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Preface

This book began when I was assigned to help salvage an undergraduate computer
organization course. The course had suffered years of neglect: it had been taught by a
series of professors, mostly visitors, who had little or no interest or background in digi-
tal hardware, and the curriculum had deteriorated to a potpourri of topics that were only
loosely related to hardware architectures. In some semesters, students spent the entire
class studying Boolean Algebra, without even the slightest connection to actual
hardware. In others, students learned the arcane details of one particular assembly
language, without a notion of alternatives.

Is a computer organization course worth saving? Absolutely! In many Computer
Science programs, the computer organization course is the only time students are ex-
posed to fundamental concepts that explain the structure of the computer they are pro-
gramming. Understanding the hardware makes it possible to construct programs that
are more efficient and less prone to errors. In a broad sense, a basic knowledge of ar-
chitecture helps programmers improve program efficiency by understanding the conse-
quences of programming choices. Knowing how the hardware works can also improve
the programming process by allowing programmers to pinpoint the source of bugs
quickly. Finally, graduates need to understand basic architectural concepts to pass job
application tests given by firms like Intel and Microsoft.

One of the steps in salvaging our architecture course consisted in looking at text-
books. We discovered the texts could be divided into roughly two types: texts aimed at
beginning engineering students who would go on to design hardware, and texts written
for CS students that attempt to include topics from compilers, operating systems, and
(in at least one case) a complete explanation of how Internet protocols operate. Neither
approach seemed appropriate for a single, introductory course on the subject. We want-
ed a book that (1) focused on the concepts rather than engineering details (because our
students are not focused on hardware design); (2) explained the subject from a
programmer’s point of view, and emphasized consequences for programmers; and (3)
did not try to cover several courses’ worth of material. When no text was found, it
seemed that the only solution was to create one.

The text is divided into five parts. Part 1 covers the basics of digital logic, gates,
and data representation. We emphasize the representation chapter because notions of
two’s-compliment arithmetic and ranges of integer values are essential in programming.
Parts 2, 3, and 4 cover the three essential areas of architecture: processors, memories,
and I/O systems. In each case, the chapters give students enough background to under-



xxii Preface

stand how the mechanisms operate and the consequences for programmers. Finally,
Part 5 covers advanced topics like parallelism, pipelining, and performance.

An Appendix describes an important aspect of the course: a hands-on lab where
students can learn by doing. Although most lab problems focus on programming, stu-
dents should spend the first few weeks in lab wiring a few gates on a breadboard. The
equipment is inexpensive (we spent less than fifteen dollars per student on permanent
equipment; students purchase their own set of chips for under twenty dollars).

We have set up a web site to accompany the book at:

http://www.eca.cs.purdue.edu

Rajesh Subraman has agreed to manage the site, which contains a set of class presenta-
tion materials created by the author as well as a set created by Rajesh. We invite other
instructors to contribute their materials.

The text and lab exercises have been used at Purdue; students have been extremely
positive about both. We received notes of thanks for the text and course. For many
students, the lab is their first experience with hardware, and they are enthusiastic.

My thanks to the many individuals who contributed to the book. Bernd Wolfinger
provided extensive reviews and made several important suggestions about topics and
direction. Dan Ardelean, James Cernak, and Tim Korb gave detailed comments on
many chapters. Dave Capka reviewed early chapters. Rajesh Subraman taught from the
book and provided his thoughts about the content. In the CS 250 class at Purdue, the
following students each identified one or more typos in the manuscript: Nitin Alreja,
Alex Cox, David Ehrmann, Roger Maurice Elion, Andrew Lee, Stan Luban, Andrew L.
Soderstrom, and Brandon Wuest.

Finally, I thank my wife, Chris, for her patient and careful editing and valuable
suggestions that improve and polish each book.

Douglas E. Comer

June, 2004

http://www.eca.cs.purdue.edu
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1

Introduction And Overview

1.1 The Importance Of Architecture

Computers are everywhere. Cell phones, video games, and automobiles all contain
computer systems. Each of these systems depends on software, which brings us to an
important question: why should someone interested in building software study computer
architecture? The answer is that understanding the hardware makes it possible to write
smaller, faster code that is less prone to errors. A basic knowledge of architecture also
helps programmers appreciate the relative cost of operations (e.g., the time required for
an I/O operation compared to the time required for an arithmetic operation) and the ef-
fects of programming choices. Finally, understanding how hardware works helps pro-
grammers debug — someone who is aware of the hardware has more clues to help spot
the source of bugs. In short, the more a programmer understands about the underlying
hardware the better they will be at creating software.

1.2 Learning The Essentials

As any hardware engineer will tell you, digital hardware used to build computer
systems is incredibly complex. In addition to myriad technologies and intricate sets of
electronic components that constitute each technology, engineers must master design
rules that dictate how the components can be constructed and how they can be intercon-
nected to form systems. Furthermore, the technologies continue to evolve, and newer,
smaller, faster components appear continuously.

1



2 Introduction And Overview Chap. 1

Fortunately, as this text demonstrates, it is possible to understand architectural
components without knowing low-level technical details. The text focuses on essen-
tials, and explains computer architecture in broad, conceptual terms — it describes each
of the major components and examines their role in the overall system. Thus, readers
do not need a background in electronics or electrical engineering to understand the sub-
ject.

1.3 Organization Of The Text

What are the major topics we will cover? The text is organized into five parts.

Basics. The first section covers two topics that are essential to the rest
of the book: digital logic and data representation. We will see that in each
case, the issue is the same: the use of electronic mechanisms to represent
and manipulate digital information.

Processors. One of the three principle areas of architecture, process-
ing concerns both computation (e.g., arithmetic) and control (e.g., executing
a sequence of steps). We will learn about the basic building blocks, and
see how the blocks are used in a modern Central Processing Unit (CPU).

Memory. The second principle area of architecture, memory systems,
focuses on the storage and access of digital information. We will examine
both physical and virtual memory systems, and understand one of the most
important concepts in computing: caching.

I/O. The third principle area of architecture, input and output, focuses
on the interconnection of computers and devices such as keyboards, mice,
displays, disks, and networks. We will learn about bus technology, see
how a processor uses a bus to communicate with a device, and understand
the role of device driver software.

Advanced Topics. The final section focuses on two important topics
that arise in many forms: parallelism and pipelining. We will see how ei-
ther parallel or pipelined hardware can be used to improve overall perfor-
mance.
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1.4 What We Will Omit

Boiling a topic down to essentials means choosing items to omit. In the case of
this text, we have chosen breadth rather than depth — when a choice is required, we
have chosen to focus on concepts instead of details. Thus, the text covers the major
topics in architecture, but omits lesser-known variants and low-level engineering details.
For example, our discussion of how a basic nor-gate operates gives a simplistic descrip-
tion without discussing the exact internal structure or discussing exactly how a gate dis-
sipates the electrical current that flows into it. Similarly, our discussion of processors
and memory systems avoids quantitative analysis of performance that an engineer
needs. Instead, we take a high-level view aimed at helping the reader understand the
overall design and the consequences for programmers rather than preparing the reader to
build hardware.

1.5 Terminology: Architecture And Design

Throughout the text we will use the term architecture to refer to the overall organi-
zation of a computer system. A computer architecture is analogous to a blueprint — the
architecture specifies the interconnection among major components and the overall
functionality of each component without giving many details. Before a digital system
can be built that implements a given architecture, engineers must translate the overall
architecture into a practical design that accounts for details that the architectural specifi-
cation omits. For example, the design must specify how components are grouped onto
circuit boards and how power is distributed to each board. Eventually, a design must be
implemented, which entails choosing specific hardware from which the system will be
constructed. A design represents one possible way to realize a given architecture, and
an implementation represents one possible way to realize a given design. The point is
that architectural descriptions are abstractions, and we must remember that many
designs can be used to satisfy a given architecture and many implementations can be
used to realize a given design.

1.6 Summary

This text covers the essentials of computer architecture: digital logic, processors,
memories, I/O, and advanced topics. The text does not require a background in electri-
cal engineering or electronics. Instead, topics are explained by focusing on concepts,
avoiding low-level details, and concentrating on items that are important to program-
mers.
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2

Fundamentals Of Digital
Logic

2.1 Introduction

This chapter covers the basics of digital logic. The goal is straightforward — pro-
vide a background that is sufficient for a reader to understand remaining chapters.
Thus, we will not need to delve into electrical details, discuss the underlying physics, or
learn the design rules that engineers follow to interconnect devices. Instead, we will
learn a few basics that will allow us to understand how complex digital systems work.

2.2 Electrical Terminology: Voltage And Current

Engineers use the terms voltage and current to refer to quantifiable properties of
electricity: the voltage between two points (measured in volts) represents the potential
force, and the current (measured in amperes or amps) represents the flow of electrons
along a path (e.g., along a wire). A good analogy can be made with water: voltage
corresponds to water pressure, and current corresponds to the amount of water flowing
through a pipe at a given time. There is also an analogy in the relationship between
water pressure and water flow and the relationship between voltage and current. If a
hole appears that allows water to flow, water pressure drops; if current starts flowing
through a wire, voltage drops.

The most important thing to know about electrical voltage is that voltage can only
be measured as the difference between two points (i.e., the measurement is relative).
Thus, a voltmeter, which is used to measure voltage, always has two probes; the meter

7
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does not register a voltage until both probes have been connected. To simplify meas-
urement, we assume one of the two points represents zero volts, and express the voltage
of the second point relative to zero. Electrical engineers use the term ground to refer to
the point that is assumed to be at zero volts. In all digital circuits shown in this text,
for example, we will assume that electrical power is supplied by two wires: one wire is
a ground wire, which is assumed to be at zero volts, and a second wire is at five volts.

Fortunately, we can understand the essentials of digital logic without knowing
more about voltage and current. We only need to understand how electrical flow can be
controlled and how electricity can be used to represent digital values.

2.3 The Transistor

The mechanism used to control flow of electrical current is a semiconductor device
that is known as a transistor†. At the lowest level, all digital systems are composed of
transistors.

Each individual transistor functions like a miniature switch that can be operated
electrically. A transistor has three connections: two through which a large current can
flow and one for a small current that controls the flow. When a small, positive current
flows through the control connection, a large current can flow through the other two
connections; when the small current stops flowing through the control connection, the
large current also stops flowing. Figure 2.1 shows the diagram engineers use to denote
a transistor‡.

B

C

E

small current flows
from here to point E

large current flows
from point C to point E

Figure 2.1 A transistor. When a small current flows between points B and E,
a large current can flow between points C and E.

It may seem that a single transistor — a device that controls electrical current — is
irrelevant to digital circuits and computer architecture. We will see, however, how
transistors can be used to build more complex components that are used to build digital
systems.

��������������������������������
†Although other semiconductors can be used, most transistors are made from silicon.
‡Technically, the diagram shows an NPN transistor because the emitter and collector (labeled E and C)

are made from N-type silicon and the base (labeled B) is made from P-type silicon.
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2.4 Logic Gates

How are digital circuits built? The answer lies in Boolean algebra. Programmers
are familiar with the three basic Boolean functions: and, or, and not. Figure 2.2 lists
the possible input values and the result of each function.

A B A and B

0

0

1

1

0

1

0

1

0

0

0

1

A B A or B

0

0

1

1

0

1

0

1

0

1

1

1

A not A

0

1

1

0

Figure 2.2 Boolean functions and the result for each possible set of inputs. A
logical value of zero represents false, and a logical value of one
represents true.

Boolean functions are used in building digital hardware. More important, it is pos-
sible to use transistors to construct circuits that implement each of the Boolean func-
tions. Thus, Boolean functions can be translated directly into hardware.

To understand the relationship between Boolean functions and hardware, consider
the Boolean not. If we use five volts to represent a Boolean 1 and zero volts to
represent a Boolean 0, a single transistor plus a component known as a resistor can im-
plement the Boolean not. That is, the output is the opposite of the input — when five
volts is placed on the input, the output drops to zero volts; when zero volts is placed on
the input, the output rises to five volts†. Figure 2.3 illustrates a circuit that implements
Boolean not.

input

output

+5 volts

0 volts

resistor

Figure 2.3 A transistor and a resistor used to implement the Boolean function
not. When the input is zero volts, the output is five volts, and
vice versa.

��������������������������������
†In practice, the resistor limits the amount of current that can flow, which means the two values for vol-

tage are not exactly zero and five. However, the voltages are close enough that we can think of them as exact.
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To understand how the circuit operates, imagine the transistor to be a switch.
When it is turned on, the transistor connects the output to zero volts; when it is turned
off, the transistor disconnects the output from zero volts, and the output registers five
volts. An input of five volts causes the transistor to turn on, and an input of zero volts
causes the transistor to turn off. Thus, the output is always the opposite of the input.

Boolean circuits are fundamental to digital systems, and are given the name logic
gates. Engineers do not construct gates from individual transistors because manufactur-
ers sell electronic parts (actually integrated circuits) that contain all the circuitry for a
gate.

A detail adds a minor complication: because of the way electronic circuits work, it
takes fewer transistors to provide the inverse of Boolean functions. Thus, electronic
parts that implement logic gates provide the inverse of and and or: nand (which stands
for not and) and nor (which stands for not or). Figure 2.4 shows how truth tables can
be used to list the functions that logic gates provide.

A B A nand B

0

0

1

1

0

1

0

1

1

1

1

0

A B A nor B

0

0

1

1

0

1

0

1

1

0

0

0

Figure 2.4 The nand and nor functions implemented by logic gates. Using
the inverse simplifies the circuitry required.

2.5 Symbols Used For Gates

When they design circuits, engineers do not think about individual transistors. In-
stead, they represent each gate by a symbol, and draw circuits by interconnecting gates.
Figure 2.5 shows the symbols used for the three basic Boolean functions that hardware
provides. Engineers use the term inverter for a gate that performs the Boolean not
operation.

nand gate nor gate inverter

Figure 2.5 The symbols for nand, nor, and inverter gates. Inputs are shown
on the left, and the output is shown on the right.
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2.6 Construction Of Gates From Transistors

For our purposes, the internal details of gates are unimportant. All we need to
understand is how gates are used. However, it is interesting to see that transistors can
be used to create a gate. Figure 2.6 provides an example by showing the internal struc-
ture of a nor gate composed of transistors, resistors, and components known as diodes.
The diagram reveals the underlying complexity: six transistors, five resistors, and three
diodes are needed to form a single nor gate.

input 1

input 2

0 volts

output

5 volts

4 k 4 k 1.6 k

1 k

130

diode

Figure 2.6 The internal structure of a nor gate formed from transistors and
other components. A solid dot indicates an electrical connection
between two wires. Resistors are labeled with a value in ohms,
with k indicating multiplication by 1000.

The drawing in the figure is known as a schematic diagram. Each line on a
schematic corresponds to a wire that connects one component to another. In addition,
the schematic shows wires that correspond to two inputs, an output, power (five volts),
and ground (zero volts).

The diagram in Figure 2.6 uses a common convention: two lines that cross do not
indicate an electrical connection unless a solid dot appears. That is, two lines that cross
without a dot correspond to a situation in which there is no physical connection; we can
imagine that the wires are positioned so an air gap exists between them (i.e., the wires
do not touch).
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Now that we have seen an example of how a gate can be created out of transistors,
we do not need to consider individual transistors again. Throughout the rest of the
chapter, we will discuss gates without referring to their internal mechanisms; later
chapters discuss larger, more complex mechanisms that are composed of gates.

2.7 Example Interconnection Of Gates

The electronic parts that implement gates are classified as Transistor-Transistor
Logic (TTL) because the output transistors in each gate are designed to connect directly
to input transistors in other gates. In fact, an output can connect to several inputs†. For
example, suppose a circuit is needed in which the output is true if a disk is spinning and
the user presses a power-down button. Logically, the output is a Boolean and of two
inputs, but none of the gates described above provides and. However, the and function
can be created by directly connecting the output of a nand gate to the input of an invert-
er. Figure 2.7 illustrates the connection.

input from
power button

input from
disk

output

Figure 2.7 Illustration of gate interconnection. The output from one logic
gate can connect directly to the inputs of other gates.

As another example, consider the circuit in Figure 2.8 that shows three inputs.
What function does the circuit in the figure implement? There are two ways to answer
the question: we can determine the Boolean formula to which the circuit corresponds, or
we can enumerate the value that appears on each wire for all eight possible combina-
tions of input values.

To derive a Boolean formula, observe that input Y is connected directly to an in-
verter. Thus, the value on wire A corresponds to the Boolean function not Y. The nor
gate takes inputs not Y (from the inverter) and Z, so the value on wire B corresponds to
the Boolean function:

Z nor (not Y)

��������������������������������
†The technology limits the number of inputs that can be supplied from a single output; we use the term

fanout to specify the number of inputs to which an output connects.
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X

Y

Z

A
B

C output

Figure 2.8 An example of a circuit with three inputs labeled X, Y, and Z.
Internal interconnections are also labeled to allow us to discuss
intermediate values.

Finally, from Figure 2.7, we know that the combination of a nand gate followed by an
inverter produces the Boolean and of the two inputs. Thus, the output value
corresponds to:

X and (Z nor (not Y))

which can also be expressed:

X and not (Z or (not Y)) (2.1)

In practice, engineers spend more time constructing new circuits than analyzing ex-
isting circuits. The equivalence between Boolean expressions and digital logic circuits
is also used in design. An engineer can start by finding a Boolean expression that
solves the problem, and then translate the expression into equivalent hardware. More
important, tools are available that optimize Boolean expressions. That is, an engineer
can create a Boolean expression that specifies the behavior of a circuit, and then use a
tool that automatically transforms the expression into an equivalent expression that re-
quires fewer gates.

A second technique used to understand a logic circuit consists of enumerating all
possible inputs, and then finding the corresponding values at each point in the circuit.
For example, because the circuit in Figure 2.8 has three inputs, eight possible combina-
tions of input exist. The table in Figure 2.9 lists the input combinations on wires X, Y,
and Z along with the resulting values on the wires labeled A, B, C, and output.
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X Y Z A B C output

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

1

0

Figure 2.9 A truth table that enumerates values for three inputs for the circuit
in Figure 2.8, and the resulting values at various points in the cir-
cuit.

To make the output easier to understand, it can be converted to conventional
Boolean operations. The resulting Boolean expression is equivalent to both the truth
table in the figure and expression (2.1) above†:

X and Y and (not Z))

2.8 Multiple Gates Per Integrated Circuit

The table in Figure 2.9 is generated by starting with the eight possible values in
columns X, Y, and Z, and then filling in the remaining columns one at a time. For ex-
ample, point A in the circuit represents the output from the first inverter, which is the
inverse of input Y. Thus, column A can be filled in by reversing the values in column
Y. Similarly, column B represents the nor of columns A and Z.

Because the logic gates described above do not require many transistors, multiple
gates that use TTL can be manufactured on a single, inexpensive electronic component.
One popular set of TTL components that implement logic gates is known as the 7400
family‡; each component in the family is assigned a part number that begins with 74.
Physically, many of the parts in the 7400 family consist of a rectangular package ap-
proximately one-half inch long with fourteen copper wires (called pins) that are used to
connect the part to a circuit. Part number 7400 contains four nand gates, part number
7402 contains four nor gates, and part number 7404 contains six inverters. Figure 2.10
illustrates how the inputs and outputs of individual logic gates connect to pins in each
case.

��������������������������������
†Both Boolean equations and truth tables are useful. Boolean equations tend to be used during design,

and truth tables tend to be used when debugging circuits.
‡In addition to the logic gates described in this section, the 7400 family also includes more sophisticated

mechanisms, such as flip-flops, counters, and demultiplexors, that are described later in the chapter.



Sec. 2.8 Multiple Gates Per Integrated Circuit 15

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

1 2 3 4 5 6 7

891011121314

7400 7402 7404

Figure 2.10 Illustration of the pin connections on three commercially avail-
able integrated circuits that implement logic gates. Pins 7 and
14 supply power (zero volts and five volts) to run the circuit.

2.9 The Need For More Than Combinatorial Circuits

The circuits described above are classified as combinatorial because the output is a
Boolean combination of input values. In a combinatorial circuit, the output only
changes when an input value changes. Although combinatorial circuits are essential,
they are not sufficient — computation requires circuits that can take action without
waiting for inputs to change. For example, when a user presses a button to power on a
computer, hardware must perform a sequence of operations, and the sequence must
proceed without further input from the user. The hardware does not require a user to
hold the power button continuously — the startup sequence must continue even after
the user releases the button. Furthermore, pressing the same button again causes the
hardware to initiate a shutdown sequence.

How can digital logic perform a sequence of operations without requiring the input
values to change? How can a digital circuit continue to operate after an input reverts to
its initial condition? The answers involve additional mechanisms. The first case is han-
dled by circuits that are more sophisticated than Boolean logic gates, and the second
case is handled by a clock. The next sections present examples of sophisticated circuits,
and later sections explain clocks.

2.10 Circuits That Maintain State

In addition to Boolean gates, electronic parts are available that maintain state.
Such a part responds to the history of inputs, not just the current input values. The
most trivial state maintaining mechanism is a flip-flop. One form of flip-flop acts ex-
actly like the power switch on a computer: the first time its input becomes 1, the flip-
flop turns on the output, and the second time its input becomes 1, the flip-flop turns off
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the output. That is, receiving an input of 1 causes the flip-flop to change the output
from the current state to the opposite. Like a push-button switch used to control power,
a flip-flop does not respond to a continuous input — the input must return to 0 before a
value of 1 will cause the flip-flop to change state. Figure 2.11 shows a sequence of in-
puts and the resulting output.

flip-flop
input output

in:

out:

time increases

0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

Figure 2.11 Illustration of how one type of flip-flop reacts to a sequence of
inputs. The flip-flop output changes when the input transitions
from 0 to 1 (i.e., from zero volts to five volts).

2.11 Transition Diagrams

To understand how a flip-flop works, it is helpful to plot the input and output in
graphical form as a function of time. Engineers use the term transition diagram for
such a plot. Figure 2.12 illustrates a transition diagram for the flip-flop values from
Figure 2.11.

in:

out:

0

1

0

1

time increases

Figure 2.12 Illustration of a transition diagram that shows how a flip flop
reacts to the series of inputs in Figure 2.11. Marks along the x-
axis indicate times; each corresponds to one bit.
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The transition diagram shows that for the example flip-flop, the output only
changes when the input transitions from zero to one. Engineers say that the output tran-
sition occurs on the leading edge of the input change; circuits that transition when the
input changes from one to zero are said to occur on the falling edge.

In practice, additional details complicate flip-flops. For example, most flip-flops
include an additional input named reset that places the output in a 0 state. In addition,
several variants of flip-flops exist. For example, some flip-flops provide a second out-
put that is the inverse of the main output (in some circuits, having the inverse available
results in fewer gates).

2.12 Binary Counters

A single flip-flop only offers two possible output values: 0 or 1. An alternative
mechanism, called a counter accumulates a numeric total. Like a flip-flop, a counter’s
output changes whenever the input transitions from 0 to 1. Unlike a flip-flop, however,
a counter has multiple outputs that represent the total transition count in binary†. Fig-
ure 2.13 illustrates how a counter with three outputs responds to input changes.

counter

input
outputs

(a)

(b)

input outputs decimal

time

increases

0

0

1

0

1

1

0

1

0

1

0

1

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

0

0

1

1

2

2

2

3

3

4

4

5

.

.

.

Figure 2.13 Illustration of (a) a binary counter, and (b) a sequence of input
values and the corresponding outputs. The column labeled de-
cimal gives the decimal equivalent of the outputs.

Like our description of a flip-flop, our description of a binary counter lacks several
details. For example, counters have an additional input used to reset the count to zero.

��������������������������������
†The next chapter considers data representation in more detail; for now it is sufficient to understand that

the outputs represent a number.
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Because it has a fixed number of output pins, a counter has a maximum value it can
represent. When the accumulated count exceeds the maximum value, the counter resets
the output to zero, and has an additional output that is used to indicate that an overflow
occurred.

2.13 Clocks And Sequences

We said that a mechanism known as a clock allows hardware to operate without re-
quiring the input to change. In fact, most digital logic circuits are said to be clocked,
which means that a clock, rather than a set of inputs, controls and synchronizes the
operation of individual components and subassemblies to ensure that they work together
as intended.

What is a clock? In terms of digital circuits, we can imagine that a clock is a
mechanism that emits an alternating sequence of 0 and 1 values at a regular rate. The
speed of a clock is measured in Hertz (Hz) (the number of times per second the clock
cycles through a 1 followed by a 0). Most clocks in high-speed digital computers
operate at a speed of one hundred megahertz (100 MHz) or several gigahertz (GHz).
For example, at present, the clock in a high-speed PC operates at 3 GHz.

It is difficult for a human to imagine clocks that operate at such high rates. To
make the concept clear, let’s assume a clock is available that operates at an extremely
slow rate of 1Hz. Such a clock might be used to control an interface for a human. For
example, if a computer contains an LED that flashes on and off to indicate that the
computer is active, a slow clock is needed to control the LED. Note that a clock rate of
1Hz means the clock completes an entire cycle in one second. That is, the clock emits
a logical 1 for one-half cycle followed by a logical zero for one-half cycle. If a circuit
arranges to turn on an LED whenever the clock emits a logical 1, the LED will remain
on for one-half second, and then will be off for one-half second.

How does an alternating sequence of 0 and 1 make digital circuits more powerful?
To understand, we will consider a simple clocked circuit. Suppose that during startup, a
computer must perform the following sequence of steps:

d Test the battery

d Power on and test the memory

d Start the disk spinning

d Power up the CRT

d Read the boot sector from disk into memory

d Start the CPU
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Furthermore, to simplify the explanation, we will assume that one second must
pass after starting a step before the circuit starts the next step. Thus, we desire a circuit
that, once it has been started, will perform the six steps in sequence, at one-second in-
tervals with no further changes in input.

For now, we will focus on the essence of the circuit, and consider how it can be
started later. A circuit to handle the task of performing six steps in sequence can be
built from three building blocks: a clock, a binary counter, and a device known as a
demultiplexor, often abbreviated demux. We have already considered a counter, and we
will assume that a clock is available that generates digital output at a rate of exactly one
cycle per second. The last component, a demultiplexor, is a single integrated circuit
that maps between a binary value and a set of outputs. That is, a demultiplexor takes a
binary value as input, and uses the value to choose an output. Only one output of a
demultiplexor is on at any time; all others are off — when the input lines represent the
value i in binary, the demultiplexor selects the ith output. Figure 2.14 illustrates the
concept.

demultiplexor

x
y
z

inputs

‘‘000’’

‘‘001’’

‘‘010’’

‘‘011’’

‘‘100’’

‘‘101’’

‘‘110’’

‘‘111’’

outputs

Figure 2.14 Illustration of a demultiplexor with three input lines and eight
output lines. When inputs x, y, and z have the values 0, 1, and
1, the fourth output from the top is selected.

A demultiplexor provides the last piece needed for our simplistic sequencing
mechanism — if we combine a clock, counter, and demultiplexor, the resulting circuit
can execute a series of steps. For example, Figure 2.15 shows the interconnection in
which the output of a clock is used as input to a binary counter, and the output of a
binary counter is used as input to a demultiplexor.
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clock
counter

demultiplexor

not used

test battery

test memory

start disk

power CRT

read boot blk

start CPU

not used

Figure 2.15 An illustration of how a clock can be used to create a circuit that
performs a sequence of six steps. Output lines from the counter
connect directly to input lines of the demultiplexor.

To understand how the circuit operates, assume that the counter has been reset to
zero. Because the counter output is 000, the demultiplexor selects the topmost output,
which is not used (i.e., not connected). Operation starts when the clock changes from
logical 0 to logical 1. The counter accumulates the count, which changes its output to
001. When its input changes, the demultiplexor selects the second output, which is la-
beled test battery. Presumably, the output wire connects to a circuit that performs the
necessary test. The second output remains selected for one second. During the second,
the clock output remains at logical 1 for one-half second, and then reverts to logical 0
for one-half second. When the clock output changes back to logical 1, the counter out-
put lines change to 010, and the demultiplexor selects the third output, which is con-
nected to circuitry that tests memory.

Of course, details are important. For example, to be compatible with other dev-
ices, the clock must use five volts for logical 1, and zero volts for logical 0. Further-
more, to be directly connected, the output lines of the binary counter must use the same
binary representation as the input lines of the demultiplexor. The next chapter considers
representation in more detail; for now, we assume they are compatible.

2.14 The Important Concept Of Feedback

The simplistic circuit in Figure 2.15 lacks an important feature: there is no way to
control operation (i.e., to start or stop the sequence). Because a clock runs forever, the
counter in the figure counts from zero through its maximum value, and then starts again
at zero. As a result, the demultiplexor will repeatedly cycle through its outputs, with
each output being held for one second before moving on to the next.
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Few digital circuits perform the same series of steps repeatedly. How can we ar-
range to stop the sequence after the six steps have been executed? The solution lies in a
fundamental concept: feedback. Feedback lies at the heart of complex digital circuits
because it allows the results of processing to affect the way a circuit behaves. In the
computer startup sequence, feedback is needed for each of the steps. If the disk cannot
be started, for example, the boot sector cannot be read from the disk.

To see a trivial example of feedback, consider how we might use the final output,
call it F, from the demultiplexor to stop the process. An easy way consists of using the
value of F to prevent clock pulses from reaching the counter. That is, instead of con-
necting the clock output directly to the counter input, we insert logic gates that only al-
low the counter pulses to continue when F has the value 0. In terms of Boolean alge-
bra, the counter input should be:

CLOCK and (not F)

That is, as long as F is false, the counter input should be equal to the clock; when
F is true, however, the counter input changes to (and remains) zero; Figure 2.16 shows
how two inverters and a nand gate can be used to implement the necessary function.

demultiplexor

counterclock

not used

test battery

test memory

start disk

state CRT

read boot blk

start CPU

stopfeedback

these two gates perform
the Boolean and function

Figure 2.16 A modification of the circuit in Figure 2.15 that includes feed-
back to stop processing after one pass through each output.

The feedback in Figure 2.16 is fairly obvious because there is an explicit physical
connection between the last output and the combinatorial circuit on the input side. The
figure also makes it easy to see why feedback mechanisms are sometimes called feed-
back loops†.

��������������������������������
†A feedback loop is also present among the gates used to construct a flip-flop.
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2.15 Starting A Sequence

Figure 2.16 shows that it is possible to use feedback to terminate a process. How-
ever, the circuit is still incomplete because it does not contain a mechanism that allows
the sequence to start. Fortunately, adding a starting condition is trivial. To understand
why, recall that a counter contains a separate input line that resets the count to zero.
All that is needed to make our circuit start running is another input (e.g., from a button
that a user pushes) connected to the counter reset.

When the user pushes the button, the counter resets to zero, which causes the
counter’s output to become 000. When it receives an input of all zeros, the demulti-
plexor turns on the first output, and turns off the last output. When the last output turns
off, the nand gate allows the clock pulses through, and the counter begins to run.

Although it does indeed start the sequence, allowing a user to reset the counter can
cause problems. For example, consider what happens if a user becomes impatient dur-
ing the startup sequence and presses the button a second time. Once the counter resets,
the sequence starts again from the beginning. In some cases, performing an operation
twice simply wastes time. In other cases, however, repeating an operation causes prob-
lems (e.g., some disk drives require that only one command be issued at a time). Thus,
a production system uses complex combinatorial logic to prevent a sequence from being
interrupted or restarted before it completes.

2.16 Iteration In Software Vs. Replication In Hardware

One of the fundamental differences between software and hardware arises from the
way software and hardware handle operations that must be applied to a set of items. In
software, the fundamental paradigm for handling multiple items consists of iteration —
a programmer writes code that repeatedly finds the next item in a set and applies the
operation to the item. That is, because the underlying system can only apply the opera-
tion to one item at a time, a programmer must explicitly specify the number of items in
the set and the order in which they are to be processed. Iteration is so essential to pro-
gramming that most programming languages provide a compact syntax that allows the
programmer to express the iteration clearly (e.g., a for loop).

Although hardware can be built to perform iteration, doing so is difficult, and the
resulting hardware is clumsy. Instead, the fundamental hardware paradigm for handling
multiple items consists of replication — a hardware engineer creates multiple copies of
the underlying gates, and allows each copy to act on one item. For example, suppose
we need to compute a Boolean operation on a set of thirty-two Boolean values. The
ideal hardware solution consists of replicating the necessary gate thirty-two times, and
allowing each instance to operate on one of the thirty-two items. For example, to com-
pute the Boolean not of thirty-two values, a hardware designer might use thirty-two in-
verters.
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Replication is difficult for programmers to understand and appreciate because repli-
cation is antithetical to good programming — a programmer is taught to avoid duplicat-
ing code. In the hardware world, however, replication has two distinct advantages.
First, as we mentioned above, replication often makes the resulting hardware more
elegant than hardware that uses iteration because replication avoids the extra hardware
needed to select an individual item, move it into place, and move the result back.
Second, and more important, replication increases performance dramatically. In addi-
tion to avoiding the overhead of selecting and moving items, replication allows multiple
operations to be performed simultaneously. For example, thirty-two inverters working
at the same time can invert thirty-two bits in exactly the same amount of time that it
takes one inverter to invert a single bit. To put it another way: thirty-two inverters
working simultaneously are more than thirty-two times faster than a single inverter
iteratively solving the same problem. The notion of hardware replication and parallel
operation appears throughout the text; a later chapter explains how parallelism applies
on a larger scale.

2.17 Gate And Chip Minimization

We have glossed over many of the underlying engineering details. For example,
once they choose a general design and the amount of replication that will be used, en-
gineers seek ways to minimize the amount of hardware needed. There are two issues:
minimizing gates and minimizing integrated circuits. The first issue involves general
rules of Boolean algebra. For example, consider the Boolean expression:

not (not z)

A circuit to implement the expression consists of two inverters connected together. Of
course, we know that two not operations are the identity function, so the expression can
be replaced by z. That is, a pair of directly connected inverters can be removed from a
circuit without affecting the result.

As another example of Boolean expression optimization, consider the expression:

x nor (not x)

Either x will have the value 1, or not x will have the value 1, which means the nor func-
tion will always produce the same value, a logical 0. Therefore, the entire expression
can be replaced by the value 0. In terms of a circuit, it would be foolish to use a nor
gate and an inverter to compute the expression because the two gates will always yield
the same output. Thus, once an engineer writes a Boolean expression formula, the for-
mula can be analyzed to look for instances of subexpressions that can be reduced or el-
iminated without changing the result.

Although Boolean formulas can be optimized, further optimization is needed be-
cause the overall goal is minimization of integrated circuits. To understand the com-
plexity, recall that some integrated circuits contain multiple copies of a given type of
gate. Thus, minimizing the number of Boolean operations may not help if the optimiza-
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tion increases the types of gates required. For example, suppose a Boolean expression
requires four nand gates, and consider an optimization that reduces the requirements to
three gates: two nand gates and a nor gate. Unfortunately, although the total number of
gates is lower, the optimization increases the number of integrated circuits required (be-
cause a single integrated circuit contains four nand gates, but two circuits are required
for a nand and a nor gate).

2.18 Using Spare Gates

Consider the circuit in Figure 2.16 carefully†. Assuming the clock, counter, and
demultiplexor each require one integrated circuit, how many additional integrated cir-
cuits are required? The obvious answer is two: one is needed for the nand gate (e.g., a
7400) and another for the two inverters (e.g., a 7404). However, a hardware engineer
can implement the circuit with only one additional integrated circuit. To see how, ob-
serve that although the 7400 contains four nand gates, only one is needed. How can the
spare gates be used? The trick lies in observing that nand of 1 and 0 is 1, and nand of
1 and 1 is 0. That is,

1 nand x

is equivalent to:

not x

So, to use a nand gate as an inverter, an engineer simply connects one of the two inputs
to five volts.

2.19 Power Distribution And Heat Dissipation

In addition to planning digital circuits that correctly perform the intended function
and minimizing the number of components used, engineers must contend with the
underlying power and cooling requirements. For example, although the diagrams in this
chapter only depict the logical inputs and outputs of gates, every gate consumes power.
By everyday standards, the amount of power used by a single integrated circuit is insig-
nificant. However, because hardware designers tend to use replication instead of itera-
tion, complex digital systems contain many circuits. An engineer must calculate the to-
tal power required, construct the appropriate power supplies, and plan additional wiring
that carries power to each chip.

The laws of physics dictate that any device that consumes power will generate
heat. The amount of heat generated is proportional to the amount of power consumed,
so a small integrated circuit generates a small amount of heat. Because a digital system
uses hundreds of circuits that operate in a small, enclosed space, the total heat generated
can be significant. Unless engineers plan a mechanism to dissipate heat, high tempera-

��������������������������������
†Figure 2.16 can be found on page 21.
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tures will cause the circuits to fail. For small systems, engineers add holes to the
chassis that allow hot air to escape and be replaced by cooler air from the surrounding
room. For intermediate systems, such as personal computers, fans are added to move
air through the system more quickly. For the largest digital systems, cool air is insuffi-
cient — a refrigeration system with liquid coolant must be used.

2.20 Timing

Our quick tour of digital logic omits another important aspect that engineers must
consider: timing. A gate does not act instantly. Instead a gate takes time to settle (i.e.,
to change the output once the input changes). In our examples, timing is irrelevant be-
cause the clock runs at the incredibly slow rate of 1Hz and all gates settle in less than a
microsecond. Thus, the gates settle long before the clock pulses.

In practice, timing is an essential aspect of engineering because digital circuits are
designed to operate at high speed. To ensure that a circuit will operate correctly, an en-
gineer must calculate the time required for all gates to settle.

Engineers must also calculate the time required to propagate signals throughout an
entire system, and must ensure that the system does not fail because of clock skew. To
understand clock skew, consider Figure 2.17 that illustrates a circuit board with a clock
that controls three of the integrated circuits in the system.

IC1

IC2

IC3

clock

Figure 2.17 Illustration of three integrated circuits in a digital system that are
controlled by a single clock. The length of wire between the
clock and an integrated circuit determines when a clock signal
arrives.

In the figure, the three integrated circuits are physically distributed (presumably,
other integrated circuits occupy the remaining space). Unfortunately, a finite time is re-
quired for a signal from the clock to reach each of the circuits, and the time is propor-
tional to the length of wire between the clock and a given circuit. As a result, the clock



26 Fundamentals Of Digital Logic Chap. 2

signal will arrive at some of the integrated circuits sooner than it arrives at others. As a
rule of thumb, a signal requires one nanosecond to propagate across one foot of wire.
Thus, for a system that measures eighteen inches across, the clock signal can reach loca-
tions near the clock a nanosecond before the signal reaches the farthest location. Obvi-
ously, clock skew can cause a problem if parts of the system must operate before other
parts. An engineer needs to calculate the length of each path and design a layout that
avoids the problem of clock skew.

As a consequence of clock skew, engineers seldom use a single global clock to
control a large system. Instead, several clocks are used, with each clock controlling one
part of the system. In particular, clocks that run at the highest rates are used in small
physical areas. Although using multiple clocks avoids the problems of clock skew,
multiple clocks introduce another problem, clock synchronization: all clocks must be
engineered to coordinate.

2.21 Physical Size And Process Technologies

Most digital circuits are built from integrated circuits (ICs), a technology that per-
mits many transistors to be placed on a single silicon chip along with wiring that inter-
connects them. The idea is that the components on an IC form a useful circuit.

ICs are often created by using Complementary Metal Oxide Semiconductor
(CMOS) technology. Silicon is doped with impurities to give it negative or positive
ionization. The resulting substances are known as N-type silicon or P-type silicon.
When arranged in layers, N-type and P-type silicon form transistors.

IC manufacturers do not create a single IC at a time. Instead, a manufacturer
creates a round wafer that is a few inches in diameter and contains many copies of a
given IC design. Once the wafer has been created, the vendor cuts out the individual
chips, and packages each chip in a plastic case along with pins that connect to the chip.

ICs come in a variety of shapes and sizes; some have only eight external connec-
tions (i.e., pins), and others have over four hundred†. Some ICs contain dozens of
transistors, others contain millions.

Depending on the number of transistors on the chip, ICs can be divided into four
broad categories:

Name Example Use������������������������������������������������������������������������
Small Scale Integration (SSI) Basic Boolean gates
Medium Scale Integration (MSI) Intermediate logic, such as counters
Large Scale Integration (LSI) Small, embedded processors
Very Large Scale Integration (VLSI) Complex processors

��������������������������������
†Engineers use the term pinout to describe the purpose of each pin on a chip.
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For example, integrated 7400, 7402, and 7404 circuits described in this chapter are clas-
sified as SSI. A binary counter or flip-flop is classified as MSI.

The definition of VLSI keeps changing as manufacturers devise new ways to in-
crease the density of transistors per square area. Gordon Moore, a cofounder of Intel
Corporation, is attributed with having observed that the density of silicon circuits, meas-
ured in the number of transistors per square inch, would double every year. The obser-
vation, known as Moore’s Law, was revised in the 1970s, when the rate slowed to dou-
bling every eighteen months.

In addition to general-purpose ICs that are designed and sold by vendors, it has be-
come possible to build special-purpose ICs. Known as Application Specific Integrated
Circuits (ASICs), the ICs are designed by a private company, and then the designs are
sent to a vendor to be manufactured. Although designing an ASIC is expensive and
time-consuming — approximately a million dollars and nearly two years — once the
design is completed, copies of the ASIC are inexpensive to produce. Thus, high-end di-
gital systems often use ASIC chips.

2.22 Circuit Boards And Layers

Most digital systems are built using a printed circuit board that consists of a fiber-
glass board with thin metal strips attached to the surface and holes for mounting in-
tegrated circuits and other components. In essence, the metal strips on the circuit board
form the wiring that interconnects components.

Can a circuit board be used for complex interconnections that require wires to
cross? Interestingly, engineers have developed multilayer circuit boards that solve the
problem. In essence, a multilayer circuit board allows wiring in three dimensions —
when a wire must cross another, the designer can arrange to pass the wire up to a higher
layer, make the crossing, and then pass the wire back down.

It may seem that a few layers will suffice for any circuit. However, large complex
circuits with thousands of interconnections may need additional layers. It is not uncom-
mon for engineers to design circuit boards that have eighteen layers; the most advanced
boards can have twenty-four layers.

2.23 Levels Of Abstraction

As this chapter illustrates, it is possible to view digital logic at various levels of
abstraction. At the lowest level, a transistor is created from silicon. At the next level,
multiple transistors are used along with components, such as resistors and diodes, to
form gates. At the next level, multiple gates are combined to form intermediate scale
units, such as flip flops. In later chapters, we will discuss more complex mechanisms,
such as processors, memory systems, and I/O devices, that are each constructed from
multiple intermediate scale units. Figure 2.18 summarizes the levels of abstraction.
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Abstraction Implemented With�����������������������������������������������������������
Computer Circuit board(s)
Circuit board Components such as processor and memory
Processor VLSI chip
VLSI chip Many gates
Gate Many transistors
Transistor Semiconductor implemented in silicon

Figure 2.18 An example of levels of abstraction in digital logic. An item at
one level is implemented using items at the next lower level.

The important point is that moving up the levels of abstraction allows us to hide
more details and talk about larger and larger pieces without giving internal details.
When we describe processors, for example, we can consider how a processor works
without examining the internal structure at the level of gates or transistors.

An important consequence of abstraction arises in the diagrams architects and en-
gineers use to describe digital systems. As we have seen, schematic diagrams can
represent the interconnection of transistors, resistors, and diodes. Diagrams can also be
used to represent an interconnection among gates. In later chapters, we will use high-
level diagrams that represent the interconnection of processors and memory systems. In
such diagrams, a small rectangular box will represent a processor or a memory without
showing the interconnection of gates. When looking at an architectural diagram, it will
be important to understand the level of abstraction, and to remember that a single item
in a high-level diagram can correspond to an arbitrarily large number of gates.

2.24 Summary

Digital logic refers to the pieces of hardware used to construct digital systems such
as computers. As we have seen, Boolean algebra is an important tool in digital circuit
design; there is a direct relationship between Boolean functions and the gates used to
implement combinatorial digital circuits. We have also seen that Boolean logic values
can be described using truth tables.

A clock is a straightforward mechanism that emits pulses at regular intervals. A
clock allows a digital circuit to change without requiring inputs to change, and can be
used to provide synchronization among multiple parts of a circuit.

Although we think of digital logic from a mathematical point of view, building
practical circuits involves understanding the underlying hardware details. In particular,
besides basic correctness, engineers must contend with problems of power distribution,
heat dissipation, and clock skew.
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Data And Program
Representation

3.1 Introduction

The previous chapter introduces digital logic, and describes basic hardware build-
ing blocks that are used to create digital systems. This chapter continues the discussion
of fundamentals by explaining how digital systems encode programs and data. We will
see that representation is important for programmers as well as for hardware engineers
because software must understand the underlying representation.

3.2 Digital Logic And Abstraction

As we have seen, digital logic circuits contain many low-level details. The circuits
use transistors and electrical voltage to perform basic operations. The main point of di-
gital logic, however, is abstraction — we want to hide the underlying details and use
high-level abstractions whenever possible. For example, we have seen that each input
or output of a digital logic circuit is restricted to two possible conditions: off, which is
often represented by zero volts, or on, which is often represented by five volts. When
they use logic gates to design computers, however, computer architects do not think
about such details. Instead, they assign abstract names to the two conditions, and use
the names. For example, an architect might choose to use a pair of names, such as low
and high or true and false, to label the conditions†. As a result, complex digital sys-
tems, such as memories and processors, can be described, built, and used without think-
ing about individual transistors or voltages.

��������������������������������
†The previous chapter shows another alternative: the two Boolean values of logical 0 and logical 1.
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To a programmer, the most important abstractions consist of those that are visible
to the software: the representations used for data and programs. The next sections con-
sider data representation, and discuss how it is visible to programs; later sections
describe program representation.

3.3 Bits And Bytes

All data representation builds on digital logic. We use the abstraction binary digit
(bit) to describe a digital entity that can have two possible values, and assign the
mathematical names 0 and 1 for the two values.

Multiple bits are used to represent more complex data items. For example, each
computer system defines a byte to be the smallest data item larger than a bit that the
hardware can manipulate.

How big is a byte? Technically, the size of a byte is not standard for all comput-
ers. Instead, the size is chosen by the architect who designs the computer. Early com-
puter designers experimented with a variety of byte sizes, and some special-purpose
computers still use unusual byte sizes. For example, an early computer manufactured
by CDC corporation used a six-bit byte, and a computer manufactured by BB&N used a
ten-bit byte. However, most modern computer systems define a byte to contain eight
bits — the size has become so widely accepted that engineers usually assume a byte
size equal to eight bits, unless told otherwise†.

3.4 Byte Size And Possible Values

The number of bits per byte is especially important to programmers because com-
puter programs use bytes to store values. The size of the byte determines the maximum
value that can be stored. A byte that contains k bits can represent one of 2k values (i.e.,
exactly 2k unique strings of 1s and 0s exist that have length k). Thus, a six-bit byte can
represent 64 possible values, and an eight-bit byte can represent 256 possible values.
As an example, consider the eight possible values that correspond to a set of three bits
as Figure 3.1 illustrates.

0 0 0
0 0 1

0 1 0
0 1 1

1 0 0
1 0 1

1 1 0
1 1 1

Figure 3.1  The eight unique combinations that can be assigned to three bits.

What does a given pattern of bits represent? The most important thing to under-
stand is that the bits themselves have no intrinsic meaning — the interpretation of the
value is determined by the way hardware and software use the bits. For example, com-

��������������������������������
†We will follow the practice in the text by assuming that a byte contains eight bits.
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puter hardware can be designed in which a set of three bits represents the status of three
peripheral devices:

d The first bit has the value 1 if a disk is connected

d The second bit has the value 1 if a printer is connected

d The third bit has the value 1 if a keyboard is connected

Alternatively, hardware can be designed in which a set of three bits represent the
current status of three pushbutton switches: the ith bit is 1 if a user is currently pushing
switch i.

3.5 Binary Arithmetic

One of the most common abstractions used to associate a meaning with each com-
bination of bits is taken from mathematics: the set of bits is interpreted as a binary in-
teger. To understand the interpretation, remember that in base ten, the possible digits
are 0 through 9, and that the number 123 represents 1 times 100 plus 2 times 10 plus 3
times 1. Like the decimal number system, the binary number system uses positional in-
formation in which each position represents the next highest power of the base. Thus,
positions in the binary number system represent successive powers of two: 2 0, 2 1, 2 2,
and so on. Figure 3.2 illustrates the positional concept.

2 0 = 12 1 = 22 2 = 42 3 = 82 4 = 162 5 = 32

Figure 3.2 The value associated with each of the first six positions of the
binary number system. Each binary digit corresponds to the next
power of two.

As an example, consider the binary number:

0 1 0 1 0 1

According to the figure, the value can be interpreted as:

0 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 21
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We will discuss more about integer representation later in the chapter. For now, it
is sufficient to observe an important consequence of conventional positional notation:
the binary numbers that can be represented in k bits start at zero instead of one. If we
use the positional interpretation illustrated in Figure 3.2, the binary numbers that can be
represented with three bits range from zero through seven. Similarly, the binary
numbers that can be represented with eight bits range from zero through two hundred
fifty-five. We can summarize:

A set of k bits can be interpreted to represent a binary integer. When
conventional positional notation is used, the values that can be
represented with k bits range from 0 through 2k– 1.

3.6 Hexadecimal Notation

Although a binary number can be translated to an equivalent decimal number, pro-
grammers and engineers sometimes find the decimal equivalent difficult to understand.
For example, if a programmer needs to test the fifth bit from the right, using the binary
constant 010000 makes the correspondence between the constant and the bit much
clearer than the equivalent decimal constant 16.

Unfortunately, long strings of bits are as unwieldy and difficult to understand as a
decimal equivalent. For example, to determine whether the sixteenth bit is set in the
following binary number, a human needs to count individual bits:

1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1

To aid humans in expressing binary values, a compromise has been invented: a po-
sitional numbering system with a larger base. If the base is chosen to be a power of
two, translation to binary is trivial. Base sixteen is especially popular, and the number-
ing system is known as hexadecimal. Hexadecimal offers two advantages. First, be-
cause the representation is substantially more compact than binary, the resulting strings
are shorter. Second, because sixteen is a power of two, conversion between binary and
hexadecimal is straightforward and does not involve a complex arithmetic calculation.

In essence, hexadecimal encodes each group of four bits as a single hex digit
between zero and fifteen†. Figure 3.3 lists the sixteen hex digits along with the binary
and decimal equivalent of each.

��������������������������������
†Programmers use the term hex as an abbreviation for hexadecimal.
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Hex Digit Binary Value Decimal Equivalent����������������������������������������������
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
A 1 0 1 0 10
B 1 0 1 1 11
C 1 1 0 0 12
D 1 1 0 1 13
E 1 1 1 0 14
F 1 1 1 1 15

Figure 3.3 The sixteen hexadecimal digits and their equivalent binary and de-
cimal values. Each hex digit encodes four bits of a binary value.

As an example of hexadecimal encoding, look at Figure 3.4, which illustrates how
a binary string corresponds to its hexadecimal equivalent.

1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1

D E C 9 0 9 4 9

Figure 3.4 Illustration of the relationship between binary and hexadecimal.
Each hex digit represents four bits.

3.7 Notation For Hexadecimal And Binary Constants

Because the digits used in binary, decimal, and hexadecimal number systems over-
lap, constants can be ambiguous. To solve the ambiguity, an alternate notation is need-
ed. Mathematicians and some textbooks add a subscript to denote a base other than ten
(e.g., 13516 specifies that the constant is hexadecimal). Computer architects and pro-
grammers tend to follow programming language notation: hex constants begin with pre-
fix 0x, and binary constants begin with prefix 0b. Thus, to denote 1351 6, engineers
write 0x135. Similarly, the 32-bit constant from Figure 3.4 is written:

0xDEC90949
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3.8 Character Sets

We said that bits have no intrinsic meaning, and that the hardware or software
must determine what each bit represents. More important, more than one interpretation
can be used — a set of bits can be created and used with one abstraction, and later used
with another.

As an example, consider character data that has both a numeric and symbolic in-
terpretation. Each computer system defines a character set to be a set of symbols that
the computer and I/O devices understand. A typical character set contains uppercase
and lowercase letters, digits, and punctuation marks. More important, computer archi-
tects choose a character set such that each character fits into a byte (i.e., each of the bit
patterns in a byte is assigned one character). Thus, a computer that uses an eight-bit
byte has two hundred fifty-six (28) characters in its character set, and a computer that
uses a six-bit byte has sixty four (26) characters. In fact, the relationship between the
byte size and the character set is so strong that many programming languages refer to a
byte as a character.

What bit values are used to encode each character? The computer architect must
decide. In the 1960s, for example, IBM Corporation chose the Extended Binary Coded
Decimal Interchange Code (EBCDIC)† representation as the character set used on IBM
computers. CDC Corporation chose a six-bit character set for use on their computers.
The two character sets were completely incompatible.

As a practical matter, computer systems connect to devices such as keyboards,
printers, or modems, and such devices are often built by separate companies. To inter-
operate correctly, peripheral devices and computer systems must agree on which bit pat-
tern corresponds to a given symbolic character. To help vendors build compatible
equipment, the American National Standards Institute (ANSI) defined a character
representation known as the American Standard Code for Information Interchange
(ASCII)‡. The ASCII character set specifies the representation of one hundred twenty-
eight characters, including the usual letters, digits, and punctuation marks; it is widely
accepted.

Figure 3.5 lists the ASCII representation of characters by giving a hexadecimal
value and the corresponding symbolic character. Of course, the hexadecimal notation is
merely a shorthand notation for a binary string. For example, the lowercase letter a has
hexadecimal value 0x61, which corresponds to the binary value 0b01100001.

We said that a conventional computer uses eight-bit bytes, and that ASCII defines
one hundred twenty-eight characters (i.e., a seven-bit character set). Thus, when ASCII
is used on a conventional computer, one-half of the byte values are unassigned (numeric
values 128 through 255). How are the additional values used? In some cases, they are
not — peripheral devices that accept or deliver characters merely ignore the eighth bit
in a byte. In other cases, the computer architect or a programmer extends the character
set (e.g., by adding punctuation marks for alternate languages).

��������������������������������
†EBCDIC is pronounced ebb’se-dick.
‡ASCII is pronounced ass’key.
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00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A lf 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1A sub 1B esc 1C fs 1D gs 1e rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 ( 29 ) 2A * 2B + 2C , 2D – 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [ 5C \ 5D ] 5E ^ 5F _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F del

Figure 3.5 The ASCII character set. Each entry shows a hexadecimal value
and the graphical representation of the character associated with
the value.

3.9 Unicode

Although a seven-bit character set and an eight-bit byte work well for English and
some European languages, they do not suffice for all languages. Chinese, for example,
contains thousands of symbols and glyphs. To accommodate such languages, exten-
sions and alternatives have been proposed.

One of the promising proposals is named Unicode. Unicode extends ASCII and
plans to accommodate all languages, including languages from the Far East. Originally
designed as a sixteen-bit character set, later versions of Unicode have been extended to
accommodate larger representations. Thus, future computers may base their character
set on Unicode.

3.10 Unsigned Integers, Overflow, And Underflow

The positional representation of binary numbers illustrated in Figure 3.2† is said to
produce unsigned integers. That is, each of 2k combinations of bits is associated with a
nonnegative numeric value. Because the unsigned integers used in a computer have fi-
nite size, operations like addition and subtraction can have unexpected results. For ex-

��������������������������������
†Figure 3.2 can be found on page 31.
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ample, computing the difference between two k-bit unsigned integers can yield a nega-
tive (i.e., signed) result. Similarly, adding two k-bit unsigned integers can produce a
value that requires more than k bits to represent.

Hardware to perform unsigned arithmetic handles the problem in an interesting
way. First, the hardware produces a result by using wraparound (i.e., the hardware
adds two k-bit integers, and takes the k low-order bits of the answer). Second, the
hardware sets overflow or underflow conditions to indicate whether the result exceeded
k bits or was negative†. For example, an overflow indicator corresponds to the value
that would appear in the k+1st bit (i.e., the value commonly known as carry). Figure
3.6 illustrates an addition with three-bit arithmetic that results in a carry.

1 0 0
+ 1 1 0

1 0 1 0

overflow result

Figure 3.6 Illustration of addition with unsigned integers that produces over-
flow. The overflow indicator, which tells whether wraparound
occurred, is equal to the carry bit.

3.11 Numbering Bits And Bytes

How should set of bits be numbered? If we view the set as a string, it makes sense
to start numbering from the left, but if we view the set as a binary number, it makes
sense to start numbering from the right (i.e., from the least significant bit). Numbering
is especially important when data is transferred. For example, when sending a byte of
data over a network, both the sending and receiving computers must agree on whether
the least-significant or most-significant bit will be transferred first.

The issue of numbering becomes more complicated if we consider data items that
span multiple bytes. For example, consider transferring a thirty-two bit integer. If the
computer uses eight-bit bytes, the integer will span four bytes, which can be transferred
starting with the least-significant or the most-significant.

We use the term little endian to characterize a system that numbers bytes of an in-
teger from least-significant to most-significant, and the term big endian to characterize a
system that numbers bytes of an integer from most-significant to least-significant.
Similarly, we use the terms bit little endian and bit big endian to characterize systems
that number bits within a byte starting at the least-significant bit and most-significant
bit, respectively. Figure 3.7 illustrates the two styles of numbering.

��������������������������������
†We use the term underflow to denote a value that is less than the representation can hold. In particular,

a negative result from unsigned integer arithmetic is classified as an underflow because negative values cannot
be represented.
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Little Endian

Big Endian

0123

0 1 2 3

0x010x000x000x00

0x00 0x00 0x00 0x01

Figure 3.7 Illustration of big endian and little endian byte numbering for a
thirty-two bit integer equal to 1. Little endian numbers the least
significant byte zero; big endian numbers the most significant
byte zero.

In the figure, both the big endian and little endian forms contain the number 1 ex-
pressed as a thirty-two bit, unsigned value on a computer that uses eight bits per byte.
Thus, only the least-significant bit is set to one; all other bits are zero. The values in
each byte give the contents of the byte in hexadecimal; the labels on the top of each
byte give the byte numbering.

3.12 Signed Integers

The positional representation considered above cannot accommodate negative
numbers. To do so, we need an alternative interpretation of bit values. Three interpre-
tations have been used:

d Sign-Magnitude. The sign is kept separate from the value: a set of
bits stores the absolute value of an integer and a separate bit stores
the sign (i.e., the sign bit is set to 1 if the integer is negative).

d One’s Complement. A single set of bits is used. To form a nega-
tive of any value, reverse each bit (i.e., change from 0 to 1 or vice
versa).

d Two’s Complement. A single set of bits is used. To form a nega-
tive number, start with a positive number, subtract one, and then re-
verse each bit.

Each interpretation has interesting quirks. For example, the sign-magnitude
interpretation makes it possible to create a value of negative zero, even though the
concept does not correspond to a valid mathematical notion. The one’s comple-
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ment interpretation provides two values for zero: all zero bits and the comple-
ment, all one bits. Finally, the two’s complement interpretation includes one
more negative value than positive values (to accommodate zero).

Which interpretation is best? Programmers can debate the issue because
each interpretation works well in some cases. However, computer architects
make the decision, and many choose the two’s complement scheme because two’s
complement makes it possible to build low-cost, high-speed hardware to perform
arithmetic operations.

3.13 An Example Of Two’s Complement Numbers

We said that k bits can represent 2k possible combinations. Unlike the un-
signed representation in which the combinations correspond to a continuous set of
integers starting at zero, two’s complement divides the combinations in half.
Each combination in the first half (zero through 2k–1–1 is assigned the same
value as in the unsigned representation. Combinations in the second half, each of
which has the high-order bit equal to one, correspond to negative integers. Thus,
at exactly one-half of the way through the possible combinations, the value
changes from the largest possible positive integer to the largest possible negative
integer.

An example will clarify the two’s complement assignment. To keep the ex-
ample small, we will consider a four-bit integer. Figure 3.8 lists the sixteen pos-
sible bit combinations, the decimal equivalent when using the two’s complement
representation, and the decimal equivalent when using the unsigned representa-
tion.

The assignment of values in the figure provides an interesting advantage: ex-
cept for overflow, the same hardware operations work for either representation.
For example, adding one to the binary value 1001 produces 1010. In the un-
signed interpretation, adding one to nine produces ten; in the two’s complement
interpretation, adding one to negative seven produces negative six. The important
point is:

A computer can use a single piece of hardware to provide un-
signed or two’s complement integer arithmetic; software run-
ning on the computer can choose an interpretation for each in-
teger.
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Binary Unsigned Two’s Complement
Value Equivalent Equivalent�����������������������������������������
1 1 1 1 15 -1
1 1 1 0 14 -2
1 1 0 1 13 -3
1 1 0 0 12 -4
1 0 1 1 11 -5
1 0 1 0 10 -6
1 0 0 1 9 -7
1 0 0 0 8 -8
0 1 1 1 7 7
0 1 1 0 6 6
0 1 0 1 5 5
0 1 0 0 4 4
0 0 1 1 3 3
0 0 1 0 2 2
0 0 0 1 1 1
0 0 0 0 0 0

Figure 3.8 The value assigned to each combination of four bits when
using unsigned or two’s complement representations.

3.14 Sign Extension

Although Figure 3.8 shows a four-bit two’s complement representation, the
four-bit representation is easily extended to arbitrary size. Many computers in-
clude hardware for multiple sizes (e.g., a single computer can offer sixteen bit,
thirty-two bit, and sixty-four bit representations), and allow a programmer to
choose one of the sizes for each integer data item.

If a computer does contain multiple sizes of integers, a situation can arise in
which a value is copied from a smaller-size integer to a larger-size integer. For
example, consider copying a value from a sixteen-bit integer to a thirty-two-bit
integer. How should the extra bits be used? In two’s complement, the solution
consists of copying the least significant bits and then extending the sign bit — if
the original value is positive, extending the high-order bit fills the most signifi-
cant bits of the larger number with zeros; if the original value is negative, extend-
ing the high-order bit fills the most significant bits of the larger number with
ones. In either case, the larger number will have the same numeric value as the
smaller number†.

��������������������������������
†Sign extension also occurs during a right-shift operation: the hardware replicates the high-order bit; do-

ing so means that either a positive or negative value is divided by a power of two. For example, because divi-
sion by a power of two can be implemented by a right shift, applying a right shift of one bit to an integer that
represents -14 results in -7, and applying a right shift of one bit to an integer that represents +14 results in +7.
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We can summarize:

Sign extension: in two’s complement arithmetic, when an in-
teger Q composed of k bits is copied to an integer of more than
k bits, the additional high-order bits are made equal to the top
bit of Q. Extending the sign bit means the numeric value
remains the same.

We said that it is possible to create software that either uses an unsigned or
two’s complement representation. However, sign extension provides another ex-
ception: the hardware always performs sign extension. Thus, if an unsigned in-
teger is copied to a larger unsigned integer, the copy may not have the same
numeric value as the original†. The point is:

Because two’s complement hardware performs sign extension;
copying an unsigned integer to a larger unsigned integer can
change the value.

3.15 Floating Point

In addition to hardware that performs signed and unsigned integer arithmetic,
general purpose computers provide hardware that performs arithmetic on floating
point values. Floating point representation used in computers derives from scien-
tific notation in which each value is represented by a mantissa and an exponent.
For example, scientific notation expresses the value 12345 as 1.2345 × 104. Simi-
larly, a chemist might write a well-known constant, such as Avogadro’s number,
as:

6.022 × 1023

Unlike conventional scientific notation, the floating point representation used
in computers is based on binary. Thus, a floating point value consists of two sets
of bits: one set that encodes a mantissa and another set that encodes an exponent.

To further optimize space, many floating point representations include op-
timizations:

d The value is normalized

d The leading bit is implicit

d The exponent is biased to allow negative values

��������������������������������
†The value changes in cases where the high-order bit is set in the original unsigned integer (i.e., if the

value is greater than one-half the maximum unsigned integer).
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The first two optimizations are related. A floating point number is normal-
ized by adjusting the exponent to eliminate leading zeros from the mantissa. In
decimal, for example, 0.003×104 can be normalized to 3×101. Interestingly,
normalizing a binary floating point number always produces a leading bit of 1
(expect in the special case of zero). Therefore, to increase the number of bits
available to hold values, floating point representations do not store the leading bit
of the mantissa. Instead, they simply assume the leading bit is one.

An example will clarify the concepts. The example we will use is IEEE†
standard 754, which is widely used in the computer industry. The standard speci-
fies both single precision and double precision numbers. According to the stan-
dard, a single precision value occupies thirty-two bits, and a double precision
value occupies sixty-four bits. Figure 3.9 illustrates how the IEEE standard
divides a floating point number into three fields.

02331

05263

S expon. mantissa (bits 0 - 22)

S exponent mantissa (bits 0 - 51)

Figure 3.9 The format of a single precision and a double precision floating
point number, according to IEEE standard 754, with the lowest
bit in each field labeled. Field S denotes a sign bit, and other
fields contain the exponent and mantissa.

IEEE uses bit little endian numbering for the bits, which means that the least signi-
ficant bit is assigned number zero. In single precision, for example, the twenty-three
rightmost bits, which constitute a mantissa, are numbered zero through twenty-two.
The next eight bits, which comprise an exponent, are numbered twenty-three through
thirty, and the most significant bit, which contains a sign, is number thirty-one. For
double precision, the mantissa increases to fifty-two bits and the exponent increases to
eleven.

The IEEE standard specifies that the value stored in the exponent field consists of
the true exponent plus a bias constant. For example, the bias constant used with single
precision is one hundred twenty-seven‡. Thus, if the true exponent is two, the exponent
field in a single precision value is assigned the value one hundred twenty-nine. Using a
bias allows exponents to be negative (e.g., an exponent of negative four is stored as one
hundred twenty-three).

��������������������������������
†IEEE stands for Institute of Electrical and Electronic Engineers, an organization that creates standards

used in electronic digital systems.
‡The bias constant is 2k–1–1 (e.g., the double precision bias constant is one thousand twenty-three), where

k is the number of bits in the exponent field.
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3.16 Special Values

Like most floating point representations, the IEEE standard follows the implicit
leading bit assumption — a mantissa is assumed to have a leading one bit that is not
stored. Of course, any representation that strictly enforces the assumption of a leading
one bit is useless because the representation cannot store the value zero. To handle
zero, the IEEE standard makes an exception — when all bits are zero, the implicit as-
sumption is ignored, and the stored value is taken to be zero.

The IEEE standard includes two other special values that are reserved to represent
positive and negative infinity: the exponent contains all ones and the mantissa contains
all zeros. The point of including values for infinity is that some digital systems do not
have facilities to handle errors such as arithmetic overflow. On such systems, it is im-
portant that a value be reserved so the software can determine that a floating point
operation failed.

3.17 Range Of IEEE Floating Point Values

The IEEE standard for single precision floating point allows normalized values in
which the exponent ranges from negative one hundred twenty-seven through one hun-
dred twenty-eight. Thus, the approximate range of values that can be represented is:

2–126 to 2127

which is approximately:

10–38 to 1038

For a double precision value, the range is considerably greater. The approximate range
is:

10–308 to 10308

3.18 Data Aggregates

So far, we have only considered the representation for individual data items such
as characters, integers, or floating point numbers. Most programming languages allow a
programmer to specify aggregate values that contain multiple data items, such as ar-
rays, records, or structures. How are such values stored? In general, an aggregate
value occupies contiguous bytes. Thus, on a computer that uses an eight-bit byte, a data
aggregate that consists of three sixteen-bit integers occupies six contiguous bytes as Fig-
ure 3.10 illustrates.
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0 1 2 3 4 5

integer #1 integer #2 integer #3

Figure 3.10 A data aggregate consisting of three sixteen-bit integers arranged
in contiguous bytes. In the figure, the six bytes have been num-
bered in big endian order.

We will see later that some memory systems do not permit arbitrary data types to
be contiguous. Thus, we will reconsider data aggregates when we discuss memory ar-
chitecture.

3.19 Program Representation

Modern computers are classified as stored program computers because programs
as well as data are placed in memory. We will discuss program representation and
storage in the next chapters, including the structure of instructions the computer under-
stands and their storage in memory. For now, it is sufficient to understand that each
computer defines a specific set of operations and a format in which each is stored. On
some computers, for example, each instruction is the same size as other instructions; on
other computers, the instruction size varies. We will see that on a typical computer, an
instruction occupies multiple bytes. Thus, the bit and byte numbering schemes that the
computer uses for data values also apply to instructions.

3.20 Summary

The underlying digital hardware has two possible output values; we think of the
output as a binary digit (bit), and use bits to represent data and programs. Each com-
puter defines a byte size, and current systems typically use eight bits per byte.

A set of bits can be used to represent a character from the computer’s character set,
an unsigned integer, a single or double precision floating point value, or a computer
program. Representations are chosen carefully to maximize the flexibility and speed of
the hardware while keeping the cost low. The two’s complement representation for
signed integers is particularly popular because a single piece of hardware can be con-
structed that performs operations on either two’s complement integers or unsigned in-
tegers.

Organizations, such as ANSI and IEEE, have created standards for representation;
such standards allow hardware manufactured by two separate organizations to interoper-
ate and exchange data.
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EXERCISES

3.1 Give a mathematical proof that a string of k bits can represent 2k possible values (hint: ar-
gue by induction on the number of bits).

3.2 What is the value of the following binary string in hexadecimal?

1101 1110 1010 1101 1011 1110 1110 1111

3.3 Write a computer program that determines whether the computer on which it is running
uses big endian or little endian representation for integers.

3.4 Write a computer program that prints a string of zeros and ones that represent the bits of an
integer. Place a blank between each bit, and add extra space after every four bits.

3.5 Write a computer program that determines whether the computer on which it is running
uses one’s complement, two’s complement, or (possibly) some other representation for
signed integers.

3.6 Write a computer program that determines whether the computer on which it is running
uses the ASCII or EBCDIC character set.

3.7 Write a computer program that adds one to the largest possible positive integer to deter-
mine whether the computer uses two’s complement arithmetic.

3.8 Write a computer program to display the value of a byte in hexadecimal, and apply the pro-
gram to an array of bytes. Add extra space after every four bytes to make the output easier
to read.

3.9 Extend the hexadecimal dump program in the previous exercise to also print the character
representation of any printable character. For characters that do not have a printable
representation, arrange for the program to print a period.
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4

The Variety Of Processors
And Computational Engines

4.1 Introduction

Previous chapters describe the basic building blocks used to construct computer
systems: digital logic and representations used for data types such as characters, in-
tegers, and floating point numbers. This chapter begins an investigation of one of three
key elements of any computer system: a processor. The chapter introduces the general
concept, describes the variety of processors, and discusses the relationship between
clock rate and processing rate. The next chapters extend the basic description by ex-
plaining instruction sets, addressing modes, and the functions of a general-purpose
CPU.

4.2 Von Neumann Architecture

One organization of computer hardware has proven to be so valuable that it is now
pervasive: most computers follow the same general organization. We use the term Von
Neumann architecture to characterize the approach†.

In essence, a computer that follows the Von Neumann architecture uses the stored
program approach in which a program resides in memory. The hardware for a Von
Neumann machine consists of three principle components that interact: processor,
memory, and I/O facilities. Figure 4.1 illustrates the concept.

��������������������������������
†The name is taken from John Von Neumann, a mathematician who first proposed the architecture.
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computer

input/output facilities

processor memory

Figure 4.1 Illustration of the Von Neumann architecture. Both programs and
data can be stored in memory.

4.3 Definition Of A Processor

Although programmers tend to think of a conventional computer and often use the
term processor as a synonym for the Central Processing Unit (CPU), computer archi-
tects have a much broader meaning that includes the processors used in small devices
like cell phones and portable CD players, the specialized processors used in video
games and other graphics equipment, and the powerful processors used for scientific
computing. To an architect, a processor refers to a digital device that can perform a
computation involving multiple steps. Individual processors are not complete comput-
ers; they are merely one of the building blocks that an architect uses to construct a com-
puter system. Thus, although it can compute more than the combinatorial Boolean logic
circuits we examined in Chapter 2, a processor need not be extensive or powerful. In
particular, some processors are significantly less powerful than the general-purpose
CPU found in a typical PC. The next sections help clarify the definition by examining
characteristics of processors and explaining some of the ways they can be used.

4.4 The Range Of Processors

Because processors span a broad range of functionality and many variations exist,
no single description adequately captures all the properties of processors. Instead, to
help us appreciate the many designs, we need to divide processors into categories ac-
cording to functionality and intended use. For example, we can use four categories to
explain whether a processor can be adapted to new computations. The categories are
listed in order of flexibility:
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d Fixed logic

d Selectable logic

d Parameterized logic

d Programmable logic

A fixed logic processor, which is the least flexible, performs a single operation.
More important, all the functionality needed to perform the operation is built in when
the processor is created, and the functionality cannot be altered without changing the
underlying hardware†. For example, a fixed logic processor can be designed to com-
pute a function, such as sine(x), or to perform a graphics operation needed in a video
game.

A selectable logic processor has slightly more flexibility than a fixed logic proces-
sor. In essence, a selectable logic processor contains facilities needed to perform more
than one function; the exact function is specified when the processor is invoked. For
example, a selectable logic processor might be designed to compute either sine(x) or
cosine(x).

A parameterized logic processor offers additional flexibility because although it
only computes a predetermined function, the processor accepts a set of parameters that
control the computation. For example, consider a parameterized processor that com-
putes a hash function, h(x). The hash function uses two constants, p and q, and com-
putes the hash of x by computing the remainder of x when multiplied by p and divided
by q. A parameterized processor for such a hash function allows constants p and q to
be changed each time the processor is invoked. That is, in addition to the input, x, the
processor accepts additional parameters, p and q, that control the operation.

A programmable logic processor offers the most flexibility because it allows the
sequence of steps to be changed each time the processor is invoked — the processor can
be given a program to run, typically by placing the program in memory.

4.5 Hierarchical Structure And Computational Engines

A large processor, such as a modern, general-purpose CPU, is so complex that no
human can understand the entire processor as a single unit. To control the complexity,
computer architects use a hierarchical approach in which subparts of the processor are
designed and tested independently before being combined into the final design.

Some of the independent subparts of a large processor are so sophisticated that
they fit our definition of a processor — the subpart can perform a computation that in-
volves multiple steps. For example, a general-purpose CPU that has instructions for
sine and cosine might be constructed by first building and testing a trigonometry pro-
cessor, and then combining the trigonometry processor with other pieces to form the fi-
nal CPU.

��������������������������������
†Engineers use the term hardwired for functionality that cannot be changed without altering the underly-

ing wiring.
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How do we describe a subpiece of a large, complex processor that acts indepen-
dently and performs a computation? Some engineers use the terms computational en-
gine. The term engine usually implies that the subpiece fills a specific role and is less
powerful than the overall unit. For example, Figure 4.2 illustrates a CPU that contains
several engines.

CPU

trigonometry
engine

graphics
engine

other
components

query
engine arithmetic

engine

Figure 4.2 An example of a CPU that includes multiple engines plus other
components. The large arrow in the center of the figure indicates
a central interconnect mechanism that the components use to
coordinate.

The CPU in the figure includes a special-purpose graphics engine. Graphics en-
gines are common because many computers have graphics displays, and a graphics en-
gine can perform common operations at high speed. For example, a graphics engine
might include facilities to move a rectangle across a bit-mapped display (e.g., in
response to mouse input) or to repaint the surface of a graphical figure after it has been
moved (e.g., in response to a joystick movement).

As another example of engines, the CPU in Figure 4.2 also includes a query en-
gine. Query engines and closely related pattern engines are used in database proces-
sors. A query engine examines a database record at high speed to determine if the
record satisfies the query; a pattern engine examines a string of bits to determine if the
string matches a specified pattern (e.g., to test whether a document contains a particular
word).
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4.6 Structure Of A Conventional Processor

Although the imaginary CPU described above contains many engines, most proces-
sors do not. Two questions arise, what engine(s) are found in a conventional processor,
and how are they interconnected? This section answers the questions broadly, and later
sections give more detail.

Although a practical processor contains many subcomponents with complex inter-
connections among them, we can view a processor has having five conceptual units:

d Controller

d Computational engine (ALU)

d Local data storage

d Internal interconnection(s)

d External interface

Figure 4.3 illustrates the concept.

controller

internal interconnection(s)

ALU local
storage

external interface

external connection

Figure 4.3 The five major units found in a conventional processor. The
external interface connects to the rest of the computer system.

Controller. The controller forms the heart of a processor. Controller hardware has
overall responsibility for program execution. That is, the controller steps through the
program and coordinates the actions of all other hardware units to perform the specified
operations.
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Computational Engine. As the next section explains, the computational engine in a
processor performs all computational tasks, including arithmetic operations and Boolean
(logical) operations. The computational engine does not perform multiple steps or ini-
tiate activities. Instead, the engine only operates at the request of the controller.

Local Data Storage. A processor must have at least some local storage to hold
data values such as operands given to the computational engine or the results of a com-
putation. As we will see, local storage usually takes the form of hardware registers —
values must be loaded into the hardware registers before they can be used in computa-
tion.

Internal Interconnection(s). A processor contains one or more hardware mechan-
isms that are used to transfer values between the other hardware units. For example, the
interconnection hardware is used to move data values from the local storage to the com-
putational engine or to move results from the computation engine to local storage. Ar-
chitects sometimes use the term data path to describe an internal interconnection.

External Interface. The external interface unit handles all communication between
the processor and the rest of the computer system. In particular, the external interface
manages communication between the processor and external memory.

4.7 Definition Of An Arithmetic Logic Unit (ALU)

The computational engine in a conventional processor is known as the Arithmetic
Logic Unit (ALU). An ALU consists of a single, complex hardware unit that can per-
form a variety of operations. For example, besides integer arithmetic, an ALU provides
operations on bits, such as left or right shift. An ALU also contains hardware that per-
forms logical (i.e. Boolean) operations such as Boolean and, or, exclusive or, and not.
We will learn more about functions that an ALU provides later.

4.8 Processor Categories And Roles

Understanding the range of processors is especially difficult for someone who has
not encountered hardware design because processors can be used in a variety of roles.
It may help if we consider the ways that hardware devices use processors and how pro-
cessors function in each role. Here are five examples:

d Coprocessors

d Microcontrollers

d Microsequencers

d Embedded system processors

d General-purpose processors
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Coprocessors. A coprocessor operates in conjunction with and under the control
of another processor. Usually, a coprocessor consists of a special-purpose processor
that performs a single task at high speed. For example, some CPUs use a coprocessor
known as a floating point accelerator to speed the execution of arithmetic operations —
when a floating point operation occurs, the CPU automatically passes the necessary
values to the coprocessor, obtains the result, and then continues execution. In architec-
tures where a running program does not know which operations are performed directly
by the CPU and which operations are performed by a coprocessor, we say that the
operation of a coprocessor is transparent to the software. Typical coprocessors use
fixed or selectable logic, which means that the functions the coprocessor can perform
are determined when the coprocessor is designed.

Microcontrollers. A microcontroller consists of a programmable device dedicated
to the control of a physical system. For example, microcontrollers run physical systems
such as the engine in a modern automobile, the landing gear on an airplane, and the au-
tomatic door in a grocery store. In many cases, a microcontroller performs a trivial
function that does not require computation in the usual sense. Instead, a microcontroller
tests sensors and sends signals to control devices. Figure 4.4 lists an example of the
steps a typical microcontroller can be programmed to perform:

do forever {

wait for the sensor to be tripped;

turn on power to the door motor;

wait for a signal that indicates the

door is open;

wait for the sensor to reset;

delay ten seconds;

turn off power to the door motor;

}

Figure 4.4 Example of the steps a microcontroller performs. In most cases,
microcontrollers are dedicated to trivial control tasks.

Microsequencers. A microsequencer acts like a microcontroller except instead of
controlling external hardware, a microsequencer controls coprocessors and other engines
within a larger processor. To understand the function, imagine a processor in which a
set of coprocessors do almost all the work — the microsequencer does not perform any
operation itself. Instead, the microsequencer merely invokes other hardware units, and
each unit performs the appropriate task. Hardware units invoked by a microsequencer
are usually quite basic (e.g., integer arithmetic, floating point arithmetic, data move-
ment, or delay timing). Thus, a program for a microsequencer specifies which hardware
unit to invoke at any time. For example, a microsequencer might request the data
movement unit to move two data values into the floating point unit, request the floating
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point unit to perform an addition, and then request the data movement unit to move the
result into memory.

Embedded System Processors. An embedded system processor runs sophisticated
electronic devices such as a DVD player or a television. For example, a dialup modem
might contain an embedded system processor that handles communication details (e.g.,
printing messages for a user) as well as control details (e.g., sensing whether the phone
line is connected or whether a dialtone is present). The processors used for embedded
systems are usually more powerful than the processors used as microcontrollers, but
may not contain all the functions found on general-purpose CPUs.

General-Purpose Processors. General-purpose processors are the most familiar
and need little explanation. For example, the CPU in a PC is a general-purpose proces-
sor.

4.9 Processor Technologies

How are processors created? Originally, a processor was created from digital logic
circuits. Individual circuits were connected together on a circuit board, which then
plugged into a chassis to form a working computer. By the 1970s, large-scale integrat-
ed circuit technology arrived, which meant that the smallest and least powerful proces-
sors — such as those used for microcontrollers — could each be implemented on a sin-
gle integrated circuit. As integrated circuit technology improved and the number of
transistors on a chip increased, a single chip became capable of holding more powerful
processors. Today, many of the most powerful general-purpose processors consist of a
single integrated circuit.

4.10 Stored Programs

We said that a processor performs a computation that involves multiple steps.
Although some processors have the series of steps built into the hardware, most do not.
Instead, they are programmable (i.e., they rely on a mechanism known as program-
ming). That is, the sequence of steps to be performed comprise a program that is placed
in a location the processor can access; the processor accesses the program and follows
the specified steps.

Computer programmers are familiar with conventional computer systems that use
main memory as the location that holds a program. The program is loaded into memory
each time a user runs the application. The chief advantage of using main memory to
hold programs lies in the ability to change the program. The next time a user runs a
program after it has been changed, the altered version will be used.

Although our conventional notion of programming works well for general-purpose
processors, other types of processors use alternative mechanisms that are not as easy to
change. For example, the program for a microcontroller usually resides in hardware
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known as Read Only Memory (ROM†). In fact, the ROM that contains the program
may reside on an integrated circuit along with a microcontroller that runs the program.
For example, the microcontroller used in an automobile may reside on a single integrat-
ed circuit that also contains the program the microcontroller runs.

The important point is that programming is a broad notion:

To a computer architect, a processor is classified as programmable if
at some level of detail, the processor is separate from the program it
runs. To a user, it may appear that the program and processor are
integrated, and it may not be possible to change the program without
replacing the processor.

4.11 The Fetch-Execute Cycle

How does a programmable processor access and perform steps of a program?
Although the details vary among processors, all programmable processors follow the
same fundamental paradigm. The underlying mechanism is known as the fetch-execute
cycle.

To implement fetch-execute, a processor automatically moves through a program,
performing each step. That is, each programmable processor executes two basic func-
tions repeatedly. Algorithm 4.1 gives the two fundamental steps‡.

Algorithm 4.1

Repeat forever {

Fetch: access the next step of the program from the loca-
tion in which the program has been stored.

Execute: Perform the step of the program.

}
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Algorithm 4.1  

��������������������������������
†Later chapters describe memory in more detail.
‡Note that the algorithm presented here is a simplified form; when we discuss I/O, we will see how the

algorithm is extended to handle device interrupts.
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The important point is:

At some level, every programmable processor implements a fetch-
execute cycle.

Several questions arise. Exactly how is the program represented? How does a
processor identify the ‘‘next’’ step of a program? What are the possible operations that
can be performed during the execution phase of the fetch-execute cycle? How does the
processor perform each operation? The next chapters will answer each of these ques-
tions in more detail. The remainder of this chapter concentrates on three questions: how
does a processor begin with the first step of a program, what happens when the proces-
sor reaches the end of a program, and how fast does a processor operate?

4.12 Clock Rate And Instruction Rate

One of the primary questions about processors concerns speed: how fast does the
fetch-execute cycle operate? The answer depends on the processor, the technology used
to store a program, and the time required to execute each instruction. On one hand, a
processor used as a microcontroller to actuate a physical device (e.g., an electric door)
can be relatively slow because a response time under one-tenth of a second seems fast
to a human. On the other hand, a processor used in the highest-speed computers must
be as fast as possible because the goal is maximum performance.

As we saw in Chapter 2, a clock is used to control the rate at which the underlying
digital logic operates, and anyone who has purchased a computer knows that a salesper-
son implies that a faster clock rate will produce higher performance. However, it is im-
portant to realize that the clock rate does not give the rate at which the fetch-execute cy-
cle proceeds. In particular, the time required for the execute portion of the cycle
depends on the instruction being executed. We will see later that operations involving
memory access or I/O require more time (i.e., more clock cycles) than those that do not.
The time also varies among basic arithmetic operations: integer multiplication or divi-
sion requires more time than integer addition or subtraction. Floating point computation
is especially costly because floating point operations usually require more clock cycles
than equivalent integer operations. Floating point multiplication or division stands out
as especially costly — a single floating point division can require orders of magnitude
more clock cycles than an integer addition.

For now, it is sufficient to remember the general principle:

The fetch-execute cycle does not proceed at a fixed rate because the
time taken to execute an instruction depends on the operation being
performed. An operation such as multiplication requires more time
than an operation such as addition.
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4.13 Control: Getting Started And Stopping

So far, we have discussed a processor running a fetch-execute cycle without giving
details. We now need to answer two basic questions. How does the processor start
running the fetch-execute cycle? What happens after the processor executes the last
step in a program?

The issue of program termination is the easiest to understand: processor hardware
is not designed to stop. Instead, the fetch-execute cycle continues indefinitely. Of
course, a processor can be permanently halted, but such a sequence is only used to
power down a computer — in normal operations, the processor continues to execute one
instruction after another.

In some cases, a program uses a loop to delay. For example, a microcontroller
may need to wait for a sensor to indicate an external condition has been met before
proceeding. The processor does not merely stop to wait for the sensor. Instead, the
program contains a loop that repeatedly tests the sensor. Thus, from a hardware point
of view, the fetch-execute cycle continues.

The notion of an indefinite fetch-execute cycle has a direct consequence for pro-
gramming: software must be planned so a processor always has a next step to execute.
In the case of a dedicated system such as a microcontroller that controls a physical dev-
ice, the program consists of an infinite loop — when it finishes the last step of the pro-
gram, the processor starts again at the first step. In the case of a general-purpose com-
puter, an operating system is always present. The operating system can load an applica-
tion into memory, and then direct the processor to run the application. To keep the
fetch-execute cycle running, the operating system must arrange to regain control when
the application finishes. When no application is running, the operating system enters a
loop to wait for input (e.g., from a keyboard or mouse).

To summarize:

Because a processor runs the fetch-execute cycle indefinitely, a system
must be designed to ensure that there is always a next step to execute.
In a dedicated system, the same program executes repeatedly; in a
general-purpose system, an operating system runs when no applica-
tion is running.

4.14 Starting The Fetch-Execute Cycle

How does a processor start the fetch-execute cycle? The answer is complex be-
cause it depends on the underlying hardware. For example, some processors have a
hardware reset. On such processors, engineers arrange for a combinatorial circuit to ap-
ply voltage to the reset line until all system components are ready to operate. When
voltage is removed from the reset line, the processor begins executing a program from a
fixed location. For example, many processors start executing a program found at loca-
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tion zero in memory. The system architect must design the hardware to guarantee that a
valid program will be placed in location zero before the processor starts.

The steps used to start a processor are known as a bootstrap. In an embedded en-
vironment, the program to be run usually resides in ROM. On a conventional comput-
er, the hardware reads a copy of the operating system from disk and places the copy
into memory before starting the processor. In either case, hardware assist is needed for
bootstrap because a signal must be passed to the processor that causes the fetch-execute
cycle to begin.

Many devices have a soft power switch, which means that the power switch does
not actually turn power on or off. Instead, the switch acts like a sensor — the processor
can interrogate the switch to determine its current position. Booting a device that has a
softswitch is no different than booting other devices. When power is first applied, the
processor boots, but then enters a loop that interrogates the soft power switch. Later,
when the user presses the soft power switch, the hardware completes the bootstrap pro-
cess.

4.15 Summary

A processor is a digital device that can perform a computation involving multiple
steps. Processors can use fixed, selectable, parameterized or programmable logic. We
use the term engine to identify a processor that is a subpiece of a more complex proces-
sor.

Processors are used in various roles, including coprocessors, microsequencers, mi-
crocontrollers, embedded system processors, and general-purpose processors. Although
early processors were created from discrete logic, a modern processor is implemented as
a single VLSI chip.

A processor is classified as programmable if at some level, the processor hardware
is separate from the sequence of steps that the processor performs; from the point of
view of the end user, however, it might not be possible to change the program without
replacing the processor. All programmable processors follow a fetch-execute cycle; the
time required for one cycle depends on the operation performed. Because fetch-execute
processing continues indefinitely, a designer must construct a program in such a way
that the processor always has an instruction to execute.

EXERCISES

4.1 Write a computer program that measures the difference in execution times between integer
addition and integer division. Execute each operation 100,000 times, and compare the
difference in running times. Repeat the experiment, and verify that no other activities on
the computer interfere with the measurement.
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4.2 Extend the measurement in the previous exercise to compare the difference between sixteen
bit, thirty-two bit, and sixty-four bit integer addition.

4.3 Write a computer program that compares the difference in execution times between an in-
teger division and a floating point division. To test the program, execute each operation
100,000 times, and compare the difference in running times.
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5

Processor Types And
Instruction Sets

5.1 Introduction

The previous chapter introduces a variety of processors and explains the fetch-
execute cycle that programmable processors use. This chapter continues the discussion
by focusing on the set of operations that a processor can perform. The chapter explains
various approaches computer architects have chosen, and discusses the advantages and
disadvantages of each. The next chapters extend the discussion by describing the vari-
ous ways processors access operands.

5.2 Mathematical Power, Convenience, And Cost

What operations should a processor offer? From a mathematical point of view, a
wide variety of computational models provide equivalent computing power. In theory,
as long as a processor offers a few basic operations, the processor has sufficient power
to compute any computable function†.

Programmers understand that although only a minimum set of operations are
necessary, a minimum is neither convenient nor practical. That is, to a programmer, the
set of available operations determines convenience rather than functionality. For exam-
ple, it is possible to compute a quotient by repeated subtraction. However, writing a
program that divides numbers for a processor that only provides subtraction is difficult,
and the resulting code runs slowly. Thus, processors designed for arithmetic operations
include hardware for division as well as hardware that performs subtraction.

��������������������������������
†In a mathematical sense, only three operations are needed to compute any computable function: add one,

subtract one, and branch if a value is nonzero.
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To a computer architect, choosing a set of operations that the processor will per-
form represents a tradeoff. On one hand, adding an additional arithmetic operation,
such as multiplication or division, provides convenience for the programmer. On the
other hand, each additional operation adds more hardware and makes the processor
design more difficult. Adding hardware also increases engineering considerations such
as chip size, power consumption, and heat dissipation. Thus, because a laptop computer
needs to conserve battery power and does not have an efficient cooling system, a pro-
cessor designed for use in a laptop usually has fewer built-in operations than a proces-
sor designed for a desktop computer.

The point is that when considering the set of operations a given processor provides,
we need to remember that the choice is a complex tradeoff. We can summarize:

The set of operations a processor provides represents a tradeoff
among the cost of the hardware, the convenience for a programmer,
and engineering considerations such as power consumption.

5.3 Instruction Set And Representation

When an architect designs a programmable processor, the architect must make two
key decisions:

d The set of operations the hardware recognizes.

d The representation that the hardware uses for each operation.

We use the term instruction set to refer to the set of operations the hardware recog-
nizes, and refer to each operation as an instruction (more precisely, a type of instruc-
tion). On each iteration of the fetch-execute cycle, the processor executes one instruc-
tion.

The definition of an instruction set includes an exact specification of how each in-
struction operates: the values on which the instruction acts and the results the instruc-
tion produces. In addition, the definition specifies allowable values (e.g., the division
instruction requires the divisor to be nonzero) and error conditions (e.g., what happens
if an addition results in an overflow). That is, the definition of an instruction set speci-
fies the semantics or meaning.

The term instruction format refers to the binary representation that the hardware
uses for instructions. The instruction format is important because it defines the boun-
dary between hardware and software — a program must be encoded in the exact in-
struction format that a processor expects before the processor can execute the instruc-
tions. Thus, the instruction format defines the syntactic aspects of an instruction set.
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5.4 Opcodes, Operands, And Results

Conceptually, each instruction contains three parts that specify: the exact operation
to be performed, the value(s) to use, and where to place the result(s). The following
paragraphs define the idea more precisely.

Opcode. The term opcode refers to the exact operation to be performed. An op-
code is a number; when the instruction set is designed, each operation must be assigned
a unique opcode. For example, integer addition might be assigned opcode five, and in-
teger subtraction might be assigned opcode twelve.

Operands. The term operand refers to a value that is needed to perform an opera-
tion. The definition of an instruction set specifies the exact number of operands for
each instruction, and the possible values (e.g., addition takes two signed integers).

Results. In some architectures, one or more of the operands specify where the pro-
cessor should place results of an instruction (e.g., the result of an arithmetic operation);
in others, the location of the result is determined automatically.

5.5 Typical Instruction Format

Each instruction is represented as a binary string. On most processors, an instruc-
tion begins with a field that contains the opcode, followed by fields that contain the
operands. Figure 5.1 illustrates the general format.

opcode operand 1 operand 2 . . .

Figure 5.1 The general instruction format that many processors use. The op-
code at the beginning of an instruction determines how many
operands follow.

5.6 Variable-Length Vs. Fixed-Length Instructions

The question arises: should each instruction be the same size (i.e., occupy the same
number of bits) or should the length depend on the quantity and type of the operands?
For example, consider integer arithmetic operations. Addition or subtraction operate on
two values, but negation operates on a single value. Furthermore, a processor can han-
dle multiple sizes of operands (e.g., a processor can have an instruction that adds a pair
of sixteen-bit integers as well as an instruction that adds a pair of thirty-two bit in-
tegers). Should one instruction be shorter than another?

We use the term variable-length to characterize an instruction set that includes
multiple instruction sizes, and the term fixed-length to characterize an instruction set in
which every instruction is the same size.
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From a programmer’s point of view, variable-length instructions seem most ap-
propriate because they make optimal use of memory — there are no wasted bits in the
instruction because each instruction is exactly as long as it needs to be. From a
hardware point of view, however, variable-length instructions require complex hardware
to decode. As an alternative, fixed-length instructions require less complex hardware.
Fixed-length instructions also allow a processor to operate at higher speed because the
hardware can fetch and decode instructions without examining the opcode in each.
Thus, processors optimized for high speed or low cost use fixed-length instructions.
The point is:

Although the idea may seem inefficient to a programmer, using fixed-
length instructions can make processor hardware less complex and
faster.

How does a processor that uses fixed-length instructions handle cases where an in-
struction does not need all operands? For example, how does a fixed-length instruction
set accommodate both addition and negation? Interestingly, the hardware is designed to
ignore fields that are unneeded for a given operation. Thus, an instruction set may
specify that in some instructions, specific bits are unused†. To summarize:

When a fixed-length instruction set is employed, some instructions
contain extra fields that the hardware ignores. The unused fields
should be viewed as part of a hardware optimization, not as an indi-
cation of a poor design.

5.7 General-Purpose Registers

A register is a high-speed hardware device that has a fixed size and supports two
basic operations: fetch and store. We will see later that registers can operate in a
variety of roles, including as a program counter that gives the address of the next in-
struction to execute. For now, however, we will restrict our attention to a simple case
that is well-known to programmers: general-purpose registers that act as a temporary
storage facility. A processor usually has a small number of general-purpose registers
(e.g., fewer than one hundred), and each register is usually large enough to hold an in-
teger. For example, on a processor that provides thirty-two bit arithmetic, each
general-purpose register holds thirty-two bits. As a result, a general-purpose register
can hold an operand needed for an arithmetic instruction or the result of such an instruc-
tion.

General-purpose registers are numbered from 0 through N–1. The processor pro-
vides instructions that can store a value into (or fetch a value from) a specified register.
General-purpose registers have the same semantics as memory: a fetch operation returns
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†Alternatively, some hardware requires unused bits to be zero.
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the value specified in the previous store operation. Similarly, a store operation replaces
the contents of the register with a new value.

5.8 Floating Point Registers And Register Identification

Processors that support floating point arithmetic often use a separate set of registers
to hold floating point values. Confusion can arise because both general purpose regis-
ters and floating point registers are usually numbered starting at zero — the instruction
determines which registers are used. For example, if registers 3 and 6 are specified as
operands for an integer instruction, the processor will extract the operands from the
general-purpose registers. However, if registers 3 and 6 are specified as operands for a
floating point instruction, the floating point registers will be used.

5.9 Programming With Registers

Many processors require operands to be placed in general-purpose registers before
an instruction is executed. Some processors also place the results of an instruction in a
general-purpose register. Thus, to add two integers X and Y and place the result in Z, a
programmer must create a series of instructions that move values to the corresponding
registers. For example, if general-purpose registers 3, 6, and 7 are available, the pro-
gram might contain four instructions that perform the following steps:

d Load a copy of X into register 3

d Load a copy of Y into register 6

d Add the value in register 3 to the value in register 6,
and place the result in register 7

d Store a copy of the value in register 7 in Z

We will see that moving a value between memory and a register is relatively ex-
pensive, so performance is optimized by leaving values in registers if the value will be
used again. Because a processor only contains a small number of registers, however, a
programmer must decide which values to keep in the registers at any time; other values
are kept in memory†. The process of choosing which values the registers contain is
known as register allocation.

Many details complicate register allocation. One of the most common arises if an
instruction generates a large result, called an extended value. For example, integer mul-
tiplication can produce a result that contains twice as many bits as either operand.
Some processors offer facilities for double precision arithmetic (e.g., if a standard in-
teger is thirty-two bits wide, a double precision integer occupies sixty-four bits).

To handle extended values, the hardware treats registers as consecutive. On such
processors, for example, an instruction that loads a double precision integer into register

��������������������������������
†The term register spilling refers to moving a value from a register into memory to make the register

available for a new value.
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4 will place half the integer in register 4 and the other half in register 5 (i.e., the value
of register 5 will change even though the instruction contains no explicit reference).
When choosing registers to use, a programmer must plan for instructions that place ex-
tended data values in consecutive registers.

5.10 Register Banks

An additional hardware detail complicates register allocation: some architectures
divide registers into multiple banks, and require the operands for an instruction to come
from separate banks. For example, on a processor that uses two register banks, an in-
teger add instruction may require the two operands to be from separate banks.

To understand register banks, we must examine the underlying hardware. In
essence, register banks allow the hardware to operate faster because each bank has a
separate physical access mechanism and the mechanisms operate simultaneously. Thus,
when the processor executes an instruction that accesses two operands in registers, both
operands can be obtained at the same time. Figure 5.2 illustrates the concept.

Processor

0
1
2
3

Bank A

4
5
6
7

Bank B

separate hardware
units used to access
the register banks

Figure 5.2 Illustration of eight registers divided into two banks. Hardware al-
lows the processor to access both banks at the same time.

Register banks have an interesting consequence for programmers: it may not be
possible to permanently assign data values to registers. To understand why, consider
the following assignment statements that are typical of those used in a conventional pro-
gramming language, and assume we want to implement the statements on a processor
that has two register banks as Figure 5.2 illustrates.
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R ← X + Y

S ← Z - X

T ← Y + Z

If the values in the above assignment statements are located in registers, each as-
signment statement corresponds to a single instruction. A programmer must ensure that
the operands for each instruction come from separate register banks. For example, in
the first addition, X and Y must be placed in registers from opposite banks: if we as-
sume X is in a register in bank A, Y must be in a register in bank B. For the subtrac-
tion, Z must be in a different bank than X (i.e., Z must be in a register in bank B). For
the third assignment, Y and Z must be in different banks. Unfortunately, the first two
assignments mean that Y and Z are located in the same bank. Thus, there is no possible
assignment of X, Y, and Z to registers that works with all three instructions. We say
that a conflict occurs.

What happens when a register conflict arises? The programmer must either reas-
sign registers or insert an instruction to copy values. For example, suppose we insert an
instruction to copy the value of Z into a register in bank A, Z’. The third assignment
statement can be coded by referencing the register that contains Y and the register that
contains Z’.

5.11 Complex And Reduced Instruction Sets

Computer architects divide instruction sets into two broad categories that are used
to classify processors†:

d Complex Instruction Set Computer (CISC)

d Reduced Instruction Set Computer (RISC)

A CISC processor usually includes many instructions (typically hundreds), and
each instruction can perform an arbitrarily complex computation. Intel’s Pentium pro-
cessor is classified as CISC because the processor provides hundreds of instructions, in-
cluding complex instructions that require a long time to execute (e.g., one instruction
manipulates graphics in memory and others compute the sine and cosine functions).

A RISC processor is constrained. Instead of arbitrary instructions, a RISC design
strives for a minimum set that is sufficient for all computation (e.g., thirty-two instruc-
tions). Instead of allowing a single instruction to compute an arbitrary function, each
instruction performs a basic computation. To achieve the highest possible speed, RISC
designs constrain instructions to be a fixed-size. Finally, as the next section explains, a
RISC processor is designed to execute an instruction in one clock cycle‡. Motorola’s
MIPS processor is classified as RISC because the processor only has thirty-two instruc-
tions, and each instruction takes one clock cycle to execute.

��������������������������������
†Instead of using the full name, most engineers use the acronyms, which are pronounced sisk and risk.
‡Recall from Chapter 2 that a clock, which pulses at regular intervals, is used to control digital logic.
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We can summarize:

A processor is classified as CISC if the instruction set contains in-
structions that perform complex computations that can require long
times; a processor is classified as RISC if it contains a small number
of instructions that can each execute in one clock cycle.

5.12 RISC Design And The Execution Pipeline

We said that a RISC processor executes one instruction per clock cycle. In fact, a
more accurate version of the statement is: a RISC processor is designed so the processor
can complete one instruction on each clock cycle. To understand the subtle difference,
it is important to know how the hardware works. We said that a processor performs a
fetch-execute cycle by first fetching an instruction and then executing the instruction.
In fact, the processor divides the fetch-execute cycle into several steps such as:

d Fetch the next instruction

d Examine the opcode to determine how many operands are needed

d Fetch each of the operands (e.g., extract values from registers)

d Perform the operation specified by the opcode

d Store the result in the location specified (e.g., a register)

To enable high speed, RISC processors contain parallel hardware units that each
perform one step listed above. The hardware is arranged in a multistage pipeline, which
means the results from one hardware unit are passed to the next hardware unit. Figure
5.3 illustrates a pipeline.

fetch
instruction

stage 1

examine
opcode

stage 2

fetch
operands

stage 3

perform
operation

stage 4

store
result

stage 5

Figure 5.3 An example pipeline of five hardware stages that are used to per-
form the fetch-execute cycle.

As the figure illustrates, an instruction moves left to right through the pipeline.
The first stage fetches the instruction, the next stage examines the opcode, and so on.
Whenever the clock ticks, all stages simultaneously pass the instruction to the right.
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Thus, instructions move through the pipeline like an assembly line: at any time, the
pipeline contains five instructions.

The speed of a pipeline arises because all stages can operate in parallel — while
the fourth stage executes an instruction, the third stage fetches the operands for the next
instruction. Thus, the fourth stage does not need to delay because an instruction is
ready on each clock cycle. Figure 5.4 illustrates how instructions pass through a five-
stage pipeline.
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Figure 5.4 Instructions passing through a five-stage pipeline. Once the pipe-
line is filled, each stage is busy on each clock cycle.

The figure clearly illustrates that although a RISC processor cannot perform all the
steps needed to fetch and execute an instruction in one clock cycle, parallel hardware al-
lows the processor to finish one instruction per clock cycle. We can summarize:

Although a RISC processor cannot perform all steps of the fetch-
execute cycle in a single clock cycle, an instruction pipeline with
parallel hardware provides approximately the same performance:
once the pipeline is full, one instruction completes on every clock cy-
cle.

5.13 Pipelines And Instruction Stalls

We say that the instruction pipeline is transparent to programmers because the in-
struction set does not contain any explicit references to the pipeline. That is, the
hardware is constructed so the results of a program are the same whether or not a pipe-
line is present. Although transparency can be an advantage, it can also be a disadvan-
tage because a programmer who does not understand the pipeline can inadvertently in-
troduce inefficiencies.
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To understand the effect of programming choices on a pipeline, consider a program
that contains two successive instructions that perform an addition and subtraction on
operands and results located in registers A, B, C, D, and E:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

Although instruction K can proceed through the pipeline from beginning to end, in-
struction K+1 encounters a problem because operand C is not available in time. That
is, the hardware must wait for instruction K to finish before fetching the operands for
instruction K+1. We say that a stage of the pipeline stalls to wait for the operand to
become available. Figure 5.5 illustrates what happens during a pipeline stall.
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Figure 5.5 Illustration of a pipeline stall. Instruction K+1 cannot proceed un-
til operand C becomes available.

The figure shows a normal pipeline running until clock cycle 4. Instruction K+1
has reached stage 3†. Because the value of C has not been computed, stage 3 cannot
fetch the value. Thus, stages 1 through 3 stall during clock cycles 4 and 5. At clock
cycle 6, stage 3 can fetch the value of C, and pipeline processing continues.

The rightmost column in Figure 5.5 shows the effect of a stall: the final stage of
the pipeline does not produce any results during clock cycles 6 and 7. To describe the
delay between the cause of a stall and the time at which output stops, we say that a bub-
ble passes through the pipeline. Of course, the bubble is only apparent to an outsider
— an instruction always passes directly to the next stage when the current stage com-
pletes.

��������������������������������
†Recall that in our examples, stage 3 fetches the operands for an instruction.
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5.14 Other Causes Of Pipeline Stalls

In addition to waiting for operands, a pipeline can stall when the processor exe-
cutes any instruction that delays processing or disrupts the normal flow. For example, a
stall can occur when a processor:

d Accesses external storage

d Invokes a coprocessor

d Branches to a new location

d Calls a subroutine

The most sophisticated processors contain additional hardware to avoid stalls. For
example, some processors contain two copies of a pipeline, which allows the processor
to start decoding the instruction that will be executed if a branch is taken as well as the
instruction that will be executed if a branch is not taken. The two copies operate until a
branch instruction can be executed. At that time, the hardware knows which copy of
the pipeline to follow; the other copy is ignored.

5.15 Consequences For Programmers

To achieve maximum speed, a program must be written to accommodate an in-
struction pipeline. For example, a programmer should avoid introducing unnecessary
branch instructions. Similarly, instead of referencing a result register immediately in
the following instruction, the reference can be delayed. As an example, Figure 5.6
shows how code can be rearranged to run faster.

C ← add A B C ← add A B

D ← subtract E C F ← add G H

F ← add G H M ← add K L

J ← subtract I F D ← subtract E C

M ← add K L J ← subtract I F

P ← subtract M N P ← subtract M N

(a) (b)

Figure 5.6 (a) A list of instructions, and (b) the instructions reordered to run
faster. Reducing pipeline stalls increases speed.

In the figure, the optimized program separates references from computation. For
example, in the original program, the second instruction references value C, which is
produced by the previous instruction. Thus, a stall occurs between the first and second
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instructions. Moving the subtraction to a later point in the program allows the proces-
sor to continue to operate without a stall.

Of course, a programmer can choose to view a pipeline as an automatic optimiza-
tion instead of a programming burden.

Although hardware that uses an instruction pipeline will not run at
full speed unless programs are written to accommodate the pipeline, a
programmer can choose to ignore pipelining and assume the
hardware will automatically increase speed whenever possible.

5.16 Programming, Stalls, And No-Op Instructions

In some cases, the instructions in a program cannot be rearranged to prevent a stall.
In such cases, programmers usually document stalls so anyone reading the code will
understand that a stall occurs. Such documentation is especially helpful if a program is
modified because the programmer who performs the modification can reconsider the si-
tuation and attempt to reorder instructions to prevent a stall.

How should programmers document a stall? One technique is obvious: insert a
comment that explains the reason for a stall. However, another technique is available:
insert extra instructions in the code to show where instructions can be inserted to fill the
pipeline. Of course, the extra instructions must be innocuous — they cannot change the
values in registers or otherwise affect the program. In many cases, the hardware pro-
vides the answer: a no-op. That is, an instruction that does absolutely nothing except
occupy time. The point is:

Most processors include a no-op instruction that does not reference
data values, compute a result, or otherwise affect the state of the com-
puter. A programmer can insert no-op instructions to document an
instruction stall.

5.17 Forwarding

One final hardware optimization further complicates an instruction pipeline: some
hardware units are designed to detect and avoid stalls. In particular, an ALU can use a
technique known as forwarding to solve the problem of successive arithmetic instruc-
tions passing results.

To understand how forwarding works, consider the example of two instructions
where operands A, B, C, D, and E are in registers:
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Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

We said that such a sequence causes a stall on a pipelined processor. However, a
processor that implements forwarding can avoid the stall by arranging for the hardware
to detect the dependency and automatically pass the value for C from instruction K
directly to instruction K + 1. That is, a copy of the output from the ALU in instruction
K is forwarded directly to the input of the ALU in instruction K + 1. As a result, in-
structions continue to fill the pipeline, and no stall occurs.

5.18 Types Of Operations

When computer architects discuss instruction sets, they divide the instructions into
a few basic categories. Figure 5.7 lists one possible division.

Arithmetic instructions (integer arithmetic)

Logical instructions (also called Boolean)

Data access and transfer instructions

Conditional and unconditional branch instructions

Floating point instructions

Processor control instructions

Figure 5.7 An example of categories used to classify instructions. A
general-purpose processor includes instructions in all the
categories.

5.19 Program Counter, Fetch-Execute, And Branching

Recall from Chapter 4 that every processor implements a basic fetch-execute cycle.
During the cycle, control hardware in the processor automatically moves through in-
structions — once it finishes executing one instruction, the processor automatically
moves to the next location in memory before fetching the next instruction. To imple-
ment the fetch-execute cycle, the processor uses a special-purpose internal register
known as a program counter†.

When a fetch-execute cycle begins, the program counter contains the address of the
next instruction to be executed. After an instruction has been fetched, the program
counter is updated to the address of the next instruction. The update of the program
counter during each fetch-execute cycle means the processor will automatically move
through successive instructions in memory. Algorithm 5.1 specifies how the fetch-
execute cycle moves through successive instructions.

��������������������������������
†Some architects use the term instruction pointer instead of program counter; the two terms are

equivalent.
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Algorithm 5.1

Assign the program counter an initial program address. Repeat
forever {

Fetch: access the next step of the program from the loca-
tion given by the program counter.

Set an internal address register, A, to the address beyond
the instruction that was just fetched.

Execute: Perform the step of the program.

Copy the contents of address register A to the program
counter.

}
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Algorithm 5.1  

The algorithm allows us to understand how branch instructions work. There are
two cases: absolute and relative. An absolute branch specifies the address of the next
instruction to execute. Typically, an absolute branch instruction is known as a jump.
During the execute step, a jump instruction loads the address given by the operand into
internal register A that Algorithm 5.1 specifies. At the end of the fetch-execute cycle,
the hardware copies the value into the program counter, which means the address will
be used to fetch the next instruction. For example, the absolute branch instruction:

jump 0x05DE

causes the processor to load 0x05DE into the internal address register, which is copied
into the program counter before the next instruction is fetched. In other words, the next
instruction fetch will occur at location 0x05DE.

Unlike an absolute branch instruction, a relative branch instruction does not speci-
fy an exact memory address. Instead, a relative branch specifies a positive or negative
increment for the program counter. For example, the instruction:

br +8

specifies branching to a location that is eight bytes beyond the current location (i.e., the
current value of the program counter).
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To implement relative branching, a processor adds the operand in the branch in-
struction to the program counter, and places the result in internal address register A.
For example, if the branch operand is -12, the next instruction to be executed will be
found at an address twelve bytes before the current instruction.

Most processors also provide an instruction to invoke a subroutine, typically jsr.
In terms of the fetch-execute cycle, a jsr instruction operates like a branch instruction
with one minor difference: before the branch occurs, the jsr instruction saves the value
of the address register, A. When it finishes executing, a subroutine returns to the caller.
To do so, the subroutine executes an absolute branch to the saved address. Thus, when
the subroutine finishes, the fetch-execute cycle resumes at the instruction immediately
following the jsr.

5.20 Subroutine Calls, Arguments, And Register Windows

A high-level language uses a subroutine call instruction, such as jsr, to implement
a procedure or function call. The calling program supplies a set of arguments that the
subroutine uses in its computation. For example, the function call cos( 3.14159 ) has
the floating point constant 3.14159 as an argument.

One of the principle differences among processors arises from the way the underly-
ing hardware passes arguments to a subroutine. Some architectures use memory — the
arguments are stored in memory before the call, and the subroutine extracts the values
from memory, as needed. In other architectures, the processor uses either general-
purpose or special-purpose registers to pass arguments.

Using either special-purpose or general-purpose registers to pass arguments is
much faster than using memory because registers are part of the local storage in the pro-
cessor itself. Because few processors provide special-purpose registers for argument
passing, general-purpose registers are typically used. Unfortunately, general-purpose re-
gisters cannot be devoted exclusively to arguments because they are also needed for
other computation (e.g., to hold operands for arithmetic operations). Thus, a program-
mer faces a tradeoff: using a general-purpose register to pass an argument can increase
the speed of a subroutine call, but using the register to hold a data value can increase
the speed of general computation. Thus, a programmer must choose which arguments
to keep in registers and how many to store in memory.

Some modern processors include an optimization for argument passing known as a
register window. Although a processor has a large set of general-purpose registers, the
register hardware only exposes a subset of the registers at any time. The subset is
known as a window. The window moves automatically each time a subroutine is in-
voked, and moves back when the subroutine returns. More important, the windows
available to a program and subroutine overlap — some of the registers visible to the
caller are visible to the subroutine. A caller places arguments in the registers that will
overlap before calling a subroutine. Figure 5.8 illustrates the concept of a register win-
dow.
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A B C Dx1 x2 x3 x4 l1 l2 l3 l4

registers 0 - 7
when program runs

current registers 0 - 7
when subroutine runs

Figure 5.8 Illustration of a register window during a subroutine call. Values
A, B, C, and D correspond to arguments passed during a call.

As the figure shows, registers are always numbered from zero through the window
size minus one. However, the underlying register that corresponds to a given number
changes when a subroutine is called. Thus, the calling program places arguments A
through D in registers 4 through 7, and the subroutine finds the arguments in registers 0
through 3. Registers labeled xi are only available to the calling program, and registers
labeled li are only available to the subroutine.

The illustration in Figure 5.8 uses a small window size (eight registers) to simplify
the diagram. In practice, processors that use a register window typically have larger
windows. For example, the Sparc architecture has one hundred twenty-eight or one
hundred forty-four physical registers and a window size of thirty-two registers; howev-
er, only eight of the registers in the window overlap (i.e., only eight registers can be
used to pass arguments).

5.21 An Example Instruction Set

An example instruction set will help clarify the concepts described above. We
have selected the MIPS processor as an example for two reasons. First, the MIPS pro-
cessor is popular for use in embedded systems. Second, the MIPS instruction set is a
classic example of the instruction set offered by a RISC processor. Figure 5.9 lists the
instructions in the MIPS instruction set.
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Instruction Meaning����������������������������������������������������������������������
Arithmetic

add integer addition
subtract integer subtraction
add immediate integer addition (register + constant)
add unsigned unsigned integer addition
subtract unsigned unsigned integer subtraction
add immediate unsigned unsigned addition with a constant
move from coprocessor access coprocessor register
multiply integer multiplication
multiply unsigned unsigned integer multiplication
divide integer division
divide unsigned unsigned integer division
move from Hi access high-order register
move from Lo access low-order register

Logical (Boolean)
and logical and (two registers)
or logical or (two registers)
and immediate and of register and constant
or immediate or of register and constant
shift left logical shift register left N bits
shift right logical shift register right N bits

Data Transfer
load word load register from memory
store word store register into memory
load upper immediate place constant in upper sixteen

bits of register
move from coproc. register obtain a value from a coprocessor

Conditional Branch
branch equal branch if two registers equal
branch not equal branch if two registers unequal
set on less than compare two registers
set less than immediate compare register and constant
set less than unsigned compare unsigned registers
set less than immediate compare unsigned register and constant

Unconditional Branch
jump go to target address
jump register go to address in register
jump and link procedure call

Figure 5.9 An example instruction set. The table lists the instructions offered
by the MIPS processor.
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A MIPS processor contains thirty-two general-purpose registers, and most instruc-
tions require the operands and results to be in registers. For example, the add instruc-
tion takes three operands that are registers: the instruction adds the contents of the first
two registers and places the result in the third.

In addition to the integer instructions that are listed in Figure 5.9, the MIPS archi-
tecture defines a set of floating point instructions for both single precision (i.e., thirty-
two bit) and double precision (i.e., sixty-four bit) floating point values. The hardware
provides a set of thirty-two floating point registers. Although they are numbered from
zero to thirty-one, the floating point registers are completely independent of the
general-purpose registers.

To handle double precision values, the floating point registers operate as pairs.
That is, only an even numbered floating point register can be specified as an operand or
target in a floating point instruction — the hardware uses the specified register plus the
next odd numbered register as a combined storage unit to hold a double precision value.
Figure 5.10 summarizes the MIPS floating point instruction set.

5.22 Minimalistic Instruction Set

It may seem that the instructions listed in Figure 5.9 are insufficient and that addi-
tional instructions are needed. For example, the MIPS architecture does not include an
instruction that copies the contents of a register to another register, nor does the archi-
tecture include instructions that can add a value in memory to the contents of a register.
Recall that the MIPS instruction set supports two principles: speed and minimalism.
First, the basic instruction set has been designed carefully to ensure high speed (i.e., to
ensure that one instruction can complete on every clock cycle). Second, the instruction
set is minimalistic — it contains the fewest possible instructions necessary.

One feature of the MIPS architecture, which is also used in other RISC processors,
helps achieve minimalism: fast access to a zero value. In the case of MIPS, register 0
provides the mechanism — the register is reserved and always contains the value zero.
Thus, to test whether a register is zero, the value can be compared to register zero.
Similarly, register zero can be used in any instruction. For example, to copy a value
from one register to another, an add instruction can be used in which one of the two
operands is register zero.
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Instruction Meaning����������������������������������������������������������������

Arithmetic

FP add floating point addition
FP subtract floating point subtraction
FP multiply floating point multiplication
FP divide floating point division
FP add double double-precision addition
FP subtract double double-precision subtraction
FP multiply double double-precision multiplication
FP divide double double-precision division

Data Transfer

load word coprocessor load value into FP register
store word coprocessor store FP register to memory

Conditional Branch

branch FP true branch if FP condition is true
branch FP false branch if FP condition is false
FP compare single compare two FP registers
FP compare double compare two double precision values

Figure 5.10 Floating point instructions defined by the MIPS architecture.
Double precision values occupy two consecutive floating point
registers.

5.23 The Principle Of Orthogonality

In addition to the technical aspects of instruction sets discussed above, an architect
must consider the aesthetic aspects of a design. In particular, an architect strives for
elegance. Elegance relates to human perception: how does the instruction set appear to
a programmer? How do instructions combine to handle common programming tasks?
Are the instructions balanced (if the set includes right-shift, does it also include left-
shift)? Elegance calls for subjective judgment. However, experience with a few in-
struction sets often helps engineers and programmers recognize and appreciate elegance.

One particular aspect of elegance, known as orthogonality, concentrates on elim-
inating unnecessary duplication and overlap among instructions. We say that an in-
struction set is orthogonal if each instruction performs a unique task. An orthogonal in-
struction set has important advantages for programmers: orthogonal instructions can be
understood more easily, and a programmer does not need to choose among multiple in-
structions that perform the same task. Orthogonality is so important that it has become
a general principle of processor design. We can summarize:
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The principle of orthogonality specifies that each instruction should
perform a unique task without duplicating or overlapping the func-
tionality of other instructions.

5.24 Condition Codes And Conditional Branching

On many processors, each instruction produces a status, which the processor stores
in an internal hardware mechanism. A later instruction can use the status to decide how
to proceed. For example, when it executes an arithmetic instruction, the ALU sets a
condition code that contains bits to record whether the result is positive, negative, zero,
or an arithmetic overflow occurred. A conditional branch instruction that follows the
arithmetic operation can test one or more of the condition code bits, and use the result
to determine whether to branch.

An example will clarify how a condition code mechanism is used†. To understand
the paradigm, consider a program that must place a zero in register 3 if the contents of
register 4 are not equal to the contents of register 5. Figure 5.11 contains the code.

cmp r4, r5 # compare regs. 4 & 5, and set condition code

be lab1 # branch to lab1 if cond. code specifies equal

mov r3, 0 # place a zero in register 3

lab1: . . .program continues at this point

Figure 5.11 An example of using a condition code. An ALU operation sets
the condition code, and a later conditional branch instruction
tests the condition code.

5.25 Summary

Each processor defines an instruction set that consists of operations the processor
supports; the set is chosen as a compromise between programmer convenience and
hardware costs. In some processors, each instruction is the same size, and in other pro-
cessors size varies among instructions.

Most processors include a small set of general-purpose registers that are high-speed
storage mechanisms. To program using registers, one loads values from memory into
registers, performs a computation, and stores the result from a register into memory. To
optimize performance, a programmer leaves values that will be used again in registers.
On some architectures, registers are divided into banks, and a programmer must ensure
that the operands for each instruction come from separate banks.

��������������������������������
†Chapter 8 explains programming with condition codes and shows further examples.
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Processors can be classified into two broad categories of CISC and RISC depend-
ing on whether they include many complex instructions or a minimal set of instructions.
RISC architectures use an instruction pipeline to ensure that one instruction can com-
plete on each clock cycle. Programmers can optimize performance by rearranging code
to avoid pipeline stalls.

To implement conditional execution (e.g., an if-then-else), many processors rely on
a condition code mechanism — an ALU instruction sets the condition code, and a later
instruction (a conditional branch) tests the condition code.

EXERCISES

5.1 Classify the ARM architecture owned by ARM Limited and the SPARC architecture owned
by Sun Microsystems Corporation as CISC or RISC.

5.2 Consider a pipeline of N stages in which stage i takes time ti. Assuming no delay between
stages, what is the total time (start to finish) that the pipeline will spend handling a single
instruction?

5.3 In the previous exercise, how many instructions per second can the pipeline complete?

5.4 Given a pipeline, A, of 5 stages where each stage takes time t, produce a new pipeline, B,
by dividing the third stage into two stages that each take time t / 2. How many instructions
per second does pipeline A complete per second? Pipeline B? Explain.
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6

Operand Addressing And
Instruction Representation

6.1 Introduction

The previous chapters discuss the variety of processor types and consider processor
instruction sets. This chapter focuses on two details related to instructions: the way in-
structions are represented, and the ways that operands can be specified. We will see
that the form of operands is especially relevant to programmers. We will also under-
stand how the representation of instructions determines the possible operand forms.

The next chapter continues the discussion of processors by explaining how a Cen-
tral Processing Unit (CPU) operates. We will see how a CPU combines many features
we have discussed into a large, unified system.

6.2 Zero, One, Two, Or Three Address Designs

We said that an instruction is usually stored as an opcode followed by zero or more
operands. How many operands are needed? The discussion in Chapter 5 assumes that
the number of operands is determined by the operation being performed. Thus, an add
instruction needs two operands because addition involves two quantities. Similarly, a
Boolean not instruction needs one operand because logical inversion only involves one
quantity. However, the example instruction set in Chapter 5 employs an additional
operand on each instruction that specifies the location for the result. Thus, in the exam-
ple instruction set, an add instruction requires three operands that specify the two values
to be added and a location for the result.

83
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Despite the intuitive appeal of a processor in which each instruction can have an
arbitrary number of operands, many processors do not permit such a scheme. To under-
stand why, we must consider the underlying hardware. First, because an arbitrary
number of operands implies variable-length instructions, fetching and decoding instruc-
tions is less efficient than using fixed-length instructions. Second, because fetching an
arbitrary number of operands takes time, the processor will run slower than a processor
with a fixed number of operands.

It may seem that parallel hardware can solve some of the inefficiency. Imagine,
for example, parallel hardware units that each fetch one operand of an instruction. If an
instruction has two operands, two units operate simultaneously; if an instruction has
four operands, four units operate simultaneously. However, parallel hardware uses
more space on a chip and requires additional power. In addition, the number of pins on
a chip limits the amount of data that can be accessed in parallel. Thus, parallel
hardware is not an attractive option in many cases (e.g., a processor in a portable phone
that operates on battery power).

Can an instruction set be designed without allowing arbitrary operands? If so,
what is the smallest number of operands that can be useful for general computation?
Early computers answered the question by using a scheme in which each instruction
only has one operand. Later computers introduced instruction sets that limited each in-
struction to two operands. Surprisingly, computers also exist in which instructions have
no operands. Finally, as we have seen in the previous chapter, some processors limit
instructions to three operands.

6.3 Zero Operands Per Instruction

An architecture in which instructions have no operands is known as a 0-address ar-
chitecture. How can an architecture allow instructions that do not specify any
operands? The answer is that operands must be implicit. That is, the location of the
operands is already known. A 0-address architecture is also called a stack architecture
because operands are kept on a stack. For example, an add instruction takes two values
from the stack, adds them together, and places the result back on the stack. Of course,
some of the instructions in a stack computer do allow a programmer to specify an
operand: the push instruction places a new value on the top of the stack, and a pop in-
struction removes the top value from the stack and places the value in memory. Thus,
to add seven to variable X on a stack machine, one might use a sequence of instructions
similar to the example in Figure 6.1.
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push X

push 7

add

pop X

Figure 6.1 An example of instructions used on a stack computer to add seven
to a variable X. The architecture is known as a zero-address ar-
chitecture because the operands for an instruction such as add are
found on the stack.

6.4 One Operand Per Instruction

An architecture that limits each instruction to a single operand is classified as a 1-
address design. In essence, a 1-address design relies on an implicit operand for each in-
struction: a special register known as an accumulator†. The processor extracts the
current value of the accumulator, performs the specified operation using the extracted
value and the operand, and places the result back in the accumulator. We think of an
instruction as operating on the value in the accumulator. For example, consider arith-
metic operations. An addition instruction has only a single operand, X:

add X

When it encounters such an instruction, the processor performs the following operation:

accumulator ← accumulator + X

Of course, the instruction set for a 1-address processor includes instructions that al-
low a programmer to load a constant or the value from a memory location into the ac-
cumulator or store the current value of the accumulator into a memory location.

6.5 Two Operands Per Instruction

Although it works well for arithmetic or logical operations, a 1-address design does
not allow instructions to specify two values. For example, consider copying a value
from one memory location to another. A 1-address design requires two instructions that
load the value into the accumulator and then store the value in the new location. The
design is especially inefficient for a system that moves graphics objects in display
memory.

To overcome the limitations of 1-address systems, designers invented processors
that allow each instruction to have two addresses. The approach is known as a 2-
address architecture. With a 2-address processor, an operation can be applied to a
specified value instead of merely to the accumulator. Thus, in a 2-address processor,

��������������������������������
†The general-purpose registers discussed in Chapter 5 can be considered an extension of the original ac-

cumulator concept.
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add X Y

specifies that the value of X is to be added to the current value of Y:

Y ← Y + X

Because it allows an instruction to specify two operands, a 2-address processor can
offer data movement instructions that treat the operands as a source and destination.
For example, the instruction:

move Q R

copies data directly from Q to R†.

6.6 Three Operands Per Instruction

Although a 2-address design handles data movement, further optimization is possi-
ble, especially for processors that have multiple general-purpose registers: allow each
instruction to specify three operands. Unlike a 2-address design, the key motivation for
a 3-address architecture does not arise from operations that require three input values.
Instead, the point is that the third operand can specify a destination. For example, an
addition operation can specify two values to be added as well as a destination for the
result:

add X Y Z

specifies an assignment of:

Z ← X + Y

6.7 Operand Sources And Immediate Values

The discussion above focuses on the number of operands that each instruction can
have without specifying the exact details of an operand. Questions arise about the syn-
tax and semantics of operands. How is a given operand represented in an instruction?
Do all operands use the same representation? What meaning is given to a representa-
tion?

To understand the issue, observe that the data value used as an operand for an
operation can be obtained in many ways. Figure 6.2 lists some of the possibilities for
operands on a 3-address processor‡.

��������������������������������
†Some architects reserve the term 2-address to refer to an architecture in which both operands can specify

a memory location, and use the term 1 1/2-address to refer to an architecture that allows one operand to be in
memory but restricts the other operand to be in a register.

‡To increase performance, modern 3-address architectures often limit operands so that at most one of the
operands in a given instruction refers to a value in memory; the other two operands must specify registers.
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Operand that specifies a source

A signed constant
An unsigned constant
The contents of a register
The value in a memory location

Operand that specifies a destination

A single register
A pair of contiguous registers
A memory location

Figure 6.2 Examples of items an operand can reference in a 3-address proces-
sor. The operand can specify a value to be used in the instruction
or a location into which the result should be placed.

Operands that contain an explicit constant are especially useful because programs
use small constants (e.g., to increment a counter). That is, a constant to be used in a
computation can be embedded in the instruction itself. Such a design improves pro-
grams by reducing the need for registers.

When a constant value appears in an operand, we say that the value is immediate.
On some architectures, immediate values are interpreted as signed; on others, immediate
values are interpreted as unsigned.

6.8 The Von Neumann Bottleneck

We said that conventional computers that store both programs and data in memory
are known as Von Neumann computers. Operand addressing exposes the central weak-
ness of a Von Neumann architecture: memory access can become a bottleneck. That is,
because instructions are stored in memory, a processor must make at least one memory
reference per instruction. If one or more operands specify items in memory, the proces-
sor must make additional memory references to fetch or store values. To optimize per-
formance and avoid the bottleneck, operands must be taken from registers instead of
memory.

The point is:

On a computer that follows the Von Neumann architecture, the time
spent performing memory accesses can limit the overall performance.
Architects use the term Von Neumann bottleneck to characterize the
situation, and avoid the bottleneck with techniques such as restricting
most operands to registers.
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6.9 Explicit And Implicit Operand Encoding

How should an operand be represented in an instruction? As Figure 6.2 shows, a
string of bits is insufficient because we need to specify what the bits mean (e.g., wheth-
er they correspond to an immediate value, a register, or a memory location). There are
two possibilities for specifying the interpretation of operands, as the next two sections
describe.

6.9.1  Implicit Operand Encoding

An implicit operand encoding is easiest to understand: the opcode specifies the
types of operands. That is, a processor that uses implicit encoding contains multiple op-
codes for a given operation — each opcode corresponds to one possible combination of
operands. For example, Figure 6.3 lists three instructions for addition that might be of-
fered by a processor that uses implicit operand encoding.

Opcode Operands Meaning�����������������������������������������������������������������
Add register R1 R2 R1 ← R1 + R2
Add immediate signed R1 I R1 ← R1 + I
Add immediate unsigned R1 UI R1 ← R1 + UI
Add memory R1 M R1 ← R1 + memory[M]

Figure 6.3 An example of addition instructions for a processor that uses im-
plicit operand encoding. The opcode tells the processor how to
interpret each of the operands.

As the figure shows, not all operands need to have the same interpretation. For ex-
ample, consider the add immediate signed instruction. The instruction takes two
operands: the first operand is interpreted to be a register, and the second is interpreted
to be a signed integer.

6.9.2  Explicit Operand Encoding

The chief disadvantage of implicit encoding is apparent from Figure 6.3: multiple
opcodes are needed for a given operation. If the processor allows many types of
operands, the list of opcodes can be large. As an alternative, an explicit operand encod-
ing associates the type information with each operand. Figure 6.4 illustrates the format
of two add instructions for an architecture that uses explicit operand encoding.
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add

opcode operand 1

register 1

operand 2

register 2

........

........

add

opcode

operand 1

register 1

operand 2

signed
integer -93

........

........

Figure 6.4 Examples of operands on an architecture that uses explicit encod-
ing. Each operand specifies a type as well as a value.

As the figure shows, each operand is represented by two fields: one field specifies
the type of the operand and the other specifies a value. For example, an operand that
references a register begins with a type field that specifies the remaining bits are to be
interpreted as a register number†.

6.10 Operands That Combine Multiple Values

The discussion above implies that each operand consists of a single value extracted
from a register, memory, or the instruction itself. Some processors do indeed restrict
each operand to a single value. However, other processors provide hardware that can
compute an operand value by extracting and combining values from multiple sources.
Typically, the hardware computes a sum of several values.

An example will help clarify how hardware handles operands composed of multi-
ple values. One approach is known as a register-offset mechanism. The idea is
straightforward: instead of a type and value, each operand consists of three fields that
specify a type, a register, and an offset. When it fetches an operand, the processor adds
the contents of the offset field to the contents of the specified register to obtain a value
that is then used as the operand. Figure 6.5 shows an example add instruction with
register-offset operands.

add

opcode operand 1

register-
offset 2 -17

........

........

operand 2

register-
offset 4 76

........

........

Figure 6.5 An example of an instruction in which each operand consists of a
register plus an offset. During operand fetch, the hardware adds
the offset to the specified register to obtain the value of the
operand.

��������������������������������
†The SPARC architecture developed by Sun Microsystems, Inc. uses explicit operand encoding.
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In the figure, the first operand consists of the current contents of register 2 minus
the constant 17, and the second operand consists of the current contents of register 4
plus the constant 76. When we discuss memory, we will see that allowing an operand
to specify a register plus an offset is especially useful when referencing a data aggregate
such as a C language struct.

6.11 Tradeoffs In The Choice Of Operands

The discussion above is unsatisfying — it seems that we have listed many design
possibilities without focusing on the design that is optimal. In fact, there is no best
choice; each operand style we discussed has been used in practice. Why hasn’t one par-
ticular style emerged as optimal? The answer is simple: each style represents a tradeoff
between ease of programming, size of the code, speed of processing, and size of the
hardware. The next paragraphs discuss several potential design goals, and explain how
each relates to the choice of operands.

Ease Of Programming. Complex forms of operands make programming easier.
For example, we said that allowing an operand to specify a register plus an offset makes
data aggregate references straightforward. Similarly, a 3-address approach that provides
an explicit target means a programmer does not need to code separate instructions to
copy results into their final destination. Of course, to optimize ease of programming, an
architect needs to trade off some of the other goals listed below.

Fewer Instructions. Increasing the expressive power of operands reduces the
number of instructions in a program. For example, allowing an operand to specify both
a register and an offset results in fewer instructions. Increasing the number of addresses
per instruction also lowers the count of instructions (e.g., a 3-address processor requires
fewer instructions than a 2-address processor). Unfortunately, fewer instructions pro-
duce a tradeoff in which each instruction is larger.

Smaller Instructions. Limiting the number of operands, the set of operands types,
or the maximum size of an operand keeps instructions small because fewer bits are
needed to identify the operand type or represent an operand value. In particular, an
operand that specifies only a register will be smaller than an operand that specifies a re-
gister and an offset. As a result, some of the smallest, least powerful processors limit
operands to registers — except for load and store operations, each value used in a pro-
gram must come from a register. Unfortunately, making each instruction smaller de-
creases the expressive power, and therefore increases the number of instructions needed.

Larger Range Of Immediate Values. Recall from Chapter 3 that a string of k bits
can hold 2k possible values. Thus, the size of a field in the operand determines the
numeric range of immediate values that can be specified. Increasing the size allows
larger values, but results in larger instructions.

Faster Operand Fetch And Decode. Limiting the number of operands and the pos-
sible types of each operand allows hardware to operate faster. To maximize speed, for
example, an architect avoids register-offset designs because hardware can fetch an
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operand from a register much faster than it can compute the value from a register plus
an offset.

Decreased Hardware Size. The amount of space on an integrated circuit is limited,
and an architect must decide how to use the space. Decoding complex forms of
operands requires more hardware than decoding simpler forms. Thus, limiting the types
and complexity of operands reduces the size of the circuitry required. Of course, the
choice represents a tradeoff: programs are larger.

The point is:

Processor architects have created a variety of operand styles. No sin-
gle form is optimal for all processors because the choice represents a
compromise among functionality, program size, hardware required to
fetch values, performance, and ease of programming.

6.12 Values In Memory And Indirect Reference

We said that processors include at least one instruction that allows an operand to
specify a value in memory. That is, the value in the operand is interpreted as a memory
address†, which the processor uses to perform a memory lookup. The operand is
fetched from memory.

We will see that memory lookup is significantly more expensive than accessing a
register. Thus, although it helps ease programming, allowing arbitrary instructions to
reference memory usually results in lower performance.

Some processors extend memory references by permitting various forms of indirec-
tion. For example, if an operand specifies indirection through register 6, the processor
performs the two steps:

d Obtain A, the current value from register 6

d Interpret A as a memory address, and fetch the
operand from memory.

One extreme form of indirection permits indirection through a memory address.
That is, the operand contains a memory address, M, and specifies indirect reference.
The processor performs the following steps:

d Obtain M, the value in the operand itself

d Interpret M as a memory address, and fetch the
value A from memory.

d Interpret A as another memory address, and fetch the
operand from memory.

��������������������������������
†The third section of the text describes memory and memory addressing.
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6.13 Operand Addressing Modes

A processor usually contains a special register, called an instruction register, that is
used to hold an instruction that is being decoded. The possible types of operand ad-
dresses and the cost of each can be envisioned by considering the location of the
operand and the references needed to fetch the value. An immediate value is the least
expensive because the value can be found in the instruction register. A general-purpose
register reference is the next most expensive, and an indirect memory reference is the
most expensive. Figure 6.6 lists the possibilities, and illustrates the hardware units in-
volved in resolving each.

cpu memory

1

2

3

4

5

Immediate value (in the instruction)

Direct register reference

Indirect through a register

Direct memory reference

Indirect memory reference

locations in memory

instruction register

general-purpose register

1

2 3

3

4

5

5

Figure 6.6 Illustration of the hardware units accessed when fetching an
operand in various addressing modes. Indirect references take
longer than direct references.
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6.14 Summary

When designing a processor, an architect chooses the number and possible types of
operands for each instruction; to make operand handling efficient, many processors limit
the number of operands to three or less.

An immediate operand specifies a constant value; other possibilities include an
operand that specifies using the contents of a register or a value in memory. The type
of the operand can be encoded implicitly (i.e., in the opcode) or explicitly.

Many variations exist because the choice of operand number and type represents a
tradeoff among functionality, ease of programming, and engineering details such as the
speed of processing.

EXERCISES

6.1 How many memory references are involved in executing an instruction that adds two regis-
ters and stores the result in memory?

6.2 Assume a stack machine keeps the stack in memory. How many load and store operations
are required to increment a value by seven (assume the value is in memory, and the result
must be returned to memory)?

6.3 How many memory operations are required to perform an operation on a 3-address archi-
tecture if each operand specifies an indirect memory reference?

6.4 Assume a memory reference takes twelve times as long as a register reference, and assume
a program executes N instructions on a 2-address architecture. Compare the running time
of the program if all operands are in registers to the running time if all operands are in
memory. Hint: instruction fetch requires a memory operation.
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7

CPUs: Microcode,
Protection, And Processor
Modes

7.1 Introduction

Previous chapters consider two key aspects of processors: instruction sets and
operands. The chapters explain possible approaches, and discuss the advantages and
disadvantages of each approach. This chapter considers a broad class of general-
purpose processors, and shows how many of the concepts from previous chapters are
applied. The next chapter considers low-level programming languages used with pro-
cessors.

7.2 A Central Processor

Early in the history of computing, centralization emerged as an important architec-
tural approach — as much functionality as possible was collected into a single proces-
sor. The processor, which became known as a Central Processing Unit (CPU), con-
trolled the entire computer, including both calculations and I/O.

In contrast to early designs, a modern computer system follows a decentralized ap-
proach. The system contains multiple processors, many of which are dedicated to a
specific function or a hardware subsystem. For example, we will see that an I/O dev-
ice, such as a disk, can include a processor that handles disk transfers.

95
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Despite the shift in paradigm, the term CPU has survived because one processor is
still needed to coordinate and control other processors. In essence, the CPU manages
the entire computer system by telling other processors when to start, when to stop, and
exactly what to do. When we discuss I/O, we will see exactly how the CPU controls
the operation of peripheral devices and processors.

7.3 CPU Complexity

Because it must handle a wide variety of control and processing tasks, a modern
CPU is extremely complex. For example, one model of Intel’s Pentium processor con-
tains approximately fifty-four million transistors. Why is a CPU so complex? Why are
so many transistors needed?

Multiple Roles. One aspect of CPU complexity arises because the CPU must fill
several major roles: running application programs, running an operating system, han-
dling external I/O devices, starting or stopping the computer, and managing memory.
No single instruction set is optimal for all roles, so a CPU often includes multiple sets
of instructions.

Protection And Privilege. Modern computer systems incorporate a system of pro-
tection that gives some subsystems higher privilege than others. For example, an appli-
cation program can be prevented from directly interacting with I/O devices, and the
operating system code can be protected from inadvertent or deliberate change.

Hardware Priorities. A CPU uses a priority scheme in which some computations
are assigned higher priority than others. For example, we will see that I/O devices
operate at higher priority than application programs — if the CPU is running an appli-
cation program when an I/O device needs service, the CPU must stop running the appli-
cation and handle the device.

Generality. A CPU is designed to work with as many applications as possible.
Consequently, the CPU instruction set often contains many instructions and diverse
types of instructions (i.e., a CISC design).

Data Size. To speed processing, a CPU is designed to handle large data values.
Recall from Chapter 2 that digital logic gates each operate on a single bit of data and
that gates must be replicated to handle integers. Thus, to operate on values composed
of sixty-four bits, each digital circuit in the CPU must have sixty-four copies of each
gate.

High Speed. The final, and perhaps most significant, source of CPU complexity
arises from the desire for speed. Recall the important concept discussed earlier:

Parallelism is a fundamental technique used to create high-speed hardware.
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That is, to achieve highest performance, the functional units in a CPU must be re-
plicated, and the design must permit the replicated units to operate simultaneously. The
large amount of parallel hardware needed to make a modern CPU operate at the highest
rate also means that the CPU requires many transistors. We will see further details later
in the chapter.

7.4 Modes Of Execution

The facilities listed above can be combined or used separately. For example, a
processor can be granted increased memory access with or without higher priority.
How can a CPU accommodate all the features in a way that allows programmers to
understand and use them without becoming confused?

In most CPUs, the hardware uses a set of parameters to handle the complexity and
control operation. We say that the hardware has multiple modes of execution. At any
given time, the current execution mode determines how the CPU operates.

Figure 7.1 lists the features usually associated with a CPU mode of execution.

d The subset of instructions that are valid

d The size of data items

d The region of memory that can be accessed

d The functional units that are available

d The amount of privilege

Figure 7.1 Items typically controlled by a CPU mode of execution. The
characteristics of a CPU can change dramatically when the mode
changes.

7.5 Backward Compatibility

How much variation can execution modes introduce? In principle, the modes
available on a CPU do not need to share much in common. As one extreme case, some
CPUs have a mode that provides backward compatibility with a previous model. Back-
ward compatibility allows a vendor to sell a CPU with new features, but also permits
customers to use the CPU to run old software.

Intel’s line of processors (i.e., 8086, 186, 286,...) exemplifies how backward com-
patibility can be used. When Intel first introduced a CPU that operated on thirty-two bit
integers, the CPU included a compatibility mode that implemented the sixteen bit in-
struction set from Intel’s previous CPU. In addition to using different sizes of integers,
the two architectures have different numbers of registers and different instructions. The
two architectures differ so significantly that it is easiest to think of the design as two
separate pieces of hardware with the execution mode determining which of the two is
used at any time.
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We can summarize:

A CPU uses an execution mode to determine the current operational
characteristics. In some CPUs, the characteristics of modes differ so
widely that we think of the CPU as having separate hardware subsys-
tems and the mode as determining which piece of hardware is used at
the current time.

7.6 Changing Modes

How does a CPU change modes? There are two ways:

d Automatic (initiated by hardware)

d Manual (under program control)

Automatic Mode Change. External hardware can change the mode of a CPU. For
example, when an I/O device requests service, the hardware informs the CPU.
Hardware in the CPU changes mode automatically before servicing the device. We will
learn more when we consider how I/O works.

Manual Mode Change. In essence, manual changes occur under control of a run-
ning program. Most often, the program is the operating system, which changes mode
before it executes an application. However, some CPUs also provide multiple modes
that applications can use, and allow an application to switch among the modes.

Exactly how does a program change mode? Three mechanisms have been used.
In the simplest case, the CPU includes an instruction to set the current mode. In other
cases, the CPU contains a special-purpose mode register to control the mode. To
change modes, a program stores a value into the mode register. Note that a mode regis-
ter is not a storage unit in the normal sense. Instead, it consists of a hardware circuit
that responds to the store command by changing the operating mode. Finally, a mode
change can occur as the side-effect of another instruction. In most CPUs, for example,
a mode change occurs automatically whenever an application invokes an operating sys-
tem function.

To accommodate major changes in mode, additional facilities may be needed to
prepare the new mode. For example, consider a case in which two modes of execution
do not share general-purpose registers (e.g., in one mode the registers have sixteen bits
and in another mode the registers contain thirty-two bits). It may be necessary to place
values in alternate registers before changing mode to use the registers. In such cases, a
CPU provides special instructions that allow software to create or modify values before
changing the mode.
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7.7 Privilege And Protection

The mode of execution is linked to CPU facilities for privilege and protection.
That is, part of the current mode specifies the level of privilege for the CPU. For exam-
ple, when it services an I/O device, a CPU must allow device driver software in the
operating system to interact with the device and perform control functions. However,
an arbitrary application program must be prevented from accidentally or maliciously is-
suing commands to the hardware or performing control functions. Thus, before it exe-
cutes an application program, an operating system changes the mode to reduce
privilege. When running in a less privileged mode, the CPU does not permit direct con-
trol of I/O devices (i.e., the CPU treats a privileged operation like an invalid instruc-
tion).

7.8 Multiple Levels Of Protection

How many levels of privilege are needed, and what operations should be allowed
at each level? The subject has been discussed by hardware architects and operating sys-
tem designers for many years. CPUs have been invented that offer no protection, and
CPUs have been invented that offer eight levels, each with more privilege than the next.
The idea of protection is to help prevent problems by using the minimum amount of
privilege necessary at any time. We can summarize:

By using a protection scheme to limit the operations that are allowed,
a CPU can detect attempts to perform unauthorized operations.

Figure 7.2 illustrates the concept of two privilege levels.

Operating System

appl. 2appl. 1 appl. N

. . .
low
privilege

high
privilege

Figure 7.2 Illustration of a CPU that offers two levels of protection. The
operating system executes with highest privilege, and application
programs execute with less privilege.
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Although no protection scheme suffices for all CPUs, designers generally agree on
a minimum for a CPU that runs application programs:

A CPU that runs applications needs at least two levels of protection:
the operating system must run with absolute privilege, but application
programs can run with limited privilege.

When we discuss memory, we will see that the issues of protection and memory
access are intertwined. More important, we will see how memory access mechanisms,
which are part of the CPU mode, provide additional forms of protection.

7.9 Microcoded Instructions

How should a complex CPU be implemented? Interestingly, one of the key
abstractions used to build a complex instruction set comes from software: complex in-
structions are programmed! That is, instead of implementing the instruction set directly
with digital circuits, a CPU is built in two pieces. First, a hardware architect builds a
fast, but small processor known as a microcontroller†. Second, to implement the CPU
instruction set (called a macro instruction set), the architect writes software for the mi-
crocontroller. The software that runs on the microcontroller is known as microcode.
Figure 7.3 illustrates the two-level organization, and shows how each level is imple-
mented.

(implemented with microcode)

macro instruction set

(implemented with digital logic)

micro instruction set

Microcontroller

CPU

visible to
programmer

hidden
(internal)

Figure 7.3 Illustration of a CPU implemented with a microcontroller. The
macro instruction set that the CPU provides is implemented with
microcode.

��������������������������������
†The small processor is also called a microprocessor, but the term is somewhat ambiguous.
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The easiest way to think about microcode is to imagine a set of procedures that
each implement one of the CPU macro instructions. The CPU invokes the microcode
during the fetch-execute cycle. That is, once it has obtained and decoded a macro in-
struction, the CPU invokes the microcode procedure that corresponds to the instruction.

The macro and micro architectures can differ. As an example, suppose that the
CPU is designed to operate on data items that are thirty-two bits wide, and that the
macro instruction set includes an add32 instruction for integer addition. Further sup-
pose that the microcontroller only offers sixteen bit arithmetic. To implement a thirty-
two bit addition, the microcode must add sixteen bits at a time, and must add the carry
from the low-order bits into the high-order bits. Figure 7.4 lists the microcode steps
that are required.

/* Notes: the steps below assume that two 32-bit operands
are located in registers labeled R5 and R6, and that the
microcode must use 16-bit registers labeled r0 through r3
to compute the results.

*/
add32:

move low-order 16 bits from R5 into r2
move low-order 16 bits from R6 into r3
add r2 and r3, placing result in r1
save value of the carry indicator
move high-order 16 bits from R5 into r2
move high-order 16 bits from R6 into r3
add r2 and r3, placing result in r0
copy the value in r0 to r2
add r2 and the carry bit, placing the result in r0
check for overflow and set the condition code
move the thirty-two bit result from

r0 and r1 to the desired destination

Figure 7.4 An example of the steps required to implement a thirty-two bit
macro addition with a microcontroller that only has sixteen bit
arithmetic. The macro and micro architectures can differ.

The exact details are unimportant; the figure is only meant to illustrate how the ar-
chitecture of the microcontroller and the macro instruction set can differ dramatically.
Also note that because each macro instruction is implemented by a microcode program,
a macro instruction can perform arbitrary processing. For example, it is possible for a
single macro instruction to implement a trigonometric function, such as sine or cosine,
or to move large blocks of data in memory. Of course, to achieve higher performance,
an architect can choose to limit the amount of microcode that corresponds to a given in-
struction.



102 CPUs: Microcode, Protection, And Processor Modes Chap. 7

7.10 Microcode Variations

Architects have invented many variations to the basic form of microcode. For ex-
ample, we said that the CPU hardware implements the fetch-execute cycle and invokes
a microcode procedure for each instruction. On some CPUs, microcode implements the
entire fetch-execute cycle — the microcode interprets the opcode, fetches operands, and
performs the specified operation. The advantage is greater flexibility: microcode de-
fines all aspects of the macro system, including the format of macro instructions and the
form and encoding of each operand. The chief disadvantage is lower performance: the
CPU does not have an instruction pipeline implemented in hardware.

As another variation, a CPU can be designed that only uses microcode for exten-
sions. That is, the CPU has a complete macro instruction set implemented directly with
digital circuits. In addition, the CPU has a small set of additional opcodes that are im-
plemented with microcode. Thus, a vendor can manufacture minor variations of the
basic CPU (e.g., a version with a special encryption instruction intended for customers
who implement security software or a version with a special pattern matching instruc-
tion intended for customers who implement text processing software). If some or all of
the extra instructions are not used in a particular version of the CPU, the vendor can in-
sert microcode that makes them undefined (i.e., the microcode raises an error if the in-
struction is executed).

7.11 The Advantage Of Microcode

Why is microcode used? There are three motivations. First, because microcode
offers a higher level of abstraction, building microcode is less prone to errors than
building hardware circuits. Second, building microcode takes less time than building
circuits. Third, because changing microcode is easier than changing hardware circuits,
new versions of a CPU can be created faster.

We can summarize:

A design that uses microcode is less prone to errors and can be up-
dated faster than a design that does not use microcode.

Of course, microcode does have some disadvantages that balance the advantages:

d Microcode has more overhead than a hardware implementation.

d Because it executes multiple micro instructions for each macro in-
struction, the microcontroller must run at much higher speed than
the CPU.

d The cost of a macro instruction depends on the micro instruction
set.
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7.12 Making Microcode Visible To Programmers

Because a microcontroller is an internal mechanism intended to help designers, the
micro instruction set is usually hidden in the final design. Typically, the microcontrol-
ler and microcode reside on the integrated circuit along with the rest of the CPU, and
are only used internally. Thus, only the macro instruction set is available to program-
mers.

Interestingly, however, some CPUs have been designed that expose the microcon-
troller and the microcode to customers who purchase the CPU. That is, the CPU con-
tains facilities that allow the microcode to be replaced (i.e., overwritten).

In most cases, replacing microcode is a time-consuming operation that may involve
using special pins on the chip or may involve adding an external memory. More impor-
tant, a change in the microcode changes the macro instructions. Thus, changes to mi-
crocode are performed once before macro execution begins, and the microcode does not
change during execution. That is, a customer chooses a macro instruction set, creates
microcode to implement each instruction, and then builds software to use the new in-
struction set.

Why provide access to the micro instruction set? The key ideas are flexibility and
performance: allowing the microcode to be overwritten defers the final decision about a
macro instruction set, and allows a CPU’s owner to choose instructions that are optimal.
For example, a company that sells video games might create macro instructions to
manipulate graphics images, while a company that makes networking equipment might
create macro instructions to process packet headers. Because microcode can access the
internal hardware mechanisms, a single microcoded instruction can often execute faster
than a sequence of macro instructions that perform the same function.

We can summarize:

Some CPUs provide a mechanism that allows microcode to be rewrit-
ten. The motivation for allowing such change arises from the desire
for flexibility and optimization: the CPU’s owner can create a macro
instruction set that is optimized for a specific task.

7.13 Vertical Microcode

The question arises, what architecture should be used for a microcontroller? From
a programmer’s point of view, the question becomes: what instructions should the
microcontroller provide? We discussed the notion of microcode as if a microcontroller
consists of a conventional processor (i.e., a processor that follows a conventional archi-
tecture). We will see shortly that other designs are possible.

In fact, a microcontroller cannot be exactly the same as a standard processor. Be-
cause it must interact with hardware units in the CPU, a microcontroller needs a few
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special hardware facilities. For example, a microcontroller must be able to access the
ALU and store results in the general-purpose registers that the macro instruction set
uses. Similarly, a microcontroller must be able to decode operand references and fetch
values. Finally, the microcontroller must coordinate with the rest of the hardware, in-
cluding memory.

Despite the requirements for special features, a microcontroller can follow the
same general approach used for conventional processors. That is, the microcontroller’s
instruction set can contain conventional instructions such as load, store, add, subtract,
branch, and so on. For example, the microcontroller used in a CISC processor can con-
sist of a small, fast RISC processor. We say that such a microcontroller has a vertical
architecture, and use the term vertical microcode to characterize the software that runs
on the microcontroller.

Programmers are comfortable with vertical microcode because the programming
interface is familiar. Most important, the semantics of vertical microcode are exactly
what a programmer expects: one micro instruction is executed at a time. The next sec-
tion discusses the alternative to vertical microcode.

7.14 Horizontal Microcode

From a hardware perspective, vertical microcode is unattractive. One of the pri-
mary disadvantages arises from the performance requirements. For example, most mac-
ro instructions require multiple micro instructions. Thus, to execute macro instructions
at a rate of K per second, the microcontroller must execute micro instructions at a rate
of N × K per second, where N is the average number of micro instructions per macro in-
struction. Furthermore, all aspects of the microcontroller hardware must be designed to
operate at high speed (e.g., the memory used to hold microcode must be able to deliver
micro instructions at a high rate).

Computer architects invented an alternative known as horizontal microcode to
overcome the limitations of vertical microcode. Horizontal microcode has the advan-
tage of working well with the hardware, but not providing a familiar interface for pro-
grammers. That is:

Horizontal microcode allows the hardware to run faster, but is more
difficult to program.

To understand horizontal microcode, we must know more about the underlying
hardware. At the lowest level, CPU hardware consists of multiple functional units, with
data paths connecting them. Operation of the units must be controlled, and each unit is
controlled independently. Furthermore, moving data from one functional unit to another
requires explicit control of the two units: one unit must be instructed to send data, and
the other unit must be instructed to receive data.
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An example will help clarify the concept. To make the example easy to under-
stand, we will make a few simplifying assumptions and restrict the discussion to six
functional units. Figure 7.5 shows how the six functional units are interconnected.

data transfer mechanism

operand 1 operand 2

Arithmetic
Logic
Unit

(ALU)

result 1 result 2

register access

. . . . . . . . . . . . . . . ..
.
.
.
.
.
.
.
.
.
.
.
.
..................

.

.

.

.

.

.

.

.

.

.

.

.

.

macro
general-
purpose
registers

Figure 7.5 An illustration of the internal structure within a CPU. Solid ar-
rows indicate a hardware path along which data can move.

The major item shown in the figure is an Arithmetic Logic Unit (ALU) that per-
forms operations such as addition, subtraction, and bit shifting. The remaining func-
tional units provide mechanisms that interface the ALU to the rest of the system. For
example, the hardware units labeled operand 1 and operand 2 denote operand storage
units. The ALU expects operands to be placed in the storage units before an operation
is performed, and places the result of an operation in the two hardware units labeled
result 1 and result 2†. Finally, the register access unit provides a hardware interface to
the general purpose registers.

In the figure, arrows indicate paths along which data can pass as it moves from one
functional unit to another. Most of the arrows connect to the data transfer mechanism,
which serves as a conduit between functional units‡.

7.15 Example Horizontal Microcode

Each functional unit is controlled by a set of wires that carry commands (i.e.,
binary values that the hardware interprets as a command). Although Figure 7.5 does
not show command wires, we can imagine that the number of command wires connect-
ed to a functional unit depends on the type of unit. For example, the unit labeled result
1 only needs a single command wire because the unit can be controlled by a single
binary value: zero causes the unit to stop interacting with other units, and one causes
the unit to send the current contents of the result unit to the data transfer mechanism.

��������������������������������
†Recall that an arithmetic operation, such as multiplication, can produce a result that is twice as large as

an operand.
‡A later chapter explains that the data transfer mechanism depicted here is called a bus.
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Figure 7.6 summarizes the binary control values that can be passed to each functional
unit, and gives the meaning of each.

��������������������������������������������������������������������������
Unit Command Meaning��������������������������������������������������������������������������

0 0 0 No operation
0 0 1 Add
0 1 0 Subtract

ALU 0 1 1 Multiply
1 0 0 Divide
1 0 1 Left shift
1 1 0 Right shift
1 1 1 Continue previous operation

��������������������������������������������������������������������������
operand 0 No operation

1 or 2 1 Load value from data transfer mechanism
��������������������������������������������������������������������������

result 0 No operation
1 or 2 1 Send value to data transfer mechanism

��������������������������������������������������������������������������
0 0 x x x x No operation

register 0 1 x x x x Move register xxxx to data transfer mechanism
interface 1 0 x x x x Move data transfer mechanism to register xxxx

1 1 x x x x No operation
����������������������������������������������������������������������������
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Figure 7.6 Possible command values and the meaning of each for the exam-
ple functional units in Figure 7.5. Commands are carried on
parallel wires.

As the figure shows, the register access unit is a special case because each com-
mand has two parts: the first two bits specify an operation, and the last four bits specify
a register to be used in the operation. Thus, the command 0 1 0 0 1 1 means that value in
register three should be moved to the data transfer mechanism.

Now that we understand how hardware is organized, we can see how horizontal
microcode works. Imagine that each microcode instruction consists of commands to
functional units — when it executes an instruction, the hardware sends bits from the in-
struction to functional units. Figure 7.7 illustrates how bits of a microcode instruction
correspond to commands in our example.
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ALU Oper. 1 Oper. 2 Res. 1 Res. 2 Register interface

Figure 7.7 Illustration of thirteen bits in a horizontal microcode instruction
that correspond to commands for six functional units.

7.16 A Horizontal Microcode Example

How can horizontal microcode be used to perform a sequence of operations? In
essence, a programmer chooses which functional units should be active at any time, and
encodes the information in bits of the microcode. For example, suppose a programmer
needs to write microcode that adds the value in general-purpose register 4 to the value
in general-purpose register 13 and places the result back in general-purpose register 4.
Figure 7.8 lists the operations that must be performed.

d Move the value from register 4 to the hardware unit for operand 1

d Move the value from register 13 to the hardware unit for operand 2

d Arrange for the ALU to perform addition

d Move the value from the hardware unit for result 2 (the low-order

bits of the result) to register 4

Figure 7.8 An example sequence of steps that the functional units must exe-
cute to add values from general-purpose registers 4 and 13, and
place the result in general-purpose register 4.

Each of the steps can be expressed as a micro instruction. The instruction has bits
set to specify which functional unit(s) operate when the instruction is executed. For ex-
ample, Figure 7.9 shows a microcode program that corresponds to the four steps.

In the figure, each row corresponds to one instruction, which is divided into fields
that each correspond to a functional unit. A field contains a command to be sent to the
functional unit when the instruction is executed. Thus, commands determine which
functional units operate at each step.
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Instr. ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1

2

3

4

0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 0 0

Figure 7.9 An example horizontal microcode program that consists of four in-
structions of thirteen bits per instruction. Each instruction
corresponds to a step listed in Figure 7.8.

Consider the code in the figure carefully. The first instruction specifies that only
two hardware units will operate: the unit for operand 1 and the register interface unit.
The fields that corresponds to the other four units contain zero, which means that those
units will not operate when the first instruction is executed. The first instruction also
uses the data transfer mechanism — data is sent across the transfer mechanism from the
register interface unit to the unit for operand 1†. That is, fields in the instruction cause
the register interface to send a value across the transfer mechanism, and cause the
operand 1 unit to capture the value.

7.17 Operations That Require Multiple Cycles

Timing is among the most important aspects of horizontal microcode. Some
hardware units take longer to operate than others. For example, multiplication can take
longer than addition. That is, when a functional unit is given a command, the results do
not appear immediately. Instead, the program must delay before accessing the output
from the functional unit.

A programmer who writes horizontal microcode must ensure that each hardware
unit is given the correct amount of time to complete its task. For example, consider the
code in Figure 7.9, which assumes that each step can be accomplished in one cycle. If
the ALU requires two micro instruction cycles to complete an addition instead of one
cycle, an extra instruction can be inserted following the third instruction. The extra in-
struction merely specifies that the ALU should continue the previous operation; no other
units are affected. Figure 7.10 shows the microcode instruction that is used.

��������������������������������
†For purposes of this example, we assume the data transfer mechanism always operates, and does not re-

quire any control.
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ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 0 0 0 0 0 0 0 0 0 0

Figure 7.10 An instruction that can be inserted to add delay processing to
wait for the ALU to complete an operation. Timing and delay
are crucial aspects of horizontal microcode.

7.18 Horizontal Microcode And Parallel Execution

Now that we have a basic understanding of how hardware operates and a general
idea about horizontal microcode, we can appreciate an important property: inherent
parallelism. Parallelism is possible because the underlying hardware contains units that
operate independently. A programmer can specify parallel operation because an instruc-
tion contains separate fields that each control one of the hardware units.

As an example, consider an architecture that has an ALU plus separate hardware
units to hold operands. Assume the ALU requires multiple instruction cycles to com-
plete an operation. Because the ALU accesses the operands during the first cycle, the
hardware units used to hold operands remain unused during successive cycles. Thus, a
programmer can insert an instruction that simultaneously moves a new value into an
operand unit while an ALU operation continues. Figure 7.11 illustrates such an instruc-
tion.
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ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 1 0 0 0 0 1 0 1 1 1

Figure 7.11 An example instruction that simultaneously continues an ALU
operation and loads the value from register seven into operand
hardware unit one. Horizontal microcode makes parallelism
easy to specify.

The point is:

Because an instruction contains separate fields that each correspond
to one hardware unit, horizontal microcode makes it easy to specify
simultaneous, parallel operation of multiple hardware units.
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7.19 Look-Ahead And High Performance Execution

In practice, CPU architecture and microcode are much more complex than the
simplistic examples in this chapter. One of the most important sources of complexity
arises from the desire to achieve high performance. Because silicon technology allows
manufacturers to place millions of transistors on a single chip, it is possible for a CPU
to include many functional units that all operate simultaneously.

A later chapter considers architectures that make parallel hardware visible to a pro-
grammer. For now, we will consider an architectural question: can multiple functional
units be used to improve performance without changing the macro instruction set? In
particular, can the internal organization of a CPU be arranged to automatically detect
and exploit situations in which parallel execution will produce higher performance?

We have already seen a trivial example of an optimization: Figure 7.11 shows that
horizontal microcode can allow an ALU operation to continue at the same time a data
value is transferred to a hardware unit that holds an operand. However, our example re-
quires the architect to explicitly code the parallel behavior when creating the microcode.

To understand how a CPU exploits parallelism, imagine a system that includes an
intelligent microcontroller and multiple functional units. Instead of working on one
macro instruction at a time, the intelligent controller is given access to many macro in-
structions. The controller looks ahead at the instructions, finds values that will be need-
ed, and directs functional units to start fetching or computing the values. For example,
suppose the intelligent controller finds the following four instructions on a 3-address ar-
chitecture:

add R1, R3, R7
sub R4, R4, R6
add R9, R1, R2
shift R12, 5

We say that an intelligent controller schedules the instructions by assigning the
necessary work to functional units. For example, the controller can assign each operand
to a functional unit that fetches and prepares operand values. Once the operand values
are available for an instruction, the controller assigns the instruction to a functional unit
that performs the operation. For example, the instructions listed above can each be as-
signed to an ALU. Finally, when the operation completes, the controller can assign a
functional unit the task of moving the result to the appropriate destination register. The
point is: if the CPU contains enough functional units, an intelligent controller can
schedule all four macro instructions to be executed at the same time.
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7.20 Parallelism And Execution Order

Our above description of an intelligent microcontroller overlooks an important de-
tail: the semantics of the macro instruction set. In essence, the controller must ensure
that computing values in parallel does not change the meaning of the program. For ex-
ample, consider the following sequence of instructions:

div R1, R3, R7
sub R4, R4, R6
add R7, R1, R2
shift R12, 5

Unlike the previous example, the operands overlap. In particular, the first instruc-
tion specifies register seven as a destination, and the third instruction specifies register
seven as an operand. The macro instruction set specifies sequential processing of in-
structions, which means that the first instruction will place a value in register seven be-
fore the third instruction references the value. To preserve sequential semantics, an in-
telligent controller must understand and accommodate such overlap. In essence, the
controller must balance between two goals: maximize the amount of parallel evaluation,
while preserving the original (i.e., sequential) semantics.

7.21 Out-Of-Order Instruction Execution

How can a controller that schedules parallel activities handle the case where an
operand in one instruction depends on the results of a previous instruction? The con-
troller uses a mechanism known as a scoreboard that tracks the status of each instruc-
tion being executed. In particular, a scoreboard maintains information about dependen-
cies among instructions and the original macro instruction sequence execution. Thus,
the controller can use the scoreboard to decide when to fetch operands, when execution
can proceed, and when an instruction is finished. In short, the scoreboard approach al-
lows the controller to execute instructions out of order, but then reorders the results to
reflect the order specified by the code.

To achieve highest speed, a modern CPU contains multiple copies of
functional units that permit multiple instructions to be executed simul-
taneously. An intelligent controller schedules execution in an order
that preserves the appearance of sequential processing.
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7.22 Conditional Branches And Branch Prediction

Conditional branches pose another problem for parallel execution. For example,
consider the following computation:

Y ← f(X)

if ( Y > Z ) {

Q

} else {

R

}

When translated into machine instructions, the computation contains a conditional
branch which directs execution either to the code that corresponds to Q or the code that
corresponds to R. The condition depends on the value of Y, which is computed in the
first step. Now consider running the code on a CPU that uses parallel execution of in-
structions. In theory, once it reaches the conditional branch, the CPU must wait for the
results of the comparison — the CPU cannot start to schedule code for R or Q until it
knows which one will be selected.

In practice, there are two approaches used to handle conditional branches. The
first, which is known as branch prediction, is based on measurements which show that
in most code, the branch is taken approximately sixty percent of the time. Thus, build-
ing hardware that schedules instructions along the branch path provides more optimiza-
tion than hardware that schedules instructions along the non-branch path. Of course, as-
suming the branch may be incorrect — if the CPU eventually determines that the
branch should not be taken, the results from the branch path must be discarded, and the
CPU must return to the other path. The second approach simply follows both paths in
parallel. That is, the CPU schedules instructions for both outcomes of the conditional
branch. As with branch prediction, the CPU must eventually decide which result is
valid. That is, the CPU continues to execute instructions, but holds the results internal-
ly. Once the value of the condition is known, the CPU discards the results from the
path that is not valid, and proceeds to move the other results into the appropriate desti-
nations. Of course, a second conditional branch can occur in either Q or R; the score-
board mechanism handles all the details.

The point is:

A CPU that offers parallel instruction execution can handle condition-
al branches by proceeding to precompute values on one or both
branches, and choosing which values to use at a later time when the
computation of the branch condition completes.
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It may seem wasteful for a CPU to compute values that will be discarded later.
However, the goal is higher performance, not elegance. We can also observe that if a
CPU is designed to wait until a conditional branch value is known, nothing is saved —
hardware will merely sit idle. Therefore, high speed CPUs, such as Intel’s Pentium, are
designed with parallel functional units and sophisticated scoreboard mechanisms.

7.23 Consequences For Programmers

Can understanding how a CPU is structured help programmers write faster code?
In some cases, yes. For example, suppose a CPU is designed to use branch prediction
and that the CPU assumes the branch is taken. A programmer can optimize perfor-
mance by arranging code so that the most common cases take the branch. For example,
instead of testing whether Y  >  Z, a programmer can rewrite the code to test whether
Y ≤  Z.

7.24 Summary

A modern CPU is a complex processor that uses multiple modes of execution to
handle some of the complexity. An execution mode determines operational parameters
such as the operations that are allowed and the current privilege level. Most CPUs offer
at least two levels of privilege and protection: one for the operating system and one for
application programs.

To reduce the internal complexity, a CPU is often built with two levels of abstrac-
tion: a microcontroller is implemented with digital circuits, and a macro instruction set
is created by adding microcode.

There are two broad classes of microcode. A microcontroller that uses vertical mi-
crocode resembles a conventional RISC processor. Typically, vertical microcode con-
sists of a set of procedures that each correspond to one macro instruction; the CPU runs
the appropriate microcode during the fetch-execute cycle. Horizontal microcode, which
allows a programmer to schedule functional units to operate on each cycle, consists of
instructions in which each bit field corresponds to a functional unit.

Advanced CPUs extend parallel execution by scheduling a set of instructions
across multiple functional units. The CPU uses a scoreboard mechanism to handle
cases where the results of one instruction are used by a successive instruction. The idea
can be extended to conditional branches by allowing parallel evaluation of each path to
proceed, and then, once the condition is known, discarding the values along the path
that is not taken.
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EXERCISES

7.1 Investigate the effects of backward compatibility on elegance. Can you find an example of
a processor where backward compatibility impacts elegance?

7.2 Find an example of a commercial processor that uses horizontal microcode, and document
the meaning of bits for an instruction similar to the diagram in Figure 7.7.
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Assembly Languages And
Programming Paradigm

8.1 Introduction

Previous chapters in this section describe processor instruction sets and operand
addressing. This chapter discusses programming languages that allow programmers to
specify all the details of instructions and operand addresses. The chapter is not a tutori-
al about a language for a particular processor. Instead, it provides a general assessment
of features commonly found in low-level languages. The chapter examines program-
ming paradigms, and explains how programming in a low-level language differs from
programming in a conventional language. Finally, the chapter describes software that
translates a low-level language into binary instructions.

Low-level programming and low-level programming languages are not strictly part
of computer architecture. We consider them here, however, because such languages are
so closely related to the underlying hardware that the two cannot be separated easily.
Later chapters return to the focus on hardware by examining memory and I/O facilities.

8.2 Characteristics Of A High-level Programming Language

Programming languages can be divided into two broad categories:

d High-level languages

d Low-level languages

115
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A conventional programming language, such as Java or C, is classified as high-
level because the language exhibits the following characteristics:

d Many-to-one translation

d Hardware independence

d Application orientation

d General-purpose

d Powerful abstractions

Many-To-One Translation. The fundamental characteristic used to classify a pro-
gramming language as high-level concerns the relationship between statements in the
language and instructions on a typical processor: each statement corresponds to many
machine instructions. That is, when a compiler translates the language into equivalent
machine instructions, a statement usually translates into multiple instructions.

Hardware Independence. Because they are intended for use with many computers,
high-level languages do not specify any details of the underlying hardware. Instead, a
programmer can create a program without knowing exactly which processor will be
used to execute the program. For example, a high-level language allows a programmer
to specify floating point operations, such as addition and subtraction, without knowing
whether the ALU implements floating point arithmetic directly or uses a separate float-
ing point coprocessor.

Application Orientation. A high-level language, such as C or Java, is designed to
allow a programmer to create application programs. Thus, a high-level language usual-
ly includes I/O facilities as well as facilities that permit a programmer to define arbi-
trarily complex data objects.

General-Purpose. A high-level language, like C or Java, is not restricted to a
specific task or a specific problem domain. Instead, the language contains features that
allow a programmer to create a program for an arbitrary task.

Powerful Abstractions. A high-level language provides abstractions, such as pro-
cedures, that allow a programmer to express complex tasks succinctly.

8.3 Characteristics Of A Low-Level Programming Language

The alternative to a high-level language is known as a low-level language and has
the following characteristics:

d One-to-one translation

d Hardware dependence

d Systems programming orientation

d Special-purpose

d Few abstractions
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One-To-One Translation. The fundamental characteristic used to classify a pro-
gramming language as low-level concerns the relationship between statements in the
language and instructions on a typical processor: each statement corresponds to a single
instruction. Thus, when the language is translated into machine code, each statement
generates a single machine instruction.

Hardware Dependence. We have seen that each processor defines an instruction
set. Thus, if a programming language is created in which each statement corresponds to
a machine instruction, the resulting language will correspond directly to the processor
that was chosen; a low-level language created for one type of processor cannot be used
with another type of processor.

Systems Programming Orientation. Unlike a high-level language, a low-level
language is optimized for systems programming — the language has facilities that allow
a programmer to create an operating system or other software that directly controls the
hardware.

Special-Purpose. Because they focus on the underlying hardware, low-level
languages are only used in cases where extreme control or efficiency is needed. For ex-
ample, a low-level language provides a programmer explicit control over which values
are stored in registers and the exact order of instructions. Such control is only needed
in special cases.

Few Abstractions. Unlike a high-level language, a low-level language does not
have complex data structures (e.g., strings or objects), and does not usually have control
statements for tasks such as conditional execution (an if-then-else statement), iteration (a
while or for statement), or procedure invocation. Instead, the language forces a pro-
grammer to construct abstractions from low-level mechanisms†.

8.4 Assembly Language

The most widely used form of low-level programming language is known as as-
sembly language, and the software that translates an assembly language program into a
binary image that the hardware understands is known as an assembler.

It is important to understand that the phrase assembly language differs from
phrases such as Java language or C language because assembly does not refer to a sin-
gle language. Instead, a given assembly language uses the instruction set and operands
from a single processor. Thus, many assembly languages exist, one for each processor.
To summarize:

Because an assembly language is a low-level language that incor-
porates specific characteristics of a processor, such as the instruction
set, operand addressing, and registers, many assembly languages ex-
ist.

��������������������������������
†Computer scientist Alan Perlis once said that a programming language is low-level if programming re-

quires attention to irrelevant details. His point is that because most applications do not need direct control of
the underlying hardware, a low-level language increases programming complexity without providing benefits.
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The consequence for programmers should be obvious: when moving from one pro-
cessor to another, an assembly language programmer must learn a language. Fortunate-
ly, most assembly languages tend to follow a basic pattern. Thus, a programmer who
learns one assembly language can learn others quickly. More important, once a pro-
grammer understands the basic assembly language paradigm, moving to a new architec-
ture usually involves learning new details, not learning a new programming style. The
point is:

Despite differences, many assembly languages share the same funda-
mental structure. Consequently, a programmer who understands the
assembly programming paradigm can learn a new assembly language
quickly.

To help programmers understand the concept of assembly language, the next sec-
tions focus on general features and programming paradigms that apply to most assembly
languages. In addition to specific language details, we will discuss concepts such as
macros.

8.5 Assembly Language Syntax And Opcodes

8.5.1  Statement Format

Because assembly language is low-level, a single assembly language statement
corresponds to a single machine instruction. To make the correspondence between
language statements and machine instructions clear, most assemblers require a program
to contain a single statement per line of input. The general format is:

label: opcode operand1, operand2, ...

where label gives an optional label for the statement, opcode specifies one of the possi-
ble instructions, each operand specifies an operand for the instruction, and whitespace
separates the opcode from other items.

8.5.2  Opcode Names

The assembly language for a given processor defines a symbolic name for each in-
struction that the processor provides. Although the symbolic names are intended to help
a programmer remember the purpose of the instruction, most assembly languages use
extremely short abbreviations instead of long names. Thus, if a processor has an in-
struction for addition, the assembly language might use the opcode add. However, if
the processor has an instruction that branches to a new location, the opcode for the in-
struction typically consists of a single letter, b, or the two-letter opcode br. Similarly, if
the processor has an instruction that jumps to a subroutine, the opcode is often jsr.
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Unfortunately, there is no global agreement on opcode names even for basic opera-
tions. For example, most architectures include an instruction that copies the contents of
one register to another. To denote such an operation, some assembly languages use the
opcode mov (an abbreviation for move), and others use the opcode ld (an abbreviation
for load).

8.5.3  Commenting Conventions

Short opcodes tend to make assembly language easy to write but difficult to read.
Furthermore, because it is low-level, assembly language tends to require many instruc-
tions to achieve a straightforward task. Thus, to ensure that assembly language pro-
grams remain readable, programmers add two types of comments: block comments that
explain the purpose of each major section of code, and a detailed comment on each in-
dividual line to explain the purpose of the line.

To make it easy for programmers to add comments, assembly languages often al-
low comments to extend until the end of a line. That is, the language only defines a
character (or sequence of characters) that starts a comment. As an example, one assem-
bly language defines the pound sign character (#) as the start of a comment†. A block
comment can be created in which each line begins with a pound sign, or a detailed com-
ment can be created by placing a pound sign and a comment at the end of a statement.
Programmers often add additional characters to surround a block comment. For exam-
ple, the block comment below explains that a section of code searches a list to find a
memory block of a given size:

################################################################
# #
# Search linked list of free memory blocks to find a block #
# of size N bytes or greater. Pointer to list must be in #
# register 3, and N must be in register 4. The code also #
# destroys the contents of register 5, which is used to #
# walk the list. #
# #
################################################################

A comment on each line in the section of code is used to explain how the instruc-
tion fits into the algorithm. For example, the code to search for a memory block might
begin:

ld r5,r3 # load the address of list into r5
loop_1: cmp r5,r0 # test to see if at end of list

bz notfnd # if reached end of list go to notfnd

Although details in the example above may seem obscure, the point is relatively
straightforward: the comment on a line explains how the instruction fits the overall al-
gorithm.

��������������������������������
†At least one assembly language uses a semicolon to denote the start of a comment, and another assem-

bly language adopts the C++ comment style and uses two adjacent slash characters.
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8.6 Operand Order

One minor difference among assembly languages can cause subtle problems for
programmers: the order of operands. To help programmers, an assembly language usu-
ally chooses a consistent operand order. For example, consider a load instruction (ld in
the example code) that copies the contents of one register to another register. In the
code above, the first operand represents the target register (i.e., the register into which
the value will be placed), and the second operand represents the source register (i.e., the
register from which the value will be copied. Thus, in such an interpretation, the state-
ment:

ld r5,r3 # load the address of list into r5

moves the contents of register 3 into register 5. To help them remember the right-to-
left interpretation, programmers are told to think of an assignment statement in which
the expression is on the right and the target of the assignment is on the left.

As an alternative to the example code, some assembly languages specify the oppo-
site order — the source register is on the left and the target register is on the right. In
such assembly languages, the code above is written:

ld r3,r5 # load the address of list into r5

To help them remember the left-to-right interpretation, programmers are told to
think of a computer reading the instruction. Because text is read left to right, we can
imagine the computer reading the opcode, picking up the first operand, and depositing
the value in the second operand. Thus, in the alternate interpretation, the value is left in
the last operand that the computer reads.

Operand ordering is further complicated by several factors. First, unlike a load
operation, many assembly language instructions do not have source and destination
operands. For example, an instruction that performs bitwise complement only needs
one operand. Furthermore, an instruction that performs a comparison specifies two
operands, but neither can be classified as a target. Thus, a programmer who is unfami-
liar with a given assembly language may need to consult a manual to find the order of
operands for a given opcode.

Of course, the notion of reading the text of an instruction from left-to-right is a fic-
tion: the textual representation that a programmer creates is replaced by a binary
representation before the processor executes the program. Interestingly, the translation
from assembly language to binary code means that the operand order that a programmer
uses does not need to correspond to the operand order used by the underlying hardware.
Instead, operands can be reordered during translation. For example, the author once
worked on a computer that had two assembly languages, one produced by the
computer’s vendor and another produced by researchers at Bell Labs. Although both
languages were used to produce code for the same underlying computer, one language
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used a left-to-right interpretation of the operands, and the other used a right-to-left in-
terpretation.

8.7 Register Names

Because a typical instruction includes a reference to at least one register, most as-
sembly languages include a special way to denote registers. For example, in many as-
sembly languages, names that consist of the letter r followed by one or more digits are
reserved to refer to registers. Thus, a reference to r10 refers to register 10.

However, there is no universal standard for register references. In one assembly
language, all register references begin with a dollar sign followed by digits; thus, $10
refers to register 10. Other assemblers are more flexible: the assembler allows a pro-
grammer to choose register names. That is, a programmer can insert a series of declara-
tions that define a specific name to refer to a register. Thus, one might find declara-
tions such as:

#
# Define register names used in the program
#
r1 register 1 # define name r1 to be register 1
r2 register 2 # and so on for r2, r3, and r4
r3 register 3
r4 register 4

The chief advantage of allowing programmers to define register names arises from
increased readability: a programmer can choose meaningful names. For example, sup-
pose a program manages a linked list. Instead of using numbers or names like r6, a
programmer can give meaningful names to the registers:

#
# Define register names for a linked list program
#
listhd register 6 # holds starting address of list
listptr register 7 # moves along the list

Of course, allowing programmers to choose names for registers can also lead to
unexpected results that make the code difficult to understand. For example, consider
reading a program in which a programmer has used the following declaration:

r3 register 8 # define name r3 to be register 8!
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The points can be summarized:

Because registers are fundamental to assembly language program-
ming, each assembly language provides a way to identify registers. In
some languages, special names are reserved; in others, a programmer
can assign a name to a register.

8.8 Operand Types

As Chapter 6 explains, most processors provide multiple types of operands. The
assembly language for each processor must accommodate all operand types. As an ex-
ample, suppose a processor allows each operand to specify a register, an immediate
value (i.e. a constant), a memory address specified by a register or a group of registers,
or a memory address specified as an offset beyond a register. The assembly language
for the processor needs a syntactic form for each possible operand type.

We said that assembly languages often use special characters or names to distin-
guish registers from other values. In many assembly languages, for example, 10 refers
to the constant ten, and r10 refers to register ten. However, some assembly languages
require a special symbol before a constant (e.g., #10 to refer to the constant ten).

Each assembly language must provide syntactic forms for each possible operand
type. Consider, for example, copying a value from a source to a target. If the processor
allows the instruction to specify either a register (direct) or a memory location (indirect)
as the source, the assembly language must provide a way for a programmer to distin-
guish the two. One assembly language uses parentheses to distinguish the two possibil-
ities:

mov r2,r1 # copy contents of reg. 1 into reg. 2

mov r2,(r1) # treat r1 as a pointer to memory and
# copy from the mem. location to reg. 2

The point is:

An assembly language provides a syntactic form for each possible
operand type that the processor supports, including a reference to a
register, an immediate value, and an indirect reference to memory.

8.9 Assembly Language Programming Paradigm And Idioms

Because a programming language provides facilities that programmers use to struc-
ture data and code, a language can impact the programming process and the resulting
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code. Assembly language is especially significant because the language does not pro-
vide high-level constructs nor does the language enforce a particular style. Instead, as-
sembly language gives a programmer complete freedom to code arbitrary sequences of
instructions and store data in arbitrary memory locations.

Experienced programmers understand that consistency and clarity are usually more
important than clever tricks or optimizations. Thus, experienced programmers develop
idioms: patterns that they use consistently. The next sections use basic control struc-
tures to illustrate the concept of assembly language idioms.

8.10 Assembly Code For Conditional Execution

We use the term condition execution to refer to code that may or may not be exe-
cuted, depending on a certain condition. Because conditional execution is a fundamen-
tal part of programming, high-level languages usually include one or more statements
that allow a programmer to express conditional execution. The basic form of condition-
al execution is known as an if statement.

In assembly language, a programmer must code a sequence of statements to per-
form conditional execution. Figure 8.1 illustrates the form used for conditional execu-
tion in a typical high-level language and the equivalent form used in a typical assembly
language.

if (condition) {

body

}

next statement

code to test condition and

set condition code

branch not true to label

code to perform body

label: code for next statement

(a) (b)

Figure 8.1 (a) Conditional execution as specified in a high-level language,
and (b) the equivalent assembly language code.

As the figure indicates, some processors use a condition code as the fundamental
mechanism for conditional execution: when it performs an arithmetic operation or a
comparison, the ALU sets the condition code. A conditional branch instruction is then
used. Note that the branch must test the opposite of the condition (i.e., the branch is
taken if the condition is not met). For example, consider the statement:

if (a == b) { x }
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If we assume a and b are stored in registers five and six, the equivalent assembly
language is:

cmp r5, r6 # compare the values of a and b and set cc

bne lab1 # branch if previous comparison not equal
code for x

lab1: code for next statement

8.11 Assembly Code For A Conditional Alternative

High-level languages usually extend condition execution with an if-then-else state-
ment that specifies code to be executed for the case when a condition is false as well as
code to be executed when a condition is true. Figure 8.2 shows the assembly language
equivalent of an if-then-else statement.

if (condition) {

then_part

} else {

else_part

}

next statement

code to test condition and

set condition code

branch not true to label1

code to perform then_part

branch to label2

label1: code for else_part

label2: code for next statement

(a) (b)

Figure 8.2 (a) An if-then-else statement used in a high-level language, and (b)
the equivalent assembly language code.

8.12 Assembly Code For Definite Iteration

The term definite iteration refers to a programming language construct that causes
a piece of code to be executed a fixed number of times. A typical high-level language
uses a for statement to implement definite iteration. Figure 8.3 shows the assembly
language equivalent of a for statement.

Definite iteration illustrates an interesting difference between a high-level language
and assembly language: location of code. In assembly language, the code to implement
a control structure can be divided into separate locations. In particular, although a pro-
grammer thinks of the initialization, continuation test, and increment as being specified
in the header of a for statement, the equivalent assembly code places the increment after
the code for the body.



Sec. 8.12 Assembly Code For Definite Iteration 125

for (i= ; i<10; i++) {

body

}

next statement

set r4 to zero

label1: compare r4 to 10

branch to label2 if >=

code to perform body

increment r4

branch to label1

label2: code for next statement

(a) (b)

Figure 8.3 (a) A for statement used in a high-level language, and (b) the
equivalent assembly language code using register 4 as an index.

8.13 Assembly Code For Indefinite Iteration

In programming language terminology, indefinite iteration refers to a loop that ex-
ecutes zero or more times. Typically, a high-level language uses the keyword while to
indicate indefinite iteration. Figure 8.4 shows the assembly language equivalent of a
while statement.

while (condition) {

body

}

next statement

label1: code to compute condition

branch to label2 if not true

code to perform body

branch to label1

label2: code for next statement

(a) (b)

Figure 8.4 (a) A while statement used in a high-level language, and (b) the
equivalent assembly language code.

8.14 Assembly Code For Procedure Invocation

Architects use the term procedure or subroutine to refer to a piece of code that can
be invoked, and the terms procedure call or subroutine call to refer to the invocation.
The key idea is that when a subroutine is invoked, the processor records the location
from which the call occurred, and resumes execution at that point once the subroutine
completes. Thus, a given subroutine can be invoked from multiple points in a program
because control always passes back to the location from which the invocation occurred.
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Many processors provide two basic assembly instructions for procedure invocation.
A jump to subroutine (jsr) instruction saves the current location and branches to a sub-
routine at a specified location, and a return from subroutine (ret) instruction causes the
processor to return to the previously saved location. Figure 8.5 shows how the two as-
sembly instructions can be used to code a procedure declaration and two invocations.

x ( ) {

body of function x

}

x( );

other statement;

x ( );

next statement

x: code for body of x

ret

jsr x

code for other statement

jsr x

code for next statement

(a) (b)

Figure 8.5 (a) A declaration for procedure x and two invocations in a high-
level language, and (b) the assembly language equivalent.

8.15 Assembly Code For Parameterized Procedure Invocation

In a high-level language, procedure calls are parameterized. The procedure body
is written with references to parameters, and the caller passes a set of values to the pro-
cedure that are known as arguments. When the procedure refers to a parameter, the
value is obtained from the corresponding argument. The question arises: how are argu-
ments passed to a procedure in assembly code?

Unfortunately, the details of argument passing vary widely among processors. For
example, each of following three schemes has been used in at least one processor†:

d The processor uses a stack in memory for arguments

d The processor uses register windows to pass arguments

d The processor uses special-purpose argument registers

As an example, consider a processor in which registers r1 through r8 are used to
pass arguments during a procedure call. Figure 8.6 shows the assembly language code
for a procedure call on such an architecture.

��������������������������������
†The storage used for a return address (i.e., the location to which a ret instruction should branch) is often

related to the storage used for arguments.
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x ( a, b ) {

body of function x

}

x( -4, 17 );

other statement;

x ( 71, 27 );

next statement

x: code for body of x that assumes

register 1 contains parameter a

and register 2 contains b

ret

load -4 into register 1

load 17 into register 2

jsr x

code for other statement

load 71 into register 1

load 27 into register 2

jsr x

code for next statement

(a) (b)

Figure 8.6 (a) A declaration for parameterized procedure x and two invoca-
tions in a high-level language, and (b) the assembly language
equivalent for a processor that passes arguments in registers.

8.16 Consequence For Programmers

The consequence of a variety of argument passing schemes should be clear: the as-
sembly language code needed to pass and reference arguments varies significantly from
one processor to another. More important, programmers are free to invent new mechan-
isms for argument passing that optimize performance. For example, even if the
hardware is designed to use a stack in memory, a programmer might choose to increase
performance by passing some arguments in general-purpose registers rather than
memory.

The point is:

No single argument passing paradigm is used in assembly languages
because a variety of hardware mechanisms exist for argument pass-
ing. In addition, programmers sometimes use alternatives to the basic
mechanism to optimize performance (e.g., passing values in registers).
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8.17 Assembly Code For Function Invocation

The term function refers to a procedure that returns a single-value result. For ex-
ample, an arithmetic function can be created to compute sine(x) — the argument speci-
fies an angle, and the function returns the sine of the angle. Like a procedure, a func-
tion can have arguments, and a function can be invoked from an arbitrary point in the
program. Thus, for a given processor, function invocation uses the same basic mecha-
nisms as procedure invocation.

Despite the similarities between functions and procedures, function invocation re-
quires one additional detail: an agreement that specifies exactly how the function result
is returned. As with argument passing, many alternative implementations exist. Proces-
sors have been built that provide a separate, special-purpose hardware register for a re-
turn value. Other processors assume that the program will use one of the general-
purpose registers. In any case, before executing a ret instruction, a function must load
the return value into the location that the processor uses. After the return occurs, the
calling program extracts and uses the return value.

8.18 Interaction Between Assembly And High-Level Languages

Interaction is possible in either direction between code written in an assembly
language and code written in a high-level language. That is, a program written in a
high-level language can call a procedure or function that has been written in assembly
language, and a program written in assembly language can call a procedure or function
that has been written in a high-level language. Of course, because a programmer can
only control the assembly language code and not the high-level language code, the as-
sembly program must follow the calling conventions that the high-level language uses.
That is, the assembly code must use exactly the same mechanisms as the high-level
language uses to store a return address, invoke a procedure, pass arguments, and return
a function value.

Why would a programmer mix code written in assembly language with code writ-
ten in a high-level language? In some cases, assembly code is needed because a high-
level language does not allow direct interaction with the underlying hardware. For ex-
ample, a computer that has special graphics hardware may need assembly code to use
the graphics functions. In most cases, however, assembly language is only used to op-
timize performance — once a programmer identifies a particular piece of code as a
bottleneck, the programmer writes an optimized version of the code in assembly
language. Typically, optimized assembly language code is placed into a procedure or
function; the rest of the program remains written in a high-level language. As a result,
the most common case of interaction between code written in a high-level language and
code written in assembly language consists of a program written in a high-level
language calling a procedure or function that is written in an assembly language.
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The point is:

Because writing application programs in assembly language is diffi-
cult, assembly language is reserved for situations where a high-level
language has insufficient functionality or results in poor performance.

8.19 Assembly Code For Variables And Storage

In addition to statements that generate instructions, most assembly languages per-
mit a programmer to define data items. Both initialized and uninitialized variables can
be declared. For example, some assembly languages use the directive .word to declare
storage for a sixteen bit item, and the directive .long to declare storage for a thirty-two
bit item. Figure 8.7 shows declarations in a high-level language and equivalent assem-
bly code.

int x, y, z;

short w, q;

statement

x: .long

y: .long

z: .long

w: .word

q: .word

code for statement

(a) (b)

Figure 8.7 (a) Declaration of variables in a high-level language, and (b)
equivalent variable declarations in assembly language.

The keywords .word and .long are known as assembly language directives.
Although it appears in the same location that an opcode appears, a directive does not
correspond to an instruction. Instead, a directive controls the translation. The directives
in the figure specify that storage locations should be reserved to hold variables. In most
assembly languages, a directive that reserves storage also allows a programmer to speci-
fy an initial value. Thus, the directive:

x: .word 949

reserves a sixteen bit memory location, assigns the location the integer value 949, and
defines x to be a label (i.e., a name) that the programmer can use to refer to the loca-
tion.
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8.20 Two-Pass Assembler

We use the term assembler for a piece of software that translates assembly
language programs into binary code for the processor to execute. Conceptually, an as-
sembler is similar to a compiler because each takes a source program as input and pro-
duces equivalent binary code as output. An assembler differs from a compiler, howev-
er, because a compiler has significantly more responsibility. For example, a compiler
can choose how to allocate variables to memory, which sequence of instructions to use
for each statement, and which values to keep in general-purpose registers. An assem-
bler cannot make such choices because the programmer specifies the exact details.

The difference between an assembler and compiler can be summarized:

Although both a compiler and an assembler translate a source pro-
gram into equivalent binary code, a compiler has more freedom to
choose which values are kept in registers, the instructions used to im-
plement each statement, and the allocation of variables to memory.
An assembler merely provides a one-to-one translation of each state-
ment in the source program to the equivalent binary form.

Conceptually, an assembler follows a two-pass algorithm, which means the assem-
bler scans through the source programs two times†. To understand why two passes are
needed, observe that many branch instructions contain forward references (i.e., the label
referenced in the branch is defined later in the program). Thus, to generate code for a
branch instruction, the assembler needs to know the address that will be associated with
each label. For example, Figure 8.8 shows a snippet of assembly language code and the
relative location of statements.

locations assembly code

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

–
–
–
–
–
–
–
–
–
–

0x03
0x07
0x0B
0x0F
0x13
0x17
0x1B
0x1F
0x23
0x27

x:
label1:

label2:

label3:

label4:

.word
cmp
bne
jsr
ld
br
add
ret
ld
ret

r1, r2
label2
label3
r3, 0
label4
r5, 1

r1, 1

Figure 8.8 A snippet of assembly language code and the locations assigned to
each statement for a hypothetical processor. Locations are deter-
mined in the assembler’s first pass.

��������������������������������
†Assembly can be performed in a single pass if an assembler can return and update locations that were

generated previously.
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Once the assembler has completed its first pass, a location has been assigned to
each statement. Consequently, the assembler knows the value for each label in the pro-
gram. In the figure, for example, the assembler knows that label4 starts at location 32
(0x20). Thus, when the second pass of the assembler encounters the statement:

br label4

the assembler can generate a branch to location 32. Similarly, code can be generated
for each of the other instructions during the second pass because the location of each la-
bel is known.

It is not important to understand the details of an assembler, but merely to know
that:

Conceptually, an assembler makes two passes over an assembly
language program. During the first pass, the assembler assigns a lo-
cation to each statement. During the second pass, the assembler uses
the assigned locations to generate code.

Now that we understand how an assembler works, we can discuss one of the chief
advantages of using an assembler: automatic recalculation of branch addresses. To see
how automatic recalculation helps, consider a programmer working on a program. If
the programmer inserts a statement in the program, the location of each successive
statement changes. As a result, every branch instruction that refers to a label beyond
the insertion point must be changed.

Without an assembler, changing branch labels can be tedious and prone to errors.
Furthermore, programmers often make a series of changes while debugging a program.
An assembler allows a programmer to make a change easily — the programmer merely
reruns the assembler to produce a binary image with all branch addresses corrected.

8.21 Assembly Language Macros

Because assembly language is low-level, even trivial operations can require many
instructions. More important, an assembly language programmer often finds that se-
quences of code are repeated with only minor changes between instances. Repeated se-
quences of code make programming tedious, and can lead to errors if a programmer
uses a cut-and-paste approach.

To help programmers avoid repetitious coding, many assembly languages include a
parameterized macro facility. To use a macro facility, a programmer adds two types of
items to the source program: one or more macro definitions and one or more macro ex-
pansions.
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In essence, a macro facility adds an extra pass to the assembler. That is, the as-
sembler makes an initial pass in which macros are expanded. The important concept is
that the macro expansion pass does not begin the translation to binary. Instead, macro
expansion produces an assembly language source program which becomes the input to
the usual two-pass assembly process. In fact, many assemblers allow a programmer to
obtain a copy of the expanded source code for use in debugging (i.e., to see if macro
expansion is proceeding as planned).

Although the details of assembly language macros vary across assembly languages,
the concept is straightforward. A macro definition is usually bracketed by keywords
(e.g., macro and endmacro), and contains a sequence of code. For example, Figure 8.9
illustrates a definition for a macro named addmem that adds the contents of two
memory locations and places the result in a third location.

macro addmem(a, b, c)
load r1, a # load 1st arg into register 1
load r2, b # load 2nd arg into register 2
add r1, r2 # add register 2 to register 1
store r3, c # store the result in 3rd arg
endmacro

Figure 8.9 An example macro definition using the keywords macro and end-
macro. Items in the macro can refer to parameters a, b, and c.

Once a macro has been defined, the macro can be expanded by supplying argu-
ments in place of the parameters. The assembler replaces the macro call with a copy of
the body of the macro. For example, Figure 8.10 shows the assembly code generated
by an expansion of the addmem macro defined in Figure 8.9.

#
# note: code below results from addmem(xxx, YY, zqz)
#
load r1, xxx # load 1st arg into register 1
load r2, YY # load 2nd arg into register 2
add r1, r2 # add register 2 to register 1
store r3, zqz # store the result in 3rd arg

Figure 8.10 An example of the assembly code that results from an expansion
of macro addmem.

It is important to understand that although the macro definition in Figure 8.9
resembles a procedure declaration, a macro does not operate like a procedure. First,
there is no code associated with the declaration of a macro. Second, when a macro is
expanded, a complete copy of the code is inserted in the program. Third, macro argu-
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ments are treated as strings that replace the corresponding parameter. The literal substi-
tution of arguments is especially important to understand because it can yield unexpect-
ed results. For example, consider Figure 8.11 which illustrates how an illegal assembly
program can result from a macro expansion.

#
# note: code below results from addmem(1+, %*J , +)
#
load r1, 1+ # load 1st arg into register 1
load r2, %*J # load 2nd arg into register 2
add r1, r2 # add register 2 to register 1
store r3, + # store the result in 3rd arg

Figure 8.11 An example of an illegal program that can result from an expan-
sion of macro addmem. The assembler substitutes arguments
without checking validity.

As the figure shows, an arbitrary string can be used as an argument to the macro,
which means a programmer can make a mistake without any warning until the assem-
bler processes the expanded source program. For example, the first argument in the ex-
ample consists of the string 1+, which is an error. The assembler substitutes the string
which results in:

load r1, 1+

Similarly, substitution of the second argument, %*J, results in:

load r2, %*J

which make no sense. However, the errors will not be detected until after the macro ex-
pander has run and the assembler attempts to assemble the program. More important,
because macro expansion produces a source program, error messages that refer to line
numbers will reference lines in the expanded program, not in the original source code
that a programmer submits.
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The point is:

A macro expansion facility preprocesses an assembly language source
program to produce another source program in which each macro in-
vocation is replaced by the text of the macro with parameters substi-
tuted. Because a macro processor uses textual substitution, errors in
the source program are not detected by the macro processor; errors
are only detected by the assembler after the macro processor com-
pletes.

8.22 Summary

Assembly languages are low-level languages that incorporate characteristics of a
processor, such as the instruction set, operand addressing, and registers. Many assem-
bly languages exist, one or more for each type of processor. Despite differences, most
assembly languages follow the same basic structure.

Each statement in an assembly language corresponds to a single instruction on the
underlying hardware; the statement consists of an optional label, opcode, and operands.
The assembly language for a processor defines a syntactic form for each type of
operand the processor accepts.

Although assembly languages differ, most follow the same basic paradigm. Thus,
we can specify typical assembly language sequences for conditional execution, condi-
tional execution with alternate paths, definite iteration, and indefinite iteration.
Although most processors include instructions used to invoke a subroutine and return to
the caller, the details of argument passing, return address storage, and return of a func-
tion value differ. Some processors place arguments in memory, and others pass argu-
ments in registers.

An assembler is a piece of software that translates an assembly language source
program into binary code that the processor can execute. Conceptually, an assembler
makes two passes over the source program: one to assign addresses and one to generate
code. Many assemblers include a macro facility to help programmers avoid tedious
coding repetition; the macro expander generates a source program which is then assem-
bled. Because it uses textual substitution, macro expansion can result in illegal code
that is reported by the assembler.
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9

Memory And Storage

9.1 Introduction

Previous chapters examine one of the major components used in computer systems:
processors. The chapters review processor architectures, including instruction sets,
operands, and the structure of complex CPUs.

This chapter introduces the second major component used in computer systems:
memories. Successive chapters explore the basic forms of memory: physical memory,
virtual memory, and caches. Later chapters examine I/O, and show how I/O devices
use memory.

9.2 Definition

When programmers think of memory, they usually focus on the main memory
found in a conventional computer. From the programmer’s point of view, the main
memory holds running programs as well as the data the programs use. As we will see,
however, memory has a much broader meaning that includes a variety of special-
purpose memory devices such as the memory in a cell phone that holds an address book
of phone numbers, the memory that holds the program for an embedded processor, or
the memory in a digital camera that holds a set of images.

An architect views a memory as a solid-state digital device that provides storage
for data values. The next sections clarify the concept by examining the variety of possi-
bilities.
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9.3 The Key Aspects Of Memory

When an architect begins to design a memory, two key choices arise:

d Technology

d Organization

Technology refers to the properties of the underlying hardware mechanisms used to
construct the memory system. We will learn that many technologies are available, and
see examples of properties. We will also learn how basic technologies operate, and
understand when each technology is appropriate.

Organization refers to the way the underlying technology is used to form a work-
ing system. We will see that there are many choices about how to combine individual
bits into larger units and how to address the units.

In essence, technology refers to the lowest-level pieces (i.e., individual chips), and
organization refers to how those chips are used to create meaningful storage systems.
We will see that both aspects contribute to a memory system.

9.4 Characteristics Of Memory Technologies

Memory technology is not easy to define because a wide range of technologies has
been invented. To help clarify the broad purpose and intent of a given type of memory,
engineers use several characteristics:

d Volatile or nonvolatile

d Random or sequential access

d Read-write or read-only

d Primary or secondary

9.4.1  Memory Volatility

Memory is classified as volatile if the contents of the memory disappear when
power is removed. The main memory used in most computers is volatile — when the
computer is shut down, the running applications vanish.

In contrast, memory is known as nonvolatile if the contents survive even after
power is removed. For example, memory used in most digital cameras is nonvolatile —
the images remain even if the memory is removed from the camera and plugged into a
computer or printer.
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9.4.2  Memory Access Paradigm

The most common forms of memory are classified as random access, which means
that any value in the memory can be accessed at any time. The alternative to random
access is sequential access in which values must be read from memory in the same ord-
er they were inserted. Hardware engineers use the term FIFO† for a sequential access
memory.

9.4.3  Permanence Of Values

Memory is characterized by whether values can be extracted, updated, or both.
The primary form of memory used in a conventional computer system permits an arbi-
trary value in memory to be accessed (read) or updated (written) at any time. However,
other forms of memory provide more permanence. For example, some memory is
characterized as Read Only Memory (ROM) because the memory contains data values
that can be accessed, but cannot be changed.

A form of ROM, Programmable Read Only Memory (PROM), allows data values
to be entered once, and then accessed many times. Typically, values are initially placed
in PROM by using high voltage to alter the physical circuits on the chip (e.g., to des-
troy the electrical path that corresponds to a zero bit). Informally, we say that values
are burned into the memory.

Intermediate forms of permanence also exist. For example, an Electrically Eras-
able Programmable Read Only Memory (EEPROM) is a form of nonvolatile memory
that permits values to change. However, storing a value in EEPROM memory requires
activation of special circuits, and takes much longer than reading a value. Thus,
EEPROMs are used in situations where nonvolatility is desired, but values change infre-
quently.

A popular variant of EEPROM technology known as Flash memory or Flash ROM
is commonly used in digital cameras — although it takes longer to store an image in
Flash, the delay is not critical because it happens in less time than is required for a hu-
man to aim and focus the camera.

9.4.4  Primary And Secondary Memory

The terms primary and secondary are qualitative. Originally, they were used to
distinguish between the fast, volatile, internal main memory of a computer and the
slower, nonvolatile storage provided by an external electromechanical device such as a
hard disk. However, architects can also create systems in which two distinct solid-state
memory technologies are used for primary and secondary storage. For example, small,
portable devices known as microdrives are available commercially that use solid-state
memory to store files.

��������������������������������
†FIFO abbreviates First-In-First-Out.
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9.5 The Important Concept Of A Memory Hierarchy

The notions of primary and secondary memory arise as part of the memory hierar-
chy in a computer system. To understand the hierarchy, we must consider both perfor-
mance and cost: memory that has the highest performance characteristics is also the
most expensive. Thus, an architect must choose memory that satisfies cost constraints.

Research on memory use has led to an interesting principle: for a given cost, op-
timal performance is not achieved by using one type of memory throughout a computer.
Instead, a set of technologies should be arranged in a conceptual memory hierarchy.
The hierarchy has a small amount of the highest performance memory, a slightly larger
amount of slightly slower memory, and so on. For example, an architect selects a small
number of general-purpose registers, a larger amount of primary memory, and an even
larger amount of secondary memory. We can summarize the principle:

To optimize memory performance for a given cost, a set of technolo-
gies are arranged in a hierarchy that contains a relatively small
amount of fast memory and larger amounts of less expensive, but
slower memory.

Chapter 12 returns to the concept of memory hierarchy. The chapter presents the
scientific principle behind a hierarchical structure, and explains how a memory mechan-
ism known as a cache uses the principle to achieve higher performance without high
cost.

9.6 Instruction And Data Store

Some of the earliest computer systems used separate memories for programs and
data. Later, most architects adopted a Von Neumann architecture† in which a single
memory holds both programs and data.

Interestingly, the advent of specialized solid state memory technologies has reintro-
duced the separation of program and data memory — special-purpose systems some-
times use separate memories. Memory used to hold a program is known as instruction
store, and memory used to hold data is known as data store.

One of the motivations for a separate instruction store comes from the notion of
memory hierarchy: on many systems, an instruction store needs higher performance
than a data store. To understand why, observe that high-speed instructions are designed
to operate on values in general-purpose registers rather than values in memory. Thus,
many instructions do not use the data store. Furthermore, an instruction is accessed on
each iteration of the fetch-execute cycle. Thus, the instruction store experiences more
activity than the data store. We can summarize:

��������������������������������
†The architectures are named for John Von Neumann, a mathematician and computer pioneer.
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Although most modern computer systems place programs and data in
a single memory, it is possible to separate the instruction store from
the data store. Doing so allows an architect to select memory perfor-
mance appropriate for each activity.

9.7 The Fetch-Store Paradigm

As we will see, all memory technologies use a single paradigm that is known as
fetch-store. For now, it is only important to understand that there are two basic opera-
tions associated with the paradigm: fetching a value from the memory or storing a value
into the memory. The fetch operation is sometimes called read or load, and the store
operation is sometimes called write. When we discuss I/O, we will understand how the
fetch-store paradigm is implemented and how memory access is related to I/O.

9.8 Summary

The two key aspects of memory are the underlying technology and the organiza-
tion. A variety of technologies exist; they can be characterized as volatile or nonvola-
tile, random or sequential access, permanent or nonpermanent (read-only or read-write),
and primary or secondary.

To achieve maximal performance at a given cost, an architect organizes memory
into a conceptual hierarchy. The hierarchy contains a small amount of high perfor-
mance memory and a large amount of lower performance memory.

Memory systems use a fetch-store paradigm in which the memory supports two
operations: one that retrieves a value from memory and another that stores a value into
memory.
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10

Physical Memory And
Physical Addressing

10.1 Introduction

The previous chapter introduces the topic of memory, lists characteristics of
memory systems, and explains the concept of a memory hierarchy. This chapter ex-
plains how a basic memory system operates. The chapter considers both the underlying
technologies used to construct a computer memory, and the organization of the memory
into bytes and words. The next chapter expands the discussion to consider virtual
memory.

10.2 Characteristics Of Computer Memory

Engineers use the term Random Access Memory (RAM) to denote the type of
memory used as the primary memory system in most computers. As the name implies,
RAM provides random access. In addition, RAM offers read-write capability that al-
lows either access or update. Finally, most RAM is volatile; values do not persist after
the computer is powered down.
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10.3 Static And Dynamic RAM Technologies

The technologies used to implement Random Access Memory can be divided into
two broad categories. Static RAM (SRAM†) is the easiest type for programmers to
understand because it is a straightforward extension of digital logic. Conceptually,
SRAM stores each data bit in a miniature digital circuit composed of multiple transis-
tors similar to the flip-flop discussed in Chapter 2. Although the details are beyond the
scope of this text, Figure 10.1 illustrates the circuit connections.

circuit

for

one bit

input output

write enable

Figure 10.1 Illustration of a miniature Static RAM circuit that stores one data
bit. The circuit contains multiple transistors.

In the figure, the circuit has two inputs and one output. Whenever the write enable
input is on (i.e., a positive voltage), the circuit sets the output value equal to the input
(zero or one). Whenever the write enable input is off (i.e., zero volts), the circuit ig-
nores the input and keeps the output at the last setting. Thus, to write a value, the
hardware places the desired value on the input, turns on the write enable line and then
turns it off again. While the enable line is on, the circuit records the input value. When
the enable line is turned off, the circuit holds the output value.

Although it performs at high speed, SRAM has a significant disadvantage: power
consumption and heat. The miniature circuit contains many transistors that operate con-
tinuously. Each transistor consumes a small amount of power and generates heat.

The alternative to Static RAM, which is known as Dynamic RAM (DRAM‡), con-
sumes less power. However, the internal working of Dynamic RAM is surprising and
can be confusing. At the lowest level, to store information, DRAM uses a circuit that
acts like a capacitor, a device that stores electrical charge. When a value is written to
DRAM, the hardware charges or discharges the capacitor to reflect the digital value.
Later, when a value is read from DRAM, the hardware examines the charge on the
capacitor and generates the appropriate digital value.

The conceptual difficulty surrounding DRAM arises from the way a capacitor
works: because physical systems are imperfect, a capacitor gradually loses its charge.
In essence, a DRAM chip is an imperfect memory device — if a value is left long
enough, the charge dissipates and the bit becomes zero. More important, DRAM loses
its charge in a short time (e.g., in some cases, under a second).

��������������������������������
†SRAM is pronounced ‘‘ess-ram’’.
‡DRAM is pronounced ‘‘dee-ram’’.
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How can DRAM be used as a computer memory if values quickly become zero?
The answer lies in a simple technique: devise a way to read a bit out of memory before
the charge has time to dissipate, and then write the same value back again. Writing a
value causes the capacitor to start again with a full charge. So, reading and then writing
a bit will reset the capacitor without changing the value of the bit.

In practice, computers that use DRAM contain an extra hardware circuit, known as
a refresh circuit, that performs the task of reading and then writing a bit. Figure 10.2
illustrates the concept.

circuit

for

one bit

refresh

input output

write enable

Figure 10.2 Illustration of a bit in Dynamic RAM. An external refresh circuit
must periodically read the data value and write it back again or
the charge will dissipate, and the value will be lost.

The refresh hardware is more complex than the figure implies. To keep the refresh
circuit small, architects do not build one refresh circuit for each bit. Instead, a single,
small refresh mechanism is designed that can cycle through the entire memory. As it
reaches a bit, the refresh circuit reads the bit, writes the value back, and then moves on.

Complexity also arises because a refresh circuit must coordinate with normal
memory operations. In addition to avoiding delay, the hardware must ensure that the
value of a bit does not change between the time the refresh circuit reads the bit and the
time the refresh circuit writes the same value back. Despite the need for a refresh cir-
cuit, the cost and power consumption advantages of DRAM are so great that most com-
puter memory is composed of DRAM rather than SRAM.

10.4 Measures Of Memory Technology

Architects use several quantitative measures to assess memory technology; two
stand out:

d Density

d Latency and cycle times
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10.5 Density

In a strict sense, the term density refers to the number of memory cells per square
area of silicon. In practice, however, density often refers to the number of bits that can
be represented on a standard size chip. Thus, an engineer might refer to a ‘‘1 meg
chip’’, meaning a standard size chip that holds one megabit of memory. Higher density
is usually desirable because it means more memory can be held in the same physical
space. However, higher density has the disadvantages of increased power utilization
and, because more electric current generates more heat, increased heat generation.

The density of memory chips is related to the size of transistors in the underlying
silicon technology, which has followed Moore’s Law. Thus, memory density tends to
double approximately every eighteen months.

10.6 Separation Of Read And Write Performance

A second measure of a memory technology focuses on speed: how fast can the
memory respond to requests. It may seem that speed should be easy to measure, but it
is not. For example, as the previous chapter discusses, some memory technologies take
much longer to write values than to read them. To choose an appropriate memory tech-
nology, an architect needs to understand both the cost of access and the cost of update.
Thus, a principle arises:

In many memory technologies, the time required to fetch information
from memory differs from the time required to store information in
memory, and the difference can be dramatic. Therefore, any measure
of memory performance must give two values: the performance of read
operations and the performance of write operations.

10.7 Latency And Memory Controllers

In addition to separating read and write operations, we must decide exactly what to
measure. It may seem that the most important measure is latency (i.e., the time that
elapses between the start of an operation and the completion of the operation). Howev-
er, latency is a simplistic measure that does not provide complete information.

To see why latency does not suffice as a measure of memory performance, we
need to understand how the hardware works. In addition to the memory chips them-
selves, additional hardware known as a memory controller provides an interface†. Fig-
ure 10.3 illustrates the organization.

��������������������������������
†We will learn more about the memory controller later in the chapter.
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processor
control-

ler

physical

memory

Figure 10.3 Illustration of the hardware used for memory access. A control-
ler sits between the processor and physical memory.

To access memory, a device (typically a processor) presents a read or write request
to the controller. The controller translates the memory address and request into signals
appropriate for the underlying memory, and passes the signals to the memory chips. To
minimize latency, the controller returns an answer as quickly as possible (i.e., as soon
as the memory responds). However, after it responds to the device, a controller may
need additional clock cycle(s) to reset hardware circuits and prepare for the next opera-
tion.

A second principle of memory performance arises:

Because a memory system may need extra time between operations,
latency is an insufficient measure of performance; a performance
measure needs to measure the time required for successive operations.

That is, to assess the performance of a memory system, we need to measure how
fast the system can perform a sequence of operations. Engineers use the term memory
cycle time to capture the idea. Specifically, they use two separate measures: the read
cycle time (abbreviated tRC) and the write cycle time (abbreviated tWC).

We can summarize:

The read cycle time and write cycle time are used as measures of
memory system performance because they measure how quickly the
memory system can handle successive requests.

10.8 Synchronized Memory Technologies

Like most other digital circuits in a computer, memory systems use a clock that
controls exactly when a read or write operation begins. As Figure 10.3 shows, howev-
er, a memory system is linked to a device such as a processor. What happens if the
processor’s clock differs from the clock used for memory? The system still works be-
cause the controller holds a request from the processor or a response from the memory
until the other side is ready.
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Unfortunately, the difference in clock rates does affect performance — although
the delay is small, it can be nontrivial. To eliminate the delay, some memory systems
use a synchronized clock system. That is, the clock pulses used with the memory sys-
tem are aligned with the clock pulses used to run the processor, which helps eliminate
further delays. Synchronization can be used with DRAM or SRAM, which results in
two technologies:

SDRAM– Synchronized Dynamic Random Access Memory

SSRAM– Synchronized Static Random Access Memory

In practice, synchronization has been effective; many computers now use SDRAM as
the primary memory technology.

10.9 Multiple Data Rate Memory Technologies

In many computer systems, memory is the bottleneck — speeding the memory sys-
tem improves overall performance. As a result, engineers have concentrated on
memory technologies with lower cycle times. One approach uses a technique that runs
the memory system at a multiple of the normal clock rate (e.g., double). Because the
clock runs faster, the memory can deliver data faster. Therefore, the technologies are
known as fast data rate memories, typically double data rate or quadruple data rate.

10.10 Examples Of Memory Technologies

Although we have covered the highlights, our discussion of memory technology
does not begin to illustrate the range of choices available to an architect or the detailed
differences among them. For example, Figure 10.4 lists a few commercially available
RAM technologies

10.11 Memory Organization

We said that there are two key aspects of memory: the technology used and the
way memory is organized. As we have seen, an architect can choose from a variety of
memory technologies; we will now consider the second aspect. Memory organization
refers to both the internal structure of the hardware and the external addressing structure
that the memory presents to a processor. We will see that the two are related.
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Technology Description������������������������������������������������������������
DDR-DRAM Double Data Rate Dynamic RAM
DDR-SDRAM Double Data Rate Synchronized Dynamic RAM
FCRAM Fast Cycle RAM
FPM-DRAM Fast Page Mode Dynamic RAM
QDR-DRAM Quad Data Rate Dynamic RAM
QDR-SRAM Quad Data Rate Static RAM
SDRAM Synchronized Dynamic RAM
SSRAM Synchronized Static RAM
ZBT-SRAM Zero Bus Turnaround Static RAM
RDRAM Rambus Dynamic RAM
RLDRAM Reduced Latency Dynamic RAM

Figure 10.4 Examples of commercially available RAM technologies. Many
other technologies exist.

10.12 Memory Access And Memory Bus

To understand how memory is organized, we need to examine the access paradigm.
Recall from Figure 10.3 that a memory controller provides the interface between a phy-
sical memory and a processor that uses the memory†. Several questions arise. What is
the structure of the connection between a processor and memory? What values pass
across the connection? How does the processor view the memory system?

To achieve high performance, memory systems use parallelism: the connection
between the processor and controller consists of many wires that are used simultaneous-
ly. Each wire can transfer one data bit at any time. Figure 10.5 illustrates the concept.

processor
control-

ler

physical

memory...

parallel interface

Figure 10.5 The parallel connection between a processor and memory. A
connection that contains N wires, allows N bits of data to be
transferred simultaneously.

The technical name for the hardware connection between a processor and memory
is bus (more specifically, memory bus). We will learn about buses in the chapters on
I/O; for now, it is sufficient to understand that a bus provides parallel connections.

��������������������������������
†In later chapters, we will learn that I/O devices also access memory through the memory controller; for

now, we will use a processor in the examples.
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10.13 Memory Transfer Size

The parallel connections of a memory bus are important to both programmers and
computer architects. From an architectural standpoint, the parallel connections improve
performance. From a programming point of view, the parallel connections define a
memory transfer size (i.e., the amount of data that can be read or written to memory in
a single operation).

In the next section, we will see that transfer size is a crucial aspect of memory or-
ganization. A later section considers how transfer size affects programming.

10.14 Physical Addresses And Words

The bits that comprise physical memory are divided into blocks of N bits per
block, where N is the memory transfer size. A block of N bits is sometimes called a
word, and the transfer size is called the word size or the width of a word.

Each word of physical memory is assigned a unique number known as a physical
memory address; the approach is known as word addressing. As Figure 10.6 illustrates,
we can think of physical memory as an array of words, with addresses starting at zero.

word 0

word 1

word 2

word 3

word 4

word 5
...

physical
address

0

1

2

3

4

5

32 bits

Figure 10.6 Physical memory addressing on a computer where a word is
thirty-two bits. We think of the memory as an array of words.

10.15 Physical Memory Operations

The controller for physical memory supports two operations: read and write. In
the case of a read operation, the processor specifies an address; in the case of a write
operation, the processor specifies an address as well as data to be written. The crucial
idea is that the controller always accepts or delivers an entire word; physical memory
hardware does not provide a way to read or write less than a complete word (i.e., the
hardware does not allow the processor to access or alter part of a word).
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The point is:

Physical memory is organized into words, where a word is equal to
the memory transfer size. Each read or write operation applies to an
entire word.

10.16 Word Size And Other Data Types

We said that because simultaneous transfer is possible, a memory with many wires
has high performance. More important: an interface that has more wires will transfer
data at a higher rate. That is, a memory system that uses a word size of K will have
higher performance than a memory system that uses a word size less than K. Of course,
increasing the word size increases the cost of the hardware.

What word size should an architect choose? The question is complicated by
several factors. First, because memory is used to store data, the word size should ac-
commodate common data values (e.g., the word should be large enough to hold an in-
teger). Second, because memory is used to store programs, the word size should ac-
commodate frequently used instructions. Third, because parallel hardware takes space
and adds to the economic cost, the word size is chosen as a compromise between per-
formance and various costs. For example, some architects have chosen a word size of
thirty-two bits; others have selected sixty-four.

In most cases, an architect designs all parts of a computer system to work together.
Thus, if an architect chooses a memory word size equal to thirty-two bits, the architect
will make a standard integer and a single-precision floating point value each occupy
thirty-two bits. As a result, a computer system is often characterized by stating the
word size (e.g., a thirty-two bit processor).

10.17 An Extreme Case: Byte Addressing

Programmers who have used a conventional computer are usually surprised to
learn that physical memory is organized into words because most programmers are fa-
miliar with an alternate form of addressing known as byte addressing. Byte addressing
is especially convenient for programming because it gives a programmer an easy way to
access small data items such as characters.

When byte addressing is used, memory is organized as an array of bytes rather
than an array of words. The choice of byte addressing has two important consequences.
First, because each byte of memory is assigned an address, byte addressing requires
more addresses than word addressing. Second, because byte addressing allows a pro-
gram to read or write a single byte, the memory controller must support byte transfer.
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10.18 Byte Addressing With Word Transfers

We said that because a parallel interface supports simultaneous transfer, a memory
interface with many wires has higher performance than a memory interface with fewer
wires. Because a byte is smaller than a typical word, a memory system that offers byte
addressing will have lower performance than a memory system that offers word ad-
dressing.

Can we devise a memory system that combines the higher speed of word address-
ing with the programming convenience of byte addressing? Yes. To do so, we need an
intelligent memory controller that can translate between the two addressing schemes.
The controller accepts byte addresses from the processor, and uses word addresses for
the underlying memory — when the processor requests a byte, the controller reads the
appropriate word of memory and extracts the specified byte. Figure 10.7 illustrates a
mapping between the two addressing schemes.
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Figure 10.7 Illustration of one possible mapping between byte addresses used
by a processor and word addresses used by the underlying
hardware.

To implement the mapping shown in the figure, a controller must convert byte ad-
dresses issued by the processor to word addresses. For example, if the processor re-
quests a read operation for byte address 17, the controller must issue a read request for
word 4, and then extract the second byte from the word.

Because the memory can only transfer an entire word at a time, a byte write opera-
tion is expensive. For example, if a processor writes byte 11, the controller must read
word 2 from memory, replace the rightmost byte, and then write the entire word back to
memory.

Mathematically, the translation of addresses is straightforward. To translate a byte
address, B, to the corresponding word address, W, the controller divides B by N, the
number of bytes per word, and ignores the remainder. Similarly, to compute a byte
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offset within a word, the controller computes the remainder of B divided by N. That is,
the word address is given by:

W = 
�
�
�
  

N
B�� �

�
�

and the offest is given by:

O = B mod  N

As an example, consider the values in Figure 10.7, where N = 4. A byte address of
11 translates to a word address of 2 and an offset of 3, which means that byte 11 is
found in word 2 at byte offset 3†.

10.19 Using Powers Of Two

Performing a division or computing a remainder is time consuming and requires
extra hardware (e.g., an Arithmetic Logic Unit). To avoid computation, architects or-
ganize memory using powers of two. Doing so means that hardware can perform the
two computations above simply by extracting bits. In Figure 10.7, for example, N = 22,
which means that the offset can be computed by extracting the two low-order bits, and
the word address can be computed by extracting everything except the two low-order
bits. Figure 10.8 illustrates the idea:

1000100 . ..

Byte Address, B (17)

Word Address, W (4) Offset, O (1)

Figure 10.8 An example of a mapping from byte address 17 to word address
4 and offset 1. Using a power of two for the number of bytes
per word avoids arithmetic calculations.

We can summarize:

To avoid arithmetic calculations, such as division or remainder, phy-
sical memory is organized such that the number of bytes per word is a
power of two, which means the translation from a byte address to a
word address and offset can be performed by extracting bits.

��������������������������������
†The offset is measured from zero.
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10.20 Byte Alignment And Programming

Knowing how the underlying hardware works helps explain a concept that pro-
grammers encounter: byte alignment. We say that an integer value is aligned if the
bytes of the integer correspond to a word in the underlying physical memory. In Figure
10.7, for example, an integer composed of bytes 12, 13, 14, and 15 is aligned, but an in-
teger composed of bytes 6, 7, 8, and 9 is not.

On some architectures, byte alignment is required — the processor raises an error
if a program attempts an integer access using an unaligned address. On other proces-
sors, arbitrary alignment is allowed, but unaligned accesses result in lower performance
than aligned accesses. We can now understand why an unaligned address requires more
accesses of physical memory: the memory controller must convert each processor re-
quest into operations on the underlying memory. If an integer spans two words, the
controller must perform two read operations to obtain the requested bytes. Thus, even
if the processor permits unaligned access, programmers are strongly encouraged to align
data values.

We can summarize:

The organization of physical memory affects programming: even if a
processor allows unaligned memory access, aligning data on boun-
daries that correspond to the physical word size can improve program
performance.

10.21 Memory Size And Address Space

How large can a memory be? It may seem that memory size is only an economic
issue — more memory simply costs more money. However, size turns out be an essen-
tial aspect of memory architecture because overall memory size is inherently linked to
other choices such as the addressing scheme.

The most significant limitation on size arises because a processor imposes a fixed
bound on the size of an address that can be generated. Typically, the processor limits
an address to be the same size as an integer. For example, a system that uses thirty-two
bit integers typically uses thirty-two bit addresses. As Chapter 3 points out, a string of
k bits can represent 2k values. Thus, a thirty-two bit value can represent:

232 = 4,294,967,296

unique addresses (i.e., addresses 0 through 4,294,967,295). We use the term address
space to denote the set of possible addresses.

The tradeoff between byte addressing and word addressing is now clear: given a
fixed address size, the amount of memory that can be addressed depends on whether the
processor uses byte addressing or word addressing. Furthermore, if word addressing is
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used, the amount of memory that can be addressed depends on the word size. For ex-
ample, on a computer that uses word addressing with four bytes per word, a thirty-two
bit value can hold enough addresses for 17,179,869,184 bytes (i.e., four times as much
as when byte addressing is used).

10.22 Programming With Word Addressing

Many processors use byte addressing because byte addressing provides the most
convenient interface for programmers. However, byte addressing does not maximize
memory size. Therefore, some systems use word addressing, which provides access to
the maximum amount of memory for a given address size†.

On a processor that uses word addressing, software must handle the details of byte
manipulation. In essence, software performs the controller functions. For example, to
extract a byte, software must locate and read the appropriate word, and extract the
desired byte. Similarly, to write a byte, software locates the appropriate word, reads the
word, updates the specified byte, and writes the modified word back to memory. To
optimize software performance, logical shifts and bit masking are used to manipulate an
address rather than division or remainder computation. Similarly, shifts and logical
operations are used to extract bytes from a word. For example, to extract the leftmost
byte from a thirty-two bit word, w, a programmer can code a C statement:

( w > > 24 ) & 0xff

10.23 Measures Of Memory Size

We can characterize physical memory architecture as follows:

Physical memory is organized into a set of M words that each contain
N bytes; to make controller hardware efficient, M and N are each
chosen to be powers of two.

The use of powers of two for word and address space size has an interesting conse-
quence: the maximum amount of memory is always a power of two rather than a power
of ten. As a result, memory size is measured in powers of two. For example, a Kilo-
byte (Kbyte) is defined to consist of 210 bytes, and a Megabyte (MB) is defined to con-
sist of 220 bytes. The terminology is confusing because it is an exception. In computer
networking, for example, a measure of Megabits per second refers to base ten. Thus
one must be careful when mixing memory size with other measures (e.g., although there
are eight bits per byte, one Kilobyte of data in memory is not eight times larger than
one Kilobit of data sent across a network).

��������������������������������
†Systems, such as supercomputers, that are designed to manipulate numeric values often use word ad-

dressing because applications running on such systems seldom manipulate individual bytes.
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10.24 Pointers And Data Structures

Memory addresses are important because they form the basis for commonly used
data abstractions, such as linked lists or trees. Consequently, programming languages
often provide facilities that allow a programmer to declare a pointer variable that holds
a memory address, assign a value to a pointer, or dereference a pointer to obtain an
item.

In the C programming language, for example, the declaration:

char *cptr;

declares variable cptr to be a pointer to a character (a byte in memory). That is, the
compiler allocates storage for variable cptr equal to the size of a memory address, and
allows the variable to be assigned the address of an arbitrary byte in memory.

The C programming language has a heritage of both byte and word addressing:
when performing arithmetic on pointers, for example, C accommodates the size of the
underlying item. As an example, the declaration:

int *iptr;

declares variable iptr to be a pointer to an integer (i.e., a pointer to a word). If each in-
teger contains four bytes, the autoincrement statement:

iptr + + ;

increases the value of iptr by four. That is, if iptr is declared to be the address of a
word in memory, autoincrement moves to the next word.

10.25 A Memory Dump

A trivial example will help us understand the relationship between pointers and
memory addresses. Consider a linked list as Figure 10.9 illustrates.

node 3

100

node 2

200

node 1

192

head

Figure 10.9 Example of a linked list. Each pointer in the list corresponds to
a memory address.
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To create such a list, a programmer must write a declaration that specifies the con-
tents of a node, and then must allocate memory to hold the list. In our trivial example,
each node in the list will contain two items: an integer count and a pointer to the next
node on the list. In C, a struct declaration is used to define the contents of a node:

struct node {
int count;
struct node *next;

}

Similarly, a variable named head that serves as the head of the list is defined as:

struct node *head;

To understand how the list appears in memory, consider a memory dump as Figure
10.10 illustrates†.

Address Contents Of Memory���������������������������������������������������������������
0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006�

�
�
�
�

Figure 10.10 Illustration of a small portion of a memory dump that shows the
contents of memory. The address column gives the memory
address of the left-most byte on the line, and all values are
shown in hexadecimal.

The example in the figure is taken from a processor that uses byte addressing.
Each line of the figure corresponds to sixteen contiguous bytes of memory that are di-
vided into four groups of four bytes. Each group contains eight hexadecimal digits to
represent the values of four bytes. The address at the beginning of a line specifies the
memory address of the first byte on that line. Therefore, the address on each line is six-
teen greater than the address on the previous line.

Assume the head of a linked list is found at address 0x0001bde4, which is located
on the first line of the dump. The first node of the list starts at address 0x0001bdf8,
which is located on the second line of the dump, and contains the integer 192 (hexade-
cimal constant 000000c0).

Although the processor uses byte addressing, spacing has been inserted to divide
the output into groups of bytes. In the example, grouping output into four-byte units
implies that the underlying word size is four bytes (i.e., thirty-two bits).

��������������������������������
†As the figure shows, a programmer can initialize memory to a hexadecimal value that makes it easy to

identify items in a memory dump. In the example, a programmer has used the value deadbeef.
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10.26 Indirection And Indirect Operands

When we discussed operands and addressing modes in Chapter 6, the topic of in-
direction arose. Now that we understand memory organization, we can understand how
a processor evaluates an indirect operand. As an example, suppose a processor executes
an instruction in which an operand specifies an immediate value of 0x1be1f, and speci-
fies indirection. Further suppose that the processor has been designed to use thirty-two
bit values. Because the operand specifies an immediate value, the processor first loads
the immediate value (hexadecimal 1be1f). Because the operand specifies indirection,
the processor treats the resulting value as an address in memory, and fetches the word
from the address. If the values in memory correspond to the values shown in Figure
10.10, the processor will load the value from the rightmost word in the last line of the
figure, and the final operand value will be 6.

10.27 Memory Banks And Interleaving

Our discussion of physical memory has assumed a single memory and a single
memory controller. In practice, however, some architectures use parallelism to provide
higher memory performance. Instead of a single memory and a single controller, the
processor connects to multiple memory banks† that each has its own controller. Higher
performance results from simultaneous operation — the controller hardware is designed
to permit all banks to operate simultaneously.

How do memory banks appear to a programmer? In some architectures, memory
banks are transparent — memory hardware automatically finds and exploits parallelism.
For example, a CPU that uses horizontal microcode and parallel functional units can
schedule access to multiple memory banks as independent operations. In other architec-
tures, the programmer is responsible for organizing data into separate memory banks; in
such cases, placing data items in separate banks can produce higher performance.

Another optimization used with physical memory systems is known as interleav-
ing. In essence, interleaving spreads consecutive bytes of memory across separate phy-
sical memory modules. Like memory banks, interleaving achieves higher performance
through hardware parallelism (i.e., by allowing hardware to simultaneously access mul-
tiple memory items). Unlike memory banks, interleaving is often hidden from program-
mers — a programmer accesses contiguous bytes of memory (e.g., to fetch an integer),
and the memory hardware automatically divides the request into the underlying memory
modules.

We use the terminology N-way interleaving to describe the number of underlying
memory modules. For example, Figure 10.11 illustrates how bytes are assigned to
memory modules in a four-way interleaving scheme.

��������������������������������
†The concept of a memory bank is analogous to the concept of a register bank described in Chapter 5.
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interface

module 0 module 1 module 2 module 3

0 1 2 3
4 5 6 7
8 9 10 11
... ... ... ...

requests

Figure 10.11 Illustration of 4-way interleaving with numbers showing the
bytes assigned to each module. Successive bytes are placed in
separate memory banks to optimize performance.

10.28 Content Addressable Memory

An unusual form of memory exists that blends the two key aspects we discussed:
technology and memory organization. The form is known as a Content Addressable
Memory (CAM). As we will see, a CAM does much more than merely store data items
— it includes hardware for high-speed searching.

The easiest way to think about a CAM is to view it as memory that has been or-
ganized as a two-dimensional array. Each row, which is used to store an item, is called
a slot. In addition to allowing a processor to place a value in each slot, a CAM allows
a processor to specify a search key and request the hardware to perform a search. Fig-
ure 10.12 illustrates the organization of a CAM.

As the figure shows, a search key is the same size as a slot in the CAM. For the
most basic form of a CAM, the search mechanism performs an exact match. That is,
the CAM hardware compares the key against each slot, and reports whether a match
was found. Unlike a search performed by a conventional processor, however, a CAM
reports results instantly. In essence, each slot in a CAM contains hardware that per-
forms the comparison — because all slots operate in parallel, the time required to per-
form the search does not depend on the number of slots.

Of course, parallel search hardware makes CAM extremely expensive. Thus, an
architect only uses a CAM when lookup speed is more important than cost. For exam-
ple, in a high speed Internet router, the system must check each incoming packet to
determine whether other packets have arrived previously from the same source. To han-
dle high speed connections, some designs use a CAM to store a list of source identif-
iers.
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CAM Storage

Key

...

one slot

Figure 10.12 Illustration of a Content Addressable Memory (CAM). CAM
provides both a memory technology and a memory organiza-
tion.

10.29 Ternary CAM

An alternative form of CAM, known as Ternary CAM (T-CAM), extends the idea
of CAM to provide partial match searches. In essence, each bit in a slot can have three
values: zero, one, or ‘‘don’t care’’. Like a standard CAM, a T-CAM performs the
search operation in parallel by examining all slots simultaneously. Unlike a standard
CAM, however, a T-CAM only performs the match on bits that have the value zero or
one. Partial matching allows a T-CAM to be used in cases where two or more entries
in the CAM overlap — a T-CAM can find the best match (e.g., the longest prefix
match).

10.30 Summary

We examined two aspects of physical memory: the underlying technology and the
memory organization. Many memory technologies exist. Differences among them in-
clude permanence (RAM or ROM), clock synchronization, and the read and write cycle
times.

Physical memory is organized into words and accessed through a controller.
Although programmers find byte addressing convenient, most underlying memory sys-
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tems use word addressing. An intelligent memory controller can translate from byte ad-
dressing to word addressing. To avoid arithmetic computation in a controller, memory
is organized so the address space and bytes per word are powers of two.

Programming languages, such as C, provide pointer variables and pointer arith-
metic that allow a programmer to obtain and manipulate memory addresses. A memory
dump, which shows the contents of memory along with the memory address of each lo-
cation, can be used to relate data structures in a program to values in memory at run-
time.

Content Addressable Memory (CAM) combines memory technology and memory
organization. A CAM organizes memory as an array of slots, and provides a high-
speed search mechanism.

EXERCISES

10.1 Compute the number of memory operations required for a 2-address instruction if the in-
struction and both operands are unaligned.

10.2 Write a C function that declares a static integer array, M, and implements fetch and store
operations that use shift and Boolean operations to access individual bytes.

10.3 Find the memory in a PC, identify the type of chips used, and look up the vendor’s
specification of the chips to determine the memory type and speed.
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11

Virtual Memory
Technologies And Virtual
Addressing

11.1 Introduction

The previous chapter discusses physical memory. The chapter considers the
hardware technologies used to create memory systems, the organization of physical
memory into words, and the physical addressing scheme used to access memory.

This chapter considers the important concept of virtual memory. It examines the
motivation, the technologies used to create virtual address spaces, and the mapping
between virtual and physical memory. Although our focus is primarily on the hardware
systems, we will learn how an operating system uses virtual memory facilities.

The next chapter completes the discussion of memory by examining the topic of
caching. We will see how caching relates to both physical and virtual memory systems.

11.2 Definition

We use the term virtual memory (VM) to refer to a mechanism that hides the de-
tails of the underlying physical memory to provide a more convenient memory environ-
ment. In essence, a virtual memory system creates an illusion — an address space and
a memory access scheme that overcome limitations of the physical memory and physi-
cal addressing scheme. The definition may seem vague, but we need to encompass a

163
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wide variety of technologies and uses. The next sections will define the concept more
precisely by giving examples of virtual memory systems that have been created and the
technologies used to implement each. We will learn that the variety in virtual memory
schemes arises because no single scheme is optimal in all cases.

11.3 A Virtual Example: Byte Addressing

We have already seen an example of a technology that fits our definition of virtual
memory in Chapter 10: an intelligent memory controller that provides byte addressing
with an underlying physical memory that uses word addressing. The implementation
consists of a controller that allows a processor to specify requests using byte addressing.
We further saw that choosing sizes to be powers of two avoids arithmetic computation
and makes the translation of byte addresses to word addresses trivial.

11.4 Virtual Memory Terminology

Architects use the term Memory Management Unit (MMU) to describe an intelli-
gent memory controller. The MMU creates a virtual address space for the processor;
the addresses the processor generates are virtual addresses. Most important, we classify
the entire mechanism as a virtual memory system because it is not part of the underlying
physical memory.

Informally, to help distinguish virtual memory from physical memory, architects
use the term real to refer to parts of a physical memory. For example, they might use
the term real address to refer to a physical address, or the term real address space to
refer to the set of addresses recognized by the physical memory.

11.5 An Interface To Multiple Physical Memory Systems

An MMU that can map from byte addresses to underlying word addresses can be
extended to create more complex memory organizations. For example, Intel Corpora-
tion makes a network processor that uses two types of physical memory: SRAM and
DRAM. Interestingly, the number of bytes per word in the two underlying physical
memories differ: SRAM memory uses four bytes per word, and DRAM uses eight.
Intel’s network processor contains an embedded RISC processor that has access to both
memories, and the RISC processor uses byte addressing. Rather than using separate in-
structions to access the two memories, the Intel design follows a standard approach: it
integrates both physical memories into a single virtual address space.

To implement a uniform virtual address space out of two dissimilar physical
memory systems, we use hardware to perform the necessary translations. Figure 11.1
illustrates an architecture.
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physical
controller

physical
controller
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Figure 11.1 Illustration of an architecture in which two dissimilar memories
connect to a processor. The processor can use either memory.

In the figure, the processor connects to a Memory Management Unit. The MMU
receives memory requests from the processor, translates each request, and forwards the
request to the controller for physical memory 1 or the controller for physical memory 2.
The controllers for the two physical memories operate as described in Chapter 10 — a
controller accepts a request that specifies byte addressing, and translates the request into
operations that use word addressing.

How can the hardware in Figure 11.1 provide a virtual address space? Conceptual-
ly, the MMU divides the address space into two parts, which the MMU associates with
physical memory 1 and physical memory 2. For example, if each physical memory
contains 1000 bytes of RAM, the MMU can create a virtual address space that associ-
ates the first 1000 byte addresses with memory 1 (i.e., addresses 0 through 999) and the
next 1000 addresses with memory 2 (i.e., addresses 1000 through 1999). Figure 11.2 il-
lustrates the resulting virtual memory system.
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memory 1

memory 2

Address
0

999
1000
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Processor sees a
single contiguous
memory

Figure 11.2 Illustration of a virtual memory system that divides an address
space among two physical memories. The MMU uses an ad-
dress to decide which memory to access.

11.6 Address Translation Or Address Mapping

Each of the underlying memory systems in Figure 11.2 operates like the physical
memory systems discussed in Chapter 10: the hardware expects requests to reference
addresses beginning at zero. Thus, each of the two memories recognizes the same set
of addresses. For memory 1, the virtual addresses associated with the memory cover
the same range as the hardware expects, which means the MMU can pass a request
from the processor to memory 1 with no changes. For memory 2, however, the proces-
sor generates addresses starting at 1000, so the MMU must map an address to the lower
range (i.e., real addresses 0 through 999) before passing a request to memory 2. We say
that the MMU translates the address.

Mathematically, address mapping for memory 2 is straightforward: the MMU
merely subtracts 1000 from an address. Figure 11.3 explains the concept.

receive memory request from processor;
let A be the address in the request;
if ( A > 1000 ) {

A = A – 1000;
pass the modified request to memory 2;

} else {
pass the unmodified request to memory 1;

}

Figure 11.3 The sequence of steps used by a Memory Management Unit to
create the virtual memory depicted in Figure 11.2. The MMU
maps the virtual address space onto two physical memories.
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The point is:

An MMU can combine multiple underlying physical memory systems
to create a virtual address space that provides a processor with the il-
lusion of a single, uniform memory system. Because each underlying
memory uses addresses that start at zero, the MMU must translate
between the addresses generated by the processor and the addresses
used by each memory.

11.7 Avoiding Arithmetic Calculation

In practice, an MMU cannot use subtraction to implement address translation be-
cause subtraction requires substantial hardware (e.g., an ALU) and takes too much time
to perform for each memory reference. The solution consists of dividing the address
space along boundaries that correspond to powers of two. Doing so makes it possible
for the MMU to choose an underlying memory and perform the necessary address trans-
lation without using subtraction.

For example, reconsider the memory address mapping illustrated in Figure 11.2.
Suppose that instead of exactly one thousand bytes, each memory contains 210= 1024
bytes. In terms of the virtual address space, the MMU will map addresses 0 through
1023 onto memory 1, and addresses 1024 through 2047 onto memory 2. In decimal,
the values do not seem similar. When expressed in binary, however, values in the two
ranges differ only in the high-order bit. Figure 11.4 shows the binary values:

Addresses Values In Binary���������������������������������
0 0 0 0 0 0 0 0 0 0 0 0 0
to to

1023 0 1 1 1 1 1 1 1 1 1 1 1

1024 1 0 0 0 0 0 0 0 0 0 0 0
to to

2047 1 1 1 1 1 1 1 1 1 1 1 1

Figure 11.4 The binary values for addresses in the range 0 through 2047.
Values above 1023 are the same as those below except for the
high-order bit.

As the example shows, choosing a power of two can eliminate the need for sub-
traction because low-order bits can be used as a physical address. In the example, when
mapping an address to one of the underlying physical memories, an MMU merely ex-
tracts the low-order eleven bits of the virtual address. Similarly, instead of an arithmet-
ic comparison to determine which physical memory to use, the controller can test the
high-order bit of an address.
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To summarize:

Dividing a virtual address space on a boundary that corresponds to a
power of two allows the MMU to choose a physical memory and per-
form the necessary address translation without requiring arithmetic
operations.

11.8 Discontiguous Address Spaces

Figure 11.2 shows an example of a contiguous virtual address space, an address
space in which all addresses are mapped onto an underlying physical memory. That is,
the processor can reference any address from zero to the highest address because each
address corresponds to a location in one of the physical memories. Interestingly, most
computers are designed to be flexible — the physical memory is designed to allow the
computer’s owner to determine how much memory to install. The computer contains
physical slots for memory, and the owner can choose to populate all the slots with
memory chips or leave some of the slots empty.

Consider the consequence of allowing an owner to install an arbitrary amount of
memory. Because it is defined when the computer is created, the virtual address space
includes an address for each possible physical memory location (i.e., addresses for the
maximum amount of memory that can be installed in the computer). If an owner de-
cides to omit some of the memory, part of the virtual space becomes unusable — if the
processor references an address that does not correspond to physical memory, an error
results. More important, the virtual address space will not be contiguous because re-
gions of valid addresses are separated by invalid addresses. For example, Figure 11.5
shows how a virtual address space might appear if the virtual space is mapped onto two
physical memories, and part of each physical memory is omitted.

When part of a virtual space does not map onto physical memory, we say that the
address space contains a hole. In Figure 11.5, for example, the virtual space contains
two holes†.

We can summarize:

A virtual address space can be contiguous, in which case every ad-
dress maps to a location of an underlying physical memory, or non-
contiguous, in which case the address space contains one or more
holes. If a processor attempts to read or write any address that does
not correspond to physical memory, an error results.

��������������������������������
†We will see further examples of address spaces that contain holes when we discuss I/O.
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Figure 11.5 Illustration of a virtual address space of N bytes mapped onto
two physical memories. The space is not contiguous because
only part of each memory is present.

11.9 Other Memory Organizations

Many other possibilities exist for mapping a virtual address space onto physical
memories. For example, the two low-order bits of an address can be used to interleave
memory among four separate physical memory modules (i.e., banks), and the remaining
bits of the address can be used to select a byte within a module. One of the chief ad-
vantages of interleaving bytes among a set of modules arises from the ability of under-
lying hardware to access separate physical memories simultaneously. Using low-order
bits to select a module means that successive bytes of memory come from different
modules. In particular, if a processor accesses a data item composed of thirty-two bits,
the underlying memory system can fetch all four bytes simultaneously.

11.10 Motivation For Virtual Memory

The trivial examples above show that a memory system can present a processor
with a virtual address space that differs from the underlying physical memory. The rest
of the chapter explores more complex virtual memory schemes. In most cases, the
schemes incorporate and extend the concepts discussed above. We will learn that there
are four main motivations for the use of complex virtual memory:

d Homogeneous integration of hardware
d Programming convenience
d Support for multiprogramming
d Protection of programs and data
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Homogeneous Integration Of Hardware. Our examples explain how a virtual
memory system can provide a homogeneous interface to a set of physical memories.
More important, the scheme allows heterogeneity in the underlying memories. For ex-
ample, some of the underlying physical memories can use a word size of thirty-two bits,
while others use a word size of sixty-four bits. Some of the memories can have a much
faster cycle time than others, or some of the memories can consist of RAM while others
consist of ROM. The MMU hides the differences by allowing the processor to access
all memories from a single address space.

Programming Convenience. One of the chief advantages of a virtual memory sys-
tem arises from the ease of programming. If separate physical memories are not in-
tegrated into a uniform address space, a processor needs special instructions (or special
operand formats) for each memory. Programming memory accesses becomes painful.
More important, if a programmer decides to move an item from one memory to another,
the program must be rewritten, which means that the decision cannot be made at run
time.

Support For Multiprogramming. Modern computer systems allow multiple appli-
cations to run at the same time. For example, a user who is editing a document can
leave a word processor open, and temporarily launch a web browser to check a refer-
ence. The terms multiprogramming and multiprocessing each characterize a computer
system that allows multiple programs to run at the same time. We will see that a virtual
memory system is needed to support multiprogramming.

Protection Of Programs And Data. We said that a CPU uses modes of execution
to determine which instructions are allowed at any time. We will see that virtual
memory is inherently linked to a computer’s protection scheme.

11.11 Multiple Virtual Spaces And Multiprogramming

Early computer designers thought that multiprogramming was impractical. To
understand why, consider how an instruction set works. The operands that specify in-
direction each reference a memory address. If two programs are loaded into a single
memory and run at the same time, a conflict can occur if the programs attempt to use
the same memory location for two different purposes. Thus, programs can only run to-
gether if they are written to avoid using the same memory addresses.

The most common technology for multiprogramming uses virtual memory to estab-
lish a separate virtual address space for each program. To understand how a virtual
memory system can be used, consider an example. Figure 11.6 illustrates a straightfor-
ward mapping.

The mechanism in the figure divides the physical memory into equal-size areas that
are known as partitions. Partitioned memory systems were used on mainframe comput-
ers in the 1960s and 1970s, but have since been replaced. One of the main drawbacks
of partitioned memory is that the memory available to a given program is a fraction of
total physical memory on the computer. As Figure 11.6 illustrates, systems that used
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partitioned memory typically divided memory into four partitions, which meant that
one-fourth of the total memory was dedicated to each program.

physical
memory

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .
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Figure 11.6 Illustration of four partitions mapped onto a single physical
memory. Each virtual space starts at address zero.

11.12 Multiple Levels Of Virtualization

The diagram in Figure 11.6 implies that an MMU translates multiple virtual ad-
dress spaces onto a single physical memory. In practice, however, MMU hardware can
perform additional mappings that translate the physical address space in Figure 11.6
onto one or more underlying physical memories or translate from byte addresses to
word addresses.

11.13 Creating Virtual Spaces Dynamically

How should a virtual memory system be created? In the simplistic examples
above, we implied that an architect chooses a mapping from virtual address space(s) to
physical memories, and then designs memory management hardware to perform the
mapping. Although some small, special-purpose systems have the mappings designed
into hardware, general-purpose computer systems usually do not. Instead, the MMU in
a general-purpose system can be changed dynamically at run time. That is, a processor
tells the MMU exactly how the virtual address space maps onto the physical address
space.
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How can a program running on a processor change the address space and continue
to run? In general, the address space to be used is part of the processor mode, which
means a processor can first specify an address mapping, and then decide to use the map-
ping. The processor begins running in real mode, which means that the processor
passes all memory references directly to the physical memory without using the MMU.
While operating in real mode, the processor interacts with the MMU to establish a map-
ping. Finally, after the new mapping has been specified, the processor executes an in-
struction that changes the mode, enables the MMU, and branches to a specified loca-
tion. The processor interprets the location as an address in the virtual memory space.

The next sections examine technologies that have been used to create dynamic vir-
tual memory systems. We will consider three examples:

d Base-Bound Registers

d Segmentation

d Demand Paging

11.14 Base-Bound Registers

A mechanism known by the name base-bound is the easiest dynamic virtual
memory scheme to understand. In essence, the base-bound scheme creates a single vir-
tual address space and maps the space onto a region of physical memory. The name
refers to a pair of registers that are part of the MMU; both must be loaded before the
MMU is enabled. The base register holds an address in physical memory that specifies
where to map the virtual space, and the bound register holds an integer that specifies the
size of the address space. Figure 11.7 illustrates the mapping.

11.15 Changing The Virtual Space

It may seem that a base-bound mechanism is uninteresting because it only provides
a single virtual address space. We must remember, however, that a base-bound
mechanism is dynamic (i.e., easy to change). The idea is that an operating system can
use the base-bound mechanism to move among multiple virtual spaces. For example,
suppose the operating system has loaded two application programs at different locations
in memory. The operating system, which runs in real mode, controls the MMU. When
an application, A, is ready to run, the operating system changes the virtual memory
mapping to correspond to A’s memory, and then executes an instruction that enables the
MMU and branches to the application. Later, when control returns to the operating sys-
tem, the operating system selects another application to run, B, configures the MMU so
the virtual memory corresponds to B’s memory, and then executes an instruction that
enables the MMU and branches to the code for B.
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Figure 11.7 Illustration of a virtual memory that uses a base-bound mechan-
ism. The base register specifies the location of the virtual space,
and the bound register specifies the size.

The point is that an operating system can use a base-bound mechanism to provide
as much functionality as the static virtual memory mechanisms considered earlier. We
can summarize:

A base-bound mechanism uses two values in the MMU to specify how
a virtual address space maps onto the physical address space. The
base-bound mechanism is powerful because an operating system can
change the mapping dynamically.

11.16 Virtual Memory, Base-Bound, And Protection

Why is a bound register used in the base-bound approach? The answer is protec-
tion: although a base register is sufficient to establish the mapping from virtual address
to physical address, the mapping does not prevent a program from accidentally or mali-
ciously referencing arbitrarily large memory locations. In Figure 11.7, for example, ad-
dresses higher than M lie beyond the region allocated to the program.

The base-bound scheme uses the bound register to guarantee that a program will
not exceed its allocated space. To implement protection, the MMU must check each
memory reference, and raise an error if the program generates an address greater than
M. The protection offered by a base-bound mechanism provides an example of an im-
portant concept:
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A virtual memory system that supports multiprogramming must also
provide protection that prevents one program from reading or altering
memory that has been allocated to another program.

11.17 Segmentation

The memory mappings described above are intended to map a complete address
space (i.e., all memory that is needed for an application to run, including the compiled
program and the data the program uses). We say that a virtual memory technology that
maps an entire address space is a coarse granularity mapping. The alternative, which
consists of mapping parts of an address space, is known as a fine granularity mapping.

To understand the motivation for a fine granularity mapping, consider a typical ap-
plication program. The program consists of a set of procedures, and flow passes from
one procedure to another through a procedure call. Early computer architects observed
that although memory was a scarce resource, an entire program occupied memory.
Most of the memory was unused because only one procedure was actively executing at
any time.

To reduce the amount of memory needed, the architects proposed that each pro-
gram be divided into variable-size blocks, and only the blocks of the program that are
needed at any time be loaded in memory. That is, pieces of program are kept on an
external storage device, typically a disk, until one of them is needed. At that time, the
operating system finds an unused region of memory that is large enough, and loads the
piece into memory. The operating system then configures the MMU to establish the
mapping between the virtual addresses that the piece uses and the physical addresses
used to hold the piece. When a piece is no longer used, the operating system moves the
piece back to disk, thereby making the memory available for another piece.

The scheme is known as segmentation, and the pieces of programs are known as
segments. Segmentation was the subject of research. What hardware support would be
needed to make segmentation efficient? Should the hardware dictate an upper bound on
the size of a segment?

After much research and a few hardware experiments, segmentation faded. The
central problem with segmentation arises after an operating system begins to move
blocks in and out of memory. Because segments are variable size, the memory tends
toward a situation in which the unused memory is divided into many small blocks.
Computer scientists use the term fragmentation to describe the situation, and say that
the memory is fragmented†. We can summarize:

Segmentation refers to a virtual memory scheme in which programs
are divided into variable-size blocks, and only the blocks currently
needed are kept in memory. Because it leads to a problem known as
memory fragmentation, segmentation is seldom used.

��������������������������������
†To avoid memory fragmentation, some architects experimented with fixed-size segments (e.g., 64

Kbytes per segment). However, fixed-size segments can be considered a variation of paging.
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11.18 Demand Paging

An alternative to segmentation was invented that is extremely successful. Known
as demand paging, the technique follows the same general scheme as segmentation:
divide a program into pieces, keep the pieces on external storage until they are needed,
and load an individual piece when the piece is referenced.

The most significant difference between demand paging and segmentation lies in
how the program is divided. Instead of variable-size segments that are large enough to
hold a complete procedure, demand paging uses fixed-size blocks called pages.

Initially, when memories and application programs were much smaller, architects
chose a page size of 512 bytes or 1 Kbyte; current architectures use larger page sizes
(e.g., a Pentium uses 4 Kbyte pages).

11.19 Hardware And Software For Demand Paging

Two technologies are needed for a virtual memory system that supports demand
paging:

d Hardware that handles address mapping and detects missing pages

d Software that moves pages between external store and physical memory

Paging Hardware. Technically, the hardware architecture provides a paging sys-
tem, and allows software to handle the demand aspect. That is, software (usually an
operating system) configures the MMU to specify which pages from a virtual address
space are present in memory and where each page is located, and runs an application
that uses the virtual address space. The MMU translates each memory address until the
application references an address that is not available (i.e., an address on one of the
pages that is not present in memory).

A reference to a missing page is called a page fault, and is treated as an error con-
dition (e.g., like a division by zero). That is, instead of fetching the missing page from
external storage, the hardware merely informs the operating system that a fault has oc-
curred and allows the software to handle the problem.

Demand Paging Software. Software is responsible for management of the
memory: software must decide which page or pages to keep in memory and which to
keep on external storage. More important, the software acts to fill demand whenever a
page is needed. That is, once the hardware reports a page fault, paging software takes
over. The software identifies the page that is needed, locates the page on secondary
storage, locates a slot in memory, reads the page into memory, and reconfigures the
MMU. Once the page has been loaded, the software resumes executing the application,
and the fetch-execute cycle continues until another page fault occurs.
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Of course, the paging hardware and software must work together. For example,
when a page fault occurs, the hardware must save the state of the computation (e.g., re-
gisters in the processor) in such a way that the values can be reloaded later. Similarly,
the software must understand exactly how to configure the MMU.

11.20 Page Replacement

To understand paging, we must consider what happens after a set of applications
has been running a long time. As applications reference pages, the virtual memory sys-
tem moves the pages into memory. Eventually, the memory becomes full. The system
always knows when a page is needed because the application references the page. The
difficult decision, however, involves selecting one of the existing pages to evict to make
space for an incoming page. Moving a page between external storage and memory
takes time, so performance is optimized by choosing to move a page that will not be
needed in the near future. The process is known as page replacement.

Because page replacement is handled by software, the discussion of algorithms and
heuristics is beyond the scope of this text. We will see, however, that the hardware pro-
vides mechanisms that assist the operating system in making a decision.

11.21 Paging Terminology And Data Structures

The term page refers to a block of a program’s address space, and the term frame
refers to a slot in physical memory that can hold a page. Thus, we say that software
loads a page into a frame of memory. When a page is in memory, the page is resident,
and the set of all pages from an address space that are currently in memory is called the
resident set.

The primary data structure used for demand paging is known as a page table. The
easiest way to envision a page table is to imagine a one-dimensional array that is in-
dexed by a page number. That is, entries in the table have index zero, one, and so on.
Each entry in the page table either contains a null value (if the page is not resident) or
the address of the frame in physical memory that currently holds the page. Figure 11.8
illustrates a page table.
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Figure 11.8 Illustration of an active page table with some entries pointing to
frames in memory. A null pointer (Λ) in a page table entry
means the page is not currently resident.

11.22 Address Translation In A Paging System

To understand paging hardware, imagine an address space divided into fixed-size
pages as Figure 11.9 shows.
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Figure 11.9 Illustration of a virtual address space divided into pages of K
bytes per page.

We will see that the addresses associated with each page are important. As the fig-
ure shows, if each page contains K bytes, bytes on page zero have addresses zero
through K–1, bytes on page 1 have addresses K through 2K–1, and so on.
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Conceptually, translation of a virtual address, V, to a corresponding physical ad-
dress, P, requires three steps:

1. Determine the number of the page on which address V lies.

2. Use the page number as an index into the page table to find the lo-
cation in memory that corresponds to the first byte of the page.

3. Determine how far into the page V lies, and move that far into the
frame in memory.

We saw from Figure 11.9 how addresses are associated with pages. Mathematical-
ly, the page number on which an address lies, N, can be computed by dividing the ad-
dress by the number of bytes per page, K:

N = 
�
�
�
 

K
V�� �

�
�

Similarly, the offset of the address within the page, O, can be computed as the
remainder of the division†.

O = V modulo  K

Thus, a virtual address, V, is translated to a corresponding physical address, P, by
using the page number and offset, N and O, as follows:

P = pagetable [N] + O

11.23 Using Powers Of Two

As Chapter 10 discusses, an arithmetic operation, such as division, is too expensive
to perform on each memory reference. Therefore, like other parts of a memory system,
a paging system is designed to avoid arithmetic computation. The number of bytes per
page is chosen to be a power of two, 2q, which means that the address of the first byte
in each frame has q low-order bits equal to zero. Thus, the page table does not need to
store a full address, and no addition is needed. The consequence of using a power of
two is that the division and addition operations specified in the mathematical equations
can be replaced by extracting bits. Thus, the MMU performs the following computation
to translate a virtual address, V, into a physical address, P:

P =  pagetable [ high_order_bits (V) ] or  low_order_bits (V)

��������������������������������
†Note that the computation of a byte address within a page is similar to the computation of a byte address

within a word discussed on page 153.
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Figure 11.10 illustrates how MMU hardware operates. When considering the fig-
ure, remember that hardware can move bits in parallel. Thus, the arrow that points
from the low-order bits in the virtual address to the low-order bits in the physical ad-
dress represents a parallel data path — the hardware sends all the bits at the same time.

page table

oN

virtual address

f o

physical address

f

Figure 11.10 Illustration of how an MMU performs address translation on a
paging system. Making the page size a power of two elim-
inates the need for division and remainder computation.

11.24 Presence, Use, And Modified Bits

Our description of paging hardware omits several details. For example, in addition
to a value that specifies the frame in which a page is located, each page table entry con-
tains control bits that the hardware and software use to coordinate. Figure 11.11 lists
three control bits found in most paging hardware.

Control Bit Meaning�����������������������������������������������������������
Presence bit Tested by hardware to determine whether

page is currently present in memory
Use bit Set by hardware whenever page is referenced
Modified bit Set by hardware whenever page is changed

Figure 11.11 Examples of control bits found in each page table entry and the
actions hardware takes with each. The bits are intended to as-
sist the page replacement software in the operating system.
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Presence Bit. The most straightforward control bit is called a presence bit, which
specifies whether the page is currently in memory. The bit is set by software and tested
by the hardware. Once it has loaded a page and filled in other values in the page table
entry, the operating system sets the presence bit to one; when it evicts a page, the
operating system sets the presence bit to zero. When it translates an address, the MMU
examines the presence bit in the page table entry — if the presence bit is one, transla-
tion proceeds, and if the presence bit is zero, the hardware declares a page fault has oc-
curred.

Use Bit. The use bit, which provides information needed for page replacement, is
initialized and later tested by software, and is set by hardware. The hardware mechan-
ism is straightforward: whenever it accesses a page table entry, the MMU sets the use
bit. The operating system periodically sweeps through the page table, testing the use bit
to determine whether the page has been referenced since the last sweep. A page that
has not been referenced becomes a candidate for eviction; otherwise, the operating sys-
tem clears the use bit and leaves the page for the next sweep.

Modified Bit. The modified bit is initialized and later tested by software, and is set
by hardware. The paging software clears the bit when a page is loaded. The MMU sets
the bit to one whenever a write operation occurs to the page. Thus, the modified bit is
one if any byte on the page has been written since the page was loaded. The value is
used during page replacement — if a page is selected for eviction, the value of the
modified bit tells the operating system whether the page must be written back to exter-
nal storage or can be discarded (i.e., whether the page is identical to the copy on exter-
nal storage).

11.25 Page Table Storage

Where do page tables reside? Some systems store page tables in a special MMU
chip that is external from the processor. Of course, because memory references play an
essential role in processing, the MMU must be designed to work efficiently. In particu-
lar, to ensure that memory references do not become a bottleneck, some processors use
a special-purpose, high-speed hardware interface to access an MMU. The interface con-
tains parallel wires that allow the processor and MMU to send many bits at the same
time.

Surprisingly, some processors are designed to store page tables in memory! That
is, the processor contains an instruction that allows the operating system to specify the
location of the current page table. Of course, the location of the page table is specified
by giving a physical address. Typically, such systems are designed to divide memory
into regions as Figure 11.12 illustrates.

The design in the figure illustrates one of the motivations for a memory system
composed of heterogeneous technologies: because page tables are used frequently, the
memory used to store page tables needs high performance (e.g., SRAM). However, be-
cause high performance memory is expensive, overall cost can be reduced by using a
lower-cost memory (e.g., DRAM). Thus, an architect can design a system that uses
SRAM to hold page tables and DRAM for frame storage.
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operating
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Figure 11.12 Illustration of how physical memory is divided in an architec-
ture that stores page tables in memory. A large area of physi-
cal memory is reserved for frames.

11.26 Paging Efficiency And A Translation Lookaside Buffer

A central question underlies all virtual memory architectures: how efficient is the
resulting system? Because memory is among the most heavily used resources in a com-
puter system, the mechanisms used to implement virtual memory must be efficient
enough to avoid becoming a bottleneck. Architects are primarily concerned with the
amount of time the MMU uses to translate a virtual address to a physical address; they
are less concerned with the amount of time it takes for the operating system to config-
ure page tables.

One technique used to optimize the performance of a demand paging system stands
out as especially important. The technique uses special, high-speed hardware known as
a Translation Lookaside Buffer (TLB) to achieve faster page table lookups. A TLB is a
form of Content Addressable Memory that stores recently used values from a page
table. When it first translates an address, the MMU places a copy of the page table en-
try in the TLB. On successive lookups, the hardware performs two operations in paral-
lel: the standard address translation steps depicted in Figure 11.10 and a high-speed
search of the TLB. If the requested information is found in the TLB, the MMU aborts
the standard translation and uses the information from the TLB. Otherwise, the stan-
dard translation proceeds.

To understand why a TLB improves performance, consider the fetch-execute cycle.
A processor tends to fetch instructions from successive locations in memory. Further-
more, if the program contains a branch, probability is extremely high that the destina-
tion will be nearby, probably on the same page. Thus, rather than randomly accessing
pages, a processor tends to fetch successive instructions from the same page. A TLB
improves performance because it optimizes successive lookups by avoiding indexing
into a page table. The difference in performance is especially dramatic for architectures
that store page tables in memory; without a TLB, such systems are too slow to be use-
ful. We can summarize:

A special high-speed hardware device, called a Translation Lookaside
Buffer (TLB), is used to optimize performance of a paging system. A
virtual memory that does not have a TLB can be unacceptably slow.
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11.27 Consequences For Programmers

Experience has shown that demand paging works well for most computer pro-
grams. The code that programmers produce tends to be organized into procedures that
each fit onto a page. Similarly, data objects, such as character strings, are designed so
the data occupies consecutive memory locations, which means that once a page has
been loaded, the page tends to remain resident for multiple references. Finally, some
compilers understand paging, and optimize performance by placing data items onto
pages.

One way that programmers can affect virtual memory performance arises from ar-
ray access. Consider a two-dimensional array in memory. Many programming systems
allocate an array in row-major order, which means that rows of an array are placed in
contiguous memory as Figure 11.13 illustrates.

row 0 row 1 row 2 row 3 row 4 row 5 row N

. . .

Figure 11.13 An illustration of a two-dimensional array stored in row-major
order. A row is contiguous in memory.

As the figure shows, rows of the matrix occupy successive locations in memory. Thus,
if A is a two-dimensional array of bytes, the location of A [ i , j ] is given by:

location(A) + i×Q + j

where Q is the number of bytes per row.

The chief alternative to row-major order is known as column-major order. When
an array is stored in column-major order, the elements of a column occupy contiguous
memory locations. The choice between row-major or column-major order is usually
determined by the programming language and compiler, not by a programmer.

A programmer can control how a program iterates through an array, and a good
choice can optimize virtual memory performance. For example, if a large array of char-
acters, A[N,M], is stored in row-major order, the nested loops shown here:

for i = 1 to N {
for j = 1 to M {

A [ i, j ] = 0;
}

}

will require less time to execute than a loop that varies the indices in the opposite order:
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for j = 1 to M {
for i = 1 to N {

A [ i, j ] = 0;
}

}

because varying the row index may force the virtual memory system to move from one
page of memory to another for each reference, but varying the column index means
many successive references stay on the same page.

11.28 Summary

Virtual memory systems present an abstract address space to a processor and to
each application program running on the processor. A virtual memory system hides de-
tails of the underlying physical memory.

Several virtual memory architectures are possible. The virtual memory system can
hide details of word addressing or can present a uniform address space that incorporates
multiple, possibly heterogeneous, memory technologies.

Virtual memory offers convenience for programmers, support for multiprogram-
ming, and protection. When multiple programs run concurrently, virtual memory can
be used to provide each program with an address space that begins at zero.

Virtual memory technologies include base-bound, segmentation, and demand pag-
ing; demand paging is the most popular. A demand paging system uses page tables to
map from a virtual address to a physical address; a high-speed search mechanism
known as a TLB makes page table lookup efficient.

To avoid arithmetic computation, virtual memory systems make physical memory
and page sizes a power of two. Doing so allows the hardware to translate addresses
without using arithmetic or logical operations.

EXERCISES

11.1 Compute the amount of memory needed to hold page tables. Assume that each page
table entry occupies thirty-two bits, the page size is 4 Kbytes, and a memory address oc-
cupies thirty-two bits.

11.2 Consider a two-level page table in which the high-order ten bits of an address are used
as an index into a directory table to select among 1K page tables, the next ten bits of the
address select a page table entry, and the final twelve bits of the address select a byte on
the page. How much memory is required for the directory table and page tables?
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Caches And Caching

12.1 Introduction

The previous chapters discuss physical and virtual memory systems, focusing on
the underlying technologies used to build memory systems and the organization of ad-
dress spaces. The chapters also discuss mechanisms used for address translation.

This chapter takes a different view of the problem: instead of concentrating on
technologies used to construct memory systems, the chapter discusses the fundamental
concept of caching, and then shows how caching is used in memory systems. The
chapter explains why caching is essential, and how caching achieves high performance
with low cost. More important, the chapter presents caching as a key concept in com-
puting that transcends memory systems.

12.2 Definition

The term caching refers to an important optimization technique used to reduce the
Von Neumann bottleneck† and improve the performance of any hardware or software
system that retrieves information. A cache acts as an intermediary. That is, a cache is
placed on the path between a mechanism that makes requests and a mechanism that
answers requests, and the cache is configured to intercept and handle all requests.

The central idea in caching is high-speed, temporary storage: the cache keeps a lo-
cal copy of selected data, and answers requests from the local copy whenever possible.
Performance improvement arises because the cache is designed to return answers faster
than the mechanism that normally fulfills requests. Figure 12.1 illustrates how a cache
is positioned between a mechanism that makes requests and a mechanism that answers
requests.

��������������������������������
†The Von Neumann bottleneck is defined on page 87.
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large data storage

requester
cache

Figure 12.1 Illustration of the cache concept. A cache, which is positioned
on the path between a mechanism that makes requests and a
storage mechanism that holds items, can answer requests faster
than the data store.

12.3 Characteristics Of A Cache

The above description is purposefully vague because caching is a broad concept
that appears in many forms in computer and communication systems. This section clar-
ifies the definition by explaining the concept in more detail; later sections give exam-
ples of how caching can be used.

Although a variety of caching mechanisms exist, they share the following general
characteristics:

d Small

d Active

d Transparent

d Automatic

Small. To keep economic cost low, the amount of storage associated with a cache
is much smaller than the amount of storage needed to hold the entire set of data items.
Most cache sizes are less than ten percent of the main storage size; in many cases, a
cache holds less than one percent as much as the data store. Thus, one of the central
design issues revolves around the selection of data items to keep in the cache.

Active. A cache contains an active mechanism that examines each request and de-
cides how to respond. Activities include: checking to see if a requested item is avail-
able in the cache, retrieving a copy of an item from the data store if the item is not
available locally, and deciding which items to keep in the cache.

Transparent. We say that a cache is transparent, which means that a cache can be
inserted without making changes to the requester or data store. That is: the interface the
cache presents to the requester is exactly the same as the interface a data store presents,
and the interface the cache presents to the data store is exactly the same as the interface
a requester presents†.

��������������������������������
†The notion of transparency explains the terminology — the term cache generally refers to a secret hiding

place.
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Automatic. In most cases, a cache mechanism does not receive instructions on
how to act or which data items to store in the cache storage. Instead, a cache imple-
ments an algorithm that examines the sequence of requests, and uses the requests to
determine how to manage the cache.

12.4 The Importance Of Caching

We said that caching occurs in a variety of forms, but variety does not capture the
importance or pervasiveness of caching. In fact, caching is one of the most fundamen-
tal optimization techniques available; most computer systems contain one or more in-
stances of a cache.

Caching’s importance arises from its flexibility: caching can be used with:

d Hardware, software, and combinations of both
d Small data items (e.g., a byte or word of memory)
d Medium-size data items (e.g., a segment or page of memory)
d Large data items (e.g., a complete program)
d Generic data items (e.g., a file or a disk block)
d Data items that are specific to an application (e.g., a web page, a

document from a word processor, or an entry in a database)
d Textual data (e.g., an email message)
d Nontextual data (e.g., an image, an audio file, or a video clip)
d A single computer system (e.g., between a processor and a

memory)
d Many computer systems (e.g., between a set of desktop computers

and a database server)
d Systems that are designed to retrieve data (e.g., the World Wide

Web)
d Systems that store as well as retrieve data (e.g., a physical

memory)

It should be obvious from the above list that the items in a cache can all have the
same size (e.g., the cache holds a set of disk blocks that are identical size), or can vary
in size (e.g., the cache holds a set of web pages).

We can summarize the importance of caching:

Caching is a fundamental optimization technique used throughout
most hardware and software systems that retrieve information. Cach-
ing is a broad concept; data items kept in a cache are not limited to a
specific type, form, or size.
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12.5 Examples Of Caching

A few examples will illustrate some of the ways caching is used. Most operating
systems cache disk blocks in memory, which is much faster than a disk. Whenever an
application accesses a file, the operating system checks the cache to determine whether
the block is available in memory. If so, the operating system uses the copy in memory;
if not, the operating system retrieves the data from disk.

Most web browsers maintain a cache of web pages on the local disk. When it first
fetches a page, the browser stores a copy in the local cache. If the user requests the
same page again, the browser retrieves a copy from the disk cache, which is much faster
than using the Internet to retrieve a copy of the page.

Many ISPs use a web cache that handles multiple customers. The ISP sends all
web requests from customers through the cache. If a customer downloads a web page,
the ISP’s cache stores a copy. If another customer requests the same page, the ISP
cache will return a copy, without sending the request over the Internet.

12.6 Cache Terminology

Because caching appears in so many places, no set of terminology suffices for all
cases. In particular, the terminology used for a data store depends on the type of cache.
For example, in memory systems, the storage mechanism is sometimes called a backing
store. In a system designed to cache web pages, we use the term browser to refer to a
program that requests web pages, and origin server to refer to a server that handles such
requests. A system that caches database lookups uses the term client to refer to a pro-
gram that makes requests, and database server to refer to a system that handles such re-
quests.

Some terms related to caching seem to have universal acceptance across all cach-
ing systems. A cache hit (abbreviated hit) is defined as a request that can be satisfied
by the cache, without any need to access the underlying data store. Conversely, a cache
miss (abbreviated miss) is defined as a request that cannot be satisfied by the cache.

Another term that has universal acceptance refers to a property of references. We
say that a sequence of references exhibits high locality of reference if the sequence con-
tains repetitions of the same requests; otherwise, we say that the sequence has low lo-
cality of reference†. We will see that high locality of reference leads to higher perfor-
mance.

��������������������������������
†If a cache stores large data items (e.g., pages of memory), repeated requests do not need to be identical

as long as they reference the same item in the cache (e.g., memory references to items on the same page).
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12.7 Best And Worst Case Cache Performance

We said that if a data item is stored in the cache, the cache mechanism can return
the item faster than the data store. As Figure 12.2 shows, we represent the costs of re-
trieval from the requester’s view.

large data storagerequester cache

Ch

Cm

Figure 12.2 Illustration of access costs when using a cache. Costs are meas-
ured with respect to the requester

In the figure, Ch is the cost if an item is found in the cache (i.e., a hit), and Cm is
the cost if an item is not found in the cache (i.e., a miss). Interestingly, individual costs
do not reveal much. Observe that because a cache uses the contents of requests to
determine which items to keep, the performance depends on the sequence of requests.
Thus, to understand caching, we must examine the performance on a sequence of re-
quests. For example, we can easily analyze the best and worst possible behavior for a
sequence of N requests. At one extreme, if each request references a new item, caching
does not improve performance at all — the cache must forward each request to the data
store. Thus, in the worst case, the cost is†:

Cworst = N Cm

If we divide by N to compute the average cost per request, the result is Cm.

At the other extreme, if all requests in the sequence specify the same data item
(i.e., the highest possible locality of reference), the cache can indeed improve perfor-
mance. When it receives the first request, the cache fetches the item from the data store
and saves a copy; subsequent requests can be satisfied by using the copy in the cache.
Thus, in the best case. the cost is:

Cbest = Cm + (N − 1) Ch

Dividing by N produces the cost per request:

N

Cm + (N − 1) Ch��������������� =   
N

Cm���� −  
N

Ch��� + Ch

��������������������������������
†Our analysis ignores administrative overhead required to maintain the cache.
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As N → ∞, the first two terms approach zero, which means that the cost per request
in the best case becomes Ch . We can see why caching is such a powerful tool:

If we ignore overhead, in the worst case, the performance of caching
is no worse than if the cache were not present. In the best case, the
cost per request is approximately equal to the cost of accessing the
cache, which is lower than the cost of accessing the data store.

12.8 Cache Performance On A Typical Sequence

To estimate performance of a cache on a typical sequence of requests, we need to
consider how the cache handles a sequence that contains both hits and misses. Cache
designers use the term hit ratio to refer to the percentage of requests in the sequence
that are satisfied from the cache. Specifically, the hit ratio is defined to be:

hit  ratio   =  
total  number   of   requests

number  of   requests   that   are   hits�������������������������������

The hit ratio is a value between zero and one. We can also define a miss ratio to be
one minus the hit ratio.

Of course, the actual hit ratio depends on a specific sequence of requests. Howev-
er, experience has shown that for many caches, the hit ratio tends to be nearly the same
across the requests encountered in practice. In such cases, we can write an equation for
the cost of access in terms of the cost of a miss and the cost of a hit:

Cost   =   rCh +  (1 − r)Cm

where r is the hit ratio.

The cost of accessing the data store, given by Cm in the equation, is fixed. Thus,
there are two ways a cache designer can improve the performance of a cache: increase
the hit ratio or decrease the cost of a hit.

12.9 Cache Replacement Policy

How can a cache designer increase the hit ratio? Recall that a cache is usually
small compared to a large data store. When it begins to operate, a cache keeps a copy
of each response. Once the cache storage is full, however, the cache must use a re-
placement policy to decide how to handle further items†. The replacement policy is in-
voked whenever the cache is full and a new response arrives. The replacement policy
can specify ignoring the new item, or can specify which of the old items to evict to
make space for the new item.

��������������������������������
†Although it may be possible to increase the size of the cache, most caches are so small that an increase

in size does not help in the long run.
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12.10 LRU Replacement

What replacement policy should be used? There are two issues. First, to increase
the hit ratio, the replacement policy should retain those items that will be referenced
most frequently. Second, the replacement policy should be inexpensive to implement.

One replacement policy is extremely popular. Known as Least Recently Used
(LRU), the policy specifies replacing the item that was referenced the longest time in
the past†.

LRU is extremely easy to implement. The cache mechanism keeps a list of data
items that are currently in the cache. When an item is referenced, the item moves to the
front of the list; when replacement is needed, the item at the back of the list is removed.

LRU works well in many situations. In cases where the set of requests has a high
locality of reference (i.e., the cases where a cache can improve performance), a few
items will be referenced again and again. LRU tends to keep those items in the cache,
which means the cost of access is kept low.

We can summarize:

When its storage is full and a new item arrives, a cache must choose
whether to retain the current set of items or replace one of the current
items with the new item. The Least Recently Used policy is a popular
choice for replacement because it is trivial to implement and tends to
keep items that will be requested again.

12.11 Multi-level Cache Hierarchy

One of the most unexpected and astonishing aspects of caching arises from an op-
timization that uses caching to improve the performance of a cache! To understand
how such an optimization is possible, recall that the insertion of a cache lowers the cost
of retrieving items by placing some of the items closer to the requester. Now imagine
an additional cache placed between the requester and the existing cache as Figure 12.3
illustrates.

large data storagerequester new cache original cache

Figure 12.3  The organization of a system with an additional cache inserted.

Can a second cache improve performance? Yes, provided the cost to access the
new cache is lower than the cost to access the original cache (e.g., the new cache is
closer to the requester). In essence, the cost equation becomes:

Cost   =   r 1 Ch 1 +  r 2 Ch 2 +  (1 − r 1 − r 2)Cm

��������������������������������
†Note that ‘‘least recently’’ refers to how long ago the item was last referenced, not to the number of

accesses.
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where r 1 denotes the fraction of hits for the new cache, r 2 denotes the fraction of hits
for the original cache, Ch 1 denotes the cost of accessing the new cache, and Ch 2

denotes the cost of accessing the original cache.

When more than one cache is used along the path from requester to data store, we
say that the system implements a multi-level cache hierarchy. In fact, we have already
discussed an example of a multi-level hierarchy: web caches. The path between a
browser running on a user’s computer can pass through a cache at the user’s ISP as well
as the local cache mechanism used by the browser.

The point is:

Adding an additional cache can be used to improve the performance
of a system that uses caching. Conceptually, the caches are arranged
in a multi-level hierarchy.

12.12 Preloading Caches

How can cache performance be improved further? Cache designers observe that
although many cache systems perform well in the steady state (i.e., after the system has
run for awhile), the system exhibits higher cost during startup. That is, the initial hit ra-
tio is extremely low because the cache must fetch items from the data store. In some
cases, the startup period can be eliminated by preloading the cache. Of course, preload-
ing only works in cases where the cache can anticipate requests. For example, an ISP’s
web cache can be preloaded with so-called hot pages (i.e., pages that have been ac-
cessed frequently in the past day or pages for which the owner expects frequent access).
As an alternative, some caches use an automated method of preloading. In one form,
the cache periodically places a copy of its contents on nonvolatile storage, allowing re-
cent values to be preloaded at startup. In another form, the cache uses a reference to
prefetch related data. For example, if a processor accesses a byte of memory, the cache
fetches sixty-four bytes. Thus, if the processor accesses the next byte, the value will
come from the cache.

12.13 Caches Used With Memory

Now that we understand the basic idea of caching, we can consider some of the
ways caches are used in memory systems. The concept of caching originated with com-
puter memory systems†. Because memory was both expensive and slow, architects
looked for ways to improve performance without the cost of higher-speed memory. The
architects discovered that a small amount of high-speed cache improved performance
dramatically. By the 1980s, many computer systems had a single cache located

��������������������������������
†In addition to introducing the use of microcode, Maurice Wilkes is credited with inventing memory

cache in 1965.
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between the processor and memory. Physically, the cache occupied a separate board,
which allowed owners to change the memory or the cache independently.

As we have seen, however, caching is a general optimization technique that can be
used in many ways. Thus, a modern computer memory system employs multiple
caches. Caching is used with both virtual and physical memory as well as with secon-
dary storage. The next sections present a few examples.

12.14 TLB As A Cache

We have already seen a key example of how caching improves performance: a
TLB used in a demand paging memory system. Recall that a TLB consists of a small,
high-speed hardware mechanism that improves the performance of a demand paging
system dramatically. In fact, a TLB is nothing more than a cache: whenever it looks up
a page table entry, the MMU stores the entry in the TLB. A successive lookup for the
same page will receive an answer from the TLB.

Like many cache systems, a TLB uses the Least Recently Used replacement stra-
tegy. That is, when an entry is referenced, the TLB moves the entry to the front of the
list; when a new reference occurs, the TLB discards the page table entry on the back of
the list to make space for the new entry. Of course, the TLB cannot afford to keep a
linked list in memory. Instead, the TLB contains digital circuits that move values into a
Content Addressable Memory (CAM) at high speed.

12.15 Demand Paging As A Form Of Caching

Conceptually, demand paging can be viewed as a form of caching. The cache
corresponds to main memory, and the data store corresponds to the external storage
where pages are kept until needed. Furthermore, the page replacement policy
corresponds to the cache replacement policy (even the terminology is the same).

Interestingly, thinking of demand paging as a cache can help us understand an im-
portant idea: a virtual address space can be much larger than physical memory. Like a
cache, physical memory only holds a fraction of the total pages. From our analysis of
caching, we know that the performance of a demand-paged virtual memory can ap-
proach the performance of physical memory. In other words:

The cache analysis shows that using demand paging on a computer
system with a small physical memory can perform almost as well as if
the computer had a physical memory large enough for the entire vir-
tual address space.
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12.16 Physical Memory Cache

We said that caching became popular as a way to achieve higher memory perfor-
mance without significantly higher cost. Early computers used a physical memory sys-
tem. That is, when it generated a request, the processor specified a physical address,
and the memory system responded to the physical address. Thus, to be inserted on the
path between a processor and the memory, a cache had to understand and use physical
addresses.

It may seem that a physical memory cache is trivial. We can imagine the memory
cache receiving a read request, checking to see if the request can be answered from
cache, and then, if the item is not present, passing the request to the underlying
memory. Furthermore, we can imagine that once an item has been retrieved from the
underlying memory, the cache saves a copy locally, and then returns the value to the
processor.

In fact, our imagined scenario is misleading — a physical memory cache is much
more complex than the above. To understand why, we must remember that hardware
achieves high speed through parallelism. For example, when it encounters a read re-
quest, a memory cache performs two tasks at the same time: the cache simultaneously
passes the request to the physical memory and searches for an answer locally. If it
finds an answer locally, the cache must cancel the memory operation. If it does not
find an answer locally, the cache must wait for the underlying memory operation to
complete. Furthermore, when an answer does arrive from memory, the cache uses
parallelism again by simultaneously saving a local copy of the answer and transferring
the answer back to the processor. Parallel activities make the hardware complex. The
point is:

To achieve high performance, a physical memory cache is designed to
simultaneously search the local cache and access the underlying
memory. Parallelism complicates the hardware.

12.17 Write Through And Write Back

In addition to parallelism, memory caches are also complicated by write opera-
tions. There are two issues: performance and coherence. Performance is easiest to
understand: caching improves the performance for retrieval requests, but not for storage
requests. That is, a write operation must change the value in the underlying memory.
More important, in addition to forwarding the request to the memory, a cache must also
check to see whether the item is in the cache. If so, the cache must update its copy as
well†.

Initial implementations of memory caches handled write operations as described
above: the cache kept a copy, and forwarded the write operation to the underlying
memory. We use the term write-through cache to describe the approach. As an alter-

��������������������������������
†Experience has shown that a memory cache should keep a local copy of every value that is written be-

cause programs tend to read the same value again.
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native, a cache can use a write-back scheme in which the cache keeps the data item lo-
cally, and only writes the value to memory, if necessary. In particular, a write-back
cache writes a value to memory only if the value reaches the end of the LRU list and
must be replaced. To determine whether a value should be written the cache keeps an
extra bit known as the dirty bit.

To understand why write-back improves performance, imagine a loop in a program
that increments a value in memory. A write-back cache places the item in the cache.
Thus, all write operations are performed by updating the cached copy. After the loop
ends, the program stops referencing the item, and eventually generates enough refer-
ences so the item reaches the end of the list. Before it can reclaim the slot, the cache
must write the item to the underlying physical memory.

12.18 Cache Coherence

Memory caches are especially complex in a multiprocessor system. We said that a
write-back cache achieves higher performance than a write-through cache. In a mul-
tiprocessor environment, performance is also optimized by giving each processor its
own cache. Unfortunately, the two optimizations conflict. To understand why, look at
the architecture in Figure 12.4, which shows two processors that each has a private
cache.

processor

1

processor

2

cache 1 cache 2

physical memory

Figure 12.4 Illustration of two processors sharing an underlying memory.
Because each processor has a separate cache, conflicts can occur
if both processors reference the same memory address.

Now consider what happens if the two caches use a write-back approach. When
processor 1 writes to a memory location, cache 1 holds the value. Eventually, when it
needs space, cache 1 writes the value to the memory. Similarly, if processor 2 writes to
a memory location, cache 2 holds the value temporarily. Unfortunately, without an ad-
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ditional mechanism, incorrect results can occur if both processors issue a sequence of
read and write operations for the same address.

To avoid conflicts, all devices that access memory must follow a cache coherence
protocol that coordinates the values. For example, when processor 2 reads from an ad-
dress, A, the coherence protocol requires cache 2 to inform cache 1. If it currently
holds address A, cache 1 updates the value in memory. That is, a read operation on
any processor triggers a write-back in any cache that currently holds a cached copy of
the address. Thus, in addition to requiring additional hardware and a mechanism that
allows the caches to communicate, cache coherency introduces additional delay.

12.19 L1, L2, and L3 Caches

We said that arranging multiple caches into a hierarchy can improve overall perfor-
mance. Indeed, most computer memory systems have at least two levels of cache
hierarchy. To understand why computer architects added a second level of cache to the
memory hierarchy, we must consider four facts:

d A traditional memory cache was separate from both the memory
and the processor.

d To access a traditional memory cache, a processor used pins that
connect the processor chip to the rest of the computer.

d Using pins to access external hardware takes much longer than ac-
cessing functional units that are internal to the processor chip.

d Advances in technology have made it possible to increase the
number of transistors per chip, which means a processor chip can
contain more hardware.

The conclusion should be clear. We know that adding a second cache on the pro-
cessor chip can improve the performance of the memory system, and we know that
technology has allowed chip vendors to add more functionality to their chips. So, it
makes sense to embed a second memory cache in the processor chip itself. If the hit ra-
tio is high, most data references never leave the processor chip — the effective cost of
accessing memory is approximately the same as the cost of accessing a register.

Manufacturers adopted the term Level 1 cache (L1 cache) to refer to the cache on-
board the processor chip, Level 2 cache (L2 cache) to refer to an external cache, and
Level 3 cache (L3 cache) to refer to a cache built into the physical memory. We say
that an L1 cache is on-chip and an L2 or L3 cache is off-chip. We can summarize:
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Computer systems use a multi-level cache hierarchy in which an L1
cache is embedded on the processor chip, an L2 cache is external to
the processor, and an L3 cache is built into the physical memory. In
the best case, a multi-level cache makes the cost of accessing memory
approximately the same as the cost of accessing a register.

Chip sizes have become so large that the latest processors can incorporate a cache
hierarchy on the chip itself. Thus, the distinction between L1 and L2 caches is fading.

12.20 Sizes Of L1, L2, And L3 Caches

Most personal computers employ a cache hierarchy. Of course, the cache at the
top of the hierarchy is the fastest, but also the smallest. Figure 12.5 lists example cache
memory sizes.

Processor L1 Cache L2 Cache L3 Cache���������������������������������������������������������������
Itanium 2 32KB 256KB 3MB, 4MB, or 6MB
Itanium 32KB 96KB 2MB or 4MB
Xeon MP 8KB 256KB or 512KB 512KB, 1MB or 2MB
P4 8KB 512KB -

Figure 12.5 Example cache sizes. The amount of cache needed also depends
on the applications that are run.

12.21 Instruction And Data Caches

Should all memory references pass through a single cache? To understand the
question, imagine instructions being executed and data being accessed.

Instruction fetch tends to behave with high locality — in many cases, the next in-
struction to be executed is found at an adjacent memory address. Furthermore, the most
time-consuming loops in a program are usually small, which means the entire loop can
fit into a cache.

Although the data access in some programs exhibits high locality, the data access
in others does not. For example, when a program accesses a hash table, the locations
referenced appear to be random (i.e., the location referenced in one instant is not neces-
sarily close to the location referenced in the next).

Apparent differences in instruction and data behavior raises the question of how in-
termixing the two types of references affects a cache. In essence, the more random the
sequence of requests becomes, the worse the cache performs (because the cache will
save each value, even though the value will not be needed again). We can state a gen-
eral principle:
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Inserting random references in the series of requests tends to worsen
cache performance; reducing the number of random references that
occurs tends to improve cache performance.

So the question above can be stated in terms of performance: is overall perfor-
mance improved if we use two separate caches, one for instructions and one for data?
Some architects assert that separate caches are better, and they design processors with
two caches. Other architects suggest that the size of the cache matters more than the
reference string. That is, once the cache becomes large enough, intermixing instruction
and data references makes no difference. Thus, computer systems that mix instruction
and data references usually require a larger cache.

12.22 Virtual Memory Caching And A Cache Flush

If caching is used with virtual memory, should the cache be placed between the
processor and the MMU or between the MMU and physical memory? That is, should a
cache use virtual or physical addresses to identify an item? The answer is complex. On
one hand, using virtual addresses increases memory access speed because the cache can
respond before the MMU translates the virtual address into a physical address. More
important, if the MMU is off-chip, an L1 cache must use virtual addresses.

On the other hand, a cache that uses virtual addresses needs extra hardware that al-
lows the cache to interact with the virtual memory system. To understand why, observe
that a virtual memory system usually supplies the same address range to each applica-
tion program (i.e., each application has addresses that start at zero). When the operating
system changes from one application program to another, it must also change items in
the cache because the new application uses the same addresses to refer to a new set of
values.

How can a cache resolve the ambiguity that occurs because multiple applications
use the same range of addresses? Architects use two solutions:

d A cache flush operation

d A disambiguating identifier

Cache Flushing. One way to ensure that a cache does not report incorrect values
consists of removing all values from the cache. We say that the cache is flushed. In ar-
chitectures that use flushing, the cache must be flushed whenever the operating system
changes to a new virtual address space.

Disambiguation. An alternative to cache flushing involves the use of extra bits
that identify the address space. The processor contains an extra hardware register that
contains an address space ID. The processor assigns each running program a unique
number, and whenever it starts running an application, the operating system loads the
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applications number into the address space ID register. As Figure 12.6 shows, the
cache prepends the contents of the ID register onto the virtual address when it stores an
item in the cache.

address used by cache

ID virtual address

Figure 12.6 Illustration of an ID register used to disambiguate among virtual
address spaces. Each address space is assigned a unique ID,
which the operating system loads into the register.

As the figure shows, the processor creates artificially longer addresses before pass-
ing an address to the cache. From the cache’s point of view, there is no ambiguity:
even if two applications reference the same virtual address, the ID bits distinguish
between the two addresses.

12.23 Implementation Of Memory Caching

Conceptually, each entry in a memory cache contains two values: a memory ad-
dress and the value of the byte found at that address. In practice, however, storing a
complete address with each entry is inefficient. Therefore, memory caches use clever
techniques to reduce the amount of space needed. The two most important implementa-
tions are known as:

d Direct mapping memory cache

d Set associative memory cache

We will see that, like virtual memory schemes, both cache implementations use
powers of two to avoid arithmetic computation.
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12.24 Direct Mapping Memory Cache

Although memory caches are used with byte-addressable memories, a cache does
not record individual bytes. Instead, a cache divides both the memory and the cache
into a set of equal-size blocks, where the block size, B, is chosen to be a power of two.
For example, if B is four, we can view the memory as Figure 12.7 illustrates.

memory block

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

...

Figure 12.7 An example of memory as viewed by a cache. In the example,
memory is divided into fixed-sized blocks of four bytes per
block.

The blocks in memory are numbered modulo C, where C is the number of slots in
the cache. That is, blocks are numbered from zero through C – 1. To distinguish blocks
with the same number, a unique tag value is assigned to each group of C blocks, and
the tag is used in the cache to identify entries. For example, Figure 12.8 illustrates a
cache of four entries and a memory that has block numbers and tag numbers assigned†.

The key to understanding a direct mapping memory cache arises from a restriction:
only a memory block numbered i can be placed in cache slot numbered i. Thus, any of
the memory blocks numbered 0 can be placed in the cache slot numbered 0, any of the
blocks numbered 1 can be placed in the cache slot numbered 1, and so on. To identify
the block currently in a slot of the cache, each cache entry contains a tag. Thus, if slot
zero in the cache contains tag K, the value in slot zero corresponds to block zero from
the area of memory that has tag K.

Why use tags? Because it identifies a large group of bytes rather than a single
byte, a tag uses fewer bits to identify a section of memory than a full memory address.
Furthermore, as the next section explains, choosing the block size and the size of
memory identified by a tag to be powers of two makes cache lookup extremely effi-
cient.

��������������������������������
†A memory cache usually holds more than four items; a small cache size has been chosen merely as a

simplified example.
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Figure 12.8 An example memory cache with space for four blocks and a
memory divided into conceptual blocks. Each group of four
blocks in memory is assigned a unique tag.

12.25 Using Powers Of Two For Efficiency

Although the direct mapping described above may seem complex, using powers of
two simplifies the hardware implementation. Instead of modulo arithmetic, tag and
block numbers can be computed by extracting groups of bits from a memory address.
The high-order bits of the address are used as the tag number, the next set of bits forms
a block number, and the final set of bits gives a byte offset within the block. Figure
12.9 illustrates the division.

tag block offset

Figure 12.9 Illustration of the how using powers of two allows a cache to
divide a memory address into three separate fields that
correspond to a tag, a block number, and a byte offset within the
block.



202 Caches And Caching Chap. 12

The algorithm for using cache lookup is straightforward:

Algorithm 12.1

Given:
A memory address

Find:
The data byte at that address

Method:

Extract the tag number, t, block number, b, and offset, o,
from the address.

Examine the tag in slot b of the cache. If the tag
matches t, extract the value from slot b of the cache.

If the tag in slot b of the cache does not match t, use the
memory address to extract the block from memory,
place a copy in slot b of the cache, replace the tag with
t, and use o to select the appropriate byte from the
value.
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Algorithm 12.1  Cache Lookup In A Direct Mapping Cache

12.26 Set Associative Memory Cache

The chief alternative to a direct mapping memory cache is known as a set associa-
tive memory cache. In essence, a set associative cache uses hardware parallelism to
provide more flexibility. Instead of maintaining a single cache, the set associative ap-
proach maintains multiple underlying caches, and provides hardware that can search all
of them simultaneously. More important, because it provides multiple underlying
caches, a set associative cache can store more than one block that has the same number.

As a trivial example, consider a set associative cache in which there are two copies
of the underlying hardware. Figure 12.10 illustrates the architecture.

To understand the advantages of the set associative approach, consider a reference
string in which a program alternately references two addresses, A1 and A2, that have dif-
ferent tags, but both have block number zero. In a direct mapped cache, the two ad-
dresses contend for a single slot in the cache. A reference to A1 loads the value of A1

in the cache, and a reference to A2 loads the value of A2. Thus, in an alternating se-
quence of references, every reference results in a cache miss. In a set associative cache,
however, A1 can be placed in one of the two underlying caches, and A2 can be placed in
the other. Thus, every reference results in a cache hit.
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Hardware For Parallel Test

Figure 12.10 Illustration of a set associative cache with two copies of the
underlying hardware. The cache includes hardware to search
both copies in parallel.

As the amount of parallelism increases, performance of a set associative cache in-
creases. In the extreme case, a cache is classified as fully associative, if each of the
underlying caches contains only one slot, but the slot can hold an arbitrary value. Note
that the amount of parallelism determines a point on a continuum: with no parallelism,
we have a direct mapped cache, and with full parallelism, we have the equivalent of a
Content Addressable Memory (CAM).

12.27 Consequences For Programmers

Experience has shown that caching works well for most computer programs. The
code that programmers produce tends to contain loops, which means the processor will
repeatedly execute a small set of instructions before moving on to another set. Similar-
ly, programs tend to reference data items multiple times before moving on to a new data
item. Furthermore, some compilers are aware of caching, and help optimize the gen-
erated code to better use the cache.

Despite the overwhelming success of caching, programmers who understand how a
cache works can write code that exploits a cache. For example, consider a program that
must perform many operations on each element of a large array. It is possible to per-
form one operation at a time (in which case the program iterates through the array many
times) or to perform all the operations on a single element of the array before moving to
the next element (in which case the program iterates through the array once). From the
point of view of caching, the latter is preferable because the element will remain in the
cache. Fortunately, a single iteration also works best for demand paging†.

��������������������������������
†If a system has both extensive caching and demand paging, it can be difficult to measure the effect of ei-

ther technique alone.



204 Caches And Caching Chap. 12

12.28 Summary

Caching is a fundamental optimization technique used throughout computer sys-
tems. A cache intercepts requests, automatically stores values, and answers requests
quickly, whenever possible. Variations include a multi-level cache hierarchy and
preloaded caches.

Caching can be used with both physical and virtual memory systems. A Transla-
tion Lookaside Buffer and demand paging are both forms of caching. Most computer
systems employ a two-level memory cache. Originally, an L1 cache resided on an in-
tegrated circuit along with the processor, and an L2 cache was located external to the
processor; as integrated circuits became larger, manufacturers moved L2 caches onto the
processor chip. An L3 cache is built into the physical memory.

A technology known as a direct mapped memory cache allows hardware to per-
form cache lookup rapidly. A set associative cache extends the concept of direct map-
ping to permit parallel access.

EXERCISES

12.1 Consider a computer where each memory address is thirty-two bits long and the memory
system has a cache that holds up to 4K entries. If a naive cache is used in which each
entry of the cache stores an address and a byte of data, how much total storage is needed
for the cache? If a direct mapped cache is used in which each entry stores a tag and a
block of data that consists of four bytes, how much total storage is needed?

12.2 Extend the previous exercise. Assume the size of the cache is fixed, and find an alterna-
tive to the naive solution that allows the storage of more data items. Hint: what values
are placed in the cache if the processor accesses a four-byte integer in memory?

12.3 Consult vendors’ specifications and find the cost of memory access and the cost of a
cache hit for a modern memory system (Ch and Cm in Section 12.8).

12.4 Use the values obtained in the previous exercise to plot the effective memory access cost
as the hit ratio varies from zero to one.

12.5 Using the values of Ch and Cm obtained in Exercise 12.3, what value of the hit ratio, r, is
needed to achieve an improvement of 30% in the mean access time of a memory system
(as compared to the same memory system without a cache)?

12.6 State two ways to improve the hit ratio of a cache.
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Input / Output Concepts And
Terminology

13.1 Introduction

Previous chapters of the text describe two of the major components found in a
computer system: processors and memories. In addition to describing technologies used
for each component, the chapters illustrate how processors and memory interact.

This chapter introduces the third major aspect of architecture, connections between
a computer and the external world. We will learn that on most computers, the connec-
tion between a processor and memory uses the same basic paradigm as the connection
between a processor and an I/O device, and we will see that although they operate
under control of a processor, I/O devices can interact directly with memory.

13.2 Input And Output Devices

The earliest electronic computers, which consisted of a numerical processor plus a
memory, resembled a calculator more than a modern computer. The human interface
was crude — values were entered through a set of manual switches, and results of cal-
culations were viewed through a series of lights. By the 1950s, it had become obvious
that better interfaces were needed before digital computers could be useful for more
than basic calculations. Engineers began devising ways to connect computers to exter-
nal devices, which became known as input and output (I/O) devices. Modern I/O dev-
ices include keyboards, mice, monitors, hard disks, DVD drives, printers, cameras, and
audio speakers.

207
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13.3 Control Of An External Device

The earliest external devices attached to computers consisted of independent units
that operated under control of the CPU. That is, an external device usually occupied a
separate physical cabinet, had an independent source of electrical power, and contained
internal circuitry that was separate from the computer. The small set of wires that con-
nected the computer to the external device, only carried control signals (i.e., signals
from the digital logic in the computer to the digital logic in the device). Circuitry in the
device monitored the control signals, and changed the device accordingly.

For example, we said that many early computers provided a set of lights that
displayed values. Typically, the display contained one light for each bit in the
computer’s accumulator — the light was on when the bit was set to one, and off when
the bit was zero. However, it is not possible to connect a light bulb directly to an accu-
mulator because even a small light bulb requires more power than a digital circuit can
deliver. Therefore, a display unit needed a set of parallel circuits that each received a
digital logic signal and controlled a light bulb accordingly. Figure 13.1 illustrates the
connection.

external device

processor

circuit

...

to power source

digital signals

electrical signals lights

Figure 13.1 Example of an early external device: a set of lights controlled by
a processor. The device contains circuitry that converts incom-
ing signals into the signals needed to operate the device.

As the figure illustrates, we think of an external device as independent from the
processor except for digital signals that pass between them. In practice, of course, some
devices reside in the same enclosure with the processor, and both receive power from a
common source. However, we will ignore such details and concentrate on the control
signals.

Modern computers also arrange for the processor to control external devices. For
example, a processor can start a disk spinning, control the volume on an external speak-
er, or turn off a printer. In the next chapter, we will learn how a modern computer
communicates control information to external devices.



Sec. 13.4 Data Transfer 209

13.4 Data Transfer

Although control of external devices is essential, for most devices, control func-
tions are secondary. The primary function of external devices is data transfer. Indeed,
most of the architectural choices surrounding external devices focus on mechanisms that
permit the device and processor to exchange data.

We will consider several questions regarding data transfer. First, exactly how is
data communicated? Second, how is the transfer controlled (i.e., does the processor or
the device initiate the operation)? Third, what techniques and mechanisms are needed
for the highest-speed transfers?

What voltages are used to communicate with an external device, and how is data
encoded? The answers depend on the type of device, the speed with which data must
be transferred, the type of cabling used, and the distance between the processor and the
device. In most cases, the digital signals used internally by a processor are not suffi-
cient for communication with an external device.

Because the voltages and encodings used for external connections differ from those
used internally, special hardware is needed to translate between the two representations.
We use the term interface controller to refer to the hardware that provides the interface
to an external device. Figure 13.2 illustrates that controllers are needed at both ends of
a physical connection.

processor device

controller controller

external
connection

Figure 13.2 Illustration of controller hardware on each end of an external
connection. The voltages and signals used on the external con-
nection can differ from the voltages used internally.

13.5 Serial And Parallel Data Transfers

All the I/O interfaces on a computer can be classified in two broad categories:

d Parallel interface
d Serial interface

Parallel Interface. An interface between a computer and an external device is clas-
sified as parallel if the interface allows the transfer of multiple bits of data simultane-
ously. In essence, a parallel interface contains many wires — at any instant, each wire
carries one bit of data.
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Architects use the term interface width to refer to the number of parallel wires an
interface uses. Thus, one might hear an architect talk about an eight-bit interface or a
sixteen-bit interface. We will learn more about how interfaces use parallel wires in the
next chapter.

Serial Interface. The alternative to a parallel interface is one in which only one bit
of data can be transferred at any time; an interface that transfers one bit at a time is
classified as serial.

The chief advantage of a serial interface is fewer wires. Only two wires are need-
ed for serial data transmission — one to carry the signal and a second to serve as an
electrical ground against which voltage can be measured. The chief disadvantage of a
serial interface arises from increased delay: when sending multiple bits, serial hardware
must wait until one bit has been sent before sending another.

13.6 Self-Clocking Data

Recall that digital circuits operate according to a clock, a signal that pulses con-
tinuously. Clocks are especially significant for I/O because each I/O device and pro-
cessor can have a separate clock rate (i.e. each controller can have its own clock).
Thus, one of the most significant aspects of an external interface concerns how the in-
terface accommodates differences in clock rates.

The term self-clocking describes a mechanism in which signals sent across an inter-
face contain information that allows the receiver to determine exactly how the sender
encoded the data. For example, some external devices use an extra set of wires to con-
tain clocking information: when transmitting data, the sender uses the extra wires to in-
form the receiver about the location of bit boundaries in the data.

13.7 Full-Duplex And Half-Duplex Interaction

Many external I/O devices provide bidirectional transfer which means the proces-
sor can send data to the device or the device can send data to the processor. For exam-
ple, a disk drive supports both read and write operations. Interface hardware uses two
methods to accommodate bidirectional transfer:

d Full-duplex interaction
d Half-duplex interaction

Full-Duplex Interaction. An interface that allows transfer to proceed in both direc-
tions simultaneously is known as a full-duplex interface. In essence, full-duplex
hardware consists of two parallel devices with two independent sets of wires connecting
them. One set is used to transfer data in each direction.
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Half-Duplex Interaction. The alternative to a full-duplex interface, known as a
half-duplex interface, only allows transfer to proceed in one direction at a time. That is,
a single set of wires that connects the processor and the external device must be shared.
In the next chapter, we will see that sharing requires negotiation — before it can per-
form a transfer, a processor or device must wait for the current transfer to finish, and
must obtain exclusive use of the underlying wires.

13.8 Interface Latency And Throughput

Because it can only send one bit at a time, a serial interface operates slower than a
parallel interface. As we have seen with memories, however, we must be careful to dis-
tinguish between latency and throughput. Latency refers to the delay between the time
a bit is sent and the time the bit is received (i.e., how long it takes to transfer a single
bit). Thus, latency is usually measured in nanoseconds (ns). Throughput refers to the
number of bits that can be transferred per unit time, and is usually measured in Mega-
bits per second (Mbps) or Megabytes per second (MBps).

We can summarize:

The latency of an interface is a measure of the time required to per-
form a transfer, the throughput of an interface is a measure of the
data that can be transferred per unit time.

13.9 The Fundamental Idea Of Multiplexing

It may seem that choosing an interface is trivial: a full-duplex, parallel interface
offers more performance than any other combination. The difference in performance
between a serial and a parallel interface can be dramatic: a parallel interface with width
N has a throughput that is N times higher than a serial interface. Similarly, increasing
the width of a parallel interface increases performance (e.g., doubling the width of an
interface doubles the throughput).

Despite higher performance, many other factors make the choice of interfaces com-
plex. Recall, for example, each integrated circuit has a fixed number of pins that pro-
vide external connections. A wider interface uses more pins, which means fewer pins
for other functions. Similarly, an interface that provides full-duplex capability uses ap-
proximately twice as many pins as an interface that provides half-duplex capability.

Most architects choose a compromise for external connections. The connection has
limited parallelism, and the hardware uses a technique known as multiplexing to send
data. Although details are complex, the concept of multiplexing is easy to understand.
The idea is that the hardware breaks a large data transfer into pieces and sends one
piece at a time. We use the terms multiplexor and demultiplexor to describe the
hardware that handles data multiplexing. For example, Figure 13.2 illustrates the multi-
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plexing hardware needed to transfer sixty-four bits of data over an interface that has a
width of sixteen bits.

unit 1 unit 2 unit 3 unit 4

64 bits of data to be transferred

multiplexing hardware

demultiplexing hardware

unit 1 unit 2 unit 3 unit 4

data reassembled after transfer

parallel interface

16 bits side

Figure 13.3 Illustration of the transfer of sixty-four bits of data over a sixteen
bit interface. Multiplexing hardware divides the data into six-
teen bit units and sends one unit at a time.

In practice, most physical connections between a processor and external devices
use multiplexing. Doing so allows the processor to transfer arbitrary amounts of data
without devoting many physical pins to the connection. In the next section, we will
learn how multiplexing also improves CPU performance.

To summarize:

Multiplexing is used to construct an I/O interface that can transfer
arbitrary amounts of data over a fixed number of parallel wires. Mul-
tiplexing hardware divides the data into blocks, and transfers each
block independently.

13.10 Multiple Devices Per External Interface

The examples in this chapter imply that each external connection from a processor
attaches to one device. To help conserve pins and external connections, most proces-
sors do not have a single device per external connection. Instead, a set of devices at-
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taches to the connection, and the controller must be able to handle communication with
all of them. In the next chapter, we will see an example in detail.

13.11 A Processor’s View Of I/O

We said that interface controller hardware is associated with each external connec-
tion. Thus, when a processor interacts with an external device, the processor must do
so through the controller. The processor makes requests to the controller, and receives
replies; the controller translates each request into the appropriate external signals that
perform the requested function on the external device. The point is that the processor
can only interact with the interface controller and not with the external device.

To capture the architectural concept, we say that the controller presents a program-
ming interface to the processor. Interestingly, the programming interface does not need
to exactly model the operations of the underlying device. In the next chapter, we will
see an example of a widely-used programming interface that casts all external interac-
tions into a simplified paradigm.

The point to remember is:

A processor does not access external devices directly. Instead, the
processor uses a programming interface to pass requests to an inter-
face controller, which translates the requests into the appropriate
external signals.

13.12 Summary

Computer systems interact with external devices either to control the device (e.g.,
to change the status) or to transfer data. An external interface can use a serial or paral-
lel approach; the number of bits that can be sent simultaneously is known as the width
of a parallel interface. A bidirectional interface can use full-duplex or half-duplex in-
teraction.

There are two measures of interface performance. Latency refers to the time re-
quired to send a bit from a given source to a given destination (e.g., from memory to a
printer), and throughput refers to the number of bits that can be sent per unit time.

Because the number of pins is limited, a processor does not have arbitrarily wide
external connections. Instead, interface hardware is designed to multiplex large data
transfers over fewer pins. In addition, multiple external devices can attach to a single
external connection; the interface controller hardware communicates with each device
separately.
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14

Buses And Bus
Architectures

14.1 Introduction

The chapters on memory discuss the external connection between a processor and
the memory system. The previous chapter discusses connections with external I/O dev-
ices, and shows how a processor uses them to control the device or transfer data. It re-
views concepts such as serial and parallel transfer, defines terminology, and introduces
the idea of multiplexing communication over a set of wires.

This chapter extends the ideas by explaining a fundamental architectural feature
present in all computer systems, a bus. It describes the motivation for using a bus, ex-
plains the basic operation, and shows how both memory and I/O devices can share a
common bus. We will learn that a bus defines an address space, and understand the re-
lationship between a bus address space and a memory address space.

14.2 Definition Of A Bus

A bus is a digital communication mechanism that allows two or more functional
units to transfer control signals or data. Most buses are designed for use inside a single
computer system; some are used within a single integrated circuit. Many bus designs
exist because a bus can be optimized for a specific purpose. For example, a memory
bus is intended to interconnect a processor with a memory system, and an I/O bus is in-
tended to interconnect a processor with a set of I/O devices. We will see that general-
purpose designs are possible.
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14.3 Processors, I/O Devices, And Buses

The notion of bus is broad enough to encompass most external connections (i.e., a
connection between a processor and another functional unit). Thus, instead of viewing
the connection between a processor and a device as a set of wires (as in Chapter 13), we
can be more precise: the two units are interconnected by a bus. Figure 14.1 illustrates
the concept.

bus

processor
device

Figure 14.1 Illustration of a bus used to connect a processor and an external
device. Buses are used for most external connections.

We can summarize:

A bus is the digital communication mechanism used within a computer
system to interconnect functional units. A computer contains one or
more buses that interconnect the processors, memories, and external
I/O devices.

14.4 Proprietary And Standardized Buses

A bus design is said to be proprietary if the design is owned by a private company
and not available for use by other companies (i.e., covered by a patent). The alternative
to a proprietary bus is known as a standardized bus, which means the specifications are
available. Because they permit equipment from two or more vendors to communicate
and interoperate, standardized buses allow a computer system to contain devices from
multiple vendors. Of course, a bus standard must specify all the details needed to con-
struct hardware, including the exact electrical specifications (e.g., voltages), timing of
signals, and the encoding used for data. Furthermore, to ensure correctness, each device
that attaches to the bus must implement the standard precisely.
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14.5 Shared Buses And An Access Protocol

We said that a bus can be used to connect a processor to an I/O device. In fact,
most buses are shared, which means that a single bus is used to connect the processor
to a set of I/O devices. Similarly, if a computer contains multiple processors, all the
processors can connect to a shared bus.

To permit sharing, an architect must define an access protocol to be used on the
bus. The access protocol specifies how an attached device can determine whether the
bus is available or is in use, and how a set of attached devices take turns using the bus.

14.6 Multiple Buses

A typical computer system contains multiple buses. For example, in addition to a
central bus that connects the processor, I/O devices, and memory, some computers have
a special-purpose bus used to access coprocessors. Other computers have multiple
buses for convenience and flexibility — a computer with several standard buses can ac-
commodate a wider variety of devices.

Interestingly, most computers also contain buses that are internal (i.e., not visible
to the computer’s owner). For example, many processors have one or more internal
buses on the processor chip. A circuit on the chip uses an onboard bus to communicate
with another circuit (e.g., with an onboard cache).

14.7 A Parallel, Passive Mechanism

As Chapter 13 describes, an interface is either classified as using serial data
transfer or parallel data transfer. Although it is possible to devise a serial bus, almost
all buses used in computer systems are parallel. That is, a bus is capable of transferring
multiple bits of data at the same time†.

The most straightforward buses are classified as passive because the bus itself does
not contain electronic components. Instead, each device that attaches to a bus contains
the electronic circuits needed to communicate over the bus. Thus, we can imagine a
bus to consist of parallel wires to which devices attach‡.

14.8 Physical Connections

Physically, a bus can consist of tiny wires etched in silicon on a single chip, a ca-
ble that contains multiple wires, or a set of parallel metal wires on a circuit board.
Most computers use the third form: a bus is implemented as a set of parallel wires on

��������������������������������
†Using a parallel bus within a single system is straightforward because all components in the computer

have access to the same clock and short distances mean the system is less prone to clock skew.
‡In practice, some buses do contain a digital circuit known as a bus arbiter that coordinates devices at-

tached to the bus. However, such details are beyond the scope of this text.
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the computer’s main circuit board, which is known as a mother board. In addition to a
bus, the mother board contains the processor, memory, and other functional units.

A set of sockets on the mother board connects to the bus to allow devices to be
plugged in or removed easily. Typically, the bus and the sockets are positioned near the
edge of the mother board to make them easily accessible from outside. Figure 14.2 il-
lustrates a bus and sockets on a mother board.

mother board

sockets placed
near the edge

of the board

bus formed from
parallel wires

area on mother board
for the processor,

memory, and other units

Figure 14.2 Illustration of a bus that consists of sixteen parallel wires on a
mother board. The mother board contains other components that
are not shown.

14.9 Bus Interface

Attaching a device to a bus is nontrivial. Recall that a bus uses an access protocol
to determine when a given device can use the bus. Therefore, each device must have an
additional digital circuit that attaches to the bus and follows the bus protocol. Known
as a bus interface or a bus controller, the circuit implements the bus protocol and al-
lows the device to access the bus. If the bus protocol is complicated, the interface cir-
cuit can be large; many bus interfaces require multiple chips.

How does an interface plug into the socket of a bus? Interestingly, the sockets of
many buses are chosen to make it possible to plug a printed circuit board directly into
the socket. The circuit board must have a region cut to the exact size of a socket, and
must have metal fingers that touch metal contacts in the socket. Figure 14.3 illustrates
the concept.

The figure helps us envision how a physical computer system can be constructed.
If the mother board lies in the bottom of a cabinet, individual circuit boards that plug
into the mother board are vertical. The arrangement is used in a typical PC — the back
of the cabinet contains a series of slots that can each be occupied by a circuit board.
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circuit board

(device interface)

mother board

socket

Figure 14.3 Side view of a mother board illustrating how a printed circuit
board can plug directly into the socket of a bus. Metal strips on
the circuit board press against metal contacts in the socket.

14.10 Address, Control, And Data Lines

Although the physical structure of a bus provides interesting engineering chal-
lenges, we are more concerned with the logical structure. We will examine how the
wires are used, the operations the bus supports, and the consequences for programmers.

The wires that comprise a bus are called lines, and are used for three conceptual
functions:

d Control of the bus

d Specification of address information

d Transfer of data

To help us understand how a bus operates, we will assume that the bus contains
three separate sets of lines that correspond to the three functions†. Figure 14.4 illus-
trates the concept.

control
lines

address
lines

data
lines

Figure 14.4 Conceptual division of wires that comprise a bus into lines for
control, addresses, and data.

��������������������������������
†A later section explains how the functionality can be achieved without physically separate groups of

wires.
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As the figure implies, lines need not be divided equally among the three uses. We
will see that the control function usually requires fewer lines than other functions.

14.11 The Fetch-Store Paradigm

Recall from Chapter 9 that memory systems use the fetch-store paradigm in which
a processor can either fetch (i.e., read) a value from memory, or store (i.e., write) a
value to memory. A bus uses the same basic paradigm. That is, a bus only supports
fetch and store operations. As unlikely as it seems, we will learn that when a processor
communicates with a device or transfers data across a bus, the communication always
uses fetch or store operations.

The point is:

Like a memory system, a bus employs the fetch-store paradigm; all
control or data transfer operations are performed as either a fetch or
a store.

14.12 Fetch-Store Over A Bus

Knowing that a bus uses the fetch-store paradigm helps us understand the purpose
of the three conceptual categories of lines that Figure 14.4 illustrates. All three
categories are used for either a fetch or store operation. Control lines are used to ensure
that only one pair of devices attempts to communicate over the bus at any time, and to
allow two communicating devices to interact. The address lines are used to pass an ad-
dress, and the data lines are used to transfer a value.

Figure 14.5 explains how the three categories of lines are used during a fetch or
store operation. The figure lists the steps that are taken for each operation, and speci-
fies which group of lines is used for each step.

14.13 The Width Of A Bus

We said that a bus uses parallel transfer — the bus contains multiple data lines,
and can simultaneously transfer one bit over each data line. Thus, if a bus contains K
data lines, the bus can transfer K bits at a time. Using the terminology from Chapter
13, we say that the bus has a width of K bits. Thus, a bus that has thirty-two data lines
(i.e., can transfer thirty-two bits at the same time) is called a thirty-two bit bus.
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Fetch

1. Use the control lines to obtain access to the bus

2. Place an address on the address lines

3. Use the control lines to request a fetch operation

4. Test the control lines to wait for the operation to complete

5. Read the value from the data lines

6. Set the control lines to allow another device to use the bus

Store

1. Use control lines to obtain access to the bus

2. Place an address on the address lines

3. Place a value on the data lines

4. Use the control lines to specify a store operation

4. Test the control lines to wait for the operation to complete

5. Set the control lines to allow another device to use the bus

Figure 14.5 The steps taken to perform a fetch or store operation over a bus,
and the group of lines used in each step.

14.14 Multiplexing

How wide should a bus be? Recall from Chapter 13 that parallel interfaces
represent a compromise: although increasing the width increases the throughput, greater
width also takes more space and requires more electronic components in the attached
devices. Thus, an architect chooses a bus width as a compromise between space, cost
of electronics, and performance.

One technique stands out as especially helpful in reducing the number of lines in a
bus: multiplexing. Multiplexing can be used in two ways: data multiplexing and ad-
dress and data multiplexing.

Data Multiplexing. We have already seen how data multiplexing works. In
essence, when a device attached to a bus has a large amount of data to transfer, the de-
vice divides the data into blocks that are exactly as large as the bus is wide. The device
then uses the bus repeatedly, by sending one block at a time.

Address And Data Multiplexing. The motivation for multiplexing addresses and
data is the same as the motivation for data multiplexing: a reduced number of lines. To
understand how it works, consider the steps in Figure 14.5 carefully. In the case of a
fetch operation, the address lines and data lines are never used at the same time (i.e., in
the same step). Thus, an architect can use the same lines to send an address and receive
data. Similarly, a store operation can use a single set of lines to communicate both ad-
dress and data information provided the hardware first sends the address, and then sends
the data†.

��������������������������������
†Of course, a device that uses a multiplexed bus must have additional hardware to store the address while

the data is transferred.
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Most buses make heavy use of multiplexing. Thus, instead of three conceptual sets
of lines, a typical bus has two: a few lines used for control, and a set of lines used to
send either an address or data. Figure 14.6 illustrates the bus architecture used in prac-
tice.

control
lines

address or data
lines

Figure 14.6 Illustration of a bus in which a single set of lines is used for both
data and addresses. Using one set of lines helps reduce cost.

Multiplexing offers two advantages. On one hand, multiplexing allows an architect
to design a bus that has fewer lines. On the other hand, if the number of lines in a bus
is fixed, multiplexing produces higher overall performance. To see why, consider a
data transfer. If K of the lines in the bus are reserved for addresses, those K lines can-
not be used during a data transfer. If all the lines are shared, however, an additional K
bits can be transferred on each bus cycle, which means higher overall throughput.

Despite its advantages, multiplexing does have two disadvantages. First, multi-
plexing takes more time because a store operation requires two bus cycles (i.e., one to
transfer the address and another to transfer the data item). Second, multiplexing re-
quires a more sophisticated bus protocol, and therefore, more complex bus interface
hardware. Despite the disadvantages, however, most architects choose designs that use
multiplexing. In the extreme case, a bus can be designed that multiplexes control infor-
mation over the same set of lines used for data and addresses.

14.15 Bus Width And Size Of Data Items

The use of multiplexing helps explain another aspect of computer architecture: uni-
form size of all data objects, including addresses. We will see that data transfers in a
computer each occur over a bus. Furthermore, because the bus multiplexes the transfers
over a fixed number of lines, a data item that exactly matches the bus width can be
transferred in one cycle, but any item that is larger than the bus width requires multiple
cycles. Thus, it makes sense for an architect to choose a single size for the bus width,
the size of a general purpose register, and the size of a data value that the ALU or func-
tional units use (e.g., the size of an integer or a floating point value). More important,
because addresses are also multiplexed over the bus lines, it makes sense for the archi-
tect to choose the same size for an address as for other data items. The point is:
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Addresses and data values are multiplexed over a bus. To optimize
performance of the hardware, an architect chooses a single size for
both data items and addresses.

14.16 Bus Address Space

The easiest form of bus to understand consists of a memory bus (i.e., a bus that the
processor uses to access memory). Previous chapters discuss the concepts of memory
access and a memory address space; we will see how a bus is used to implement the
concepts. As Figure 14.7 illustrates, a memory bus provides a physical interconnection
among a processor and one or more memories.

bus

processor
memory

1
memory

N. . .

bus
interface

Figure 14.7 Physical interconnections of a processor and memory using a
memory bus. A controller circuit in each device handles the de-
tails of bus access.

As the figure shows, each device connected to a memory bus contains an interface
circuit. The interface implements the bus protocol, and handles all communication.
The interface uses the control lines to gain access to the bus, and sends addresses or
data values as instructed by the processor or memory. Thus, only the interface under-
stands the bus details.

From a processor’s point of view, the bus interface provides a programming inter-
face. Because a bus uses the fetch-store paradigm, the programming interface for a bus
consists of only two operations: fetch and store. When a program contains an instruc-
tion that references memory, the processor hardware passes control to the bus interface.
For example, on many architectures, a move instruction extracts data from memory or
moves data to memory. If a program moves data from a memory location to a general-
purpose register, the processor issues a fetch instruction to the bus interface; if a pro-
gram moves data to a memory location, the processor issues a store instruction to the
bus interface.
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From a programmer’s point of view, the interface hardware is invisible. Instead,
the programmer thinks of the bus as defining an address space. From an architect’s
point of view, the address space must be created from independent memories.

The key to creating a single address space lies in memory configuration — each
memory is configured to respond to a specific set of addresses. That is, the interface for
memory 1 is assigned a different set of addresses than the interface for memories 2, 3,
4, and so on. When a processor places a fetch or store request on the bus, all memory
controllers receive the request. However, only one memory responds. That is, each
memory interface compares the address in the request to the set of addresses for which
the memory has been configured. If the address in the request lies within the
controller’s set, the controller responds. The point is:

Although an interface receives all requests that pass across the bus,
the interface only responds to requests that contain an address for
which the interface has been configured.

14.17 Potential Errors

Figure 14.8. lists the conceptual steps that each memory interface implements.

Let R be the range of addresses assigned to the memory

Repeat forever {

Monitor the bus until a request appears;

if ( the request specifies an address in R ) {

respond to the request

} else {

ignore the request

}

}

Figure 14.8  The steps a memory interface follows.

Unfortunately, allowing each memory interface to follow the steps in Figure 14.8
means two types of errors can occur:

d Address conflict

d Unassigned address

An error that the bus hardware reports is referred to as a bus error; a typical bus proto-
col includes mechanisms that detect and report each type of bus error.
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Address Conflict. We use the term address conflict to describe a bus error that
results when interfaces are misconfigured so they respond to the same address. Most
bus protocols include a test for address conflicts — if two or more interfaces attempt to
respond to a given request, the bus hardware detects the problem, and sets a control line
to indicate that an error occurred. When it uses a bus, the processor hardware checks
the control lines to determine whether an error occurred, and if so, reports the error.

Unassigned Address. An unassigned address bus error occurs if a processor at-
tempts to access an address that has not been configured into any interface. To detect
an unassigned address, most bus protocols use a timeout mechanism — after sending a
request over the bus, the processor starts a timer. If no interface responds, the timer ex-
pires, which causes the processor hardware to report the bus error†.

14.18 Address Configuration And Sockets

It may seem that the easiest way to prevent most bus errors consists of installing
enough memory to cover all possible addresses. Then, when the computer boots, ar-
range for the processor to test all memory locations. In practice, however, architects
usually design a memory bus to accommodate expansion. That is, a bus typically con-
tains enough wires to accommodate more physical memory than is installed in the com-
puter. Second, we will learn that devices other than memory can attach to a bus, and
many devices do not occupy contiguous bus addresses.

Fortunately, architects have devised a scheme that helps avoid memory configura-
tion problems: special sockets. The idea is straightforward. Memory is manufactured
on small printed circuits that each plug into a socket on the mother board. To avoid
problems caused by misconfiguration, all memory boards are identical, and no confi-
guration is required before a board is plugged in. Instead, circuitry and wiring is added
to the mother board so that the first socket only receives requests for address 0 through
K – 1, the second socket only receives requests for address K through 2K – 1, and so on.
The point is:

To avoid memory configuration problems, architects can place
memory on small circuit boards that each plug into a socket on the
mother board. An owner can install memory without configuring the
hardware because each socket is configured with the range of ad-
dresses to which the memory should respond.

As an alternative, some computers contain sophisticated circuitry that allows the
MMU to configure socket addresses when the computer boots. The MMU determines
which sockets are populated, and assigns each an address. Although it adds cost, the
extra circuitry provides additional flexibility because an owner can place memory in any
socket rather than filling sockets in a particular order.

��������������������������������
†The timeout mechanism also detects malfunctioning hardware (i.e., a memory that is not responding to

requests).
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14.19 Many Buses Or One Bus

Computers designed for high performance (e.g., mainframe computers) usually
contain several buses. Each bus is optimized for a specific purpose. For example, a
mainframe computer might have one bus for memory, another for high-speed I/O de-
vices, and another for slow-speed I/O devices. As an alternative, less powerful comput-
ers (e.g., personal computers) often use a single bus for all connections. The chief ad-
vantages of a single bus are lower cost and more generality. A processor does not need
multiple bus interfaces, and a single bus interface can be used for both memory and de-
vices.

Of course, designing a single bus for all connections means choosing a compro-
mise. That is, the bus may not be optimal for any given purpose. In particular, if the
processor uses a single bus to access instructions and data as well as perform I/O, the
bus can easily become a bottleneck. Thus, a system that uses a single bus often needs a
large memory cache that can answer most of the memory requests without using the
bus.

14.20 Using Fetch-Store With Devices

We said that a bus is used as the primary connection between a processor and an
I/O device, and that all operations on a bus must use the fetch-store paradigm. The two
statements may seem contradictory — although it works well for data transfer, fetch-
store does not appear to handle device control. For example, consider an operation like
starting or stopping a disk, or testing whether a wireless network is currently in range of
an access point. How can such operations be performed unless a bus provides addition-
al commands beyond fetch and store?

To understand how a bus works, we must remember that a bus only provides a
way to communicate a small set of bits from one unit to another and does not specify
what each bit means. Instead, the interface hardware on each device provides a unique
interpretation of the bits. Thus, a device can interpret certain bits as a control operation
rather than as a request to transfer data.

14.21 An Example Of Device Control Using Fetch-Store

An example will clarify the relationship between fetch-store and device control.
Imagine a simplistic hardware device that contains sixteen status lights, and suppose we
want to attach the device to a bus. Because the bus only offers fetch and store opera-
tions, we need to build interface hardware that uses the fetch-store paradigm for control.
An engineer who designs a device interface begins by listing the operations to be per-
formed. For example, assume that Figure 14.9 lists the functions that our imaginary
status light device offers.
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d Turn the display on

d Turn the display off

d Set the display brightness

d Turn the ith status light on or off

Figure 14.9 An example of functionality provided by an imaginary hardware
device. Before the unit can be attached to a bus, control func-
tions must be implemented using the fetch-store paradigm.

To cast control operations in the fetch-store paradigm, a designer chooses a set of
addresses that are not used by other devices, and assigns meanings to each address. For
example, if our imaginary status light device is attached to a bus that has a width of
thirty-two bits, a designer might choose bus addresses 100 through 111, and might as-
sign meanings according to Figure 14.10†.

Address Operation Meaning���������������������������������������������������������������������
100 – 103 store nonzero data value turns the display on,

and a zero data value turns the display off
100 – 103 fetch returns zero if display is currently off,

and nonzero if display is currently on
104 – 107 store Change brightness. Low-order four bits of

the data value specify brightness value
from zero (dim) through sixteen (bright)

108 – 111 store The low order sixteen bits each control a
status light, where zero sets the corresponding
light off and one sets it on.

Figure 14.10 Example assignment of addresses, operations, and meanings for
the device control functions listed in Figure 14.9.

14.22 Operation Of An Interface

Although the bus operations are named fetch and store, a device interface is not a
memory — data is not stored for later recall. That is, from the perspective of a device,
the address in a request merely consists of a set of bits. The interface contains logic cir-
cuits that compare the address bits in each request to the addresses assigned to the de-
vice. If a match occurs, the interface enables a circuit that handles the operation (fetch
or store). For example, the first item in Figure 14.10 can be implemented by hardware
that tests the address, operation, and data items in each request. We think of the test as
a conditional operation:

��������������������������������
†Many other assignments are possible; the meanings assigned here merely provide one possibility.
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if ( address == 100 && op == store && data != 0 ) turn_on_display;

Similarly, the hardware must also check the case where the data item is zero:

if ( address == 100 && op == store && data == 0 ) turn_off_display;

Although we have used programming language syntax to express the operations,
interface hardware does not perform the test sequentially. Instead, an interface is con-
structed from Boolean circuits that can test the address, operation, and data values in
parallel and take the appropriate action.

14.23 Asymmetric Assignments

Note that Figure 14.10 does not define the effect of fetch or store operations on
some of the addresses. For example, the specification does not define a fetch operation
for address 104. To capture the idea that either fetch, store, or both can be defined for a
given address, we say that the assignment is asymmetric if it defines fetch, but not store,
or vice versa. The specification in Figure 14.10 is asymmetric because the processor
can store a value to the four bytes starting at address 104, but an error results if the pro-
cessor attempts to read from address 104.

14.24 Unified Memory And Device Addressing

We said that in some computers, a single bus provides access to both memory and
I/O devices. In such an architecture, the assignment of addresses on the bus defines the
processor’s view of the address space. For example, imagine a computer system with a
processor, two memories, and two I/O devices attached to a bus as Figure 14.11 illus-
trates.

bus

processor memory

1

memory

2

device

1

device

2

Figure 14.11 Illustration of a computer architecture that uses a single bus.
Both memories and devices attach to the bus.
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The bus in the figure defines a single address space. Therefore, to avoid address
conflicts, each of the memories and devices attached to the bus must be assigned a
unique address range. For example, if we assume the memories are each 1 MByte and
the devices each require twelve memory locations, four address ranges can be assigned
for use on the bus as Figure 14.12 lists.

Device Address Range������������������������������������������
Memory 1 0x000000 through 0x0 f f f f f
Memory 2 0x100000 through 0x1 f f f f f
Device 1 0x200000 through 0x20000b
Device 2 0x20000c through 0x200017

Figure 14.12 One possible assignment of bus addresses for the set of devices
shown in Figure 14.11.

We can also imagine the address space drawn graphically like the illustrations of a
memory address space in Chapter 9. However, because the space occupied by a device
is extremely small compared to the space occupied by a memory, the result is not very
instructive. For example Figure 14.13 shows the address space that results from the as-
signments in Figure 14.12.

memory

1

0

memory

2

device 1 device 2

Figure 14.13 Illustration of the address space that results from the assign-
ments in Figure 14.12. The amount of space taken by each de-
vice (sixteen bytes) is insignificant compared to the amount of
space taken by each memory (1 Mbyte).
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14.25 Holes In The Address Space

The address assignment in Figure 14.12 is said to be contiguous, which means that
the address ranges do not contain gaps — the first byte assigned to one range is the im-
mediate successor of the last byte assigned to the previous range. Because a bus proto-
col handles unassigned addresses, contiguous assignment is not required — if the
software accidentally accesses a nonexistent address, the bus hardware detects the prob-
lem, and reports a bus error.

Using the terminology from Chapter 11, we say that if an assignment of addresses
is not contiguous, the assignment leaves one or more holes in the address space. In
many architectures, for example, the lowest part of the bus address space is reserved for
memory, and devices are assigned to high addresses.

14.26 Address Map

As part of the specification for a bus, an architect chooses exactly which type of
hardware can be used at each address. We call the specification an address map. Note
that an address map is not the same as an address assignment because a map only
shows what assignments are possible. For example, Figure 14.14 gives an example of
an address map for a sixteen-bit bus.

available
for

memory

available
for

memory

available
for devices

0xffff

0xdfff

0xbfff

0x7fff

0x3fff

0x0000

Hole
(not available)

Hole
(not available)

Figure 14.14 One possible address map for a sixteen-bit bus. Two areas are
available for memory, and one area is available for devices.
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In the figure, the two areas of the address space available for memory are not con-
tiguous. Instead, a hole is located between them. Furthermore, a hole is located
between the second memory area and the device area.

When a computer system is constructed, the owner must follow the address map.
For example, the sixteen-bit bus in Figure 14.14 only allows two blocks of memory that
total 32,768 bytes. The owner can choose to install less than a full complement of
memory, but not more.

The device space in a bus address map is especially interesting because the space
reserved for devices is often much larger than necessary. In particular, most address
maps reserve a large piece of the address space for devices, making it possible for the
bus to accommodate extreme cases with thousands of devices. However, a typical com-
puter has fewer than a dozen devices, and a typical device uses a few addresses. The
consequence is:

In a typical computer, the part of the address space available to de-
vices is sparsely populated — only a small percentage of the ad-
dresses are used.

14.27 Program Interface To A Bus

From a programmer’s point of view there are two bus architectures. A processor
that has multiple buses provides special instructions used to access each bus. A proces-
sor that provides a single, general-purpose bus interprets all memory operations as refer-
ences to the bus.

As an example of using a general-purpose bus, consider how a programmer can
reference the status light device described in Figure 14.10†. To turn the device on, the
program must store a nonzero value in bytes 100 through 103. If we assume an integer
consists of four bytes (i.e., thirty-two bits) and the processor uses little-endian byte ord-
er, the program only needs to store a nonzero value into the integer at location 100. An
example of C code that performs the operation follows:

int *ptr; /* declare ptr to be a pointer to an integer */

ptr = (*int)100; /* set pointer to address 100 */
*ptr = 1; /* store nonzero value in addresses 100 - 103 */

We can summarize:

A processor that has multiple buses provides special instructions to
access each; a processor that has one bus interprets normal memory
operations as referencing locations in the bus address space.

��������������������������������
†Figure 14.10 appears on page 227.
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14.28 Bridging Between Two Buses

Although a single bus offers the advantage of simplicity and lower cost, a comput-
er that has multiple buses can accommodate a wider variety of commercial devices.
Thus, architects seek inexpensive ways to attach multiple buses to a computer. One ap-
proach uses a hardware device, known as a bridge, that interconnects two buses as Fig-
ure 14.15 illustrates.

bus 2

bus 1

bridge

Figure 14.15 Illustration of a bridge connecting two buses. The bridge must
follow the standard for each bus.

Like a device or memory, a bridge is assigned an equivalent range of addresses on
each bus. Unlike a conventional device, a bridge does not answer requests directly. In-
stead, when it receives a request on one bus, the bridge translates the address and for-
wards the request to the other bus. Similarly, when it receives a reply on one bus, the
bridge translates the address and forwards the reply to the other bus.

14.29 Main And Auxiliary Buses

Logically, a bridge performs a one-to-one mapping from the address space of one
bus to the address space of another. That is, the bridge makes a set of addresses on one
bus appear in the address space of the other. To understand why bridging is popular,
consider a common case where an architect needs to add a new device to a computer
that already has a bus. If the interface on the new device does not match the
computer’s main bus, the architect can design adapter hardware or use a bridge to add
an auxiliary bus to the system. Using a bridge has two advantages: a computer owner
can add other devices to the auxiliary bus without changing the hardware, and an archi-
tect has less work because bridges are available for most buses. Figure 14.16 illustrates
the concept of address mapping.
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available
for

memory

0

available
for

memory

available
for devices. . . . . . . . . . . . . .

address space
of main bus

0

address space
of auxiliary bus

not
mappedmapping the

bridge supplies

Figure 14.16 Illustration of a mapping that a bridge can provide between the
address space of an auxiliary bus and the address space of a
main bus. Only some bus addresses need to be mapped.

In the figure, both bus address spaces start at zero, and the address space of the
auxiliary bus is smaller than the address space of the main bus. More important, the ar-
chitect has chosen to map only a small part of the auxiliary bus address space, and has
specified that it maps onto a region of the main bus that is reserved for devices. As a
result, any device on the auxiliary bus that responds to addresses in the mapped region
appears to be connected to the computer’s main bus.

To summarize:

A bridge is a hardware device that interconnects two buses and maps
addresses between them. Bridging allows a computer to have one or
more auxiliary buses that are accessed through the computer’s main
bus.
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14.30 Consequences For Programmers

As Figure 14.16 shows, the set of mapped addresses do not need to be identical in
both address spaces. The goal is to make a bridge transparent so the processor does not
know about the auxiliary bus. From a programmer’s point of view, however, the
software may need to accommodate the mapping. For example, when a device is in-
stalled in an auxiliary bus, the device is configured with an address, A. If the
computer’s owner enters A as the device address, software must understand the map-
ping and use the corresponding address on the main bus. Similarly, if the interaction
between the device and the processor involves addresses, the processor must use ad-
dresses that the auxiliary device understands†.

14.31 Switching Fabrics

Although a bus is fundamental to most computer systems, a bus has a disadvan-
tage: bus hardware can only perform one transfer at a time. That is, although multiple
hardware units can attach to a given bus, at most one pair of attached units can com-
municate at any time. The basic paradigm always consists of three steps: wait for ex-
clusive use of the bus, perform a transfer, and release the bus so another transfer can oc-
cur.

Some buses extend the paradigm by permitting multiple attached units to transfer
N bytes of data each time they obtain the bus. For situations where bus architectures
are insufficient, architects have invented alternative technologies that permit multiple
transfers to occur simultaneously. Known as switching fabrics, the technologies use a
variety of forms. Some fabrics are designed to handle a few attached units, and other
fabrics are designed to handle hundreds or thousands. Similarly, some fabrics restrict
transfers so only a few attached units can initiate transfers at the same time, and other
fabrics permit many simultaneous transfers. One of the reasons for the variety arises
from economics: higher performance (i.e., more simultaneous exchanges) can cost much
more, and the higher cost may not be justified.

Perhaps the easiest switching fabric to understand consists of a crossbar switch.
We can imagine a crossbar to be a matrix with N inputs and M outputs. The crossbar
contains N × M electronic switches that each connect an input to an output. At any time,
the crossbar can turn on switches to connect pairs of inputs and outputs as Figure 14.17
illustrates.

��������������������������������
†Chapter 15 explains why a processor and a device exchange address information.
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input 1

input 2

input 3

input N

output 1 output 2 output 3 output M. . .

..

.

Figure 14.17 A conceptual view of a crossbar switch with N inputs and M
outputs with a dot showing an active connection. The crossbar
mechanism ensures that only one connection is active for a
given row or a given column at any time.

The figure helps us understand why switching fabrics are expensive. First, each
line in the diagram represents a parallel data path composed of multiple wires. Second,
each potential intersection between an input and output requires an electronic switch
that can connect the input to the output at that point. Thus, a crossbar requires N × M
switching components, each of which must be able to switch a parallel connection. By
comparison, a bus only requires N + M electronic components (one to connect each in-
put and each output to the bus).

14.32 Summary

A bus is the fundamental mechanism used to interconnect memory, I/O devices,
and processors within a computer system. Most buses operate in parallel, meaning that
the bus consists of parallel wires that permit multiple bits to be transferred simultane-
ously.

Each bus defines a protocol that attached devices use to access the bus. Most bus
protocols follow the fetch-store paradigm; an I/O device connected to a bus is designed
to receive fetch or store operations and interpret them as control operations on the de-
vice.
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Conceptually, a bus protocol specifies three separate forms of information: control
information, address information, and data. In practice, a bus does not need separate
wires for each type because a bus protocol can multiplex communication over a small
set of wires.

A bus defines an address space that may contain holes (i.e., unassigned addresses).
A computer system can have a single bus to which memory and I/O devices attach, or
can have multiple buses that each attach to specific types of devices. As an alternative,
a hardware device called a bridge can be used to add multiple auxiliary buses to a com-
puter by mapping all or part of the auxiliary bus address space onto the address space of
the computer’s main bus.

The chief alternative to a bus is known as a switching fabric. Although they
achieve higher throughput by using parallelism, switching fabrics are restricted to high-
end systems because a switching fabric is significantly more expensive than a bus.

EXERCISES

14.1 A hardware architect asks you to choose between a single, thirty-two bit bus design that
multiplexes both data and address information across the bus, or two sixteen-bit buses,
one used to send address information and one used to send data. Which design do you
choose? Why?

14.2 If a bus has can transfer 64 bits in each cycle and runs at a rate of 66 MHz, what is the
bus throughput measured in megabytes per second?

14.3 How many simultaneous transfers can occur over a crossbar switching fabric of N inputs
and M outputs?



15

Programmed And Interrupt-
Driven I/O

15.1 Introduction

Earlier chapters introduce I/O. The previous chapter explains how a bus provides
the connection between a processor and a set of I/O devices. The chapter discusses the
bus address space, and shows how an address space can hold a combination of both
memory and I/O devices. Finally, the chapter explains that a bus uses the fetch-store
paradigm, and shows how fetch and store operations can be used to interrogate or con-
trol an external device.

This chapter continues the discussion. The chapter describes and compares the two
basic styles of interaction between a processor and an I/O device. It focuses on
interrupt-driven I/O, and explains how device driver software in the operating system
interacts with an external device.

The next chapter takes a different approach to the subject by examining I/O from a
programmer’s perspective. The chapter looks at individual devices, and describes how
they interact with the processor.

15.2 I /O Paradigms

We know from Chapter 14 that I/O devices connect to a bus, and that a processor
can interact with the device by issuing fetch and store operations to bus addresses that
have been assigned to the device. Although the basic mechanics of I/O are easy to
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specify, several questions remain unanswered. What control operations should each
device support? How does application software running on the processor access a given
device without understanding the hardware details? Can the interaction between a pro-
cessor and I/O devices affect overall system performance?

15.3 Programmed I/O

The earliest computers took a straightforward approach to I/O: an external device
consisted of basic digital circuits that controlled the hardware in response to fetch and
store operations; the CPU handled all the details. For example, to print a new line of
text on a printer, the CPU needed to perform several steps. The CPU activated a set of
circuits, one at a time. The circuits advanced the paper, moved the print head to the be-
ginning of the line, selected a character to print, and caused the hammer to strike the
character.

To capture the idea that an early peripheral device consisted only of basic circuits
that respond to commands from the CPU, we say that the device contained no intelli-
gence†. We also characterize the form of interaction by saying that the I/O is pro-
grammed.

15.4 Synchronization

It may seem that writing software to perform programmed I/O is trivial: at each
step, the program merely assigns a value to an address on the bus. To understand I/O
programming, however, we need to remember two things. First, a nonintelligent device
cannot remember a list of commands. Instead, circuits in the device perform each com-
mand precisely when the processor sends the command. Second, a processor operates
much faster than an I/O device — even a slow processor can execute hundreds of in-
structions in the time it takes for a motor or mechanical actuator to move a physical
mechanism (e.g., to retract the read head in a CD-ROM drive).

If a processor issues instructions too rapidly, the results can be unpredictable. In
our example above, if the processor issues instructions to move the print mechanism,
select a character, and print, the instructions will arrive much faster than the device can
respond. The printer may attempt to print the character while the print head is moving
or the hardware may malfunction.

To prevent problems, programmed I/O relies on synchronization. That is, once it
issues a command, the processor must interact with the device to determine when the
device is ready for another command. We can summarize:

Because a processor operates orders of magnitude faster than an I/O
device, programmed I/O requires the processor to synchronize with
the device that is being controlled.

��������������������������������
†Colloquially, engineers and architects use the term dumb to refer to nonintelligent hardware.
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15.5 Polling

The basic form of synchronization that a processor uses with an I/O device is
known as polling. In essence, polling requires the processor to repeatedly ask the dev-
ice whether an operation has completed before the processor starts the next operation.
Thus, to perform the print operation described below, a processor must use polling at
each step. Figure 15.1 lists the steps required.

d Cause the printer to advance the paper
d Poll to determine when paper has advanced
d Move the print head to the beginning of the line
d Poll to determine when the print head reaches the

beginning of the line
d Specify a character to print
d Poll to determine when the character is locked in position
d Cause the hammer to strike the character
d Poll to determine when the hammer is finished striking

Figure 15.1 Illustration of synchronization between a processor and an I/O
device. The processor must wait for each step to complete.

15.6 Code For Polling

How does software perform polling? Because I/O devices connect to a bus, and a
bus follows the fetch-store paradigm, polling uses a fetch operation. That is, one or
more of the addresses assigned to the device correspond to status information — when
the processor fetches a value from the address, the device responds by giving its current
status.

Before we can see an example of code that uses polling, we need to specify the ex-
act details of a hardware device. To keep the example simple, we will assume our ima-
ginary printing device uses sixteen bytes which it interprets as Figure 15.2 lists.

Addresses Operation Meaning���������������������������������������������������������������������������
0 through 3 store Nonzero starts paper advance
4 through 7 store Nonzero starts head moving to beginning of line
8 through 11 store Character to print (low-order byte)
9 through 12 store Nonzero starts hammer striking
13 through 16 fetch Busy: nonzero when device is busy

Figure 15.2 An example specification that shows how the fetch-store para-
digm can allow a processor to control a device or determine the
current status. The specification is for an imaginary printing
device.
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In the figure, addresses cover sixteen bytes starting at zero. Of course, when an
I/O device is attached to a bus, it is unlikely that the device will be assigned location
zero on the bus. Thus, the values shown are relative, not absolute, numbers. We will
soon see how the values are used in a program.

Once we are given a hardware specification, writing code that controls a device is
straightforward. For example, assume a printing device that uses sixteen bytes, as
specified in Figure 15.2, has been assigned a starting address on a bus of 0x110000.
Figure 15.3 shows C code that performs the steps in Figure 15.1 for a computer that
uses little-endian arithmetic and has an integer size of four bytes.

int *p; /* declare an integer pointer */

p = 0x110000; /* point to lowest address of device */
*p = 1; /* start paper advance */
while (*(p+4) != 0) /* poll for paper advance */

;
*(p+1) = 1; /* start print head moving */
while (*(p+4) != 0) /* poll for print head movement */

;
*(p+2) = ’C’; /* select character ‘‘C’’ */
while (*(p+4) != 0) /* poll for character selection */

;
*(p+3) = 1; /* start hammer striking */
while (*(p+4) != 0) /* poll for hammer striking */

;

Figure 15.3 An example of C code that carries out the steps from Figure 15.1
on an imaginary printing device as specified in Figure 15.2.

To understand the code, remember how the C programming language defines
pointer arithmetic: adding K to an integer pointer advances the pointer by KN, where N
is the number of bytes in an integer. Thus, if variable p has the value 0x110000, p+1
equals 0x110004.

Programmers who have not written a program to control a device may find the
code shocking because it contains four occurrences of a while statement that each ap-
pear to be an infinite loop. If such a statement appeared in a conventional application
program, the statement would be in error and the program would fail. In the example,
however, pointer p references a device instead of a memory location. Thus, when the
processor fetches a value from location p+4, the request passes to a device, which in-
terprets it as a request for status information. So, unlike a value in memory, the value
returned by the device will change over time — if the processor polls enough times, the
device will complete its current operation, and will return zero as the status value.
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15.7 Control And Status Registers

We use the term Control and Status Registers (CSRs) to refer to the set of ad-
dresses that a device uses. More specifically, a control register corresponds to a con-
tiguous set of addresses (usually the size of an integer) that respond to a store operation,
and a status register corresponds to a contiguous set of addresses that respond to a fetch
operation.

In practice, CSRs are usually more complicated than the simplified version listed
in Figure 15.2. For example, a typical status register assigns meanings to individual
bits (e.g., the low-order bit of the status word specifies whether the device is in motion,
the next bit specifies whether an error has occurred, and so on). More important, to
conserve addresses, many devices combine control and status functions into a single set
of addresses. That is, a single address can serve both functions — a store operation to
the address controls the device, and a fetch operation to the same address reports the
device status.

As a final detail, some devices interpret a fetch operation as both a request for
status information and a control operation. For example, as it moves, a mouse delivers
bytes to indicate the relative motion. The processor uses a fetch operation to obtain a
byte that the mouse has sent. Furthermore, each fetch automatically resets the hardware
to accept the next byte from the mouse.

15.8 Processor Use And Polling

The chief advantage of a programmed I/O architecture arises from the economic
benefit: because they do not contain sophisticated digital circuits, devices that rely on
programmed I/O are inexpensive. The chief disadvantage of programmed I/O arises
from the computational overhead: each step requires the processor to interact with the
I/O device.

To understand why polling is especially undesirable, we must recall the fundamen-
tal mismatch between I/O devices and computation: because they are electromechanical,
I/O devices operate several orders of magnitude slower than a processor. Furthermore,
if a processor uses polling to control an I/O device, the amount of time the processor
waits is fixed, and is independent of the processor speed. The important point is:

Because a typical processor is much faster than an I/O device, the
speed of a system that uses polling depends only on the speed of the
I/O device; using a fast processor will not increase the rate at which
I/O is performed.

Turning the statement around, we can immediately see a corollary: if a processor
uses polling to wait for an I/O device, using a faster processor merely means that the
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processor will execute more instructions waiting for the device (i.e., loops, such as
those in Figure 15.3, will run faster). Thus, a faster processor merely ‘‘wastes’’ more
cycles waiting for an I/O device — if the processor did not need to poll, the processor
could be performing computation instead†.

15.9 First, Second, And Third Generation Computers

In the 1950s and 1960s, computer architects became aware of the mismatch
between the speed of processors and I/O devices. The difference was particularly im-
portant when the first generation of computers, which used vacuum tubes, was replaced
by a second generation that used solid-state devices. Although the use of solid state
devices (i.e., transistors) increased the speed of processors, the speed of I/O devices
remained approximately the same. Thus, architects explored ways to overcome the
mismatch between I/O and processor speeds.

One approach emerged as superior, and led to a third revolution in computer archi-
tecture. Known as an interrupt mechanism, the facility is now standard in computers.
Figure 15.4 summarizes the three main generations of computer architecture.

Generation Description�������������������������������������������������������
1 Vacuum tubes used to build digital circuits
2 Transistors used to build digital circuits
3 Interrupt mechanism used to control I/O

Figure 15.4 The three main generations of computer systems and the charac-
teristics of each.

15.10 Interrupt-Driven I/O

The central premise of interrupt-driven I/O is straightforward: instead of wasting
time polling, allow a processor to continue to perform computation while an I/O device
operates. In practice, however, interrupt-driven I/O requires substantial changes to all
aspects of the system, including:

d I/O device hardware
d Bus architecture and functionality
d Processor architecture
d Programming paradigm

I/O Device Hardware. Instead of merely operating under control of a processor,
an interrupt-driven I/O device must operate independently once it has been started.
Later, when it finishes, a device must be able to inform the processor.

��������������������������������
†Programmers who work on computers that use polling optimize programs by placing computation

between I/O operations, which means the processor can execute useful instructions instead of spending as
much time polling.
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Bus Architecture And Functionality. A bus must support two-way communication
that allows a processor to start an operation on a device and allows the device to inform
the processor when the operation completes.

Processor Architecture. A processor needs a mechanism that can cause the proces-
sor to temporarily stop normal processing and handle a device.

Programming Paradigm. Perhaps the most significant change involves a shift in
programming paradigm. Polling uses a sequential, synchronous style of programming
in which the programmer specifies each step of the operation an I/O device performs.
As we will see in the next chapter, interrupt-driven programming uses an asynchronous
style of programming in which the programmer writes code to handle events.

15.11 A Hardware Interrupt Mechanism

We use the term interrupt to capture the idea that device events are temporary.
The processor starts a device, and then continues to execute conventional instructions.
When it needs service (e.g., when an operation completes), the device hardware sends
an interrupt signal over the bus to the processor. The processor temporarily stops exe-
cuting instructions, and saves all the state information needed to resume execution later.
The hardware tells the processor which device interrupted, and allows the processor to
handle the device. Finally, when it finishes handling the interrupt, the processor uses
the saved state information to resume executing instructions as if no interrupt had oc-
curred. That is:

As the name implies, an interrupt mechanism temporarily borrows the
processor to handle an I/O device. When an interrupt occurs, the
hardware saves the state of the computation, and restarts the compu-
tation when interrupt processing finishes.

15.12 Interrupts And The Fetch-Execute Cycle

From an application programmer’s point of view, an interrupt is transparent. That
is, a programmer writes a series of instructions as if interrupts do not exist. The
hardware is designed so the result of computation is the same if no interrupts occur dur-
ing the execution of the instructions, one interrupt occurs, or many interrupts occur. Of
course, a programmer who writes code executed during an interrupt must adhere to
rules that guarantee transparency (e.g., if the interrupt code stored zero in random
memory locations, the interrupt would not be transparent).

How does I/O hardware interrupt a processor? In fact, it does not. Instead, inter-
rupts are implemented by a modified fetch-execute cycle as Algorithm 15.1 explains. In
essence, an interrupt occurs between the execution of two instructions.
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Algorithm 15.1

Repeat forever {

Test: if any device has requested interrupt, handle the in-
terrupt and then continue with the next iteration of the loop.

Fetch: access the next step of the program from the loca-
tion in which the program has been stored.

Execute: Perform the step of the program.

}
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Algorithm 15.1  

15.13 Handling An Interrupt

To handle an interrupt, a processor takes five steps as Figure 15.5 illustrates.

d Save the current execution state

d Determine which device interrupted

d Call the procedure that handles the device

d Clear the interrupt signal on the bus

d Restore the current execution state

Figure 15.5 Five steps that processor hardware performs to handle an inter-
rupt. The steps are hidden from a programmer.

Saving and restoring state is easiest to understand: the hardware saves information
when an interrupt occurs (usually in memory), and a special return from interrupt in-
struction reloads the saved state. In some architectures, the hardware saves complete
state information, including all the registers. In other architectures, the hardware saves
basic information, such as the instruction counter, and requires software to explicitly
save and restore values, such as the general-purpose registers. In any case, saving and
restoring state are symmetric operations — hardware is designed so the instruction that
returns from an interrupt reloads exactly the state information that the hardware saves
when an interrupt occurs. We say that the processor temporarily switches the execution
context when it handles an interrupt.
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15.14 Interrupt Vectors

How does the processor know which device is interrupting? The processor uses
the bus to find out. When it detects an interrupt signal, the processor sends a special
command to determine which device needs service. The bus is arranged so that exactly
one device can respond at a time. Each device is assigned a unique number, and the
device responds by giving its number.

Numbers assigned to devices are not random. Instead, the processor hardware in-
terprets the number as an index into an array of pointers at a reserved location in
memory. An item in the array, which is known as an interrupt vector, is a pointer to
software that handles the device; we say that the interrupts are vectored. The software
is known as an interrupt handler. Figure 15.6 illustrates the data structure.

interrupt vectors
in memory

0

1

2

3

...

code for

device 1

code for

device 0

code for

device 2

code for

device 3

Figure 15.6 Illustration of interrupt vectors. Each vector points to code that
serves as an interrupt handler for the device.

The figure shows the simplest interrupt vector arrangement in which each physical
device is assigned a unique interrupt vector. In practice, computer systems designed to
accommodate many devices often use a variation in which multiple devices share a
common interrupt vector. After the interrupt occurs, code in the interrupt handler uses
the bus a second time to determine which physical device interrupted. Once it deter-
mines the physical device, the handler chooses an interaction that is appropriate for the
device. The chief advantage of sharing an interrupt vector among multiple devices ar-
ises from scale — a processor with a fixed set of interrupt vectors can accommodate an
arbitrary number of devices.
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15.15 Initialization And Enabling And Disabling Interrupts

How are values installed in an interrupt vector table? Software must initialize in-
terrupt vectors because neither the processor nor the device hardware enters or modifies
the table. Instead, the hardware blindly assumes that the interrupt vector table has been
initialized — when an interrupt occurs, the processor saves state, uses the bus to request
a vector number, uses the value as an index into the table of vectors, and then branches
to the code at that address. No matter what address is found in a vector, the processor
will jump to the address and attempt to execute the instruction.

To ensure that no interrupts occur before the table has been initialized, most pro-
cessors start in a mode that has interrupts disabled. That is, the processor continues to
run the fetch-execute cycle without checking for interrupts. Later, once the software
(usually the operating system) has initialized the interrupt vectors, the software must ex-
ecute a special instruction that explicitly enables interrupts. In many processors, the in-
terrupt status is controlled by the mode of the processor; interrupts are automatically en-
abled when the processor changes from the initial startup mode to a mode suitable for
executing programs.

15.16 Preventing Interrupt Code From Being Interrupted

We pointed out earlier that a computer can have many devices, including multiple
copies of the same type of device (e.g., a computer might have two identical disk
drives). Imagine what might happen if a second device interrupts while the processor is
handling an interrupt. To avoid problems and make interrupt handlers easier to write,
some hardware follows a straightforward policy: further interrupts are automatically dis-
abled once an interrupt occurs. Interrupts are not enabled again until the processor re-
turns from the interrupt. Thus, if two identical disk devices attempt to interrupt simul-
taneously, the processor handles one of them at a time — the processor only starts ser-
vicing a second interrupt after it completes servicing the first.

15.17 Multiple Levels Of Interrupts

Another potential problem arises in situations where a computer system includes
multiple types of devices. Some devices require that interrupts be serviced within a
short time, and other devices do not require service immediately, but take a long time to
service. Therefore, a general-purpose processor that allows an owner to connect arbi-
trary devices creates a potential problem: a slow device may take longer to service than
a fast device can wait. If a processor follows the policy of only allowing one device to
interrupt at a time, the processor cannot have both a slow device and a fast device.
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To overcome the differences in devices, architects have introduced a modification
of the interrupt scheme that provides multiple level interrupts, which are also known as
multiple interrupt priorities. Typically, a processor offers seven or fifteen levels, and
allows a computer owner to assign each device to one of the levels. The processor
hardware is designed to give higher priority to higher-numbered levels and allows an in-
terrupt handler at one level to be interrupted by a device at a higher level†.

When multiple levels of interrupts are used, the processor hardware is more sophis-
ticated. At any given time, the processor is said to be operating at one of the priority
levels. Priority zero means the processor is not currently handling an interrupt; priority
N means the processor is currently handling an interrupt from a device that has been as-
signed to level N. The rule is:

When operating at priority level K, a processor can only be interrupt-
ed by a device that has been assigned to level K+1 or higher.

To see how multiple interrupt priorities work, consider the two device types
described above. Assume we assign the slow device interrupt priority one and the fast
device interrupt priority two. If the processor is running an application when the slow
device interrupts, the processor changes from priority zero to priority one. If the fast
device interrupts before the slow device has been serviced, the processor changes to
priority two and jumps to the interrupt handler for the fast device. When the handler
for the fast device finishes, the processor returns to level one and finishes handling the
slow device. Finally, when the handler for the slow device finishes, the processor re-
turns to level zero.

The consequence of multiple interrupts is:

A processor that has interrupt priority levels zero through N and uses
zero for application programs can have up to N interrupts in progress
at a time. However, only one interrupt can be in progress at any
priority level.

15.18 Assignment Of Interrupt Vectors And Priorities

We said that each device must be assigned an interrupt vector and an interrupt
priority. Furthermore, both the hardware in the device and the software running on the
processor must agree on the assignments — when a device returns an interrupt vector
number, the corresponding interrupt vector must point to the handler for the device.

��������������������������������
†The notion of priorities can be extended to assign each application program a priority; priorities are

especially important in real-time systems.
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How are interrupt assignments made? There are two answers:

d Fixed, manual assignment used on small, embedded systems

d Flexible, automated assignment used on general-purpose systems

Manual Assignment. As the name implies, manual assignment means that a person
configures both the hardware and software. For example, some devices are manufac-
tured with physical switches on the circuit board, and the interrupt vector address is en-
tered by setting switches.

Automated Assignment. An automated interrupt vector assignment is used on a
general-purpose computer, such as a PC, where a user can install an arbitrary set of de-
vices. When the computer boots, the processor uses the bus to determine which devices
are attached. The processor assigns an interrupt vector and priority to each device,
places a copy of the appropriate device hander software in memory, and builds the in-
terrupt vector in memory.

Because it saves space, reduces software complexity, and eliminates startup delays,
manual assignment works well for small, embedded systems, such as a video game sys-
tem where the set of external devices does not change. Because it eliminates human er-
ror, automated assignment works well for general-purpose computers. Of course, au-
tomated assignment means higher delay when booting the computer.

15.19 Dynamic Bus Connections And Pluggable Devices

The interrupt mechanism described above assumes that interrupt vectors and priori-
ties are assigned at startup and remain in place as the computer operates. What about
devices that can be dynamically attached or detached? For example, consider a Univer-
sal Serial Bus (USB) that permits a user to plug in a device at any time.

How does a USB operate? In essence, a USB appears as a single device on the
computer’s main bus. When the computer boots, the USB is assigned an interrupt vec-
tor as usual, and a handler is placed in memory. Later, when a user attaches a device,
the USB hardware generates an interrupt, and the processor executes the handler. The
handler, in turn, interrogates the USB to determine which device has been attached, and
loads a secondary handler for the new device. When the device needs service, the USB
generates an interrupt, control passes to the USB handler, the handler interrogates the
USB to determine which device needs service, and invokes the appropriate secondary
handler.
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15.20 The Advantage Of Interrupts

Why did the interrupt mechanism cause a revolution in computer architecture?
The answer is easy. First, as we will learn in the next chapter, I/O had become an im-
portant aspect of computing. Second, interrupt-driven I/O automatically overlaps com-
putation and I/O without requiring a programmer to take any special action. More im-
portant, interrupts adapt to any speed processor and I/O devices automatically. Because
a programmer does not need to estimate how many instructions can be performed dur-
ing an I/O operation, interrupts never underestimate or overestimate. We can summar-
ize:

A computer that uses interrupts is both easier to program and offers
better I/O performance than a computer that uses polling.

15.21 Smart Devices And Improved I/O Performance

Although a basic interrupt mechanism provides better performance than polling, ar-
chitects realized that further improvements are possible. In general, the more digital
logic an I/O device contains, the less the device relies on the processor. Informally, ar-
chitects use the term smart device to characterize a device that can perform a series of
operations on its own.

As an example of how a smart device works, consider a disk drive. The underly-
ing hardware requires several steps to read data from the disk and place it in memory.
The simplest disk hardware requires a processor to start each step, and generates an in-
terrupt when the step finishes. Figure 15.7 illustrates the sequence of events that oc-
cur†.

d Processor starts the disk spinning

d Disk interrupts when it reaches full speed

d Processor starts disk arm moving to the desired location

d Disk interrupts when arm is in position

d Processor starts a read operation to transfer data to memory

d Disk interrupts when the transfer completes

Figure 15.7 Example of the interaction between a dumb disk device and a
processor. The processor controls each step of the operation.

A smart version of a disk device contains sufficient logic (perhaps even an embed-
ded processor) to handle a series of steps. Thus, a smart device does not interrupt as

��������������������������������
†Only events involving the disk are shown; the processor can execute another program between the time

a step is started and an interrupt occurs.
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often, and does not require the processor to handle each step. Figure 15.8 illustrates the
interaction between a processor and a smart disk device.

d Processor requests a read operation by specifying the location
on the disk and the location in memory

d Disk performs all steps of the operation and interrupts when the
operation completes

Figure 15.8 Example of the interaction between a smart disk device and a
processor. The disk device performs individual steps of the
operation without interrupting the processor.

Our discussion of dumb and smart devices has omitted many details. For example,
most I/O devices detect and report errors (e.g., a disk does not spin or a flaw on a sur-
face prevents the hardware from reading a disk block). Thus, interrupt processing is
more complex than described: when an interrupt occurs, the processor must interrogate
the CSRs associated with the disk to determine whether the operation was successful or
an error occurred. Furthermore, for devices that report soft errors (i.e., temporary er-
rors), the processor must retry the operation to determine whether an error was tem-
porary or permanent.

15.22 Direct Memory Access (DMA)

Our discussion above assumes that a smart I/O device can transfer data into
memory without using the CPU. The technology for such transfers is known as direct
memory access (DMA), and is a key aspect of high-speed I/O.

To understand DMA, recall that in most architectures, both memory and I/O de-
vices attach to a central bus. Thus, there is a direct path between an I/O device and
memory. If we imagine that a smart I/O device contains an embedded processor, the
idea behind DMA should be clear: the embedded processor in the I/O device issues
fetch or store requests to which the memory responds. Of course, the bus must provide
a mechanism that allows multiple units to access the bus without interfering (i.e., a
mechanism that guarantees only one processor can send a request at any time). If the
bus supports such a mechanism, an I/O device can transfer data to memory without us-
ing the processor.

To summarize:

A technology known as Direct Memory Access (DMA) allows a smart
I/O device to access memory directly. A device that uses DMA can
transfer data between the device and memory without using the pro-
cessor.



Sec. 15.22 Direct Memory Access (DMA) 251

15.23 Buffer Chaining

It may seem that a smart device using DMA is sufficient to guarantee high perfor-
mance: data can be transferred between the device and memory without using the pro-
cessor, and the device does not interrupt for each step of the operation. However, furth-
er optimization is possible.

To understand situations in which a single DMA transfer is insufficient, consider a
high-speed network. Packets arrive from the network in bursts, which means a set of
packets arrives back-to-back with minimum time between packets. If the device that
connects to the network can only perform one operation at a time, the device must inter-
rupt the processor after a packet arrives. During the interrupt, the processor must allo-
cate a buffer to hold the next packet, and must start the device reading the packet. The
sequence of events must occur quickly (i.e., before the next packet arrives). Unfor-
tunately, if multiple devices attempt to interrupt simultaneously, the processor may not
be able to service the network device interrupt in time to capture the next packet.

To solve the problem of back-to-back arrivals, some smart I/O devices use a tech-
nique known as buffer chaining. The processor allocates multiple buffers, and creates a
linked list in memory. The processor then passes the list to the I/O device, and allows
the device to fill each buffer. Figure 15.9 illustrates the concept.

data buffer 1 data buffer 2 data buffer 3

address passed

to device

Figure 15.9 Illustration of buffer chaining. A processor passes a list of
buffers to a smart I/O device, and the device fills each buffer on
the list without waiting for the processor.

The example above describes the use of buffer chaining for high-speed input. A
buffer chain can also be used with output: a processor places data in a set of buffers,
places the buffers on a linked list, and starts an I/O device. The device moves through
the list, writing the data from each buffer.
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15.24 Scatter Read And Gather Write Operations

Buffer chaining is especially helpful for computer systems in which the buffer size
used by software is smaller than the size of a data block used by an I/O device. On in-
put, chained buffers allow a device to divide a large data transfer into a set of smaller
buffers. On output, chained buffers allow a device to extract data from a set of small
buffers and combine the data into a single block.

We use the term scatter read to capture the idea of dividing a large block of in-
coming data into multiple small buffers, and the term gather write to capture the idea of
combining data from multiple small buffers into a single output block.

15.25 Operation Chaining

Although buffer chaining handles situations in which a given operation is repeated
over many buffers, further optimization is possible in cases where a device can perform
multiple operations. To understand, consider a disk device that offers read or write
operations. To optimize performance, we need to start another operation as soon as the
current operation completes.

The technology used to start a new operation without delay is known as operation
chaining. Like buffer chaining, a processor that uses operation chaining must create a
linked list in memory, and must pass the list to a smart device. Unlike buffer chaining,
however, nodes on the linked list specify a complete operation: in addition to a buffer
pointer, the node contains an operation and necessary parameters. For example, a node
on the list used with a disk might specify a read operation and a disk block. Figure
15.10 illustrates operation chaining.

data buffer 1 data buffer 2 data buffer 3

R W R17 29 61
address passed

to device

Figure 15.10 Illustration of operation chaining. Each node specifies an
operation (R or W), a disk block number, and a buffer in
memory.



Sec. 15.26 Summary 253

15.26 Summary

Two paradigms are used to handle I/O devices: programmed I/O and interrupt-
driven I/O. Programmed I/O requires a processor to handle each step of an operation.
More important, because a processor is much faster than an I/O device, the processor
must wait for the device.

Third generation computers introduced interrupt-driven I/O that allows a device to
perform a complete operation before informing the processor. A processor that uses in-
terrupts tests for an interrupt during the fetch-execute cycle.

Interrupts are vectored, which means the interrupting device supplies a unique in-
teger that the processor uses as an index into an array of pointers to handlers. To
guarantee that interrupts do not affect a running program, the hardware saves and re-
stores state information during an interrupt. Multi-level interrupts are used to give some
devices priority over others.

Smart I/O devices contain additional logic that allows them to perform a series of
steps without assistance from the processor. Smart devices use the techniques of buffer
chaining and operation chaining to further optimize performance.

EXERCISES

15.1 Assume a RISC processor take two microseconds to execute each instruction and an I/O
device can wait at most 1 millisecond before its interrupt is serviced. What is the max-
imum number of instructions that can be executed with interrupts disabled?

15.2 Read about devices on a bus and the interrupt priorities assigned to each. Does a disk or
mouse have higher priority? Why?

15.3 In most systems, part or all of the device driver code must be written in assembly
language. Why?
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16

A Programmer’s View Of
Devices, I/O, And Buffering

16.1 Introduction

Previous chapters cover the hardware aspects of I/O. They explain the bus archi-
tecture that is used to interconnect devices, processors, and memory, as well as the in-
terrupt mechanism that an external device uses to inform a processor when an operation
completes.

This chapter changes the focus to software, and considers I/O from a
programmer’s perspective. The chapter examines both the software needed to control a
device and the application software that uses I/O facilities. We will understand the im-
portant concept of a device driver, and see how a driver implements operations like
read and write. We will learn that devices can be divided into two broad types: byte-
oriented and block-oriented, and we will understand the interaction used with each.

Although few programmers write device drivers, understanding how a device
driver operates and how low-level I/O occurs can help programmers write more effi-
cient applications. Once we have looked at the mechanics of device drivers, we will
focus on the concept of buffering, and see why it is essential for programmers to use
buffering.

255
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16.2 Definition Of A Device Driver

The previous chapter explains the basic hardware interrupt mechanism. We are
now ready to consider how low-level software uses the interrupt mechanism to perform
I/O operations. We use the term device driver to refer to software that provides an in-
terface between an application program and an external hardware device. In most cases,
a computer system has a device driver for each external device, and all applications that
access a given device use the same driver. Typically, device drivers are part of the
computer’s operating system, which makes each driver accessible to any application.

Because a device driver understands the details of a particular hardware device, we
say that a driver contains low-level code. The driver interacts with the device over a
bus, understands the device’s Control And Status Registers (CSRs), and handles inter-
rupts from the device.

16.3 Device Independence, Encapsulation, And Hiding

The primary purpose of a device driver is device independence. That is, the device
driver approach removes all hardware details from application programs and relegates
them to a driver.

To understand why device independence is important, we need to know how early
software was built. Each application program was designed for a specific brand of
computer, a specific memory size, and a specific set of I/O devices. An application
contained all the code needed to use the bus to communicate with particular devices.
Unfortunately, a program written to use a specific set of devices could not be used with
any other devices. For example, upgrading a printer to a newer model required all pro-
grams to be rewritten.

A device driver solves the problem by providing a device-independent interface to
applications. For example, because all applications that use a printer rely on the
printer’s device driver, an application does not have detailed knowledge of the hardware
built in. Consequently, changing a printer only requires changing the device driver; all
applications remain unchanged. We say that the device driver hides hardware details
from applications or that the driver encapsulates the hardware details.

To summarize:

A device driver consists of software that understands and handles all
the low-level details of communication with a particular device. Be-
cause the driver provides a high-level interface to applications, an ap-
plication program does not need to change if a device changes.
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16.4 Conceptual Parts Of A Device Driver

A device driver contains multiple functions that must all work together, including
code to communicate over a bus, code to handle device details, and code to interact
with an application. Furthermore, the driver must interact with the computer’s operat-
ing system. To help manage complexity, programmers think of a driver as partitioned
into three parts:

d A lower half comprised of a handler that is invoked when an
interrupt occurs

d An upper half comprised of functions that are invoked by appli-
cations to request I/O operations

d A set of shared variables that hold state information needed to
coordinate the two halves

The names upper half and lower half reflect a programmer’s view that hardware is
‘‘low level’’ and application programs are ‘‘high level’’. Thus, a programmer thinks of
applications at the top of a hierarchy and hardware at the bottom. Figure 16.1 illustrates
a programmer’s view.

shared

variables

upper half

invoked by

applications

applications programs

lower half

invoked by

interrupts

device hardware

Figure 16.1 The conceptual organization of device driver software into three
parts. A driver provides the interface between applications that
operate at a high level and the underlying device hardware.
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16.5 Two Types Of Devices

Before we can understand more about device drivers, we need to know more about
the interface the hardware presents to the driver. Devices can be divided into two broad
categories, depending on the style of interface the device uses:

d Character-oriented devices

d Block-oriented devices

A character-oriented device transfers a single byte of data at a time. For example,
the serial interface used to connect a keyboard to a computer transfers one character
(i.e., byte) for each keystroke. Similarly, the serial interface used to connect a dialup
modem to a computer is character-oriented. From a device driver’s point of view, a
character-oriented device generates an interrupt each time a character is sent or received
— sending or receiving a block of N characters generates N interrupts.

A block-oriented device transfers an entire block of data at a time. In some cases,
the device specifies a block size, B, and all blocks must contain exactly B bytes. For
example, a disk device defines a block size equal to the disk’s sector size. In other
cases, however, blocks are of variable size. For example, a network interface defines a
block to be as large as a packet†. From a device driver’s point of view, a block-
oriented device only generates one interrupt each time a block is sent or received.

16.6 Example Flow Through A Device Driver

The details of programming device drivers are beyond the scope of this text. How-
ever, to help us understand the concept, we will consider how a simplified device driver
might handle basic output. For our example, we will assume that an application per-
forms a write operation to a block-oriented device, and specifies data to be written.
Figure 16.2 illustrates a device driver, and lists the steps that are taken for output.

As the figure shows, even a trivial operation requires a complex sequence of steps.
When an application writes to a device, execution transfers to an operating system func-
tion which, in turn, passes control to the upper half of the appropriate device driver. In
our simplified example, the driver waits for the device to become ready, starts the out-
put operation, and returns to the application.

How does a driver wait for a device to become ready? If the device has a CSR
that reports status, the driver can use polling to repeatedly test the device CSR. As an
alternative, the driver can be written so the upper half sets a bit in the shared variable
area when an operation is started, and the lower half clears the bit when the operation
completes. The driver can be written to use polling to repeatedly test the bit in the
shared variable area.

��������������������������������
†Most networking technologies do not enforce a fixed packet size. Instead, the network sets an upper

bound, and allows the size of a given packet to be smaller than the upper bound, depending on the amount of
data being sent.
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1. The application writes data

2. The OS passes control to the driver

3. The driver records information

4. The driver waits for the device

5. The driver starts the transfer

6. The driver returns to the application

7. The device interrupts
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Figure 16.2 A simplified example of the steps that occur when an application
requests an output operation. A device driver located in the
operating system handles all communication with the device.

16.7 Queued Output Operations

Although the design used in our example driver will work, the approach is too
inefficient to use in a production system. In particular, our driver can waste significant
amounts of time polling for a device to become ready.

To avoid waiting, drivers used in production systems implement a queue of re-
quests. On output, the upper half never waits for the device. Instead, the upper half
deposits the data to be written in a queue, ensures that the device will generate an inter-
rupt, and returns to the application. Later, when the device finishes its current operation
and generates an interrupt, the lower half extracts the next request from the queue, starts
the device, and returns from the interrupt. Figure 16.3 illustrates the organization.
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upper half

lower half

request

queue

Figure 16.3 Illustration of a device driver that uses a request queue. On out-
put, the upper half deposits items in the queue without waiting
for the device, and the lower half controls the device.

A driver that uses an output queue is elegant — the queue of requests provides
coordination between the upper and lower halves of the driver. Figure 16.4 lists the
steps that each half of a driver takes for output.

Initialization (computer system starts)

1. Initialize input queue to empty

Upper half (application performs write)

1. Deposit data item in queue

2. Use the CSR to request an interrupt

3. Return to application

Lower half (interrupt occurs)

1. If the queue is empty, stop the device from interrupting

2. If the queue is nonempty, extract an item and start output

3. Return from interrupt

Figure 16.4 The steps that the upper and lower halves of a driver take for an
output operation when queueing is used. The upper half forces
an interrupt, but does not start output on the device.

As the figure shows, the steps for each half of the driver are straightforward. No-
tice that the lower half performs most of the work: in addition to handling interrupts
from the device, the lower half checks the queue and, if the queue is not empty, extracts
the next item and starts the device. Because the device interrupts each time it com-
pletes an operation, the lower half will be invoked once per output operation, which al-
lows it to start the next operation. Thus, the lower half will continue to be invoked un-
til the queue is empty.
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What happens after the last item has been removed from the queue? The lower
half will be invoked after the last output operation completes, but will find the queue
empty. At that point, the device is not restarted. Instead, the lower half stops the de-
vice from interrupting. Later, when an application calls the upper half to place a new
item in the queue, the upper half starts the device interrupting again, and output
proceeds.

16.8 Forcing An Interrupt

Because a request queue is used in so many drivers, architects have designed
hardware that works well with the programming paradigm outlined in Figure 16.4. In
particular, a device often includes a CSR bit that a processor can set to force the device
to interrupt†. The mechanism is designed to work in the following way:

d A device has a CSR bit, B, that is used to force the device to
interrupt

d If the device is idle, setting bit B causes the device to generate
an interrupt

d If the device is currently performing an operation, setting bit B
has no effect

In other words, if an interrupt is already destined to occur when the current opera-
tion completes, the device waits for the operation to complete, and generates an inter-
rupt as usual. Otherwise, setting the CSR bit will force an interrupt to occur. Arrang-
ing for a CSR to have no effect on a busy device greatly simplifies programming. To
see why, look at the steps Figure 16.4 lists. The upper half does not need to test wheth-
er the device is busy (i.e., whether an operation is in progress). Instead, the upper half
always sets the CSR bit. If an operation is already in progress, the device hardware ig-
nores the bit being set, and waits until the operation completes. If the device is idle,
setting the bit causes the device to interrupt immediately, which forces the lower half to
process the next request in the queue.

16.9 Queued Input Operations

A device driver can also use queueing for input. However, additional coordination
is required for two reasons. First, to accept input before an application is ready, the de-
vice must be started. Second, if input does not arrive before an application reads, the
driver must temporarily stop the application until input does arrive‡. Figure 16.5 lists
the steps a driver uses to handle input when a queue is present.

��������������������������������
†Recall from Chapter 15 that the code required to set a CSR bit is trivial — it consists of a single assign-

ment statement.
‡On some systems, an application can determine whether data is available (i.e., the application can use

polling to avoid waiting for input).
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Initialization (computer system starts)

1. Initialize input queue to empty

2. Force the device to interrupt

Upper half (application performs read)

1. If input queue is empty, temporarily stop the application

2. Extract the next item from the input queue

3. Return the item to the application

Lower half (interrupt occurs)

1. If the queue is not full, start another input operation

2. If an application is stopped, allow the application to run

3. Return from interrupt

Figure 16.5 The steps that the upper and lower half of a driver take for an in-
put operation when queueing is used. The upper half temporari-
ly stops an application until data becomes available.

Although our description of device drivers omits many details, it gives an accurate
picture of the general approach that device drivers use. We can summarize:

A production device driver uses an input or output queue to store
items. The upper half places a request in the queue, and the lower
half handles the details of communication with a device.

16.10 Devices That Support Bi-Directional Transfer

Some devices allow both input and output — the device allows data transfer from
the processor to the device, or vice versa. We use the term bi-directional device to
characterize a device that supports data transfer in two directions, and the term uni-
directional device to characterize a device that supports data transfer in one direction.

The distinction between bi-directional and uni-directional devices is subtle because
many uni-directional devices provide feedback to the processor. For example, consider
a printer. Although a printer is uni-directional (i.e., only used for output), typical
printer hardware provides status information to the processor. For example, most
printers allow the processor to determine the paper status (i.e., whether paper remains
available) or the ink level (i.e., the amount of ink remaining). Although it can transfer
status information to the computer, such a device is still classified as uni-directional.
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How does a driver handle a bi-directional device? There are two approaches:

d Treat the device as two separate devices, one used for input and
one used for output

d Treat the device as a single device that handles two types of
commands, one for input and one for output

Two Devices. Treating a device as two devices works well for devices in which
the hardware distinguishes between input interrupts and output interrupts. For example,
many serial line interfaces contain parallel hardware that handles input and output in-
dependently. The two directions use separate CSRs and separate interrupt vectors.

In cases where parallel hardware handles input and output separately, a device
driver simply maintains two queues: one for incoming data and one for outgoing data.
In essence, the driver contains code for two separate drivers that each handle one direc-
tion of transfer.

One Device. The alternative approach treats a bi-directional device as a single, un-
ified entity. The driver maintains a single queue of requests, and each request specifies
a direction. A unified approach is needed if the hardware can only perform one opera-
tion at a time (i.e., does not contain parallel hardware to handle the two directions). For
example, although a disk device provides bi-directional transfer, the underlying
hardware handles one operation at a time. Thus, the queue of requests that a driver
maintains for a disk device must specify the operation to be performed (i.e., read or
write).

A disk drive provides a special case of bi-directional transfer because an applica-
tion can issue requests to read and write the same block of data. Thus, a driver that
queues output must handle a situation in which an application writes data and then reads
the data back before the driver has actually written the data to disk (i.e., the data is still
in the output queue). To optimize performance, whenever it receives a read request, a
disk driver searches the queue of requests to determine if the requested data is waiting
to be written.

16.11 Asynchronous Vs. Synchronous Programming Paradigm

In Chapter 15, we said that an interrupt mechanism requires the use of an asyn-
chronous programming model. We can now understand why. Like a conventional pro-
gram, polling is synchronous because control passes through the code from beginning to
end. A device driver that handles interrupts is asynchronous because the programmer
writes separate pieces of code that respond to events. One of the upper half routines is
invoked when an application requests I/O, a lower half routine is invoked when an in-
put or output operation occurs and when an interrupt occurs, and an initialization rou-
tine is invoked when a device is started.
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Asynchronous programming is more challenging than synchronous programming.
Because events can occur in any order, a programmer must use shared variables to en-
code the current state of the computation (i.e., the events that have occurred in the past
and their effect). It can be difficult to test asynchronous programs because a program-
mer cannot easily control the sequence of events. More important, applications running
on the processor and device hardware can generate events simultaneously.

16.12 Asynchrony, Smart Devices, And Mutual Exclusion

Simultaneous events make programming asynchronous device drivers especially
difficult. For example, consider a smart device that uses command chaining. The pro-
cessor creates a linked list of operations in memory, and the device follows the list and
performs the operations automatically.

A programmer must coordinate the interaction between a processor and a smart de-
vice. To understand why, imagine a smart device extracting items from a list at the
same time the upper half of a driver is adding items. A problem can occur if the smart
device reaches the end of the list and stops processing just before the driver adds a new
item. Similarly, if two independent pieces of hardware attempt to manipulate pointers
in the list simultaneously, links can become invalid.

To avoid errors caused by simultaneous access, a driver that interacts with a smart
device must implement mutual exclusion. That is, a driver must ensure that the smart
device will not access the list until changes have been completed, and the smart device
must ensure that the driver will not access the list until changes have been completed.
A variety of schemes are used to ensure exclusive access. For example, some devices
have special CSR values that the processor can set to temporarily stop the device from
accessing the command list. Other systems have a facility that allows the processor to
temporarily restrict use of the bus (if it cannot use the bus, a smart device cannot make
changes to a list in memory). Finally, some processors offer test-and-set instructions
that can be used to provide mutual exclusion.

16.13 I /O As Viewed By An Application

The sections above describe how a device driver is programmed. We said earlier
that few programmers write device drivers. Thus, the details of CSR addresses, inter-
rupt vectors, and request queues remain hidden from a typical programmer. The
motivation for considering drivers and low-level I/O is background: it helps us under-
stand how to create applications that use low-level services efficiently.

Because they tend to use high-level languages, few programmers invoke low-level
I/O facilities directly — to express I/O operations, the programmer uses abstractions
that the programming language offers. For example, application programs seldom use a
disk device. Instead, the programming language or the underlying system presents a
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programmer with a high-level abstraction known as a file. Similarly, instead of expos-
ing a programmer to display hardware, most systems present the programmer with an
abstraction known as a window.

The point is:

In many programming systems, I/O is hidden from the programmer.
Instead of manipulating hardware devices, such as disks and display
screens, a programmer only uses abstractions such as files and win-
dows.

16.14 Run-Time I/O Libraries

In systems that do allow application programmers to control I/O devices, the
software is designed to hide as many details as possible from the programmer. In par-
ticular, an application can only specify generic, high-level I/O operations. When a
compiler translates the program into a binary form for use on a specific computer, the
compiler maps each high-level I/O operation into a sequence of low-level steps.

Interestingly, a typical compiler does not translate each I/O operation directly into
a sequence of basic machine instructions. Instead, the compiler generates code that in-
vokes library functions to perform I/O operations. Therefore, before it can be executed,
the program must be combined with the appropriate library functions.

We use the term run-time library to refer to the set of library functions that accom-
pany a compiled program. Of course, the compiler and run-time library must be
designed to work together — the compiler must know which functions are available, the
exact arguments used by each function, and the meaning of the function.

As an example, consider the following statement which is used in the high-level
language APL. The statement displays the decimal value 13 on an output device (e.g.,
the user’s screen)†:

� �
��
�� ← 13

The statement does not specify the exact device to be used, nor does it specify the
exact character encoding that the device expects. Instead, the compiler or interpreter is
required to translate the statement into binary code and choose the device details. Rath-
er than generate instructions to use a specific device, a compiler usually translates such
statements into library calls. That is:

Instead of encoding I/O details into a program, a compiler relies on a
run-time library to act as an intermediary. When the application per-
forms an I/O operation, the generated code invokes a library function,
which then performs the actual I/O operation.

��������������������������������
†APL uses a nonstandard character set that includes a ‘‘box’’ character.
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The chief advantage of using a run-time library as an intermediary arises from the
flexibility and ease of change. Only the library function understands how to use the
underlying I/O mechanisms (i.e., the device driver). If the I/O hardware and/or the de-
vice drivers change, only the run-time library needs to be updated — the compiler can
remain unchanged. In fact, a run-time library allows a single compiler to be used with
two different run-time libraries (e.g., two versions of an operating system).

16.15 The Library/Operating System Dichotomy

We know that a device driver resides in the operating system and the run-time li-
brary functions that an application uses to perform I/O reside outside the operating sys-
tem (because they are linked with the application). Conceptually, we imagine three
layers of software on top of the device hardware as Figure 16.6 illustrates.

application

run-time library

device driver

device hardware

interface 1

interface 2

Figure 16.6 The conceptual arrangement of application code, run-time library
code, and a device driver. The run-time library acts as an in-
termediary.

Several questions arise. What services does each layer of software provide? What
is the interface between an application and the run-time library, or the interface between
the run-time library and the operating system? What are the relative costs of using the
two interfaces?
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16.16 I /O Operations The OS Supports

We begin by examining the interface between the run-time library and the operat-
ing system. In a low-level programming language such as C, the operating system in-
terface is directly available to applications. Thus, a programmer can choose to use an
I/O library or make operating system calls directly†.

Although the exact details of I/O operations depend on the operating system, a
general approach has become popular. Known as the open/read/write/close paradigm,
the approach offers six basic functions. Figure 16.7 lists the functions with the names
used by the Unix operating system.

Operation Meaning�����������������������������������������������������������������
open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Miscellaneous control functions (e.g., change volume)

Figure 16.7 Six basic I/O functions that comprise the open/read/write/close
paradigm. The names are taken from the Unix operating system.

As an example, consider a device that can read or write a Compact Disc (CD).
The open function can be used to start the drive motor and ensure that a disc has been
inserted. Once the drive has been started, the read function can be used to read data
from the disc, and the write function can be used to write data onto the disc. The seek
function can be used to move to a new position (e.g., a specific song on a music CD),
and the close function can be used to power down the disc. Finally, the ioctl function
(an abbreviation of I/O control) can be used for all other functions (e.g., the eject func-
tion).

Of course, each of the operations take arguments that specify details. For example,
a write operation needs arguments that specify the device to use, the location of data,
and the amount of data to write. More important, the device driver must understand
how to map each operation and arguments to operations on the underlying device. For
example, when the driver receives a control operation, such as an eject, the driver must
know how to implement the operation with the device hardware (e.g,, how to assign
values to the device’s CSR registers).

��������������������������������
†A later section discusses the standard I/O library used with C.
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16.17 The Cost Of I/O Operations

When an application program invokes a function in the run-time library, the cost is
exactly the same as calling a procedure because a copy of the code for the library func-
tion is incorporated into the application when the program is built. Thus, the cost of in-
voking library functions is relatively low.

When an application program or a run-time library function invokes an I/O opera-
tion such as read or write, however, control must pass through a system call† to the ap-
propriate device driver in the operating system. Unfortunately, invoking an operating
system function through a system call incurs extremely high overhead. There are three
reasons. First, the processor must change privilege mode because the operating system
runs with greater privilege than an application. Second, the processor must change the
address space from the application’s virtual address space to the operating system’s ad-
dress space. Third, the processor must copy data between the application’s address
space and the operating system’s address space.

We can summarize:

The overhead involved in using a system call to communicate with a
device driver is extremely high; a system call is much more expensive
than a conventional procedure call, such as the call used to invoke a
library function.

More important, much of the system call overhead is associated with making the
call rather than the work performed by the driver. Therefore, to optimize performance,
programmers seek ways to minimize the number of system calls.

16.18 Reducing The System Call Overhead

To understand how we can reduce the overhead of system calls, consider a worst-
case example. Suppose an application needs to print a document, and suppose printing
requires the application to send a total of N bytes of data to the printer. The highest
cost occurs if the application makes a separate system call to transfer each byte of data
because the application will make a total of N system calls. As an alternative, if the ap-
plication generates a complete line of text and then makes a system call to transfer the
entire line, the overhead is reduced from N system calls to L system calls, where L is
the number of lines in the document (i.e., L < N ).

Can we further reduce the overhead of printing a document? Yes. The application
can be redesigned to allocate enough memory to hold an entire page of the document,
generate the page, and then make one system call to transfer the entire page to the de-
vice driver. The result is an application that only makes P system calls, where P is the
number of pages in the document (presumably P << N ).

��������������������������������
†Some computer architectures use the term trap in place of system call.
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A general principle can be stated:

To reduce overhead and optimize I/O performance, a programmer
must reduce the number of system calls that an application invokes.
The key to reducing system calls involves transferring more data per
system call.

Of course, it is not always possible to reduce the number of system calls used for
I/O. For example, an application like a text editor or email composer displays charac-
ters as the user enters them. The application cannot wait until the user enters an entire
line or an entire screenful because each character must appear on the screen immediate-
ly. Similarly, input from a keyboard often requires a program to accept one character at
a time without waiting for a user to enter an entire line or page. Fortunately, such ap-
plications often involve user interaction in which I/O is relatively slow, so optimization
is unimportant.

16.19 The Important Concept Of Buffering

The above discussion shows that an application programmer can optimize I/O per-
formance by rewriting code in such a way that the number of systems calls is lower.
The optimization is so important for high-speed I/O that it has been incorporated into
most computer software. Instead of requiring a programmer to rewrite code, I/O run-
time libraries have been designed to handle the optimization automatically.

We use the term buffering to describe the concept of accumulating data before an
I/O transfer, and the term buffer to refer to the area of memory in which the data is
placed. The terminology is used for the general principle as well.

The buffering principle: to reduce the number of system calls on out-
put, accumulate data in a buffer, and transfer more data each time a
system call is made.

To automate buffering, we need a scheme that works for any application. Thus,
we use a fixed-size buffer and a set of library functions. Instead of making system calls
to perform I/O operations, an application program uses the library functions. In the
case of a programming language that contains built-in I/O facilities, the run-time library
implements buffering, and the compiler generates code that invokes the appropriate li-
brary routines; in the case of a programming language that does not have built-in I/O
facilities, the programmer must call buffering library routines instead of system calls.

Library routines that implement buffering usually provide five conceptual opera-
tions that Figure 16.8 lists.
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Operation Meaning������������������������������������������������
setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

Figure 16.8 The conceptual operations provided by a typical library that
offers buffered I/O.

The operations listed in the figure are analogous to those that an operating system
offers as an interface to a device. In fact, we will see that at least one implementation
of a buffered I/O library uses function names that are variants of open, read, write, and
close. Figure 16.8 uses alternate terminology to help clarify the distinction.

16.20 Implementation of Buffering

To understand how buffering works, consider how an application uses the above
functions for buffered output. When it begins, the application calls function setup to in-
itialize buffering. Some implementations provide an argument that allows the applica-
tion to specify a buffer size; in other implementations, the buffer size is a constant†. In
any case, we will assume setup allocates a buffer, and initializes the buffer to empty.
Once the buffer has been initialized, the application can call function output to transfer
data. On each call, the application supplies an argument, D, that is a single byte of
data. Finally, when it finishes transferring data, the application calls function ter-
minate‡.

The amount of code required to implement buffered I/O is trivial. Figure 16.9
describes the steps used to implement each output function. In a language such as C,
each can be implemented with one or two lines of code.

The motivation for a terminate function should now be clear: because output is
buffered, the buffer may be partially full when the application finishes. Therefore, the
application must force the remaining contents of the buffer to be written.

��������������������������������
†Typical buffer sizes range from 8 Kbytes to 128 Kbytes, depending on the computer system.
‡A later section describes the use of function flush.
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Setup(N)

1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to the address
of the first byte of the buffer.

Output(D)

1. Place data byte D in the buffer at the position given by
pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write the con-
tents of the entire buffer, and reset pointer p to the start of
the buffer.

Terminate

1. If the buffer is not empty, make a system call to write the
contents of the buffer prior to pointer p.

2. If the buffer was dynamically allocated, deallocate it.

Figure 16.9  The steps taken to achieve buffered output.

16.21 Flushing A Buffer

It may seem that output buffering cannot be used with some applications. For ex-
ample, consider an application that allows a user to communicate over a computer net-
work. When it emits a message, an application assumes the message will be transmitted
and delivered to the other end. Unfortunately, if buffering is used, the message may
wait in the buffer unsent.

Of course, a programmer can rewrite an application to buffer data internally and
make system calls directly. However, designers of general-purpose buffering libraries
have devised another alternative — use conventional functions for buffered I/O, but al-
low a programmer to specify when a system call is needed. That is, the library includes
an extra function that an application can call to force output, even if the buffer is not
full.

Programmers use the term buffer flushing to describe the process of forcing output
of a partially full buffer. Most buffered I/O libraries include a flush function that the
application can call to invoke buffer flushing. If the buffer is empty, the flush function
has no effect. If the buffer contains data, however, the flush function makes a system
call to write the data, and then resets the global pointer to indicate that the buffer is
empty. Figure 16.10 lists the steps of a flush operation.
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Flush

1. If the buffer is currently empty, return to the caller without
taking any action.

2. If the buffer is not currently empty, make a system call to
write the contents of the buffer and set the global pointer p to
the address of the first byte of the buffer.

Figure 16.10 The steps required to implement a flush function in a buffered
I/O library. Flush allows an application to force data to be
written before the buffer is full.

Look back at the implementation of the terminate function given in Figure 16.9. If
the library offers a flush function, the first step of terminate can be replaced by a call to
the flush function.

To summarize:

A programmer uses a flush function to specify that outgoing data in a
buffer should be sent to the device driver in the operating system. A
flush operation has no effect if a buffer is currently empty.

16.22 Buffering On Input

The descriptions above explain how buffering can be used with output. In many
cases, buffering can also be used to reduce the overhead on input. To understand how,
consider reading data sequentially. If an application reads N bytes of data, one byte at a
time, the application will make N system calls.

Assuming the underlying device allows transfer of more than one byte of data, the
application can use buffering to reduce the number of system calls. The application al-
locates a large buffer, makes one system call to fill the buffer, and then satisfies re-
quests from the buffer. Figure 16.11 lists the steps required. As with output buffering,
the implementation is straightforward. In a language such as C, each step can be imple-
mented with a trivial amount of code.

16.23 Effectiveness Of Buffering

Why is buffering so important? Because even a small buffer can have a large ef-
fect on I/O performance. To see why, observe that when buffered I/O is used, a system
call is only needed once per buffer†. As a result, a buffer of N bytes reduces the
number of system calls by a factor of N. Thus, if an application makes S system calls,
a buffer of only 100 bytes reduces the number of system calls to S / 100.

��������������������������������
†Assuming calls to the flush function are ignored.



Sec. 16.23 Effectiveness Of Buffering 273

Setup(N)

1. Allocate a buffer of N bytes.

2. Create a global pointer, p, and initialize p to indicate that
the buffer is empty.

Input(N)

1. If the buffer is empty, make a system call to fill the entire
buffer, and set pointer p to the start of the buffer.

2. Extract a byte, D, from the position in the buffer given by
pointer p, move p to the next byte, and return D to the
caller.

Terminate

1. If the buffer was dynamically allocated, deallocate it.

Figure 16.11  The steps required to achieve buffered input.

We said that in practice, a buffer size of 8 Kbytes is considered minimal and that
some run-time libraries use larger buffers. Using a buffer of 8 Kbytes reduces the
number of system calls to S / 8192, where S is the original number of system calls.
Thus, the number of system calls required to transfer 2 Mbytes of data drops from
2,097,162 to 256.

The point is:

Using a buffer of N bytes reduces the number of system calls by a fac-
tor of N. A large buffer can mean the difference between an I/O
mechanism that is fast and one that is intolerably slow.

16.24 Buffering In An Operating System

Buffering is so important that device drivers in an operating system often imple-
ment buffering. For example, in some disk drivers, the driver maintains a copy of the
disk block in memory, and allows an application to read or write data from the block.

Of course, buffering in an operating system does not eliminate system calls. How-
ever, such buffering does improve performance because external data transfers are
slower than system calls. The important point is that buffering can be used to reduce
I/O overhead whenever a less expensive operation can be substituted for an expensive
operation.
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16.25 Relation To Caching

Buffering is closely related to the concept of caching that is described in Chapter
12. The chief difference arises from the way items are accessed: a cache system is op-
timized to accommodate random access, and a buffering system is optimized for
sequential access.

In essence, a cache stores an item that has been referenced, and a buffer stores an
item that is referenced plus the next N – 1 sequential items. Thus, in a virtual memory
system, a cache stores entire pages of memory — when any byte on the page is refer-
enced, the entire page is placed in the cache. In contrast, a buffer stores sequential
bytes. Thus, when a byte is referenced, a buffering system preloads the next bytes — if
the referenced byte lies at the end of a page, the buffering system preloads bytes from
the next page.

16.26 An Example: The Unix Standard I/O Library

One of the best-known examples of a buffering I/O library was created for the
Unix operating system. Known as the standard I/O library (stdio), the library supports
both input and output buffering. Figure 16.12 lists a few of the functions found in the
standard I/O library along with their purpose.

Function Meaning���������������������������������������������
fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer

Figure 16.12 Examples of functions included in the standard I/O library used
with the Unix operating system. The library includes addition-
al functions not listed here.

16.27 Summary

Two aspects of I/O are pertinent to programmers. A systems programmer who
writes device driver code must understand the low-level details of the device, and an ap-
plication programmer who uses I/O facilities must understand the relative costs.

A device driver is divided into three parts: an upper half that interacts with applica-
tion programs, a lower half that interacts with the device itself, and a set of shared vari-
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ables. A function in the upper half receives control when an application reads or writes
data; the lower half receives control when the device generates an input or output inter-
rupt.

The fundamental technique programmers use to optimize sequential I/O perfor-
mance is known as buffering. Buffering can be used for both input and output, and is
often implemented in a run-time library. Because it gives an application control over
when data is transferred, a flush operation allows buffering to be used with arbitrary ap-
plications.

Buffering reduces system call overhead by transferring more data per system call.
Buffering provides significant performance improvement because a buffer of N bytes
reduces the number of system calls that an application makes by a factor of N.

EXERCISES

16.1 Measure the execution time needed to copy a large file using write and fwrite.

16.2 The standard I/O function fseek allows random access. Measure the difference in the
time required to use fseek within a small region of a file and within a large region.

16.3 Build an output buffering routine, fputc, that accepts a single character to be printed.
Store characters in a buffer, and call write once for the entire buffer. Compare the per-
formance of your buffered routine to a program that uses write for each character.
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17

Parallelism

17.1 Introduction

Previous chapters cover the three key components of computer architecture: pro-
cessors, memory systems, and I/O. This chapter begins a discussion of fundamental
concepts that cross the boundaries among architectural components.

The chapter focuses on the use of parallel hardware, and shows that parallelism can
be used throughout computer systems to increase speed. The chapter introduces termi-
nology and concepts, presents a taxonomy of parallel architectures, and examines com-
puter systems in which parallelism is the fundamental paradigm around which the entire
system is designed. Finally, the chapter discusses limitations and problems with paral-
lel architectures.

The next chapter extends the discussion by examining a second fundamental tech-
nique, pipelining. We will see that both parallelism and pipelining are important in
high-speed designs.

17.2 Parallel And Pipelined Architectures

Some computer architects assert that there are only two fundamental techniques
used to achieve high speed: parallelism and pipelining. We have already encountered
examples of each technique, and seen how they can be used.

Other architects take a broader view of parallelism and pipelining, using the tech-
niques as the fundamental basis around which a system is designed. In many cases, the
architecture is so completely dominated by one of the two techniques that the resulting
system can be called a parallel computer or pipelined computer.

279
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17.3 Characterizations Of Parallelism

Rather than classify an architecture as parallel or nonparallel, computer architects
use a variety of terms to characterize the type and amount of parallelism that is present
in a given design. In many cases, the terminology describes the possible extremes for a
type of parallelism. We can classify an architecture by saying where the architecture
lies between the two extremes. Figure 17.1 lists the key characterizations using nomen-
clature defined by Flynn [Flynn 1996]; later sections explain each of the terms and give
examples.

d Microscopic vs. macroscopic

d Symmetric vs. asymmetric

d Fine-grain vs. coarse-grain

d Explicit vs. implicit

Figure 17.1 Terminology used to characterize the amount and type of paral-
lelism present in a computer architecture.

17.4 Microscopic Vs. Macroscopic

Parallelism is so fundamental that an architect cannot design a computer without
thinking about parallel hardware. Interestingly, the importance of parallelism means
that unless a computer uses an unusual amount of parallel hardware, we do not bother
to discuss the parallel aspects. To capture the idea that much of the parallelism in a
computer remains hidden inside subcomponents, we use the term microscopic parallel-
ism. Like microbes in the world around us, microscopic parallelism is present, but does
not stand out without closer inspection.

The point is:

Parallelism is so fundamental that virtually all computer systems con-
tain some form of parallel hardware. We use the term microscopic
parallelism to characterize parallel facilities that are present, but not
especially visible.

To be more precise, we say that microscopic parallelism refers to the use of paral-
lel hardware within a specific component (e.g., inside a processor or inside an ALU),
whereas macroscopic parallelism refers to the use of parallelism as a basic premise
around which a system is designed.



Sec. 17.5 Examples Of Microscopic Parallelism 281

17.5 Examples Of Microscopic Parallelism

ALU. We have already seen examples of using microscopic parallelism within a
processor, a memory system, and an I/O system. For example, consider the design of
an Arithmetic Logic Unit that handles logical and arithmetic operations. Most ALUs
perform integer arithmetic by processing multiple bits at the same time. Thus, an ALU
that is designed to operate on integers might contain parallel hardware that allows the
ALU to compute the exclusive-or of a pair of thirty-two bit values in a single operation.
The alternative consists of an ALU that processes one bit at a time, analogous to the
way a human performs arithmetic by considering one digit at a time. The approach is
sometimes called bit serial processing. It should be easy to see that computing one bit
at a time takes longer than computing bits in parallel. Therefore, bit serial arithmetic is
usually reserved for special cases.

Registers. The general-purpose registers in a CPU make heavy use of microscopic
parallelism. Each bit in a register is implemented by a separate digital circuit. Further-
more, to guarantee the highest-speed computation, parallel hardware is used to move
data between general-purpose registers and the ALU.

Physical Memory. As another example of microscopic parallelism, recall that a
physical memory system uses parallel hardware to implement fetch and store operations
— the hardware is designed to transfer an entire word on each operation. As in an
ALU, microscopic parallelism increases memory speed dramatically. For example, a
memory system that implements sixty-four bit words can access or store approximately
sixty-four times as much data in the same time as a memory system that accesses a sin-
gle bit at a time.

Parallel Bus Architecture. As we have seen, the central bus in a computer uses
parallel hardware to achieve high-speed transfers among the processor, memory, and
I/O devices. A typical modern computer has a bus that is either thirty-two or sixty-four
bits wide, which means that either thirty-two or sixty-four bits of data can be transferred
across the bus in a single step.

17.6 Examples Of Macroscopic Parallelism

As the examples above demonstrate, microscopic parallelism is essential for high
performance — without parallel hardware, various components of a computer system
cannot operate at high speed. Architects are aware, however, that the global architec-
ture often has a greater impact on overall system performance than the performance of
any single subsystem. That is, adding more parallelism to a single subsystem may not
improve the overall performance†.

To achieve the greatest impact, parallelism must span multiple components of a
system — instead of merely using parallelism to improve the performance of a single
component, the system must allow multiple components to work together. We use the
term macroscopic parallelism to characterize the use of parallelism across multiple,

��������������������������������
†Chapter 19 discusses performance in more detail.
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large-scale components of a computer system. A few examples will clarify the con-
cepts.

Multiple, Identical Processors. As we will see, systems that employ macroscopic
parallelism usually employ multiple processors in one form or another. For example,
some PCs are advertised as dual processor computers, meaning that the PC contains
two identical CPU chips. The hardware is arranged to allow both processors to function
at the same time. The hardware does not control exactly how the two CPUs are used.
Instead, the operating system assigns each processor code to execute. For example, the
operating system can assign one processor the task of handling I/O (i.e., running device
drivers), and assign the other processor the task of running applications.

Multiple, Dissimilar Processors. Another example of macroscopic parallelism
arises in systems that make extensive use of special-purpose coprocessors. For exam-
ple, a computer optimized for high-speed graphics might have four displays attached,
with a special graphics processor running each display. A graphics processor, typically
found on an interface card, does not use the same architecture as a CPU because the
graphics processor needs instructions optimized for graphics operations.

17.7 Symmetric Vs. Asymmetric

We use the term symmetric parallelism to characterize a design that uses replica-
tions of identical elements, usually processors, that can operate simultaneously. For ex-
ample, the dual-processor PC, mentioned above, is said to be symmetric provided the
two processors are identical.

The alternative to a symmetric parallel design is a parallel design that is asym-
metric. As the name implies, an asymmetric design contains multiple elements that
function at the same time, but differ from one another. For example, a PC with a
graphics coprocessor and a math coprocessor is classified as using asymmetric parallel-
ism because the three processors can operate simultaneously, but differ from one anoth-
er internally†.

17.8 Fine-grain Vs. Coarse-grain Parallelism

We use the term fine-grain parallelism to refer to computers that provide parallel-
ism on the level of individual instructions or individual data elements, and the term
coarse-grain parallelism to refer to computers that provide parallelism on the level of
programs or large blocks of data. For example, a graphics processor that uses sixteen
parallel hardware units to update sixteen bytes of an image at the same time is said to
use fine-grain parallelism. A dual processor PC that uses one processor to print a docu-
ment while another processor is used to compose an email message is described as us-
ing coarse-grain parallelism.

��������������������������������
†Some architects also apply the term asymmetric to a design that uses identical hardware but does not

grant each copy the same privileges (e.g., provides high-speed paths from memory to some copies, or only al-
lows some copies to access I/O devices).
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17.9 Explicit Vs. Implicit Parallelism

An architecture in which the hardware handles parallelism automatically without
requiring a programmer to initiate or control parallel execution is said to offer implicit
parallelism, and an architecture in which a programmer must control each parallel unit
is said to offer explicit parallelism. We will consider the advantages and disadvantages
of explicit and implicit parallelism later.

17.10 Parallel Architectures

In some architectures, parallelism is the central feature around which the entire sys-
tem is designed. Architects use the term parallel architecture to characterize such sys-
tems. Parallel architecture involves a replication of complete processors or substantial
parts of processors.

Although many systems contain multiple processors of one type or another, the
term parallel architecture is usually reserved for designs that permit arbitrary scaling.
That is, when they refer to a parallel architecture, architects usually mean a design in
which the number of processors can be arbitrarily large (or at least reasonably large).
As a particular example, consider a design that allows a second processor to be added to
a conventional PC. Although the resulting system uses parallelism, such an architecture
is usually classified as a dual-processor computer rather than a parallel architecture.
Similarly, a PC with four processors is classified as a quad-processor PC. However, a
computer that has thirty-two processors or a computer that can scale to sixty-four
thousand processors is classified as a parallel architecture.

17.11 Types Of Parallel Architectures (Flynn Classification)

The easiest way to understand parallel architectures is to divide architectures into
broad groups, where each group represents a type of parallelism. Of course, no division
is absolute — we will learn that a practical parallel computer system is usually a hybrid
that contains facilities from more than one group. Nevertheless, we use the classifica-
tion to define basic concepts and nomenclature that allow us to discuss and characterize
systems.

A popular way to describe parallelism that is attributed to Flynn focuses on wheth-
er data or processing is replicated. That is, does the computer have multiple, indepen-
dent processors each running a separate program, or is a single program being applied
to multiple data items? Figure 17.2 lists terms often used to define types of parallelism;
the next sections explain the terminology and give examples.



284 Parallelism Chap. 17

Name Meaning��������������������������������������������������
SISD Single Instruction Single Data stream
SIMD Single Instruction Multiple Data streams
MIMD Multiple Instructions Multiple Data streams

Figure 17.2 Terminology used to characterize computers according to the
amount and type of parallelism. In practice, hybrids exist that
span multiple types†.

17.12 Single Instruction Single Data (SISD)

The phrase Single Instruction Single Data stream (SISD) is used to describe an ar-
chitecture that does not support macroscopic parallelism. The term sequential architec-
ture or uniprocessor architecture is often used in place of SISD to emphasize that the
architecture is not parallel. In essence, SISD refers to a conventional (i.e., Von Neu-
mann) architecture — the processor runs a standard fetch-execute cycle and performs
one operation at a time. The term refers to the idea that a single, conventional proces-
sor is executing instructions that each operate on a single data item. That is, unlike a
parallel architecture, a conventional processor can only execute one instruction at any
time, and each instruction refers to a single computation.

Of course, we have seen that an SISD computer can use parallelism internally. For
example, the ALU may be able to perform operations on multiple bits in parallel, the
CPU may invoke a coprocessor, or the CPU may have mechanisms that allow it to fetch
operands from two banks of memory at the same time. However, the overall effect of
an SISD architecture is sequential execution of instructions that each operate on one
data item.

17.13 Single Instruction Multiple Data (SIMD)

The phrase Single Instruction Multiple Data streams (SIMD) is used to describe a
parallel architecture in which each instruction specifies a single operation (e.g., integer
addition), but the instruction is applied to many data items at the same time. Typically,
an SIMD computer has sufficient hardware to handle sixty-four simultaneous operations
(e.g., sixty-four simultaneous additions).

Vector Processors. An SIMD architecture is not useful for applications such as a
word processor. Instead, SIMD is only used with applications that apply the same
operation to a set of values. For example, some scientific applications work well on an
SIMD architecture that can apply a floating point operation to a set of values. The ar-
chitecture is sometimes called a vector processor or an array processor after the
mathematical concept of vectors and the computing concept of arrays.

��������������������������������
†Some architects list a fourth class, MISD, to describe the possibility of computers that execute multiple

instructions on the same data. We have chosen to omit MISD because it is impractical except in special cases
(e.g., redundant processors used to increase reliability).
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As an example of how an SIMD machine works, consider normalizing the values
in a vector, V that contains N elements. Normalization requires that each item in the
vector be multiplied by a floating point number, Q. On a sequential architecture (i.e.,
an SISD architecture), the algorithm required to normalize the vector consists of a loop
as Figure 17.3 shows.

for i from 1 to N {

V [ i ] ← V [ i ] × Q ;

}

Figure 17.3 The algorithm for vector normalization used on a sequential com-
puter.

On an SIMD architecture, the underlying hardware can simultaneously apply an
arithmetic operation to all the values in an array, provided the size of the array does not
exceed the parallelism in the hardware. For example, in a single step, hardware that has
sixteen parallel units can multiply each value in a sixteen-element array by a constant.
Thus, the algorithm to perform normalization of an array on an SIMD computer is trivi-
al:

V ← V × Q ;

Of course, if vector V is larger than the hardware capacity, multiple steps will be
required. The important point is that a vector instruction on an SIMD architecture is
not merely a shorthand for a loop. Instead, the underlying system contains multiple
hardware units that operate in parallel to provide substantial speedup; the performance
improvement can be significant, especially for computations that use large matrices.

Of course, not all instructions in an SIMD architecture can be applied to an array
of values. Instead, an architect identifies a subset of operations to be used with vectors,
and defines a special vector instruction for each. For example, normalization of an en-
tire array is only possible if the architect chooses to include a vector multiplication in-
struction that multiplies each value in the vector by a constant.

In addition to operations that use a constant and a vector, SIMD computers often
provide instructions that use two vectors. That is, a vector instruction takes one or
more operands that each specify a vector. For example, SIMD architectures are used
for problems involving matrix multiplication. On most SIMD machines, an operand
that specifies a vector gives two pieces of information: the location of the vector in
memory and an integer that specifies the size of the vector (i.e., number of items in the
vector). On some machines, vector instructions are controlled by special-purpose regis-
ters — the address and size of each vector are loaded into registers before a vector in-
struction is invoked. In any case, software determines the number of items in a vector
up to the maximum size supported by the hardware†.

��������������������������������
†An exercise considers speedup in cases where vectors exceed the capacity of the hardware; a definition

of speedup can be found in Section 17.16.
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Graphics Processors. SIMD architectures are also popular for use with graphics.
To understand why, it is important to know that typical graphics hardware uses sequen-
tial bytes in memory to store values for pixels on a screen. To move a rectangular win-
dow (e.g., a window being dragged by a mouse), software must copy the bytes that
correspond to the window from one location in memory to another. A sequential archi-
tecture requires a programmer to specify a loop that copies one location at a time. On
an SIMD architecture, however, a programmer can specify a vector size, and then issue
a single copy command. The underlying SIMD hardware then copies multiple bytes.

17.14 Multiple Instructions Multiple Data (MIMD)

The phrase Multiple Instructions Multiple Data streams (MIMD) is used to
describe a parallel architecture in which each of the processors performs independent
computations at the same time. Although many computers contain multiple internal
processing units, the MIMD designation is reserved for computers in which the proces-
sors are visible to a programmer. That is, an MIMD computer can run multiple, in-
dependent programs at the same time.

Symmetric Multiprocessor (SMP). The most well-known example of an MIMD ar-
chitecture consists of a computer known as a Symmetric Multiprocessor (SMP). An
SMP contains a set of N processors that can each be used to run programs. In a typical
SMP design, the processors are identical: they each have the same instruction set,
operate at the same clock rate, have access to the same (modules of) memory, and have
access to the same external devices. Thus, any processor can perform exactly the same
computation as any other processor. Figure 17.4 illustrates the concept.

Main

Memory

(various

modules)

Devices

P1

Pi

P2

Pi+1

PN

Pi+2

Figure 17.4 Illustration of a symmetric multiprocessor with N identical pro-
cessors. Each processor has access to memory and I/O devices.
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In the 1980s, while some researchers explored ways to increase the speed and
power of a silicon chip, other researchers investigated symmetric multiprocessors as an
alternate way to provide more powerful computers. One of the most well-known pro-
jects, which was conducted at Carnegie Mellon University, produced a prototype known
as the Carnegie multiminiprocessor (C.mmp). During the 1980s, vendors first created
commercial products, informally called multiprocessors, that used the SMP approach.
Sequent Corporation (currently owned by IBM) created a symmetric multiprocessor that
runs the Unix operating system, and Encore Corporation created a symmetric multipro-
cessor named Multimax.

Asymmetric Multiprocessor (AMP). Although SMPs are popular, other forms of
MIMD architectures are possible. The chief alternative to an SMP design is an Asym-
metric Multiprocessor (AMP). An AMP contains a set of N programmable processors
that can operate at the same time, but does not require all processors to have identical
capabilities. For example, an AMP design can choose a processor that is appropriate to
a given task (i.e., one processor can be optimized for management of high-speed disk
storage devices, and another processor can be optimized for graphics display).

In most cases, AMP architectures follow a master-slave approach in which one
processor (or in some cases a set of processors) controls the overall execution and in-
vokes other processors as needed. The processor that controls execution is known as
the master, and other processors are known as slaves.

In theory, an AMP architecture that has N processors can have N distinct types of
processors. In practice, however, most AMP designs have between two and four types
of processors. Typically, a general-purpose AMP architecture includes at least one pro-
cessor optimized for overall control (the master), and others optimized for subsidiary
functions such as arithmetic computation or I/O.

Math And Graphics Coprocessors. Commercial computer systems have been
created that use an asymmetric architecture. One of the most widely-known AMP
designs became popular in the late 1980s and early 1990s when PC manufacturers be-
gan selling math coprocessors. The idea of a math coprocessor is straightforward: the
coprocessor is a special-purpose chip that the CPU can invoke to perform floating point
computation. Because it is optimized for one task, a coprocessor can perform the task
faster than the CPU.

I/O Processors. Most mainframe computers use an AMP architecture to handle
I/O at high speed without slowing down the CPU. Each external I/O connection is
equipped with a dedicated, programmable processor. Instead of manipulating a bus or
handling interrupts, the CPU merely downloads a program into the programmable pro-
cessor. The processor then handles all the details of I/O. For example, the mainframe
computers sold by IBM corporation use programmable I/O processors called channels.

CDC Peripheral Processors. Control Data Corporation helped pioneer the idea of
using an AMP architecture in mainframes when they created the 6000 series of main-
frame computers. The CDC architecture uses ten peripheral processors to handle I/O.
Figure 17.5 illustrates the architecture†.

��������������������������������
†The CDC computer is no longer manufactured, but the basic idea of programmable I/O processors con-

tinues to be used.
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Figure 17.5 Illustration of the asymmetric architecture used in the CDC 6000
mainframe computers. The CPU was more powerful than the
peripheral processors.

Interestingly, CDC’s peripheral processors were not limited to I/O — a peripheral
processor resembled a minicomputer with a general-purpose instruction set that could be
used however a programmer chose. The peripheral processors had access to memory,
which meant a peripheral processor could read or store values in any location.
Although they were much slower than the CPU, all ten peripheral processors could exe-
cute simultaneously. Thus, it was possible to optimize program performance by divid-
ing tasks among the peripheral processors as well as the CPU.

17.15 Communication, Coordination, And Contention

It may seem obvious that multiprocessor architectures always have better perfor-
mance than a uniprocessor architecture. Consider, for example, a symmetric multipro-
cessor, M. Intuitively, computer M can outperform a uniprocessor because M can per-
form N times as many operations at any time. Moreover, if a chip vendor finds a way
to make a single processor run faster than M, the vendor who sells M merely needs to
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replace each of the processors in M with the new, faster processor. Indeed, many com-
panies that sell multiprocessors make these statements to attract customers.

Unfortunately, our intuition about computer performance can be misleading. Ar-
chitects have found three main challenges in designing a high-performance parallel ar-
chitecture:

d Communication

d Coordination

d Contention

Communication. Although it may seem trivial to envision a computer that has
dozens of independent processors, the computer must also provide a mechanism that al-
lows the processors to communicate with each other, with memory, and with I/O de-
vices. More important, the communication mechanism must be able to scale to handle a
large number of processors. Typically, an architect must spend a significant amount of
effort to create a parallel computer system that does not have severe communication
bottlenecks.

Coordination. In a parallel architecture, processors must work together to perform
computation. Therefore, a coordination mechanism is needed that allows processing to
be controlled. We said that asymmetric designs usually designate one of the processors
to act as a master that controls and coordinates all processing; some symmetric designs
also use the master-slave approach. Other architectures use a distributed coordination
mechanism in which the processors must be programmed to coordinate among them-
selves without a master.

Contention. When two or more processors attempt to access a resource at the same
time, we say that the processors contend for the resource. Resource contention creates
one of the greatest challenges in designing a parallel architecture because contention in-
creases as the number of processors increases.

To understand why contention is a problem, consider memory. If a set of N pro-
cessors all have access to a given memory, a mechanism is needed that only permits
one processor to access the memory at any time. When multiple processors attempt to
use the memory simultaneously, the hardware contention mechanism blocks all except
one of them. That is, N – 1 of the processors are idle during the memory access. In the
next round, N – 2 processors remain idle. It should be obvious that:

In a parallel architecture, contention for shared resources lowers per-
formance dramatically because only one processor can proceed to use
a given resource at any time; the hardware contention mechanism
forces other processors to remain idle while they wait for access.
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17.16 Performance Of Multiprocessors

Multiprocessor architectures have not fulfilled the promise of scalable, high-
performance computing. There are several reasons: operating system bottlenecks, con-
tention for memory, and I/O. Operating system bottlenecks are the easiest to under-
stand. The operating system controls all processing, including allocating tasks to pro-
cessors and performing I/O. Only one copy of an operating system can run because a
device cannot take orders from multiple processors simultaneously. Thus, in a mul-
tiprocessor, at most one processor can run operating system software at any time. As a
consequence, processors must access the operating system serially — if K processors
need access, K – 1 of them must wait.

Contention for memory has proven to be an especially difficult problem. First,
hardware for a multiported memory is extremely expensive. Second, one of the more
important optimizations used in memory systems, caching, causes problems when used
with a multiprocessor. To understand why problems occur, consider what happens
when two processors access memory. If processor 1 caches a value from location X and
processor 2 changes the value in location X, the value in the cache of processor 1 be-
comes invalid. Thus, whenever a processor stores a value into memory, the processor
must notify all other processors to disregard cached values. Unfortunately, the notifica-
tion itself introduces overhead, and discarding values from a cache reduces the effec-
tiveness.

Many multiprocessor architectures suffer from another weakness: the architecture
only works better than a uniprocessor when performing intensive computation. Surpris-
ingly, most applications are not limited by the amount of computation they perform.
Instead, most applications are I/O bound, which means the application spends more
time waiting for I/O than performing computation. For example, most of the delay in
common applications, such as word processors, spreadsheets, and web browsing, arises
when the application waits for I/O from a file or the network. Thus, adding additional
computational power to the underlying computer does not lower the time required to
perform the computation — the extra processors sit idle waiting for I/O.

To assess the performance of an N-processor system, we define the notion of
speedup to be the ratio of the performance of a single processor to the performance of a
multiprocessor. Specifically, we define speedup as:

Speedup  =  
τN

τ1���

where τ1 denotes the execution time required on a single processor, and τN denotes the
execution time required on a multiprocessor†. In each case, we assume performance is
measured using the best algorithm available (i.e., we allow the program to be rewritten
to take advantage of parallel hardware).

When multiprocessors are measured performing general-purpose computing tasks,
an interesting result emerges. In an ideal situation, we would expect performance to in-

��������������������������������
†Because we expect the processing time on a single processor to be greater than the processing time on a

multiprocessor, we expect the speedup to be greater than one.
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crease linearly as more processors are added to a multiprocessor system. Experience
has shown, however, that problems like memory contention, inter-processor communi-
cation, and operating system bottlenecks mean that multiprocessors do not achieve
linear speedup†. Instead, performance often reaches a limit as Figure 17.6 illustrates.

Speedup

Number of processors (N)
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Figure 17.6 Illustration of the ideal and typical performance of a multiproces-
sor as the number of processors is increased. Values on the y-
axis list the relative speedup compared to a single processor.

Surprisingly, the performance illustrated in the figure may not be achievable in
practice. In some multiprocessor designs, communication overhead and memory con-
tention dominate the running time: as more and more processors are added, the perfor-
mance starts to decrease. For example, a particular symmetric multiprocessor design
exhibited a small speedup with a few processors. However, when sixty-four processors
were used, communication overhead made the performance worse than a single proces-
sor system.

We can summarize:

When used for general-purpose computing, a multiprocessor may not
perform well. In some cases, added overhead means performance de-
creases as more processors are added.

��������������������������������
†Performance anomalies do exist where a multiprocessor can always perform better than a uniprocessor;

the exercises explore one possible anomaly.
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17.17 Consequences For Programmers

17.17.1  Locks And Mutual Exclusion

Writing code that uses multiple processors is inherently more complex than writing
code for a single processor. To understand the complexity, consider using a shared
variable. For example, suppose two processors use a variable x to store a count. A pro-
grammer writes a statement such as:

x = x + 1 ;

A compiler translates the statement into a sequence of machine instructions, such
as the sequence that Figure 17.7 lists.

load x, R5
incr R5
store R5, x

Figure 17.7 An example sequence of machine instructions used to increment
a variable in memory. In most architectures, increment entails a
load and a store operation.

Unfortunately, if two processors attempt to increment x at nearly the same time,
the value of x might be incremented by one instead of two. To see why, observe that
because the two processors operate independently, they compete for access to memory.
Thus, the operations can be performed in the order that Figure 17.8 lists.

d Processor 1 loads x in to its register 5

d Processor 1 increments its register 5

d Processor 2 loads x in to its register 5

d Processor 1 stores its register 5 into x

d Processor 2 increments its register 5

d Processor 2 stores its register 5 into x

Figure 17.8 A sequence of steps that can occur when two independent pro-
cessors access variable x in shared memory.

As the figure shows, each processor loads the original value of x, each increments
the value, and each stores the new value. Thus, although two processors execute in-
structions to increment variable x, the value following the sequence is only one greater
than the value at the beginning of the sequence.
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To prevent problems like the one illustrated in Figure 17.8, multiprocessor
hardware offers hardware locks. A programmer must associate a lock with each shared
item, and use the lock to ensure that no other processors can change the item while an
update is in progress. For example, if lock 17 is associated with variable x, a program-
mer must obtain lock 17 before updating x. The idea is called mutual exclusion, and we
say that a processor must gain exclusive use of a variable before updating the value.
Figure 17.9 illustrates the concept.

lock 17
load x, R5
incr R5
store R5, x
release 17

Figure 17.9 Illustration of the instructions used to guarantee exclusive access
to a variable. A separate lock is assigned to each shared item.

The key to understanding locks is to realize that the underlying hardware only
keeps one copy of each lock and guarantees that only one processor will be granted a
lock at any time. Thus, if two or more processors both attempt to obtain a given lock at
the same time, only one will be granted access. The hardware forces the other proces-
sors to wait (i.e., places the other processors in a queue). When a processor releases a
lock, the hardware checks the queue. If other processors are waiting for the lock, the
hardware selects the next processor from the queue, and grants the lock to that proces-
sor. Thus, at most one processor can hold a given lock at any time.

Locking adds a nontrivial amount of complexity to programs for several reasons.
First, because locking is unusual, a programmer not accustomed to programming mul-
tiprocessors can easily forget to lock a shared variable (and because they depend on tim-
ing, such errors can be difficult to detect). Second, locking can severely reduce perfor-
mance — if K processors attempt to access a shared variable at the same time, the
hardware will keep K – 1 of them idle while they wait for access. Third, because
separate instructions are used to obtain and release a lock, locking adds overhead.
Thus, a programmer must decide whether to obtain a lock for each individual operation
or whether to obtain a lock, hold the lock while performing a series of operations on the
variable, and then release the lock.

17.17.2  Programming Explicit And Implicit Parallel Computers

The most important aspect of parallelism for a program concerns whether software
or hardware is responsible for managing parallelism: a system that uses implicit paral-
lelism is significantly easier to program than a system that uses explicit parallelism.
For example, consider a processor designed to handle packets arriving from a computer
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network. In an implicit design, a programmer writes code to handle a single packet,
and the hardware automatically applies the same program to N packets in parallel. In
an explicit design, the programmer must plan to read N packets, send each to a different
hardware unit, start each hardware unit processing a packet, wait for the hardware units
to complete, and extract the resulting packets. In many cases, the code required to start
and control parallel hardware units and determine when they finish is more complex
than the code to perform the desired computation. More important, code to control
parallel units must allow hardware to operate in arbitrary order. For example, because
the time required to process a packet depends on the packet’s contents, a controller must
be ready for the hardware units to complete processing in arbitrary order. The point is:

From a programmer’s point of view, a system that uses explicit paral-
lelism is significantly more complex to program than a system that
uses implicit parallelism.

17.17.3  Programming Symmetric And Asymmetric Multiprocessors

One of the most important advantages of symmetry arises from the positive conse-
quences it has for programmers: a symmetric multiprocessor can be substantially easier
to program than an asymmetric multiprocessor. First, if all processors are identical, a
programmer only needs to learn one instruction set. Second, symmetry means a pro-
grammer does not need to consider which tasks are best suited for which type of proces-
sor. Third, when identical processors operate at the same speed, a programmer does not
need to worry about the time required to perform a task on a given processor. Fourth,
because all processors use the same encoding for instructions and data, a binary pro-
gram or a data value can be moved from one processor to another.

From a programmer’s point of view, however, any form of multiprocessor intro-
duces a complication: in addition to everything else, a programmer must consider how
coding decisions will influence performance. For example, consider a computation that
processes packets arriving over a network. A conventional program keeps a global
counter in memory, and updates the counter when a packet arrives. On a shared
memory architecture, however, updating a value in memory is expensive: a processor
must obtain a lock, update the value, and release the lock. Thus, an architecture in
which multiple processors update global values can be considerably slower than a con-
ventional architecture.

17.18 Redundant Parallel Architectures

Our discussion has focused on the use of parallel hardware to improve performance
or increase functionality. However, it is also possible to use parallel hardware to im-
prove reliability and prevent failure. That is, multiple copies of hardware can be used
to verify each computation.
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The term redundant hardware usually refers to multiple copies of a hardware unit
that operate in parallel to perform an operation. The basic difference between redundant
hardware and the parallel architectures described above arises from the data items being
used: a parallel architecture arranges for each copy of the hardware to operate on a
separate data item; a redundant architecture arranges for all copies to perform exactly
the same operation.

The point of using redundant hardware is verification that a computation is correct.
What happens when redundant copies of the hardware disagree? The answer depends
on the details and purpose of the underlying system. One possibility uses votes: K
copies of a hardware unit each perform the computation and produce a value. A special
hardware unit then compares the output, and selects the value that appears most often.
Another possibility uses redundant hardware merely to detect hardware failures: if two
copies of the hardware disagree, the system displays an error message, and then halts
until the defective unit can be repaired or replaced.

17.19 Distributed And Cluster Computers

The parallel architectures discussed in this chapter are called tightly coupled be-
cause the parallel hardware units are located inside the same computer system. The al-
ternative, which is known as a loosely coupled architecture uses multiple computer sys-
tems that are interconnected by a communication mechanism. For example, we use the
term distributed architecture to refer to a set of computers that are connected by a com-
puter network or an internet. In a distributed architecture, each computer operates in-
dependently, but the computers can communicate by sending messages across a net-
work.

A special form of distributed computing system is known as a network cluster or a
cluster computer. In essence, a cluster computer consists of a set of independent com-
puters connected by a high-speed computer network that are all dedicated to solving one
problem at a time. For example, scientists sometimes use cluster computers to run com-
putations on extremely large sets of data. If the cluster contains N computers, the data
is divided into N parts, and each part is given to one computer in the cluster. Comput-
ers in the cluster run independently; when all the computers finish, the results are col-
lected to produce the final output. Of course, the problem being solved must be amen-
able to division (i.e., cluster computing does not offer a performance improvement in
cases where data values are sent among computers frequently).

A special case of cluster computing is used to construct a high-capacity web site.
When a single computer running a web server cannot accommodate the traffic for the
site, the manager installs a cluster of computers that each run a copy of the web server.
A special-purpose system that is known as a web load balancer disperses incoming re-
quests among computers in the cluster of servers. That is, each time it receives a re-
quest from a browser, the load balancer chooses the least-loaded computer in the clus-
ter, and forwards the request. Thus, a web site with N computers in a cluster can
respond to approximately N times as many requests per second as a single computer.



296 Parallelism Chap. 17

Another form of loosely-coupled distributed computing is known as grid comput-
ing. Grid computing uses the global Internet as a communication mechanism among a
large set of computers. The computers (typically personal computers) agree to provide
spare CPU cycles for the grid. Each computer runs software that repeatedly accepts a
request, performs the requested computation, and returns the result. To use the grid, a
problem must be divided into many small pieces. Each piece of the problem is sent to a
computer, which means all computers can execute simultaneously.

Grid computing is especially popular for large, scientific calculations. There are
two reasons. First, because scientific calculations require intensive amounts of process-
ing, using a grid reduces the running time dramatically. Second, many scientific prob-
lems use representations, such as matrices, that make dividing the problem into small
pieces easy. For most problems, however, the long delays required to transmit requests
and data across the Internet mean that grid computing does not result in significantly
faster computation.

17.20 Summary

Parallelism is one of the fundamental optimization techniques used to increase
hardware performance. Most components of a computer system contain parallel
hardware; an architecture is only classified as parallel if the architecture includes paral-
lel processors. Explicit parallelism gives a programmer control over the use of parallel
facilities; implicit parallelism handles parallelism automatically.

A conventional computer is classified as a Single Instruction Single Data (SISD)
architecture because a single instruction operates on a single data item at any given
time. A Single Instruction Multiple Data (SIMD) architecture allows an instruction to
operate on an array of values. Typical SIMD machines include vector processors and
graphics processors. A Multiple Instructions Multiple Data (MIMD) architecture em-
ploys multiple, independent processors that operate simultaneously and can each exe-
cute a separate program. Typical MIMD machines include symmetric and asymmetric
multiprocessors. Alternatives to SIMD and MIMD architectures include redundant, dis-
tributed, cluster, and grid architectures.

In theory, a general-purpose multiprocessor with N processors should perform N
times faster than a single processor. In practice, however, memory contention and com-
munication overhead mean that the performance of a multiprocessor does not increase
linearly as the number of processors increases. In some cases, performance decreases as
additional processors are added.

Programming a computer with multiple processors can be a challenge. In addition
to other considerations, a programmer must use locks to guarantee exclusive access to
shared items.
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EXERCISES

17.1 Consider multiplying two 10 X 20 matrices on a computer that has vector capability but
limits each vector to sixteen items. How is matrix multiplication handled on such a
computer, and how many vector multiplications are required?

17.2 In the previous exercise, how many scalar multiplications are needed on a uniprocessor
(i.e., an SISD architecture)? If we ignore addition and only measure multiplication, what
is the speedup? Does the speedup change when multiplying 100 X 100 matrices?

17.3 If you have access to single processor and dual processor computers that use the same
clock rate, write a program that consumes large amounts of CPU time, run multiple
copies on both computers, and record the running times. What is the effective speedup?

17.4 In the previous question, change the program to reference large amounts of memory
(e.g., repeatedly set a large array to a value x, then set the array to value y, and so on).
How do memory references affect the speedup?

17.5 Can a multiprocessor ever achieve speedup that is better than linear? To find out, con-
sider an encryption breaking algorithm that must try twenty-four (four factorial) possible
encryption keys, and must perform up to 1024 operations to test each key (stopping early
only if an answer is found). If we assume a multiprocessor requires K milliseconds to
perform 1024 operations, on average how much time will the processor spend solving
the entire problem? How much time will a 32-processor MIMD machine spend solving
the problem? What is the resulting speedup?
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18

Pipelining

18.1 Introduction

Earlier chapters present processors, memory systems, and I/O as the fundamental
aspects of computer architecture. The previous chapter shows how parallelism can be
used to increase performance, and explains a wide variety of parallel architectures.

This chapter focuses on the second major technique used to increase performance:
pipelining. The chapter discusses the motivation for pipelining, explains the variety of
ways pipelining is used, and shows why pipelining can increase hardware performance.

18.2 The Concept Of Pipelining

The term pipelining refers broadly to any architecture in which digital information
flows through a series of stations (e.g., processing components) that each inspect, inter-
pret, or modify the information as Figure 18.1 illustrates.

stage 1 stage 2 stage 3 stage 4

information
arrives

information
leaves

Figure 18.1 Illustration of the pipeline concept. The example has four stages,
and information flows through each stage.
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Although we are primarily interested in hardware architectures and the use of pipe-
lining within a single computer system, the concept itself is not limited to hardware.
Pipelining is not restricted to a single computer, a particular type or size of digital infor-
mation, or a specific length of pipeline (i.e., a particular number of stages). Instead,
pipelining is a fundamental concept in computing that is used in a variety of situations.

To help us understand the concept, we will consider a set of possibilities. Figure
18.2 lists ways to characterize pipelines, and succeeding paragraphs explain each of the
characteristics.

d Hardware or software implementation

d Large or small scale

d Synchronous or asynchronous flow

d Buffered or unbuffered flow

d Finite chunks or continuous bit streams

d Automatic data feed or manual data feed

d Serial or parallel path

d Homogeneous or heterogeneous stages

Figure 18.2 The variety of ways a pipeline can be used. The concept arises
in many ways in digital systems.

Hardware Or Software Implementation. Pipelining can be implemented in either
software or hardware. For example, the Unix operating system provides a pipe mecha-
nism that can be used to form a software pipeline — a set of processes creates pipes
that connect the output of one process to the input of the next process. We will exam-
ine hardware pipelines in later sections. However, it should be noted that software and
hardware pipelines are independent: a software pipeline can be created on a computer
that does not use a pipeline hardware architecture, and pipeline hardware is not neces-
sarily visible to programmers.

Large Or Small Scale. Stations in a pipeline can range from simplistic to power-
ful, and a pipeline can range in length from short to long. At one extreme, a hardware
pipeline can be contained entirely within a small functional unit on a chip. At the other
extreme, a software pipeline can be created by passing data through a series of pro-
grams that each run on a separate computer and use the Internet to communicate. Simi-
larly, a short pipeline can be formed of two stages, one that generates information and
one that absorbs it, and a long pipeline can contain hundreds of stages.

Synchronous Or Asynchronous Flow. A synchronous pipeline operates like an as-
sembly line: at a given time, each station is processing some amount of information
(e.g., a byte). A global clock controls movement, which means that all stations simul-
taneously forward their data (i.e., the results of processing) to the next station. The al-
ternative, an asynchronous pipeline, allows a station to forward information at any time.
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Asynchronous communication is especially attractive for situations where the amount of
time a given stage spends on processing depends on the information. However, asyn-
chronous communication can mean that if one stage delays for a long time, later stages
must wait.

Buffered Or Unbuffered Flow. Our conceptual diagram in Figure 18.1 implies that
one stage of a pipeline sends data directly to another stage. It is also possible to con-
struct a pipeline in which a buffer is placed between each pair of stages. Buffering is
useful with asynchronous pipelines in which information is processed in bursts (i.e., a
pipeline in which a stage repeatedly emits steady output, then ceases emitting output,
and then begins emitting steady output again).

Finite Chunks Or Continuous Bit Streams. The digital information that passes
though a pipeline can consist of a sequence of small data items (e.g., packets from a
computer network) or an arbitrarily long bit stream (e.g., a continuous video feed).
Furthermore, a pipeline that operates on individual data items can be designed such that
all data items are the same size (e.g., disk blocks that are each four Kbytes) or the size
of data items is not fixed (e.g., a series of Ethernet packets that vary in length).

Automatic Data Feed Or Manual Data Feed. Some implementations of pipelines
use a separate mechanism to move information, and other implementations require each
stage to participate in moving information. For example, a synchronous hardware pipe-
line usually relies on an auxiliary mechanism to move information from one stage to
another. However, a software pipeline usually requires each stage to write outgoing
data and read incoming data explicitly.

Serial Or Parallel Path. The large arrows in Figure 18.1 imply that a parallel path
is used to move information from one stage to another. Although some pipelines do use
a parallel path, others use serial communication. Furthermore, communication between
stages need not consist of conventional communication (e.g., stages can use an operat-
ing system, computer network, or shared memory to communicate).

Homogeneous Or Heterogeneous Stages. Although Figure 18.1 uses the same size
and shape for each stage of a pipeline, homogeneity is not required. Some implementa-
tions of pipelines choose a type of hardware that is appropriate for each stage.

18.3 Software Pipelining

From a programmer’s point of view, a software pipeline is attractive for two rea-
sons. First, a software pipeline provides a way to handle complexity. Second, a
software pipeline allows programs to be reused. In essence, both goals are achieved be-
cause a software pipeline allows a programmer to divide a large, complex task into
smaller, more generic pieces.

As an example of software pipelining, consider a Unix command interpreter (also
known as a shell). A shell allows a user to create a software pipeline easily. The user
enters a list of program names separated by the vertical bar character to specify that the
programs should be run as a pipeline (i.e., the output from one program should be con-
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nected to the input of the next). Each program can have zero or more arguments; the
vertical bar separates one program from the next. For example, the following input to
the shell specifies that three programs, cat, sed, and more are to be connected in a pipe-
line:

cat x | sed ’s/friend/partner/g’ | more

In the example, the cat program writes a copy of file x (presumably a text file) to
its output, which becomes the input of the sed program. The sed program, in the mid-
dle of the pipeline, receives input from cat and sends output to more. Sed has an argu-
ment that specifies translating every occurrence of the word friend to partner. The final
program in the pipeline, more, displays anything it receives as input on the user’s
screen.

Although the example above is trivial, it illustrates how a software pipeline helps
programmers. Decomposing a program into a series of smaller, less complex programs
makes it easier to create and debug software. Furthermore, if the division is chosen
carefully, some of the pieces can be reused among programs. In particular, program-
mers often find that using a pipeline to separate input and output processing from com-
putation allows a piece that performs computation to be reused with various forms of
input and output.

18.4 Software Pipeline Performance And Overhead

It may seem that software pipelining results in lower performance than a single
program. After all, the operating system must run multiple programs at the same time,
and must pass data between pairs of programs. Inefficiency can be especially high if
early stages of a pipeline pass large volumes of data that are later discarded. For exam-
ple, consider the following software pipeline that contains one more stage than the ex-
ample above: an additional invocation of sed that deletes any line containing the charac-
ter W.

cat x | sed ’s/friend/partner/g’ | sed ’/W/d’ | more

If we expect ninety-nine percent of all lines to contain the character W, the first
two stages of the pipeline will perform unnecessary work (i.e., processing lines of text
that will be discarded in a later stage of the pipeline). In the example, the pipeline can
be optimized by moving the deletion to an earlier stage. However, the overhead of us-
ing a software pipeline appears to remain: copying data from one program to another is
less efficient than performing all computation in a single program.

Surprisingly, a software pipeline can sometimes perform better than a large,
monolithic program. To understand why, consider the underlying architecture: process-
ing, memory, and I/O are constructed from independent hardware. A modern operating
system takes advantage of the independence by automatically switching the processor
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among programs: when one program is waiting for I/O, another program runs. Thus, if
a pipeline is composed of many small programs, the operating system may be able to
improve overall performance by running one of the programs in a pipeline, while anoth-
er program waits for I/O.

18.5 Hardware Pipelining

Hardware pipelining offers several advantages. First, like software pipelining,
hardware pipelining can help a designer manage complexity — a complex task can be
divided into smaller, more manageable pieces. Second, if the division is performed
carefully and the task is sufficiently general, it may be possible to reuse pieces in other
hardware designs. Third, and most important, hardware pipelining typically offers
higher performance†.

Before we discuss performance, it is important to understand that hardware pipe-
lines are usually divided into two categories:

d Instruction pipeline

d Data pipeline

Instruction Pipeline. Chapter 5 explains how the fetch-execute cycle in most
modern processors uses a pipeline to decode and execute instructions. To be precise,
we use the term instruction pipeline to describe a pipeline in which the information con-
sists of machine instructions and the stages of the pipeline execute the instructions.
However, because instruction sets and operand types vary from one processor to anoth-
er, there is no overall agreement on the number of stages in an instruction pipeline or
the exact operations performed at a given stage‡.

Data Pipeline. The alternative to an instruction pipeline is known as a data pipe-
line. That is, instead of passing instructions, a data pipeline is designed to pass data
from stage to stage. For example, if a data pipeline is used to handle packets that arrive
from a computer network, each packet passes sequentially through the stages of the
pipeline. Data pipelining provides some of the most unusual and most interesting uses
of pipelining. As we will see, data pipelining also has the potential for the greatest
overall improvement in performance.

18.6 How Hardware Pipelining Increases Performance

To understand why pipelining is fundamental in hardware design, we need to ex-
amine a key point: pipelining can dramatically increase performance. To see how, com-
pare a data pipeline to a monolithic design. For example, consider the design of an In-
ternet router that is used by an Internet Service Provider (ISP) to forward packets
between customers and web sites. A router connects to multiple networks, some of

��������������������������������
†We have already seen that pipelining does not always enhance performance: overall performance will

suffer if the pipeline stalls.
‡The definition of superpipeline, given later in this chapter, also relates to an instruction pipeline.
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which lead to customers and at least one leads to the Internet. Network packets can ar-
rive over any network, and the router’s job is to send each packet on toward its destina-
tion. For purposes of this example, we will assume the router performs six basic opera-
tions on each packet as Figure 18.3 lists.

1. Receive a packet (i.e., transfer the packet into memory).

2. Verify packet integrity (i.e., verify that no changes occurred between
transmission and reception).

3. Check for routing loops (i.e., decrement a value in the header, and re-
form the header with the new value).

4. Route the packet (i.e., use the destination address field to select one
of the possible output networks and a destination on that network).

5. Prepare for transmission (i.e. compute information that will be used to
verify packet integrity).

6. Transmit the packet (i.e., transfer the packet to the output device).

Figure 18.3 An example series of steps that hardware in an Internet router
performs to forward a packet.

Now consider the design of hardware that implements the steps in the figure. Be-
cause the steps involve complex computation, it may seem that a processor should be
used to perform packet forwarding. However, a single processor is not fast enough for
high-speed networks. Thus, most designs employ two optimizations described in earlier
chapters: smart I/O devices and parallelism. A smart I/O device can transfer a packet
to or from memory without using a processor, and a parallel design uses a separate pro-
cessor to handle each input.

A parallel design with a smart I/O interface means that each processor implements
a loop that repeatedly executes the six basic steps. Figure 18.4 illustrates how a proces-
sor connects to an input, and shows the algorithm the processor runs.

processor
input

from one
network

outputs

...

do forever {
Wait to receive packet
Verify integrity
Check for loops
Route packet
Prepare for transmission
Enqueue packet for output

}
(a) (b)

Figure 18.4 (a) Illustration of the connections on a processor used in a paral-
lel implementation of an Internet router, and (b) the algorithm
the processor executes. Each processor handles input from one
network.
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Suppose a parallel architecture, like the one in the figure, is still too slow. That is,
suppose the processor cannot execute all the steps of the algorithm before the next
packet arrives over the interface and no faster processor is available. How can we
achieve higher performance? One possibility for higher speed lies in a data pipeline:
use a pipeline of several processors in place of a single processor as Figure 18.5 illus-
trates.

verify
integrity

check
for loops

route
packet

prepare for
transmission

packets
arrive

packets
leave

Figure 18.5 Illustration of a pipeline used in place of a single processor in an
Internet router.

It may seem that the pipeline in the figure is no faster than the single processor in
Figure 18.4. After all, the pipeline architecture performs exactly the same operations on
each packet as the single processor. Furthermore, if the processor in Figure 18.4 is the
fastest processor available, the processors in Figure 18.5 cannot run any faster. Thus, if
we assume the same type of processor is used, and ignore the delay introduced by pass-
ing packets among stages of the pipeline, the total time taken to process a packet is ex-
actly the same. That is:

A data pipeline passes data through a series of stages that each exam-
ine or modify the data. If it uses the same speed processors as a non-
pipeline architecture, a data pipeline will not improve the overall time
needed to process a given data item.

If the total processing time is not reduced, what is the advantage of a data pipe-
line? Surprisingly, even if the individual processors in Figure 18.5 are each exactly the
same speed as the processor in Figure 18.4, the pipeline architecture can process more
packets per second. To see why, observe that an individual processor executes fewer
instructions per packet. Furthermore, after operating on one data item, a processor
moves on to the next data item. Thus, a data pipeline architecture allows a given pro-
cessor to move on to the next data item more quickly than a nonpipeline architecture.
As a result, data can enter (and leave) a pipeline at a higher rate.
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We can summarize:

Even if a data pipeline uses the same speed processors as a nonpipe-
line architecture, a data pipeline has higher overall throughput (i.e.,
number of data items processed per second).

18.7 When Pipelining Can Be Used

A pipeline will not yield higher performance in all cases. First, it must be possible
to partition processing into independent stages. Second, the additional overhead re-
quired to move data from one stage to another must be insignificant. Third, the pro-
cessing performed at each stage must take approximately the same time as the process-
ing performed at other stages.

The third requirement arises because the throughput of a pipeline is limited by the
slowest stage (i.e., the stage that takes the most time). For example, suppose the data
pipeline in Figure 18.5 uses identical processors, and assume a processor takes exactly
the same time to execute any instruction and can execute ten instructions each mi-
crosecond. Further suppose the four stages take fifty, one hundred, two hundred, and
one hundred fifty instructions, respectively, to process a packet†. The slowest stage re-
quires two hundred instructions, which means the total time the slowest stage takes to
process a packet is:

total time  = 
10 inst / µsec

200 inst������������ = 20 µsec

Looking at this another way, we can see that the maximum number of packets that
can be processed per second is the inverse of the time per packet of the slowest stage.
Thus, the overall throughput of the example pipeline, Tp is given by:

Tp = 
20 µsec
1 packet�������� = 

20 sec
1 packet × 106������������� = 50,000 packets per  second

In contrast, the throughput of a non-pipelined architecture is:

Tnp = 
50 µsec
1 packet�������� = 

50 sec
1 packet × 106������������� = 20,000 packets per  second

��������������������������������
†Although our examples and discussion assume that each stage of a pipeline uses the same processor as

other stages, a pipeline can be heterogeneous as describe earlier in the chapter.
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18.8 The Conceptual Division Of Processing

Conceptually, pipelining offers a special form of parallelism. By dividing a series
of sequential operations into groups that are each handled by a separate stage of the
pipeline, pipelining allows each of the stages to operate in parallel. Of course, a pipe-
line architecture differs from a conventional parallel architecture in a significant way:
although the stages operate in parallel, a given data item must pass through all stages.
Figure 18.6 illustrates the concept.

h( )g( )f( )

f( )

g( )

h( )

(a) (b)

Figure 18.6 (a) Processing on a conventional processor, and (b) equivalent
processing in a data pipeline. The functions performed in se-
quence are divided among stages of the pipeline.

18.9 Pipeline Architectures

Recall from the previous chapter that we distinguish between hardware architec-
tures that merely use parallelism and architectures in which parallelism forms the cen-
tral paradigm around which the entire architecture is designed. We make an analogous
distinction between hardware architectures that use pipelining and architectures in which
pipelining forms the central paradigm around which the entire system is designed. We
reserve the name pipeline architectures for the latter. Thus, one might hear an architect
say that a particular system uses a pipeline processor, but the architect will not charac-
terize the system as a pipeline architecture unless the overall design centers around a
pipeline.

Most hardware systems that follow a pipeline architecture are dedicated to special-
purpose functions. For instance, the example above describes how pipelining can be
used to improve performance of a packet processing system. Pipelining is especially
important in network systems because the high data rates used when sending data over
optical fibers exceeds the capacity of conventional processors.

Pipeline architectures are less relevant to general-purpose computers for two rea-
sons. First, few applications can be decomposed into a set of independent operations
that can be applied sequentially. Instead, a typical application accesses items randomly
and keeps large volumes of additional state information. Second, even in situations
where the functions to be performed on data can be decomposed into a pipeline, the
number of stages in the pipeline and the hardware needed to implement each stage is
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not usually known in advance. As a result, general-purpose computers usually restrict
pipeline hardware to an instruction pipeline in the processor or a special-purpose pipe-
line in an I/O device.

18.10 Pipeline Setup, Stall, And Flush Times

Our description of pipelines overlooks many of the practical details. For example,
many pipeline implementations have overhead associated with starting and stopping the
pipeline. We use the term setup time to describe the amount of time required to start a
pipeline after an idle period. Setup may involve synchronizing processing among stages
or passing a special control token through the pipeline to restart each stage. For a
software pipeline, setup can be especially expensive because connections among various
stages are created dynamically.

Unlike other architectures, a pipeline can require significant time to terminate pro-
cessing. We use the term flush time to refer to the amount of time that elapses between
the input being unavailable and the pipeline finishing its current processing. We say
that items currently in the pipeline must be flushed before the pipeline can be shut
down.

The need to flush items through a pipeline can arise for two reasons. First, a pipe-
line becomes idle when no input is available for the first stage. Second, as we have
seen, later stages of a pipeline become idle when one stage stalls (i.e., the stage delays
because it cannot complete processing). In a high-speed hardware pipeline, mundane
operations such as a memory reference or an I/O operation can cause a stage to stall.
Thus, high flush (or setup) times can reduce pipeline performance significantly.

18.11 Definition Of Superpipeline Architecture

A final concept completes our description of pipelines. Architects use the term su-
perpipeline to describe an extension of the pipeline approach in which a given stage of
the pipeline is subdivided into a set of partial stages. Superpipelining is most often
used with an instruction pipeline. A traditional instruction pipeline typically has five
stages that correspond to: instruction fetch, instruction decode, operand fetch, ALU
operation, and memory write. A superpipeline architecture subdivides the stages into
multiple pieces.

As an example, a superpipeline can subdivide the operand fetch stage into four
steps: the first step decodes an operand, the second step fetches an immediate value or a
value from a register, the third step fetches values from memory, and the fourth step
fetches indirect operand values. As with standard pipelining, the point of the subdivi-
sion is higher throughput — because each substage has less to do, throughput of a su-
perpipeline is higher than the throughput of a standard pipeline.
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18.12 Summary

Pipelining is a broad, fundamental concept that is used with both hardware and
software. A software pipeline, which arranges a set of programs in a series with data
passing through them, can be used on hardware that does not provide pipelining.

A hardware pipeline is either classified as an instruction pipeline, which is used in-
side a processor to handle machine instructions, or a data pipeline, in which arbitrary
data is transferred through the pipeline. The superpipeline technique, in which a stage
of a pipeline is further subdivided into partial stages, is often used with an instruction
pipeline.

Unless faster processors are used, a data pipeline does not decrease the overall time
required to process a single data item. However, using a pipeline does increase the
overall throughput (items processed per second). The stage of a pipeline that requires
the most time to process an item limits the throughput of the pipeline.

EXERCISES

18.1 What is the maximum throughput of a homogeneous pipeline in which four processors
each handle one million instructions per second and processing a data item requires 50,
60, 40, and 30 instructions, respectively? Assume a constant execution time for all types
of instructions.

18.2 In the previous exercise, what is the relative gain in throughput compared to an architec-
ture without pipelining? What is the maximum speedup?

18.3 Extend the previous problem by considering heterogeneous processors that have speeds
of 1.0, 1.2, 0.9, and 1.0 million instructions per second, respectively.
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Assessing Performance

19.1 Introduction

Earlier chapters cover the fundamental mechanisms that computer architects use to
construct computer systems: processors, memories, and I/O devices. They characterize
each mechanism, and explain the salient features. The previous chapters consider two
techniques used to increase computational performance: parallelism and pipelining.

This chapter takes a broader view of performance. It examines how performance
can be measured, and discusses how an architect evaluates an instruction set. More im-
portant, the chapter presents Amdahl’s law, and explains consequences for computer ar-
chitecture.

19.2 Measuring Power And Performance

How can we measure computational power? What makes one computer system
perform better than another? These questions have engendered research in the scientific
community, caused heated debate among representatives from the sales and marketing
departments of commercial computer vendors, and resulted in a variety of answers.

The chief problem that underlies performance assessment arises from the flexibility
of a general-purpose computer system: a computer is designed to perform a variety of
tasks. More important, because optimization involves choosing among alternatives, op-
timizing the architecture for a given task means that the architecture will be less than
optimal for other tasks. Consequently, the performance of a computer system depends
on how the system is used.
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We can summarize:

Because a computer is designed to perform a wide variety of tasks
and no architecture is optimal for all tasks, the performance of a sys-
tem depends on the task being performed.

The dependency between performance and the task being performed has two im-
portant consequences. First, it means that many computer vendors can each claim that
they have the most powerful computer. For example, a vendor whose computer per-
forms matrix multiplication at high speed uses matrix multiplication examples when
measuring performance, while a vendor whose computer performs integer operations at
high speed uses integer examples when measuring performance. Both vendors can
claim that their computer performs best. Second, from a scientific point of view, we
can see that no single measure of computer system performance suffices for all cases.
The point is fundamental to understanding performance assessment:

A variety of performance measures exist because no single measure
suffices for all situations.

19.3 Measures Of Computational Power

Recall that early computer systems consisted of a central processor with little or no
I/O capability. As a consequence, early measures of computer performance focused on
the execution speed of the CPU. Even when performance measures are restricted to a
CPU, however, multiple measures apply. The most important distinction arises between
computer systems optimized for:

d Integer computation

d Floating point computation

Because scientific and engineering calculations rely heavily on floating point, ap-
plications that employ floating point are often called scientific applications, and the
resulting computation is known as scientific computation. When assessing how a com-
puter performs on scientific applications, engineers focus entirely on the performance of
floating point operations. That is, they ignore the speed of all other operations, and
only measure the speed of floating point operations (i.e., floating point addition, sub-
traction, multiplication and division). Of course, addition and subtraction are generally
faster than multiplication and division, and a program contains other instructions (e.g.,
instructions to call functions or control iteration). On many computers, however, a
floating point operation takes so much longer than a typical integer instruction that
floating point computation dominates the overall performance of a program.
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Rather than reporting the time required to perform a floating point operation, en-
gineers report the number of floating point operations that can be performed per unit
time. In particular, the primary measure is given as the average number of floating
point operations the hardware can execute per second (FLOPS).

Of course, floating point speed is only pertinent for scientific computation; the
speed of floating point hardware is irrelevant to programs that use integers. More im-
portant, a measure of FLOPS does not make sense for a RISC processor that does not
offer floating point instructions. Thus, as an alternative to measuring floating point per-
formance, a vendor may choose the average number of (non floating point) instructions
that a processor can execute per unit time. Typically, vendors measure millions of in-
structions per second (MIPS).

Simplistic measures of performance such as MIPS or FLOPS only provide a rough
estimate of performance. To see why, consider the time required to execute an instruc-
tion. For example, consider a processor on which floating point multiplication or divi-
sion takes twice as long as floating point addition or subtraction. If we assume that an
addition or subtraction instruction takes Q nanoseconds and weight each of the four in-
struction types equally, the average time the computer takes to perform a floating point
operation, Tavg is:

Tavg =  
4

Q +  Q +  2 × Q +  2 × Q������������������������ =  1.5 Q   ns per instruction (19.1)

However, when the computer performs addition and subtraction, the time required
is only Q nanoseconds per instruction (i.e., 33% less than the average). Similarly, when
performing multiplication or division, the computer requires 2 × Q nanoseconds per in-
struction (i.e., 33% more than the average).

The point is:

Because some instructions take substantially longer to execute than
others, the average time required to execute an instruction only pro-
vides a crude approximation of performance. The actual time re-
quired depends on which instructions are executed.

19.4 Application Specific Instruction Counts

How can we produce a more accurate assessment of performance? One answer lies
in assessing performance for a specific application. For example, suppose we need to
know how a floating point hardware unit will perform when multiplying two N × N ma-
trices. By examining the program, it is possible to derive a set of expressions that give
the number of floating point additions, subtractions, multiplications, and divisions that
will be performed as a function of N. For example, assume that multiplying a pair of
N × N matrices requires N 3 floating point multiplications and N 3 −  N 2 floating point
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additions. If each addition requires Q nanoseconds and each multiplication requires
2 × Q nanoseconds, multiplying two matrices will require a total of:

Ttotal =  2 × Q × N 3 +  Q × (N 3 −  N 2)

As an alternative to precise analysis, engineers use a weighted average. That is, in-
stead of calculating the exact number of times each instruction is executed, an approxi-
mate percentage is used. For example, suppose a graphics program is run on many in-
put data sets, the number of floating point operations is counted to obtain the list in Fig-
ure 19.1.

Instruction Type Count Percentage�����������������������������������������
Add 8513508 72

Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6

Figure 19.1 Example of instruction counts for a graphics application run on
many input values. The third column shows the relative percen-
tage of each instruction type.

Once a set of instruction counts has been obtained, the performance of hardware
can be assessed by using a weighted average. When the graphics application is run on
the hardware described above, we expect the average time for each floating point in-
struction to be:

Tavg′  = 
4

.72 × Q + .13 × Q + .09 × 2 Q + .06 × 2 Q������������������������������������� =  0.29 Q  ns per instruction

As the example shows, a weighted average can differ significantly from a uniform
average. In this case, the weighted average is less than 20% of the average in equation
(19.1) that was obtained using uniform instruction weights†.

19.5 Instruction Mix

Although it provides a more accurate measurement of performance, the weighted
average example above only applies to one specific application, and only assesses float-
ing point performance. Can we give a more general assessment? One approach has be-
come popular: use a large set of programs to obtain relative weights for each type of in-
struction, and then use the relative weights to assess the performance of a given archi-
tecture. That is, instead of focusing on floating point, keep a counter for each instruc-

��������������������������������
†Equation 19.1 can be found on page 313.
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tion type (e.g., integer arithmetic instructions, bit shift instructions, subroutine calls,
conditional branches), and use the counts and relative weights to compute a weighted
average performance.

Of course, the weights depend on the specific programs chosen. Therefore, to be
as fair as possible, we must choose programs that represent a typical workload. Archi-
tects say that they choose an instruction mix that represents typical programs.

In addition to helping assess performance of a computer, an instruction mix helps
an architect design an efficient instruction set. The architect drafts a tentative instruc-
tion set, assigns an expected cost to each instruction, and uses weights from the instruc-
tion mix to see how the proposed instruction set will perform. In essence, the architect
uses the instruction mix to evaluate how the proposed architecture will perform on typi-
cal programs. If the performance is unsatisfactory, the architect can change the design.

We can summarize.

An instruction mix consists of a set of instructions along with relative
weights that have been obtained by counting instruction execution in
example programs. An architect can use an instruction mix to assess
how a proposed architecture will perform.

19.6 Standardized Benchmarks

What instruction mix should be used to compare the performance of two architec-
tures? To answer the question, we need to know how the computers will be used: the
programs the computers are intended to run, and the type of input the programs will re-
ceive. In essence, we need to find a set of applications that are ‘‘typical’’. Engineers
and architects use the term benchmark to refer to such programs — a benchmark pro-
vides a standard workload against which a computer can be measured.

Of course, devising a benchmark is difficult, and the community does not benefit if
each vendor creates a separate benchmark. To solve the problem, an independent not-
for-profit corporation was formed in the 1980s. Named Standard Performance Evalua-
tion Corporation (SPEC), the corporation was created to ‘‘establish, maintain and en-
dorse a standardized set of relevant benchmarks that can be applied to the newest gen-
eration of high-performance computers’’†. Indeed, SPEC has devised a series of stan-
dard benchmarks that are used to compare performance. For example, the SPECint92
benchmark is used to evaluate integer performance, and the SPECfp92 benchmark is
used to evaluate floating point performance.

The benchmarks produced by SPEC are primarily used for measurement, not
design. That is, each benchmark consists of a set of programs that are run and meas-
ured. The score that results from running a SPEC benchmark, known as a SPECmark,
is often quoted in the industry as a vendor-independent measure of computer perfor-
mance.

��������������������������������
†Taken from the SPEC bylaws.
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Interestingly, SPEC has produced many benchmarks that each test one aspect of
performance. For example, SPEC offers six separate benchmarks that focus on integer
arithmetic and another fourteen benchmarks that focus on various aspects of floating
point performance. In addition, SPEC provides benchmarks used to assess UNIX sys-
tems performing software development tasks and computers that use the Network File
System (NFS) for remote file access.

19.7 I /O And Memory Bottlenecks

CPU performance only accounts for part of the overall performance of a computer
system. As users of personal computers have realized, a faster CPU does not guarantee
faster response for all computing tasks. A colleague of the author recently complained
that although CPU speeds increase by an order of magnitude every ten years, the time
required to launch an application seems to increase.

What prevents a faster CPU from increasing the overall speed? We have already
seen one answer: the Von Neumann bottleneck (i.e., memory access). Recall that the
speed of memory can affect the rate at which instructions can be fetched as well as the
rate at which data can be accessed. Thus, rather than merely measuring CPU perfor-
mance, some benchmarks are designed to measure memory performance. That is, the
benchmark consists of a program that repeatedly accesses memory. Some memory
benchmarks are designed to test sequential access (i.e., access to contiguous bytes),
while others are designed to test random access. More important, memory benchmarks
also make repeated references to a memory location to test memory caching.

As the chapters on I/O point out, peripheral devices and the buses over which peri-
pheral devices communicate can also form a bottleneck. Thus, some benchmarks are
designed to test the performance of I/O devices. For example, a benchmark to test a
disk will repeatedly execute write and read operations that each transfer a block of data
to the disk and then read the data back. As with memory, some disk benchmarks focus
on measuring performance when accessing sequential data blocks, and other bench-
marks focus on measuring performance when accessing random blocks.

19.8 Boundary Between Hardware And Software

One of the fundamental principles that underlies computer performance arises from
the relative speed of hardware and software: special-purpose hardware can be designed
to perform a given function much faster than the function can be performed in software.
Thus, an architect can increase overall performance by adding special-purpose hardware
units.
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We can summarize:

To optimize performance, move operations that account for the most
CPU time from software into hardware.

19.9 Choosing Items To Optimize

Because adding additional hardware increases the cost of the computer system, an
architect cannot use high-speed hardware to handle each operation. Similarly, using
special-purpose, high-speed hardware costs more than conventional hardware. Instead,
an architect must choose which functions to handle with high-speed hardware, which to
handle with conventional hardware, and which to handle with software.

How should the choice be made? Computer architect Gene Amdahl observed that
it is a waste of resources to optimize functions that are seldom used. For example, con-
sider the hardware used to handle division by zero or the circuitry used to power down
a computer system. There is little point in optimizing such hardware because it is sel-
dom used.

Amdahl suggested that the greatest gains in performance are made by optimizing
functions that account for the most time. His principle, which is known as Amdahl’s
law, focuses on operations that each require extensive computation or operations that
are performed most frequently. Usually, the principle is stated in a form that refers to
the potential for speedup:

Amdahl’s Law: the performance improvement that can be realized
from faster hardware technology is limited to the fraction of time the
faster technology can be used.

19.10 Amdahl’s Law And Parallel Systems

Chapter 17 discusses parallel architectures, and explains some of the problems. As
the chapter explains, MIMD architectures have serious limitations on performance.
Overhead from communication among processors and contention for shared resources
such as memory and I/O buses limit the effective speed of the system. As a result,
parallel systems that contain N processors do not achieve N times the performance of a
single processor.

Interestingly, Amdahl’s Law applies directly to parallel systems and explains why
adding more processors does not help. The speedup that can be achieved by optimizing
the processing power (i.e., adding additional processors) is limited to the amount of
time the processors are being used. Because a parallel system spends most of the time
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waiting for communication or bus access rather than using the processors, adding addi-
tional processors will not have much impact.

19.11 Summary

A variety of performance measures exist. Simplistic measures of processor perfor-
mance include the average number of floating point operations a computer can perform
per second (FLOPS) or the average number of instructions the computer can execute per
second (MIPS). More sophisticated measures use a weighted average in which an in-
struction that is used more often is weighted more heavily. Weights can be derived by
counting the instructions in a program or a set of programs; such weights are specific to
the application(s) used. We say that weights, which are useful in assessing an instruc-
tion set, correspond to an instruction mix.

A benchmark refers to a standardized program or set of programs used to assess
performance; each benchmark is chosen to represent a typical computation. Some of
the best-known benchmarks have been produced by the SPEC corporation, and are
known as SPECmarks. In addition to measuring performance of various aspects of in-
teger and floating point performance, benchmarks are available from SPEC to measure
such mechanisms as a remote file system.

Amdahl’s Law helps architects select functions to be optimized (e.g., moved from
software to hardware or moved from conventional hardware to high-speed hardware).
The law states that functions to be optimized should account for the most time.
Amdahl’s Law explains why parallel computer systems do not benefit from large
numbers of processors.

EXERCISES

19.1 Write a C program that measures the performance of integer addition and subtraction
operators. Perform at least 10,000 operations and calculate the average time per opera-
tion.

19.2 In the previous problem, repeat the measurement with compiler optimization enabled and
determine the relative speedup.

19.3 Write a program that compares the average time required to perform integer arithmetic
operations and the average time required to reference memory. Calculate the ratio of the
two measures.

19.4 Write a program that compares the average time required to perform floating point
operations and integer operations. For example, compare the average time required to
perform 10,000 floating point additions and the average time required to perform 10,000
floating point multiplications.
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Architecture Examples And
Hierarchy

20.1 Introduction

Earlier chapters explain the concepts and terminology that are essential to an
understanding of computer architecture. The chapters discuss the fundamental aspects
of processors, memory, and I/O, and explain the role of each. The previous chapters
discuss how parallelism and pipelining are used to improve performance.

This chapter considers a few architecture examples. Instead of introducing new
ideas, the chapter shows how the ideas in previous chapters can be used to describe and
explain various aspects of digital systems. The examples have been chosen to show a
range of possibilities.

20.2 Architectural Levels

Recall from earlier chapters that architecture can be presented at multiple levels.
To help us appreciate how broadly architectural concepts apply to digital systems, we
will explore a hierarchy of architectural specifications. The hierarchy ranges in size
from a complete computer system to a small functional unit on a single integrated cir-
cuit. We use the terms system-level architecture (sometimes called macroscopic archi-
tecture), board-level architecture, and chip-level architecture (sometimes called micro-
scopic architecture) to characterize the range. For each level, we will see that the con-
cepts from earlier chapters allow us to understand both the basic components and their
interconnection. Furthermore, we will see that at a given level, it is possible to specify
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a logical (i.e., conceptual) architecture or to specify a more detailed implementation.
Figure 20.1 summarizes the levels.

Level Description����������������������������������������������������������������
System A complete computer with processor(s), memory, and

I/O devices. A typical system architecture describes
the interconnection of components with buses.

Board An individual circuit board that forms part of a computer
system. A typical board architecture describes the
interconnection of chips and the interface to a bus.

Chip An individual integrated circuit that is used on a
circuit board. A typical chip architecture describes
the interconnection of functional units and gates.

Figure 20.1 Levels of architecture and the purpose of each. As one moves
down the levels, increasing amounts of detail are specified.

20.3 System-Level Architecture: A Personal Computer

Conceptually, a personal computer consists of a processor, memory, and a set of
I/O devices that all attach to a single bus. In practice, however, even a personal com-
puter contains a complex assortment of buses and interconnection mechanisms that are
each designed to fill a specific role.

Some of the variety and complexity in underlying hardware arises from special
performance requirements and cost. For example, a video card needs much higher data
throughput than a floppy disk, and a high-resolution screen requires more throughput
than a low-resolution screen. Unfortunately, the hardware that interconnects a device to
a high-speed bus costs significantly more than hardware that interconnects to a low-
speed bus, which means that using multiple buses can lower the overall cost of the sys-
tem.

A second motivation for multiple I/O buses arises from a vendor’s desire to pro-
vide a low-cost migration path to newer, more powerful systems. That is, a vendor
strives to create a processor that offers the advantages of higher performance and more
capabilities, while simultaneously retaining the ability to use existing peripheral devices.
We use the term backward compatibility to characterize the ability to use existing
pieces of hardware.
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20.4 Bus Interconnection And Bridging

Backward compatibility is especially important for bus architectures because a bus
forms the interconnection between an I/O device and a processor. How can a computer
vendor devise a new, higher-speed bus while still retaining the ability to attach older
peripheral devices? One possibility consists of creating a processor with multiple bus
interfaces. A much less expensive answer lies in a technology known as bridging.

Bridging is easiest to understand through an example. At one point in history, all
personal computers used an Industry Standard Architecture (ISA) bus that was
developed by IBM Corporation. Peripheral devices for PCs were designed with an in-
terface for the ISA bus. Later, a higher-speed bus architecture was developed: a Peri-
pheral Component Interconnect (PCI) bus. The two standards for PC buses are incom-
patible — an interface that plugs into an ISA bus cannot be connected to a PCI bus.
Thus, if a user owns ISA devices, the user is less likely to purchase a computer that
only accepts PCI devices.

To entice computer owners to upgrade their computers to a computer with a PCI
bus, vendors created a piece of hardware, known as a bridge, to interconnect the new
PCI bus and the older ISA bus. Logically, the bridge provides the interconnection that
Figure 20.2 illustrates.

PCI bus

CPU
. . .

bridge

ISA bus

. . .

memory

devices with PCI interfaces

devices with ISA interfaces

Figure 20.2 Conceptual view of the architecture of a PC that uses a bridge to
interconnect an ISA bus and a PCI bus. The bridge makes it
possible to use older ISA devices with a newer processor.
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In the figure, the CPU connects to a PCI bus along with any I/O devices that have
a PCI interface. The bridge provides a connection to an ISA bus that is used by I/O
devices that have an ISA interface. In the best case, interconnection provided by a
bridge is transparent. That is, each side uses a local bus protocol to communicate
without knowing about the interconnection — the CPU addresses ISA devices as if they
are connected to the PCI bus, and an ISA device responds as if the CPU is connected to
the ISA bus.

20.5 Controller Chips And Physical Architecture

Although the architecture illustrated in Figure 20.2 provides a conceptual explana-
tion of a PC architecture, an implementation is much more complex than the figure in-
dicates. First, although a PC provides slots that external devices use to connect to each
bus, the PC does not use the same technology internally. Instead, a PC usually contains
two special-purpose controller chips that provide all the bus and memory interconnec-
tions. Second, controller chips are configured to give the illusion of multiple buses.

To understand the need for controller chips, consider some of the functionality re-
quired in a PC. An architect needs to connect the processor, memory, and I/O bus (or
buses). In addition to providing electrically compatible interconnections, the architect
must design a mechanism that allows one component to communicate with another.
For example, both the CPU and I/O devices need to access memory.

Unfortunately, replicating hardware interfaces is expensive. In particular, an archi-
tect cannot afford to build a system in which each component has multiple interface un-
its that each handle communication with one other component. For example, although
the processor and most I/O devices need to access memory, the cost prohibits an archi-
tect from providing a memory interface for each device.

To save effort and expense, architects often adopt the approach of using a central-
ized controller chip. A controller chip contains a set of K hardware interfaces, one for
each type of hardware, and forwards requests among them. When a hardware unit
needs to access another hardware unit, the request always goes to the controller. The
controller translates each incoming request into the appropriate form, and then forwards
the request to the destination hardware unit. Similarly, the controller translates each re-
ply.

The key idea is:

Architects use a controller chip to provide interconnection among
components in a computer because doing so is less expensive than
equipping each unit with a set of interfaces or building a set of
discrete bridges to interconnect buses.
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20.6 Virtual Buses

A controller chip introduces an interesting possibility. For example, because a bus
is used to communicate, we expect two or more devices to be attached to each bus (e.g.,
a processor and a disk). In a computer that uses a controller chip, however, it is reason-
able to create a bus that contains exactly one connected device. To understand why,
consider a computer in which the processor and all devices, except one, use a PCI bus.
Assume the device that forms the exception uses an ISA bus. A controller chip can be
created that uses the ISA protocol to communicate with the ISA device and uses the
PCI protocol for all other devices. If the ISA device attaches directly to the controller,
the computer will not need slots for ISA devices, and will not have an ISA bus in the
usual sense. However, the controller chip can still use the ISA protocol to communicate
with the ISA device. That is:

A controller chip can provide the illusion of a bus over a direct con-
nection; the wires and sockets normally used to construct a bus are
optional.

The concept of a controller chip that can provide the illusion of a bus over a direct
connection allows architects to generalize the notion of a bus. Instead of separate phy-
sical entities with parallel wires, a silicon chip can be used to create the appearance of a
bus. We use the term virtual bus to describe the technology. For example, a controller
can be created that presents the illusion of one virtual bus per attached device. As an
alternative, a controller can be created that combines one or more virtual buses with
connections to one or more physical buses. Later sections show examples.

Typically, PC architectures use two controller chips to enable higher speeds. The
controllers are known informally as the Northbridge and Southbridge chips; the North-
bridge is sometimes called a system controller. The Northbridge connects the higher-
speed components: the CPU, memory, a streaming communications controller, and an
Advanced Graphics Port (AGP) interface that is used to operate a high-speed graphics
display. The Southbridge, which is attached to the Northbridge, provides connectivity
for lower-speed components, such as a PCI bus, Local Area Network (LAN) interface†,
six-channel audio, keyboard, mouse, printer port, floppy disk, PS/2 port, and other de-
vices that connect to an ISA bus. Figure 20.3 illustrates the physical interconnections in
a PC architecture that uses two controller chips.

��������������������������������
†Although the Southbridge can connect a LAN interface that operates at 100 mbps, a LAN interface that

operates at gigabit speeds must connect to the Northbridge.
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Figure 20.3 Example of a system-level architecture that shows the physical
interconnections in a PC that uses two controller chips. Com-
ponents that require the highest speeds attach to the controller
labeled Northbridge.

As the figure shows, a controller chip must accommodate heterogeneity because a
controller can connect to multiple bus technologies. In the figure, for example, the
Southbridge provides connections for both a PCI bus and a USB bus. Of course, the
controller must follow the rules for each bus. That is, the controller must adhere to the
electrical specifications, ensure that all addresses lie within the bus address space, and
obey the protocol that defines how devices access and use the bus.

Vendors who manufacture CPUs usually offer a set of controller chips that are
designed to interconnect a CPU with standard buses. For example, Intel Corporation
offers a 82865PE chip that provides the functionality of a Northbridge, and an ICH5
chip that provides the functionality of a Southbridge. More important, the Intel proces-
sor and controller chips are designed to work together: each chip contains an interface
that allows the chips to be directly interconnected, and each chip performs the transla-
tion necessary to connect heterogeneous devices.
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20.7 Connection Speeds

The connections illustrated in Figure 20.3 typically use a parallel hardware inter-
face that has a fixed width and is engineered to operate at a fixed clock rate to deliver a
certain throughput. Figure 20.4 lists typical values for the clock rate, width, and
throughput of major connections.

Connection Clock Rate Width Throughput†�������������������������������������������������������
AGP 100-200 MHz 64-128 bits 2.0 GBps

Memory 200-800 MHz 64-128 bits 6.4 GBps
CPU 400-800 MHz 64-128 bits 3.2-6.4 GBps
Hub 100-200 MHz 64 bits 800 MBps
USB 33 MHz 32 bits 133 MBps
PCI 33 MHz 32 bits 133 MBps

Figure 20.4 Example clock rates, data widths, and throughput for connections
in the architecture that Figure 20.3 illustrates.

20.8 Bridging Functionality And Virtual Buses

As the names Northbridge and Southbridge imply, the two controllers provide
bridging functionality. For example, the Northbridge chip bridges memory, other high-
speed devices, and the Southbridge, presenting the CPU with a single, unified address
space that includes all of them. Similarly, the Southbridge combines the PCI bus, ISA
bus, and USB bus into a single, unified address space.

Interestingly, a set of controllers does not need to bridge all devices into a single
address space. Instead, the controller can present the CPU with the illusion of multiple
virtual buses. For example, a controller might allow the CPU to access two separate
PCI buses: bus number zero contains the CPU and memory, while bus number one con-
tains I/O devices. As an alternative, a controller might present the illusion of three vir-
tual buses: one that contains the host and memory, another that contains a high-speed
graphics device, and a third that corresponds to the external PCI slots for arbitrary de-
vices. Although it is not particularly interesting to a programmer, the separation is cru-
cial to a hardware designer interested in performance because the controller chip can
contain parallel circuitry that allows all virtual buses to operate at the same time.

20.9 Board-Level Architecture

As Figure 20.3 illustrates, a Local Area Network (LAN) interface is one of the units
that can be found in a personal computer. The role of the interface is straightforward:
provide a connection between the PC and a LAN (e.g., an Ethernet), and transfer data

��������������������������������
†Throughput is measured in MegaBytes per second (MBps) or GigaBytes per second (GBps).
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that the PC sends over the network as well as data that arrives over the network. Physi-
cally, a LAN interface can be integrated onto the computer’s motherboard, or can con-
sist of a separate circuit board. When a LAN interface consists of a separate circuit
board, the interface can attach directly to the motherboard (in which case, the interface
is known as a daughter board), or can plug into a bus exactly like an I/O device.

A LAN interface board contains a surprising amount of computational power. In
particular, a LAN interface usually contains a processor, instructions in ROM, a buffer
memory, an external host interface (typically a PCI bus), and an interface to the net-
work. Some LAN interfaces use a conventional RISC processor; others use a network
processor, a specialized processor optimized for handling network packets. Figure 20.5
illustrates a possible architecture for a LAN interface that uses a network processor.

network

processor

SRAM

SDRAM

SDRAM
bus

SRAM
bus

host interface

network interface

Figure 20.5 Example of a board-level architecture that shows a LAN inter-
face. The interface passes packets between a network and a
computer system.
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Why might a LAN interface need two types of memory? The primary motivation
is cost: although it is faster, SRAM costs more than SDRAM. Thus, a large SDRAM
can be used to hold packets, and a small SRAM can be used for values that must be ac-
cessed or updated frequently (e.g., instructions for the network processor to execute). In
this particular example, the two memory connections are chosen because the network
processor described in the next section has interfaces for both SRAM and SDRAM.

20.10 Chip-Level Architecture

We said that a chip-level architecture describes the internal structure of a single in-
tegrated circuit. As an example, consider the network processor in the board-level ar-
chitecture illustrated in Figure 20.5. The figure uses a rectangle to depict a network
processor. If we move to a chip-level architectural description, we can examine the
internal structure of the chip. Figure 20.6 shows the chip-level architecture of an Intel
network processor.

SDRAM
access

SRAM
access

onboard
scratch
memory

Embedded
RISC

processor
(XScale)

Microengine 1

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine N

...

PCI bus
access unit

media
access unit

serial
line

multiple,
independent

internal
buses

Figure 20.6 Example of a chip-level architecture that shows the major inter-
nal components of an Intel network processor. Access units pro-
vide connections outside the chip.
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It is important to remember that the entire figure refers to a single integrated cir-
cuit. Surprisingly, the Intel network processor chip contains many items. For example,
the chip contains various external interfaces, an onboard scratch memory that provides
high-speed storage, and multiple, independent processors. In particular, the chip con-
tains a set of programmable RISC processors, known as microengines†, that operate in
parallel as well as an XScale RISC processor. The XScale provides a general-purpose
processor that manages other processors and provides a management interface. When
the network processor operates, the XScale runs a conventional operating system, such
as Linux. To indicate that processors are part of an integrated circuit, we say they are
embedded.

Details of the network processor and each of the processors are irrelevant. The im-
portant point is to understand that more detail is revealed at each architectural level. In
this case, we have seen that although a single integrated circuit can contain many func-
tional units, the structure of the circuit is only revealed in a chip-level diagram; the
structure remains hidden in a board-level description. We can summarize:

A chip-level architecture reveals details about the internal structure of
an integrated circuit that are hidden in a board-level architecture.

20.11 Structure Of Functional Units On A Chip

Figure 20.6 illustrates how it is possible to describe the interconnection of major
components on a single chip. Interestingly, it is possible to provide more details than
are found in a chip-level architecture. We can examine each of the subunits on a chip.
For example, consider the SRAM access unit shown in Figure 20.7. Although the
chip-level architecture does not show the details, the internal structure of the memory
access unit is quite complex. Figure 20.7 illustrates the structure.

��������������������������������
†Intel manufactures multiple models of their chip. The IXP2400 contains eight microengines, and the

IXP2800 contains sixteen microengines.
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Figure 20.7 The internal structure of the SRAM access unit that remains hid-
den in Figure 20.6. Each level of architecture reveals further de-
tails and structure.

20.12 Summary

The architecture of a digital system can be viewed at several levels of abstraction.
A system-level architecture shows the structure of an entire computer system, a board-
level architecture shows the structure of each board, and a chip-level architecture shows
the internal structure of an integrated circuit. At each successive level, details are re-
vealed that remain hidden in previous levels.

We considered a hierarchy of architectures that shows the structure of a personal
computer, the structure of a LAN interface board used in a personal computer, and the
structure of a network processor that can be used on a LAN interface board. Finally,
we saw that a chip-level architecture can be further refined by looking at the architec-
ture of each embedded unit.

20.13 Hierarchy Beyond Computer Architectures

Levels of hierarchy occur outside the realm of computer architecture. For an in-
teresting examination of hierarchy, see:

http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html

http://micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html
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Appendix 1

Lab Exercises For A
Computer Architecture
Course

A1.1 Introduction

This Appendix presents a set of lab exercises for an undergraduate computer archi-
tecture course. The labs are designed for students whose primary educational goal is
learning how to build software, not hardware. Consequently, after a few weeks of intro-
duction to digital circuits, the labs shift emphasis to programming.

The facilities required for the lab are minimal: a small amount of hardware is need-
ed for the early weeks, and access to computers running a version of the Unix operating
system (e.g., Linux) is needed for later labs. A RISC architecture works best for the as-
sembly language labs because instructors find that CISC architectures absorb arbitrary
amounts of class time on assembly language details.

One lab asks students to write a C program that detects whether an architecture is
big endian or little endian. Few additional resources are needed, however, because most
of the coding and debugging can be performed on one of the two architectures, with
only a trivial amount of time required to port and test the program on the other.

331
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A1.2 Digital Hardware For A Lab

The hardware labs covered in the first few weeks of lab require each student to
have the following:

d Solderless breadboard

d Wiring kit used with breadboard (22-gauge wire)

d Five-volt power supply

d Light-Emitting Diode (used to measure output)

d NAND and NOR logic gates

None of the hardware is expensive. To handle a class of 70 students, for example,
Purdue University spent less than $1000 on hardware. Smaller classes or sharing in the
lab can reduce the cost further. As an alternative, it is possible to institute a lab fee or
require students to purchase their own copy of the hardware.

A1.3 Solderless Breadboard

A solderless breadboard is used to rapidly construct an electronic circuit without
requiring connections to be soldered. Physically, a breadboard consists of a block of
plastic (typically three inches by seven inches) with an array of small holes covering the
surface.

The holes are arranged in rows with a small gap running down the center and extra
holes around the outside. Each hole on the breadboard is a socket that is just large
enough for a copper wire — when a wire is inserted in the hole, metal contacts in the
socket make electrical contact with the metal wire. The size and spacing of the sockets
on a breadboard are arranged to match the size and spacing of pins on a standard in-
tegrated circuit (IC), and the gap on the breadboard matches the spacing across the pins,
which means that one or more integrated circuits can be plugged into the breadboard.
The pins on an IC plug directly into the sockets.

The back of a breadboard contains metal strips that interconnect various sockets.
For example, the sockets on each side of the center in a given row are interconnected.
Figure A1.1 illustrates sockets on a breadboard and the electrical connections among the
sockets.
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(a) (b)

Figure A1.1 (a) Illustration of a breadboard with sockets into which wires can
be inserted, and (b) blue lines showing the electrical connec-
tions among the sockets.

A1.4 Using A Solderless Breadboard

To use a breadboard, an experimenter plugs integrated circuits onto the breadboard
along the center, and then uses short wires to make connections among the ICs. A wire
plugged into a hole in a row connects to the corresponding pin on the IC that is plugged
into the row. To make the connections, an experimenter uses a set of pre-cut wires
known as a wiring kit. Each individual wire in the wiring kit has bare ends that plug
into the breadboard, but is otherwise insulated. Thus, many wires can be added to a
breadboard because the insulated area on a wire can rub against the insulation of other
wires without making electrical contact.

Figure A1.2 illustrates part of a breadboard that contains a 7400 IC, with wires
connecting some of the gates on the IC.
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Figure A1.2 Illustrations of (a) the internal connections on a 7400 chip, and
(b) part of a breadboard with blue lines indicating wires con-
necting a 7400 chip. Using a set of sockets to connect power
and ground wires allows additional connections to be added.

A1.5 Testing

Beginners often find it easiest to construct a circuit in stages, and test each part of
the circuit as building proceeds. For example, after connecting power and ground to a
chip, a gate on the chip can be tested to verify that the chip is working. Similarly, after
a particular gate has been connected, the input(s) and output(s) of the gate can be meas-
ured to determine whether the connections are working.

An easy and inexpensive way to test digital logic consists of using a Light Emitting
Diode (LED). The LED glows when its input wire connects to logical one (i.e., five
volts), and is off when its input wire connects to logical zero (i.e., zero volts). For ex-
ample, to test the circuit in Figure A1.2, an LED can be connected between the output
(pin 11 of the integrated circuit) and ground (zero volts)†.

A1.6 Power And Ground Connections

When multiple chips are plugged into a breadboard, each chip must have connec-
tions to power and ground (i.e., five volts and zero volts). To ensure that the power and
ground connections are convenient and to keep the wires short, many experimenters
choose to devote the outer sets of sockets on both sides of the breadboard to power and
ground. To do so, jumper wires are added that interconnect the outer columns. Figure
A1.3 illustrates the wiring.

The wires used to connect power and ground are semi-permanent in the sense that
they can be reused for many experiments. Thus, experimenters often use the color of a

��������������������������������
†Note: the LED must have electrical characteristics that are appropriate for the circuit — an arbitrary

LED can draw so much electrical power that it will cause a 7400-series integrated circuit to burn out.
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wire to indicate its purpose, and choose colors for power and ground that are not used
for other connections. For example, red wires can be used for all power connections,
black wires can be used for all ground connections, and blue wires can be used for other
connections. Of course, the wires themselves do not differ — the color of the insulation
merely helps a human understand the purpose of the wire. When disassembling a
breadboard after an experiment is finished, the experimenter can leave the power and
ground connections for a later experiment.

to 0 volts
to 5 volts

Figure A1.3 A breadboard with semipermanent jumper wires added to con-
nect the outer two rows of sockets on each side of the board to
power and ground. The outer row of sockets connects to
ground (zero volts), and the next row of sockets connects to five
volts.

A1.7 Lab Exercises

The next pages contain a series of lab exercises. Although each writeup specifies
the steps to be taken in lab, additional details that pertain to the local environment or
computer system must be supplied by the lab instructor. For example, the first lab asks
students to establish their computer account, including environment variables. Because
the set of directories to be included on the path depend on the local computer system,
the set of actual paths must be supplied for each environment.
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Lab 1
Introduction And Account Configuration

Purpose

To learn about the lab and set up a computer account for use in lab during the
semester.

Background Reading And Preparation

Read about the bash shell available with Linux, and find out how to set Linux en-
vironment variables.

Overview

Modify your lab account so your environment will be set automatically when you
log in.

Procedure And Details (checkmark as each is completed)

������ 1. Modify your account startup file (e.g., .profile or .bash_profile) so your
PATH includes directories as specified by your lab instructor.

������ 2. Log out and log in again.

������ 3. Verify that you can reach the files and compilers that your lab instructor
specifies.
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������������������������������������������������������������

Notes
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Lab 2
Digital Logic: Use Of A Breadboard

Purpose

To learn how to wire a basic breadboard and use an LED to test the operation of a
gate.

Background Reading And Preparation

Read Chapter 2 to learn about basic logic gates and circuits, and read the beginning
sections of this Appendix to learn about breadboards. Attend a lecture on how to prop-
erly use the breadboard and related equipment.

Overview

Place a 7400 chip on a breadboard, connect power and ground from a five-volt
power supply, connect the inputs of a gate to the four possible combinations of zero and
one, and use an LED to observe the output.

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates. Also verify that you have a copy of the textbook or a data
sheet that specifies the pins on a 7400 (quad, two-input NAND gate).

������ 2. Place the 7400 on the breadboard as Figure A1.2† shows.

������ 3. Connect the two wires from a five-volt power supply to two separate sets of
sockets near the edge of the board.

������ 4. Add a wire jumper that connects pin 14 on the 7400 to five volts.

������ 5. Add a wire jumper that connects pin 7 on the 7400 to zero volts. NOTE: be
sure not to reverse the connections to the power supply or the chip will be
damaged.

��������������������������������
†Figure A1.2 can be found on page 334.
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������ 6. Add a wire jumper that connects pin 1 on the 7400 to zero volts.

������ 7. Add a wire jumper that connects pin 2 on the 7400 to zero volts.

������ 8. Connect the LED, from the lab kit, between pin 3 on the 7400 and ground
(zero volts). NOTE: the LED must be connected with the positive lead at-
tached to the 7400.

������ 9. Verify that the LED is lit (it should be lit because both inputs are zero which
means the output should be one).

����� 10. Move the jumper that connects pin 2 from zero volts to five volts, and verify
that the LED remains lit.

����� 11. Move the jumper that connects pin 2 back to zero volts, move the jumper that
connects pin 3 from zero volts to five volts, and verify that the LED remains
lit.

����� 12. Keep the jumper from pin 3 on five volts, move the jumper that connects pin
2 to five volts, and verify that the LED goes out.

Optional Extensions (checkmark as each is completed)

����� 13. Wire the breadboard as shown in Figure A1.2 (pin 3 connected to pin 12, and
pin 13 acting as an additional input).

����� 14. Connect the LED between pin 11 and ground.

����� 15. Record the LED values for all possible combinations of the three inputs.

����� 16. What Boolean function does the circuit represent?



Lab Exercises 341

Lab 3
Digital Logic: Building An Adder From Gates

Purpose

To learn how basic logic gates can be combined to perform complex tasks such as
binary addition.

Background Reading And Preparation

Read Chapter 2 about basic logic gates and circuits, and read the beginning sec-
tions of this Appendix to learn about breadboards.

Overview

Build a half adder and full adder circuit using only basic logic gates. Combine the
circuits to implement a two-bit binary adder with carry output.

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates as well as lab writeups that describe both the chip pinouts
and the logic diagram of an adder circuit.

������ 2. Construct a binary half adder as specified in the logic diagram that your lab
instructor provides.

������ 3. Connect the outputs to LEDs, the inputs to switches, and verify that the
results displayed on the LED are the correct values for a one-bit adder.

������ 4. Construct a binary full adder as specified in the logic diagram that your lab
instructor provides.

������ 5. Connect the outputs to LEDs, the inputs to switches, and verify that the
results displayed on the LED are the correct values for a full adder.
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������ 6. Chain the half adder circuit to the full adder circuit to make a two-bit adder.
Verify that the circuit correctly adds a pair of two-bit numbers and the carry
out value is correct.

Optional Extensions (checkmark as each is completed)

������ 7. Draw the logic diagram for a three-bit adder.

������ 8. Draw the logic diagram for a four-bit adder.

������ 9. Give a formula for the number of gates required to implement an n-bit adder.

������������������������������������������������������������

Notes
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Lab 4
Digital Logic: Clocks And Demultiplexing

Purpose

To understand how a clock controls a circuit and allows a series of events to occur.

Background Reading And Preparation

Read Chapter 2 to learn about basic logic gates and clocks. Concentrate on under-
standing how a clock functions.

Overview

Use a switch to simulate a clock, and arrange for the clock to operate a demulti-
plexor circuit.

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates as well as lab writeups that describe both the chip pinouts
and the logic diagram of a demultiplexing circuit.

������ 2. Use a switch to simulate a slow clock.

������ 3. To verify that the switch is working, connect the output of the switch to an
LED, and verify that the LED goes on and off as the switch is moved back
and forth.

������ 4. Connect the simulated clock to the input of a four-bit binary counter (a 7493
chip).

������ 5. Use an LED to verify that each time the switch is moved through one cycle,
the outputs of the counter move to the next binary value (modulo four).
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������ 6. Connect the four outputs from the binary counter to the inputs of a demulti-
plexor chip (a 74154).

������ 7. Use an LED to verify that as the switch moves through one cycle, exactly one
output of the demultiplexor becomes active. Warning: the 74154 is counter-
intuitive because the active output is low (logical zero) and all other outputs
are high (logical one).

Optional Extensions (checkmark as each is completed)

������ 8. Use a 555 timer chip to construct a 1Hz clock, and verify that the clock is
working.

������ 9. Replace the switch with the clock circuit.

����� 10. Use multiple LEDs to verify that the demultiplexor continually cycles through
each output.

������������������������������������������������������������

Notes
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Lab 5
Representation: Testing Big Endian Vs. Little Endian

Purpose

To learn how the integer representation used by the underlying hardware affects
programming and data layout.

Background Reading And Preparation

Read Chapter 3 to learn about big endian and little endian integer representations
and the size of an integer.

Overview

Write a C program that examines data stored in memory to determine whether a
computer uses big endian or little endian integer representation.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C program that creates an array of bytes in memory, fills the array
with zero, and then stores integer 0x04030201 in the middle of the array.

������ 2. Examine the bytes in the array to determine whether the integer is stored in
big endian or little endian order.

������ 3. Compile and run the program (without changes to the source code) on both a
big endian and little endian computer, and verify that it correctly announces
the integer type.

������ 4. Add code to the program to determine the integer size (hint: start with integer
1 and shift left until the value is zero).

������ 5. Compile and run the program (without changes to the source code) on both a
thirty-two bit and a sixty-four bit computer, and verify the program correctly
announces the integer size.
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Optional Extensions (checkmark as each is completed)

������ 6. Find an alternate method of determining the integer size.

������ 7. Implement the alternate method to determine integer size, and verify that the
program works correctly.

������ 8. Extend the program to announce the integer format (i.e., one’s complement or
two’s complement).

������������������������������������������������������������

Notes
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Lab 6
Representation: A Hex Dump Program In C

Purpose

To learn how values in memory can be presented in hexadecimal form.

Background Reading And Preparation

Read Chapter 3 on data representation, and find both the integer and address sizes
for the computer you use†. Ask the lab instructor for an exact specification for the out-
put format.

Overview

Write a C procedure that produces a hexadecimal dump of memory in ASCII. The
lab instructor will give details about the format for a particular computer, but the gen-
eral form is as follows:

Address Words In Hexadecimal ASCII characters
--------- -------- -------- -------- -------- ----------------
aaaaaaaa xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx cccccccccccccccc

In the example, each line corresponds to a set of memory locations. The string
aaaaaaaa denotes the starting memory address (in hexadecimal) for values on the line,
xxxxxxxx denotes the value of a word in memory (also in hexadecimal), and
cccccccccccccccc denotes the same memory locations when interpreted as ASCII char-
acters. Note: the ASCII output only displays printable characters; all other characters
are displayed as blanks.

Procedure And Details (checkmark as each is completed)

������ 1. Create a procedure, mdump that takes two arguments that each specify an ad-
dress in memory. The first argument specifies the address where the dump
should start, and the second argument specifies the highest address that needs
to be included in the dump. Test to ensure that the starting address is less
than the ending address.

��������������������������������
†On most computers, the address size equals the integer size.
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������ 2. Modify both arguments so each value specifies an appropriate word address
(i.e., an exact multiple of four bytes). For the starting address, round down
to the nearest word address; for the ending address, round up.

������ 3. Test the procedure to verify that the addresses are rounded correctly.

������ 4. Add code that uses printf to produce headings for the hexadecimal dump, and
verify that the headings are correct.

������ 5. Add code that iterates though the addresses and produces lines of hexade-
cimal values.

������ 6. To verify that procedure mdump outputs correct values, declare a struct in
memory, place values in fields, and invoke the procedure to format the
values.

������ 7. Add code that produces printable ASCII character values for each of the
memory locations, as shown above.

������ 8. Verify that only printable characters are included in the output (i.e., verify
that a non-printable character such as 0x01 is mapped into a blank).

Optional Extensions (checkmark as each is completed)

������ 9. Extend the dump program to start and stop on a byte address (i.e., omit lead-
ing values on the first line of output and trailing values on the last line).

����� 10. Change the program to print values in decimal instead of ASCII character
form.

����� 11. Modify the dump program so instead of printing ASCII values, the program
assumes the memory corresponds to machine instructions and gives mnemon-
ic opcodes for each instruction. For example, if the first word on the line
corresponds to a load instruction, print load.

����� 12. Add an argument to procedure mdump that selects from among the various
forms of output (ASCII characters, decimal, or instructions).
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Lab 7
Processors: Learn A RISC Assembly Language

Purpose

To gain first-hand experience with an assembly language and understand the one-
to-one mapping between assembly language instructions and machine instructions.

Background Reading And Preparation

Read Chapters 4 through 6 and 8 to learn the concepts of instruction sets and
operand types. Read about the specific instruction set available on your local computer.
Consult the assembler reference manual to learn the syntax conventions needed for the
assembler. Also read the assembler reference manual to determine the conventions used
to call an external procedure.

Overview

Write an assembly language program that shifts an integer value to the right and
then calls a C procedure to display the resulting value in hexadecimal.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C procedure, int_out, that takes an integer argument and uses printf to
display the argument value in hexadecimal.

������ 2. Test the procedure to ensure it works correctly.

������ 3. Write an assembly language program that places the integer 4 in a register,
shifts the contents of the register right one bit.

������ 4. Extend the program to pass the result of the previous step as an argument to
external procedure int_out.

������ 5. Verify that the program produces 0x2 as the output.
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������ 6. Instead of using 4 as the initial integer, use 0xBD5A, and verify that the out-
put is correct.

Optional Extensions (checkmark as each is completed)

������ 7. Rewrite the external procedure int_out and the assembly language program to
pass multiple arguments.

������������������������������������������������������������

Notes
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Lab 8
Processors: Function That Can Be Called From C

Purpose

To learn how to write an assembly language function that can be called from a C
program.

Background Reading And Preparation

Read Chapter 8 to learn about subroutine calls in assembly languages, and read the
C and assembler reference manuals to determine the conventions that C uses to call a
function on your local computer.

Overview

Write an assembly language function that can be called from a C program to per-
form the exclusive or of two integer values.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C program that calls function xor with two integer arguments and
displays the result of the function.

������ 2. Create an assembly language function, xor, that takes two integer values as
arguments, computes the exclusive or of the two arguments, and returns the
result as the value of the function.

������ 3. Add a printf call to the xor function to verify that the function correctly re-
ceives the two values that the C program passes as arguments (i.e., argument
passing works correctly).

������ 4. Add a printf call to the C function to verify that the xor code returns the
correct value.
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Optional Extensions (checkmark as each is completed)

������ 5. Modify the C program and the xor function so the C program passes a single
structure as an argument instead of two integers. Arrange for the structure to
contain two integer values.

������������������������������������������������������������

Notes
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Lab 9
Memory: Row-Major And Column-Major Array Storage

Purpose

To understand storage of arrays in memory and the difference between row-major
order and column-major order.

Background Reading And Preparation

Read Chapters 9 through 11 to learn about basic memory organization and the
difference between storing arrays in row-major order and column-major order.

Overview

Instead of using built-in language facilities to declare two-dimensional arrays, im-
plement two C functions, two_d_store and two_d_fetch, that use linear storage to imple-
ment a two-dimensional array. Function two_d_fetch takes six arguments: the base ad-
dress in memory of a region to be used as a two dimensional array, the size (in bytes)
of a single entry in the array, two array dimensions, and two index values. For exam-
ple, instead of the two lines:

int d[10,20];

x = d[4,0];

a programmer can code:

char d[200*sizeof(int)];

x = two_d_fetch(d, sizeof(int), 10, 20, 4, 0);

Function two_d_store has seven arguments. The first six correspond to the six ar-
guments of two_d_fetch, and the seventh is a value to be stored. For example, instead
of:

int d[10,20];

d[4,0] = 576;

a programmer can code:
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char d[200*sizeof(int)];

two_d_store(d, sizeof(int), 10, 20, 4, 0, 576);

Procedure And Details (checkmark as each is completed)

������ 1. Implement function two_d_store.

������ 2. Create an area of memory large enough to hold an array, initialize the entire
area to zero, and then call two_d_store to store specific values in various lo-
cations. Use the hex dump program created in Lab 6 to display the result,
and verify that the correct values have been stored.

������ 3. Implement function two_d_fetch.

������ 4. Verify that your implementation of two_d_fetch works correctly.

������ 5. Test two_d_store and two_d_fetch for boundary conditions, such as the
minimum and maximum array dimensions.

Optional Extensions (checkmark as each is completed)

������ 6. Verify that functions two_d_store and two_d_fetch work correctly for an ar-
ray that stores: characters, integers, or double-precision items.

������ 7. Extend two_d_store and two_d_fetch to work correctly with any range of ar-
ray index. For example, allow the first index to range from -5 to +15, and al-
low the second index to range from 30 to 40.
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Lab 10
Input / Output: A Buffered I/O Library

Purpose

To learn how buffered I/O operates and to compare the performance of buffered
and unbuffered I/O.

Background Reading And Preparation

Read Chapters 13 through 15 to learn about I/O in general, and read Chapter 16 to
learn about buffering.

Overview

Build three C procedures, buf_in, buf_out, and buf_flush that implement buffered
I/O. On each call, procedure buf_in delivers the next byte of data from file descriptor
zero. When additional input is needed from the device, buf_in reads sixteen kilobytes
of data into a buffer, and allows successive calls to return values from the buffer. On
each call, procedure buf_out writes one byte of data to a buffer. When the buffer is full
or when the program invokes procedure buf_flush, data from the buffer is written to file
descriptor one.

Procedure And Details (checkmark as each is completed)

������ 1. Implement procedure buf_in.

������ 2. Verify that buf_in operates correctly for input of less than sixteen kilobytes
(i.e., less than one buffer of data).

������ 3. Redirect input to a large file, and verify that buf_in operates correctly for in-
put that spans multiple buffers.

������ 4. Implement procedures buf_out and buf_flush.
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������ 5. Verify that buf_out and buf_flush operate correctly for output of less than one
buffer.

������ 6. Verify that buf_out and buf_flush operate correctly for output that spans mul-
tiple buffers.

Optional Extensions (checkmark as each is completed)

������ 7. Compare the performance of procedures buf_in, buf_out, and buf_flush to the
performance of unbuffered I/O (i.e., read and write of one byte) for various
size files. Plot the results.

������ 8. Measure the performance of buf_in, buf_out, and buf_flush for various size
buffers when copying a large file. Use buffers that range in size from 4 bytes
to 100 Kbytes, and plot the results.

������������������������������������������������������������

Notes
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Lab 11
A Hex Dump Program In Assembly Language

Purpose

To gain experience coding assembly language.

Background Reading And Preparation

Review Chapters 4 through 6, Chapter 8, and assembly language programs written
in earlier labs.

Overview

Rewrite the hex dump program from Lab 6 in assembly language.

Procedure And Details (checkmark as each is completed)

������ 1. Rewrite the basic hex dump procedure in assembly language.

������ 2. Verify that the assembly language version gives the same output as the C ver-
sion.

Optional Extensions (checkmark as each is completed)

������ 3. Extend the dump procedure to start and stop on a byte address (i.e., omit
leading values on the first line of output and trailing values on the last line).

������ 4. Change the program to print values in decimal instead of ASCII character
form.

������ 5. Modify the dump program so instead of printing ASCII values, the program
assumes the memory corresponds to machine instructions and gives mnemon-
ic opcodes for each instruction. For example, if the first word on the line
corresponds to a load instruction, print load.
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������ 6. Add an argument to the dump procedure that selects from among the various
forms of output (ASCII characters, decimal, or instructions)

������������������������������������������������������������

Notes
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