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FOREWORD

This text book is prescribed for the tenth grade students. It is the first volume of the
whole course for a student studying physics in the upper secondary level of basic
education (i.e. the tenth grade and the eleventh grade).

The division and order of subject content in separate fields presented in the whole
course of upper secondary leve] physics generally follow the sequence mentioned
below:

(I) Mechanics

(2) Heat

(3) Waves and Sound

(4) Optics

(5) Electricity and Magnetism
(6) Modern Physics

The present text book covers introductory topics in the first five fields apart from
Modern Physics which is dealt with in the eleventh grade text .

Physics is generally defined as the study of matter and motion. In fact, neither this nor
any other one-sentence statement adequately covers the whole definition of physicss!
is a unified structure of the following features:

(a) creativity,

(b) accumulation of knowledge,

(c) unification of concepts,

(d) mathematical equations and formulation,
(e} philosophical reasoning,

(f') practical applications.

Both text books are designed to give students not only an understanding of the
important facts, laws and basic concepts of physics, but the practical application of
theoretical knowledge to solving problems also.
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CHAPTER 1
PHYSICS AND MEASUREMENT

Physics, like other sciences, is rooted in observations and experiments, and for them
to be meaningful, the data accumulated and the results must be based upon
quantitative measurements.
Measurement essentially is a comparison process. Quantitative measurements must be
expressed by numerical comparison to certain agreed upon set of standards. A
standard quantity of some kind, referred to as a unit, is first established.
In expressing quantitative measurements, the following rules are generally followed:
(a) When measuring physical quantities such as length, mass and temperature
we have to compare them with quantities of the scme kind that are called
units of measure.
(b) When we want to express exactly the magnitude of a physical quantity (Q)
we use a dimensionless number (N) that represents the multiple of the unit
(u) that represents the dimension. '

Expressed in symbols

Q=Nu
For example, in expressing a mass Q =15 kg, N=15 and u kg (kilogram mass) and
similarly for a velocity of Q= 100ms™ N= 100 and u=ms" (metre per second).

1.1 BASIC AND DERIVED UNITS

(a) Origin of Units

Units of measurement such as metre, kilogram, degree Celsius and so on are by no
means fixed by nature. These units have been selected and prescribed by scientists at
international conventions.

(b) Classification

As physical quantities are of the basic type (length, mass, time, temperature, etc. ) and
of the derived type (volume, velocity, work, etc.), their units are also called basic
units and derived units.( a unit of measurement formed by combining the base units
of a system)



(¢) System of Units

in the present physics course for Basic Education we shall be using the following
three systems of units.

- the British system
- the metric system
- the ST units

The British system is based on foot (ft), pound (Ib) and second (s) and is therefore
also called the FPS system. The metric system consists of (1) the CGS system which
is based on centimetre (cm), gram (g) and second (s} and (ii) the MKS system which
is based on metre (m), kilogram (kg)and second (8).The two systems are alike in the
sense that units of length and mass of one system may be converted to those of the
other by using powers of 10 (e.g. 1 m =10? em; 1 kg = 10°g). The units used in
electricity and magnetism for the two systems are, however, quite different.

The ST units is just the modified form of the MKS system of units.

The British system of units is being used less and less, and is now almost obsolete.
Only a few engineers use this system nowadays. The system is no longer used in
physics research work. Even though the system is still being used, most physics
textbooks nowadays are entirely in SI units. :

Since the SI units is being used more and more in physics and in engineering subjects,
we shall mainly employ this system of units in this book.

The SI units came into existence after slightly modifying the metric system of units.
This was done at the eleventh General Conference of Weights and Measures held
in 1960. "SI" is the abbreviation of the French words "Systeme International" which
means international system. It was also agreed upon that the abbreviation of the
system, namely SI, shall be used in all languages. The delegates to the above-
mentioned conference also agreed to the use of SI units in science, technology,
practical works and in teaching.

1.2 STANDARDS AND UNITS
(a) The Unit of Length

The concept of distance or the concept of change of position is indeed one of the
carliest concepts studied by man. To define length we have to use the measurement or
size of a standard object. For everyday use the standard may be a yard stick, ruler,
metre stick and so on. At first, the metre was defined as the distance equal to one ten
miltionth (1/107) of the distance between the pole and the equator. According to this



definition the circumference of the earth can be easily remembered. Its value is 4 X
107 m or 40 000 km. Later, a specified metal rod was used as a standard of length for
quite a number of years. This rod was kept in a temperature controlled room near
Paris, the capital of France. The length of the rod was defined as a metre. Nowadays,
the standard of length used is based on the wavelength of orange-red light emitted by
a krypton 86 isotope. A metre is now defined as the length equivalent to 1 650 763.73

times the wavelength of this orange-red light (Fig. 1.1). ( This is neither a round
number nor can it be easily remembered. This particular number is chosen so that the
metre defined in this manner is nearly equivalent to the metre defined earlier.)

L : S Fig. 1.1 :
The unit of length is the metre ( m ) in the MKS and SI systems. In the CGS system
the unit of length is the centimetre (cm) and

" lem =‘Lm=10'2m '
. 100

In fhe FPS system the imit of l.ength is the foot (ft) and
- [t =03048m =3.048 x10"'m

The size of a physical system varies enormously. Elementary particles have the
smallest size and the universe has the largest. The ratio ‘'of the largest size to the
smallest size works out to be 10*! (forty-one zeroes after the number one). This
means the size of the universe is 10" times larger than the size of an elementary
particle. Hence it is necessary that we choose the appropriate unit of length according
to the field of study.

The unit of length used by particle physicists is the " fermi " or "femtometre" (fin)
given by

Ifm =10"m
In the field of optics physicists use the unit: angstrom (A), where
| | | 1A =10"m

Agai'n, in astronomy, the most sﬁitable units are the astronomical unit (AU) and the
light-year unit which may be expressed respectively as follows



1.496 x 10! m
9.461 x 10 m

1 AU
I light-year
The largest unit of length is the "parsec "where
‘ I parsec =3.084 x 10"¥m

(b) The Unit of Time

The concept of time includes the idea of repetition. Human beirigs can feel and
experience the change as well as the flow of time. The regular changes from day to
night, then night to day together with the changes in the seasons are well known to
man. Hunger and tiredness also seem to be periodic. A pendulum clock is just an
instrument for counting a certain repetitive motion. The earth itself can be regarded as
a clock. The earth rotating on its axis completes one revolution daily and it takes one
year to complete its journey of one round about the sun. The rotation about its axis is
called "spin" and the motion around the sun is called "rotation”. At first a time of one
second (1s) was defined as that time equal to mpart of a day. Later it was found

that it was more correct and reliable to calculate the rotation about the sun rather than
the spin about the axis. Hence from the year 1900 onwards 1 s has been defined as
that time which is equal to 1 /31 556 925.9747 part of the time required by the earth
to go one round about the sun. Nowadays the standard time is measured by the
atomic clock (see Fig 1.2a) (an extremely accurate timekeeping device regulated by
the natural regular oscillations of an atom or molecule) which is based on the cesium
atom. A particular frequency 9 192 631 770 §'l (in SI units s! is replaced by Hz)
entitted or absorbed by a cesium atom is used to define 1 5. In research works carried
out in laboratories and in measuring very short times it is more appropriate and
suitable to use the atomic standard instead of the earlier astronomical standards.

Fig 1.2a  The atomic clock, (It is
located at the National Bureau of
Standards in Boulder, Colorado)




In measuring a time scale, it is quite difficult to specify what time interval is a short
one or a long one. The time taken by light to traverse the diameter of an elementary
particle is just 102 5. Compared to this one-millionth part of a second ( 10 ) is
indeed a very long time interval. However, when we compare this with the average
life-span of man we find that 10 s is in fact a very very short time.

Physicists carrying out research in various fields have to deal with very short time
intervals such as the life-time of an elementary particle ( 10% s ) and also very long
time intervals such as the age of the universe ( 2 X 10'® 5 ). The ratio of the two
numbers, which gives the extent of the time scale, works out to about 10*!, That this
figure happens to be the same as that for the extent of the length scale (discussed in
Section 1.2) is by no means just a coincidence. Just as objects at the edge of the
universe move with nearly the velocity of light, so do the elementary particles of the
sub-atomic world. We can say therefore that it is actually the velocity of light which
interconnects the distance and time measurements.

For measuring very short times the second can be sub-divided as shown.

Name of unit Symbol Time interval
picosecond ps - 102
nanosecond ns 0¥ s
microsecond us 10%s
millisecond ms 10° s

The unit of time is the second in all systems of measurement.

.//‘

(c) The Unit of Mass e

In defining the standards of length and time, objects of ordinary size were at first
chosen as standard objects. Later these standard objects were changed to-atom-sized
particles: krypton atom for the standard of length and cesium atom for the standard of
time. To define the standard of mass an object of ordinary size is still being used as
the standard object to this day. This standard object is a cylinder of 1 kg mass made
of platinum-iridium alloy. It serves as a standard of mass for international use and is
kept at Sevres in France( Fig. 1.2b ). Prototypes of the standard kilogram are
distributed to research academies and laboratories situated in ali parts of the world. (A
prototype kilogram is an accurate copy of the original standard.)



Before the modern standard kilogram was introduced, 1 kg mass was defined as the
mass of one litre (10° ecm® or 10° m®) of water at 4 °C_ It is interesting to note that the
standards of length, time and mass used earlier were somehow connected to the earth.
One-fourth the circumference of the earth is equivalent to ten million metres (10’
m )

(Fig. 1.3 ). A day has (60 x 60 x 24 s) and the volume of water (whose mass was
used to define the standard kilogram ) can be expressed in terms of the standard
metre, which is directly related to the circumference of the earth,




The units of mass are
- kilogram (kg) for the SI unit,
- kilogram ( kg) for the MKS system.
- gram (g ) for the CGS system,
- pound (Ib) and slug ( s1) for the British system.

In one form of the British system the pound is used as the unit of mass. In another, the
slug is used as the unit of mass and the pound is used as the unit of force. This could
therefore lead to mistakes in the use of the British system. If we use the metric system
instead of the British system such mistakes could not arise. In this textbook we shall
use the slug for the unit of mass and the pound for the unit of force in the British
system. The relation between kilogram, gram and slug is given by 1 kg = 103g =
6.852177x 107 sl.

1.3 SYMBOLS FOR PHYSICAL QUANTITIES

It is said that "mathematics is the language of physics ". Physical laws and principles
can be fully and effectively represented in mathematical forms. Since we have to
express the relation between physical quantities in mathematical equations it is
necessary that the symbols for the physical quantities be short and precise. The
various symbols commonly used are: s for displacement, v for velocity, a for
acceleration, p for momentum, F for force, E for energy, W for work, T for
temperature, q for charge and so on. Depending on whether a physical quantity is a
scalar or a vector, there is a way of writing the symbols such that the two may be
differentiated. We shall see this in Chapter 2.

1.4 THE MEASUREMENT OF LENGTH

In length measurement, we must choose an instrument that is suitable for the length to
be measured. Table 1.3 summarises the commonly used instruments and the lengths
which they are suitable for measuring.

Table 1.3 Instruments used for measuring length

Length to be measured. Suitable instrument Accuracy of
instruments
Several metres(m) Measuring tape 0.1 cm

Several centimetres (cm) to 1 Metre or half-metre rule | 0.1 cm
m

between 1 cm and 10 cm Vernier calipers 0.01 cm (usually)
less than 2 cm Micrometer screw gauge | 0.01 mm (or 0.001 cm )




Fig 1.4 Meter rule, half-meter rule Fig 1.5 Micrometer screw gauge
and measuring tape

Fig 1.6 Vernier calipers

Fig 1.7 Using the vernier calipers

1.5 THE MEASUREMENT OF TIME
Time

Time is measured in years, months, days, hours, minutes and seconds. The ST unit for
time is second (s). Due to the wide range of time intervals that we want to measure,
we need different kinds of clocks and watches. Table 1.4 shows useful clocks and
watches that are currently in use.



Table 1.4 Sofne uéeful clocks and.watches

Type of clock/watch

Use and accuracy

| Atomic clock

-10

Measures very short time intervals of about 107" seconds.

Digital stopwatch

Measures short time intervals (in minutes and seconds) to an
accuracy to = 0.01 s.

Analogue
| stopwatch

Measures short time intervals (in minutes and seconds) to an
accuracy to+0.1s. ' '

1 Ticker-tape timer

Measures short time intervals of 0.02 seconds.

Watch

Measures longer time intervals in hovirs, minutes and seconds,

Pendulum clock

Measures longer time intervals in hours, minutes and seconds.

{Radioactive decay
clock

Measures (in years) the age of remains from thousands of
years ago. :

1. 6 THE MEASUREMENT OF MASS

‘Mass - X

The mass of an objectv is a mea
number of atoms it contains and the size of th
body and cannot be changed by the location, s

sure of the amount of matter in it. It depends on the
ose atoms. It is a basic property of the
hape and speed of the body. (for speeds

much less than the speed of light).

The SI unit for mass is the kilogram (kg). Large masses (e.g. mass of a car) are
measured in tones (1 tonne =, 1000 kg) while small masses (e.g. mass of a pencil) are
‘measured in grams (1 gram (g) = 107 kg ). Table 1.5 shows some masses in this
universe. c S - i '

Table 1.5 Some masses in this universe

Object Mass in kilogram (kg)
electron 107
a fine grain of sand 10 = | milligram
a pea 107 = 1 gram
an apple 107" = 0.1 kilogram
a medium-sized car 10° = | tonne
Earth 10
Sun 10°




-+

Fig 19E1czctronic balance

Fig 1.8 Sliding mass balance
The Sliding Mass Balance and the Electronic Balance

Most masses used in laboratory work are measured either by the sliding mass balance
or the electronic balance as shown in F igures 1.8 and 1.9 respectively.

For the sliding mass balance, the unknown mass is placed onto the pan and its mass is
obtained by sliding the movable masses on the beams until the beams are balanced. It
is basically a beam balance.

The electronic balance is easier to use and also more accurate than the sliding mass
balance. The unknown mass is simply placed on top of the pan and its mass read
directly from a display placed on top of the pan and its mass read directly from a
display screen. '

Apparatus Used to Measure Weight

i A spring balance
A compression balance

11



Concept map (Physics)

G’Vhat is Physics?)
(  PHYSICS )
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Concept Map (Basic Physical Quantities)

Basic
physical

quantities
A

are

| Length

Time

Mass

Temperature

Electric current
Amount of substance
Luminous intensity

measured -
by

1. Pendulum
2. Clocks
3. Stopwatches

based on

L
Repetitive motion
called oscillations

13

Instruments such as
I. Measuring tape
® accuracy of 0.1 cm.
 suitable for length of
several metres.
2. Metre rule
® accuracy of 0.1 cm.
» suitable for lengths of
several emto 1 m.
. Vernier calipers
e accuracy of 0.01 cm.
» suitable for lengths of
between 1 cm to 10
.

L5

4, Micrometer screw gauge

s accuracy of 0.01 mm.
= suitable for lengths of
less than 2 cm.




EXERCISES

L.
2.

(¥

Write a page on why physics ought to be studied.

Which of the following is/are a oﬁe-séntqnc¢ definition of physics?
(a) Physics is the study of energy and fhattét |

(b) Physics is a subject which studies natural phenomena

(c) Physics 1s a collection of laws and pr1nc1p1es which govern the behav10ur of
hature.’ '

(d) Physics is a subject which studies eleme'n'ts and compounds. .

(€) Physics is a éubject which stu‘diq:‘s}hé stivcture of the animate world.
Define or explain the followmg . - o

(a) Standards (b) Units (c) St system (d) CGS system (e) Brltlsh system

The S system has been accepted because it has many advanlages compared to the
previous systems used. Discuss these advantages.

Express the fo]lpwmg measurements in decimal notation.,
(Example : 10 = 0.000 01 ; 107 = 0.01)

Diameter of nucieus.of an atom.............. 10" m
Dlameter of sodlum atom ....................... 10" m
Diameter of @ VIIUS ..ovvvveeeeeenienrreersseniens 2%10% m

Express the _follo*éving in the standard form (numbers expressed using powers of
10)

(Example £ 000 000 = 10% 1000 = 10% 0.001 = 10%)

Length of @ TMOUSE w..ovvvieereivrssienessniniassssisssssennes 0.1 m

A man's heighit. e 1-2m

Diameter of the €arth........omewucrsrieneesens 13 000 000 m

Distance of the earth to the sun........ 130 000 000 000 m

Distance of a distant galaxy ......c.ccoeeeee 100 000 000 000 000 000 000 000 000 m



10.

11

13

14.

15.

16.

The sun is a medium-sized star. In the Milky Way galaxy which includes the sun,
there are one hundred billion stars. Write down this figure in the standard form

(1 billion = 10%

The tissue of a cell is 70 A thick (A = angstrom unit). If 1 A =10"" m find the
thickness of the tissue in terms of an inch.

The sizes of the atom, man, the sun and the universe are given as follows:

The atom........ccccvveereeninane. 4 10" m
Man .............. rererereen e I-2 m

The sun...c..c. oo 1.2 x10° m
The universe.........covvvvveeeerenne. 10% m

Determine whether the following are correct.

Size'of man ~ +f size of atom X size of the sun

Size of the sun ~+/ size of atom x size of the universe

The size of elementary particles (which are also the smallest particles) is of the
order of ~ 10" m and the size of the universe is of the order of ~10%m. Determine
the ratio of the size of universe to the size of an elementary particle.

. One acre is equal to 43 560 fi*. How much is it in m??
12.

One litre is equivalent to 1000 cm®. How many litres are there in 231 in>?

. The following time intervals are given in seconds. Convert them to years,

The existence of vertebrate animals on earth........................ 10" s
The existence of fife on earth...........ooveveeeeeeeereeeeereenn, 10'7 s
Age of the earth...c.cccvriciciireiece e 4% 107 s
Age 0f the UNIVETSE..c.coovvcviveerceee s 2x10"%s
The shortest life-time of an elementary particle.................. 107 s

The shortest life-time of an elementary particle is 102 s and the age of the
universe is 10'® s. Find the ratio of the two time intervals.

In fixing the standard for time we can either choose the solar day or the atomic
clock. Which do you think is the better of the two? Why?

The distance light travels in one year is defined as a light-year (/. yr.). If the
width of the Milky Way galaxy (which includes our solar system) is 10° /. yI.,
how long will a light signal take to travel that width?



17. According to observations and measurements the farthest galaxies: are at a
distance of 10%® m from the earth. When space travel becomes highly advanced do
you think that man will be able to visit those galaxies? (Light travels 3 x 108 m in
one second and there are approxnnately 10%s ina year)

18. 40 mi b is the quotlent of 40 milesand 1 h and lm s is the quotlent of I'm and
ls. Convert A0 mi h! to m s unit and 3 m s”'to mi h! unit.
19. The mass of an electron is me = 9.1 x 107! kg. The mass of ‘a muon is about 207

me and the mass of a proton is about 1 836 m.. Find the masses of muon (an
elementary particle with a mass about 200 times that of an electron) and proton.



CHAPTER 2
VECTORS

Motion is the cause of praétically all changes which occur daily round us. Because
the earth rotates on its axis we have day and night. Different seasons on earth are due
to the earth moving around the sun along a definite path, Wind and its effects are
caused by the motion of air. The growth of crops consumed by man and animals
depends on the motion of water, air and nutrient absorbed by these crops. We come
across different kinds of motion not only in transporting raw materials and finished
products from one place to another but also in industrial production lines where raw
materials are converted into finished goods.

Whatever kind of change we may study the key factor is motion itself.

When a car breaks down and stops we have to push in order to move it. A car is in
motion because the engine is driving it forward. Whatever the case may be the thing
that causes the car to.move is called force. The force changes the state of motion of
the car. When we want to slow down a moving car or stop it completely we have to
apply the brakes. Here also the state of motion of the car is changed by the force.

So it is obvious that force not only controls motion, it also changes the state of motion.
In order to study in detail how force and motion are connected we have to find out
systematically the nature and important factors governing force and motion.

When a body is in motion there is a change in position involved. The change in
position along a certain direction is called displacement. Suppose a body moves from
point A to another point B ten miles away and situated north-west of A. How shall we
describe the displacement? We cannot just say the body has moved ten miles from A.
It will not be sufficient. This will mean that B can be situated at any point on the
circumference of the circle whose radius is ten miles and whose centre is A. The
position of B, therefore, cannot be exactly determined. It is necessary that we mention
also the direction of the displacement. To describe the displacement more exactly, we
should say that the displacement of the body from A to B is ten miles north-west. A
quantity such as displacement is called a vector. A vector has both magnitude and
direction. Vector is the abbreviation of vector quantity. Quantities that have only
magnitude are called scalars, ¢.g, mass and length.

Other vectors which are important in the study of motion are velocity, acceleration,
momentum and force.

If we just say that an aeroplane is flying at 500 miles per hour (500 mi h™") we are not
giving a full description of the motion of the plane. We just mention the speed of the

17



plane without referring to the flight direction. If we want to describe the motion of a
plane at any instant we have to state its velocity. The velocity gives the speed as well
as the direction of motion. Velocity is therefore a vector whose magnitude gives the
speed and whose direction gives the direction along which the body is moving.

It is also obvious that force is a vector quantity. The effect of a force acting on a body
depends not only on the magnitude of force but also on the direction of the force.
That is why when we describe force we have to mention both its magnitude as well as
its direction.

Taking force as an example let us now study vectors in general.

2.1 VECTOR SYMBOLS AND ADDITION OF VECTORS

Let us suppose that a number of forces are acting on a body simultaneously. How will
we find the resultant force or the net force acting on the body? To do this we shall
have to use the vector diagram drawn to a proper scale. The arrows drawn in a vector
- diagram represent the respective forces. The length of each arrow is proportional to
the magnitude of the force it represents and the direction of the arrow represents the
direction of the force concerned.

The symbols for vectors are usually indicated by placing arrows over their symbols,
Ifor instance A, B, C and so on. In this textbook the magnitude of vector A will be
written A the magnitude of vector B will be B and so on. (See G.10 Teacher's
manual Pg-18)

The method for adding vectors is illustrated below. To add B to A shift B paréllel
to itself until its tail is at the tip of A. (In its new position B must still have its
original length and direction.) Then draw a third vector R from the tail of A to the
tip of B as shown in the figure. R is the vector sum A + B and it is called the
resultant vector. Note that the tail of R is at the tail of A and the tip of R is at the

tip of B.
\ D = %

Fig.2.1
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If A and B represent two forces acting on a body, then R represents the resultant or
net force. In other words, the two forces represented by A and B can be replaced by

a single force represented by R . By so doing, the behaviour of the body will not be
altered in any way.

The method of vector addition described above can be used for adding two or more
vectors, The figure below shows how four vectors, whose magnitudes and directions
differ, are added together,

)|
)

D

=l
i
|

L)
W

(b)

Fig.2.2
We can see from the figure that there are more than one method of adding the four
vectors, The four vectors A, B, C, D can be taken in any order and added, and still

the resultant vector is the same. Fig. 2.2(b) illustrates a typical example. We may also
note that the order in which the vectors are added does not affect the result; that is

A+B=B+A
Vector diagrams can be used not only for forces but also for other vector quantities
such as displacement, velocity....etc. We must be careful, however, that only vector
quantities of the same kind may be added. Displacements may be added vectorially;

so also velocities and forces. But different vector quantities like velocity and force
cannot be added.

Let us study the following example of vector addition. A boat travels east at 10 mi h™!
in a river that flows south at 3 mi h™'.We wish to find the boat's velocity relative to the
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“river bank (the earth). Here we have to add the boat's velocity to the velocity of the
river current. The two velocities can be represenied by vectors and then they can be
added by a vector diagram.

Zommre velotity of the BORt (¥,
g L

velogity of the river current (¥}

smih™’

If v is the required velocity, then

= v boat T V2 dver (< V boat Lv river)

vV o= 107+3
= 109
v . = 104mih’
tan® = Yriver i
Vioat 10
= 0.3

0 = tan' 03=17°
The addition of vectors is shown i the vector diagram and the determination of the
magnitude and direction of the resultant vector is shown in the above calculation. In
this example vpou and viyer are perpendicular to each other. Hence we can use the
Pythagoras theorem in finding the magnitude v of the resultant velocity v.

Triangle of forces

If three forces acting on a body are in equilibrium, we can always represent these
three forces by the sides of a triangle, with the direction of the forces taken in order.
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250N \J 200N
200N

Having learnt how vectors may be added let us now find out how to subtract one
vector from another. Vector subtraction is also called vector difference.

Vector subtraction is, in effect, vector addition. If we subtract vector A from vector

B » We must first write vector A with a minus sign in front, such as -A . This vector
-A has the same magnitude as vector A but its direction is opposite to that of A .
Vector B can now be added to vector - A using the method described above. In what
follows, the vector difference between B and A is found by means of algebraic
notation as well as by drawing a vector diagram.

B-A=B+(A)

§~A:E\+/ﬁ= =\§-—E
B-2
Fig. 2.3

Besides vector addition and subtraction we must also know how to resolve a vector.
Resolution of a vector means that the given vector is resolved (subdivided) into
vector components so that their sum total effect is the same as that of the original
vector. A vector situated in a three dimensional space can be resolved into three
vector components. If we consider only a two dimensional space, then a vector in
such a space can be resolved into two vector components which are perpendicular to
each other. "Vector component” is a new term introduced here. Let us find out what it
really means.

2.2 RESOLUTION OF VECTORS

Just as a number of vectors can be added to obtain a resultant vector, it is also
possible to sub-divide a given vector into 2 number of different vectors. As shown in

Fig. 2.4, if vectors A and B combine to give a resultant vector C, then it is equally

true that vector C is equivalent to the sum of its vector components A and B. The
process of sub-dividing a vector into two or more vectors is called "resolution of a
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vector”, and the new vectors obtained are called "vector components" of the original

vector,
B 3
/ﬂ= i] + —2 »

Fig. 2.4
Vector components as a rule need not-be perpendicular to one another. But in most
practical applications they are perpendicular to one another.
Let us look at an example of how resolution of a vector is put into practical use.
Fig. 2.5 shows a boy pulling a wagon with a rope which is at an angle o above the
ground. Only part of the force he exerts affects the motion, since the wagon moves

horizontally while the force F is not a horizontal one.

Fig.2.5
We can resolve F into two components, Fy and Fy, which are the horizontal and

vertical components of F, respectively.
The horizontal component F, is responsible for the wagon's motion, while the

vertical component F, merely pulls the wagon upwards. (Since F, is counter-
balanced by the weight of the wagon, the wagon does not really move upwards.) The

magnitudes of Fcand Fy are
Fx =Fcosa

, Fy = Fsin a
F is the projection of F in the horizontal direction, and F is the projection of Fin
the vertical direction. ' '

22



We need just two quantities to specify F. These two quantities can either be the

magnitude of the force F and the angle « or F, and F y. Qenerally, however,
physical quantities which are represented by vectors are considered in three
dimensional space rather than in two dimensional space. We therefore need three
quantities to specify a vector. These three quantities are shown in Fig, 2.6.

Fig.2.6
Two different sets of the three quantities are shown in Fig. 2.6. One set consists of the
vector components A o A y and A, of vector A and the other consists of the
magnitude A of vector A and the two angles @ and 9. It is found that the former is
more convenient to use than the latter.

Example (1) A force of 3 N is perpendicular to a force of 4 N. Find the magnitude of
the resultant of the two forces.

Let R be the magnitude of the resultant force,

R
3N

»

4N
R = J(4N)* +(3N)? = 425N? =5N

(N is the abbreviation of the force unit: newton)
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Example (2) A man walks 2 mi east and then 3 mi in a direction 60° north of east.
Find the magnitude of his resultant displacement from his starting point.’

A 2mi B D

Let the resultant displacement be AC. We have,

BD = BC cos 60°
= 3 ¢os 60° = 1.5mi
AD = AB+BD
=2+1.5=35mi
CD = BC sin 60°

!

3sin 60° = 2.6 mi
~AC  =4(AD) +(CDY’
=12.25+6.76

= 4,4 mi

EXERCISES

. 1 . .
1. In the equation s = vt + —2—a1‘2 , 8,voand a are magnitudes of the respective vector

quantities. Write down the equation in vector form.

2. The relation between displacement s, average velocity ¥ and time t is given by
s =vt . Which of the quantity or quantities are vectors and which are scalars?

3. Fill in the blanks.

Using graphical method a vector may be represented by an arrow. The (a) of the
arrow is proportional to the magnitude of the vector and the direction of the arrow
gives the (b) of the vector.
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10.
I1.

12.
13.

14.
15,

Fill in the blanks. |

A force directed to the east is represented by an arrow of length 3 cm pointing to
the right. A force of equal magnitude directed to the west can be represented by
an arrow of length (a) pointing to the (b).

Which of the following statements is definitely false?

(a) A scalar is the magnitude of a vector.

(b) A vector has both magnitude and direction, while a scalar has only magnitude.
(c) A displacement is a scalar quantity since it has both magnitude and direction.
(d) If the statement (b) is true, then (¢) must be false.

Differentiate between vector and scalar quantities.

Can the magnitude of the resultant vector of two vectors having the same
magnitude be

(a) greater than, smaller than or equal to the magnitude of each vector?

(b) greater than, smaller than or equal to the sum of the magnitudes of the two
vectors? (Answer with diagrams.)

In ordinary arithmetic 2+2=4. Can we always use this kind of addition in vector
summation? Explain.

If the sum of the two vectors is zero what can you say about these two vectors?
Can the sum of two vectors, having unequal magnitudes, be equal to zero?

Vectors A, B and C satisfy the equation A + B - C = 0. Can you say that Cis
the resultant vector of A and B ?

IFA=28 compare the magnitudes and directions of A and B .

If C = % D and C is represented by the arrow shown, draw an arrow that

represents D,

[ ~1
1 <1

| -
I

3 units
Add two vectors having 3 units each and both pointing north.

Find the sum of a vector having 4 units pointing north and a vector having 3 units
pointing south.
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16. A force 4 N, directed east, and a force 6 N, directed west, act on a particle. Find
the magnitude and direction of the resultant force. (A particle is a very: small
object.) ' o ' -

17. Find the magnitude of the resultant force of a force 3 N pointing east and a force
6 N pointing north. | - ' S ' Lo

[8. Draw the respective Y components of vectors A, B and (‘3' shown in Figs. (), (b)
and (¢). Also write down the values of these components

SPP
30/
— X X
60y
(@) ‘ )

19. A vector of magnitude 5 units is inclined at an angle 37 to the x axis. Find the
magnitudes of the vector components along X and y axis.

20.. A vector of magnitude 5 units is inclined at an angle 37° to the x axis and another
vector of magnitude 10 units is inclined at an angle 53° to the x axis. What is the
magnitude of the sum of the vector components dlong the x axis?
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CHAPTER 3
DESCRIBING MOTION

We cannot say that motion is absolute and independent of other things. Motion
actually is relative and we nced a frame of reference to describe it. How fast are you
moving as you sit and read this book? This may seem to be an absurd question but at
this very moment you are moving along at a speed of 19 miles per second. This speed
is equivalent to 70 000 mi h™' and is many times the speed of a jet plane. You might
be surprised but the question and the answer mentioned above are neither absurd nor
surprising. That the answer is correct can be explained as follows. Since YOu are on
the earth, it carries you along with it as it speeds around the sun in its orbit. Therefore,
the earth's orbital speed, which is 19 miles per second, is also your speed. Ordinarily,
you will say that you are at rest and that you do not think of yourself as being in
motion. This is because, in everyday life, when you say that a body is moving, you
mean that it is moving with respect to the surface of the earth.

You are either moving at 19 miles per second or you are al rest depending on the
point of reference chosen. A point of reference in a given frame of reference is any
body with respect to which the motion of another body is being described.

In the first instance the reference is the sun and in the second it is any object such as a
tree or a building which is situated on the carth. A body tnay therefore be at rest in
one frame of reference while it may be moving in another. Consider 4 passenger
sitting in a bus that is travelling at 20 mi h™', The passenger will be moving at a speed
of 20 mi h” with respect to the road, but he will be stationary with respect to the seals,
floor, walls of the bus or the driver of the bus. If another bus, also travelling at 20 mj
h, should be coming toward the passenger, the speed of the passenger with respect to
that bus would be 40 mi h™!. 'This example illustrates that the speed changes as the
frame of reference is varied. It js therefore necessary that we specify a frame of
reference when we study motion, since motion, as we have seen, is not absolute byt
relative,

3.1 VELOCITY AND SPEED

In everyday life, we describe the motion of bodies by stating their speeds. The speed
of a body tells us how far it truvels during every unit of time. A typical automobile
speed is 30 mi b or 44 feet per second. This means that the automobile travels a
distance of 44 fi each second. Some typical units of speed are feet per second (fi s,
centimetres per second (em s') and metres per second (m s'). An artificial carth
satellite has a speed of about 5 miles per second (5 mi '), We can compare this with
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the speed of light which is 186000 mi s, This speed, so far, is the fastest known to
man. Although there is a theoretical prediction that the speed of a certain particle
exceeds the speed of light, we still have no concrete evidence that such a particle
exists in nature.

In physics we give a more complete description of the motion of a body by stating its
velocity instead of its speed. Velocity tells us two things about a moving body: its
speed and its direction of motion. Thus, the velocity of an aeroplane should be stated
as 300 kilometres per hour(km ') westward, which then gives both the speed and the
.direction. : : . S

All the different kinds of motion we come across in the world can be classified as one
of two main types, uniform motion and accelerated motion. ' ‘
In uniform motion; both the speed and direction of the moving body remain the same.
Tt is therefore motion at constant velocity. A car going at a steady speed of 30 mi h!
on a straight road is travelling in-uniform motion-(Fig. 3:1). ‘ o

UNCECRE S

time 0 1

speed 30 - » % | 30 30 mi k"

distance 0 . 30 60 90 120 rai
Fig.3.1

In practice, a car usually does not travel at constant velocity all the time. Changing
road and traffic conditions make it necessary that the. car changes its direction or
speed, o both direction and speed. The velocity therefore keeps changing. Motion
with changing velocity is called accelerated motion. In everyday usage, acceleration
generally means speeding up. In physics, however, acceleration refers to any change
of velocity. Velocity changes when there is change of direction, change of speed, or
change of both direction and speed. Any change in velocity gives rise to acceleration.
Since the change of speed can either be increasing, or decreasing, the change of
velocity in accelerated motion, therefore, can also be either increasing or decreasing.
Considering the points discussed in this chapter and in Chapter 2, we can now define
exactly the physical quantities: displacement, velocity and acceleration which are
necessary for describing motion. o ‘

Dispincement is defined as the distance travelled along a particular direction.
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Displacement has both magnitude and direction and therefore is a vector quantity. If a
car travels 100 m towards the east, then its displacement is "100m, eastward".
Velocity is defined as the rate of change of distance along a particular direction. It can
also be defined as the rate of change of displacement. Velocity is also a vector
quantity. (Note that speed is just a scalar quantity.)

If a body travels a distance s along a particular direction in time t, then the magnitude
of its velocity is

$
t 3.1)

If the motion of the body is such that equal displacements take place in equal
intervals of time, then the velocity is constant. If during equal time intervals the
displacements are not the same, then the velocity is not constant and we use the term
average velocity to describe the motion of the body.

Average velocity is defined as the ratio of the total distance travelled along a
particular direction to the time taken to travel that distance. In symbols, magnitude of
average velocity is written

'v =

y =2 (3.2)
{

Since velocity is a vector quantity, velocity can be expressed in vector form as

-..|Caj

(3.3)

vﬂ\‘

If the velocity of a body changes, then the body is said to have acceleration.
Acceleration is defined as the rate of change of velocity. It is therefore a vector
quantity which can be shown in symbols as

a="2r"u (3.4)
f

where a represents the acceleration, vy the initial velocity, v the final velocity and t
the time interval respectively. The magnitude of acceleration can be written

—Y-%
t
(Equation 3.5 holds true only for the special case of motion along a straight line.)

(3.3)

Even though the acceleration due to a decrease in velocity is termed deceleration in
common usage, it is customary to use the technical terms "acceleration" and
"negative acceleration" to refer to an increase or decrease in velocity respectively.
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The units of displacement, velocity and acceleration in different systems are given in

Table 3.1.

Table 3.1 /

Quantity SI MKS - CGS FPS
Displacement m m | cm ft

Velocity ms’ ms’ em s ft s
Acceleration ms” - ms” cm s~ fi 5

Example ( 1) A body travels from A to B along a straight line and another body
travels from A to B along a curve (shown by the dotted line).

- -
o

If the straight-line distance between A and B is 3 km find the displacement of each
body.

The displacement of each body is the same. (The displacement is the same although
the paths of travel or the distances actually travelled are not the same.) '
The displacement is 3 km from A to B.

Example( 2 ) In the above example, the first body moves along the straight line from
B back to A. The second body, however, moves along the curved-path back to the
same starting point A. What are the displacements of the two bodies now? -

'Since the starting-point as well as the end-point for both the bodies is A, there is no
net change in their position at all. Therefore the displacement of each body is zero
although the distances travelled are not zero. S
Example ( 3 ) If the first body takes 1.5 h to travel from A to B, what will be its
velocity?

Since the displacement is 3 km and the time taken is 1.5 h,

velocity = % =2km h'

velocity = _3x1000_ _ 056 ms™

‘ 1.5%x60x60
(This result can also be shown in cm s')
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NOTE: Since the motion of the body is along a straight line, we have not mentioned
the direction of the velocity, which is toward B. A positive sign for the velocity
is quite sufficient here. The velocity in this example is just the average velocity,

Example(4) ‘A body moves from one point to another along a straight line with

constant acceleration. If its initial velocity is 40 ¢m s and final velocity is 80 cm ™!

find the average velocity of the body.

If v, = the initial velocity and v = the final velocity, then

vo+v_ 40+80 )
2 2
Example (5) A body travels B a straight line for 5 s. The displacement of the body

for each second is given in the table below.
Time 0s 1s 2s 3s 43 5s

Displacement 0 cm I0cm 25cm 30cm 48cm 60cm
Find the average velocity of the body. Is the body moving with uniform velocity?

average velocity v = = 60cms’

Average velocity v = %
= EQ =12cm s’
5
OR

For each second, the velocity is .
1st second 2nd second 3rd second 4th second 5th second
10cm s~ 15cms? 5¢ms’t 18cms” 12em st
Average velocity v = 10+15+§+1‘8+12 =80 12 cms?

Since the velocity of the body is changing every second the body is not moving with
uniform velocity.

Example( 6) A car moving in a straight line with constant acceleration arrives at a
certain point after travelling 5s from the starting point. If the initial velocity is

44 fi ' and the final velocity is 66 ft ™' find the acceleration of the car.

If vo = the initial velocity and v = the final velocity, then

v-v, _ 66-44
t 5

acceleration a= = 4.4 fts?
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3.2 LINEAR MOTION

Out of the many types of motions we shall first study the simplest type, which is
motion in a straight line or linear motion. The study of linear motion of bodies is
important for two reasons. First, many objects, such as freely falling bodies, actually
move in straight-line paths. Second, many complicated motions of bodies can be
considered as combinations of two or more stralght—lme mot1ons and therefore can be
analysed in terms of straight-line motions. - - ‘

In discussing linear motion we shall use just v for the velocity symbol instead of the
velocity vector symbol ¥ . The direction will be specified by using positive and
negative signs. Since linear motion has only two directions, if one direction is taken
positive then the other will be taken negative. It is important that we use the positive
and negative signs correctly in our discussion. The symbo! for acceleration will also
be represented by a instead of @. The acceleration due-to an increase in velocity will
be assigned a positive sign, while that due to a decrease in velomty will be assigned a
negative sign.

We shall now derive the equations of motion for linear motion. Let us suppose that a
body moving with velocity vp acquires an acceleration a. Therefore, for every second
that the body is moving the increase in velocity is equal to a. In time t the increase in
velocity will be " at" . Hence, the velocity after time t will be

v = vyt at (3.6)
If a body is moving with uniform acceleration, its average velocity is equal to hall'the
sum of its initial velocity veand its final velocity v. Therefore,

average velocity v = 5
Since  v=vytat,
average velocity v -
_ vy A
= VO + 5 at

Since the distance s travelled by the body (the dlsplacement) is equal to the product
of average velocity and time, we have

s=(vot %a ty t or $= Vo t+ é— at’ (3.7)
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motion as follows. Squaring both sides of the" equatlon y = vo + at we have

y . N V2 = v’ +2v0at+a
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This equation can be written in the form g .
sotinsianogn an.iga\)hij;fl ,rig L o

V2= v02+ Za(vot+ Yaat? )

’”) l\"nu o
Since the terms shown in brackets correspond tos /it
e V2 =g ;i-2as - (3.8)

The above three equations of motion give the relatlon bet\yeen displacement, velogcity
and acceleratlon of a body movmg ina stralght lme w1th uniform acceleration. These
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equatlons are 1mportant and useful m ahalysmg stralght-lme motion.

Straight-line motion may also be 111ustrated with the help of a velocity-time graph.,
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The velocity-time graph shown in Fig. 3.3(a) represents motion with uniform velocity
and Fig. 3.3 (b) illustrates motion with uniform acceleration.



The velocity-time graph of a body moving with accelerated motion, but with non-
uniform acceleration, is shown in Fig. 3.4.

. F.lg. ‘3.{; -

Example (7) A car travellmg with a speed 108 km h stops inl5s due to uniform
acceleration. Find the value of the acceleration.

1081<1nh'1 - =M=3gms-l
‘ ‘ 60x60 '

initial velc')city' = 30m s'l

finat velomty O s?

change of velomty ﬁnal velomty  initial veloc1ty
(0 30)ms = -30ms
change of ve10c1ty

time

II

R

Therefore, acceleration a

= —— =-2ms
Example (8) An object takes 5 s to travel a certain distance. If the path of travel is
straight and the average velocity is 20 m s find the distance travelled by the object.

aﬁerage,velocity v =20ms’
 timetaken t =35s8
Therefore, the distance travelled is _
s =vt=20x5=100m
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Example (9) A car starting from rest travels with uniform acceleration of 2m s2in the
first 6 s. It then travels with a constant velocity for half an hour. Find the distance
travelled in the first 6 s as well as the distance travelled in the following half an hour.

For the first part of the journey ,

Oms

i

initial velocity v
acceleration a = 2ms?
time taken t; = 6s

Therefore, the displacement s; = éatf = %— X2 X6*= 36m
The velocity at the end of the first part of the j ourney is
2

v = 2as
=2x2x36
~v = 12mg?

For the second part of the journey,

constant velocity v = 12ms

timetaken t; = 30min=30x 60s

Therefore, the displacement s, = Veonsanta

= 12 x 30 x 60
Therefore, v = 21600 m

= 21.6 km

3.3 MOTION GRAPHS AND THEIR INTERPRETATION

Motion can be described or analysed conveniently with the help of graphs. The

usefulness of motion graphs is illustrated through examples in the following
discussion.

Let us first ook at the simplest type of motion-one in which a steel ball is moving
with constant speed along a straight path. The speed of the ball is not changing,
Let this speed be 5 cm s ; then the ball travelled 5 cm in every second. On

measuring the distances covered and the corresponding time elapsed, we get the data
listed in Table 3.2.
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Table 3.2 lists the distarices:travelied by the; ball at:the endsofeach:of fivest-seconid
intervals. The respective positions of the ball” ‘are marked A, B, C, D, E and F, A
being the starting position, B the posﬂ,l”' fafte Fganafoionto bro sl i isot sl

For each of the positions of the stéel ball, we ‘plot a point on the graph in Fig. 3.5. The
distance travelled is shown h the wettical axis and the time elapsed is shown on the
horizontal axis. On plotting the data; in- Table 3.2, we get the distance versus time
graph shown in Fig. 3.5. This graph is called the d1stance-‘t1merwgraph Point A of the

W ST
graph represents the starting pomt and therefore hes at the origin. Pomt B represents

the distance of 5 cm travelled by the ball after ‘a ’umféhhﬂﬁ'\féﬁi ‘of 1 s. Its ordinate or
vertical distance fromi the horiz6iital'axis is’s crfi ‘o thé distance scale. Its abscissa or
horizontal distance from the vertical axis is-1 s on the time:scalei-Simildrly;:pointi€
represents the distance of 10, cm travelled at the end of 2 s of time. The remaining
points D, E, F are also obtamed in the same manner. On connecting these points, we

l oy el T
find that the graph is a straight lin¢ - g R

Hence, a straight line distance-tirmie graph represents a uniform motion; that is, motion
with a constant speed along a straight line. And the slope or slant of the distance-time
graph gives the speed ofithe. moving 'object:Thel ste€per or: Igredter the slope/iof.a
straight line distancg-time graph, the greateris thespeed. iuddiimesh o sy sonioid
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The distance-time graphs of two moving objects are shown in F ig. 3.6. Since both the
graphs are straight lines; 'th'ey:}gggrjgsent' linear mQtigp’g with constant speeds the graph
with the steeper slope represe?p{t_g ﬂ-‘le' motio‘;n -with--gyc??ter--speed.

Another type of graph useful_'._iﬁ; the analysis of mbtjon is the speed-time graph. This

type of graph shows how the_"sﬁeéicll of a moving object varies with time. Let us again

look at the motion (with coqsffe{iitr'é"peed alc?mg a straight path) described above. In Fig.
3.7 the constant speed of th]e‘is‘féé]:'ball méving at’5em s is plotted against the time
of travel. The speed is showfi' 61 the vertical axis and the time is shown on the
horizontal axis. The speg:d_—fi_@éf ‘gtaph is a straight-line parallel to the horizontal axis.
The fact that all the points on the graph are at equal distances from the horizontal axis
means that:the objéctis moving with the same speedthtoughout itsimotiom; ity )
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We can find out the distance tfgveiled by thé‘*.s;eel §a11 between any two instants of
time by calculating the area undex; the speed—tifng graph between those instants of
time. Thus, area I of F ig. 3.7 gives.the distance.travelled by the ball between the timc
t=0sandt=2s, and similarly, ares 1. gives the distance travelled in the timC
interval betweent=4sandt=5s, Areal=v Xt wherev=5cms'andt=2s, anct
thereforé the distance travelled in that fiine htervdl oF 276 is 5 e 4 %2870k 10 el
Similarly, the distance travelled between t=4sandt=5sis5 cm s x I s '0F S ¢!
The ability. torfind out the: distance travelled by.such méans:is-d usefiilfeature of the
speed-time ‘graph.: i -1 i AR g e D bent ol radts FLTENT S
We will now go on to the next simplest type of linear motion. In this type of motion
the object is moving along a straight path with uniform (constant) acceleration.

A car is travelling along a straight road and its speedometer readings are as listed in
Table 3.3. The speedometer of the car indicates directly the speed of the car at the
particular instant the reading is taken.

37



Table 3.3

Time speed
0s Oms”
28 1 12ms'
4s | 24mst
6s | sems )
8s _.4_8msfl
10s- . 60 ms™

On plotting the speed against time, we get the speed-time graph of Fig. 3.8, The
nature of this graph is a straight line. The fact that it is a straight line showsth;t the '
speed of the car is changing equally in equal intervals of time; that is, the acceleration
is constant. ‘

We can convert the speed-time graph of Fig. 3.8 to the distance-time graph. In order
to do that we first compute the distances covered for the different travel times, and
then plot the distance travelled against travel time as previously described. The
distance-time graph corresponding to the speed-time graph of Fig.3.8 is given in
Fig.3.9 ' - :

¢i{m™ si{mli.

St - i
Fig. 32 Fig..39 1o

Notice that-the distance-time graph in the present case is not a straight line but a
parabola.

We.will continue to look at the motion of the car beyond the travel time of 10 s. The
speedometer readings after the first 10 s give the speeds of the car as listed inTable3.4.
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Table 3.4

Time Speed
12s 60 ms™!
18s  60ms
24 60m s’
30s 60m s
32s 50m s
34 40 m s
36s 30ms?
38s 20ms’?!
40 g 10m s
42 5 Oms!

The speed-time graph of the data in Table 3.3 and 3.4 is shown in Fig. 3. 10, and it is
the graph for the entire time of travel. Note that the car stopped moving after 42 s of
trave] time. Fig. 3.10 shows that for the first 10 s the car was moving with increasing
speed. It is, therefore, accelerating and since the increment of speed in equal time
interval for this part of motion is the same, the acceleration is constant. From 10 s to
30 s time interval, the graph is a straight line paraliel to the horizontal axis. This -
signifies that the speed of the car did not change. Then the last part of the graph,
which is a straight line sloping down to the horizontal axis, indicates that at 30 s the
car began to decrease its speed uniformly and finally at 42 s it stopped. In this last
portion of motion, the car was moving with a constant negative acceleration; in
layman terms, the car was decelerating after 30 s.

vim 3~1)
50

Fig.3.10
One can easily convert the speed-time graph of Fig. 3.10 into a distance-time graph.

Let us now try and describe the motions represented by the distance-time graphs of
Fig. 3.6. The two graphs represent the motions, respectively, of two runners A and B
who took part in a race. The race course is a straight path, The graphs show that
runner A had run at a faster pace than B, in fact twice as fast. By the time A had K
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reached the winning post, B had coverdd oty half the distance and at that distance he

stopped moving altogether, ———— e .
a0 ) ISR .
Fig. 3.11 (a), (b), (¢), show® 1;(?[5"§1;jeed=t1me"grapﬁ[srglnwhlch"are different from the ones

we have discussed previousi-i. Fig, 3.11 (a) is tlfla'"c;g of 2 lift whose speed increased
uniformly along OA and then decreased uniformly,dn speed to rest along AB. The

distance travelled is the area 'of theytriangle OAB. . ¢¢
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when it left the hand of the thrower,

The figure shows what happened when a ball was dropped whilst at the same instant a
second ball was thrown sideways.When an-object is projected horizontally, it travels
in the horizontal direction-with a constant velocityvyo (as indicated by the constant
horizontal vector length’§ in the drawing). While traveling horizontally, the object is
also falling undcr;;tﬁé‘“ifiﬂﬁéﬂﬁé‘eﬁaf'"g'ﬁiﬁi’t'y'",'"ﬁgr—'gﬁf"l"ﬁé' combined motions produce a
curved path. Note that the downyard, motion produce a curved path, Note that the
downward motion oflthe_pgoj,e;gt@d ball is the same as that of a dropped ball.
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Fig. 3.12

The position marks on two edges of the figure 3.12 show that

1.Both balls hit the ground at the same time: the downward acceleration of both balls
was exactly the same. :

2. Horizontally, the second ball moves over the ground at a constant speed.

These results suggest that the horizontal and vertical movements of a falling object
are quite independent of each other.

Motion graphs and their interpretation

steady displacement no velocity no acceleration
at rest in fixed position
+x
o
b= 2 =
2 8 3
80— 2 ( 50—
_g fime t time t rr time t
[ &)
3 g
X pomr e mm
(a) displacement-time {b) velocity-time (c) acceleration-time

Fig. 3.13 Motion graphs for a stationary object at a distance x from the observer
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distance

fime t

o speed

timet

time t

rate of change of speed

(a)distance-time

(b) speed-time

(¢ ) rate of change of

speed-time

Fig. 3.14 Sealar graphs for a stationary object at a fixed distance from the observer

displacement-time

velocity-time graph

acceleration-time

graph graph
=t
4
: 0 st
— s ®
& I timet . =
. 5 g
> 5]
o
e o o - [+
' (a) Regular increase in (b) Uniform velocity (¢) No acceleration
displacement ‘ '
Fig 3.15 Motion graphs for uniform velocity
E
g . L
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(a) Irregular increjse in

(b) Regular increase in

(¢) Uniform acceleration

velocity with time

_ displacement with time

Fig 3.16 Motion graphs for uniform accéleration
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Example (10) A train starts from a station A, with an acceleration of 0.2 m s? and
attains its maximum speed in 1.5 min. After continuing at this speed for 4 min it is
uniformly retarded for 45 s before coming to rest in station B. Find ,by drawing a
suitable graph,

(a) the distance between A and B'in km,
(b) the maximum speed in km h™' |
(c) the average speed inm s
initial velocity vo= Om s’
acceleration a = 0.2 ms”
time taken t= 1.5min =1.5 x 60s
v = v, +at

=0+02x1.5x60

=18 ms™

Therefore, the maximum speed = 18 ms™

18mystf PI 2 :
I 1 2
1 I e
[] ¥ "
) )
: '
i )
O M| i R
0 90 s 3308 375s

Using the formula (Area of A = %basex height ), one gets

Area OPQR = Area ( AOMP+ ANQR) +Area of rectangular MNQP

=%(OM><PM)+—;:(NR><QN)+(PM>< MN)
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‘Since PM=QN, we obtain

o
Area OPQR =PM[@‘%i‘—rR—)+ MN]

= 18[@12-4—5)- + 240]

=5535 m=35.535km

(a) The distance between A andB = 5.535km
(b) The maximum speed = 18ms”
= 64.8kmh
(¢) The average speed v = —i—
_ 5535
375
= 1476 ms™
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Concept Map (Length, /)

Displacement, s
Distance, d

!

Velocity, v =

Speed, v

nlﬂ-f—blw

b b B

Constant velocity/speed

Varying velocity/speed

A

Area under v-t graph
give distance {ravelled
e.g. v/ms™’

T2 .
)
ur s '
o T s
5 =— (u+ V)it

v—-u
i

where v = final velocity
u = initial velocity

. Av
Acceleration,a = — =

Y

Constant acceleration:

e.g. free fall of objects under
gravity in the absence of air
resistance has a constant
acceleration, a = g = 10 ms™

vims™
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Varying acceleration:
e.g. free fall of objects under

gravity in the presence of air
resistance has decreasing
acceleration

v/ms™! . .
terminal velocity

/—/:__smaller a Zeroa
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hlagea
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EXERCISES

1.

Is the formula for average velocity v =

Which of the following quantities are scalars and which are vectors?
(a) speed (b) velocity (c) average velocity (d) acceleration (&) displacement.

The following equations are used to describe the motion ofabody.”

s= vot+ %at2

-

v= vgptat

= _ VYotV
2

s= vt

Express them in vector form. (The symbols carry their usual rneanings.)‘A'_r'e the

‘above equations true for motion with non-uniform acceleration?

A person goes from his house to a'nearby shop at the corner of the street and then
returns home. Can you say that the distance travelled by him is equal to the
magnitude of his displacement? ' ' ~

In a one-round-about-town walking race the starting point is the same as the
finishing point. Whose magnitude of displacement is greater? The one who
completes the race or the one who. gives up half-way?

A body moves along a straight line. What can you say about its speed and its
velocity?

_ v, +V

N .

always true?

-For what particular case do the two equations s =v t and s = vt become
. equivalent?

fWhat form will the equations in question number 2 assume for motion with
- constant velocity? .

. Check whether the following statements are true or not.

(a) "If the speed changes, the velocity also changes."
(b) "Although speed changes, there is no acceleration.”
(¢) "Even though velocity changes, the speed may or may not change,”
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(d)"'If the speed does not change, but the direction changes, there will be
aceeleration,"

10. Fill in the blanks.

Velocity is (a) position in a particular direction and (b} is the rate of change of
velocity. '

Since displacement has both magnitude and direction, displacement is a (¢ )
quantity,
11. Choose the correct answer from (a), (b), {c) and (d), Displacement is
(a) rate of change of velocity,
(b) magnitude of acceleration,
(¢) distance,
(d) change of position in a certain direction.
12. Define average velocity.
13. Define speed and velocity such that the two may be distinguished. ,
14. What is the meaning of the unit cm s ?

15. What component of a body’s motion does the gradient (slope) of a displacement-
time graph represent?

16. How can a body‘é acceleration be calculated from a velocity from a velocity time
graph of its motion?

17. Which graph represents the motion of a body moving with constant velocity?

(b)

47



18. A ball is projected vertically upward. Which graph represents the velocity of the

19.

20.

21.

22,

23.

24.

23,

ball during its flight when air resistance is ignored?

Vi v V] o
0 IR t 0 —

v \7 0 t .
A train decelerates at a constant rate during a period commencing at t = 0. Which
graph represents the displacement of the train?

| I i N
|

. ) t o

Find the average velocity of a sprintér who won the gold medal in a 100 m race
with a time of 11.5 s. '

In a 400 m race, the person running in the innermost lane clocked 50 s and won
the gold medal. Find his average velocity. Is the magnitude of the average
velocity the same as the value of average speed? (Hint: For the innermost lane the
starting point is the same as the finishing point.)

An object moves with an initial velocity of 5 m s, After 10 s its velocity is 10 m
s’l. If the object moves with constant acceleration in a straight line, find

(a) its average velocity,

(b) the distance travelled in 10 s and

(c) its acceleration.

An object moves with an initial velocity of 4 m s, If it moves with a uniform
acceleration of 2 m s find its displacement after 20 s.

A particle with initial velocity of 10 m s travels in a straight line and stops
completely after 12 s. Find the uniform acceleration of the particle.

A particle starting from rest moves along a straight line with a constant
acceleration of 2 ms . What is the velocity of the particle 9s after it started from
rest?
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26.

27.

28.

29.

30.

‘A car is travelling with a constant velocity of 6 m 5", The driver applies the

brakes as he sees a cow which is at a distance of 24 m from the car. Find the
acceleration of the car if it stops just in front of the cow.,

A body moving with a constant acceleration reaches the velocity 4 m 5™ after 10 s,
If the body starts from rest, find the respective velocitics after (a) 12 s (b) 14s (c)
16s and (d) 18s. Draw the velocity-time graph for the interval 10 s to 18 s. From
the graph, find the velocities at 8 s and 20 s respectively.

Draw a graph of velocily against time for a body which starts with an initial
velocity of 4 m s™" and continucs to move with an acceleration of 1.5 m s for 6 s.
Show how you would find from the graph:

(a) the average velocity,
(b} the distance moved in those 6s.

A body starls [rom rest and accelerates at 3 m 52, for 4 s. Its velocity remains
constant at the maximum value so reached for 7 s and it finally comes to rest with
unilorm negative acceleration after another 5 s. Find by the graphical method:

(a) the distance moved during each stage of motion, '
(b) the average velocity over the whole period,

The graph in figure shows the relationship between velocity and time for a
moving body. What kind of motion is represented by (a) AB, (b) BC, (c) CD ?

velocity B C

A

time
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31, The figure represents graphically the velocity of a car moving along a straight
level road over a period of twenty minutes. :

G
40
ke
20

10

4 1011 1415 18 20t (min)

. (a) Describe the motion of the car between A and B.
(b) Describe the motion of the car between D and E.
(c) How far has the car travelled between B and D?
(d) Calculate the acceleration of the car between B and D.
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CHAPTER 4
FORCES

The portion describing motion which is called kinematics was discussed in Chapter 3.
The concepts such as displacement, velocity and acceleration, which are required for
the discussion of kinematics, have also been defined precisely.

Besides kinematics, which describes motion, dynamics, which explains motion, is
also important in the study of motion. A fundamental concept in dynamics is force. In
this chapter, together with force concept, mass, which is another concept required for
the explanation of motion, will be delined: and the relation between force and mass
will also be presented and discussed,

The use of the word "force" is quite common in everyday life. In ordinary usage one
comes across such statements as: "his writing consists of many forceful words”, “the
atom bomb explodes with tremendous force", "collision with great force", "the
earthquake of great intensity and force” in which the meaning of the word force is not
exact or well defined. From the point of view of physics such general usages have
mixed up the meanings of force, energy and intensity. However, force is defined
precisely and explicitly in physics.

Although a force is commonly understood as a push or a pull, it cannot be said that
this definition is sufficient and complete. In order that the meaning of force be more
complete and exact, the definition must be modified. Force is defined precisely by
Newton's laws of motion. The exact relation of force and mass is also derived from
one of these laws,

4.1 NEWTON'S LAWS OF MOTION

Firstly, Newton's three laws of motion will be stated in words and then expressed in
mathematical forms.

First Law

When no net external force acts upon it, a particle at rest will remain at rest and a
particle in motion at a constant velocity will continue to move with the same constant
velocity,
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{n mathematical form

IfF =0thena =0 (4.1)
Second Law
The net external force acting upon a partiéie‘ i.s' equal to the product of the mass and
the acceleration of the particle. | _
| F=ma 42)

In the above equations F is the net external force. .

The following figures A , B ,C show to get the clear understanding of the term the
net force. - . o o
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Third Law

Whenever two particles interact, the force exerted by the second on the first is equal
in magnitude and opposite in direction to the force exerted by the first on the second.

FSL‘.COﬂd onfirst = ‘?Firsl on second (43)

Let us begin with the discussion of the first law. This law means that if a net external
force acts on a particle, the initial state of the motion of the particle will be changed.
Although two or more forces act simultaneously on the particle, its state may not be
changed. For cxample, if' two equal and opposite forces act simultaneously on a
particlc at rest, it will remain at rest. In this case, the net force acting on the particle is
zero since the two forces cancel out. Therefore, the initial state of the particle is
totally unchanged.

If there is no external force a particle at rest will remain at rest, Even a person with no
knowledge of physics will readily accept this fact. A lay person will think that every
motion is caused by force or a body will be in motion only when force acts upon it.
Even in the absence of an acting force a body can still be in motion at constant
velocity; but it would be difficult to relate this fact with one's own common sense.
According to the statement of the first law, if there is no net external force of any kind,
a particle initially in motion at a constant velocity will continue to remain in the same
state of motion. Again, although cxternal forces are simultaneously acting on a
particle, if the resultant of the applied forces is zero, the initial state of the particle
will not be changed. Tt is more correct to say "force changes the state of motion"
rather than to say "force causes motion." This is one property of force.

Newton's first law expresses the idea of inertia. The inertia of a body is its reluctance
to start moving, and its reluctance to stop once it has begun moving. (e.g. It is much
easier to push a 5 kg mass than a 500 kg mass because a 500 kg mass has a greater
inertia than 5 kg mass. It is often noted that a running boy of mass 50 kg is easier to
stop than a running footballer of mass 90 kg) This property of the body is also
demonstrated by a driver in a car who is Jerked forward when the vehicle stops
suddenly (Fig. 4.1).

moving with constant velocity sudden stop
Fig. 4.1
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1t would be difficult, at the first encounter, to understand Newton's second law of
motion. This is because two concepts, namely force and mass, which had not yet been
precisely defined earlier, are included in this law. However, by combining the second
and the third laws, force and mass can be precisely defined.

—

The mathematical equation: F = m 2, which describes the second law is a vector
equation; and according to this equation the direction of the acceleration is the same
as that of the force. Moreaver, this equation will be a vector equation only if the mass
of the particle is a scalar. : . : :

The second law may also be viewed as follows.

If a net external force acts upon a particle, the force produces acceleration, an_d' the
ratio of the force to the acceleration is the mass of the particle.

Let us consider a particle. Assume that a force F) produces an acceleration 2, when
applied to the particle, and a. force F; applied to the same particle produces an
acceleration 2, . Hence, according to Newton's second law we have :

,_Fz'_ = & = m= éonstant _ ‘ (4.4)
ay as )

where the constant m is the mass of the particle. If F; > F» then a > ap It fneans that
as the magnitude of the force acting on a particle increases, the acceleration of the
particle will increase accordingly. It is equivalent to saying that acceleration is

directly proportional to force. In symbols, a oF.

N

— EDpE Sowee
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In order to discuss and explain Newton's third law the following cases will be
considered. Consider a man sitting on a chair. The man exerts a force which is equal
to his bodyweight on the chair. At the same time the chair exerts a reaction force,
which is equal in magnitude and opposite in direction, on the man. In this case, if one
of the said forces is termed "action" the other is called "reaction”. If the force exerted
by the man is called "action", the force exerted by the chair should be called
“reaction", or it can be said that the force exerted by the chair is "action" when the
force exerted by the man is taken as "reaction", There is no strict rule as to which one
should be taken as "action", and which one as "reaction",

2CLON forpe of °

man on chair

Fig, 4.3

As another case, let us look at a man firing a gun at a target. The gun exerts a force on
the bullet, and the bullet exerts an equal reaction force on the gun. This gives rise to a
recoil force to the shoulder. The two forces are equal in magnitude but opposite in
direction.

<> LE Fig . 4.4
In each of the above cases action and reaction act as a pair at the same time but the

pair of forces acts on two separate objects. Important facts relating to force which
arise from Newton's third law are as follows:
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_ It is not a single force acting by itself but a pair of forces acting simultaneously.

This pair of forces is action-reaction pair.

. Action-reaction pair does not act on a single object
out each other.

but acts on two separate objects.

- Action force and reaction force cannot cancel

A simple  aCT ON

REACTION

ACTION ACTION
| Fig. 4.5

REACTION - REACTION

Y

ACTION rocket REACTION gas pushes - o
pushes on gas on rocket Fig. 4.6

1

ove discussions the three laws of Newton can be designated, as

According to the ab

follows:
- First law as law of inertia;

Second law as law of force and acceleration;

- Third law as law of action and reaction.

nd law of motion wiil be shown through derivation of units of

Usefulness of the seco
force.
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Units of Force

Newton (N) and dyne which are units of force can now be defined explicitly
from F=m3. A body of mass 1 kg resting on a frictionless horizontal plane will be
considered.A force that is acting on this 1 kg mass to give it an acceleration of 1 m s
is called Inewton. (IN=1kgms?)

Similarly, a force that is acting on 1 g mass to give it an acceleration of } cm s is
called 1 dyne. (1 dyne=1gcms?)

Since 1g=10"kgand 1 cm= 107 m,
1 dyne =10 x 102 =10 "° newton or 1 newton = 10°dynes

The newton and the dyne are particularly useful units of force because acceleration of
the bodies on which the forces act can be obtained directly from their definitions.

Not only units of force but the definition of the slug, which is the unit of mass, can
also be derived from Newton's second law. The slug is the unit of mass in British
engineering system. It is defined as follows: when 1 pound force acts on a body and if
the acceleration of the body is | ft s, then the mass of the body is called 1 slug.
Therefore, if a force of 2 pounds acts on a mass of 1 slug the acceleration thus
produced will be 2 ft s7; a force of 3 pounds will give a mass of 1 slug an
acceleration of 3 {t s%; a force of 4 pounds will give a mass of 1 slug an acceleration
of 4 ft s and so on. A mass of | slug is approximately equal to a mass of 14.6 kg.

Units of force, mass, length and time which are all useful to the application of the
equation F = ma are shown in the following table in SI, MKS, CGS and British
engineering systems.

Table 4.1
Quantity SI MKS CGS British
Force newton newton dyne pound
Mass kilogram  kilogram  gram slug
Length metre metre *Gentimetre foot
Time second second second second

57



4.2 GRAVITATIONAL FORCE AND NEWTON'S LAW OF GRAVITATION

Newton was able to point out and express precisely that all bodies in the universe are
attracting one another. Gravitational force causes bodies which are above the earth's
surface to fall onto the earth's surface. The gravitational force enables the moon to go
round the earth and the earth to go round the sun. These are some examples of the
effects of gravitational force.

Newton stated the gravitational law as follows:

Everybody attracts every other body in the universe. The gravitational force between
the two bodies is directly proportional to the product of the masses and inversely
proportional to the square of the distance betweer them. In symbols
m, mz o

r’

Fa——~ (4.5)

where F is the gravitational force between the masses m; and my whose distance apart
is . If it is expressed as an equation in vector notation:

P mmq

(4.6)

where G is a constant which is the same for all bodies in the universe. According to
experimental measurements the value of G in. MKS system is found to be
6.67x10"M"'m’ kg's 2

—

p=L [f{|=1, 7 = unit vector (A vector that has the magnitude 1).
R

Applications of Newton's law of gravitation

(a) Tides :

The attraction of the moon and the sun upon water of the earth cause tides.
(b) Orbits of satellites round the earth

Satellites can be launched from the earth's surface to circle the earth.

They are kept in their orbit by the gravitational attraction of the carth.

Example (1) If 10 N force acts upon a 2 kg mass, find the acceleration produced.
Since F= 10 N and m = -2kg, we have

F= ma

I0N= 2kgxa

a= SNkg'=5ms>

(Since MKS system is used the unit of acceleration is m s
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Example(2) Find the magnitude of a force needed to accelerate an electron from rest
to a velocity of 10° cm s in 10 s. (An electron mass = 9.1 102 g)

The electron starts from rest and is uniformly accelerated to velocity v in time 1, and

; , v
acceleration a = ?

Substituting the values v = [0° cm s and t = 10 s in the equation, we have
10°
10
Using this value of a and the value m =9.1 X 102 g, we have

a = = 10® cm s

F = ma

= 9.1 x 10%x [0°
9.1 x 10 dynes
(Since CGS system is used, the force is in dynes.)

Example (3) A 12 b force gives a body an accelération of 4 ft s~ Find the mass of
the body.

SinceF = 12tbanda =4 fts* wehave F= ma
C12=m x4
m =3 sl

(As the British engineering system is used, the mass is expressed in slug.)

Example (4) A 4 kg ball is at rest on a perfectly smooth plane which is in a horizontal
position. A force of 10 N is applied horizontally to the ball. Find the speed of the ball
and the distance travelled after 6s.

From F=ma, we have

o
Il

fav)
]
|3 3|

=2.5m s” is obtained.

According to Newton's second law, the direction of a and F are the same. The speed
of the ball 6 s after the force started to act is

\Y =at
=25%x6 =15ms’
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and the distance travelled is
s= 1, af= 1, X 2.5%X 6
= 17 2.5 X36=45m
(Since the ball started from rest the initial speed of the body is assumed to be v¢=0.)
Example (S)IA 2 kg ball is moving with an initial speed of 15 m s7 on a rough plane

which is in a horizontal position, and gradually slows down and stops after travelling
20 m. Find the magnitude of the force which resists the motion of the ball.

The speed of the bail changes from 15 m s to 0 ms™ after travelling 20 m. Thus, we

have v = vgH2as
0 = (15°+2ax20
0 =225+40a
a = ﬁ: S5.6ms?
40

As indicated by the minus sign it is found to be a negative acceleration. The force
resisting the motion of the ball is

F =ma
=2 X (-5.6)=-11.2N
The minus sign indicates that the direction of the force is opposite to that of the
motion of the ball. The magnitude of the force is 11.2 N.

Example (6) Find the gravitational force between two 1 kg masses held 1 m apart.

Since m=m; = 1 kg, r = 1m and G = 6.67 X 10" m? kg'1 2, the force acting
between the two masses is

m ,m
F =G =5~
=6.67 x 10 x %
m
=6.67 x 107N
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Example (7) Express the value of G in the CGS units.
3

G =667x10" 2
kgs
- 667 x 107 x (10° em)”

(10° g)x(1s)’

_ 6.67x10" x10° om’

10° gs?

4.3 DIFFERENT KINDS OF FORCES

So far, only four fundamental forces are known. They are the gravitational force,
weak interaction, electromagnetic force and nuclear force. Nuclear force is the
strongest and the gravitational force is the weakest of these forces. The
electromagnetic force is the second strongest force. Amongst the four forces the
gravitational and the electromagnetic forces are long-range forces and the remaining
two forces are short-range forces. |

= 6.67 x 108 cm’g s

The gravitational force acts between particles having mass, the electromagnetic force
acts between charged particles, the weak interaction between all elementary particles
(sub-atomic particles), and the nuclear force acts between some elementary particles
such as proton, neutron, pion and strange particles.

The fundamental force encountered in the study of mechanics is the gravitational
force. The electromagnetic force will be encountered in the study of electromagnetics.
Only these two fundamental forces will be studied in elementary physics.

In the study of mechanics, apart from gravitational force, frictional force and elastic
force will also be encountered. However, unlike gravitational force, these two
mechanical forces are net fundamental forces.

When a body is placed on a floor, the bottom part of the body and the surface of the
floor are in contact, and there is a force, between the two surfaces which resists the
motion of the body. The force that acts to resist the motion of the body is frictional
force. The frictional force depends, in a complicated manner, on the smoothness and
cleanliness of the surfaces, the force pressing the two surfaces together and the speed
of the body.

Although frictional force is not a fundamental type of force, it is very important in
mechanics. Since the effects of frictional force play a major role in the effective
utilization of machineries, prior consideration should be given to frictional force in
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the construction of machineries. Frictional force causes undesired effects in many
cases. Prictional force reduces efficiency of machines. Therefore, great efforts should
be made to minimize frictional force as much as possible.

Advantages as well as disadvantages are associated with frictional force. Ability of
human beings to walk on the earth’s surface is due to friction. The possibility of
putting nails in wood and the ability of belts to rotate pulleys and wheels is also due
to friction.

4.4 MASS AND WEIGHT

It is known that a body dropped from a height above the surface of the earth will fall
(towards the centre of the earth) onto the ground. If the height is not too far from the
ground the body will fall at a constant acceleration. The acceleration due to the
gravitational force is called acceleration due to gravity and it is represented by the symbol
g. The attracting force of the earth acting on a body is defined as the weight of the
body. Let the mass of the body be m ; and ifa = g is substituted in Newton's second
law: F = ma, the gravitational force acting on the body or the weight of the body is
found to be '
w=mg 4.7

This relation is true not only for freely falling bodies but also for bodies on the.
ground.

According to the relation w = mg, it is clear that mass and weight are different
quantities. Weight is force and its units are newton, dyne and pound while the units of
mass are kilogram, gram and slug. Those who begin to study elementary physics
usually confuse mass and weight. There is no reason to make such a mistake once w
=mg is learnt.

Mass is the quantity of matter in a body. Mass is also a measure of inertia. The mass
of this type defined from this point of view is called inertial mass while the mass of
the type defined by m = w /g is called gravitational mass. It is known from exact
measurements that gravitational and inertial masses are equal. Newton believed that
this equality was a mere coincidence. However, Einstein had assumed that it was not
a coincidence but an absolute equality, and that this was a fundamental fact. Based on
this fact Einstein was able to formulate his famous general theory of refativity.

Without differentiating between inertial mass and gravitational mass, only the word
"mass" will be used in this book.

Mass is always a constant, Wherever a body may be. there is no change in the value
of the mass of the body. But the weight of the body can change according to its



position. For example, if a body be carried from the equator( g = 9.78 m s7) to the
pole( g = 9.83 m s2), the weight of the body will vary slightly. Similarly, if it be
carried from a vatley to a height on a2 mountain, the weight of the body will also
change slightly. This variation of weight is due to the change in the value of the
gravitational force as the distance from the body to the centre of the earth changes. (It
should be noticed here that the earth is not a perfect sphere but slightly flattened at the
poles).

Example (8) Find the value of the acceleration due to gravity g.

Let the mass of a body at the earth's surface be m and that of the earth be M. The
distance from the body to the centre of the earth is just the radius of the earth; and if
that distance is denoted by r, the gravitational force acting on the body is

mM

1'2

F =G

According to definition this gravitational force is the weight of the body and since the
weight of the body is mg, we have
mM
mg = G —

_GM
r’.!
(Note that the properties of the body are totally excluded in the above relation.)

If G=667 x 10" m’kg's?, M=597x 10*kgandr=6.37 x 10°m are
used, we have

0= 6.67 x 1071 3 JTX107
(6.37x10°)
_3.98x10"
(6.37x10°)
=98ms?
In the CGS system the value of g is
g =98x 10° ems? =980 cms?



But the value of g is often taken approximately as 10 m s? or 103 cm s7 in order to
31mp11fy calculations. The value of g in the FPS system is 32 ft 57

Example ® 5 kg and 10 kg masses are at a place on the top of a hill where g has
the value 9.75 ms™. Find the weights of the masses.

Since weight of a body is the gravitational force acting on the body, we have

® = mg
Hence, the weight of 5 kg mass is,

Oskg =5 X 9.75

=48.75N

and the weight of 10 kg mass is
Ojlﬂkg = 10 x 9.75

= 975N
Example (10) Find the mass of a body weighing 3232 1b.

' ® =mg

®

m = oe—
g

3232 101 sl
32

Example (11) If a body weighing 320 lb is moving at an acceleration of 10 ft 57,
find the net force acting on the body.

The mass of the body is m = —

=§_.9;1051
32

and the net force acting on the body is
F=ma=10x (0=1001b
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4.5 DENSITY, RELATIVE DENSITY AND PRESSURE

Mechanics of particles was treated in previous chapters. In this chapter mechanics of
liquids will be discussed. In the study of mechanics of particles, the type of motion
and the state of equilibrium can be predicted exactly if the forces acting on the
particles are known. Similar methods of approach will be used in the study of
mechanics of liquids. However, there is one thing different in the study of mechanics
of liquids. Unlike solids a liquid has no regular shape. The shape of a liquid changes
according to the shape of its container. Therefore, in the detailed study of mechanics
of liquids the geometrical problems which arise from the variation of shape will
become more and more complicated. The concepts of density and pressure, instead of
mass and force, will be used to avoid these problems and to understand mechanics of
liquids more fully.

After defining density and pressure, liquids at rest as well as non-viscous liquids
which are in motion can be studied. In studying liquids at rest one must first try and
understand why a body remains submerged or floats in a liquid. For liquids which are
in motion Bernoulli's equation can be used. Work and energy concepts are included in
this equation and it is stated in such a way that it can be applied conveniently to
liquids.

The study of liquids at rest is called hydrostatics and the study of liquids in motion is

-

called hydrodynamics. Only hydrostatics will be discussed in this chapter. -
Since direct use of mass and force concepts in mechanics of liquids is inconvenient,

they must be replaced by density and pressure. Density (0 ) and pressure (p) are not

only non-vectors, they are also free from geometrical restrictions. Before studying
liquids at rest let us first define the concepts involved.

Density

For any shape of liquid which has a known mass the volume is fixed. Therefore, the
density of a liquid is defined as the ratio of its mass to volume. In symbols

P == (4.8)

where 0, m and V represent the density, the mass and the volume of the liquid

respectively. In SI units density is expressed in kilograms per cubic metre (kg m™).
The densities of some liquids are shown in Table 4.2.
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Table42 . .
Densi Temperature

Liquid kgm | (O
‘Water, pure . o 1823 , 103
Sea water C 1025 - 15
Alcohol, ethyl ' 791 - - 20
Chloroform. - 1490 ' 20
Mercury = 13600 - 0
Whole blood -1059.5 - 25
Blood plasma ' : 1026 .9 1 25

- Milk - _ 1030
ice 920
Relative Density

We have to measure mass and volume in the determination of density. Mass can be
measured accurately with a laboratory balance and it can be measured with greater
accuracy than volume. Therefore, the value of relativ'e_: density ‘can be measured more
accurately than that of the density because it is necessary to measure only the mass
and not the volume. '

The ratio of the density of a body. to the density of water at 4 °C is called relative
density or specific gravity. N I i -
The values of relative densities can be obtained readily from Table 4.2 because the
density of water ai 4 °C is. 1000 kg m™. For example, the relative density of mercury
is just a number without units, 9@9 =13.6.

The mass or the weight of a body of known volume can be obtained if the relative
density is given. At 4 °C the mass of | cm’® of water is 1 g. The weight of 1 ft* of
water is 62.5 Ib. Therefore, the mass of 1 cm’ of mercury is 13.6 x 1 g = 13.6 g and
the weight of 1 ft* of mercury will be 13.6 X 62.5 = 850 Ib.

Relative density can also be defined by the following relation:

mass of certain volume of body

relative density =
_ mass of equal volume of water

Since the miass of an object is directly proportional to its weight the relation
weight of body having a certain volume

weight-of equal volume of water

Relative density =

is also correct,
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The density and relative density concepts are not only important in mechanics of
liquids but also very useful in practice. When drawing the designs of bridges, flyovers
and buildings, architects and engineers have to know the densities of materials which
are to be used for the construction. The volume of each part of the material is
calculated from the designed models. If the volume is known, the mass is obtained by
multiplying the volume by the density. The weight is known when the mass is known.
Only when the weight is known can one calculate how strong the foundation should
be and how strong the posts (pillars) should be.

Chemists can check roughly the purity of a substance by measuring the densities.
Geologists can sometimes identify gems by measuring their densities.

Example (12) In the British engineering system the density of water is 1.94 sl ft>.
Find the weight of 1 fi* of water.
Since the mass of 1 ft* of water is
m=1.94g],
the weight is
® = mg
=1.945l x 322 ft s~
=62.51Ib

Example (13) If the volume of a metal sphere of 210 g mass is 20 cm® what is ‘the
density of the metal ?

o
—
=

Il

The density is o

BN

=105¢g cm™

[y

0
Example (14) Express the value of the density from example (13) in SI units.

2 =105gem™

-3
=|05X"—l-9_—2—3-
(107)

=105%x 10* kgm™
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Example (15) The density of helium at 0° C is 0.178 kg m™. Find the mass of the
helium gas which is in a balloon of volume 1000 m>. :

The mass of heliumis m= eV . ,
- =0.178 x10° =178kg =

Example (16) Find the relative density of helium at 0°C.

| | | ' pHe

p water

0.178
7000 -

o y | =1.78 x 10* : |
Example (17) Find the relative density of glycerine at 0°C (densityof glycerine =
1260 kg m™). . - -

The relative density of helium =

Pg

P water
1260
1000

= 1.26
4.6 PRESSURE S

The concept of pressure will now be explained and defined. Consider a liquid which
is in static equilibrium as shown in Fig.4.7 (2). Suppose the volume of liquid in the
sphere is to be removed without disturbing the tiquid. In order to do this, a group of
forces must be .acting in some way inside the cavity of the sphere as shown in Fig.

4.7(b).

The relative density of glycerine ==

@ | )
Fig.4.7
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The effect of this group of forces must be the same as the original effect of the liquid
which has been removed. Also, each of the forces will be normal at every
corresponding point on the inner surface of the sphere.

The ratio obtained by dividing the total magnitude of the normal forces by the surface
area is called average pressure. Therefore,

_ magnitude of the normal forces
surface area

Average pressure

p = £ | (4.9)

In order to obtain the pressure at a point the radius and the area of the imaginary
sphere in Fig.4.7 (b) may be compressed so that they become extremely small or the
sphere may be compressed till it nearly becomes a point.

We have defined pressure and density only with reference to liquids. In reality, these
concepts are applicable not only to liquids but also to solids and gases. Generally,
gases and liquids are together called "fluids". Although it has been said in the
beginning of this chapter that mechanics of liquids will be discussed, actually it will
be more appropriate to refer to it as fluid mechanics.

The unit of pressure is the ratio of the unit of force to the unit of area. The unit of
pressure in SI units is pascal (Pa )and 1 Pa =1 Nm™>.The units of pressure widely
used in meteorology are bar(b)and millibar (mb)and the unit of pressure used in
medicine and physiology is torr or millimetre of mercury (mm Hg). (At present, Pa is
frequently use in meteorology.)

The unit of pressure in the British engineering system is pounds per square inch (Ib
. 2
in™)

The relation between the units of pressure are

Ilbin®  =6.895 x 10° Pa

1b =10°Pa

1 mb =107%p

1 Pa = 1.45 x 10*1b in =107b
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" Example (18) A 25 N force acts normally on a surface whose area is 5 x 10* m%. .
What is the pressure?
The pressure p = Y
25
5%10™
=5x 10* Nm?
=5x10*Pa

Eiample,(l9) A 25 N force is applied to the piston of a syringe. The area of the
piston is 10 * m?. If no liquid flows out of the syringe find the increase in pressure on
the liquid.

Increase in pressure p = % |
ST

=125 x 10° Pa

(There is only atmospheric pressure before the 25 N force is applied. Atmospheric
pressure is explained in the next section.)

Example (20) Express 2 X 10° Pa pressure in Ib in” and in bars.

2x10° Pa =2 x10° x (145 x 10*bin?)
=29 x 10
=291 in? .
2% 10° Pa _ 2x10°
. 10°
=2b .

Example(21) Which of the pressures 2 x 10° Pa, 1 b, 10* m b is the greatest?
| 2% 10°Pa =2b>1b
2x10°Pa  =2b |
100 =2x100mb<10°mb
Therefore, the 10° mb pressurglis the greatest.

70



4.7 MOMENTUM AND LAW OF CONSERVATION OF MOMENTUM

Another important concept in mechanics is momentum. Momentum (p) of a body is
defined as the product of the mass of the body and its velocity.

—_

It is written as P =mv
One fundamental law of physics is the law of conservation of momentum.
The law states:

If there is no net external force acting on a system consisting of two bodies, the sum
of the momentum of the two bodies will remain constant.

When two bodies of masses ma and mg collide, we have

- LN [ S -

PATDPE  =DPa P8

— 9 r
maVvatmp T"B =m’s V\A + m'ﬁg (4.10)

- - .. .. ! = .
vaand VB are velocities of the masses before collision; and Va and Vg are their
velocities after collision.

The law of conservation of momentum is a general law and is true not only for
ordinary-sized objects but also for very small elementary particles such as protons
and electrons.

Let us apply the law of conservation of momentum to a very simple and easy case. A
compressed spring is placed between two wooden balls of different sizes as shown in
the following figure. Both balls are initially at rest. Hence

o —
VA = VB =0

/ spring

When the spring is released there will be interaction between the two balls. ( It is the
recoil force of the spring ). If the mass of the spring is so small that it can be
neglected, we have :

L4

-a? .Y
0 = mavsyt+ mpivg
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Since the total initial momentum is zero, the left-hand side of the equation is zero.
From the above equation we have ‘
mpVe = ma Va ‘
The minus sign indicates that the two velocity vectors are parallel but opposite in
direction. Taking only the magnitude, we have
I mgVis = MAV'A
or

where v's and v'g are the magnitude'_s‘of the velocity vectors. By using this relation
inertial mass can be measured. In such measurement ma, should be chosen as a
standard mass.

Example (22) A bullet of mass 50 g leaves the muzzle of a gun with a velocity of
20000 cm s”'. Find the momentum of the bullei. ' .

Sincem=50gand v = 20000cm s, we have
. | p = mv -
=50 x 20 000
= 10° gcm s

Example (23) Find the total momentum of the following system, (a) Two electrons
each having mass m are moving towards each other with the speed of 0.01 c. (b) One
of the two electrons having mass m is moving at a velocity of 0.0lc while the other is
moving at a velocity of 0.02 c in the same direction.(c is the velocity of light and its
value is 3x 108ms™.)

(a) The momentum of the first electron = mvy
=mx0.0lc
= 0.01 mc
The momentum of the second electron = -mvs
= .m X 0.0lc= -0.0] mc
The total momentum p =mv;+(-mvy)
- = (.01 mc+(-0.01 m¢) =0
(b)The momentum of the first electron =mv o
, =m X 0.01 ¢=0.01 mec
The momentum of the second electron = mvz

=m x 0.02¢= 0.02 mc
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The total momentum P = mvi+mvy
0.01 mc +0.02 mc
0.03 me

Example (24) A bullet of mass 16 g (0.016 kg) is fired from a 4 kg gun with a
velocity of 600 m s™'. What is the recoil velocity of the gun ?

(For a system consisting of a gun and a bullet, the total momentum before firing = 0.
Therefore, according to the law of conservation of momentum, the total momentum
after firing =0. Hence, the magnitudes of the momentum of the bullet and the recoil
momentum of the gun are the same.)

The momentum of the bullet after firing py = mp v

0.016 x 600= 9.6kgms’

M

The momentum of the gun Pg = MgV
=4 xvgkgms'
By the law of conservation of momentum, we can write
4v, = 9.6
Therefore ve =24ms"

Example (25) A man dived horizontally with a velocity of 1.5 m s from a 100 kg
boat. If the recoil velocity of the boat is 0.9 m s™* what is the mass of the man?

The momentum oftheman p = mv
=mx 1.5=15mkgms’
The momentum of the boat Dbt = Mpt Vi
o =100 x 0.9
= 90 kg ms’!
The magnitudes of the momentum of the man and that of the boat are the same.
Hence,
[.5m = 90
90

=2 6ok
15 &
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4.8 FREELY FALLING BODIES - : S

If 2 body is dropped from a height near the earth's surface, the body will fall onto the
ground with a constant acceleration g. The air resistance is totally neglected for the
fail. Only then can the fall of the body be defined as free fall.

Equations of motion under constant acceleration derived in Chapter 3 can be used for
free fall. In free fall, the acceleration due to gravity, which is a constant, is a vector
and its direction is always downwards (towards the centre of the earth).

Since the initial velocity of a body dropped from a height is zero and its acceleration
is 4 = g, we have I .
s=2 el . @
Since the displacement is ‘measured from the starting point, the directions of the
displacement and acceleration are the same for the falling object. The velocity of the
body at time t after it has started to fail is

.. v =gt L (4.12) ..
The relation between v and s can be derived‘ as follows.
1 2
-8 e
e
1
2g
from which S S ~ :
V=2gst o (413)

is obtained. ) -

(If vo= 0, a = g are used in v = \(02 + 2as the same relation will be obtained.)

When a body is thrown upwards with an initial velocity vo, g must be given a minus
sign while s and v are given positive signs since the displacement and the velocity are
opposite in direction to the acceleration due to gravity. Therefore the equations to be
used for describing the motion of a body thrown upwards (while. going upwards) are

s = v.,t-% of? @.14)
VI‘=VQ'gt | o (4.15)
v o=vlt2gs - (4.16)

The maximum height h the body will reach can be obtained as follows.
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Since at the highest point - v 0 and s =h, we have

0 = v,°-2gh
ho= Yo
2g

From equations (4.12) and (4.13)the iime taken to reach the highest point is found to
be

L (4.17)
g

The time taken to reach the highest point is the same as the time taken to reach the
ground from the highest point.

Example (26) A ball is thrown upwards with a velocity of 40 ms™. How long does %
the ball stay in the air ? What height does the ball reach ? (Assume that g=10ms?)

vo=40m s’ g=10ms% v =0and
V= vy-gt
0=40-10¢
= 4s
The total time the ball stays in the air = 2 x 4 = 8s, and
v = vt - 2gh
0 =(40)* - 2x10xh
20h = 1600

| h =80m
The ball reached a height of 80 m. -

Example (27) What is the velocity of a stone freély falling from a height of 2000 cm
when it strikes the ground? How long does the stone take to reach the ground?

(Assume that g =1000 cm s2.) IR
h=2000cm, g=1000cms?and v, =0, and
v o=vl+ 2gh
=0+2 x 1000 x 2000
=4 x 10°

v =2 x 10" ems’
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Next. we have ' " h = vot + %—gt-z-'

2000 :=0+% %1000 £
500" = 2000

£ =4

1t = 1258

Example "(28) An object is hurled vertically upwards with a speed of 50 m s, How
long does it take the object to be caught again? What height does the object reach?
What is the average velocity for the whole distance travelled? '

(Assume that g =10 ms?) . |

vo=50"m st g =10ms?, v=0and"

.V=V0l—gt "
0=50-10t
t=3s

The total time the object is in the air = 2 x 5= 10 s. Therefore, the object will be :
caught again 10 s after being hurled. ' '
Let the maximum height the object will reach = h. Then

1 o
‘.h i=: t'_
Vo th

=50 x5- % 10 % 25

=250-125
=125m’
Let the velocity when the object is caught = vy,
Since Vo=50ms ', t=10sand g =-10ms'%, we have
vy = vo—gt
= 50-10x 10
= _50ms"

76



The negative sign appears because the body is descending.
Vet
2
_ (50)+(=50)
2

". Average velocity

0

2
=0ms"

Example (29) A projectile is shot up vertically with a velocity of 100 m s, How
long does it take the projectile to reach a height of 375 m? (Assume that g = 10 ms™.)

=100ms”', h= 375m, g=10m s, and
h =vot - 17, gt’
375 =100t-5t*

*-20t+75 =0
(t—15)(t-3) =0
t =5sorlss

t=75 s is the time taken to reach the height of 375 m while travelling upwards.

t=15 s is the time taken to go up to the h1ghest point and fall back again to 375 m
height.

(Two values are obtained since the projectile passes a point twice: once while l'lSlI‘lg
and once while descending.) '

4.9 THE TURNING EFFECT OF A FORCE

We encounter turning effects: of forces in everyday life. Swinging open the door of a
room or the garden gate about the hinges, tightening a nut by turning a spanner and
kids playing seesaw arc familiar to us. In all these cases, the objects experiencing the
turning effects are pivoted cither at the hinges or fulcrums. A force which acts on a
pivoted body at a distance from the fulcrum tends to make that body rotate. The
turning effect of a force about a particular fulcrum is measurcd by the moment of that
force.

The moment of a force is the product of the magnitude of that force (in newtons) and
the perpendicular distance (in metres) of its line of action from the fulerum. lts unit,
in the SI system, is N m, which is never shortened to J (joules).

Fig. 4.8 shows the left-hand half of a wooden bar pivoted at the centre. The two
forces, 15 N and 25 N are acting at the points which are respectively 10 cm and 20
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cm away from the pivot. Both these forces are acting downwards and tending to
rotate the bar the same way in the anticlockwise sense. To work out the total'
anticlockwise moment caused by the two forces, we first find the moments due to
each separate force and then add the two up ( since the moments tend to rotate the bar
in the same sense or direction ). .

: St 0.1 K1

ree—10.2 m— -

1 l /\ Fig. 4.8

15N

25N
Moment due to the 15 N force is ‘
Ly = I5N*x0Im
5 = [L5SNm
and the moment due to the 25 N force is '
Ip = 25Nx02m
o = 35Nm
Thus, the total moment is ‘ o
| Li+L;= 15Nm+5Nm
: = 65Nm
The Prmc1ple of Moments

The condition necessary for a pivoted object to be in ba!ance is given by the principle
of moments, This principle states that if an object such as a bar or a plank is to be in
balance, the total clockwise moment about the fulcrum must equal the total
anticlockwise moment. As an application of this principle, let us look at the following
“example. . | , ' :
Example (30) A seesaw is plvoted at its centre One boy weighing 250 N is 31ttmg at
the left-hand side, 3 m from the fulcrum. Another boy weighing 225 N.is at the other
side. If the two boys are in balance, find the distance of the second boy from the
fulerum. .
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First draw a diagram showing the forces that act on the seesaw.

e P A —

L]

250 N 225N

Since the boys are in balance,

clockwise moment ‘ - anticlockwise moment
of the 225 N boy ‘ of the 250 N Bby
Thus,
225 xy = 250 x 3
250x3
y =
_ : 225
= 3.33m

That is, the second boy s sitting on the other side 3.33 m away from the pivot.

Another concept, needed for the study of pivoted bars or planks is the centre of
gravity. The centre of gravity of a particular object is the point at which all its weight
may be considered to act. Thus, for example, the weight of a metre stick of uniform
density is considered to be acting at the 50 ¢m mark-its mid-point,

Let us now look at situations where bars or planks are pivoted off centre. One such
situation is shown in Fig. 4.9 (a). Here a ruler is placed off centre. It is pivoted near
the left -hand end. Fig. 4.9 (b) shows that a single force, its weight is acting at the
centre of gravity.

G
7 N\ 1
(a) | (b)
~ Fig. 4.9
It is evident that the ruler is not balanced. It will rotate and slide off. In this case the
clockwise moment of the weight about the fulcrum has no counter balancing

anticlockwise moment. Thus, according to the principle of moments it cannot be in
balance.
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There is one way by which we can place the ruler of Fig. 4.9 in balance. This is done
by applying a force of the right size at the right-hand end of the ruler .The direction of
this force must be such that. the moment due to it causes a moment in the
anticlockwise sense. That is, the applied force at the right-hand end must act upwards,
opposite to the direction in which the weight is acting.

The following figure shows the application of moment in building site crane.

Example (31 ) A uniform metre rule weighing 4 N, pivoted at the 20 cm mark, is
supported at the right-hand end at the 100 cm mark, by a vertical thread. Find the
tension in the thread.

First, draw a diagram showing all the forces actipg on the metre rule.

. =03 m—> , AE:‘
st ——{).8 >
020 50 . |
/\ . . 100
- , 4N o o |
The diagram shows the distances of the respective forces also'. For balance,
total clockwise total anticlockwise
moment = moment
4%x03. = F x 0.8
F _ 4x0.3 ~15N
0.8

Example (32) A uniform metre rule weighing 4 N is pivoted at the 25 cm mark. A
load of 100 g is placed at the 100 cm mark. If the metre rule, along with the load, is to
be in balance, what force must be applied at other end: 0 cm mark. (acceleration due
to gravity g =10 N kg™) _

As usual, we first draw the diagram showing all the forces acting on the metre rule.

>
[
W
th
(=]
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For balance,

total anticlockwise total clockwise
moment moment
F x 0.25 = 4 x025+0.1 x 10 x 0.75
0.25F = L.75
F = 7N

A force of 7 N must act downward at the 0 em mark to keep the metre rule in balance,

Finally, we will look at the case where the force acting on a pivoted rule is not
perpendicular to the rule. Such a situation is illustrated in Fig. 4.10.

/\

w

Fig.4.10
The moment due to the weight of the gruler is the product of the weight and the
distance of the centre of gravity, G, from the pivoted point (fulcrum). But the moment
due to the force F is not equal to F times the distance, along the ruler, of F from the
fulerum. Instead it should be F times the perpendicular distance of the fulcrum from
the line of action of F,

(Fig.4.11)The moment of the weight w is clockwise, while that of F is anticlockwise.
For balance, the two moments must be equal.

Fig.4.11
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Concept Map (Force)

is an
Vector quantity: e ] Force, F N
exampie (S unit)
ofa
which can produce
Changés in the
"'motion of a
body
élg_ e.g elg
4 ¥ ¥
Causing an Causing an Causing an
object to object to object to
move in slow down move in
a straight for the a circle at
line with case of constant
increasing frictional speed
speed force
l |
which can be
explained by
Newton’s Secend
Law of Motion
given by
F net =ina
where

Foo = resultant (net) force (in N)
m = mass (in kg)
a = acceleration (in ms?)
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Concept Map (Density, Mass, Weight)

Mass per unit

volume
related to
mass by
- A
P= Ty
related to
density by
Amount of
substance
in a body
related to Inertia
weight by
gisthe
e where gravitational force
w=mxg per unit mass
acting on an object
related to -

mass by

defined | Gravitational force

acting on an object
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Concept Map (Turning effect of a force)

Turning effect
of a force

84

known as
L
Moment of a force
is defined
3 as F = force
o where. | d = perpendicular
Moment = F > d "t “distance from the
which is force to the pivot
of two types-
L
Clockwise . < Anticlockwise
moren? which if moment
equal
Principle of Moments
» related to <—
 Centre of gravity | whose stability | e low centre of gravity
- and can be "l broad b '
tability of object ™ | roac base
2 J increased by




Concept Map (Pressure)

Pressure, p

is defined as

Nm or
Pa
(SI unit)

¥
Force acting per unit
area, ie,
-F
A

where
: F =force (N)

A = area (m?)

|
eg.
v

I Pressure in gases
Atmospheric . I
pressure is due to
, ¥
is measured Bombardment of
by molecules on walls
J of contaiter
® mercury |
barometer can be
e aneroid measured by
barometer -
Manometer where | Excess
[ b Pressure
can be
used to
Forecast
weather
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Pressure in lquids

is given by
the fortmula

p =hpg

where

h = height of liquid
column (m)

is given| [& = acceleration due
by to gravity (ms™)

p = density of liquid (kgm™)

|

Transmission of pressure

applications
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EXERCISES

1.
2.

6.

i

12,

13,

Which is more difficult? To move a wooden box or a big stone. Why?

Which is easier? To stop a train with few carriages or a train with many carriages.
Why? .

E;(plain why passengers standing in a bus are thrown forward when the bus
suddenly stops. o

It is dangerous for a person to jump from a moving car. Why?
Will a box at rest on a floor gain an acceleration when a force is applied to it?
(Hint: Frictional force must be considered here.)

When two forces of eﬁual magnitude are each apﬁlied to two masses separately,
the acceleration of one of the masses is twice that of the other. Compare the two
masses. ‘

. ) V-V : . )
Rewrite the relation. m " ¢ o F in vector notation.

Is it correct to describe Newton's second faw in symboisasF & a?

Although two forces act simultaneously on a body, it continues to move with a
constant velocity. What can be said about the two forces? ' '

. A 4.0 kg object is moving across a friction-free surface with a constant velocity of

2m/s. Which one of the following horizontal forces is necessary to maintain this-
state of motion? ‘ :
a. 0N b.05N c20N d. 80N  e.depends on the speed.
If the forces acting upon an object are balanced, then the object

a. must not be moving '

b. must be moving with a constant velocity

c. must not be accelerating

d. none of these _
The gravitational force due to the Earth on a kg mass at one Earth
radius above the surface of the Earth is
a. equalto b.1/20f c¢. 1/40of d. 1/8 of
e. 1/16 of the force on the same mass on the surface of the Earth.

Answer-The answer is 3. The radius is doubled, (remember to measure from the
center of the Earth), so the square radius is quadrupled. The Force depends on the
inverse of the square radius.

The mass of Mars is about 1/10 of the mass of the Earth and the radius of Mars is
approximately 1/2 of the Earth’s radius. Approximately what is the acceleration
due to gravity on the surface of Mars?

a. 4m/s® b 2m>/s2 c. 1/2 m/s? d.1/4 m/s’® 5.1/10 m/s’
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Answer- The answer is 1. The acceleration is proportional to the mass and
inversely proportional to the radius. Therefore (1/10%1/2)* = 4/10. The
acceleration due to gravity on the surface of the Earth is approx. 10m/s® is the
acceleration due to gravity on Mars is about (4/10)¥(10} = 4m/s’,

14, Can action and reaction cancel each other? Why?

15. There are only object A and object B in an isolated system. If the magnitude of a
force exerted by A on B is F, and that of the reaction exerted by B on A is Fp,
express the relation between the two forces in symbols. (Both objects A and B
are moving,)

16. A body weighing '@’ is moving with an acceleration ‘a' along a horizontal straight
line. What is the force acting on the body?

17. The weight of a body may change when its position is changed, but mass does not.
Why? : ‘

18. Is there any consistency between the two statements "There is gravitational force
acting on an astronaut” and " An astronaut is in a weightless state"?

19. Fill in the blanks.

(a) I N force acting horizontally on a body --ee-mmve- gives it an acceleration of
Ims™

(b) ---—-- force acting horizontally on a body of mass | s gives it an acceleration
of Ifts?

20. What do you understand by the "moment of a force" about a point?

21 State the conditions of equilibrium when a body is acted upon by a number of
parallel forces.

22 What is meant by‘the centre of gravity of a body ?

23. A uniform metal tube of length 5 m and mass 9 kg is suspended horizontally by
two vertical wires attached at 50 cm and 150 cm, respectively, from the ends of
the tube. Find the tension in each wire,

24. (a) Find the magnitude of a force that must act on a body of 10 kg mass to pive 1t
an acceleration of 5m s, |

25. Find the maximum and the minimum accelerations, along the horizontal direction,
of a body of 5 kg mass due to a 100 N force acting upon i,
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26.

27.

28.

29.

30.

3L

32.

If a proton of mass’ 1.675 x 102* g is accelerated by:, an accelerator to an
acceleration of 10° ms’z, find the net force acting on the pfdton. | |

If the \’relocity of a car of 1200 kg mass increases from 60 m s't0 120 ms™ in
10s, what is the net force acting on the car? '

A truck of 2000 kg mass moving at a velocity- of 12m s7 slides 15 m before it

comes to a stop after applying the brakes. What is the resisting force of the
brakes? : ‘

What is the acceleration of a body weighing 20 N due to the applied force Free= 20
N? ‘ : ‘

Find the force required to move a body of 2 kg mass upward with an acceleration
of 5ms™. : :

10 N force is applied horizontally in turn to a body of 1 kg mass and a body
weighing 1 N. Which of the bodiés will have greater acceleration?-

Compare the accelerations of the two bodies of masses M and 3 M when the same

. net force of 20 N is applied to each of them.

33.

34.

33,

A 100 1b force acts horizontally on a body of mass 1.5 sl. F ind the acceleration and
the weight of the body.

A 3 ton car moving with the'velocity of 36 mi h! is-brought to a stop in 2 s. Find
the resisting force of the brakes acting on the car. :

A lift weighing 2000 Ib is puiled up by a cable of tension 5000 lb. Find the mass

~ of the 1ift and its upward acceleration.

36.
37.
38.

39.

A 60 kg swimmer dived from a 5 m hi%h diving board into a pool .What is the
acceleration of the earth while the swimmer is falling? Take the mass of the earth
as 6 x 10* kg and the acceleration due to gravity as 10 m 57,

If a body weighing 100 N is carried to the moon and put on the moon's surface,
what will happen to the weight of the body ?Will the mass of the body change?
Two bodies of masses 2 kg and 5 kg are at rest 2.m apart. Find the gravitational
force interacting between the two bodies. (G=6.67 x 10" N m? ke?)

Compare the moon's gravitational forces acting on the two bodies of masses M
and 3 M which are falling simultaneously onto the moon's surface from a
height near the surface. If M = 0.2 kg and the acceleration due to the gravity of
the moon is 1.6 m s2, find the moon's gravitational forces acting on each of the
bodies. ' o '
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40.

41.

42.

44,

45.

46.

If the velocity of a 0.02 kg bullet is 500 m s, find the magnitude of the
momentum. of the bullet. If the bullet is fired towards the north, what is the
direction of its momentum?

A body of 10 sl is moving towards the north at a constant velocity of 60 fl s
What is the momentum of the body?

If the muzzle velocity of a 0.005 kg bullet is 500 m 5™, find the magnitude of the
muzzle momentum of the bullet. The gun is aimed and fired at a target in the
north and then at a target in the east. Will the muzzle momenta of the bullets be
equal?

. What is the total momentum 0{' two neutrons each having a mass of 1.67 x 1077

kg .
(a) moving toward cach other with equal speeds ?
(b) moving towards the east at speeds of 10° ms™ and 10° ms™ respectively?

A basket-ball is thrown with a velocity of 20 m s towards the wall. With what
velocity will the ball bounce back to the thrower?

A tiger of mass 400 kg is running horizontally, at 50 m s towards a hunter. The
hunter fires a gun from a place straight in front of the tiger and the tiger falls and
dies on the spot. If the mass of the bullet is 0.002 kg, find the velocity of the
bullet. Give a comment on your answer.

A30 g bullet moving at a constant veloc1ty hits a wooden block of mass 3 kg and
continues to travel at the velocity of 2 m 5™ together wnh the block. What is the

~ velocity of the bullet when it hits the block?

47.

48.

49.

50.

A 60 kg man dived into the water with the velocity 20 m s from a 120 kg boat.
FFind the recoil velocity of the boat.

A 0.2 kg marble is at rest on a smooth table. Another marble of mass 0.1 kg
moving at a constant velocity of 10 m s towards - the east hits this marble and it
recoils to the west with the velocity of 5 m s™. Find the velocity of the marble
which was at rest?

What is the time taken to reach the ground by a stonc falling from the edge of a
roof which is 64 ft high? What is the velocity of the stone when it strikes the
ground ?

A ball thrown vertically upward reaches a maximum height of 80 ft. With what
velocity has the ball been thrown? What is the time taken to reach the maximum
height? :
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‘51

52.

A stone is thrown vertlcally upward w1th 40 m s’ Whal wnll be its 1espectwe
velocities 3 s, 4 sand 5 s after it has been thrown?

A ball is thrown vertically upward and it is caught agail1 afler 6 5.
(a) Find the velocity with which it is thrown.

.. (b) Find the maximum height reached.

. (c) Find the total displacement for the whole distance travelled

- (d) Find the average velocity for the whole distance travelled.

53.
54.

5.

56.

57.

A man throws a stone vertically upward at 30 m s . How long does it take the
stone to reach the height of 40 m? : ' : ' "

A stone, thrown by a girl, reaches a height of 20 m. How long does it take the
stone to be caught back? With what velocity does she throw the stone?

If AB is a uniform meétre rule which is balanced as shown in the diagram, (au)- what
is'the weight . of the rule? (b) what is the reaction R?

R . .

A —
§<~30cm—>... ‘ ‘ ‘
L o
1N ® ' “

p—

A pole AB of: length lO m and we:ght 500 N has its centre of gr. av1ty 4m ﬁom l.hL
end A, and Jies on horizontal ground. The end B is to be lifted by a vertical force
applied at B. Calculate the least force required to do this. Why would th[s force,
applied at the end A, not be sufficient to lift the end A? '

In order to "weigh" a boy in the laboratory, a uniform plank of wood AB 3 m long

© and having a mass of 8 kg is pivoted about a point 0.5 m from A. The boy stands

58.

0.3 m from A and a mass of 2 kg is'placed 0.5 m from B in order to balance the
plank-horizontally. Calculate the mass of the boy.

A bridge over a stream is made from a uniform wooden beam which weighs 4500

"N and-is 16 m long. Its ends A .and B are supported on boulders. If a man

weighing 800 N is standing on the bridge 4 m from A, what is the reaction at the
boulder L

(a) under A? -
(b) under B?
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59. A heavy solid block is tied with a rope to is upper edge A. The weight of the
block is 160 N acting vertically, OB is 0.2 m and OA is 0.8 m. Find the force F
which will just tilt the block about O. '

_ A F

8 m

160 m

60. The diagram shows a wheel of mass 15 kg and radius Im being pulled by a
horizontal loree I' against a step 0.4 m high. What initial force is just sufficient to
turn the wheel so that it will rise over the step? What happens to the size of this
horizontal force as the wheel rises?

6.4 m

61. Define density and relative density. )
What is the unit for density in SI units?
Why is relative density unitless?
62. Having density concept why do we stifl need to use relative density?

63. A wax block [loats in water and an iron block sinks in water; compare the
densities of wax, water and iron. .

64. A small iron alloy is inserted in a block of wax. Explain whether the block of wax

o .would float or sink in water. '

65. What experiment would you do to find out whether the relative density of
kerosene is less than or greater than 1? ‘

66. Find the mass of water required to fill the aquarium of length 100 cm, breadth 40
cm and depth 30 cm.

67. "Since gold is denser than aluminum, gold is always heavier than aluminum.”
Why is this statement wrong? Write down the correct statement.

|
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68.

69.

70.

71

73.

74,
75.

Whlch is more approprlate to express the amount of mdlu,r wntamcd ina body in
volume or in density? ‘ -

Define pressure. Is pressure a.scalar or a vector? Express the unit of prcssure in SI
units.

It is more effective to use a sharper knife than a blunt one. Why?

. Explain why the tip of a pin feels sharper than the tip of an iron nail.
72.

The density of aluminum is 2700 kg lq's. Find the mass of a sheet of aluminum
having a length of 1 m, a breadth of 0.5 m and a thickness of 0.001m.

If the mass of 50 em® sulphuric acid__solution is 65 g, find the density of the
solution.

The relative density of sulphur is 2. Find the volume of [ kg-of sulphur,-
The mass of a statue which is made of silver i is 120 g, If the den51ty of silver

© 1510.5 g cm™, find the volume of the statue.

76.

77.

78.

The mass of hydrogen atom is 1.7 x l()‘7 l{g. Aésﬁming the ridrmal state of
hydrogen atom as a sphere of radius 0.5 x 10" m, find the average density of the
atom. If the radius of hydrogen atom in its first excited state is about 2 x 107 0y
would the density of hydrogen atom increase or decrease?

(2) What is the mass of { m® of water?
(b) What is the mass of 12 m® of methylated spirit whose relative density is 0.8?

The diameter of the contact area of the stylus and the record is 0.2-mm. Find llu,
pressure if the force exerted by the stylus is 5 N.. Exprt,ss the pressure in N m™
and Pa.

y
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CHAPTER 5
WORK AND ENERGY

In studying a branch of physics one must be well-versed in the concepts which are
involved in that branch. This means that one must have not only a mere
understanding of the concepts but must also know their importance and usefulness
and how they are related to one another if there are inter-relationships among them.

The concepts which are involved in mechanics are not very numerous, The concepts,
including derived concepts such as velocity and acceleration, number no more than a
dozen. These concepts are subdivided into fundamental concepts and ordinary
concepts. The momentum concept, which has been described in the previous chapter,
is a concept in mechanics. Energy which is another fundamental concept will be
discussed in this chapter.

In the beginning, energy was just an ordinary concept but later it was transformed
into a fundamental one. At present, energy is a fundamental concept not only for
physics but also for science as a whole,

There are different forms of cnergy. They are mechanical energy, heat energy, light
energy, electrical energy, nuclear energy and so on.

In this chapter only mechanical energy will be discussed. Before discussing
mechanical energy it is necessary to define a concept called "work" which is related
to energy. :

5.1 WORK AND ITS UNITS

The work done on a particle is equal to the product of the force acting on the particle
and the distance travelled in the direction of the force. In symbois, ‘
W =Fs (5.1)
where W is the work done, F is the force acting on the particle and s is the distance
travelled, respectively. There is a relationship between this technical definition and
the common notion of work. Normally we would say that more work has to be done
to push a heavy load than to push a lighter one, and the work done has to be doubled
to push a load twice the distance. Here, the technical definition is equivalent to the
ordinary meaning. Although a man standing up and holding a heavy load is said to be
doing work in everyday usage, according to the technical definition he is not doing
any work at all. This is because the distance travelled by the man is zero. Hence, just
as there are cases where the common notion_of work and its technical definition
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coincide, there are also cases where they differ. This shows how the meaning of a
word may become distorted when everyday usage of a word is applied in a certain
subject. Tt would of course be possible, as an . alternative, to use a different word.
However, if we label such concepts with entirely different words, there is the risk that
their origins and their connections with common usage would become lost.

Concerning work, the technical meaning of the word as defined above is used in
physics. This definition is the simplest'and it is for a particular condition where the
directions of the applied constant force and the fnotion are the same (Fig. 5.1).

Force

S
| rd

| displacement(s) '

N

Fig. 5.1 V .
(It can also be stated that the force vector and the displacement vector.are parallel.)
When the unit of force is in pounds (Ib) and if the distance is in feet (fl), the unit of
work is given in ft-Ib. When the unit of force is in (9% .y and if the distance is in
centimetres ergs .newrons .

Ythe unit of work is then given in(’

metres joules o

When a force is constant and if the directions of the force and the motion are not the
-same, work is defined as follows.

Work is the product of the component of the force in the direction of motion and the
distance moved.

The following illustrates this definition.

T

s
F

o
il

%)
diétance fnov_ed
Fig.5.2 )

" In this example the magnitude of Fy is F cos O and that of F, is F sin 0. F andF,

are the components of the force F.
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F, is the component which is pérpendicular to the direction of the motion and Fyis
the component which is parallel to the direction of motion and thus,

F +F;, =F
The definition of work done for this example is then,

work = F, X the distance moved.
We can then generalize our original definition as follows:

[F'a constant force is acting on a body the work done s the product of the component
of force in the direction of the motion and the distance moved.

According to this definition, for a particular value of force acting on a body, the
magnitude of work will have its maximum value when the directions of the force and
the motion are the same.

The three specific examples encountered in the consideration of the work done by
constant forces are:

(1) when the directions of the force and the motion are the same

@—. force

duecuon of motion

work done = Fx

N \—'—J
— p—
[ [N S 5
et —
L S— | —
Fig. 5.3
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. : |
(2) * . When the force and the motion are |pe;pendicular Lo each other

.,- _@.
direcuvn of o
—— 3
oo, .
fogree .
work.done = Fys= .0 _ . .
(Fy=F cos 90"=0) \
v R o 'Fig.5.4

(3)  When the force and the motion are in opposite directions

gl

force

direction of motion
work done = Fyg=-Fs
(Fy = F cos 180° = -F]

- ot et
L N—— e :
Fa———— of
N et
s | r
Fig. 55

We can now consider the case where no work is done although there is applied force
and the body is in motion.
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From the point of view of physics a labourer who carries a load on his back and walks
along a horizontal path with a uniform velocity is not doing any work at all.

The concept called work is now simple and clear. Next, let us consider encrgy
concept which is broader and deeper. Energy is the capacity to do work. When we say
that a body possesses energy, it means that the body has ability to exert a force on
another body and does work. Again, when it is said that work is done on a body, it
means that the energy which is equal to the magnitude of the work is given (o the
body. Now energy can be defined numerically as follows.

n b
If a body is displaced 1 (cm) by applying 1 (dyne) force, it is said that one unit of
N-1h
energy is given to the body. That one unit of energy is 1(erg )The joule (J) is the unit

joule

of energy in Sl system of units. The units of energy are the same as the units of work.
Example (1) How many ergs are equivalent to 1 J?
1] =INxIm
=10’ dynes x 10 cm

3 =10 ergs -

Among the different forms of energy which have been described previously, only
mechanical energy will be discussed in this chapter. The mechanical energy is
divided into two types: kinetic energy which is energy due to motion and potential

energy which is energy duc to the position and configuration of the body.

5.2 KINETIC ENERGY AND POTENTIAL ENERGY
Kinctic Energy

Let us consider a body of mass m which is at rest. Let an cxternal force F be

__:‘\c_)ﬂt“mill
applied to the body. Then, according to Newton's second law, the acceleration of the
body mustbea=F,___/m

xicmal .

Due to the applied force the body will be in motion and if its velocity increases to v

alter travelling the distance s, we have
2

v: = 2as
F,
s Vi = ) (—oemal yg
m
. . l 2 : .
[rom which 5 m v = F_ . isobtained.
/s

/ ~
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F, e is the work done on the body and is also the amount of energy glven to the

€

body. Therefore ]5 mv? whlch is on the lef’t-hand s1de of the equatlon is the energy

réceived by the body.

Half of the product of the mass and the veloc1ty squared of the body is deﬁned as the
klnetle energy of the body.

The kinetic energy of the body is

KE =—';—mv2 I € )

If the body is not initially at rest and is movmg wrth an initial veloc1ty Vo we have

'VO = zas _..2 ( extemal )S
o r m
_1_ 2 2 7 F .
) mv" - ) mvq = Fextemat S

According to this, the work done on the body of mass m appears as the increase in the
kinetic energy of the body. Here, it is obvious that ‘work’ is just the term for the
energy which is glven to the body by the external force.

Example (2) A ball of 1 kg mass is thrown with a velocity of 5 m s”'. Find the kinetic
‘energy of the ball.

KE = mv?

><1 X (53 =12.51]

o= N

Example (3) A car welghmg 3200 1b is driven at a veloc1ty of I5mih" (22 ft s )
Find the kinetic energy of the car.

KE = 1 mv® = l ° 2
2 2 g
=1 X 3200 X (22)
2 32.
= 24200 ft-Ib

2.42 X 10* ft-1b
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Example (4) What will be the kinetic energy of the car in exémple (3) if it is driven at
a velocity of 60 mi h™' (88 ft s™')?

KE = l Evl
2 8
-1 X 3200 X (88)°
2 32

387200 fi-Ib =3.9 x 10° fi-Ib

The kinetic energy of the car when it is travelling at 60 mi h™ is 16 times greater than
that of the same car travelling at 15 mi h™. Since the kinetic energy is directly
proportional to the square of the velocity, an accident which occurs during high speed
drivirig is more severe.

Example (5) Electrons are the smallest particles present in ordinary matter. Its mass .
is only 9.1 X 10! kg. If the velocity of an electron is 3 x 10 m s, find its kinetic
energy. ‘

KE = + my
| | 2
; - %x 9.1 x 10°' x (3 x 107)?

= 4.1x 107
Potential Energy ‘
Let us consider a body of mass m which is ori the ground. When the body is raised to
a height h above the ground, the amount of work done against the gravitational force
is W =mgh (5.3)
In this case, as the increase in the kinetic energy is zero where has the energy gone?
The answer is that the energy is stored in the body which is at the height h, as its
potential energy. In order to get back the kinetic energy, the body has to be simply
dropped. After falling through the heiglhit h, the velocity of the body of mass ni can be
calculated from the formula v = 2gh. If the kinetic energy is calculated, we will find
that

KE = mv

m(2gh)

gh
Therefore, it is found that the amount of work done (mgh) to raise the body to the
height h can be totally transformed into the kinetic energy. '

!
g NN

e
| -~

99



The energy stored in a body due to its position is called the potentlal energy.
In the above example, the potential energy is

PE =mgh (5.4)

In raising a body to the héight h the potential energy (mgh) remains the same
regardless of the path taken by the body (Fig. 5.6).
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Fig. 5.6

The potential energy is not only the energy due to the position of a body but also the
energy due to the configuration of the body. For example 2 wound clock spring, a coil
of compressed spring, a stretched bow with an arrow, all have potential energy.
Therefore, the potential energy of a body may be defined generally as ‘the energy
stored in a body by virtue of its posmon or configuration. It was .shown above that the

velomty of a body of mass m when it strlkes the ground isv= 1/Zgh after falling
from the height h. '

In this example the body has fallen vertically downward. When -a body is sliding
down along a smooth and curved sliding board instead of falling vertically, the final
velocity of the body when it strikes the ground can be obtained by letting the initial
potential energy equal to the final kinetic energy of the body. If the starting pomt is at

‘a height h, the velocity when it strikes the ground is still v = =/2gh (Fig.5.7).
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The choice of the reference point (h = 0 point) is very important in the calculation of
the potential energy of a body.

Referring to Fig. 5.8, let us find out the potential energy of a book of 1 1b which is
1 ft above the table at the top-floor of a building, for different points of reference.

Fig. 5.8

If the table-top is taken as the reference point the potential energy of the book is
1 fi-Ib ; if the floor of the top-floor is chosen as the reference point the potential
energy is 4 ft-Ib ; and if the ground is taken as yet another reference point the
potential energy of the book is 100 ft-1b. Therefore, the value of h must be chosen
carefully in the calculation of the potential energy.
Example (6) A guava of 0.3 kg is at the height of 3 m above the ground. With
reference to the ground what is the potential energy of the guava?
PE = mgh
= 0.3 9.8 x 3
=8.82]
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Example (7) A 3200 Ib car is lifted to the helght of 100 ft by a crane, Find the
potential energy of the car. =~

PE = mgh
= 3200 x 100 = 320 000 ﬂ:—lb

This energy value is smaller than the kinetic energy of a 3200 Ib car.. whlch is
travelling at the veIoc1ty of 60 mi ™! (see example 4).Thus, a stationary object hit-by
a car travelling at 60 mi h™' suffers greater damage than when a ear of the same miass
falls on it from a height of 100 fi.

Example (8) What is the potential energy of an electron which is at the height of 0.Im
above the ground?

" PE = mgh : -
= 9.1 x10% x 9.8 x 0.1
= 89:x 10M) ,
This value is 10'° times smaller than the kinetic eriergy of an electron moving at
normal rate (3 x 10’ m s™)

Mechanical energy
The two types of mechianical energy that a body may possess are kinetic energy and
potential energy.

(a) Kinetic energy (KE) (a) Kinetic energy
all objects in motion
(b) Potential energy (PE) . (b) Potential energy
(i) gravitational PE (i) awaterfall, raised objects. .
(ii) elastic PE ' (if) composed or stretched springs,

the bent condition of a diving
board, the stretched elastic
band of a catapult.

In mechanical processes the potential energy and the kinetic energy can change from
one forni to another .The interchange of potential energy and kinetic energy w111 be
iltustrated by an example. A weight w is dropped from a heighit onto a wedge Whlch
is placed on the ground as shown in Fig. 5.9. The weight has ohly potential energy
when it s at that height. - :



Fig 5.9
When it is dropped, potential energy is changed to kinetic energy and when it strikes
the wedge kinetic energy is changed to work and hence pushes the wedge into the
ground. There are many other mechanical processes where potential energy is
changed to kinetic energy and kinetic energy to work, one step after another, as in the
above process.

Example(9) A mechanical pile driver with a diver weight of 480lb and a vertical
length of 20ft is used to drive a small pile into the ground. (Fig 5.9)
(a) How much energy is delivered to the pile on the initial strike?
(b) With what velocity does the driver strike the pile? (Neglect friction)
Solution (2) With the driver at the top position (hg=20 ft), it has a total energy of
Eo=PEo= mgho Wwho= (4801b)(201t)
' = 9600 fi-Ib
The energy is converted to kinetic energy as the weight falls and is delivered to the
pile when the driver strikes the pile.
(b) Just before the driving weight strikes the pile, it has a velocity of

v =2¢Ak = \/2(321/s* )(20ft) = 361t/s |
(As the pile is driven into the ground, the height of fall of the driving weight increases,
and the striking velocity increases with each successive strikes. The energy of the
driver goes into the work of driving the pile into the ground. Once the driver strikes
the pile, the mechanical energy of the system is no longer conserved. Why?)
Energy transfer — true or false?
Look at the diagrams in figure before you read the explanations below.

( In each example, the effects of air resistance and friction are neglected).

The black which As the block which
slides down the drops straight
smooth slope gains down

the same velocity
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true

Both blocks start with the same amount of potential eaergy, so they have the same
amount of kinetic energy when they reach ground level.

Re.leased from this " The pendulum rises to some
point level at this point

NEaLE®
true _

The pendulum gains the same amount of potential energy during the upward part of
its swing as it loses during the downward part — despite the presence of the bench.

The shell strikes

What ever the :%lz.fn:ite;e? the
angle of the gun. . p

true .

Whichever way the gun points, the shell leaves the barrel with the same amount of
kinetic and potential energy. All of this energy is in the form of kinetic energy as the
shell strikes the water. R

.

5.3 LAW OF CONSERVATION OF ENERGY
Laws of physics play an important and useful role in the investigation of nature. The

regularity and the systematic behaviour of the natural processes are usually revealed
by these laws. This revelation has given a guide-line to physicists for the systematic
study of nature. Among the laws which are obeyed by the observable physical
quantities, the most fundamental and important laws are the conservation laws. The
law of conservation of momentum has been described and explained in the previous
chapter. In this section the law of conservation of energy will be discussed.

Before the law of conservation of energy is discussed, it may be necessary to explain
the statement: "An observable quantity obeys a conservation law". For an isolated
system, although time changes, if there is no change in the total magnitude of an
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observable quantity, the observable quantity is said to obey the conservation law. If
we review the law of conservation of momentum it can be seen that the law has been
stated such that the total momentumn of an isolated system must be a constant. Let us
take another example in order to have a better understanding of the idea of
"conservation”, Consider a group consisting of five boys playing a game of marbles.
Let us assume that the total number of marbles they have is exactly 100. During the
game, if there is no one in the surrounding to give them some more marbles and also
no player has given away any marble to any person in the surrounding, then the total
number of marbles among them will still be 100. However, there can be individual
loss and gain; and thus the number of marbles can increase or decrease for each of the
players, but the total number of marbles, circulating among the players is still 100. In
this example, a group formed by five boys is a system. Since there is no interaction
with the surrounding (no marble has been taken in or out), the system is an isolated
system. The players are said to interact with one another as they are interchanging
marbles. In this example, the thing that is conserved is the total number of marbles.
Now replace the players with particles and replace the marbles with energy. An
isolated system of particles is then obtained. The particles interact with one ar ther.
They are interchanging energy. The total energy of the system must be cor iant.
Therefore, this isolated system obeys the law of conservation of energy.

The law of conservation of energy is stated briefly as follows:

The total energy of an isolated system is constant.

This law is often written as:

Energy cannot be created or destroyed. The total energy of the universe is constant.

These two statements are equivalént. In the second statement the whole universe is
taken as an isolated system.

Energy cannot be created or destroyed but energy can be changed from one form to
another. Therefore, for an isolated system the sum of the different forms .of energy
must be constant.

Let us verify the conservation of energy with a particular example.

Let us consider a two-particle system which consists of only a stone and the earth. Let
the mass of the stone be m. The stone is dropped from a height h, above the ground.
The freely falling stone and the earth are attracting each other with equal forces. But
only the motion of the stone is noticeable and the motion of the earth can be neglected
since the mass of the earth when compared with the stone is many times larger.

Due to the gravitational force acting on the stone its acceleration will be g = 9.8 m 52,
Let us assume that the stone has fallen from the height h, to the height h and its

105



-velocity changes from v, to v during the period of time t. The kinetic energy will
‘change because the velocity of the stone changes. The relationship between the
energy change and work is . s '

. . W =Y, m?-Y, m\."o2
But o W =Fd |
For thxs example smce F, the welght of the stone, is mg, the d1stance di is
d =ho—h . '
we get ) B 'mg(ho—h) = % mv? - % mvi?

]. I2 o 1 2
— mv-+mgh= — + mgh
3 . g ) mvg Zhy

The quantity at the left is sum of the potenuial energy and the kinetic energy or the
total mechanical energy at time t after the stone has started to fall; and the quantity at
the right is the initial total mechanical energy of the stone. The value of this quantity
(the total mechamcal energy) is conserved throughout ‘the distance travelled by the
falling stone. It can be easily remembered by writing it as

kinetic energy + potential energy = total energy = constant

" If the symbol T is used for kinetic. energy, U for potential energy and E for total
energy the above relation can be represented as

E = T+ U =constant (5.5)

Exumple (10) A pendulum of mass m is held in a horizontal poSition as shouvn in the
figure. If the length of the thread holding the pendulum is L and the pendulum is
released what is its veloc1ty when it passes the lowest point?

g

and at the lowest point v=vand U=0.
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According to the law of conservaiion of energy
—;— mv+ 0= 0+ mgL

= 2gl

v =4,2gL

Example (11) A boy slides down a sliding board as shown in the ﬁgure What is his
velocity when he reaches the bottom of the board?

Let the mass of the boy be m.

Since his velocity is zero at the starting point there is no kinetic energy at all.
Because the total energy is just the potential energy, we have
E =0+U
=0 + mgh
=m X 9.8X 3]
At the bottom of the board the potentlal energy is zero and the total energy is just the
kinetic energy. Let his velomty at the bottom be v, then

E = 1 mv? +0
2
I
= — mv
2 . .
According to the law of conservation of energy
£ 2 mv®= m X9.8 X 3
v’ =2X98X 3

«
Ii

V588 =7.67m s~



is related to

is defined as

W=Fxgs

where

F =force (in N)

s = distance moved
in the direction
of the force {in m)

Concept Map (Work, Energy, Power)

. is related to

is defined as

where

W = work done (inJ)
E = energy converted (in J)
t = time taken (ins)

||

Energy, E

of r'nany forms Kinetic energy
such as o
| Ek =EmV2
1. Chemical
2. Radiant Gravitational
3. Mechanical potential energy,
4, Internal E,=mgh
5. Electrical
6, Nuclear

which are related to
each other by

EXERCISES

The Principle of
Conservation of

Energy

Define "work". Write down the unit or work in SI systém. :

Is work a vector or a scalar?
A labourer who supports a load on his back walks along a horizontal straight path.
Is there any work done if the speed of the labourer is uniform? Why?
4. A vegetable-seller puts down the vegetable basket which she is carrying onto the
ground. Is there any work done or not? Give reason for your answer..
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5.

7.

For which of the following two cases is the quantity of work done greater?

F| = ‘ Fz
Fz
8 = 8
;)
s, . 0 <6
() &

Fi=%F
5t = 28
Fi
r Bg _> } el “‘91

-

(e) © (B

Why are the unit of energy and that of work the same?

8. Among the different forms of energy which of them has a special importance for

10.
11.
12.
13.

14.
15.

industrial production of goods and for upgrading the living conditions of the
people ? Discuss briefly.

Discuss the correctness of the statement, "Energy is needed to produce energy,"
giving an example for it.

Discuss the role of energy for economic development and industrialization.
Write down the law of conservation of energy. Is this a fundamental law?
Explain the conservation of mechanical energy.

Are the following right or wrong?

(2) In nature it is observed that although there are conversions or interchanges of
energy form one form to another, the total energy is constant.

(b) The law of conservation of energy was understood fully only when Einstein
showed that matter and energy are two different forms of the same quantity.

(c) Energy can be changed from one form to another and it can also be converted
to matter.

Define "energy".

A woman pushes a child, who is riding a tricycle, with a 200 N force. The tricycle
moves a distance of 2m and the work done by the woman is 100 J. Find the angle
between the force and the displacement.
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16.

17,

18,
19.

A child is pulling a toy car with a 10 N force. The direction of the force makes an
angle of 20° with the horizontal plane. If the car moves 6 m, how much work does

the child do?
, F
[

A woman is pushing a chair along a horizontal plane with a 300 N force. Find the-
work done for the following cases :

(a) The chair moves 2 m parallel to the force.

(b) The chair does not move at all. .

If the velocity of a 1000 kg car is 40 km b, find the kinetic energy of the car.

A wooden sphere of mass 0.15 kg is thrown with a velocity of 30 m s™.

(a) Find the kinetic energy of the sphere.

(b) If the man who throws the wooden sphere has exerted a constant force on the

" sphere for 1.5 m, what is the force exerted by the man on the sphere?-

20.

1.

22.

23.

An empty can is dropped from a window which is 100 ft high from the ground.
What is the velocity of the can when it strlkes the ground? (Neglect air
resistance.) _

When riding a swing, the highest point a child can reach is 6 ft above the lowest
point. What is the velocity when the swmg reaches the lowest pomt‘? (Neglect
frictional forces.) - ‘ ,

A tennis ball which is thrown vertically upward reaches the helght of 50 m. Find
the initial veloc1ty of the ball. (Neglect air resistance.) '

Water which flows over a dam falls into a canal which is at a depth of h m from
the top of the dam, What is the velocity of water when it reachec; the canal if the
velomty when it starts to fall from tbe dam is zero?

P
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Condensation (Changing Vapour to Liquid) Evaporation produces cooling
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CHAPTER 6
HEAT AND TEMPERATURE

The study of heat and thermal properties of matter is actually a study of energy and
energy transfer.

[t has long been recognized that heat is a form of energy. When heat is applied to
various kinds of engines, it can supply forces that do work. The internal structure of
matter is examined by the study of the effects of heat energy upon matter. [t suggests
that all matter consists of tiny particles such as atoms and molecules. Heat is closely
associated with the motions of such tiny particles. Therefore heat must be studied on
molecular basis.

6.1 HEAT AND TEMPERATURE

The motions and positions of molecules in matter result in the kinetic energy and
potential encrgy. The total energy, that is, the sum of the potential energy and the
kinetic energy, of molecules in matter is in fact the internal energy of that matter.
Temperature is related to that internal energy. Temperature is a measure of the
internal energy of molecules.

The concept of temperature is very important for the physical and biological sciences.
This is because the temperature of an object is directly related to the energies of
molecules composing the object. Natural processes often involve energy changes and
the temperature is an indicator for these changes.

The sensations of hotness, warmness and coldness can be experienced by touching
the objects. Temperature is the quantity that determines how cold or how hot the
object is. The temperature of a hot body is higher than that-of a cold body. The
temperature of the object cannot be known accurately by experiencing the sensations
of hotness or coldness. For example, if one touch the metal knob of a wooden door
.with one hand and touch the wood of the door with the other hand, he will feel that
“the metal knob is colder than the wood. This is so even though both the metal knob
" and the wood of the door are at the same temperature. This is just like saying that the
mass of an object cannot be known accurately by lifting that object. Just as there are
balances to measure the mass of the object, there are thermometers to measure
temperatures accurately.

There is a relation between heat and temperature. The energy exchanged between an
object and its surrounding due to different temperatures is defined as heat.
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Heat and temperature are different quantities. When a body at a higher temperature is
in contact with a body at a lower temperature heat flows from the first to the second
body. Although the temperature of the first body is known, it is impossible to know
how much heat has been transferred to the second body which is not as hot as the first
one. Two bodies may have the same temperature, but may not be able to supply the
same quantities of heat when put into contact with colder bodies under the same
condition. Generally, the quantities of heat that can be supplied by different bodies at
the same temperature are not the same. For example, a gallon of boiling water and
half a gallon of boiling water may have the same temperature. However, under the
same condition, the heat which can be supplied to a large block of ice by a gallon of
boiling water is twice the amount supplied by half a gatlon of boiling water.

The units used to measure temperature will be discussed before describing the units
used to measure heat.

6.2 UNITS OF TEMPERATURE OR TEMPERATURE SCALES

The thermometers marked with Celsius (Centigrade) scale and Fahrenheit scale are
used for ordinary cases such as measuring room-temperature, measuring body-
temperature and measuring the temperature of hot ‘water. Temperature is usually
expressed by writing “C and °F just after the number of degrees. C stands for Celsius
and F for Fahrenheit. The third temperature scale, the Kelvin or the absolute
temperature is used in scientific wotk. Temperature is expressed by writing K. just
after the number. K stands for Kelvin.

The values of physical quantities remain the same at a given temperature. For
example, the density of water at 4 °C is 1000 kg m™. The values of many physical
quantities vary with temperature. The length of an iron bar varies with temperature.
But the length of that iron bar is the same whenever it is put into a container having a
mixture of ice and water. A temperature scale can thus be defined by using such
properties. A liquid such as mercury or alcohol is used in home thermometers to
indicate temperature. The thermometer consists of a glass tube attached to a bulb. The
bulb and part of the glass tube are filled with mercury. As the temperature increases
the volume of mercury increases faster than that of the bulb. And the mercury rises in
the glass tube. ‘

To calibrate a thermometer, two reference points are chosen and the interval between
these points is subdivided into a number of equal parts. The freezing point and boiling
point of water under normal atmospheric pressure are chosen as reference points
which are marted on the thermometer. The interval between these two points is
divided into one hundred equal parts for the Celsius scale. If the freezing point of
water or ice point is marked 0" and the boiling point of water or steam point is
marked 100°, the thermometer scale is the Celsius scale. On the Celsius scale, the ice
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point is 0 °C and the steam point is' 100 °C. On the Fahrenhert scale the ice point is
32 "F-and the steam point 212 °F.

The relationship between the Celsius temperature Te and the Fahrenheit temperature
Tr is given by the equation

= -—(TF-32) | | | (6.1)
For example, normal body temperature is.98.6 °F., On the Celsius scale, this is
T, == (TF-32)
= % (98.6-32)
=370°C

‘The relatlonshlp between the Celsius temperature T, and Kelvin temperature Tk is

given by
CTet273=Ty ' (6.2):

Celeius 1 Kelvin _ B
scale 1 scale

200°CT473K
temperature [ 100 “C 373 K temperature
difference 4 difference
100°C o-char ) 100K
-100°CH+I13K .
. -200°CTT3K
- 273°ct 0K

Fig.(6.1) Celsius scale and the corresponding Kelvin scale -

In lme with the decisions of the Genera] Conference of the Internatronai Commrttee
of Weights and Measures, the symbols °C, Fand K are used throughout this book to
represent both the temperature difference and the temperature. S
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6.3 THERMAL EXPANSION OF SUBSTANCES

When a substance is heated, its volume usually increases. The dimensions of the
substance increase correspondingly. This increase in size can be explained in terms of
the increased kinetic energy of the molecules. The additional kinetic energy results in
each molecule colliding more forcefully with its neighbours. Therefore, tiie molecules
push each other further apart and the substance which is heated increases in size.

With few exceptions, substances expand when heated and if there is an obstruction to
the expanding bodies, very large forces may be exerted on that obstruction by the
expanding bodies.

If concrete road surfaces were laid down in one continuous piece, cracks would
appear due to the difference between summer and winter temperatures. To avoid this,
the concrete road surface is laid in small sections, each one being separated from the
next by a small gap. The gap must be filled with-a compound of pitch. On hot days,
expansion of concrete squeezes the compound of pitch out of the gap. It goes back
into the gap when the concrete contracts.

concrete
— pavement

Fig.6.2 Making allowarice to the expansion of concrete pavements and road surface

In laying railway tracks, géps must be left between successive lengths of rail. The
buckling of the track as the rails expand due to temperature rise may thereby be
prevented. This method of laying railway tracks is an old one. In a new method,
railway lines are welded together as shown in Fig. 6.3. (Note that the welded ends are
cut info ‘wedge shapes.) The last fifty to one hundred metres of both ends of such
welded rail show expansion which is of a few centimetres. Concrete sleepers are used
for these railway tracks,
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taper joint

OO

Fig. 6.3 Taper joint on a railway line

Although expansion can be troublesome for some practical work, it has many
beneficial effects.

The steel tyres of locomotive wheels have to be renewed from time to time. To ensure
a tight fit the tyre is made slightly smaller in diameter than the wheel. Before being
fitted, the tyre is heated uniformly. The tyre expands and slips over the wheel. When
the tyre cools it contracts and makes a tight fit. This idea is also used in fitting the
whee! of a bullock-cart with an iron tyre. The thermal expansion property is utilized
in riveting, together steel plates and girders used in the dockyards and other
constructional works. -

tyre " wheel

the tyre is too small when cold the tyre is too big when hot  (he tyre is tight fit when cold again

Fig. 6.4 Fixing a steel tyre onto the wheel of a locomotive wheel

6.4 LINEAR EXPANSION

When two different metal bars of the same length are heated so that the increase in
temperature is the same, the magnitudes of their expansion may not be the same For
example, the expansion of copper is one and a half times that of steel. Alumirum
expands twice as much as steel does.
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A relation between the change in length of an object and the temperature change can
easily be obtained. Let the original length of the object in Fig. 6.2. be /. Suppose the
increase in length is A/ when the temperature increases by an amount. AT . (The

symbol AT represents a small change. If temperature T, is slightly higher than T;,
then T, — T; = AT . So, AT is a small increase in temperature. Similarly, A/ is a
small increase in length.)

T+ AT

(a) (b)
Fig. 6.5 Linear expansion of an object
If the object in Fig. 6.5 (a) is exactly halved, two equal parts will be obtained. Each
part will have a length //2 and the increase in length will be Al/ 2. Therefore, the
increase in length A/is directly proportional to the length I, In addition, it is knows
from experiments that if the increase in temperature is 2 AT instead of AT , the
increase in length also doubles. Therefore, Al is directly proportional to both / and
AT . Both proportionalities may be combined into one expression:
Al a IAT

Therefore, _ Al = al AT 6.3)
In the above relation, ¢ is the coefficient of linear exﬁansion. This coefficient is

a property of a given material and depends somewhat on the temperature. The values
of & for some materials are given in Table 6.1.

Table 6.1
Material Temperature (C) o (K )
Aluminium -23 221 x 10°
20 2.30x 107
77 241 x 107
527 2.35 x 107
Diamond 20 1.00 x 1058
Celluloid 50 1.09 x 10
Glass (most types) 50 8.30 x 10®
Glass (Pyrex) 50 3.20 x 10°¢
Ice -3 5.07 x 107
Steel 20 1.27 % 107

Platinum ] 20 8.90 x 10°®




The unit of & is per K. Per K can be written as K. The unit of ¢ was expressed in
per "C in the old physics textbooks. Now, the modern SI units are being used more
and per 'C is replaced by per K. Although there is a change in unit, the value of &
remains the same. : _
Although AT in the above equation (Al = @ IAT ) is a small increase in temperature,
the equation is still correct for fairly large values of AT . It will still be correct even
for AT =100K (=100°C). L
The following example (1) illustrates the importance of linear expansion.
Example (1) The roadbed of a steel bridge is 1280 m long, If the temperature varies
from 10 'C to 35 _°C during a certain year, what is the difference in lengths at those
temperatures? The road is supported by steel girders. For steel, = 1.27 x10°K!
AT =35C-10C

=25°C=25K Here we write AT =25 C =25 K, since
Thus, Al =alAT AT =(35+273)-(10+273)K=25K
| =127 x 109K x 1280 m x 25K

- =0406 mor 40.6 cm - ‘

Hence, the change in the roadbed Jength due to linear expansion must be allowed for
in the design of the bridge so as not to damage the bridge. -
Example (2) The length of a metal bar having coefficient of linear expansion & is /
at the temperature T. What is the length of that metal bar at the temperature T+ AT?

The change in length due to the temperature change AT is

Al=alAT .
Therefore, the length of the metal bar at T+ AT is
: P o=+ Al
=]+ alAT
=[{1 +a AT)
Example (3) Define the coefficient of linear expansion.
Al =a IAT
.- AL
[ AT

Therefore, the coefficient of linear expansion is the change in length per unit length
for one degree change in tempefature. '
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It can be expressed as
o -N_N_ %N
K °C °F
In this equation, N is the number which depends upon the type of substance N does
not depend upon the temperature change.
6.5 AREA EXPANSION AND VOLUME EXPANSION

The relations analogous to the one which gives the increase in length A / for the
increase. in temperature AT can be derived for the area expansion and volume
expansion. The relations obtained are

AA =B A AT (for area expansion) (6.4)
and AV =1y VA T (for volume expansion) (6.5)

In these equations, B- is the coefficient of superficial or area expansion and v is the

coefficient of cubical or volume expansion.

The derivation of the equation for the volume change only will be expressed here.
The derivation of this equation is as follows.

Consider a cube of volume V. When the temperature of the cube changes from T to !
+ AT the Iengt'h of each side will change from / to / +A /. So, the change in volumx
is AV=0+AD3-P. 1+ Al canbe approximated by ° + 3 Al . Then the change &
volume is AV =3PA[=3VAI/ILIf Al= @l A Tis used

AV=30aVAT = y VAT
where vy =3a

Thermal expansion occurs not only in solids but also in liquids and gases. Unlike
solids, liquids and gases do not have well defined shapes. As the shape is just the
shape of the container, only the volume expansion needs to be considered for liquids
and gases. The previous equation AV = ¥V AT can be used to calculate the volume

expansion of liquids as weli as gases.

In the expansion of liquids, the volume expansion of water is quite interesting,

The anomalous behaviour of water is that it has a negative coefficient of volume
expansion at some temperatures. Fig. 6.7 shows the change in v and density of water
with the temperature, y varies as the temperature changes and the sign of y changes

at 3.98 'C. As the temperature T rises from 0 "C, water contracts up to 3.98 'C and

then expands as the temperature increases further. The density of water is greatest at
3.98°C.
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" The anomalous expansion-of water is very important for aquatic animals in very cold
regions. As the temperature of air decreases in early winter, the surface water of the
lake cools. When this surface water reaches 3.98 °C, it sinks to the bottom of the lake.
The water from beneath is less dense and it floats to the surface. The cool descending
water carries fresh oxygen with it. Thus, the cold water mixes with the warm water
and then the temperature of the lake becomes uniform. The entire lake cools until it
reaches 3.98 "C. The temperature of surface water decreases further and finally ice is
formed. The water freezes from the surface downward. Fishes and other aquatic
animals survive the winter in the water beneath the ice. ' ' ’ ‘

Fig. 66 Temperature in an ice covered lake

As stated above, the equation
AV=yVAT

can be used for the expansion of gases. But there is a difference for solids and
liquids. In defining v in the above equation there is no restriction on the temperature

for the initial VOlumé_s of solids and liquids.
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Fig 6.7 The change in coefficient of volume and density with temperature

But there is a restriction for gases that the initial volume must be at 0 "C and the.
pressure must be kept constant. Let the volume of the gas be V,at 0 C. If the volume
becomes V when the temperature increases to T,

AV = V"'Vo
and AT =T-0=T
Thus, V-V, = ¥ Vol
V-V, 1 o
or = — per CorperK.
Y v, T p p

To determine vy experimentally, the increases in volume with temperature are

measured and plotted on a graph. By reading V, and the volume at 100 ‘C, Vg, from
the graph, v can be evaluated from the equation:
y= VIOO - Vo

V, x100

The result gives the coefficient of volume expansion of a gas. From experiments, the
coefficient of volume expansion of gases is found to be 1/273.
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Example (4) The area of a metal plate is A, at the temperature T, and A; at Ta. If
T, > Ty, obtain the relation between A and A,. The coefficient of area expansion of
metal is 3. '

AA  =AzA, and
AT =TT
Thus, ArAi =B AI(TT)
Ar  =Ar+B A(TT))
=AI[1+B (T- T}

Example (5) Define the coefficient of volume expansion of a liquid.

From AV =yVAT ,
av -L
¥ V AT

Therefore, the coefficient of volume expansion of a liquid is the change in volume per

unit volume for one degree charge in temperature. 5
T N_N_%N

, K 'C °F _

where N is the number which depends upon the type of substance; N does not depend

upor the temperature change. ' '

In symbols. o oy =
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Concept Map (Temperature)

Temperature

Y

Scale of temperature
requires:

@ a thermometric

substance that has a

physical property

which varies

continuously with

température.,

® two fixed points and a

scale between them.

Y S ¥
Centigrade
(Celsius) scale Kelvin (Absolute)
* two fixed points: Converting scale o
(i) ice point (0°C) Temperatures _ ° oneg f{xed p'qmt: ‘
(i) steam point T/*C=T/K - 273 the triple poeint
(100°C) L of water.
e defining equation: * The Kelvin (K)
X.-X . is the SI unit for
T C=2T "0 5100 -
w — Xy temperature.
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SUMMARY

Temperature is a measure of ".hotness" or "coldness" of a body.

Heat is a form of energy. It is the energy exchanged between an object and it
surrounding due to different temperatures.

Solids, liquid and gases expand when heated.

Coefficient of expansion is a property of a g1ven material and depends
somewhat on the temperature. '

Coefficient of linear expansion is d_e__ﬁn_ed as ‘the change in length (of a
substance) per unit length for one degree change in temperature.

Coefficient of area expansion is defined as the _ché.nge in1 surface area (of a
substance) per unit area for one degree change in temperature.

Coefficient of volume expansion is defined as the change in volume (of a
substance) per unit volume for one degree change in temperature.

The anomalous behaviour of water is that it contracts as the temperature rises
from 0 °C to 4 °C and it expands as the temperature increases from 4 °C to
100 °C

The density of water is greatest at 4 °C,

EXERCISES

1.

4,

Nowadays, the Celsius scale rather than the Fahrenheit scale is widely used.
Discuss why this is so.
Choose the best answer from the following. For scientific work
(a) only the Kelvin temperature scale is used. ;
(b) only the Celsius scale is used.
(¢} only the Fahrenheit scale is used.
Fill in the blanks. . S
The temperature 250 K is' () than the ice point and the temperature 400 K is
(b) than the ice point. B ' R
Define the coefficient of linear expansion.
Express the unit of that coefficient in SI units.

_"The coefficient of linear expansion of steel is 1.27 x 10° K"

Explain the meaning of this statement. _
Define the coefficient of area expansion and the coefficient of volume expansion.
Express the units of those coefficient in SI units.
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6. Choose the correct answei. The density of a solid decreases when it is heated

10.
11.

12.
13.

I5.

because (a) its mass decreases. (b) its mass increases. (¢) its volumes decreases.
(d) its volumes increases. '

A solid expands when heated. What happens to its (a) mass; (b) volume; (<)
density?

Should telephone wires be fixed to their supporting poles on a hot day or on a
cold day? Explain your answer.

Which of the following graphs shows how the volume of water changes as it is
heated from 0 °C to 10 °C?

A

o o
E £
= =
g £
10 temp/°C 10 temp/”C
C D
[+ L
E E
= =
g g
10 temp#C 10 temp/°C

Discuss the problems which may arise in construction works if the effect of linear
expansion is not taken into account.

If the unit of the coefTicient of lincar expansion is changed from per K to per 'F,
does the numerical value of that coefficient change?

Why is it possible to open a jar of jam when its tight lid is heated?
The coefficient of volume expansion of pyrex glass is one-third that of ordinary
glass. Which glass can stand more thermal strain?

- What temperature on the Celsius scale corresponds to 100" on the Fahrenheit
scale?

The decline of average temperature of the universe with its age is given below:
10 s e, T~10"K

078 e T~10""K

100 yrs e T~3000 K

t~2 x 10"yrs (today) ... ... T~3K

+ Convert the temperatures from K to "C .
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16. What temperature on the Celsius scale corresponds to 104 °F, the body
temperature of a person who is gravely ill? :

17. At what temperatures are the readings on a Fahrenheit and Celsius scales the
same? ' )

18. A steel railroad track is 20 m long at 20°C . How much longer is it at 40 C?
@ steel =127 x 10°K" -

19. A steel railroad track is 30 m long at 0 °C . How much shorter is it at 520°C ?
a steel=1.27 x 10°K"!

20. An aluminium metre stick is exactly 1 m long at 20 "C . How much shorter is it at
0°C?Use & =230 x 107K,

91. The surface area of a solid increases with temperature according to the formula
AA=2a A AT . How much does the area of a rectangular steel plate 0.5 m by

2.5 m increase when it is heated from 0°Cto 40°C?

22. A heat-resistant glass at 15 "C is fully filled with 250 em® of glycerine. If the

temperature increases to 25 "C how much glycerine overflows? The coefficient
of volume expansion of glycerine is 5.1 X 10 K! and that of heat-resistant glass
is 0.09 x 107K
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CHAPTER 7
MEASUREMENT OF HEAT

Heat is a form of energy and therefore it may be expressed in energy units: joules,
ergs or foot-pounds. Special units for heat, however, were introduced into physics
during the later part of the eighteenth century when the relation of heat to energy was
not quite understood. These special units, the calorie (cal) and the British thermal unit
(Btu) are still used, although heat is no longer viewed as a substance. In this chapter
the relations between different units of heat as well as the methods of measuring heat
will be discussed.

7.1 MEASUREMENT OF HEAT

Heat has been defined as the amount of energy transferred from one object to another
because of a difference in temperature. The unit used to measure how much heat the
object attains is the kilocalorie.

Heat required to change the temperature of 1 kg mass of water by 1 K is called
I kilocalorie.

This definition was given before the relation between heat and energy was known.

As heat is a form of energy, heat can be expressed in terms of the work unit. The SI
unit of work is the joule (J) and the relation between kilocalorie (kcal) and joule is

1 kcal =41847]
The thermal unit of the British system is the British thermal unit (Btu) and
| Btu  =10557 ‘
The thermal unit used in electrical engineering is the kilowatt hour (kWh) and
[ kWh =860 kcal
=3413 Btu
1 kcal =4184 Jorical=4.1841]

The German doctor, Robert Mayer, found first that the energy which represents 1 cal
is 4.184 J. He was also the first to suggest the conservation of energy.

Although it was known about one hundred and fifty years ago that heat is a form of
energy and 1 cal = 4.184 J, the unit “joule” has not been widely used in measuring
heat yet. Calorie and kilocalorie units are still in use. Joule, being the SI unit, is the
more modem unit for all types of energy including heat. The confusion relating to
measurement of heat arises due to the use of the British thermal unit (Btu) as well as
kWh in some countries. In addition, the calorie unit used by the nutritionists in
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measuring the energy values of food is in fact the kilocalorie used in the physical
science, and this adds to the confusion.

No confusion will arise, if all the scientists use the internationally accepted SI unit,
the joule, uniformly.

Example (1) Express the relations between the units used in measuring heat.-
ljoule =107 ergs =0.2390 calories
1 calorie =4.184 joules

1keal = 10° calories
1 kWh  =3.6x 10° joules
| Btu = 1.054 x 10° joules

Example (2) How many kilocalories are equal to the work unit, 1 ft-1b?
| 1ft-1b =1.3561
=1.356 x 0.2390 cal
_ 1.356x0.2390
© 1000
=3.241 x 10 keal

Example (3) An egg contains & x 10* cal of the average energy value of food. If that
cal unit is the thermal unit used in the physical science, express the energy value of
food of the egg in joules.

_ lcal = 4.1841]
The average energy value of food of the eggis
| 8 x 10*cal = 8§x 10% x 4.184
334 720)

]

334 720 J of energy is obtained from an egg.

7.2 THERMAL CAPACITY

When an object at a certain temperature is placed in contact with another object at a
higher temperature, the heat energy is transferred from the object at a higher
temperature to one at a lower temperature, Since the object at the lower temperature
receives additional energy, its temperature increases. The ratio of the amount of .
" energy transferred to the temperature change is called the thermal capacity. If the
energy transferred to the object is AU and the temperature change is AT, the thermal
capacity of that body is
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AU
AT
The energy may be transferred from one object to another because of the temperature
difference and the energy may be transferred by doing work on the object as well. For
example, since work is done by stirring a liquid or by compressing a gas, the energy
transfer occurs and temperature rises. Therefore, when work is done on the substance
in the above manner or heat is added to the substance, the internal energy U of that
substance increases. If the volume of the substance does not change, the heat added is
equal to the increase in internal energy.

(7.1)

Suppose the internal energy of n moles of a substance changes by AU due to the
temperature change AT . Then, the thermal capacity for 1 mole is

C = l AI_J, (7.2)
n AT

The unit of C is joules per mole per kelvin (J mol™ K.

The thermal capacity is an important property of materials. The best example of this
is water. It has a relatively high thermal capacity. Because of high thermal capacity,
water is used to cool engines. In cold countries, water is used to store heat in solar
heating system of the houses. Another commeon application is the use of hot water
bags (Fig. 7.1) to keep warm. This relies on the ability of hot water to store a large
amount of energy.

Figure (7.1) Hot water bag

The high thermal capacity of water also affects the climate. The climate of regions
near large bodies of water such as lakes is found to be milder. This ig because the
thermal capacity of water is very much higher than those of the carth and air. For one
degree rise in temperature, water absorbs much more heat than either land or air. The
lake is a reservoir of heat for the surrounding regions. In summer, as the lake absorbs
much more heat than the surrounding land and air, the surrounding region remains
cool. In winter, when the surrounding land air become cold, the lake gives off the
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heat il has stored as its temperature drops. Thus, the surrounding region remains
warm.

7.3 SPECIFIC HEAT CAPACITY

The physical quantity closely related to the thermal capacity is the specific heat
capacity. The specific heat capacity of a substance is the heat needed to change the
temperature of a unit mass of that substance by one degree. The specific thermal
capacity is represented by the symbol c. The relation between ¢ and thermal capacity
C for 1 mole is ' '
C

M

where M is the mass of 1 mole of the substance.

¢ = (7.3)

Suppose the specific heat capacity of the vbject is ¢ and the mass of that object is m.
Then, heat required to change the temperature of the object by AT will be

AQ=mc AT (at constant volume) (7.4)
AQ is the additional heat gained by the object. In the SI system, the unit of the
specific heat capacity is joules per kilogram per kelvin (J kg K ™). The old units used
previously are cal g "C "'and keal kg™ "C ™.
The specific heat capacities of various substances are given in Table 7.1.

Table 7.1

: Specific Heat Capacity ¢
Substgnce keal kg! K Jke! K
Aluminum 0.215 898
Steel 0.107 447
Diamond 0.124 518
Lead 0.031 130
Copper 0.092 385
Helium (gas) 1.240 5180
Hydrogen (gas) 3410 14250
Iron 0.105 443
Nitrogen (gas) 0.249 1040
Oxygen (gas) - 0.219 915
Water 0.996 4169
Iee(-10°C to 0°C) 0500 2089
Steam (100 Ct0200°C) =~ 0470 1963

Glass - 0.200 837
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Example (4) When 3 x IO J of heat is added to 10 kg of an object, the temperature of
that pbject increases by 10°C. Find the thermal capac1ty of that object.

AT 10C=10K

and AQ = 3 x10°J
AQ
AT

_3x10°

10

=3x 10" JK'
Example (5) Find the specific heat capacity of the object from example (4).
The specific heat capacity of the object is

Thermal capacity of the object

c= _1_& = mass of the object)
m AT
and
= 10kg
Hence, c= L x 3 x 10
10

I=3x 10°Jkg'K"
If ¢ is to be expressed in keal kg K™ unit
3x10°
4184
=0.7170 keal kg'K!

Example (6) The thermal capacity of 1 mole of helium (He) gas is 12.47 J mol” K™,
If the mass of 1 mole of He is 4 x 10~ kg, find the specific heat capacity of He.

C =1247]mol'K*
and M =4x107kg
The specific heat capacity of He is

TR
=3.12 x 10*Jkg'K"!
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74 LAW OF HEAT EXCHANGE

When the specific heat capacity of a substance is known, the heat gained by a given
mass of that substance as its temperature increases can be determined. If m is the
mass and c is the specific heat capamty, heat gained by the object as its temperature
increases by one degree is : :
. Angiined = mc

The heat gained when the temperature increases by AT is

A(quim:d = mc AT
The rise in temperature by AT is the difference between the final temperature and
the initial temperature.
Similarly, the heat lost by the object when its temperature decreases by AT is

AQlost ! =mc AT
. Using the above equations, the heat gamed or lost by the object due to the heat
transfer can be calculated.

When heat is transferred from one object to another object the total heat lost by one
object is equal to the total heat gained by the other object.

This statement is the law of heat exchange. Since heat is energy, the law of heat
exchange is one particular statement of the law of conservation of energy. In the
above statement, the system consisting of two objects must be regarded as an isolated
system,

The specific heat capacity can be determined using the law of heat exchange. The
method of determination is as follows.

The sample whose specific heat capacity is to be determined is placed in a calorimeter
which is well insulated. When the calorimeter and sample are heated causing a
temperature change of - AT, the heat absorbed by the sample = mc¢ AT

where m is the mass of the sample and ¢ is the spemfic heat capacity of the
sample. S

Heat absorbed by the calorimeter = mqc, AT
where m, is the mass of calorimeter and c. is the specific heat capacity of calorimeter.
Therefore, the heat gained by the sample and calorimeter is

AQuineg™ me AT +me ¢ AT
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If the heat lost by the electric heater is
AQrosl = AQ

and since
AQuy = Aanincd
AQ = mc AT +mec. AT
mc AT = AQ-mc.c. AT

AQ - ) .
¢ 2—Q—M is obtained.
mAT

Example (7) A calorimeter at 15 ‘C contains 0.1 kg of carbon. The calorimeter is
made of aluminum and its mass is 0.02 kg. When 892 J of heat is added to the
calorimeter and carbon, the temperature increases to 28 "C. Find the specific heat
capacity of carbon. Assume that the specific heat capacity for aluminum at the said
temperature range is 900 J kg™ K.
_AQ-mc AT
m AT
892-0.02x900x13
0.1x13

506 T kg' K

Example (8) 0.20 kg coffee at 90 °C is poured into 0.5 kg glass at 20 °C. If no heat is
lost and gained from outside, what is the final temperature of coffee?

Assume that the specific heat capacity of coffee is the same as that of water.
The heat gained by the glass = m, C.,AT

cup cup
=0.50 x 837 x (T-20)
=(418.5 T-8370) J
The heat lost by coffee = Mg, Coomoe AT

coffer “coffee

=0.20 x 4169 x (90-T)
= (75 042-833.8T)J

Heat gained = Heat lost
418,5T-8370  =75042 - 833.8T
12523 T =83 412

T =67 °C

133



SUMMARY

Heat is a form of energy and therefore it may be expressed in energy units:
joules,
ergs or foot-pounds.
The special units, the calorie (cal) and the British thermal unit (Btu) are still
used. '
The SI unit of heat is the joule (J).-

1 joule = 107 ergs = 0.2390 calories

lcal  =4.184J or 1 keal = 4184J (1 kcal = 10? calories )
The thermal unit of the British system is the British thermal unit (Btu).

1 Btu=10551]
The thermal unit used in electrical engineering is the kilowatt hour (kWh).
| I kWh=3.6 x10 % joules

The ratio of the amount of energy transferred to the temperature change is called

the thermal capacity. C= ﬂ

AT ‘
A mole of any substance is the amount of that substance that contains
Avogadro's number of molecules, where Avogadro's number N = 6.022 x 10%,
If we have n mole of a substance, the number of molecules is N = n Nj.

The thermal capacity for I mole is C = 14U

n AT
The unit of C is joules per mole per kelvin ( J mol™ K1),
The specific heat capacity ( ¢ } of a substance is the heat needed to
change the temperature of a unit mass of that substance by one degree.

c= 140 (m = mass of the object)
m AT .
The S1 unit of the specific heat capacity is joules per kilogram per kelvin

(3 kg 'K,
The relation between ¢ and thermal capacity C for 1 mole is ¢ = %

where M is the mass of 1 mole of the substance.
Heat required to change the temperature of an object of mass m by AT
(at constant volume) is AQ =mcAT.
The heat gained when the temperature increases by AT is
AQgaineda =mc AT
The heat lost by the object when its temperature decreases by AT is
AQiss  =mc AT
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* The law of heat exchange. When heat is transferred from one object to another
object the total heat lost by one object is equal to the total heat gained by the
other object. { AQg = AQuained ) |

Concept Map (Heat absorbed or released, Q)

changes
Internal encrgy of th eg Heat
matter - absorbed or
released, Q
Q =mcAT

where AT = temperature change
¢ = specific heat capacity

m = mass

Specific heat capacity, ¢ c= < Heat capacity, C
' lig&?;?;f:?;izz ?E:t Bl wh:;e ~1is the amount of heat required A

teraperature of 1 kg of m = mass to raise the temperature of
substance by 1 K {or 1°C) substance by 1K (or 1°C)

EXERCISES

What is "thermal capacity"?

2. Define "specific heat capacity”. Daes it have any unit? If it has, write down the unit
in SI system.

3. State the law of heat exchange.

How does the specific heat capacity of water moderate the climate in a region near a
lake?
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3.

When a plece of iron is cooled from 70 °C to 40 C the heat gwen out is 690 J. What
is the heat capacity of the piece of iron? .

6. The heat capacity of a piece of copper is 200 J ‘C'. What is the amount of heat

10,

11,

12.

13.

14.

135.

16.

required to raise its temperature from 30 "C to 100 "C?

What is the amount of heat required to raise the temperature of 2 kg of copper from
30 °C to 80 'C? Assume that the specific heat capacity of copper is 400 J kg™ 'C™.

600 000 J of heat energy is supplled to a kettle with 2.0 kg of water to raise the
temperature of the water from 30 "C to 100 "C. Assuming no heat lost to the
surroundings, find the specific heat capacity of water?

0.5 kg of orange squash at 30 "C is placed in a refrigerator which can remove heat at
an average rate of 25 Js"'. How long will it take to cool the orange squash to 5 "C?
The specific heat capacity of orange squash is 4200 J kg "C'.

1 litre of water at 100 'C is added to 4 litre of water at 30 “C. What will be the
final temperature of the water?

0.2 kg of water at 90 "C is poured into a steel cup of mass 0.1 kg at 30 "C. What is the
final temperature of water assuming there is no heat lost to the surroundings?
(Specific heat capacity of steel is 450 J kg™ K™ and that of water is 4200 ] kg "C™..)

Mercury has a much lower specific heat capacity than water. If 1 kg of mercury at
100 °C is mixed with ! kg of water at 0 "C, will the temperature of the mixture be
50 °C, above 50 "C, or below 50 "C? What will happen to the heat lost by the mercury
during the mixing of mercury and water? :

A 0.6 kg copper container holds 1.5 kg of water at 20 "C. If 0.1 kg iron ball at
120 °C is dropped into the water, what is the final temperature of the water?

How much heat must be added to change the temperature of 0.15kg helium (gas)
from 20°C to 80 °C without changing the volume? The specific heat capacity of
hetivm is 5.18 x 10° Jkg' K. :

The specific heat capacity of 0.4 kg mass of a calorimeter is 627.6 J kg’ K. A
0.55 kg substance is in that calorimeter. The temperature of the calorimeter increases
by 4 K when 2450 J of energy is added to it. Find the specific heat capacity of the
substance in the calorimeter. : -
A 60 kg woman is on a diet that provides her with 1.046 x 107 J daily. If this
amount of heat is added to 60 kg of water at 37 'C what will be the final
temperature of the water?
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CHAPTER 8
WAVE CONCEPT AND SOUND WAVE

Most of the wave motions with which we are familiar involve large scale coordinated
disturbances of many particles. Although the individual particles in those
disturbances do not move far, the disturbance itself may travel great distances. Energy
and momentum are carried along with the disturbance. The motions of the particles
vary with the type of waves. For example, in a water wave, the water molecules move
in almost circular paths. In a sound wave molecules vibrate back and ferth. In a wave
along a string parts of the string move up and down.

Light waves are also coordinated disturbances involving changes in electric and
magnetic fields. For such waves the particles do not move, but the waves nevertheless
carry energy and momentum. The mathematical description of these waves is nearly
the same as that of mechanical waves such a~ water wave, sound wave and wave in a
string,

All waves have a number of common characteristics. These are mentioned in the next
section where waves in strings and springs are mainly discussed. The discussions on
sound waves are described in the last section of this chapter.

Wave is a basic concept of physics. Waves are important because they carry energy
and momentum from one place to another. The concepts of mechanics and
electromagnetic theory are used as a basis in describing wave motion.

8.1 TRANSVERSE AND LONGITUDINAL WAVES

Waves are classified as transverse and longitudinal waves. If the displacements of
particles of the medium are perpendicular to the direction of the wave. such a wave is
called a transverse wave. Light waves are transverse waves. Waves in a vibrating
string are also transverse waves. If the displacements of particles of the medium are
parallel to the direction of the wave, such a wave is called a longitudinal wave.
Compressional waves in a coiled spring as well as sound waves are longitudinal
waves,

Waves have linearity property. Linearity property here means that when two or more
waves pass the same point, the resultant wave at that point is the sum of the
individual waves, After passing that point the waves continue along their original
paths without any change whatsoever. The description of such linearity property is
called the principle of superposition.
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8.2 WAVE FREQUENbY, WAVE VELOCITY AND WAVELENGTH

As described above, there are different types of waves in nature. Light wave is a
transverse electromagnetic wave, with changing electric and magnetic fields at right
angles to each other and both being perpendicular to the direction of the light wave.
The path of a sound wave consists of alternate compressions and rarefactions of the
medium and hence it is a longitudinal wave. Water waves are a mixture of transverse
and longitudinal waves.

Waves can be represented by graphs. The graphs representing transverse and
longitudinal waves are similar. In Fig.8.1 (@) and (b). a pulse of wave produced in a
string and in a spring due to disturbances at their left ends and travelling toward the
right are shown.

In Fig.8.1 (a) the motion of the particles is
transverse to the motion of the wave. In
Fig.8.1 (b) the motion of the particles is
along the direction of the wave. Both
types of waves are represented by graphs
in Fig.8.1 (¢). For the string y is the
displacement of the string from its
undisturbed position and for the spring y
is a measure of the compression or
extension of the spring. For the string the
displacements above the equilibrium
position are positive and for the spring a
compression 1s regarded as a positive displacement.

Fig. 8.2. (a) and (b) show the periodic
wave trains produced by transverse
up-and-down motion of the left end
of the string and longitudinal to-and--
fro motion of the left end of the
spring respectively

These periodic wave trains are shown
graphically in Fig, 8.2(c) Fig.8.2

The broken line in Fig, 8.2 (@) indicates the undisturbed position of the string.Fig.8.2
(b) the alternate compressed and extended portions of the spring are shown. Let us
now discuss some quantities which characterize the common properties of periodic
waves, Let us start with frequency.

139



The frequency f is the number of waves (wavelengths) passing a point per second and
it depends on the vibrating source. For example, in the string and spring of Fig. 8.2
the frequency, is the rate at which the oscillations occur at the left end.

The period T is the time taken by the wave to travel the distance between any two
consecutive wave crests, and it is the reciprocal or inverse of the frequency:

T -
t
The velocity v of a wave is the speed with which a wave crest travels.
The wavelength A of a periodic wave is the distance between any two consecutive
wave crests. '
The amplitude A of a wave is the maximum value of the displacement. The
displacement of a periodic wave varies back and forth between A and -A.

Most of the periodic waves are represented by sine or cosine graphs.

The relationship between the frequency, wavelength, and velocity of a periodic wave
can be obtained from Fig.8.3.

In Fig. 8.3 it is shown that the wave travels one wavelength A during the period T.
(Period T can also be defined as the time required for one complete oscillation.) Since
the wave travels the distance A in the period T the wave velocity v is

Again, since T=— v 4 x
f ' ‘Q J" B \-/ t_

v=fa 1 ’,-.\7' j .
) ) doN —
is obtained from the above two N x
) \ ‘
equations. - ' ./ \./
Fig 8.3

Example (1) A wave pulse in a string moves a distance of 10 m in 0.05 s. (a) Find the
velocity of the wave pulse. (b) Find the frequency of a periodic wave in the same
string if its wavelength is 0.8 m.
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(a) The velocity of the wave pulse is

<
il
—_ ""‘lQ—-

Om
0.05s

(b) The periodic wave has the same velocity of 200 m s'. Using fA4 = v, the
frequency of the 0.8 m wave is

= 200ms"!

200ms™
0.8m
Example(2) A typical sound wave associated with human speech has a frequency of
500 Hz and the frequency of the yellow light is about 5x 10" Hz . The velocity of
sound in air is 344 m s and the velocity of light is 3 x 10° m s’. Find the
wavelengths of the two waves.

=250s" or 250 Hz

For both waves f 4= v, so for the sound wave

For the light wave A=

The ripple tank

The ripple tank is a convenient piece of apparatus for demonstrating the properties of
wave pulses and waves. It consists of a sheet of glass in a frame about 5 cm deep.
Sheets of sponge lime the frame to absorb the ripples and prevent reflection by the
sides. The tank stands on legs above a large sheet of white paper or painted hardboard.
A lamp above the tank throws the shadows of the wave or ripples onto the white
screen. These shadows are seen most clearly if they are not viewed through the water.
Before use the tank is leveled and water is poured into a depth of 5-10 mm.
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Fig.8.5

Plane wave pulses are produced by dipping a rule into the water, circular wave pulses
are produced by any pointed object. When continuous waves are required a wooden
beam is hung above the water by elastic bands.( Fig. 8.4) A small electric motor with
an eccentric shaft is fitted to the beam which, when switched on, makes both motor
and beam vibrate. A wooden strip fitted to the bottom of the beam produces a plane
wave, circular waves are formed by a small wooden sphere.

Continuous waves are viewed using a stroboscope. One type of stroboscope is simply
a flashing light. When this flashes with the same frequency as the frequency of the
waves, the waves appear to be stationary. Another type is a hand stroboscope, a disc
with a number of radial slits equally spaced around its edge. (Fig. 8.5) The disc is
attached to an axle passing through its center and fixed to the handle A. It is rotated
by a finger placed in the hole B. The waves are viewed through the slits, and when
the frequency with which the slits pass the eye is the same as the frequency of the
waves, the waves appear to be stationary.

8.3 SOUND WAVE FORMS AND VELOCITY OF SOUND

Sound wave forms

The wave forms in Fig.8.6 may be regarded as longitudinal sound waves. The wave
forms in parts (a), (b) and (e) have the same frequency, as do those in parts (c) and (d).

Pitch  The pitch of a note (how ‘high' it is) is determined by its frequency, so the
notes produced by the waves in (a), (b) and (e) in Fig.8.6 all have the same pitch. The
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wavelength of the waves in parts (¢) and (d) 1s half of the wavelength in the others so
the frequency and hence the pitch are doubled. These notes are said to be one octave
higher than the others,

displacement
displacement
displacemeni

TN time = /\ time —

a) ~ ~ LC)] \'/ \’

/[\‘L /r\ //\time» ’ A time —>
VYAV -

Fig.8.6

f\ }(\ time -+
\VARVIERW

{3

displacemem
displacement

Loudness The loudness of a note depends upon the amplitude of the wave that
produces it. The greater the amplitude the louder the note, because more energy is
used to produce a larger amplitude.

Note The energy transmitted by a wave depends upon the frequency as well as the
amplitude. If the frequency of a note is doubled, twice as many compressions and
rarefactions strike the ear each second and more energy is received, In fact the energy
in a wave is proportional to both ( frequency )? and ( amplitude )*,

Quality or timbre The note in Fig.8.6 (e) has the same frequency and hence the same
pitch as the notes in (a) and (b). It has the same amplitude as (a) and will therefore be
just as loud. However, (e) sounds different from (a) because it has a different wave
form. It is said to differ in quality or timber. It sounds richer than the other notes
because it is not a simple note, but contains overtones. Notes of the same pitch
played upon different musical instruments are distinguished from each other by their
quality.

Velocity of sound

The velocity of sound in air, at 0 'C is 332 ms” or 1090 fts!. Whenever the air
temperature increases by 1 C, the velocity of sound will increase by 0.2 %. The
velocity of sound in air can be expressed as

v = 3321f—T—
273

Here T is given in terms of K and v in m s™'. The above relation can be approximated
by the following relation

v = 332+0.6(T-273)
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Sound can travel not only through air but also through solids, liquids and gases.
Generally, the denser the medium, the greater will be the velocity of sound. This is
natural because the denser the medium is the more will the particles of the medium
tightly bind themselves together. This means the disturbance can be transferred more
quickly from one particle to the next. The velocity of sound in some of the solids and
liquids are given in Table 8.1.

Table 8.1
Medium Velocity Temperature
ms’’ fits™ C
Air 332 1090 0
C0» 259 850 0
Cla 206 676 0
Water, pure 1404 4605 0
Copper 3560 11680 ' 20
Iron 5130 16830 20

Example (3) The frequency of a musical note is 440 Hz. Find the wavelengths of that
sound in air and water.
Sinee the velocity of sound in air is 332 m 5! the wavelength of musical note in air is
1 =2
f

=332 _ 97544 m
440 |

=75.44 cm

Since the velocity of sound in water is 1404 m 5!, the wavelength of musical note in
water is

Therefore, the wavelength of the musical note in water is more than four times that of
the musical note in air. When a sound wave travels from one medium to another its
velocity and wavelength change but the frequency remains the same.
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Example (4) What is the velocity of sound in air at 40 'C?
The.velotity of sound in ait at 40 °C is

v =332‘1/_I-
273
=332 J.%Eﬁ,‘l =13555ms’!
273

If the approximate formula is used

v~ 332+0.6(T-273)
~332+0.6(313-273) ~ 356 m s’
Concept Map (Waves)
Transverse Waves Waves Longitudinal Waves

e.g c.g L3 \ / C.E. ce
( F‘?aterx Rope X lWavc_as on ) The wave cauatical aves on =
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EXERCISES

Sound waves can travel in all of the following except

A. solids. C.air

B. liquids D.vacuum : , o
How does the speed of sound vary in the following media: water, air and wood?

Highest speed Lowest speed
A. Air water
B. Water wood
C. Wood water
D. Wood air

Which one of the following statements is true for both sound and light waves?
A. They are transverse waves,

B. They are reflected from a glass surface.

C. They travel faster in air than in water.

D. They are electromagnctic waves.

displacement

“i ll.ﬂlv 0.0 \_/ 0.0%

The displacement of an air particle with time as a sound wave travels through the
air is as shown above. | : : ' '

What is the frequency of the sound wave?

A. 10Hz C.50Hz

B. 25 Hz D. 100 Hz |

A sound of frequency 400 Hz has a wavelength of 4.0 m in a medium. What is the
speed of sound in the medium?

A. 107 m/s C. 1600 m/s

B. 100 m/s D. 8000 m/s .

A boy hears the thunder 2.0 s after seeing lighting flash. How far is the lightning
flash from the boy? ( Speed of sound = 330 m/s )

A. 165m C. 660m

B. 330m D. 1320 m ' :

Which of the following describes correctly the changes, if any, to the frequency,
wavelength and speed of sound as it travels from air into water?

Frequency Wavelength Speed
A. Remains unchanged Decreases Decreases
B. Remains unchanged Increases Increases
C. Increases Increases Increases
D. Increases Remains unchanged Decreases
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8.

Define wavelength, frequency and velocity of a sound wave. Write down the
relationship between them. Can this relationship be used for other waves (such as
light waves)?

9. Are the following statements true or false? Correct the statements which are wrong.

10.
1.

12.

13.

14,

15.
16.
7.

18.

19.

(a) The frequency of a wave is directly proportional to its wavelength.
(b) Sound wave is transverse wave and water wave is longitudinal wave.
(c) The velocity of sound is the same in water, air and helium gas.

(d) Sound waves cannot travel through vacuum,

Write down the relation between period and frequency.

How does the velocify of sound depend on the temperature of the medium
through which it travels?

Fill in the blanks.

The velocity of sound in air at 0 "C is (@) m s and the velocity of sound will
increase by (b) % whenever the air temperature rises 1 °C.

Fill in the blank.

The relation v ~ 332 + 0.6 (T - 273) can be derived from the relation __ .
"Generally, the denser the medium the greater will be the velocity of sound.”
Explain this statement.

Find the wavelength of a wave with frequency 1000 Hz and velocity 344 ms”.
Find the frequency of a wave of velocity 200 m s and wavelength 0.5 m,

A radar antenna emits electromagnetic radiation (c =3 X 10* ms™') of wavelength
0.03 m for 0.5 s. (@) Find the frequency of radiation. (h)How many complete
waves are emitted in 0.5 s?

Find the frequency, of a wave of 29 m wavelength telecast by a TV station. The
velocity of that wave is the same as that of other electromagnetic waves and is
3x10°ms™.

The shortest wavelength of an ultrasonic wave emitted by a bat (in air at 0 C)is
3.3 mm. What is the frequency of this wave? Is this frequency the largest or the
smallest?
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20. A stohe is dropped in a well whose water level is 20 m down. How much time
elapses unnl the sound of the splash is heard? Assume the speed of sound to be

340 ms™
21. The frequency of a musical note in air is 440 Hz, What is the wavgl@ngth of that
sound in sea water and in CO; gas?
22. What is the velocity of sound ini air at 20 'C?
23. If the temperature of the medium is increased from 0 °C to 40 C, by what
~ percentage has the velocity of sound ingreased? .
24. Draw the v2 - T graph, (v = velocity of sound, T = temperature of medium

and vocJ—.)
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CHAPTER 9
REFLECTION OF LIGHT

When tht is incident on the surface of an object some of the light is sent back and
this phenomenon is called reflection of light. Generally, light incident on the surface
of an object is always partially reflected. When light is incident on a transparent
substance such as glass, some of the light passes through the glass, some reflected and
some absorbed. Highly-polished surfaces reflect much more light than rough surfaces.
Highly-polished metal surfaces reflect about 80 to 90 per cent of the light incident on
them. Objects are visible to us because the reflected light rays from those objects
enter the eye.

Properties of light may be studied by subdividing optics into geometrical optics and
physical optics. Geometrical optics is based upon the fact that light travels in a
straight line, Ray diagrams are used in ‘explaining the optical phenomena. On the
other hand, physical optics is based upon the fact that light propagates by means of a
wave-motion. Of these two, only geometrical optics will be studied here.

9.1 SOURCES OF LIGHT

The sun, the stars, the candle flame, the fluorescent lamp, etc., are all sources of light.

Such sources of light are called self-luminous bodies. Human beings, trees, books,
etc., are non-luminous bodies. These non-luminous bodies are visible when the
refiected rays of light from them enter the eye.

The sun is the chief source of light. The fact that light coming from the sun passes
through the empty space on its way to the earth shows that light can travel through
vacuum. It also shows that light is an electromagnetic wave. The speed of light in
vacuum is 3 x 108 ms™,

9.2 REFLECTION A‘ND LAWS OF REFLECTION
A ray of light is a path along which the light energy travels. A ray is represented by a

straight line with an arrow-head. The arrow-head points in the direction of light
propagation.

A beam of light is a collection of rays of light. If the rays are parallel to one another,
the beam of light is called a parallel beam of light (Fig.9.1). Searchlights, used in
trains and lighthouses, emit parallel beams of light. A beam of light received from a
distant source can also be considered as a parallel beam.
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Fig.9.1. Parallel rays Fig. 9.2 Convergent rays Fig.9.3Divergent rays

If the rays of light are directed towards a point or if the rays of light converge to a
point, the beam of light is called a convergent beam (Fig. 9.2). A parallel beam of
light becomes a convergent beam after passing through a convex lens. If the rays of
light diverge from a point or if they appear to come from a point, the beam of light is
called a divergent beam (Fig. 9.3). A beam emitted by a light bulb is a divergent
beam. _
Rays of light are used in studying the reﬂe_:qtion of light from a surface. The light
incident on the surface consists of several rays. But the incident light is represented
by only one of those rays. Similarly, the reflected light from a surface is represented
by one of the rays of reflected light.

A ray which represents the incident light is an incident ray. A line perpendicular to
the surface at the point of incidence is called a normal. A ray which represents the
reflected light is a reflected ray. An angle between the incident ray and the normal is
an angle of incidence and an angle between the reflected ray and the normal is an
angle of reflection.

Fig. 9.4 Reflection at a plane surface

The reflection of light from a plane surface MM' is shown in Fig 9.4 This figure
illdstrates the terms used in connection with the reflection of light.

* AO = incident ray OB = reflected ray ON = normal _

Z AON =i = angle of incidence £ BON = r = angle of reflection
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When the angle of incidence, i, is varied the angle of reflection, , ulse vafies and
experiments show that i is always equal to r. In addition, it is found that the ificident
ray, the reflected ray and the normal all lie in the same plane. Thess fitidings are
stated.in the laws of reflection.

Laws of Reflection
(1) The incident ray, the reflected ray and the normal all lie in the §ame plane.
(2) The angle of in¢idence is equal to the angtle of reflection.

Regular and Diffuse Reflection
Plane mirrors and glass slabs have smooth surfaces. When a ray of light is meldeﬁt ofi

such surfaces it is reflected in a definite direction in accordatiee with the 1aws of
reflection. When a parallel beam of light is incident on a plane mirfor the angles of
incidence of all the rays are equal. Thus all the rays are refleeted ifi org dirgstioh:
Such reflection of light is called regular reflection.

Fig. 9.5 Regular reflection Fig. 9.6 Diffuse reflection

When a parallel. beam of light is incident on a rough sufface the Fys afe reflected in
different directions (Fig.9.6). Such reflection of light is catled diffuse reflection. The
surface of paper is not smooth. The roughness of the paper siirface can be seen with a
microscope. Thus, reflection from the surface of the paper is diffuse reflection. All of
the reflected rays from the paper surface obey the laws 6f reflection. However, the
incident rays have different angles of ineidence due to the roughness of the paper
surface. Therefore, the rays are reflected in different directions. Reflections from

objects in everyday life such as flowers, books, pesplé and brick walls, gre diffuse
reflections.

9.3 REFLECTION AT PLANE SURFACES '
An object having a smooth reflecting surface is called a mirror. If the reflecting

surface is plane, the mirror is called a plane mirror, Looking glass, in everyday use, is
one kind of plane mirror.
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We shall first of all study the formation of image of a point object due to a plane
mirrot. In Fig. 9.7 a point object O is placed in front of the plane mirror M. A ray OB
from O is incident on the plane mirror at B and reflected along BC. BN is the normal,
A ray OA from O is incident normally on the plane mirror and reflected along AO.
When OA and CB are produced they meet at a point I behind the mirror. I is the
image of O. We are assuming here that all the rays lie in the plane which is

perpendicular to the surface of the plane mirror.
. M

Fig. 9.7 Formation of image of a point object

In Fig. 9.7 OA is parallel to NB, so that
£ OBN =/ AOB (alternate angles)
£ CBN =/ AIB (corresponding angles)

By the laws of reflection £ OBN =/ CBN
Therefore ZAO0B = L AIB
In the triangles OAB and IAB :

Z AOB = £ AIB

Z OAB . = Z 1AB (right angles)

AB = AB (common side)

Therefore ‘ AOAB =A AIB
and AO =Al

AQ is the perpendicular distance of the object from the plane mirror and Al is that of
the image from the planc mirror. The object and image are at equal perpendicular
distances from the mirror. In other words, the image is as far behind the mirror as the
object is in front.
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In Fig. 9.7 the incident ray OP is reflected along PQ and the reflected ray PQ
produced backwards passes through I. Similarly, - other reﬂected rays produced
backwards will pass through L. Thus, we can say that the point 1mage [ is formed on
the line passing through O.and perpendlcular to the plane mirror.

The image I is observed as the reflected rays enter the eye. The reflected rays appear
to diverge from 1. The reﬂected rays do not actually pass through I; only the reflected
rays produced backwards pass through I. Thus, I is a virtual image. The virtual
image cannot be formed on a screen. The image formed by the actual intersection of
the reflected rays is a real image. A real image can therefore be focused on a screen.
The formation of image of an extended object due to a plane mirror will be studied
next. In Fig. 9.8, II' is the image of an object OO'. The object OO’ can be considered
as an object formed by several point objects. I is the image of a point O and I' is that
of a point O'. The points between O and O' have corresﬁonding images. When all of
the images are connected the image of the whole object is obtained.

Fig.9.8 Image of an extended object Fig.9. 9 Ray diagram for an extended object

From Fig.9.8 we can see that 00" = II". This means that the image and the object are
of the same size. The image II' is virtual and erect. Fig.9. 9 shows the image II' of a
slightly inclined object OQ' formed in the plane mirror.

"Lateral inversion
Suppose that a man is looking at himself (at his image) in a looking glass. When he

tilts his head to the right, the head of the image in the mirror is found to tilt to the left -

with respect to the image. When he tilts his head to the left, the head of the image is
- found to tilt to the right with respect to the image. This effect is called lateral
inversion. You can do this experiment yourself.
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Fig. 9.10 Lateral inversion of a number Fig 9.11 Lateral inversion of 2 word

When a paper on which a number 3 is written is placed in front of a looking glass, its
image in the looking glass is laterally inverted as shown in Fig. 9.10.When a paper on
which the word PEN is written is placed in front of a looking glass the lateral
inversion is as shown in Fig. 9.11.

Properties of an Image in a Plane Mirror
The properties of an image formed in a plane mirror are as follows:—

I. The image is of the same size as the object.

2. The image is virtual.

3. The image is erect.

4. The image is laterally inveried.

5. The image is situated on the line passing through the object and perpendicular to
the plane mirror.

0. The image is as far behind the mirror as the object is in front.

I'rinciple of Reversibility of Light

In Fig. 9.12 a ray AO is incident on the plane mirror at a point O and is reflected
along OB. If a ray were incident on the mirror along BO, it would be reflected along
OA in accordance with the laws of reflection. If the dircction of a ray of light is
reversed, the light ray will travel along its original path. This is known as the
principle of reversibility of light. Any ray of light obeys this principie.

Fig. 9.12 iltustration of reversibility of light
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The images studied so far are formed in the plane mirror when both the object and the
mirror are stationary. Now the i 1mages formed in the mirror will be studied when
either the object or the mirror lS n)zmotlon

Stationary Object and Moving Plane Mirror

(=)

: Fig.9.13. Image format1on in a moving plane mirror
In Fig. 9.13 (a) M is a plane mirror and the i image of an object O is I. Therefore

OA =Al=d.

In this position, the distance between O and 1 =d+d=2d.
In Fig. 9.13 (b} M is moved a distance x away from O. In th1s position, the distance
between O and I =(d+x)+(d +x)

= 2d+2x

The position of O remains the same but the position of I is changed.
The displacement of [ from its original position = (2d -+ 2x) - 2d
=2x

Similarly, if M is moved a distance x towards the object, the i image will be moved a
distance 2x from its original position.

Generally, therefore, if a mirror is moved a distance x away from or towards the
object, the image will move through a distance 2x. ' i
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Stationary Plane Mirror and a Moving Object

{a)

]

- -*-—-—-—-‘-'-—-'!——

Fig. 9.14 Image of a moving object

In Fig. 914 (a) the distance between the object and the mirror is d. Therefore
OA=Al=d.

In Fig. 9.14 (b) O is moved a distance x towards the mirror. In this position
OA = Al =d-x.

I moves towards M from its original posmon

The displacement of I from its original position =d- (d - x)=x

Similarly, if O is moved a distance x away from M, I will also move a distance x
away from M-—-

Therefore, if an object is moved a distance x away from or towards the mirror, its
image will move through a distance x from its original position.

Deviation of Light by a Plane Mirror

In Fig 9.15,
AOQO = Incident ray
ON =Normal

OB = Reflected ray
OC = Original path of the incident ray

\ Z AON =i = angle of incidence
\\\ £ BON =r = angle of reflection
k¢ Z AOM; = g - glancing angle

Fig. 9.15 The glancing angle

Fig. 9.15 shows the reflection of light from a plane mirror M;M,.The angle between
the incident ray AO and the plane mirror is called the glancing angle g.

By the laws of reflection i = r and hence £ AOM, = £ BOM,; =g.
In addition, £ AOM, = £ COM, =g,
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Although the original direction of the incident ray AQ is along OC it is reflected
along OB by the mirror.
The angle of deviation of AO =£COB

=g+g=2g |
Therefore, the angle of deviation of a ray by a plane mirror is twice the glancing
angle.

Deviation of Reflected Ray by Rotating a Plane Mirror

In Fig. 9.16 (a)

AO = Original incident ray

ON; = New normal obtained
due to rotating by the
mitror

OD = New reflected ray

OB = Original reflected ray
OC - Original pa'th of the
incident ray
0 Angle of rotation by the
mirror
Fig. 9.16 (a) Deviation of reflected ray (Mirror £ COD - New angle of deviation

after rotating anti- clockwise
direction)

In Fig. 9.16 (a), the incident ray AO is reflected along OB by a plane mirror M. The
angle of deviation £ COB =2g, where g is the glancing angle.M; can rotate about an
axis O. The axis O is perpendicular to the plane containing the incident and reflected
rays and passes through O. In Fig. 9.16 (a) the incident and reflected rays lie on the
plane of the paper so that the axis O is perpendicular to the plane of the paper. As
shown in Fig. 9.16(a), M is rotated anticlockwise through an angle 0 to the position
M,. The incident ray AQ is still in its original position.

But the reflected ray OB moves anticlockwise and lies along OD which is a new
reflected ray.

§
/

s
.
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When the plane mirror is in the position M, the new glancing angle is g + @,
Since OD is the new reflected ray of the incident ray AQ, the angle of deviation =
£ COD = twice the glancing angle = 2(g+9)

The angle between OB and QD (two reflected rays) = £ BOD

= / COD- Z COB
= 2(g+0)-2g
=20

where 0 is the angle of rotation by the mirror.

Thus if the plane mirror rotates about an axis through an angle Qin the direction of
anti-clockwise, the reflected ray is rotated through an angle 20. '
Similarly, one can find that if the plane mirror rotates about an axis through an angle
Oin the clockwise direction (Fig 9.16 (b)), the reflected ray is also rotated through an
angle 20.

New glancing angle = g-0
The angle of deviation = ZCOD
= twice the glancing angle.
=2 (g -90)
=2g - 206
One has known that
ZCOB =2g
The angle between OB and OD (two

| fl,
Fig. 9.16 (b) Deviation of reflected ray reflected rays)
(Mirror after rotating clockwise £BOD = £ZCOB - £ZCOD
direction) = 25— (2g-26)
= 20

Example (1) A man 5 ft 6 in tall and whose eye level is 5 ft 2 in above the ground,
looks at his image in a looking glass. What is the minimum vertical length of the
looking glass if the man is to be able to see the whole of himself?
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In the above figure M is the looking glass. H represents the man's head, E his eyes
and F his feet, respectively. - . ' |
Therefore, HF =66in, EF=62inand . HE= 66 -62=41in. .
For the man to be able to see his head, an incident ray from H to the top A of M must
be reflected to his eyes E.
Since the normal AN, bisects HE

AL =EN, = KHE

= Y% X4in=2in |

For the man to be able to see his feet F, an incident ray from F to the bottom B of M
must be reflected to his eyes E.

Since the normal BN, bisects EF,
' LB =EN; ¥ EF
Y2 X 62 in=3 1in
AL+LB
2in+31in
33in
2ft9in
The looking glass must have a minimum vertical length of 2 ft 9 in.
Example (2) A pin, 2 cm high, is placed 6 cm in front of a plane mirror. If the pin is
moved 1.5 cm closer to the mirror, by how much is the distance between the pin and

the image reduced?
The distance between the pin and the plane mirror is equal to the distance between the

Therefore, the vertical length of M

-

wnnonnon

pin's image and the mirror.

In the first position, the distance between the pin and its image =6 -+ 6 = 12 cm.

In the second position, the distance between the pin and the mirror =6 -1.5 = 4.5 cm.
Therefore, the distance between the pin and its image = 45+4.5=9%cm.

The distance reduced between the pin and its image =12- 9=3 cm.
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Example (3) The reflected ray makes an angle of 20° with a ray incident on a plane
mirror. The mirror is rotated through 15 about an axis perpendicular to the plane
containing the incident and reflected rays. Find the angles between the incident ray
and the new reflected ray.

In the above figure, M, is the original position of a plane mirror. For that arrangement
the angle between the incident ray AO and the reflected ray OB=/ AOB=20",

When the mirror is rotated clockwise through 15° from position M; to M, the
reflected ray is rotated to the right along OC.

When the mirror rotates about an axis through an angle 6 the reflected ray is rotated
through an angle 29,

Thus, the angle between the first reflected ray OB and the new reflected ray
OC =2x 15'=30’

And, the angle between the incident ray and the new reflected ray = /£ AOC=20"+30"

=50

When the mirror in the position M; is rotated anticlockwise through an angle 15, the
reflected ray is rotated to the left.

For that arrangement, the angle between the reflected ray OB and the new reflected
ray=2 x 15" =30’

The new reflected ray is to the left of the incident ray AO.

Therefore, the angle between the incident ray and the new reflected ray =30°-20" =10

And the possible angles between the incident ray and the new reflected rays are 10°

and 50°,

The images studied so far are formed in the plane mirror when both the object and the
mirror are stationary.
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Some Important Applications of Plane
Mirrors

(i) Optical testing

The illuminated letters are laterally inverted 50

that the patient can see the letters correctly in the
mirror. At the same time, the letters appear
further than they actually are, so the room need
not be that long.

(ii) Periscope

When the view -of an object is obstructed by an
obstacle, the periscope can be used to see the
object clearly. For example, when the persons in
front obstruct the view of a singer on the stage,
the singer can be viewed by the use of a
periscope.

'As shown in Fig (a) a simple periscope consists,
of two plane mirrors facing one another. They
are parallel and fixed at an angle of 45 to the
line joining them.

‘The formation of. successive images in the
periscope is shown in Fig (b).

The image I,formed in the mirror M. I, becomes
an object for the mirror M. Iz is the final image
of the object seen in M. When constructing a
ray diagram it should be noticed that OA = L;A
and Bl; = BL. In addition, the line Iil; is
perpendicular to the mirrors. ‘

In the periscopes used in submarines, prisms are
used instead of mirrors. In addition, periscopes
which include telescopes are used in the
observation of very distant objects.
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(iii) Blind corners _

Fitting a plane mirror at a corner allows drivers
to see around blind turns (the diagram is not
drawn to scale).

(iv)Instrument scales
By forming an image of the pointer, the .
plane mirror eliminates parallax errors e

rlrror

in the reading of instrument scales. ingo of

pointar

pointar
O L el Foi " e e

\
(v) Other uses
Plane mitrors are also used in many optical instruments such as telescopes. Overhead
projectors as well as lasers. Another common use of the plane mirror is in the
construction of a kaleidoscope which gives colourful multiple images of small pieces
of coloured glass.

9.4 REFLECTION AT CURVED MIRRORS

Now that we have studied the reflection at the plane mirror, let us proceed to the
study of reflection at curved mirrors. In the case of reflection at curved mirrors also,
the rays of light obey the laws of reflection stated previously. The reflecting surfaces
used in the motorcar headlamps, torchlights, searchlights and so on are curved mirrors.
The Hale telescope at Mt. Palomar, California, in the United States of America is one
of the largest telescopes in the world, it uses a huge concave mirror having a diameter
of 5 m.

If only a small part of the surface of a curved mirror is used for reflection, it can be
considered as an outer or an inner surface of a hollow sphere. Only concave and
convex mirrors having spherical surfaces are used in most experiments. We shall now
discuss the reflections at such mirrors. Definitions concerning curved mirrors are
given below.

{a) Concave Mirror

If the reflecting surface of a mirror forms part of the inner surface of a hollow sphere,
the mirror is called a concave mirror.

(b) Convex Mirror

If the reflecting surface of a mirror forms part of the outer surface of a hollow sphere,
the mirror is called a convex mirror. ' !

(c) Pole of a Concave or Convex Mirror

The centre of the surface of 2 concave or convex mirror is called its pole.
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(d) Centre of Curvature of a Concave or Convex Mirror

The centre of a sphere, part of whose surface is the ‘concave or convex mirror, is
called the centre of curvature of that mirror.

(The centre of curvature of a concave mirror is in front of the reﬂectmg surface and
that of a convex mirror is behind the reflecting surface.)

(e) Principal Axis

The line passing through the centre of curvature and the pole of a concave or convex
mirror is called the principal axis.

(f) Radius of Curvature of a Concave or Convex Mirror
The radius of a sphere, part of whose surface is the concave or convex mirror, is

called the radius of curvature of that mirror.

(g) Principal Focus
When the rays parallel and close to the principal axis are incident on a concave mirror

the reflected réys pass through a point on the principal axis. That point is called the
principal focus of the concave mirror. Since the reflected rays actually mtersect at that
point, the focus of a concave mirror is a real focus.

When the rays parallel to the principal axis are incident on a convex mirror the
reflected rays appear to come from a poiht on the principal axis. That point is called
the principal focus of the convex mirror. Since the reflected rays do not actually pass
through that point, the principal focus of a convex mirror is a virmal focus

(h) Focal Length
The distance between the pole and the focus of a concave or convex mirror is called

the focal length of the concave or convex mirror,
Fig. 9.17 illustrates the stated definitions and the correSpgnding symbols.

P = pole, C = centre of curvature, F = focus
PF = f'= focal length, PC = R = radius of curvature

Fig. 9.17 Convex and concave mirrors
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Rays close to the Principal Axis (Paraxial Rays)

In order to simplify the study of reflections at mirrors and the refraction through
lenses, only paraxiai rays will be considered. Paraxial rays are rays parallel and close
to the principal axis or rays which make very small angles with the principal axis.

Fig. 9.18 Paraxial rays

In Fig. 9.18 the incident ray OA and the reflected ray Al are the rays close to the
principal axis. This figure is exaggerated for the purpose of clarity. In practice, A
must be very close to P since the angles o, B and vy are very small. For large objects
which lie close to the mirror, paraxial rays do not give exact results, but only
approximate results. The image aberration can be neglected when using the rays close
* to the principal axis.

Since the angles coiresponding to the rays close to the principal axis are very small,
the following mathematical assumptions are used. If 0 in radian is very small, then

' Sin 0= tan 8~ 0

It then follows that the distance between any point on the axis and any point on the .

reflecting surface is equal to the distance between that point on the axis and the pole.
In Fig. 9.18 A is very close to P so that the curve AP can be taken as a straight line.
Besides, it can be assumed that '

OA=O0P,CA=CPand IA=1P,
The angle 6 in radian is defined as follows.

B(rad) = —=2
radius _
The curve AP is the arc subtended by the angles ¢ , B and y.
Therefore ofrad) = PA_PA =sino = tan ot
OP OA
B(rad =%§=Eﬁ—=sinﬂ =tanf
¥(rad) = %% :% =siny=tany
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Pelation between Focal Length f and Radius of Curvature R

Fig. 9.19 Focal length and radius of Fig. 9.20 Focal length and radius of
curvature of a concave mirror curvature of a convex mirror

In Fig. 9.19 the ray parallel to the principal axis is incident on the concave mirror the
point A and reflected through the focus F. In Fig. 9.20 the ray parallel to the principal
axis is incident on the convex mirror at the point A and the reflected ray produced
backward passes through F. The line passing through A and C is the normal.

By the laws of reflection i =t

Since the incident ray is parallel to the principal axis,
i = ZACP

Therefore, in the triangle ACF, AF=FC

For the rays close to the principal axis AF = PF

Therefore, PF=FC or PF = PC/2
Since PF = f and PC = R,
f=R/2

The focal length f of the curved mirror is one half its radius of curvature R.

Principal Rays and their Properties

The formation of images of an object in curved mirrors can be shown by constructing
a ray diagram as in the case of formation of images in the plane mirror. The reflection
at curved mirrors is also in accordance with the laws of reflection. The line passing
through the point of incidence and the centre of curvature of the concave or convex
mirror is the normal.

We have seen that for a plane mirror, the position of image of a point object is the
point through which the reflected rays pass, when produced backwards, In order to
show the size of the image of an extended object in a plane mirror, it is necessary to
find only the positions of the two ends of that object. Similarly, only the rays coming
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from the two ends of an object need to be considered in order to show the formation

of an image in a curved mirror. Furthermore, only two rays are necessary for drawing

ray diagrams. Principal rays are used to draw ray diagrams. The principal rays and
their properties are stated below.

t. When a ray parallel to the principal axis is incident on the concave mirror, the
reflected ray passes through the focus; and when this ray is incident on the
convex mirror, the reflected ray produced backward passes through the focus.

2. When a ray directed towards the principal focus is incident on the concave or
convex mirror, the reflected ray travels parallel to the principal axis.

3. When a ray directed towards the centre of curvature is incident on the concave or
convex mirror it is reflected along its original path.

4. When a ray directed towards the pole is incident on the pole of concave or
convex mirror, the reflected ray is on the other side of the principal axis; the
principal axis is the normal in this case.

Formation of Images in a Concave Mirror
The formation of images in the concave mirror for various positions of the object are

shown in Figs.9.21 -9.26. In these figures, the object OO is situated vertically on the
principal axis. Since the ray from O is incident at P and reflected along its original
path, the position of image I of O is somewhere on the axis. Thus, it is necessary te
find the position of the image I' of the point O' at the top of the object by drawing the
ray diagram. In doing so, only two convenient rays are used. The perpendiculac
distance from I' to the principal axis is the image II' of the object QO". According te
the principle of reversibility of light, if II' is the object, 00" is its image.

Figs.9.21 - 9.26 show that when the object OO' moves closer to the concave mirror,
the image II' moves farther away from the mirror.

In Fig. 9.21 the object is at infinity and its image is
1. atF,
2. real,
3. inverted, and
4.  smaller than the object.

Fig. 9.21 the object at infinity
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In Fig. 9.22 the object is beyond C and its image is
L. between C and F,
2. real,
3. inverted, and
4, smaller than the object.

In Fig. 9.23 the object at C and its image is
1. atC,
2. real,
3. inverted, and
4. of the same size as the object.

In Fig.9.24 the object is between C and F and its image is

[. beyond C,
2. real,
3. inverted, and .

0'

v

Fig. 9.22 object beyond C

Fig. 9.23 the objectat C

4, larger than the object.

&

Fig 9.24 Object between C and F

In Fig. 9.25 the object is at F and its image is at infinity
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In Fig. 9.26 the object is between F and P and its image is

.
1

3
1. behind the mirror, '?
2. virtual, - ;
3. erect, and )
4, I

larger than the object.

Fig. 9.26 Object between F and P
Formation of Images in a Convex Mirror
The image formed in the concave mirror may be real or virtual depending upon the

position of the object. In addition, it may be erect or inverted. But the image formed
in the convex mirror is always virtual, erect and smaller than the object. It is formed
between P and F no matter where the object is sitnated.

The formation of an image in the convex mirror is illustrated with a ray diagram in
Fig.9.27.

Fig. 9.27 Image formed by a convex mirror

A convex mirror has a wider field of view than a plane mirror of the same size
(Fig.9.28). Convex mirrors are used as rear view mirrors of motor cars since they
always give an erect image and a wide field of view.

plane mirror

td]

{ ) 4————convex mirror
1

narrow field )
e wide fiold

of
N of
view view

Fig. 9.28 Advantage of a rear view mirror
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Sign Conventions

The facts obtained by studying the images formed in a concave mirror by

constructing ray diagrams are summarized as follows: :

1. The image is formed sometimes in front of a concave mirror and sometimes
behind it. |

2. The image may be either real or virtual.

3. The image may be either erect or inverted. - : .

These facts make it necessary to establish sign convent1ons The position of the image

(in front of or behind the mirror), the nature of the image (real or virtual) and the

configuration of the image (erect or inverted) are specified by the use of sign

conventions. - : S -

All distances are measured from the pole: of the mirror and the sign conventions in

common use are given below.

|. Distances of real object, real image and real focus are positive. Distances of

virtual object, virtual image and virtual focus are negative.
2. The focal length of a concave mirror is posmve and that of a convex mirror is

R
negative. Since f = > it implies that the radius of curvature is positive for a

concave mirror and negative for convex one.
3. The perpendicular distance measured above the principal axis is positive and that
below the principal axis is negative.

Mirror Formula _
For both concave and convex mirrors
1

P -
= — 9.1
u v f « ( . )
where  u = object distance from the mirror
= image distance from the mirror
f - focal length
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Equation (9.1) is known as the mirror formula and it can be derived as follows.

Fig. 9.29 Relation between u, v and fin a concave mirror

In Fig. 9.29 a point object O is situated on the principal axis of a concave mirror. The
incident ray OA is reflected by the concave mirror along Al The incident ray OP is
reflected back along its original path. The point of intersection of these reflected rays
L is the real image of O. CA is the normal and by the laws of reflection

LOAC= LIAC = i
OA, CA and TA make the angles o, B and ¥ respectively, with the principal axis.
These angles are very small since only the rays close to the principal axis are
considered here. (Fig. 9.29) is exaggerated for the purpose of clarity. AN is the
normal to OP. In practice, N is almost coincident with P,
As B is the exterior angle of triangle OAC,

B=o+i
or i=f- « (n
Since vy is the exterior angle of triangle CIA.
y=p+1
i=y-8 @)
From equations (1) and (2), it follows that
Y-B=p-«a
Therefore o+y=2p (3)
In Fig 9.29 a=tana=—é§—=§—N—
ON OP
AN AN
=t b=~
AN AN
= tq = ——=
L N
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Substituting these values of o,p and ¥ in equation (3)

AN AN AN
+ =2
OP P CP
Dividing by AN, we get

| 1 2

+
op P CP
Since OP = u, IP = vand CP = R = 2f, the above equation becomes

1 1 |
— + — ——
u v f
When the sign conventions are used
1 1 1
+ =
+u +v +f
u v f :

Equation (4) has been derived for the concave mirror when the point object is beyond
C on the principal axis. This equation can be derived also for the point object or an
extended object situated somewhere on the principal axis in front of the concave
mirror. The corresponding sign conventions for u, v and f must again be used.

Magmficatlon
The images formed by the concave and convex mirrors have various sizes depending
upon the position of the object. Thus, the lateral magnification produced by a mirror

is defined by
height of image
height of object
size of image
size of object
1f m = magnification, II' = size of image and OO’ = size of object
then m = ——U—— (9.2)
00 '
The magnification m can also be expressed in terms of the object distance u, and the

image distance v. In Flg 9.26 the image II' of the object OO' beyond C is between F
and C.

Magnification =
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Fig. 9.26 [Nustration of magnification

In Fig. 9.26 AOO'P and AII'P are similar

Therefore, ——I-I—— - P
00 OP
Since OP =u and IP =v, we get
v
00 u
When the sign conventions are used,
-0 _+v
+00 +u

Here a minus sign is used for II' since it is below the principal axis. Thus, the formula
for the magnification m can be expressed as
m= L - .Y ' 9.3)
00 u

size of image
size of object
_ image distance

object distance
Equation (9.3) can be derived for various positions of the object situated in 'front of
the concave mirror. This equation can be used for the convex mirror as well. The

minus sign determines both the nature and configuration of the image.

Magnification =

Some Applications of Mirror Formula

1.+ 1

To understand how to apply the formulae -~ — -l.= 7 ~ and

u v _
m = 6% = .Y cortectly, sfudy the following examples carefully.
: u
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Example (4) An object is placed (a) 20 cm (b) 4 cm in front of a concave mirror of
focal length 12 cm. Find the nature and position of the image in each case.
(a) u=+20cm
f=+12cm
1 1
+

1
£

o
<

Since v is positive the image is rea) {1 is formed 30 cm from the concave mirror on
the same side as the object.

(b) u=+dc
1,11
u v_f

4,11

+4 v +12

11 1

v 12 4

v = - 6cm

Since v is negative the image is virtual. It is formed 6 cm behind the concave mirror.

Example (5) An object is placed 10 cm in front of a concave mirror of focal length
15 cm. Find the image position and the magnification.

u=+10cm

f=+15cm

Since v is negative the image is virtual. It is formed 30 cm behind the concave mirror.
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o s v
Magnification m= -—
u

m= - = 3
+10

Since m = 6% = 3or II'=3 x OO0/, it can be said that the image is 3 times the

size of the object and it s erect.

Example (6) The image of an object in a convex mirror is 4 ¢cm from the mirror. [f

the mirror has a radius of curvature of 24 cm, find the object position and the
magnification,

The image in a convex mirror is always virtual,
v =-4cm
R = -24c¢m

R =2f, f=R/2 -—-(:-2%‘1) = 12cm

1 1 1

_......+ — = ——

u v f
I 1 1
—_———_—,—
u -4 - 12
I 1 I
__=—_..+__
u 12 4
u =6cm -

I
WMo

Sincem = —Il— =2 or II'= 2 x OO/, the size of the image is 2 times the
o0 3 3 3

size of the object and the image is erect.
o
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Example (7) The image of an object in a concave mirror is erect and three times the ’

size of the object. If the mirror has a radius of curvature of 36 cm, find the position of
the object.

Size of the image = 3 X size of object
II'=3 x00"
l[_|:3
00
m=+3
N v
m,= ——
u
+3= -2
u
v=-3u
R=36om R=2f f= 2=3% - 1gcm
2 2
1 1 1 )
—_t — = =
u \ f
1 1 1
__+ o mr—
u -3u 18
2 1
3u 18
u = 12cm

The object is 12 cm from the concave mirror.
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Concept Map (Light)

( Light )

r

y

Light rays and reflection

Y

!

Light rays and refraction

A

Two laws of reflection

pplications of the
aws of reflection to
lane mirrors

Characteristics of an

image formed by a

plane mitror:

® same size as object

* upright

+ virtual

» as far behind the
mirror as the
object is in front

» laterally inverted

Dispersion of

A

Ray diagrams

Two laws of refraction

sin §

light into seven
constituent
colours by a
prism due to
different degrees
of refraction for
each colour

sin i, =

s Refractive index

sin r
{Snell’s Law)
* Critical angle, i,

n

Y

occurs when:

Total internal reflection

¢ ray of light travels
from denser to less
dense medium

o angle of' incidence in
the denser medium is
greater than the
critical angle, i,

Y

Applications:

binoculars

= periscope and

= optical fibers in
telecommunications
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EXERCISES

1.

o)
L

3.

10

L

State the laws of reflection of light.

What is the difference between real and virtual images?

A man is looking into a plane mirror on the wall which is 6 fi away from him. He
views the image of a chart which faces the mirrof and is 2 ft behind him. Find the
distance between his eyes and the image of the chart.

Draw a ray diagram to show that a vertical plane mirror need not be 5 ft long in
order that a boy 5ft tall may see a full-length image of himself in it.

In the abové‘problem, if the boy's eyés are 4 in below thé i:op of his head find the
height of the Bése, of the mirror qbove‘:. floor level.

Show that a point.object and its imagé are at equal distances from any point on the
plane mirror. |

What is meant by lateral inversion? The letter R is 5 cm in front of a plane mirror.
Draw accurately the image of R in the mirror. . |

An object is in front of a plane mirror. If the object and the mirror each recede x
from their original positions, by how much is the distance between the object and
its image'changed?l ' | '

State the similarity and differences between the virtual images formed by the
concave and convex mirrors. - ' |

By using the iaws of reflection, prove that when a ray parallel to the principal axis
is incident on a concave mirror, it passes through the focus atter reflection.
Choose the correct answer from the following.

() Only a virtual image smaller than the object is formed by a concave mirror.

(b) Only a virtual image larger than the object is formed by a convex mirtor.

(c) The statemeﬁts given in (a) and (b) are correct.

(d) The statements given in (a) and (b) are wrong.
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12.

14.

15.

16.

17.

19.

20.

Choose the correct answer from the following.
(a) Only real images are formed by a concave mirror. (b) Real and virtual images
can be formed by a concave mirror. (c) Real and virtual images can be formed by

a convex mirror.

. Choose the correct answer from the following.

When an object is at the centre of curvature of a concave mirror the magnification
i1s(a) 0.5 (b) -1.0 (c) 1.5.

A concave mirror can produce an image which is twice the size of the object.
Draw a ray diagram to show this.

An image is 6 cm from a convex mirror which has a radius of curvature of 36 1.
Find the object position and the magnification.

An image one-third the size of an object is formed by a convex mirror of focs!
length 15 cm. How far is the object from the convex mirror?

An object is 20 cm in front of a concave mirror of focal length 15 cm. How far
must the screen be placed from the centre of curvature of the concave mirror to
receive the image of the object? If the object is 2 cm tall, find the size of the

image.

. An object 5 cm tall is 15 cm in front of a concave mirror of focal length 10cm.

Can its image be received on a screen each side 9 cm long? If so, in which
position should the screen be placed?

An object is 20 ¢cm from a mirror. If the virtual image is half the size of the object,
find the radius of curvature of the mirror. |
The glancing angle of a ray incident on a plane mirror is 60°. Find the angle
between the incident ray and the new reflected ray when the plane mirror is
rotated (a) through 15° in the clockwise direction, (b) through 30° in the

antictockwise direction.
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'ELECTRICITY
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CHAPTER 10
ELECTRICITY AND MAGNETISM

STATIC ELECTRICITY

Electricity is a form of energy. Electrical energy can be transformed into other forms
of energy, such as heat energy, mechanical energy, light energy and sound energy. It
is used in domestic electrical appliances, in industries, transportation and
communication works. It is obvious that the electrical energy plays an important role
in the development of a country. In technologically advanced countries scientists are
trying to generate considerable amounts of electrical energies from the wind, from the
sea and from the sun.

10.1 ELECTRIC CHARGES

In this chapter we shall discuss electric charges at rest and forces between them.
Electric charges may be divided into static charges (charges at rest) and moving
charges or flow of charges (the current). In this chapter, we shall study only static
charges.

Positive Charge and Negative Charge

The French scientist, Du Fay, studied the nature of electric charges possessed by the
substances and found that there were only two kinds of charges. Benjamin Franklin
named them positive charge and negative charge. The positive charge is represented
by a plus sign and the negative charge by a minus sign,

Experiments show that the charge formed on the glass rod when stroked with a silk
cloth and the charge formed on the plastic rod when stroked with fur are different in
nature. The charge possessed by the glass rod is called a positive charge and the
charge possessed by the plastic rod is called a negative charge.

10.2 MATTER AND ELECTRICITY

Matter is composed of atoms which are very small in size. An atom consists of a core
called the nucleus around which the particles called electrons are moving,

An electron is a negatively charged particle. The nucleus consists of two kinds of
particles called proton and neutron. A proton is a positively charged particle and a
neutron is an uncharged particle. Therefore, the nucleus has net positive charge. The
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magnitude of positive charge of the nucleus is equal to the sum of the positive
charges of all the protons present in the nucleus.

In a normal atom the number of

electrons is always equal to the number

of protons. An electron and a proton

——— have the same magnitude of electric

.r@ _@..\ A , _ proton  Charge. Therefore, since the magnitude
', N\ N~ B&&— neuwon  of positive charge of the nucleus is equal
Iy / . to that of the total negative charge of
v\ nucleus  f é electrons electrons, a normal atom has no net
A charee. We say that a normal atom is

. .a, /
NN LY

“e o © RS elecirically neutral.

orbits of electrons

When one or more electrons are removed
‘ from an atom, the atom has more protons
Fig. 10.1 A neutral beryllium atom with 4 than electrons and hence, it carries a net
electrons, 4 protons and 4 neutrons  positive charge. When one or more
electrons are added to an atom, the atom
has more electrons than protons and
hence, it carries a net negative charge

Principle of Conservation of Electric Charge

The laws of conservation of momentum and energy have been studied in mechanics.
Like momentum and energy, electric changes are also conserved.

The principle of conservation of electric charge states that the net electric charge in
an isolated system remains constant.

The net charge is the algebraic sum of the charges present in an isolated system, This
means that the signs of the charges must be included in summing them up. Net charge
can be positive, negative or zero. '

For example, in the experiment on electrification by stroking the glass rod with a silk
cloth, the glass rod and the silk cloth together form an isolated system. No charge
flows to the surrounding from the glass rod and the silk cloth, and no charge flows
into the glass rod and the silk cloth from the surrounding either. And the net charge of
the isolated system - the glass rod and the silk cloth - remained constant. The glass
rod and the silk cloth are uncharged bodies at first; the net charge of that system is
initially zero. After stroking the glass rod with the sitk cloth the algebraic sum of the
total charge on the glass rod and that on the silk cloth must again be zero.
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Separating or bringing together charges does not affect their magnitudes so that the
net charge is unaffected. Every known physical process is found to conserve electric
charge.

10.3 CONDUCTORS AND INSULATORS

As already mentioned (sec 10.2), in an atom the negatively charged electrons are
moving round a positively charged nucleus. Some of these electrons are near the
nucleus while other electrons are further away from the nucleus. Since positive and
negative charges attract each other the electrons experience an attractive force of the
nucleus. As the attractive force is greater for the electrons closer to the nucleus, the
electrons closer to the nucleus or the inner electrons cannot move freely. This means
that the inner electrons are tightly bound by the nucleus. These electrons closer to the
nucleus are called bound electrons.

The electrons far away from the nucleus or the outer electrons experience less
attractive force of the nucleus. This means that the outer electrons are loosely bound
and are called free electrons. They can easily move from one atom to another.

The number of free electrons in a substance depends only upon the nature of that
substance. The substance which has plenty of free electrons is called a conductor and
the substance which has very few or no free electrons is called an insulator.

ouler (or valence)

The efectron theary of matter clectrons are fron
0 move aboul
elacirens azg T - :
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Fig 10.2(a) Insulator Fig 10.2(b) Conductor

Metals such as copper, brass, aluminum
and silver are conductors and substances

R :"ln:ulators are*mateﬂals that oo

cannot. conduﬂ‘«qhy

such as glass, wax, quartz, and plastic are nductors are mater.
. , free glectrons, and are
insulators. © 7 gonduct electrlcity L0
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Some substances contain a moderate amount of free electrons, Such substances are
neither conductors nor insulators. They are called semiconductors. Silicon and
germanium are widely wused semiconductors. Transistors are made from
semiconductors.

electrons flow through

negatively electrons flow throu positively the body fr
T e, om earth
char edh =3/~ the body to carth e Charged o
metaujsp ere 2N\ metal sphere ...,l_\\.\
insulating ' "\3 i W
stand —ecarth \"'—e-: arth

Fig 10.3(a) Earthing a negatively-charged Fig 10.3(b) Earthing a positively-charged
metal sphere ' metal sphere

10.4 CHARGING BY INDUCTION

Induction is the process of charging a conductor with any contact with the charging
body. _

(i) To charge two conductors with equal and opposite charges

In Fig, 10.4 (@) two metal spheres A and B supported on insulating stands are in
contact. These spheres can be considered as a single conductor. They are uncharged
spheres.

metal spheres

A B rubber rodE @@

insulator

@ (b

g 7 S 5 .-il Il BRI
© @ ©
Fig.10.4 Electrostatic induction
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(a) insulated, uncharged conductors ( two metal spheres: A and B) are in
contact

(b) charging by electrostatic induction process on A and B using a negatively
charged rubber rod: +ve and ~ ve charges are induced on A and B
respectively

(¢) A and B separated in the presence of inducing charge

(d) inducing charged removed: A and B have opposite charges (But the charges
on A and B are as close together as possible since unlike charges attract each
other.)

(¢) inducing charged removed: uniformly distributed charges on A and B

A negatively charged rubber rod is brought near the sphere A as shown in Fig. 10.4
(b). Since like charges repel the free electrons in the spheres A and B move away
from the rod and they collect at the right surface of B. Thus an excess negative charge
accumulates at the right surface of B: Since A is deficient in electrons an excess
positive charge accumulates at the left surface of A. These excess charges on the
surfaces of A and B are called induced charges. Spheres A and B, which were
originally uncharged, become charged bodies when a charged rubber rod is placed
near A. This process is called charging by induction.

Keeping the rubber rod in position, B is moved slightly from A as shown in Fig, 10.4
(c). .

N ~ \

Then the -rubber rod is removed. A becomes a positively charged sphere and B
becomes a negatively charged sphere as shown in Fig. 10.4 (d). Since unlike charges

attract each other the charges on A and B are as close together as possible,
When A and B are separated by a distance as shown in Fig 10.4 (e) the charges are

uniformly distributed on the surfaces of A and B. Although opposite charges have
been induced on A and B by the rubber rod, the magnitude of the charge on the
rubber rod remains unchanged.

(i) To charge a single conductor by induction

If a single uncharged metal sphere is to be charged by induction the steps (a) to (),
illustrated in Fig 10.5 must be carried out.
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Fig. 10.5 Charging positi‘vely by induction

(a) A conductor is held by an insulating stand.

(b) Bring a charged rod (say negatively charged) to the vicinity of the conductor.
Since the electrons in the metal sphere are repelled by the negative charge on the
rubber rod, they move towards the right surface of the sphere. An excess negative
charge accumulates at that surface.

(c) The surface is then touched momentarily by a conducting wire which is connected
to the earth. The electrons are expelled to the earth through the wire and only
positive charges remain on the sphere.

(d) When the rubber rod is removed, positive charges are uniformly distributed on the
surface of the sphere. If that sphere is touched with another sphere of the same
size and same material, charges will flow until both spheres have equal charges.

Note also that charging a singie conductor by induction will always result in a charge
that has the opposite sign to that of the charging rod.

Thus, bringing a positively charged rod to the vicinity of a single uncharged metal
sphere (a conductor) and carrying out the same steps (a) to (d) of induction, the
sphere becomes a negatively charged sphere. '
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EXERCISES

1.

When a negatively charged sphere 1s brought near a suspended body, the
suspended body is attracted to it. Is it correct to assume that the body is positively
charged?

(a) When two bodies attract each other electrically, must both of them be
charged?

(b) When two bodies repel each other electrically, rnust both of them be charged‘?
Choose the correct answer from the following.

(a) When an object contains an excess of electrons it has a positive electric charge.
(b) When an object contains a deficiency of electrons it has a positive electric
charge.

(c) Since the nuclei of the atoms in an object are positively charged it has a
positive electric charge.

(d) When the electrons of the atoms in an-object are positively charged it has a
positive electric charge.

Choose the correct answer from the following.

The magnitude of the charge of an electron is 1.6 x 10™° C. A total of 10*
electrons have been removed from an uncharged pith ball. Its charge now is

@+1.6 x 10°C (B +1.6 x 1073C.
(c)-1.6 x105C. (&) -1.6 x 1053C

In question number (5), what will be the answer if 10 electrons are added to the
uncharged pith ball? ®

State the principle of conservation of electric charge.
(@) What do you understand by a bound electron and a free electron ? (5) [s your

body a conductor or an insulator? (¢) Mention five insulators and five conductors.

187



MAGNETISM
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MAGNETISM
10.5 MATERIALS AND MAGNETS

The discovery of magnetism

About 900 years ago, the Chinese first discovered that a certain type of rock called
magnetite (or lodestone) possessed a unique property.

They found that a dish carrying a piece of lodestone would float in water in such a
way that the lodestone always settled in a North-South direction. This unique
propeity of the lodestone (literally means 'leading stone') forms the basis for the
compass which is a very important piece of equipment for navigation and exploration
both on land and at sea.  Fig. 10.6 shows a lodestone or magnetite compass used by
the Chinese while Fig. 10.7 shows a modern-day compass.

T et st

Fig. 10.6 A lodestone or magnetite Fig. 10.7 A modern-day navigation
compass used by the Chinese about compass S
900 years ago

Magnetic and non-magnetic materials

Magnetite consists of an oxide of iron. This natural magnet attracts certain materials
such as Cobalt, nickel and some alloys such as steel. We call these materials
magnetic materials. Materials such as brass, copper, wood and plastics that are not
attracted by a magnet are called non-magnetic materials.

Any material (such as magnetite) that is able to keep its magnetism for a long time is
called a permanent magnet. Modern-day permarent magnets are usually made of
steel (an alloy of iron) and special alloys such as alcomax and alnicol which contain
metals such as iron, nickel, copper, cobalt and aluminum. Another type of permanent
magnet is the ceramic magnet which is made from powders called ferrites
(compounds of iron oxide with other metal oxides). These ceramic magnets are brittle,
however.
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Properties of magnets

Besides exhibiting the property of attracting magnetic materials, all magnets also

exhibit the following properties:
1. Magnetic poles

paoles

- Most of the pins are attracted to the

two ends of the bar magnet. We cail

54

Fig.10.8 The pins show the positions of the
poles of the magnet.

2. North and South poles

woodan support (ruter or pencl)

ooton thraad

Lar magnet free 1o turn,
swings backwards and
—" knwards [}

Fig.10.9 A suspended magnet always points
exactly the same way

3. Laws of magnetic poles ‘
Like poles repel, unlike poles attract.
Electromagnet

oy o these two ends the poles of the magnet.
8T o | . |

When the bar magnet comes to

rest, one end always points

towards the northern end of the

Earth. This end of the magnet is

thus called the North-seeking
pole. Similarly, the other end of
the magnet is called the south-

seeking pole. The North-seeking

pole and South-seeking pole of
the magnet are usually referred to

as simply the North pole (N-pole)

and the South pole (S-pole) of the

magnet. A magnet can therefore

be used as a compass for

navigation.

Similarly, if a soft iron bar is placed inside the solenoid of insulated wire and a
current flow through it, the bar becomes magnetized. It is demagnetized when the
current stops. As the soft iron bar is magnetized only when the current is flowing such
a magnet is called a temporary magnet or an electromagnet.
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10.6 THE THEORY OF MAGNETISM

The mechanism of magnetism is still not fully understood. We know that substances
are made up of a large number of atoms. There are electrons which move in orbits
about the mucleus of the atom. It is believed that the movement of the electrons in the
atorns of a magnetic material make each atom a magnet. This atomic magnet is very
small and weak, However, in a magnetic material, the millions of atoms atrange
themselves in groups each with all its atomic magnets pointing a certain direction.
These groups are known as magnetic domains and each single domain is a strong
magnet.

- A flow of electrons from atom to atom constitutes a current (electricity).

- Electricity can be used to make a magnetic field.

- A wire carrying an electric current has a magnetic field around it.

- If the wire is twisted into a coil, the magnetic field inside is made stronger.

~ The field becomes many times stronger if a soft iron core is put inside the coil.
The coil and core together are called an electromagnet.

- An electromagnet can be turned on and off. This is done by controlling the
current in the coil.

- This makes the electromagnet more useful than other magnets.

- Super electromagnets are promising as a way to make electrical power. They
could be 40.000 times more powerful than ordinary magnets.

- Their coils would be made of special wires that are able to carry huge electric
currents. These wires are called "superconductors". They work only at very
low temperatures.

In the unmagnetized state [Fig.10.10 (a)] the domains all point in different directions
and their magnetic effects cancel one another. When an iron bar is placed in a current-
carrying solenoid [Fig.10.10(b)], the domains tend to align themselves until the
magnet is at its greatest possible strength [Fig.10.10 (c)]. A magnet is thus produced.
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(a) Iron bar unmagnetized (b) Iron bar partia].iy magneﬁz-ed

electric
current

all dornains point
the same way

Fig. 10.10 The domain theory of magnetism. The tiny arrows show the direction of
- magnetisation. The domains are actually much smaller than the ones
shown here. 3

A magnetised bar and an unmagnetised bar

If we take a thin piece of magnetized steel bar and cut it into three smaller pieces, we
will notice that every piece is a magnet with an N-and S-pole (Fig. 10.1 1).

| g
TIE § RS § TR .
' ' , i
- Fig.10.11 Each piece of the magnetised steel bar is a magnet - W‘

‘tiny' magnet

Therefore, it would be reasonable to imagine that if S SR

we keep on cutting each piece of the magnet into SEL.T 8
even smaller pieces, they would still be magnetized. S'\ | / N
In other words, we can suppose that the original tree’ poles

magnet was made up of lots of 'tiny' magnets all lined
up with their N-poles pointing in the same direction
(Fig. 10.12).

Fig.10.12 A magnetised bar
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In Fig. 10.12, we note that the tiny magnets at the

ends of the bar magnet splay out due to the mutual

repulsion between like poles. This explains why the T N —*!
- P /\ -4 -V

poles of the magnet are around the ends. In the case A

of an unmagnetised bar, we can imagine the tiny

magnets pointing in random directions as shown in Fig.10.13 An unmagnetised bar

Fig.10.13. The resulting magnetic effect of all the :

tiny magnets are then cancelled out and thus the steel

bar is said to be unmagnetised.

Based on this theory, we can account for the

following

1.Storage of magnets using keepers A L v
2. Magnetic saturation
3. Demagnetisation of magnets

Soft-iron keepers help the
permanent bar magnet to stay
| strongly magnetised
10.7 MAGNETIC FIELDS ‘
We have seen that a magnet affects magnetic substances placed near it. The region
around a magpet in which this magnetic effect can be detected is called a magnetic
field. ‘ :

10.8 MAGNETIC PROPERTIES OF IRON AND STEEL

The magnetic properties of iron: The magnetic properties of steel:

- easily magnetized and . - hard to magnetise and

- demagnetized. demagnetize than iron.
- Can be magnetized by a weak - requires a strong magnetic field to
magnetic field. magnetise.
Iron is used in electromagnetic, Steel is very good for making permanent
transformer cores and magnetic shields. magnets and it is used to make bar
magnets,

Fig. 10.14 shows two chains of small iron paper clips and steel pen nibs hanging from

a magnet. Each clip or nib induces magnetism in the one below it and the unlike poles

so formed attract each other. The clips or nibs are added one by one to form a chain..
The adding of the clip or nib only stops when no more clip or nib stays attached by

induced magnetism.
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Fig. 10.14 The two chains of iron clips and steel nibs

From Fig. 10.14, it can be observed that the chain formed by iron paper clips is longer
than that formed by the steel pen nibs. This shows that iron is more easily magnetised
than steel.

If the chain formed by the iron paper clips is removed by slowly pulling the topmost
clip away from the magnet, the entire chain collapses. This shows that the magnetism
induced in iron is temporary.

However, when the same is done to the chain formed by the stee! pen nibs, the chain
does not collapse but the nibs remain attracted to each other. This shows that the
magnetism induced in steel is permanent. .

Magnetic materials such as steel which are harder to magnetise but retain their
magnetism longer are called hard magnetic materials.

Magnetic materials such as iron or special alloys like mumetal and stalloy which are
easier to magnetise but do not retain their magnetism are called soft magnetic
materials.
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Fig. 10.15 Magnetic shielding to store magnetically sensitive instruments such as
watches : ‘

Both types of magnetic materials have their own useful applications. For example, the
hard magnetic materials such as steel are used in the making of permanent magnets
while soft magnetic materials (such as iron) are used in the cores of transformers,
electromagnets, and magnetic shielding (see Fig. 10.15).
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EXERCISES
Multiple Choice Questions

1. It can be confirmed that a metal bar is already magnetized if
A. a magnet is attracted to it.
B. an aluminium bar is attracted to it.
C. both ends of a compass needle are attracted to the same end of the bar
D. one end of a compass needle is repelled by one end of the bar.
2. A small compass is placed in the uniform magnetic field as shown in Fig. 10.16.

v B e
Compass

Fig.10.16
To which of the following directions will the compass needle point finally?

DO
o e

" 3. A metal bar PQ hung by a thin thread always comes to rest with end Q pointing
North. Another bar XY of the same metal settles in no definite direction. Which
of the following is true? '

A. End Q attracts end X but repels end Y,

B. End Q repels end X but attracts end Y.

C. End Q attracts both end X and end Y.

D. End Q neither attracts nor repels end X and end Y
4 \
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4. Figure 10.18 shows a strong magnet holding six papercllps If a weaker magnet

brought close to the end of the last clip as shown it w111
A. bend away from the magnet.

B. bend towards the magnet,

C. fall to the ground.

D. stay still.

k3]
Fig. 10.18.

. Which one of the following materials is most suitable for the core of an
electromagnet‘?

A. Steel

B. Brass

C. Iron

D. Aluminum

. As shown in Fig. 10.19, when the switch is closed, which of the following pairs of
poles is correci?

A. P is north and X is south.
B. P is south and X is south.
C. P is north and X is north.
D. P is south and X is north.
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tube | 1

Fig. 10.19
7. Which of the following materials is correctly described?

material property use

A. iron not easily ciemagnetised permanent magnet
B. iron easily demagnetised electré-magnet

C. steel. not easily demagnetised  electro-magnet

D. steel easily demagnetised permanent magnet

8. In which device is a permanent magnet used?
A. An electric bell
B. An electromagnet
C. A plotting compass
D. A relay
Structured Questions
1. Describe an experiment to determine the positions of the poles of a bar magnet,

2. What are the main differences in the magnetic properties of soft iron and steel ?
How would you demonstrate them, experimentally? For each substance, name an
instrument or piece of apparatus in which it is used because of its magnetic

properties.

3. Describe briefly, with the help of simple diagrams if necessary,
(a) how you would magnetize a steel rod PQ using a bar magnet so that P is a §
pole;
(b) how an electric current can be used to make P a S pole;
(c) how you would check that the end P was a S pole after operations (a) and (b);
(d) an electrical method to demagnetize P Q. ‘

4. Experiments were conducted to test the ability of a vertically held bar magnet to
attract soft iron hails. The results are shown in Fig, 10.20.
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Fig.10.20

(a) What happened to the soft iron nails when they were placed in contact with the
magnet?

(b) Suggest why the soft iron in Fig. 10.20 (b) picked up almost as many nails as
the magnet alone.

(c) State and explain what wauld happen 11 the magnet was gently removed whilst
the soft iron is still holding the 7 nails. )

(d) Although aluminium is a non-magentic material, a few nails were attracted to
it when it was placed at the end of the magnet. Suggest a reason for this.

. Give brief explanations of the following,
(a) A piece of soft iron is attracted by a magnet.

(b) A small bar manget placed on top a cork floating on watet, does not move
towards the north.

(c) Two steel needles hanging from the lower end of a vertical bar magnet do not
hang vertically (Fig. 10.21).

magnet

needles

Fig.10.2]
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Glossary

Motion, Work and Energy
Acceleration The rate of change of velocity of a body.

Acceleration due to gravity The acceleration of a freely falling body within a
gravitational field. Close to the surface of the earth its value is 10 m/s,

Centre of gravity The single point on a body at which the weighit appears to act.

Gravitational potential energy The energy stored in a body that has been raised
within the earth's gravitational field.

Gravity An 'action at a distance' force of attraction between two bodies.

Joule The unit of energy. 1 joule is the work done when a force of 1 newton moves
its point of application through a distance of 1 metre in the direction of the force.

kilowatt A unit of power equal to 1000 watts, or a rate of energy transfer of 1000
joules per second.

Kinetic energy Energy associated with the movement of a body.

Machine An appliance that-enables work to be done.
Potential energy The energy stored in a body due to its position and configuration.

Tension The state of anything that is subject to outward acting (stretching) forces.

Velocity The rate of change of displacement of a moving body (in terms of both
distance and direction) with time.

Watt The unit of power, equal to a rate of energy transfer (or work done) of 1 joule
per second.

Weight The gravitational force acting on a body.
Work The energy transferred in any system where a force causes movement. The

work done is the product of the force and the distance moved by its point of
application along the line in which the force acts.
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Force
Centrlpetal force The force that acts towards the centre of the circle in whlch a body
is movmg, which keeps the body in clrcu]ar motion.

Equilibrium The situation in which the effects of several forces cancel one another
in terms of both magnitude and direction, producing zero resultant force. The state of
a body at rest, or moving with constant velocity.

Friction A force caused by contact between two uneven moving past one another, or
between the surface of a body and the fluid in which it moves, which resists the
motion of a body.

Gravitational field strength The gravitational force exerted on a 1 kg mass placed
within any gravitational field. _ 7 -

Moment The tumning effect created by a force acting on a lever.
Momentum A property associated with the mass and velocity of 2 body.

Newton The unit of force. 1 newton is the force that givesa | kg mass an acceleration
of | m/s?,

Resultant force The effective force on a body on which several forces, of different
magnitudes, may be acting in different direction.

Pressure '
Atmospherlc pressure The pressure exerted on a body by the atmosphere, due to the
welght of the atmosphere. At the surface of the earth atmospheric pressure is 100
kNm (100 kPa)

Pascal A unit of pressure equivalent to a force of 1 newton acting on 1 m”

Pressure The force per unit area acting on a surface in such a way that it is tending to
change the dimensions of the surface.

Heat
Absolute zero The lowest temperature (-273 C) that any substance can reach. At this
temperature the molecules or atoms of the substance have no heat energy.

Boiling point The temperature at which a substance undergoes a change of state
between liquid and gas (vapour).
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Conduction (thermal) The process of transferring heat through a material without
any visible change in the motion of the particles of the material.

Convection The process of transferring heat by the movement of the fluid (liquid or
gas) through which heat is being transferred.

Convection current The continuous transfer of heat by circulation in a fluid.
Convection currents are created by changes in the density of the fluid - the warmed
fluid expands, and therefore has a lower density than the surrounding fluid. The less
dense fluid rises through the denser, cooler fluid, carrying heat with it.

Evaporation A process by which liquid molecules may become vapour molecules at
a temperature other than the boiling point.

Heat Thermal energy in the process of being transferred in, some way.

Latent heat The heat exchanged when a substance undergoes some change of state
(with no accompanying change in temperature). :

Melting point The temperature at which a substance undergoes a change of state
between solid and liquid.

Specific heat capacity The heat exchanged when 1 kg of a substance undergoes a
change of temperature of 1*C.

Specific latent heat of fusion The heat exchanged when 1 kg of a substance
undergoes a change of state between solid and liquid.

Specific latent heat of vaporisation The heat exchanged when 1 kg of a substance
undergoes a change of state between liquid and vapour.

Temperature A measure of the relative 'hotness' of bodies; it depends on the average
kinetic energy of the particles of a body.

Thermal energy Energy associated with heating effects.

Diffraction The spreading of waves as they pass by the edge of an obstacle or
through a narrow slit.

Frequency The rate at which some regular disturbance takes place. For a wave this
represents the number of complete oscillations per second.
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Hertz A unit of frequency of vibrations. I hertz is equivalent to one oscillation per
second.

Longitudinal wave An energy-carrying wave in which the movement of the particles
is in line with the direction in which the energy is being transferred.

Oscillation One complete to-and-fro motion of a vibrating object.

Transverse wave A wave in which the oscillations are at right angles to the direction
in which the wave transfers energy.

Wave equation The relation speed = frequency x wavelength which applies to all
forms of wave motion.

Wavelength The distance between two successive points on a wave that are at the
same stage of oscillation, i.e. in terms of their direction and displacement from their
mean position.

Sound

Compression The state of any object that is subject to inward-acting (squashing)
forces. Also, a region of a medium within which the particles are at above mean
.pressure, due to the passing of a sound wave.

Echo A sound that has undergone reflection.

Pitch The property of a note that determines how ‘high' or "low’ it sounds to the
listener.

-

Rarefaction A region of a medium within which the particles are at below mean
pressure, due to the passing of a sound wave, ‘

Sound energy Energy that has been transformed into an audible form.
Sound wave A longitudinal wave that transfers sound vibrations from place to place.

Ultrasound Sound waves with frequencies beyond the upper limit of human hearing.

Light
Electromagnetic spectrum A continuous arrangement that displays electromagnetic
“waves in order of increasing frequency or wavelength. '
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Electromagnetic waves Transverse waves that consist of electric and magnetic
oscillations at right angles to one another and to the direction of travel.

Internal reflection The phenomenon in which light undergoes reflection at the
boundary between two surfaces which have different optical densities.

Optical fibres Very thin strands of pure optical glass through which light undergoes
total internal reflection.

Primary light colours Red, blue, green. By mixing these colours of light any other
colour can be produced. Combining them equally produces white light.

Real image An image formed by the convergence of real rays of light and which can
be displayed on a screen. ‘

Refraction The phenomenon that occurs when a wave passes from one medium into
another, causing a change in speed, and, possibly, direction.

Secondary light colours Magenta, yellow, cyan. Produced by mixing two primary
colours,

5

Virtual image An image formed by the apparent convergence of virtual (non-real)
rays of light and which canmot be displayed on a screen.

Electricity

Alternating current (a.c.) Electric current whose direction alternates (changes) at
regular intervals.

Ammeter An instiument used to measure electric current.
ampere The unit used to measure electric current.

Capacitor A component of electronic systems which can be charged and discharged,
and which may be used to create time delays.

Conductors Materials that allow the ready transfer of heat by conduction, or of
electricity by current flow.

coulomb The unit representing the amount of charge passing any point in a circuit
when a current of 1 ampere flows past that point for | second.
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Direct current (d.c.) The flow of charge through a circuit in one direction only.
Electric charge A quantity of unbalanced (positive or negative) electricity.
Electric current The rate at which charge flows through a conductor,

Electrical energy Energy associated with the flow of charge through any part of a
conducting circuit.

Electrons Negatively charged particles found orbiting the nucleus of an atom. Also
emitted from a radioactive nucleus in beta decay.

Free electrons Electrons that are able to move freely from atom to atom within a.
material.

Tons Particles that have excess negative or positive charge.

Isotopes Forms of the same element with the same atomic number but different mass
numbers. Some elements have only one natural isotope but all have artificially
created isotopes.

Kilowatt-hour A unit used by electricity supply companies, representing the energy
dissipated in one hour by a device with a power of 1 kilowatt,

Mass number The number of particles (protons and neutrons) inside the nucleus of
an atom,

+

Neutrons Uncharged particles found in the nuclei of atoms.

ohm The unit of electrical resistance. 1 ohm is the resistance of a sample of
conducting material across which a potential difference of 1 volt causes a current of 1
ampere to flow.

Ohm's Law A relationship between the current flowing through a conductor and the
potential difference across the ends of the conductor: the curremt through a
conductor is proportional to the potential difference across the ends of that
conductor, provided the temperature of the conductor is constant.

Parallel circuit A circuit in which the current passes through two or more paths, or
loops, before rejoining,
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Protons Positively charged particles found in the nuclei of all atoms.

Resistance A property of materials which resist the flow of electric current through
them to some greater or lesser degree.

Resistivity The resistance per unit length of unit cross-section of a material.

Series circuit A circuit in which all devices are connected in one continuous loop
through which a common current flows. '

"Volt The unit of potential difference. A potential difference of 1 volt exists between
two points when | joule of work is done in transferring 1 coulomb of charge between
the two points. Alternatively, a potential difference of 1 volt exists between two
points when 1 ampere of current dissipates 1 watt of power on passing between the
two points.

Voltage The value of the potential difference between two points (e.g., the terminals
of a cell). :

Voltmeter An instrument used to measure potential difference (voltage).

Magnetism .
Electromagnet A soft iron core surrounded by a coil of wire, which acts as a magnet
when current flows through the coil.

Electromagnetic induction The generation of an induced electric current when a
conductor is moved through a magnetic field. The transfer of electrical power from
one circuit to another (as in the case of transformers).

Induced current A current that is induced in a conductor due to the relative motion
of the conductor and a magnetic field.

Magnetic field A space in which forces would act on magnetic poles placed within it.
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13.
15.

I9.
21,

15.
17.
19.

21,
23,
25,
27.

29.

31.

23.
25.

27.
29.
31.
33.

ANSWERS TO ODD-NUMBERED PROBLEMS

. Chapter 1

4047 m®

3.17 x 10%r
3.17 x 109gzr :
1.27 x 10'%
6.34 x 10'°yr
3.17 % 10%yr
No

1.88 x 10 kg
1.67 x 107 kg
Chapter 2

1 unit (north)
6.71 N

3.99 units

3.01 units
Chapter 3
Zero.

480 m

18 ms™

(a)4.8 ms™

(®)5.6 ms™

(c)6.4ms™
(d) 7.2ms!

3.2ms!
(a) 24m, 84m, 30m
(b) 8.625ms™
(¢)4.5 km
(d) 15kmh’' min?
Chapter 4
60 N

30N

20 ms™
-20ms™
7200 N
10 ms™
The body wejghtmg IN
66.67 ft s
48 1b

35,

37.
39.

41,
43.
45,
:.' 49,
51.
53.
585.
57..
59.
73,
75,
77.
s
- 17.
19,
21,

15.

17.
19.
21.
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62.5sl, 48 fi 5

The weight of the body will decrease.
The force acting on 3 M is 3 times.

. greater

0.32N,0.96 N

600 sl ﬂs"(north)

(a) 0

(b) 18. 37 10° 22 kg ms” (ea:;t)
107 ms ! The answer is absurd.

-10 ms™
25,64 fis!
10ms!
Oms"
-10ms!
2s(or)ds
(a)15N
(b)2.5N
60 kg

40N

[3g cm
11.43 cm™
(a) 1000 kg
(b) 9600 kg
Chapter 5
75° 31"
(a)600J

(b)Y 0
(a)67.5J
(b)45N
19.6 ft 5!
Chapter 6
(10" -273)°C .

(10" 273)°C -~

2727°C

=270 °C

- 40°

7.62 x 107 m
1.27 x 10%m?

10]2 nC .
010 OC



13

15.

23.
25,
27.
29.

. Chapter 7
. 20.7°C
6532 J' kg K
Chapter 8
400Hz
10.3 MHz
2,06 s
344 ms™!

15.
17.
19.

~] L Lo —
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Chapter 9

14 ft

2ft4in

9cm, 2/3

30 cm, 6 cm

40 cm

Chapter 10

Answers to Multiple Choice Questions

- HeNeRw!



APPENDIX |
Common SI base units and derived units
Quantity Base Units Symbols
Length metre m
mass kilogram kg
time second s
electric current ampere A
thermodynamic temperature kelvin K
luminous intensity candela cd
substance mole mol
Quantity Derived Units (Selected) Formula

acceleration metre per second squared ms™

area square metre m’

density kilogram per cubic metre kg m?

electric capacitance farad(F) AsV!

electric charge

-(quantity of electricity) coulomb (C) As

| energy joule (J) N m
~ force newton (N) kg. ms™

frequency ’BeX;(Hz) cycle s

magnetic flux density tesla(T) Wbm?

power " watt(W) Js!

pressure pascal (Pa) N m?

thermal conductivity watt per metre per kelvin Wm'K!

velocity metre per second ms!

work Jjoule () Nm
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SI unit prefixes, symbols and power of ten

multiple and submultiple values

Prefix

Symbol

Value as Power

Multiplication Factor

of Ten
deka da 10 10
hecto h 107 100
kilo k 10° 1000
mega M 10° [ 000 000
giga G 10° 1 000 000 000
tera T 10" 1 000 000 000 000
Value as Power o
Prefix Symbol Mulitiplication Factor
of Ten :

deci d 107 0.1

centi c 107 0.01

milli m 107 0.001

micro p 10°° 0.000 001

nano n 107 0.000 000 001

pico P 102 0.000 000 000 001
femto £ 10 0.000 000 000 000 001
atto a (o'®  0.000 000 0G0 000 000 001

Greek Alphabets

a alpha A fambda

B beta - H mu

Y gamma P rho

) delta o sigma

£ epsilon T tau

Rl eta @ phi

0 theta Q omega

K kappa
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Length
I metre (m)

1 centimetre(cm)
I kilometre(km)

Area

Il m?

el
l cm®

Yolume

Im?

1 Imperial gal

Mass
I kilogram(kg)

Velocity

lms’

| kmh™

CONVERSION FACTORS

39.4in
= 328 ft

= 0.394 in
= 0.621 mi

If

10* cm®

1.55 x 10%in?
10.76 f*
10 m?

= 0.155 in®

It

= 10°cm®
=353 8
= 6.10 x 10* in

= 1.2 US gal

= (0.0685 slug

=328 fis!
= 3.60kmh™
=224mi h!

= 0.278 ms’
= 0913 fts”

= 0.621 mih™

210

1 foot (ft)
1 inch(in) .

I mile(mi)

1 ft?

16

| US gal

1 slug (sl)
1 Ib mass

1 fis”

I mih’

60 mi b

H

0.305m
0.0833 fi
2.54 cm
1.61 km

It

929 x 107%m*

= 929 cm’

=283 x 10"m* -
= 28.3 litres "

= 7.48 gal
= 0.i34
=379 x 107 m?

14.57 kg
454 g
0.454 kg

IF

0.305 ms™
0.682 mi b
1.10kmh™

1.47 fis™
0.447 ms’!

{61 kmh™
= 88 fis”



Force

I newton(N) =0.2251b 11b = 445N
= 3.60 oz = 4.45 ><105dynes
= 10°dynes
Pressure
| pascal(Pa) = | Nm™ 1 1b in? = 6.90x 10’ Pa
= 1.45% 10 1b in™
1 atm = 1.013 x 10° Nm™
= 14.7 Ib in”
Energy '
1 joule(J) = (.738 fi-lb 1 ft-1b = 1.361]
= 2.39 x 10™kcal = 1.29x 107 Bt
= 6.24 x 10% eV = 3.25 x 10™* keal
| kilocalorie(kcal) = 41841 1 Btu = 778 fi-lb
= 3,97 Btu = 0.252 k cal
= 3077 ft-1b
i electron volt (eV) = 1.60 x 107
Power
1 watt (W) =1Js! = 0.738 ft-Ib s
] kilowatt (kW) = 1.34hp
1 horse power (hp) = 746 W = 550 ft-lbs”
Temperature
Tk = T, +273°
Te = 5/9 (Tr —32°)
Tr = 9/5 T, + 32°
Time
lday = 144x10°min = 8.64x10%s
lyear =876x10°h = 526x10°min = 3.15x10"s
Angle
| radian (rad) = 57°.18° = 57.30° 1° = 0.01745 rad
I rads’ = 9.55 rev min” | rev min-1 (rpm) = 0.1047rad s™

A
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