
Network Manager IP Edition
Version 3 Release 9

Event Management Guide

R2E2

IBM

Network Manager IP Edition
Version 3 Release 9

Event Management Guide

R2E2

IBM

Note
Before using this information and the product it supports, read the information in“Notices” on page 247.

This edition applies to version 3, release 9, modification 0 of IBM Tivoli Network Manager IP Edition (5724-S45) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Intended audience v
What this publication contains v
Publications vii
Accessibility x
Tivoli technical training. x
Support information xi
Conventions used in this publication xi

Chapter 1. About polling the network . . 1
Poll policies 1

Poll policy parameters 2
Poll policy scope 2

Poll definitions 4
Poll definition parameters 4
Polling mechanisms 5
Poll definition types 8
Data labels 9
Ping polling properties and metrics 10

Multibyte data in poll definitions 10

Chapter 2. Enabling and disabling polls 11

Chapter 3. Creating polls 13
Creating fully featured poll policies 13
Creating simple poll policies. 19
Quick reference for poll policy creation based on
custom data 20

Chapter 4. Creating new poll definitions 23
Creating basic threshold poll definitions 23
Creating generic threshold poll definitions 25
Creating chassis and interface ping poll definitions 27
Creating remote ping and link state poll definitions 29

Chapter 5. Changing polls 31
Changing poll policies 31

Example poll policy 35
Changing poll definitions. 36

Changing basic threshold poll definitions . . . 36
Changing generic threshold poll definitions . . 38
Changing chassis and interface ping poll
definitions 40
Changing remote ping and link state poll
definitions 41
Example customized poll definition 43
Example basic threshold expression 44
Example generic threshold expression 44

Chapter 6. Deleting poll policies 47

Chapter 7. Deleting poll definitions . . 49

Chapter 8. Managing adaptive polling 51
Adaptive polling scenarios 51

Rapid confirmation that device is really down . . 51
Rapid confirmation of a threshold violation. . . 54

Creating adaptive polls 56

Chapter 9. Administering network
polling 59
Administering polls 59

Speeding up ncp_poller startup by not checking
SNMP credentials 59
Retrieving poll status 59
Enabling and disabling polls. 60
Refreshing polls 60
Copying polls across domains 61
Polling suspension options 61
Adjusting polling bandwidth 62
Configuring Link State polling 65
Configuring SNMP threshold polls 65

Administering multiple pollers 65
Multiple poller overview 66
Setting up additional pollers. 66
Removing a poller 69

Administering historical polled data 70
Storage capacity considerations 70
Increasing the storage limit for historical polled
data 72
Deleting historical polled data 73

Monitoring poller capacity 74
Querying the status of entities 78

Chapter 10. Troubleshooting ping
polling 81

Chapter 11. About event enrichment
and correlation 83
Event enrichment 83

Quick reference for event enrichment 83
Event filtering 85
Event states 93
Event handling 97
Example: Default enrichment of a Tivoli
Netcool/OMNIbus trap event 115

Event Gateway plugins 118
Plugin descriptions 118
Plug-in subscriptions 128

Root-cause analysis 130
Quick reference for RCA 131
Precedence value 131
Poller entity 133

© Copyright IBM Corp. 2006, 2016 iii

RCA and unmanaged status 134
RCA stitchers 136
Examples of root cause analysis 139
Checking topology paths used by RCA. . . . 148

Chapter 12. Configuring event
enrichment 153
Configuring extra event enrichment 153

Modifications to the ObjectServer alerts.status
table 153
Example: Enriching an event with main node
device location 154
Example: Enriching an event with interface
name 155

Configuring the ObjectServer update interval field 157
Using the OQL service provider to log into the
Event Gateway databases 158

Querying the ObjectServer 158
Querying the NCIM database 158

Resynchronizing events with the ObjectServer . . 158
Configuring common Event Gateway properties 159

Chapter 13. Configuring Event
Gateway plug-ins. 161
Enabling and disabling plug-ins 161
Listing plug-in information 162
Modifying event map subscriptions 163
Setting plug-in configuration parameters 165
Configuring the SAE plug-in 166

Configuring summary field information in
service-affected events 166
Adding SAE types to the SAE plug-in 167

Chapter 14. Configuring root-cause
analysis. 169
Configuring the poller entity 169
Configuring the maximum age difference for
events 170
RCA considerations in a cross-domain network . . 170

Appendix A. Default poll policies . . . 173
Default ping policies 173
Default remote ping policies 173
Default SNMP threshold policies 174
Default SNMP link state policies 177
Poll policies used by reporting 177

Appendix B. Default poll definitions 179

Appendix C. Example trigger and
clear thresholds 187

Appendix D. Syntax for poll definition
expressions 189
eval statement syntax in threshold expressions . . 189

eval statement syntax for SNMP variables . . . 189
eval statement syntax for network entity
variables 190
eval statement syntax for poll policy variables 191
eval statement syntax for poll definition
variables 192

Operators in threshold expressions 192

Appendix E. Configuration of the
Probe for Tivoli Netcool/OMNIbus . . 195
About the nco_p_ncpmonitor.props file. 195
About the nco_p_ncpmonitor.rules file 196
nco_p_ncpmonitor.rules configuration reference 196

Example of rules file processing 197
Network Manager event data fields 199
alerts.status fields used by Network Manager 201

Appendix F. Network Manager event
categories 207
Network Manager network events 208
Network Manager status events 208

Appendix G. Polling databases 213
NCMONITOR databases 213

SNMP tables for polling in the ncmonitor
database 213
Ping polling status tables 216

OQL databases 225
config database for polling 225
profiling database for polling 228

Appendix H. Event enrichment
databases 231
ncp_g_event database 231

The config database schema 231
ncp_g_event plug-in databases 236

RCA plug-in database 236
SAE plug-in database. 239
ncp_g_event plug-in database tables in
ncmonitor 241

Appendix I. Network Manager
glossary 243

Notices 247
Trademarks 249

Index 251

iv IBM Tivoli Network Manager IP Edition: Event Management Guide

About this publication

IBM Tivoli Network Manager IP Edition provides detailed network discovery,
device monitoring, topology visualization, and root cause analysis (RCA)
capabilities. Network Manager can be extensively customized and configured to
manage different networks. Network Manager also provides extensive reporting
features, and integration with other IBM products, such as IBM Tivoli Application
Dependency Discovery Manager, IBM Tivoli Business Service Manager and IBM
Systems Director.

The IBM Tivoli Network Manager IP Edition Event Management Guide describes how
to use IBM® Tivoli® Network Manager IP Edition to poll network devices.

Intended audience
This publication is intended for users, and system and network administrators who
are responsible for configuring IBM Tivoli Network Manager IP Edition.

IBM Tivoli Network Manager IP Edition works in conjunction with IBM Tivoli
Netcool/OMNIbus; this publication assumes that you understand how IBM Tivoli
Netcool/OMNIbus works. For more information on IBM Tivoli Netcool/OMNIbus,
see the publications described in “Publications” on page vii.

What this publication contains

This publication contains the following sections:
v Chapter 1, “About polling the network,” on page 1

Describes poll policies and poll definitions, and how they interact to create a
network poll.

v Chapter 2, “Enabling and disabling polls,” on page 11
Describes how to enable and disable polls.

v Chapter 3, “Creating polls,” on page 13
Describes how to create polls, both by copying an existing poll and using the
Poll Policy Wizard.

v Chapter 4, “Creating new poll definitions,” on page 23
Describes how to create new poll definitions.

v Chapter 5, “Changing polls,” on page 31
Describes how to change polls.

v Chapter 6, “Deleting poll policies,” on page 47
Describes how to delete poll policies when they are no longer required.

v Chapter 7, “Deleting poll definitions,” on page 49
Describes how to delete poll definitions when they are no longer required.

v Chapter 8, “Managing adaptive polling,” on page 51
Adaptive polls dynamically react to events on the network. The chapter
describes adaptive polls that manage a wide range of network problem
scenarios.

v Chapter 9, “Administering network polling,” on page 59

© Copyright IBM Corp. 2006, 2016 v

Describes how to use the command-line interface to manage multiple pollers,
copy network polls across network domains, and suspend network polling.

v Chapter 10, “Troubleshooting ping polling,” on page 81
Describes how to ensure that the important IP addresses in your network are
being polled as expected by Network Manager.

v Chapter 11, “About event enrichment and correlation,” on page 83
Describes how the Event Gateway performs event enrichment, and how events
are passed to plug-in processes such as root-cause analysis (RCA) and failover,
which take further action based on the data in the enriched event. Also describes
the mechanism by which the enriched event is passed back to the ObjectServer.

v Chapter 12, “Configuring event enrichment,” on page 153
Describes how to configure the way an event is processed as it passes through
the Event Gateway.

v Chapter 13, “Configuring Event Gateway plug-ins,” on page 161
Describes how to configure the Event Gateway plug-ins.

v Chapter 14, “Configuring root-cause analysis,” on page 169
Describes how to configure the Event Gateway RCA plug-in.

v Appendix A, “Default poll policies,” on page 173
Describes the poll policies that are included with an installation of IBM Tivoli
Network Manager IP Edition

v Appendix B, “Default poll definitions,” on page 179
Describes the poll definitions that are included with an installation of IBM Tivoli
Network Manager IP Edition

v Appendix C, “Example trigger and clear thresholds,” on page 187
Provides example threshold formulas to set up the clear and trigger thresholds
for generic threshold poll definitions.

v Appendix D, “Syntax for poll definition expressions,” on page 189
Reference information to support building of complex threshold expressions to
use in basic and generic threshold poll definitions.

v Appendix E, “Configuration of the Probe for Tivoli Netcool/OMNIbus,” on page
195
Describes the Probe for Tivoli Netcool/OMNIbus, the probe that enables events
generated by the Network Manager IP Edition polls to be sent to the Tivoli
Netcool/OMNIbus ObjectServer.

v Appendix F, “Network Manager event categories,” on page 207
The events that are raised by Network Manager fall into two categories: events
about the network being monitored and events about Network Manager
processes. This appendix provides more information on these events.

v Appendix G, “Polling databases,” on page 213
Describes the structure of databases used for polling.

v Appendix H, “Event enrichment databases,” on page 231
Describes the structure of databases used for event enrichment.

vi IBM Tivoli Network Manager IP Edition: Event Management Guide

Publications
This section lists publications in the Network Manager library and related
documents. The section also describes how to access Tivoli publications online and
how to order Tivoli publications.

Your Network Manager library

The following documents are available in the Network Manager library:
v IBM Tivoli Network Manager IP Edition Release Notes, GI11-9354-00

Gives important and late-breaking information about IBM Tivoli Network
Manager IP Edition. This publication is for deployers and administrators, and
should be read first.

v IBM Tivoli Network Manager Getting Started Guide, GI11-9353-00
Describes how to set up IBM Tivoli Network Manager IP Edition after you have
installed the product. This guide describes how to start the product, make sure it
is running correctly, and discover the network. Getting a good network
discovery is central to using Network Manager IP Edition successfully. This
guide describes how to configure and monitor a first discovery, verify the results
of the discovery, configure a production discovery, and how to keep the network
topology up to date. Once you have an up-to-date network topology, this guide
describes how to make the network topology available to Network Operators,
and how to monitor the network. The essential tasks are covered in this short
guide, with references to the more detailed, optional, or advanced tasks and
reference material in the rest of the documentation set.

v IBM Tivoli Network Manager IP Edition Product Overview, GC27-2759-00
Gives an overview of IBM Tivoli Network Manager IP Edition. It describes the
product architecture, components and functionality. This publication is for
anyone interested in IBM Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Installation and Configuration Guide,
SC27-2760-00
Describes how to install IBM Tivoli Network Manager IP Edition. It also
describes necessary and optional post-installation configuration tasks. This
publication is for administrators who need to install and set up IBM Tivoli
Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Administration Guide, SC27-2761-00
Describes administration tasks for IBM Tivoli Network Manager IP Edition, such
as how to administer processes, query databases and start and stop the product.
This publication is for administrators who are responsible for the maintenance
and availability of IBM Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Discovery Guide, SC27-2762-00
Describes how to use IBM Tivoli Network Manager IP Edition to discover your
network. This publication is for administrators who are responsible for
configuring and running network discovery.

v IBM Tivoli Network Manager IP Edition Event Management Guide, SC27-2763-00
Describes how to use IBM Tivoli Network Manager IP Edition to poll network
devices, to configure the enrichment of events from network devices, and to
manage plug-ins to the Tivoli Netcool/OMNIbus Event Gateway, including
configuration of the RCA plug-in for root-cause analysis purposes. This
publication is for administrators who are responsible for configuring and
running network polling, event enrichment, root-cause analysis, and Event
Gateway plug-ins.

About this publication vii

v IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide,
GC27-2765-00
Describes how to use IBM Tivoli Network Manager IP Edition to troubleshoot
network problems identified by the product. This publication is for network
operators who are responsible for identifying or resolving network problems.

v IBM Tivoli Network Manager IP Edition Network Visualization Setup Guide,
SC27-2764-00
Describes how to configure the IBM Tivoli Network Manager IP Edition network
visualization tools to give your network operators a customized working
environment. This publication is for product administrators or team leaders who
are responsible for facilitating the work of network operators.

v IBM Tivoli Network Manager IP Edition Management Database Reference,
SC27-2767-00
Describes the schemas of the component databases in IBM Tivoli Network
Manager IP Edition. This publication is for advanced users who need to query
the component databases directly.

v IBM Tivoli Network Manager IP Edition Topology Database Reference, SC27-2766-00
Describes the schemas of the database used for storing topology data in IBM
Tivoli Network Manager IP Edition. This publication is for advanced users who
need to query the topology database directly.

v IBM Tivoli Network Manager IP Edition Language Reference, SC27-2768-00
Describes the system languages used by IBM Tivoli Network Manager IP
Edition, such as the Stitcher language, and the Object Query Language. This
publication is for advanced users who need to customize the operation of IBM
Tivoli Network Manager IP Edition.

v IBM Tivoli Network Manager IP Edition Perl API Guide, SC27-2769-00
Describes the Perl modules that allow developers to write custom applications
that interact with the IBM Tivoli Network Manager IP Edition. Examples of
custom applications that developers can write include Polling and Discovery
Agents. This publication is for advanced Perl developers who need to write such
custom applications.

v IBM Tivoli Monitoring for Tivoli Network Manager IP User's Guide, SC27-2770-00
Provides information about installing and using IBM Tivoli Monitoring for IBM
Tivoli Network Manager IP Edition. This publication is for system
administrators who install and use IBM Tivoli Monitoring for IBM Tivoli
Network Manager IP Edition to monitor and manage IBM Tivoli Network
Manager IP Edition resources.

Prerequisite publications

To use the information in this publication effectively, you must have some
prerequisite knowledge, which you can obtain from the following publications:
v IBM Tivoli Netcool/OMNIbus Installation and Deployment Guide, SC23-9680

Includes installation and upgrade procedures for Tivoli Netcool/OMNIbus, and
describes how to configure security and component communications. The
publication also includes examples of Tivoli Netcool/OMNIbus architectures and
describes how to implement them.

v IBM Tivoli Netcool/OMNIbus User's Guide, SC23-9683
Provides an overview of the desktop tools and describes the operator tasks
related to event management using these tools.

v IBM Tivoli Netcool/OMNIbus Administration Guide, SC23-9681

viii IBM Tivoli Network Manager IP Edition: Event Management Guide

Describes how to perform administrative tasks using the Tivoli
Netcool/OMNIbus Administrator GUI, command-line tools, and process control.
The publication also contains descriptions and examples of ObjectServer SQL
syntax and automations.

v IBM Tivoli Netcool/OMNIbus Probe and Gateway Guide, SC23-9684
Contains introductory and reference information about probes and gateways,
including probe rules file syntax and gateway commands.

v IBM Tivoli Netcool/OMNIbus Web GUI Administration and User's Guide SC23-9682
Describes how to perform administrative and event visualization tasks using the
Tivoli Netcool/OMNIbus Web GUI.

Accessing terminology online

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the IBM Knowledge Center Web site
at:

http://www-01.ibm.com/support/knowledgecenter/

Network Manager documentation is located under the Cloud & Smarter
Infrastructure node on that Web site.

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File > Print window that allows your PDF reading application to print
letter-sized pages on your local paper.

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to the following Web site:

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
2. Select your country from the list and click Go. The Welcome to the IBM

Publications Center page is displayed for your country.
3. On the left side of the page, click About this site to see an information page

that includes the telephone number of your local representative.

About this publication ix

http://www.ibm.com/software/globalization/terminology
http://www-01.ibm.com/support/knowledgecenter/
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

Accessibility features

The following list includes the major accessibility features in Network Manager:
v The console-based installer supports keyboard-only operation.
v The console-based installer supports screen reader use.
v Network Manager provides the following features suitable for low vision users:

– All non-text content used in the GUI has associated alternative text.
– Low-vision users can adjust the system display settings, including high

contrast mode, and can control the font sizes using the browser settings.
– Color is not used as the only visual means of conveying information,

indicating an action, prompting a response, or distinguishing a visual
element.

v Network Manager provides the following features suitable for photosensitive
epileptic users:
– Web pages do not contain anything that flashes more than two times in any

one second period.

The accessibility of the Network Manager Knowledge Center is described in the
Knowledge Center itself.

Extra steps to configure Internet Explorer for accessibility

If you are using Internet Explorer as your web browser, you might need to
perform extra configuration steps to enable accessibility features.

To enable high contrast mode, complete the following steps:
1. Click Tools > Internet Options > Accessibility.
2. Select all the check boxes in the Formatting section.

If clicking View > Text Size > Largest does not increase the font size, click Ctrl +
and Ctrl -.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

x IBM Tivoli Network Manager IP Edition: Event Management Guide

http://www.ibm.com/able
http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa

Conventions used in this publication
This publication uses several conventions for special terms and actions and
operating system-dependent commands and paths.

Typeface conventions

This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip: and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs)
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

About this publication xi

http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

Operating system-dependent variables and paths

This publication uses environment variables without platform-specific prefixes and
suffixes, unless the command applies only to specific platforms. For example, the
directory where the Network Manager core components are installed is represented
as NCHOME.

When using the Windows command line, preface and suffix environment variables
with the percentage sign %, and replace each forward slash (/) with a backslash (\)
in directory paths. For example, on Windows systems, NCHOME is %NCHOME%.

On UNIX systems, preface environment variables with the dollar sign $. For
example, on UNIX, NCHOME is $NCHOME.

The names of environment variables are not always the same in the Windows and
UNIX environments. For example, %TEMP% in Windows environments is
equivalent to $TMPDIR in UNIX environments. If you are using the bash shell on
a Windows system, you can use the UNIX conventions.

xii IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 1. About polling the network

To poll the network, Network Manager periodically sends queries to the devices on
the network. These queries determine the behavior of the devices, for example
operational status, or the data in the Management Information Base (MIB)
variables of the devices.

Network polling is controlled by poll policies. Poll policies consist of the following:
v Poll definitions, which define the data to retrieve.
v Poll scope, consisting of the devices to poll. The scope can also be modified at a

poll definition level to filter based on device class and interface.
v Polling interval and other poll properties.

Network Manager uses the IBM Tivoli Netcool/OMNIbus SNMP trap probe and
the Syslog probe to monitor the network. To run Tivoli Netcool/OMNIbus probes,
use Tivoli Netcool/OMNIbus process control.

For more information about how to use Tivoli Netcool/OMNIbus process control,
see the IBM Tivoli Netcool/OMNIbus Administration Guide.

The polling process is controlled by the ncp_poller process. The ncp_poller process
stores SNMP information in the ncmonitor database; other data is stored
in-memory.

Network Manager has a multiple poller mechanism to distribute the load. If the
default poller cannot handle the polling demands for your network, you might
need to use the multiple poller feature.
Related tasks:
“Administering multiple pollers” on page 65
If multiple pollers are needed to poll your network, you can set up Network
Manager to administer the multiple poller feature. You can add pollers or remove
pollers, or use a poller ID to associate a specific poller with a policy.
Related reference:
“SNMP tables for polling in the ncmonitor database” on page 213
The SNMP tables in the ncmonitor database are used by the polling engine,
ncp_poller, to store information on how to access each discovered device using
SNMP.

Poll policies
Poll policies contain all the properties of a network poll operation. They specify
how often a device is polled, the type of polling mechanisms employed to do the
polling, and the devices to be polled.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

© Copyright IBM Corp. 2006, 2016 1

Poll policy parameters
Use this information to understand the parameters of a poll policy.

Use the poll policy to define the following parameters:
v Name of the poll policy
v Enablement or disablement: A poll policy must be enabled for polling to take

place.
v Poll definitions: A poll policy can have one or more poll definitions associated

with it. If interface-level filtering is required, the poll definition must contain
certain settings. For each poll definition associated with the policy, you can
specify whether to store polled data for historical reporting. If this parameter is
set, the data is stored in the ncpolldata database schema.

Restriction: Storage of polled data is not supported for the Cisco Remote Ping,
the Juniper Remote Ping, and the Generic Threshold poll definitions.

v Polling interval
v Poller to which to assign the poll policy, if the multiple poller feature is set up.
v Scope. This contains:

– Network views: Specify the network views containing the devices that you
wish to poll.

– Device filters: Refine the list of devices that you want to be polled by filtering
against the values of fields in the mainNodeDetails table of the Network
Connectivity and Inventory Model (NCIM) database. Multiple filters can be
combined in a Boolean relationship.

Network Manager IP Edition provides default poll policies and definitions. You
might have other polls available if you have migrated poll settings during the
installation process of Network Manager IP Edition.

Poll policy scope
The poll policy scope defines the devices or device interfaces to be polled.

A poll policy scope can be described as a series of filters. If, at any stage, a filter is
not defined, then all devices pass through. The output of this set of filters can be
either a set of devices, or, if the interface filter is defined, a set of devices
interfaces. This is illustrated in the following figure.

2 IBM Tivoli Network Manager IP Edition: Event Management Guide

▌1▐ NCIM
Start with all devices defined for a single domain in the NCIM topology
database.

▌2▐ Network Views
If there are any network views associated with the poll policy, then the
policy scope is restricted to the devices contained by those views. If no
network views are associated to the poll policy, then all devices pass
through this stage. This second situation is equivalent to selecting the All
Devices option in the Network Views tab of the Poll Policy Editor and the
Poll Policy Wizard.

▌3▐ Device Filter
If there is a device filter defined for the poll policy, then the policy scope is
further restricted to the set of devices matching the filter. If no device filter
is defined then all devices that passed the Network Views filter pass
through this stage. At this point, there is a set of devices available that are
in scope for this poll policy. For each poll definition assigned to the policy
there can be a different set of network entities in scope based on further
filtering.

Poll Policy

Network Views

Monitored
Entities

Monitored
Entities

Device Filter

Poll
Definition

Device Class

Interface Filter

Poll
Definition

Device Class

Interface Filter

NCIM

6

1

2

3

4

5

6

4

5

6

Figure 1. Poll policy scope

Chapter 1. About polling the network 3

▌4▐ Device Class
For each poll definition assigned to the policy, the device class restricts the
devices in scope based on the class selection. If no device classes are
selected then no filtering occurs.

▌5▐ Interface Filter
If an interface filter is defined, and assuming that this interface filter is
valid for the poll in question, then this interface filter is applied to all
interfaces contained by the devices that have passed the filters above. The
output is a set of in-scope interfaces. If no interface filter is defined then
the output is the set of devices that passed the Device Class filter.

Poll definitions
Poll definitions determine how to poll a network entity. You must associate each
poll policy with at least one poll definition. A poll policy can be associated with
multiple poll definitions.
Related reference:
Appendix B, “Default poll definitions,” on page 179
Network Manager IP Edition provides a number of default poll definitions that
fulfil the most common polling requirements.

Poll definition parameters
Use this information to understand the parameters of a poll definition.

Network Manager provides default poll policies and definitions.

Use the poll definition to define the following parameters:
v Poll definition name
v Poll definition type: This determines the polling mechanism that the poll definition

uses. The following polling mechanisms are used:
– Ping polling
– SNMP polling

v Severity level of the event that is generated

Important: The severity level must correspond to a valid severity level as
defined in IBM Tivoli Netcool/OMNIbus. For a listing of available severity
levels, refer to the IBM Tivoli Network Manager IP Edition Network Troubleshooting
Guide.

v Short description of the poll definition.
v Basic threshold poll definition type only: data label. A label used to associate the

data collected by a basic threshold poll definition with a report. When defining
the report, you pick the data to present in the report using the data label. This
enables a report to present data tagged with the same data label but collected by
more than one poll definition. For a listing of summary reports, refer to the IBM
Tivoli Network Manager IP Edition Administration Guide.

v Scope of the poll definition: optionally which device class and interface filters to
apply.

v Threshold poll definitions only: the threshold settings for generating and
clearing an alert.

4 IBM Tivoli Network Manager IP Edition: Event Management Guide

Polling mechanisms
Poll definitions use one of two possible polling mechanisms: ping polling and
SNMP polling. All poll definitions are based on either of these mechanisms.

Ping polling
Ping polling determines the availability of a network device or interface by using
an ICMP echo request.

The ping process ensures that a device is still present, live, and can be contacted in
the network by periodically sending an ICMP packet to an IP address and waiting
for a response.

A ping poll can have the following results:

Successful
A response to the ping packets is received. No alerts are generated.

Failure
No response to the ping packets is received within the time specified in the
poll definition. Alerts are raised for network entities that do not respond.

Restore
A device that was unreachable on the last ping attempt becomes reachable
again. An alert is generated to clear the ping failure alert.

Ping polling can be performed on either a chassis or an interface of a device. In the
case of a chassis, the ICMP packets are sent to the IP address of a main node
device. The main node IP address is also associated with an interface. In the case
of interfaces, the ICMP packets are sent to the IP address of each interface.
Consequently, if you enable ping polling for both chassis and interfaces, the traffic
on main-node IP addresses doubles.

Remember: By default, only the chassis ping poll is enabled on all devices within
the discovered network topology, with the exception of end-node devices, such as
desktops and printers.

SNMP polling
SNMP polling involves retrieving Management Information Base (MIB) variables
from devices in order to determine faulty behavior or connection problems. Faulty
devices or faulty connections are then diagnosed by applying predefined formulas
to the extracted MIB variables.

The SNMP Helper is used by polling to issue SNMP requests to network devices.
For information on how to configure the SNMP Helper, see the IBM Tivoli Network
Manager IP Edition Installation and Configuration Guide.

Link state polling:

Link state polling monitors changes to the status of the ifOperStatus and
ifAdminStatus interface MIB variables. If the value of these variables changes
between poll intervals, an event is raised.

Fix Pack 4

You can determine the initial state of link state polls as follows:

v Check the state of existing link state events on the interface. If the interface has
no existing link state events, the initial state is set to clear.

Chapter 1. About polling the network 5

v Poll the interface by setting the UseFirstPollForInitialState parameter in the
$NCHOME/etc/precision/NcPollerSchema.cfg configuration file.

Example

If the value of ifOperStatus was 1 (up) during the previous poll, and changes to 2
(down) in the current poll, an event is raised.

The following table shows the events that are generated as a result of the changes
in interface status. Also, an event is generated when a poll fails to return any data.
An event with a clear severity is generated when a poll to the same device later
succeeds.

Table 1. Events generated by SNMP link state polling

Status of the
ifAdminStatus MIB
variable between
poll intervals

Status of the
ifOperStatus MIB
variable between
poll intervals Event generated Event Severity

Remains 1 (up) Changes from 1 (up)
to 2 (down)

The interface has
gone down.

Minor

Remains 1 (up) Changes from 2
(down) to 1 (up)

The interface has
come up.

Clear

Changes from 1 (up)
to 2 (down)

Changes from 2
(down) to 1 (up)

The interface has
come up, although
it should be down.

Clear

Changes from 1 (up)
to 2 (down)

Remains 2 (down) An administrator
has confirmed that
the interface
should be down.

Clear

Changes from 2
(down) to 1 (up)

Changes from 1 (up)
to 2 (down)

The interface has
gone down.

Minor

Changes from 2
(down) to 1 (up)

Remains 2 (down) An administrator
has instructed the
interface to come
up, but it has not.

Minor

Related tasks:
“Configuring Link State polling” on page 65
Specify how the ncp_poller process determines the initial state for Link State polls
when there is no existing event. The ncp_poller process can use the first poll to
determine the initial state of Link State polls, or assume a Clear state.

Remote ping polling:

During remote ping polling, enterprise-specific device MIBs are used to verify the
status of the Multi-Protocol Label Switching (MPLS) path between devices. Specific
MIB modules allow a management station to initiate ping operations remotely.
With SNMP remote ping operations you can monitor ping failures by using SNMP.

During remote ping poll operations, Network Manager IP Edition instructs a
Provider Edge (PE) device to periodically ping the Customer Edge (CE) device to
which it is attached. The result of that remote ping operation provides information
about whether the route (the MPLS path) from the PE device to the CE device is
available or down.

6 IBM Tivoli Network Manager IP Edition: Event Management Guide

Restriction: Remote ping operations are currently available for Cisco and Juniper
devices only.

For information about setting SNMP passwords, see the IBM Tivoli Network
Manager IP Edition Discovery Guide.

Prerequisites for remote ping polling

Before remote ping polling can operate, the following prerequisites must be met:
v You must have write access to the PE device.
v The MPLS paths must have been discovered, and the data transferred to the

NCIM database. In NCIM, the data must be located as follows:
– Virtual Private Network Router Forwarding (VRF) tables must be listed in the

VPNRouteForwarding table.
– Links from PE to CE devices must be listed in the connects table.

v For Juniper remote ping polling, you also require access to Juniper devices
through the View-Based Access Control Model (VACM).

For more information about the VPNRouteForwarding table and the connects
table, see the IBM Tivoli Network Manager IP Edition Topology Database Reference.

Threshold polling:

During threshold polling, predefined formulas are applied to the selected MIB
variables, and if the threshold is exceeded by the MIB variable, then an event is
generated. A Clear event is generated when the value of the MIB variable either
falls below the threshold-value, or falls below a different clear-value.

You can set two thresholds:

Generate threshold
Required: An event is generated when the value of the MIB variable or
variables exceeds the threshold.

Clear threshold
Optional: A clear-event is generated when the value of the MIB variable
falls below the threshold.

If you do not specify a clear-threshold, the raised event is cleared automatically
when the value of the MIB variable or variables no longer exceeds the value of the
generate-threshold.

Example of threshold polling

The Monitoring Administrator wants to identify all Cisco 29xx routers that have
CPU usage greater than 75%. Using SNMP polling, the administrator can monitor
the behavior of all Cisco 29xx routers in the network, and define that an event is
generated for each of these routers when their CPU usage exceeds 75%. A
clear-threshold can also be set to generate a notification when CPU usage drops
below 60%; if no clear-threshold is specified, a clear-event is generated when the
CPU usage no longer exceeds 75%.

Chapter 1. About polling the network 7

Basic and generic threshold polling

Use basic threshold polling to apply simple formulas to the MIB variables, or for
filtering the scope at device and interface level. To filter at interface level, the poll
definition must be set up for interface filtering.

Use generic threshold polling for complex formulas, or for filtering the scope at
device level only.

Poll definition types
Each poll definition is based on a poll definition type. Poll definition types can be
grouped according to the polling mechanism that they use.

Based on the polling mechanisms, the poll definition type restricts the scope of the
poll operation in which it is used.

Ping polling mechanism

The ping polling mechanism has the following poll definition types:

Chassis ping
Used for pinging the management interface of a network device or the
main interface of an end-node.

Interface ping
Used for ping operations on interfaces within devices. An interface ping
poll definition has optional interface-level filtering.

SNMP polling mechanism

The SNMP polling mechanism has the following poll definition types:

Generic threshold
Used for setting formulas to apply against MIB variables. A generic
threshold poll definition consists of the following thresholds:

Trigger threshold
Required: An event is generated when the value of the MIB
variable or variables exceeds the threshold.

Clear threshold
Optional: A Clear event is generated when the value of the MIB
variable falls below the threshold.

Basic threshold
Use a basic threshold to collect poll data for a single MIB variable or
expression. You can present the data collected in reports or display it in
MIB graphs. An event is generated when the trigger threshold condition
defined in the poll definition is met, and is cleared when the clear
threshold condition is met.

SNMP Link state
Used for checking the administrative and operational status. An SNMP
link state poll definition has optional interface-level filtering.

Cisco remote ping
Used for checking the availability of devices by using Cisco-specific MIBs.

Juniper remote ping
For checking the availability of devices by using Juniper-specific MIBs.

8 IBM Tivoli Network Manager IP Edition: Event Management Guide

Data labels
Data labels are a mechanism that allows grouping of multiple poll definitions that
collect the same poll data within a single report. Data labels are only available in
basic threshold poll definitions. By default the data label takes the same name as
the poll definition but you can change this to meet your data labeling needs.

The following examples describe the use of data labels to enable a single report to
retrieve data from multiple poll definitions. A number of Network Manager
summary reports use data labels by default. For a listing of summary reports, refer
to the IBM Tivoli Network Manager IP Edition Administration Guide.

Multiple vendor-specific poll definitions

A summary report that presents data on the percentage usage of memory across
different vendor devices must retrieve poll data from multiple vendor-specific poll
definitions. By defining a common memoryPercentageUsage data label within each
of the vendor-specific poll definitions, the data retrieved by each of these different
poll definitions can be grouped within one report.

Poll definitions with different thresholds and event severities

A summary report that presents data on inbound discards on device interfaces
retrieves data from multiple poll definitions. Each of these poll definitions collects
the same poll data but applies different thresholds and event severities to this data.
By defining a common ifInDiscards data label within each of the different poll
definitions, the data retrieved by each of these poll definitions can be grouped
within a single report.

Default report to data label mapping

The following table lists the summary reports and the data labels used by default
by these summary reports.

Table 2. Default report to data label mapping

Report Data label

Router Health Summary memoryPercentageUsage

cpuBusy

Device Ingress Traffic Health Summary snmpInBandwidth

ifInDiscards

ifInErrors

Device Egress Traffic Health Summary snmpOutBandwidth

ifOutDiscards

ifOutErrors

Device Availability Summary systemUptime

Chapter 1. About polling the network 9

Ping polling properties and metrics
For chassis and interface ping polls, you can specify ping properties such as
timeout periods and number of ping retries. You can also collect ping metrics, such
as response time and packet loss.

You can specify the following ping properties when creating a chassis or interface
ping poll.

Timeout
Specify, in milliseconds, how long the polling process should wait for a
response from the target device before sending a new ping packet.

Retries
Specify how many times the polling process should attempt to ping the
target device before giving up. When Packet Loss metric collection is
enabled, the polling process sends this number of ping packets regardless
of whether a response is received.

Payload size
Select the size of the ICMP packet to be used for the ping request. Select
the default (32 bytes) or choose a custom size. This setting overrides the
value of IcmpData in the NcPollerSchema.cfg configuration file.

CAUTION:
Using a size smaller than 32 bytes may result in packets being dropped.

You can collect the following ping metrics when creating a chassis or interface ping
poll.

Response time
You can opt to collect data on the round trip time for ping tests. This is
measured in milliseconds. When Packet Loss is also being collected, this is
the average response time for each successful test.

Packet loss
You can opt to collect data on the number of ping packets for which the
polling process did not receive a response. This is stored as a percentage.

Multibyte data in poll definitions
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.

For information on how to configure Network Manager to use multibyte
characters, see the IBM Tivoli Network Manager IP Edition Installation and
Configuration Guide.

10 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 2. Enabling and disabling polls

To activate Network Manager polling, you must enable the poll policies. If a
network entity is off the network, disable the poll policy that polls that entity.

Tip: You can change the settings for a poll before enabling it. When creating your
own poll policies, use the default poll policies as examples.

By default, only the chassis ping poll is enabled on all devices within the
discovered network topology, with the exception of end-node devices, such as
desktops and printers.

Note: If you are enabling poll policies for a large number of devices, it is best
practice to wait until the poll policies are fully enabled before using the Network
Polling GUI to make any changes to the poll policies. Any changes to poll policies
causes the Polling engine, ncp_poller, to restart, and this can have unpredictable
results if ncp_poller was in the process of enabling poll policies. Use the Status
and Enabled columns in the Configure Poll Policies section of the Network Polling
GUI to determine if a poll policy has been enabled.

To enable or disable polls:
1. Click Administration > Network > Network Polling.
2. Select the check box next to the required policy or policies.
3. Optional: To enable the selected policy or policies, click Enable Selected

Policies .

4. Optional: To disable policies, click Disable Selected Policies .
5. Click OK.

© Copyright IBM Corp. 2006, 2016 11

12 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 3. Creating polls

Create polls if the existing default poll policies and definitions do not meet your
requirements. Either customize a copy of an existing or default poll, or create a
new poll from scratch.

Use the Poll Policy Editor to create a fully-featured poll policy with multiple poll
definitions and complete scoping facilities. Alternatively you can use the Poll
Policy Wizard to guide you through the creation of a poll policy; however, you can
only use the wizard to create a simple poll policy with a single existing poll
definition and limited scoping facilities.

Remember: The system enforces unique poll policy names within a domain.

Note: If you are enabling poll policies for a large number of devices, it is best
practice to wait until the poll policies are fully enabled before using the Network
Polling GUI to make any changes to the poll policies. Any changes to poll policies
causes the Polling engine, ncp_poller, to restart, and this can have unpredictable
results if ncp_poller was in the process of enabling poll policies. Use the Status
and Enabled columns in the Configure Poll Policies section of the Network Polling
GUI to determine if a poll policy has been enabled.
Related concepts:
“Poll definition types” on page 8
Each poll definition is based on a poll definition type. Poll definition types can be
grouped according to the polling mechanism that they use.
Related tasks:
Chapter 5, “Changing polls,” on page 31
To change a poll, make changes to either the poll policy, or the poll definition on
which the poll is based.
“Changing poll definitions” on page 36
Change existing poll definitions to customize them for your polling requirements.
You change poll definitions in the Poll Definition Editor; the steps you follow differ
depending on the poll definition type.
“Creating adaptive polls” on page 56
Create adaptive polls to enable the system to dynamically react to events on the
network.

Creating fully featured poll policies
Use the Poll Policy Editor to create a fully-featured poll policy with multiple poll
definitions and complete scoping features.

Using the Poll Policy Editor you can create a poll policy with the following
features:
v Multiple poll definitions. You can use existing poll definitions or you can create

new poll definitions.
v Network views. You can restrict the set of devices to poll to those contained by

the selected network views.
v Device Filter. You can further refine the list of devices selected by the network

views using this simple filter on the mainNodeDetails table.

© Copyright IBM Corp. 2006, 2016 13

Note: You can further restrict the poll policy scope by filtering the scope of each of
the poll definitions contained within this poll policy. You can filter poll definition
scope by device class and by interface.
1. Click Administration > Network > Network Polling.
2. Create a new policy by doing one of the following:

v To create a new policy from scratch, click Add New . The Poll Policy
Editor opens.

v To clone an existing policy, perform the following steps:
a. In the Select column select the check box next to the required row and

click Copy Selected Items .
b. Click OK. The copy is named using the following convention:

policyname_1, where policyname is the name of the copied policy. For
example, if you copied the policy bgpPeerState, then the copy will be
named bgpPeerState_1. Poll policies are ordered alphabetically so in this
example, the copy bgpPeerState_1 would appear in the list immediately
after the copied policy bgpPeerState.

c. Click the name of the copy of the poll policy in the list to open the Poll
Policy Editor.

3. From the Poll Policy Properties tab, specify a value for each property:

Name Type the unique name that you want to give the poll policy. Only
alphanumeric characters, spaces and underscores are allowed.

Poll Enabled
Select this check box to enable the poll policy.

Poll Definitions
Use this table to specify one or more poll definitions for the poll
policy.

Refresh
Refreshes the data in the table. This updates the table with
any changes made by other users since you logged on or since
you last clicked Refresh.

Delete Selected Item(s)
Deletes the selected rows.

Add Poll Definition(s) to this Policy
Opens the Poll Definitions panel where you can specify one or
more poll definitions to add to the poll policy.

Search
Searches the table for text entered in the Search field. By
default the search is performed on all of the columns in the
table. Click the down arrow to the left of the Search field to
limit the search to one or more columns in the table.
v Select the checkboxes corresponding to the columns that

you want to limit the search to.
v Select All Columns to revert to the default search settings.
v Click OK once you have made your selection.

14 IBM Tivoli Network Manager IP Edition: Event Management Guide

Poll Definitions table
The list of poll definitions attached to this poll policy is
presented in a table. You can perform the following actions on
this table. Any settings made are valid for this session only.

Hide Toolbar
Hides the toolbar. If the toolbar is hidden, click Show
Toolbar

to show the toolbar.

Sort Column
Click the column header to sort that column in
descending order. Click the column a second time to
sort the column in ascending order. Further clicks
toggle the column between descending and ascending
order. The meaning of ascending and descending
order varies according to the type of data in the
column:

Alphabetical data
Ascending order orders the data from a to z.
Descending order orders the data from z to a.

Numerical data
Ascending order orders the data from lowest
to highest. Descending order orders the data
from higest to lowest.

Icon Ascending order orders the icons from the
highest to lowest value associated with the
icon. Descending order orders the icons from
the lowest to highest value associated with the
icon. The values associated with each icon are
listed below.

Resize a column
Click and drag the vertical line separator to the right
of the column heading.

Select All/Clear All
Select the check box to select all rows. If all rows are selected,
clear the check box to clear all rows. Select the check box next
to a row to select a single row or to clear a single selected
row.

Store? Select the check box to store data collected by this poll
definition for reporting and historical MIB graphing purposes.

Note: This option is only available for poll definitions of type
Basic Threshold.

Name The name of a poll definition attached to this poll policy. Click
the name to edit the properties of this poll definition.

Type The type of poll definition.

Status Indicates whether the poll definition is in error. The full list of
values is provided in the following table.

Chapter 3. Creating polls 15

Table 3. Poll definition status

State Value Icon Description

Unknown -1 The status is unknown because the poll definition
has not been run yet.

No error 0 No error. Poll definition has been run without error.

Error Greater
than 0

There is an error in the poll definition. The poll
definition cannot be run. The error must be fixed
before the poll definition can be used. Hover over
the status icon for a pop-up with an indication of
the error.

Poll Interval
Specify the required interval in seconds between poll
operations. Click the arrows to change the value.

Description
Description of the poll definition.

Assign to Poller Instance
For the multiple poller feature only: Select the poller on which to run
the poll policy. If only a single poller is defined, the list is read-only.

Policy Throttle
The number of devices in certain types of network views, especially
event-based network views, can fluctuate and become large. In order
to prevent the Polling engine, ncp_poller, from become overloaded by
large numbers of devices in the network views attached to a policy,
you can place a limit on the number of devices attached to a poll
policy. This limit is called a policy throttle.

Specify the maximum number of entities to limit polling to. The poll
policy will poll no more than the number of entities specified here.

Note: Disable policy throttling by setting this value to zero. All new
poll policies have policy throttling disabled by default.

4. If you chose to add a poll definition to the poll policy then specify the poll
definitions to add in the Poll Definitions panel using the following buttons
and fields:

Refresh
Refreshes the data in the table. This updates the table with any
changes made by other users since you logged on or since you last
clicked Refresh.

Search
Searches the table for text entered in the Search field. By default the
search is performed on all of the columns in the table. Click the down
arrow to the left of the Search field to limit the search to one or more
columns in the table.
v Select the checkboxes corresponding to the columns that you want

to limit the search to.
v Select All Columns to revert to the default search settings.
v Click OK once you have made your selection.

16 IBM Tivoli Network Manager IP Edition: Event Management Guide

Poll Definitions table
The complete list of poll definitions defined on the system. Poll
definitions already attached to this poll policy have a greyed out
checkbox. You can perform the following actions on this table. Any
settings made are valid for this session only.

Hide Toolbar
Hides the toolbar. If the toolbar is hidden, click Show Toolbar

to show the toolbar.

Sort Column
Click the column header to sort that column in descending
order. Click the column a second time to sort the column in
ascending order. Further clicks toggle the column between
descending and ascending order. The meaning of ascending
and descending order varies according to the type of data in
the column:

Alphabetical data
Ascending order orders the data from a to z.
Descending order orders the data from z to a.

Numerical data
Ascending order orders the data from lowest to
highest. Descending order orders the data from higest
to lowest.

Icon Ascending order orders the icons from the highest to
lowest value associated with the icon. Descending
order orders the icons from the lowest to highest
value associated with the icon. The values associated
with each icon are listed below.

Resize a column
Click and drag the vertical line separator to the right of the
column heading.

Select All/Clear All
Select the check box to select all rows. If all rows are selected, clear
the check box to clear all rows. Select the check box next to a row to
select a single row or to clear a single selected row.

Name The name of a poll definition attached to this poll policy. Click the
name to edit the properties of this poll definition.

Type The type of poll definition.

Description
Description of the poll definition.

Store Poll Data
Select this check box to store the poll data so that it can be
subsequently retrieved for reporting. The data is stored in the
ncpolldata database.

Restriction: Storage of polled data is not supported for the Cisco
Remote Ping, the Juniper Remote Ping, and the Generic Threshold
poll definitions.

Interval
Specify the required interval in seconds between poll operations. Click
the arrows to change the value.

Chapter 3. Creating polls 17

5. Click the Network Views tab to set the poll scope. In the Network Views
tree, select the check boxes of the required network views. The Network
Views tree displays only those network views that belong to the network
domain in which this poll policy is defined. Cross-domain network views do
not appear, because poll policies apply to only one domain.
Attention: If you select the All Devices option, then the system polls all
devices that match the scope defined in the Device Filter tab. If no scope is
set then, if you select the All Devices option, the poll that you create will poll
all devices in the current network domain.
You can further filter the poll policy scope by filtering the scope of each of the
poll definitions contained within this poll policy. You can filter poll definition
scope by device class and by interface.

6. Optional: Click the Device Filter tab. This filters on devices on the
mainNodeDetails device table only. Define the filter by using one of the
following methods:
v Type an SQL WHERE statement in the field in the Filter column.

Note: SQL syntax is different for different databases. Refer to the
documentation for the topology database that you are using for the correct
SQL syntax.

v Click Edit to set up the filter by using the Filter Builder.
7. Optional: In the Filter Builder, build the required query on one of the two tabs

and then click OK:
v On the Basic tab, select a field, a comparator, and type a value. Use the %

character as a wildcard. The field is restricted to the selected attribute table.
v On the Advanced tab, type the required SQL WHERE statement.

Note: SQL syntax is different for different databases. Refer to the
documentation for the topology database that you are using for the correct
SQL syntax.

The information that you enter on the Basic tab is automatically written to the
Advanced tab.

8. Optional: To add filters on other attribute tables, click Add new row , and
repeat the steps to edit the row and build the filter.

9. Optional: To combine multiple filters, click All or Any:
v All: Only network entities that match all the specified filters are polled. For

example, if you create two filters, a network entity must match both filters.
v Any: Network entities that match any of the specified filters are polled.

10. Click Save.
Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related tasks:
“Adjusting polling bandwidth” on page 62
You can configure how much data is transferred by the Polling engine, ncp_poller,
and how often. You might want to adjust polling bandwidth to avoid network
congestion or to reduce the impact of large numbers of polling events occurring
simultaneously.
Related reference:

18 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Creating simple poll policies
Use the Poll Policy Wizard to guide you through the creation of a poll policy;
however, you can only use the wizard to create a simple poll policy with a single
existing poll definition and limited scoping features.

Using the Poll Policy Wizard you can create a simple poll policy with the
following limited poll definition and scoping features.
v Single poll definition. You can use a single existing poll definition only.
v Network views. You can restrict the set of devices to poll to those contained by

the selected network views.

Restriction: The Poll Policy Wizard does not provide a device filter to refine the
list of devices selected by the network views.

If you require a fully-featured poll policy with multiple poll definitions and full
scoping features, then use the Poll Policy Editor.
1. Click Administration > Network > Network Polling.

2. Click Launch Poll Configuration Wizard .
3. Click Next. Complete the Poll Policy Details page as follows:

Name Specify a name for the poll policy. Only alphanumeric characters,
spaces and underscores are allowed.

Interval
Specify the required interval in seconds between poll operations. Click
the arrows to change the value.

Poll Enabled
Specify whether the poll should be enabled. The poll is enabled by
default. To disable the poll, clear this check box.

Store Poll Data
Select this check box to store the poll data so that it can be
subsequently retrieved for reporting. The data is stored in the
ncpolldata database.

Restriction: Storage of polled data is not supported for the Cisco
Remote Ping, the Juniper Remote Ping, and the Generic Threshold poll
definitions.

Definition
Select a poll definition from the list.

4. Click Next. On the Poll Policy Scope Details page, select the check boxes of the
required network views. In the Network Views tree, select the check boxes of
the required network views. The Network Views tree displays only those
network views that belong to the network domain in which this poll policy is
defined. Cross-domain network views do not appear, because poll policies
apply to only one domain.
Attention: If you select the All Devices option, the poll that you create will
poll all devices in the current network domain.

Chapter 3. Creating polls 19

5. Click Next. On the Poll Policy Summary page, review the information that you
specified and click Finish.

Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related reference:
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Quick reference for poll policy creation based on custom data
You can create a poll policy that polls the network based on custom device data
collected as part of a discovery. Do this by configuring the poll policy scope to be a
network view organized by custom data. For example, you can configure the
discovery to collect custom data such as the customer name and customer type
associated with interfaces on a device. You can then create network views based on
this custom data; for example, you could create network views of devices
organized by customer name. You can then set your poll policy scope to poll
specified customer network views.

The steps are described in the following table.

Table 4. Quick reference for poll policy creation based on custom data

Action Further information

1. Configure discovery to tag devices or interfaces with
custom data.

For example, you can configure the discovery to tag
devices or interfaces with name-value pair tags such as
the customer name and the customer location associated
with that interface or device. You can do this using one
of the methods shown to the right.

If you are using the File finder to seed your discovery,
then you can add name-value pair tags to entities by
adding extra columns to the seed file read by the File
finder. For further information, see the IBM Tivoli
Network Manager IP Edition Discovery Guide.

If you are using the Ping finder to seed your discovery,
then you can assign name-value pair tags to interfaces or
devices using one of the following methods:

v Using unique IP addresses.

v Using a filtered set of IP addresses..

v If you choose the filter method. then you can use the
GetCustomTag stitcher to use logic to evaluate the
value part of the name-value pair.

For further information, see the IBM Tivoli Network
Manager IP Edition Discovery Guide.

2. Extend the NCIM topology database to store the
custom data.

For example, you can add name-value pair tags to the
NCIM entityDetails table. For further information, see
the IBM Tivoli Network Manager IP Edition Topology
Database Reference.

If you have configured discovery to collect multiple
custom data fields for each device or interface, then you
can create a new NCIM table to store this custom data.
For further information, see the IBM Tivoli Network
Manager IP Edition Topology Database Reference.

20 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 4. Quick reference for poll policy creation based on custom data (continued)

Action Further information

3. Create a network view or browse the Hop View to
display the parts of the network associated with the
custom data.

You can create a filtered network view or a dynamic
distinct network view to display the parts of the network
related to the custom data.

v Create a filtered network view to display parts of the
network based on topology database filters that use
the custom data. For example you could create a
filtered network view that uses the NCIM entityDetails
table to display all devices containing interfaces tagged
with a specified customer name.

v Create a distinct dynamic network view to display
parts of the network based on categories and
subcategories in the custom data. For example, you
could create a distinct dynamic view that uses the
NCIM entityDetails table to generate a set of customer
views, each view corresponding to one of the customer
names in the custom data. Each customer view would
display all devices containing interfaces tagged with
that customer name.

For further information, see the IBM Tivoli Network
Manager IP Edition Network Visualization Setup Guide.

You can use the advanced search in the Hop View to
find a device based on attributes within the custom data.
For example, you could use the Entity Search window
within the Hop View to browse the entityDetails table
and retrieve all devices for customers in a specific
location. For further information, see the IBM Tivoli
Network Manager IP Edition Network Troubleshooting Guide.

4. Create a poll policy that uses the network view created
in the previous step as the policy scope.

As you create the poll policy you are provided the
option to specify which network views to poll. By
selecting one or more of the network views that you
created in the previous step, you are able to poll devices
that contain interfaces tagged with a specified customer
name. For further information, see the IBM Tivoli Network
Manager IP Edition Event Management Guide.

Chapter 3. Creating polls 21

22 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 4. Creating new poll definitions

Use the Poll Definition Editor to guide you through the steps of creating a new
poll definition.

Before you create or change a poll definition, view an existing poll definition to
determine whether you can use it as a template to create a new poll definition.

Remember: The system enforces unique poll definition names within a domain.

Because the poll definition types differ, the Poll Definition Editor displays different
pages depending on which poll definition type you select.
Related tasks:
“Changing poll definitions” on page 36
Change existing poll definitions to customize them for your polling requirements.
You change poll definitions in the Poll Definition Editor; the steps you follow differ
depending on the poll definition type.
Chapter 3, “Creating polls,” on page 13
Create polls if the existing default poll policies and definitions do not meet your
requirements. Either customize a copy of an existing or default poll, or create a
new poll from scratch.
Related reference:
Appendix B, “Default poll definitions,” on page 179
Network Manager IP Edition provides a number of default poll definitions that
fulfil the most common polling requirements.

Creating basic threshold poll definitions
Create a basic threshold poll definition to run simple formulas against MIB
variables, or to create threshold polls with interface-level filtering.

Before you create or change a poll definition, view an existing poll definition to
determine whether you can use it as a template to create a new poll definition.

To create a basic threshold poll definition:
1. Click Administration > Network > Network Polling.

2. Click Add New . The New Poll Definition Type Selection page is
displayed.

3. Select Basic threshold from the list and click OK.
4. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically

© Copyright IBM Corp. 2006, 2016 23

populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

Data Label
Click the data label list and select one of the data labels from the list.
By default the data label takes the same name as the current poll
definition. To define a new data label, select <Add New Data Label>. The
field to the right of the list becomes active. Type the name of the new
data label in this field.

5. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.
Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

6. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

7. Click the Poll Data tab and specify the required formula:
v To specify a MIB Object Identifier (OID), select Single OID. Specify the

current or delta value of the required MIB variable and type the variable into
the next field.

v To specify a complex expression, select Expression and type the formula into
the field.

To select variables directly from the MIB tree, click Add MIB Object . From
the MIB tree, you can specify the current or previous values of the selected MIB
variable, or resolve the current value of the variable to the SNMP index.

8. Click the Threshold tab and specify the formulas for triggering events and
clearing events. The MIB OID or expression that you specified on the Poll Data
tab is written automatically into the formulas.
a. In the Trigger Threshold area, select a comparator from the list and type

the value against which to filter the MIB OID.
b. In the Description field, type a meaningful description of the trigger

formula. Add the MIB variable to the description in parentheses. The
description is displayed in the AEL when and event is raised. For example:
CPU usage high (avgBusy5=)

c. To insert the underlying eval statement into the description, position the

cursor before the closing parenthesis, click Add MIB Object , and

24 IBM Tivoli Network Manager IP Edition: Event Management Guide

navigate to the specified variable. Specify whether the current or previous
value of the variable is evaluated, or whether the value is resolved to the
SNMP index, and click OK. The statement is inserted, for example:
CPU usage high (avgBusy5=eval(text,"&SNMP.VALUE.sysName"))

d. Repeat steps 8a on page 24 to 8c on page 24 for the Clear Threshold area.
9. Click Save.
Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related reference:
“Example basic threshold expression” on page 44
Use this example basic threshold expression to understand how to compose
complex basic threshold expressions.
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Creating generic threshold poll definitions
Use the Poll Definition Editor to create new generic threshold poll definitions.

When creating a generic threshold definition, you set formulas and combine
formulas.

To create a generic threshold poll definition:
1. Click Administration > Network > Network Polling.

2. Click Add New . The New Poll Definition Type Selection page is
displayed.

3. Select Generic Threshold from the list and click OK.
4. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

Chapter 4. Creating new poll definitions 25

v If you created a poll definition by copying an existing poll
definition, then the Event ID contains the same value as the copied
poll definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to
the IBM Tivoli Network Manager IP Edition Network Troubleshooting
Guide

Description
Type a short description of the poll definition.

5. Click the Classes tab. In the Classes tree, select the check boxes of the
required classes.
Attention: If you leave all classes unchecked, then the system polls all
devices that match the scope defined in the poll policy that uses this poll
definition.

6. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

7. Click the Trigger Threshold tab. Build the formula that specifies the threshold
by using one of the following methods:
v In the Basic area, use the fields and options to build a formula. To select

values from the MIB tree, click Open MIB Tree .
v In the Advanced area, type the required eval statement in Object Query

Language (OQL).
8. Specify the message that is displayed in the AEL for the generated event:

a. In the Event description field, type the message.

b. To insert the MIB variables in the field, click Open MIB Tree . Set the
message to include either the current or previous SNMP value, or the
SNMP index, and click OK.

9. Required: Click the Clear Threshold tab. Every generic threshold poll
definition requires a clear threshold. Build the formula that specifies the
threshold by using one of the following methods:
v In the Basic area, use the fields and options to build a formula. To select

values from the MIB tree, click Open MIB Tree .
v In the Advanced area, type the required eval statement in Object Query

Language (OQL).

Tip: If you want the threshold to be cleared manually, create a clear threshold
that will not be reached.

10. Specify the message that is displayed in the AEL for the generated event:
a. In the Event description field, type the message.

b. To insert the MIB variables in the field, click Open MIB Tree . Set the
message to include either the current or previous SNMP value, or the
SNMP index, and click OK.

11. Click Save, then click OK.

26 IBM Tivoli Network Manager IP Edition: Event Management Guide

The poll definition is added to the bottom of the list.
Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related reference:
“Example generic threshold expression” on page 44
Use this example generic threshold expression to understand how to compose
complex generic threshold expressions.
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Creating chassis and interface ping poll definitions
Use the Poll Definition Editor to create chassis and interface ping poll definition
types.

You perform identical steps to create a poll definition based on all the above poll
definition types.

To create a chassis or interface ping poll definition:
1. Click Administration > Network > Network Polling.

2. Click Add New . The New Poll Definition Type Selection page is
displayed.

3. Select Chassis Ping or Interface Ping from the list.
4. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Chapter 4. Creating new poll definitions 27

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

5. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.
Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

6. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

7. Click the Ping tab and complete the Ping Properties fields as follows:

Timeout
Specify, in milliseconds, how long the polling process should wait for a
response from the target device before sending a new ping packet.

Retries
Specify how many times the polling process should attempt to ping the
target device before giving up. When Packet Loss metric collection is
enabled, the polling process sends this number of ping packets
regardless of whether a response is received.

Collect Ping Metrics

Response Time
Check the box to collect the time taken by devices to respond
to a ping request.

Packet Loss
Check the box to collect data about lost packets.

Payload Size
Select the size of the ICMP packet to be used for the ping request.
Select the default (32 bytes) or choose a custom size. This setting
overrides the value of IcmpData in the NcPollerSchema.cfg
configuration file.

CAUTION:
Using a size smaller than 32 bytes may result in packets being
dropped.

8. Click Save, then click OK.
Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.

28 IBM Tivoli Network Manager IP Edition: Event Management Guide

Creating remote ping and link state poll definitions
Use the Poll Definition Editor to create new poll definitions with the following poll
definition types: Cisco remote ping, Juniper remote ping, SNMP link state.

You perform identical steps to create a poll definition based on all the above poll
definition types.

To create a remote ping poll definition, or an SNMP link state poll definition:
1. Click Administration > Network > Network Polling.

2. Click Add New . The New Poll Definition Type Selection page is
displayed.

3. Select the required definition type from the list:
v Cisco Remote Ping

v Juniper Remote Ping

v SNMP Link State

4. Click OK.
5. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

6. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.
Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

Chapter 4. Creating new poll definitions 29

7. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

8. Click Save, then click OK.
Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.

30 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 5. Changing polls

To change a poll, make changes to either the poll policy, or the poll definition on
which the poll is based.
Related concepts:
“Poll policies” on page 1
Poll policies contain all the properties of a network poll operation. They specify
how often a device is polled, the type of polling mechanisms employed to do the
polling, and the devices to be polled.
“Poll definitions” on page 4
Poll definitions determine how to poll a network entity. You must associate each
poll policy with at least one poll definition. A poll policy can be associated with
multiple poll definitions.
Related tasks:
Chapter 3, “Creating polls,” on page 13
Create polls if the existing default poll policies and definitions do not meet your
requirements. Either customize a copy of an existing or default poll, or create a
new poll from scratch.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

Changing poll policies
Use the Poll Policy Editor to change the settings of existing poll policies.

Before you create or change a poll policy, view an existing poll policy to determine
whether you can use the poll as a template to create a new poll policy.

Note: If you are enabling poll policies for a large number of devices, it is best
practice to wait until the poll policies are fully enabled before using the Network
Polling GUI to make any changes to the poll policies. Any changes to poll policies
causes the Polling engine, ncp_poller, to restart, and this can have unpredictable
results if ncp_poller was in the process of enabling poll policies. Use the Status
and Enabled columns in the Configure Poll Policies section of the Network Polling
GUI to determine if a poll policy has been enabled.

To change a poll policy:
1. Click Administration > Network > Network Polling.
2. Click the required poll policy. The Poll Policy Editor is displayed; the settings

of the selected poll policy are automatically loaded into the fields.
3. Under Poll Policy Properties, specify a value for the following fields:

Name Type the unique name that you want to give the poll policy. Only
alphanumeric characters, spaces and underscores are allowed.

Poll Enabled
Select this check box to enable the poll policy.

Poll Definitions
Use this table to specify one or more poll definitions for the poll policy.

© Copyright IBM Corp. 2006, 2016 31

Refresh
Refreshes the data in the table. This updates the table with any
changes made by other users since you logged on or since you
last clicked Refresh.

Delete Selected Item(s)
Deletes the selected rows.

Add Poll Definition(s) to this Policy
Opens the Poll Definitions panel where you can specify one or
more poll definitions to add to the poll policy.

Search
Searches the table for text entered in the Search field. By
default the search is performed on all of the columns in the
table. Click the down arrow to the left of the Search field to
limit the search to one or more columns in the table.
v Select the checkboxes corresponding to the columns that you

want to limit the search to.
v Select All Columns to revert to the default search settings.
v Click OK once you have made your selection.

Poll Definitions table
The list of poll definitions attached to this poll policy is
presented in a table. You can perform the following actions on
this table. Any settings made are valid for this session only.

Hide Toolbar
Hides the toolbar. If the toolbar is hidden, click Show
Toolbar

to show the toolbar.

Sort Column
Click the column header to sort that column in
descending order. Click the column a second time to
sort the column in ascending order. Further clicks
toggle the column between descending and ascending
order. The meaning of ascending and descending order
varies according to the type of data in the column:

Alphabetical data
Ascending order orders the data from a to z.
Descending order orders the data from z to a.

Numerical data
Ascending order orders the data from lowest to
highest. Descending order orders the data from
higest to lowest.

Icon Ascending order orders the icons from the
highest to lowest value associated with the
icon. Descending order orders the icons from
the lowest to highest value associated with the
icon. The values associated with each icon are
listed below.

32 IBM Tivoli Network Manager IP Edition: Event Management Guide

Resize a column
Click and drag the vertical line separator to the right of
the column heading.

Select All/Clear All
Select the check box to select all rows. If all rows are selected,
clear the check box to clear all rows. Select the check box next
to a row to select a single row or to clear a single selected row.

Store? Select the check box to store data collected by this poll
definition for reporting and historical MIB graphing purposes.

Note: This option is only available for poll definitions of type
Basic Threshold.

Name The name of a poll definition attached to this poll policy. Click
the name to edit the properties of this poll definition.

Type The type of poll definition.

Status Indicates whether the poll definition is in error. The full list of
values is provided in the following table.

Table 5. Poll definition status

State Value Icon Description

Unknown -1 The status is unknown because the poll definition
has not been run yet.

No error 0 No error. Poll definition has been run without error.

Error Greater
than 0

There is an error in the poll definition. The poll
definition cannot be run. The error must be fixed
before the poll definition can be used. Hover over
the status icon for a pop-up with an indication of
the error.

Poll Interval
Specify the required interval in seconds between poll
operations. Click the arrows to change the value.

Description
Description of the poll definition.

Assign to Poller Instance
For the multiple poller feature only: Select the poller on which to run
the poll policy. If only a single poller is defined, the list is read-only.

Policy Throttle
The number of devices in certain types of network views, especially
event-based network views, can fluctuate and become large. In order to
prevent the Polling engine, ncp_poller, from become overloaded by
large numbers of devices in the network views attached to a policy, you
can place a limit on the number of devices attached to a poll policy.
This limit is called a policy throttle.

Specify the maximum number of entities to limit polling to. The poll
policy will poll no more than the number of entities specified here.

Note: Disable policy throttling by setting this value to zero. All new
poll policies have policy throttling disabled by default.

Chapter 5. Changing polls 33

4. Click the Network Views tab. In the Network Views tree, select the check
boxes of the required network views. The Network Views tree displays only
those network views that belong to the network domain in which this poll
policy is defined.
Attention: If you select the All Devices option, then the system polls all
devices that match the scope defined in the Device Filter tab. If no scope is set
then, if you select the All Devices option, the poll that you create will poll all
devices in the current network domain.

5. Optional: Click the Device Filter tab. This filters on devices on the
mainNodeDetails device table only. Define the filter by using one of the
following methods:
v Type an SQL WHERE statement in the field in the Filter column.

Note: SQL syntax is different for different databases. Refer to the
documentation for the topology database that you are using for the correct
SQL syntax.

v Click Edit to set up the filter by using the Filter Builder.
6. In the Filter Builder, build the required query on one of the two tabs and then

click OK:
v On the Basic tab, select a field, a comparator, and type a value. Use the %

character as a wildcard. The field is restricted to the selected attribute table.
v On the Advanced tab, type the required SQL WHERE statement.

Note: SQL syntax is different for different databases. Refer to the
documentation for the topology database that you are using for the correct
SQL syntax.

The information that you enter on the Basic tab is automatically written to the
Advanced tab.

7. To add filters on other attribute tables, click Add new row , and repeat the
steps to edit the row and build the filter.

8. To combine multiple filters, click All or Any:
v All: Only network entities that match all the specified filters are polled. For

example, if you create two filters, a network entity must match both filters.
v Any: Network entities that match any of the specified filters are polled.

9. Click Save.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

34 IBM Tivoli Network Manager IP Edition: Event Management Guide

Example poll policy
Use this example of a customized poll policy to help you copy an existing policy
and customize it to poll specific devices in class C subnets.

Scenario

You must customize a poll policy to meet the following requirements:
v The poll policy must check the network for devices in class C subnets that have

the IP address 9.1.2.* or 10.123.46*
v The poll policy must check the network at intervals of 60 seconds
v The poll policy must begin polling the network immediately after it has been

saved

Required settings

To create a poll that responds to the requirements described in the previous
scenario, make the following settings:
1. On the Configure Poll Policies page, make a copy of the

ciscoMemoryPctgUsage poll policy. The copy of the poll policy appears as a
new row in the poll policy table.

2. Find the row containing the copy of the ciscoMemoryPctgUsage poll policy,
and click the name of the copy of the poll policy. This enables you to edit the
copy of the poll policy in the Poll Policy Editor.

3. On the Poll Policy Properties tab, make the following settings:

Name Type a meaningful name, for example ciscoMemoryPctgUsage for class
C subnets with 9.1.2* and 10.123.46*.

Poll Enabled:
Select this check box.

Poll Interval
In the Poll Definitions table, scroll across and type 60 in the Poll
Interval column.

4. On the Network Views tab, ensure that All Devices is selected.
5. On the Device Filter tab, make the following settings:

a. Select Any.
b. To specify the filter against fields of the mainNodeDetails table, click Open

Filter Builder .
c. On the Basic tab of the Filter Builder, complete the fields as follows:

Field Comparator Value
ipAddress like 9.1.2.%

d. Click OK.

e. Click Add .
f. To specify another filter against fields of the mainNodeDetails table, click

Open Filter Builder .
g. On the Basic tab of the Filter Builder, complete the fields as follows:

Field Comparator Value
ipAddress like 10.123.46.%

Chapter 5. Changing polls 35

h. Click OK.
6. Click Save.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

Changing poll definitions
Change existing poll definitions to customize them for your polling requirements.
You change poll definitions in the Poll Definition Editor; the steps you follow differ
depending on the poll definition type.

Before you create or change a poll definition, view an existing poll definition to
determine whether you can use it as a template to create a new poll definition.
Related tasks:
Chapter 4, “Creating new poll definitions,” on page 23
Use the Poll Definition Editor to guide you through the steps of creating a new
poll definition.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

Changing basic threshold poll definitions
Use the Poll Definition Editor to change basic threshold poll definitions.

You can change some of the general properties of the poll definition and the
properties that are associated with the poll definition type. However, you cannot
change the poll definition type.

To change a basic threshold poll definition:
1. Click Administration > Network > Network Polling.
2. Click the required poll definition. The poll definition must have the poll

definition type Basic Threshold.
3. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

36 IBM Tivoli Network Manager IP Edition: Event Management Guide

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

Data Label
Click the data label list and select one of the data labels from the list.
By default the data label takes the same name as the current poll
definition. To define a new data label, select <Add New Data Label>. The
field to the right of the list becomes active. Type the name of the new
data label in this field.

4. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.
Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

5. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

6. Click the Poll Data tab and specify the required formula:
v To specify a MIB Object Identifier (OID), select Single OID. Specify the

current or delta value of the required MIB variable and type the variable into
the next field.

v To specify a complex expression, select Expression and type the formula into
the field.

To select variables directly from the MIB tree, click Add MIB Object . From
the MIB tree, you can specify the current or previous values of the selected MIB
variable, or resolve the current value of the variable to the SNMP index.

7. Click the Threshold tab and specify the formulas for triggering events and
clearing events. The MIB OID or expression that you specified on the Poll Data
tab is written automatically into the formulas.
a. In the Trigger Threshold area, select a comparator from the list and type

the value against which to filter the MIB OID.
b. In the Description field, type a meaningful description of the trigger

formula. Add the MIB variable to the description in parentheses. The
description is displayed in the AEL when and event is raised. For example:
CPU usage high (avgBusy5=)

c. To insert the underlying eval statement into the description, position the

cursor before the closing parenthesis, click Add MIB Object , and
navigate to the specified variable. Specify whether the current or previous
value of the variable is evaluated, or whether the value is resolved to the
SNMP index, and click OK. The statement is inserted, for example:
CPU usage high (avgBusy5=eval(text,"&SNMP.VALUE.sysName"))

d. Repeat steps 7a to 7c for the Clear Threshold area.

Chapter 5. Changing polls 37

8. Click Save.
Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related reference:
“Example basic threshold expression” on page 44
Use this example basic threshold expression to understand how to compose
complex basic threshold expressions.
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Changing generic threshold poll definitions
Use the Poll Definition Editor to change generic threshold poll definitions.

You can change some of the general properties of the poll definition and the
properties that are associated with the poll definition type. However, you cannot
change the poll definition type.

To change a generic threshold poll definition:
1. Click Administration > Network > Network Polling.
2. Click the required poll definition. The poll definition must have the poll

definition type Generic Threshold.
3. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll
definition, then the Event ID contains the same value as the copied
poll definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli

38 IBM Tivoli Network Manager IP Edition: Event Management Guide

Netcool/OMNIbus. For a listing of available severity levels, refer to
the IBM Tivoli Network Manager IP Edition Network Troubleshooting
Guide

Description
Type a short description of the poll definition.

4. Click the Classes tab. In the Classes tree, select the check boxes of the
required classes.
Attention: If you leave all classes unchecked, then the system polls all
devices that match the scope defined in the poll policy that uses this poll
definition.

5. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

6. Click the Trigger Threshold tab. Build the formula that specifies the threshold
by using one of the following methods:
v In the Basic area, use the fields and options to build a formula. To select

values from the MIB tree, click Open MIB Tree .
v In the Advanced area, type the required eval statement in Object Query

Language (OQL).
7. Specify the message that is displayed in the AEL for the generated event:

a. In the Event description field, type the message.

b. To insert the MIB variables in the field, click Open MIB Tree . Set the
message to include either the current or previous SNMP value, or the
SNMP index, and click OK.

8. Required: Click the Clear Threshold tab. Every generic threshold poll
definition requires a clear threshold. Build the formula that specifies the
threshold by using one of the following methods:
v In the Basic area, use the fields and options to build a formula. To select

values from the MIB tree, click Open MIB Tree .
v In the Advanced area, type the required eval statement in Object Query

Language (OQL).

Tip: If you want the threshold to be cleared manually, create a clear threshold
that will not be reached.

9. Specify the message that is displayed in the AEL for the generated event:
a. In the Event description field, type the message.

b. To insert the MIB variables in the field, click Open MIB Tree . Set the
message to include either the current or previous SNMP value, or the
SNMP index, and click OK.

10. Click Save, then click OK.
Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related reference:

Chapter 5. Changing polls 39

Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.
“Example generic threshold expression” on page 44
Use this example generic threshold expression to understand how to compose
complex generic threshold expressions.
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Changing chassis and interface ping poll definitions
Use the Poll Definition Editor to change chassis and interface ping poll definition
types.

You can change some of the general properties of the poll definition and the
properties that are associated with the poll definition type. However, you cannot
change the poll definition type.

To change a chassis or interface ping poll definition:
1. Click Administration > Network > Network Polling.
2. Click the required poll definition. The poll definition must have the poll

definition type Chassis Ping or Interface Ping.
3. In the Poll Definition Editor, under the General tab, complete the General

Properties fields as follows:

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

4. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.

40 IBM Tivoli Network Manager IP Edition: Event Management Guide

Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

5. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

6. Click the Ping tab and complete the Ping Properties fields as follows:

Timeout
Specify, in milliseconds, how long the polling process should wait for a
response from the target device before sending a new ping packet.

Retries
Specify how many times the polling process should attempt to ping the
target device before giving up. When Packet Loss metric collection is
enabled, the polling process sends this number of ping packets
regardless of whether a response is received.

Collect Ping Metrics

Response Time
Check the box to collect the time taken by devices to respond
to a ping request.

Packet Loss
Check the box to collect data about lost packets.

Payload Size
Select the size of the ICMP packet to be used for the ping request.
Select the default (32 bytes) or choose a custom size. This setting
overrides the value of IcmpData in the NcPollerSchema.cfg
configuration file.

CAUTION:
Using a size smaller than 32 bytes may result in packets being
dropped.

7. Click Save, then click OK.
Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.

Changing remote ping and link state poll definitions
Use the Poll Definition Editor to change the following poll definition types: Cisco
remote ping, Juniper remote ping, and SNMP link state.

You can change some of the general properties of the poll definition and the
properties that are associated with the poll definition type. However, you cannot
change the poll definition type.

To change a remote ping poll definition or an SNMP link state poll definition:
1. Click Administration > Network > Network Polling.
2. Click the required poll definition. The poll definition must have one of the

following poll definition types:
v Cisco remote ping
v Juniper remote ping
v SNMP link state

3. In the Poll Definition Editor, under the General tab, complete the General
Properties fields as follows:

Chapter 5. Changing polls 41

Name Specify a unique name for the poll definition. Only alphanumeric
characters, spaces and underscores are allowed.

Type This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled poll policy. The value assigned to the event ID is POLL-pollde

Event ID
This field is disabled. The Polling engine, ncp_poller, automatically
populates this field once this poll definition is included as part of an
enabled policy. The Event ID field is populated as follows:
v If this is a new poll definition, then the Event ID field is populated

with the value POLL-polldef, where polldef is the name of the
current poll definition.

v If you created a poll definition by copying an existing poll definition,
then the Event ID contains the same value as the copied poll
definition.

Note: Some of the older default polls have Event ID fields that do not
use the POLL-polldef naming convention.

Event Severity
Specify a valid number for the severity. The severity level must
correspond to a valid severity level as defined in IBM Tivoli
Netcool/OMNIbus. For a listing of available severity levels, refer to the
IBM Tivoli Network Manager IP Edition Network Troubleshooting Guide

Description
Type a short description of the poll definition.

4. Click the Classes tab. In the Classes tree, select the check boxes of the required
classes.
Attention: If you leave all classes unchecked, then the system polls all devices
that match the scope defined in the poll policy that uses this poll definition.

5. Optional: Click the Interface Filter tab and build the filter against the required
fields. The Table field is prepopulated with the interfaces table.

6. Click Save, then click OK.
Related concepts:
“Poll policy scope” on page 2
The poll policy scope defines the devices or device interfaces to be polled.
Related tasks:
“Configuring Link State polling” on page 65
Specify how the ncp_poller process determines the initial state for Link State polls
when there is no existing event. The ncp_poller process can use the first poll to
determine the initial state of Link State polls, or assume a Clear state.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

42 IBM Tivoli Network Manager IP Edition: Event Management Guide

Example customized poll definition
Use this example of a customized poll definition to help you copy an existing
definition and customize it to your requirements.

Scenario

You require a poll definition that alerts the operator when a device is using too
much of its processing power. You want an event to be generated if the average
CPU usage exceeds 80%, and the event to be cleared if the average CPU usage falls
below 80%.

Required settings

To create a poll definition that responds to the requirements described in
“Scenario,” make the following settings:
v On the New Poll Definition Type Selection panel, select Basic Threshold.
v On the Poll Data tab of the Poll Definition Editor make the following settings:

– Ensure that Single OID is selected.
– Complete the Single OID area as shown the following example. The bold text

denotes entries that you must type; normal text denotes selections that you
make from lists:

current avgBusy5

v On the Threshold tab of the Poll Definition Editor make the following settings:
– Complete the Trigger Threshold area as shown the following example. The

bold text denotes entries that you must type; normal text denotes selections
that you make from lists. The italic text denotes items that you cannot edit:

current avgBusy5 >= 80

– Complete the Description field as follows:
1. Type CPU usage high (avgBusy5=).
2. Position the cursor inside the closing parenthesis and click Add MIB

Object .
3. Navigate the following path: iso/org/dod/internet/private/enterprises/

cisco/local/lsystem/avgBusy5.
4. Select Current SNMP Value and click Insert.

– Complete the Clear Threshold area as shown the following example. The
bold text denotes entries that you must type; normal text denotes selections
that you make from lists. The italic text denotes items that you cannot edit:

current avgBusy5 < 80

– Complete the Description field as follows:
1. Type CPU usage high (avgBusy5=).
2. Position the cursor inside the closing parenthesis and click Add MIB

Object .
3. Navigate the following path: iso/org/dod/internet/private/enterprises/

cisco/local/lsystem/avgBusy5.
4. Select Current SNMP Value and click Insert.

Chapter 5. Changing polls 43

Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.

Example basic threshold expression
Use this example basic threshold expression to understand how to compose
complex basic threshold expressions.

Sample: snmpInBandwidth

The snmpInBandwidth poll definition is one of the default poll definitions. This
poll definition defines the checking of incoming bandwidth utilization. An alert is
raised when incoming bandwidth usage exceeds 40%. The following expression
shows how to use eval statements to define this condition and is defined within
the Poll Data tab under the Expression radio button.
((eval(long64,"&SNMP.DELTA.ifInOctets") / eval(long64,"&POLL.POLLINTERVAL"))
/(eval(long64,"&SNMP.VALUE.ifSpeed")))
*800

Within the Threshold tab, the threshold is set to trigger if the value of this
expression is greater than 40.
Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
Related tasks:
“Changing basic threshold poll definitions” on page 36
Use the Poll Definition Editor to change basic threshold poll definitions.
“Creating basic threshold poll definitions” on page 23
Create a basic threshold poll definition to run simple formulas against MIB
variables, or to create threshold polls with interface-level filtering.
Related reference:
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Example generic threshold expression
Use this example generic threshold expression to understand how to compose
complex generic threshold expressions.

Sample: memoryPoll

The memoryPoll poll definition is one of the default poll definitions. This poll
definition defines the checking of memory-pool usage for Cisco devices. An alert is
raised when the memory pool usage exceeds 80%. The following expression shows
how to use eval statements to define this condition and is defined within the
Trigger Threshold tab under the Advanced radio button.

44 IBM Tivoli Network Manager IP Edition: Event Management Guide

((eval(int,"&SNMP.VALUE.ciscoMemoryPoolValid") = 1)
AND
((eval(long64,"&SNMP.VALUE.ciscoMemoryPoolUsed")/
(eval(long64,"&SNMP.VALUE.ciscoMemoryPoolFree") +
eval(long64,"&SNMP.VALUE.ciscoMemoryPoolUsed")))*100
> 80))

Related concepts:
“Multibyte data in poll definitions” on page 10
If you are running Network Manager in a domain that uses multibyte characters
such as Simplified Chinese, then you must ensure that Network Manager is
configured to handle multibyte characters before you configure basic or generic
threshold poll definitions.
Related tasks:
“Changing generic threshold poll definitions” on page 38
Use the Poll Definition Editor to change generic threshold poll definitions.
“Creating generic threshold poll definitions” on page 25
Use the Poll Definition Editor to create new generic threshold poll definitions.
Related reference:
Appendix D, “Syntax for poll definition expressions,” on page 189
Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.

Chapter 5. Changing polls 45

46 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 6. Deleting poll policies

Delete poll policies when they are no longer required.

To delete a poll policy:
1. Click Administration > Network > Network Polling.
2. In the Select column, select the required poll policies.

3. Click Delete .
4. Click OK to confirm the deletion.

The selected poll policies are deleted.

© Copyright IBM Corp. 2006, 2016 47

48 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 7. Deleting poll definitions

Delete poll definitions when they are no longer required.

To delete a poll definition:
1. Click Administration > Network > Network Polling.
2. In the Select column, select the required poll definitions.

3. Click Delete .
4. Click OK to confirm the deletion.

The selected poll definitions are deleted.

© Copyright IBM Corp. 2006, 2016 49

50 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 8. Managing adaptive polling

Adaptive polls dynamically react to events on the network. You can create
adaptive polls that manage a wide range of network problem scenarios.
Related concepts:
“Adaptive polling plug-in” on page 119
Use this information to understand plug-in prerequisites, how the adaptive polling
plug-in populates fields in the activeEvent table, as well as configuration details
associated with the plug-in. The activeEvent table is in the NCMONITOR schema.
Related tasks:
“Configuring how many events the poller reads” on page 63
Large increases in the number of network events can slow down the polling
process, ncp_poller. For adaptive polling, you can minimize the performance
impact of sudden increases in events by defining how many events the poller
reads.
Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.

Adaptive polling scenarios
Network Manager provides default adaptive polls to automatically handle key
network problem scenarios. Use these default adaptive polls to understand how to
create your own adaptive polls.

Rapid confirmation that device is really down
Use the adaptive polling described in this scenario to determine as quickly as
possible when a device is really down. You can activate this adaptive polling by
enabling the ConfirmDeviceDown poll policy.

Rationale

The standard Default Chassis Ping poll policy polls all chassis devices in the
current network domain every two minutes. For various reasons healthy devices
sometimes fail to respond to this poll policy, generating misleading NmosPingFail
events in the Active Event List (AEL). These events are not cleared until a
successful ping response at least two minutes later. During that time these
misleading events might cause network operators to take unnecessary action.

The adaptive polling described in this scenario avoids the risk of unnecessary
network operations activity by accelerating pinging of all devices on which an
NmosPingFail event is first raised. These devices are pinged by a separate poll
policy every 10 seconds for three minutes, with the intention of clearing the event
as soon as the device responds. Those devices that still exhibit an NmosPingFail
event after three minutes of accelerated pinging are considered to be really down,
and are no longer pinged. The network operator can take action on these devices,
or automations can be written to take relevant action, with the confidence that the
events are actionable.

Note: The three minutes are enforced by specifying as policy scope devices with
an NmosPingFail event and a Tally value of less than 18. The Tally value is

© Copyright IBM Corp. 2006, 2016 51

calculated by assuming that a faulty device will fail to respond to all accelerated
polls. Each minute there are six accelerated ping polls, so in a three minute period
there will be 18, and the Tally value of those devices that are still not responding
will reach 18.

The accelerated pinging values are fully configurable. For example, you can specify
a 20 second accelerated ping polling interval (instead of a 10 second interval) to
lighten the load on the network. You could also continue accelerated polling for
longer than three minutes (by increasing the Tally value) if you require a longer
time to verify that devices are really down.

Chained poll policies

The adaptive poll described in this scenario is made up of the following chained
poll policies:

Default Chassis Ping
This poll policy pings all devices in the network every two minutes. It is
enabled by default.

ConfirmDeviceDown
This poll policy provides accelerated pinging at 10 second intervals of
devices that fail to respond to the Default Chassis Ping poll policy. The
ConfirmDeviceDown policy must be assigned to a network view.

Important: The ConfirmDeviceDown poll policy is disabled by default.
You must enable this poll policy in order to activate the adaptive polling
described in this scenario.

Scenario walkthrough

The following section walks you through this adaptive poll.
1. The Default Chassis Ping poll policy polls all chassis device in the current

network domain. You can modify the scope of this policy by modifying the
associated network views and device filter.

2. An NmosPingFail event is generated for all devices that do not respond to the
Default Chassis Ping policy.

3. Devices that have an associated NmosPingFail event are automatically added to
the Initial Ping Fail Events network view. The Initial Ping Fail Events network
view is a Filtered network view that is defined as follows:

EventId = NmosPingFail
Tally < 18

The Initial Ping Fail Events network view can be found in the Network Views,
in the Network View tree, in the Monitoring Views > Initial Ping Fail Events
node. For more information on the nodes in the network view tree, see the IBM
Tivoli Network Manager IP Edition Network Troubleshooting Guide.
You can change the duration of accelerated polling by modifying the Tally <
18 filter clause. For example, if you want to increase the duration of accelerated
polling to five minutes, then change this clause to Tally < 30. This value is
determined by the following calculation based on a 10 second polling interval:
each minute there are six accelerated ping polls, so in a five minute period
there will be 30. For more information on changing event-filtered network
views, see the IBM Tivoli Network Manager IP Edition Network Visualization Setup
Guide.

52 IBM Tivoli Network Manager IP Edition: Event Management Guide

4. The ConfirmDeviceDown poll policy polls all devices within the Initial Ping
Fail Events network view every 10 seconds. Each time the device does not
respond, another NmosPingFail is received for the device, and the
NmosPingFail Tally value for the device is incremented.

Important: By default you have to take the following actions in order to
activate the adaptive polling described in this scenario:
v The ConfirmDeviceDown poll policy is disabled by default. You must enable

this poll policy.
v The ConfirmDeviceDown poll policy has no scope by default. You must

assign the Initial Ping Fail Events network view as the scope of the
ConfirmDeviceDown poll policy.

You can change the frequency of accelerated ping polling by editing the
ConfirmDeviceDown poll policy and modifying the interval in seconds
between poll operations. For example, if you want to decrease the polling
frequency to 20 second polling intervals (three polls per minute rather than
six), then open the ConfirmDeviceDown poll policy in the Poll Policy Editor
and set the Poll Interval value to 20.

Note: Changing the poll policy interval changes the Tally value for the same
accelerated polling duration. For example, if you change the Poll Interval value
to 20 this decreases the frequency of accelerated ping polling to 3 polls per
minute. In this case the associated Tally value for a three minutes of accelerated
polling is 9. This value is determined by the following calculation based on a
20 second polling interval: each minute there are three accelerated ping polls,
so in a three minute period there will be 9.

5. Accelerated polling of devices can conclude in one of the following ways:

Healthy device
During the three-minute accelerated polling period a successful ping
response is received for a device. The NmosPingFail event for that
device is cleared and will subsequently be deleted from the Active
Event List (AEL). The device is automatically removed from the Initial
Ping Fail Events network view, and therefore is no longer subject to
accelerated polling.

Faulty device
The device continues to be ping polled until the end of the
three-minute period. The Tally value for the event on that device
reaches 18 and the device is automatically removed from the Initial
Ping Fail Events network view, and therefore is no longer subject to
accelerated polling. The Active Event List (AEL) now contains an
actionable event, that is, an NmosPingFail event with a tally of 18 or
greater.

Related tasks:
Chapter 2, “Enabling and disabling polls,” on page 11
To activate Network Manager polling, you must enable the poll policies. If a
network entity is off the network, disable the poll policy that polls that entity.
“Changing poll policies” on page 31
Use the Poll Policy Editor to change the settings of existing poll policies.
“Creating adaptive polls” on page 56
Create adaptive polls to enable the system to dynamically react to events on the
network.
Related reference:

Chapter 8. Managing adaptive polling 53

Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.
Appendix B, “Default poll definitions,” on page 179
Network Manager IP Edition provides a number of default poll definitions that
fulfil the most common polling requirements.

Rapid confirmation of a threshold violation
Use the adaptive polling defined in this scenario to use slow SNMP polling most
of the time to create minimum impact on your network devices, and accelerate
polling when a threshold has actually been breached. You can activate this
adaptive polling by enabling the ConfirmHighDiscardRate poll policy.

Rationale

The standard HighDiscardRate poll policy performs an SNMP threshold poll on all
routers in the current network domain every 30 minutes to determine if the
percentage packet discard rate on any of the router interfaces exceeds 5%. If the
poll policy detects that any one interface on a router has exceeded the threshold,
then the poll generates a POLL-HighDiscardRate event for the router. Healthy
router interfaces might occasionally be busy and need to drop packets, causing
them to breach the 5% threshold during any one 30 minute interval, generating
misleading HighDiscardRate events in the Active Event List (AEL). These events
are not cleared until a successful POLL-HighDiscardRate poll policy response
occurs at least thirty minutes later. During that time these misleading events might
cause network operators to take unnecessary action.

The adaptive polling described in this scenario avoids the risk of unnecessary
network operations activity by accelerating SNMP polling of all devices on which a
POLL-HighDiscardRate event is first raised. These devices are polled by a separate
SNMP poll policy every five minutes, with the intention of clearing the event as
soon as all interfaces on the device respond with a percentage packet discard rate
that falls within the 5% threshold. Those devices that continue to exhibit the
POLL-HighDiscardRate event are confirmed as having one or more faulty
interfaces. The network operator can take action on these devices, or automations
can be written to take relevant action, with the confidence that the events are
actionable.

The accelerated polling values are fully configurable. For example, you can specify
a 10 minute accelerated SNMP polling interval (instead of a 5 minute interval) to
lighten the load on the network.

Chained poll policies

The adaptive poll described in this scenario is made up of the following chained
poll policies:

HighDiscardRate
This poll policy determines whether an interface on a device is dropping
more than a minimum percentage of the total packets that it is processing.
The policy polls for this information every 30 minutes.

ConfirmHighDiscardRate
This poll policy provides accelerated SNMP polling at five minutes

54 IBM Tivoli Network Manager IP Edition: Event Management Guide

intervals of devices that have at least one interface that breached the 5%
packet discard rate threshold. The ConfirmHighDiscardRate policy scope
must be assigned to a network view.

Important: The ConfirmHighDiscardRate poll policy is disabled by default.
You must enable this poll policy in order to activate the adaptive polling
described in this scenario.

Scenario walkthrough

The following section walks you through this adaptive poll.
1. The HighDiscardRate SNMP poll policy performs an SNMP threshold poll on

all routers in the current network domain every 30 minutes. You can modify
the scope of this policy by modifying the associated network views and device
filter.

2. A POLL-HighDiscardRate event is generated for all devices that have at least
one interface that breached the 5% packet discard rate threshold.

3. Devices that have an associated POLL-HighDiscardRate event are automatically
added to the Devices that have at least one interface event for HighDiscardRate
network view. This network view is a Filtered network view that is defined as
follows:

EventId = POLL-HighDiscardRate

The Devices that have at least one interface event for HighDiscardRate network
view can be found in the Network Views, in the Network View tree, in the
Monitoring Views > Devices that have at least one interface event for
HighDiscardRate node. For more information on the nodes in the network
view tree, see the IBM Tivoli Network Manager IP Edition Network Troubleshooting
Guide.

4. The ConfirmHighDiscardRate poll policy polls all devices within the Devices
that have at least one interface event for HighDiscardRate network view every
five minutes.

Important: By default you have to take the following actions in order to
activate the adaptive polling described in this scenario:
v The ConfirmHighDiscardRate poll policy is disabled by default. You must

enable this poll policy.
v The ConfirmHighDiscardRate poll policy has no scope by default. You must

assign the Devices that have at least one interface event for HighDiscardRate
network view as the scope of the ConfirmHighDiscardRate poll policy.

Important: The ConfirmHighDiscardRate poll policy is disabled by default.
You must enable this poll policy in order to activate the adaptive polling
described in this scenario.
You can change the frequency of accelerated SNMP threshold polling by editing
the ConfirmHighDiscardRate poll policy and modifying the interval in seconds
between poll operations. For example, if you want to decrease the polling
frequency to 10 minute polling intervals, then open the
ConfirmHighDiscardRate poll policy in the Poll Policy Editor and set the Poll
Interval value to 600.

5. Accelerated SNMP threshold polling of devices can conclude in one of the
following ways:

Chapter 8. Managing adaptive polling 55

Healthy device
All interfaces on the device respond to the accelerated poll with a
percentage packet discard rate that falls within the 5% threshold. The
POLL-HighDiscardRate event for that device is cleared and will
subsequently be deleted from the Active Event List (AEL). The device
is automatically removed from the Devices that have at least one
interface event for HighDiscardRate network view, and therefore is no
longer subject to accelerated polling.

Faulty device
At least one interface on the device continues to respond to the
accelerated SNMP poll with a breach of the 5% packet discard rate. The
POLL-HighDiscardRate event remains in the Active Event List (AEL)
with a continually increasing Tally value. The Active Event List (AEL)
now contains an actionable POLL-HighDiscardRate event.

Related tasks:
Chapter 2, “Enabling and disabling polls,” on page 11
To activate Network Manager polling, you must enable the poll policies. If a
network entity is off the network, disable the poll policy that polls that entity.
“Changing poll policies” on page 31
Use the Poll Policy Editor to change the settings of existing poll policies.
“Creating adaptive polls”
Create adaptive polls to enable the system to dynamically react to events on the
network.
Related reference:
Appendix A, “Default poll policies,” on page 173
Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.
Appendix B, “Default poll definitions,” on page 179
Network Manager IP Edition provides a number of default poll definitions that
fulfil the most common polling requirements.

Creating adaptive polls
Create adaptive polls to enable the system to dynamically react to events on the
network.

Before creating an adaptive poll, you must first identify a network condition that
would benefit from adaptive polling. For example, the adaptive polling provided
by default with Network Manager provides accelerated polling of a selected set of
devices in order to do one of the following:
v Confirm that a device that failed an ICMP ping is really down.
v Confirm that a threshold on a device has really been violated.

Proceed as follows to create an adaptive poll which creates a chain of two poll
policies. The Confirm device down and Confirm threshold violation columns
provide examples from the adaptive polling provided by default with Network
Manager.

56 IBM Tivoli Network Manager IP Edition: Event Management Guide

Procedure Confirm device down Confirm threshold violation

1. Identify an existing poll
policy that retrieves an error
condition on devices in your
network.

Poll policy used: Default
Chassis Ping

Performs ping polling on all
devices in the network
domain every two minutes.

Poll policy used:
HighDiscardRate

Determines whether an
interface on a device is
dropping more than a
minimum percentage of the
total packets that it is
processing. Polls for this
information every 30
minutes.

2. Create an event-filtered
network view that filters
devices based on the event
generated by the poll that
you identified in the
previous step.

The devices in this network
view usually have an
associated error condition
that can be further diagnosed
by more intense polling.

For information on creating
event-filtered network views,
see the IBM Tivoli Network
Manager IP Edition Network
Visualization Setup Guide.

Network view: Monitoring
Views > Initial Ping Fail
Events

Contains all devices on
which an NmosPingFail
event has been raised and
the Tally value is less than a
specified value. The
NmosPingFail event is raised
on events that fail the
Default Chassis Ping poll
policy.

Network view: Monitoring
Views > Devices that have
at least one interface event
for HighDiscardRate

Determines whether an
interface on a device is
dropping more than a
minimum percentage of the
total packets that it is
processing.

3. Create a poll policy that
has as its scope the network
view that you created in the
previous step and that
provides a more intense
polling of the devices in that
network view.

The aim of more intensely
polling these devices is to
diagnose the problem further
as a prelude to further
action.

Poll policy:
ConfirmDeviceDown

Purpose of intense polling:
accelerate ping polling of
devices in the Initial Ping
Fail Events network view to
10 second poll intervals in
order to identify the devices
that are really down. Healthy
devices provide a successful
response to this intense
polling and their events are
cleared.

Poll policy:
ConfirmHighDiscardRate

Purpose of intense polling:
Accelerate polling of devices
in the Devices that have at
least one interface event for
HighDiscardRate network
view in order to provide
more timely information
before reacting. This poll
policy continues to generate
the POLL_HighDiscardRate
events, thus confirming the
problem on a device, or
issues a resolved event that
clears the error event and
thus removes the associated
device from the
HighDiscardRate view.

In Step 2, in the Confirm device down column, the Initial Ping Fail Events network
view includes an exit criterion implemented using the Tally value: once the Tally
value for an event goes beyond a specified value, the related device is
automatically removed from the network view. This is useful when you want to
accelerate polling for a limited time period in order to establish a condition on that
device. Once the condition is established the device can be removed from the view.
For example, in the case of the default settings for this network view, you want to

Chapter 8. Managing adaptive polling 57

accelerate polling on devices that have failed ping polling for three minutes only. If
the device still has an associated NmosPingFail event after three minutes, then the
device is confirmed as being down.

It is also possible to chain more than two poll policies by creating extra network
views and poll policies and chaining them as appropriate to respond to network
conditions and to perform the required diagnosis.
Related concepts:
“Rapid confirmation that device is really down” on page 51
Use the adaptive polling described in this scenario to determine as quickly as
possible when a device is really down. You can activate this adaptive polling by
enabling the ConfirmDeviceDown poll policy.
“Rapid confirmation of a threshold violation” on page 54
Use the adaptive polling defined in this scenario to use slow SNMP polling most
of the time to create minimum impact on your network devices, and accelerate
polling when a threshold has actually been breached. You can activate this
adaptive polling by enabling the ConfirmHighDiscardRate poll policy.
Related tasks:
Chapter 3, “Creating polls,” on page 13
Create polls if the existing default poll policies and definitions do not meet your
requirements. Either customize a copy of an existing or default poll, or create a
new poll from scratch.

58 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 9. Administering network polling

Use the command-line interface to perform a wide range of polling administration
tasks, including managing the multiple poller feature, copying network polls across
network domains, suspending network polling, enabling and disabling polls,
retrieving poll status, and refreshing polls.

You can also configure the SNMP Helper to use the GetBulk operation when
SNMP v2 or v3 is used. Use of the GetBulk operation improves polling efficiency.
For more information, see the IBM Tivoli Network Manager IP Edition Installation and
Configuration Guide.

Administering polls
Use the command-line interface to administer poll policies.

Speeding up ncp_poller startup by not checking SNMP
credentials

Fix Pack 3

Disabling the testing of SNMP access credentials on startup of ncp_poller can
improve startup times.

If you are sure that your access credentials for the devices you want to poll are
accurate, you can configure the polling process, ncp_poller, not to check them on
startup.
1. Back up and edit the file NCHOME/etc/precision/NcPollerSchema.DOMAIN.cfg
2. Locate the line that defines the value of the DiscoverInitialAccess option.
3. If you want the ncp_poller process to check the SNMP credentials each time it

starts up, leave the value of DiscoverInitialAccess set to 1.
4. To turn off the initial checking of SNMP access credentials, set the value of

DiscoverInitialAccess set to 0. The ncp_poller process still tests SNMP
credentials for a given device if there is a poll failure.

5. Restart the ncp_poller process.

Retrieving poll status
Use the itnm_poller.pl script to display the status of poll policies.

The domain provided on the command-line interface (CLI) must have an entry in
the domainMgr NCIM table.

For more information on the itnm_poller.pl script, see the IBM Tivoli Network
Manager IP Edition Administration Guide.
1. Change to the $NCHOME/precision/scripts/perl/scripts directory and locate

the itnm_poller.pl script.
2. Run the itnm_poller.pl script program to retrieve the status of poll policies.

The following example shows how to retrieve the status of all poll policies.
ncp_perl itnm_poller.pl -domain NCOMS -status all

© Copyright IBM Corp. 2006, 2016 59

You can also retrieve the status of only realtime or static poll polices by
specifying -status realtime or -status static.

Enabling and disabling polls
Use the itnm_poller.pl script to enable and disable individual poll policies.

The domain provided on the command-line interface (CLI) must have an entry in
the domainMgr NCIM table.

For more information on the itnm_poller.pl script, see the IBM Tivoli Network
Manager IP Edition Administration Guide.
1. Change to the $NCHOME/precision/scripts/perl/scripts directory and locate

the itnm_poller.pl script.
2. Run the itnm_poller.pl script program to retrieve the status of the various poll

policies, as shown in the following example.
ncp_perl itnm_poller.pl -domain NCOMS -status all

In the output of the command you can see the ID for each poll policy. Make a
note of the ID for the poll policy that you want to enable or disable.

3. Run the itnm_poller.pl script program to enable or disable individual poll
policies, specifying the poll policy ID as a parameter. The following example
shows how to enable a poll policy with a policy ID of 10.
ncp_perl itnm_poller.pl -domain NCOMS -enable 10

The following example shows how to disable a poll policy with a policy ID of
15.
ncp_perl itnm_poller.pl -domain NCOMS -disable 15

Refreshing polls
Use the itnm_poller.pl script to refresh a poll policy configuration and its entity
list.

The domain provided on the command-line interface (CLI) must have an entry in
the NCIM topology database domainMgr table.

For more information on the itnm_poller.pl script, see the IBM Tivoli Network
Manager IP Edition Administration Guide.
1. Change to the $NCHOME/precision/scripts/perl/scripts directory and locate

the itnm_poller.pl script.
2. Run the itnm_poller.pl script program to retrieve the status of the various poll

policies, as shown in the following example.
ncp_perl itnm_poller.pl -domain NCOMS -status all

In the output of the command you can see the ID for each poll policy. Make a
note of the ID for the poll policy that you want to enable or disable.

3. Run the itnm_poller.pl script program to refresh a single poll policy, or of poll
policies. The following example shows how to refresh a poll policy with a
policy ID of 10.
ncp_perl itnm_poller.pl -domain NCOMS -refresh 10

The following example shows how to refresh all poll policies.
ncp_perl itnm_poller.pl -domain NCOMS -refresh all

60 IBM Tivoli Network Manager IP Edition: Event Management Guide

Copying polls across domains
Use the get_policies.pl program to copy your poll policies from one network
domain to another, or between a file and a domain.

If you provide a domain name with either the -to or -from options, you must be
connected to the NCIM and NCMONITOR databases. The connections are created
based on the settings in the DbLogins.DOMAIN.cfg file, or the DbLogins.cfg file if no
domain-specific file is found.

The domain provided on the command-line interface (CLI) must have an entry in
the domainMgr NCIM table.
1. Change to the NCHOME/precision/scripts/perl/scripts directory and locate the

get_policies.pl program.
2. Run the get_policies.pl program to copy poll policies. The following table

describes the possible actions and what to enter on the CLI.

Action Entry on the CLI

Copy all poll policies directly from one
domain to another

ncp_perl get_policies.pl -from
domain=SOURCE -to domain=DESTINATION
-ncim_password NCIM_password
-ncmonitor_password NCMONITOR_password

Copy only selected poll policies from one
domain to another

ncp_perl get_policies.pl -from
domain=SOURCE -to domain=DESTINATION
-policy "policy_name1" -policy
"policy_name2"

Copy all the poll policies from a domain to
an XML file

ncp_perl get_policies.pl -from
domain=DOMAIN_name -to file=filename.xml
-password NCIM_password

Copy all the poll policies from an XML file
to a domain

ncp_perl get_policies.pl -from
file=filename.xml -to domain=DOMAIN_name

Copy only selected poll policies from a
domain to a file

ncp_perl get_policies.pl -from
domain=DOMAIN_name -to file=filename.xml
-policy "policy_name1" -policy
"policy_name2"

Polling suspension options
Set a device or component to an unmanaged state to suspend it from Network
Manager network polling.

When a device or component is unmanaged, it is not polled by Network Manager,
and events are not generated for the device or component. Also, no root cause
analysis (RCA) is performed on events for that device.

Restrictions

Setting the device to “unmanaged” affects only Network Manager polling, it does
not stop other polls from retrieving information from the device or its components
and raising alerts where applicable. However, the alerts from other sources are
tagged as unmanaged to indicate that the device or component they were raised
against are in maintenance state.

For more information on unmanaged device settings, see the IBM Tivoli Network
Manager IP Edition Discovery Guide.

Chapter 9. Administering network polling 61

Options to suspend polling

To suspend a device or its component from active poll operations, you have the
following options:

Set a device or component to unmanaged
You have the following options:
v Use the Network Views or the Hop View
v Use the Unmanage node tool

If you set a device to unmanaged, then all components within that device
also become unmanaged. If an individual component within a device is set
to unmanaged, then only that component and any components contained
within become unmanaged, the device itself remains in managed state. A
component can be managed or unmanaged only if the device within which
it resides is in managed state. Also, setting the management interface
associated with the chassis to unmanaged state does not suspend polls for
the whole device.

Set specific interface types to be permanently unmanaged
This means that the specified interface types are not polled by Network
Manager. Also, you can set new devices not to be polled initially after
being discovered and added to the topology. These settings are determined
by the TagManagedEntities.stch file and the NCIM database tables.

For more information on the Network Views and the Hop View, see the IBM Tivoli
Network Manager IP Edition Network Visualization Setup Guide. For more information
on setting devices and components to an unmanaged state, see the IBM Tivoli
Network Manager IP Edition Network Troubleshooting Guide.

Adjusting polling bandwidth
You can configure how much data is transferred by the Polling engine, ncp_poller,
and how often. You might want to adjust polling bandwidth to avoid network
congestion or to reduce the impact of large numbers of polling events occurring
simultaneously.

Adjusting the size of poll data queues
Fix Pack 4

Database problems or heavy polling loads can cause pollers to run out of memory
if the queue of poll data for writing to the NCPOLLDATA database becomes too
large. To monitor and avoid this problem, you can set a limit on the size of the
queue. The limit is defined as the number of batches. If the limit is exceeded, you
are alerted in the log and in the Active Event List (AEL). Then, the poller reduces
the queue size by discarding the queued data. The discarded data is written to
another file so that you can retrieve it and write it to the database.

Set the poller debug level to 4.
1. To set the limit, in the $NCHOME/etc/precision/NcPollerSchema.cfg file for your

poller, set the PollDataQueueLimit parameter to a suitable number of batches.
The following example shows how to set the limit to 50 batches of queued
data:
update config.properties set PollDataQueueLimit = 50;

2. Monitor the poller log file in $NCHOME/log/precision and the AEL for messages
and alerts.

62 IBM Tivoli Network Manager IP Edition: Event Management Guide

When the queue exceeds the limit that is specified by the PollDataQueueLimit
parameter, the following actions are taken:
v In the AEL, an alert is displayed. For example:

ItnmPollerPolicyDataQueueFull: poller NCOMS; poll data queue has
exceeded capacity, off loading data to file

v A message is written to the log. For example:
2013-04-19T12:37:58 [CDataQueue::ProcessValue] Queue size exceeds threshold,
discarding data: policyId:122:templateId:39:monitoredInstanceId:2212
:monitoredObjectId:3:pollTime:1387232947:
tdwTime:1131216222944000:errorCode:111:value:0

v The poll data is discarded from the queue and written to a $NCHOME/log/
precision/ncp_poller.poller name.domain.polldata file, for example,
ncp_poller.poller name.domain.data. The data is written as SQL INSERT
statements. For example:
INSERT INTO pollData(MONITOREDOBJECTID, MONITOREDINSTID, POLLTIME, TDWTIME,
ERRORCODE, VALUE) VALUES (3, 2828, 1387232686, 1131216172446000, 100, 714);
INSERT INTO pollData(MONITOREDOBJECTID, MONITOREDINSTID, POLLTIME, TDWTIME,
ERRORCODE, VALUE) VALUES (3, 2829, 1387232686, 1131216172446000, 100, 715);

If the limit is exceeded:
v Resolve the size of the poll data queues. For example, create more pollers, or

contact your database administrator.
v Clear the alert from the AEL.
v Write the data from the .polldata file to the NCPOLLDATA database. Then,

clear the .polldata file. The file is not cleared or rotated automatically.
Related tasks:
“Setting up additional pollers” on page 66
Set up an additional poller on the Network Manager server if one poller is not
sufficient to handle your network load. To add more pollers, register and create
new instances of the ncp_poller process.
“Monitoring poller capacity” on page 74
To prevent problems from occurring on pollers, monitor the poller metrics by
outputting them on the command-line interface. The metrics are displayed as bar
charts. The metrics show when a poller is reaching capacity, for example, if poor
database performance is causing it to fall behind.

Configuring how many events the poller reads
Fix Pack 4

Large increases in the number of network events can slow down the polling
process, ncp_poller. For adaptive polling, you can minimize the performance
impact of sudden increases in events by defining how many events the poller
reads.

Adaptive ncp_poller processes, read events from the NCMONITOR.activeEvent
table into memory at intervals to determine the initial state of polling events. You
can put an upper limit on the number of events that the poller reads. Additional
events are not read into memory. When the number of events decreases below the
limit again, the poller resumes reading events.
1. Back up and edit the $NCHOME/etc/precision/NcPollerSchema.cfg file.
2. Edit, uncomment, or add the following line:

update config.properties set EventThrottle = number_of_events

Chapter 9. Administering network polling 63

Where number_of_events is the maximum number of events that the poller
reads. If this line is not present, there is no limit to the number of events that
the poller attempts to process.

3. Save and close the file.
Related concepts:
“Adaptive polling plug-in” on page 119
Use this information to understand plug-in prerequisites, how the adaptive polling
plug-in populates fields in the activeEvent table, as well as configuration details
associated with the plug-in. The activeEvent table is in the NCMONITOR schema.
Related tasks:
Chapter 8, “Managing adaptive polling,” on page 51
Adaptive polls dynamically react to events on the network. You can create
adaptive polls that manage a wide range of network problem scenarios.
Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.

Changing the interval for checking poll policy membership size
You can change the interval for checking poll policy membership size for all poll
policies.

Before changing the interval for checking poll policy membership size, you should
consider the following:
v A longer interval means less load on the network due to longer time between

checks.
v A shorter interval means that ncp_poller is kept more up to date with changes,

especially network view membership size.
1. Edit the following configuration file: $NCHOME/etc/precision/

NcPollerSchema.cfg.
2. Add the following line to the end of the file:

update config.properties set PolicyUpdateInterval= update_interval;

Where: update_interval is the interval for checking poll policy membership size,
in seconds. The default value is 30 seconds.

3. Restart the Polling engine, ncp_poller.

Enabling and disabling network view updates for poll policies
By default network view updates are enabled for all poll policies. You can disable
network view updates if you are polling stable network views. This will avoid any
performance issues associated with the update.
1. Edit the following configuration file: $NCHOME/etc/precision/

NcPollerSchema.cfg.
2. Add the following line to the end of the file:

update config.properties set UpdateNetworkViewCache = enable_or_disable_update;

Where: enable_or_disable_update is either 1 (enable) or 0 (disable). The default
value is 1 (enable).

3. Restart the Polling engine, ncp_poller.

64 IBM Tivoli Network Manager IP Edition: Event Management Guide

Configuring Link State polling
Specify how the ncp_poller process determines the initial state for Link State polls
when there is no existing event. The ncp_poller process can use the first poll to
determine the initial state of Link State polls, or assume a Clear state.
1. Edit the NCHOME/etc/precision/NcPollerSchema.cfg file.
2. Locate the config.properties section.
3. Edit the value for UseFirstPollForInitialState.
v Set to 0 to set the initial state to Clear.
v Set to 1 to configure the initial state to be determined by the first poll.

Related concepts:
“Link state polling” on page 5
Link state polling monitors changes to the status of the ifOperStatus and
ifAdminStatus interface MIB variables. If the value of these variables changes
between poll intervals, an event is raised.
Related tasks:
“Changing remote ping and link state poll definitions” on page 41
Use the Poll Definition Editor to change the following poll definition types: Cisco
remote ping, Juniper remote ping, and SNMP link state.

Configuring SNMP threshold polls
Fix Pack 5

SNMP threshold polls that measure differences in counter variables, such as
bandwidth variables, can record incorrect values if the monitored device restarts.

You can configure the polling process to discard any polls that are performed
while a device is restarting.

To configure the polling process in this way, complete the following steps:
1. Back up and edit the following file on the server where the Network Manager

core components are installed: $NCHOME/etc/precision/NcPollerSchema.cfg
2. Add the following line:

update config.properties property set DropWrappedPolls = 1

3. Restart the ncp_poller process.

Administering multiple pollers
If multiple pollers are needed to poll your network, you can set up Network
Manager to administer the multiple poller feature. You can add pollers or remove
pollers, or use a poller ID to associate a specific poller with a policy.

Chapter 9. Administering network polling 65

Multiple poller overview
You can use multiple pollers to scale your polling to more devices and for
performance reasons.

The poller process has two functions: to poll network devices, and to perform
administrative tasks such as data pruning and updating caches. If a single poller is
polling many devices on a regular basis, consider using multiple pollers for
polling.

Note: If you have more than one poller and you want to configure them
differently, you can create domain-specific and poller-specific versions of the poller
configuration file, NcPollerSchema.cfg. To create a domain-specific version, add the
domain name to the file name; for example NcPollerSchema.DOMAIN.cfg. To create
a poller-specific version, add the name of the poller and the name of the domain to
the file name; for example, NcPollerSchemaPOLLERNAME.DOMAIN.cfg. A poller
instance uses the most specific configuration file available.

You can also avoid performance issues by using a separate poller to perform
administrative functions. Start only one poller with the -admin option, and do not
use this poller for polling network devices. Start the other pollers with the
-noadmin option, and use these pollers for network polling. If you are using
failover, replicate the same arrangement of pollers on the backup server.

Each poller is registered with a name that the administrator can use to associate a
policy with a poller.

Restriction: Distributing polling over multiple servers is not supported. Start all
pollers on the Network Manager server.

You can monitor the polling engines using the Network Manager Health views in
IBM Tivoli Monitoring.

For additional information, see the IBM Tivoli Monitoring for Tivoli Network Manager
IP User's Guide.

Monitor Policy editor

When multiple pollers are deployed, the administrator controls which poller is
used by a policy. By default, each policy uses the default poller on the Network
Manager server. The administrator can select a different poller from a list of
registered pollers.

Real-time MIB graphing

The poller used for real-time polling is defined by the administrator.

Setting up additional pollers
Set up an additional poller on the Network Manager server if one poller is not
sufficient to handle your network load. To add more pollers, register and create
new instances of the ncp_poller process.

By default, a single poller is automatically installed during the installation of the
product. This default poller has no name.

66 IBM Tivoli Network Manager IP Edition: Event Management Guide

1. To register the poller, run the $ITNMHOME/bin/ncp_poller command. For
example, to register a poller that is called POLL2344 on the NCOMS domain
run the command as follows:
ncp_poller -domain NCOMS -register -name POLL2344

2. In the $NCHOME/etc/precision/CtrlServices.cfg file, create the new poller
instance.
a. Make a copy of the entry for the ncp_poller process.
b. In this copy, change the serviceName parameter to the name of the poller

that you just created.
c. Change the other ncp_poller options as required.

Fix Pack 3

Ensure that one of the pollers is started with the -admin option,

which configures the poller to perform essential administrative functions,
and the other pollers are started with the -noadmin option.See “Samples” for
example ncp_poller entries in the CtrlServices.cfg file.

3. Restart the ncp_ctrl process in the specified domain. All running ncp_*
processes are restarted, including the new poller.

Samples

The following example creates a poller in the NCOMS domain that is called
snmpPoller that you can use for SNMP queries:
insert into services.inTray
(

serviceName,
binaryName,
servicePath,
domainName,
argList,
dependsOn,
retryCount

)
values
(

"snmpPoller",
"ncp_poller",
"$PRECISION_HOME/platform/$PLATFORM/bin",
"$PRECISION_DOMAIN",
["-domain" , "$PRECISION_DOMAIN" , "-latency" , "60000", "-debug", "0",

"-messagelevel", "warn", "-name", "snmpPoller"],
["nco_p_ncpmonitor", "ncp_g_event"],
5

);

The following example creates a poller that is called PingPoller that you can use
for ping queries:
insert into services.inTray
(

serviceName,
binaryName,
servicePath,
domainName,
argList,
dependsOn,
retryCount

)
values
(

"PingPoller",
"ncp_poller",

Chapter 9. Administering network polling 67

"$PRECISION_HOME/platform/$PLATFORM/bin",
"$PRECISION_DOMAIN",
["-domain" , "$PRECISION_DOMAIN" , "-latency" , "60000", "-debug", "0",

"-messagelevel", "warn", "-name", "PingPoller"],
["nco_p_ncpmonitor", "ncp_g_event"],
5

);

Fix Pack 3 The following example creates a poller in the NCOMS domain that you
can use for ping queries. This poller is set as the admin poller.
insert into services.inTray
(

serviceName,
binaryName,
servicePath,
domainName,
argList,
dependsOn,
retryCount

)
values
(

"PingPoller",
"ncp_poller",
"$PRECISION_HOME/platform/$PLATFORM/bin",
"$PRECISION_DOMAIN",
["-domain" , "$PRECISION_DOMAIN" , "-latency" , "60000", "-debug", "0",

"-messagelevel", "warn", "-name", "PingPoller" "-admin"],
["nco_p_ncpmonitor", "ncp_g_event"],
5

);

Fix Pack 3 The following example creates a poller in the NCOMS domain that you
can use for SNMP queries. This poller runs in the same environment as the poller
in the previous example and so is set to run as -noadmin.
insert into services.inTray
(

serviceName,
binaryName,
servicePath,
domainName,
argList,
dependsOn,
retryCount

)
values
(

"snmpPoller",
"ncp_poller",
"$PRECISION_HOME/platform/$PLATFORM/bin",
"$PRECISION_DOMAIN",
["-domain" , "$PRECISION_DOMAIN" , "-latency" , "60000", "-debug", "0",

"-messagelevel", "warn", "-name", "snmpPoller" "-noadmin"
],

["nco_p_ncpmonitor", "ncp_g_event"],
5

);

After you add the pollers:
1. Restart the product.
2. Edit the poll definitions.
3. Assign polls by setting the Assign to Poller Instance field in the poll policies.

68 IBM Tivoli Network Manager IP Edition: Event Management Guide

Related tasks:
“Changing poll definitions” on page 36
Change existing poll definitions to customize them for your polling requirements.
You change poll definitions in the Poll Definition Editor; the steps you follow differ
depending on the poll definition type.
“Changing poll policies” on page 31
Use the Poll Policy Editor to change the settings of existing poll policies.

Assigning a poller for MIB graphing
If you have defined additional pollers, and want to assign a poller to handle MIB
graphing, edit the properties file

You must have created the poller that you want to use for MIB graphing before
you edit the file.

To assign a poller for MIB graphing:
1. Open the following file: ITNMHOME/profiles/TIPProfile/etc/tnm/

tnm.properties.
2. Change the value of the tnm.graph.poller parameter from DEFAULT_POLLER to

the name of the required poller.
3. Save and close the file.

Removing a poller
If a poller is not being used to monitor the network, you can remove the poller
from the monitoring system.

To remove a poller from the monitoring system, deregister the poller from the
command line. The poller is removed from the Monitor Policy editor.

Complete the following tasks to remove a poller from the monitoring system.
1. Before removing the poller, edit each active policy associated with the poller

that you want to remove. From the Monitor Policy Editor, edit the policies to
use another valid poller.

2. Stop all running Network Manager processes.
3. From the Network Manager server, run the following command.

ncp_poller -deregister -domain [domain_name] -name [poller_name]

If there are no active policies associated with the poller, the poller is
deregistered. If there are still active policies associated with the poller, the script
does not deregister the poller.

4. If there are still active policies associated with the poller, either assign the
policies to another poller, or run the script again using the - force option. If
you run the script using the - force option, any poll policies associated with
the poller are also deleted.

5. Edit the CtrlServices.cfg file to remove or uncomment the ncp_poller entry
for the poller that you removed.

6. Restart the Network Manager processes.

Chapter 9. Administering network polling 69

Administering historical polled data
Use the command-line interface to administer historical polled data.

Storage capacity considerations
Use this information to understand the issues, guidelines, and calculation method
associated with storage capacity. Understanding your storage capacity
requirements can help you determine if Network Manager can accommodate an
increase in the storage limit for historical polled data.

It is important to consider the amount of data you need to store as well as the rate
at which it is collected. By default, the Network Manager poller maintains a
pruning policy to maintain the latest 5 million database rows. This value can be
increased to 20 million or more database rows, but any increase beyond 20 million
will impact performance for reporting and may require tuning and maintenance
attention to the database.

The term "sustained rate of data storage" describes the average speed with which
the data can be inserted into the database and a daily rate will be used for the
purposes of the calculations in the example shown below. While faster rates may
be possible, it is important to allow room for the inevitable brief interruptions
along the pipeline such as network interruptions or database slowdowns due to
peak loads, restarts, or interruptions.

The sustained rate of data storage depends on a number of factors, including:
v Number of polled entities
v Number of metrics polled
v Frequency of polling
v Number of policies
v Number of pollers
v Number of database rows
v Database performance (for large rates of data storage, a slow database will have

an impact)

Insertion rates to the local NCPOLLDATA historical polled data database
(hereinafter referred to as the NCPOLLDATA database) above 7 million database
rows per day are typically not satisfactory over time. A single polling policy will
store about 1 million database rows per day, and you can use multiple policies and
multiple pollers within the suggested overall range. You can use Network Manager
to increase the number of pollers. To avoid excessive impact on the NCPOLLDATA
database, follow these guidelines:
v Use no more than 3 pollers for storing data.
v Create one ITM agent instance per Network Manager poller.

Throughput to the Tivoli Data Warehouse is up to a total of 7 million database
rows per day with all pollers. Exceeding this limit shortens the tolerance limit for
outages and might cause loss of data. While rates higher than this can be achieved,
you need to allow for possible error conditions on the network link and transfer
processes. Network Manager will tolerate and recover from transfer outages
without loss of data for a short period of time. This time period depends on a
combination of factors such as data rate, disk space, and length of time associated
with the transfer outage. The longer the transfer outage, the longer it takes for the
system to recover.

70 IBM Tivoli Network Manager IP Edition: Event Management Guide

Storage capacity guidelines for historical polled data
Use this information to understand the guidelines associated with calculating the
storage capacity to help you determine if Network Manager can accommodate an
increase in the storage limit for historical polled data.

To calculate the rate of database rows to be stored in the NCPOLLDATA historical
polled data database or the Tivoli Data Warehouse, follow these guidelines:
v For historical polled data associated with devices (SNMP or ICMP poll):

Number of device level database rows per day =
number_of_devices * 60 * 24/polling_freq

where:
– number_of_devices — Specifies the number of devices for which you want to

perform an SNMP or ICMP poll.
– 60 * 24 — Specifies the number of minutes in a day.
– polling_freq — Specifies, in minutes, the polling frequency for the historical

polled data associated with the devices to be polled. Examples of historical
polled data associated with devices in an SNMP poll include memory
utilization and CPU cycles.
For an ICMP poll, you can specify these historical polled data items: pings for
up/down status, response time, and packet loss.

v For historical polled data associated with network interfaces (SNMP or ICMP
poll):
Number of network interface level database rows per day =
number_of_network_interfaces * number_of_data_points *
60 * 24/polling_freq

where:
– number_of_network_interfaces — Specifies the number of network interfaces for

which you want to perform an SNMP or ICMP poll.
– number_of_data_points — Specifies the number of data points. Assign a data

point for each historical polled data associated with the network interfaces for
which you want to perform an SNMP poll. For example, if you want
historical polled data for bandwidth and ifInDiscards then you would assign
the value 2 to number_of_data_points.
For an ICMP poll, you can specify these historical polled data items: pings for
up/down status, response time, and packet loss. Count one data point if you
select the pings for up/down status historical polled data; count two data
points if you select the pings for up/down status and response time historical
polled data; select three data points if you select all three of these historical
polled data. For example, if you want historical polled data for pings for
up/down status and response time then you would assign the value 2 to
number_of_data_points.

– 60 * 24 — Specifies the number of minutes in a day.
– polling_freq — Specifies, in minutes, the polling frequency for the historical

polled data associated with the network interfaces to be polled. Examples of
historical polled data associated with network interfaces include bandwidth
and MIB objects, such as, ifInDiscards and ifInErrors from the SNMP MIB
II interfaces table, and so on.
For an ICMP poll, you can specify these historical polled data items: pings for
up/down status, response time, and packet loss.

Chapter 9. Administering network polling 71

Example of storage capacity calculation
Use this information to learn how to calculate the storage capacity to help you
determine if Network Manager can accommodate an increase in the storage limit
for historical polled data.

A user wants to poll 1000 devices with an average of 5 network interfaces for the
following historical polled data with the following polling intervals:

Device level
Historical polled data: memory utilization, 5 minute intervals

Interface level
Historical polled data and polling frequency (SNMP): ifInDiscards, 10
minute intervals

Historical polled data and polling frequency (SNMP): ifInErrors, 10
minute intervals

Historical polled data and polling frequency (SNMP): bandwidth, 10
minute intervals

Historical polled data and polling frequency (ICMP): Pings for up/down
status and response time, 5 minute intervals

Based on these device level and interface level polling requirements, a user would
calculate the daily rate of database rows using the previously described guidelines.

Note: In the example, the SNMP poll specifies a count of three data points for the
ifInDiscards, ifInErrors, and bandwidth historical polled data. The ICMP poll
specifies a count of two data points for the up/down status and response time
historical polled data.
Number of device level database rows per day (SNMP) =
1000 devices * 60 * 24/5 polls per day = 288,000

Number of network interface level database rows per day (SNMP) =
1000 * 5 interfaces * 3 data points * 60 * 24/10 polls per day = 2,160,000

Number of ICMP database rows per day =
1000 devices * 5 interfaces * 2 data points * 60 * 24/5 polls per day = 2,880,000

Total database rows per day = 5,328,000

The previous example shows a total database rows per day of 5,328,000, which is
within the upper guidance of 7 million database rows per day. Thus, this example
shows a scenario that results in maintaining about 4 days of raw data after
increasing the storage limit for historical polled data to 21 or 22 million database
rows.

Increasing the storage limit for historical polled data
You can increase the storage limit for historical polled data. This enables
Performance reports to display a greater amount of historical polled data.

The Network Manager Performance reports are operationally focused and
designed for short term diagnostics. Thus, features typical for a full performance
management product (for example, Tivoli Netcool Performance Manager) such as
optimized data storage and routine data gathering over extended periods that are
required for capacity planning and regulatory reporting are not a goal with the
Network Manager historical reports. You can store up to 20 million database rows
in either the local database or Tivoli Data Warehouse. Depending on your

72 IBM Tivoli Network Manager IP Edition: Event Management Guide

hardware and database performance, you might see degradation in the storage and
reporting performance above 20 million database rows. You may also need the
services of your Database Administrator to optimize and run statistics and
transaction log maintenance regularly on the database, with increasing storage
rates and table size.

Note: By default, Network Manager implements the NCPOLLDATA database
using a database schema within the NCIM topology database.

The storage limit for historical polled data is set by default to a conservative value
of 5 million database rows. You can increase this value; however, this can lead to a
degradation in the performance of the Performance reports.

Data pruning occurs in batches so that rows are not constantly being removed
from the database. When the number of rows exceeds the limit by 10,000 then
rows are removed until the number of rows reaches the limit.

To increase the storage limit for historical polled data, complete the following
steps:
1. Locate the following file:

v UNIX $NCHOME/etc/precision/NcPollerSchema.cfg

v Windows %NCHOME%\etc\precision\NcPollerSchema.cfg

2. Locate the following line:
insert into config.pruning (MAXPOLLDATAROWS) values (5000000);

3. Change the value of MAXPOLLDATAROWS.
Attention: Increasing this value might lead to a degradation in report
performance.

Deleting historical polled data
If there is too much historical polled data in the database, you can use the poll
data pruning script to delete a subset of the historical polled data.

You can delete a subset of the historical polled data that is defined by criteria such
as number of rows, or the age of the data.

The poll data pruning script is installed with the IBM Tivoli Monitoring for IBM
Tivoli Network Manager IP Edition.

To run the poll data pruning script, complete the following tasks.
1. On the server where IBM Tivoli Monitoring for IBM Tivoli Network Manager

IP Edition is installed, change to the NCHOME/precision/products/tnm/bin
directory.

2. Start the script using a command line similar to the following:

v UNIX itnm_polldata_pruning [-help] -username user -password password
{-days days [-domain domain] [-policy policy]} | {-rows rows} [-prompt]

v Windows itnm_polldata_pruning.bat [-help] -username user -password
password {-days days [-domain domain] [-policy policy]} | {-rows rows}
[-prompt

The command line parameters are listed in the following table.

Chapter 9. Administering network polling 73

Table 6. Command line parameters for the itnm_polldata_pruning script

Parameter Description

-days days The number of days to keep historical polled
data in the database. To delete historical
polled data, you must use either the -days
or the -rows parameters.

-domain domain Optional. Deletes rows that have the given
domain. Used with -days.

-help Shows the help for the script.

-password password The password of a user with access to the
database that stores the historical polled
data.

-policy policy Optional. Deletes rows that have the given
policy name. Used with -days.

-prompt Optional. Prompts the user before deleting
any historical polled data.

-rows rows The number of rows to delete, starting from
the oldest data. Cannot be used with the
-days parameter.

Monitoring poller capacity

Fix Pack 4

To prevent problems from occurring on pollers, monitor the poller metrics by
outputting them on the command-line interface. The metrics are displayed as bar
charts. The metrics show when a poller is reaching capacity, for example, if poor
database performance is causing it to fall behind.

By default, the metrics are written to a trace in NCHOME/log/precision every 2
minutes. There is one trace for each poller. The file name of the trace has the
format ncp_poller.SnmpPoller.domain.metrics for the default poller and
ncp_poller.SnmpPoller.pollername.domain.metrics for all other pollers. For
example, ncp_poller.SnmpPoller.Poller23507.NCOMS.metrics. The following table
describes the metrics.

Table 7. Poller metrics

Metric Measures
Measured in (the units of
the y-axis of each bar chart)

Health The percentage of devices
that are polled during a
policy cycle. If this value is
100%, the poller is working
properly. If the value is
below 100%, not all the
devices are polled during the
polling interval. The poller
cannot keep up with policy
load.

%

74 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 7. Poller metrics (continued)

Metric Measures
Measured in (the units of
the y-axis of each bar chart)

Memory The memory that the poller
is using. Memory usage
increases as more devices are
discovered or more policies
are enabled.

MB

BatchQueueSize The number of batches that
are waiting for a thread.

Count

PollDataQueueSize The number of INSERT
statements that are queued
to the NCPOLLDATA
database. Shows whether the
poller is successfully storing
polling data.

Count

PollDataRowCount The number of rows in the
ncpolldata.polldata table
after the poller has pruned
the data. This table stores
historical poll data. Only the
default poller prunes the
data. This metric is useful
only if historical polling is
used.

Count

Do not run the script with the -metrics option and the -status option
simultaneously.

Ensure that the terminal on which you output the bar charts has a minimum width
of 140 characters. Otherwise, the bar chart does not display properly because of the
line wrapping.

Run the itnm_poller.pl script as shown in the examples. The following example
shows how to display the charts for the default poller, on the NCOMS domain,
from the most recent time stamp, over the default 4 hour period:
ncp_perl itnm_poller.pl -domain NCOMS -metrics

The following example shows how to run the script for the same domain for a
specific poller, over the last 12 hours:
ncp_perl itnm_poller.pl -domain NCOMS -poller Poller23507 -metrics -window 12

The following example shows how to run the script for the same domain and
poller, from a specific time stamp, over a period of 8 hours:
ncp_perl itnm_poller.pl -domain NCOMS -poller Poller23507 -metrics
-timestamp 2013-12-10T17:30:36 -window 8

Pay close attention to the scale of the y-axis. A bar chart that appears flat for a
long period, for example 24 hours, might show differences in values when the
chart is viewed over a shorter period, for example 4 hours.

Chapter 9. Administering network polling 75

Example

The following example shows a sample chart for the Health metric.

Health (%) for Policy ’Default Chassis Ping’ PollDef My Poll Definition 1’
(Type:SNMP Link State)
A value less than 100% indicates the policy is behind and some devices were not polled

during the last polling cycle

100 ------------------+---++
+++																																																												

50 ------------------||

0 -+++++++++++++++++--
^ ^ ^ ^ ^ ^ ^ ^

13:46 14:06 14:26 14:46 15:06 15:26 15:46 16:06
Time Window (4 hours): 2013-12-08T13:46:25 to 2013-12-08T17:46:25

(Sample interval: 2 minutes)

Review the problems and possible causes in the following table and take action as
appropriate.

Table 8. Possible causes of problems with poller metrics

Metric Problem Possible cause Actions

Health Value is consistently
below 100%.

The percentage can
fall temporarily
below 100% after the
poller is started, or if
change information is
received from the
MODEL database.

v Increase the
polling interval by
changing the poll
policy

v Add more pollers.

Memory Memory grows
unbounded

The connection to the
database was lost.
Alternatively, the
polling load is too
great to sustain, or
the rate of data
storage is too great to
sustain.

v Contact your
database
administrator.

v Add more pollers.

76 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 8. Possible causes of problems with poller metrics (continued)

Metric Problem Possible cause Actions

BatchQueue The number of
batches that are
waiting for a thread
is greater than 0 and
increasing.

The number of
threads is exhausted,
which can indicate
that the downstream
SNMP dispatcher is
close to capacity.

Although it is
possible to increase
the number of
threads by setting the
BatchExtraThreads
property in the
NcPollerSchema.cfg
file, it is not the best
solution. It is possible
that increasing the
number of threads
worsens the problem.
Safer solutions are as
follows:

v Add more pollers.

v Contact your
system
administrator to
investigate adding
RAM to the host.

Tip: Set a threshold
on the number of
batches that are in
the queue for
processing. You are
alerted in the poller
log when the
threshold is
breached.1

PollDataQueueSize The number of
INSERT statements in
the queue grows
exponentially.

The connection to the
database was lost or
the frequency of
INSERT statements is
greater than the
poller can handle.

v Contact your
database
administrator.

v Add more pollers.

PollDataRowCount The number or rows
exceeds the threshold
after pruning is
completed. The
default threshold is
5,000,000 and the
default pruning
interval is 1 hour.

The polling load is
too heavy and so the
number of rows is
too great to be
pruned within the
pruning interval.
Alternatively,
problems occurred in
the database, which
is causing problems
with pruning.

Contact your
database
administrator.

Chapter 9. Administering network polling 77

Table 8. Possible causes of problems with poller metrics (continued)

Metric Problem Possible cause Actions

Table notes:

1. To set a threshold, change the value of the set BatchQueueThreshold property in the
$NCHOME/etc/precision/NcPollerSchema.cfg to a suitable value. For example, to set the
threshold to 10 batches of queued polls:

update config.properties set BatchQueueThreshold = 10;

When the queue exceeds the specified threshold, a message is written that is similar to
the following example:

2013-04-19T12:37:58:Poller:NCOMS:DataQueueSize:10;

If an error is displayed, check in the $NCHOME/etc/precision/NcPollerSchema.cfg
file whether the CollectPollerMetrics parameter is disabled. This parameter is
enabled by default, but, if it is disabled, enable it. You can use the OQL interface to
enable the parameter at run time. For example:
ncp_oql -domain NCOMS -service SnmpPoller -poller Poller23507
-query “update config.properties set CollectPollerMetrics=1;”

Related tasks:
“Setting up additional pollers” on page 66
Set up an additional poller on the Network Manager server if one poller is not
sufficient to handle your network load. To add more pollers, register and create
new instances of the ncp_poller process.
“Changing poll policies” on page 31
Use the Poll Policy Editor to change the settings of existing poll policies.
“Adjusting the size of poll data queues” on page 62
Database problems or heavy polling loads can cause pollers to run out of memory
if the queue of poll data for writing to the NCPOLLDATA database becomes too
large. To monitor and avoid this problem, you can set a limit on the size of the
queue. The limit is defined as the number of batches. If the limit is exceeded, you
are alerted in the log and in the Active Event List (AEL). Then, the poller reduces
the queue size by discarding the queued data. The discarded data is written to
another file so that you can retrieve it and write it to the database.

Querying the status of entities
To troubleshoot pollers, query the monitors.current OQL table. This table contains
records of the entities that are in the scope of poll policies. Use the ncp_oql
command to query the table. The records include information such as the last
polling time of entities. For unpolled entities, the output includes the managed
status or shows that the entity is considered a duplicate IP address.

Important: Fix Pack 4 By default queries on the monitors.current table output
chassis records but omit interface records for monitored entities. To output both
chassis and interface records, apply fix pack 4.
v To query the monitors.current table, run the ncp_oql command as shown in the

following example for the MASTER domain.
ncp_oql -domain MASTER -service SnmpPoller -tabular
-query "select * from monitors.current;"

The chassis records are output, as shown in the following example.

78 IBM Tivoli Network Manager IP Edition: Event Management Guide

| ENTITYID | ENTITYNAME | ACCESSIPADDRESS | MAINNODEENTITYID | MAINNODEENTITYNAME

| MAINNODEADDRESS | ENTITYMANAGED | CHASSISMANAGED | ISMANAGED | LASTPOLLTIME

| LASTPOLLINTERVAL | LASTPOLLFAILURE | TEMPLATEID | TEMPLATENAME | POLICYID

| POLICYNAME | CURRENTTIME |
| 27 | 172.30.120.15 | 172.30.120.15 | 27 | 172.30.120.15 | 172.30.120.15 |

| | true | 2013-10-23 16:38:24 | 180 | 2013-10-23 16:38:24 | 47 | aNoSuchName

| 179 | aNoSuchName | 2013-10-23 16:39:06 |

(1 record(s) : Transaction complete)

Fix Pack 4 The chassis records are output first, then the interface records, as
shown in the following example.
| ENTITYID | ENTITYNAME | ACCESSIPADDRESS | MAINNODEENTITYID | MAINNODEENTITYNAME

| MAINNODEADDRESS | ENTITYMANAGED | CH ASSISMANAGED | ISMANAGED | LASTPOLLTIME

| LASTPOLLINTERVAL | LASTPOLLFAILURE | TEMPLATEID | TEMPLATENAME | POLICYID

| POLICYNAME | CURRENTTIME | ENTITYCLASS | LINGERTIME | ENTITYTYPE | IFINDEX

| IFTYPESTRING | IFNAME | IFDESCR | IFALIAS | INSTANCESTR | MONITOREDINSTID

|
| 27 | 172.30.120.15

| 172.30.120.15 | 27 | 172.30.120.15 | 172.30.120.15 | | | true

| 2013-10-23 16:38:24 | 180 | 2013-10-23 16:38:24 | 47 | aNoSuchName | 179

| a NoSuchName | 2013-10-23 16:40:47 | NULL | NULL | NULL | NULL | NULL | NULL

| NULL | NULL | NULL | NULL | | 1714 | 172.30.120.15[19] | | 27

| 172.30.120.15 | 172.30.120.15 | | | true | NULL | NULL | NULL | 47

| aNoSuchName | 179 | a NoSuchName | NULL | CiscoCat19xx | 3 | 2 | 19

| ethernet-csmacd | 19 | 19 | | 19 | 386 | | 1726 | 172.30.120.15[CPU]

| 172.30.120.15 | 27 | 172.30.120.15 | 172.30.120.15 | | | true | NULL

| NULL | NULL | 47 | aNoSuchName | 179 | a NoSuchName | NULL | CiscoCat19xx

| 3 | 2 | 37 | ethernet-csmacd | CPU | CPU | | 37 | 1536 |

(3 record(s) : Transaction complete)

v Fix Pack 4 To query the table for only chassis records, run the command as shown
in the following example.
ncp_oql -domain MASTER -service SnmpPoller -tabular
-query "select * from monitors.current where ENTITYTYPE=1;

Chapter 9. Administering network polling 79

80 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 10. Troubleshooting ping polling

Use this information to help you ensure that the important IP addresses in your
network are being ping polled as expected by Network Manager and, if not, to
provide information to resolve the problem.

By default, the tables and views defined in the $NCHOME/precision/scripts/SQL/
createPollLogTables.sql file are added to the NCMONITOR schema as part of the
Network Manager installation. These tables and views store the results of the
diagnostic operations performed in this procedure.

Note: This mechanism is for ping polling policies only, not for SNMP polling
policies.

This procedure includes a step for taking a snapshot of the current ping polling
status within a specified network domainAfter starting the Network Manager
polling process, you must allow at least two polling intervals before taking the first
snapshot. A restart of the system is not necessary.

Given a set of IP addresses, the scripts described in this task provide insight into
whether the poller is pinging those IP addresses, and if not, provide an indication
of what the problem is. There are a number of reasons why IP addresses might not
be being polled including the following:
v The device specified in the poll policy was not discovered.
v The device or interface is not included in any of the ping policy scopes.
v The device or interface has been marked as unmanaged from one of the

topology visualization GUIs.
v The interface was marked as unmanaged at discovery time or determined to be

unroutable.

For more information on the scripts described in this task, see the IBM Tivoli
Network Manager IP Edition Administration Guide.

Note: These scripts are a verification and diagnostic tool only and have no effect
on the actual polling of the devices; polling of devices is governed solely by the
poll policies set up using the Network Polling GUI.
1. Add the list of IP addresses whose polling you want to monitor using the

ncp_upload_expected_ips.pl script. Issue the following command:
$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_upload_expected_ips.pl -domain DOMAIN_NAME -file FILENAME -password
PASSWORD Where:
v DOMAIN_NAME is the name of domain that contains the IP addresses. The

list of IP addresses will only be compared with IP addresses in this domain.
v FILENAME is a plain text file of IP addresses, separated by whitespace (for

example, one IP address per line). This only accepts IPv4 addresses. The file
is expected to contain just IP addresses in standard dot notation.

v PASSWORD is the database password used to access the NCIM and
NCMONITOR schemas.

© Copyright IBM Corp. 2006, 2016 81

Note: Only repeat this operation if there are changes to the list of IP addresses
whose polling you want to monitor. Otherwise, this is a one-time operation
only per domain.

2. Periodically, or when required for troubleshooting purposes, take a snapshot of
the current ping polling status within the domain specified in the previous
step. Issue the following command:$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_ping_poller_snapshot.pl
-domain DOMAIN_NAME -password PASSWORD Where:
v DOMAIN_NAME is the name of domain within which to take a snapshot of

the current ping polling status.
v PASSWORD is the database password used to access the NCIM and

NCMONITOR schemas.

The results of the operation are stored in the pollLog database table within the
NCMONITOR schema.

3. Report on the entities that are not being polled.Run the report of the status of
entities polled or not polled by the Network Manager polling process. Issue the
following command: $NCHOME/precision/bin/ncp_perl $NCHOME/precision/
scripts/perl/scripts/ ncp_polling_exceptions.pl -domain DOMAIN_NAME [
-notpolled] [-format LIST | REPORT] Where:
v DOMAIN_NAME is the name of domain within which to report on current ping

polling status.
v -notpolled: this optional parameter outputs a list of IP addresses that are not

polled as compared with the list of expected IP addresses. This output is in
LIST format only.

v -format LIST | REPORT: this optional parameter specifies whether the output
should be in report or list format.

This command outputs two lists: a list of IP addresses that you want to poll
and a list of IP addresses that are not being polled. You can see at a glance if
any of the IP addresses that you want to poll are not being polled.

Related reference:
“Ping polling status tables” on page 216
The NCMONITOR ping polling status tables enable diagnostic operations to be
performed on network ping polling.

82 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 11. About event enrichment and correlation

Network Manager uses the Event Gateway to correlate events with topology data
and enrich events with a default set of topology fields. Once an event has been
enriched, it is passed to plugin processes such as root-cause analysis (RCA) and
failover, which take further action based on the data in the enriched event. The
enriched event is also passed back to the ObjectServer.

Event enrichment
The event enrichment process occurs within the Event Gateway and is made up of
distinct steps. Each of these steps can be customized.
Related concepts:
Appendix F, “Network Manager event categories,” on page 207
The events that are raised by Network Manager fall into two categories: events
about the network being monitored and events about Network Manager processes.

Quick reference for event enrichment
Use this information to understand how an event is processed as it passes through
the Event Gateway.

Note: When accessing a Tivoli Netcool/OMNIbus ObjectServer that is protected by
a firewall, you must specify an IDUC port and provide access to that port using
the firewall.For more information on specifying an ObjectServer IDUC port, see the
IBM Tivoli Netcool/OMNIbus Administration Guide.

The steps are described in the following table.

Table 9. Quick reference for event enrichment

Action Further information
Data passed to next
step

1. An event is received from the ObjectServer and the incoming
event filter is applied to the event.

The default filter checks the LocalNodeAlias field of the event. If
the LocalNodeAlias field is not empty, then the event passes the
filter and moves to Step 3.
Note: The LocalNodeAlias field usually contains data that points to
the main node device on which the event occurred. The precise
data held by the LocalNodeAlias field varies, and can include the
following:

v IP address

v DNS name

v sysName

“Incoming event
filter” on page 86

Event

2. The Event Gateway assigns a state to the event based on the
Severity and Tally fields in the event. This event state is an internal
Event Gateway representation and is used later by the plug-ins as
part of the event subscription mechanism.

“Event states” on
page 93

Event

Event state

© Copyright IBM Corp. 2006, 2016 83

Table 9. Quick reference for event enrichment (continued)

Action Further information
Data passed to next
step

3. The incoming field filter is applied to the event. This field filter
filters out alerts.status fields that do not participate in the Event
Gateway processing.

“Incoming field filter”
on page 89

Event with filtered
fields

Event state

4. The Event Gateway determines how to handle this event, by
determining which event map to use. Event maps define how to
handle an event.

At the same time a numerical precedence value is associated with
an event. This precedence value is used by the RCA plugin in cases
where there are multiple events on the same entity. The event with
the highest precedence value on the entity is used to suppress other
events.

“Event map selection”
on page 97

“Precedence value” on
page 131

Event with filtered
fields

Event state

Event map fields, such
as event map name
and event enrichment
stitcher

Precedence value

5. The Event Gateway determines the entity ID of the Network
Manager server or of the ingress interface, the interface within the
discovery scope from which network packets are transmitted to and
from the Network Manager server. This value is used by the RCA
plug-in to perform isolated suppression.

“Poller entity” on
page 133

Event with filtered
fields

Event state

Event map fields, such
as event map name
and event enrichment
stitcher

Precedence value

PollerEntityId

6. The Event Gateway performs a topology lookup to retrieve entity
data associated with this event, and then enriches the event using
some of this entity data. To perform the topology lookup and event
enrichment, the Event Gateway calls the stitcher defined in the
event map.

“Event Gateway
stitchers” on page 102

To Steps 8 and Step 9

Event with filtered
fields and enriched
fields

Event state

Precedence value

PollerEntityId

Return value from
stitcher

7. The outgoing field filter is applied to the event. This filter only
passes the fields enriched by the Event Gateway, and in particular,
by the GwEnrichEvent stitcher rule. The enriched fields are placed
on the Event Gateway queue, from where the data is sent to the
ObjectServer at a configurable interval (default is 5 seconds).

“Outgoing field filter”
on page 90

“Outgoing Event
Gateway queue” on
page 91

Fields enriched by
Event Gateway

84 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 9. Quick reference for event enrichment (continued)

Action Further information
Data passed to next
step

8. Based on the return value from the stitcher defined in the event
map (Step 7), the Event Gateway determines whether to send the
enriched event to the plug-ins.

v If the return value is 1, then the Event Gateway sends the
enriched event to the plug-ins. Go to the next step.

v If the return value is 0, then the Event Gateway does not send
the enriched event to the plug-ins. The event enrichment process
for this event ends here.

“Event enrichment
stitchers” on page 112

Event with filtered
fields and enriched
fields

Event state

Event map name

Precedence value

PollerEntityId

9. Each plug-in determines whether it is interested in the enriched
event. It does this based on the event map name and the event
state. The plug-ins that are interested in the event perform further
event enrichment or take other action.

“Plugin descriptions”
on page 118

“Plug-in
subscriptions” on
page 128

Event with filtered
fields and enriched
fields

10. On completion of processing, the enriched fields are placed on
the Event Gateway queue, from where the data is sent to the
ObjectServer at a configurable interval (default is 5 seconds).

“Outgoing Event
Gateway queue” on
page 91

To ObjectServer

Fields enriched by
plug-ins

Related concepts:
“Example: Default enrichment of a Tivoli Netcool/OMNIbus trap event” on page
115
Use this information to understand how a Tivoli Netcool/OMNIbus event is
processed as it passes through the Event Gateway.
Related tasks:
“Modifying event map subscriptions” on page 163
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.

Event filtering
Events are filtered at the beginning of the enrichment process when the events are
received from the ObjectServer. Events are also filtered at the end of the process
when the enriched events are sent back to the ObjectServer.

Incoming filter
The incoming filter ensures that only events and fields of interest are passed to the
Event Gateway for event enrichment.

Chapter 11. About event enrichment and correlation 85

Incoming event filter:

The incoming event filter filters out events from the ObjectServer and only passes
events that meet certain criteria.

The incoming event filter is used in both installations without failover, and in
installations with failover. In the case of an installation with failover, the filter
mechanism applies to events on the active domain, that is, the primary domain
when the primary server is healthy, or the backup domain when the primary
server is down.

The incoming event filter only passes events that meet the following conditions:
v The LocalNodeAlias field of the event is populated. This field should hold the IP

address or DNS name of the related device.
v The domain name specified in the NmosDomainName field of the event is the

same as the domain handled by the current Event Gateway. Alternatively, there
is no domain associated with this event, and the NmosDomainName field is
empty.

The incoming event filter can handle events in both single domain and
multidomain systems.

Single domain and multidomain handling

In a single domain system, there is only one Event Gateway process. All events
that have a domain set in the NmosDomainName field have the same domain
assignment as this Event Gateway.

In a multiple domain system, there are multiple Event Gateway processes, one for
each domain. Each Event Gateway process receives events from the ObjectServer
and filters the events so that it only receives events for its own domain. The
ObjectServer performs deduplication and matching of problem and resolution
events based on the following alerts.status fields: AlertKey, Identifier, and Domain.
The inclusion of the Domain field ensures that all deduplication and matching of
problem and resolution events is domain specific.

Events with no domain

Events that come from sources outside of Network Manager, for example, Tivoli
Netcool/OMNIbus syslog or trap probes, do not have a domain setting the first
time that they pass through an Event Gateway. In a single domain system events
with no domain setting pass the incoming event filter and the Event Gateway
determines the domain associated with the event as part of the topology lookup
performed during event enrichment.

In a multidomain system, the first Event Gateway that encounters the event with
no domain passes it through the incoming event filter and proceeds to process it.
However, if the topology lookup fails to find an entity for the event, then the event
will be rejected by the Event Gateway without any event enrichment. The event is
then picked up by a different Event Gateway, which also attempts to match the
event to a device in its domain. This process continues until the event eventually is
processed by an Event Gateway that is able to match an entity to the event.
Related reference:
“config.nco2ncp table” on page 234
The config.nco2ncp table is used to filter events being passed from Tivoli

86 IBM Tivoli Network Manager IP Edition: Event Management Guide

Netcool/OMNIbus to Network Manager.

Incoming event filter: default configuration:

This example shows how the incoming event filter is configured in the
EventGatewaySchema.cfg configuration file. This standard insert for the incoming
event filter handles both single-domain and multi-domain systems.

The incoming event filter is configured in the EventGatewaySchema.cfg
configuration file. This file is located at: $NCHOME/etc/precision/
EventGatewaySchema.cfg.

The following table describes the relevant lines from this insert.

Table 10. Lines of code relevant to the incoming event filter

Line numbers Description

1 Configure the incoming filter by making an insert into the config.nco2ncp
table.

3 Specify an insert into the EventFilter field of the config.nco2ncp table.

9 - 10 Set the filter as follows:

"LocalNodeAlias <> ’’ and (NmosDomainName = ’$DOMAIN_NAME’ or
NmosDomainName = ’’)"

This clause checks that the LocalNodeAlias column of the event has been
populated. In addition, the filter checks whether the domain name
specified in the event (held in the NmosDomainName field) is the same as
the domain that is handled by this Event Gateway (held in the
$DOMAIN_NAME variable). If there is a match, or if the event has no associated
domain (NmosDomainName - ’’), and the LocalNodeAlias column has been
populated, then the event passes the filter.

The following table describes the relevant lines from this insert.

Chapter 11. About event enrichment and correlation 87

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]
32]
33]
34]
35]
36]
37]
38]
39]
40]

insert into config.nco2ncp
(

EventFilter,
StandbyEventFilter,
FieldFilter

)
values
(

"LocalNodeAlias <> ’’ and (NmosDomainName =
’$DOMAIN_NAME’ or NmosDomainName = ’’)",

"EventId in (’ItnmHealthChk’, ’ItnmDatabaseConnection’)",
[

"Acknowledged",
"AlertGroup",
"EventId",
"FirstOccurrence",
"LastOccurrence",
"LocalNodeAlias",
"LocalPriObj",
"LocalRootObj",
"Manager",
"NmosCauseType",
"NmosDomainName",
"NmosEntityId",
"NmosEventMap",
"NmosManagedStatus",
"NmosObjInst",
"NmosSerial",
"Node",
"RemoteNodeAlias",
"EventId",
"Serial",
"ServerName",
"Severity",
"Summary",
"SuppressEscl",
"Tally",
"Type"

]
);

Standby filter:

In a failover deployment, the standby filter is used by the backup domain in a
failover pair. That means the backup domain when the primary is active, or the
primary domain if the backup is active. The standby filter only allows health check
(ItnmHealthCheck) events through the Event Gateway. These events are passed to
the Failover plugin and tell the system to switch back to primary mode. Note that
for failover behaviour, any modifications to this filter must still ensure that the
standby filter accepts health check events.

When the primary server is active, the Event Gateway on the backup server does
not perform any event enrichment. When the primary server is down and the
backup server is active, the Event Gateway on the backup server performs event
enrichment of events in the ObjectServer.

The standby filter is configured in the EventGatewaySchema.cfg configuration file.
This file is located at: $NCHOME/etc/precision/EventGatewaySchema.cfg.

88 IBM Tivoli Network Manager IP Edition: Event Management Guide

The example listed in “Incoming event filter: default configuration” on page 87
shows how the standby filter is configured in the EventGatewaySchema.cfg
configuration file.

The section of code that is relevant to the standby filter is listed in the following
lines. This insert configures the Event Gateway to only pass ItnmHealthCheck
events when the primary server is down and the backup server is active.

The following table describes the relevant lines from this insert:

Table 11. Lines of code relevant to the standby filter

Line numbers Description

1 Configure the incoming filter by making an insert into the config.nco2ncp
table.

4 Specify an insert into the StandbyEventFilter field of the config.nco2ncp
table.

11 Set the filter as follows:

"EventId in (’ItnmHealthChk’, ’ItnmDatabaseConnection’)",

This clause only passes events that have the event ID set to the value
ItnmHealthChk or ItnmDatabaseConnection.

Related reference:
“config.nco2ncp table” on page 234
The config.nco2ncp table is used to filter events being passed from Tivoli
Netcool/OMNIbus to Network Manager.

Incoming field filter:

For each event that passes the incoming event filter, the field filter specifies a
subset of alerts.status fields that are passed through to the event enrichment
process. If the field filter is empty then all alerts.status fields are are passed
through to the event enrichment process. The purpose of this filter is to limit the
fields passed through to the minimum required set in order to lighten the
processing load.

The incoming event filter is configured in the EventGatewaySchema.cfg
configuration file. This file is located at: $NCHOME/etc/precision/
EventGatewaySchema.cfg.

The example listed in “Incoming event filter: default configuration” on page 87
shows how the incoming field filter is configured in the EventGatewaySchema.cfg
configuration file.

The section of code that is relevant to the incoming field filter is listed in the
following lines from the example. For each event that the ObjectServer passes to
the Event Gateway, the incoming field filter specifies a subset of alerts.status fields
that are passed through to the event enrichment process.

The following table describes the relevant lines from this example:

Chapter 11. About event enrichment and correlation 89

Table 12. Lines of code relevant to the incoming field filter

Line numbers Description

1 Configure the incoming filter by making an insert into the config.ncp2nco
table.

5 Specify an insert into the FieldFilter field of the config.ncp2nco table.

11-38 Only pass the alerts.status fields specified in lines 13 to 38.
Note: If you configure extra event enrichment, you might need to add
fields to this list.

Outgoing field filter
The outgoing field filter defines the set of ObjectServer fields that may be updated
by the Event Gateway.

Event enrichment is performed by the GwEnrichEvent() stitcher rule. Of the fields
enriched with that rule, only those listed in this filter are transmitted to the Object
Server. Some event enrichment is intended purely to provide data for use by Event
Gateway plug-ins. The enriched fields intended only for use by plug-ins do not
need to be specified in the outgoing field filter. The outgoing field filter works on
any data passed to the GwEnrichEvent() rule

Note: If you customize event enrichment to add extra enriched fields to the event,
then you must update the outgoing field filter to include these extra enriched
fields. For example, if you want enrich events so that any alert on a Cisco routers
alerts is increased to critical severity (severity 5) then you must add Severity to the
list of fields in the outgoing field filter.

The outgoing field filter is configured in the EventGatewaySchema.cfg
configuration file. This file is located at: $NCHOME/etc/precision/
EventGatewaySchema.cfg.

The following example shows how the outgoing field filter is configured in the
EventGatewaySchema.cfg configuration file.

The section of code that is relevant to the outgoing field filter is listed in the
following lines from the example. Each time the Event Gateway passes enriched
fields back to the ObjectServer, only the fields listed in this filter are transmitted.
Any other fields are ignored.

The following table describes the relevant lines from this example:

Table 13. Lines of code relevant to the incoming event filter

Line numbers Description

1 Configure the outgoing field filter by making an insert into the
config.ncp2nco table.

3 Specify an insert into the FieldFilter field of the config.ncp2nco table.

5-14 Only pass the fields specified in lines 5 to 14 back to the ObjectServer.
Note: If you configure extra event enrichment, you must add fields to this
list.

90 IBM Tivoli Network Manager IP Edition: Event Management Guide

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]

insert into config.ncp2nco
(

FieldFilter
)
values
(

[
"NmosCauseType",
"NmosDomainName",
"NmosEntityId",
"NmosManagedStatus",
"NmosObjInst",
"NmosSerial"

]
);

Related tasks:
“Example: Enriching an event with main node device location” on page 154
You can configure event enrichment so that the location of the main node device
associated with an event is added to a field in the event.
“Example: Enriching an event with interface name” on page 155
You can configure event enrichment so that for all interface events, the name of the
interface on which the event occurred is added to a field in the event.
Related reference:
“config.ncp2nco table” on page 236
The config.ncp2nco table is used to filter and map events passed from Network
Manager IP Edition to Tivoli Netcool/OMNIbus.

Outgoing Event Gateway queue:

The outgoing Event Gateway queue receives enriched events from the Event
Gateway stitchers (main event enrichment) and from the plug-ins. In order to
minimize the number of updates and hence minimize the load on the ObjectServer,
updates to the Object Server are placed in a queue, aggregated, and sent to the
ObjectServer at a specified interval. The default is 5 seconds.

The outgoing Event Gateway queue receives enriched events from both the Event
Gateway stitchers (main event enrichment) and from the plug-ins, as shown in the
following diagram.

Chapter 11. About event enrichment and correlation 91

▌1▐ Standard enriched events placed on Event Gateway queue
Following standard event enrichment, the Event Gateway stitchers place
enriched data on the Event Gateway queue.

▌2▐ Events passed to plug-ins
If the Event Gateway stitchers return a value of 1, then the related events
are passed to the plug-ins for further enrichment. Plug-ins select the events
to enrich based on the associated event map and event state.

▌3▐ Events enriched by the plug-ins are placed on Event Gateway queue
The plug-ins place the events that they have enriched on the Event
Gateway queue.

▌4▐ Enriched events sent to the ObjectServer
Every 5 seconds enriched event data is sent to the ObjectServer. The
interval of 5 seconds is configurable.

By default, the Event Gateway stitchers enrich the event by populating the
NmosManagedStatus, NmosEntityId, NmosObjInst, and NmosDomainName fields.
These events are placed on the Event Gateway queue and wait for the next update.
Meanwhile, the event is passed to the RCA plugin. The RCA plugin enriches the
event by populating the NmosSerial and NmosCauseType fields and then places
these events on the Event Gateway queue. Both of these updates arrive on the

Event Gateway

1

2

Event Gateway
stitchers

Event Gateway
queue

Plug-ins

Object
Server

Event enrichment

Event storage

3

4

Figure 2. Outgoing Event Gateway queue

92 IBM Tivoli Network Manager IP Edition: Event Management Guide

Event Gateway queue within one 5 second interval. Consequently rather than
performing two upates, the Event Gateway is able to queue the data up so only
one update of the ObjectServer is performed for all of these fields.
Related tasks:
“Configuring the ObjectServer update interval field” on page 157
You can configure the interval that the Event Gateway uses to queue event
enrichment updates to the ObjectServer.
“Modifying event map subscriptions” on page 163
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.

Event states
The Event Gateway assigns a state to the event based on the type of event, and
based on the Severity and Tally fields in the event. The event state is one of the
parameters used by event plug-ins when subscribing to events.
Related concepts:
“RCA stitcher descriptions” on page 138
Use this information to understand what each RCA stitcher does.
“RCA stitcher sequence” on page 136
The stitchers that are called by the RCA plug-in and the sequence in which
stitchers are run to determine root cause.

Event types
For the purposes of the Event Gateway, event types fall into three broad categories:
Problem, Resolution, and Information.

For the purposes of the Event Gateway, event types fall into the following
categories:

Type = 1: Problem
The Event Gateway assigns one of a number of different states to problem
events, based on the previous state, and based on the Severity and Tally
fields in the event.

Type = 2: Resolution
Resolution events are immediately assigned the Resolution state.

Type =13: Information
Information events are immediately assigned the Information state.

The full list of event types defined in the alerts.status table is presented in the table
below and is mapped to one of the three categories listed above.

Table 14. Transition labels

Value of Type field in
alerts.status Event type as understood by the Event Gateway

0: Type not set Unknown

1: Problem Problem

2: Resolution Resolution

3: Netcool/Visionary
problem

Problem

Chapter 11. About event enrichment and correlation 93

Table 14. Transition labels (continued)

Value of Type field in
alerts.status Event type as understood by the Event Gateway

4: Netcool/Visionary
resolution

Resolution

7: Netcool/ISMs new
alarm

Problem

8: Netcool/ISMs old
alarm

Problem

11: More Severe Problem

12: Less Severe Problem

13: Information Information

Event state diagram
The event state diagram shows possible event states and describes how transitions
occur between these states based on the values in the alerts.status Severity and
Tally fields. The diagram also shows how different event types are handled.

The event state diagram is shown below. Each event is assigned one of these states
as it passes through the Event Gateway. Each state transition corresponds to an
updated event received from the ObjectServer. The event states are shown with an
associated color as follows:
v Red indicates an active problem state.
v Green indicates an active clear state.
v White indicates that this is not an active state.

94 IBM Tivoli Network Manager IP Edition: Event Management Guide

Event state transitions

Each transition is labelled on the diagram with a number from 1 to 8. The
following table lists the transitions associated with each label.

Table 15. Transition labels

Label Field values in updated event

▌1▐ Severity =0

▌2▐ Severity = 0

Tally: Unchanged from previous event

▌3▐ Severity: 0

Tally: Changed from previous event

▌4▐ Severity: Non-zero

▌5▐ Severity: Non-zero

Tally: Unchanged from previous event

1

78

1

1

4

2

2

44

41

6

1

5 6

5

6 65

5

2

3 3

3

66

UpdateOccurred Re-occurred

Occurred

Deleted

Cleared

Re-cleared

UpdateCleared

Re-awakened

ResolutionInformation

Unknown

Figure 3. Event state diagram

Chapter 11. About event enrichment and correlation 95

Table 15. Transition labels (continued)

Label Field values in updated event

▌6▐ Severity: Non-zero

Tally: Changed from previous event

▌7▐ Type = 2: Resolution

▌8▐ Type = 13:Information

Event state descriptions

Event states are listed in the following table. All of the states listed refer to events
of Type = 1 (Problem events), unless otherwise stated.

Table 16. Event states

State Description

Cleared The severity zero event was not previously known to the Event
Gateway, or was in an active problem state.

Deleted The event has been deleted from the ObjectServer. As this can
happen at any time, this state can be reached from any other
state except Unknown. Deletions are sent to plug-ins over the
plug-in interface, and the state of the event in the Event
Gateway becomes Unknown.

Information Any incoming event that has the type Information (Type = 13)
is given the Information state, irrespective of other field values.

Occurred The non-zero severity event was not previously known to the
Event Gateway.

Re-awakened The non-zero severity event was previously known to the Event
Gateway, but was not in an active problem state.

Re-cleared The severity zero event was previously known to the Event
Gateway, and has re-occurred.

Re-occurred The non-zero severity event was previously known to the Event
Gateway and a new occurrence of that problem event has
occurred.

Re-synchronize The Event Gateway has resynchronized with the ObjectServer.
This is a synthetic state that does not correspond to any single
ObjectServer event.

Resolution Any incoming event that has the type Resolution (Type = 2) is
given the Resolution state, irrespective of other field values.

Unknown The event has not been detected by the Event Gateway. This is
the initial and final state.

UpdateCleared The severity zero event was previously known to the Event
Gateway, and an update, as opposed to a reoccurrence, has
been detected.

UpdateOccurred The non-zero severity event was previously known to the Event
Gateway, and an update, as opposed to a reoccurrence, has
been detected.

96 IBM Tivoli Network Manager IP Edition: Event Management Guide

Event handling
Event handling involves determining how to map each type of event from the
ObjectServer to an entity in the topology data.

Event maps
Event handling is performed using event maps. The main function of an event
map is to call a set of stitchers that perform topology lookup to determine the
entity associated with the event and then enrich the event with topology data.

Event map selection:

The Event Gateway determines which event map to use based on the kind of
event, as defined in the alerts.status EventId field. An example of a kind of event is
an SNMP trap link down event.

Event map selection using the Event Gateway:

Use this information to understand how the Event Gateway is configured to select
event maps to use for event handling.

If you choose to configure event map selection using the Event Gateway, then you
must configure the Event Gateway config.precedence table. The config.precedence
table is configured in the EventGatewaySchema.cfg configuration file. This file is
located at: $NCHOME/etc/precision/EventGatewaySchema.cfg.

The following example shows how the config.precedence table is configured in the
EventGatewaySchema.cfg configuration file.

The section of code that is relevant to selection of event maps to use for event
handling is listed in the following lines from the example. This example insert
configures the Event Gateway to use the event map LinkDownIfIndex for all
events that have the EventId field set to SNMPTRAP-LinkDown. These are trap
events originating from a Tivoli Netcool/OMNIbus probe.

The following table describes the relevant lines from this example:

Table 17. Lines of code relevant to the incoming event filter

Line numbers Description

1 Configure the incoming filter by making an insert into the
config.precedence table.

4-5 Specify an insert into the EventMapName and NcoEventIds field of the
config.precedence table.

10 Set the EventMapName field to the value LinkDownIfIndex.

11 Set the NcoEventId field to the value of the EventId field in the alerts.
status table; in this example, the event map LinkDownIfIndex is selected
for all events where the alerts.status EventId value is SNMPTRAP-
LinkDown.

Chapter 11. About event enrichment and correlation 97

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]

insert into config.precedence
(

Precedence,
EventMapName,
NcoEventId

)
values
(

910,
"LinkDownIfIndex",
"SNMPTRAP-LinkDown"

);

Event map selection methods:

Selecting an event map to handle an event is done by specifying an
eventPrecedence insert. An eventPrecedence insert can be specified by configuring
any one of the following: Tivoli Netcool/OMNIbus probe rules files, IBM Tivoli
Netcool/OMNIbus Knowledge Library, or the Event Gateway.

Selecting an event map to handle an event is done by specifying an
eventPrecedence insert. An eventPrecedence insert can be specified by configuring
one of the following:

Tivoli Netcool/OMNIbus probe rules files
Configure the probe rules files to populate the NmosEventMap field of the
alerts.status event record with the name of the event map and an optional
precedence value. This is equivalent to an eventPrecedence insert.

IBM Tivoli Netcool/OMNIbus Knowledge Library
Configure the Netcool/OMNIbus Knowledge Library configuration file,
NcoGateInserts.cfg. This file contains a table where eventPrecedence inserts
can be configured.

Event Gateway
Populate the config.precedence table using the insert defined in the Event
Gateway configuration file, EventGatewaySchema.cfg.

The eventPrecedence inserts configured in the Event Gateway override
eventPrecedence inserts configured in either the Tivoli Netcool/OMNIbus probe
rules files or in the Netcool/OMNIbus Knowledge Library. This enables you to
locally override any eventPrecedence inserts configured in the network.

Default event maps:

Network Manager provides a default set of event maps. Use this information to
understand which default event maps are available and what each event map
does, and to understand how legacy event maps delegate to 3.9 event maps.

98 IBM Tivoli Network Manager IP Edition: Event Management Guide

Default event maps

The following table describes the default event maps.

Table 18. Default event maps

Event map
Stitcher called by event
map Event map description

EntityFailure LookupIp Handles events where the LocalNodeAlias is sufficient
to specify the entity, or if no further data is available.

Expected input field: LocalNodeAlias, where this field
contains the node IP address or DNS name.

EntityManagedStateChange No related stitcher Allows a plug-in to react to changes in the maintenance
state of an entity (managed status changes to 0 or 1).
This event map only applies to chassis or interfaces with
an IP address. The event is not used by default.

Expected input fields: NmosEntityId , where this field
contains the NCIM entityId for the entity.

EntityMibTrap LookupEntPhysEntry Handles traps from the ENTITY MIB.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v LocalPriObj , where this field contains an index from
the entPhysicalTable; for example,
’entPhysicalEntry.2’.

genericip-event LookupMainNode Process events that do not match any other event map.
Note: This event map is intended as a catch-all. Plug-ins
should not register interest in this eventMap. Instead,
events of interest should be passed to the EntityFailure
event map.

Expected input field: LocalNodeAlias, where this field
contains the node IP address or DNS name.

ItnmHealthChk No related stitcher Used by the Failover plug-in, to process Network
Manager health check events.

Expected input field: Node, where this field contains the
name of the domain the health check is for.

ItnmLinkDownIfIndex LookupIfEntry Expects an interface event to be identified by the ifIndex
if the interface NmosEntityId is not set.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v LocalPriObj , where this field contains an ifIndex
value from the ifTable table, in the format
ifEntry.ifIndex, where ifIndex is the value of
ifIndex; for example, ifEntry.1.

ItnmMonitorEventNoRca LookupEntityId Used to handle events raised by the Network Manager
Polling engine, ncp_poller, for which root-cause analysis
should not be performed.

Expected input fields: NmosEntityId , where this field
contains the NCIM entityId for the entity.

Chapter 11. About event enrichment and correlation 99

Table 18. Default event maps (continued)

Event map
Stitcher called by event
map Event map description

ItnmStatus No related stitcher Catch-all event map for Network Manager status
information events that are not explicitly handled by
any other event map, for example, ItnmHealthCheck.
No action is taken for these events.

For more information on Network Manager status
information events, see the IBM Tivoli Network Manager
IP Edition Installation and Configuration Guide.

LinkDownIfDescr LookupIfEntry Expects an interface event to be identified by the
ifDescr value.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v LocalPriObj , where this field contains an ifDescr
value from the ifTable table, in the format
ifEntry.ifDescr, where ifDescr is the value of
ifDescr; for example, ifEntry.FastEthernet0/1.

LinkDownIfIndex LookupIfEntry Expects an interface event to be identified by the
ifIndex value.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v LocalPriObj , where this field contains an ifIndex
value from the ifTable table, in the format
ifEntry.ifIndex, where ifIndex is the value of
ifIndex; for example, ifEntry.1.

LinkDownIfName LookupIfEntry Expects an interface event to be identified by the ifName
value.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v LocalPriObj , where this field contains an ifName
value from the ifTable table, in the format
ifEntry.ifName, where ifName is the value of ifName;
for example, ifEntry.Fa0/1.

NbrFail LookupNbrFailure Handles OSPF, LDP and BGP adjacency change events.
In addition to performing the requisite lookup, the
LookupNbrFailure stitcher also adds a
RemoteNodeEntityId value, used by the RCA plug-in.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address, DNS name, sysName or entityName.

v RemoteNodeAlias , where this field contains the
neighboring node IP address or DNS name.

v LocalPriObj , where this field contains an ifDescr
value in the format ifEntry.ifDescr, where ifDescr is
the value of ifDescr; for example,
ifEntry.ifFastEthernet0/1.

100 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 18. Default event maps (continued)

Event map
Stitcher called by event
map Event map description

OspfIfState LookupOspfIfEntry Handles OSPF interface events.

Expected input fields:

v LocalNodeAlias , where this field contains the node IP
address (used only for addresless interfaces).

v LocalPriObj , where this field contains an index from
the ospfIfTable; for example:

– ospfIfEntry.0.0.0.0.66 for addressless (IP
unnumbered) interfaces

– ospfIfEntry.84.82.109.12.0 for serial or Ethernet
interfaces

PollFailure LookupIp Covers events raised for a specific IP address, such as
Tivoli Netcool/OMNIbus ping probe events.

Expected input fields: NmosEntityId , where this field
contains the NCIM entityId for the entity.

PrecisionMonitorEvent LookupEntityId Used to handle events raised by the ITNM poller, for
which root-cause analysis must be performed.

Expected input fields: NmosEntityId , where this field
contains the NCIM entityId for the entity.

Reconfiguration LookupMainNode Allows partial discovery of devices to be launched
automatically based on reboot events (events with event
ID of NmosSnmpReboot), using the Disco plugin.

Expected input field: LocalNodeAlias, where this field
contains the node IP address or DNS name.

Legacy event maps

The following table lists the legacy event maps and, for each legacy event map,
specifies which 3.9 event map is delegated to.

Table 19. Legacy event maps

Legacy event map Handled by the following 3.9 event map

EntityIfDescr LinkDownIfDescr

NbrFailIfDescr NbrFail

NcpHealthChk ItnmHealthChk

OSPFIfStateChange OspfIfState

OSPFIfStateChangeIP OspfIfState

How legacy event maps delegate to 3.9 event maps

This example explains how the NbrFailIfDescr legacy event map delegates to the
NbrFail 3.9 event map.
1. An event is received that has an eventId listed in the config.precedence table,

mapping to the NbrFailIfDescr eventMap.
2. The NbrFailIfDescr eventMap delegates to the NbrFail eventMap, using the

HandledBy field.

Chapter 11. About event enrichment and correlation 101

3. The event is treated exactly as if it had been mapped to the NbrFail eventMap
in the first place, that is it will be handled as follows:
v The LookupNbrFailure stitcher is called. This stitcher is referenced in the

Stitcher field relevant to the NbrFail event map entry in the
config.eventMaps table.

v The fields of the NbrFail eventMap (not the NbrFailIfDescr to which the
event was originally mapped) are appended to the event before passing it to
plug-ins.

v Plugins that have registered interest in the NbrFail eventMap (not the
NbrFailIfDescr to which the event was originally mapped) receive the event.

In this example, the flexibility of the stitcher language allows both types of event
to be handled in the same way. If the ifDescr, expected by the legacy
NbrFailIfDescr eventMap, is available, it is extracted and used within the
LookupNbrFailure stitcher.
Related concepts:
Appendix F, “Network Manager event categories,” on page 207
The events that are raised by Network Manager fall into two categories: events
about the network being monitored and events about Network Manager processes.

Event Gateway stitchers
Event Gateway stitchers match events to an entity, perform a topology lookup, and
then use the topology data retrieved to enrich the event data.

Event Gateway stitchers are stored in the following location: $NCHOME/precision/
eventGateway/stitchers/.

For information on stitcher language, see the IBM Tivoli Network Manager IP Edition
Language Reference.

There are four types of Event Gateway stitcher:
v “Topology lookup stitchers” on page 105
v “Data extraction stitchers” on page 109
v “Entity retrieval stitchers” on page 110
v “Event enrichment stitchers” on page 112

In addition, a number of Event Gateway stitchers are provided that are not used
by default. These stitchers are provided as examples of extra functionality that can
be added to the Event Gateway using stitchers. For more information, see
“Stitchers not used by default” on page 114.

Stitcher selection using event maps:

Use this information to understand how the Event Gateway is configured to enable
event maps to call specific Event Gateway stitchers.

Configuration of event maps to select specific Event Gateway stitchers is
configured using the Event Gateway config.eventMaps table. The config.eventMaps
table is configured in the EventGatewaySchema.cfg configuration file. This file is
located at: $NCHOME/etc/precision/EventGatewaySchema.cfg.

The following example shows how part of the config.eventMaps table is configured
in the EventGatewaySchema.cfg configuration file.This example insert configures
the event maps listed in the following table to call the stitchers listed.

102 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 20. Event maps and stitcher selected

Event map Selected stitcher

PollFailure IpLookup

ItnmMonitorEventNoRca EntityIdLookup

PrecisionMonitorEvent EntityIdLookup

LinkDownIfIndex IfEntryLookup

The part of the code that is relevant to configuration of event maps to select
specific Event Gateway stitchers is listed in the following lines from the example.
The following table describes the relevant lines from this example. This code refers
to the config.eventMaps table.

Table 21. Lines of code relevant to the incoming event filter

Line numbers Description

1-10 Configure the event map PollFailure to select the stitcher IpLookup.

12-21 Configure the event map ItnmMonitorEventNoRca to select the stitcher
EntityIdLookup.

23-32 Configure the event map PrecisionMonitorEvent to select the stitcher
EntityIdLookup.

34-45 Configure the event map LinkDownIfIndex to select the stitcher
IfEntryLookup.

As this is a trap event, it is possible for the event to flap. Flapping is a
condition where a device or interface connects to and then disconnects
from the network repeatedly in a short space of time. This causes problem
and clear events to be received one after the other for the same device or
interface. Setting the EventCanFlap flag to 1 informs the RCA plug-in of
this condition. The RCA plug-in checks if events with this flag set to 1 are
actually flapping, that is the device or interface is continually going up and
down, and if so, RCA waits until the event has settled down.

Events that can flap are passed from the Event Gateway with an
EventCanFlap = 1 setting. These events are placed on the mojo.events
database with TimedEscalation = 1 and are left there for 30 seconds. After
30 seconds the TimedEventSuppression RCA stitcher processes all events
that are at least 30 seconds old and have the TimedEscalation = 1 setting.

Chapter 11. About event enrichment and correlation 103

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]
32]
33]
34]
35]
36]
37]
38]
39]
40]
41]
42]
43]
44]
45]

insert into config.eventMaps
(

EventMapName,
Stitcher

)
values
(

"PollFailure",
"IpLookup"

);

insert into config.eventMaps
(

EventMapName,
Stitcher

)
values
(

"ItnmMonitorEventNoRca",
"EntityIdLookup"

);

insert into config.eventMaps
(

EventMapName,
Stitcher

)
values
(

"PrecisionMonitorEvent",
"EntityIdLookup"

);

insert into config.eventMaps
(

EventMapName,
Stitcher,
EventCanFlap

)
values
(

"LinkDownIfIndex",
"IfEntryLookup",
1

);

Related reference:
“config.eventMaps Table” on page 233
The config.eventMaps table contains the event map that specifies how an event is
processed. The table holds information specific to each type of Tivoli
Netcool/OMNIbus event that is processed by the Event Gateway.

104 IBM Tivoli Network Manager IP Edition: Event Management Guide

Event Gateway stitcher descriptions:

Event Gateway stitchers fall into four different categories. Stitchers in each
category are responsible for different aspects of topology lookup and event
enrichment.

Topology lookup stitchers:

These are the stitchers listed in the event maps. Topology lookup stitchers take the
raw event, perform a topology lookup, and carry out some event enrichment. They
frequently make use of other stitchers to perform tasks. For example, they might
use data extraction stitchers to extract information from the event, entity retrieval
stitchers to match the event to an entity in NCIM cache, and event enrichment
stitchers to enrich the event.

The stitchers look up the topology in the NCIM cache that is broadcast by the
Topology manager, ncp_model. For information on NCIM cache and on the format
of data in NCIM cache, see the IBM Tivoli Network Manager IP Edition Topology
Database Reference.

Topology lookup stitchers return a Boolean value of 1 or 0. These return values
have the following meanings:

Return value 1
Pass the enriched event data to subscribing plug-ins. This usually means
that the topology lookup was successful and an entity was found in the
NCIM cache.

Return value 0
Do not pass event data to any plug-ins. This usually means that the
topology lookup was not successful and no entity was found in the NCIM
cache.

The following table describes the topology lookup stitchers.

Table 22. Topology lookup stitchers

Stitcher Description
Expected
arguments Returns

LookupEntityId.stch Looks up an entity based purely on the
value of the NmosEntityId field of the
event. This stitcher is intended for use only
by events raised by the Network Manager
Polling engine, ncp_poller. Performs
default event enrichment based on the
results of the lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

Chapter 11. About event enrichment and correlation 105

Table 22. Topology lookup stitchers (continued)

Stitcher Description
Expected
arguments Returns

LookupEntPhysEntry Looks up an entity based on
entPhysicalIndex data from the Entity MIB
in the LocalPriObj field. Performs default
event enrichment based on the results of
the lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

LookupIfEntry.stch Looks up the index entry for an interface
on a device based on field values in the
event. This stitcher is used by events that
occur on interfaces. Performs default event
enrichment based on the results of the
lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

LookupIp.stch Looks up an entity using an IP address or
DNS name. Note that the entity that the
stitcher finds can be an interface or a main
node. Performs default event enrichment
based on the results of the lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

LookupMainNode.stch Looks up a main node device. If a value is
present in the NmosEntityId field of the
event, then that value is used to determine
the entity ID of the main node. Otherwise,
fall back to the value in the
LocalNodeAlias field. Performs default
event enrichment based on the results of
the lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

LookupNbrFailure Looks up an entity using an IP address or
DNS name, along with an optional
interface description. This stitcher also
looks up the remote node that the event
relates to. Performs default event
enrichment based on the results of the
lookup.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

106 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 22. Topology lookup stitchers (continued)

Stitcher Description
Expected
arguments Returns

LookupOspfIfEntr Looks up an interface based on ospfIfEntry
data. Performs default event enrichment
based on the results of the lookup.

This stitcher checks the OSPF data based
on one of the following formats:

ospfIfEntry.0.0.0.0.ifIndex
An example of this format is:
ospfIfEntry.0.0.0.0.66. In this
example the extracted interface
index value is 66.

This format applies to interface
events from addressless interfaces,
also known as IP unnumbered
interfaces. The format is used by
P2P serial port interfaces.

ospfIfEntry.ipV4Adress.0
An example of this format is:
ospfIfEntry.84.82.109.12.0 In
this example the extracted
interface index value is the IP
address 84.82.109.12.

This format applies to OSPF
interface events on interfaces that
have IP addresses assigned to
them. The format is used by serial
and Ethernet interfaces.

None.
Called from
event map.

Returns one of the following
values:

v 1: An entity is found in the
NCIM cache. Pass the
enriched event data to
subscribing plug-ins.

v 0: No entity is found in the
NCIM cache. Do not pass
the enriched event data to
subscribing plug-ins.

Example: LookupIp.stch stitcher:

Use this topic to understand how topology lookup stitchers work.

The LookupIp.stch stitcher looks up an entity using an IP address or DNS name.
The entity that the stitcher finds can be an interface or a main node. The following
table describes the key elements of the stitcher.

Table 23. Line-by-line description of the LookupIp.stch stitcher

Line numbers Description

3-7 There is no trigger for this stitcher. The stitcher is automatically called by
the PollFailure and EntityFailure event maps. When calling the stitcher,
these event maps provide the associated event as the in-scope record.

11 Create a record named entity to store the topology data associated with the
event (the in-scope record).

13 Access the NmosEntityId field within the event and load the value of this
field into the nmosEntityId variable.

14 Use the GwEntityData() stitcher rule to look up the entity details in NCIM
cache, based on the value of the nmosEntityId variable. For more
information on the GwEntityData() stitcher rule, and other Event Gateway
stitcher rules, see the IBM Tivoli Network Manager IP Edition Language
Reference.

Chapter 11. About event enrichment and correlation 107

Table 23. Line-by-line description of the LookupIp.stch stitcher (continued)

Line numbers Description

16-19 If the NmosEntityId field is NULL, this means that this is the first
occurrence of this event. Consequently, the event has never been through
the Event Gateway and has never been enriched. As an alternative to the
NmosEntityId, determine the identity of the affected entity using the
LocalNodeAlias field in the event record. Then use the GwIpLookup()
stitcher rule to look up the entity details in NCIM cache, based on the
value of the LocalNodeAlias variable. For more information on the
GwIpLookup() stitcher rule, and other Event Gateway stitcher rules, see
the IBM Tivoli Network Manager IP Edition Language Reference.

21 Set the return value of the stitcher using the foundEntity variable. Initially
set the value of this variable to 0; this assumes that no entity has been
found.

22-25 If an entity has been found, call the StandardEventEnrichment.stch stitcher
to perform event enrichment on the event using the entity data retrieved
using the lookup. Set the return value of the stitcher to 1.

27 Pass the return value to the Event Gateway.

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]

UserDefinedStitcher
{

StitcherTrigger
{

// There is no trigger, as the eventMaps will automatically
// call this with the event as the in-scope record

}

StitcherRules
{

Record entity;

int nmosEntityId = eval(int, ’&NmosEntityId’);
entity = GwEntityData(nmosEntityId);

if (entity == NULL)
{

entity = GwIpLookupUsing("LocalNodeAlias");
}

int foundEntity = 0;
if (entity <> NULL)
{ ExecuteStitcher("StandardEventEnrichment", entity);

foundEntity = 1;
}

SetReturnValue(foundEntity);
}

}

108 IBM Tivoli Network Manager IP Edition: Event Management Guide

Data extraction stitchers:

The sole purpose of these stitchers is to take a single event data string in standard
format, and parse the string to extract a single value, which is returned.

The following table describes the data extraction stitchers.

Table 24. Data extraction stitchers

Stitcher Description Returns

ExtractEntPhysIndex.stch Attempts to extract a textual
value representing an
interface identifier from an
input data string of the form
"entPhysicalEntry.string
identifier". Typically, this is
used to extract the value
from an event field such as
LocalPriObj or LocalRootObj.

String
representing
an interface
identifier,
which is
usually
expected to be
an ifName,
ifDescr or
ifAlias.

ExtractIfIndex.stch Attempts to extract the
integer value representing an
interface identifier from an
input data string of the form
"ifEntry.numerical identifier".
Typically, this is used to
extract the ifIndex value
from an event field such as
LocalPriObj or LocalRootObj.

Integer index

ExtractIfString.stch Attempts to extract a textual
value representing an
interface identifier from an
input data string of the form
"ifEntry.string identifier".
Typically, this is used to
extract the ifIndex value
from an event field such as
LocalPriObj or LocalRootObj.

Integer index

Example: ExtractIfString.stch stitcher:

Use this topic to understand how data extraction stitchers work.

The ExtractIfString.stch stitcher attempts to extract a textual interface identifier
from an input argument of the form ifEntry.string_identifier, where
string_identifier is the textual interface identifier . This method is usually used to
extract the ifIndex value from an event field such as LocalPriObj or LocalRootObj.

Table 25. Line-by-line description of the ExtractIfString.stch stitcher

Line numbers Description

3-11 This stitcher is invoked by another stitcher, usually a topology lookup
stitcher.

15 Initialize the ifString variable to null. The ifString variable will hold the
results of the textual interface identifier extraction operation.

17 Read the input argument from the invoking stitcher and load this into
ifInputStr variable.

Chapter 11. About event enrichment and correlation 109

Table 25. Line-by-line description of the ExtractIfString.stch stitcher (continued)

Line numbers Description

19 Specify a regular expression to use as part of the pattern matching and
data extraction operation.

21-27 Perform the pattern matching and data extraction operation.

29 Pass the extracted string back to the invoking stitcher.

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]

UserDefinedStitcher
{

StitcherTrigger
{

//
// Called from another stitcher using the syntax:
//
// text ifString = "";
// ifString = ExecuteStitcher(’ExtractIfString’, myStringField);
//

}

StitcherRules
{

text ifString = "";

text ifInputStr = eval(text, ’$ARG_1’);

text stringMatch = "^ifEntry\.(\S+)";

int stringMatchCount = MatchPattern(ifInputStr, stringMatch);

// We only recognise a match if we matched once on the entire field
if (stringMatchCount == 1 AND REGEX0 == ifInputStr)
{

ifString = eval(text, ’$REGEX1’);
}

SetReturnValue(ifString);
}

}

Entity retrieval stitchers:

These stitchers take predefined data, typically extracted from the event, and try to
retrieve a matching entity from the entityData table in the NCIM cache. The
stitchers return the retrieved entityData record, if found, and NULL otherwise.

The following table describes the entity retrieval stitchers.

110 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 26. Entity retrieval stitchers

Stitcher Description Returns

EntityFromEntPhysIndex.stch Takes as input a main
node name in text form
and an entPhysicalIndex
value in integer form
and attempts to retrieve
any type of entity which
can have an
entPhysicalIndex value,
as given in the Entity
MIB.

Any type of entity which
can have an
entPhysicalIndex, as
given in ENTITY MIB

EntityFromIfIndex.stch Takes as input a main
node name in text form
and an ifIndex value in
integer form and
attempts to retrieve an
interface on the given
main node with the
given ifIndex value.

An interface on the
given main node with
the given ifIndex

EntityFromIfString.stch Takes as input a main
node name in text form
and an ifDescr value, an
ifName value or an
ifAlias value in integer
form and attempts to
retrieve an interface on
the given main node
with an ifDescr value,
ifName value, or ifAlias
value matching the
supplied string.

An interface on the
given main node with an
ifDescr, ifName or
ifAlias value matching
the supplied string

Example: EntityFromIfString.stch:

Use this topic to understand how entity retrieval stitchers work.

The EntityFromIfString.stch stitcher looks up an interface based on a main node
entityName and a string, which is expected to be the ifName, ifDescr or ifAlias of
the interface. This returns the interface entity, if found in NCIM cache.

Table 27. Line-by-line description of the EntityFromIfString.stch stitcher

Line numbers Description

3-7 This stitcher is invoked by another stitcher, usually a topology lookup
stitcher.

11-12 Read the input arguments from the invoking stitcher.

16-27 Set up an SQL query to retrieve an entity data record for an interface based
on a main node entityName and a string, which is expected to be the
ifName, ifDescr or ifAlias of the interface.

30 Use the RetrieveSingleOQL() stitcher rule to run the query and retrieve the
entity data record for the interface. For more information on the
RetrieveSingleOQL() stitcher rule, and other Event Gateway stitcher rules,
see the IBM Tivoli Network Manager IP Edition Language Reference.

32 Pass the result of the entity lookup back to the invoking stitcher.

Chapter 11. About event enrichment and correlation 111

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]
31]
32]
33]
34]

UserDefinedStitcher
{

StitcherTrigger
{

// There is no trigger, as this is explicitly called from
// other stitchers.

}

StitcherRules
{

text mainNodeEntityName = ARG_1;
text ifString = ARG_2;

Record entity;

text ifStringQuery =
"select * from ncimCache.entityData
where
ENTITYTYPE = 2
and
BASENAME = eval(text, ’$mainNodeEntityName’)
and
(interface->IFNAME = eval(text, ’$ifString’)
or
interface->IFDESCR = eval(text, ’$ifString’)
or
interface->IFALIAS = eval(text, ’$ifString’));";

entity = RetrieveSingleOQL(ifStringQuery);

SetReturnValue(entity);
}

}

Event enrichment stitchers:

These stitchers enrich the event with the topology data retrieved by other stitchers.

The following table describes the event enrichment stitchers.

Table 28. Event enrichment stitchers

Stitcher Description
Expected
arguments Returns

StandardEventEnrichment.stch Performs default event
enrichment by
populating event fields
that some plug-ins
expect to use as well as
fields that are fed back
to update the event in
the ObjectServer.

The entity
that has
been
matched to
the top-level
in-scope
event.

No return value.

112 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 28. Event enrichment stitchers (continued)

Stitcher Description
Expected
arguments Returns

EntityNotFound.stch By default, the fields
that are set by the Event
Gateway are as follows:

v NmosObjInst

v NmosSerial

v NmosCauseType

This stitcher resets these
basic fields if the event
was previously assigned
to this domain, but no
matching entity is
found.

None. No return value.

Example: StandardEventEnrichment.stch:

Use this topic to understand how event enrichment stitchers work.

The StandardEventEnrichment.stch performs standard event enrichment. It
populates event fields that plug-ins expect to be able to use (for example,
entityType) as well as fields that are fed directly back from the Event Gateway to
update the event in the ObjectServer. The only fields which are permitted to
update the ObjectServer alerts.status table are those fields that are listed in the
outgoing field filter, as defined in the in the FieldFilter section of the nco2ncp table
within the EventGatewaySchema.cfg configuration file. For example, the entityType
and entityName fields are added to the event for use by plug-ins, but do not
actually enrich the event in the ObjectServer as these fields do not pass the
outgoing field filter.

Table 29. Line-by-line description of the StandardEventEnrichment.stch stitcher

Line numbers Description

3-8 This stitcher is invoked by another stitcher, usually a topology lookup
stitcher.

12 Read in the entity data record from a topology lookup operation.

13 Declare a record to hold the fields to be used to enrich the event.

15-19 Initialize variables with values retrieved from the topology lookup
operation.

19 Use the GwManagedStatus() stitcher rule to retrieve the managed status of
the entity. For more information on the GwManagedStatus() stitcher rule,
and other Event Gateway stitcher rules, see the IBM Tivoli Network Manager
IP Edition Language Reference.

21-26 Set the field values in the record to be used to enrich the event.

28 Use the GwEnrichEvent() stitcher rule to update the fields in the event. For
more information on the GwEnrichEvent() stitcher rule, and other Event
Gateway stitcher rules, see the IBM Tivoli Network Manager IP Edition
Language Reference.

Chapter 11. About event enrichment and correlation 113

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]
13]
14]
15]
16]
17]
18]
19]
20]
21]
22]
23]
24]
25]
26]
27]
28]
29]
30]

UserDefinedStitcher
{

StitcherTrigger
{

// There is no trigger. This is called from other stitchers
// with the event as the in-scope record, and the entity as
// the single argument.

}

StitcherRules
{

Record entity = ARG_1;
Record enrichedFields;

int entityType = @entity.entityData.ENTITYTYPE;
text entityName = @entity.entityData.ENTITYNAME;
int entityId = @entity.entityData.ENTITYID;
int mainNodeId = @entity.entityData.MAINNODEENTITYID;
int managedStatus = GwManagedStatus(entityId);

@enrichedFields.EntityType = entityType;
@enrichedFields.EntityName = entityName;
@enrichedFields.NmosDomainName = eval(text, ’$DOMAIN_NAME’);
@enrichedFields.NmosEntityId = entityId;
@enrichedFields.NmosManagedStatus = managedStatus;
@enrichedFields.NmosObjInst = mainNodeId;

GwEnrichEvent(enrichedFields);
}

}

Related tasks:
“Example: Enriching an event with main node device location” on page 154
You can configure event enrichment so that the location of the main node device
associated with an event is added to a field in the event.
“Example: Enriching an event with interface name” on page 155
You can configure event enrichment so that for all interface events, the name of the
interface on which the event occurred is added to a field in the event.

Stitchers not used by default:

These stitchers are provided as examples of extra functionality that can be added
to the Event Gateway using stitchers. These stitchers can be executed from other
stitchers.

The following table describes the Event Gateway stitchers that are not used by
default.

114 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 30. Stitchers not used by default

Stitcher Description
Expected
arguments Returns

EntityFromAtmIfDescr.stch This stitcher illustrates
how data extracted from
an event (typically using
the ExtractIfString
stitcher) can be
manipulated before
looking up related
topology in the NCIM
cache. In this example,
events are be raised
with a shortened
interface description,
missing a standard
suffix. That suffix is
added before looking up
the topology.

Main node
name (text)

ifDecr
(text) with a
missing
-atm subif
suffix

An interface on the given main node
with an ifDescr matching the event
interface description, concatenated
with the predefined -atm subif
string.

RetrieveAlertDetails.stch Looks in the Object
Server alert.details table
for any data relating to
the current in-scope
event, and adds any
data found to the
in-scope event. Note
that in this example, this
is done indiscriminately
and no filtering of data
is performed. This also
provides a template
example of how to
query the Object Server
for additional data.

None No return value

Example: Default enrichment of a Tivoli Netcool/OMNIbus trap
event

Use this information to understand how a Tivoli Netcool/OMNIbus event is
processed as it passes through the Event Gateway.

The Event Gateway receives a Tivoli Netcool/OMNIbus link down trap event from
the ObjectServer. This event originates from a Tivoli Netcool/OMNIbus trap probe.
This event therefore originates from outside of Network Manager.This example
shows how the event is processed as it passes through the Event Gateway.

The steps in this process are as follows.
1. The Event Gateway receives a link down trap event from the ObjectServer. This

event has the event ID SNMPTRAP-LinkDown.
2. The incoming event filter is applied to the event.

This filter checks the LocalNodeAlias field of the event. The LocalNodeAlias
field is not empty, and therefore the event passes the filter and moves to Step 3.

3. The Event Gateway assigns a state to the event based on the Severity, Tally, and
Type fields in the event. The link down trap event has the following Severity
and Tally information:

Chapter 11. About event enrichment and correlation 115

v Severity is non-zero
v Tally is 1
v Type is 'Problem'
Based in this information, the Event Gateway assigns the Occurred state to this
event. This is a problem event and is a candidate for RCA.

4. The default incoming field filter is applied to the event. This field filter filters
out alerts.status fields that do not participate in the Event Gateway processing
and only allows the following fields through:
v Acknowledged
v AlertGroup
v EventId
v FirstOccurrence
v LastOccurrence
v LocalNodeAlias
v LocalPriObj
v LocalRootObj
v Manager
v NmosCauseType
v NmosDomainName
v NmosEntityId
v NmosEventMap
v NmosManagedStatus
v NmosObjInst
v NmosSerial
v Node
v RemoteNodeAlias
v EventId
v Serial
v ServerName
v Severity
v Summary
v SuppressEscl
v Tally
v Type

5. The Event Gateway determines how to handle this event, by determining
which event map to use. Event maps define how to handle an event. At the
same time a numerical precedence value is associated with the event.
The event in this example has event ID SNMPTRAP-LinkDown. The insert that
defines how to handle events with this event ID is defined in the
Netcool/OMNIbus Knowledge Library configuration file, NcoGateInserts.cfg,
and has the following form.
insert into config.precedence
(

Precedence,
EventMapName,
NcoEventId

)
values
(

116 IBM Tivoli Network Manager IP Edition: Event Management Guide

910,
"LinkDownIfIndex",
"SNMPTRAP-LinkDown"

);

This insert instructs the Event Gateway to handle the SNMP link down trap
event as follows:
v Apply the event map LinkDownIfIndex to the event.

– This event map covers link up and link down events from the Tivoli
Netcool/OMNIbus mttrapd probe These events all use the ifIndex value
held in the LocalPriObj field of alerts.status to identify the interface from
which this trap originated.

– The RCA plug-in subscribes to events that are handled by the
LinkDownIfIndex event map. Consequently this event will be passed to
the RCA plug-in.

v When sending the event for RCA, use a precedence value of 910 for the
event.

6. The Event Gateway uses the selected event map to determine which stitcher to
call to perform a topology lookup.
The selected event map is LinkDownIfIndex. In the EventGatewaySchema.cfg
configuration file, the following insert is associated with this event map:
insert into config.eventMaps
(

EventMapName,
Stitcher,
EventCanFlap

)
values
(

"LinkDownIfIndex",
"LookupIfEntry",
1

);

This insert instructs the Event Gateway to perform the following actions:
v Use the stitcher LookupIfEntry to perform the topology lookup.

The LookupIfEntry looks up the index entry for an interface on a device
based on the field values in the event. Based on the value of the interface
index extracted from the fields in the event, the stitcher retrieves a row from
the NCIM cache consisting of entity and interface data. Another stitcher is
called to perform event enrichment.

v Set the EventCanFlap flag to 1 to inform the RCA plug-in that the related
device or interface might be continuing going up and down.

7. Enriched event data is filtered by the outgoing field filter and placed on the
Event Gateway queue.

8. The event is passed to the RCA plug-in.
9. Following further event enrichment by RCA, the event is placed on the Event

Gateway queue.
Related concepts:
“Quick reference for event enrichment” on page 83
Use this information to understand how an event is processed as it passes through
the Event Gateway.

Chapter 11. About event enrichment and correlation 117

Event Gateway plugins
Event Gateway plug-ins are modules of the Event Gateway process that receive
enriched events from the Event Gateway and perform further event enrichment or
take other action on these events.
Related concepts:
“Root-cause analysis” on page 130
Root cause analysis (RCA) is the process of determining the root cause of one or
more device alerts. The root-cause analysis (RCA) plugin receives a subset of
enriched events from the Event Gateway and determines which of the events are
root cause and which events are symptoms. RCA only receives events that affect
the routing of traffic through the network.

Plugin descriptions
Use this information to understand what each Event Gateway plugin does.

The following table describes the Event Gateway plug-ins. Each of these plug-ins
receives enriched events from the Event Gateway and performs further enrichment
of the event or takes some other action.

Note: The following plug-ins are enabled by default:
v Adaptive polling
v Failover
v RCA
v All Service-affected event (SAE) plug-ins

Table 31. Event Gateway plug-ins

Plug-in Description

Adaptive polling Writes a subset of related event and entity data to the ncmonitor.activeEvent table. This enables
network views to be created based on event data (alert views). Poll policies are scoped based
on network views and therefore polls can be defined based on network alerts. These are known
as adaptive polls because polling is initiated based on network problem conditions.

Disco Receives reboot events (traps) from the Event Gateway and initiates partial discovery based on
these events. By default, this plug-in is only interested in events that indicate that a reboot has
taken place.
Note: By default partial discovery initiated by this plugin is limited to reboot events. Partial
discovery is a resource-intensive process, and problems are likely to occur if partial discovery is
triggered for all events received, especially those received in large quantities such as link
downs.

Failover Receives Network Manager health check (ItnmHealthChk) events from the Event Gateway and
passes these events to the Virtual Domain process, which decides whether or not to initiate
failover based on the event.

Root cause
analysis (RCA)

Based on data in the event and based on the discovered topology, rules coded in RCA stitchers
attempt to identify events that are caused by or cause other events.

Service-affected
event (SAE)

By default, the SAE plug-in generates the following three types of SAEs:

v MPLS VPN: generates service-affected events for MPLS VPNs

v IP path: generates service-affected events for IP paths

v Generic Network Manager service: can be configured to generated synthetic events when a
an event occurs on a device associated with a custom service.

118 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 31. Event Gateway plug-ins (continued)

Plug-in Description

zNetView Populates additional custom alerts.status fields that are used by IBM Tivoli NetView for z/OS®.
Note: You must first add the following custom fields to the alerts.status table:

v NmosClassName

v NmosEntityType

Related concepts:
“Root-cause analysis” on page 130
Root cause analysis (RCA) is the process of determining the root cause of one or
more device alerts. The root-cause analysis (RCA) plugin receives a subset of
enriched events from the Event Gateway and determines which of the events are
root cause and which events are symptoms. RCA only receives events that affect
the routing of traffic through the network.
Related tasks:
“Enabling and disabling plug-ins” on page 161
Use the ncp_gwplugins.pl script to enable and disable plug-ins. Run the script
separately for each plug-in.
“Listing plug-in information” on page 162
You can list information on Event Gateway plug-ins. For example, you can list the
event maps and event states that each plug-in subscribes to.
“Modifying event map subscriptions” on page 163
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.
“Setting plug-in configuration parameters” on page 165
You can set optional configuration parameters for the Event Gateway plug-ins
using the ncp_gwplugins.pl script.
Chapter 8, “Managing adaptive polling,” on page 51
Adaptive polls dynamically react to events on the network. You can create
adaptive polls that manage a wide range of network problem scenarios.

Adaptive polling plug-in
Use this information to understand plug-in prerequisites, how the adaptive polling
plug-in populates fields in the activeEvent table, as well as configuration details
associated with the plug-in. The activeEvent table is in the NCMONITOR schema.

The adaptive polling plug-in removes rows from the activeEvent table when an
event is cleared or deleted from the ObjectServer.

Required fields

This plug-in expects events supplied by the Event Gateway to be with populated
with the following fields:
v Acknowledged
v AlertGroup
v EventId
v FirstOccurrence
v LastOccurrence
v LocalPriObj

Chapter 11. About event enrichment and correlation 119

v NmosCauseType
v NmosSerial
v NmosEntityId
v Serial
v Severity
v SuppressEscl
v Tally

Events in the activeEvent table

The activeEvent table contains only active problem events that have been matched
to an entity in the topology and that meet the following conditions:
v Event is active. This means that the event has not been cleared, and is expressed

in field terms by the relationship Severity > 0.
v Event is a problem event. The alerts.status field Type has the value Problem, More

Severe, or Less Severe.
v Event has been matched to an entity. The Event Gateway has identified the main

node. This is expressed in field terms by the relationship NmosObjInst > 0.

activeEvent table fields

The following table lists the fields in the activeEvent table that are populated by
the adaptive polling plug-in. For an example of the creation of an alert view, which
makes use of these fields, see the IBM Tivoli Network Manager IP Edition Network
Visualization Setup Guide.

Table 32. Fields in the activeEvent table populated by the adaptive polling plug-in

Plug-in Description

Acknowledged Indicates whether the event has been acknowledged by the operator.

AlertGroup Identifies the originator of the event.

domainMgrId Unique integer that identifies the domain to which the affected device belongs.

entityId The NmosEntityId of the event. The field is named entityId in this table for consistency with
other NCIM topology database tables, thereby facilitating GUI functionality.

EventId The name of the event type. Based on this field secondary polls can be initiated based on
specific types of failure.

FirstOccurrence The time in seconds (from midnight Jan 1, 1970) when this event was created or when polling
started.

LastOccurrence The time when this event was last updated.

LocalPriObj The primary object referenced by the event. For use in managed object instance identification.

NmosCauseType Stores the results of root cause analysis and allows root cause events to be identified.

NmosSerial If the event was suppressed during root cause analysis, this field indicates the value in the
Serial field of the suppressing event.

Serial Unique identifier for the event, within the context of a single ObjectServer. This field is stored
in the table in order to allow a key to be generated for the table.

ServerName Unique name for the ObjectServer. In a system with multiple ObjectServers, this is required to
uniquely identify an event. It exists in the table purely to allow a key to be generated for the
table.

120 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 32. Fields in the activeEvent table populated by the adaptive polling plug-in (continued)

Plug-in Description

Severity Severity of the event .
Note: Severity zero events are not listed, as these events indicate that the alert has been
resolved, and are therefore not required in alert views or in poll policies that use alert views as
their scope.

SuppressEscl Used to suppress or escalate the alert. The suppression level is manually selected by operators
from the Active Event List.

Tally A count of the number of occurrences of the event. This enables sporadic events such as one-off
ping failures to be filtered out.

Configuration of the plug-in

At startup, or upon Event Gateway resynchronisation (a SIGHUP or at failover or
failback), this plug-in will also populates the alertColors and alertConversions
tables based on values in the Object Server alerts.colors and alerts.conversions
table. The following parameters can optionally be set in the gwPluginConf table.
This table is in the NCMONITOR schema.

Table 33. Optional configuration of the adaptive polling plug-in

Parameter name Value Purpose Default

CopyAlertTablesAtStartup Indicates whether to populate
the alertColors and
alertConversions tables. Possible
values are:

v True

v False

This allows a single domain to
populate these tables if problems
occur when running multiple
domains.

True

ActiveEventUpdateInterval Interval, in seconds, at which
the activeEvent table is updated.

Updates to the table are made in
transactions, to try to minimise
the load on the DB server. This
interval identifies the period at
which these transactoins are
committed.

5

Related tasks:
Chapter 8, “Managing adaptive polling,” on page 51
Adaptive polls dynamically react to events on the network. You can create
adaptive polls that manage a wide range of network problem scenarios.
Related reference:
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Chapter 11. About event enrichment and correlation 121

Disco plug-in
Use this information to understand some basic information about how this plug-in
operates, plug-in prerequisites, and configuration details associated with the
plug-in.

Operation of the plug-in

The Disco plug-in subscribes to the Reconfiguration event map. By default, only
events with event ID NmosSnmpReboot are handled by the Reconfiguration event
map. These events are based on the Network Manager rebootDetection poll policy,
and indicate that there has been a reboot on a device. To configure the Disco
plug-in to handle other traps, configure the related event to be handled by the
Reconfiguration event map.

The following diagram provides a brief summary of the operation of the Disco
plug-in.

▌1▐ Reboot event is received
A reboot event is passed from the Event Gateway to the Disco plugin

▌2▐ Partial discovery request is generated
The Disco plugin converts the reboot event into an appropriate OQL
statement for the Discovery engine, ncp_disco, finders.returns table.

▌3▐ Rediscovery request sent to Discovery engine, ncp_disco
The OQL statement is run and this launches a partial discovery of the
related device or devices.

Required fields

This plug-in expects events supplied by the Event Gateway to be with populated
with the following fields:
v NmosObjInst

Configuration of the plug-in

The following parameter must be set in the ncmonitor.gwPluginConf table.

Table 34. Optional configuration of the adaptive polling plug-in

Parameter name Value Purpose Default

StitcherSubDir Name of the subdirectory within
the $NCHOME/precision/
eventGateway/stitchers/
directory containing the stitchers
for this plug-in.

Specifying the name of this
directory allows only the Disco
plug-in to parse its stitchers.

Disco

Reboot
event

Disco plugin

ncp_disconcp_disco

Network discovery

1 2

Figure 4. Operation of the Disco plug-in

122 IBM Tivoli Network Manager IP Edition: Event Management Guide

The following parameters can optionally be set in the ncmonitor.gwPluginConf
table.

Table 35. Optional configuration of the adaptive polling plug-in

Parameter name Value Purpose Default

StartupStitcher Name of a stitcher in the
subdirectory within
$NCHOME/precision/
eventGateway/stitchers/, to be
run at initialization.

If a startup stitcher name is
supplied then this stitcher will
be run without arguments at
startup, upon SIGHUP, or upon
failover or failback.

None

SchemaFile Name of a schema file in
$NCHOME/etc/precision/ to be
parsed at initialization.

If a schema file name is supplied
then this file will be parsed at
startup, upon SIGHUP, or upon
failover or failback, before any
startup stitcher is run.

None

Related reference:
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Failover plug-in
Use this information to understand plug-in operation as well as configuration
details associated with the plug-in.

Operation of the plug-in

There is no configuration information associated with this plug-in.The following
diagram provides a brief summary of the operation of the Failover plug-in.

▌1▐Network Manager health check event is received
A Network Manager health check event is passed from the Event Gateway
to the Failover plugin

▌2▐ Failover request is generated
The Failover plugin converts the Network Manager health check event into
an appropriate OQL statement for the Virtual Domain, ncp_virtualdomain,
state.domains table.

▌3▐ Failover request sent to Virtual Domain, ncp_virtualdomain
The OQL statement is run and this initiates failover or failback.

Required fields

This plug-in expects events supplied by the Event Gateway to have the Node field
populated with the name of the affected Network Manager domain.

Health
check
event

Failover
plugin

ncp_virtualdomain

Virtual Domain

1 2

Figure 5. Operation of the Failover plug-in

Chapter 11. About event enrichment and correlation 123

PostNCIMProcessing plug-in
Fix Pack 4

The PostNCIMProcessing plug-in runs any stitchers that are necessary after the
NCIM database is updated. By default, the plug-in triggers the stitching of
multiple domains into a single aggregation domain when a topology update event
is received.

Operation of the plug-in

The PostNCIMProcessing plug-in subscribes to the ItnmStatus event map. The
process flow for the plug-in is as described in the following steps:
1. An ItnmStatus event is received by the Event Gateway.
2. The Event Gateway calls the PostNCIMProcessing plug-in.
3. The PostNCIMProcessing plug-in runs the PostNcimProcessing stitcher, which

checks the type of the event.
4. If the event is of type ItnmTopologyUpdate, and if cross-domain stitching is

enabled, the PostNCIMProcessing stitcher runs the AggregationDomain stitcher.
5. The AggregationDomain stitcher checks that a discovery is not in progress, and

then runs the other aggregation domain stitchers, which stitch the discovered
domains together into one aggregation domain.

Required fields

This plug-in expects events that are supplied by the Event Gateway to be with
populated with the following fields:
v NmosObjInst

Configuration of the plug-in

The following parameter must be set in the ncmonitor.gwPluginConf table.

Table 36. Required configuration of the PostNCIMProcessing plug-in

Parameter name Value Purpose Default

StitcherSubDir Name of the directory in
$NCHOME/precision/
eventGateway/stitchers/ that
contains the stitchers for this
plug-in.

Specify the directory in which
you want to put the NCIM
processing stitchers, if you do
not want to put the stitchers in
the default directory,
PostNcimProcessing.
Important: Ensure that the
directory exists and contains the
stitchers. If the subdirectory
does exist, the plug-in does not
start.

PostNcimPr
ocessing

The following parameters can optionally be set in the ncmonitor.gwPluginConf
table.

124 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 37. Optional configuration of the Disco plug-in

Parameter name Value Purpose Default

StartupStitcher Name of a stitcher in the
subdirectory within
$NCHOME/precision/
eventGateway/stitchers/ to be
run at initialization.

If a startup stitcher name is
supplied, this stitcher is run
without arguments at startup,
upon SIGHUP, or upon failover
or failback.

None

SchemaFile Name of a schema file in
$NCHOME/etc/precision/ to be
parsed at initialization.

If a schema file name is
supplied, this file is parsed at
startup, upon SIGHUP, or upon
failover or failback, before any
startup stitcher is run.

None

SAE plug-in
The SAE plug-in generates service-affected events for MPLS VPNs and IP paths.

By default the SAE plug-in enables the system to generate the following types of
service-affected event:

MPLS VPN service-affected events
A synthetic event generated when a Severity 5 (critical) fault event occurs
on a provider edge (PE) or customer edge (CE) router or on any of the PE
interfaces pointing towards a CE router in any of the discovered MPLS
VPNs. The SAE generated is associated with the entity ID of the logical
entity in the discovery that represents the collection of MPLS VPN devices
on which the fault events occurred.

All PE to CE interfaces are added to a members list and an event on any of
the interfaces in this members list causes the system to generate a synthetic
MPLS VPN SAE.

You can enable the generation of SAE events based on interfaces
dependencies deeper in the core network, by enabling the
BGPPeerNextHopInterface discovery agent as part of your network
discovery. This agent calls the AddLayer3VPNInterfaceDependency.stch
stitcher.
This stitcher determines all PE to core provider router (P) interfaces and P
to PE interfaces involved in a VPN. These PE -> P and P ->PE interfaces
are added to a dependency list. An event on any of the interfaces in this
dependency list causes the system to generate a synthetic MPLS VPN SAE.
If an MPLS VPN SAE has already been generated based on an event on
any of the interfaces in the members list, then any events in interfaces in
the dependency list will be added as related events to that already
generated MPLS VPN SAE.

For more information on the BGPPeerNextHopInterface discovery agent
and the AddLayer3VPNInterfaceDependency.stch stitcher, see the IBM
Tivoli Network Manager IP Edition Discovery Guide

IP path service-affected events
A synthetic event generated when an event occurs on a device within any
of the IP paths created using the Network Paths GUI. The SAE generated
is associated with the entity ID that corresponds to the IP path containing
the device on which the event occurred.

Customizable service-affected events
The SAE plug-in can be configured to generated synthetic events when a
an event occurs on a device associated with a custom service.

Chapter 11. About event enrichment and correlation 125

Fix Pack 3 In order to perform this configuration you must perform the
following tasks:
1. Configure the Discovery engine, ncp_disco, to collect data for the

custom service. Perform this configuration by writing a custom stitcher
to define the custom service and ensure that this stitcher is called by
the relevant standard Network Manager stitcher.

Note: For help with writing custom stitchers, contact IBM Support.
2. Update NCIM cache to store data on the custom service in the

itnmService NCIM database table.
3. Update the config.serviceTypes SAE plug-in database table to store

data on the new custom service.

Fix Pack 3

For more information on ncp_disco and on the itnmService

NCIM database table see the IBM Tivoli Network Manager IP Edition
Discovery Guide.

Fix Pack 3

You can configure the SAE plug-in to generate more types of

service-affected event. For example, you can configure the plug-in to create SAE
events for MPLS VPN edge entities (one type of SAE) and for MPLS VPN core
entities (another type of SAE). Use the SAE plug-in database tables used to
configure the SAE plug-in.
Related tasks:
“Configuring the SAE plug-in” on page 166
Use this information to understand how to configure the SAE plug-in.
“Adding SAE types to the SAE plug-in” on page 167
You can configure the SAE plug-in to generate more SAE types than the three
provided by default. For example, you can configure the plug-in to create SAE
events for MPLS VPN edge entities (one type of SAE) and for MPLS VPN core
entities (another type of SAE).
Related reference:
“SAE plug-in database” on page 239
The SAE plug-in database tables enable the SAE plug-into generate service-affected
events for services such as MPLS VPNs and IP paths.
“config.serviceTypes table” on page 240
The config.serviceTypes table contains configuration information for the SAE
plug-in.

zNetView plug-in
Use this information to understand plug-in prerequisites as well as configuration
details associated with the plug-in.

Required fields

This plug-in expects events supplied by the Event Gateway to be with populated
with the following fields:
v Acknowledged

The plug-in requires the following custom fields to exist in the alerts.status table.

126 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 38. Optional configuration of the adaptive polling plug-in

Field name Type Description

NmosClassName 64-character string Class of the device the event was raised against. This value is
retrieved from the NCIM topology database chassis table.

NmosEntityType 32-bit integer Type of entity the event is raised against. This value is
specified in the NmosEntityId field.

Configuration of the plug-in

The following parameter must be set in the ncmonitor.gwPluginConf table.

Table 39. Optional configuration of the adaptive polling plug-in

Parameter name Value Purpose Default

StitcherSubDir Name of the subdirectory within
the $NCHOME/precision/
eventGateway/stitchers/
directory containing the stitchers
for this plug-in.

Specifying the name of this
directory allows only the
zNetView plug-in to parse its
stitchers.

zNetView

The following parameters can optionally be set in the ncmonitor.gwPluginConf
table.

Table 40. Optional configuration of the adaptive polling plug-in

Parameter name Value Purpose Default

StartupStitcher Name of a stitcher in the
subdirectory within
$NCHOME/precision/
eventGateway/stitchers/,
to be run at initialization.

If a startup stitcher name is
supplied then this stitcher
will be run without
arguments at startup, upon
SIGHUP, or upon failover
or failback.

CheckAdditionalFields

SchemaFile Name of a schema file in
$NCHOME/etc/precision/ to
be parsed at initialization.

If a schema file name is
supplied then this file will
be parsed at startup, upon
SIGHUP, or upon failover
or failback, before any
startup stitcher is run.

None

Related reference:
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Chapter 11. About event enrichment and correlation 127

Plug-in subscriptions
Use this information to understand which event maps and event states each plugin
is subscribed to.

Each Event Gateway plug-in subscribes to a different set of event maps.

Adaptive polling plug-in

The Adaptive polling plug-in subscribes to the following event maps:
1. EntityFailure
2. EntityIfDescr
3. EntityMibTrap
4. genericip-event
5. ItnmLinkDownIfIndex
6. ItnmMonitorEventNoRca
7. LinkDownIfDescr
8. LinkDownIfIndex
9. LinkDownIfName

10. NbrFail
11. NbrFailIfDescr
12. OSPFIfStateChange
13. OSPFIfStateChangeIP
14. PollFailure
15. PrecisionMonitorEvent

The Adaptive polling plug-in subscribes to the following event states:
1. Cleared
2. Deleted
3. Occurred
4. ReAwakened
5. ReOccurred
6. ReSync
7. Updated

Disco plug-in

The Disco plug-in subscribes to the following Reconfiguration event map.

Failover plug-in

This plug-in subscribes to the following event maps: ItnmHealthChkThe Failover
plug-in subscribes to the following event states:
1. Cleared
2. Occurred
3. ReAwakened
4. ReCleared
5. ReOccurred
6. Resolution

128 IBM Tivoli Network Manager IP Edition: Event Management Guide

7. ReSync

RCA plug-in

The RCA plug-in subscribes to the following event maps:
1. EntityFailure
2. EntityIfDescr
3. EntityMibTrap
4. ItnmLinkDownIfIndex
5. LinkDownIfDescr
6. LinkDownIfIndex
7. LinkDownIfName
8. NbrFail
9. NbrFailIfDescr

10. OSPFIfStateChange
11. OSPFIfStateChangeIP
12. PollFailure
13. PrecisionMonitorEvent

The RCA plug-in subscribes to the following event states:
1. Cleared
2. Deleted
3. Occurred
4. ReAwakened
5. ReOccurred
6. ReSync
7. Updated

SAE plug-in

The SAE plug-ins subscribe to the following event states:

MPLS VPN SAE plugin
This plug-in subscribes to the following event state: ReSync.

IP Path plugin
This plug-in subscribes to the following event state: ReSync.

ITNM Service plugin
This plug-in subscribes to the following event state: ReSync.

zNetView plug-in

The zNetView plug-in subscribes to the following event maps:
1. EntityIfDescr
2. EntityFailure
3. EntityMibTrap
4. genericip-event
5. ItnmLinkDownIfIndex
6. ItnmMonitorEventNoRca
7. LinkDownIfIndex

Chapter 11. About event enrichment and correlation 129

8. LinkDownIfDescr
9. LinkDownIfName

10. NbrFailIfDescr
11. NbrFail
12. OspfIfState
13. OSPFIfStateChange
14. OSPFIfStateChangeIP
15. PollFailure
16. PrecisionMonitorEvent
17. Reconfiguration

The zNetView plug-in subscribes to the following event states:
1. Information
2. Occurred
3. ReAwakened
4. ReOccurred
5. Resolution
6. ReSync
7. Updated

Root-cause analysis
Root cause analysis (RCA) is the process of determining the root cause of one or
more device alerts. The root-cause analysis (RCA) plugin receives a subset of
enriched events from the Event Gateway and determines which of the events are
root cause and which events are symptoms. RCA only receives events that affect
the routing of traffic through the network.

A failure situation on the network usually generates multiple alerts, because a
failure condition on one device may render other devices inaccessible. The alerts
generated indicate that all of the devices are inaccessible. Network Manager
performs root cause analysis by correlating event information with topology
information, thereby determining which devices are temporarily inaccessible due to
other network failures. Alerts on devices which are temporarily inaccessible are
suppressed, that is, shown as symptoms of the original root cause alert. Root cause
alerts are shown in alert lists and topology maps; if the severity_from_causetype
ObjectServer automation has been created and enabled, then these root cause alerts
have the highest severity so that operators can easily identify them.
Related concepts:
“Event Gateway plugins” on page 118
Event Gateway plug-ins are modules of the Event Gateway process that receive
enriched events from the Event Gateway and perform further event enrichment or
take other action on these events.
Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.

130 IBM Tivoli Network Manager IP Edition: Event Management Guide

Quick reference for RCA
Use this information to understand how an event is processed as it passes through
the RCA plug-in.

The purpose of the RCA plugin is to determine, based on data in the event and on
rules coded in RCA stitchers, to identify events that are caused by or cause other
events. The steps are described in the following table.

Table 41. Quick reference for RCA

Action Further information

1. An event is received from the Event Gateway. The RCA plug-in checks that this
event meets its event maps and event state subscription requirements. In RCA terms
this is known as a trigger event because it triggers RCA plug-in activity.

“Plug-in subscriptions” on
page 128

2. The event is inserted into the RCA plug-in mojo.events database from where it can
be retrieved for processing by the RCA stitchers.

“mojo.events events
database table” on page 237

3. The event is passed to the ProcessEvent.stch, for root-cause analysis processing by
the RCA stitchers.

“RCA stitchers” on page 136

Related tasks:
“Modifying event map subscriptions” on page 163
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.

Precedence value
At the same time that an event map is selected to handle the event, a numerical
precedence value is associated with an event. This precedence value is used by the
RCA plugin in cases where there are multiple events on the same entity. The event
with the highest precedence value on the entity is used to suppress other events.

A precedence value is configured for an event ID using the Event Gateway
config.precedence table. The config.precedence table is configured in the
EventGatewaySchema.cfg configuration file. This file is located at:
$NCHOME/etc/precision/EventGatewaySchema.cfg.

The following example shows how the config.precedence table is configured in the
EventGatewaySchema.cfg configuration file.

The section of code that is relevant to configuring a precedence value is listed in
the following lines from the example. This example insert configures the Event
Gateway to assign a precedence value of 910 to all events that have the EventId
field set to SNMPTRAP-LinkDown. These are trap events originating from a Tivoli
Netcool/OMNIbus probe. The code contains an insert to the config.precedence
table.

The following table describes the relevant lines from this example:

Table 42. Lines of code relevant to the incoming event filter

Line numbers Description

1 Configure the incoming filter by making an insert into the
config.precedence table.

3 Specify an insert into the Precedence field of the config.precedence table.

Chapter 11. About event enrichment and correlation 131

Table 42. Lines of code relevant to the incoming event filter (continued)

Line numbers Description

10 Set the Precedence field to the value 910.

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]
11]
12]

insert into config.precedence
(

Precedence,
EventMapName,
NcoEventId

)
values
(

910,
"LinkDownIfIndex",
"SNMPTRAP-LinkDown"

);

Related reference:
“config.precedence table” on page 232
The config.precedence table lists events by event ID and contains the information
necessary to determine which event has precedence when multiple events occur on
the same interface. Based on the event ID, the config.precedence table also
determines which event map to use to process an event from Tivoli
Netcool/OMNIbus.

Default precedence values
By convention the Event Gateway assigns predefined threshold values that have
special significance in the RCA plugin-in.

You can specify your own precedence values when configuring the Event Gateway.

You should specify a higher precedence value for events that meet either of the
following conditions:
v Events on entities that are lower down the protocol stack. For example,

confirmation that a physical port has failed would be higher precedence than an
IP layer problem on that interface.

v Events that are a more certain indication of a problem. For example, contrast
these two events: a ping fail event and a link down event. The less certain event
is the ping fail. This might be because the ICMP packet could not reach the
interface. That, in turn, could be due to a network problem between the polling
station and the interface. The more certain event is an SNMP trap that explicitly
states that a link has gone down because this is a more positive confirmation of
a problem on the interface itself, or on its directly connected neighbour.

The following table lists the precedence values that the Event Gateway assigns by
default.

Table 43. Default precedence values

Value Meaning Example events

0 Assigned to events that cannot cause
other issues. During RCA, the event
cannot suppress other events, but it can
itself be suppressed.

SYSLOG-cisco-ios-SYS-CPUHOG

SYSLOG-cisco-ios-BGP-NOTIFICATION

132 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 43. Default precedence values (continued)

Value Meaning Example events

300 Reserved for non-authoritative events
which suggest, but do not necessarily
indicate, a failure on the device. For
example, failure to reach a device does
not necessarily indicate a problem on
that device; this failure could be caused
by a problem between the polling
station and the device.

probeping-icmptimeout

SNMPTRAP-IETF-OSPF-TRAP-MIB-
ospfIfStateChange

600 Intended for protocol failures. Failures
identified lower down the protocol
stack should take higher precedence.
For example, as OSPF runs over IP, an
OSPF failure would be expected to have
a lower precedence than an IP failure.

SNMPTRAP-IETF-OSPF-TRAP-MIB-
ospfIfConfigError

900 Assigned to confirmed physical failures
that indirectly imply a Link Down or
Ping Fail (and most other events).

SNMPTRAP-cisco-CISCO-WIRELESS-IF-
MIB-cwrTrapLinkQuality

910 Assigned to confirmed physical failures
that directly indicate a Link Down or
Ping Fail.

SNMPTRAP-linkDown

SYSLOG-smc-switch-linkDown

10 000 Assigned to events that cannot be
caused by other issues. During RCA,
the event cannot be suppressed by other
events, but it can become root-cause,
suppressing other events.

SYSLOG-cisco-ios-CI-SHUTDOWN

SNMPTRAP-riverstone-RIVERSTONE-
NOTIFICATIONS-MIB-
rsEnvirHotSwapOut

Poller entity
Use this information to understand what the poller entity is and how to configure
it.

The poller entity, also known as the polling station, is the server from which
Network Manager polls devices. If the polling station, usually the Network
Manager server, is not within the scope of your network domain, then, to enable
the RCA plug-in to perform isolated suppression, the IP address or DNS name of
the ingress interface must be specified as the poller entity. This is the interface
within the discovery scope from which network packets are transmitted to and
from the polling station.

The poller entity is the name of a server to use to represent the local Network
Manager server, and is stored in the config.defaults table in the field
NcpServerEntity. A value is required in the NcpServerEntity field if the Network
Manager server is not within the scope of the discovery.

The NcpServerEntity field must be configured as follows:

Table 44. NcpServerEntity field configuration settings

Is Network Manager server in discovery
scope? Value of NcpServerEntity field

Yes Empty string

No IP address or DNS name of the ingress
interface

Chapter 11. About event enrichment and correlation 133

The following diagram shows the ingress interface (circled) when the Network
Manager server is outside discovery scope.

Note: You must have run at least one discovery in order for the Event Gateway to
find the poller entity in the NCIM database.

Related tasks:
“Configuring the poller entity” on page 169
To enable the RCA plugin to perform isolated suppression when the Network
Manager server is not within the scope of your network domain, specify the IP
address or DNS name of the ingress interface as the poller entity.

RCA and unmanaged status
Use this information to understand how the RCA plug-in handles events from
devices that are in unmanaged state, also known as maintenance state.

The method used by the RCA plug-in to handle events from devices that are in
unmanaged state is governed by the value set for the HonourManagedStatus in the
RCA plug-in configuration file $NCHOME/etc/precision/RCASchema.cfg. This field
can take the following values.
v 1 (default value): instructs the RCA plug-in to honour the managed status of

events. All events from unmanaged devices are ignored.

Router X
Network Manager

server

Router Y

Discovery scope
of Network
Manager domain

Figure 6. Ingress interface

134 IBM Tivoli Network Manager IP Edition: Event Management Guide

v 0: instructs the RCA plug-in to process events from unmanaged devices as
normal events.

In each case, the RCA plug-in determines whether the device is unmanaged by
looking at the NmosManagedStatus field of the event.

Assuming that the RCA plug-in is configured to honour the managed status of
events (HonourManagedStatus = 1), then an event from an unmanaged device
cannot be root cause and it cannot be suppressed.

If the event has an event state of ReOccurred and earlier occurrences of this same
event indicated that the device was previously managed, then the event record in
the mojo.events database is updated and will have its NmosCauseType, NmosSerial
and SuppressionState reset to 0, in effect instructing the RCA plug-in to now
ignore this event. The managed status of reoccurring events can change because of
the following: managed Status is a property of an entity; for example, an interface.
The managed status of the entity is stored in a field in the entity record. In
addition, events raised on an entity also contain a field called NmosManagedStatus
that records the managed status of the entity at the time the event was raised.
Therefore it is possible for an event to occur when an entity is being managed, but
then later on the same event could reoccur when the entity is unmanaged, that is,
after the entity has changed state from managed to unmanaged.

The following scenarios explain how the RCA plug-in handles events whose
managed status changes on subsequent occurrences.

Event changes from managed to unmanaged

The sequence is as follows:
1. The initially occurring event (for example, a ping fail event) is processed as

normal for RCA, since the event had an NmosManagedStatus of 0, meaning that
the entity was managed when the event first occurred.

2. Then, some time later, the interface entity is set to unmanaged; that is, the
ManagedStatus value for the interface becomes 1.

3. The event on the interface reoccurs.
4. The reoccurred ping fail event now contains the field value NmosManagedStatus

= 1, but the previous occurrence of this event, still in the database mojo.events,
had the field value NmosManagedStatus = 0.

5. The RCA plug-in detects that the the value of the field NmosManagedStatus has
changed from 0 to 1, for the ReOccurred (or Updated) event.

6. The RCA plug-in updates the event record in the database mojo.events and
from then on treats the event is as it would treat a deleted event; that is, it
reprocesses all the suppressees of the event as because this event no longer
allowed to suppress events.

Event changes from unmanaged to managed

The sequence is as follows:
1. The initially occurring event (for example, a ping fail event) arrives with a

NmosManagedStatus of 1 meaning that the entity was unmanaged when the
event first occurred.Therefore the event is processed as if it were a deleted
event and is not allowed to suppress events.

2. Then, some time later, the interface entity is set to managed; that is, the
ManagedStatus value for the interface becomes 0.

Chapter 11. About event enrichment and correlation 135

3. The event on the interface reoccurs.
4. The reoccurred ping fail event now contains the field value NmosManagedStatus

= 0, but the previous occurrence of this event, still in the database mojo.events,
had the field value NmosManagedStatus = 1.

5. The RCA plug-in detects that the the value of the field NmosManagedStatus has
changed from 1 to 0, for the ReOccurred (or Updated) event.

6. The RCA plug-in updates the event record in the database mojo.events and
from then on treats the event is as a normal event; this event now allowed to
suppress other events.

Related reference:
“config.defaults database table” on page 239
The config.defaults database table stores configuration data for the RCA plug-in
event queue.

RCA stitchers
RCA stitchers process a trigger event as it passes through the RCA plug-in. Each
RCA stitcher performs a specific task. A stitcher is called by the RCA plug-in and
then the remaining stitchers are run in a specific order.

RCA plug-in stitchers are in $NCHOME/precision/eventGateway/stitchers/RCA.

For information about stitcher language, see the IBM Tivoli Network Manager IP
Edition Language Reference.

RCA stitcher sequence
The stitchers that are called by the RCA plug-in and the sequence in which
stitchers are run to determine root cause.
1. When the Event Gateway passes an event to the RCA plug-in, the

ProcessEvent.stch stitcher is called to handle the event. This event is called the
trigger event.

2. The ProcessEvent.stch stitcher determines which stitcher to call, depending on
the event state of the trigger event, as described in the following table:

Event state of the trigger event Stitcher that is called

Occurred
ReAwakened,
ReOccurred
Resync
Updated

ProcessProblemEvent.stch

Cleared
Deleted

ProcessResolutionEvent.stch

When an event is cleared or deleted, the
RCA plug-in reprocesses any events that
were suppressed by the cleared or deleted
event.

3. 2 triggers are called by the ProcessProblemEvent.stch stitcher to attempt to
suppress the trigger event. These triggers are as follows:
v The SuppressTrigger.stch stitcher determines whether the trigger event can

be suppressed by an existing event.
v For OSPF or BGP events, the PeerEntitySuppression.stch stitcher

determines whether the trigger event can be suppressed by another event on
the peer entity.

136 IBM Tivoli Network Manager IP Edition: Event Management Guide

If the SuppressTrigger.stch or the PeerEntitySuppression.stch stitchers
cannot suppress the trigger event, the trigger event becomes root cause.

4. The RCA plug-in checks whether the trigger event is suppressed by another
event on the same entity. That is, the check assesses if the trigger event is not
the master event for the entity. If the trigger event is not the master event, it is
prevented from suppressing other events, because the master event for the
entity performs event suppression. In the subsequent steps, the
ProcessProblemEvent.stch calls other stitchers, which attempt to use the trigger
event to suppress other events. Each of the stitchers is run in turn.

5. The EntitySuppression.stch stitcher uses the trigger event to suppress other
events by using contained entity principles. The event that has the highest
precedence on the entity suppresses all the other events on that entity.

6. The ContainedEntitySuppression.stch stitcher uses the trigger event to attempt
to suppress other events by using contained entity principles. The event on the
containing entity suppresses events on all contained entities.

7. The IsolatedEntitySuppression.stch stitcher uses the trigger event to attempt
to suppress other events by using downstream entity principles.

8. The ConnectedEntitySuppression.stch stitcher uses the trigger event to attempt
to suppress other events using by connected entity principles. For example,
when two interfaces are connected and there is an event on both, the event on
one of the interfaces suppresses the event on the other interface.

Related concepts:
“Event states” on page 93
The Event Gateway assigns a state to the event based on the type of event, and
based on the Severity and Tally fields in the event. The event state is one of the
parameters used by event plug-ins when subscribing to events.

Predefined constants in RCA stitchers
Network Manager supplies predefined constants for RCA suppression type and
RCA cause type. When coding new RCA stitchers or modifying existing RCA
stitchers, you can store these predefined constants in an integer varible.

The predefined constants for suppression type are as follows:

$RCA_NO_SUPPRESSION
Not suppressed. A root cause event takes this state.

$RCA_ENTITY_SUPPRESSION
Suppressed by another event on the same entity.

$RCA_CONTAINED_SUPPRESSION
Contained suppressed; for example, failures on interfaces contained within
a chassis device are suppressed by a failure on that chassis device.

$RCA_ISOLATED_SUPPRESSION
Isolated suppressed; failures on devices downstream of and isolated by a
single chassis device are suppressed by a failure on that isolating chassis
device.

$RCA_CONNECTED_SUPPRESSION
Suppressed by an event on a connected entity.

$RCA_PEER_SUPPRESSION
Peer entity suppression.

The predefined constants for cause type are as follows:

Chapter 11. About event enrichment and correlation 137

$RCA_UNKNOWN_CAUSE
Cause of event is unknown

$RCA_ROOT_CAUSE
Root cause event.

$RCA_SUPPRESSED
Suppressed event.

Note: Never use stitcher code set the causeType variable to
$RCA_SUPPRESSED. This must only be done by the underlying RCA code.

RCA stitcher descriptions
Use this information to understand what each RCA stitcher does.

The following table describes the RCA stitchers.

Table 45. RCA stitchers

Stitcher Description

ConnectedEntitySuppression.stch Uses the trigger event to attempt to suppress other events
using connected entity principles. For example, when two
interfaces are connected and there is an event on both, the
event on one of the interfaces suppresses the event on the other
interface.

ContainedEntitySuppression.stch Uses the trigger event to attempt to suppress other events
using contained entity principles. The event on the containing
entity suppresses events on all contained entities.

EntitySuppression.stch Uses the trigger event to attempt to suppress other events
using same entity suppression principles. The event with the
highest precedence on the same entity suppresses the other
events on that entity.

IsolatedEntitySuppression.stch Uses the trigger event to attempt to suppress other events
using downstream entity principles.

PeerEntitySuppression.stch In the case of an OSPF or BGP event, determines whether the
trigger event can be suppressed by an existing OSPF or BGP
event.

ProcessEvent.stch This is the head stitcher. It is called each time a trigger event is
passed to the RCA plugin. The ProcessEvent.stch stitcher
determines which stitcher to call based on the event state of the
trigger event:

v ProcessProblemEvent.stch is called to handle events with
event states Occurred, ReAwakened, ReOccurred, Resync,
and Updated.

v ProcessResolutionEvent is called to handle events with event
states Cleared and Deleted.

ProcessProblemEvent.stch Handles problem events, that is, events with event states
Occurred, ReAwakened, ReOccurred, Resync, and Updated.
This stitcher calls the SuppressTrigger stitcher and the
PeerEntitySuppression to try to suppress the trigger event
using other events. It then calls the EntitySuppression,
ContainedEntitySuppression, ConnectedEntitySuppression, and
IsolatedEntitySuppression stitchers, in that order, to try to
suppress other events using the trigger event.

ProcessResolutionEvent.stch Handles resolution events, that is, events with event states
Cleared and Deleted.

138 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 45. RCA stitchers (continued)

Stitcher Description

SuppressTrigger.stch Determines whether the trigger event can be suppressed by an
existing event.

TimedEventSuppression.stch The purpose of this stitcher is to prevent the RCA plug-in from
processing flapping events and thereby save resources.

Events that can flap are passed from the Event Gateway with
an EventCanFlap = 1 setting. These events are placed on the
mojo.events database with TimedEscalation = 1 and are left
there for 30 seconds. After 30 seconds the
TimedEventSuppression RCA stitcher processes all events that
are at least 30 seconds old and have the TimedEscalation = 1
setting.
Note: By waiting 30 seconds to process the event, the system
ensures that the entity that generated the event has settled
down and is not flapping. A flapping entity, for example, an
interface that is generating a continuous stream of Link Down
and Link Up events, might generate these events every two
seconds. As the Link Up event passes through the RCA plug-in,
the ProcessResolutionEvent stitcher will delete the Link Down
event . Consequently, no flapping events will ever be processed
by the TimedEventSuppression because they will already have
been deleted during the 30 second wait time.

Following processing, all events with a TimedEscalation = 1
setting have the TimedEscalation field set to 2, to prevent any
further processing.

Related concepts:
“Event states” on page 93
The Event Gateway assigns a state to the event based on the type of event, and
based on the Severity and Tally fields in the event. The event state is one of the
parameters used by event plug-ins when subscribing to events.

Examples of root cause analysis
These examples show how the RCA process performs root cause analysis based on
consideration of different types of network devices and interfaces. The examples
are for illustrative purposes only and are meant to show only the principles that
RCA uses. RCA in larger networks is more complex.

The colors shown in the diagrams match the following event colors in the Active
Event List:
v Red: root-cause event.
v Purple: symptom (suppressed) event.

For more information on identifying and investigating root-cause events in the
Active Event List, see the IBM Tivoli Network Manager IP Edition Network
Troubleshooting Guide.

Chapter 11. About event enrichment and correlation 139

Definition of downstream and upstream within RCA
Use this information to understand how the terms downstream and upstream are
applied within the RCA plug-in.

Definition of terms

The terms downstream and upstream are used with reference to the poller entity.

Downstream
Specifies a location on the network topologically more distant from the
polling station but on the same physical path as a second location.

Upstream
Specifies a location on the network topologically closer to the polling
station but on the same physical path as a second location.

In complex networks, the distance of devices from the polling station changes as
devices are deactivated. This change in distance has an impact on which devices
are upstream or downstream.

Example

The figure below shows an example of upstream and downstream locations. In this
example, device B is downstream of device A; therefore, device A is upstream of
device B.

Related reference:
“Isolated suppression of chassis devices” on page 144
A failure on a chassis device suppresses failures on all chassis devices isolated by
the chassis device where the failure occurred. This is an example of isolated
suppression.

A

B

Polling
station

Figure 7. Downstream and upstream devices

140 IBM Tivoli Network Manager IP Edition: Event Management Guide

“Isolated suppression for devices at the edge of a network” on page 147
A failure on a logical or physical interface that is the sole connection between other
entities and the network suppresses failures in the downstream entities. This is an
example of isolated suppression.

Chassis devices and loopback interfaces
In most cases, the RCA process assumes that if a chassis fails, then the root cause
for other failures originates in the chassis. Chassis failures suppress failures on
contained interfaces, connected interfaces and downstream chassis devices.

The loopback interface has a special function within a chassis device, whether
router or switch. A loopback interface always has an IP address, which
corresponds to the IP address of the chassis device.Network Manager IP Edition
associates the loopback interface with the chassis during discovery. The loopback
interface represents the whole chassis and can be polled individually. Failures on
the loopback interface suppress failures on connected and contained entities in
exactly the same way as failures on chassis devices.

Only events on chassis devices, interfaces, modules, and cards are allowed to
connect-suppress other events. However, a chassis will not connect-suppress
another chassis (or daughter card).

Contained interfaces:

A chassis failure suppresses all failures on interfaces contained within that chassis.

In the figure below, a failure on chassis device A suppresses failures on interfaces
b, c and d. Interfaces b, c and d are all contained within chassis device A.

Chapter 11. About event enrichment and correlation 141

Connected interfaces:

A chassis failure suppresses all failures on interfaces connected to that chassis
device. Failures are suppressed on both upstream and downstream interfaces as
long as they are not isolation points.

In the figure below, device A suppresses failures on interfaces b, c, and d.

Note: If an interface is an isolation point in the graph, it cannot be
connect-suppressed by an event on a neighboring entity.

A

d

b

c

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

Figure 8. Chassis failure suppresses failures on contained interfaces

142 IBM Tivoli Network Manager IP Edition: Event Management Guide

Entities connected to a contained entity:

A chassis device may contain one or more entities. Examples of entities which can
be contained within a chassis device are VLANs, cards, and virtual routers. A
contained entity, such as a card, may have one or more interfaces.

A failure on the chassis device suppresses failures on entities directly connected to
any of the entities contained within that chassis device. In the figure below, entity
B is contained within chassis device A. A failure on chassis device A suppresses a
failure on interface d on device D and interface e on device E. Both interfaces d
and e are directly connected to entity B.

A

c d

b

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

Figure 9. Chassis failure suppresses failures on connected interfaces

Chapter 11. About event enrichment and correlation 143

Isolated suppression of chassis devices:

A failure on a chassis device suppresses failures on all chassis devices isolated by
the chassis device where the failure occurred. This is an example of isolated
suppression.

In the figure below, a failure on chassis device A suppresses failures on chassis
devices B, C and D. Chassis devices B, C and D are all isolated by chassis device
A.

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

D

E

d

e

B A C

Figure 10. Chassis failure suppresses failures on devices connected to contained entities

144 IBM Tivoli Network Manager IP Edition: Event Management Guide

Related reference:
“Definition of downstream and upstream within RCA” on page 140
Use this information to understand how the terms downstream and upstream are
applied within the RCA plug-in.

Interfaces
If an interface is isolating downstream failures, then the interface failure can
suppress the downstream failures.

A standard interface failure can suppress a second physical interface failure if the
two interfaces are directly connected. The interface whose suppression rule fires
first, suppresses the other interface. Suppression of one interface failure by a
second interface failure can only occur if the interface failures are not already being
suppressed by a chassis failure.

Note: If an interface is an isolation point in the graph, it cannot be
connect-suppressed by an event on a neighboring entity.

A physical interface can contain multiple logical interfaces. A failure on a physical
interface can suppress failures on its related logical interfaces. The physical
interface can suppress its related logical interface even if there is connectivity

A

D

CB

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

Figure 11. Chassis failure suppresses failures on downstream entities

Chapter 11. About event enrichment and correlation 145

between the logical interface and an external neighbor. Even events on a
suppressed physical interface can contain-suppress events on its associated logical
interfaces.

In general, only events on chassis, interfaces, modules and cards are allowed to
connect-suppress other events

Directly connected interface:

A standard physical interface failure suppresses a second physical interface failure
if the two interfaces are directly connected.

The following constraints related to suppression of directly connected interfaces:
v A contained-suppressed interface cannot be connected suppressed.
v A suppressed interface can suppress connected interfaces.

In the figure below, failure on interface a suppresses the more recent failure on
directly connected interface b.

Related logical interface:

A failure on a physical interface suppresses failures on related logical interfaces.

In the figure below, failure on a physical interface suppresses failures on contained
logical interfaces b and c.

a b

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

Figure 12. Interface failure suppresses more recent failure on directly connected neighbor
interface

146 IBM Tivoli Network Manager IP Edition: Event Management Guide

Isolated suppression for devices at the edge of a network:

A failure on a logical or physical interface that is the sole connection between other
entities and the network suppresses failures in the downstream entities. This is an
example of isolated suppression.

In the figure below, failure on interface d in device A suppresses failures on
devices B, C and D and their interfaces.

Failure: root cause
event in AEL

Suppressed failure:
symptom event in AEL

a

b c

Figure 13. Physical interface failure suppresses failures on contained logical interfaces

Chapter 11. About event enrichment and correlation 147

Related reference:
“Definition of downstream and upstream within RCA” on page 140
Use this information to understand how the terms downstream and upstream are
applied within the RCA plug-in.

Checking topology paths used by RCA
Use the RCA path tool to check whether a topological path between network
devices is available for the purposes of topological correlation.

About the RCA path tool
The RCA path tool provides a debugging aid for root cause analysis situations that
involve isolated suppression.

The RCA path tool tells you the shortest path from A to Z, where A and Z are two
nodes (for example, devices) in the topology. Use the RCA path tool to determine
what paths exist in the topology and to determine where there are unexpected
disconnects or unexpected additional paths, both of which will affect the root-cause
analysis of the corresponding section of topology in the production environment.

a a

C D

b bc c

a

b

A

B

a b

c d

c

Failure: root cause
event in AEL

Suppressed failure:
symptom event in
AEL

Figure 14. Interface failure suppresses more recent failure on directly connected neighbor
interface

148 IBM Tivoli Network Manager IP Edition: Event Management Guide

The RCA path tool can display the following types of path between specified
entities:
v Full path: this displays the shortest path between the source and target entities,

regardless of the current state of the network. The full path does not change
when events are placed on nodes in that path. For example, if there is an event,
such as a PingFail alert on one or more of the intermediate devices along the
path, this event is ignored. In RCA path tool queries, full path setting is
indicated by the notation atoz.full.

Note: To alter the full path, you would have to remove entities from the
topology. This is a big change of course, and might be necessary on occasion for
in-depth investigation.

v Current path: also known as the live path, this path displays the shortest path
between the source and target entities, taking into account the current state of
the network. For example, if there is an event, such as a PingFail alert on one or
more of the intermediate devices along the shortest path to the target entity, then
this path to the target entity is broken, and is not returned by the RCA path tool.
If there is an alternative path, it is returned, even if it is a longer path to the
target entity. In RCA path tool queries, current path setting is indicated by the
notation atoz.current.

Note: The atoz database does not really exist, and neither do the atoz.full and
atoz.current tables.

The most effective way to use the RCA path tool to perform debugging is to load
your topology from cache and then to perform the following investigative activities
on this cache topology:
1. Determine the existing path (current path) in the topology between two nodes

of interest, A and Z.
2. Inject events onto specified nodes between A and Z along the path of interest:

a. Does an alternative current path exist between A and Z?
b. Is there no longer a path? If no current path exists, then the events that

were injected will be isolated suppressed by an event on A or Z. Whether it
is A or Z depends on the location of the poller entity. Assuming it is A then
an event on A is a candidate for being the root cause suppressor of the
events on the path between A and Z.

In order to inject events into devices in your topology cache, use the
inject_fake_events.pl Perl script.For more information on the inject_fake_events.pl
Perl script, see the IBM Tivoli Network Manager IP Edition Administration Guide.

Note: Do not confuse the RCA path tool with the path views tool that is available
in the GUI. The RCA path tool is a command-line tool and is used primarily for
troubleshooting root cause analysis; in contrast, the GUI-based path views tool
provides graphical views to operators of devices and links that make up a network
path between two selected devices.

Chapter 11. About event enrichment and correlation 149

Using the RCA path tool
Use these examples to understand how the RCA path tool can be used to display
paths between specified source and target entities on the network.

Example of usage

The RCA path tool uses the OQL Service Provider, ncp_oql, to execute queries.For
more information on the OQL Service Provider, see the IBM Tivoli Network Manager
IP Edition Administration Guide.

The following example command queries the full path between a source device
with an entityId field value of 6 and a target device with an entityId field value of
137.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.full
where a = 6 and z = 137;"

The result of the query might look like this:
{

ENTITYID=6;
ENTITYNAME=’router4’;

}

{
ENTITYID=385;
ENTITYNAME=’VLAN_OBJECT_router4_VLAN_37’;

}

{ ENTITYID=137;
ENTITYNAME=’router4[Fa0/3/3]’;

}

(3 record(s) : Transaction complete)

Examples of queries

You can trace paths from a specific source entity, or optionally, from anything
contained within that source entity. In addition, RCA path tool queries must
always specify two entities, a source entity referred to as "a" and a target entity,
referred to as "z", and these two entities represent the source and destination of the
path. The source and target entities can be supplied as any combination of the
following:
v Entity IDs
v Entity names
v IP addresses

Queries can additionally choose to allow a path to be traced from any entity
contained by the source. This can be useful when dealing with VLANs, where a
direct path from a containing chassis to an interface might not exist.

Note: Queries are logged in the trace file for the Event Gateway process,
ncp_g_event, at debug level 1; for example, your query log file might be called
ncp_g_event.NCOMS.trace.

The following queries provide examples of how you can use the RCA path tool.
1. Show the full path from entityId 102 to entityId 105.

ncp_oql -domain NCOMS -service Events -query "select * from atoz.full
where a = 102 and z = 105;"

150 IBM Tivoli Network Manager IP Edition: Event Management Guide

2. Show the full path from the entity named 'rod' to the entity named 'freddy'.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.full
where a = ’rod’ and z = ’freddy’;"

3. Show the current path from entityId 102 to the entity with IP address
172.21.226.3.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.current
where a = 102 and z = ’172.21.226.3’;"

4. Show the current path from the interface named 'rod[0 [1]]' to entityId 105.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.current
where a = ’rod[0 [1]]’ and z = 105;"

5. Show the full path from entityId 102 to the entity with IP address 172.21.226.3.
If no path is found, try to find a path from anything contained by the container
of entityId 102. In other words, go up one level in the container hierarchy to
get the container identifier, and then try to construct the path using as source
entity each one of the entities contained in that container.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.full
where a = 102 and z = ’172.21.226.3’ and fromContained = 1;"

6. When there is no path, this will be clearly indicated by the output.
ncp_oql -domain NCOMS -service Events -query "select * from atoz.full
where a = 6 and z = 97;"

If there is no path, the output will look something like the following:
{

EntityId=0;
EntityName=’No path found from A to Z’;

}
(1 record(s) : Transaction complete)

Example: Determining potential root causes along a path
You can use the RCA path tool to simulate a failure along a network path. If there
is no alternative path to the target entity, then the path to any device downstream
of the failure will now be broken. In the production environment, the device
corresponding to the failure device becomes root cause..

This example considers the devices A, B, C, and D, connected in a row. To keep
things simple, interfaces are not shown:
A ------------ B ------------- C ------------- D

Network Manager polls device D from the poller entity. In the following diagram
the poller entity is shown as entity X.
X
\
\
\
\
A ------------ B ------------- C ------------- D

If a PingFail alert is injected onto device B, this alert makes node B inactive and
breaks the path from A to D and causes the RCA path tool to return the following
results:
v Full path (atoz.full): this displays the shortest path between nodes A and D,

regardless of the current state of the network. Consequently, atoz.full displays
the path from A to D.

v Current path (atoz.current): this displays the shortest path between nodes A and
D, taking into account the current state of the network. As node B is inactive,
there is no path from A to D, therefore no path returned.

Chapter 11. About event enrichment and correlation 151

In the corresponding production environment, if a PingFail alert were to occur on
node D, this alert would be suppressed, and the alert on node B would be
highlighted as the root cause.

Example: Determining alternative paths
You can use the RCA path tool to determine alternative network paths in the case
of a device failure. If there is an alternative path to the target entity, then in the
production environment, the device corresponding to the failure device does not
become root cause because there is an alternative path to the target entity.

This example considers a section of the network that includes two paths to node D,
connected in a row. Network Manager polls device D from the poller entity. In the
following diagram the poller entity is shown as entity X. To keep things simple,
interfaces are not shown:
X ------- E ------- F ------- G
\ \
\ \
\ \
\ \
A ------------ B ------------- C ------------- D

If a PingFail alert is injected onto device B, this alert makes node B inactive, and
breaks the path from X to D via A. However, there is an alternative path from X to
D, via E, and this causes the RCA path tool to return the following results:
v Full path (atoz.full): this displays the shortest path between nodes X and D,

regardless of the current state of the network. Consequently, this displays the
path from X to D, via A, as this is the shortest path.

v Current path (atoz.current): this displays the shortest path between nodes X and
D, taking into account the current state of the network. Consequently, this
displays the path from X to D, via E, as this is the current path. Node B is
inactive, hence the path from X to D, via A is broken.

In the corresponding production environment, if a PingFail alert were to occur on
node D, this alert would not be suppressed; also the alert on node B would not be
shown as root cause.

152 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 12. Configuring event enrichment

You can configure the way an event is processed as it passes through the Event
Gateway.

Configuring extra event enrichment
You can configure the Event Gateway to perform extra event enrichment. The
following examples illustrate the kinds of information that can be added to an
event using event enrichment.

You can configure the Event Gateway to populate any field in the ObjectServer
alerts.status table. You can populate an existing field or a customized field.

Note: The Event Gateway does not alter the alerts.status table. If you want to
create a new field in the alerts.status table and have the Event Gateway populate
this new field, you must first alter the alerts.status table in the ObjectServer to add
the new field.

Modifications to the ObjectServer alerts.status table
The Event Gateway does not create new fields in the alerts.status table. If you are
configuring extra event enrichment then you might need to configure the
ObjectServer to add new fields to the alerts.status table.

The following examples describe typical custom event enrichment. Each example
specifies whether any alerts.status table configuration is required prior to
configuring the custom event enrichment.

Enriching a default event field that is not currently enriched
An example of this is where you want to enrich the PhysicalPort
alerts.status field. This is a field that exists by default in the alerts.status
table, and therefore there is no need to modify the ObjectServer.

Enriching a custom field that was already added earlier for a different purpose
An example of this is where you already have a field that is populated by
one or more probes, and you want it populated for all events. In this
example, some events that arrive via the monitor probe, from the poller,
might have a populated EXTRAINFO_sysLocation field in the NCIM cache
data. You have already added an NmosLocation field to the ObjectServer,
and this field is populated from the monitor probe where possible. It can
now be populated for all events. In this case there is no need to modify the
ObjectServer.

Performing any topology enrichment from the NCIM topology database
In this case you want to enrich the event with any of the data from NCIM.
You must first modify the ObjectServer to add the new field or fields to the
alerts.status table.

© Copyright IBM Corp. 2006, 2016 153

Example: Enriching an event with main node device location
You can configure event enrichment so that the location of the main node device
associated with an event is added to a field in the event.

Consider which field in the ObjectServer to populate. There already is a default
Location field in the alerts.status table. This example assumes that you want to
populate this field, unless it is already populated. If you have a reason to create a
separate customized field to store the enriched location value, then you can add a
field to the alerts.status table to store the main node device location; for example,
NmosLocation. For information on how to add a custom field to an ObjectServer
table, see the IBM Tivoli Netcool/OMNIbus Administration Guide.

The location of the main node device associated with an event is available in the
NCIM topology database chassis table. This field can be accessed using NCIM
cache, and is held in the ncimCache.entityData table.

For more information on the structure of NCIM cache tables and fields, see the
IBM Tivoli Network Manager IP Edition Topology Database Reference.

The following steps explain how to configure this extra event enrichment.
1. Edit the Event Gateway schema file, $NCHOME/etc/precision/

EventGatewaySchema.cfg, to allow the Event Gateway to update the new field.
To do this, add the text in bold to the outgoing event filter. Remember to add a
comma at the end of the line containing the NmosSerial field, before the line
containing the new Location field.
insert into config.ncp2nco
(

FieldFilter
)
values
(

[
"NmosCauseType",
"NmosDomainName",
"NmosEntityId",
"NmosManagedStatus",
"NmosObjInst",
"NmosSerial",
"Location"

]
);

Note: Fields that are added to the outgoing event filter are automatically
added to the incoming field filter, config.nco2ncp, thus ensuring that the
current value of the field is retrieved. This allows the StandardEventEnichment
stitcher in the next step to check the value of the InterfaceName field before
updating it. This technique ensures that the Event Gateway does not keep
updating the same value.

2. Edit the Event Gateway stitchers to retrieve the location information from the
topology database and to populate the Location field. One way to do this is to
add the following code to the StandardEventEnichment stitcher. Adding this
code ensures that this procedure is performed for all topology events that are
matched to an entity. Add this code to the stitcher immediately before the final
line, the call to GwEnrichEvent(enrichedFields). For more information on the
GwEnrichEvent() stitcher rule, see the IBM Tivoli Network Manager IP Edition
Language Reference.

154 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 46. Lines of code relevant to the main node device location example

Line numbers Description

1 Call the GwMainNodeLookupUsing() rule to ensure that chassis data is
available for the current event. The event might have been raised on an
interface, in which case the chassis data would not normally be available at
this point. For more information on the GwMainNodeLookupUsing() stitcher
rule, see the IBM Tivoli Network Manager IP Edition Language Reference.

5 Retrieve the sysLocation data from the chassis table.
Note: When you retrieve data from NCIM cache, specify the field in the
entity data in uppercase, for example, @mainNode.chassis.SYSLOCATION.

7 - 9 If the Location field is not already set then add the sysLocation data to the
other fields to be enriched.

1]
2]
3]
4]
5]
6]
7]
8]
9]
10]

Record mainNode = GwMainNodeLookupUsing("LocalNodeAlias");

if (mainNode <> NULL)
{

text sysLocation = @mainNode.chassis.SYSLOCATION;

if (sysLocation <> eval(text, ’&Location’))
{

@enrichedFields.Location = sysLocation; }
}

Related concepts:
“Outgoing field filter” on page 90
The outgoing field filter defines the set of ObjectServer fields that may be updated
by the Event Gateway.
Related reference:
“Example: StandardEventEnrichment.stch” on page 113
Use this topic to understand how event enrichment stitchers work.

Example: Enriching an event with interface name
You can configure event enrichment so that for all interface events, the name of the
interface on which the event occurred is added to a field in the event.

You must create a new custom field in the ObjectServer alerts.status table to store
the enriched interface name value. In this example, it is assumed that a new
custom field called InterfaceName has been created in the alerts.status table. For
information on how to add a custom field to an ObjectServer table, see the IBM
Tivoli Netcool/OMNIbus Administration Guide.

The name of an interface is available in the NCIM topology database interface
table. This field can be accessed using NCIM cache, and is held in the
ncimCache.entityData table.

For more information on the structure of NCIM cache tables and fields, see the
IBM Tivoli Network Manager IP Edition Topology Database Reference.

The following steps explain how to configure this extra event enrichment.
1. Edit the Event Gateway schema file, $NCHOME/etc/precision/

EventGatewaySchema.cfg, to allow the Event Gateway to update the new field.

Chapter 12. Configuring event enrichment 155

To do this, add the text in bold to the outgoing event filter. Remember to add a
comma at the end of the line containing the NmosSerial field, before the line
containing the new InterfaceName field.
insert into config.ncp2nco
(

FieldFilter
)
values
(

[
"NmosCauseType",
"NmosDomainName",
"NmosEntityId",
"NmosManagedStatus",
"NmosObjInst",
"NmosSerial",
"InterfaceName"

]
);

Note: Fields that are added to the outgoing event filter are automatically
added to the incoming field filter, config.nco2ncp, thus ensuring that the
current value of the field is retrieved. This allows the StandardEventEnichment
stitcher in the next step to check the value of the InterfaceName field before
updating it. This technique ensures that the Event Gateway does not keep
updating the same value.

2. Edit the Event Gateway stitchers to retrieve the interface name information
from the topology database and to populate the InterfaceName field. One way
to do this is to add the following code to the StandardEventEnichment stitcher.
Adding this code ensures that this procedure is performed for all topology
events that are matched to an entity. Add this code to the stitcher immediately
before the final line, the call to GwEnrichEvent(enrichedFields) and after
determining the entityType value. For more information on the
GwEnrichEvent() stitcher rule, see the IBM Tivoli Network Manager IP Edition
Language Reference.

Table 47. Lines of code relevant to the interface name example

Line numbers Description

1 This event enrichment is only relevant for interface events. Check that this
event relates to an interface by ensuring that the entityType value is 2, and
if so, continue processing.

3 Retrieve the ifName data from the interface table.
Note: When you retrieve data from NCIM cache, specify the field in the
entity data in uppercase, for example, @mainNode.chassis.SYSLOCATION.

5 - 8 Only populate the InterfaceName field if the interface name value is not
already present in the in-scope event.

1]
2]
3]
4]
5]
6]
7]
8]
9]

if (entityType == 2)
{

text interfaceName = @entity.interface.IFNAME;

if (interfaceName <> eval(text, ’&InterfaceName’))
{

@enrichedFields.InterfaceName = interfaceName;
}

}

Related concepts:

156 IBM Tivoli Network Manager IP Edition: Event Management Guide

“Outgoing field filter” on page 90
The outgoing field filter defines the set of ObjectServer fields that may be updated
by the Event Gateway.
Related reference:
“Example: StandardEventEnrichment.stch” on page 113
Use this topic to understand how event enrichment stitchers work.

Configuring the ObjectServer update interval field
You can configure the interval that the Event Gateway uses to queue event
enrichment updates to the ObjectServer.

The default setting for the ObjectServer update interval is 5 seconds. You might
want to alter this value to match the data flow on your system.
v Increase the value to group together more event enrichment updates in a single

ObjectServer update. This decreases the load on the ObjectServer but increases
the delay in event enrichment updates on the ObjectServer

v Decrease the value to speed up event enrichment updates to the ObjectServer.
This increases the load on the ObjectServer, as it will have to manage more event
enrichment updates.

The configuration file for the Event Gateway is the EventGatewaySchema.cfg
configuration file. This file is located at: $NCHOME/etc/precision/
EventGatewaySchema.cfg. The ObjectServer update interval is stored in the
config.defaults table, in the field ObjectServerUpdateInterval.
1. Open the EventGatewaySchema.cfg configuration file.
2. Identify the insert statement into the config.defaults table. By default this insert

statement has the following form:
insert into config.defaults
(

IDUCFlushTime,
ObjectServerUpdateInterval,
NcpServerEntity

)
values
(

5,
5,
""

);

By default the ObjectServerUpdateInterval field is set to 5 seconds.
3. Modify the value of the ObjectServerUpdateInterval field to the desired value,

in seconds.
Related concepts:
“Outgoing Event Gateway queue” on page 91
The outgoing Event Gateway queue receives enriched events from the Event
Gateway stitchers (main event enrichment) and from the plug-ins. In order to
minimize the number of updates and hence minimize the load on the ObjectServer,
updates to the Object Server are placed in a queue, aggregated, and sent to the
ObjectServer at a specified interval. The default is 5 seconds.
Related reference:
“config.defaults table” on page 232
The config.defaults table contains general configuration data for the Event
Gateway.

Chapter 12. Configuring event enrichment 157

Using the OQL service provider to log into the Event Gateway
databases

You must log into the databases using the object query language (OQL) service
provider and the EventGateway service name to query the gateway databases.

The command-line example below logs in to the NcoGate service for the Event
Gateway, which is running in the NCOMS domain.
ncp_oql -domain NCOMS -service EventGateway

User authentication for the OQL Service Provider is off by default. If authentication
has been turned on, type a valid username and password at the prompt.

Querying the ObjectServer
You can use the OQL Service Provider to query the ObjectServer.

The OQL Service Provider command-line example below logs in to the
ObjectServer service, which is running in the NCOMS domain on an ObjectServer
called NCOMS.
ncp_oql -domain NCOMS -service ObjectServer -server NCOMS -username netcool

User authentication for the OQL Service Provider is off by default. If authentication
has been turned on, type a valid username and password at the prompt.

Note: The -server argument is optional. If this argument is not specified then the
server configured in the $NCHOME/etc/precision/ConfigItnm.cfg file is used.

Querying the NCIM database
You can use the OQL Service Provider to query the NCIM database.

The OQL Service Provider command-line example below logs in to the
NCMONITOR schema within the NCIM service, which is running in the NCOMS
domain. This is useful if you want to access a table in the NCMONITOR schema;
for example, the activeEvent table.
ncp_oql -domain NCOMS -service Ncim -dbId NCMONITOR

User authentication for the OQL Service Provider is off by default. If authentication
has been turned on, type a valid username and password at the prompt.

Note: The -dbId argument is optional.

Resynchronizing events with the ObjectServer
Issue the SIGHUP command to the Event Gateway to change the configuration of
the Event Gateway.

Type this command: kill -HUP PID, where PID is the process ID of the Event
Gateway.

The Event Gateway checks the timestamp on the configuration file. If the
configuration file is modified, then the Event Gateway reads the configuration file
again to process any configuration changes.

Note: This command also resynchronizes all events with the Event Gateway.

158 IBM Tivoli Network Manager IP Edition: Event Management Guide

Processing steps for the SIGHUP command

The processing of the SIGHUP command is described in the following steps:
1. Event Gateway receives an HUP command.
2. Event Gateway stops listening for events on the ObjectServer IDUC channel.
3. Event Gateway empties its current cache of events. This cache is used to

determine event state.
4. Event Gateway sends all its plug-ins a synthetic resync start event
5. RCA plug-in cleans out the mojo.events database table and redraws the graph

based on data in NCIM cache.

Note: The RCA plug-in does not reread the RCASchema.cfg configuration file
or the RCA stitchers at this point.

6. Event Gateway retrieves all events from the Object Server, in the same way that
it would at startup.

7. Event Gateway processes all events in the same way that it would at startup
and passes any relevant events to the plug-ins.

8. Event Gateway sends a resync end event to its plug-ins.
9. Event Gateway resumes listening for events on the ObjectServer IDUC channel,
Related tasks:
Chapter 14, “Configuring root-cause analysis,” on page 169
You can configure the RCA plug-in.

Configuring common Event Gateway properties
You can configure common Event Gateway properties by editing the
NCP_G_EVENT.props file.

Tivoli Netcool/OMNIbus gateways have a number of common properties and
associated command-line options. Properties define settings for generic functions,
such as message logging, for inter-process communication (IPC), and for common
gateway settings, such as setting the timeout period that the client waits for the
server to respond.

The Network Manager Event Gateway uses the default values for the Tivoli
Netcool/OMNIbus gateway common properties. You can configure the Tivoli
Netcool/OMNIbus gateway common properties to other values by editing the
NCP_G_EVENT.props properties file, which is installed in the $NCHOME/etc/precision
directory. For example, to avoid time-outs, you can specify a value other than the
default (60 seconds) for the Ipc.Timeout common property to accommodate a
quick drop in the connection to the Primary ObjectServer if no activity is detected.

Currently, Ipc.Timeout is the only Tivoli Netcool/OMNIbus gateway common
property that you can configure. The Ipc.Timeout property specifies the time
period (in seconds) that the client waits for the server to respond. If this time is
exceeded, an error is logged. The default is 60 seconds.

To configure the Ipc.Timeout property:
1. Back up the NCP_G_EVENT.props properties file that was installed in the

$NCHOME/etc/precision directory.
2. Open the NCP_G_EVENT.props properties file in a text editor.

Chapter 12. Configuring event enrichment 159

3. Locate the Ipc.Timeout property and replace the default value of 60 seconds
with a value appropriate for your network.

4. Save the NCP_G_EVENT.props properties file.

The following example configures the Ipc.Timeout property to the value 20
(seconds).
INTEGER (IPC Session timeout), default 60 seconds
Ipc.Timeout: 20

160 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 13. Configuring Event Gateway plug-ins

You can configure Event Gateway plug-ins. You can also view currently enabled
plug-ins.

Enabling and disabling plug-ins
Use the ncp_gwplugins.pl script to enable and disable plug-ins. Run the script
separately for each plug-in.

Run the $NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl script. Use
the command-line options to specify which plug-in and domain and to enable or
disable a plug-in. The command-line options are described in the following table.

Table 48. ncp_gwplugins.pl command-line options

Command-line option Description

-domain DomainName Required: The name of a domain related to
the plug-in. This domain is used to enable
the script to read the relevant DbLogins.cfg
file in order to connect to and update the
relevant Event Gateway plug-in databases.

-plugin PluginName Name of the plug-in.
Note: You can run the script for only one
plug-in at a time.Plug-in names for use in
this command line option are as follows. If
the plug-in name consists of more than 1
word, enclose the name in double quotation
marks, for example, "Adaptive Polling".

v Adaptive Polling

v Disco

v Failover

v Fix Pack 4 PostNcimProcessing

v RCA

v SAE IP Path

v SAE ITNM Service

v SAE MPLS VPN

v zNetView

-disable Disables the specified plug-in.

-enable Enables the specified plug-in.

-global Enables plug-ins in all domains. If this is not
specified, then the plug-in is enabled only in
the domain that is specified by the -domain
option.

-help Displays a full set of help text for the
command-line options.
Tip: For a brief list of available options, run
the script with no options.

For example, to enable the zNetView plug-in in all domains, run the script as
follows:

© Copyright IBM Corp. 2006, 2016 161

$NCHOME/precision/bin/ncp_perl $NCHOME/precision/scripts/perl/scripts/
ncp_gwplugins.pl -domain NCOMS -plugin zNetView -enable -global

Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Listing plug-in information
You can list information on Event Gateway plug-ins. For example, you can list the
event maps and event states that each plug-in subscribes to.

Use the ncp_gwplugins.pl script to list plug-in information, The script is located at
$NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl.

To run the script to list event map subscriptions, issue a command similar to the
following. This example lists all event maps and event states subscribed to by the
Disco plug-in.
$NCHOME/precision/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl -domain NCOMS -plugin Disco

Command-line options

The following table describes the command-line options for the ncp_gwplugins.pl
script used in this example. For help, run the script as follows:
v For a brief list of the available options, run the command without any options.
v For a full set of command line options, run the script with the -help option.

Table 49. ncp_gwplugins.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of a domain related to
the plug-in. This domain is used to enable
the script to read the relevant DbLogins,cfg
file in order to connect to the relevant Event
Gateway plug-in databases.

162 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 49. ncp_gwplugins.pl command-line options (continued)

Command-line option Description

-plugin PluginName Name of the plug-in.
Note: You can run the script for only one
plug-in at a time.Plug-in names for use in
this command line option are as follows. If
the plug-in name consists of more than 1
word, enclose the name in double quotation
marks, for example, "Adaptive Polling".

v Adaptive Polling

v Disco

v Failover

v Fix Pack 4 PostNcimProcessing

v RCA

v SAE IP Path

v SAE ITNM Service

v SAE MPLS VPN

v zNetView

Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Modifying event map subscriptions
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.

Use the ncp_gwplugins.pl script to modify event map subscriptions. The script is
located at $NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl.

To run the script to modify event map subscriptions, issue a command similar to
the following. In this example the event map PnniIfState is added to the
subscription list for the RCA plug-in.
$NCHOME/precision/perl/bin/ncp_perl $NCHOME/precision/scripts/
perl/scripts/ncp_gwplugins.pl -domain NCOMS -plugin RCA -add -eventMap PnniIfState

Command-line options

The following table describes the command-line options for the ncp_gwplugins.pl
script used in this example. For help, run the script as follows:
v For a brief list of the available options, run the command without any options.
v For a full set of command line options, run the script with the -help option.

Chapter 13. Configuring Event Gateway plug-ins 163

Table 50. ncp_gwplugins.pl command-line options

Command-line option Description

-domain DomainName Mandatory; the name of a domain related to
the plug-in. This domain is used to enable
the script to read the relevant DbLogins,cfg
file in order to connect to and update the
relevant Event Gateway plug-in databases.

-plugin PluginName Name of the plug-in.
Note: You can run the script for only one
plug-in at a time.Plug-in names for use in
this command line option are as follows. If
the plug-in name consists of more than 1
word, enclose the name in double quotation
marks, for example, "Adaptive Polling".

v Adaptive Polling

v Disco

v Failover

v Fix Pack 4 PostNcimProcessing

v RCA

v SAE IP Path

v SAE ITNM Service

v SAE MPLS VPN

v zNetView

-add For the specified plug-in or plug-ins, adds
interest in the specified event map. Requires
options -plugin and -eventMap to be
specified.

-drop For the specified plug-in or plug-ins,
removes interest in the specified event map.

-eventMap EventMapName Event map for which interest is to be added
or deleted.

Related concepts:
“Quick reference for event enrichment” on page 83
Use this information to understand how an event is processed as it passes through
the Event Gateway.
“Quick reference for RCA” on page 131
Use this information to understand how an event is processed as it passes through
the RCA plug-in.
“Outgoing Event Gateway queue” on page 91
The outgoing Event Gateway queue receives enriched events from the Event
Gateway stitchers (main event enrichment) and from the plug-ins. In order to
minimize the number of updates and hence minimize the load on the ObjectServer,
updates to the Object Server are placed in a queue, aggregated, and sent to the
ObjectServer at a specified interval. The default is 5 seconds.
Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.
“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

164 IBM Tivoli Network Manager IP Edition: Event Management Guide

Setting plug-in configuration parameters
You can set optional configuration parameters for the Event Gateway plug-ins
using the ncp_gwplugins.pl script.

Use the ncp_gwplugins.pl script to set optional configuration parameters. The
script is at $NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl.

To run the script to set configuration parameters, issue a command similar to the
following. This example sets the update interval for the ncmonitor.activeEvent
table to 10 seconds. The default is 5 seconds.
$NCHOME/precision/perl/bin/ncp_perl
$NCHOME/precision/scripts/perl/scripts/ncp_gwplugins.pl -domain NCOMS
-plugin "Adaptive Polling" -set -name ActiveEventUpdateInterval -value 10

Command-line options

The following table describes the command-line options for the ncp_gwplugins.pl
script used in this example. For help, run the script as follows:
v For a brief list of the available options, run the command without any options.
v For a full set of command line options, run the script with the -help option.

Table 51. ncp_gwplugins.pl command-line options

Command-line option Description

-domain DomainName Required: The name of the domain that is
related to the plug-in. The domain tells the
script which DbLogins.domain.cfg to read so
that it can connect to and update the correct
Event Gateway plug-in databases.

-plugin PluginName Name of the plug-in.
Note: You can run the script for only one
plug-in at a time.Plug-in names for use in
this command line option are as follows. If
the plug-in name consists of more than 1
word, enclose the name in double quotation
marks, for example, "Adaptive Polling".

v Adaptive Polling

v Disco

v Failover

v Fix Pack 4 PostNcimProcessing

v RCA

v SAE IP Path

v SAE ITNM Service

v SAE MPLS VPN

v zNetView

-set Indicates that a variable is to be set.

-name ParameterName Name of the parameter to set.

-value Parametervalue Value to set for this parameter.

Related reference:
“Plugin descriptions” on page 118
Use this information to understand what each Event Gateway plugin does.

Chapter 13. Configuring Event Gateway plug-ins 165

“ncp_g_event plug-in database tables in ncmonitor” on page 241
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

Configuring the SAE plug-in
Use this information to understand how to configure the SAE plug-in.
Related concepts:
“SAE plug-in” on page 125
The SAE plug-in generates service-affected events for MPLS VPNs and IP paths.

Configuring summary field information in service-affected
events

To make service-affected events more meaningful for operators, you can configure
the SAE plug-in to insert customer-related information into the Summary field of a
service-affected event.

The configuration files in the SAE plug-in where you make this change are as
follows:
v SaeIpPath.cfg for the IP Path service, located at $NCHOME/etc/precision/

SaeIpPath.cfg

v SaeMplsVpn.cfg for the MPLS VPN service, located at $NCHOME/etc/precision/
SaeMplsVpn.cfg

v SaeItnmService.cfg for custom services, located at $NCHOME/etc/precision/
SaeItnmService.cfg

The field used in each of these files to configure extra information to insert into the
SAE Summary field is called CustomerNameField. The following example shows
how to configure this field in the SaeMplsVpn.cfg file.
1. Open the SaeMplsVpn.cfg configuration file.
2. Modify the insert statement by adding the text in bold to insert data from a

relevant field in the service record in NCIM cache into the CustomerNameField
field. For example, the following statement will insert the content of the
entityData->DESCRIPTION field (if this field exists) into the
CustomerNameField, and into the Summary field of any MPLS VPN edge
service SAE generated.

Note: When you add a field to the insert, you must add a comma to the
preceding line.
insert into config.serviceTypes
(

ServiceTypeName,
CollectionEntityType,
ConstraintFilter,
CustomerNameField

)
values
(

"MPLSVPNEdgeService",
17 -- "networkVpn",
"networkVpn->VPNTYPE <> ’MPLS Core’",
"entityData->DESCRIPTION"

166 IBM Tivoli Network Manager IP Edition: Event Management Guide

Adding SAE types to the SAE plug-in
You can configure the SAE plug-in to generate more SAE types than the three
provided by default. For example, you can configure the plug-in to create SAE
events for MPLS VPN edge entities (one type of SAE) and for MPLS VPN core
entities (another type of SAE).

In this example the existing configuration file SaeMplsVpn.cfg is customized to
add an extra MPLS VPN SAE service types to the config.serviceTypes table. The
new service type is called MPLS VPN Core Service, and generates SAEs when a
Severity 5 (critical) fault event occurs on any router in the core network. You can
also create new SAE service types by creating a brand new configuration file and
specifying the relevant inserts there.

The configuration file for the MPLS VPN SAE service types in the SAE plug-in is
the SAEMplsVpn.cfg configuration file. This file is located at: $NCHOME/etc/
precision/SAEMplsVpn.cfg.
1. Open the SAEMplsVpn.cfg configuration file.
2. The default insert creates an MPLS VPN Edge Service and reads as follows:

insert into config.serviceTypes
(

ServiceTypeName,
CollectionEntityType,
ConstraintFilter

)
values
(

"MPLS VPN Edge Service",
17, -- networkVpn
"networkVpn->VPNTYPE <> ’MPLS Core’"

);

3. Add a new insert after the existing insert. The new insert should read as
follows:
insert into config.serviceTypes
(

ServiceTypeName,
CollectionEntityType,
ConstraintFilter

)
values
(

"MPLS VPN Core Service",
17, -- networkVpn
"networkVpn->VPNTYPE = ’MPLS Core’"

);

Note: You can have two or more SAE service types for a given table such as
networkVpn (17), as described in this example. In this case, the SAE service
types must be mutually exclusive sets, otherwise one will win over the other
where they overlap. For example, the service types described in this example
do not overlap because they have complementary ConstraintFilter settings as
follows:
v networkVpn->VPNTYPE <> ’MPLS Core’

v networkVpn->VPNTYPE = ’MPLS Core’

Related concepts:
“SAE plug-in” on page 125
The SAE plug-in generates service-affected events for MPLS VPNs and IP paths.

Chapter 13. Configuring Event Gateway plug-ins 167

168 IBM Tivoli Network Manager IP Edition: Event Management Guide

Chapter 14. Configuring root-cause analysis

You can configure the RCA plug-in.
Related reference:
“Resynchronizing events with the ObjectServer” on page 158
Issue the SIGHUP command to the Event Gateway to change the configuration of
the Event Gateway.

Configuring the poller entity
To enable the RCA plugin to perform isolated suppression when the Network
Manager server is not within the scope of your network domain, specify the IP
address or DNS name of the ingress interface as the poller entity.

The configuration file for the Event Gateway is the EventGatewaySchema.cfg
configuration file. This file is located at: $NCHOME/etc/precision/
EventGatewaySchema.cfg. The poller entity value is stored in the config.defaults
table, in the field NcpServerEntity.
1. Open the EventGatewaySchema.cfg configuration file.
2. Identify the insert statement into the config.defaults table. By default this insert

statement has the following form:
insert into config.defaults
(

IDUCFlushTime,
ObjectServerUpdateInterval,
NcpServerEntity

)
values
(

5,
5,
""

);

By default the NcpServerEntity field is empty. In this case, the Event Gateway
searches the topology using the IP address or the addresses of the local host it
is running on.

3. Modify this statement to set the NcpServerEntity field to the value of the IP
address or DNS name of the ingress interface.

Related concepts:
“Poller entity” on page 133
Use this information to understand what the poller entity is and how to configure
it.
Related reference:

Fix Pack 4 “RCA considerations in a cross-domain network” on page 170
In a cross-domain environment, the ncp_g_event process in each discovery domain
performs RCA on the devices in the same discovery domain. Within each domain,
RCA operates in the same way as it does when there is only a single domain. Root
Cause can also be analyzed across multiple domains when they are visualized
together using a cross-domain discovery.
“config.defaults table” on page 232
The config.defaults table contains general configuration data for the Event

© Copyright IBM Corp. 2006, 2016 169

Gateway.

Configuring the maximum age difference for events
By default, events on the same entity suppress each other regardless of the age of
the events. An event received today can suppress an event received yesterday on
the same entity. You can change this by specifying a maximum age difference
between events that pass through the RCA plug-in. Events that have a difference in
age greater than this specified value cannot suppress each other.

The configuration file for the RCA plug-in is the RCASchema.cfg configuration file.
This file is located at: $NCHOME/etc/precision/RCASchema.cfg. The value for
maximum age difference between events is stored in the config.defaults table, in
the field MaxAgeDifference.
1. Open the RCASchema.cfg configuration file.
2. Identify the insert statement into the config.defaults table. By default this insert

statement has the following form:
insert into config.defaults
(

RequeueableEventIds,
MaxAgeDifference
HonourManagedStatus

)
values
(

[
’NmosPingFail’,
’NmosSnmpPollFail’

],
0

);

By default the value for MaxAgeDifference is 0. This means that the feature is
turned off.

3. Modify this statement to set the MaxAgeDifference field to a desired value in
minutes.

Tip: For example, set the MaxAgeDifference field to a value of 15 to configure
the system so that events on the same entity that have a difference in age
greater than fifteen minutes cannot suppress each other.

Related reference:
“config.defaults database table” on page 239
The config.defaults database table stores configuration data for the RCA plug-in
event queue.

RCA considerations in a cross-domain network

Fix Pack 4

In a cross-domain environment, the ncp_g_event process in each discovery domain
performs RCA on the devices in the same discovery domain. Within each domain,
RCA operates in the same way as it does when there is only a single domain. Root
Cause can also be analyzed across multiple domains when they are visualized
together using a cross-domain discovery.

170 IBM Tivoli Network Manager IP Edition: Event Management Guide

Contained suppression

Because the interfaces are in the same domain as the chassis that contains them,
contained RCA is unaffected by a cross-domain environment.

Connected interfaces

In a cross-domain environment, most connections are between two interfaces in the
same domain and connected suppression works as expected. If the interfaces are in
different domains, connected suppression does not associate the events at each end
of the link.

Isolated suppression

Devices on the edge of the network, which have fewer connections, can become
unreachable (isolated) from the poller entity if a device between them and the
poller entity fails. Events on these isolated devices are suppressed, as long as all
isolated devices are in the same domain. When you partition your network, ensure
that groups of devices that are isolated are kept within the same domain.

SAE RCA

If a service, for example a VPN, consists of devices in two domains, then two SAE
events can be created for the same VPN, one in each domain.

Chapter 14. Configuring root-cause analysis 171

172 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix A. Default poll policies

Network Manager IP Edition provides a set of default poll policies. Use this
information to familiarize yourself with these policies.

Default ping policies
Network Manager IP Edition provides default poll policies for ping operations.

The following table provides information on the default ping poll policies.

Table 52. Default ping poll policies

Poll Policy Name Description

Default Chassis Ping Uses the Default Chassis Ping poll definition to ping all
network devices. The type of device pinged is restricted by
the Class Filter in the Default Chassis Ping poll definition.

This is the only poll policy to be enabled by default.

Default Interface Ping Uses the Default Interface Ping poll definition to perform
ping operations on all interfaces that are within a main
node with a valid IP address. This policy uses the Default
Interface Ping poll definition to ping interfaces on all
network devices. The interfaces pinged are restricted
according to the following:

v The interface filter in the poll definition. This can be
further refined by adding extra poll definition filters.

v The managed status of each interface. This can be
changed by modifying the TagManagedEntities stitcher.

End Node Ping Uses the End Node Ping poll definition to perform ping
operations on all end nodes, as defined by the class
settings.

ConfirmDeviceDown Uses the Default Chassis Ping poll definition with an
increased polling frequency and a policy scope that
includes only those devices that on which an
NmosPingFail event has occurred. This policy is used as
part of an adaptive polling scenario and has the aim of
accelerating ping polling of devices that failed to respond
to a ping poll in order to identify devices that are really
down.

Default remote ping policies
Network Manager IP Edition provides default poll policies for remote ping
operations. These polls use SNMP write operations to control vendor-specific
extensions to the DISMAN-PING-MIB.

The following table provides information on the default remote ping poll policies.

© Copyright IBM Corp. 2006, 2016 173

Table 53. Default remote ping poll policies

Poll policy name Description

Cisco Remote Ping Uses the Cisco Remote Ping poll definition to check the
availability of MPLS paths between Cisco Provider Edge
(PE) and Customer Edge (CE) devices through SNMP
remote ping operations.

This poll policy is applicable only to Cisco devices.

Juniper Remote Ping Uses the Juniper Remote Ping poll definition to check the
availability of MPLS paths between Juniper PE and CE
devices through SNMP remote ping operations, as defined
by the class settings.

This poll policy is applicable only to Juniper devices.

Restriction: Storage of polled data is not supported for the Cisco Remote Ping, the
Juniper Remote Ping, and the Generic Threshold poll definitions.

Default SNMP threshold policies
Default SNMP threshold poll policies are provided with the product. These poll
policies are classified as basic or generic; in addition, some are vendor-specific.

Threshold policies

The following table describes the SNMP threshold poll policies.

Table 54. Basic SNMP threshold poll policies

Name Description

bgpPeerState Poll definition type: Generic threshold. Uses
the bgpPeerState poll definition to perform
threshold polling on all network devices
with an IP forwarding capability, as defined
by the class settings and the scope settings.

ConfirmHighDiscardRate Poll definition type: Basic threshold.
Provides accelerated SNMP polling. Uses the
HighDiscardRate poll definition to perform
threshold polling on all network devices that
have at least one interface that breached the
5% packet discard rate threshold, and as
defined by the class settings. This policy is
used as part of an adaptive polling scenario
and has the aim of accelerating polling to
confirm threshold violations on device
interfaces.

dot3StatsAlignmentErrors Poll definition type: Basic threshold. Uses
the dot3StatsAlignmentErrors poll definition
to perform threshold polling on all network
devices, as defined by the class settings.

frCircuitReceivedBECNs Poll definition type: Basic threshold. Uses
the frCircuitReceivedBECNs poll definition
to perform threshold polling on all network
devices, as defined by the class settings.

174 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 54. Basic SNMP threshold poll policies (continued)

Name Description

frCircuitReceivedFECNs Poll definition type: Basic threshold. Uses
the frCircuitReceivedFECNs poll definition
to perform threshold polling on all network
devices, as defined by the class settings.

HighDiscardRate Poll definition type: Basic threshold. Uses
the HighDiscardRate poll definition to
perform threshold polling on all network
devices, as defined by the class settings. The
policy polls for this information every 30
minutes.

ifInDiscards Poll definition type: Basic threshold. Uses
the ifInDiscards poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

ifInErrors Poll definition type: Basic threshold. Uses
the ifInErrors poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

ifOutDiscards Poll definition type: Basic threshold. Uses
the ifOutDiscards poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

ifOutErrors Poll definition type: Basic threshold. Uses
the ifOutErrors poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

frCircuitState Poll definition type: Generic threshold. Uses
the frCircuitState poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

isdnLinkUp Poll definition type: Generic threshold. Uses
the isdnLinkUp poll definition to perform
threshold polling on all network devices, as
defined by the class settings.

Fix Pack 5 ospfNbrState Fix Pack 5 Poll definition type: Generic
threshold. Uses the ospfNbrState poll
definition to perform threshold polling on
OSPF routers.

rebootDetection Poll definition type: Generic threshold. Uses
the rebootDetection poll definition to
perform threshold polling on all network
devices, as defined by the class settings.

snmpInBandwidth Poll definition type: Basic threshold. Uses
the snmpInBandwidth poll definition to
perform threshold polling on all network
devices, as defined by the class settings.

snmpOutBandwidth Poll definition type: Basic threshold. Uses
the snmpOutBandwidth poll definition to
perform threshold polling on all network
devices, as defined by the class settings.

Appendix A. Default poll policies 175

Foundry SNMP threshold poll policies

The following table describes the SNMP threshold policies that are supplied for
Foundry devices.

Table 55. SNMP threshold poll policies for Foundry devices

Name Description

snChasActualTemperature Uses the snChasActualTemperature poll definition to
perform threshold polling on all Foundry devices, as
defined by the class settings.

snChasFanOperStatus Uses the snChasFanOperStatus poll definition to perform
threshold polling on all Foundry devices, as defined by the
class settings.

snChasPwrSupplyOperStatus Uses the snChasPwrSupplyOperStatus poll definition to
perform threshold polling on all Foundry devices, as
defined by the class settings.

Cisco SNMP threshold policies

The following table describes the SNMP threshold poll policies that are provided
for Cisco devices.

Table 56. SNMP threshold poll policies for Cisco devices

Name Description

bufferPoll Uses the bufferPoll poll definition to perform threshold
polling on all Cisco devices, as defined by the class
settings.

ciscoEnvMonFanState Uses the ciscoEnvMonFanState poll definition to perform
threshold polling on all Cisco devices, as defined by the
class settings.

ciscoEnvMonSupplyState Uses the ciscoEnvMonSupplyState poll definition to
perform threshold polling on all Cisco devices, as defined
by the class settings.

ciscoEnvMonTemperature
State

Uses the ciscoEnvMonTemperatureState poll definition to
perform threshold polling on all Cisco devices, as defined
by the class settings.

memoryPoll Uses the ciscoMemoryPool poll definition to perform
threshold polling on all Cisco devices, as defined by the
class settings.

cpuBusyPoll Uses the cpuBusyPoll poll definition to perform threshold
polling on all Cisco devices, as defined by the class
settings.

locIfInCrcErrors Uses the locIfInCrcErrors poll definition to perform
threshold polling on all Cisco devices, as defined by the
class settings.

memoryPoll Uses the memoryPoll poll definition to perform threshold
polling on all Cisco devices, as defined by the class
settings.

sysTrafficPoll Uses the sysTrafficPoll poll definition to perform threshold
polling on all Cisco devices, as defined by the class
settings.

176 IBM Tivoli Network Manager IP Edition: Event Management Guide

Default SNMP link state policies
The default SNMP Link State poll policy uses the SNMP Link State poll definition
to check the administrative and operational statuses of all network devices, as
defined by the class settings. Events are generated if there are changes in interface
status.

Poll policies used by reporting
There are no poll policies defined specifically for reporting. Use this information to
understand which existing poll policies are used by reports.

Certain reports require specific poll policies to be enabled. These reports and
policies are defined in Table 57.

Table 57. Poll policies used by reporting

Report Poll policy that must be enabled

Device Egress Traffic
Summary

ifOutError

ifOutDiscards

snmpOutBandwidth

Device Ingress Traffic
Summary -

ifInError

ifInDiscards

snmpInBandwidth

Router Health Summary - ciscoCPUTotal5Min

ciscoMemoryPctgUsage

Default Chassis Poll

Appendix A. Default poll policies 177

178 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix B. Default poll definitions

Network Manager IP Edition provides a number of default poll definitions that
fulfil the most common polling requirements.

The following table describes the default poll definitions that Network Manager IP
Edition provides.

Default SNMP poll definitions

bgpPeerState
Poll definition type: Generic threshold. This poll definition defines BGP
peer-state checking. An alert is raised when Border Gateway Patrol (BGP)
peers change to an unestablished state. This poll definition polls the
bgpPeerState MIB variable, which has the following path and OID:

Path: iso/org/dod/mgmt/mib-2/bgpPeerTable/bgpPeerEntry/
bgpPeerState

MIB OID: 1.3.6.1.2.1.15.3.1.2

bufferPoll
Poll definition type: Basic threshold. This poll definition defines
buffer-exhaustion checking. An alert is raised when the number of free
buffer elements falls below 100. This poll definition polls the bufferElFree
MIB variable, which has the following path and OID:

MIB path: iso/org/dod/private/enterprises/cisco/local/
bufferElFree

MIB OID: 1.3.6.1.4.1.9.2.1.9

ciscoCPUTotal5min
Poll definition type: Basic threshold. This poll definition defines CPU usage
checking. An alert is raised when the value of the cpmCPUTotal5min Cisco
MIB variable exceeds 80%. This poll definition polls the cpmCPUTotal5min
MIB variable, which shows the overall CPU busy percentage in the last
five-minute period. This object deprecates the avgBusy5 object from the
OLD-CISCO-SYSTEM-MIB. The cpmCPUTotal5min MIB variable has the
following path and OID:

MIB path: iso/org/dod/private/enterprises/cisco/local/
cpmCPUTotal5min

MIB OID: 1.3.6.1.4.1.9.9.109.1.1.1.1.5

ciscoEnvMonFanState
Poll definition type: Generic threshold. This poll definition defines
fan-status checking for Cisco devices. An alert is raised if the status
changes to anything other than 1 (normal). This poll definition polls the
ciscoEnvMonFanState MIB variable, which has the following path and
OID:

MIB Path: iso/org/dod/mgmt/mib-2/private/enterprises/cisco/
ciscoMgmt/ciscoEnvMonMIB/ciscoEnvMonObjects/
ciscoEnvMonFanStatusTable/ciscoEnvMonFanStatusEntry/
ciscoEnvMonFanState

MIB OID: 1.3.6.1.4.1.9.9.13.1.4.1.3

© Copyright IBM Corp. 2006, 2016 179

ciscoEnvMonSupplyState
Poll definition type: Generic threshold. This poll definition defines the
checking of the power-supply status for Ciso devices. An alert is raised if
the status changes to anything other than 1 (normal). This poll definition
polls the ciscoEnvMonSupplyState MIB variable, which has the following
path and OID:

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/cisco/
ciscoMgmt/ciscoEnvMonMIB/ciscoEnvMonObjects/
ciscoEnvMonSupplyStatusTable/ciscoEnvMonSupplyStatusEntry/
ciscoEnvMonSupplyState

MIB OID: 1.3.6.1.4.1.9.9.13.1.5.1.3

ciscoEnvMonTemperatureState
Poll definition type: Generic threshold. This poll definition defines the
checking of the fan-temperature status for Cisco devices. An alert is raised
if the status changes to anything other than 1 (normal). This poll definition
polls the ciscoEnvMonTemperatureState MIB variable, which has the
following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/cisco/
ciscoMgmt/ciscoEnvMonMIB/ciscoEnvMonObjects/
ciscoEnvMonTemperatureStatusTable/
ciscoEnvMonTemperateureStatusEntry/ciscoEnvMonTemperatureState

MIB OID: 1.3.6.1.4.1.9.9.13.1.3.1.6

Cisco Remote Ping
Poll definition type: Cisco remote ping. This poll definition defines remote
ping operations that use Cisco-specific MIBs.

cpuBusyPoll
Poll definition type: Basic threshold. This poll definition defines CPU usage
checking. An alert is raised when the value of the avgBusy5 Cisco MIB
variable exceeds 80%. This poll definition polls the avgBusy5 MIB variable,
which has the following path and OID:

MIB path: iso/org/dod/private/enterprises/cisco/local/avgBusy5
MIB OID: 1.3.6.1.4.1.9.2.1.58

Restriction: The aveBusy5 MIB variable is not supported on some recent
Cisco routers. For such routers, use the ciscoCPUTotal5min poll definition.

HighDiscardRate
Poll definition type: Basic threshold. An alert is raised when the packet
discard rate on at least one interface on a device exceeds 5%. This poll
definition polls the following MIB variables:

ifInDiscards

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifInDiscards

MIB OID: 1.3.6.1.2.1.2.2.1.13

ifInNUcastPkts

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifInNUcastPkts

MIB OID: 1.3.6.1.2.1.2.2.1.12

ifInUcastPkts

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifInUcastPkts

180 IBM Tivoli Network Manager IP Edition: Event Management Guide

MIB OID: 1.3.6.1.2.1.2.2.1.11

dot3StatsAlignmentErrors
Poll definition type: Basic threshold. This poll definition defines the
checking of error rates for alignments. An alert is raised when the error
rate exceeds 0 per second. This poll definition polls the
dot3StatsAlignmentErrors MIB variable, which has the following path and
OID:

MIB path: iso/org/dod/mgmt/mib-2/transmission/dot3/
dot3StatsTable/dot3StatusEntry/dot3StatsAlignmentErrors

MIB OID: 1.3.6.1.2.1.10.7.2.1.2

frCircuitReceivedBECNs
Poll definition type: Basic threshold. This poll definition defines Frame
Relay backward-congestion checking for a data link connection identifier
(DLCI). An alert is raised when backward-congestion notices are received
for DLCI. This poll definition polls the frCircuitReceivedBECNs MIB
variable, which has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/transmission/frameRelayDTE/
frCircuitTable/frCircuitEntry/frCircuitReceivedBECNs

MIB OID: 1.3.6.1.2.1.10.32.2.1.5

frCircuitReceivedFECNs
Poll definition type: Basic threshold. This poll definition defines Frame
Relay forward-congestion checking for DLCI. An alert is raised when
forward-congestion notices are received for DLCI. This poll definition polls
the frCircuitReceivedFECNs MIB variable, which has the following path
and OID:

MIB path: iso/org/dod/mgmt/mib-2/transmission/frameRelayDTE/
frCircuitTable/frCircuitEntry/frCircuitReceivedFECNs

MIB OID: 1.3.6.1.2.1.10.32.2.1.4

frCircuitState
Poll definition type: Generic threshold. This poll definition defines Frame
Relay circuit-state checking. An alert is raised when a circuit becomes
inactive. To avoid generating alerts for circuits that are inactive at startup,
the definition checks for inactive circuits. This poll definition polls the
frCircuitState MIB variable, which has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/transmission/frameRelayDTE/
frCircuitTable/frCircuitEntry/frCircuitState

MIB OID: 1.3.6.1.2.1.10.32.2.1.3

ifInDiscards
Poll definition type: Basic threshold. This poll definition defines inbound
discard-rate checking. An alert is raised when the rate exceeds 0 per
second. This poll definition polls the ifInDiscards MIB variable, which has
the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifInDiscards

MIB OID: 1.3.6.1.2.1.2.2.1.13

ifInErrors
Poll definition type: Basic threshold. This poll definition defines inbound
interface error-rate checking. An alert is raised when the rate exceeds 0 per
second. This poll definition polls the ifInErrors MIB variable, which has the
following path and OID:

Appendix B. Default poll definitions 181

MIB path:iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifInErrors

MIB OID: 1.3.6.1.2.1.2.2.1.14

ifOutDiscards
Poll definition type: Basic threshold. This poll definition defines outbound
discard-rate checking. An alert is raised when the rate exceeds 0 per
second. This poll definition polls the ifOutDiscards MIB variable, which
has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifOutDiscards

MIB OID: 1.3.6.1.2.1.2.2.1.19

ifOutErrors
Poll definition type: Basic threshold. This poll definition defines the rate of
error checking for outbound interfaces. An alert is raised when the rate
exceeds 0 per second. This poll definition polls the ifOutErrors MIB
variable, which has the following path and OID:

MIB path:iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifOutErrors

MIB OID: 1.3.6.1.2.1.2.2.1.20

isdnLinkUp
Poll definition type: Generic threshold. This poll definition defines ISDN
link-state checking. An alert is raised when an ISDN link is activated. The
activation of an ISDN link might indicate that a corresponding primary
link has gone down. This poll definition polls the following MIB variables:

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifOperStatus

MIB OID: 1.3.6.1.2.1.2.2.1.8
MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/ifEntry/
ifAdminStatus

MIB OID: 1.3.6.1.2.1.2.2.1.7

Juniper Remote Ping
Poll definition type: Juniper remote ping. This poll definition defines
remote ping operations that use Juniper-specific MIBs.

locIfInCrcErrors
Poll definition type: Basic threshold. This poll definition defines inbound
cyclic redundancy checksum (CRC) /alignment error checking. An alert is
raised when inbound CRC alignment errors occur. This poll definition polls
the locIfInCRC MIB variable, which has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/cisco/local/
linterfaces/lifTable/lifEntry/locIfInCRC

MIB OID: 1.3.6.1.4.1.9.2.2.1.1.12

memoryPoll
Poll definition type: Basic threshold. This poll definition defines
memory-exhaustion checking. An alert is raised when the amount of free
memory falls below 100 bytes. This poll definition polls the freeMem MIB
variable, which has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/cisco/local/
lsystem/freeMem

MIB OID: 1.3.6.1.4.1.9.2.1.8

182 IBM Tivoli Network Manager IP Edition: Event Management Guide

Fix Pack 5 ospfNbrState
Poll definition type: Generic threshold. This poll definition defines OSPF
adjacency checking, and generates an alert if an OSPF router is in a state
other than full. If an OSPF router is in a state of down, attempt, init,
twoWay, exchangeStart, exchange, or loading, it indicates a problem in
forming adjacencies. This poll definition polls the ospfNbrState MIB
variable, which has the following path and OID:

MIB path: iso/org/dod/internet/mgmt/mib-2/ospf/ospfNbrTable/
ospfNbrEntry/ospfNbrState

MIB OID: 1.3.6.1.2.1.14.10.1.6

rebootDetection
Poll definition type: Generic threshold. This poll definition defines
device-reboot detection checking where an alert is generated if a device is
rebooted. The reason for a device reboot might be that the SNMP
subsystem on a device has been reset.

Tip: To monitor system uptime, change the sysUpTime MIB variable to the
hrSystemUptime MIB variable. The hrSystemUptime MIB variable is
available only if the HOSTRES-MIB is supported by the device.
This poll definition polls the sysUpTime MIB variable, which has the
following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/system/sysUpTime
MIB OID: 1.3.6.1.2.1.1.3

snChasActualTemperature
Poll definition type: Generic threshold. This poll definition defines
temperature checking for Foundry devices. An alert is raised when the
actual temperature of the chassis exceeds the value set for a warning about
the temperature level. This poll definition polls the following MIB
variables:

snChasActualTemperature

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/
foundry/foundryProducts/switch/snChassis/snChassGen/
snChasActualTemperature

MIB OID: 1.3.6.1.4.1.1991.1.1.1.1.18

snChasWarningTemperature

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/
foundry/foundryProducts/switch/snChassis/snChassGen/
snChasWarningTemperature

MIB OID: 1.3.6.1.4.1.1991.1.1.1.1.19

snChasFanOperStatus
Poll definition type: Generic threshold. This poll definition defines
fan-status checking for Foundry devices. An alert is raised when the fan
status changes from 2 (normal) to 3 (failure). This poll definition polls the
snChasFanOperStatus MIB variable, which has the following path and
OID:

MIB path: iso/org/dod/mgmt/mib-2/private/enterprises/foundry/
foundryProducts/switch/snChassis/snChasFan/snChasFanTable/
snChasFanEntry/snChasFanOperStatus

MIB OID: 1.3.6.1.4.1.1991.1.1.1.3.1.1.3

Appendix B. Default poll definitions 183

snChasPwrSupplyOperStatus
Poll definition type: Generic threshold. This poll definition defines the
checking of the power-supply status for Foundry devices. An alert is raised
when the power supply status changes from 2 (normal) to 3 (failure). This
poll definition polls the snChasPwrSupplyOperStatus MIB variable, which
has the following path and OID:

MIB path:iso/org/dod/mgmt/mib-2/private/enterprises/foundry/
foundryProducts/switch/snChassis/snChasPwr/snChasPwrSupplyTable/
snChasPwrSupplyEntry/snChasPwrSupplyOperStatus

MIB OID: 1.3.6.1.4.1.1991.1.1.1.2.1.1.3

SNMP Link State
Poll definition type: SNMP link state. This poll definition defines
administrative and operational status checking. An alert is raised if a
mismatch occurs between the administrative and operational statuses. This
poll definition polls the following MIB variables:

ifAdminStatus

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifAdminStatus

MIB OID: 1.3.6.1.2.1.2.2.1.7

ifOperStatus

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifOperStatus

MIB OID: 1.3.6.1.2.1.2.2.1.8

snmpInBandwidth
Poll definition type: Basic threshold. This poll definition defines the
checking of incoming bandwidth utilization. An alert is raised when
incoming bandwidth usage exceeds 40%. This poll definition polls the
following MIB variables:

ifInOctets

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifInOctets

MIB OID: 1.3.6.1.2.1.2.2.1.10

ifSpeed

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifSpeed

MIB OID: 1.3.6.1.2.1.2.2.1.5

snmpOutBandwidth
Poll definition type: Basic threshold. This poll definition defines the
checking of outgoing SNMP bandwidth utilization. An alert is raised when
the outgoing SNMP bandwidth utilization is above 40% for an interface.
This poll definition polls the following MIB variables:

ifOutOctets

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifOutOctets

MIB OID: 1.3.6.1.2.1.2.2.1.16

ifSpeed

MIB path: iso/org/dod/mgmt/mib-2/interfaces/ifTable/
ifEntry/ifSpeed

184 IBM Tivoli Network Manager IP Edition: Event Management Guide

MIB OID: 1.3.6.1.2.1.2.2.1.5

sysUpTime
Poll definition type: Basic threshold. This poll retrieves the value of the
sysUpTime MIB variable, which has the following path and OID:

MIB path: iso/org/dod/mgmt/mib-2/system/sysUpTime
MIB OID: 1.3.6.1.2.1.1.3

Default Ping poll definitions

Default Chassis Ping
Poll definition type: Chassis ping. This poll definition defines ping
operations for main node devices It sends ICMP packets to the main-node
IP address of a device.

Default Interface Ping
Poll definition type: Interface ping. This poll definition defines ping
operations for interfaces within devices. It sends ICMP packets to the IP
address of each interface.

End Node Ping
Poll definition type: Chassis ping. This poll definition defines ping
operations for end nodes, such as printers and workstations. It sends ICMP
packets to the IP address of each end node.

For each of these ping poll definitions, the following ping metrics can be collected:
response time and packet loss.

Appendix B. Default poll definitions 185

186 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix C. Example trigger and clear thresholds

Use the example threshold formulas to set up the clear and trigger thresholds for
generic threshold poll definitions.

Example trigger threshold

The following example would raise an event in the following cases:
v When the current value of the avgBusy5 MIB variable is equal to or greater than

the value of the avgBusy6 MIB variable

To create this threshold, specify the following information on the Trigger
Threshold tab of the Poll Definition Editor:
1. Select Basic.
2. Specify the first threshold:

a. Select Current.

b. Click Add MIB Object .
c. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy5

Click Insert

d. Select the comparator >=.
e. Select current.

f. Click Add MIB Object .
g. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy6

Click Insert.
3. Specify the message that is displayed in the Active Event List when the event is

raised:
a. In the Event description field, type CPU usage high (avgBusy5= .

b. Click Add MIB Object .
c. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy5

d. Select Current SNMP Value and click Insert.
e. Type >=.

f. Click Add MIB Object .
g. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy6

h. Type).

The description for the Active Event List should now read as follows:
CPU usage high (avgBusy5=eval(text,"SNMP.VALUE.avgBusy5")>=eval
(text,"SNMP.VALUE.avgBusy6"))

© Copyright IBM Corp. 2006, 2016 187

Example clear threshold

The following example would raise a Clear event in the following cases:
v When the value of the avgBusy5 MIB variable is less than 80.

To create this threshold, specify the following information on the Clear Threshold
tab of the Poll Definition Editor:
1. Select Basic.
2. Specify the threshold:

a. Select Current.

b. Click Add MIB Object .
c. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy5

Click Insert

d. Select the comparator <=.
e. Select literal.
f. Type 80.

3. Specify the message that is displayed in the Active Event List when the event is
raised:
a. In the Event description field, type CPU usage high (avgBusy5= .

b. Click Add MIB Object .
c. Expand the MIB Tree to the following path:

iso/org/dod/internet/private/enterprises/cisco/local/lsystem/avgBusy5

d. Select Current SNMP Value and click Insert.
e. Type <=.
f. Type 80.
g. Type).

The description for the Active Event List should now read as follows:
CPU usage high (avgBusy5=eval(text,"SNMP.VALUE.avgBusy5")<=80)

188 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix D. Syntax for poll definition expressions

Use this information to understand how to build complex threshold expressions to
use in basic and generic threshold poll definitions.
Related reference:
“Example basic threshold expression” on page 44
Use this example basic threshold expression to understand how to compose
complex basic threshold expressions.
“Example generic threshold expression” on page 44
Use this example generic threshold expression to understand how to compose
complex generic threshold expressions.

eval statement syntax in threshold expressions
Use this information to understand how to use the eval statement to create
complex threshold expressions within basic and generic threshold poll definitions.

eval statement syntax for SNMP variables
You can evaluate SNMP variables using the eval statement.

The following examples illustrate how to evaluate SNMP variables using the eval
statement.

Sample: Evaluation of SNMP values

The following example returns the value of the SNMP variable sysName.
eval(text, ’&SNMP.VALUE.sysName’)

Sample: Evaluation of SNMP indices

The following example returns the value of the index of the SNMP request for the
variable ipRouteNextHop. In a table poll, this is evaluated for every index in the
table list..
eval(text, ’&SNMP.INDEX.ipRouteNextHop’)

Sample: Evaluation of previously retrieved SNMP values

The following example returns the value of the SNMP variable sysName, which was
retrieved when this poll was last run..
eval(text, ’&SNMP.VALUE.OLD.sysName’)

Sample: Evaluation of Old SNMP Indices

The following example returns the value of the index of the SNMP request for the
variable ipRouteNextHop, which was retrieved when this poll was last run. In a
table poll, this is evaluated for every index in the table list. Note that the old index
is likely to be the same as the new index.
eval(text, ’&SNMP.INDEX.OLD.ipRouteNextHop’)

© Copyright IBM Corp. 2006, 2016 189

eval statement syntax for network entity variables
You can evaluate network entity variables, such as the value of an entity ID or
entity name, using the eval statement.

The ENTITY keyword can be used in threshold expressions or descriptions to
evaluate the value of network entity variables. The following examples illustrate
how to evaluate network entity variables using the ENTITY keyword in the eval
statement.

Sample: Evaluation of the value of the entityName of the
containing chassis

The following example can be used in a threshold expression or threshold
description, and shows how to evaluate the value of the entityName corresponding
to the chassis that contains the entity being monitored.
An interface on eval(text, ’&ENTITY.MAINNODEENTITYNAME’) is down

Attributes of the ENTITY keyword

Valid attributes of the ENTITY keyword are listed in the following table. For
information on the NCIM database fields cited in the table, see the IBM Tivoli
Network Manager IP Edition Topology Database Reference.

Table 58. Attributes of the ENTITY keyword

Attribute Description

ENTITYID Value of the field entity.entityId for the monitored entity. This can be
either an interface or chassis.

ENTITYNAME Value of the field entity.entityName for the monitored entity. This
can be either an interface or chassis.

ENTITYTYPE Value of the field entity.entityType for the monitored entity. This can
be either an interface or chassis.

ENTITYCLASS Value of the field entity.className for the monitored entity. This can
be either an interface or chassis.

ACCESSIPADDRESS Value of the field interface.accessIPAddress or
chassis.accessIPAddress, depending on what type of poll it is.

IFINDEX For interface polls, the value of the field interface.ifIndex for the
monitored entity.

IFTYPESTRING For interface polls, the value of the field interface.ifTypeString for the
monitored entity

IFNAME For interface polls, the value of the field interface.ifName for the
monitored entity.

IFDESCR For interface polls, the value of the field interface.ifDescr for the
monitored entity.

IFALIAS For interface polls, the value of the field interface.ifAlias for the
monitored entity.

INSTANCESTR For interface polls, a string representation of the field
interface.instanceStr for the monitored entity.

ENTITYMANAGED Indicates whether the monitored entity is in a managed state,
determined by whether the field managedStatus.status is either not
present or zero for the entity in question.

190 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 58. Attributes of the ENTITY keyword (continued)

Attribute Description

CHASSISMANAGED Indicates whether the chassis containing the entity being monitored
is in a managed status, determined by whether the field
managedStatus.status is either not present or zero for the chassis in
question.

MAINNODEADDRESS Value of accessIPAddress for the chassis containing the entity being
monitored

MAINNODEENTITYNAME Value of the field entityName for the entity record corresponding to
the chassis containing the entity being monitored.

MAINNODEENTITYID Value of the field chassis.entityId for the chassis containing the entity
being monitored

eval statement syntax for poll policy variables
You can evaluate poll policy variables, such as the name of a policy or the ID of
the domain in which this poll policy is found, using the eval statement.

The POLICY keyword can be used in threshold expressions or descriptions to
evaluate the value of poll policy variables. The following examples illustrate how
to evaluate poll policy variables using the POLICY keyword in the eval statement.

Sample: Evaluation of the value of poll policy name and related
domain ID

The following example can be used in a threshold expression or threshold
description, and shows how to evaluate the value of name of the poll policy and
the ID of the domain in which this poll policy is found.
The eval(text, ’&POLICY.POLICYNAME’) policy polls entities in
domain number eval(text, ’&POLICY.DOMAINMGRID)

Attributes of the POLICY keyword

Valid attributes of the POLICY keyword are listed in the following table. For
information on the NCIM database fields cited in the table, see the IBM Tivoli
Network Manager IP Edition Topology Database Reference.

Table 59. Attributes of the POLICY keyword

Attribute Description

POLICYID Unique integer identifier for this poll policy.

DOMAINMGRID Foreign key referencing the NCIM domainMgr table. Specifies the ID
for the domain of the monitored entity.

POLICYNAME Name of this poll policy.

Appendix D. Syntax for poll definition expressions 191

eval statement syntax for poll definition variables
You can evaluate poll definition variables, such as the name of a poll definition or
the severity of failure events raised by policies using a poll definition, using the
eval statement.

The POLL keyword can be used in threshold expressions or descriptions to evaluate
the value of poll definition variables. The following examples illustrate how to
evaluate poll definition variables using the POLL keyword in the eval statement.

Sample: Evaluation of the value of poll definition name and
associated event severity

The following example can be used in a threshold expression or threshold
description, and shows how to evaluate the value of name of the poll definition
and the severity of the events generated by poll policies that use this poll
definition.
Poll policies that use the eval(text, ’&POLL.TEMPLATENAME’) poll definition
generate events with severity eval(text, ’&POLL.EVENTSEVERITY’)

Attributes of the POLL keyword

Valid attributes of the POLL keyword are listed in the following table.

Table 60. Attributes of the POLL keyword

Attribute Description

TEMPLATEID Unique identifier for this poll definition.

TEMPLATENAME Name of this poll definition.

TEMPLATETYPE Type of poll definition. This value is derived from the list the user is
presented with when creating a new poll definition.

EVENTNAME Text identifier to be used for events raised by poll policies that use
this poll definition. This text is written to the alerts.status table as
the EventId field, unless the text is modified by the rules file of the
probe for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor).

EVENTSEVERITY Severity of failure events raised by poll policies using this poll
definition. This text is written to the alerts.status table as the Severity
field, unless the text is modified by the rules file of the probe for
Tivoli Netcool/OMNIbus (nco_p_ncpmonitor).

POLLINTERVAL Interval in seconds at which each entity in scope for this poll is
polled.

Operators in threshold expressions
Use this information to understand which operators to use to create threshold
expressions in basic and generic threshold poll definitions.

The following table lists the operators that you can use in threshold expressions.

Table 61. Operators in threshold expressions

Operator Example

Plus (1 + 2)

Minus (4 - 2)

Multiplication (5 * 3)

192 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 61. Operators in threshold expressions (continued)

Operator Example

Division (10 / 2)

Modulus (8 % 3)

Power (10 POW 3)

Log (Ln 5)

IP to Long datatype
conversion

(IpToLong("1.2.3.4"))

Bitwise AND (5 & 3)
Note: Bitwise operations can only be applied to integer values.

Bitwise (5 | 3)

Bitwise Exclusive OR (5 ^ 3)

Boolean OR ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) OR (eval(int,
'&SNMP.VALUE.ifSpeed') < 100))

Boolean AND ((eval(int, '&SNMP.VALUE.ifSpeed') > 10000) AND (eval(int,
'&SNMP.VALUE.ifOperStatus') !=2))

Boolean NOT (NOT((eval(int,'&SNMP.VALUE.ifOperStatus') = 1))

Equal (eval(int, '&SNMP.VALUE.ifOperStatus') = 1)

Not equal (eval(int, '&SNMP.VALUE.ifOperStatus') != 1)

Less than (eval(int, '&SNMP.VALUE.ifSpeed') < 100)

Greater than (eval(int, '&SNMP.VALUE.ifSpeed') >100)

Less than or equal (eval(int, '&SNMP.VALUE.ifSpeed') <= 100)

Greater than or equal (eval(int, '&SNMP.VALUE.ifSpeed') >= 100)

Like (eval(text, '&ENTITY.IFDESCR') LIKE 'Gigabit.*')

Not Like (eval(text, '&ENTITY.IFDESCR') NOT LIKE 'Loopback.*')

Appendix D. Syntax for poll definition expressions 193

194 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix E. Configuration of the Probe for Tivoli
Netcool/OMNIbus

The Probe for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor) acquires and processes
the events that are generated by Network Manager polls and processes, and
forwards these events to the ObjectServer.

The Probe for Tivoli Netcool/OMNIbus is installed in the $NCHOME/probes/arch
directory, where arch represents an operating system directory. You can configure
the probe by using its configuration files, which are as follows:
v Properties file: nco_p_ncpmonitor.props
v Rules file: nco_p_ncpmonitor.rules

Note: The executable file (or nco_p_ncpmonitor command) for the probe is also
installed in the $NCHOME/probes/arch directory. The probe is, however, configured
to run under the domain process controller CTRL, by default, and the
nco_p_ncpmonitor command should be run manually only for troubleshooting
purposes.

The events raised in Network Manager are domain-specific. When Network
Manager runs in failover mode, the probe uses the virtual domain name by
default, provided the name is configured in the $NCHOME/etc/precision/
ConfigItnm.cfg file.

For more information about probe concepts, see the IBM Tivoli Netcool/OMNIbus
Probe and Gateway Guide in the Tivoli Netcool/OMNIbus information centre at
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.tivoli.nam.doc/welcome_ob.htm.

About the nco_p_ncpmonitor.props file
The $NCHOME/probes/arch/nco_p_ncpmonitor.props file defines the environment in
which the Probe for Tivoli Netcool/OMNIbus runs.

The properties file is formed of name-value pairs that are separated by a colon.
The default properties file lists a subset of the properties that the probe supports;
these properties are commented out with a number sign (#) at the beginning of the
line. The standard set of common probe properties, which are applicable for the
version of Tivoli Netcool/OMNIbus being run, can be specified for the Probe for
Tivoli Netcool/OMNIbus, where relevant.

A suggested practice for changing the default values of the properties is that you
add a name-value line for each required property at the bottom of the file. To
specify a property, ensure that the line is uncommented and then modify the value
as required. String values must be enclosed in quotation marks; other values do
not require quotation marks. For example:
Server : "VIRTUAL"
RulesFile : "$NCHOME/probes/solaris2/nco_p_ncpmonitor.rules"
Buffering : 1
BufferSize : 15

© Copyright IBM Corp. 2006, 2016 195

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm

For troubleshooting purposes, you can alternatively configure probe properties
from the command line by running the nco_p_ncpmonitor command with the
relevant command-line options.

For information about the properties that are common to probes, see the IBM Tivoli
Netcool/OMNIbus Probe and Gateway Guide in the Tivoli Netcool/OMNIbus
information centre at http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/
topic/com.ibm.tivoli.nam.doc/welcome_ob.htm.

About the nco_p_ncpmonitor.rules file
The $NCHOME/probes/arch/nco_p_ncpmonitor.rules file defines how the Probe for
Tivoli Netcool/OMNIbus should process Network Manager event data to create a
meaningful Tivoli Netcool/OMNIbus event.

nco_p_ncpmonitor.rules configuration reference
The rules file maps Network Manager event data to ObjectServer fields, and can be
used to customize the behavior of the probe. Knowledge of the Tivoli
Netcool/OMNIbus probe rules syntax is required for rules file configuration.

The probe uses tokens and elements, and applies rules, to transform Network
Manager event source data into a format that the ObjectServer can recognize. The
raw event source data is converted to tokens, which are then parsed into elements.
The rules file is used to perform conditional processing on the elements, and to
map them to ObjectServer alerts.status fields. In the rules file, elements are
identified by the $ symbol and alerts.status fields are identified by the @ symbol.
The rules file configuration maps elements to fields, as shown in the following
sample code:
@Summary=$Description

In this example, @Summary identifies the alerts.status field, and $Description
identifies the Network Manager input field.

Where the Network Manager ExtraInfo field is used with nested fields to store
additional data on entities (for example, ExtraInfo->ifIndex), these fields are
available in the following format in the rules file:
$ExtraInfo_variable

Where variable represents a Management Information Base (MIB) variable (for
example, ifIndex), or other data (for example, column names in NCIM tables). MIB
variables are specified in mixed case characters, and other data, in uppercase
characters. For example:
$ExtraInfo_ifIndex
$ExtraInfo_MONITOREDENTITYID

To configure the rules file for the Probe for Tivoli Netcool/OMNIbus, it is
necessary to have an understanding of:
v The Network Manager event source data that is available for use in the probe

rules file
v The set of alerts.status fields that can be populated with event data from

Network Manager
v The data mapping between the Network Manager and alerts.status fields

196 IBM Tivoli Network Manager IP Edition: Event Management Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm

For information about the syntax used in probe rules files, see the IBM Tivoli
Netcool/OMNIbus Probe and Gateway Guide in the Tivoli Netcool/OMNIbus
information centre at http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/
topic/com.ibm.tivoli.nam.doc/welcome_ob.htm.

Example of rules file processing
This example shows how source data from Network Manager is processed by the
rules file to generate the output data that is inserted in the alerts.status table.

The following sample code shows a Network Manager event data record that is
passed to the Probe for Tivoli Netcool/OMNIbus for processing. In this record, a
resolution event was created when ncp_ctrl started the ncp_store process.
{
EventName=’ItnmServiceState’;
Severity=1;
EntityName=’BACKUP’;
Description=’ncp_store process [15299] has started’;
ExtraInfo={
EVENTTYPE=2;
SOURCE=’ncp_ctrl’;
ALERTGROUP=’ITNM Status’;
EVENTMAP=’ItnmStatus’;
SERVICE=’ncp_store’;
PID=15299;
};

}

The following excerpt from the probe rules file shows the syntax used to process
and map these input fields to alerts.status fields:
...

#
populate some standard fields
#
@Severity = $Severity
@Summary = $Description
@EventId = $EventName
@Type = $ExtraInfo_EVENTTYPE
@AlertGroup = $ExtraInfo_ALERTGROUP
@NmosEventMap = $ExtraInfo_EVENTMAP
@Agent = $ExtraInfo_SOURCE

if (exists($ExtraInfo_ACCESSIPADDRESS))
{

@Node = $ExtraInfo_ACCESSIPADDRESS
}
else
{

@Node = $EntityName
}

#
Stamp the event with the name of its originating domain
#
@NmosDomainName = $Domain
@Manager = "ITNM"
@Class = 8000

#
populate fields for RCA
#
@LocalNodeAlias = @Node

...

#
Now set the AlertKey and Identifier
#
if (match(@AlertGroup, "ITNM Status"))
{

Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus 197

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm

switch ($EventName)
{

case ...
...

case "ItnmServiceState":
@LocalPriObj = $ExtraInfo_SERVICE

...
case ...

....
}

}

#
Both the Identifier and the AlertKey contain the domain name. This ensures
that in a multi-domain setup, events are handled on a per-domain basis
#

#
Include the LocalPriObj in the AlertKey or the link-downs on
all interfaces will cleared by a link-up on any interface
#
@AlertKey = $EntityName + @LocalPriObj + "->" + $EventName + @NmosDomainName

#
Set up deduplication identifier and include the LocalPriObj
so we can correctly handle de-duplication of events raised on interfaces
#
@Identifier = $EntityName + @LocalPriObj + "->" + $EventName + @Type + @NmosDomainName

}

When rules file processing is complete, the output data that is forwarded to the
ObjectServer takes the following form:
CMonitorProbeApp::ProcessStatusEvent
{
AlertGroup=’ITNM Status’;
EventId=’ItnmServiceState’;
Type=2;
Severity=1;
Summary=’ncp_store process [15299] has started’;
Node=’BACKUP’;
NmosDomainName=’PRIMARY’;
LocalNodeAlias=’BACKUP’;
LocalPriObj=’ncp_store’;
LocalRootObj=’’;
RemoteNodeAlias=’’;
AlertKey=’BACKUPncp_store->ItnmServiceStateVIRTUAL’;
Identifier=’BACKUPncp_store->ItnmServiceState2VIRTUAL’;
Class=8000;
Agent=’ncp_ctrl’;
LastOccurrence=1267122089;
}

Based on the rules file processing in this example, it can be seen that the Network
Manager input fields map to the alerts.status fields as follows:

Network Manager field alerts.status field

EventName EventId

Severity Severity

EntityName Node

Description Summary

ExtraInfo->EVENTTYPE Type

ExtraInfo->SOURCE Agent

ExtraInfo->ALERTGROUP AlertGroup

ExtraInfo->EVENTMAP NmosEventMap

198 IBM Tivoli Network Manager IP Edition: Event Management Guide

Network Manager field alerts.status field

ExtraInfo->SERVICE LocalPriObj

Network Manager event data fields
When events are generated in Network Manager, the event data is inserted into a
number of fields (or columns) in the Network Manager tables. Although each
event uses only a subset of the possible fields, a number of fields are common to
all event types.

The following table lists all the Network Manager field names that are available for
use in the probe rules file, and describes the event data stored in each field. The
table also identifies which of the Network Manager fields are common to all
events, and therefore always available in the rules file.

Table 62. Network Manager fields that populate events

Network Manager field name Field content Always available?

Description A brief description of the event. Yes

Domain The current domain.

If Network Manager is configured for
failover mode, this will be the primary
domain.

Yes (provided the map file
is not modified)

EntityName For network events, this is the entityName
field from the NCIM entityData table for the
entity against which the event is raised.

For status events, this is always the name of
the domain about which the event is
generated.

Yes

EventName The event identifier. For example,
ItnmDiscoPhase.

Yes

ExtraInfo_ACCESSIPADDRESS If the main node or interface entity identified
by the EntityName input field has a
directly-accessible IP address (the
accessIPAddress field from the NCIM
interface or chassis tables), then it is supplied
here. Applicable to network events only.

No

ExtraInfo_AGENT The agent responsible for a discovery agent
(ItnmDiscoAgentStatus) event.

Yes (for
ItnmDiscoAgentStatus
events)

ExtraInfo_ALERTGROUP The alert group of the event. For Network
Manager status events, the alert group is
ITNM Status, and for network events, the
value is ITNM Monitor.

Yes

ExtraInfo_ENTITYCLASS The name of class assigned to the entity, as
identified the NCIM entityClass and
classMembers tables.

Yes (for network and
ItnmEntityCreation events)

ExtraInfo_ENTITYTYPE The type of the entity, as defined in the
NCIM entityType table.

Yes (for network events)

Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus 199

Table 62. Network Manager fields that populate events (continued)

Network Manager field name Field content Always available?

ExtraInfo_LocalPriObj Provides a value for the LocalPriObj field in
the alerts.status record. This field has the
same value as the deprecated
ExtraInfo_EventSnmpIndex field, except that
it is prefixed by an identifier for the MIB
entity being polled; for example ifEntry,
bgpPeerEntry.

Yes (for network events)

ExtraInfo_EVENTTYPE The type of the event raised by Network
Manager. The values are as follows:

v 1: Problem

v 2: Resolution

v 13: Information

Yes

ExtraInfo_FINDER The finder responsible for a discovery finder
(ItnmDiscoFinderStatus) event.

Yes (for
ItnmDiscoFinderStatus
events)

ExtraInfo_ifIndex For events raised against an interface with
an ifIndex value in the NCIM interface table,
that value is given here. Applicable only to
network events against interfaces.

No

ExtraInfo_IFALIAS For events raised against interfaces, this field
contains the ifAlias value, if known.
Applicable only to network interface polls.

No

ExtraInfo_IFDESCR For events raised against interfaces, this field
contains the ifDescr value, if known.
Applicable only to network interface polls.

No

ExtraInfo_IFNAME For events raised against interfaces, this field
contains the ifName value, if known.
Applicable only to network interface polls.

No

ExtraInfo_IFTYPESTRING For events raised against interfaces, this field
contains the string representation of the
ifType value. Applicable only to network
interface polls.

No

ExtraInfo_MAINNODEADDRESS The management interface of the main node
containing the entity, as identified by the
accessIPAddress field of the NCIM chassis
table. Applicable only to network and
ItnmEntityCreation events.

Yes (for network events)

ExtraInfo_MAINNODEENTITYID The entityId field from the NCIM entityData
table for the main node, as identified by the
accessIPAddress field of the NCIM chassis
table. Applicable only to network events.

Yes (for network events)

ExtraInfo_MAINNODEENTITYNAME The entityName field from the NCIM
entityData table for the main node, as
identified in NCIM. Applicable only to
network events.

Yes (for network events)

ExtraInfo_MONITOREDENTITYID The entityId field from the NCIM entityData
table for the entity against which the event is
raised. Applicable only to network and
ItnmEntityCreation events.

No

ExtraInfo_MONITOREDINSTID A record in the ncpolldata.monitoredInstance
table.

No

200 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 62. Network Manager fields that populate events (continued)

Network Manager field name Field content Always available?

ExtraInfo_NEWPHASE The discovery phase that has started.
Applicable only to discovery phase
(ItnmDiscoPhase) events.

Yes (for discovery phase
events)

ExtraInfo_OLDPHASE The discovery phase that has completed.
Applicable only to discovery phase
(ItnmDiscoPhase) events.

Yes (for discovery phase
events)

ExtraInfo_POLICYNAME The name of the polling policy that resulted
in the event.

Yes (for network events)

ExtraInfo_PID The process ID of the affected Network
Manager service. Applicable only to
ItnmServiceState events.

Yes (for service state events)

ExtraInfo_REMOTEDOMAIN The name of the remote domain. Applicable
only to ItnmFailoverConnection events.

Yes (for failover connection
events)

ExtraInfo_sysContact If available, the sysContact value is given for
ItnmEntityCreation events only.

No

ExtraInfo_sysLocation If available, the sysLocation value is given
for ItnmEntityCreation events only

No

ExtraInfo_sysObjectId If available, the sysObjectId value is given
for ItnmEntityCreation events only

No

ExtraInfo_SERVICE The name of the affected Network Manager
service. Applicable only to ItnmServiceState
events.

Yes (for service state events)

ExtraInfo_SNMPSTATUS A numerical SNMP status code. Yes (for NmosSnmpPollFail
events)

ExtraInfo_SNMPSTATUSSTRING A human-readable indication of the SNMP
failure state.

Yes (for NmosSnmpPollFail
events)

ExtraInfo_SOURCE The name of the process from which the
event originated.

Yes

ExtraInfo_STITCHER The stitcher responsible for a discovery
stitcher (ItnmDiscoStitcherStatus) event.

Yes (for
ItnmDiscoStitcherStatus
events)

Severity The severity level of the event. The severity
is a non-zero value.

Yes

alerts.status fields used by Network Manager
The alerts.status table in the ObjectServer contains status information about
problems that have been detected by probes.

A subset of the standard alerts.status fields is populated with Network Manager
event data. Additionally, a set of dedicated alerts.status fields are reserved to hold
data that is specific to Network Manager. The dedicated alerts.status field names
are identifiable by the prefix Nmos.

The following table describes the alerts.status fields that are populated by Network
Manager fields. Some of these alerts.status fields are allocated default values from
within the probe rules file. (Avoid modifying these default values.)

Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus 201

Table 63. alerts.status fields used by Network Manager

alerts.status field Data type Description
Network Manager field
name/Default value in rules file

Agent varchar(64) The name of the process that
generated the event. You can use this
field to filter an AEL to display only
events of a specific type; for example,
only discovery events (with a value of
ncp_disco).

ExtraInfo_SOURCE

AlertGroup varchar(255) Used to group events by type. Values
supplied by default from Network
Manager events are either ITNM
Monitor for network events, or ITNM
Status for status events.

ExtraInfo_ALERTGROUP

AlertKey varchar(255) A text string concatenating several
elements relating to the event.
Elements can include the event ID,
domain, phase, and process name.
Allows problem and resolution events
to be matched.

This value is generated from the
input to ensure appropriate
matching of problem and resolution
events within the ObjectServer.

Class integer The alert class asigned to the Probe for
Tivoli Netcool/OMNIbus.

A value of 8000 is reserved for
events generated by Network
Manager.

EventId varchar(255) The type of event (for example,
SNMPTRAP-linkDown). The Event
Gateway uses this value to look up the
event map, and to determine the
precedence of events.

EventName

ExpireTime integer The expiry time of the event in the
database. Not currently used by
Network Manager.

FirstOccurrence time A timestamp indicating when the
event first occurred.

Identifier varchar(255) A unique value for each type of event
on a given entity (for example, a
LinkDown event on a specific device
interface). This identifier controls
deduplication.

This value is generated from the
input to ensure appropriate
deduplication of events in the
ObjectServer. In the rules file, the
identifier is constructed as a
concatenation of field values.

LastOccurrence time A timestamp indicating when the
event last occurred.

LocalNodeAlias varchar(64) The IP or DNS address of the device.
This value usually refers to the chassis,
but for pingFails only, can correspond
to the interface.

For network events, this field is set
to the same value as the Node field.

No value is set for status events, to
ensure that they are not fed back
into Network Manager through the
Event Gateway.

202 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 63. alerts.status fields used by Network Manager (continued)

alerts.status field Data type Description
Network Manager field
name/Default value in rules file

LocalPriObj varchar(255) The specific entity for which the event
is generated; for example, the ifIndex,
ifDescr, or ifPhysAddress field value.

ExtraInfo_AGENT or
ExtraInfo_FINDER or
ExtraInfo_ifIndex or
ExtraInfo_NEWPHASE or
ExtraInfo_SERVICE or
ExtraInfo_STITCHER

The ExtraInfo_ifIndex value is
shown using the syntax
ifEntry.<ifIndex>; for example,
ifEntry.12.

LocalRootObj varchar(255) The container of the entity referenced
in the LocalPriObj field. This need not
be the chassis, but could, for example,
be slot in a chassis. The chassis can
still be identified using
LocalNodeAlias.

LocalSecObj varchar(255) The secondary object referenced by the
event.

ExtraInfo_OLDPHASE

Manager varchar(64) A descriptive name that identifies the
system that forwarded the events.

A value of ITNM is used for events
generated by Network Manager
V3.8, or later.

A value of Omnibus is used in earlier
versions.

NmosCauseType integer The event state. Populated by the
NMOS gateway. The possible values
are as follows:

v 0: Unknown

v 1: Root Cause

v 2: Symptom

NmosDomainName varchar(64) The name of the Network Manager
network domain that raised the event.
The name of the primary domain is
used in failover mode.

By default, this field is populated only
for events that are generated by
Network Manager. To populate this
field for other event sources, such as
those from other probes, you must
modify the rules files for those probes.

This field is populated by the Event
Gateway if an event is matched to an
entity in a domain.

Domain

Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus 203

Table 63. alerts.status fields used by Network Manager (continued)

alerts.status field Data type Description
Network Manager field
name/Default value in rules file

NmosEntityId integer The unique Object ID that identifies
the topology entity with which the
event is associated. This field is similar
to the NmosObjInst field but contains
more detailed information. For
example, this field can include the ID
of an interface within a device.

For events generated by the Polling
engine, the NmosEntityId field is
populated in the probe rules file. For
all other events, this field is populated
by the gateway when the entity is
identified.

ExtraInfo_MONITOREDENTITYID

NmosEventMap varchar(64) The event map name and optional
precedence for the event, which
indicates how Network Manager
should process the event; for example,
PrecisionMonitorEvent.910. The
optional precedence number can be
concatenated to the end of the value,
following a period (.). If the
precedence is not supplied, it is set to
0.
Note: This value can be overridden by
an explicit insertion into the Event
Gateway config.precedence table,
which provides the same data.

NmosManagedStatus integer The managed status of the network
entity for which the event was raised.
When a network entity is unmanaged,
the Network Manager polls are
suspended and events from other
sources are tagged as unmanaged. This
field allows you to filter out events
from unmanaged entities. The possible
values for this field are as follows:

v 0: Managed

v 1: Operator unmanaged

v 2: System unmanaged

v 3: Out of scope

NmosObjInst integer The unique Object ID that identifies
the containing topology chassis entity
with which the event is associated.
Populated by the NMOS gateway.
Tip: This field can be used to detect
whether the event has been passed for
event enrichment.

NmosSerial integer The serial number of the event that is
suppressing the current event.
Populated by the NMOS gateway.

204 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 63. alerts.status fields used by Network Manager (continued)

alerts.status field Data type Description
Network Manager field
name/Default value in rules file

Node varchar(64) The device from which the event
originated. If an event is raised against
an entity with an accessible IP address,
the IP address is used. Otherwise, the
entityName value from NCIM is used.
By default, Node has the same value
as LocalNodeAlias.

ExtraInfo_ACCESSIPADDRESS or
EntityName

The EntityName value maps to the
Node field only if the
ExtraInfo_ACCESSIPADDRESS input
field is empty.

NodeAlias varchar(64) The IP address of the main node, if
available.

ExtraInfo_MAINNODEADDRESS

RemoteNodeAlias varchar(64) The network address of a remote node,
where relevant. For example:

v A blank value (where an interface
has gone down)

v A neighbouring address (where a
connected interface has gone down)

v The polling station (for a ping
failure event)

Serial incr A unique ID per event per
ObjectServer instance.

Where primary and backup
ObjectServers are configured, the
ObjectServers will have different serial
numbers for the same event.

ServerName varchar(64) The name of the originating
ObjectServer.

ServerSerial integer The Serial number of the event in the
originating ObjectServer.

Where primary and backup
ObjectServers are configured, the
ObjectServers will have different serial
numbers for the same event. If the
event originated in the current
ObjectServer, the ServerSerial value is
the same as the Serial value.

Severity integer The severity level of the event stored
in the ObjectServer. The default values
are as follows:

v 0: Clear (GREEN)

v 1: Indeterminate (PURPLE)

v 2: Warning (BLUE)

v 3: Minor (YELLOW)

v 4: Major (ORANGE)

v 5: Critical (RED)

Severity

StateChange time A timestamp indicating when the
event was last modified. This field can
be used to determine whether a
process is modifying an event after it
has been added to the ObjectServer.

Summary varchar(255) A textual description of the event. Description

Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus 205

Table 63. alerts.status fields used by Network Manager (continued)

alerts.status field Data type Description
Network Manager field
name/Default value in rules file

Tally integer A count of the number of times that an
event has occurred. This value is
displayed in the Count column in the
event list or AEL, and in the Occurred
column in the mojo.events table.

Type integer The type of the alert. The values of
particular relevance to Network
Manager are

v 1: Problem

v 2: Resolution

v 13: Information

ExtraInfo_EVENTTYPE

For more information about the alerts.status table, see the IBM Tivoli
Netcool/OMNIbus Administration Guide in the Tivoli Netcool/OMNIbus information
centre at http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/
com.ibm.tivoli.nam.doc/welcome_ob.htm.

206 IBM Tivoli Network Manager IP Edition: Event Management Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.tivoli.nam.doc/welcome_ob.htm

Appendix F. Network Manager event categories

The events that are raised by Network Manager fall into two categories: events
about the network being monitored and events about Network Manager processes.

These events are stored in the Tivoli Netcool/OMNIbus ObjectServer. The Probe
for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor) is used to process and forward
the event data to the alerts.status table in the ObjectServer.

The following figure shows the flow of events from Network Manager to the
ObjectServer.

Related reference:
“Default event maps” on page 98
Network Manager provides a default set of event maps. Use this information to
understand which default event maps are available and what each event map
does, and to understand how legacy event maps delegate to 3.9 event maps.

Network Manager
processes

Network

ncp_poller

Active Event
List

Probe for Tivoli
Netcool/OMNIbus
nco_p_ncpmonitor

ObjectServer
[alerts.status table]Event List Web GUI

Server

Network events Network Manager status events

Figure 15. Flow of events from Network Manager to Tivoli Netcool/OMNIbus

© Copyright IBM Corp. 2006, 2016 207

Network Manager network events
The Polling engine, ncp_poller, generates events about the state of the network.
These events can be used to identify network problems, and are configurable by
using the Network Polling GUI (go to Administration > Network > Network
Polling). These events are known as network events and have the alerts.status
AlertGroup field value of ITNM Monitor.

Each network event is raised on a single entity, such as an interface or a chassis,
and the event data is dependent on the type of poll. When network events are
forwarded to the ObjectServer for insertion into the alerts.status table, they are
allocated an AlertGroup value of ITNM Monitor.

An unlimited set of event identifiers is available for network events. Events that
are generated when an SNMP poll fails are specifically allocated an EventID value
of NmosSnmpPollFail in the alerts.status table.

Network events in the ObjectServer are pulled back into Network Manager
through the Event Gateway to perform event enrichment, including root cause
analysis.

Network Manager status events
Network Manager can generate events that show the status of various Network
Manager processes. These events are known as Network Manager status events
and have the alerts.status AlertGroup field value of ITNM Status.

When these status events are forwarded to the ObjectServer for insertion into the
alerts.status table, they are allocated an AlertGroup value of ITNM Status.

Status event types

A set of event identifiers is used to identify Network Manager status events by
type. The following list identifies the EventId values that are inserted in the
alerts.status table, and describes how each associated status event is generated.

ItnmDatabaseConnection
This type of event is generated to indicate loss of connection to NCIM.
This event is generated by the managed status polling thread in the
ncp_model process. The raising of this event depends on the time period
configured in the managed status polling interval in model. A problem
event is raised if the connection is lost, and a corresponding resolution
event is raised if the connection is restored, or at startup to clear any
failures from a previous operation. This event type allows the backup
domain to take over when failover is configured. The virtual domain
process reacts to this event as defined in the filter for NCIM in the
NCHOME/etc/precision/VirtualDomainSchema.cfg file.

ItnmDiscoAgentStatus
This type of event is generated by ncp_disco when a discovery agent
transitions to a new state. At the end of a discovery, an information event
is forwarded to the ObjectServer, for each agent that was used during the
discovery.

You can use this information to identify the state of each agent. In the
alerts.status table, the LocalPriObj field is used to store the name of the
agent.

208 IBM Tivoli Network Manager IP Edition: Event Management Guide

Discovery agent events in the ObjectServer are overwritten when a
subsequent discovery is run.

ItnmDiscoFinderStatus
This type of event is generated by ncp_disco when a discovery finder
transitions to a new state. At the end of a discovery, an information event
is forwarded to the ObjectServer, for each finder that was used during the
discovery.

You can use this information to identify which finders are running and
their state. In the alerts.status table, the LocalPriObj field is used to store
the name of the finder.

Discovery finder events in the ObjectServer are overwritten when a
subsequent discovery is run.

ItnmDiscoPhase
This type of event is generated by ncp_disco when the discovery process
transitions to a new phase. At the end of the discovery, five information
events should be present in the ObjectServer, to show the looped
transitions from phase 0 (standby) to phases 1, 2, and 3 (data collection) to
phase -1 (data processing). An event is raised for each of the following
phase changes in a single discovery:
v 0 to 1
v 1 to 2
v 2 to 3
v 3 to -1
v -1 to 0

You can use this information to determine the length of each phase. In the
alerts.status table, the LocalPriObj field is used to store the phase to which
the discovery is transitioning, and the LocalSecObj field stores the previous
phase of the discovery.

Tip: The string values for the phases are also shown in the discovery log
file when the ncp_disco process is run in debug mode.

Discovery phase events in the ObjectServer are overwritten when a
subsequent discovery is run.

ItnmDiscoStitcherStatus
The discovery process is made up of a data collection stage and a data
processing stage, during which the topology is created.
ItnmDiscoStitcherStatus events are generated by the Discovery engine,
ncp_disco, when a major phase is reached in the data processing stage. At
the end of the discovery, an information event is forwarded to the
ObjectServer, for each major discovery stitcher that was used during the
discovery.

You can use this information to identify what phase in the data processing
stage the discovery is in. In the alerts.status table, the LocalPriObj field is
used to store the name of the stitcher corresponding to this phase.

ItnmDiscoStitcherStatus events are raised when the following stitchers
begin executing:
v BuildFinalEntityTable
v BuildContainment
v BuildLayers

Appendix F. Network Manager event categories 209

v MergeLayers
v PostLayerProcessing

Subsequently events are raised during the topology creation phase when
the following stitchers are run.
v CreateScratchTopology
v PostScratchProcessing
v SendTopologyToModel

Discovery stitcher events in the ObjectServer are overwritten when a
subsequent discovery is run.

ItnmEntityCreation
If configured in the $NCHOME/etc/precision/ModelSchema.cfg file, this type
of information event is generated by ncp_model, for each new chassis or IP
interface entity (EntityType = 1) that is inserted into the NCIM database.

You can configure ModelSchema.cfg by setting the value of the
RaiseEntityEvent column to 1 in the INSERT statement for the
model.config table. For example:
create table model.config
(
LingerTime int not null primary key, // default value 3 (discoveries)
RaiseEntityEvent int type boolean not null, // default value 0 (off)
DiscoveryUpdateMode int not null, // default value 0 - full discovery,

// 1 - partial
unique(LingerTime)
);
insert into model.config values (3, 1, 0);

Note: For the configuration changes to take effect and enable the events,
the ncp_model process must be restarted. The process reads the
configuration settings at start-up.

ItnmEntityDeletion
If configured in the $NCHOME/etc/precision/ModelSchema.cfg file, this type
of information event is generated by ncp_model, for each chassis or IP
interface entity (EntityType = 1) that is deleted from the NCIM database.

You can configure ModelSchema.cfg by setting the value of the
RaiseEntityEvent column to 1 in the INSERT statement for the
model.config table, as shown in the preceding description for the
ItnmEntityCreation EventId.

ItnmFailover
This type of event is generated by ncp_virtualdomain when a Network
Manager domain within a failover pair fails over or fails back.

A problem event is generated when failover occurs and a resolution event
is generated on failback.

In the alerts.status table, the Summary field description indicates whether
the domain is the primary or backup, and whether it is in an active or a
standby mode.

ItnmFailoverConnection
This type of event is generated by ncp_virtualdomain to indicate when the
backup domain in a failover pair connects to, or disconnects from, the
primary domain.

When Network Manager runs in failover mode, a resolution event is
generated when the primary and backup domains set up their TCP socket
connection. This socket connection is required to transfer the topology

210 IBM Tivoli Network Manager IP Edition: Event Management Guide

updates from the primary domain because the discovery process
(ncp_disco) does not run in the backup domain. If the connection is
subsequently lost, a problem event is generated.

Note: The status of the connection does not determine whether failover is
triggered. Failover is triggered only when health check events are
transferred (via the ObjectServer) across domains, and provided a socket
connection has, at some point, been established.

ItnmHealthChk
Health check events govern Network Manager failover. Each domain in the
failover pair generates health check resolution events while that domain is
healthy.

Health check problem events for a domain can be generated in two ways:
v By the local domain: The local domain detects a failure of one of its

processes, as configured in the $NCHOME/etc/precision/
VirtualDomainSchema.cfg file.

v By the remote domain: One domain detects that the other domain has
not generated a health check resolution event in the configured amount
of time, and generates a synthetic health check problem event on behalf
of the remote domain.

When a health check problem event is generated for the primary domain,
failover is initiated, and the backup domain becomes active.

Health check events were previously allocated an EventID value of
NcpHealthChk. For compatibility with earlier versions of Network
Manager, you can substitute NcpHealthChk in place of ItnmHealthChk in
the probe rules file.

Note: Health check events are handled by the Network Manager Event
Gateway, which requires the Node value to be the domain to which the
event refers. This need not be the domain raising the event, since one
domain can raise failure events on behalf of the other.

ItnmMaintenanceState
If configured in the $NCHOME/etc/precision/ModelSchema.cfg file, this type
of event is generated by the Topology manager, ncp_model, for maintenance
status changes to a chassis or an IP interface.

You can configure ModelSchema.cfg by setting the value of the
RaiseEntityEvent column to 1 in the INSERT statement for the
model.config table, as shown in the preceding description for the
ItnmEntityCreation event.

A problem event is generated when the chassis or IP interface entity is in
maintenance, and a resolution event is generated when the entity is out of
maintenance.

Note: An individual interface event is sent only if the change does not
apply at the chassis level; when a device changes, a chassis event and a
series of interface events are not collectively generated.

ItnmServiceState
This type of event is generated when a process starts or ends, and signifies
whether a process has failed to start or has stopped during runtime. (Note
that process state events are not generated when processes are stopped at
system shutdown.)

Appendix F. Network Manager event categories 211

A resolution event is generated when ncp_ctrl starts a process. If a process
fails to start or if it stops during runtime, a problem event is generated.

In the alerts.status table, the Summary field description includes the
process name, the PID, and an indication of whether the process has:
v Started (and successfully initialized)
v Stopped (that is, it has been deleted from the ncp_ctrl database table

named services.inTray)
v Terminated (that is, it stopped, but will be restarted by ncp_ctrl)
v Failed to start
v Failed and will not be restarted (that is, it stopped and the number of

retries configured for the process has been exceeded)

ItnmTopologyUpdated
This type of information event is generated by ncp_model when the update
of the NCIM topology database is completed at the end of a discovery
cycle. This information is useful if you intend to program scripts or
procedures to run after the NCIM database is updated.

Note: If the feedback option is on, or large subnets are pinged, there might
be multiple discovery cycles and thus multiple events of this type, one
event for each discovery cycle. To determine if discovery has finally
finished, the following OQL query can be made to the Ping Finder service:
select * from pingFinder.status where m_Completed <> 1;

This query looks for any subnets that the Ping finder is still pinging. If
there are no outstanding ping sweeps and the discovery is in phase 0, this
means that the discovery is complete.

212 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix G. Polling databases

Use this information to understand the structure of databases used for polling.

NCMONITOR databases
The NCMONITOR schema hosts a number of databases used by polling.

SNMP tables for polling in the ncmonitor database
The SNMP tables in the ncmonitor database are used by the polling engine,
ncp_poller, to store information on how to access each discovered device using
SNMP.

Both the ncp_dh_snmp and ncp_poller processes use the ncmonitor database.
However, only the ncp_dh_snmp process populates the database; the ncp_poller
process treats it as read-only. Hence, you must have discovered a device using
SNMP to monitor it using SNMP.

The ncmonitor database is defined in $NCHOME/etc/precision/
DbLogins.DOMAIN.cfg, where DOMAIN is the domain that contains the discovered
devices.

The ncmonitor database has the following tables:
v ncmonitor.snmpTarget
v ncmonitor.snmpAccess
v ncmonitor.snmpv1Sec
v ncmonitor.snmpv3Sec
v ncmonitor.snmpUser

ncmonitor.snmpTarget table
The snmpTarget table lists each IP address that Network Manager recognizes.

Table 64. ncmonitor.snmpTarget database table

Column name Constraints Data type Description

targetid v PRIMARY
KEY

v NOT NULL

Text Unique identifier for the target.

netaddr Text IP address of the target.

readaccessid FOREIGN KEY Text Refers to the snmpaccess table.
Provides access details used to
perform SNMP Get and GetNext
operations for this target.

writeaccessid FOREIGN KEY Text Refers to the snmpaccess table.
Provides access details used to
perform SNMP Set operations for
this target.

© Copyright IBM Corp. 2006, 2016 213

Table 64. ncmonitor.snmpTarget database table (continued)

Column name Constraints Data type Description

snmpgetbulk Boolean
integer

Flag indicating whether GetNext
operations will be attempted when
appropriate; for example, when
using SNMPv2 or SNMPv3, and
performing a table walk.

snmpthrottleid Text Throttling details used to control the
rate at which requests will be made
to this target when performing table
walk operations.

createtime Text Timestamp recording the time this
target was created.

lastupdate Text Timestamp recording the time any
detail for this target was last
modified.

domain Text Domain to which this target belongs.

ncmonitor.snmpAccess table
The snmpAccess table provides details of SNMP access.

Table 65. ncmonitor.snmpAccess database table

Column name Constraints Data type Description

accessid v PRIMARY
KEY

v NOT NULL

Text Unique identifier for these SNMP
access details.

version Enumerated
value

SNMP version to be used. Possible
value are:

v 0: SNMPv1

v 1: SNMPv2

v 3: SNMPv3

remoteport Integer UDP port to which SNMP packets
will be sent.

retries Integer Number of retries before giving up.

timeout Integer Number of milliseconds before
retrying an SNMP request .

accesslevel Enumerated
value

Flag indicating level of access
provided. Possible values are:

v 1: read

v 2: write

214 IBM Tivoli Network Manager IP Edition: Event Management Guide

ncmonitor.snmpv1Sec table
The snmpv1Sec table is populated only for rows in the snmpAccess table that
relate to SNMPv1 and SNMPv2.

Table 66. ncmonitor.snmpv1Sec database table

Column name Constraints Data type Description

accessid FOREIGN KEY Text Refers to the details for which
SNMPv1 or SNMPv2-specific detail
is being provided.

community Text Community string to use when
sending requests using these details.

encrypted Boolean
integer

Flag indicating whether the
community string is encrypted.
Possible values are:

v 0: not encrypted

v 1: encrypted

ncmonitor.snmpv3Sec table
The snmpv3Sec table is populated only for rows in the snmpAccess table that
relate to SNMPv3.

Table 67. ncmonitor.snmpv3Sec database table

Column name Constraints Data type Description

accessid FOREIGN KEY Text Refers to the details for which
SNMPv3-specific detail is being
provided.

userid FOREIGN KEY Text Refers to the userid field in the
snmpusmuser table. This is the user
to use when sending SNMP requests
using these details.

securitylevel Enumerated
value

Flag indicating SNMPv3 security
level. Possible values are:

v noAuthNoPriv

v authNoPriv

v authPriv

defaultcontext Text SNMPv3 contextName to be used
when not explicitly specified by a
discovery agent.

ncmonitor.snmpUser table
The snmpUser table provides a list of SNMP user details to be used by the
SNMPv3 protocol.

Table 68. ncmonitor.snmpUser database table

Column name Constraints Data type Description

userid v PRIMARY
KEY

v NOT NULL

Text Unique identifier for this user.

username Text USM username.

authpass Text Authentication password.

Appendix G. Polling databases 215

Table 68. ncmonitor.snmpUser database table (continued)

Column name Constraints Data type Description

privpass Text Privacy password. This is used for
encrypting the SNMPv3 payload.

authtype Text Encryption method to be used for
the SNMPv3 authentication header.

privtype Text Encryption method to be used for
the payload.

encrypted Boolean
integer

Flag indicating authpass and
authtype fields are encrypted.
Possible values are:

v 0: not encrypted

v 1: encrypted

Ping polling status tables
The NCMONITOR ping polling status tables enable diagnostic operations to be
performed on network ping polling.

expectedIps table
The expectedIps table contains a list of IP addresses expected to be discovered by
Network Manager for a particular domain. It is populated using the
ncp_upload_expected_ips.pl script.

The following table lists the columns in the expectedIps table.

Table 69. ncmonitor.expectedIps database table

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

pollLog table
The pollLog table stores the latest snapshot of the status of the Polling engine. It is
populated using the ncp_ping_poller_snapshot.pl script which queries ncp_poller,
and transfers the results to this table.

Each row in this table corresponds to a single entity that is within the defined
scope of a single active polling policy. The fields in the table can be divided into
three conceptual groupings:

“Entity information” on page 217
This entity information can be used to cross-reference with other NCIM
topology database tables.

“Managed status information” on page 217
This is the managed status being applied by the poll policy.

“Latest poll state information” on page 218
This is the latest poll state for the current entity and policy.

216 IBM Tivoli Network Manager IP Edition: Event Management Guide

Entity information

Fields in the pollLog table that store entity information are described below.

Table 70. ncmonitor.pollLog database table entity information fields

Column name Description

entityId ID of the entity to ping, as defined in the NCIM
topology database entityData table.

policyId ID of the relevant ping policy, as defined in the
NCMONITOR policy table.

mainNodeEntityId ID of the main node that the entity belongs to, as
defined in the NCIM topology database entityData table.
For Chassis Ping polls, this is the same as the entityId.
For Interface Ping polls, this is the ID of the main node
containing the interface.

entityType As defined in the NCIM topology database entityType
table, this field can take one of the following values:

v 1: Chassis Ping polls

v 2 Interface Ping polls

ip IP address to which the ICMP ping packet was sent. This
is the accessIPAddress of the interface or chassis entity
identified by entityId.

mainNodeAddress IP address of the main node that the entity belongs to, as
found in the NCIM topology database entityData table.
This is the accessIPAddress of the chassis entity
identified by mainNodeEntityId.

ifIndex The ifIndex of the relevant interface might be available
for Interface Ping polls. This can be NULL for any ping
poll.

domainMgrId ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

Managed status information

Fields in the pollLog table that store managed status information are described
below.

Table 71. ncmonitor.pollLog database table managed status information fields

Column name Description

isManaged Indicates whether the entity is being polled by this
policy?

v 0: False

v 1: True

entityStatus Managed status of the entity identified by entityId that is
being used by the poller. The value of this field is set to
0 if managed, whether explicitly listed in the NCIM
managedStatus table or not.
Note: This is the status at the time of the snapshot, and
therefore can differ from the contents of the NCIM
managedStatus table if it is dynamically altered.

Appendix G. Polling databases 217

Table 71. ncmonitor.pollLog database table managed status information fields (continued)

Column name Description

mainNodeStatus Managed status of the entity identified by
mainNodeEntityId that is being used by the poller.
Interfaces within an unmanaged main node are also
unmanaged. The value of this field is set to 0 if
managed, whether explicitly listed in the NCIM
managedStatus table or not.
Note: This is the status at the time of the snapshot, and
therefore can differ from the contents of the NCIM
managedStatus table if it is dynamically altered.

entityChangeTime Timestamp of the last change to the entityStatus field.
Defaults to a zero timestamp if unused.

mainNodeChangeTime Timestamp of the last change to the mainNodeStatus
field. Defaults to a zero timestamp if unused.

Latest poll state information

Fields in the pollLog table that store latest poll state information are described
below.

Table 72. ncmonitor.pollLog database table latest poll state information fields

Column name Description

lastPollFailure Last time at which a ping poll failure event was raised.
Defaults to a zero timestamp if no poll failures have
been raised since the poller was started.

lastPollInterval Duration of the last complete polling cycle, in seconds.
This field is NULL if the policy is not actively
monitoring the entity or a complete poll cycle has not
finished since the poller started.
Note: The system must be on the third polling interval
when the snapshot is taken.

timeSinceLastPoll Number of seconds since the last poll, at the time the
snapshot was taken.

snapshotTime Time at which the data was retrieved from the poller.
This is a zero timestamp if the policy is not actively
monitoring the entity.

pollLogSummary table
This table stores a summary of the results for each snapshot written to the pollLog
table for a domain, generated using the views listed in the following sections. It is
populated using the ncp_ping_poller_snapshot.pl script which queries the poller,
and transfers the results to this table.

The following table lists the columns in the pollLogSummary table.

Note: The ncp_ping_poller_snapshot.pl script never clears out existing data from
this table, so the table can grow. If required, data that is no longer of interest can
be removed by filtering against the domainMgrId or the summaryTimestamp
fields.

218 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 73. ncmonitor.pollLogSummary database table

Column name Description

domainMgrId ID of the relevant domain, as found in the NCIM
domainMgr table.

domainName Name of the domain identified by the domainMgrId.

undiscoveredIps Count of IP addresses returned from the
undiscoveredIps view for this domain after the snapshot
was loaded to the pollLog.

unmonitoredIps Count of IP addresses returned from the unmonitoredIps
view for this domain after the snapshot was loaded to
the pollLog.

unmanagedIps Count of IP addresses returned from the unmanagedIps
view for this domain after the snapshot was loaded to
the pollLog.

unpolledFor15MinutesIps Count of IP addresses returned from the
unpolledFor15MinutesIps view for this domain after the
snapshot was loaded to the pollLog.

delayedPollPolicies Count of IP addresses returned from the
delayedPollPolicies view for this domain after the
snapshot was loaded to the pollLog table.

summaryTimestamp Timestamp indicating when the summary was generated.

undiscoveredIps view
The undiscoveredIps view lists any IP addresses that were are not discovered by
Network Manager and therefore are not listed in the NCIM topology database, but
that you expected to discover. The IP addresses listed in this table are those that
were loaded into the expectedIps table but are not present in NCIM.

The following table lists the columns in the undiscoveredIps view.

Table 74. ncmonitor undiscoveredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column..

unmonitoredIps view
The unmonitoredIps view uses the latest poller snapshot from the pollLog table to
list any IP addresses from the expectedIps table that are not currently being polled
because they are not in the scope of any active ping policy.

The following table lists the columns in the unmonitoredIps view.

Appendix G. Polling databases 219

Table 75. ncmonitor unmonitoredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

unmanagedIps view
The unmanagedIps view uses the latest poller snapshot from the pollLog table to
list any IP addresses from the expectedIps table that are in the scope of active ping
policies, but that are not being monitored because they are unmanaged. This is
based on the managed status known to the poller at the time of the snapshot.

The following table lists the columns in the unmanagedIps view.

Table 76. ncmonitor unmanagedIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

220 IBM Tivoli Network Manager IP Edition: Event Management Guide

unpolledFor15MinutesIps view
The unpolledFor15MinutesIps view uses the latest poller snapshot from the
pollLog table to list any IP addresses from the expectedIps table that have not been
ping polled at all in the last 15 minutes. This includes any IP addresses that are
unmanaged or outside the scope of the configured ping polling policies.

The following table lists the columns in the unpolledFor15MinutesIps view.

Table 77. ncmonitor unpolledFor15MinutesIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

delayedPollPolicies view
The delayedPollPolicies view uses the latest poller snapshot from the pollLog table
to list all active ping policies are lagging behind schedule.

If the current or previous time interval in the poll cycle (measured from the time at
which the poller snapshot was taken) are greater than twice the configured poll
interval, the entity and the relevant policy will be listed in this view. This excludes
entities that are out of poll scope (see unmonitoredIps view) or that have been
unmanaged (see unmanagedIps view), and only applies to the latest snapshot in
the pollLog table.

The following table lists the columns in the delayedPollPolicies view.

Table 78. ncmonitor delayedPollPolicies view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

Appendix G. Polling databases 221

Table 78. ncmonitor delayedPollPolicies view (continued)

Column name Description

entityType As defined in the NCIM entityType table, this will be:

v 1 for Chassis Ping polls

v 2 for Interface Ping polls

policy The policyName of the ping policy, as found in the
NCMONITOR policy table.

configuredPollInterval The configured pollInterval of the ping policy, as found
in the NCMONITOR policy table.

lastPollInterval The duration of the last complete polling cycle, in
seconds.

timeSinceLastPoll The number of seconds since the last poll, at the time the
snapshot was taken.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

discoveredIps view
The discoveredIps view lists all IP addresses in the NCIM topology database,
together with details of the associated device.

The following table lists the columns in the discoveredIps view.

Table 79. ncmonitor discoveredIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

mainNodeMgdStatus The current managed status of the main node, as found
in the NCIM managedStatus table.

entityMgdStatus The current managed status of the entity, as found in the
NCIM managedStatus table.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

222 IBM Tivoli Network Manager IP Edition: Event Management Guide

managementInterfaceIps view
The managementInterfaceIps view lists SNMP management interface IP addresses
for all devices for which Network Manager obtained SNMP access. It does not list
the IP addresses of chassis for which no SNMP access was obtained.

For SNMP-accessible devices, the IP address assigned to the chassis by Network
Manager must also be the IP address of an interface on that device. This view
therefore displays the set of IP addresses which can be monitored by both chassis
ping polls and interface ping polls.

The following table describes the columns in the managementInterfaceIps view.

Table 80. ncmonitor managementInterfaceIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

entityId The entityId of the interface, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

ifIndex The ifIndex of the interface from the NCIM interface
table.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

interfaceMgdStatus Managed status of the interface entity identified by the
mainNodeEntityId column from the last poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

chassisOnlyIps view
The chassisOnlyIps view lists the IP addresses which can only be monitored with
the chassis ping polls, as no interfaces with IP addresses have been discovered on
these devices. This is usually the case when Network Manager failed to obtain
SNMP access to the device, although it can also depend on the discovery
configuration.

The following table lists the columns in the chassisOnlyIps view.

Table 81. ncmonitor chassisOnlyIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

Appendix G. Polling databases 223

Table 81. ncmonitor chassisOnlyIps view (continued)

Column name Description

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

unpollableIps view
The unpollableIps view lists the IP addresses that the poller will not attempt to
ping poll. These IP addresses can be monitored using SNMP poll policies.

These are only the secondary IP addresses of multinet interfaces, where a single
interface has multiple IP addresses. Ping polls work from the accessIPAddress field
of the NCIM chassis and interface tables, and thus only a single IP address per
interface can be monitored using ping polls.

The following table lists the columns in the unpollableIps view.

Table 82. ncmonitor unpollableIps view

Column name Description

ip A dot-notation IPv4 address that is expected to have
been discovered and added to the NCIM topology
database.

mainNode The entityName of the main node, as found in the NCIM
entityData table.

mainNodeEntityId The entityId of the main node, as found in the NCIM
entityData table.

class The entityClass of the main node, as defined by the
NCIM classMembers and entityClass tables.

ifIndex ifIndex The ifIndex of the interface from the NCIM
interface table.

interfaceAccessIp interfaceAccessIp The primary, pollable IP address for
the multi-net interface that has this ip as a secondary IP
address.

mainNodeMgdStatus Managed status of the chassis entity identified by the
mainNodeEntityId column from the last poller snapshot.

interfaceMgdStatus interfaceMgdStatus Managed status of the interface
entity identified by mainNodeEntityId from the last
poller snapshot.

domainMgrId The ID of the relevant domain, as found in the NCIM
topology database domainMgr table.

domainName The name of the domain identified by the domainMgrId
column.

224 IBM Tivoli Network Manager IP Edition: Event Management Guide

OQL databases
The embedded OQL polling databases provide a number of polling configuration
options.

config database for polling
The config database is used by the polling engine, ncp_poller, for a variety of
purposes, including diagnostic and debugging purposes, facilitating failover in
high availability deployments, debugging the MIB grapher, and configuring the
storage limit for historical performance data.

The config database for polling is defined in $NCHOME/etc/precision/
NcPollerSchema.cfg.

The config database has the following tables:
v config.properties
v config.failover
v config.realTimeControl
v config.pruning

config.properties table
The config.properties table provides the option to configure a number of polling
settings.

You can set the values in the config.properties table by editing the following file:
$NCHOME/etc/precision/NcPollerSchema.cfg.

The following table describes the columns in the config.properties table.

Table 83. config.properties database table

Column name Constraints Data type Description

PolicyUpdateInterval Integer Interval in seconds at which
the ncp_poller process scans
the ncmonitor database for
changes to poll policy
configuration. Default is 30
seconds.

ManagedStatusUpdateInterval Integer Interval in seconds at which
the ncp_poller process scans
the NCIM managedStatus table
for changes. This is the
maximum time the poller
should take to react to changes
in managed status made in any
of the following GUIs:
Network Views, Network Hop
View, Structure Browser.
Default is 30 seconds.

LogAccessCredentials Boolean
integer

Controls whether SNMP access
credentials (community strings
and passwords) appear in
plain text. If this is set to false
then these strings are replaced
with a fixed length string of
asterisks. Default is False.

Appendix G. Polling databases 225

Table 83. config.properties database table (continued)

Column name Constraints Data type Description

UseGetBulk Boolean
integer

By default, GetBulk is not
used. Set this parameter to one
of the following values:

v 0: Default value. GetBulk is
not used by the SNMP
Helper.

v 1: Set this value to configure
the SNMP Helper to use
GetBulk requests in place of
GetNext requests when
SNMPv2 or v3 is used.

DefaultGetBulkMaxReps Integer This property defines the
number assigned to the
max-repetitions field in
GetBulk requests issued by
Network Manager processes.
The value 20 is used when the
GetBulk request contains a
single varbind. If multiple
varbinds are included, then the
value is adjusted accordingly
(divided by the number of
varbinds), so that responses
always contain a similar
number of varbinds.

config.failover table
The config.failover provides the option to configure failover settings for polling.

The following table describes the columns in the config.failover table.

Table 84. config.failover database table

Column name Constraints Data type Description

FailedOver Not NULL Boolean
integer

Used to facilitate failover in high
availability deployments. This value
must never be modified. You can
check this value to determine
whether the system has failed over.
This field can take the following
values:

v 0: poller in the primary domain is
actively polling, and the backup
poller is on standby

v 1: primary poller is not actively
polling, and the backup poller has
taken over

226 IBM Tivoli Network Manager IP Edition: Event Management Guide

config.realTimeControl table
The config.realTimeControl provides the option to configure settings for the
managing real-time poll policies in the MIB Grapher.

The following table describes the columns in the config.realTimeControl table. This
table is used by the MIB Grapher application to maintain real-time poll policies.
Although the table is not of general use, it can be used to debug MIB graphs if a
problem is encountered.

Table 85. config.realTimeControl database table

Column name Constraints Data type Description

POLICYID Not NULL

Primary key

Integer If there are any real-time graphs
active, a record will exist for each
one in this table, corresponding to
the poll policy created for each
graph and referenced using this
POLICYID field.

HEARTBEATCOUNT Not NULL Integer Provides an indication of how long
the graph has been active. This
value represents the number of
times the graph has updated the
record.

CHANGETIME Timestamp UNIX timestamp indicating the
last time a 'heartbeat' was
received.

config.pruning table
The config.pruning table provides the option to configure the storage limit for
historical performance data. The pruning table is used by the Polling engine to
configure the limit for the number of rows in the ncpolldata pollData table.

The following table describes the columns in the config.pruning table.

Table 86. config.pruning database table

Column name Constraints Data type Description

MAXPOLLDATAROWS Not NULL Long 64 Defines the maximum number of
rows allowed in the
ncpolldata.polldata table . Once
the number of rows exceeds this
limit the older data will be
pruned, until close to the limit
again. Increasing this number
will result in an increase in the
data storage size required for
historical data.
CAUTION: Increasing this value
can also lead to a degradation in
the performance of reports using
this data.

Appendix G. Polling databases 227

profiling database for polling
The profiling database is used by the polling engine, ncp_poller, for a variety of
purposes, including the storage of summary information for poll policies and poll
definitions, ping and SNMP response statistics, and general profiling statistics.

The profiling database for polling is defined in $NCHOME/etc/precision/
NcPollerSchema.cfg.

The profiling database has the following tables:
v profiling.policy
v profiling.icmp
v profiling.snmp
v profiling.engine

profiling.policy table
The profiling.policy table provides summary information for poll policies and poll
definitions.

The following table describes the columns in the profiling.policy table.

Table 87. profiling.policy database table

Column name Constraints Data type Description

AVGSCOPETIME Not NULL Integer The average time taken to evaluate
the scope of each poll (not counting
the first poll).

FIRSTSCOPETIME Not NULL Integer Time taken, in CPU clock ticks, for
the list of entities in scope for the
poll to be evaluated for the first
time.

ENTITYCOUNT Not NULL Integer Number of entities being monitored
by this poll policy and poll
definition combination.

POLICYID Not NULL

Primary key

Integer Value of the ncmonitor.poll.policyId
field.

POLICYNAME Not NULL Text Value of the
ncmonitor.policy.policyName field.

SCOPETIME Not NULL Integer The total time taken, in CPU clock
ticks, for the list of entities in scope
for the poll to be evaluated,
excluding the first time.

SCOPECOUNT Not NULL Integer The number of times that the scope
of the poll has been evaluated.

TARGETCOUNT Not NULL Integer Number of addresses being polled
by this poll policy and poll
definition combination.

TEMPLATEID Not NULL

Primary key

Integer Value of the
ncmonitor.poll.templateId field.

228 IBM Tivoli Network Manager IP Edition: Event Management Guide

profiling.icmp table
The profiling.icmp table stores information on ping response statistics.

The following table describes the columns in the profiling.icmp table.

Table 88. profiling.icmp database table

Column name Constraints Data type Description

IPVERSION Not NULL Text IPv4, IPv6, or all versions.

TIMEOUTS Not NULL Integer Number of ICMP requests for which
no replay has been received.

PACKETSIN Not NULL Text Number of ICMP packets received.

ERRORSIN Not NULL Integer Number of ICMP errors received.

PACKETSOUT Not NULL Integer Number of ICMP packets sent.

ERRORSOUT Not NULL Integer Total number of errors encountered
when sending ICMP packets.

profiling.snmp table
The profiling.snmp table stores information on SNMP response statistics.

The following table describes the columns in the profiling.snmp table.

Table 89. profiling.snmp database table

Column name Constraints Data type Description

ATTRIBUTESIN Not NULL Integer Total number of SNMP errors
received.

BACKOFFS Not NULL Integer Total number of times exponential
backoff was initiated.

DROPS Not NULL Integer Total number of packets received
that were not processed.

ERRORSOUT Not NULL Integer Total number of tooBig errors
received.

GETOPERATIONS Not NULL Text Number of SNMP Get operations
performed.

GETBULKSOUT Not NULL Integer Total number of SNMP Get Bulk
requests sent.

IPADDR Not NULL Text Management IP address of the target
device.

GETNEXTOUT Not NULL Integer Total number of SNMP Get Next
requests sent.

GETSOUT Not NULL Integer Total number of SNMP Get requests
sent.

NOSUCHNAMESIN Not NULL Integer Total number of noSuchName errors
received.

PACKETSIN Not NULL Integer Total number of SNMP packets
received, including errors.

PACKETSOUT Not NULL Integer Total number of SNMP packets sent.

RETRIES Not NULL Integer Total number of retries.

SETERRORSIN Not NULL Integer Number of errors received from Set
requests.

Appendix G. Polling databases 229

Table 89. profiling.snmp database table (continued)

Column name Constraints Data type Description

SETOPERATIONS Not NULL Integer Number of SNMP Set operations
performed.

SETSOUT Not NULL Integer Total number of Set requests sent.

TIMEOUTS Not NULL Integer Total number of SNMP operations
that timed out.

TOOBIGSIN Not NULL Integer Number of tooBig errors received.

WALKOPERATIONS Not NULL Integer Number of SNMP Walk operations
performed.

profiling.engine table
The profiling.engine table stores general profiling statistics information.

The following table describes the columns in the profiling.engine table.

Table 90. profiling.engine database table

Column name Constraints Data type Description

STARTTIME Not NULL Timestamp Time when profiling started.

LASTUPDATE Not NULL Timestamp Last time profiling statistics were
updated.

THREADSINUSE Not NULL Integer Number of active threads in the core
polling engine.

BATCHESQUEUED Not NULL Integer Number of batches that should be
running but for which there are no
threads available.

AVGBATCHTIME Not NULL Integer Average time in milliseconds to
process each batch of work.

230 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix H. Event enrichment databases

Use this information to understand the structure of databases used for event
enrichment and for the Event Gateway plug-ins.

ncp_g_event database
The Event Gateway database enables ncp_g_event, the Event Gateway, to transfer
data between Network Manager and Tivoli Netcool/OMNIbus.

The ncp_g_event database has the following database schema: config

The default configuration of the gateway is used for most systems. You can make
adjustments to the configuration settings by modifying the values inserted into the
Event Gateway config database. This database contains the configuration settings
that define the operation of the Event Gateway. For example, you can modify the
mappings used between Network Manager and Tivoli Netcool/OMNIbus and the
filters that determine which events are processed.

Entity data used by the Event Gateway is stored in NCIM cache, which is a copy
of the NCIM topology database. For more information on NCIM cache see the IBM
Tivoli Network Manager IP Edition Topology Database Reference.

For information about ncp_g_event command-line options, see the IBM Tivoli
Network Manager IP Edition Administration Guide.

The config database schema
The config database is used to configure event mapping between Tivoli
Netcool/OMNIbus and Network Manager.

The config database can also be used to define filters that limit the number of
events passed between Tivoli Netcool/OMNIbus and Network Manager.

The table below summarizes the config database schema. This schema is defined in
NCHOME/etc/precision/EventGatewaySchema.cfg. You can specify domain-specific
versions of this file using the format: NCHOME/etc/precision/
EventGatewaySchemadomain_name.cfg, where domain_name is the name of your
domain; for example, NCHOME/etc/precision/EventGatewaySchemaNCOMS.cfg.

Table 91. config database summary

Database name config

Defined in NCHOME/etc/precision/EventGatewaySchema.cfg

Fully qualified database table
names

config.defaults

config.eventMaps

config.failover

config.nco2ncp

config.ncp2nco

config.precedence

© Copyright IBM Corp. 2006, 2016 231

The topics below describe the database tables of the config database.

config.defaults table
The config.defaults table contains general configuration data for the Event
Gateway.

The table below describes the config.defaults table.

Note: The fields NcoAuthUserName and NcoAuthPassword are now configured in the
$NCHOME/etc/precision/NcoLogins.DOMAIN.cfg file.

Table 92. config.defaults Table Description

Column Name Constraints Data Type Description

IDUCFlushTime NOT NULL Integer Specifies the interval, in seconds, between
Insert Delete Update Control (IDUC) flushes
from the ObjectServer. The default value is 5.

ObjectServerUpdate
Interval

NOT NULL Integer Specifies the interval that the Event Gateway
uses to queue event enrichment updates to
the ObjectServer.

NcpServerEntity NOT NULL Text Specifies the IP address of the polling
station. By default, the gateway assumes that
the polling station for Network Manager IP
Edition is running on the local host. If you
want to set a different polling station, specify
the IP address of the polling station in the
NcpServerEntity field.
Note: Root cause analysis (RCA) cannot
perform isolated suppression if the device
specified in NcpServerEntity is not present
and connected within the topology.

Related tasks:
“Configuring the ObjectServer update interval field” on page 157
You can configure the interval that the Event Gateway uses to queue event
enrichment updates to the ObjectServer.
“Configuring the poller entity” on page 169
To enable the RCA plugin to perform isolated suppression when the Network
Manager server is not within the scope of your network domain, specify the IP
address or DNS name of the ingress interface as the poller entity.

config.precedence table
The config.precedence table lists events by event ID and contains the information
necessary to determine which event has precedence when multiple events occur on
the same interface. Based on the event ID, the config.precedence table also
determines which event map to use to process an event from Tivoli
Netcool/OMNIbus.

The table below describes the config.precedence table.

232 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 93. config.precedence Table Description

Column Name Constraints Data Type Description

Precedence NOT NULL Integer Specifies the number used by the root-cause
analysis (RCA) plug-in when there are
multiple events on the same entity within
the network topology. The number is used to
determine which of the events has
precedence and therefore suppresses the
other event on the interface. If a link down
event has a higher Precedence value than a
ping fail event, then the link down event
suppresses the ping fail event on the
interface.

These Precedence values are unique.

v 0 - An event with this Precedence value
cannot suppress any other events. The
event cannot become a root cause event. If
the Precedence value is set to 0, then the
event can become a symptom event or be
marked as cause unknown.

v 10000 and greater - An event with a
Precedence value greater than or equal to
10000 cannot be suppressed; and the event
cannot become a symptom event. The
event can only become a root cause event
or be marked as cause unknown.

EventMapName NOT NULL Text Specifies the name of the event map from
the config.eventMaps table that is used to
process the event with a matching EventId.

NcoEventId PRIMARY
KEY

NOT NULL

Text Specifies the mapping from the EventId in
the alerts.status table to the values of
Precedence and EventMapName defined in
this table.
Note: If an event is not listed in this table,
then the event is handled by the generic-ip
event map.

Related concepts:
“Precedence value” on page 131
At the same time that an event map is selected to handle the event, a numerical
precedence value is associated with an event. This precedence value is used by the
RCA plugin in cases where there are multiple events on the same entity. The event
with the highest precedence value on the entity is used to suppress other events.

config.eventMaps Table
The config.eventMaps table contains the event map that specifies how an event is
processed. The table holds information specific to each type of Tivoli
Netcool/OMNIbus event that is processed by the Event Gateway.

The table below describes the config.eventMaps table.

Appendix H. Event enrichment databases 233

Table 94. config.eventMaps table description

Column Name Constraints Data Type Description

EventMapName PRIMARY
KEY

NOT NULL

Text Specifies the name of the event map. This
value is referenced by the config.precedence
table.

HandledBy Text An alternative to the PolledEntityStitcher,
and provided for backwards compatibility.
Some legacy gateway eventMaps are
redundant, but removing them completely
would create upgrade problems. This field
allows a legacy eventMap to be mapped to
a new eventMap, and behave as if the
event had been handled by that eventMap.

EventCanFlap Boolean Indicates if it is possible for the event to
flap. Flapping is a condition where a device
or interface connects to and then
disconnects from the network repeatedly in
a short space of time. This causes problem
and clear events to be received one after
the other for the same device or interface.
Setting the EventCanFlap = 1 informs the
RCA plug-in of this condition.

The RCA plug-in places these events in the
mojo.events database with TimedEscalation
= 1 and are left there for 30 seconds. After
30 seconds one of the RCA plug-in stitchers
processes all events that are at least 30
seconds old and have the TimedEscalation
= 1 setting. By waiting 30 seconds to
process the event, the system ensures that
the entity that generated the event has
settled down and is not flapping.

Related concepts:
“Stitcher selection using event maps” on page 102
Use this information to understand how the Event Gateway is configured to enable
event maps to call specific Event Gateway stitchers.

config.nco2ncp table
The config.nco2ncp table is used to filter events being passed from Tivoli
Netcool/OMNIbus to Network Manager.

The table below describes the config.nco2ncp table.

234 IBM Tivoli Network Manager IP Edition: Event Management Guide

Table 95. config.nco2ncp table description

Column Name Constraints Data Type Description

EventFilter NOT NULL Text Specifies a filter that indicates which
events should be processed by the
Event Gateway. Events that match the
filter are processed.

Attention: Do not modify this filter
unless you are aware of the
consequences of the modification.
Only advanced users should modify
this filter.

StandbyEvent
Filter

Text Used when the primary server is
down and the backup server is active.
The standby filter only allows
ItnmHealthCheck events through the
Event Gateway. These events are
passed to the Failover plugin and tell
the system to switch back to primary
mode.

FieldFilter Externally defined
vblist data type

Object Specifies a subset of alerts.status fields
that are passed through to the Event
Gateway. If the field filter is empty
then all alerts.status fields are are
passed through. The purpose of this
filter is to limit the fields passed
through to the minimum required set
in order to lighten the processing
load.

The gateway determines whether to insert a new record or update an existing
record according to whether the ObjectServer sends the event as an insert using
IDUC or as an update.
Related concepts:
“Incoming event filter” on page 86
The incoming event filter filters out events from the ObjectServer and only passes
events that meet certain criteria.
“Standby filter” on page 88
In a failover deployment, the standby filter is used by the backup domain in a
failover pair. That means the backup domain when the primary is active, or the
primary domain if the backup is active. The standby filter only allows health check
(ItnmHealthCheck) events through the Event Gateway. These events are passed to
the Failover plugin and tell the system to switch back to primary mode. Note that
for failover behaviour, any modifications to this filter must still ensure that the
standby filter accepts health check events.

Appendix H. Event enrichment databases 235

config.ncp2nco table
The config.ncp2nco table is used to filter and map events passed from Network
Manager IP Edition to Tivoli Netcool/OMNIbus.

The table below describes the config.ncp2nco table.

Table 96. config.ncp2nco table description

Column Name Constraints
Data
Type Description

FieldFilter Externally
defined vblist
data type

Object Specifies the set of ObjectServer fields that
may be updated by the Event Gateway.

Related concepts:
“Outgoing field filter” on page 90
The outgoing field filter defines the set of ObjectServer fields that may be updated
by the Event Gateway.

config.failover table
The config.failover table contains the failover configuration and current failover
state of the Event Gateway component.

Attention: Do not manually change the values of the config.failover table. In a
failover configuration, the FailedOver field is modified by the virtual domain
process.

The table below describes the config.failover table.

Table 97. config.failover table description

Column Name Constraints Data Type Description

FailedOver NOT NULL Boolean Specifies the failover state.

v 0 - Not in a failover state

v 1 - In a failover state

ncp_g_event plug-in databases
The Event Gateway plug-in database tables are used by the plug-ins to store
processing data.

RCA plug-in database
The RCA plug-in database tables enable the RCA plug-in to perform root-cause
analysis.

236 IBM Tivoli Network Manager IP Edition: Event Management Guide

mojo.events events database table
The mojo database stores all event records sent for root cause analysis by the Event
Gateway. The database contains the mojo.events table.

The mojo database is defined in NCHOME/etc/precision/RCASchema.cfg.

The column names of the records are used in many of the conditional filters when
constructing event correlation methods.

The table below describes columns in the mojo.events table.

Table 98. Descriptions for the mojo.events database table columns

Column Name Constraints Data type Description

ChangeTime TIMESTAMP

Not null

Long Integer Specifies the time the event was last updated by
the RCA plug-in.

CreateTime TIMESTAMP

Not null

Long Integer Specifies the time the event was first seen by the
RCA plug-in.

Description Text Specifies a textual description of the event.

EntityType Not null Int A value of 1 or 8 indicates that this is a chassis
device.

EventId Text Type of event; for example NmosPingFail.

FirstOccurrence TIMESTAMP

Not null

Time the event was first seen by Tivoli
Netcool/OMNIbus.
Note: This value is set by the probe, not by Tivoli
Netcool/OMNIbus. This means that this field
arrives at the ObjectServer with a value already
set. Tivoli Netcool/OMNIbus never touches this
field.

IsIsolationPoint Not null Int Can take the following values:

v 0 - No

v 1 - Yes

IsLoopbackInterface Not null Int Can take the following values:

v 0 - No

v 1 - Yes

IsMasterEvent Not null Int Can take the following values:

v 0 - This is not the master event on the entity.

v 1 - This is the master event on the entity.

Note: The master event on an entity will suppress
all other events on that entity, should there be any.

IsOrphan Not null Int Can take the following values:

v 0 - No

v 1 - Yes

Note: This field is used internally to enable the
RCA plug-in to reprocess suppressed events whose
root cause event has since been deleted.

Appendix H. Event enrichment databases 237

Table 98. Descriptions for the mojo.events database table columns (continued)

Column Name Constraints Data type Description

LastOccurrence TIMESTAMP

Not null

Long Integer Time the event was last seen by Tivoli
Netcool/OMNIbus.
Note: This value is set by Tivoli
Netcool/OMNIbus itself when it receives the
event.

NmosCauseType Not null Int Can take the following values:

v 0 - Unknown

v 1 - Root cause

v 2 - Symptom

v 3 - Not suppressing and not suppressed

NmosEntityId Not null Int Entity on which the event occurred.

NmosObjInst Not null Int Entity ID for the chassis related to the entity on
which the event occurred.

NmosSerial Not null Int Serial number of the event that suppressed this
event.

Precedence Int A value from 0 to 10,000 indicating, where there
are multiple events on the same entity, the event to
be used to suppress the other events on that entity.
The event with the highest precedence value
suppresses the others.

RemoteNodeAlias Text Network address of the remote network entity

Serial Primary key

Not null

Uint Serial number of this event in Tivoli
Netcool/OMNIbus. Used to uniquely identify the
event and the record in mojo.events.

Severity Not null Int Severity of the event.

State Not null Int Event state for this event.

SuppressionState Not null Int Suppression state for this event. This field can take
the following values:

v 0 - No suppression

v 1 - Entity suppression

v 2 - Contained suppression

v 3 - ConnectedSuppression

v 4 - IsolatedSuppression

v 5 - PeerSuppression

SuppressionTime TIMESTAMP

Not null

Long Integer Time the event was last suppressed.

TimedEscalation Not null Int Can take the following values:

v 0 - Tells RCA plug-in to process the event
immediately.

v 1 - Tells RCA plug-in to process the event after
30 seconds. This is usually set by events that can
flap.

v 2 - Set for events that previously had the
TimedEscalation = 1 setting and have since
been processed.

238 IBM Tivoli Network Manager IP Edition: Event Management Guide

config.defaults database table
The config.defaults database table stores configuration data for the RCA plug-in
event queue.

The config database is defined in NCHOME/etc/precision/RCASchema.cfg.

The table below describes columns in the config.defaults database table.

Table 99. Descriptions for the config.defaults database table columns

Column Name Constraints Data type Description

RequeueableEventIds Text Specifies that events of certain types can be
requeued if the RCA plug-in queue becomes very
large. This ensures that only one event of a
specific event type exists in the queue at any one
time.

MaxAgeDifference NOT NULL Text Specifies the maximum age difference between
events that pass through the RCA plug-in. Events
that have a difference in age greater than this
specified value cannot suppress each other.

By default this option is switched off, that is, set
to 0. This means that events on the same entity
suppress each other regardless of the age of the
events.

HonourManagedStatus Integer Boolean Specifies whether the RCA plugin uses the
managed status of an entity in calculating the root
cause of an event. If this value is set to 1, then
events from unmanaged devices are ignored.

Related concepts:
“RCA and unmanaged status” on page 134
Use this information to understand how the RCA plug-in handles events from
devices that are in unmanaged state, also known as maintenance state.
Related tasks:
“Configuring the maximum age difference for events” on page 170
By default, events on the same entity suppress each other regardless of the age of
the events. An event received today can suppress an event received yesterday on
the same entity. You can change this by specifying a maximum age difference
between events that pass through the RCA plug-in. Events that have a difference in
age greater than this specified value cannot suppress each other.

SAE plug-in database
The SAE plug-in database tables enable the SAE plug-into generate service-affected
events for services such as MPLS VPNs and IP paths.

The table below summarizes the config database schema.

Table 100. config database summary

Database name config

Appendix H. Event enrichment databases 239

Table 100. config database summary (continued)

Defined in NCHOME/etc/precision/SaeSchema.cfg

NCHOME/etc/precision/SaeIPPath.cfg

NCHOME/etc/precision/SaeItnmService.cfg

NCHOME/etc/precision/SaeMplsVpn.cfg

Fully qualified database table
names

config.serviceTypes

Related concepts:
“SAE plug-in” on page 125
The SAE plug-in generates service-affected events for MPLS VPNs and IP paths.

config.serviceTypes table
The config.serviceTypes table contains configuration information for the SAE
plug-in.

The table below describes columns in the config.serviceTypes table.

Table 101. Descriptions for the config.serviceTypes database table columns

Column Name Constraints Data type Description

ServiceTypeName Primary key

Not null

Text Represents the type of service; for example, "MPLS
VPN Edge Service" or "IP Path". This string will
appear in the eventId field of the SAE event in the
ObjectServer and will also form part of the
Summary field of the SAE event in the
ObjectServer.

CollectionEntityType Not null Integer Used to specify the entity type that corresponds to
the collection that the SAE will be generated for;
for example 17 (VPN), 34 (ITNM Service), or 80 (IP
Path). For a listing of possible entity types in the
NCIM entityType table, see the IBM Tivoli Network
Manager Topology Database Guide.

ConstraintFilter Optional Text Used to constrain the entries of interest in the
collection table, if necessary. For example, for the
table networkVpn, entries that have Type = 'MPLS
Core' are excluded. In this case, the contraint filter
is formulated as follows: "networkVpn->VPNTYPE
<> 'MPLS Core'"

CustomerNameField Optional Text Used to specify where to obtain the customer name
string to append to the Summary field of the event
in the ObjectServer. For example, if the
ServiceEntity record contains the field Customer
then this can be used to retrieve a string such as
"ACME Inc" from the ServiceEntity topology
record. This example would take the form
"entityData->DESCRIPTION".

240 IBM Tivoli Network Manager IP Edition: Event Management Guide

ncp_g_event plug-in database tables in ncmonitor
Use this information to understand which Event Gateway configuration tables are
available in the ncmonitor database and what type of information each table
contains. Most of these tables relate to Event Gateway plug-in configuration.

The table below lists each Event Gateway plug-in configuration tables in the
ncmonitor database and explains the purpose of the table.

Table 102. Event Gateway plug-in configuration tables in ncmonitor

Table Description

ncmonitor.
gwPluginTypes

Lists the available plugin libraries. Similar idea to poller templates/poll definitions. This
should contain a single entry for the Adaptive Polling plugin.

ncmonitor.
gwPlugins

Lists the plugins that are enabled. Similar idea to the poller policies. This should contain a
handful of entries for the Adaptive Polling plugin.

ncmonitor.
gwPluginEventMaps

Identifies the event maps that each plugin is interested in. Plugins are only supplied with
events handled by listed event maps.

ncmonitor.
gwPluginEventStates

Identifies the type of event that each plugin is interested in. Plugins are only supplied with
events handled by listed event states.

ncmonitor.
gwSchemaFiles

Lists the OQL schema files to be read by the Event Gateway. These files are read in the
order they are listed, and therefore the EventGatewaySchema file should be the first file
listed, as it defines the tables. By default, this lists the EventGatewaySchema and
NcoGateInserts files. The purpose of this table is to allow additional self-contained schema
files to be supplied, with the same format as the existing NcoGateInserts file, for future
device support.

ncmonitor.
gwPluginConf

Allows optional configuration variables to be defined for specific plugins.
Note: It is intended for values that would not, under normal circumstances, be changed.

Related concepts:
“Adaptive polling plug-in” on page 119
Use this information to understand plug-in prerequisites, how the adaptive polling
plug-in populates fields in the activeEvent table, as well as configuration details
associated with the plug-in. The activeEvent table is in the NCMONITOR schema.
“Disco plug-in” on page 122
Use this information to understand some basic information about how this plug-in
operates, plug-in prerequisites, and configuration details associated with the
plug-in.
“zNetView plug-in” on page 126
Use this information to understand plug-in prerequisites as well as configuration
details associated with the plug-in.
Related tasks:
“Enabling and disabling plug-ins” on page 161
Use the ncp_gwplugins.pl script to enable and disable plug-ins. Run the script
separately for each plug-in.
“Listing plug-in information” on page 162
You can list information on Event Gateway plug-ins. For example, you can list the
event maps and event states that each plug-in subscribes to.
“Modifying event map subscriptions” on page 163
You can change the event maps that a plug-in subscribes to. For example, if you
add a new event map and want the system to perform RCA on events handled by
that event map, then you must add that event map to the subscription list for the
RCA plug-in.

Appendix H. Event enrichment databases 241

“Setting plug-in configuration parameters” on page 165
You can set optional configuration parameters for the Event Gateway plug-ins
using the ncp_gwplugins.pl script.

242 IBM Tivoli Network Manager IP Edition: Event Management Guide

Appendix I. Network Manager glossary

Use this information to understand terminology relevant to the Network Manager
product.

The following list provides explanations for Network Manager terminology.

AOC files
Files used by the Active Object Class manager, ncp_class to classify
network devices following a discovery. Device classification is defined in
AOC files by using a set of filters on the object ID and other device MIB
parameters.

active object class (AOC)
An element in the predefined hierarchical topology of network devices
used by the Active Object Class manager, ncp_class, to classify discovered
devices following a discovery.

agent See, discovery agent.

class hierarchy
Predefined hierarchical topology of network devices used by the Active
Object Class manager, ncp_class, to classify discovered devices following a
discovery.

configuration files
Each Network Manager process has one or more configuration files used to
control process behaviour by setting values in the process databases.
Configuration files can also be made domain-specific.

discovery agent
Piece of code that runs during a discovery and retrieves detailed
information from discovered devices.

Discovery Configuration GUI
GUI used to configure discovery parameters.

Discovery engine (ncp_disco)
Network Manager process that performs network discovery.

discovery phase
A network discovery is divided into four phases: Interrogating devices,
Resolving addresses, Downloading connections, and Correlating
connectivity.

discovery seed
One or more devices from which the discovery starts.

discovery scope
The boundaries of a discovery, expressed as one or more subnets and
netmasks.

Discovery Status GUI
GUI used to launch and monitor a running discovery.

discovery stitcher
Piece of code used during the discovery process. There are various
discovery stitchers, and they can be grouped into two types: data collection
stitchers, which transfer data between databases during the data collection

© Copyright IBM Corp. 2006, 2016 243

phases of a discovery, and data processing stitchers, which build the
network topology during the data processing phase.

domain
See, network domain.

entity A topology database concept. All devices and device components
discovered by Network Manager are entities. Also device collections such
as VPNs and VLANs, as well as pieces of topology that form a complex
connection, are entities.

event enrichment
The process of adding topology information to the event.

Event Gateway (ncp_g_event)
Network Manager process that performs event enrichment.

Event Gateway stitcher
Stitchers that perform topology lookup as part of the event enrichment
process.

failover
In your Network Manager environment, a failover architecture can be used
to configure your system for high availability, minimizing the impact of
computer or network failure.

Failover plug-in
Receives Network Manager health check events from the Event Gateway
and passes these events to the Virtual Domain process, which decides
whether or not to initiate failover based on the event.

Fault Finding View
Composite GUI view consisting of an Active Event List (AEL) portlet
above and a Network Hop View portlet below. Use the Fault Finding View
to monitor network events.

full discovery
A discovery run with a large scope, intended to discover all of the network
devices that you want to manage. Full discoveries are usually just called
discoveries, unless they are being contrasted with partial discoveries. See
also, partial discovery.

message broker
Component that manages communication between Network Manager
processes. The message broker used byNetwork Manager is called Really
Small Message Broker. To ensure correct operation of Network Manager,
Really Small Message Broker must be running at all times.

NCIM database
Relational database that stores topology data, as well as administrative
data such as data associated with poll policies and definitions, and
performance data from devices.

ncp_disco
See, Discovery engine.

ncp_g_event
See, Event Gateway.

ncp_model
See, Topology manager.

244 IBM Tivoli Network Manager IP Edition: Event Management Guide

ncp_poller
See, Polling engine.

network domain
A collection of network entities to be discovered and managed. A single
Network Manager installation can manage multiple network domains.

Network Health View
Composite GUI view consisting of a Network Views portlet above and an
Active Event List (AEL) portlet below. Use the Network Health View to
display events on network devices.

Network Hop View
Network visualization GUI. Use the Network Hop View to search the
network for a specific device and display a specified network device. You
can also use the Network Hop View as a starting point for network
troubleshooting. Formerly known as the Hop View.

Network Polling GUI
Administrator GUI. Enables definition of poll policies and poll definitions.

Network Views
Network visualization GUI that shows hierarchically organized views of a
discovered network. Use the Network Views to view the results of a
discovery and to troubleshoot network problems.

OQL databases
Network Manager processes store configuration, management and
operational information in OQL databases.

OQL language
Version of the Structured Query Language (SQL) that has been designed
for use in Network Manager. Network Manager processes create and
interact with their databases using OQL.

partial discovery
A subsequent rediscovery of a section of the previously discovered
network. The section of the network is usually defined using a discovery
scope consisting of either an address range, a single device, or a group of
devices. A partial discovery relies on the results of the last full discovery,
and can only be run if the Discovery engine, ncp_disco, has not been
stopped since the last full discovery. See also, full discovery.

Path Views
Network visualization GUI that displays devices and links that make up a
network path between two selected devices. Create new path views or
change existing path views to help network operators visualize network
paths.

performance data
Performance data can be gathered using performance reports. These
reports allow you to view any historical performance data that has been
collected by the monitoring system for diagnostic purposes.

Polling engine (ncp_poller)
Network Manager process that polls target devices and interfaces. The
Polling engine also collects performance data from polled devices.

poll definition
Defines how to poll a network device or interface and further filter the
target devices or interfaces.

Appendix I. Network Manager glossary 245

poll policy
Defines which devices to poll. Also defines other attributes of a poll such
as poll frequency.

Probe for Tivoli Netcool/OMNIbus (nco_p_ncpmonitor)
Acquires and processes the events that are generated by Network Manager
polls and processes, and forwards these events to the ObjectServer.

RCA plug-in
Based on data in the event and based on the discovered topology, attempts
to identify events that are caused by or cause other events using rules
coded in RCA stitchers.

RCA stitcher
Stitchers that process a trigger event as it passes through the RCA plug-in.

root-cause analysis (RCA)
The process of determining the root cause of one or more device alerts.

SNMP MIB Browser
GUI that retrieves MIB variable information from network devices to
support diagnosis of network problems.

SNMP MIB Grapher
GUI that displays a real-time graph of MIB variables for a device and usse
the graph for fault analysis and resolution of network problems.

stitcher
Code used in the following processes: discovery, event enrichment, and
root-cause analysis. See also, discovery stitcher, Event Gateway stitcher,
and RCA stitcher.

Structure Browser
GUI that enables you to investigate the health of device components in
order to isolate faults within a network device.

Topology Manager (ncp_model)
Stores the topology data following a discovery and sends the topology
data to the NCIM topology database where it can be queried using SQL.

WebTools
Specialized data retrieval tools that retrieve data from network devices and
can be launched from the network visualization GUIs, Network Views and
Network Hop View, or by specifying a URL in a web browser.

246 IBM Tivoli Network Manager IP Edition: Event Management Guide

Notices

This information applies to the PDF documentation set for IBM Tivoli Network
Manager IP Edition 3.9.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2016 247

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
958/NH04
IBM Centre, St Leonards
601 Pacific Hwy
St Leonards, NSW, 2069
Australia
IBM Corporation
896471/H128B
76 Upper Ground
London
SE1 9PZ
United Kingdom
IBM Corporation
JBF1/SOM1 294
Route 100
Somers, NY, 10589-0100
United States of America

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

248 IBM Tivoli Network Manager IP Edition: Event Management Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Trademarks
The terms in Table 103 are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

Table 103. IBM trademarks

AIX iSeries RDN

ClearQuest Lotus SecureWay

Cognos Netcool solidDB

Current NetView System z

DB2 Notes Tivoli

developerWorks OMEGAMON WebSphere

Enterprise
Storage Server

PowerVM z/OS

IBM PR/SM z/VM

Informix pSeries zSeries

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Java™ and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Notices 249

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Privacy policy considerations

IBM Software products, including software as a service solutions, ("Software
Offerings") may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM's privacy policy at http://www.ibm.com/privacy.

250 IBM Tivoli Network Manager IP Edition: Event Management Guide

http://www.ibm.com/privacy

Index

Special characters
<$nopage>root cause analysis, see RCA

examples 139
poller entity 140

A
accessibility x
adaptive polling

managing 51
adaptive polling plug-in 119
adaptive polling scenario

confirmation of threshold
violation 54

device down confirmation 51
adaptive polling scenarios 51
adaptive polls

creating 56
adding SAE types to SAE plug-in 167
administering

historical polled data 70
multiple poller feature 65
network polling 59
poll policy throttling 62
polls 59

alerts.status table
fields used for Network

Manager 201
AMOS process

root cause analysis 141
audience v

B
basic threshold expression

example 44
basic threshold policies

default 174
basic threshold poll definitions

changing 36
creation 23

basic threshold polls
changing 31

C
cards

entities 143
changing

basic threshold poll definitions 36
chassis ping poll definitions 40
generic threshold poll definitions 38
interface ping poll definitions 40
interval for checking poll policy

membership size 64
link state poll definitions 41
poll definitions 36
poll policies 31
remote ping poll definitions 41

changing poll definitions
example 43

chassis devices
downstream 144

chassis ping poll definitions
changing 40
creating 27

chassisOnlyIps view 223
checking topology paths used by

RCA 148
Chinese characters

See multibyte data
clear threshold

example 187
commands

SIGHUP 158
config database 231

for polling 225
config.defaults database 232

root cause analysis 239
config.eventMaps 233
config.eventMaps database 233
config.failover database 236
config.failover table

for polling 226
config.nco2ncp database 234
config.ncp2nco database 236
config.ncp2nco table 236
config.precedence database 232
config.properties table

for polling 225
config.pruning table

for polling 227
config.realTimeControl table

for polling 227
config.serviceTypes table 240
configuration parameters for Event

Gateway plug-ins
setting 165

configuring
event enrichment 153
Event Gateway plug-ins 161
extra event enrichment 153
poller entity 169
RCA plug-in 169
root-cause analysis 169
SAE plug-in 166

connected interfaces 142
connecting entities 143
contained interfaces 141
conventions, typeface xi
copying

get_policies.pl program 61
polls

across domains 61
creating

adaptive polls 56
basic threshold poll definitions 23
chassis ping poll definitions 27
generic threshold poll definitions 25
interface ping poll definitions 27

creating (continued)
link state poll definitions 29
poll definitions 23
remote ping poll definitions 29

D
data extraction stitchers 109
data labels 9
database tables

RCA plug-in 236
SAE plug-in 239

databases 233, 236
config 231
config.defaults 232, 239
config.failover 236
config.nco2ncp 234
config.precedence 232
for event enrichment 231
for polling 213
gateway 231
mojo.events 237
ncmonitor 213
ncp_g_event 231

databases for polling
config.failover table 226
config.properties table 225
config.pruning table 227
config.realTimeControl table 227
profiling.engine table 230
profiling.icmp table 229
profiling.policy table 228
profiling.snmp table 229

default event maps 99
default precedence values 132
defining using multibyte data 10
delayedPollPolicies view 221
deleting

poll definitions 49
poll policies 47

descriptions
RCA stitchers 138

devices
chassis 142, 144
Chassis 141
main node 141

disabling
Event Gateway plug-ins 161
network view updates for poll

policies 64
poll policies 60

disabling polls 11
disco plug-in 122
discoveredIps view 222
downstream 140
downstream chassis devices

root cause analysis 144
downstream devices

root cause analysis 139

© Copyright IBM Corp. 2006, 2016 251

E
education

see Tivoli technical training x
enabling

Event Gateway plug-ins 161
network view updates for poll

policies 64
poll policies 60

enabling polls 11
entities

cards 143
virtual routers 143
VLANs 143

entity retrieval stitchers 110
EntityFromIfString.stch 111
environment variables, notation xi
eval statement

in threshold expressions 189
event categories 207
event correlation 83
event enrichment 83

assigning states to different event
types 93

configuring 153
configuring extra event

enrichment 153
data extraction stitchers 109
enriching event with interface

name 155
enriching event with main node

device location 154
entity retrieval stitchers 110
event enrichment stitchers 112
event filter 86
event filtering 85
event handling 97
event maps 97
event state 93
event state diagram 94
example 115, 154, 155
field filter 89, 90
incoming event filter 86
incoming field filter 89
outgoing field filter 90
poller entity 140
precedence value 131
quick reference 83
standby filter 88
stitchers 105
stitchers not used by default 114
topology lookup stitchers 105

event enrichment databases 231
event enrichment stitchers 112
event fields 199
event filter 86

incoming to Event Gateway 85
event filtering 85
Event Gateway

assigning states to different event
types 93

configuring 158
configuring extra event

enrichment 153
data extraction stitchers 109
entity retrieval stitchers 110
event enrichment stitchers 112
event handling 97

Event Gateway (continued)
event maps 97
event state 93
event state diagram 94
filter 85
incoming filter 85
logging into the databases using

OQL 158
methods for selecting event maps 98
NcpServerEntity 133
outgoing queue 91
plug-in configuration tables 241
poller entity 140
Poller entity 133
precedence value 131
precedence values 132
selecting event maps 97
standby filter 88
stitchers 102
stitchers not used by default 114
topology lookup stitchers 105

Event Gateway plug-in configuration
parameters

setting 165
Event Gateway plug-in information

listing 162
Event Gateway plug-ins

configuring 161
disabling 161
enabling 161
subscriptions 163

Event Gateway plugins 118
RCA 130

Event Gateway SAE plug-in
adding SAE types 167

Event Gateway stitchers
example 107, 109, 111, 113

event handling 97
event map

selection 97
selection methods 98
selection using the Event

Gateway 97
event mappings 233, 236
event maps 97

default 99
event state 93
event state diagram 94
event types 93
events

maximum age difference for
RCA 170

network 208
service-affected (SAE)

summary fields 166
status information 208

example
data extraction stitcher 109
entity retrieval stitcher 111
event enrichment 115, 154, 155
event enrichment stitcher 113
Event Gateway stitcher 107, 109, 111,

113
poll definition

example of threshold
expression 44

threshold expression 44

example (continued)
topology lookup stitcher 107

examples
threshold polling 7

expectedIps table 216
extra event enrichment

configuring 153
ExtractIfString.stch 109

F
failover plug-in 123
failures

chassis 142
field filter 89, 90
field mappings

Network Manager to
alerts.status 201

filter
incoming to Event Gateway 85

G
generic threshold expression

example 44
generic threshold policies

default 174
generic threshold poll definitions

changing 38
creation 25

generic threshold polls
changing 31
examples 187

glossary 243

H
historical polled data

administering 70
historical polling

deleting data 73

I
incoming event filter 86
incoming field filter 89
interface ping poll definitions

changing 40
creating 27

interfaces 145
contained 141
downstream 142
loopback 141
upstream 142

interval for checking poll policy
membership size

changing 64
isolated suppression 144, 147

L
link state poll definitions

changing 41
creating 29

252 IBM Tivoli Network Manager IP Edition: Event Management Guide

link state polls
changing 31

listing
Event Gateway plug-in

information 162
locales

See multibyte data
lookup stitchers 105
LookupIp.stch 107
loopback interfaces 141

M
managed status

and RCA 134
managementInterfaceIps view 223
managing

adaptive polling 51
manuals vii
maximum age differencefor RCA 170
membership size of poll policies

changing checking interval 64
mojo.events database

root cause analysis 237
multibyte data

in poll definitions 10
multiple poller feature

adding poller 67
administering 65
overview 66
removing poller 69

N
NCIM database

querying using OQL 158
NCMONITOR

polling databases 213
polling status tables 216

ncmonitor database
chassisOnlyIps view 223
delayedPollPolicies view 221
discoveredIps view 222
Event Gateway plug-in configuration

tables 241
expectedIps table 216
managementInterfaceIps view 223
pollLog table 216
pollLogSummary table 218
SNMP 213
snmpAccess table 214
snmpTarget table 213
snmpUser table 215
snmpv1Sec table 215
snmpv3Sec table 215
undiscoveredIps view 219
unmanagedIps view 220
unmonitoredIps view 219
unpollableIps view 224
unpolledFor15MinutesIps view 221

ncp_g_event 231
NcpServerEntity 133
network events 208
Network Manager event categories 207
Network Manager event fields 199
Network Manager glossary 243

Network Manager to alerts.status
mappings 201

network polling
administering 59

network view updates for poll policies
disabling 64
enabling 64

O
ObjectServer

querying using OQL 158
online publications vii
operators

in threshold expressions 192
OQL polling databases 225
ordering publications vii
outgoing field filter 90
outgoing queue

on Event Gateway 91
overview

multiple poller feature 66

P
parameters

of poll definitions 4
of poll policies 2

pathsfor RCA 148
ping policies

default 173
ping polling

overview 5
poll definition types 8

ping polls
changing 31

plug-in
quick reference for RCA 131

plug-in configuration parameters
setting 165

plug-in information
listing 162

plug-ins
adaptive polling 119
configuration tables 241
configuring 161
disabling 161
disco 122
enabling 161
failover 123
PostNCIMProcessing 124
SAE 125
subscriptions 163
zNetView 126

plugins 118
event map subscriptions 128

for plugins 128
RCA 130

policy throttling
administering 62

Poll Definition Editor 23
poll definition types 8
poll definitions 10

changing 36
example 43

creation 23

poll definitions (continued)
data labels 9
defaults 179
definition 4
deletion 49
mechanisms

ping 5
SNMP 5

overview 4
parameters 4
remote ping 6
SNMP link state 5
threshold 7
threshold expressions 189

poll policies
changing 31
defaults

basic threshold 174
generic threshold 174
ping 173
remote ping 173
reporting 177

definition 1
deletion 47
disabling 60
enabling 60
example 35
overview 1
parameters 2
refreshing 60
retrieving status 59

poll policy
scope 2

poll policy membership size
changing checking interval 64

poll policy network view updates
disabling 64
enabling 64

poll policy throttling
administering 62

poller
adding 67
removing 69

poller entity 140
configuring 169

Poller entity 133
polling

adaptive polling scenarios 51
administering network polling 59
default probes 1
managing adaptive polling 51
overview 1

polling database
embedded OQL databases 225

polling databases 213
config database 225
config.failover table 226
config.properties table 225
config.pruning table 227
config.realTimeControl table 227
NCMONITOR 213
profiling database 228
profiling.engine table 230
profiling.icmp table 229
profiling.policy table 228
profiling.snmp table 229

polling status tables 216

Index 253

pollLog table 216
pollLogSummary table 218
polls

across domains 61
administering 59
copying 61
disabling 11
enabling 11

PostNCIMProcessing plug-in 124
precedence value 131
precedence values

defaults 132
Probe for Tivoli Netcool/OMNIbus

configuring 195
properties file 195
rules file 196

process
for event enrichment 83

processes
events generated 208

profiling database
for polling 228

profiling.engine table
for polling 230

profiling.icmp table
for polling 229

profiling.policy table
for polling 228

profiling.snmp table
for polling 229

programs
get_policies.pl 61

publications vii

Q
querying

NCIM database using OQL 158
ObjectServer using OQL 158

queue
outgoing on Event Gateway 91

quick reference
event enrichment 83
RCA plug-in 131

R
RCA 130

and managed status 134
checking topology paths 148
configuring 169
isolated suppression 144, 147
maximum age difference for

suppression 170
precedence value 131
precedence values 132

RCA example
connected interfaces 142
contained interfaces 141
directly connected interface 146
related logical interface 146

RCA plug-in
configuring 169
database tables 236
quick reference 131

RCA stitchers 136

RCA stitchers (continued)
descriptions 138
sequence 136

reference
event enrichment 83
RCA plug-in 131

refreshing
poll policies 60

remote ping policies
default 173

remote ping poll definitions
changing 41
creating 29

remote ping polling
overview 6
restrictions 6

reporting policies
default 177

retrieving
status of poll policies 59

root cause analysis 141
AMOS process 141
config.defaults database 239
contained interfaces 141
downstream chassis devices 144
mojo.events database 237

Root Cause Analysis
isolated suppression 144, 147

root-cause analysis 130
checking topology paths 148
configuring 169
maximum age difference for

suppression 170
rules file processing example 197

S
SAE plug-in 125

adding SAE types 167
config.serviceTypes table 240
configuring 166
database tables 239

SAEs
configuring summary fields 166

scenarios
for adaptive polling 51

scope
of poll policy 2

selection
of event map 97
of event map using the Event

Gateway 97
selection methods

for event map 98
sequence

RCA stitchers 136
setting

Event Gateway plug-in configuration
parameters 165

SIGHUP command 158
SNMP

ncmonitor database 213
SNMP link state polling

overview 5
SNMP polling

overview 5
poll definition types 8

snmpAccess table 214
snmpTarget table 213
snmpUser table 215
snmpv1Sec table 215
snmpv3Sec table 215
StandardEventEnrichment.stch 113
standby filter 88
state

of events 93
status information events 208
stitchers

example for Event Gateway 107, 109,
111, 113

examples of Event Gateway stitchers
not used by default 114

ExtractIfString.stch 109, 111
for data extraction 109
for entity retrieval 110
for event enrichment 105, 112
for Event Gateway 102
for topology lookup 105
LookupIp.stch 107
RCA stitcher descriptions 138
RCA stitcher sequence 136
StandardEventEnrichment.stch 113

storage capacity
considerations to determine increasing

the storage limit 70
example 72
guidelines to determine increasing the

storage limit 71
subscriptions

for Event Gateway plug-ins 163
support information xi

T
tables

expectedIps 216
pollLog 216
pollLogSummary 218
snmpAccess 214
snmpTarget 213
snmpUser 215
snmpv1Sec 215
snmpv3Sec 215

threshold expression
example 44

threshold expressions
operators 192
syntax 189
use of the eval statement 189

threshold polling
example 7
overview 7

throttling
administering 62

Tivoli software information center vii
Tivoli technical training x
topology lookup stitchers 105
topology pathsfor RCA 148
training, Tivoli technical x
trigger threshold

example 187
typeface conventions xi

254 IBM Tivoli Network Manager IP Edition: Event Management Guide

U
undiscoveredIps view 219
unmanagedIps view 220
unmonitoredIps view 219
unpollableIps view 224
unpolledFor15MinutesIps view 221
upstream 140
upstream devices

root cause analysis 139

V
variables, notation for xi
views

chassisOnlyIps 223
delayedPollPolicies 221
discoveredIps 222
managementInterfaceIps 223
undiscoveredIps 219
unmanagedIps 220
unmonitoredIps 219
unpollableIps 224
unpolledFor15MinutesIps 221

virtual routers
entities 143

VLANs
entities 143

Z
zNetView plug-in 126

Index 255

256 IBM Tivoli Network Manager IP Edition: Event Management Guide

IBM®

Printed in the Republic of Ireland

	Contents
	About this publication
	Intended audience
	What this publication contains
	Publications
	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this publication

	Chapter 1. About polling the network
	Poll policies
	Poll policy parameters
	Poll policy scope

	Poll definitions
	Poll definition parameters
	Polling mechanisms
	Ping polling
	SNMP polling

	Poll definition types
	Data labels
	Ping polling properties and metrics

	Multibyte data in poll definitions

	Chapter 2. Enabling and disabling polls
	Chapter 3. Creating polls
	Creating fully featured poll policies
	Creating simple poll policies
	Quick reference for poll policy creation based on custom data

	Chapter 4. Creating new poll definitions
	Creating basic threshold poll definitions
	Creating generic threshold poll definitions
	Creating chassis and interface ping poll definitions
	Creating remote ping and link state poll definitions

	Chapter 5. Changing polls
	Changing poll policies
	Example poll policy

	Changing poll definitions
	Changing basic threshold poll definitions
	Changing generic threshold poll definitions
	Changing chassis and interface ping poll definitions
	Changing remote ping and link state poll definitions
	Example customized poll definition
	Example basic threshold expression
	Example generic threshold expression

	Chapter 6. Deleting poll policies
	Chapter 7. Deleting poll definitions
	Chapter 8. Managing adaptive polling
	Adaptive polling scenarios
	Rapid confirmation that device is really down
	Rapid confirmation of a threshold violation

	Creating adaptive polls

	Chapter 9. Administering network polling
	Administering polls
	Speeding up ncp_poller startup by not checking SNMP credentials
	Retrieving poll status
	Enabling and disabling polls
	Refreshing polls
	Copying polls across domains
	Polling suspension options
	Adjusting polling bandwidth
	Adjusting the size of poll data queues
	Configuring how many events the poller reads
	Changing the interval for checking poll policy membership size
	Enabling and disabling network view updates for poll policies

	Configuring Link State polling
	Configuring SNMP threshold polls

	Administering multiple pollers
	Multiple poller overview
	Setting up additional pollers
	Assigning a poller for MIB graphing

	Removing a poller

	Administering historical polled data
	Storage capacity considerations
	Storage capacity guidelines for historical polled data
	Example of storage capacity calculation

	Increasing the storage limit for historical polled data
	Deleting historical polled data

	Monitoring poller capacity
	Querying the status of entities

	Chapter 10. Troubleshooting ping polling
	Chapter 11. About event enrichment and correlation
	Event enrichment
	Quick reference for event enrichment
	Event filtering
	Incoming filter
	Outgoing field filter

	Event states
	Event types
	Event state diagram

	Event handling
	Event maps
	Event Gateway stitchers

	Example: Default enrichment of a Tivoli Netcool/OMNIbus trap event

	Event Gateway plugins
	Plugin descriptions
	Adaptive polling plug-in
	Disco plug-in
	Failover plug-in
	PostNCIMProcessing plug-in
	SAE plug-in
	zNetView plug-in

	Plug-in subscriptions

	Root-cause analysis
	Quick reference for RCA
	Precedence value
	Default precedence values

	Poller entity
	RCA and unmanaged status
	RCA stitchers
	RCA stitcher sequence
	Predefined constants in RCA stitchers
	RCA stitcher descriptions

	Examples of root cause analysis
	Definition of downstream and upstream within RCA
	Chassis devices and loopback interfaces
	Interfaces

	Checking topology paths used by RCA
	About the RCA path tool
	Using the RCA path tool
	Example: Determining potential root causes along a path
	Example: Determining alternative paths

	Chapter 12. Configuring event enrichment
	Configuring extra event enrichment
	Modifications to the ObjectServer alerts.status table
	Example: Enriching an event with main node device location
	Example: Enriching an event with interface name

	Configuring the ObjectServer update interval field
	Using the OQL service provider to log into the Event Gateway databases
	Querying the ObjectServer
	Querying the NCIM database

	Resynchronizing events with the ObjectServer
	Configuring common Event Gateway properties

	Chapter 13. Configuring Event Gateway plug-ins
	Enabling and disabling plug-ins
	Listing plug-in information
	Modifying event map subscriptions
	Setting plug-in configuration parameters
	Configuring the SAE plug-in
	Configuring summary field information in service-affected events
	Adding SAE types to the SAE plug-in

	Chapter 14. Configuring root-cause analysis
	Configuring the poller entity
	Configuring the maximum age difference for events
	RCA considerations in a cross-domain network

	Appendix A. Default poll policies
	Default ping policies
	Default remote ping policies
	Default SNMP threshold policies
	Default SNMP link state policies
	Poll policies used by reporting

	Appendix B. Default poll definitions
	Appendix C. Example trigger and clear thresholds
	Appendix D. Syntax for poll definition expressions
	eval statement syntax in threshold expressions
	eval statement syntax for SNMP variables
	eval statement syntax for network entity variables
	eval statement syntax for poll policy variables
	eval statement syntax for poll definition variables

	Operators in threshold expressions

	Appendix E. Configuration of the Probe for Tivoli Netcool/OMNIbus
	About the nco_p_ncpmonitor.props file
	About the nco_p_ncpmonitor.rules file
	nco_p_ncpmonitor.rules configuration reference
	Example of rules file processing
	Network Manager event data fields
	alerts.status fields used by Network Manager

	Appendix F. Network Manager event categories
	Network Manager network events
	Network Manager status events

	Appendix G. Polling databases
	NCMONITOR databases
	SNMP tables for polling in the ncmonitor database
	ncmonitor.snmpTarget table
	ncmonitor.snmpAccess table
	ncmonitor.snmpv1Sec table
	ncmonitor.snmpv3Sec table
	ncmonitor.snmpUser table

	Ping polling status tables
	expectedIps table
	pollLog table
	pollLogSummary table
	undiscoveredIps view
	unmonitoredIps view
	unmanagedIps view
	unpolledFor15MinutesIps view
	delayedPollPolicies view
	discoveredIps view
	managementInterfaceIps view
	chassisOnlyIps view
	unpollableIps view

	OQL databases
	config database for polling
	config.properties table
	config.failover table
	config.realTimeControl table
	config.pruning table

	profiling database for polling
	profiling.policy table
	profiling.icmp table
	profiling.snmp table
	profiling.engine table

	Appendix H. Event enrichment databases
	ncp_g_event database
	The config database schema
	config.defaults table
	config.precedence table
	config.eventMaps Table
	config.nco2ncp table
	config.ncp2nco table
	config.failover table

	ncp_g_event plug-in databases
	RCA plug-in database
	mojo.events events database table
	config.defaults database table

	SAE plug-in database
	config.serviceTypes table

	ncp_g_event plug-in database tables in ncmonitor

	Appendix I. Network Manager glossary
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Z

