17.1 INTRODUCTION

For networks with two or more sources that are not in series or parallel,
the methods described in the last two chapters cannot be applied. |
Rather, such methods as mesh analysis or nodal analysis must be em-
ployed. Since these methods were discussed in detail for dc circuits in ]
Chapter 8, this chapter will consider the variations required to apply
these methods to ac circuits. |

The branch-current method will not be discussed again, since it falls ]
within the framework of mesh analysis. In addition to the methods men- ]
tioned above, the bridge network and A-Y, Y-A conversions will also be |
discussed for ac circuits. R

Before we examine these topics, however, we must consider the sub-
ject of independent and controlled sources.

— —— — o

17.2 INDEPENDENT VERSUS DEPENDENT
(CONTROLLED) SOURCES

In the previous chapters, each source appearing in the analysis of dc or
ac networks was an independent source such as E and I (or E andI) in

Fig. 17.1. |

FIG. 17.1
Independent SOUTCes.

s of dc or




A dependent or controlled source is one whose magnitude i
determined (or controlled) by a current or voltage of the System
which it appears. *r "

There are currently two symbols used for cont olled sources, O
simply uses the independent symbol with an indication of the control
ling element. as shown in Fig. 17.2. In Fig. 17.2(a). the m eni

(a) (b)

FIG. 17.2
Conirolled or dependent sources.

phase of the voltage are controlled by a voltage V elsewhere in the
System with the magnitude further controlled by the constant ki.-Inhg
17.2(b). the magnitude and phase of the current source are controlled by
a current I elsewhere in the system with the magnitude further con-
trolled by the constant k,. To distinguish between the dependent and
independent sources, the notation of Fig. 17.3 was introduced. In recent
years a number of respected publications on circuit analysis have ac-
cepied the notation of Fig. 17.3, although a number of excellent put o
tons in the area of electronics continue to use the symbol of Fig. 172,
especially in the circuit modeling for a variety of electronic devices Su |
as the transistor and FET. This text will use both with an'Eﬂ'ﬂti
using the symbol most commeonly applied to the area of investi f*
and 1o ensure that when the student encounters either symbol. he or she
will be aware of its characteristics. .




¢ combinations for controlled sources m m -

| nd o Ly 9
Icated n Fig,

-

possible €O . i
4. Note that the maﬂﬂituﬂ! of cmMﬁt smilmﬁﬂ Or Vol f'g

Y L . P ™ 11 === = .
¢ SOUrces can
e . &4

L ..

7 onolled by a voltage and a current, respectively. Unlike with the

ependent source, isolation such that V or I = 0 in Fig, 17.4(a) wili
. i g i

indep . AR
l' the short-circuit or open-circuit equivalent as indicated in Fig -

fesll]t i

"]7,4(13)- Note that the type of representation under these conditions is

con'troned by whether it is a current source or a voltage source, not by

e controlling agent (V or 1),

FIG. 17.4
Conditions of V=0V and I = 0A for a controlled source.

173 SOURCE CONVERSIONS
it may be necessary 10

When applying the methods to be discussed, P ISERSREY:
convert a current source to a voltage s or a voltage source (0 4




FIG. 17.6

Solution:

E 100V £0°

T Z 50 253.13°

=20A £-53.13°  [Fig. 17.6(b)]

|

— Pt

EXAMPLE 17.2 Convert the current source of Fig. 17.7(a) to a voltage
source.

I =10A £ 60°

FIG. 17.7

Solution:



(40 2906 Q £90° 240 £0°

-j4Q+jeQ T 2z
S 120 -9 [Fig 17.7()

E =1Z = (10 A 260912 Q 2 —90°)

~ 120V £=30°  [Fig. 17.7(b)]

_

i

g

For dependent sources, the direct con*verssion of Fig, 17.5 can be

lied if the controlling variable (V or I in Fig. 17.4) 1s not determined

PP of the network to which the conversion is to be applied. For

Figs. 17.8 and 17.9, V and 1, respectively, are controlled by

+ernal portion of the network. Conversions of the other kind, where

i?e;d I are controlled by a portion of the network to be converted, will
a

be considered 10 Sections 18.3 and 18.4.

FIG. 17.9

7.8(a)toa current

g,
EXAMPLE 17.3 Convert the voltage source of F1g
source,

EXAMPLE 17.4 Convert
Source,

Solution:
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17.4 MESH ANALYSIS

General Approach ~ 10T

Before examining the application of the method to ae ner.. .

student should first review the appropriate sections on mesh anape
d to the genorni

Chapter 8, since the content of this section will be limit,
conclusions of Chapter 8.

The general approach to mesh analysis includes the same see
steps appearing in Chapter 8. In fact, throughout this mﬁm EE--
change from the dc coverage will be to substitute impedance for
tance and admittance for conductance in the general procedyre

e of

1. Assign a distinct current in the clockwise direction to eqch
independent closed loop of the network. It is not absolutely
necessary to choose the clockwise direction for each loop
current. In fact, any direction can be chosen for each loop
current with no loss in accuracy as long as the remaining
steps are followed properly.

2. Indicate the polarities within each loop for each impedance
as determined by the assumed direction of loop current for
that loop.

3. Apply Kirchhoff’s voltage law around each closed loop in the
clockwise direction. Again, the clockwise direction was
chosen to establish uniformity and prepare us for the format i
approach to follow.

a. If an impedance has two or more assumed currents
through it, the total current through the impedance is the
assumed current of the loop in which Kirchhoff’s voltage
law is being applied, plus the assumed currents of the
other loops passing through in the same direction, minus
the assumed currents through in the opposite direction.

b. The polarity of a voltage source is unaffected by the
direction of the assigned loop currents.

4. Solve the resulting simultaneous linear equations for the
assumed loop currents.

The technique is applied as above for all networks with indepe vd- '
sources or networks with dependent sources where the contmm =
able is not a part of the network under investigation. If the COREEEC=
variable is part of the network being examined, additional care MUSt®
taken when applying the above steps.

EXAMPLE 17.5 Using the general approach to mesh analysis:
current I, in Fig. 17.10.

Solution: When applying these methods to ac circuits, 1t

Jhinalives

practice to represent the resistors and reactances (or COMEFe .

thereof ) by subscripted impedances. When the total solution e -'-h.:

terms of these subscripted impedances, the numerical Valte® =
substituted to find the unknown quantities. B




FIG. 17.10

7, = +jX; = +j20) E, =2V 20°
Z2=R=4ﬂ E2=6V[_0°'
Zy = —JXc = —j10

Steps 1 and 2 are as indicated in Fig. 17.11.

Step 3:
+E1 —_ IIZI = Zz(ll e 12) =)

~Z,(L-1L)-LZ; —E;, =0

E1 o Il_Zl " 11'Z2 + 12Z2 = ()
—LZ, + Lz, — LZ;,—E; =0

Or

so that II(ZI =1 Zz) — 12Z2 = El
1(Zy + Z3) — 112y = —

which are rewritten as

1(Z, + Z) — L, = E;
—1 Z2 + 12(Z2 + Z3) i -Ez

Step 4: Using determinants, we obtain
E; '-ZZ
""'Ez Z2 + Z3
I — —_—— |

: Zl =+ Zz ""Z2
""‘Zz Z2 + Z3 ”
EI(Z2 + Z3) — EZ(ZZ)

(Zl e Zz)(ZZ t Zg) = (Zz)z

ZIZZ %+ ZIZ3 = Z2Z3

Substitllting numerical values yields
2V - 6V)4Q) + 2V

F20E 0+ (+2 2D + @ )= r

=16 =~ j2 —16 ]2

—_— — :

The network 18 redrawn in Fig. 17.11 with subscripted impedances:

FIG. 17.11

m K




The format appmac’h was introduced in Section 8.9,
ing this method are repeated here with cha ;;;3'1 s for

1. Assign a loop current to each mdep lose
the previous section) in a clockwise di -. -

2. The number of required equations is equa numbe
chosen independent closed loops. Cﬂlumn 1 qf . sy
is formed by simply summing the impedance values “
impedances through which the loth current of inter I"'
and mulfiplying the result by that loop current. -

3. We must now consider the mutual terms that are ﬂﬁmﬁ
subtracted from the terms in the first column. It is possible
to have more than one mutual term if the loop current of
interest has an element in common with more than one other
loop current. Each mutual term is the product of the mutual
impedance and the other loop current passing through the
same element.

4. The column to the right of the equality sign is the algebraic
sum of the voltage sources through which the loop current
of interest passes. Positive signs are assigned to those sources
of voltage having a polarity such that the loop current passes
from the negative to the positive terminal. A negative sign is
assigned to those potentials for which the reverse is true.

5. Solve resulting simultaneous equations for the desired loop

currents.

N

The technique is applied as above for all networks with independ
sources or networks with dependent sources where the controlling vari-

able is not a part of the network under investigation. If the controlling
variable is part of the network being examined, additional care must be

taken when applying the above steps.

EXAMPLE 17.6 Using the format approach to mesh analysis, fi
current I, in Fig. 17.12.



-Soluﬁ"": The network 1s redrawn in Fig. 17.13:

Z1==R1+jXLl=lﬂ.+j20. E, =8V 220°
Zl:RZ_jXC:‘q'Q—jSQ E, =10V 20°

e reduction in complexity of the problem with the substitution of
0

Note th
scripted impedances.

the sub
Spep 1 15 @S indicated in Fig. 17.13.

Steps 2 to 4:
FIG. 17.13

1(Z, +Z,) —LZ,=E; + E;
L(Z, + Z3) — 11Z; = ~E;

which are rewritten as

Il(Zl =+ ZZ) i IzZ:;_ — El 4+ ]?‘_:'2
jllZZ + I(Zy + Z3) = —E,

Step 5: UsIng determinants, we have

Z] + Zz E1 +- E2
[ o —ZL, —E,
Z] + Z?_ _ZZ

'_'Zz Z2 =1 Z3

_ (Zy + L)Ey + Zo(By + Ey)
(Zy + L)L T 7:) — L5

| —LE, + LE

= 7.2, + 111z + Lols

Substituting numerical values yields
_1Q+j2oV LT 4 Q — j8

b= Ha+200@0-j8M 1Q+j2H6D T
(10 +j20) + (4~ i8)(7.52 +j214)

20 + (j6 — 12) + (j24 +48)

(10 +j20) + (520 — 74920) _ -

56 + j 30

=127 A £ —86.92°

gV £20°) e
@ Q- j8 (o )

EXAMPLE 17.7 Write the
17.14. Do not solve.

drawn in F1g. 1 ' |
: use of subscripted 1M-

Solution: The network 1S T€
d clarity DY

duced complexity and increase

pedanceS:
Z4 = RS - JX &)

Z'l - Rl "-j}(l,l
Zs = Ra

Z, = R> +jXL2
Z, = jXc,



FIG. 17.15

q
|

X
N S and Il(Zl + Zz) Iszz E1
| 1(Z, +Zy +Zy) — L, Z, — LZy =0
R, XL, I(Zy +Zs) —LZ, =K
)O( -
or II(ZI =t Zz) = Iz(Zg) + 0 ) #.-
¥ = - (Z) Lz +Zy+Zo ¥ Igcz4 N
- + — |
= EXAMPLE 17.8 Using the _f_.or:mat approach, write the o
FIG. 17.16 for the network of Fig. 17.16.

Solution: The network is redrawn as shown in Fig. 17.17 , wh
Z, =Ry +jX, = Z3=jX ]

Z, = R; Z, = jXi,

L(Z, + Z; + Z3) — IlZ2 s = ﬁF
I:(Z3 + Zy) — LZs — ILZ4 =E

or

Note the symmetry about th@-dlag@m; xis. |
of =Zy, —Z,, and —Z; off the diagonal.




175 NODAL ANALYSIS

general Approach

fore examining the application of the n
. he method to ac ,

quent should first SERCH SRR sectic?r?s? 4 Tietworks, the

Chapter 8. SINCE the content of this section will be 1i n nodal analysis in

The rundamental steps are the following:

1. Determine the number of nodes within the network
3, Pick @ reference node and label each remaining :u;de ith
with a

gubscripted value of voltage: V,, V,, and so on
¢ a direction of current for each branch.

3, Assum
Kirchhoff’s current law at each node except the

4. Apply
reference.
5. Solve the

A few examples will refresh your memory about the content of
Chapter 8 and the general approach to a nodal analysis solution

resulting equations for the nodal voltages

EXAMPLE 17.9 Determine the nodal voltages for the network of Fig
17.18. |

FIG. 17.18

ik of Fig. 17.19-

smytion.- Choosing nodes, defining the impedan
(arbitrary) the current directions will result in the netwe




- 1. 1 _'L.l -
= ANIAL 'ru'\\ \ 1 .I-' N ' ‘*"fl
AN A sm‘ w_l”h-.: 1 ﬁ T ” L:

At node 1:
Substituting:

Rearranging:

-
o443 -

At node 2:

Substituting: V.-V,

Rearranging:

Lo 31 el
Z, Z, Z; 05kQ jl0kQ 2kQ
1 1 1

—=—+

and ";.:'.

l:| -_] h_‘- L 1 ,

V,[2.5 mS £-2.29°] — V,[0.5mS £0°] o "H
V.[0.5 mS £07] — V,[0.539 mS L21 BO°] = &

e
— ]
— -

with

. 24 mA 2£0° —OS mS LO‘? _ l .
Vv | 4 mA £0° —0.539 mS £21.80°
' |25 mS £-229°  —05mS 20° |

05mS 20°  —0.539 mS £21.80° L
(24 mA £0°)(—0.539 mS £21.80°) + 05
" (2.5mS £—2.29°)(—0.539 mS £21.80°) nS LU0
—12.94 X 107V £21.80° + 2 X 1@*‘“
~1.348 x 107° £19.51° + 0.25 X M
- —(12.01 + j4.81) X 107°V + 2 wﬁ
—=(1.271 4 j0.45) X 107° + 0.25 x ....,.
—~10.01 V - j4.81 1106 V £ - ‘
~1.021 - j0.4S .m | w / —156.21°
V=995V 188
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SimilﬂI‘Y*
V;_ = 1.828V /. —12.49°

/

mat Approach

s close exawﬂna;ion of Egs. (17.1) and (17.2) in Example 17.9 will
.re the same equations that would have been obtained

eveal that they
approach introduced 1n Chapter 8. Recall that the ap-

gsing e
that the voltage source first be converted to a current
quations was quite direct and minimized

es of an error due to a lost sign or missing term.
required to apply the format approach is the

For

and chanc
The sequence of steps

following:

1. Choose @ reference n
label to the (N — I)r

network.
) The number of equations required for a complete solution is

equal to the number of subscripted voltages (N — 1). Column

| of each equation 1s formed by summing the admittances
tied to the node of interest and multiplying the result by that

subscripted nodal yoltage.
3 The mutual terms are always subtracted from the terms of
¢ more than one mutual

the first column. It is possible to hav
lement in

term if the nodal voltage of interest has an e
common with more than one other nodal voltage. Each

mutual term is the product of the mutual admittance and the

other nodal voltage tied 10 that admittance. .
4 The column to the right of the equality Sign is the algebraic

sum of the current sources tied 10 the node of interest. A
current source is assigned @ positive SIgN if it supplies
current to a node, and @ negative Sign if it draws curt ent

from the node. :
5. Solve resulting simultaneous equations for the desired nOflal
voltages. The comments offered for mesh analysts regarding
independent and dependent sources apply hereé also.

ode and assign a subscripted voltage
emaining independent nodes of the

EXAMPLE 17.10 Using nodal analysis

4-() resistor in Fig. 17.20




|
- =

Solution: Choosmg nodes (Fig. 17.21) ﬁﬁﬂ

| tions, we have g T
: Z,=R=4Q Z,=jX; =J5n Z = ""‘._ i3

— i —

= Reference

FIG. 17.21

Vi(Y, + Y,) = Vi(Y,) = -1,
Vao(Y3 + Y;) — - Vi(Yy) = +1,

or Vi(Y; + Yo) — V(Yy) = -],
—Vi(Yy) +V(Y3+Y,)= +th

Yi=— Yo=— Yj=—

Using determinants yields

- -Y,

tL Y5+ Y,

Yo PG ¥ |
"—Yﬁ Ys T Yz

V1=

(Yl + Yz)(Y 3 + Yzj' |
_ (YL + Ikﬁ& -
Y1Y3 I Y3Y3 "I" YlTﬁ K
Substituting numerical values, we have L3

—[(1/=j2Q) + (1jSQI6 A L0°+4A L
(1/4 Q)(1/—j2 Q) + (145 Q)(1/—j2 Q) + (M ) (1l
_ —(+j05—j0.2)6 £0° + 4 £0°(—j02)
- (1/—j8) + (1/10) + (1/j20) -
_ (=03 £90°)(6 £0°) + (4 £0°)(02 £—909)
ll ~ j0125+0.1-j005
i —1.8 £90° + 0.8 £—90°
|

U=

. 0.1 +;0.075
\ 26V £L-90°
0125 £36.87°
= 2080V 2~ —-126.87°
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.,-""A MPLE 17.1 1 Write the nodal equations for the network of Fig.
E_’ ». In this case, voltage source appears in the network. Do not

o b - I, = 10A £ 20°

FIG. 17.22

Solution: The circuit 18 redrawn in Fig. 17.23, where

7 =R +jX, =7Q+j8Q E =20V
7 — R+ X, =4Q+j5Q L =10A20
7.= —jXc=—j10Q

7.=R; =80

FIG. 17.23

Coanverting the voltage source 10 3 current sQUIte
"2 obtain Fig. 17.24. Note the “"neat Wm
22 subscripted impedances. Working

vy

&ificult and may produce errors.




which are rewritten as
Vi(Y; + Y, + Y;3) 3 Vz(_Ys)' =
—Vy(Y3) +Va(Ys + Yy) = +1,
1 . I
i /= — Y = -
x 78 + j8 () L 40+j50
I 1
=00 ‘T80
i L I, =10 A 220°
> 70 +;8Q L=
' | EXAMPLE 17.12 Write the nodal equations for the Md
17.25. Do not solve.
e

-_

FIG. 17.25

Solution: Choose nodes (Fig. 17.26):

2= Ry Z,=jX, Z,=R —iXc
Z,= —jXc Zs = R; Zs = jXi, 4

and write nodal equations:

Vi(Y, +Yy) — Vg(Yz)’ﬂ'“ “_ iy R
VZ(YZ ;= Y3 -+ Y4) — VI(Yz) VS":‘;_E“ = —-1‘1"1
Vi(Ys + Y5 + Ye) — Vo(Ya) = +2




FIG. 17.26
which are rewritien as
V(Y + ¥ ValYa) +0 .
V|(Yl) 4 VJY«,. +- Y: "*'Ya). :ﬁv“l(_’_yt'l) — __]2
Y, = - V= Yy=——
R 2=, Ram X
Y ' Y. = _L Y, = __]_._
. | ]){(l ° Rf” = }X{ﬁ

Note the symmetry aboul the diagonal for this example and those

preceding it in this section.

— e
nodal analysis to the network of Fig. 17.27.

“"'d-l---_._-.‘
o————

—
e

EXAMPLE 17.13 Apply
Determine the voltage V.

v‘=

™ 'l':—-.'fﬁ --_
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Solution: In this case there is no need for a source conversjo
v, network is redrawn in Fig. 17.28 with the chosen node yojp. ™
subscripted impedances. 428 anq

Apply the format approach:
1 ]
= e = (.25 ° — o
Y, Z 1kQ mS £0° = G, 20
|
| Y = —— = 1 S L ° = 0
| - - 1 k() e G2 £0
il
1| FIG. 17.28 1 |
Y; = =15 —Q()°
YT 7. 2kQ 290° L =40
IQ = —j0.5mS = —jB,
f Vi:i(Y; + Y, + Y)YV, = —1001
| . v —loor
? - 'Y, Y
i - ~1001
i 0.25mS + 1 mS — j0.5 mS

~ =100 X 10°T =100 x 10°1
1.25—j0.5  1.3463 £ —21.80°
—74.28 x 1031 £21.80°

—74.28 X 103( : ) /21.80°
1 kO

| V,=V,=—(74.28V,) V £21.80°
Vee EXAMPLE 17.14 The transistor configuration of Fig. 17.29 will ;_'_L.
+ in a network very similar in appearance to Fig. 17.30 when the ansistor
RV, equivalent circuits are substituted. The quantities 8, and B, are the

amplification factors of the transistors. Determine V for the network dﬁ
Fig. 17.30. In this case, both of the controlling variables Illandmigﬁ
part of the network to be analyzed. Care must be exercised when apply-

¥ @ ing the method.
:
Vi

FIG. 17.29 + .
Vi @ S RV
FIG. 17.30

Solution: The network is redrawn in Fig. 17.31 afte ‘fgﬂ analysiS

input voltage source to a current source. Before applying 1°




qote in Fig. 17.30 that

L+AL=5 (Kirchhoff's current law)
and L = (B, + DI,
Also recognize from Fig. 17.30 that

- V;—V,
R,

L

or V, + LR, =V,

Applying nodal analysis to node 1:

1 1 V.
V][_+ ] =—+ B,

R,

V[l +—1—]—BI—-V"
IR] R2 S Rl

R 1 R?-

Applying nodal analysis to node 2:

Vz[;}:] = — Bl — Balz

Substituting I, = (B; + 1)I; from above.

;;2 = —BiL; — BBy + DI = —[B; + B2AB1 T L
L

V2=V, = —[B, + BaBi + DR

;Ve Now need an expression for I, in terms of V.. Re
°18 from above, we have

writing two equa-

vV, +LR =V,

_J R, R> M

E——




b

|
. |
m__ ' m
I I o S
f.;,"ffg;';"i;}if'_-‘i_.gx'i ete mm ‘F tﬂmmp
el =l | B

[y, T
3 Rl Rz'_ - Rl Rg

—
| —

Vt

¥ 1 I) Rl Ny
— 4+ — R, + +1)+L Rit(g 4y
(-t )R8 B+ 5

Substituting above:
= —[B; + BB + DILR,

ViR,
. ——

y [B1 + BBy + DR,
() | . ul = %K.
f" e Ve R, + (B, + )R, Vi

-I =i Since B; is usually much greater than 1. pr+1= B

= —[B1 + BB + 1)]

(Bl + BZBI)RL B[(ﬂz g7 l)RL
d = V,= -
an VL R] n Ble f R] + B]Rz v{

But B8, is usually much greater than 1, so B, + | = B,. Therefore,

vV, = BiB2R;
=
R; + BiR;

For most applications B;R, = R, and

[ i ‘R R
] | V= BiBeRey B

v,

B1R> R,

| | which is certainly less complex than the original solution for V,.
. For the typical values of B8, = 100, R, = 2 k) and R, = 1 k{}

- 1 kO -

i 17.6 BRIDGE NETWORKS (ac) ;
| The basic bridge configuration was discussedm Y il in S

considering those that have reacti
voltage or current applied. K
using mesh analysis and nodal ana ySis (ﬂm for 1 1) 2
ance condltlﬂns wﬂl be mvestr,gated hroughout t

redrawn in Fig 17 33 where

FIG. 17.32
Maxwell bridge.



Apply the format approach:

(Zl + ZB“I . m (zl)lz - (23)13 =K
(Zl T Z.'..‘ + ZS)IZ — (Zl)ll — (Zl;)lz - 0
(Zy + Ly + L)1y — (Z3)], - (Z)1; =0

which are rewritten as

1(Z, + Z3) — L4, - IZZ;4 = K
_llzl - l:(zl + Z: -+ zt;) — 1325 — 0
| ~-1,Z; — LLZs - + 13(Zy + Zy + Zs_) x 0

' Note the symmetry about the diagonal of the above equations. For
E - balance, Iz, = 0 A, and

17 =I:"l1=0

‘4

. From the above equations,

I Z| -+ Z_:\ E _Z_l
-Z, 0 —Lis

o A () (Ziy + Lo+ Zs)
) [, = ' i
oy : Z] . Z} _Z| _-Z.‘
—Zl (Zl + Z:p - Zq) __'Zﬁ

AR *--Z,, (11 - Z.;. + Z'ﬁ)

> E(.ZIZ:,. +- led + Z[Zgg j Z%Z'\)

' A
Where A signifies the determinant of the denominator (or coefficients).
Similarly N
l‘:(ZIZ; T Z]Z" + 'leu.j %_‘.Lj)_ I
[q == e —————————————
A A
nd F(le,; - r_a_;_lnl
e L, =1, = Iy =
- - . A "

o g e o fin al to

For Iz, = 0, the following must be catisfied (for a finite & not eqh .
“er0);

e | (17.3

[ 2 2y = Lyls; g, = U —

or in this section,

hiy condition will be analyzed in greater depth
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FIG. 17.34
Hay bridge.

FIG. 17.35

-THODS OF ANALYSIS AND SELECTED TOPICS (ac)

Applying nodal analysis to the network of Fig. 1734 .
the configuration of Fig. 17.35, where 1 regyy, .

1 1 1 |
b g gaee = Y2'=‘-—=--_---L
Z, Ry —JXc Z, R,
1 1 1 1 _
—_— —= Y = — — -~ 1
Y3 Z3 R3 i Z4 R4 +jXL YS — "‘I"é';-
and (YI - Yz)vl — (Y[)Vz — (Y:.,')V'3 - I

(Y, +Ys+ Ys)Vo = (Y)V, — (Y5)V, =g
(Yo + Yy +Ys5)V; — (Y)V, — (Ys5)V, =

) r
which are rewritten as i
Vi(Y, + Yy) — VLY, — V3Y, .
—V]Y] 4= Vz(Yl o Y3 5 YS) — V3Y5 =0
—V,Y; — V) Y5 + V3(Y; + Y, + Y=

__-__h_ .

Again, note the symmetry about the diagonal axis. For

balaﬂce, i .{ i
st =0V, and |

Yl == Y2 | | '—Y2 o
—Y, 0 —-Y;
.._Y 4 1
V2 — 2 0 (Y2 Y4 =k Y5) wm’m
Yl T Y2 _YI _YE
—Yl (YI + Y3 S Ys) —YS
—Y?‘ —YS (Y2 = Y4 + Ys) ﬂ .
— I(Y1Y3 + Y]Y4 + Y1Y5 + Y3Y5) . B

A
Similarly,

v. - 1YL Y5 + Y3Y, + Y, Y5 + Y5Y5)
3
A

Note the similarities between the above equations and those'omiw'
for mesh analysis. Then

=i I(Y1Y4 — Y3Y2)
5 A -
= 0, the following must be satisfied for a finite A not e4%==

For st
Zero:

However, subgt

ity = ‘ — 1/7. Y. = 1/Z: ’I. LIILJ
1/Z4: we haVe g Yl I/Zl: YZ 1’22. Yﬂ llzg@-”

_1 o
22, 7.z,



- et us now investigate the balance criteria in more detail by consic

ing the network of Fig. 17.36, where it is specified that I, V = 0.

and I LZ,=1LZ, | (17.5d)

Substituting the preceding current relations into Eq. (17.5d), we have

LZ, =14,
Z;

and Ig = ill

Substituting this relationship for L, into Eq. (17.5¢) yields

Z-
12, - (F1)2

and le_q, p—— Zng,

4 obtained earlier. Rearranging, we have

Z

(17.6)
Z;

“0mesponding with Eq. (8.4) for dc resistive networks.
For the network of Fig. 17.34, which is referred to as a Hay bridge
When Ls is replaced by a sensitive galvanometer,
Z, =R, — JXc
Z-, = R>
Z; = R;
Zs = Ry + jX,

- This particular network is used for measuring the res:istance and 1n-
iClance of coils in which the resistance is a small fraction of the reac-

Wnce
Substitute into Eq. (17.6) in the following form:
1,1, = Z,Z,
R;R; = (Ry + JX(R; — JX¢)




so that

R:R; +j0 = (RiRs + Xc X)) +f(R1Ig. - RyX,)

In order for the equations to be equal, the reafw M
must be equal. Therefore, for a balanced Hay bridge, '

4 1
! il I or substituting X; =owL and Xpc = ——
i wC
i
h . xx—(i)(mz,)—-—’:
1H we nave CAL wC/ C
! | L
|r|- alld R2R3 =R1R4+E
ft ith R
e WL —
% si W1 1 wC
il Solving for R, in the last equation yields
il R'4 = (DzLCRl
| and substituting into the previous equation, we have

L
R,R; = R (w’LCR,) + 2

Multiply through by C and factor:
CR2R3 — L(&)ZCZR% + 1)

Equations (17.7) and (17.8) are the balance conditions 10 " ...
hriiee. Maieiis - lsf['equency Jepende. B Aifferent frequet™T
the resistive and capacitive elementé must
achieve balance. For a coil placed in the H .
17.35, the resistance and mductam;e of ﬂﬂ ﬂ can.

Egs. (17.8a) and (17.8b) when balance i&




ge of Fig. 17 32 is referred to as a Maxwell .
’by o sensitive galvanometer. This setu Vprp
m asurements when the resistance of the coil is lafge emough not

a H&y bndge b
uon of Eq. (17.6) will yield the following results for the in-

ductance and resistance of the inserted coil:

(17.9)

(17.10)

of these equations is quite similar to that employed for

The derivation
Keep in mind that the real and imaginary parts must be

the Hay bridge.

equal.
One remaining popular bridge is the capacitance comparison bridge

ofFig. 17.37. An unknown capacitance and its associated resistance can
he determined using this bridge. Application of Eq. (17.6) will yield the

following results:

the chapter.

177 A-Y, Y-A CONVERSIONS
The A-Y, Y-A (or 7T, T-mr as defined in Secti

on 8.12) conversions for

ac circuits will not be derived here since the development corresponds

exactly with that for de circuits. Taking the A-Y configuration shown in
Fig. 17.38, we find the general equations for the impedances of the Y in

erms of those for the A:

(17.13)

(17.14)

FIG. 17.37
Capacitance comparison bridge.

FIG. 17.38
A-Y configuration.




ED TOPICS (ac)

edances of ﬂIlG A in terms of ﬂmse f@f m.w

-----

Zs

Note that each impedance of the Y is equal to the product of the
impedances in the two closest branches of the A, divided by the
sum of the impedances in the A.

Further, the value of each impedance of the A is equal to the sum
of the possible product combinations of the impedances of the Y,
divided by the impedances of the Y farthest from the impedance to
be determined.

Drawn in different forms (Fig. 17.39), they are also referred to as the
T and 7 configurations.

FIG. 17.39

In the study of dc networks, we found that if all of the resistors Ofﬂ;
A or Y were the same, the conversion from one to the other could
accomplished using the equation

For ac networks,

Be careful when using this simplified form. l’ti;ﬁﬁﬂ‘é ““m”j The an le
_1mpedances of the A or Y to be Df the same magnitude: -

oy
_H"



A MPLE 17.15 Find the total impedance Z; of the ne'twafk 6f Fig.
7.40.

FIG. 17.40

E Solution:
0 Zg= —j4 Ly = —j4 Zc=3+j4
7, = Tl _ (—j4 Q)3 Q + j4 Q)
he 7. +Zp+Zc (—j4Q)+(—j4D) + 3B O +j4L)
(4£4-90°)(5 £53.13°) _ 20 £—36.87 |
3 —j4 5 ,.-53.13°
¥ =40 £16.13° =384 Q + j1.11 Q)
7, - VA _ (/43 Q0+ j4Q)
! 7y +Zg+ Ze 5Q £—53.13°
> . =40 /1613°=384Q +j1.110

Recall from the study of dc circuits that ‘f two branches of the Y or A
were the same, the corresponding A or Y, respectively, would also have

two similar branches. In this example, Z, = Zgp. Therefore, Z; = Zo,
and

7 = 1,715 (—j4 Q)(—j4 ()
7.+ 2, + Lo 5Q/—53.1%

e =320 /—126.87° = —1.92(} —j2.56 {2
5 £—53.,13°
Replace the A by the Y (Fig. 17.41):
Z,=3840+;1119 Z,=384Q+ 1118
Z;=-1920Q —j2.56 £} Z,=2() Zs =31
Impedances 7. and Z, are in series:
Ly =7,+12,=384Q+j1.11Q+20Q
=594 £10.76°
Impedances Z, and Zs are in series:

Ly =7, +2,=3840Q +j1.110+30=6840+j%
= 6.93 () £.9.22°

_ 5840 +j1.11Q

11 £



- ET ﬁJﬂ.ﬂ ﬂﬂh m m m‘lq;l!u.':‘ "-l' P I
zr,n"ar=l __ 6 940 £10.76° (6.93 ; el
Ty = ZT -I-Z-rz' 5.84 Q) +11Mﬂ+ﬁﬁﬂ? I|"'3L|r
41160 £19.98° _ 41169 £1998° n

= Tl268 +7222 12872993 1980 1o

=3.15Q + j0.56 )
Impedances Z; and Zy, are in series. Therefore,

Zr=1Ts+Zr=—-192Q- /2560 +3.150 + 056 )
= 1230 -j200 =2350 £ -5841°

:'“*

-

—— e e
EXAMPLE 17.16 Using both the A-Y and Y-A transformations, fing
the total impedance Z; for the network of Fig. 17.42. ’




 ter point d " of the transformed A will be the sa
- fthe original Y: .

10+j20
ZT=2( 2J )=1n+j20

Using the Y-A transformation (F1g. 17.45), we obtain
Za=3ZY=3(IQ+j20)=3Q+j6Q

Each resulfing paralle] combination in Fig. 17.46 will have (e follow-

i )
"€ impedance:

Zl




18

- Network Theorems (ac)

18.1 INTRODUCTION

This chapter will parallel Chapter 9, which dealt with network theorems
s applied to dc networks. It would be time well spent to review each
meorem in Chapter 9 before beginning this chapter, as many of the
comments offered there will not be repeated.

Due to the need for developing confidence in the application of the
various theorems to networks with controlled (dependent) sources, some
wctions have been divided into two parts: independent sources and
dependent sources.

Theorems to be considered in detail include the superposition theo-
rem. Thevenin and Norton theorems, and the maximum power theorem.
The substitution and reciprocity theorems and Millman's theorem are
not discussed in detail here. since a review of Chapter 0 will enable you
o apply them to sinusoidal ac networks with little difficulty.

182 SUPERPOSITION THEOREM

You will recall from Chapter 9 that the superposition theorem elimi-

nated the need for solving simultaneous linear equations by considering
To consider the effects of each

This was accom-

hort-circuit representation)
ntation). The current
produced by each

to find the total solution for the

the effects of each source independently.
SD}lrce. we had to remove the remaining SOUICES.
Plished by setting voltage sources 10 Zero (S
and current sources to zero (open-circuit T€pPrese
hrough, or voltage across, a portion of the network

‘Ource was then added algebraically

“urrent or voltage.

The only variation in applying this method to
Pendent sources is that we will now be working
Phasors Instead of just resistors and real numbers.

anhe superposition theorem is not
Works, since we are still dealing wit

ac networks with inde-
with impedances and

applicable to power -effef;ts in ac
h a nonlinear relationship. It can

i S————
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be applied to networks with sources of different

FIG. 18.2

total response for each frequency 18 foun_d mdepend_enﬂy- and the lﬁﬁﬂﬁ
are expanded in a nonsinusoidal expression as appearing in Chapter 34

One of the most frequent applications of the superposition theorem 1&
to electronic systems in which the dc and ac analysis are treateq sép_-
rately and the total solution is the sum of the two. It is an lmportam
application of the theorem because the impact of the reactive elements
changes dramatically in response (0 the two types of iﬂdependem
sources. In addition, the dc analysis of an electronic system cap Ofte'n
define important parameters for the ac analysis. The fourth example i
demonstrate the impact of the applied source on the general configurg.
tion of the network.

We will first consider networks with only independent sources g
provide a close association with the analysis of Chapter 9.

Independent Sources

EXAMPLE 18.1 Using the superposition theorem, find the current I
through the 4-() reactance (X, ) of Fig. 18.1.

E =10V £0° E2=5v110°

FIG. 18.1

Solution: For the redrawn circuit (Fig. 13.2),

Z] — +jXLI =j4ﬂ
L;=—jXc= —j3 8

Considering the effects of the voltage source E; (Fig. 18.3), %

2,7,  (jA=i3) _ 128 _ _ipa

Z2||3 =i

Z,+7Z; j4Q—j38 j
=12 Q £—90°
E, 10V £0°

= 1.25 A 290°



Z1,
L + &

(—i3QXj125A) 375A
Q-3¢ i1

(current divider rule)

I' =




EXAMPLE 18.2 Using superposmmi ﬁndﬁaemmtl vagh
6-{1 resistor of Fig. 18.6.

E] = 20V.£30ﬂ

Solution: For the redrawn circuit (Fig. 18.7),

Consider the effects of the current source (Fig. 18.8). Applying the
current divider rule, we have

po_ 2L __ emeAa  _ jr
Z,+Z, j6Q+60-;8Q 6-;2
o 12.290°
632 £—1843°

I'=19A £108.43°

Consider the effects of the voltage source (Fig. 18.9). Applying Ohm's
law gives us :

pE__E 20V £30°
Z; Z,+Z, 632Q,-1843F

= 3.16 A £4843°
The total current through the 6-{) resistor (Fig. 18.10) is

I=I'+T
=1.9A £10843° + 3.16 A £4843°
=(—0.60A +1.80 A) + (2.10A + 236 A)
=150A +j4.16 A 't
I=442A £702°
R

—-
.

EXAMPLE 18.3 Using superposition, find the voimw

resistor in Fig. 18.6. cmmmmmmmvmﬁlﬁm
the current found through the 6-() resistor in the pre -‘-

|'
Solution: For the current source, e
Vea=T'6Q)=19A mosﬁ‘xﬁm =114 3

FIG. 18.10




A g - - -j:‘_;'_ >
- ‘rl 4 r B .

Va=VetVea
— 114V £108.43° + 1896 V £48.43°
= (—360V +j10.82V) + (1258 V + j14.18 V)
_ 898V +j250V
Checking the result, we have
Vg = 16 Q) = (442 A £70.2°)(6 1)
=265V £70.2°  (checks)

18.4 For the network of Fig. 18.12. determine the sinusoi-
0 for the voltage vz using superposition.

EXAMPLE
dal expressio

i .:
I

"y
LI
_y
Ay

Sate the capacitor can be replaced by an opell
inductor by a short-circuit equivalent.

18.13.
The resistors R, and R are then in parallel and the voltage V:

determined using the voltage divider rule:
R’ = R, |Rs = 0.5 k2 || 3k = 0429 k()




For ac analysis, the dc source is set to m
drawn, as shown in Fig. 18.14,

FIG. 18.14

The block impedances are then defined as in Fig. 18.15 and series-
parallel techniques are applied as follows:

Zl = 0.5 k) £0°
Z;,_ — (R;! LOQ) “ (XC 4_900)
_ (1KQ 209(10kQ 2-90°)  10kQ) £ ~90°

1 kQ — j10 kQ 10.05 £ —84.29°
= 0.995 kQ £ —5.71°

Zy =Ry +jX; = 3kQ + j2 kQ = 3.61 k() £233.69°

and

Ly=17, + 22”23
= 0.5kQ + (0.995 kQ 2 —5.719) || (3.61 kQ £33.69°)
= 1.312kQ £1.57°

E, 4V .0

Zr 1312kQ 2157°

Current divider rule:

71, _ (0,995 kQ 2 —5.71°(3.05 mA £—-1.57) .
Z,+Z: 0.995kQ 2—5.71° + 3.61 kQ £33.69° 4
= 0.686 mA / —32.74° '

I =

= 3.05 mA £-1.57°

13_"

with

= (I3 LO)R; £0%
= (0.686 mA £ —32.74°)(3 kQ Lﬂ‘)
=206V £ -32.74°
The total solution:

Pa= U (de) + vy (ac) e
=36V +206VL-3274° i
Uy "3.54-2.31&(“%' H"

The result is a sinusaidai volta
ridmgonana_j;_ » va |
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pependent Sources

For dependent sources in which the controlling variable is not deter-
mined by the network to which the superposition theorem is to be ap-
plied, the application of the theorem 1s basically -the_ same as for inde-
pendent sources. The solution obtained will simply be in terms of the
controlling variables.

EXAMPLE 18.5 Using the superposition theorem, determine the cur-
rent I, for the network of Fig. 18.17. The quantities w and h are con-

Solution: With a portion of the system redrawn (Fig. 18.18),
ZI=R1=4Q Z2=R2+jXL:6Q+j8Q

For the voltage source (Fig. 18.19),

= 12.8 () 238.66°




FIG. 18.20

For the current source (Fig. 18.20),

oz (AQ)D
v Z, +7Z, 12.8 ) £ 38.66°
= 0.312h1 2 —38.66°

e

= 4(0.078)AI £ —3g g0

The current I, 18

12 = J" I"
— 0.078 wV/Q2—38.66° + 0.312h1 £ —38.66°

For V=10V £0°, I =20mA £0° u = 20, h = 100,

I, = 0.078(20)(10 V£0°)/Q2 2 —38.66°

+ 0.312(100)(20 mA £0°) £ 38 66
=15.60 A £ —38.66° + 0.62 A £ —38.66° '

I, = 1622 A / —38.66°

—_'——H--_____.

For dependent sources in which the controlling variable is defer-
mined by the network to which the theorem is to be applied, the depen-
dent source cannot be set to zero unless the controlling variable is also
zero. For networks containing dependent sources such as indicated in
Example 18.5 and dependent sources of the type just introduced above.
the superposition theorem is applied for each independent source and
each dependent source not having a controlling variable in the portions
of the network under investigation. It must be reemphasized that depen-
dent sources are not sources of energy in the sense that if all indepen-

dent sources are removed from a system, all currents and voltages must
be zero.

_________—-—-—-'

EXAMPLE 18.6 Determine the current I, through the resistor Az of
Fig. 18.21.

Solution: Note that the controlling variable V is determined by the
network to be analyzed. From the above discussions, it 1S understood
that the dependent source cannot be set to zero unless V is zero. If we st
I to zero, the network lacks a source of voltage, and V = 0 with pV = |
0. The resulting I, under this condition is zero. Obviously, therefore, h¢
network must be analyzed as it appears in Fig. 18.21, with the result ha
neither source can be eliminated, as is normally done using the superP” .
sition theorem.

Applying Kirchhoff's voltage law, we have

and IL E —

R, Ry 4

The result, however, must be found in terms of I since V and #¥°
only dependent variables. ko



and

Vo
i (R + (1 + /R,

gubstituting into the above yields

(¥ R : )
i R, R,  “(UR) A (14 /Ry

f, - ﬂ*’g)ﬂﬂ _
LR, 4 (14 pR,

L

183 THEVENIN'S THEOREM

Thevenin's theorem, as stated for sinusoidal ae clreuits, is changed only
o include the term impedance instead of resistance; that 18,

replaced by an

any two<terminal linear ac network can he
¢ and an impedance

wquivalent circull consisting of a voltage sourc
in sorles as shown in Fig. 18.22.

are frequency dependent, the Theve-

Since the renctances of a circuit
only at one fre-

il circuit found for a particular network is applicable
(uency.
The steps required to apply this method 10 de circuity are repeated
here with changes for dnusoidal ac cireuits, As hefore, the only change
¥ the replacement of the term resisiance by Impedance. Again, depen:
dent and independent sources will be treated separately.

The last example of the independent SOUTCE section will include @
network with o de and a¢ source 10 eutablinh the grmmdwm'k for possi-

ble use in the electronics area.

'“dopondent Sources

L Remove that portion of the network acroxs which the
Thevenin equivalent circuit iy to be Jound.

& Mark ( ., and so on) the torminals of the re

Merminal network.

Y Caleulate Ziy by [Jirst setting all voltage and current NOUPCes
W zero (short elrcuit and open clreutl, respe
linding the resulting impedance between the two

: Wrminaly,
Caleulate 14y, by first replacing (he voltage and curre
oy 'l‘h'(’"“ pollape hetwev

\ources and then finding the open:
Marked terminaly.

malning e

ctively) and ther
rked

i
i the




5. Draw the Thevenin equivalent circuit with the portion of gy
circuit previously removed replaced between the tery 'f ﬂ'
the Thevenin equivalent circuit, e

EXAMPLE 18.7 Find the Thevenin equivalent circuit f&r

external to resistor R in Fig. 18.23, fietwor

E =10V £0°

Solution:
Steps 1 and 2 (Fig. 18.24):

Z,=jX, =j8() 2y,=—jXec=—j2()

FIG. 18.24

Step 3 (Fig, 18.25):

Ly = 2122 _ (JBO(=j20) _ —j*160 _ 168 o
ZJ"'Zz jSQ-jZﬂ jﬁ é ,
= 2.67 ) / —9° Y

Step 4 (Fig, 18.26):

o = -i;z—fiz-; (voltage divider mm
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Step 3 (Fig. 18.30):
Z,Z,
Z, +7Z,
50 20°
9+ j4 9.85 £23.96°
=j5+5.08 £-23.96° = j5 + 4.64 — j2.06
Zr =464 Q0 +7294Q =549 Q £ 32.36°

=j5+ =j5+

FIG. 18.30 Step 4 (Fig. 18.31): Since a-a’ is an open circuit, Iz, = 0. Then Ep is

the voltage drop across Z:
Z-,E
Z, + Z,
-~ 5Q £ =53 13°)(10 V £0°)
9.85Q £23 96°

50V £-53.13°

En = - =5 - 0
™= "985 223060 OBV LT

En, = (voltage divider rule)

FIG. 18.31

Step 5: The Thevenin equivalent circuit is shown in Fig. 18.32.

FIG. 18.32

I
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The next example demonstrates how superp alysis. TH
sis. 1% "
tronic cireuits to permit a separation of the de and ac anal 2 ortion of

that the controlling variable in this an alysis i5 mf -|.i! s J
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EMPLE 18.9 Determine the Theven A

"< 33) and then determine V.

S Ry
r R; in the following net

FIG. 18.33

Solution: Applying superposition.

dc conditions:

Substituting the open-circuit equivalent for the coupling capacitor C;
will isolate the dc source and the resulting currents from the load resis-
tor. The result is for dc conditions that vV, =0V. Although the output c%c
voltage 1s zero, the application of the dc voltage is important to the baf‘,-lc
operation of the transistor in a number of important ways, 0ne of Whl(‘:h
is to determine the parameters of the ¢ ent circuit’” to appear 11
the ac analysis to follow.

ac conditions:

For the ac analysis an equivalent CITC .
tor as established by the dc conditions above that will behave like the
actual transistor. A great deal more will be said about eqmva]ent circuits
and the operations performed to obtain the network of Fig. 18.34, but for

Transistor equivalent
circuit

FIG. 18.34




Sy
now let us limit our attention to the manner in Which the They
cquivalent circuit is obtained. Note in Fig. 18.34 that the equivy
circuit includes a resistor of 2.3k and a controlled current soune
whose magnitude is determined by the product of a factor of 100 and g
current 7, in another part of the network. .
Note in Fig. 18.34 the absence of the
analysis. In general, coupling capacitors are designed to be open cinoire
for de and short circuits for ac analysis. The short-circuit equivalent &
valid because the other impedances in series with the coupling capaci.
| tors are so much larger in magnitude that the effect of the coupling
F capacitors can be ignored. Both Ry and R are now tied to ,
because the de source was set to zero volts (superposition) and replaced
' by a short-circuit equivalent to ground. N
Hil * For the analysis to follow, the effect of the resistor Ry will be jg-

nored. since it is so much larger than the parallel 2.3-k{) resistor,

! Zn,:

il I When E, is set to zero volts, the current I, will be zero amperes, and

i the controlled source 1001, will be zero amperes also. The result is an

open-circuit equivalent for the source as appeaning in Fig. 1835,
It is fairly obvious from Fig. 18.35 that

En,:
For Eyy the current I, of Fig. 18.34 will be
1 FIG. 18.35 = E, E

Il e e

TR +23K0  0SkQ+23kQ 28

_ E, P
and 1001, = (10())(2 S kﬂ) = 3571 X 107°QE

Referring to Fig. 18.36, we find that
Ep = =(1001)R¢ "
= ~(3571 X 10°VQE)Q2 X 10° D)
Epn = =71 42E,; ;
The Thevenin equivalent circuit appears in Fig. 18.37 with the 0

nal load R,.
The output voltage V;:

“REpm =1 kKQX7142E)
VL B e——— . Y
R, + Zp Ik +2k0
and \!,_--ME'I : il' I o
revealing that the output voltage is 23,81 ed voltags ™
a phase shift of 180° due to the minus sign.
FIG. 18.37 e R

| I.h ||

Lo
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 pependent Sources
i For gependent SOUTCES with a -.cot}'tr@ﬂing: variable not in the network
ndet nvestigation, the procedure indicated above can be applied. How-
mr, for dependen; sources of the :other type, where the controlling
ariable ¢ part of the network to which the theorem is to be applied,
other approach must be erpployed. The necessity for a different ap-
oach will be demonstrated in an example to follow. The method is not

ndent sources of the latter type. It can also be applied to

jimited t0 depen _
any dc OF <inusoidal ac network. However, for networks of independent
{QUICES: the method of application employed in Chapter 9 and the first

portion of this section is generally more direct, with usual savings in
ime and €rrors.

The new approach to Thevenin’s theorem can best be introduced at
ihis stage in the development by considering the Thevenin equivalent
circuit of F1g. 18.38(a). As indicated in Fig. 18.38(b), the open-circuit
rerminal voltage (E,.) of the Thevenin equivalent circuit is the Theve-

nin equivalent voltage. That 1s,

(18.1)

=
S
I
-
=

If the external terminals are short circuited as in Fig. 18.38(c), the re-

qulting short-circuit current is determined by

F—

E |
I, =— (18.2)
.l L,
1 or, rearranged.
E
ZTII i I::T
and Lo = _EI 2 (18.3)

that for any linear bilateral dc or

Equations (18.1) and (18.3) indicate
e, if the open-

4 network with or without dependent SOUrces of any typ .
circuit terminal voltage of a portion of a network can be determined

dlong with the short-circuit current between the same two terminals, tt.le
Thevenin equivalent circuit 18 offectively known. A few examples Will
make the method quite clear. The advantage of the method, which was
Stressed earlier in this section for independent sources, should now be
more obyious, The current L, which is necessaty to find Zgy, 18 10
teneral more difficult to obtain SINCE al] of the sources arc .presen‘t.

There is a third approach to the Thevenin equivalent circuit that 18

§lso useful from a practical yviewpoint. The Thevenin voltage 18 fou_nd ;s
\ | in 1§ OD-
" the two previous methods. HoweVver, the Thevenin impedance e

la) . . 1< of interest and
FEd F’y applying a source of voltagefo the tfirmlfl‘ﬂs Of319 Eor this Determining Ltn
Elermm'mg the source current as indicated 1n Fig. 18.57 :
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Note that for each technique, Ez;, = E,,, but the Thevenin impedanc } _
found in different ways. : 18

EXAMPLE 18.10 Using each of the three techniques described in
section, determine the Thevenin equivalent circuit for the netwoﬂ;d
Fig. 18.40.

Solution: Since for each approach the Thevenin voltage is found in
exactly the same manner, it will be determined first. From Fig, 18.40,
where Iy = 0,

Due to the polarity for V and
defined terminal polarities

l RZ( ].LV) - ﬂasz
R,+R, R, +R,

VR, - ETh = Eoc =

The following three methods for determining the Thevenin imped-
ance appear in the order in which they were introduced in this section.

Method 1 (Fig. 18.41):

——— Zrm = Ry | R, = jXc

Method 2 (Fig. 18.42): Converting the voltage source to a current

R2§ - L source (Fig. 18.43), we have (current divider rule)
—(R, | Rz)ﬂ ___R_liel_ (.ER_Y-)
= (TR __RitR RS
- (R |[Ry) — jXe (R, | R2) — jXc
FIG. 18.41 ~ R,V
R, + R,

(R, | R;) = jXc

FIG. 18.42




1.
_ 1
(Ry || Ry) = jX¢

RN LI
(R, || Ry) = JXc
= R “ R, "".IXC'
Method 3 (Fig. 18.44):
l” - ___L-
(Ry || Ry) = jXe
|
Ly = _li = R, “Rz - JXc
¥

ase. the Thevenin impedance is the same. The resulting
sivalent circuit is shown in Fig. 18.45.

and

[n each ¢
Thevenin €4

Ly = Ky | Ry = jX¢

FIG. 18.45

__=____:———---'-"-

Exar;lplel 810 for the network of Fig, 18.46.

EXAMPLE 18,11 Repeal
Solution: From Fig. 18.46, Ep, 15
hR R\

H

E’Th — Errr' o _hl(Rl “ RZ) il RI oo RZ

Method | (Fig. 18.47):




FIG. 18.49

Zry =R | Ry = jX
Note the similarity between this solution and that obtaj,
ous example.
Method 2 (Fig. 18.48):

_ (R [[Ry)AI
(Rl " RZ) 1 jXC
Eac ""'hI(Rl ” Rz)
= " e T =R Ront - R R =X

(Rl H RZ) i jxc

SC

Method 3 (Fig. 18.49):

o R
S )
(R, ” R3) = jXc
K
and L =T&=Rl||R2 = JXc
v

—_—

The following example has a dependent source that will not permit
the use of the method described in the beginning of this section for
independent sources. All three methods will be applied, however, so that
the results can be compared.

EXAMPLE 18.12 For the network of Fig. 18.50 (introduced in Exam=
ple 18.6), determine the Thevenin equivalent circuit between the
cated terminals using each method described in this section. Compare
your results.

FIG. 18.50

o is the
Solution: First, using Kirchhoff's voltage law, Ez (which

same for each method) is written
Ep=V+uV=010+pV

However, V = IR,

50 Ep = (1 + pIR,

B ' if s L»
}' ' I‘"l.p | y
i o L=anN g b L



Im
thod 1 (Fig. 18.51): Since 1 =0, Vand pV =0, and

M

Z#==R,  (incorrect)
yethod 2 (F1&: 18.52): Kirchhoff's voltage law around the indicated
loop gives us
V+uV=0
and V({1 + p) =0

FIG. 18.51

FIG. 18.52

t. the above equation can be satisfied

Since w is a positive constan
f this result into Fig. 18.52 will yield

only when V = 0. Substitution O
the configuration of Fig. 18.53, and

I.=1
with
| | + w)IR
Loy, = .Ifii- = ( ;L) L= (1+ pR, (correct)

Or



and k=R " a+wr
and = % =(1+ pR, (correct)
g

The Thevenin equivalent circuit appears in Fig. 18.55, and
(1+ p)R1

which compares with the result of Example 18.6.

-

The network of Fig. 18.56 is the basic configuration of the transistor
equivalent circuit applied most frequently today. Needless to say, it s
necessary to know its characteristics and be adept in its use. Note that
there is a controlled voltage and current source, each controlled by vari-

ables in the configuration.

Lo ot bt ) b 1410 011 =54 1= 11 AL I

R :
F T %
+ Thevenin
| N _
FIG. 18.56

_ v B
| EXAMPLE 18.13 Determine the Thevenin equivalent circuit for the
l indicated terminals of the network of Fig. 18.56.

Solution: Apply the second method introduced in this section.

E:
E,.=YV,
_ ViV, Vi~ kB
_ Rl_— R,

'V; — kiEoc
Eac = '-kzmz - —‘szz (T)

- L
R R




o TS

| [
For the network of Fig. 18.57, where

kiV,=0

_kzvl'
R,

ISC = '—'kzl —

LR & B ey ML

I,
y k-1 R2§

(o )

FIG. 18.57

— () is applied. Then, the Thevenin

Frequently, the approximation ky
Voltage and impedance are

_EE : ,"___k_ﬂ____.Rz‘;:—_ LAD (18.7)
™= Ry

(18.8)

gy
-



FIG. 18.58

But V2 c Eg
-k E
SO [= —F%
R,

Applying Kirchhoff's current law, we have

=t B (BB L E

P Mg R, R;
g, (L k)
- e8\R, R,
1 R, — kik>R>
and e T | | *v2
E, R\R>
E R.R,
or Ly = — = :

as obtained above.

—————————

The last two methods presented in this section were app_ﬂﬂﬂ W o
networks in which the magnitudes of the controlled sources Weft * i’p,‘;-,l,
dent on a variable within the network for which the Thevenin equiv®=
circuit was to be obtained. Understand that both of W ne '1' .
also be applied to any dc or sinusoidal ac network CORGIEES
independent sources or dependent sources of 'the @hi-'

18.4 NORTON'S THEOREM +_

The three methods described for Thewﬁn‘lh.
tered to permit their usevdmNms
Norton lmpadanees are thg same m
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fjon

¢ of the discussion will be quite similar to those encountered in th
section. We will first consider independent sources “ ang the
appanCh deve}oped in Chapter 9, followed by dependent sources ang
the New techniques developed for Thevenin’s theorem.
you will recall from Chapter 9 that Norton’s theorem allows us to
eplace any two-terminal linear bilateral ac network by an equivalent
circuit consisting of a current source and impedance, as in Fig. 18.59
The Norton equivalent circuit, like the Thevenin equivalent circuit, ié

applicable al only one frequency since the reactances are frequency

dependent.

independent Sources

The procedure outlined below to find the Norton equivalent of a sinusoi-
4al ac network is changed (from that in Chapter 9) in only one respect:

to replace the term impedance with the term resistance.

1. Remove that portion of the network across which the Norton

equivalent circuit s 10 be found.
) Mark (O, ®, and so on) the terminals of the remaining two-

terminal network.
3 Calculate Zn by first setting all voltage and current sources
) circuit, respectively) and then

to zero (short circuit and oper
een the two marked

finding the resulting impedance betw

terminals.
4 Calculate Iy by first replacing the voltage and current

sources and then finding the short-circuit current between

the marked terminals.

5. Draw the Norton equiy
circuit previously removed replace
the Norton equivalent circuit.

alent circuit with the portion of the
4 between the terminals of

The Norton and Thevenin equivalent circuits can be found from each
other by using the source transformation shown 1n Fig. 18.60. The

source transformation is applicable for any Thevenin or Norton quiva-
lent circuit determined from a network with any combination of inde-

pendent or dependent sources.

ZH# = z'"‘-
Eﬂ
+
i i iy = If-\-/\

FIG. 18.59




. I'..'. nu

— |

FIG. 18.61

. Solution:

il Steps 1 and 2 (Fig. 18.62):
l - Z, =R, +jX, =30 +j4Q =50 £53.13°
F Iri Z,= —jXe=—j50
il Step 3 (Fig. 18.63):

| y o Dls _ (GOLSUPNSOL-90) _ 250 L-368r
ik N2 +Z, 30 +j4Q-j50 3-jl

I 25 £ —36.87° : e

l . g = e Tipaze ~ o1 Q418447 =7.500 - j2500
F L‘

FIG. 18.63

Iy

Step 4 (Fig. 18.64):
E 20V £0° -
Lo=T = maet Y EY 44 2S5
v=Th Z, 50 253.13°

L1504 Step 5: The Norton equivalent circuit is shown in Fig. 18.65.

_—... S

o0 =1, anz s (1)

FIG. 18.65

#"d H*m



-E’mMPLE _18‘,'15 Find the Norton equi R ——
wternal t© the 7-(} capacitive mact“?f‘;f“ﬁ“;“?:ﬁ ,ﬁw the network

Solution:
Steps | and 2 (Fig. 18.67):




Iy = 2.68A £ ~10.3°

+ j2.50 €)

Z,+Zg=20-140+1ﬂ-3ﬂ‘-jﬂlsﬁ'q
” (5 £90°)(5 ) £-53.13°) _z”u
A8 i50+30-j4Q §+j1
25 () £.36.87°

T 316 L +18.43°
Zn = 791 Q £18.44° = 7.50 L) + j2.50

Step 4 (Fig. 18.69):

FIG. 18.69

/A
Iy=1,= I Jf'_ 2 (current divider rule)
2O -j4MBA) 6A-jI12A  134AL-634F
300 -j4Q 5 £—53.13° 5£-53.13%

Iy =268 A 2~-10.3°

Step 5: The Norton equivalent circuit is shown in Fig. 18.70.

FIG. 18.70

EXAMPLE 18.16 Fiﬂd the Thamin 0 ik. e 1'1' A k" | SwOrK
memal tﬂ mﬁ 7'n GﬁpﬂﬁiﬁvQ mw m ‘ 11 I" !:.'-'.l.".u:" )
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1.50 0 2500

Dependent Sources
ources in which the con-

As stated for Thevenin's theorem, dependent s
tolling variable 1s not determined by the network for which the Norton
aquivalent circuit 1S 1O be found do not alter the procedure outlined

ne of the following proce-
se procedures can also be applied to
independent SQUICES and dependent
der investigation.
in Fig. 18.73(2). In Fig.

dures must be applied. Both of the
networks with any combination of
sources not controlled by the network un

The Norton equivalent circuit appears

18.73(b). we find that
=

ad in Fig. 18.73(c) that




'NETWORK THEOREMS (ac)

Or, rearranging, we have

and Iy =1 (18,10,

The Norton impedance can also be determined by applying a SOUre
of voltage E, to the terminals of interest and finding the resulting | a:
shown in Fig. 18,74, All independent sources and dependent source:nm
controlled by a variable in the network of interest are set (o 2e10, and

*

Zy = _1: (18.11)

For this latter approach, the Norton current is still determined by the
short-circuit current.

EXAMPLE 18.17 Using each method described for dependent sources,

= 0 find the Norton equivalent circuit for the network of Fig, 1875,
YV¥ YV > Solution:
RI R2 :
o+ IN:
f’:_ @ o T For each method, 1y is determined in the same manner. From Fig, |8.76,
using Kirchhoff's current law, we have
L O=1+4 Al + 1.
. or . = =(1+ Ah)l

FIG. 18.75

l +VR-J-

FIG. 18.76

Applying Kirchhoff's voltage law gives us
EA+ IR =1, Ry =™ ()

and IRy =1L, Ry~ E '
or 1--4£J—-l R~ E
Ky
_|



|'

- ehn= o =5
LR
RIL.=—-(1+mNIL. R+ + h)E .
IR + (1 +hMR]=(1+hE
(1+hE

"R+ +hR, =y

Ly
Method 1: Eoc 18 determined from the network of Fig. 18.77. By Kirch-
hoff's current 1aw,

0=I+hl or I(h+1)=0

For h, a positive constant I must equal zero to satisfy the above.

Therefore.,
I=0 and KI=0

E, = E

E R, + (1 + h)R;

_-___.___———_'_-

T (+thE _ @+h
R, + (1 + WR,

Method 2: Note Fig. 18.78. By Kirchhoff’s current law,
Ig=I+hI=(1+h)I

By Kirchhoff’s voltage law,
Eg 5 Ig R2 =y IR}
E,— LR
Ry

=

Substituting, we have

Eg"ISR%)
=(1+h)l=(1+h) " R

Ig Rl — (1 == h)Eg B (1 + h)Ig R2

E,(1+ h) = L[R; + (1 + h)R;]

or _-—I-l:_g__:: R1+(l+h)R2
Ly = 1 1+

Which agrees with the above.

ELCV)

——




|11 NETWORK THEOREMS (ac)

E)(:\M PLE 18.18 Find the Norton equivalent circuit fm: the
configuration of Fig. 18.56.

Solution: By source conversion,
-kngVi

(18.12)

' (18.13)
(18.14)

‘ (18.15)

\ o ————

| OREM

185 MAXIMUM POWER TRANSFER THEORER

I‘_ When applied to ac circuits, the maximum power transfer theorem States

!' that

'li . : ’ | h the tmd

1 maximum power will be delivered to a load kb e st i

1 impedance is the conjugate of the Thevenin impedance acrod < .

' terminals.

\H That is, for Fig. 18.79, for maximum power transfer to : -




l
a
ngl

SRR

condmom just mentioned will make the total impedance of the
m‘\\‘m appear purely resistive, as indicated in Fig. 18.80:

Zy= (R 2 X))+ (R =+ )X)

swer factor of the circult
Since the circuit is purely resisuve, the powet factor of the cux
ander maximum power conditions is 1. That 18,

(maximum powet transter)

Y . * EN o B O ‘ ‘S
e magnitade of the current 1 of Fig. 18.80 1

(1819

The maximum power to the load 18

Em '
-rn= () *

P




EXAMPLE 18.19 Find the load impedance mFig 1&31 foi o
to the load, and find the maximum power. IWI_

powar

5 ; Solution:
- Z,=R—-jXc=6Q0—-j8Q=10Q£-53.1¥
‘, Z, = +jX. =j8Q
1 g _ 72, _(10Q<- ~53.13°)(8 2 £90°) _ 802 £3687°
| Z, +Z 6Q —j80+ ;8 6.L0°
— 1333 Q 23687° = 1066 Q +j8 Q

Z, = 133 Q £—3687° = 10.66 @ - j8 Q

and
In order to find the maximum power, we must first find Ep (Fig.
18.82), as follows:

Z-E
En = m (voltage divider rule)
o o ) Y Q
(Sﬂf‘)O)(QVr_O) 72V £90 V2
SN +60Q—; 80 6 £0°
E%s (12 V)? 144 _
The Prax = == =338 W
FIG. 18.82 : “ T AR 41066 Q) 4264
- - _—_‘/
EXAMPLE 18.20 Find the load impedance in Fig. 18.83 for mauiéf
power to the load, and find the maximum pOWer.

E=10Ve0°|




FIG. 18.85

The redrawn circuit (F1g. 18.86) shows

AL T L
ZTh=Zr1+ | 1( 1’ 2)#
7'y g T Z,)
30 £90°%(j3Q + 8 (1)
=j3 Q0 +
! 60 +80
: (3 /90°)(8.54 /.20.56°)
=j3 + - =
10 £.36.87

Ly £11056" _ .5 4 956 £73.69°
10 £36.87°

— i3+ 072 +j2.46
Z. =072Q +j546%)

source replaced in its or1
across the series impedance O

rle gives us

fZ',

e (Z' + Z)E
7'+ 2Ly T Z'y
~ (8.54 2056710V £07)

T 10 23687

ETh — 8.54 V L""16.31°




If the load resistance is adjustable but the magnitude of the Joud
reactance cannot be set equal to the magnitude of the Thevenin rese
tance, then the maximum power that can be delivered 10 the load wil)
occur when the load reactance is made as close to the Thevenin reget.
ance as possible and the load resistance is set to the tollowing valye:

Ry = VR + (X + Xiowd)® (1821

where each reactance carries a positive si an it inductive and a negative
s1gn 1if capacitive.
The power delivered will be determined by

o

o+ R l
where R‘w = Rn 3 & (lm: I

The derivation of the above equations is given in Appendix H of the
ext. The following example demonstrates the use of the above,

EXAMPLE 18.21 For the network of Fig. 18.88: t
a. Determine the value of R, for maximum power to the load if the lowd
reactance 1s fixed at 4 ). :
b. Find the power delivered to the load under the conditions of P" -
¢. Find the maximum power to the load if the load relcm
adjustable to any value and compare the result to part (b) a0

Em = 20\’ éﬁ)“

FIG. 18.88



(18.22)

(18.23)

ix H of the
bhove.

/—

Ry = \-R:’."h t (X + :\’h;:—uﬂj
Vid )2+ (70 = 40)
= /16 + 9 = V25
H; S \11

h. l;,\], (ll\‘:%\ R:.n ) ‘
4.5 ()
5
Bq. (1822 F ~
AR,
(20 V)* 400
W
4(4.5 (1) | R A
22.22 W
- For £, 4 () 17 )
5 £, (R0V)
(TN .lh‘ ry Hl 1!\
25 W
result ol 11;ul (bh) hf\ ) I8 W

C\L‘L‘L‘thll;‘_ lhn.‘

186 SUBSTITUTION, RECIPROCITY,
AND MILLMAN'S THEOREMS

coduction to this chapter, (he substitution and

he considered here
apply these

As indicated 1in the nt
}u‘x‘ipl't‘u. ity theorems and M
n detail. A careful review ol Chaptel
networks Wi

Hlman's theorem W 11 not
0 will enable you 1o
dy little difficulty, A number of

theorems to sinusoidal ac
ypear in the problem section,

nonie )
problems in the use Ol these theorems i

18.7 COMPUTER AN ALYSIS
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he computer analysis ¢ 1
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