Fundamentals of Wood Design and Engineering

Wood Design

- Session 3
 - Introduction to Wood Engineering; Codes & Standards; Load combinations, weights of building materials and tributary area; Simple beam design: floor/roof joists, beams and girders.
- Session 4
 - Column design, stud walls, headers, posts.
- Session 5
 - Connection design, bolts, lag bolts, screws, nails.
- Session 6
 - Diaphragms and shearwalls, seismic issues; Options regarding composite panels

Codes and Standards

- Original Model Codes
 - Uniform Building Code (UBC) International Conference of Building Officials (ICBO) - 1997
 - National Building Code (NBC) Building Officials and Code Administrators International (BOCA) -1999
 - Standard Building Code (SBC) Southern Building Code Congress International (SBCCI) -1997 and 1999

Codes and Standards

- Codes (continued)
 - One and Two Family Dwelling Code (OTFDC) Council of American Building Officials (CABO) - 1995
 - International Building Code (IBC) International Code Council (ICC) – 2000 and 2003
 - International Residential Code (IRC) International Code Council (ICC) – 2000 and 2003
 - National Fire Protection Association (NFPA) NFPA Building Code (NFPA 5000) - 2003
 - National Earthquake Hazard Reduction Program (NEHRP)
 Federal Emergency Management Administration 1994, 1997 and 2000

bruary 17, 2005

Codes and Standards

Jurisdictions

- National
 - + NEHRP document, other FEMA publications
- State
 - + Two Versions
 - · State buildings, Schools, Hospitals Higher requirements
 - Minimum requirements for all jurisdictions in the state
- Cities, Counties

```
February 17, 2005
```

Codes and Standards

- National Standards
 - National Design Specifications (NDS) American Forest & Paper Association, American Wood Council – 1991, 1997 and 2001
 - Allowable Stress Design (ASD) of wood sawn and glued laminated members, diaphragms, shearwalls and connections.
 - Load and Resistance Factor Design (LRFD) -American Forest & Paper Association, American Wood Council – 1996
 - Load and Resistance Factor Design of wood members, diaphragms, shearwalls, connections.

Codes and Standards

- National Standards
 - ASCE-7 American Society of Civil Engineers 1998 and 2003
 - ◆ ACI-318 American Concrete Institute (ACI) 2002
 - ASD Specification for Structural Steel Buildings -American Institute for Steel Construction (AISC) -1989
 - ◆ LRFD Specification for Structural Steel Buildings -American Institute for Steel Construction (AISC) – 1999/2000
 - ACI-530/ASCE-5/TMS-402 American Concrete Institute (ACI), American Society of Civil Engineers (ASCE), The Masonry Society (TMS) - Masonry ASD - 2002

February 17, 2005

Codes and Standards

- Industry Associations
 - American Forest & Paper Association
 - American Wood Council
 - American Plywood Association
 - American Institute of Timber Construction
 - Grading Agencies
 - + Western Wood Products Association (WWPA)
 - + West Coast Lumber Inspection Bureau (WCLIB)
 - Others see NDS

February 17, 2005

Allowable Stress Design Load Combinations - 1997 Uniform Building Code D D + L + (L_r or S)

- $\sum_{r=1}^{n} D + L + (L_r 0) 3$
- 3. D + (W or E/1.4)
- 4. 0.9D ± E/1.4
- 5. D + 0.75[L + (L_r or S) + (W or E/1.4)]
- Note:
 - + Seismic force, E, is a strength level force in the 1997 UBC

February 17, 2005

ebruary 17, 2005

Allowable Stress Design Load Combinations - 1997 Uniform Building Code -Alternate (1994 UBC Load Combinations) $D + L + (L_r \text{ or } S)$ 1 2. D + L + (W or E/1.4)D + L + W + S/23 D + L + S + W/24 5 D + L + S + E/1.4Notes: + a 1/3 allowable stress increase is permitted for Load Combinations 2 through 5 for the 1997 UBC Alternate ASD Load Combinations + Seismic force, E, is a strength level force in the 1997

UBC

Allowable Stress Design Load Combinations - 2003 International Building Code 1. D D + L 2. 3. D + L + (L, or S or R) $D + (W \text{ or } 0.7E) + L + (L_r \text{ or } S \text{ or } R)$ 4. 5. 0.6D + W 6. 0.6D + 0.7E Note: + Seismic force, E, is a strength level force in the 2000 IBC

		Dea	ad	н	02	Ide	2							
			10		.00		J .							
	TABL	.E.8.14						COLE & IN	(Cannau	w/)	_			_
	.n. Daugn	- Dead Loads" (pel)	-		Floors, wood	I print (no pl	Auter)		Manny	partissona (s	(tee			
Coluge		Coverings, root, and wall form 1				AC NOCO ING	<u> </u>		din.	or brock, res	O Meres	gee.		38
Accession of their site	. t	Rediculation, in	6.75			L2 in	16 in.	24 in	12 in					55
Geguein board (per) in thick)	0.55	See lepte, anotal framer, 2 to			Jun uto,	spacing	spacing.	spacing	Manuary	walls				
Mechanical dust allowance	- 2	wir glov			14.	(pel)	Cy+f)	(pel)	Clay be	isk wyther				
Plaster on the monthly of	- 2	Autor and A	- 4						fin.					2
Vanoradal model and		Warno where months area			2.4.6	4			8 10.					α.
Superaded need 200 and		Bautaterus, scorri cestand	5.5		2.4.6	2	à.	i	10.0	n.				
a concert alloster	15	Residence, woorth vertice	in in		2 1 10	ì	à	à						<i>"</i>
Negende-Linetal Section 4		Leged apple 1	i n		2 8 12	÷	-	- i	Rollers on	thickness fire	ary see.	w	en:	
di princi planter	10	Single-ply, sharer	it 7							6 5	10	12		
Wood farring cospension		Wood shrattang spreas							Une Pe	Inces Solid				
system	25	theckner asy	3		Frame partie	izne.			79	50 12	60	18		
Coverings: read and scall		Wood shands a			Manuals r	deel particie	<i>c</i> .		Caste V	Veight Crots	(105 ps	a) –		
Asheston concern thingles		Floor MI			Weed or r	cret starts,	10.		No grint	22	27	35	42	
Aspha's shangles	.7	Diader countie, per in	2		Experim	board cach	aids .		460.0		31	40	49	
Clay ofe	16	Lagheweight crosses, per in	8		Wood star	54,2×4,0	nplanered	•	400 c.		33	+3	23	1
Clay also gfor reserver sold 10 Bak		Aust, per un			Weed stor	54.2×4.9	instand L		Merc. 3	Grout	- 24	-15	56	1
Rock tab, 2 as	12	None collectory per ca			side			12	340 C 1	Spacing	F 22	- 22	61	
Print, Intr., 1 an	10	Author Mark (7 m) - m			Wood muc	39, 2 × 1, p	instered 2		160.c.)			20	7.0	
Barran	17	Mattal	20		sides.			20	Full tons	at Malaka 18ain				
South	19	Cetarat Inishi Latt Lass state			Frank warn				Corrinna -	Acidot Como	11155.94	10		
Composition.		oneren fil	32		Eastern a	and see a line			100.000	,	11	1	61	
Three pla reads making		Cenarum or quarty rile (2 in p			1	2 10 18 pro	1.		400.1) Gener	16	ŝ.	65	
Forur-pla felt and garrent	5.5	on his another bed	16				s	ш	124.5.	Spacias	10	ŝŝ	68	
Port-pile tri: and graved	0	Ceramic re-quarry tile (2 in 1			2 8 4 4	e të in Jai		•.	240.6	· · · · · ·	41	54	73	
Copper or nex		on Line scenar bed	23		sidior			12	150.4)	47	64	#2	
Compared adaptive content		Concern filt Enish (prv or			Exterior e	and walts wi	nh brick		Fy2 Geo.		64	82	150	
ronting		the(k)	12		veneer			43	Solid Cal	arme Maso	ary Uai	e Wyr		
Deck, metal. 20 gage	31	limbered forming a re-	÷		Windows	, glass frame	(and		(ind) Cos	nerese tariek)				
Deck, metal, 18 gage	2	Landrum of signal rise, , in			****				Wythe	Without (i	s ia.)	4 6	* 10	ð.
Deffered, Sim mean framilier.		Maple and sales a series of			Massery pu	rtitione			Light 1	Weight Oant	4 (105 P	ФĽ		
Darbier, bis, seeed (they do:		insurrent to	15		Concrete	eleck, right	officiane:		ST	49 44		102		
bei		State (per al discoverage Solution for the second sec			14			20	Nerra	d Weigar un	EXE (123	per y		
Eductional in	0.75	mentar barr	24		9 M.			2.	41	83 m	(9.4	01		_
Gogram theathens, m	2	Subdian and in.	1		Seasy Ba	conversed in res	anduced wish	permission à	Norrise	a Society of C	-	wird	SSM	150
Intel-toos, coal brook (per an		Environmental an Extension on state	178		7 88 (formerh	ASE 11.44-	inen Dage I	and for Swide	p and Other 3	Station. repr	100	nye	er Anse	mi
dimkness)		Trateco (1 m) on more-			National Star	Secto Instrum	t Copies of the	as manifed and	à be punchas	eel fran de A	errices	Nation	al Star	ندام
Collidar etess	0.7	construction follo	32		Instant of II	West their S	over, New Yo	er6, NY 5063						
Filmon glass	1.1	Temazo (Las Los 2 m			Weights of the	away includ	e manter but e	not plasmer. For	planer, add	15 pail for each	face plan	erel.	nine.	÷.
Elebrat	1.5	anite concrete	72		reporter to the	age to see	r cures, shere		St INGS IN	weight für ibe		ance	POR.	
Prolise	0.8	frond block (3 to) on master												
Palystyrner is an	11.2	an 61	10											
Certhater form with skin	0.5	Wood block (3 or 1 on 1 in			Timber (Constru	ection M	fanual F	ourth I	Edition	AITO	П Р	age	8.

Dead I	_oads
 Floors 	
Floor Covering	2.0 psf
Plywood (Sheathing)	3.0 psf
Framing	4.0 psf
Ceiling	3.0 psf to 12.0 psf
Electrical & Mechanical	2.0 psf to 5.0 psf
Miscellaneous	1.0 psf
TOTAL	15.0 psf to 25.0 psf
Partitions	10.0 psf for residential
	20.0 psf for office
February 17, 2005	14

Roofs	Dead Lo	oads
Roofing	5 ply or singles	6.0 psf plus 3.0 psf for reroofing
_	or Tile	12.0 psf
	or Shakes	3.0 psf
Plywood	(Sheathing)	2.0 psf
Framing		3.0 psf
Ceiling		3.0 psf
Insulation	1	3.0 psf
Electrical	& Mechanical	1.0 psf to 2.0 psf
Miscellan	eous	1.0 psf
TOTAL		15.0 psf to 25.0 psf
February 17, 2005		15

- Bending Stress Adjustment Factors
 - ♦ Wet Service Factor, C_M
 - + C_M = 1.0 for moisture content less than or equal to 19 percent for sawn dimension lumber and timber.
 - + C_M = 1.0 for moisture content less than or equal to 16 percent for glued laminated timber.
 - + C_M = 0.85 for moisture content greater than 19 percent for sawn dimension lumber with a tabulated allowable bending stress times the size factor of more than 1150 psi. Otherwise, C_M = 1.00.
 - + C_M = 1.0 for moisture content greater than 19 percent for sawn timber.
 - + C_M = 0.80 for moisture content greater than 16 percent for glued laminated timber.

February 17, 2005

Allowable Stresses

- Bending Stress Adjustment Factors
 - Temperature Factor, C_t
 - + Wet Service Condition
 - C_t = 1.0 for temperature less than or equal to 100 degrees Fahrenheit.
 - C_i = 0.7 for temperature greater than 100 and less than or equal to 125 degrees Fahrenheit.
 - C_t = 0.5 for temperature greater than 125 and less than or equal to 150 degrees Fahrenheit.
 - + Dry Service Condition
 - *C_i* = 1.0 for temperature less than or equal to 100 degrees Fahrenheit.
 - C_i = 0.8 for temperature greater than 100 and less than or equal to 125 degrees Fahrenheit.
 - C_i = 0.7 for temperature greater than 125 and less than or equal to 150 degrees Fahrenheit.

February 17, 2005

Allowable Stresses

- Bending Stress Adjustment Factors
 - ◆ Beam Stability Factor, C_L
 - For beams which are laterally supported on their compression flange and braced to prevent buckling or have shapes which do not buckle under bending, C_L = 1.0.
 - For beams which do not meet the above criteria a stability factor is calculated depending on the unbraced length of the member.
 - See NDS Section 3.3.3, Equation 3.3-6

able 3.3.3 Effective Length, (, for Bending Member	rs	
Cantilever ¹	when <i>É</i> _/d < 7	when €_/d ≥7	
Uniformly distributed load	€ ₁ =1.33 € ₂	ℓ _a = 0.90 ℓ _a + 3d	
Concentrated load at unsupported end	$\ell_q = 1.87 \ \ell_q$	$\ell_e = 1.44$ $\ell_a = 34$	
Single Span Beam ^{1,2}	when €_/d < 7	when $\ell_q/d \ge 7$	
Uniformly distributed load	$\ell_{e} = 2.06 \ \ell_{u}$	$\ell_q = 1.63 \ \ell_u + 36$	
Concentrated load at center with no intermediate lateral support	€ _a = 1.80 € _a	$\ell_a = 1.37 \ \ell_a + 34$	
Concentrated load at center with lateral support at center	$\ell_s = 1$	11 K.	
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points	$\tilde{E}_{g} = 1.$	68 C.	
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points	$\ell_{g} = 1$	54 <i>l</i> s	
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points	$\ell_x = 1$	68 E	÷.
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points	$\ell_z=1.$	73 é.	
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points	$\ell_s = 1$	78 É.	
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application	$\ell_q = 1$	84 K.	
Equal end moments	€ _a = 1.	84 C.	

Allowable Stresses

- Bending Stress Adjustment Factors
- ◆ Beam Stability Factor, C_L
 - + d/b < 2; no lateral support required
 - + 2 < d/b < 4; the ends shall be held in position
 - 4 < d/b < 5; the compression edge of the member shall be held in line for its entire length and ends at points of bearing shall be held in position
 - 5 < d/b < 6; bridging, full depth blocking or cross bracing shall be installed at 8 feet o.c. maximum, the compression edge of the member shall be held in line for its entire length and ends at points of bearing shall be held in position
 - 6 < d/b < 7; both edges of the member shall be held in line for their entire length and ends at points of bearing shall be held in position

February 17, 2005

Allowable Stresses

- Bending Stress Adjustment Factors
 - Size Factor, C_F
 - + C_F for sawn dimension lumber, except Southern Pine, ranges from 0.9 to 1.5 depending on the width and thickness of the member.
 - C_F for Southern Pine sawn dimension lumber has been incorporated into the design value tables.
 - + C_F for sawn timber loaded on the narrow face is calculated by the equation $C_F = (12/d)^{1/9}$ when the depth exceeds 12 inches.
 - ← C_F for sawn timber loaded on the wide face ranges
 between 0.74 and 1.00.
 - + C_F does not apply to glued laminated timbers.

- Bending Stress Adjustment Factors
 - Volume Factor, C_V
 - + $C_V = (21/L)^{1/x} (12/d)^{1/x} (5.125/b)^{1/x}$
 - L = distance between points of zero moment
 - d = depth of member
 - b = width of member
 - x = 10 for all species except Southern Pine (SP = 20)
 - C_V does not apply to sawn dimension lumber and timber.
 - C_V for glued laminated lumber is calculated for each size member.
 - C_V does not apply simultaneously with the C_L factor. The lesser values is taken where both factors apply.

February 17, 2005

Allowable Stresses

- Bending Stress Adjustment Factors
 - Incising Factor, C_i
 - Incisions parallel to grain to a maximum depth of 0.4 inches and a maximum length of 3/8 inches with a maximum density of 1,100 per square foot.
 - C_i = 0.80 for sawn dimension lumber and timber, when incisions have been made to increase penetration of pressure preservative treatment.
 - + C_i was 0.85 in previous versions of the NDS.

<section-header><section-header><section-header><list-item><list-item><list-item><list-item>

Allowable Stresses

- Bending Stress Adjustment Factors
 - Curvature Factor, C_c

- Shear Stress Adjustment Factors
 - The same as bending stress adjustment factors for the following:
 - + Load Duration Factor, C_D
 - + Temperature Factor, C_t

- Shear Stress Adjustment Factors
 - ♦ Wet Service Factor, C_M
 - + C_M = 1.0 for moisture content less than or equal to 19 percent for sawn dimension lumber and timber.
 - + C_M = 1.0 for moisture content less than or equal to 16 percent for glued laminated timber.
 - + C_M = 0.97 for moisture content greater than 19 percent for sawn dimension lumber.
 - + C_M = 1.0 for moisture content greater than 19 percent for sawn timber.
 - + C_M = 0.875 for moisture content greater than 16 percent for glued laminated timber.

February 17, 2005

Allowable Stresses

- Shear Stress Adjustment Factors
 - ♦ Incising Factor, C_i

February 17, 2005

+ C_i = 1.00 for sawn dimension lumber and timber, whether or not incisions have been made to increase penetration of pressure preservative treatment.

Allowable Stresses

- Shear Stress Adjustment Factors
 - ◆ Shear Stress Factor, C_H Factor Eliminated in the 2001 NDS
 - + C_H was based on the size of splits, checks and shakes on the face of a member.
 - + The tabulated shear stress values were based on standard sizes of splits, checks and shakes.
 - + If the sizes of splits, checks and shakes were less than assumed for the tabulated values, then the shear stress value may be increased.
 - + The values for C_H ranged between 1.00 and 2.00.

Allowable Stresses Bearing Stress (Compression Perpendicular to Grain) Adjustment Factors • The same as bending stress adjustment factors for the following: + Temperature Factor, C,

Allowable Stresses Bearing Stress (Compression Perpendicular to Grain) Adjustment Factors ♦ Wet Service Factor, C_M + C_M = 1.0 for moisture content less than or equal to 19 percent for sawn dimension lumber and timber. + C_M = 1.0 for moisture content less than or equal to 16 percent for glued laminated timber. + C_M = 0.67 for moisture content greater than 19 percent for sawn dimension lumber. + C_M = 0.67 for moisture content greater than 19

- percent for sawn timber.
- + C_M = 0.53 for moisture content greater than 16 percent for glued laminated timber.

- Bearing Stress (Compression Perpendicular to Grain) Adjustment Factors
 - ♦ Incising Factor, C_i
 - C_i = 1.00 for sawn dimension lumber and timber, whether or not incisions have been made to increase penetration of pressure preservative treatment.

Allowable Stresses

- Bearing Stress (Compression Perpendicular to Grain) Adjustment Factors
 - ◆ Bearing Area Factor, C_b
 - + $C_b = l_b + 0.375/l_b$ for bearing lengths less than 6 inches long and greater than 3 inches from the end of the member.
 - + Supports in the middle of the span.
 - + Ranges between 1.75 for 0.5 inch bearing length and 1.0 for 6 inch bearing length.

February 17, 2005

Allowable Stresses

- Modulus of Elasticity Adjustment Factors
 - Wet Service Factor, C_M
 - + C_{M} = 1.0 for moisture content less than or equal to 19 percent for sawn dimension lumber and timber.
 - + C_M = 1.0 for moisture content less than or equal to 16 percent for glued laminated timber.
 - + C_M = 0.9 for moisture content greater than 19 percent for sawn dimension lumber.
 - + C_M = 1.0 for moisture content greater than 19 percent for sawn timber.
 - + C_M = 0.833 for moisture content greater than 16 percent for glued laminated timber.

February 17, 2005

Allowable Stresses

- Modulus of Elasticity Adjustment Factors
 - Temperature Factor, C_t
 - ← C_t = 1.0 for temperature less than or equal to 100
 degrees Fahrenheit.
 - + C_t = 0.9 for temperature greater than 100 and less than or equal to 125 degrees Fahrenheit.
 - + C_i = 0.9 for temperature greater than 125 and less than or equal to 150 degrees Fahrenheit.

ebruary 17, 2005

Allowable Stresses

- Modulus of Elasticity Adjustment Factors
 - ♦ Incising Factor, C_i

Allowable Stresses

- Modulus of Elasticity Adjustment Factors
 - ◆ Buckling Stiffness Factor, C_T
 - + C_T is only used for 2" x 4" or smaller members in sawn lumber truss compression chords.

February 17, 2005

59

60

	Floor Joist Design	
	$w_{DL,F} = 15.0 \text{ psf}$ $w_{Partitions} = 10.0 \text{ psf}$ $w_{DL} = 25.0 \text{ psf}$ $w_{LL} = 40.0 \text{ psf}$ $w_{T} = 65.0 \text{ psf}$ $w_{T} = 65.0 \text{ psf}$ (16"/12"') = 86.7 plf	
February 17, 2005		63

- C_L = 1.0 member is braced against compression flange buckling by blocking at supports and the plywood sheathing.
- ◆ C_F = 1.0 conservative for design unless a member is greater than 14 inches deep.
- ♦ C_{p} C_{fw} C_{i} , C_{f} = 1.0
- C_c and C_v are only for glued laminated timbers.

Floor Joist Design

- $\bullet F_v' = F_v x C_D C_M C_t C_i$
 - F_v = 95 psi DFL No. 1 NDS Table 4A
 - C_D = 1.0 long term loading
 - C_M = 1.0 used where the moisture content will not exceed 19 percent.
 - $C_{p} C_{i} = 1.0$

Floor Joist Design

- $F_{c\perp}$ ' = $F_{c\perp} x C_M C_t C_i C_b$
 - \blacklozenge $F_{c\perp}$ = 625 psi DFL No. 1 NDS Table 4A
 - C_M = 1.0 used where the moisture content will not exceed 19 percent.
 - $C_{i'} C_i = 1.0$
 - C_b = 1.0 the bearing is always at the end of the member.

Floor Beam Design

- Live Load Reduction
 - Tributary Area greater than 150 square feet
 - ♦ Roof
 - + See table 16-C in the Uniform Building Code
 - ♦ Floor
 - + R (reduction in percentage) = r(A 150)
 - + r = 0.08 for floors
 - + $R \leq 40\%$ for members supporting loads from one level only.
 - + $R \leq 60\%$ for members supporting loads from more than one level.
 - $\bigstar R \leq 23.1(1+D/L)$

ble 3.3.3 Effective Length,	$\boldsymbol{\ell}_{\mathrm{e}},$ for Bending Member	\$
Cantilever ¹	when ℓ _v /d < 7	when $\ell_{q}/d \ge 7$
Uniformly distributed load	ℓ _a =1.33 ℓ _a	ℓ _a = 0.90 ℓ _a + 3d
Concentrated load at unsupported end	ℓ_{q} = 1.87 ℓ_{g}	$\ell_q = 1.44$ $\ell_q \approx 34$
Single Span Beam ^{1,2}	when ℓ _u /d < 7	when $\ell_q/d \ge 7$
Uniformly distributed load	ℓ _e =2.06 ℓ _e	$\ell_{a} = 1.63$ $\ell_{a} + 36$
Concentrated load at center with no intermediate lateral support	€ _a = 1.80 € _a	$\ell_a = 1.37 \ \ell_a + 34$
Concentrated load at center with lateral support at center	$\xi_{\mu} = 1.1$: <i>ℓ</i> ,
Two equal concentrated loads at 1/3 points with lateral support at 1/3 points	$\ell_{\pi} = 1.6$	ε έ,
Three equal concentrated loads at 1/4 points with lateral support at 1/4 points	$\ell_{\pi} = 1.5$	4 E.
Four equal concentrated loads at 1/5 points with lateral support at 1/5 points	$\ell_s = 1.6$	s é,
Five equal concentrated loads at 1/6 points with lateral support at 1/6 points	$\ell_{\pi} = 1.7$	5 é.
Six equal concentrated loads at 1/7 points with lateral support at 1/7 points	$\ell_{\pi} = 1.7$	s é.
Seven or more equal concentrated loads, evenly spaced, with lateral support at points of load application	$\ell_{q}=1.8$	4 <i>€</i> ,
Equal end moments	£ = 1.8	u €.

- Breyer Chapter 4
 - Use the UBC Basic Load Combinations for solving the following problems:
 - ◆ 4.28, 4.29, 4.30 (assume: seismic load, E, is at strength level), 4.31 (assume: lateral load is due to wind)
- Breyer Chapter 5
 \$5.12, 5.13, 5.14
- Breyer Chapter 6
 - ♦ 6.1, 6.5, 6.6, 6.8