements for feedthrough are not quite so strin-
gent as for feedback, and this can be used to reduce the amount of network traffic.
There is little difference in this respect between client–server and replicated archi-
tectures, so, for the sake of argument, we will assume a client–server architecture.

Figure 19.18 Shared window architecture
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Imagine a user has just typed a character. The character appears on the user’s
screen, either through local feedback or after an exchange with the server. However,
all the other clients need to be informed also. That is, with n participants, each 
user action causes a minimum of n − 1 network messages. If this is repeated for each
character, the network will grind to a halt with the number of messages. Just think 
of the effect if we wanted to send out updates for each mouse movement!

There are several ways out of this, the common thread being to reduce the 
number of messages. In principle, one could send a single broadcast message to all 
the other clients, as the information is the same for all of them. Unfortunately, in
practice, many network protocols only support point-to-point messages. A more
successful approach is to increase the granularity of the messages. The rapid feedback
to the user who initiated an action is necessary, but the feedthrough to other users
may be able to cope with less frequent updates. The server can save up several char-
acters’ worth of updates and send a single message. We thus only need to send the 
n − 1 messages to the clients on each chunk.

The choice of this chunk size can be crucial to the success of the system. If the 
participants can talk to each other (either co-located or with audio/video channels)
they will refer to the contents of their screens. In such cases, lags of more than a few
seconds can be disastrous. However, even if the computer is the only communica-
tions medium, the chunk size has an effect as the gradual appearance of text is an
indication of other people’s activity.

19.7.5 Graphical toolkits

We discussed in Chapter 8 some of the widgets one finds in a typical graphics toolkit
or window manager, such as menus, buttons, dialog boxes and text and graphics
regions. These are useful for creating single-user interfaces, and one would like to use
the same components to build a groupware system. Unfortunately, the single-user
assumptions built into such toolkits can make this very difficult.

Some widgets may take control away from the application. For instance, a pop-up
menu may be invoked by a call such as

sel = do_pop_up(“new”,“open”,“save”,“exit”,0);

The call to do_pop_up_menu constructs the pop-up menu, waits for the user to enter
a selection, and then returns a code indicating which choice the user made (1 for
‘new’, 2 for ‘open’, etc.). Of course, during this time the application cannot monitor
the network. This can be got round, by careful programming, but is awkward.

More fundamentally, the functionality of toolkit widgets may be insufficient for
groupware. This is particularly obvious for text areas. The toolkit often takes over a
lot of the tedium of handling an editable text region: the user can type and delete, do
cursor movement and even cut and paste, all without the application’s intervention.
However, the groupware developer may want to have multiple cursors, or to ensure
that all the participants can see the same portion of a document. Unfortunately, even
information such as what portion of the document is in view, or where a particular
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logical character is displayed on the screen is difficult to come by, as is control over
a scrollbar if this is to be shared. One is often forced to design the application round
the limited capabilities of the text widget, or to use bitmap operations to paint the
text oneself.

Despite the difficulties of toolkits, some have facilities which are a positive help.
For example, the SunView toolkit and its X version, XView, are both notification
based (see Chapter 8). As well as notifications of user events, they can be asked to tell
you when a network channel is ready for reading or writing. Thus, the interface and
the network can be programmed in a similar style.

19.7.6 Robustness and scaleability

If you are producing a shared application to test an idea, or for use in an experiment,
then you can make a wide range of assumptions, for instance a fixed number of par-
ticipants. Also, the occasional crash, although annoying, is not disastrous. However,
if you expect a system to be used for protracted tests or for commercial production
then the standards of engineering must be correspondingly higher. Four potential
sources of problems are:

1. Failures in the network, workstations or operating systems.
2. Errors in programming the shared application.
3. Unforeseen sequences of events, such as race conditions.
4. The system does not scale as the number of users or rate of activity increases.

A full description of these problems and their solutions is, of course, beyond this
book. For this, the reader should turn to texts on software engineering, real-time and
distributed programming. Furthermore, the details will differ between networking
software, operating systems and other software support. However, there are a few
general remarks and specific issues which we will discuss.

To some extent, the above problems are common to single-user systems: hardware
problems, bad programming and the like. Indeed, most commercial software the
authors have used suffers the occasional (or frequent) crash. However, there are 
factors which make multi-user systems more fragile. The large number of different
hardware and software components of a multi-user system means that a fault of 
type 1 is more likely to occur. Also, the complexity of the algorithms used in group-
ware makes a fault of type 2 more likely. In both cases there is a danger that the 
consequences of the failure will propagate throughout the system. If a single failure
crashes the whole system, it probably will not be used twice! Interleaving of different
users’ actions and the unpredictable effects of network delays increases the chance 
of errors of type 3. Finally, system development and testing may involve only two 
or three people, and thus hidden assumptions about the number and activity of 
users may not become apparent until the system ‘goes live’. So, faults are more likely
and the effects are far worse – instead of losing one user’s document or datafile 
(sad though that might be), a groupware crash can destroy the work of a whole team
of people.
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Server faults

The most obviously disastrous problem in a client–server-based system is a server
crash, whether hardware or software. Fortunately, this is most amenable to stand-
ard solutions. Most large commercial databases have facilities (such as transaction
logging) to recover all but the most recent changes. If the groupware system is not 
built using such a system then similar solutions can be applied; for example, you can
periodically save the current state using two or three files in rotation. The last entry2

in each file is the date of writing and the system uses the most recent file when 
it restarts, ignoring any partially written file. Remember, though, that this might
mean your server going ‘silent’ for a few seconds each time it saves the file – can your
clients handle this? In really critical situations one can have multiple servers and
copies of the data, so that a backup server can take over after a crash of the primary
server.

Workstation faults

More often, individual workstations, or the programs running on them, will crash.
This is partly because there are more of them, and partly because their code is more
complex. In particular, these programs are handling all the user’s interactions and
are built upon complex (and frequently flaky) graphical toolkits. Of course, one tries
to program carefully and avoid these errors, but experience shows that they will con-
tinue to occur. The aim is to confine the fault to the particular user concerned and
to recover from the fault as quickly as possible. When thinking about a client–server
architecture, there are three ‘R’s for the server:

Robust A client failure should not destroy or ‘hang’ the server. In particular, 
never have the server wait for a response from the client – it may never come. The
server should either be event driven or poll the clients using non-blocking network
operations.

Reconfigure The server must detect that the client has failed and reconfigure the
rest of the system accordingly. The client’s failure can be detected by standard 
network failure codes, or by timing out the client if it is silent for too long.
Reconfiguring will involve resetting internal data structures, and informing other
participants that one of them is unavailable and why. Do not let them think their
colleague is just being rude and not replying!

Resynchronize When the workstation/client recovers, the server must send
sufficient information for it to catch up. A server may normally broadcast 
incremental information (new messages, etc.), so make sure that the server keeps
track of all the information needed to send to the recovered client. This is very
similar to the case of a new participant joining the groupware session.

2 A crash might happen in the middle of the save.
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Replicated architectures have similar issues. Imagine we have three replicates A, B
and C. Replicate A has crashed, so both B and C must detect this and correct their
internal data structures accordingly. An additional problem is that one replicate, say
B, may detect the failure before the other. So, C may send B a message which refers
to A in some way – B must deal with this situation gracefully.

Algorithm faults

Some application failures do not crash the application and may therefore be 
more difficult to detect. For instance, data structures between replicates or between
client and server may become inconsistent. Obviously this should not happen, if the
algorithms are correct. Indeed, such critical algorithms should be given the closest
scrutiny and perhaps proved correct using formal methods (see Chapter 17).
However, one should be prepared for errors and, where possible, include sufficient
redundancy and sanity checks in the code so that inconsistencies are at least detected
and, ideally, corrected.

Such defensive programming mechanisms, against hardware and software errors,
may be very expensive in programming effort and execution time. For experimental
systems they may be excessive. A minimum requirement for all but toy systems is
some form of reset, which forces the system to resynchronize all its data structures
between clients and server or between replicates; hopefully, losing none but the most
recent updates in the process.

Unforeseen sequences of events

Distributed programming has many problems of which possibly the most well
known is deadlock. This is when two (or more) processes are each waiting for the
other to do something. A common scenario is where process A is trying to send a
message to B and B is trying to send one to A. Because A is busy trying to send, 
it does not want to receive a message from B, and vice versa. The possibility of 
deadlock can often go undetected during testing because of operating system and
network buffers. A’s message to B is stored in the operating system’s buffer, so A can
then read B’s message. Unfortunately, as load increases, one day the buffer is full and
deadlock can no longer be avoided – this may only happen after the system has been
released.

The first rule to avoid deadlock is never to use blocking input or output. That is,
always use network calls which time out, or return immediately if the operation 
cannot continue. Use of an event-driven programming style can also help, as does
the use of constructs such as the UNIX ‘select’ system call, which monitors several
communication channels simultaneously.

At a higher level, one should also avoid making assumptions about the ordering
of incoming events. This is also important to avoid problems with race conditions.
For example, if a client process has sent a message to a server requesting information,
it should not assume that the next message from the server will answer the query.
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A common assumption in groupware programs is that messages sent from one
computer arrive in the same form at another. This depends very much on the 
particular protocols used. Consider UNIX stream-based sockets, commonly used in
experimental groupware applications. The communication paradigm is not packet
based, but of a character stream. Imagine a client sends two messages to the server.
The first is 26 characters long, ‘abcd . . . xyz’, the second is 10 characters long,
‘0123456789’. When testing such a system it is very likely that the server will read two
messages of 26 and 10 characters, exactly as sent, but this is not guaranteed. It is 
perfectly possible to get one message of 36 characters, ‘abc . . . xyz01 . . . 89’, or even
one of 10 and one of 26, ‘abcdefghij’ and ‘klm . . . xyz01 . . . 89’. The solution is easy:
one always uses fixed-length messages, or alternatively you code the message length
into the message header. The recipient can then reconstruct the messages from the
byte stream. The difficulty is that the problem can go undetected for a long time and 
then cause a major disaster. Read your network manual very carefully and assume
nothing.

Scaling up

In general, the most certain way to avoid algorithmic errors is to use simple 
algorithms: tables rather than complicated data structures, fixed-length fields for
names and messages. These all go toward reducing the likelihood of some of the
faults described earlier, and are the recommended techniques for prototyping an
application. Unfortunately, these are precisely the programming techniques which
frustrate the scaling up of the system to larger numbers of users, or greater loads.

As the system develops, the initial algorithms and data structures will need to
evolve. This will be easier if the future scaling of the system is taken into account at
the beginning. Good software engineering practice helps. For example, if the message
passing is in a separate module then an initial design can use fixed-length and textu-
ally coded messages (for ease of debugging). But, when the throughput of the system
increases, the message passing can be easily changed to variable length messages, 
perhaps buffering several messages together (to reduce network traffic) and binary
coding of the messages (for efficiency).

Where fixed-size assumptions are made in early versions, these should be docu-
mented: ‘the present design only caters for up to six users’. Even more important, 
the system ought to detect when these bounds are broken and behave sensibly. 
In programming terms, this tends to mean checking array bounds, rather than 
scribbling randomly over memory! Sometimes these bounds are known in advance,
but always try to encapsulate these decisions so that if the bounds do need to change
you know where in the code to find them.

A particular problem for the server is that the operating system may limit the
number of open files/network connections at any time. For example, let us suppose
the limit is 16 files and suppose the server is using one for the application datafile and
one for logging. This means that at most 14 clients can be connected at once. Even
worse, say the server periodically opens the datafile to save data, but closes it between
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times. Unless the server itself keeps the number of clients below 14, it may be that 15
clients get connected, which, including the logging file, saturates the server’s allowable
files. Now, when the server comes to save the data, it cannot open the datafile.
Obviously, the groupware writer must at least be aware of these limits in order to
prevent such a disaster.

There are a few solutions to this problem. The operating system limit can be
altered; for example, in MS-DOS this involves changing the ‘FILES=’ line in the 
file ‘CONFIG.SYS’. However, this is more difficult under UNIX, and in general 
the limits and how to alter them are very system dependent. The server can avoid the
use of permanent network connections and instead use datagram protocols, where
the client and the server are only connected while a message is being exchanged.
Finally, there may be more system-dependent ‘tricks’, for example forking extra
servers under UNIX.

Testing for robustness

Often the functionality of an application is tested by having several windows on the
same workstation, each acting as a different ‘user’. Unfortunately, this is unlikely to
catch the sort of problems discussed above as it is impossible to type simultaneously
into two windows. A more violent approach is required; in fact, the general rule 
is . . . mistreat it.

Crashes and major faults can be simulated. Try rebooting a workstation or pulling
out a network connector.3 To be slightly more gentle, you could simply kill a client
process and see the effect on the server (or on replicates).

Similarly, you can simulate race conditions and odd sequences by running the 
system between two workstations and then hitting keys on them simultaneously. 
A little bit of knowledge of the system will suggest the best combination.

Random input may crash your system. Push it hard at several levels. Have a group
of colleagues on different workstations type and hit mouse buttons as fast as they 
can – but log the keystrokes as you may want to recreate the resulting situations for
later debugging. Create a rogue client/replicate, which sends random, but correctly
formed, messages to the server or other replicates. Alternatively, this can be arranged
without network communications by building a test harness round a single process.
A similar, possibly less fair, approach is to send random data down the network at 
a process.

Finally, the real acid test. Offer a group of computer science undergraduates a
drink each if they can break the system – you will lose your money, of course.

Unfortunately, discovering you have a fault is only the first step – correcting it is
more difficult still. Modular and defensive programming and logging of communica-
tions so that errors can be recreated are a good beginning, but experience and hard
work are the final answer.

3 But beware, check with other users and your system administrator first – this may crash some operat-
ing systems.
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SUMMARY

We discussed groupware under three headings: computer-mediated communica-
tion, meeting and decision support systems, and shared applications and artifacts.
Computer-mediated communication supports direct interpersonal contact. Some
CMC systems are asynchronous, including traditional email and structured messag-
ing systems. Various forms of video communication support synchronous commun-
ication, such as video conferences, direct person-to-person video or social contact.

Meeting and decision support systems are aimed at helping users to generate and
record new ideas and reach decisions. Meeting rooms use large shared screens to
support synchronous co-located collaboration. Participants’ own terminals are often
WYSIWIS and they may use group pointers to support deictic reference. When the
participants are remote, various forms of work surface can be used instead. Finally,
for asynchronous working, systems like gIBIS help designers to record their decisions
and why they came by them.

Shared window systems and PCs allow non-collaboration-aware applications 
to be used by a group. However, collaboration-aware applications such as shared
editors, diaries and co-authoring systems can better support the use of shared
objects. Shared objects may even be the sole means of communication. Whether or
not there is additional direct communication, we must always recall the importance
of communication through the artifact.

Several frameworks for classifying groupware were discussed. The time/space
matrix classifies systems by where and when the participants are working. However,
we saw that the term ‘asynchronous’ is rather ambiguous. Shared information may
be shared at different granularities, and at different levels of detail. Also, different
data structures are better suited to different situations. Finally, we discussed the
framework used to structure the discussion in this chapter. This looks at the dif-
ferent paths of communication between the participants and the artifacts of work
and at which aspects are automated: direct communication, shared understanding, 
deictic reference, control of and feedback from the object. A good groupware system
will not just automate one path, but do so in a way which supports the whole process
of cooperation. As an example, bar codes merely automate deixis, but are important 
in facilitating transnational collaboration.

Groupware systems are more complex than single-user ones. We considered
architectures for synchronous groupware, client–server and replicated, and for
shared windowed systems. The choice of architecture combined with network delays
influences the sort of feedback participants receive of their own actions. As import-
ant, it also influences the feedthrough they experience of other participants’ actions.
The widgets supplied by graphical toolkits are designed with single-user applications
in mind, and so the groupware designer must either fit around these limitations or
program group widgets from scratch. Finally, it is very important that groupware 
is robust. Problems are more likely to occur owing to the increased complexity, but
are more damaging, because of the large number of people affected.

19.8
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EXERCISES

19.1 We discussed the use of a group pointer in a shared editor with a shared view.
Consider the advantages and problems of using a group pointer when participants have differ-
ent views. How do you show the pointer if it is outside part of the document you are working
on? Think also about the issues when the system is a hypertext-based co-authoring system. Is
there any use for a group pointer in this case?

19.2 Repeat the worked exercise in Section 19.6.1, but this time look for shared data on your system.
Is the data updated by one person and viewed by many, or have you got files or databases which
are updated by several people? If the latter, find out what methods are used to prevent two
users changing the same data at the same time. There may be no mechanism at all, a computer-
ized one (for example, locking) or a social protocol (for example, a floppy disk is passed around).

19.3 (a) Consider the widespread use of email. What explanations are there for its success and 
what lessons can be learned from its development to assist the design of other computer-
mediated communication systems?

(b) What are the main issues that need to be addressed to ensure the success of email in an 
organization?

19.4 How do you think groupware is likely to affect our lives in the future? Justify your answer with
examples.

19.5 (a) Low bandwidths and single media groupware systems reduce the transmission of back 
channels. How does this affect communication?

(b) Emoticons are used in text-based communication to provide information about the mood
of the sender. Is there any need for such augmentation in audio or video conferencing?
Justify your answer.

19.6 How effective is the time/space matrix as a tool for classifying and analyzing groupware?

19.7 What is meant by the terms control and feedback and feedthrough in the classification by function
framework?

19.8 Distinguish between direct and indirect communication. How can each be supported in 
groupware?

19.9 Identify three types of shared application. What are the main issues that need to be addressed
in the design of these applications?

19.10 How far do technological factors limit what groupware can achieve at present? Suggest an 
example of groupware that is limited by factors other than technology.

19.11 What are the two main architectures used for groupware systems? Identify the strengths and
limitations of each and suggest how they can be resolved.

19.12 A company has offices in New York and London. They are considering using some form of video
to supplement their existing email, fax and telephone communications.

(a) Discuss the options available and potential advantages and problems they may encounter.
(b) How would your advice be changed if the two offices were in London and Sydney Australia?
(c) Email and video are ‘just’ electronic substitutes for face-to-face conversation. What radically

different forms of groupware might the company consider? Justify your answer using exam-
ples and appropriate theoretical frameworks.
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UBIQUITOUS COMPUTING

AND AUGMENTED REALITIES

OV E RV I E W

n The traditional computer is a glass box – all you can do
is press buttons and see the effect.

n Ubiquitous computing and augmented reality systems
break this glass box by linking the real world with the
electronic worlds.

n Applications include:
– ubiquitous computing
– virtual reality
– augmented reality
– information visualization.

20
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INTRODUCTION

There are several ways in which the earliest assumptions of HCI are challenged. For
example, we no longer assume there is a single user; rather, we consider groups 
and larger organizational concerns when discussing interactions. In this chapter, 
we challenge another assumption concerning the form factor of the computing
device. Traditionally, we think of computers as a glass box, a workstation with key-
board, mouse and monitor sitting on a desk that we seek out when we want to do
some work. Since the late 1980s, this traditional form factor has been expanded to
include a variety of more mobile devices and computing services that are distributed
throughout the physical world and more tightly integrated with it. The trend is
towards a ubiquitous or pervasive computing experience, in which computing
devices become so commonplace that we do not distinguish them from the ‘normal’
physical surroundings. Improved display technologies give us the ability to augment
the physical world with electronic information through head-mounted displays or
steerable projection surfaces. We have also seen display technologies that provide
complete virtual replacements of the physical world, creating a so-called virtual 
reality.

In this chapter, we will review the progress and challenges in the areas of ubiquit-
ous computing, augmented reality, virtual reality and visualization.

UBIQUITOUS COMPUTING APPLICATIONS RESEARCH

We first introduced the notion of ubiquitous computing (or pervasive computing) in
Chapter 4. The interest in ubiquitous computing has surged over the past few years,
thanks to some influential writings and plenty of experimental work. The defin-
ing characteristic of ubiquitous computing is the attempt to break away from the 
traditional desktop interaction paradigm and move computational power into the
environment that surrounds the user. Rather than force the user to search out and
find the computer’s interface, ubiquitous computing suggests that the interface itself
can take on the responsibility of locating and serving the user.

Mark Weiser is credited with coining the phrase ubiquitous computing (or 
ubicomp) when he put forth a vision of people and environments augmented with 
computational resources that provide information and services when and where
desired [369]. Though his vision has excited many technologists, it is important to
realize that the main motivation behind Weiser’s vision was centered on the impact
ubicomp would have on the human experience:

Machines that fit the human environment instead of forcing humans to enter theirs
will make using a computer as refreshing as a walk in the woods.

(Weiser, 1991)

20.2

20.1
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We wanted to put computing back in its place, to reposition it into the environmental
background, to concentrate on human-to-human interfaces and less on human-to-
computer ones.

(Weiser et al., 1999)

Inspired by the social scientists, philosophers, and anthropologists at PARC, we have
been trying to take a radical look at what computing and networking ought to be 
like. We believe that people live through their practices and tacit knowledge so that the
most powerful things are those that are effectively invisible in use. This is a challenge
that affects all of computer science. Our preliminary approach: Activate the world.
Provide hundreds of wireless computing devices per person per office, of all scales
(from 1″ displays to wall sized). This has required new work in operating systems, 
user interfaces, networks, wireless, displays, and many other areas. We call our work
‘ubiquitous computing’. This is different from PDAs, dynabooks, or information at
your fingertips. It is invisible, everywhere computing that does not live on a personal
device of any sort, but is in the woodwork everywhere.

(Weiser, 1994)

What is ubiquitous computing technology? Our general working definition is 
any computing technology that permits human interaction away from a single 
workstation. This includes pen-based technology, handheld or portable devices,
large-scale interactive screens, wireless networking infrastructure, and voice or
vision technology. Realizing the human-centered vision of ubicomp with these 
technologies presents many challenges. Here we will focus on three:

n defining the appropriate physical interaction experience;
n discovering general application features;
n theories for designing and evaluating the human experience within ubicomp.

20.2.1 Defining the appropriate physical interaction experience

Ubiquitous computing inspires application development that is ‘off the desktop’. In
addition to suggesting a freedom from a small number of well-defined interaction
locales (the desktop), this vision assumes that physical interaction between humans
and computation will be less like the current desktop keyboard/mouse/display
paradigm and more like the way humans interact with the physical world. Humans
speak, gesture and use writing implements to communicate with other humans and
alter physical artifacts. The drive for a ubiquitous computing experience has resulted
in a variety of important changes to the input, output and interactions that define
the human experience with computing. We describe three of those changes in this
section.

Toward implicit input

Input has moved beyond the explicit nature of textual input from keyboards and
selection from pointing devices to a greater variety of data types. As we will show,
this has resulted in not only a greater variety of input technologies, but also a 
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shift from explicit means of human input to more implicit forms of input [315]. By
implicit input we mean that our natural interactions with the physical environment
provide sufficient input to a variety of attendant services, without any further user
intervention. Recall the discussion of levels of intention in Chapter 18 (Section 18.4),
some implicit interaction is intentional, for example tipping a PDA to move between
pages. However, implicit interaction is most radical when it allows low intention 
and incidental interaction. For example, walking into a space is enough to announce
one’s presence and identity in that location.

Computer interfaces that support more natural human forms of communication
(e.g. handwriting, speech and gestures) are beginning to supplement or replace 
elements of the graphical user interface interaction paradigm. The emerging area 
of perceptual interfaces is being driven by long-standing research communities in
computer vision and multi-modal recognition technologies (mainly handwriting
and speech). Pen-based interaction, unsuccessfully rushed to the market in the early
1990s, is also experiencing resurgence. Large-scale touch-interactive surfaces, using
technologies such as capacitive coupling have made it possible to create multi-
person interactive surfaces on tables and walls (see Figure 20.1). Recognition of free-
hand writing is improving, but more significantly, mass adoption has followed the
introduction of less sophisticated and more robust recognition technologies, such as
Grafiti. We have even seen compelling examples of how voice and pen input can be
used effectively in applications without requiring any recognition at all (e.g. [174]).

Figure 20.1 The DiamondTouch input technology from Mitsubishi Electric Research Lab (MERL) uses
capacitive coupling through humans to provide a large-scale input surface for multiple simultaneous users.
See www.merl.com/projects/DiamondTouch/ for more details. Source: Courtesy of Mitsubishi Electric
Research Laboratories, Inc.
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These recognition technologies are some examples of interpreting meaning from
sensed signals of human activity. There are many other ways to infer information
about people and environments by sensing a variety of other physical signals. There
have been many recent advances in sensing the physical world; the significance here
is that sensing and interpretation of human activity provides a more implicit notion
of input to an interactive system. For example, many researchers have investigated
how simple sensors such as RFID (the technology behind the security tags used on
library books, clothes in shops, etc.), accelerometers, tilt sensors, capacitive coupling,
infrared range finders and others can be incorporated into artifacts to increase the
language of input from the user to control that artifact (see Figure 20.2).

Invisibility of computing, from the human perspective, can start when we are 
able to determine an individual’s identity, location, affect or activity through her
mere presence and natural interactions within an environment. The union of explicit
and implicit input defines the context of interaction between the human and the
environment, a theme we will return to in the next section on emergent application
features.

Toward multi-scale and distributed output

The integration of ubiquitous computing capabilities into everyday life also requires
novel output technologies and techniques. Designers of targeted information appli-
ances, such as personal digital assistants and future home technologies, must address
the form of the technology, including its aesthetic appeal. Output is no longer 

Figure 20.2 Two examples of simple sensing embedded into devices. On the 
left, the Listen Reader from Palo Alto Research Center [20] uses electric field
sensors located in the book binding to sense the proximity of the reader’s hands and
control audio parameters, while RFID tags embedded in each page allow fast, robust
page identification. Picture courtesy Palo Alto Research Center. On the right, is an
experimental PDA platform used at Microsoft Research to investigate how a variety
of simple sensors can improve the interaction between a user and various handheld
applications [173]. Picture courtesy Ken Hinckley
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exclusively in the form of self-contained desktop/laptop visual displays that demand
our attention. A variety of sizes or scales of visual displays, both smaller and larger
than the desktop, are being distributed throughout our environments. More import-
antly, we are seeing multiple modalities of information sources that lie more at the
periphery of our senses and provide qualitative, ambient forms of communication.

Weiser described the form factor ubicomp technology in three scales – the inch,
the foot and the yard. The middle (foot) scale is similar to the standard laptop and
desktop displays. Many of us have one or a small number of these devices and we
largely use them in stationary settings. A new generation of tablet-like portable pen-
based computers, devices that rival the experimental MPAD prototypes developed at
Xerox PARC, hit the market in 2002. Pagers, cellular phones and PDAs, handheld
displays with relatively low resolution today represent the small end of the scale
(inch). We carry around an increasing number of these display devices at all times.
The large end of the scale (yard) is now represented by high-resolution wall-sized
displays that are created by effectively stitching together multiple low-resolution
projected displays, such as the Stanford Interactive Mural [184], see Figure 20.3, or
the Princeton Display Wall [67].

As these displays continue to proliferate in number and variety, two important
trends have emerged. First, we want to move information between separate displays
easily and coordinate the interactions between multiple displays. This was initially

Figure 20.3 The figure on the left is the Stanford Interactive Mural, an example 
of a large-scale interactive display surface created by tiling multiple lower-resolution
projectors. Picture courtesy François Guimbretière. The figure on the right is an
example of an ambient display, the Water Lamp from Ishii’s Tangible Media Group at
the MIT Media Lab. Light shines upwards through a pan of water, which is actuated 
by digitally controlled solenoids that can tap the water and cause ripples. External
information can be used to drive the tapping of the solenoids. Source: Courtesy of
Hiroshi Ishii, MIT Media Lab. Photograph by Andrew Daly
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explored by Rekimoto’s ‘pick-and-drop’ demonstration [302], and further developed
in the Stanford Interactive Room [139]. Secondly, as displays proliferate, we desire
them to be less demanding of our attention. Weiserian invisibility comes through
design of output that provides for peripheral awareness of information out of the
foreground of our conscious attention.

The trend toward peripheral output has been explored for a particular class of 
displays, called ambient. Ambient displays require minimal attention and cognitive
effort, and are thus more easily integrated into a persistent physical space. One of 
the first ambient displays, the Dangling String [372], was invented at Xerox PARC 
by the artist Natalie Jeremijenko. Using analog sensing of network traffic from 
the cabling in the ceiling, a motor drove the spin of a long string. The more traffic,
the faster the rotation. During high traffic periods, the whir of the string was faintly
audible as well.

The Dangling String shares many features with subsequent efforts in ambient 
displays. A data source drives the abstract representation such that the output can 
be monitored by the user’s peripheral perception. The data source is generally infor-
mation that is of medium to low priority, but beneficial for the user to be aware of,
perhaps for some opportunistic action. As these displays are meant to be persistently
available in the environment, they are often designed to be aesthetically appealing
and novel (for example, the Water Lamp in Figure 20.3). Other examples of ambient
displays include ambientROOM, which projects information about colleagues as
pinpoints of light on the wall [190], Audio Aura, which encodes the arrival of incom-
ing email as auditory cues in a mobile device [249], and Kandinsky, which assembles
images triggered from keywords in information bulletins into an aesthetically pleas-
ing and intriguing collage [138].

Though our experience with computing output is dominated by the use of the
visual channel, examples such as Audio Aura demonstrate how other modes of out-
put can be effective at communicating ambient information. Other forms of output
include actuation of small devices. With the introduction of simple programming
tools for dealing with motors and other actuators, such as Phidgets [156], mechan-
ical actuation to drive distributed output devices will increase.

Seamless integration of physical and virtual worlds

An important feature of ubicomp technology is that it attempts to merge computa-
tional artifacts smoothly with the world of physical artifacts. There have been plenty
of examples demonstrating how electronic information can be overlaid upon the real
world, thus producing an augmented reality [130]. An example of such augmented
reality is NaviCam, a portable camera/TV that recognizes 2D glyphs placed on
objects and can then superimpose relevant information over the object for display 
on the TV screen (Figure 20.4 shows a shot of what the portable TV shows the 
user). This form of augmented reality only affects the output. When both input 
and output between are intermixed, as with the DigitalDesk [374], see Figure 20.4,
we begin to approach the seamless integration of the physical and virtual worlds.
Researchers have suggested techniques for using objects in the physical world to
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DESIGN FOCUS

Ambient Wood – augmenting the physical

Birds sing and dappled light breaks through the leaves. In a high tree branch a half-open laptop com-
puter is wedged and a surreal structure of thin steel stands near a clearing. Then over the bird song
comes the sound of children’s laughter.

Jenny and Caroline run excitedly into the clearing. A field trip is always better than a day in school!
Jenny is holding a small device. It is like a PDA, but at one end is a long probe (and yes the teacher did
tell them not to run with it!). They push the device into the ground in the center of the clearing. It tells
them the moisture level and light level. ‘Let’s try sticking it in the tree bark’ says Caroline. ‘OK’, says
Jenny, ‘but I want to try it at the edge of the trees first’.

‘What’s this?,’ says Caroline when she sees the steel contraption. Tree-like itself it has ‘branches’ with
small glass Petri dishes. There are various things to put in the Petri dishes. One is a sample of moss.
She puts this in and looks into the black hooded box at eye level. It is a bit like one of those old hooded
cameras. Under the hood is a small screen, just big enough for two or three people to see it. Because
she has put the moss in the Petri dish it shows a small clip about the growth of moss.

As they wander further into the wood, they suddenly hear a strange, otherworldly sound and the
screen on their PDA shows a picture of a butterfly feeding on a flower head. The sound they are 

manipulate electronic artifacts, creating so-called graspable [136] or tangible [189]
user interfaces. Sensors attached to devices themselves provide ways for physical
manipulations of those devices to be interpreted appropriately by the applications
running on those devices [164, 173], see Figure 20.2.

Figure 20.4 On the left, the DigitalDesk prototype integrating physical and virtual
desktop environments with the aid of projection and vision technology [374]. Source:
© 1993 ACM, Inc. Reprinted by permission. On the right, the NaviCam system which
recognized 2D glyphs on objects and then superimposed additional information over
that object [303]. Source: Courtesy of Sony Computer Science Laboratories, Inc.



20.2.2 Application themes for ubicomp

Many applications-focussed researchers in HCI seek the holy grail of ubicomp, the killer
app that will cause significant investment in the infrastructure that will then enable
a wide variety of ubicomp applications to flourish. It could be argued that person–
person communication is such a killer app for ubicomp, as it has caused a large
investment in environmental and personal infrastructure that has moved us close
(though not entirely) to a completely connected existence. Whether or not personal
communication is the killer app, the vision of ubicomp from the human perspective
is much more holistic. It is not the value of any single service that will make com-
puting a disappearing technology. Rather, it is the combination of a large range of
services, all of which are available when and as needed and all of which work as desired
without extraordinary human intervention. A major challenge for applications
research is discovering an evolutionary path toward this idyllic interactive experience.

The brief history of ubicomp demonstrates some emergent features that appear
across many applications. One feature is the ability to use implicitly sensed context
from the physical and electronic environment to determine the correct behavior 

hearing is an amplified recording of nectar being sucked through the butterfly’s proboscis – like a giant
drinking straw!

This rich educational experience is supported by technology. The laptop wedged in the tree is acting
as a wireless network repeater carrying the moisture and temperature readings to the resource tent
where they will discuss their findings as a class later. The location of each reading is captured using a
GPS receiver on each PDA. The steel contraption, the ‘periscope’, knows which images to show the
children as each object is RFID tagged and the butterfly sound is triggered when their PDA comes close
enough to a small beacon buried in the leaves.

The Ambient Wood is an experience project of the Equator project.

See the book website for an extended case study: /e3/casestudy/ambient-wood/
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Photographs courtesy of Yvonne Rogers
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of any given service. Context-aware computing demonstrates promise for making
our interactions with services more seamless and less distracting from our everyday
activities. Applications can be made to just work right when they are informed about
the context of their use. Another feature of many ubicomp applications is the ability
to easily capture and store memories of live experiences and serve them up for later
use. The trajectory of these two applications themes coupled with the increasing
exploration of ubiquitous computing into novel, non-work environments, points to
the changing relationship between people and computing, and thus the changing
purpose of ubicomp applications. We describe this newer trajectory, coined everyday
computing, following a discussion of the two more established themes.

Context-aware computing

Two compelling early demonstrations of ubicomp were the Olivetti Research Lab’s
Active Badge [361] and the Xerox PARCTab [362], both location-aware appliances.
These devices leverage a simple piece of context, user location, and provide valuable
services (automatic call forwarding for a phone system, automatically updated maps
of user locations in an office). This technology was also the basis for the Pepys auto-
matic diary system described in Chapter 18 (Section 18.4.1). These simple location-
aware appliances are perhaps the first demonstration of linking implicit human
activity with computational services that serve to augment general human activity.

Location of identifiable entities (usually people) is a very common piece of con-
text used in ubicomp application development. The most widespread applications
have been GPS-based car navigation systems and handheld ‘tour guide’ systems that
vary the content displayed (video or audio) by a handheld unit given the user’s phys-
ical location in an exhibit area [6, 68]. For example, The Sentient Computing Project
uses a 3-D ultrasonic indoor location system to track each worker in a building and
so maintain a map of office worker locations that helps coworkers find each other
and talk by phone.

Of course, there is more to context than position (where) and identity (who).
Although a complete definition of context remains an elusive research challenge, 
it is clear that in addition to who and where, context awareness involves:

When With the exception of using time as an index into a captured record or sum-
marizing how long a person has been at a particular location, most context-driven
applications are unaware of the passage of time. Of particular interest are the rel-
ative changes in time as an aid for interpreting human activity. For example, brief
visits at an exhibit could be indicative of a general lack of interest. Additionally,
when a baseline of behavior can be established, action that violates a perceived
pattern would be of particular interest. For example, a context-aware home might
notice when an elderly person deviated from a typically active morning routine.

What The interaction in current systems either assumes what the user is doing or
leaves the question open. Perceiving and interpreting human activity is a diffi-
cult problem. Nevertheless, interaction with continuously worn, context-driven
devices will probably need to incorporate interpretations of human activity to be
able to provide useful information. One strategy is to incorporate information
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about what a user is doing in the virtual realm. What application is he using?
What information is he accessing? ‘Cookies’, which describe people’s activity on
the world wide web, are an example that has both positive and negative uses.
Another way of interpreting the ‘what’ of context is to view it as the focus of 
attention of one or more people during a live event. Knowledge of the focus of
attention at a live event can inform a better capture of that event, the topic of the
next subsection.

Why Even more challenging than perceiving ‘what’ a person is doing is under-
standing ‘why’ they are doing it. Sensing other forms of contextual information
that could give an indication of a person’s affective state, such as body temper-
ature, heart rate and galvanic skin response, may be a useful place to start.

An obvious challenge of context-aware computing is making it truly ubiquitous.
Having certain context, in particular positioning information, has been shown 
useful. However, there are few truly ubiquitous, single-source context services.
Positioning is a good example. GPS does not work indoors, and is even suspect in
some urban regions. There are a variety of indoor positioning schemes as well, with
differing characteristics in terms of cost, range, granularity and requirements for 
tagging, and no single solution is likely to ever meet all requirements.

Automated capture and access

Much of our life in business and academia is spent listening to and recording, 
more or less accurately, the events that surround us, and then trying to remember

DESIGN FOCUS

Exploring intimate computing in the arts

Ubiquitous and related technologies push the boundaries of ‘normal’ interaction.
Some experiments (such as Classroom 2000 opposite) are both informative about
future interactions and also clearly useful now, but most struggle between the two
– artefacts designed apparently for utilitarian purposes, but clearly not what any-
one would really want to use. We simply understand too little about the way the
future will be, but can’t know unless we experiment more radically!

One way through this impasse is through performance and installation arts. Freed
of the constraint of being ‘useful’ it is possible to experiment with radically new
modes of interaction. One group, thePooch, have explored various limits of inter-
action including what Jenn Sheridan calls ‘computing intimacies’ – technologies
such as wearable and personal environments which are not just physically but
emotionally felt as ‘close’ to you. The schizophrenic cyborg is one performance
that breaks the normal boundaries of self.

See /e3/casestudy/arts/ and www.thepooch.com/
Photograph courtesy
of Peter Phillips
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the important pieces of information from those events. There is clear value, and
potential danger, in using computational resources to augment the inefficiency of
human record taking, especially when there are multiple streams of related informa-
tion that are virtually impossible to capture as a whole manually. Tools to support
automated capture of and access to live experiences can remove the burden of doing
something humans are not good at (i.e. recording) so that they can focus attention

DESIGN FOCUS

Classroom 2000/eClass – deploying and evaluating ubicomp

An influential case study in deployment and evaluation of a ubicomp application is the Classroom 2000
system, developed at Georgia Tech [2]. The project began in July 1995 with the intent of producing a
system that would capture as much of the classroom experience as possible to facilitate later review
by both students and teachers. In many lectures, students have their heads down, furiously writing
down what they hear and see as a future reference. While some of this writing activity is useful as a
processing cue for the student, it was desirable from the student and teacher perspective to afford the
opportunity for students to lift their heads occasionally and engage in the lecture experience. The cap-
ture system was seen as a way to relieve some of the note-taking burden. (See also Figures 21.5 and
21.6 and a description of the e-learning issues of Classroom 2000/eClass in Chapter 21.)

To test the feasibility of this hypothesis quickly, an environment for capture was implemented within
six months and used to support the capture of an entire course to observe whether the initial hypo-
thesis was worth testing more vigorously. Some very valuable lessons were learned during this first
extended experience. The initial experiments included student note-taking devices that were clear dis-
tractions to the students. Support for private student note taking was abandoned, only to be resumed
two years later when the technology had caught up.

To understand the impact of this capture system on teaching and learning, it would have to be used by
many more students and teachers in a wider variety of courses. This required significant engineering
effort to create a robust and reliable capture system that by early 1997 was able to support multiple
classes simultaneously. During a three-year experimental period ending in mid-2000, over 100 courses
were supported for 30 different instructors.

This extended deployment made possible an extensive quantitative analysis that revealed how such an
automated capture and access system impacts the educational experience once it has been incorporated
into the everyday experience [48]. As a direct result of these deeper evaluations, we know that the sys-
tem encourages 60% of its users to modify their in-class note-taking behavior. We also know that not
all of this modified behavior is for the better. Taking no notes, for example, is not a good learning prac-
tice to reinforce. We know that it is time to reintroduce student note-taking units that can personal-
ize the capture experience and also encourage better note-taking practices. We also know to facilitate
more content-based retrieval and synchronized playback of the lecture experience. These insights have
motivated further research efforts and established a long-term research project, eClass.

The Classroom 2000/eClass experience demonstrates the importance of substantial deployment in
order to be able to evaluate ubicomp systems effectively. It is only when these systems become part of
everyday life that we see the ways in which they are really used.
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on activities they are good at (i.e. indicating relationships, summarizing and 
interpreting).

We define capture and access as the task of preserving a record of some live experi-
ence that is then reviewed at some point in the future. Vannevar Bush was perhaps
the first to write about the benefits of a generalized capture and access system when
he introduced the concept of the memex [51]. The memex was intended to store the
artifacts that we come in contact with in our everyday lives and the associations that
we create between them. Over the years, many researchers have worked toward this
vision. As a result, many systems have been built to capture and access experiences
in classrooms, meetings and other live experiences.

The earliest work on automated capture was explored at Xerox PARC to support
meeting capture, building on their experience in collaborative meeting support sys-
tems (see Chapter 19, Section 19.4.2). Since then a number of capture applications
have been explored in a variety of environments including education and project
management in support of individuals or groups [349].

Toward continuous interaction

Providing continuous interaction moves computing from a localized tool to a con-
stant presence. A new thread of ubicomp research, everyday computing, promotes
informal and unstructured activities typical of much of our everyday lives. Familiar
examples are orchestrating daily routines, communicating with family and friends,
and managing information.

The focus on activities as opposed to tasks is a crucial departure from traditional
HCI design. The majority of computer applications support well-defined tasks that
have a marked beginning and end with multiple subtasks in-between. Take word
processing as an example. Word processing features are tuned for starting with a
blank document (or a template), entering text, formatting, printing and saving.
These applications are not well suited to the more general activity of writing, encom-
passing multiple versions of documents where text is reused and content evolves
over time.

The emphasis on designing for continuously available interaction requires
addressing these features of informal, daily activities:

n They rarely have a clear beginning or end so the design cannot assume a common
starting point or closure requiring greater flexibility and simplicity.

n Interruption is expected as users switch attention between competing concerns.
n Multiple activities operate concurrently and may need to be loosely coordinated.
n Time is an important discriminator in characterizing the ongoing relationship

between people and computers.
n Associative models of information are needed, as information is reused from

multiple perspectives.

Of course, activities and tasks are not unrelated to each other. Often an activity
will consist of a number of tasks, but the activity itself is more than these component
parts for the reasons listed above. For example, communication activities contain
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well-defined tasks such as reading a message or composing a reply. The interaction
falters when the task refers to the larger activity: how does this new message relate 
to previous messages from this person? What other issues should be included in 
the reply? The challenge in designing for activities is encompassing these tasks in an
environment that supports continuous interaction.

20.2.3 Understanding interaction in ubicomp

The shift in focus inherent within ubicomp from the desktop to the surrounding
environment mirrors previous work in HCI and CSCW. As the computer has
increasingly ‘reached out’ in the organization, researchers have needed to shift their
focus from a single machine engaging with an individual to a broader set of organ-
izational and social arrangements and the cooperative interaction inherent in these
arrangements.

We have seen aspects of this change in Chapters 13 and 14 looking at organiza-
tional, social and collaborative aspects, and also in Chapter 18 where we have already
considered aspects of the physical environment and in particular the extreme end of
low-intention, incidental interaction.

Many of these models and methods are applicable to ubicomp with its emphasis
on integrating numerous devices in one setting.

Knowledge in the world

Traditionally, research and evaluation efforts in HCI have been informed by the
Model Human Processor theory of human cognition and behavior [56]. This model
focusses on internal cognition driven by the cooperation of three independent units
of sensory, cognitive and motor activity where each unit maintains its own working
store of information. As the application of computers has broadened, designers have
turned to models that consider the nature of the relationship between the internal
cognitive processes and the outside world. Designing for a balance between ‘know-
ledge in the world’ versus ‘knowledge in the head’ is now a common maxim in the
design community [186, 266].

Three main theories that focus on the ‘in the world’ nature of knowledge are being
explored within the ubicomp community as guides for future design and evaluation:
activity theory, situated action and distributed cognition.

Activity theory

Activity theory is the oldest of the three, building on work by Vygotsky [358]. 
The closest to traditional theories, activity theory recognizes concepts such as 
goals (‘objects’), actions and operations. However, both goals and actions are fluid
based on the changing physical state of the world instead of more fixed, a priori
plans. Additionally, although operations require little to no explicit attention, such
as an expert driver motoring home, the operation can shift to an action based on
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changing circumstances such as difficult traffic and weather conditions. Activity 
theory also emphasizes the transformational properties of artifacts that implicitly
carry knowledge and traditions, such as musical instruments, cars and other tools.
The behavior of the user is shaped by the capabilities implicit in the tool itself [252].
Ubiquitous computing efforts informed by activity theory, therefore, focus on 
the transformational properties of artifacts and the fluid execution of actions and
operations.

Situated action and distributed cognition

Theories of situated action have already featured several times in Chapters 13 and 14,
and distributed cognition is discussed in detail in Section 14.5.3. Recall that both
reject the ‘pre-planned goals giving rise to actions’ model inherent in MHP.

Situated action [334] emphasizes the improvisational aspects of human behavior
and de-emphasizes a priori plans that are simply executed by the person. In this
model, knowledge in the world continually shapes the ongoing interpretation and
execution of a task. Ubiquitous computing efforts informed by situated action also
emphasize improvisational behavior and would not require, nor anticipate, the user
to follow a predefined script. The system would aim to add knowledge to the world
that could effectively assist in shaping the user’s action, hence an emphasis on con-
tinuously updated peripheral displays. Additionally, evaluation of this system would
require watching authentic human behavior and would discount post-task inter-
views as rationalizations of behavior that is not necessarily rational.

Distributed cognition also de-emphasizes internal human cognition, but in this
case, it turns to a systems perspective where humans are just part of a larger system.
Of all three theories, distributed cognition plays the greatest attention to knowledge
in the world, as much of the information needed to accomplish a system’s goal is
encoded in the individual objects. For example, in Chapter 18 (Section 18.3), we saw
how objects act as triggers prompting users to do things and also how they act as
placeholders keeping track of where they are in a task. Ubiquitous computing efforts
informed by distributed cognition, focus on designing for a larger system goal, in
contrast to the use of an individual appliance and emphasize how information is
encoded in objects and how that information is translated, and perhaps transmitted,
by different users.

Understanding human practice: ethnography and cultural probes

Any form of model or theory by its nature is limited and the above theories all
emphasize the very rich interactions between people and their environments that are
hard to capture in neat formulae and frameworks. Office procedures and more 
formal work domains can be modeled using more rigid methods such as traditional
task analysis, but as we saw in Chapter 18, even these have rich aspects that need
additional modeling. When one looks more closely at how people actually work
there is a great complexity in everyday practices that depends finely on particular 
settings and contexts.
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Weiser also emphasized the importance of understanding these everyday practices
to inform ubicomp research:

We believe that people live through their practices and tacit knowledge so that the most
powerful things are those that are effectively invisible in use. [our emphasis]

(Weiser, 1994)

The challenge for ubicomp designers is to uncover the very practices through which
people live, and to make these invisible practices visible and available to the developers
of ubiquitous computing environments. Ethnography (see Chapter 13, Section 13.3.4)
has emerged as a primary approach to address the need to gain rich understandings
of a particular setting and the everyday practices that encompass these settings.

In the context of ubicomp, the goal of an ethnographic investigation is to provide
these descriptions and analysis of everyday life to the IT designers and developers 
so that ubicomp environments seamlessly mesh with the everyday practices that
enscapsulate the goals, attitudes, social relationships, knowledge and language of 
the intended setting. These techniques have been applied to inform design of social
communications devices for the home [175] and to enhance the social connection
between older people and their extended families [251].

Perhaps a more intriguing method of conveying the nature of settings to develop-
ers of future technologies has emerged from an art and design tradition. The work 
of Gaver et al. [144] has explored the use of cultural probes (see Design Focus 
in Chapter 5, Section 5.4) to collect information from settings in order to inspire
the development of new digital devices. Unlike ethnography which focusses on the
everyday and routine nature of the setting, cultural probes seek to uncover the 
emotional, the unusual and even the spiritual in order to inspire designers.

20.2.4 Evaluation challenges for ubicomp

We must also assess the utility of ubicomp solutions. Researchers have only recently
begun to address the development of assessment and evaluation techniques that
meet the demands of ubicomp. One reason for the relatively slow development of
these techniques is the gradual evolution of the vision of ubiquitous use of techno-
logy. In order to understand the impact of ubicomp on everyday life, we navigate 
a delicate balance between prediction of how novel technologies will serve a real
human need and observation of authentic use and subsequent co-evolution of
human activities and novel technologies.

Formative and summative evaluation of ubicomp systems is difficult and repre-
sents a real challenge for the ubicomp community. With the notable exception of the
work at Xerox PARC on the use of the Tivoli capture system and at Georgia Tech
with the Classroom 2000/eClass system (see Design Focus earlier in the chapter),
there has been surprisingly little research published from an evaluation or end-user
perspective in the ubicomp community. A number of significant challenges need to
be addressed in order to develop appropriate assessment methods and techniques.

The shift away from the desktop inherent within the ubicomp vision also repres-
ents a shift away from the office and the managed structuring of work inherent
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within these environments. Much of our understanding of work has developed from
Fordist and Taylorist principles on the structuring of activities and tasks. Evaluation
within HCI reflects these roots and is often predicated on notions of task and the
measurement of performance and efficiency in meeting these goals and tasks.

However, it is not clear that these measures can apply universally across activities
when we move away from structured and paid work to other activities. For example,

DESIGN FOCUS

Shared experience

You are in the Mackintosh Interpretation Centre in an arts center in Glasgow, Scotland. You notice a
man wearing black wandering around looking at the exhibits and then occasionally at a small PDA he is
holding. As you get closer he appears to be talking to himself, but then you realize he is simply talking
into a head-mounted microphone. ‘Some people can never stop using their mobile phone’, you think.
As you are looking at one exhibit, he comes across and suddenly cranes forward to look more closely,
getting right in front of you. ‘How rude’, you think.

The visitor is taking part in the City project – a mixed-reality experience. He is talking to two other
people at remote sites, one who has a desktop VR view of the exhibition and the other just a website.
However, they can all see representations of each other. The visitor is being tracked by ultrasound and
he appears in the VR world. Also, the web user’s current page locates her in a particular part of the
virtual exhibition. All of the users see a map of the exhibition showing where they all are.

You might think that in such an experiment the person actually in the museum would take the lead, but
in fact real groups using this system seemed to have equal roles and really had a sense of shared experi-
ence despite their very different means of seeing the exhibition.

See the book website for a full case study: /e3/casestudy/city/

City project: physical presence, VR interfaces and web interface. Source: Courtesy of 
Matthew Chalmers. Note: City is an Equator project
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it is unclear how we may assess the domestic devices suggested by the Royal College
of Art [143] or the broad range of devices to emerge from Philips’ Vision of the
Future [286]. This shift away from the world of work means that there is still the
question of how to apply qualitative or quantitative evaluation methods. Answer-
ing this question requires researchers to consider new representations of human
activity and to consider how to undertake assessment that broadens from existing
task-oriented approaches. Although many researchers have investigated the use of
observational, and semi-structured interviews, the lack of deployment of ubiquitous
environments has hampered many of these activities.

The technology used to create ubicomp systems is often on the cutting edge and 
it is difficult to create reliable and robust systems that support some activity on a
continuous basis. Consequently, a good portion of reported ubicomp applications
work remains at this level of demonstrational prototypes that are not designed to 
be robust, although there are notable exceptions, for example the SPAM system
described in Chapter 19 (Section 19.3.3). Deeper empirical evaluation results cannot
be obtained through controlled studies in a traditional, contained usability laborat-
ory. Rather, the requirement is for real use of a system, deployed in an authentic set-
ting. A number of researchers are seeking to roll out ubiquitous devices into a range
of settings, such as museums, outdoor city centers and the home. These researchers
are creating ‘living laboratories’ for ubicomp research by creating testbeds that 
support advanced research and development as well as use by a targeted user.

VIRTUAL AND AUGMENTED REALITY

Virtual reality (VR) refers to the computer-generated simulation of a world, or 
a subset of it, in which the user is immersed. It represents the state of the art in 
multimedia systems, but concentrates on the visual senses. VR allows the user to
experience situations that are too dangerous or expensive to enter ‘in the flesh’. Users
may explore the real world at a different scale and with hidden features made visible.
Alternatively, the virtual worlds that are generated may be entirely synthesized: 
realistic within themselves, but purely a manifestation of electronic structures.

The term ‘virtual reality’ conjures up an image of a user weighed down with a 
helmet or goggles, grasping, apparently blindly, into empty space. The user, isolated
within his virtual environment, moves through a simulated landscape, picking up
objects on the way. This is fully immersive VR. However, it is only one part of the
spectrum of VR, which also includes desktop VR, command and control situations,
and augmented reality, where virtuality and reality meet.

20.3.1 VR technology

The technology involved in VR is quite elaborate. The individual devices have been
discussed in Chapter 2, but now we shall see how they work together.

20.3
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Since the user has to ‘see’ a new environment, a headset is usually used in a VR
setup. With independent screens for each eye, in order to give a 3D image, the head-
set is often a large, relatively cumbersome piece of head-mounted gear. However,
smaller, lighter VR goggles are now available and may soon become only slightly
oversized spectacles.

Having to produce and render realistic images in real time requires vast amounts
of computing power, and the resources for full realism are rarely available; they may
not even exist as yet. This means that the world inhabited by the user tends to be
‘blocky’, with little variation in texture, and flat lighting. This makes the calculations
much simpler and more achievable. As far as input to VR systems is concerned, a
dataglove that captures gestural information is often used. Feedback can be incorp-
orated into the glove, so that resistance is felt when grasping a virtual object. Speech
recognition systems can also be incorporated, and, in general, audio feedback is 
utilized in some form or another. Stereo headphones are a simple piece of VR kit, 
but at the other extreme a full-body version of the dataglove is available too!

20.3.2 Immersive VR

Virtual reality can be used to produce environments that mimic our everyday world.
Architects have always used models and sketches to show clients how a building will
appear. Now they can use VR to take clients through a virtual tour of the build-
ing, fly over it from above, look at it from the streets outside, enter the doors and
walk through the corridors. Similar techniques are used to plan kitchens and even
gardens.

However, there are also many things that we cannot see, either because they are
invisible to the naked eye (heat, magnetism, gravity) or because they are too small 
or too large. Scientific and data visualization systems make use of VR technology to
expose and explore these features. In Section 20.4 we will see one example of this in
the virtual wind tunnel, which makes the airflows around an aircraft wing visible
using virtual bubble trails (see Figure 20.6). Another example is in the field of pro-
tein chemistry, where individual molecules are, of course, too small to see except 
by electron microscope.

Proteins are complex chemicals, made up of convoluted folded chains of simpler
components known as amino acids. The particular acids involved, their order in 
the chain and the nature of the folding all contribute to the particular behavior and
function of the protein. In trying to understand the behavior of particular proteins,
scientists have turned to VR techniques to help them probe the secrets of these vital
components of life. Work by Hubbard [181] has produced a VR system using a
headset and dataglove. The user dons the headset, and is immersed in a 3D world
where atomic dimensions become tangible distances and the protein exists like a ball
of hairy twine. Using the dataglove, the user can reach out into the space and grab
hold of the molecule, twisting it this way and that to appreciate its complex structure
better. The chain of amino acids can be followed from one end to the other, wind-
ing around and almost back on itself as the complex chemistry is created. A better
knowledge of the structure has allowed the scientists to understand how some very
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complex proteins work; one particular protein reacts with specific enzymes but the
reactive site is hidden deep inside the coiled structure. Data obtained during reac-
tions and used in the system have shown that the protein opens up what is effectively
a molecular trapdoor when the enzyme approaches, allowing it to dock with the
reactive site. Once seen in animated form the nature of the reaction is obvious, 
but without this technique to visualize things, the situation is much less clear. In 
the VR setup, color and shading are used in a primitive form to give dimension and
depth to the images, but work is continuing on developing efficient algorithms on
dedicated machines to allow more detailed imaging.

20.3.3 VR on the desktop and in the home

Virtual reality has been made possible by the advent of very fast high-performance
computers. Despite the exponential rise in processor speeds, high-resolution im-
mersive VR is still not available for mass-market applications, and many systems are
primarily research projects. Desktop VR is a lower-cost alternative. In desktop VR,
3D images are presented on a normal computer screen and manipulated using
mouse and keyboard, rather than using goggles and datagloves. Many readers may
have used such systems on personal computers or games consoles: flight simulators,
or interactive games such as DOOM or MYST.

This form of VR is available to many through VRML (Virtual Reality Markup
Language), which allows virtual worlds to be distributed over the web and integ-
rated with other web-based materials (Figure 20.5). VRML worlds can include static
3D objects, which the user can navigate around looking at different aspects, and
dynamic objects that move about and react when ‘touched’ by the mouse cursor. In
addition, VRML is integrated with the rest of the web by link objects, which, when
clicked, take you to another web page or VRML world. Other internet-based VR systems
are also available that allow greater interactivity and collaboration with other remote
users (see also Chapter 19). However, despite many available systems and technolo-
gies, web-based VR has not, as yet, ‘taken off ’ except for some multi-player games.

Figure 20.5 VRML – virtual reality on the web

#VRML V1.0 ascii
Separator {

Separator {   # for sphere
Material  {

emmissiveColor  0  0  1    # blue
}
Sphere  { radius 1 }

}
Transform { translation 4 2 0 }
Separator {   # for cone

Texture2 { filename "big_alan.jpg" }
Cone  {

radius 1  #  N.B. width = 2*radius
height 3

} } }
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20.3.4 Command and control

In many command and control situations, real users are at one remove from the
physical world, seeing it through windows, or cameras. The windows or video
screens can be replaced by synthesized pictures. The user operates within an im-
mediate physical environment, with real controls and instruments, but the world
outside is virtual.

One such interactive VR application in widespread use is the flight simulator. 
A full cockpit system is placed in a hydraulically supported container, with large
screens replacing the cockpit windows. Images are generated and projected onto the
screens, whilst the box can be moved rapidly in any direction by the hydraulic rams.
The visual information and physical motion simulate accurately the conditions
encountered by aircraft. Flight simulators are used extensively in pilot training pro-
grams. Landings can be practiced, with the system responding to the commands 
of the pilot; descending too fast and off to one side, the pilot will have to correct the
situation if she wishes to avoid a crash. Emergency situations can also be created, in
which aircraft system malfunctions can be artificially created in order to train the pilot
to take the correct course of corrective or life-preserving action. With VR, entertain-
ment is never far behind and this kind of system can also be found in many fun fairs!

The military is heavily involved in VR, allowing war scenarios to be fought out
with great realism, or training to be given about particular territories that are to be
infiltrated. The increased realism at this stage is designed to save lives later on, when,
by being better prepared, people are more able to cope with whatever arises. It is in
such application areas that VR has been most used since the cost of the necessary
equipment is negligible compared with the savings that can be made in terms of
human life and expensive military hardware.

20.3.5 Augmented reality

In augmented reality systems electronic images are projected over the real world – 
virtuality and reality meet. The head-up displays in many aircraft and even some
automobiles can be regarded as an example of this, but the data in such displays are
not typically connected to the objects seen through them and, hence, the blend
between virtuality and reality is quite weak.

A stronger sense of connection can be obtained using semi-transparent goggles.
Users can move around in the real world and see real objects, but computer images
are reflected off the inside of the glass and overlay the physical objects. Again, this
can be used to show unrelated information; for example, some wearable computers
allow users to read their email whilst walking around. However, the real sense of 
two worlds meeting comes when the projected image in some way links or refers to
the object it overlays. For example, one experimental system has virtual balls, which
can be picked up and thrown by the user [11]. When the virtual ball ‘hits’ the real
wall it bounces off. The balls can even bounce down a real staircase.

The great difficulty with such systems is in ensuring that the physical and virtual
world are correctly aligned, a problem called registration. If not properly registered,
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the virtual ball would either bounce short of the real wall or else appear to go through
the wall and then bounce back from the other side! Most experiments have been in
very controlled environments where the positions of real objects are known and the
user’s position and direction of gaze are detected. To be useful in practice, image-
processing techniques will often be needed. A digital camera monitors what the user
is seeing, uses image recognition to determine what each object is, and then uses this
to generate the appropriate electronic image to overlay.

One class of augmented reality system finesses this problem by projecting images
onto the real world itself. For example, video images may be projected onto a paper
desktop. So long as the desktop and camera are fixed, the system can be calibrated
and, thereafter, registration guaranteed (see Figure 20.4, left).

20.3.6 Current and future applications of VR

To date, the most extensive use of VR has been for military simulations and milit-
aristic games. More esoteric and less violent uses of VR have been proposed; the
imagination is the limit! Since worlds with arbitrary physics and behaviors can be
created, anything is possible within VR. One interesting suggestion is the idea of VR
holidays – by walking into a VR environment, you can go on holiday to the tropical
rainforest, go on safari, walk on the moon, fly over the cities of the world, sunbathe
on a beach or ski in the mountains, all without moving from the room!

DESIGN FOCUS

Applications of augmented reality

Augmented reality techniques hold great promise, and have been investigated especially in situations
involving the maintenance or assembly of complex equipment. One example is the maintenance of 
photocopiers. There are many different photocopier models, and field engineers have to look up ser-
vice details in large manuals and then attempt to relate the photographs and diagrams to the actual
equipment before them. With augmented reality, instructions can be shown in front of their eyes
including labeling of all parts. Another example is in the electronics of large aircraft. The wiring looms
that run from end to end may include dozens of colored wires, each of which has to be routed to the
right place. With augmented reality, the schematic wiring diagrams can be overlaid onto the physical
wiring, helping the engineer to correctly identify and route each wire.

Note that, in both cases, accurate registration between the real and electronic data is essential. How-
ever, in both cases the degree of image analysis needed is limited. In the case of the photocopier, the
system can be told what photocopier is being repaired and then all it needs to do is work out where
the copier is and what its orientation is (and possibly also whether doors are open, etc.). Given that the
system can hold schematics and photographs, this is not beyond current image-processing capabilities.
The case of the wiring loom is more difficult, as the individual wires may be too small for the resolution
of digital cameras. In this case, it may be better simply to color-code the schematic accurately and rely on
the engineer’s eyesight – the best interfaces make appropriate use of human and computer capabilities.
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A more serious application is a medical one, in which a virtual operation can be
carried out on the actual patient: the patient’s scans provide data for a computer
model of the body, which can then be operated on by a surgeon until he perfects 
the technique for that particular person. Once correct, the actual operation can be
performed. The best such simulations include force feedback where the surgeon can
feel resistance as the scalpel is drawn through the virtual body.

VR is also being used in experimental treatments for phobias [178]. Vivid imagery
is often used as part of the treatment for conditions such as arachnophobia, agora-
phobia or acrophobia. For example, a patient afraid of heights can ascend in a vir-
tual glass lift. Knowing that the experience is simulated does not remove the fear.
However, the anxiety is reduced by the combination of unrealness and the ability 
to control and, if necessary, quickly escape the virtual environment. By increasing
the height and duration of the lift journey, patients can gradually conquer their fears
in readiness for real-world experiences.

INFORMATION AND DATA VISUALIZATION

Virtual reality and 3D displays can be used to visualize scientific data and other 
complex information. Whether or not 3D representations are used, animation 
techniques, especially when under interactive user control, can give a sense of
engagement with data, and encourage discovery and pattern formation.

20.4.1 Scientific and technical data

Three-dimensional representations of scientific and technical data can be classified
by the number of dimensions in the virtual world that correspond to physical spatial
dimensions, as opposed to those that correspond to more abstract parameters.

Perhaps the most engaging images are where all three dimensions have some phys-
ical validity. An example of this is the virtual wind tunnel [50]. In a physical wind
tunnel, an accurate model of an aircraft is constructed and then subjected to winds
that, when appropriately scaled, correspond to realistic situations. The intention is
to investigate patterns of air movement and pressure, for example to discover those
places where turbulence forms. Of course, air is invisible, so small pieces of ribbon
may be attached to the aircraft surface, small bubbles released into the chamber or
polarized light used to expose the hidden airflows. In the virtual wind tunnel, air
movements are calculated using the equations of fluid dynamics. An engineer can
then see the simulated aircraft using VR goggles and can move around a (virtual)
baton from which stream (virtual) bubbles (Figure 20.6). By moving the baton to
different parts of the aircraft, areas of interest can be investigated.

Model making can be very expensive and time consuming, so the virtual wind
tunnel can save money and increase the rate at which changes can be made and 

20.4
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evaluated. However, there are also ways in which the virtual wind tunnel is more
effective than a real wind tunnel. In the virtual wind tunnel, engineers can get as
close as they like to the simulated aircraft in order to investigate particular details. In
the real tunnel this would involve stepping inside the tunnel, which would disrupt
the airflow, making any measurements valueless.

The next step away for 3D reality is when two of the dimensions represent a phys-
ical plane and the third is used to represent some data for each point. For example,
a relief map can be drawn where the height at any point represents average annual
rainfall (as opposed to the height of the terrain). In any such representation it is hard
to choose a viewing point, as it is likely that tall structures in the foreground will hide
important features in the background. This is probably why such representations are
quite rare in static paper publications.

Finally, we have the case where only one or none of the dimensions represents 
a spatial dimension. For example, most spreadsheet packages support a range of 3D
graph options that allow you to regard two columns as x and y coordinates, while a
third column is used as the height. In this case, none of the 2D or 3D patterns in the
image corresponds to real-world features. However, we can use our ability to discern
3D features to help us understand and appreciate this more abstract data.

Figure 20.6 Virtual wind tunnel. Reprinted from Animation and Scientific Visualisation,
R. A. Earnshaw and D. Watson (eds), 1993
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20.4.2 Structured information

Scientific data are typically numeric, so can easily be mapped onto a dimension in
virtual space. In contrast, the data sets that arise in information systems typically
have many discrete attributes and structures: hierarchies, networks and, most com-
plex of all, free text. Examples of hierarchies include file trees and organization
charts. Examples of networks include program flow charts and hypertext structures.

One common approach is to convert the discrete structure into some measure 
of similarity. For a hypertext network this might be the number of links that need 
to be traversed between two nodes; for free text the similarity of two documents may
be the proportion of words they have in common. A range of techniques can then be
applied to map the data points into two or three dimensions, preserving as well as
possible the similarity measures (similar points are closer). These techniques include

DESIGN FOCUS

Getting the size right

When faced with a 2D histogram it is the area that we perceive as being the size of a bar, not the height.
Survey data of family groups at a fun fair have shown that 25% had only one child, 50% had two children,
10% had three children and the remaining 15% of families had between four and six children.

If we display the height of the 4–6 group proportional to the percentage of families it makes it look as
if this is much more than 15% of the data. This is because the column is three times wider than the
rest. We actually perceive the data to be in the ratio 25:50:10:45. The right thing to do is to draw the
area of the columns proportional to the number of families, which makes the data look right.

Similar problems arise in 3D representations. If we draw a map with 3D columns proportional to 
the population rising from each country, we will probably not be able to see anything except a single
enormous block for China! We should display the heights of the blocks proportional to the population
density. Of course, if we start with density data, we can simply use height to start with.

If data ranges are extremely large, we may use non-linear (for example, logarithmic) scales. Users clearly
need to be aware of this, but at least if density data are used, bigger areas/volumes represent bigger
data.



20.4 Information and data visualization 741

statistical multi-dimensional scaling, some kinds of self-organizing neural networks,
and simulated gravity. Although the dimensions that arise from these techniques are
arbitrary, the visual mapping allows users to see clusters and other structures within
the data set.

There are standard ways of representing networks and hierarchies in two dimen-
sions. Figure 20.7 shows a typical organization chart. Notice that even with such a
small chart the names have been staggered slightly to make more space available. In
fact, very large wall displays are usually needed even for quite small organizations.

Space problems are also evident with flow charts and network diagrams, with
charts frequently split over several pages. Furthermore, it is only possible to lay out
certain sorts of network (called planar graphs) in two dimensions without lines
crossing (Figure 20.8).

The third dimension can be used to help with both network and hierarchy layout.
In the case of a network, nodes can be laid out in three dimensions, both reducing
clutter and meaning that lines no longer cross, but simply pass by one another. Of
course, this has the disadvantage that nodes and lines may obscure one another, but
so long as the user can rotate the network or fly around it, these hidden nodes can 
be seen. Similar techniques can be used for hierarchies. Figure 20.9 shows the
Camtree, part of the Xerox PARC Information Visualizer [310]. The Camtree dis-
plays a hierarchy from left to right, with the subordinate nodes arranged in a circle
about the base of a cone with their parent as apex. Although the tree grows from left

Figure 20.7 Two-dimensional organization chart

Figure 20.8 Two-dimensional network layout
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to right, this growth is far less than the corresponding 2D representation. When a
node is selected within the tree, the system rotates the cones so that the node and its
parents are closest to you. Thus, although some nodes are hidden at any particular
moment, it is possible to view the entire tree. Also notice how the shadows both
enhance the impression of three-dimensionality and give additional information
about the hidden parts of the tree. A second hierarchy visualization, the Conetree, is
similar to the Camtree but displays the hierarchy from top to bottom as in the organ-
ization chart. Although these two representations are very similar, it is far easier 
to display names for each node in the Camtree. This is because most hierarchies are
relatively broader than they are deep. Hierarchies with up to 10,000 nodes have been
visualized with the Camtree and Conetree.

20.4.3 Time and interactivity

We can consider time and visualization from two sides. On the one hand, many data
sets include temporal values (dates, periods, etc.) that we wish to visualize. On the
other hand, the passage of time can itself be used in order to visualize other types of
data. In 2D graphs, time is often mapped onto one spatial dimension; for example,
showing the monthly sales figures of a company. Where the time-varying data are
themselves 2D images, multiple snapshots can be used. Both comic books and 
technical manuals use successive images to show movement and changes, often 
augmented by arrows, streamlines or blurring to give an impression of direction and
speed. Another type of temporal data is where events occur at irregular intervals.
Timelines are often used for this sort of data, where one dimension is used to repres-
ent time and the second axis is used to represent the type of activity. Events and 
periods are marked as icons or bars on the time axis along the line of their respective
type. One of the most common examples of this is the Gantt chart for representing
activity on tasks within a project. This sort of technique can also be used in computer

Figure 20.9 Camtree – visualizing hierarchies [310]. Copyright © 1991 ACM, Inc.
Reprinted by permission
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visualization; for example, Lifelines [291] uses a Gantt-chart-like representation to
visualize medical and court records (Figure 20.10).

The passage of time can also be used to aid visualization. The simplest case is
where time in the data is mapped directly onto time at the interface. That is, the
time-varying data are simply replayed. The rate of replay need not be in real time: a
year’s worth of weekly sales figures could be replayed in less than a minute at a week
per second. Standard video controls can be used in the interface to such a visualiza-
tion. Alternatively, a spatial dimension (or other parameter) may be mapped onto
the passage of time at the interface. Consider a static but solid 3D object. Looking 
at a few 3D rendered images, one can gain a good understanding of the outside of 
the object. However, it is very hard to see what it is like inside. Several slices of the
object can be displayed simultaneously, but obviously the number of these and the
size of each are limited. One solution to this is to show successive cross-sections 
as an animation, gradually moving the ‘cutting’ plane, mapping distance through the
object onto time. An example of this is the Visible Human Project. It is only possible

Figure 20.10 Lifelines – visualizing personal histories [291]. Copyright © 1996 ACM, Inc. Reprinted by
permission
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to see a few slices simultaneously (even at low resolution), but one can watch a movie
showing slices from the head down through the torso to the feet. From the movie one
can clearly see the bones and internal organs (artificially colored).

Perhaps the most powerful use of time is when changes are under user control –
interactivity. This is central even to our perception of three dimensions. Stereo
vision, shadows and lighting all give an impression of depth, but it is the ability to
move around an object, to view it at different angles, which gives a true sense of a 
real 3D object. Interactivity is also a key factor in the virtual wind tunnel. A movie of
the wind tunnel would be useful, but the real power comes because the engineer can
move about inside the tunnel, using bubble tracers to investigate particular areas of
interest. Another example of the use of interaction is the interface in Figure 20.11 for
viewing the Visible Human [271]. A slider is used to control the position of the
viewed slice in the body. In this case the slider corresponds to spatial dimension. In
other systems sliders are used to select values or ranges for parameters. One system,
Homefinder, uses max–min sliders to select price ranges, number of rooms, etc.,
while in real time a map shows the locations of all houses satisfying the criteria. 
Even more complex data are visualized using the Influence Explorer [353], which

Figure 20.11 Interactive browser for the Visible Human. [271]. Copyright © 1996
ACM, Inc. Reprinted by permission
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shows the results of a multi-parameter/multiple result mathematical model. The user
selects parameter/performance ranges and in real time a histogram displays the
number of simulations that satisfy all or most of the criteria (Figure 20.12). Color is
used to represent full versus partial matches.

SUMMARY

Moving our focus of interaction away from the traditional two-dimensional 
graphical user interface on the desktop presents many exciting and new challenges 
to the field of HCI. Weiser’s vision of ubiquitous computing was human-centered,
and many years later, it still presents a grand challenge for those who wish to address 
this new interaction paradigm. These challenges cover three main areas. First, the
physical interface between humans and a computationally enhanced environment
requires a shift in emphasis for both input and output. Secondly, while a ‘killer app’
for ubicomp has arrived in the form of person–person communication, the more
interesting challenge is to understand what general features of ubicomp applications
matter. The past decade has seen two emergent features – context awareness and
automated capture. The next decade should see an increased focus on continuous
services that support everyday activities. Thirdly, different theories of human 
cognition inform the design of ubicomp applications, as ‘knowledge in the world’
becomes even more important. The design process must better incorporate an
understanding of the invisible meaning of everyday activities. Evaluation of the 
utility of ubicomp applications is harder to do in controlled usability laboratories, so
we must build a new form of laboratory that facilitates observation and measure-
ment as well as everyday activity.

The technologies of virtual and augmented reality are no longer reserved for lab-
oratories with multi-million-dollar equipment, but can be experienced on ordinary

20.5

Figure 20.12 The Influence Explorer. [353]. Copyright © 1996 ACM, Inc. Reprinted by permission
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machines and over the internet. Early applications of virtual and augmented reality
were often for military training, and for ubicomp it was the office place. Now, much
of this technology is showing its promise in the entertainment and leisure domains.
Many advances of VR and other forms of 3D graphics are an important resource in
the visualization of scientific data and other complex information. In particular, by
interacting with the visualization, the user may obtain a deeper understanding of the
data and discover features that would be impossible with static representations.

Since the first edition of this book, virtual reality and interactive visualization 
have moved from being interesting blue-skies research areas to accepted commercial
technologies. We expect that in future editions we will see ubicomp move from being
an exciting, but not yet practical, research area into being simply part of day-to-day
life.

EXERCISES

20.1 Many researchers are beginning to explore the potential of ubiquitous computing
technologies and applications in the home environment. Discuss how the application themes of
context awareness, automated capture and the continuous interaction of everyday computing are
relevant to domestic life. Focus your answer on the challenges of family life or life for an aging
population.

20.2 Virtual reality has found a number of applications in the games market. Is this a suitable use 
of such technology? Discuss the possible benefits and disadvantages of exploiting leading edge
technology in a leisure market.

20.3 Data visualization techniques have often increased our comprehension of phenomena: consider
the effect that 3D graphics has had on looking at complex models such as those of the atmosphere
or the ocean, or in understanding the structure of molecules. What do you consider to be the
areas that may benefit most from virtual reality visualization techniques?
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HYPERTEXT, MULTIMEDIA

AND THE WORLD WIDE WEB

OV E RV I E W

n Hypertext allows documents to be linked in a non-
linear fashion.

n Multimedia incorporates different media: sound, images,
video.

n The world wide web is a global hypermedia system.

n Animation and video can show information that is
difficult to convey statically.

n Applications of hypermedia include online help,
education and e-commerce.

n Design for the world wide web illustrates general
hypermedia design, but also has its own special
problems.

n Dynamic web content can be used for simple online
demonstration or for complete web-based business
applications.

21
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INTRODUCTION

Increases in desktop computing power have enabled the rapid growth of the multi-
media industry. CD-ROMs, stereo sound and often video input/output are now part
of the specification of standard personal computers. Furthermore, the dreams of
Vannevar Bush and Ted Nelson (see Chapter 4) have now become reality in the
world wide web, which links computers, information and ultimately people across
the world.

In this chapter we look at the distinctive features of hypertext and multimedia,
where they are used and their potential problems. The world wide web is just one
example, albeit an important one, of a hypertext system. We will first consider some
of the common features of hypermedia including different types of content and
application areas. Diagrams and photographs can enliven text, but some of the most
exciting effects are seen when the computational power of the computer is used to
allow animation, video and interactive features. We will also consider in Section 21.3
the ‘lost in hyperspace’ problem, how to design hypertext that is easy to understand
and to navigate and how features such as bookmarks, the back button and search can
make hypertext and the web accessible. The chapter then focusses on the web. We will
look at the technology that underlies the web and how issues of networking influence
usability. We will then consider static web content including graphics and streamed
media. Finally, we will review ways in which web pages can be made dynamic through
interactive content and through server-side generation of web pages from databases.

UNDERSTANDING HYPERTEXT

21.2.1 Hypertext definition – text, hypertext and multimedia

Although pictures and sculpture came first, it is text – the written word – that is 
commonly seen as the defining point of civilization; pre-literate and oral societies 
are often regarded as pre-history simply because they have no extant story. Hiero-
glyphics, Babylonian mud tablets, the Book of Kells, the Caxton press: these are the
stepping-stones toward our current information-centric society.

All these traditional texts share a common linear nature. Aristotle in his Poetics
said that a story must have a beginning, a middle and an end, and even postmodern
non-linear narrative is actually written in a linear fashion even though the events
may not be causally connected.

This linearity is partly because of the nature of the media used – papyrus scroll,
painted frieze or paper book – but perhaps more significantly because we are crea-
tures in linear time. We are natural story-tellers and natural story-hearers. This is
why, in Chapter 5, we found that scenarios were so powerful. The skill of the author
is in producing an experience for the reader that introduces new events and new 
concepts so that they fit meaningfully into what has gone before.

21.2

21.1
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However, there are classes of activities where the reader needs to establish their
own path through a text. For example, in the online documentation or help systems
discussed in Chapter 11, the user wants to know the right thing for him at that
moment, not a full description of the system (although of course tutorials are typic-
ally linear). During some forms of exploratory learning the learners may want to 
follow their own paths through material: each one delving into details in different
parts. Experts in a subject, too, may well want to remind themselves of some particu-
lar issue or fact.

For such purposes the linear form of a traditional text is a hindrance. For 
example, when using manuals, the user may not understand all the terms used in 
the text, and will have to keep going back to a different series of pages to look up 
the definitions, returning to the original pages and trying to pick up the thread 
of discussion afterwards. Paper books include tables of contents or indexes and 
encyclopedias and dictionaries are designed for non-linear reading. However, still
the reader is left physically skipping back and forth.

Hypertext attempts to get around these limitations of text by structuring it into 
a mesh rather than a line. This allows a number of different pages to be accessed 
from the current one, and, if the hypertext is well designed, the user should find it
easier to follow his own particular idea through the mesh rather than being forced
down one route. Typically, hypertext systems incorporate diagrams, photographs
and other media as well as text. Such systems are often known as multimedia or
hypermedia systems, although the three terms are often used interchangeably.

A hypertext system comprises a number of pages and a set of links that are used to
connect pages together. The links can join any page to any other page, and there can
be more than one link per page. Thus a hypertext document does not simply start a
linear progression and follow it to an end, but goes in lots of different directions,
some of which terminate, while others link back into different parts of the document
(see Figure 21.1, which illustrates the difference between linear text and hypertext).

There are many different ways of traversing the network, and so there are many
different ways of reading a hypertext document – the intention is that the user is able

Figure 21.1 Typical structures of linear text and hypertext
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to read it in the way that suits him best. Links can exist at the end of pages, with the
user choosing which one to follow, or can be embedded within the document itself.
For example, in an online manual, all the technical words may be linked directly to
their definitions in the glossary. Simply clicking on an unknown word takes the user
to the relevant place in the glossary. Another unknown word encountered there can
also be traced back to its definition and then the user can easily return to his original
place in the manual. The positions of these links are known as hot-spots since they
respond to mouse clicks. Hot-spots can also be embedded within diagrams, pictures
or maps, allowing the user to focus his attention on aspects that interest him.

21.2.2 Rich content

As well as static material – text and static diagrams and photographs – hypertext sys-
tems may also include more dynamic material such as animation, video and audio
clips, and even full computer applications.

Animation

Animation is the term given to the addition of motion to images, making them
move, alter and change in time. A simple example of animation in an interface is in
the form of a clock. Digital clocks can flick by the seconds, whilst others imitate
Salvador Dali and bend and warp one numeral into the next. Analog clocks have
moving hour and minute hands, with an optional second hand sweeping round the
clock face. Such a desktop accessory is found in a lot of interface setups, and the
additional processing time required to produce such effects is no longer a major 
factor.

Another common use for animation in current windowing systems is to animate
the cursor. Instead of simply having a basic pointer always on the screen, many inter-
faces now use the typical 16 × 16 bitmap that makes up the cursor to indicate more
complex information. We saw in Chapter 3 that there are a number of different static
cursors in use, but animation takes this one stage further by adding motion to the
images. This is usually done to indicate that some process is in progress, to confirm
to the user that something is actually happening. Animating the cursor means that
messages do not need to be printed out to a window, making it a neat and concise
way of presenting the desired information. On the Macintosh, work in progress is
indicated by a watch icon, with the hands moving round and round, or by a spinning
disk. One system uses a stick person, apparently doing weightlifting, to show that
heavy work is in progress, whilst another has an hourglass trickling down.

Non-cursor process indicators often take the form of a pop-up box with a moving
slider, or a stick person walking backwards and forwards. These are important to 
give the user a sense of progress and to prevent inactivity being interpreted as an
indication of a system fault. In addition, animated icons may be used to show system
state; for example, Netscape Navigator has shooting stars to indicate that it is down-
loading information. Animated icons can also be used to make the meaning of the



752 Chapter 21 n Hypertext, multimedia and the world wide web

icon clearer. This is especially useful for icons representing actions that are not well
represented by static images. However, such animation must be used sparingly to
avoid distraction!

Animation can be used to great effect to show changes in data sets, where slow
fluctuations can be visualized with the help of rippling three-dimensional colored
surfaces, or abrupt changes shown by sudden discontinuities in an otherwise regular
motion.

Animation is also used in a cartoon-like way, where animated objects are used to
perform particular functions for the user. For example, in an animated help system,
a character can appear on the screen and interact with the user, guiding him through
a number of stages of help before being dismissed. Such a guide can be endowed with
a certain character, making the interaction less impersonal and more interesting for
the user, who becomes more involved with the system and is happy to learn more
about it.

Talking heads

One use of animation is to produce talking heads [359]. These are images of human faces
either completely computer generated or derived from photographs of real people. They are
based on models of human anatomy so that realistic lip movement can be synchronized with gen-
erated speech. Surprisingly, this is not just a fun activity but is actually useful! One important use
is for deaf or partially deaf users who can lip read the image. Another application is to synchronize
the lips with telephone speech allowing a form of video phone over low-bandwidth telephone lines.

These faces can also express emotion. Users have imputed personality to computers since they
only had flashing lights. By simulating human expressions the designer can express intended affect-
ive states rather than leaving this to the user. For example, this could be useful in a learning envir-
onment where the students might naturally view the computer as a harsh, unforgiving teacher, 
but by means of a suitable face and expressions could be induced to regard it as a colleague or
facilitator in learning.

Video and audio

In a media dominated world, there are strong arguments for using video or audio
material as part of hypertext systems whether for education, entertainment or refer-
ence. Both audio and video material are expensive and time consuming to produce,
but increasingly even home-PC systems include video and audio editing as standard.
For example, the iMac includes a suite for editing video and burning DVDs.
Combined with digital video cameras these bring the production of audio/video
material into the reach of many. Furthermore, standard formats such as QuickTime
allow this material to be embedded in web pages for easy distribution. Of course,
quality video production requires extensive experience, but then so does text!
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Perhaps the biggest problem with audio and video is still the memory requirements.
As we saw in Chapter 2, this is becoming more manageable as memory capacities
increase, but it will probably continue to be a major problem, especially for web-
based material, for some time to come.

The most common use of video is as a clip to be embedded within a text or 
graphical document or web page. For example, Figure 21.2 shows an example of 
a prototype website produced by Glasgow University for the Hunterian Museum
[194] including video clips. (Notice, too, the use of the still picture for each video 
clip and the indication of the length of the clip.)

Longer video sequences are, of course, more linear than plain text. This may 
be acceptable if the hypertext is acting effectively as an index for video material. 
For example, one might have a collection of silent movies online and access them
through a website. However, if the video is regarded as an integrated part of the hyper-
media experience it needs to be active in some way as well. It is possible to have hot-
spots in video images just as in graphics; however, clicking on a gymnastics star to get
information on her recent performance may be difficult if she is in the middle of an
exercise on the asymmetric bars. Interactive television manages this by having a smaller
number of context sensitive options, or images may be frozen to enable exploration.

Figure 21.2 Hunterian Museum – learning about the Romans. Source [194a]
reprinted with permission of Springer-Verlag; Netscape browser window © 2002
Netscape Communications Corporation, used by permission
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Perhaps gaming stations best manage this interaction between video and other
material, as clips of live action or pre-recorded high-quality generated images are
interspersed seamlessly with game playing.

Audio material can be used in the same way as ‘clips’ within a document; for
example, in an interactive guide to Beethoven’s music. Because most hypertext 
material is visual, audio can also be used for background music or sound effects to
establish mood, or to provide ‘voice-over’ for static graphics or animations.

Audio material may be stored as sound samples, that is digital recordings, which
can include instruments, voice or other sounds. As we are often more sensitive 
to poor sound than poor video images, and sounds are, by definition, constantly
changing, it can be harder to compress sound than video. MP3, used for much web
downloadable music, recruits knowledge of the auditory system to achieve its high
compression. For example, if there are two simultaneous sounds, one a lot louder
than the other, the quieter one can be played with less fidelity because its details are
masked by the louder sound. For pure instrumental music, MIDI files simply record
which instrument must play and the duration, pitch and loudness of each note –
basically a digital form of the sheet music.

Any sound in the interface can, of course, be potentially annoying, especially in
open-plan working environments, and so audio should be used with care and it
should be easy to mute. As these words are being written, the current author’s wife
is struggling to turn off an annoying musical backing to a web page she is viewing!

Moving pictures are excellent at conveying information, and exert a quite hyp-
notic hold over us; note the success of television. It is fair to say that many design
practices will have to be updated to make the most of the possibilities that these 
techniques offer; moreover, it is also the case that people are unsure how to get the
most out of such technology. The techniques required to gain maximum benefit
from moving images are very different from those that are used for static or minimal
motion displays, and designers do not have enough experience to start applying the
relevant technology at the relevant time. It may well be that computer interface
designers will have to study the techniques of the film makers and cartoonists before
they start to discover the real benefits that these techniques can provide. Indeed,
partly due to Brenda Laurel’s influential book Computers as Theatre [207], drama
theory is now a respectable and popular topic in HCI.

Computation, intelligence and interaction

Of course the good thing about a computer is that not only can it show things that
have previously been prepared, it can also do things. This book has an index, but it
does not contain every word in the text (it may also refer to parts of the text that 
do not have a particular word). However, the web search can look through all the
chapters and find any words you want.

More interactive hypermedia may contain embedded games or applications. For
example, Figure 21.3 shows a puzzle from the website of one of the authors (Alan),
a sort of 2D Rubik’s cube that you can play online. Hypermedia running on the
user’s own computer may interact closely with other applications; for example, on a
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Macintosh HyperCard stacks can control applications using AppleEvents, or on a
Windows platform hypermedia can include ActiveX components.

Whilst the ‘text’ in hypertext suggests passive content under the user’s control,
some hypermedia may contain more intelligent components or agents actively work-
ing to shape the experience for the user. For example, some educational hypertexts
adapt their content depending on a model of the learner. Similarly e-commerce sites
may suggest additional products to buy depending on your previous purchasing and
browsing behavior.

21.2.3 Delivery technology

On the computer

Some hypertexts, in particular help systems, are downloaded or installed perman-
ently on a computer. This has the advantage of instant access and such applications
need not use a standard viewer but may include their own bespoke browsing soft-
ware. However, with media-rich hypertexts containing substantial graphics, video
and audio clips it may be impractical to store everything on hard disk. Also, for copy-
right protection, some systems will deliberately not allow themselves to be copied
from their original distribution media.

Many hypermedia systems are supplied on CD-ROM. This has the advantage of
reasonably large capacity (650–700 Mbytes), but access is slower than with installed
systems. For highly dynamic material, such as educational media, a special player is
installed; alternatively, material such as software documentation may use a standard
format such as web pages.

Figure 21.3 Interacting with hypertext – Professor Alan’s puzzle square. 
Screen shot frame reprinted by permission from Microsoft Corporation
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DVD delivered material is interesting as it is not text enriched with video, but
instead a movie that has been ‘made interactive’. As older computers tend to have
only CD-ROM drives, it is not possible yet to supply, for example, tutorial material
on DVD and know that it could be used on any machine.

On the web

Of course, the world wide web is the best-known multimedia hypertext system of all.
The world wide web offers a rich environment for the presentation of information.
Documents can be constructed that are very different from paper versions; basic text
can be augmented through the use of hypertext links to other documents, while
graphics can easily be incorporated as pictures, photographs, icons, page dividing
bars, or backgrounds. Pages can also have hypertext links embedded into different
regions, which take the user to a different page or graphic if they are clicked on; 
these are known as active image maps. These features allow web pages to become
interactive, acting as the interface to the information as well as its holder. Dynamic
material in the form of movies and sounds is also available to the designer; all these
features push web page design well away from the conventional paper-based kind.

However, the fact that the web has many more technological features than a book
doesn’t mean that web pages are necessarily better than their paper counterparts.
Also, the fact that a web page is packed full of features doesn’t imply that it gets its
message across effectively. Designing web pages is a developing art, and should be
viewed in much the same way as designing any other interactive system. Good pages
have been developed with the reader as the focus, and act as effective interaction
tools or presentation tools to allow the user to obtain the information he is looking
for most effectively.

The web is an example of the usability of the medium being paramount rather
than the technological supremacy of certain aspects of it. For any single aspect of the
web, there are custom multimedia systems that are far superior in terms of quality,
usability, speed and so on. However, the common availability of web browsers on
multiple platforms and the low-tech and usable nature of the system have ensured
the web’s popularity and made it ubiquitous.

The web allows the user to browse documents and follow links transparently, with
the underlying system taking care of the details of fetching the data from different
parts of the world. Theoretically, as far as the user is concerned, any page can be
reached as easily as any other; geographical location ceases to become important,
whereas linking by content is crucial. The ability for anyone to publish information
on the web is one factor in its success as a multimedia system, but the fact that any-
one can create a page and, by linking it to others already in existence, immediately
integrate their opinions seamlessly into the information space is another.

On the move

Mobile phones, PDAs (personal digital assistants), and notebook computers have 
all increased the demand to have hypermedia available on the move. Furthermore,
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across many countries governments have sold franchises for high-bandwidth mobile
services. After spending billions on these franchises the telecommunications giants
really want people to use new mobile services!

Notebook computers can use just the same mechanisms as desktop computers,
using CD-ROM or DVD for standalone material, or connecting to the web through
wireless access points or through modems linked to mobile phone networks.
However, the fact that the computer is mobile means that location can be used as 
a key into context-aware hypermedia showing different content depending on 
location. The ‘stick e note’ system developed by the University of Kent uses a sticky
note metaphor with notes stuck to particular locations [49]. Only when you visit the
location does the note become visible. This is a bit like an image map on a web page,
but rather than clicking a mouse over an image to link to information, here you need
to physically move to a location! Another example is the GUIDE system, which uses
various means to detect location (closest network access point or GPS) and then
delivers appropriate tourist information [69].

PDA access poses different problems. They often have standard web browsers, but
of course on a substantially smaller screen. This may mean designing special pages 
or being especially careful to design ones that resize well. Because PDAs are often 
not network connected there are also systems to allow access to information when
disconnected. For example, AvantGo (www.avantgo.com) allows users to select
‘channels’ of interest and then, when the PDA is docked, downloads any pages that
have changed, so that users always have the most up-to-date information possible.

By nature, mobile phones are (nearly) always connected to a network. However,
memory and screen size are even more constrained. Some phones allow download-
able applets so that small dynamic applications can be used. More web-like content
can be accessed via WAP (wireless application protocol), which, like HTTP (hyper-
text transfer protocol) for the web, gives access to remote servers. WAP content can
be produced as static or dynamic content using a mark-up language called WML,
which is a simplified version of HTML (hypertext markup language). This allows
hyperlinks like the web and even simple images, but due to the small screen size most
pages consist mainly of small amounts of information or simple lists of links. See the
book WAP site at /e3/wap.wml

21.2.4 Application areas

There are many applications of hypermedia, too many to describe in detail here.
However, it is worth noting the type of domains in which hypermedia systems have
proved successful, looking briefly at some example systems.

Rapid prototyping

Although now lacking the wealth of features expected of a hypermedia system,
HyperCard on Macintosh computers has been very influential as a basis for experi-
mental hypertext systems. HyperCard uses the metaphor of a card index, around
which the user can navigate. Each card can hold text, diagrams, photographs,
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bitmaps and so on, and hot-spots on the cards allow movement between cards.
Cards may also contain forward and backward buttons and a home icon, to allow the
user to move sequentially and start from scratch respectively. HyperCard can be used
for a range of applications including information management and teaching.

However, HyperCard’s simple scripting language and easy to produce graphical
interfaces meant it was also used extensively as a rapid prototyping tool for generat-
ing interactive systems. In fact, HyperCard stacks for both single-user and networked
applications are available from the book website.

For similar reasons, other hypermedia tools such as Macromedia Flash and
Director are often used to produce dynamic interface mock-ups or even fully func-
tioning systems. The web, too, is used like this, both to deliver applications and also
as a way of mocking up an application interface as a series of storyboard web pages.

Help and documentation

Hypermedia systems are ideally suited to online manuals and other help system
applications (see Chapter 10). They allow user-oriented access to the information,
and support browsing. In addition the information can be organized hierarchically,
with successive selections providing more detailed information. This supports the
varying needs that users have, such as quick reference, usage information, full details
and so on. Many commercial help systems use hypermedia-style help. Good examples
are the Sun Guide system, HyperCard help and Microsoft Windows help (used by
many Windows applications).

Educational systems are another common application. Hypermedia provides an
environment for the learner to explore, in her own time and at her own pace. The
inclusion of animation and graphics can allow the user to see things happen as well
as read about them. So, for example, animation can be used to simulate an experi-
ment. Educational applications are discussed in more detail in Section 21.6.

Education and e-learning

Hypertext and hypermedia are used extensively in educational settings, as they allow
varied subjects to be related to each other in numerous ways so that the learner can
investigate the links between different areas. In contrast to computer-aided learning
(CAL) packages, hypermedia allows a student-controlled learning process.

An early example of a hypermedia learning environment that inspired many sub-
sequent systems was Intermedia [385]. This is a hypermedia system built and used 
at Brown University to support teaching in subjects as varied as English literature
and biology. The system includes text, diagrams, photos and so on. Both learners and
teachers can add information and links, giving students access to each other’s opinions
as well as those of their tutors. A map provides an overall view of the information for
direct access and navigation, with links providing browsing facilities in the normal
way. Intermedia has been successfully used for university-level teaching, and can be
seen as a forerunner of the educational resources now facilitated by the web.

Microcosm is an open hypermedia system, developed in the Electronics and
Computer Science Department at the University of Southampton and shown in
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Figure 21.4; it allows users to browse through large amounts of multimedia infor-
mation by following links. Microcosm does not contain links explicitly hardwired
into its structure, but instead holds a database of link sources and destinations. Not
only does this allow processes to examine the links divorced from their surrounding
information, but it allows links to be made to read-only media such as CD-ROM,
video discs and external web pages. Microcosm is able to integrate many different
types of media, including other applications, and provides a set of viewing tools to
look at text, bitmaps, video, audio and other component information media.

Outside organized educational settings, the increasing availability of multimedia
PCs has made the home an attractive marketplace for CD-ROM-based educational
software. One example of this is Dorling Kindersley’s series of CD-ROMs based on
their popular large-format book series.

As in other areas, the web has come to dominate most educational uses of 
technology. The term e-learning is sometimes used to refer to all forms of electronic
learning, but is most often used for learning delivered via the web. This may be 
distance learning or it may be augmenting classroom teaching using the web.

The eClass project (previously called Classroom 2000) is an example of the latter [4].
It records pen strokes on an electronic whiteboard during a lesson (Figure 21.5)
along with audio and video, and then allows students to review the material later

Figure 21.4 Microcosm: an open hypermedia environment shown running a teaching application entitled
‘The civil war in Yugoslavia 1941–45’ (developed by the Departments of Electronics and Computer Science
and History at the University of Southampton and used by permission)
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using a web interface (Figure 21.6). Each slide presentation and pen stroke is time-
stamped so that students can click on a particular pen mark on the web interface and
the audio or video is replayed from that point in the lecture.

Collaboration and community

Although strictly not hypertext, the web has become a central platform for collabor-
ative applications and community. These use the hypertext structure of the web 
to structure and access shared resources and message areas. For example Yahoo!
Groups (groups.yahoo.com) allows mailing lists, shared images (such as family photo
albums), web archives of the mailing list and chat, all accessed through a web interface.

Figure 21.5 eClass – recording a lecture

Figure 21.6 eClass – indexed playback on student’s web browser. 
Source: Netscape browser window © 2002 Netscape Communications 
Corporation, used by permission
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Establishing a sense of community can be very important on websites as it is one
way to ensure loyalty and get visitors to return. This may involve explicit community
features such as chat areas, or may simply be a matter of using a design, language and
image that suggests a site which is open and listening to ‘readers’ [214].

E-commerce

For some companies the web is simply another sales opportunity. Many readers will
have used online stores such as Amazon or bought from an auction site such as eBay.
Hypertext’s use of hierarchies, links, images and so on, makes it ideal for displaying
certain kinds of product. Actual buying and selling requires not only security at the
level of the networks, websites, etc., but also trust. When you walk into a shop you
can see the person you are dealing with, and the fact that it is physically there today gives
you confidence that it will be there tomorrow if anything goes wrong. How to build
and ensure this trust is an active area in HCI research (see, for example [307]).

FINDING THINGS

21.3.1 Lost in hyperspace

Although the non-linear structure of hypertext is very powerful, it can also be con-
fusing. It is easy to lose track of where you are, a problem that has been called ‘lost
in hyperspace’. There are two elements to this feeling of ‘lostness’.

The first is cognitive and related to content. In a linear text, when a topic is being
described, the writer knows what the reader has already seen. In a hypertext, the
reader can browse the text in any order. Each page or node has to be written virtu-
ally independently, but, of course, in reality it cannot be written entirely without any
assumption of prior knowledge. As the reader encounters fragmentary information,
it cannot be properly integrated, leading to confusion about the topic.

The second is related to navigation and structure. Although the hypertext may
have a hierarchical or other structure, the user may navigate by hyperlinks that move
across this main structure. It is easy to lose track of where you are and where you
have been.

The solution to the former issue is to design the information better. The solution to
the latter is to give users better ways of understanding where they are and of navigat-
ing in the hypertext. To say ‘the solution’ is disingenuous – there is no simple ‘solu-
tion’. If we want to provide information that allows complex, unplanned, non-linear
access, there will probably always be problems. However, good design can help!

21.3.2 Designing structure

We discussed the importance of good structural design in Chapter 5. Some of the task
analysis techniques presented in Chapter 15 may be useful in giving a task-oriented

21.3
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or knowledge-orientated breakdown of a hypertext. In some areas there may be pre-
existing understood structures to mirror; for example, the faculty and departmental
structure of a university, or the main disciplines (circulatory, neurological, etc.)
within medicine.

In a paper format one is stuck with a single structure, which can lead to tensions:
for example, the fact that in this book structural design is discussed in several places.
As another example, imagine a car mechanic using a manual. She might want to 
use the classical breakdown into transmission, fuel system, etc., while fault finding,
but if she were dismantling the engine it might be more useful to look at the car 
components in terms of physical location.

If multiple structures are used, you have to consider what to do about the com-
mon material. For example, if we examine a car hypermedia text under ‘engine 
compartment’ and get to the fuel pump, this would also appear in the functional
view under ‘fuel system’. Such common elements may be replicated. This has the
advantage that the material can be presented in ways that make sense given their
context, but it can also lead to inconsistencies.

Alternatively we may make links across the hierarchy at some level; for example,
the engine compartment may have a diagram of the engine with a labeled arrow 
saying ‘fuel pump (fuel system)’, which takes you to the description of the pump in
the fuel system part of the hypertext. Notice, too, the importance of making links
that go to different parts of the hypertext very clear, following the ‘knowing where
you are going’ principle from Chapter 5 (Section 5.6.1).

An in-between solution would be to have a small dedicated description of the 
fuel pump in the context of the engine compartment: perhaps describing how it is
physically connected to the engine block and how the piping is routed. This could
then be linked to a more extensive explanation of its function in the fuel system 
section, using a ‘see also’ link.

In all cases it is important that the structure and the naming of parts is meaning-
ful for the user. In a more detailed and theoretical approach to the ‘knowing where
you are going’ principle, Pirolli and others have developed information foraging 
theory [289]. This uses an analogy with foraging animals searching for patches 
of food and trying to make decisions about when to move to a different area or stay
with the food available, and, if they move, where to go. This is likened to the way an
information seeker browses, making decisions about whether to stick with the infor-
mation available or spend time looking for more, and, if more is needed, deciding
where to seek it. For animals, the scent of food is very important in deciding where
to go, and information foraging theory suggests that it is crucial that our structures,
access methods and detailed page designs give users some sort of scent – hints about
what they may find – to allow them to make good browsing decisions.

21.3.3 Making navigation easier

No matter how well designed the site structure is, there will still be problems: because
the user does not understand the structure; or because the user has individual needs
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that the designer has not foreseen; or because even a good structure is not perfect.
However, there are various things that can make it easier for users.

One solution is to provide a map of the hypertext document, identifying the 
current position of the reader within it. Links to home or end points can then be
identified and the user is less likely to get lost. This may be a separate part of the
hypertext; for example, some websites have a site map link leading to a special page,
and many help systems have a table of contents view. Alternatively, the site map can
be woven into the layout of the document; for example, some sites have an outliner-
style sidebar listing the main sections and drilling down to the current location. 
This acts both as an indication of where you are in the site (like the breadcrumbs 
discussed in Chapter 5) and as a constant reminder of the overall site structure.

One way to deal with the differing uses that are envisaged for a hypertext is to pro-
vide the user with ‘recommended routes’ through hypertext documents. If these are
too strongly defined they defeat the objectives of the system. However, successful
applications have been developed that have a guided tour or bus tour metaphor [13].
Users can follow the tour, which takes them through one or more selected routes,
but can deviate from it at interesting points whenever they wish. Users can then
return to the ‘bus stop’ to continue the tour when they have satisfied their interest.

Another type of hypertext takes the form of ‘levels of access’ to a document.
Different levels of access privilege ‘see’ different amounts of information. A docu-
ment structured in this way may provide one level of access that gives only a brief
overview of the topic. The next level of access presents a fuller description of the 
system, while the next level may also include information regarding the precise
meaning of technical terms used in the system. The final level of access may add 
historical information and suchlike. The user can choose at which level he wants to
read the document, cutting out irrelevant information while obtaining all the neces-
sary details. Such a document tends to be linear in nature, which makes navigating
and printing it easier, but removes the user’s choice in structuring his progress
through it.

Once information has been retrieved, a paper version is often needed. Printing a
document requires the pages to be in a particular order, but hypertext does not 
support the concept of one single order. This is against the ethos of hypertext, 
which intends the user to structure the information in the way that suits him best. 
It can therefore be difficult to get a hard copy of the information that is required.

Although there is no simple way to linearize a hypertext, one can at least make it
possible to print individual linear parts, whether single pages or groups of linearly
linked pages. In general, you should not rely on the print facility of a browser as this
is printing a page designed for on-screen viewing. You may notice websites offering
printer friendly pages. These may be in a different format such as PDF, or may 
simply be web pages without sidebar navigation aids, etc.

For both web and non-web hypertext, remember that once the page is printed
someone who hasn’t seen the full hypertext may read it. If they like what they read,
can they find the source? If a web page is likely to be printed, do include the full 
URL on the page, perhaps in the footer. On pages from a CD-ROM or similar hyper-
text, include perhaps a copyright notice with details of the original.
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21.3.4 History, bookmarks and external links

Hypertext viewers and web browsers usually have some sort of history mechanism 
to allow you to see where you have been, and a more stack-based system using the
‘back’ button that allows you to backtrack through previously visited pages. The back
button may be used where a user has followed a hyperlink and then decided it was
to the wrong place, or alternatively, when browsing back and forth from a central
page that contains lots of links. The latter is called hub and spoke browsing. In fact,
in studies of web browsing the back button accounted for 30% of all navigation
actions [63]. Other studies have shown frequent revisiting of pages during a single
browsing session [341].

Although the back button is used extensively, it is used relatively little to go back
more then one step. For error correction this makes sense, but for general revisiting
one might think that moving back several steps would be common. Possibly, one
reason for this is confusion about the meaning of the back button; indeed a formal
comparison of back and history mechanisms in four different hypertext and web
browsers found that the operation of back and history were subtly different in 
each [104].

For longer-term revisiting, browsers typically support some form of bookmarking
of favorite pages. Both this and, on the web, external links from other people’s 
sites mean that users may enter your hypertext at locations other than the top level
or home page. On the web this is called deep linking. Many websites rely on the user
remembering where they have come from to make sense of a page. If a page does 
not adequately show where it fits, then a user coming to it from outside may have no
idea what site it is from, or why they are reading the material. Furthermore, if the
original site depended on the user pressing ‘back’ to return to higher levels of the 
site hierarchy it may be impossible for a visitor to find the rest of your site at all!

All pages should therefore make clear where they belong and have links into the
full site structure. For example, the breadcrumbs along the top of a web page func-
tion both to make the context clear and, if they are ‘live’, as navigation back into the
site hierarchy (see Chapter 5, Section 5.6.1).

Framed websites are particularly difficult. The material you want to bookmark or
link to may be one of the frame content pages, but the URL you can see or bookmark
is that of the overall frameset. This may either discourage linking to the site or, if 
circumvented, it may mean linking directly to the content of one of the frames,
which is then very likely to lack sufficient context, being designed to be seen within
the frameset. Search engines, too, may generate links to individual frames in a frame-
set. Many web style guides heavily discourage the use of frames for this reason. If the
site is designed using a development tool that supports page templates, or is being
dynamically generated, there is rarely any need for frames as most of the effects can
be obtained using other page formatting.

Very occasionally you may want to discourage deep linking; for example, if the
framed page is more of an interactive application or you know the inner structure 
is unlikely to stay constant. In such cases you can include a small piece of script in
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the inner framed pages that makes them redirect to the outer frame if they are ever
opened ‘bare’ in a window. This means that if a site or a search engine does link into
the inner frames, following the link takes the user to the full, framed site.

For more on usability issues of frames see /e3/online/frames/

21.3.5 Indices, directories and search

As well as a hierarchical table of contents structure, many help systems, hypertexts,
and for that matter paper books, have some kind of index. Note that an index is not
a complete list of all words in a document. If this were the case then the index for this
book would be as big as the rest of the book! The words in an index are chosen
because they are significant key phrases or words with a domain meaning, and not
every occurrence of a word is indexed, only those deemed in some way important.
The main difference between an electronic index and a paper one is that with the
paper index you have to physically look up the page after finding the word in the
index, whereas in an electronic index the links are ‘live’ so you can simply click to 
the content.

On the web an index would be very big (!); however, directory services such as
Yahoo! (www.yahoo.com) or the Open Directory Project (ODP) (www.dmoz.org)
can be seen as a form of index. The main difference is that while an index is simply
an alphabetical list of keywords, web directories give a hierarchical categorization to
sites. The categorization is done either by self-submission, or, in the case of quality
directories such as ODP or Yahoo!, by experts in the relevant field.

For exhaustive searching by keywords, some kind of automated search is required.
In the case of a standalone hypertext, the viewer application may do this either by
using a pre-computed electronic index of all word occurrences used by the hypertext,
or by scanning it on demand. The latter will take longer for each search, but may be
more effective if the hypertext is not too big or the material is rapidly changing.
Where the hypertext is generated from a database, the search may be performed on
the underlying data rather than the generated pages.

In the case of the web the content is dynamically changing, but it would be imposs-
ible to scan the whole web every time you wanted to find anything! Search engines
such as Google or AltaVista use web crawling. Starting from an initial collection 
of pages they look for all links from these pages. These links are followed and the 
new pages reached are scanned, and so on. As pages are visited, an index is built of
which words occur in which pages. The search engines typically do not keep a copy
of every page visited, but may just keep the title and the first hundred or so words on
each page. Even the index is vast and so the most common words are usually not
indexed; these are called stop words. When you do a search, the search engine uses
the index and the summary information to construct the results page with links to
the actual pages. Because it is using the page summaries and not looking at the pages
themselves, it is possible that a page may have been removed or changed since the
index was constructed.
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The web is enormous and so the number of pages containing a given word is 
enormous. Web search engines allow you to search for several words at once or for
exact phrases, or, with Boolean searches, to specify using logical and/or options what
is required: for example, ‘engine AND NOT car’.

Even when looking for multiple words or Boolean queries, the number of results
may be in the tens or hundreds of thousands. So search engines need some way to
rank pages. Some use simple, content-based measures such as the number of times
the requested words occur, whether they occur in the title or body, whether they
occur near the beginning or end of the page. Some search engines keep track of 
how many times users click through for specific pages and so can build up a model
of popularity. In addition, some search engines sell the right to be top, based on 
keywords, or have a special advertisers or sponsors links section.

Google gained its reputation for quality based on the way it ranks pages, and 
seems almost magically to get just what you want in the first page or so of results, 
and often as the very top ranked result. It does this by using the structure of links. It
uses heuristics such as: if a page is linked from lots of places it is likely to be good,
especially if the pages linking to it are already known to be good; and also the 
opposite: if a page links to lots of good pages then it is a good page.

Some specialist searches, for example for video, books, etc., and even some more
general-purpose search engines, allow you to rate pages you have visited. Ratings 
are then used to rank the more popular pages for future visitors. These are called 
recommender systems [304]. As well as explicit recommendations, e-commerce sites
often track your browsing on the site and use this to build a profile of which users
are similar to you. The books or goods they purchased may then be suggested to you.

When designing web pages, it is possible to make them more ‘search engine
friendly’ by adding ‘META’ tags in the head section of the web page, in particular
keywords and description, as well as a relevant ‘TITLE’ tag. In the early days, people
tried to fool search engines by including invisible lines with lots of popular keywords
at the top of their document. Now most search engines are able to detect such sub-
terfuge and discard such pages – so be honest! However, it is worth making sure that
something near the top of your page says what it is about!

Search engines have trouble scanning sites with many generated pages, especially
if they are accessed through a search box only, for example a dictionary or thesaurus.
There are many large data sets available on the web, often public domain or freely
accessible, which contain high-quality information – often better quality than any
old web page – but are not easy to find unless you know the site. This has been 
called the hidden web and some estimates say that it is an order of magnitude 
larger than the visible web. Currently, there are no accepted ways to link such mater-
ial into broader web searches although some products, such as onCue described 
in Chapter 18 (Section 18.4.1) attempt to link into these publicly accessible data
sources.



21.3 Finding things 767

Searching for research literature

When you are asked to do a project or a literature review you will probably reach straight
for Google! You will get many pages that are not relevant and many that appear to be, but how
do you know which are worth reading? Unless, of course, you just assume that Google knows best!

Part of the process by which papers are accepted into a conference or journal is peer review – the
papers are read and judged by other workers in the field. On the web, it is hard to judge the qual-
ity of information you find.

There are some heuristics you can use. Is the online page an electronic version of an article pub-
lished in a refereed paper publication? Where is the page: in a major corporation or university, 
or a free home page? This doesn’t mean that you can’t find good pages by unknown people, but
existing position is a heuristic. If the author has a publications page, are other articles published 
in good venues? Do other pages that you have judged to be of good quality reference an online
article? And, of course, not to be forgotten . . . does it make sense? No matter who wrote it, if it
is not well argued then don’t believe it!

If you are looking for articles in computing you can also use citeseer (citeseer.jn.nec.com). This is
a search engine for online copies of papers, hosted by NEC Corporation. Unlike standard web
search engines, this only searches for articles, and in particular is able to scan PDF, PostScript and
other electronic formats. Not only does citeseer search by title, author, etc., it is also a citation
index. For each paper, it scans it to find the bibliography at the end. When you look at the entry
for a paper, it shows you what other papers it references (looking back in time) and also which
further papers have cited it (looking forward), as the diagram shows.
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WEB TECHNOLOGY AND ISSUES

The web has featured strongly already in this chapter and for the remainder of the
chapter we will focus exclusively on it.

21.4.1 Basics

The web consists of a set of protocols built on top of the internet that, in theory, allow
multimedia documents to be created and read from any connected computer in the
world. The web supports hypertext, graphics, sound and movies, and, to structure
and describe the information, uses a language called HTML (hypertext markup 
language) or in some cases, XML (extensible markup language). HTML is a markup
language that allows hypertext links, images, sounds and movies to be embedded
into text, and it provides some facilities for describing how these components are
laid out. HTML documents are interpreted by a viewer, known as a browser; there are
many browsers, and each can interpret HTML in subtly different ways, or support
different levels of functionality, which means that a web page viewed through one
browser can look very different from the same page viewed through another. The
web requires no particular multimedia capabilities from the machines that run 
the browsers; for example, if sound is unavailable on a particular machine, then
obviously no sound is heard but the browser still displays the text happily.

The web owes its success to many factors, including the robustness and (relative)
ease of use offered by popular browsers from the very first graphical browser Mosaic,
and continued in commercial browsers such as Netscape Navigator, Microsoft
Internet Explorer and Opera. These offer a graphical interface to the document, con-
trolled by the mouse. Hypertext links are shown by highlighting the text that acts as
the link in an alternative color, and are activated by clicking on the link. A further
color is used to indicate a link that has already been visited. Hypertext links can also
be embedded into regions within an image.

Although the browser contains most of the functionality required to view a web
document, supporting text and graphics in an integrated package, special file formats
and media, including some movie formats, may require additional plug-ins or helper
applications.

As well as publishing personal, corporate and governmental information, the web
is used as a source of entertainment, an advertising medium, a communication envir-
onment, and more. The vast and ever-increasing quantity of information available
on the web certainly exacerbates the user’s ‘lost in hyperspace’ problems (Section
21.3.1). But increased familiarity with hypertext, and better web page design, are aid-
ing the situation at least as much as technological efforts to create maps and indexes
of the data. Another problem is that of information overload: multimedia images,
gigabytes of graphics and mountains of text swamp the reader in a glitzy but unmod-
erated world, in which the fact that almost anyone can make anything available leads
to the gemstones often being lost amongst the slag.

21.4
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As well as static web content such as text and images, many pages are dynamic: for
example, they may be generated from data held in databases, respond to individual
information entered into forms, or include dynamic elements such as Java applets.
We will discuss this dynamic content further in Section 21.6.

21.4.2 Web servers and web clients

Whereas a conventional PC program runs and is displayed on one computer, the
web is distributed. Different parts of it run on different computers, often in different
countries of the world. They are linked, of course, by the internet, an enormous
global computer network (see also Chapter 2, Section 2.9.3).

The pages are stored on web servers that may be on a company’s own premises 
or in special data centers. Because they are networked, the webmaster for a site can
upload pages to the server from wherever she is. For example, the web pages for
www.hcibook.com are stored in a data center several thousand miles from where any
of the authors live!

Your machine, the PC running the web browser, is called a client because it wants
the pages from the servers. When you click on a link your web browser works out 
the full URL of the page it needs: say ‘http://www.hcibook.com/e3/authors.html’. It
splits this into parts. The first part is the protocol ‘http’ which says how it talks to the
server (other alternatives include ‘ftp’). The second part ‘www.hcibook.com’ is the
host name, that is the name of the web server containing the requested page. The last
part ‘/e3/authors.html’ gives the particular file on the site. The browser then estab-
lishes a connection to the required web server (in this case ‘www.hcibook.com’), 
and sends a message, formatted using the HTTP protocol, to the web server, which
then finds the requested html file (or image, or other file type) and returns it to the
browser, which then displays it to you.

If the page contains images the same process is repeated for each image, and if the
page is a framed one for each frame within the page.

21.4.3 Network issues

The fact that the web is networked raises a series of issues that can impact on 
usability.

Network capacity is called bandwidth. This is a measure of the amount of 
information that can pass down the channel in a given time. For example, a typical
modem speed is 56 kbs – that is 56 kilobits per second. This equates to about 
6000 characters per second. This sounds fine until you realize that images may take
many tens or hundreds of characters (bytes) to encode . . . this is why many have
renamed the web the ‘world wide wait’!

However, bandwidth is not the only important measure. There is also the time it
takes for a message to get across the network from your machine to the web server
and back. This delay is called latency. Latency is caused by several factors – the finite
speed of electrical or optical signals (no faster than the speed of light), and delays 
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at routers along the way that take messages from one computer network and pass
them on. This latency may not always be the same, varying with the exact route
through the network traveled by a message, the current load on the different routers,
etc. Variability in the latency is called jitter (see Figure 21.7).

As well as the underlying latency and jitter of the network, each layer of network
software adds its own. The underlying internet protocols are lossy, that is messages
can be lost. When this happens, higher level software (the TCP – transmission con-
trol protocol – layer) notices and resends messages to give reliable communication.
These losses mean that the average delays increase, but also that the jitter increases –
a lost and resent message takes more time than one that gets there first time.

There may also be an appreciable amount of time setting up a new connection,
which may outweigh the time taken to actually send data. This is particularly a prob-
lem with sites containing many small images.

Web usability guides will give plenty of advice on ways to minimize web page size,
but one recommendation, which sadly we promulgated too in earlier editions of this
book, should be taken with a pinch of salt. Virtually every guide suggests keeping
pages short – enough to fit within a single screen of a typical web browser. Now there
are arguments for this – some users may not realize there is more content off the 
bottom of the screen, the material lower down may be ignored, search engines are
better able to index multiple small pages. However, the reason that is often given,
namely download time, is not a good one. Of course, an enormous page takes a long
time to load, but on the whole interaction is faster if a larger page is downloaded and
then scrolled through than if the user has to click links on many small pages and wait
for each.

This latter point is an example of a broader issue. In general, if you want rapid
feedback, try to make the interaction happen at the web browser end. Feedback 
that involves a cycle to the web server and back, except for intranets on fast networks,
will take several seconds, which is too slow for fluid interaction. Unfortunately, for
collaborative applications there is no way to prevent at least some network delays for
feedthrough (see Chapter 19, Section 19.6.3), but even then it is important to prevent
too many cycles of network messages.

Figure 21.7 Bandwidth, latency and jitter
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STATIC WEB CONTENT

21.5.1 The message and the medium

One thing is often forgotten when web pages are created. It is of vital importance,
and hence will be discussed first.

It is content.
Many people assume that because they can make information available on the

web, they should. Unfortunately, because it is very easy to publish information,
much less care is taken with the actual content. Material may be nonsense, it may be
incorrect, it may not read well, or be incomplete, or inane.

Excellent page design can make useless material look attractive, but it still remains
useless material. On the other hand, poor design can mean that excellent material 
is never seen by potential readers, as they have become bored, or intolerant of the
medium, or confused, or for a host of other reasons have aborted their attempts to
download and view the information. Pages do have to look immediately interesting
and attractive if people are to spend time, effort and, because of the communication
costs, money, in viewing them; the user-centered nature of the medium makes this
imperative. This is in marked contrast to television or cinema or other dynamic
media, which are not under any direct user control, where information is presented
to a passive audience. With web documents, people have actually to want to see the
information, and make an effort to retrieve it, which clearly must have an influence
on design.

Whatever is being presented, underlying all the comments made on good and 
bad design, the fundamental message is that, for the user group or groups who are
targeted, the content should be worth reading.

When it is likely that a user will require a paper copy of the information made
available over the web, ideally they should be able to download it in one go as a 

21.5

Delivering WAP content – balancing usability 
and feedback

Because of the tiny screens on phones it is difficult to scroll through a long WAP page. However,
if every link involved going back to the WAP server the feedback would be very slow. For this 
reason WML divides WAP content into stacks of notes. For the user browsing the content, the
note is the parallel of the normal web page. A link may be to a note in the same stack or one in a
different stack; the user is largely unaware of which it is. However, when you request a note in a
stack the whole stack is downloaded to the WAP browser on your phone. This means that links 
to notes in the same stack have much faster feedback. By carefully arranging content within stacks
and notes, the overall user experience can be improved.
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single complete file, with the same information content but possibly a different 
layout. Paper does not have the same inbuilt hypertextual and active capabilities as
the web page, and will be accessed in a predominantly linear fashion.

21.5.2 Text

Because web pages are displayed on many different machines, there are only a 
small set of fonts that can be guaranteed to be available: a standard font and a type-
writer font (e.g. courier) with bold and italic versions in different sizes. However, 
it is possible to specify preferred fonts and many of these such as Arial, Verdana or
Comic Sans are available on most web platforms. The difficult thing is to balance 
fine tuning the appearance of the text on one platform with making it readable 
on all.

The various structured styles such as headings allow the web designer to create
material that will lay out passably on all platforms. But these offer a fairly coarse level
of control. The size and boldness of the heading should be chosen carefully; for
example, huge dark fonts on a page can look loud and brash.

There is an increasing desire to have fine control. Cascading style sheets (CSS)
allow you to specify fonts, line spacing, size, etc., in a similar way to styles in a word
processor or DTP package. However, care must be taken. For example, many pages
specify fixed point sizes that may not display well on different platforms and can
cause problems for people with visual impairments.

The use of color is of great importance for web pages, but it is often abused. First,
it should be remembered that a significant proportion of the potential viewers of 
the page will have problems with color, either because they are using older machines
with a limited color palette, or because they have some form of color blindness.
Color, when used, should not be the only cue available. Users also bring a deep-
rooted emotional interpretation to colors; as we have seen, in some cultures, red is
associated with danger and anger, whilst green is regarded as go, or safe. Blue can be
a cool color, orange a warm one, and so on.

Links usually change color once they have been accessed, providing cues to the
user about what material they have already explored. This means that two distinct
but still suitable colors need to be associated with each link, so that the system is
acceptable whether or not the links have been activated. Note, too, that consistent
use of color can help the user understand the role of particular elements more intuit-
ively, whereas color used for no clear purpose is often distracting.

One common mistake is to put colored text onto a similar colored background 
so that it becomes nearly invisible. One of the authors had a student who designed a
beautifully laid out page of text, and decided to add a background to the page just
before demonstrating it to the rest of the group. It was only at the demonstration 
that he realized that the cool black background he had added made the black text
impossible to see!

There are only a limited number of text-placing options: text can be left or right
justified, or centered. There are a few predefined formatting styles such as ordered
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and unordered lists that have additional structure, in the form of indentation from
the left margin, with numbering in the case of ordered lists. Vertical positioning is
even more limited, but tables and (cautious use of) frames allow a greater degree of
horizontal and vertical placement. More precise positioning still can be obtained
using ‘dynamic HTML’ (DHTML), which allows parts of an HTML document
(called layers or ‘div’ sections) to be positioned as if they were separate mini-pages
within the browser window. The word ‘dynamic’ is used because these can then be
controlled using JavaScript to produce various animated effects (those pages where
little stars follow your mouse!).

Remember that monitors are different sizes and that some people use full-screen
windows and others smaller ones. To prevent very long lines, many designers lay out
pages within tables that put maximum widths (in pixels) for columns based on typ-
ical minimum expected monitor sizes (perhaps 800 × 600 or even 640 × 480). If fixed
layouts or large graphics are used then they may either display strangely on smaller
windows or force the user to scroll horizontally, which many users find confusing.
And don’t forget people viewing the page on PDAs!

The lack of explicit textual positioning makes it very difficult to produce com-
plex mathematical equations, and the font set available is not rich enough to provide
a suitable approximation. Developments in the specification are addressing this,
though the intrinsic complexity of typesetting mathematics suggests that it may be 
a while before a simple, usable solution is found that is acceptable to readers, page
designers, and implementors of web browsers alike.

21.5.3 Graphics

Obtaining graphics

There are a number of sites on the web that contain archives of graphical images,
icons, backgrounds and so on. There are also paint and image manipulation pack-
ages available on almost all computer systems, and scanners and digital cameras,
where available, enable the input of photographs and diagrams.

Using graphics

While graphics and icons tend to play a significant role in web page design, their use
should be carefully thought out. Graphical images take longer to load than text, and
this may become a problem. Text uses 8 bits to represent a character: some rough
calculations show that approximately 2000 characters represent about a screenful of
information, and so 16,000 bits (2 K) are required. For graphics, one pixel may use
8 bits to represent its color: a page-sized image will be at least 600 by 400 pixels,
which will take 1,920,000 bits (240 K), or 120 times as long to load. Put another way,
while a picture may tell a thousand words, it takes approximately 50 times as long to
appear! Users become bored with operations that take a long time to complete, and
are unlikely to wait for ages while a page appears.
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Complex backgrounds are the worst offenders in this area; they offer little in the
way of added value to the information presented on the page, and cause great 
frustration for the poor reader. They tend to be designed and tested only on local
machines, with high-bandwidth connections between them, which means that the
time factor is negligible for the designer/user. However, this disregards the fact 
that many people accessing the page will be using congested, slow networks, with a
transfer rate sometimes down to a few kilobits per second, rather than fast megabit
links. Fussy backgrounds also have the unfortunate ability to obscure text, making it
very difficult or impossible to read.

Different browsers support different types of functionality, with more recent 
versions having features that try to alleviate the usability problems introduced by the
delay involved in downloading graphics. Most browsers support caching, in which
graphics are downloaded once and temporarily stored on the user’s local machine. If
the same image is reused, it is fetched from the local store far more rapidly than if 
it were retrieved from the remote site. This clearly has implications for page design:
if graphics are to be used, then their reuse wherever possible speeds up the whole
process of drawing the page. Complex graphics can sometimes be broken down into
a set of items, many of which can be reused and assembled in different ways to add
visual impact to the page without causing large delays. Most browsers also offer the
option of turning off automatic image loading, so that only the text is downloaded.
If a page then appears to be of interest, the graphics can be explicitly requested. It is
sometimes possible to set out a page so that it still looks attractive even without the
graphics, which is necessary if the user has turned off image loading. There are other
browsers that are purely text based and do not support graphics of any sort, and for
these HTML offers an additional image attribute that allows a textual description 
of the image to be used as an alternative. The need to support these different user
preferences and browser capabilities provides a great challenge in designing pages
that are acceptable to all.

Some browsers have additional features related to image handling as a techno-
logical response to the problem of page usability. If the designer specifies the size 
of the image in advance, the browser can lay out the text on the page first, leaving
spaces for the images. This allows the user to continue to read the page contents
whilst the images are being downloaded into their respective slots. This capabil-
ity improves the usability of the page, and so should be supported by the page
designer whenever possible, by incorporating the necessary information into the
image reference.

Both GIF (graphics interchange format) and JPEG (Joint Photographic Experts
Group), the most widely used web graphic image formats, can be saved in forms 
that allow them to be progressively transmitted. This means that images appear 
as a whole, but very blurred, version that becomes gradually sharper, rather than
appearing in perfect resolution a line at a time. An overall impression of the page 
and the graphic information appearing is thus given to the user, who is then better
informed about whether or not to continue the download.

The JPEG format is optimized for photographic images and makes use of their
properties to offer a higher compression ratio and hence faster loading. However, 
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its compression is lossy, that is the image reproduced is slightly different from the
original, losing certain kinds of visually indistinguishable colors and, more import-
antly, losing high-frequency change. The latter is because photographs tend to have
slowly varying changes with few sharp edges. If sharp-edged images such as diagrams
or text labels are stored as JPEGs, small artifacts are produced such as ripples appear-
ing around letters and lines. In contrast GIF uses a lossless compression so that the
image appears exactly as it started. Although GIFs can be used for photographic
images, the compression is very poor.

The GIF format also allows animated GIFs. These are a sort of mini-slide show 
or movie where several images are stored in the same file and play one after another.
These can be used to produce simple and effective animations, but when overused
can lead to very ‘noisy’ pages.

Active image maps are pictures with defined ‘hot’ areas, which, when clicked, exec-
ute a particular script, usually calling another web page or graphic. The careful use
of such maps can transform an interface, but there is an overhead to pay in loading
the map and calling and running the script, and this should be considered carefully
by a page designer. Another characteristic of image maps is that there is rarely any
indication of which areas are active and which are not, and it can be difficult for users
to ensure that they have visited all the active regions. For accessing spatially organ-
ized information, image maps are very suitable (for example, in a tourist informa-
tion system, the area about which information is available can be represented well),
but for information that does not have any clear spatial analog, their use is more
questionable.

Icons

Icons often appear on web pages, and while there are many available to choose from,
they should be used with care. On web pages, icons are typically used in one of two
ways. They are either visual cues, associating some small picture with different parts
of the text (for example, some pages have icon-sized characters that appear next 
to instructions). Alternatively, they are used in much the same way as in a standard
WIMP interface to represent aspects of the functionality of the underlying pages. 
In this latter case, they must represent their associated functionality in either a con-
crete or an abstract form. This means that the design of the individual icon has to be
carefully thought out, as a lot of information may have to be represented in a small
area of screen estate. However, icons are rarely seen on their own, and when placed
next to their neighbors, the whole effect has to be pleasing rather than disruptive 
and garish. Therefore, the group of icons has to be designed together, with a coher-
ent and recognizable style. The picture is broader than this, however: other applica-
tions also use icons, which has its advantages and disadvantages. One advantage is
that certain icons are already associated with specific functionality (for example, 
a picture of a floppy disk to represent ‘save’). Disadvantages are that it restricts 
the individuality and style icon sets can show, and may mean that icons designed 
for one purpose are misunderstood by users because they have seen something 
similar in another context. It is therefore vital that time is spent in examining the way
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icons are used in other systems, before importing them into web pages or designing
new ones.

Icons sometimes appear for no apparent reason at all, when the 
page creator has decided that as graphics are supported, a few should
be used. One interesting example is the icon that is a copy of the 
roadworks sign, used in conjunction with text saying something like
‘This page still under construction!’.

This is an interesting social effect brought on by the ease of web publishing –
incomplete (sometimes even non-existent!) information can be made immediately
available. It’s like buying a map of the world nowadays and finding ‘here be dragons’
around the edges because the geographer could not be bothered to draw all the 
countries in. Most pages can be designed properly before they are made available,
structured and presented in a complete and coherent way, allowing for extensions
and updates from the beginning.

There are times when the disclaimer ‘under construction’ has its uses: when critic-
ally important information becomes available, publishing it may well be more
important than presenting it (much like older maps with their dragons – if maps had
only been printed once the whole world had been explored, civilization would be
very different today). There is, too, a sense in which web pages can be continually
‘under construction’, changing, evolving and growing, because of their dynamic
nature and the ease with which they can be updated, but this does not obviate the
designer’s responsibility to create pages that have both form and content.

Graphics and color

Using many different colors within graphics may well result in the browsers for older
machines running out of entries in the colormap, with unpredictable consequences.
This is often problematical as the browser may be running in tandem with other
color applications, and only has a restricted range of colors to begin with.

For many consumer markets, for example in the UK and the US, this is unlikely
to be a problem as home machines are often relatively recent. However, many 
businesses continue to use older PCs so long as they ‘do the job’ and PDAs may not
have a full color palette. Furthermore, in economically deprived areas, where there is
computer access it may well be through older or second-hand machines.

If universal access is required it is therefore still wise, where possible, to restrict
images to a limited number of colors, taken from the standard 216 color web palette,
and to reduce complex color images to simpler approximations. Reducing the 
number of colors used also allows the depth of the images to be reduced; a change
from a default of 8 bits to, say, 4 bits will produce a twofold speedup in image load-
ing. The earlier comments on the use of color obviously apply as much to graphics
as they do to text.

One further point should be made about graphics: computer screens are typically
limited to a resolution of around 72 dpi (dots per inch), and so either high-resolution
images will have to be displayed much larger than actual size, or the increased resolu-
tion will be forfeited.
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21.5.4 Movies and sound

Movies and sound are both available to users of the web, and hence to page design-
ers. One problem associated with them is actually obtaining appropriate sound and
video clips, as they usually require some sort of multimedia capability on behalf 
of the host machine in order to be able to digitize sound and capture and digitize
video. Video suffers from the same problems as graphics, magnified by an order of
magnitude or two; it can take extremely large amounts of time for a video segment
to download. Video is also not well integrated into the web, requiring the creation 
of a process to run it that is separate from the page from whence it came. Not all
receiving machines have the capability to play video, or sound, and so it is unwise for
a designer to rely on these dynamic media to convey information without replicat-
ing it elsewhere.

The use of sound and video moves page design further away from the typesetter
and toward the sound engineer and cinematographer; the integration of these 
cinematic media with the enhanced textual capabilities offered by the web is a new
domain, in which the techniques that work and those that fail have not yet been fully
explored, let alone understood.

The need to download movies and sound (see Figure 21.8) puts sharp limits on
the length of clip that can be shown. Streaming media over the internet, such as
RealVideo, RealAudio and CuSeeMe, allow potentially unlimited sources. As well 
as longer prepared clips, these techniques allow live transmission (e.g. live radio
broadcasts over RealAudio) and long recorded sequences for asynchronous commu-
nication. An excellent use of the latter is the eClass project, introduced in Section
20.2.2, which links recordings of audio and video during a lecture with pen strokes
on an electronic whiteboard, so that students can replay the part of a lecture associ-
ated with any slide or annotation.

Acceptable streaming video and audio is achieved by a combination of high com-
pression and large client-end buffers. The former leads to loss of quality including
blurring and ghosting after rapid changes in screen content. The latter leads to
delays, often of several seconds, which makes it impossible to support video con-
ferencing. The challenges of achieving high quality transmissions (e.g. for video on
demand) and low latency (e.g. for video conferencing) are active research topics in
multimedia technology.

Figure 21.8 Animated GIF or movie needs to download completely
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Stepping back a bit to look again at this, note that it is often not raw bandwidth
which is the problem on the internet, but packet losses and jitter. Buffering effect-
ively solves this by trading off quality against delay, which is okay for fixed content,
or low pace change (as in eClass), but is problematic when we require a high pace of
interaction (as in video conferencing). CuSeeMe uses little buffering and hence is more
likely to suffer break-up of video and audio (see box in Chapter 19, Section 19.3.4,
page 675).

DYNAMIC WEB CONTENT

21.6.1 The active web
In the early days, the web was simply a collection of (largely text) pages linked
together. The material was static or slowly changing and much of it authored and
updated by hand. Some pages were generated on the fly, in particular the gateways
into ftp servers and to gophers, which were so important in adding ‘free’ content to
the web [97]. However, even here the user’s model was still of a static repository of
information. Web surfers may not have always known where they were, but they had
a pretty good idea of what they were seeing and that if they came back it would be
the same.

It was a pleasant, if somewhat boring world, but from a usability viewpoint it was
wonderful – a consistent interface to terabytes of information. Who could ask for
more? Indeed, this is one of the key arguments Nielsen brings against frames-rich
sites in his famous alertbox, Why frames suck (most of the time) [263] – frames break
this simple user model and hence cause trouble. Nielsen calls for a new richer model
for the web, which preserves the simplicity of the old model, but which can accom-
modate and guide the development of new features.

Well, if frames cause trouble, what about applets, timed refreshing pages, roll-
overs, dynamic content creation? What are we interacting with – is it information, is
it computer systems? In fact, this was a problem with hypertext interfaces well before
the web existed. Back in 1989, two of the authors, Janet and Alan, wrote about the
potential problems of these shifts between passive and active paradigms within an
interface. Our solution was to accept these differences, but to make them evident to
the user through the design of an effective medium of interaction [103]. Of course
it’s easy to say . . .

As HCI researchers and designers, we can neither ignore nor uncritically accept
new technology in the web. The active web is here, our job is to understand it and to
learn how to use it appropriately.

In previous sections, we have already looked at the simplest form of active web
page, those with movies, animated gifs or streaming audio. These are simplest, not
in the sense that no effort is required – a short video clip may require many days of
production effort – but in the sense that they have least user interaction. In this sec-
tion we’ll look at more complex forms of interaction. First, where the actual content

21.6
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is fixed, but the user can change the form of presentation; secondly, at the generation
of pages from database content; and finally at the update of database information
through the web.

21.6.2 What happens where

When considering dynamic material on the web we need to take the external, user’s
viewpoint and ask what is changing: media, presentation or actual data; by whom: by
the computer automatically, by the author, by the end-user or by another user; and
how often, the pace of change: seconds, days or months? From a technical standpoint,
we also need to know where ‘computation’ is happening: in the user’s web-browsing
client, in the server, in some other machine or in the human system surrounding it?
The ‘what happens where’ question is the heart of architectural design. It has a major
impact on the pace of interaction, both feedback, how fast users see the effects of their
own actions, and feedthrough, how fast they see the effects of others’ actions. Also,
where the computation happens influences where data has to be moved to with cor-
responding effects on download times and on the security of the data.

The user view

One set of issues is based on what the end-user sees, the end-user here being the web
viewer.

What changes? This may be a media stream (video, audio or animation) which is
changing simply because it is the fundamental nature of the medium. It may be
the presentation or view the user has of the underlying content; for example, sort-
ing by different categories or choosing text-only views for blind users. A special
form of presentation change is when only a selection of the full data set is shown,
and that selection changes. The deepest form of change is when the actual content
changes.

By whom? Who effects the changes? In the case of a media stream or animation,
the changes are largely automatic – made by the computer. The other principal
sources of change are the site author and the user. However, in complex sites users
may see each other’s changes – feedthrough.

How often? Finally, what is the pace of change? Months, days, or while you watch?

We’ll use the ‘what changes?’ categories as we examine alternatives and trade-offs in
more detail below. But first we also need to look at the technological constraints.

Technology and security

The fundamental question here is where ‘computation’ is happening. If pages are
changing, there must be some form of ‘computation’ of those changes. Where does
it happen?
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Client One answer is in the user’s web-browsing client enabled by Java applets,
various plug-ins such as Flash, scripting using JavaScript or VBScript with
dynamic HTML layers, CSS and DOM (Domain Object Model).

Server A second possibility is at the web server using CGI scripts (written in Perl,
C, UNIX shell, Java or whatever you like!), Java Servlets, Active Server Pages or
one of the other server-specific scripting languages such as PHP. In addition,
client-side Java applets are only allowed to connect to networked resources on the
same machine as they came from. This means that databases accessed from client-
side JDBC (Java database connectivity) must run on the web server (see below).

Another machine Although the pages are delivered from the web server, they may
be constructed elsewhere. For hand-produced pages, this will usually be on the
page author’s desktop PC. For generated pages, this may be a PC or a central
database server.

People Of course, as noted earlier, the process of production and update may even
involve people!

It is easy to roll out maxims such as ‘users first’, but, in reality, the choice between
these options is not solely a matter of matching the end-user requirements. The best
choice also depends on the expertise of the web developer and external limitations.
If the server runs on a UNIX machine, you can’t expect to use Microsoft Active
Server Pages. On the other hand, if you are designing for an intranet you may even
get to influence the choice of client software and so make it easier to use more 
complex client-end solutions.

The choice of technological solution is also heavily influenced by issues of 
security. When we do any computation on data the computation and the data must
be in the same place [299]. This apparently simple factor means that if we want to
keep data secure (read ‘on well-protected servers’) then we must also perform the
critical computation on the same servers. For example, imagine a password check. 
It would be foolish to send the correct password to a Java applet to check!

21.6.3 Fixed content – local interaction and changing views

Probably the most hyped aspect of the web in recent years has been Java. In fact, Java
can be used to write server-end software and platform independent standalone pro-
grams (not to mention the embedded systems for which it was originally designed!),
but the aspect that most people think of is Java applets.

Applets are just one of the techniques that can be added to give client-end inter-
action (and about the least well integrated into the rest of the page). The most 
common alternatives are JavaScript, Flash and if you are prepared to limit yourself 
to Windows platforms, ActiveX plug-ins. These techniques share the characteristic
that they are downloaded to the user’s own machine (see Figure 21.9) and thereafter
all interaction happens on the PC, not across the network (with caveats – see below).

The simplest use of this is to add interaction widgets such as roll-over buttons
(usually using JavaScript). More complex pages may add the equivalent of an 
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interactive application on the page. For examples, see Alan’s pages on coin tossing
experiments (Figure 21.10), which use JavaScript to emulate real and biased coins,
and dancing histograms (Figure 21.11), which use a Java applet. See Sun and
JavaSoft’s own sites for many more examples. The addition of DHTML gives even
more opportunities for dynamic pages where parts of the page can move, change
size, or change content all without any interaction with the web server.

Notice how this local interaction confuses the static model of the web. What
should happen when you go back to a previously visited page, or reload it? Do 
you get the original state or the last state of your interaction? What happens if you
launch a second window on the same page? The actual behavior tends to be browser
specific and not always what you would expect! In particular, some browsers do 
not re-initialize applets on a reload and so if you edit the applet’s parameters and
then reload you may not see the effects of your changes. More of a problem for web
developers than end-users, but very confusing.

Figure 21.10 Simulated coin tossing using JavaScript. Screen shot frame reprinted
by permission from Microsoft Corporation

Figure 21.9 Java applet or JavaScript running locally
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21.6.4 Search

Some user-driven interaction can be accommodated at the client end, but not all.
Consider search engines. It would be foolish to download several megabytes of 
information so that a Java applet can search it online! Instead, all common web
search pages work by submitting forms to the server where CGI programs perform
the searches and return results. An additional reason for this approach is that 
most browsers support forms, but some still do not support Java or scripting in a
consistent manner. The web search engine for this book works in this way. The user’s
keywords are submitted to the server using an HTML form, they are compared
against pre-prepared indexes at the server and all matching paragraphs in the book
are returned (Figure 21.12). This also reminds us of another reason for not down-
loading all the text to the user’s machine – security; we don’t want to distribute the
full electronic text for free!

Notice that, in all the above, the underlying content does not change; the variable
factor is the user’s input. The computation (working out what to show) needs both
the data supplied by the web author (pages, databases, indexes, etc.) and the user’s
input. The result must end up on the user’s screen. Either the data must come to the
user’s machine (as in Alan’s dancing histograms where the histogram data are in
applet parameters); or the user’s input must go to the server (as with the search). We
can see from the examples that the choice between these depends on the required pace
of interaction, the size of the data set required, security and available technology.

Figure 21.11 Dancing histograms using Java applet. Screen shot frame reprinted by
permission from Microsoft Corporation



21.6 Dynamic web content 783

21.6.5 Automatic generation

It was evident in the earliest days of the web that a key problem for the future would
be maintenance. In the first rush of enthusiasm, individuals and organizations 
produced extensive and fascinating sites built largely of hand-crafted HTML. Not
surprisingly, vast areas of the web are not just static but in perpetual stasis. Web
surfing sometimes seems not so much a watersport, but an exercise in archaeology.

From the beginning it was clear that websites would eventually need to be created
from databases of content combined with some form of templates or layout descrip-
tion. However, at that stage there were no tools available and those who saw the
database future used a variety of ad hoc methods.

Happily, there are now a (sometimes bewildering) array of products for auto-
mating web production from existing and bespoke databases. These include 
vendor-specific products such as Oracle Web Server and Domino (for publishing
Lotus Notes), and also more general techniques such as using SQL (structured query
language) or JDBC to access databases from CGI scripts or even from running Java
applets.

Database-generated websites have many advantages. They make use of existing
data sources. They guarantee consistency of different views of the data within the site
and between the site and the corporate data. They allow easy generation of tables of
contents, indices, and inter-page links. They separate content and layout.

The most dynamic way to get database content on the web is by accessing a
database directly from a running applet. The interface can then have any look-
and-feel that can be programmed in Java and can allow very rapid interaction 
with the user. The Java applet can establish an internet connection back to the web
server to access data files using HTTP (as if they were web pages), it can connect 
to a bespoke server (e.g. for chat type applications) or it can use standard data-
base access methods. The latter would normally use JDBC, the Java database access
package. Using JDBC the applet can issue complex SQL queries back to the database
meaning that some of the most complex work happens there (Figure 21.13).

In all cases, the Java security model built into most web browsers means that the
applet can only connect back to the machine from which it came. This means that
the database server must run on the same machine as the web server. Think about

Figure 21.12 HCI book search
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this. The most insecure part of any system is usually the web server, both because it
is easy to leave loopholes in the many file access permissions and also because it often
sits outside the most secure part of a corporate firewall.

The more common solution is where the user uses a web forms interface (or 
special URL) and then a CGI script runs at the server end accessing the database
(Figure 21.14). The CGI script generates a web page, which is then returned to the
user. Some of the vendor-specific solutions use essentially this approach but bypass
the web-server/CGI step by having their own special web server which accesses the
database directly using their own scripting language or templates.

The user interface of such systems is limited to standard HTML features. This is a
limitation, but is at least consistent and means that it will work with virtually any
browser. Java applets can offer more rapid surface interaction, but both have to wait
for the actual data to move between server and client. Of course, the pages generated
by a CGI script can themselves contain JavaScript or Java applets for local inter-
action, so the difference between the two solutions is not so radical as first appears.

From a security angle, the database accessed from the CGI script can run on a sep-
arate machine (using standard database remote access methods or even a Java/JDBC
CGI program), thus making the system more secure. However, the database cannot
be entirely secure – if the web-server machine is compromised the CGI scripts can
be altered to corrupt or modify the database! The special vendor-specific web servers
are probably more secure as they don’t require a standard web server to be running.

Figure 21.13 Java applet accesses database using JDBC

Figure 21.14 CGI script accesses database
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21.6.6 Batch generation

A low-tech but very secure solution is to generate pages offline from a database 
and then upload them to the web server (Figure 21.15). Many of Alan’s earliest web
pages were generated in this way from HyperCard stacks.

This is certainly a simple solution as it separates out the task of page generation
from that of page delivery. Pages can be generated directly using many standard
database packages such as Access or HyperCard. Alternatively, standalone programs
in languages such as Visual Basic, Java or C can access a database and output HTML
pages. These programs can run on a central computer, or on your own PC. The 
generating program simply produces a set of HTML pages on your own disk that can
be checked locally and then copied onto the web server using ftp or shared network
disks. Many people think that this will be difficult, but in reality it is remarkably 
easy, as you can use the tools you are used to – if you can create a text file you can
create HTML. In fact, the snippet of Visual Basic in Figure 21.16 is a trivial but fully
functioning HTML generator!

Figure 21.15 Batch pre-generation of web pages

Figure 21.16 Visual Basic code to generate a web page

Set db = openDatabase("C:\test.mdb");
sql = "select Name, Address from
Personnel;"
Set query = db.OpenRecordset(sql)
Open "out.html" For Output As #1

Print #1, "<h1>Address List</h1>"
query.MoveFirst
While Not query.EOF
Print #1, "<p>" & query("Name") & " ";

query("Address")
query.MoveNext

Wend

Close #1
query.Close
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Some web scripting languages can be used in this mode too. For example PHP
allows you to send the page being generated into a buffer, which can then be saved
to a file. This can be run on a separate machine, or on the web server itself. The 
latter sounds unnecessary; however, web servers are more efficient at delivering static
material so this sort of batch generation can be used simply to improve efficiency.

As well as the ease of programming, the offline generation of web pages means that
there is no need for an online connection between the web server and the database,
so a breach in the security of the web server doesn’t compromise your database. In
addition, it may mean that the web server can be configured without CGI scripting
enabled at all, which considerably increases its security.

The downside is that you can only show the indices and pages that you can pre-
compute. So, you could use a product database to produce a pro-forma page for each
stock item, plus alphabetic and categorized lists, but you could not produce a special
list based on a user’s own search criteria.

This low-tech solution is appropriate in many circumstances – whenever the pace
of change is low (e.g. overnight or when periodic updates are acceptable), the vol-
ume of data is not too large and no online searching is required. Even when some of
these conditions don’t hold, it is possible to use the general approach. For example,
searching can often be arranged by having a much cut-down database or index on
the web server with most pages pre-computed.

21.6.7 Dynamic content

The mechanisms we have been discussing manage the feedthrough when the database
is updated by some non-web means. Perhaps the most ‘active’ web pages are those
where the content of the pages reacts to and is updateable by the web user.

If pages are generated from database content using either the Java-applet/JDBC
method or the CGI method, the same mechanisms can as easily be used to update 
as to access the database. The feedback of changes to the user is thus effectively
instantaneous – you check for seat availability on the theatre web page, select a seat,
enter your credit card details and not only is the seat booked, but you can see it
change from free to booked on the web page.

This sort of web application opens up many additional problems. You may need
to add some form of login or authentication. If credit card numbers are supplied you
need to ensure that the web server is secure. Also, without care it is easy to design
solutions that accidentally book multiple seats if the user presses the back button and
ends up on what appears to be a simple confirmation screen.

If we consider an estate agent’s web page, with houses for sale and potential 
buyers, the situation is rather different. The pace of change is slow; house purchases
take place over days, weeks and months. A solution that automatically marked a
house as sold would neither be necessary nor desirable! In this case a socio-technical
solution using low-tech database generation would probably be sufficient. The web
page can have a contact telephone number, email address or message form. Queries
via these channels (as well as non-web-based queries) come to the estate agent who
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is responsible for deciding when to mark the house ‘sold’. There is a continuous 
loop between web user and the database, but it involves human as well as automatic
processes.

Going in the direction of greater complexity, many business applications operate
an n-tier web architecture. This involves multiple layers of software where the outer
layers are concerned more with the user interface and the inner layers more with
business functionality. Figure 21.17 shows this using several web standards. The user
interacts through a web browser with a web server. The pages are generated using
Java Servlet Pages (JSP). To generate the page the servlets connect to Java Enterprise
Beans (JEB) on an enterprise server. These are components that encapsulate ‘busi-
ness logic’. For example, in a banking system this could include rules on whether a
particular transaction is allowed. These Java Enterprise Beans draw their data from
the corporate database using JDBC connections.

SUMMARY

The non-linear nature of hypertext, in conjunction with the use of different 
media, can be a powerful combination for education, documentation and market-
ing. Furthermore, the world wide web has made it possible to publish such material 
globally at very little cost. However, we saw that users can become confused and 
disoriented if the structure of a hypertext document is not clear, becoming ‘lost 
in hyperspace’. These problems may become more severe on the web where links
cross between sites, and across national borders. Furthermore, web pages are often
developed incrementally rather than being pre-planned.

Animation can be used within traditional windowing systems, to aid visualization
within special-purpose applications or as part of multimedia systems. The large 
storage and performance requirements of digital video are still a problem, but one
that is gradually being overcome by technological progress. However, the problem of
effective use of such technology, beyond the short video clip, may take somewhat
longer to resolve.

Dynamic web content can include interactive pages running on the browser or
pages generated at the web server from a database. They make use of the same web
interface as normal web pages, so in principle they are easy to use. However, they

21.7

Figure 21.17 n-tier architecture
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pose additional usability challenges as the user has to understand what is static and
what is changing content. Also, it is important to choose carefully where change is
happening, whether at the client PC or the web server, as this has a major impact 
on the nature of interaction, especially the pace of feedback.

The production of multimedia in the form of web pages is now feasible for most
computer users and is a good way of making demonstrations and prototypes pub-
licly available. Have a go!

EXERCISES

21.1 Experiment with HyperCard or another hypertext system if you have access to one. As
you work through the system, draw a map of the links and connections. Is it clear where you are
and where you can get to at any point? If not, how could this be improved?

21.2 Do the same for this book’s website and tell us what you think!

21.3 What factors are likely to delay the widespread use of video in interfaces? What applications could
benefit most from its use?

21.4 Using a graphics package such as Adobe Photoshop or Macromedia Fireworks save different types
of image (photographs, line drawings, text) in different formats (GIF, JPEG, PNG). Compare the
file sizes of the different formats, experimenting with different compression ratios (where appli-
cable), numbers of colors, etc.
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A classic review of hypertext.

R. Bentley, U. Busbach, D. Kerr and K. Sikkel, editors, Groupware and the World
Wide Web, Kluwer, 1997.
The web has become perhaps the most common platform for groupware systems.
This collection includes seminal work in this area and covers most of the issues
that are still current.

T. Boyle, Design for Multimedia Learning, Prentice Hall, 1997.
Covers both educational aspects and multimedia design.

P. Greenspun, Philip and Alex’s Guide to Web Publishing, Morgan Kaufmann, 1999.
Lovely photos and a strong focus on database-driven web publishing. (Alex prob-
ably does his web searching using Lycos.)

J. Niederst, Learning Web Design: A Beginner’s Guide to HTML, Graphics, and
Beyond, O’Reilly, 2001.
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J. Niederst, Web Design in a Nutshell, O’Reilly, 1998.
Technically oriented introduction and reference guide for web page design.

A. Badre, Shaping Web Usability: Interaction Design in Context, Addison-Wesley,
2002.

J. Nielsen, Designing Web Usability: The Practice of Simplicity, New Riders, 2000.

J. Spool, T. Scanlon, W. Schroeder, C. Snyder and T. DeAngelo, Web Site Usability:
A Designer’s Guide, Morgan Kaufmann, 1999.
Three different approaches to web usability. Badre takes a more traditional HCI
and interaction design focus. Nielsen also comes from this angle, but with a more
utilitarian view. Spool is the ‘other’ web usability guru, but doesn’t like being
called one.

Recommendations for web design are rapidly changing, reflecting developing tech-
nology and growing experience. This book’s web pages contain links to up-to-
date online web style guides.
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